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Abstract 

The future of early diagnosis and precision medicine will be based on the 

advanced single-cell analysis. To date, the gold-standard technique is 

Fluorescence Imaging Flow Cytometry (FIFC), which is able to quickly record 

2D images of stained single cells while flowing through a measuring device. 

Thus, FIFC can satisfy the need for large informative datasets typical of 

Artificial Intelligence (AI), which has made possible a fast, automatic, and 

objective cell phenotyping. However, the staining process and the 2D 

qualitative information limit the FIFC clinical applications. Conversely, 

Tomographic Phase Microscopy (TPM) is a label-free optical microscopy 

technique that allows reconstructing the 3D spatial distribution of the 

refractive index (RI) at the single-cell level. The cellular RI is a key biophysical 

parameter proved to be an effective descriptor of cellular heterogeneity. In 

2017, TPM has been proved working in Flow Cytometry (FC) mode. In TPM-FC, 

digital holograms of single cells are recorded in continuous flow while rotating 

in microfluidic environment. The TPM-FC tool is expected to create a 

breakthrough in the cell biology studies and in the clinical practice. Therefore, 

several computational strategies are developed in this Ph.D. Thesis for 

transferring the original proof of concept of TPM-FC into a concrete 

technology for the single-cell analysis. In particular, various issues to achieve 

the high-throughput property have been fixed and the lack of intracellular 

specificity, due to the label-free modality, has been filled for some organelles. 

Finally, the large datasets of single cells, collected through the TPM-FC system, 

have been used to train AI models for phenotyping cancer cells and 

recognizing drug resistance. In the near future, the attained results are 

expected to contribute in providing a solution to the challenging topic of the 

Liquid Biopsy (LB) technology, which aims to the early diagnosis of cancer and 

the development of personalized therapies by means of blood tests. 

Keywords: Single-Cell Analysis, Digital Holography, Imaging Flow Cytometry, 

Tomographic Phase Microscopy, Artificial Intelligence, Liquid Biopsy. 
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Sintesi in Lingua Italiana 

Il futuro della diagnosi precoce e della medicina di precisione si baserà 

sull'analisi avanzata a singola cellula. Ad oggi, la tecnica di riferimento è la 

citometria a flusso basata su imaging a fluorescenza (FIFC), capace di 

registrare rapidamente immagini 2D di singole cellule marcate mentre 

fluiscono attraverso un dispositivo di misurazione. FIFC può fornire grandi set 

di dati informativi all'intelligenza artificiale (AI), che ha reso possibile una 

fenotipizzazione cellulare veloce, automatica e oggettiva. Tuttavia, il processo 

di colorazione e le informazioni qualitative 2D limitano le sue applicazioni 

cliniche. Al contrario, la microscopia tomografica a contrasto di fase (TPM) è 

una tecnica di microscopia ottica senza coloranti che consente di ricostruire la 

distribuzione spaziale 3D dell'indice di rifrazione (RI) di singole cellule. L'RI 

cellulare è un parametro biofisico chiave in grado di descrivere l'eterogeneità 

cellulare. Il funzionamento della TPM in modalità citometrica a flusso 

(TPM-FC) è stato dimostrato nel 2017. Nella TPM-FC, gli ologrammi digitali di 

singole cellule vengono registrati mentre ruotano in un flusso microfluidico. 

La TPM-FC potrebbe creare una svolta negli studi di biologia cellulare e nella 

pratica clinica. Pertanto, in questa Tesi di Dottorato vengono sviluppate 

diverse strategie computazionali per trasformare l'originale proof of concept 

della TPM-FC in una tecnologia concreta. In particolare, sono stati risolti vari 

problemi per ottenere la proprietà di high-throughput e, per alcuni organelli, 

è stata colmata la mancanza di specificità intracellulare dovuta all'assenza di 

coloranti. Infine, sono stati addestrati modelli AI per la fenotipizzazione di 

cellule tumorali e il riconoscimento della resistenza ai farmaci. In futuro, i 

risultati raggiunti potrebbero contribuire a fornire una soluzione al difficile 

problema della biopsia liquida (LB), che mira alla diagnosi tumorale precoce e 

allo sviluppo di terapie personalizzate tramite analisi del sangue. 

Parole chiave: Analisi a Singola Cellula, Olografia Digitale, Citometria a Flusso 

basata su Imaging, Microscopia Tomografica a Contrasto di Fase, Intelligenza 

Artificiale, Biopsia Liquida. 
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Introduction 

Cellular populations are often heterogeneous with respect to cell cycle phase, 

size, shape, and physiological state. Therefore, a deep inspection of 

intraspecies variability is essential for assaying diversity and searching for 

rare cells with specific features (e.g., tumor cells, stem cells, etc.), which 

instead could be most likely lost within average measurements. Therefore, the 

future of early diagnosis and precision medicine will be based on the accurate 

screening at single-cell level. The gold standard imaging technique to render a 

cell and its organelles visible on a selective basis is Fluorescence Microscopy 

(FM), which uses various stains or fluorescent tags. 

For a long time, single-cell analysis has been based on the visual phenotyping, 

that is the characterization and quantification of distinctive cellular and sub-

cellular traits in FM images by a human operator. However, visual cell 

phenotyping is limited by the operator’s experience and prevents an advanced 

cellular inspection as complex phenomena could be hidden at the human eye. 

Therefore, a revolution in the cytometry framework has been introduced by 

AI. AI largely extends the variety of tasks that image analysis can accomplish, 

thus aiding the cell phenotyping by making it automatic and objective, that is, 

not dependent on specific skills of the operator. 

The main limitation of AI is the need for large informative datasets, which 

often cannot be easily collected. In the context of single-cell analysis, a solution 

has been provided by Imaging Flow Cytometry (IFC). IFC is a sophisticated 

technique able to record bright-field, dark-field, and fluorescent images of 

single cells while flowing in suspension through a measuring device at high-

throughput. From the collected images, multiple parameters can be extracted, 
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related to the whole cell and its intracellular organelles (e.g., size, shape, 

granularity, fluorescence intensity, and many others). Therefore, fitting 

between AI and IFC has demonstrated being fruitful as each of these two 

techniques takes advantage from the other's capabilities, thus pushing up the 

development and innovation of high-throughput cell biology applications, 

which are moving toward well-defined protocols for the final clinical approval 

in cancer biology, immunology, microbiology and stem cell biology. 

Multimodal imaging based on the combination between bright-field 

microscopy and FM still remains the gold standard in IFC. However, although 

FM has allowed to achieve meaningful progress in cell biology, thus greatly 

advancing the scientific knowledge, some important drawbacks limit its 

application in biomedicine. While stains and tags offer high-contrast imaging 

with intracellular specificity, often they are incompatible with live cell analysis 

and may have confounding effects on the cells. Moreover, the knowledge about 

exogenous biochemical markers is requested to identify a certain cellular trait, 

that is cumbersome in the case of unknown and rare cell types in a highly 

heterogeneous population. Furthermore, large-scale FM assays can be sample 

preparation-dependent, costly, labor-intensive, and time-consuming, thus 

hindering their applications in biology and biomedicine. In addition, 

photobleaching can alter the quality of the imaging, above all in long 

experiments, the use of exogenous labelling agents may alter the normal 

physiology of cells (phototoxicity), thus reducing the reliability of FM 

information, and labelled cells cannot be re-injected into the human body. 

Finally, FM imaging is mainly qualitative, which means that only 

morphological parameters and fluorescence signals can be measured, while 

missing the quantitative characterization of the biophysical properties of a 

cell, able to reflect its current state (e.g., healthy or sick). Therefore, these 

limitations have prompted the development of label-free methods for live 

imaging in order to avoid chemical staining. 

Among label-free methods, Digital Holography (DH) has settled as rapid, 

non-destructive, and minimally invasive imaging technique for the single-cell 
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analysis. The exogeneous staining is avoided in DH because, by exploiting the 

interferometric principles, the endogenous phase contrast of the cell is imaged 

by recording the fringe pattern produced after the interference between a 

reference wave and an object wave (passed through the sample). Then, a 

numerical holographic processing allows retrieving the quantitative phase 

map (QPM) of a single cell from the recorded digital hologram. The QPM is a 

2D image in which the information about the 3D cell morphology is coupled to 

the information about the 3D spatial distribution of the cellular RI. The cellular 

RI is related to the biophysical properties of the cell (e.g., dry mass), and has 

been exploited for studying a multitude of cellular processes, such as cell-cycle 

progression, cell differentiation, and malignant transformation, thus proving 

to be an effective descriptor of the cellular heterogeneity. For these reasons, 

Quantitative Phase Imaging (QPI) has emerged as a very useful tool in label-

free microscopy, being complementary to FM but without the staining-related 

drawbacks, and many significant results have been achieved in the label-free 

single-cell analysis. Even though QPI can be obtained by means of different 

imaging techniques, DH is the most common one mainly because of its 

refocusing capability, meaning that the focus plane of the cell can be 

numerically retrieved after the experiment. Thus, the DH refocusing property 

has been exploited for realizing label-free holographic IFC (HIFC). Besides the 

lack of exogeneous staining and the related advantages, HIFC is emerging over 

the conventional FIFC thanks to the wealth of biophysical information that can 

be measured in high-throughput from the QPM of a single cell, thus addressing 

much better the AI need for information-rich quantitative measurements. 

Hence, the combination between HIFC and AI is boosting the detection and 

analysis of cellular heterogeneity with respect to conventional FIFC. 

Since the mid-1990s, QPI has been successfully used for many cellular studies. 

However, in case of complex 3D structures, QPI can lead to inaccurate 

interpretations since, as a first approximation, a QPM can be considered as the 

integral of the cellular RI along the optical axis. To fully exploit the great 

potential of QPI, TPM has been proposed for the first time in 2006. TPM is a 
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label-free optical microscopy technique that allows reconstructing the 3D RI 

spatial distribution of single cells. Therefore, TPM gives access to the highest 

informative content at the single-cell level, that is the full reconstruction of the 

cellular volume and its RI content in 3D. At this aim, in analogy to Computed 

Tomography (CT), multiple QPMs are recorded at several viewing angles 

around the sample in order to decouple the two quantities encoded inside a 

single QPM. Starting from 2006, TPM has undergone a fast development. In 

particular, the actual state-of-the-art TPM systems work in static 

environment. They are based on the illumination of the fixed sample while 

changing the beam direction or on the illumination of the sample along a fixed 

beam direction while rotating because of mechanical/optical forces. In the 

first case, the tomographic reconstruction is not isotropic, while, in the second 

case, the tomogram is isotropic, but the sample can be biologically altered by 

the external forces needed to rotate it and the complex recording system 

prevents the tomographic recording of large number of cells. 

To overcome these drawbacks, the first proof of concept of TPM in FC mode 

has been demonstrated in 2017 at the Institute of Applied Sciences and 

Intelligent Systems (ISASI) of the Italian National Research Council (CNR). In 

TPM-FC, digital holograms of single cells are recorded along a fixed beam 

direction while flowing along a microfluidic channel and rotating because of 

the hydrodynamic forces of the laminar flow generated by a microfluidic 

pump. In the TPM-FC recording system, cells experience a full rotation during 

DH recording, thus the reconstruction is isotropic and no external alteration 

is introduced on the cell. Moreover, cells are recorded in suspension in a buffer 

medium and not in adhesion, thus they are not spread at rest on a surface and, 

as a consequence, the 3D RI tomograms reveal their actual shape and inner 

organization, i.e. the volumetric distribution of intracellular organelles. 

Regarding this latter aspect, label-free techniques like QPI and TPM suffer a 

main drawback with respect to FM, that is the lack of intracellular specificity. 

In fact, in FM, the employment of organelle-specific exogeneous markers 

allows distinguishing the intracellular components among them, thus 
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providing a subcellular analysis at single-cell level. Instead, the endogenous 

phase-contrast in QPI, and then the resulting RI-contrast in TPM, often are not 

enough to guarantee the recognition of a certain organelle. For this reason, 

even though TPM provides the 3D spatial distribution of the RIs inside the 

cellular volume, only an overall intracellular analysis can be performed 

without organelle specificity. Recently, AI-based strategies have been 

proposed to fill the specificity gap between FM and label-free QPI and 

conventional static TPM. Unfortunately, these AI approaches cannot be 

replicated in TPM-FC, as the creation of a dataset of flowing suspended cells 

with a voxel-level registration between 3D RI and 3D fluorescence tomograms 

is not obtainable, thus the AI model cannot learn from examples of co-

registered data pairs. At the same time, AI has started to be used to solve 

classification problems of single cells reconstructed by means of conventional 

static TPM, taking great advantage of the high-content quantitative 

information contained inside a cellular 3D RI tomogram. However, the small 

tomographic dataset that can be created in static condition represents a 

limitation for the huge potential that the combination between AI and TPM 

could offer to the single-cell analysis. Of course, a solution is expected to be 

provided when the potential high-throughput property of TPM-FC will be fully 

exploited and the intracellular specificity will be accessed inside TPM-FC 

tomograms. 

This Ph.D. Thesis, carried out at ISASI-CNR, aims to develop computational 

strategies for transferring the original proof of concept of TPM-FC into a 

concrete technology for the single-cell analysis to be exploited for clinical 

applications. The TPM-FC tool is expected to create a breakthrough for the cell 

biology studies and for the clinical practice, because, unlike the gold-standard 

FIFC, single-cell analysis can be performed in quantitative way, in 3D, and 

without the employment of exogenous labels, but providing at the same time 

the high-throughput property requested by AI models. In particular, among 

the others, the most promising application of TPM-FC in biomedicine is LB. It 

is a test done on a sample of blood to search for circulating tumour cells 
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(CTCs). Unlike conventional tissue biopsy, LB is cheaper, minimally invasive, 

and aims to the early diagnosis of tumours and the development of 

personalized therapies. TPM-FC, combined to AI, is the ideal candidate for 

realizing the LB paradigm, as it gives a powerful tool for searching rare cells 

into the bloodstream thanks to the FC mode and the possibility of extracting 

the most reliable fingerprint at the single-cell level, that can be used as cancer 

biomarker. Finally, thanks to the DH underlying principle, such a LB tool based 

on TPM-FC has great chances to be miniaturized into lab-on-chip (LOC) 

devices for rapid, cheap, and easily accessible point-of-care biomedical 

applications. 

This Ph.D. Thesis is structured as follows. 

In Chapter 1, a general overview about the DH theory and the QPI applications 

in biomedicine is introduced. The conventional TPM technology working in 

static conditions is described. In particular, the state-of-the-art TPM setups are 

introduced, along with their advantages and drawbacks, and the tomographic 

algorithms commonly implemented for reconstructing the 3D RI tomograms 

from the recorded QPMs are discussed. Then, the latest TPM applications 

developed in the biomedical field are presented. Finally, a first result of this 

Thesis is described, regarding the implementation of an alternative static TPM 

system for the non-destructive tomographic reconstruction directly at the 

nuclear level within plant cells based on the dehydration process. 

In Chapter 2, after an overview of the IFC tool and its applications in both 

fluorescence and label-free modality, the main topic of this Ph.D. Thesis is 

introduced, that is TPM-FC. From this point of the Thesis onwards, the main 

results obtained during the Ph.D. research activity are presented. In particular, 

the latest implementation of the opto-fluidic recording system developed at 

the aim of optimizing the TPM-FC performance is described. To replicate the 

high-throughput property of a conventional IFC system, an automatic 

reconstruction pipeline is proposed, including the QPMs retrieval of a cell 

flowing and rotating along a microfluidic channel and the estimation of its 



INTRODUCTION 7 

 
 

unknown viewing/rolling angles, in order to reconstruct the cell’s 3D RI 

tomogram. Finally, an assessment is performed on the hydrodynamic mutual 

interactions that could arise among cells and perturb their tomographic 

reconstructions when high-throughput conditions are met, thus setting an 

upper bound about the achievable throughput. 

In Chapter 3, after fixing the TPM-FC system and the numerical processing 

pipeline, some applications are explored for the single-cell analysis, based on 

the combination between TPM-FC data and AI models. AI is firstly exploited 

for greatly speeding up the heavy and time-consuming numerical holographic 

processing requested by TPM-FC, thus representing a further step toward the 

recording of large tomographic datasets in short times. Then, AI models are 

employed to solve classification problems based on the datasets collected by 

means of a TPM-FC system. In particular, from the diagnostic point of view, 

cancer cells are identified within a background of healthy blood cells, and then 

phenotyping of cancer cells is performed, also exploiting the principles of 

fractal geometry. Instead, from the therapeutical point of view, the possibility 

of recognizing the drug resistance is proved, useful for establishing precision 

medicine. At this aim, three possibilities are explored, i.e. the classification of 

the raw holographic data, classification of the phase signature, and 

classification of the 3D RI distribution. 

In Chapter 4, the main TPM-FC issue related to the lack of intracellular 

specificity is addressed by means of computational methods avoiding AI, thus 

filling the specificity gap with FIFC. In particular, the nucleus is segmented 

from the 3D RI tomogram of the whole cell through a statistical approach 

aiming at identifying statistical similarities between groups of RI cellular 

voxels. The same approach is demonstrated working also for the nucleolus by 

means of a numerical cell phantom. A RI threshold-based segmentation is 

employed for the counting, localization, and analysis of lipid droplets (LDs) 

inside the TPM-FC tomograms. The latter approach has also been exploited as 

analytical tool for inspecting the possibility of detecting LDs inside 2D QPMs 

recorded in FC mode by studying the way their presence changes the 
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focalization property of the whole cell, modelled as a biolens. After considering 

endogenous organelles, a variant of TPM-FC is described at the aim of 

visualizing in 3D the internalization of nanographene oxide inside live 

suspended cells, useful for example for drug delivery applications. Finally, a 

method for the quasi-lossless compression of the 3D RI tomograms based on 

the 3D Zernike polynomials is proposed. In fact, unlike conventional FIFC in 

which 2D images must be saved, the storage of 3D tomograms recorded in 

high-throughput modality represents a practical problem to be solved for the 

clinical implementation of TPM-FC. Thanks to the proposed method, reducing 

the size of the recorded tomograms without losing their intracellular RI 

content and then the reliability of the achievable biomarkers is possible. 

This Ph.D. Thesis ends with the conclusions in Chapter 5, reporting an 

overview about LB, in which its main challenges are discussed along with the 

perspectives opened by the new TPM-FC paradigm and the multiple topics 

herein addressed.



 

 

 
 

CHAPTER 

1 Tomographic Phase 
Microscopy 

Imaging of biological cells and tissues is critical for biological research and 

medical diagnosis. Therefore, microscopy has become the most used tool in 

medicine and biology. However, despite significant breakthroughs, optical 

imaging of biological samples remains an active research field, with the aim of 

further improving its performances and applications in biomedicine. Since the 

mid-1990s, the role of FM as gold standard technique in the optical 

microscopy field has been questioned by label-free QPI [1]. In a QPM, the 

information about the physical thickness of the sample and its RI are coupled 

together in the same 2D integral image. To record a QPM, exogenous staining 

is avoided because the endogenous phase contrast of the cell is imaged, usually 

by exploiting the interference principles of DH systems [2] [3]. Furthermore, 

in order to gain the whole 3D cell information, the first tomographic version 

of QPI has been implemented in 2006, termed TPM [4]. TPM is a label-free 

optical microscopy technique that allows decoupling the two quantities 

encoded in the 2D QPM, thus reconstructing the 3D spatial distribution of RIs 

at the single-cell level. Hence, TPM provides a label-free quantitative full 

characterization of the cell. Indeed, cell RI is correlated with other cell 

biophysical properties (mechanical, electrical, and optical), and not only 

represents the intracellular mass and concentration of a cell, but also provides 

important insights for various biological models [5]. Therefore, starting from 

the first attempt in 2006, TPM has captured enormous attention in the optics 

world due to its promising biomedical applications, and a fast and 

considerable development has occurred for both the hardware and software 
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components, i.e. the optical setup and the reconstruction algorithm, 

respectively. 

In this Chapter, the general concepts about DH and QPI are introduced, along 

with an overview of their implications in the biomedical field. The 

conventional TPM optical systems and the common tomographic 

reconstruction algorithms are then described. A discussion follows about the 

TPM applications in biomedicine developed in recent years. Finally, an 

alternative TPM strategy herein developed for reconstructing the 3D RI 

tomogram directly at the intracellular level inside plant cells is presented [6]. 

1.1 Quantitative Phase Imaging by Digital 
Holography 

Contrast defines how clearly a subject of interest is distinguished from the 

background. For a biological specimen, the thickness and RI inhomogeneity 

determine how much light scattering it produces. As in the visible spectrum 

most cells and tissues do not absorb significantly, contrast of a biological 

specimen is mainly determined by its light scattering. The scattered light 

generated by single cells and thin tissue slices is orders of magnitude weaker 

than the incident light. This class of specimens is referred to as phase objects, 

as they affect significantly only the phase of the incident field [1]. The gold 

standard imaging technique to render such structures visible is FM, which 

consists in converting them into amplitude objects using various stains or 

fluorescent tags [7]. However, while stains and tags offer high-contrast 

imaging with molecular specificity, FM is often qualitative and sample 

preparation-dependent, while photobleaching and phototoxicity limit 

fluorescent imaging of live cells. Furthermore, the use of exogenous labelling 

agents, such as fluorescent proteins or dyes, may alter the normal physiology 

of cells and, furthermore, labelled cells cannot be re-injected into the human 
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body [1]. Instead, QPI is emerging as a powerful label-free approach for cells 

and tissues, since it makes possible a nanoscale sensitivity to morphology and 

dynamics, 2D, 3D and 4D non-destructive imaging of completely transparent 

structures, and quantitative imaging based on intrinsic contrast. QPI is 

complementary to FM but avoids the phototoxicity and photobleaching 

limitations. A QPM contains the optical path length (OPL) delays introduced 

by the sample, i.e. 

(1.1)  {
𝑄𝑃𝑀(𝑥, 𝑦) =

2𝜋

𝜆
𝑂𝑃𝐿(𝑥, 𝑦)

𝑂𝑃𝐿(𝑥, 𝑦) = ∫ [𝑛(𝑥, 𝑦, 𝑧) − 𝑛m]𝑧
𝑑𝑧

, 

where 𝜆 is the wavelength, 𝑧 is the optical axis, 𝑛(𝑥, 𝑦, 𝑧) is the 3D spatial 

distribution of the cell RI, and 𝑛m is the RI of the surrounding medium 

(supposed homogeneous). Therefore, QPI provides a quantitative 

measurement of both the cell morphology and biophysical properties related 

to its RIs [1]. In particular, among several strategies [1] [3], Digital Holography 

in Microscopy (DHM) is the most common way to record a QPM. 

1.1.1 Digital Holography in Microscopy 

The term holography comes from the Greek words holos, which means whole, 

and graphein, which means to write. It is indeed an imaging method to record 

and reconstruct the whole information contained within an optical wavefront 

(i.e., amplitude and phase), instead of the sole intensity, as occurs with a 

conventional photograph. Holography was invented by Dennis Gabor in 1948 

at the aim of correcting spherical aberrations, thus improving the images of 

electron microscopy [8]. However, due to the poor quality of the reconstructed 

images, the interest around holography declined until the 1960s, when the 

development of lasers made available a powerful source of coherent light. 

Therefore, in 1971 Gabor received the Nobel Prize in physics for his invention.  
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Figure 1.1 Hologram recording. 
(a) The interference pattern produced by the reference wave and the object wave 
is recorded. (b) Geometry of diffraction. {𝑥, 𝑦} is the object plane. {𝑥′, 𝑦′} is the 
hologram plane. (Figure a reproduced from Ref. [8]; Figure b reproduced from 
Ref. [2]) 

Although the holographic principle could be applied to the electromagnetic 

waves in all regions of the spectrum, in the follow the focus will be restricted 

to the field of optics. 

The holographic process is made of two successive steps, i.e. a recording step 

and a reconstruction step of both the amplitude and phase components of an 

optical wavefront coming from a coherently illuminated object [2]. As the 

recording media respond only to light intensity, the phase information must 

be converted into an intensity variation. At this purpose, interferometry can 

be exploited. A reference wavefront, with known amplitude and phase, is 

added to the unknown object wavefront, as shown in Figure 1.1(a).  

Holography became a working tool to record and reconstruct whole 

wavefields both in amplitude and phase and, thanks to this unique feature, it 

found application in numerous fields, like the optical metrology. In fact, this 

technique allows the measurement of the changes of the phase of the 

wavefield and thus the changes of any physical quantity that affects the phase. 

An important step forward occurred when the development of computer 

technology and solid state image sensors made it possible digital recording on 
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charge coupled device (CCD) and numerical holographic reconstruction, thus 

giving origin to DH. In the following, the DH process is described in the 

framework of digital Fresnel holography [9]. 

Phenomena involved in DH are linear processes. Therefore, it seems 

reasonable to associate object and image by means of a convolutional relation. 

The reconstructed field can be written in the form of a convolution product 

between the real object and the impulse response of the full DH process. 

Considering a reference system of coordinates {𝑥, 𝑦} attached to the principal 

surface of a real object, and a 𝑧-axis perpendicular to this surface, that 

corresponds to the propagation direction of the diffracted light beam, it results 

(1.2)  𝐹𝑅(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) ⊗ 𝑇(𝑥, 𝑦), 

where 𝐹𝑅(𝑥, 𝑦) is the reconstructed field, 𝐹(𝑥, 𝑦) is the real object, and 𝑇(𝑥, 𝑦) 

is the full process related to the image formation. The object surface 

illuminated by a coherent beam produces the following object wavefront 

(1.3)  𝐹(𝑥, 𝑦) = 𝐹0(𝑥, 𝑦)exp[𝑗𝛷0(𝑥, 𝑦)], 

where 𝛷0(𝑥, 𝑦) is related to the roughness of the object surface and can be 

modeled as uniformly distributed, i.e. 𝛷0(𝑥, 𝑦) ∼ 𝑈(−𝜋, 𝜋). It is possible that 

the object is not perfectly centered in the origin of the reference system. 

However, without loss of generality, the case 𝑥0 = 𝑦0 = 0 is considered. 

The object wavefront propagates through at distance 𝑑0, in which the 

reference set of coordinates is chosen to be {𝑥′, 𝑦′}, as reported in Figure 

1.1(b). The diffracted field produced by the object is given by the Fresnel–

Kirchhoff diffraction formula [3] 

(1.4)  

𝑂(𝑥′, 𝑦′, 𝑑0) = −
𝑗

𝜆𝑑0
×

×∬ 𝐹(𝑥, 𝑦)exp [𝑗
2𝜋

𝜆
√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑑0

2]
𝑅2

𝑑𝑥𝑑𝑦
, 
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where 𝜆 is the wavelength. The distance 𝑑0 is called recording distance. The 

Eq. (1.4) can be written as a convolution integral 

(1.5)  𝑂(𝑥′, 𝑦′, 𝑑0) = 𝐹(𝑥, 𝑦) ⊗ 𝑆𝐻(𝑥
′, 𝑦′, 𝑑0), 

where the Point Spread Function (PSF) 

(1.6)  𝑆𝐻(𝑥
′, 𝑦′, 𝑑0) = −

𝑗

𝜆𝑑0
exp [𝑗

2𝜋

𝜆
√𝑥′2 + 𝑦′2 + 𝑑0

2] 

is the Huygens spherical wavelet [3]. 

For paraxial approximation, valid for 

(1.7)  𝑑0
3 ≫

𝜋

4𝜆
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]𝑚𝑎𝑥

2 , 

the Fresnel PSF is obtained from the Eq. (1.6) as 

(1.8)  𝑆𝐹(𝑥
′, 𝑦′, 𝑑0) = −

𝑗

𝜆𝑑0
exp [𝑗

2𝜋

𝜆
𝑑0 +

𝑗𝜋

𝜆𝑑0
(𝑥′

2
+ 𝑦′

2
)]. 

Hence, the diffracted field produced by the object is given by the Fresnel 

approximation 

(1.9)  
𝑂(𝑥′, 𝑦′, 𝑑0) =

𝑗exp[𝑗
2𝜋𝑑0
𝜆
]

𝜆𝑑0
×

×∬ 𝐹(𝑥, 𝑦)exp {𝑗
𝜋

𝜆𝑑0
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]}

𝑅2
𝑑𝑥𝑑𝑦

. 

With a simple mathematical manipulation, the Eq. (1.9) can be rewritten in 

terms of Fourier Transform (FT) 

(1.10)  𝑂(𝑥′, 𝑦′, 𝑑0) = 𝑍(𝑥
′, 𝑦′, 𝑑0)ℱ𝒯{𝐹(𝑥, 𝑦)𝑊(𝑥, 𝑦, 𝑑0)}, 

where 

(1.11)  {
𝑍(𝑥′, 𝑦′, 𝑑0) =

𝑗

𝜆𝑑0
exp {

2𝜋

𝜆
[𝑑0 +

𝑥′
2
+𝑦′

2

2𝑑0
]}

𝑊(𝑥, 𝑦, 𝑑0) = exp {𝑗
𝜋

𝜆𝑑0
(𝑥2 + 𝑦2)}

. 

As shown in Eq. (1.10), each optical field consists of an amplitude distribution 

as well as a phase distribution, but all detectors register the sole intensity, 
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while the phase is lost in the registration process. Instead, if two waves of the 

same frequency interfere, the resulting intensity distribution is temporally 

stable and depends on the phase difference. This is used in DH where the phase 

information is coded by interference into a recordable intensity. The diffracted 

field produced in Eq. (1.10) interferes with a reference wave having spatial 

coordinates {𝑢𝑅 , 𝑣𝑅} on the plane {𝑥′, 𝑦′}, i.e. 

(1.12)  𝑅(𝑥′, 𝑦′) = 𝑎𝑅 exp[𝑗2𝜋(𝑢𝑅𝑥
′ + 𝑣𝑅𝑦

′) + 𝑗𝛺(𝑥′, 𝑦′)], 

where the term 𝛺(𝑥′, 𝑦′) corresponds to aberrations of the reference 

wavefront. Finally, in the interference plane, the hologram 𝐻 is written as 

(1.13)  
𝐻(𝑥′, 𝑦′, 𝑑0) = |𝑂(𝑥′, 𝑦′, 𝑑0)|

2 + |𝑅(𝑥′, 𝑦′)|2 +

+𝑅∗(𝑥′, 𝑦′)𝑂(𝑥′, 𝑦′, 𝑑0) + 𝑅(𝑥
′, 𝑦′)𝑂∗(𝑥′, 𝑦′, 𝑑0)

. 

In Eq. (1.13) there are three terms, also called diffraction order terms. The zero 

order term, indicated by 𝑄(𝑥′, 𝑦′, 𝑑0), is given by 

(1.14)  𝑄(𝑥′, 𝑦′, 𝑑0) = |𝑂(𝑥
′, 𝑦′, 𝑑0)|

2 + |𝑅(𝑥′, 𝑦′)|2. 

The other two orders, noted by 𝐻+1(𝑥′, 𝑦′, 𝑑0) and 𝐻−1(𝑥′, 𝑦′, 𝑑0), are called 

+1 order (or real order) and −1 order (or conjugate/virtual order), 

respectively, i.e. 

(1.15)  

𝐻+1(𝑥′, 𝑦′, 𝑑0) = 𝑅∗(𝑥′, 𝑦′)𝑂(𝑥′, 𝑦′, 𝑑0) =

= 𝑎𝑅|𝑂(𝑥
′, 𝑦′, 𝑑0)| exp{𝑗arg[𝑂(𝑥

′, 𝑦′, 𝑑0)]} ×

× exp{−𝑗2𝜋(𝑢𝑅𝑥
′ + 𝑣𝑅𝑦

′) − 𝑗𝛺(𝑥′, 𝑦′)}

, 

and it is simple to note that 𝐻−1(𝑥′, 𝑦′, 𝑑0) = {𝐻
+1(𝑥′, 𝑦′, 𝑑0)}

∗. 

Finally, the Eq. (1.13) can be rewritten as 

(1.16)  𝐻(𝑥′, 𝑦′, 𝑑0) = 𝑄(𝑥
′, 𝑦′, 𝑑0) + 𝐻

+1(𝑥′, 𝑦′, 𝑑0)+𝐻
−1(𝑥′, 𝑦′, 𝑑0). 

An alternative approach to describe diffraction is by analysis of the Angular 

Spectrum [3]. The Angular Spectrum is defined as the FT of the real object 

𝐹(𝑥, 𝑦) in the object plane {𝑥, 𝑦}, i.e. 



16 1.1.     QUANTITATIVE PHASE IMAGING BY DIGITAL HOLOGRAPHY 

 

(1.17)  
𝐴0(𝑘𝑥, 𝑘𝑦) = ℱ𝒯{𝐹(𝑥, 𝑦)} =

=
1

2𝜋
∬ 𝐹(𝑥, 𝑦)exp[−𝑗(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]𝑅2

𝑑𝑥𝑑𝑦
. 

Then, the input field 𝐹(𝑥, 𝑦) is the inverse FT 

(1.18)  
𝐹(𝑥, 𝑦) = ℱ𝒯−1{𝐴0(𝑘𝑥, 𝑘𝑦)} =

=
1

2𝜋
∬ 𝐴0(𝑘𝑥, 𝑘𝑦)exp[𝑗(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]𝑅2

𝑑𝑘𝑥𝑑𝑘𝑦
. 

The exponential phase factor is the {𝑥, 𝑦} projection of a plane wave with a 

wave vector �⃗� = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧), where 𝑘𝑧 = √𝑘
2 − 𝑘𝑥

2 − 𝑘𝑦
2. After propagation 

over a distance 𝑑0, the plane wave acquires an additional phase factor 

exp(𝑗𝑘𝑧𝑑0), so that the diffracted field produced by the object is given by 

(1.19)  

𝑂(𝑥′, 𝑦′, 𝑑0) =
1

2𝜋
∬ 𝐴0(𝑘𝑥, 𝑘𝑦)exp [𝑗 (𝑘𝑥𝑥

′ + 𝑘𝑦𝑦
′ +√𝑘2 − 𝑘𝑥

2 − 𝑘𝑦
2𝑑0)] ×𝑅2

× 𝑐𝑖𝑟𝑐 (
√𝑘𝑥

2+𝑘𝑦
2

𝑘
)𝑑𝑘𝑥𝑑𝑘𝑦 =

= ℱ𝒯−1 {𝐴0(𝑘𝑥, 𝑘𝑦)𝑒𝑥𝑝 [𝑗√𝑘
2 − 𝑘𝑥

2 − 𝑘𝑦
2𝑑0] 𝑐𝑖𝑟𝑐 (

√𝑘𝑥
2+𝑘𝑦

2

𝑘
)}

[𝑥′,𝑦′]

. 

The circle function circ, whose value is 1 where the argument is less than 1 and 

0 otherwise, is necessary to restrict 𝑘𝑧 to be real. Ordinarily, 𝑘2 ≥ 𝑘𝑥
2 + 𝑘𝑦

2, 

and the circle function can be dropped. The Eq. (1.19) can be also expressed 

as a convolution, i.e.  

(1.20)  𝑂(𝑥′, 𝑦′, 𝑑0) = 𝐹(𝑥, 𝑦) ⊗ 𝑆𝐴(𝑥
′, 𝑦′, 𝑑0), 

where 

(1.21)  𝑆𝐴(𝑥
′, 𝑦′, 𝑑0) =

1

2𝜋
ℱ𝒯−1 {𝑒𝑥𝑝 [𝑗√𝑘2 − 𝑘𝑥

2 − 𝑘𝑦
2𝑑0]}

[𝑥′,𝑦′]

. 
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Note that the Fresnel PSF in Eq. (1.8) can be expressed as 

(1.22)  𝑆𝐹(𝑥
′, 𝑦′, 𝑑0) =

1

2𝜋
ℱ𝒯−1 {𝑒𝑥𝑝 [𝑗𝑘𝑑0 −

𝑗𝜆𝑑0

4𝜋
(𝑘𝑥

2 + 𝑘𝑦
2)]}

[𝑥′,𝑦′]
. 

Under paraxial approximation, the Fresnel transform and Angular Spectrum 

methods are equivalent, otherwise the second one or the Fresnel-Kirchhoff 

diffraction formula must be used. 

1.1.2 Recording Systems 

A basic DHM setup consists of an illumination source, an interferometer, a 

digitizing camera, and a computer [3]. Most often, a laser is used for 

illumination with the necessary coherence to produce interference, even if 

there are also low-coherence techniques for the purpose of reducing speckle 

noise. In the in-line DHM scheme, the object and reference waves propagate 

along the same direction, while in the off-axis configuration, the reference 

wave has an appreciable angle in respect to the object wave [8]. Even if the 

in-line system is simpler to build, it is limited by the poor quality of the 

reconstructed image because of the superimposition of the virtual image and 

the scattered light from the directly transmitted beam (i.e., the so-called twin-

image problem). Instead, in the off-axis setup, the two images are well 

separated without overlapping [10]. Two main types of interferometers are 

commonly employed, i.e. the Michelson interferometer for reflective objects 

and the Mach-Zehnder interferometer for transmissive objects. In both 

designs, the object is illuminated with a plane wave, and the reference arrives 

at the sensor plane with the same wavefront curvature as the object wave, 

except for an offset in the angle of incidence for off-axis holography [3]. The 

Mach-Zehnder types require more components but offer more flexibility in 

alignment, especially when microscopic imaging optics are used. A CCD or a 

complementary metal-oxide-semiconductor (CMOS) camera can be used to 

capture and digitize a holographic interference pattern. The pixel size of these 

devices is several microns with pixel counts up to tens of millions. Of course, 
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the higher the pixel number, the larger the amount of data to store and the 

lower the maximum camera frame rate. These parameters, coupled to the 

properties of the microscope objective (MO), define the perimeter of possible 

DHM applications, but one would expect them to continue to improve in the 

coming years. The captured hologram pattern is digitized by the camera and 

input to the computer as a 2D array of integers with 8-bit or higher grayscale 

resolution. The main task of the computer is to carry out the DH processing to 

extract a QPM from the recorded digital hologram [3]. 

1.1.3 Numerical Processing 

In order to describe the main numerical operations in DHM [3], the example 

in Figure 1.2 is used, reporting the imaging of several cells on a Petri dish. The 

corresponding digital hologram is shown in Figure 1.2(a). In the red inset, the 

interference fringe pattern is overlapped to a zoomed-in cell. The common 

DHM numerical processing implemented to extract the QPM from the 

recorded digital hologram is made of apodization, suppression of DC and twin 

image terms, refocusing, aberration compensation, and phase unwrapping. 

Apodization 

The sharp boundaries of the hologram aperture can cause spurious fringing in 

the reconstructed images, especially in the case of phase images. This effect 

can be numerically reduced by apodization of the boundary of the hologram 

with a smoothly attenuating function [11]. In fact, apodization is a method for 

obtaining a better concentration of energy in the center of the images by 

reducing the losses due to diffractions. An example of apodization is displayed 

in Figure 1.2(b). 

Suppression of DC and Twin Image Terms 

The DC term, which includes reference and object field intensities, can be 

reduced by subtracting the average value from the hologram array. Since the 
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object as well as the reference fields have spatial variations, the DC component 

has a finite amount of spectral spread around the zero frequency. Therefore, 

in a DH off-axis configuration, a high-pass filtering in the Fourier spectrum can 

be applied to suppress the DC term and also to select one of the twin first order 

terms as well as eliminate spurious spectral components due to parasitic 

reflections and interference, thus improving the quality of the reconstructed 

image [12]. In fact, as shown in Figure 1.2(c), the three diffraction orders are 

separated in the Fourier spectrum thanks to the off-axis mode. The inverse FT 

of the filtered hologram corresponds to the demodulated hologram. An 

example of demodulated hologram is displayed in Figure 1.2(d). 

Refocusing 

In classical imaging systems, it is difficult or impossible to recover the focused 

image from a defocused one. With DHM, the image can be calculated at any 

distance from the hologram, since a hologram contains information of the full 

3D space of the specimen. To determine if an image is in focus, a sharpness 

metric can be used [13], thus making automatic the numerical refocusing (also 

named autofocusing), as discussed in more detail in Section 2.4.2. An example 

of amplitude component of the reconstructed in-focus wavefield is displayed 

in Figure 1.2(e). 

Aberration Compensation 

Because of the direct numerical access to the phase profile of the wavefront, 

with DH it is possible to manipulate the phase profiles with flexibility and 

versatility unmatched by any other imaging method, thus simplifying the 

compensation of aberrations. Among several methods [3] [14], the phase 

aberration compensation step can be achieved with fitting-based processing 

[15] or by acquiring a reference hologram (i.e. without the sample in the 

imaged field of view (FOV)) to be subtracted to the aberrated phase image 

[16]. An example of amplitude component of the reconstructed in-focus 
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wavefield with phase aberrations is displayed in Figure 1.2(f), while the 

corresponding one after the aberration compensation in displayed in Figure 

1.2(g). 

Phase Unwrapping 

Phase images generated by DH, as well as most other phase imaging 

techniques, suffer from modulo 2π ambiguities. An object whose optical 

thickness variation exceeds the wavelength produces wrapped phase images, 

with discontinuities at every 2π of the phase profile. Numerous phase 

unwrapping algorithms have been developed based on different strategies to 

find the phase discontinuities and to make judgments on how to stitch the 

discontinuous regions. For example, the PEARLS algorithm is divided into two 

steps [17], i.e. a local adaptive denoising scheme based on local polynomial 

approximations is firstly applied to the wrapped noisy phase, and then the 

denoised wrapped phase is subjected to a robust unwrapping algorithm, 

namely the PUMA algorithm [18], which is based on the exact minimization of 

an energy functional in the case of convex problems and on the approximate 

minimization in the case of non-convex problems. In Figure 1.2(g), three phase 

jumps are evident, which have been corrected through the PEARLS algorithm 

in Figure 1.2(h). 
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Figure 1.2 Holographic processing to compute the QPM of several cells on a 
Petri dish by DHM in off-axis configuration. 
(a) Recorded digital hologram (1024×1024) with the interference fringe pattern 
highlighted in the inset. The scale bar is 20 µm. (b) Apodized digital hologram. (c) 
Amplitude of the FT of the apodized digital hologram. The three diffraction orders 
are highlighted in red (real order), yellow (zero order), and blue (virtual order). 
(d) Amplitude of the hologram demodulated by filtering the red square in the 
Fourier spectrum in (c). (e) Amplitude of the reconstructed in-focus wavefield. (f) 
Phase of the reconstructed in-focus wavefield, with overlapped residual 
aberrations. (g) Phase of the reconstructed in-focus wavefield after aberration 
compensation, with phase jumps highlighted by the red arrows (wrapped phase). 
(h) QPM of several cells on a Petri dish after phase unwrapping. 

1.1.4 Applications in Biomedicine 

DHM is a very effective process for achieving high-precision QPI in 

microscopy. As reported in Eq. (1.1), the QPM is a quantitative representation 

of the object profile with nanometer precision [19]. In Figure 1.3, some 

examples of QPMs by DHM are shown in pseudo-3D, in the sense that the 

apparent height profile is the profile of optical thickness that includes both 

physical thickness and RI variation, i.e. the OPL in Eq. (1.1) [3]. In Figure 1.3(a), 

a group of three bars on a resolution target is reported. The thickness of the 
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chromium film is measured to be about 50 nm, consistent with the 

manufacturer’s estimate. In Figure 1.3(b,c), several intracellular components 

such as the nuclear membrane and chromosomes can be discerned in fixed 

SKOV-3 ovarian cancer cells. In Figure 1.3(d), several red blood cells (RBCs) 

are displayed, while in Figure 1.3(e) one can notice a fold of the cheek 

epithelial cell, as well as its nucleus and mitochondria. Finally, Figure 1.3(f) is 

an image of a small quartz crystal in common sand. 

One of the first demonstrations of QPI is based on the utility of optical phase 

for sensing cell structure and dynamics at the nanoscale. Due to this sensitivity 

of QPI for probing cell membrane dynamics, it has been applied to the study of 

RBCs [20]. As RBCs have distinct biconcave morphology without subcellular 

organelles, 2D QPI techniques are well suited to investigate their biophysical 

and pathophysiological properties. 

 

Figure 1.3 Examples of QPI by DHM. 
(a) Resolution target (25×25 μm2, 452×452 pixels2). (b,c) SKOV-3 ovarian cancer 
cells (60×60 μm2, 404×404 pixels2). (d) RBCs (50×50 μm2, 404×404 pixels2). (e) 
Cheek epithelial cell (60×60 μm2, 404×404 pixels2). (f) Quartz crystal of sand 
(60×60 μm2, 404×404 pixels2). (Figure reproduced from Ref. [3]) 
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For example, QPMs of RBCs have been characterized by studying their 

behavior as adaptive optofluidic microlenses [21] [22]. The sensitivity to 

nanoscale changes in thickness was employed to study live neurons during 

electrical activity, in which neuronal network activity was monitored optically 

by the phase signal [23]. Moreover, differences between RBCs of diabetic 

patients and healthy patients have been detected in the QPMs [24]. 

One of the most impactful applications of QPI to date is measuring single-cell 

volume and mass, non-destructively, over arbitrary periods of time in both 

adherent and flowing cell populations. The unique ability of QPI to weigh cells 

by simply imaging them stems from the fact that the RI is linearly proportional 

to cell density. Since the cell QPM is measured with respect to just culture 

medium, QPI yields the dry mass density map of the cellular structure, that is, 

the density of the non-aqueous content of the cell, which is mainly proteins 

and lipids. Therefore, the dry mass surface density 𝜎 of the cellular matter can 

be obtained from the measured QPM as [1] 

(1.23)  𝜎(𝑥, 𝑦) =
𝜆

2𝜋𝛼
𝑄𝑃𝑀(𝑥, 𝑦), 

where 𝛼 is called refractive increment. Several studies confirm that it is a very 

reasonable assumption to use a constant value of 𝛼 = 0.19 ml g−1 [1]. Thus, 𝜎 

can be used to quantify cell growth non-invasively, using optical images alone. 

For example, combining QPI with a fluorescent marker, the phases of the cell 

cycle and the cell growth in each phase have been measured for the first time 

[25]. 

The morphologies of live cells are significantly altered by disease states such 

as viral infection and cancer, and the optical characterization of these 

alterations using QPI has several advantages over conventional imaging 

approaches [20] [26]. Because QPI does not require fixation or sample 

preparation procedures or exogenous labelling agents, subtle changes in live 

cells can be monitored for an extended period of time. By measuring cell 

thickness using QPI, phenotyping of cancer cells was demonstrated [27]. 

Quantitative and label-free imaging capability makes QPI an effective method 
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for blood screening. For example, the measured OPL information can be 

translated into hemoglobin (Hb) concentration for detecting sick RBCs [28] 

and anemias [29] [30]. By means of QPI, infections have been detected [31], 

cytotoxicity effects have been observed [32] [33], cell division [34] and cancer 

cell migration [35] have been studied, cell death has been revealed [36], and 

cell cycle has been monitored [37]. Also, it has been shown that QPI provides 

label-free sperm analysis, which can be potentially used in in-vitro fertilization 

[38], as well inspection of virus and bacterial infection [39].  

Finally, it is important to mention the latest frontier of QPI, i.e. the Fourier 

Ptychographic Microscopy (FPM). A common characteristic of QPI is the need 

to engineer the optical system in order to ensure a convenient trade-off 

between spatial resolution and FOV. This is particularly important in the case 

the specimen is a tissue, since imaging a large area without sacrificing 

resolution of the tiniest details is pivotal to investigate the non-local effects of 

drugs and specific treatments, to study the interplay between different sample 

elements, and to allow robust classification of phenotypes. FPM exploits a 

synthetic aperture principle to achieve gigapixel QPI, i.e., the complex 

amplitude of the sample is retrieved with a large space-bandwidth product 

[40] [41]. In FPM, the specimen is probed by multiple angles using low 

coherence light sources to achieve large FOV imaging with computational 

super-resolution, thus exceeding the limits imposed by the optical system. 

Typically, Light Emitting Diodes (LEDs) arranged in a planar matrix [40] or a 

domed array configuration [42] are used to collect multiple images of the 

specimen, each one carrying a different content of its spatial frequencies, 

which are devoted to be stitched in the Fourier domain. Numerical methods 

have been proposed to correct effects of misalignments in the FPM recording 

system [43], also based on the employment of deep learning (DL) [44]. 

Recently, FPM has been exploited for the multi-scale monitoring of cell layers 

onto micropatterned substrates [45] and for measurements of the heavy metal 

pollution in marine environment [46]. 
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1.2 State-of-the-Art TPM Techniques 

The decoupling of the RI information from the physical thickness one encoded 

in the 2D QPM is possible by recording several QPMs at multiple viewing 

angles around the sample. To scan the incident angle with respect to the 

sample, two conventional TPM approaches have been developed [1] [47] [48]. 

In the illumination scanning configuration (ISC), sketched in Figure 1.4(a), the 

illumination beam is rotated with respect to the fixed sample [49] [50]. In the 

sample rotation configuration (SRC), sketched in Figure 1.4(b), the sample is 

rotated with respect to the fixed illumination by means of mechanical [4] [51] 

or optical [52] forces. 

The main advantage of TPM-ISC is the lack of a direct interaction with the 

sample. The technique may be regarded as synthetic aperture approach, since 

the illumination direction is altered and the detector is kept stationary. With 

each hologram, a different frequency content is recorded and, as a result, the 

resolution in the sample plane is increased. The systems may be grouped 

based on the key component used to produce the beam rotation, i.e. a 

galvanometric mirror [49] [53], a spatial light modulator (SLM) [54] or a 

digital micromirror device [55]. 

Instead, the TPM-SRC approach is achieved by keeping the illumination beam 

stationary without any tilt angles, because the angular scanning is attained by 

rotating the sample under observation. This approach has high potential to 

deliver an isotropic frequency coverage when the sample rotates in full-angle 

directions, which results in high-quality tomographic image reconstruction. 

There are several methods demonstrated to rotate the sample. In general, the 

sample is loaded into a micropipette [4] or cuvette with a motorized rotating 

stage [56]. These types of capillary-supported rotation approaches suffer from 

the aberrations due to the perturbations created by tumbling of whole sample 

medium during the rotation [51]. Additionally, there is also a RI mismatch 

between the cell culture medium and the surrounding medium. 
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Figure 1.4 Conventional approaches for TPM. 
(a) TPM-ISC: the illumination is fixed, while the sample is rotated. (b) TPM-SRC: 
the illumination angle is varied via a rotating mirror. NF, neutral filter; λ/2, half-
wave plate; PBS, polarizing beam splitter; BE, beam expander; M, mirror; FL, 
focusing lens; S, sample; MP, micropipette; CS and C, coverslip; BF, back focal plane; 
MO, microscope objective; CCD, charge-coupled device camera; R, reference beam; 
O, object beam. (Figure reproduced from Ref. [1]) 

It is highly difficult to match the RI of the cell culture medium and the capillary, 

which results in stronger fraction from the inner boundary of the surface. 

However, this problem has been addressed with a computational data 

processing algorithm, and a compensation approach was demonstrated and 

verified with both numerical simulation and experimental data [57]. 

Furthermore, these approaches are limited in handling the sample due to the 

limitations imposed by the mechanical components used [58]. The limited 

single direction sample rotation (either in the 𝑥-𝑧 or 𝑦-𝑧 directions) 

observation results in missing spatial frequencies. Instead, holographic optical 
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tweezers (HOT) are a potential approach to manipulate the free-floating 

biological sample in all directions [52]. The HOT uses an SLM to generate a 

controlled twin trap beam for the trapping and rotation with an angular 

scanning range of 180°, which allowed a non-invasive tomographic imaging of 

suspended live cells. Later, the HOT-based TPM-SRC system extended the 

angular scanning range to 360° to achieve a full-angle sample rotation, 

resulting in the isotropic frequency coverage [59]. This experimental 

architecture allows manipulation of the single live cell in a more convenient 

way in all directions without any mechanical components. 

In summary, the TPM-SRC allows for an isotropic reconstruction but the 

sample can be perturbed by the external mechanical/optical forces needed to 

rotate it. Moreover, the complex rotation system prevents a high-throughput 

recording. 

 

Figure 1.5 Difference between the TPM-ISC (a-c) and TPM-SRC (d-f) 
tomographic reconstructions. 
(a,b) Transfer function of the TPM-ISC system. (c) Central slices of a hepatocyte 
reconstructed by TPM-ISC. The 3D tomogram is non-isotropic due to the missing 
cone problem. (d,e) Transfer function of the TPM-SRC system. (f) Central slices of 
a HT-1080 cell with incorporated SiO2 microspheres reconstructed by TPM-SRC. 
Label 1 are the microspheres. Label 2 is the nucleolus. The 3D tomogram is 
isotropic. (Figure a,b,d,e reproduced from Ref. [48]; Figure c reproduced from Ref. 
[60]; Figure f reproduced from Ref. [51]) 
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Instead, the recording step in TPM-ISC is much simpler and external biological 

alterations of the cell are avoided, but the 3D reconstruction is non-isotropic 

as the illumination angle is typically limited to the ±70° range. The latter is the 

so-called missing cone problem along the optical 𝑧-axis, which leads to limited 

frequency coverage in the axial direction. The limited angle of acceptance of 

the imaging system is determined by the numerical aperture (NA) of an 

objective lens. In fact, even with a high-NA objective lens, only fraction of 

diffracted light from a sample can be utilized for the tomographic 

reconstruction [61]. The missing cone problem can be better understood by 

considering the transfer functions of both the TPM-ISC and TPM-SRC systems. 

The transfer functions are evaluated using the Fourier diffraction theorem 

[62], which states that each scattered field carries information about the 

sample spatial frequencies that lie on a spherical Ewald cap in the 3D object 

spectrum [63]. The missing cone problem of the TPM-ISC system is evident in 

the transfer function in Figure 1.5(a,b), in which only a small percentage of the 

3D Fourier frequencies are filled compared to the TPM-SRC transfer function 

in Figure 1.5(d,e), that is instead almost a full sphere [48]. As a consequence, 

the missing cone problem results in the underestimated RI values in 

reconstructed tomograms and in the elongation of the TPM-ISC reconstructed 

shape of a sample along the optical 𝑧-axis, as displayed in Figure 1.5(c), while 

this phenomenon is skipped in the TPM-SRC isotropic reconstruction of Figure 

1.5(f). 

1.3 Reconstruction Algorithms 

In the early TPM works [4] [49], the 3D reconstruction physical model was 

based on a filtered back projection (FBP) method, similar to the algorithm 

used in x-ray CT [64]. It assumed phase measurement to be an integration of 

RI along the projection angle, as reported in Eq. (1.1), which ignored the 
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significance of the optical diffraction effect, thus limiting the earlier TPM 

systems for small sample RI variations over the wavelength scale. In cell 

imaging experiments, this inaccurate tomography model can significantly 

affect the 3D reconstruction resolution, especially for cells that are much 

thicker than the depth of field of the imaging systems [65]. In the 1960s, Wolf 

proposed the idea of using DH for 3D object reconstruction by developing a 

diffraction-based tomography model, known as optical diffraction 

tomography (ODT) [62]. However, this concept was not implemented to TPM 

for 3D imaging of cells until 2009 [65]. Since then, there have been numerous 

developments in ODT [60] [66]. Although hardware improvements have 

occurred during last decade, there still are physical limitations that affect the 

performance of ODT [47]. Most recently, advanced image processing tools, 

including total variation (TV) regularization [67] [68] and 3D deconvolution 

algorithms [69], have been applied to ODT to overcome the hardware and 

physical limits. For example, regularized ODT models that use sample priori 

information, such as non-negativity and piecewise smoothness, have been 

implemented to alleviate the missing cone issue in TPM-ISC [61] [66]. In 2015, 

a new physical model, based on the beam propagation method (BPM) to treat 

light diffraction, was demonstrated for 3D RI reconstruction in TPM [68] [70]. 

This work has pioneered the integration of machine learning (ML) concept in 

TPM framework [71]. 

1.3.1 Physical Models for RI Reconstruction 

By treating a 3D object as a black box and performing multiple intensity or 

field measurements along different directions, one is expected to be able to 

retrieve the 3D RI structure of the object by solving an inverse scattering 

problem [47]. 
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Figure 1.6 Illustration of the scattering process. 
An object with a certain scattering potential produces a forward and a backward 
scattered wave when illuminated by an incident wave. (Figure reproduced from 
Ref. [47]) 

As sketched in Figure 1.6, the physical structure of an object is described by 

the object scattering potential function 

(1.24)  𝜒(𝑥, 𝑦, 𝑧) = 𝛽0
2[𝑛2(𝑥, 𝑦, 𝑧) − 𝑛𝑚

2 ], 

where 𝛽0 = 2𝜋 𝜆0⁄  is the propagation constant in free space, 𝜆0 is the 

illumination wavelength in free space, 𝑛(𝑥, 𝑦, 𝑧) is the RI distribution of the 

object (i.e., the unknown quantity), and 𝑛𝑚 is the RI of the surrounding 

medium. With a plane wave incident on the object, scattered fields are 

generated in both forward and backward directions. The scattered field, 𝑈𝑠, is 

described by the following inhomogeneous wave equation [62] 

(1.25)  ∇2𝑈𝑠(𝒓) + 𝛽
2𝑈𝑠(𝒓) = −𝜒(𝒓)𝑈(𝒓), 

where 𝛽 = 𝑛𝑚𝛽0 is the propagation constant in the medium and 𝑈(𝒓) is the 

total field, that has contributions from the incident field plane wave, 𝑈𝑖(𝒓), and 

the scattered field, 𝑈𝑠(𝒓), i.e. 

(1.26)  𝑈(𝒓) = 𝑈𝑖(𝒓) + 𝑈𝑠(𝒓). 

Two approximations can be used to solve the scattered field in Eq. (1.25). The 

first approximation, also called the first Born approximation, which assumes 

that 𝑈𝑠(𝒓) ≪ 𝑈𝑖(𝒓), results in 
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(1.27)  𝑈(𝒓) ≈ 𝑈𝑖(𝒓) = 𝑒
𝑖𝒌𝒊∙𝒓, 

where 𝒌𝒊 = 𝛽�̂�𝒊 = (𝑘𝑥𝑖, 𝑘𝑦𝑖, 𝑘𝑧𝑖) is the incident wave vector and 𝒌�̂� is the 

direction unit vector with �̂�𝒊 = (�̂�𝑥𝑖, �̂�𝑦𝑖 , �̂�𝑧𝑖). In the medium, where the 

incident field emerges, the dispersion relation establishes that 

(1.28)  𝑘𝑥𝑖
2 + 𝑘𝑦𝑖

2 + 𝑘𝑧𝑖
2 = 𝛽2 = 𝑛𝑚

2 𝛽0
2. 

Through a Green’s function approach [62], the scattered field is solved in the 

transverse Fourier space for a particular focal plane 𝑧 (𝑧 = 0 is the imaging 

plane) as 

(1.29)  𝑈𝑠(𝑘𝑥, 𝑘𝑦; 𝑧) =
𝑒±𝑖𝑞𝑧

𝑞
𝜒(𝑘𝑥 − 𝑘𝑥𝑖, 𝑘𝑦 − 𝑘𝑦𝑖, ±𝑞 − 𝑘𝑧𝑖), 

where +𝑞 represents the forward scattered field and −𝑞 represents the 

backward scattered field, 𝑘𝑥 and 𝑘𝑦 represent the scattered field transverse 

spatial frequencies, and 𝑞 = √𝛽2 − 𝑘𝑥
2 − 𝑘𝑦

2 is the axial spatial frequency 

projection of the scattered field. For simplicity in the formulation, the 

variables of a function have been used to indicate the exact transformation 

domain [47]. The Eq. (1.29) reveals the relationship between the scattered 

field and scattering potential in a FT relation, which can also be written in the 

integral form of the Lipmann-Schwinger equation. The inverse scattering 

solution to the object function is therefore given by [62]  

(1.30)  𝜒(𝑈, 𝑉, 𝑍) =
𝑞

𝑒±𝑖𝑞𝑧
𝑈𝑠(𝑘𝑥, 𝑘𝑦; 𝑧), 

where 𝑈 = 𝑘𝑥 − 𝑘𝑥𝑖, 𝑉 = 𝑘𝑦 − 𝑘𝑦𝑖, and 𝑍 = ±𝑞 − 𝑘𝑧𝑖. The measurement is 

usually performed at the imaging plane, and thus 

(1.31)  𝜒(𝑈, 𝑉, 𝑍) = 𝑞𝑈𝑠(𝑘𝑥 , 𝑘𝑦; 𝑧 = 0) = 𝑞ℱ𝒯{𝑈𝑠(𝑥, 𝑦; 𝑧 = 0)}. 

According to this equation, each measurement of 𝑈𝑠(𝑥, 𝑦; 𝑧 = 0) can be 

mapped to a particular spherical surface on the Ewald sphere in the (𝑈, 𝑉, 𝑍) 

space. As illustrated in Figure 1.5(a,b,d,e), through changing the illumination 

angle on the sample, i.e., changing the pair 𝑘𝑥𝑖 and 𝑘𝑦𝑖, and mapping the 
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corresponding scattered field into the Ewald sphere, the 3D spatial frequency 

region for 𝜒(𝑈, 𝑉, 𝑍) can be recovered. After a complete mapping, with a 3D 

inverse FT of 𝜒(𝑈, 𝑉, 𝑍), the 3D object function in real space can be obtained, 

which will allow to obtain the 3D RI tomogram. However, as shown in Figure 

1.5(a,b), in the common TPM-ISC systems working in transmission mode, the 

central low 𝑈-𝑉 frequencies in the 3D Fourier space cannot be recovered, 

which is called the missing cone problem. Reflection-mode measurements can 

fill the missing cone region by mapping also the back scattered fields into the 

Ewald sphere [47]. However, building an angle scanning reflection-mode TPM 

experimental system for biological imaging is very difficult, mainly because 

the back scattered fields from the cellular structures are very weak due to the 

small RI contrast of about 0.03 [47]. In fact, the detector will be mostly 

saturated by the background reflection from the sample holders such as cover 

glasses. 

The first Born approximation is valid when the total phase delay of the field is 

small and there is substantially low optical absorption, which means that it 

works well for thin objects with weak RI contrasts to the media. For relatively 

thick objects, the Rytov approximation is more appropriate, as it assumes that 

the total field has a complex phase function 𝜙𝑠(𝒓) related to the scattered field, 

i.e. [72] 

(1.32)  𝑈(𝒓) = 𝑒𝜙𝑖(𝒓)+𝜙𝑠(𝒓) = 𝑈𝑖(𝒓)𝑒
𝜙𝑠(𝒓). 

Under the Rytov approximation, the reconstruction still follows Eq. (1.30), 

except that the scattered field 𝑈𝑠 is replaced with 

(1.33)  𝑈𝑠(𝒓) = 𝑈𝑖(𝒓) ln (
𝑈(𝒓)

𝑈𝑖(𝒓)
), 

and 𝑈(𝒓) can be measured from a QPI system. The Rytov approximation is 

known to be more appropriate than the Born approximation for many 

biological applications [65]. However, also the Rytov approximation is valid 

when the gradient of the RI is small, which means the objects need to be 

smooth in RI distribution. This is mostly true for imaging single cells. Instead, 
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when a sample is thicker and more complex, the Rytov approximation is no 

longer valid [73]. 

In summary, the RI distribution can be reconstructed through the Fourier 

diffraction theorem [74], which relates the complex scattering potential of an 

object with the complex amplitude of an object’s projections. This relation is 

linear through application of first-order Born or Rytov approximation, 

assuming that only first-order scattering is taking place when the incident 

field propagates through the investigated sample. 

1.3.2 Filtered Back Projection Algorithm 

In the TPM-ISC system, the use of an advanced reconstruction algorithm is 

needed to solve the missing cone problem due to the employed hardware, thus 

moving toward an isotropic tomogram. Instead, in the TPM-SRC case, the 

software complexity can be relaxed thanks to the hardware properties that 

allow filling in a more complete way the 3D Fourier space, thus avoiding the 

issue of non-isotropic reconstruction. In this framework, the FBP algorithm is 

commonly employed due to its much lower computational burden, thus 

resulting in a time- and resource-saving tomographic algorithm. In fact, the 

FBP algorithm is based on the straight-ray approximation of the light 

propagation and, unlike the ODT, it neglects the scattering effect inside the cell. 

The measured field is indeed regarded as the integral of a sample’s quantity 

along the optical axis, e.g. the absorption coefficient in the x-ray CT [64]. In the 

TPM case, the FBP approximates the QPM as a line integral of the RI along the 

propagation direction, as reported in Eq. (1.1). 

Let consider a source-detector system rotating around a fixed sample, as 

sketched in Figure 1.7(a), assumed here as a RBC. Without losing generality, 

this situation is equivalent to the rotation of the sample while keeping fixed 

the source-detector system. Let 𝑓(𝑥, 𝑦) be the 2D image to be reconstructed, 

i.e. the 2D central slice of the 3D RI distribution of the RBC, as displayed in 

Figure 1.7(b). In Figure 1.7(b), the reference system {𝑥, 𝑦} of the image 𝑓(𝑥, 𝑦) 
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is marked in green, while the cyan {𝑡, 𝑠} is a new reference system rotated 

counterclockwise with respect to {𝑥, 𝑦} by an angle 𝜃, i.e. 

(1.34)  {
𝑡 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃
𝑠 = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃

. 

Hence, 𝜃 is the rotation angle of the source-detector system with respect to the 

fixed sample, which is illuminated along the 𝑠 axis. For a fixed angle 𝜃, the 

sample’s projection can be defined as the line integral 

(1.35)  𝑃𝜃(𝑡) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑠 = ∬𝑓(𝑥, 𝑦)𝛿
𝑠

(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑡)𝑑𝑥𝑑𝑦. 

An example of two projections along the directions 𝜃 = 0° and 𝜃 = 90° is 

shown in Figure 1.7(c). However, from a single 1D integral information, the 2D 

image 𝑓(𝑥, 𝑦) cannot be reconstructed. Therefore, the source-detector system 

must rotate around the sample. In particular, by collecting the several 

projections 𝑃𝜃(𝑡) by varying the angle 𝜃, the Radon transform (RT) 𝑅(𝜃, 𝑡) of 

the function 𝑓(𝑥, 𝑦) can be obtained. In Figure 1.7(d), a common visualization 

of the RT 𝑅(𝜃, 𝑡), called sinogram, is reported, which consists in arranging the 

different projections 𝑃𝜃(𝑡) inside the columns of a 2D array. The Fourier slice 

theorem states that the FT 𝑆𝜃(𝑤) of a projection 𝑃𝜃(𝑡) is a line of the sample’s 

Fourier spectrum 𝐹(𝑈, 𝑉) oriented at the angle 𝜃, i.e. 

(1.36)  𝑆𝜃(𝑤) = ℱ𝒯{𝑃𝜃(𝑡)} = 𝐹(𝑈, 𝑉) = 𝐹(𝑤𝑐𝑜𝑠𝜃,𝑤𝑠𝑖𝑛𝜃). 

In theory, according to the Fourier slice theorem, the sample 𝑓(𝑥, 𝑦) could be 

reconstructed by an inverse FT of the 2D spectrum filled by the 𝑆𝜃(𝑤) lines at 

multiple 𝜃. However, the Fourier slice theorem fills the Fourier spectrum in a 

polar grid, while the image 𝑓(𝑥, 𝑦) is defined in a cartesian grid. Even if a non-

uniform inverse FT could be exploited to map a polar spectrum into a cartesian 

function [75], the common way to invert the RT is the FBP algorithm [64], 

which can be defined as 

(1.37)  𝑓(𝑥, 𝑦) = ∫ ℱ𝒯−1{|𝑤|𝑆𝜃(𝑤)}𝑑𝜃 = ∫ 𝑄𝜃(𝑡)𝑑𝜃
𝜋

0

𝜋

0
, 

with 𝑡 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃. 
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Figure 1.7 Illustration of the FBP algorithm. 
(a) Sketch of the data collection. (b) Central slice 𝑓(𝑥, 𝑦) of a RBC, along with 

(green) its reference system {𝑥, 𝑦} and (cyan) a new one {𝑡, 𝑠} rotated by an angle 

𝜃. (c) Two projections 𝑃𝜃(𝑡) at 𝜃 = 0° and 𝜃 = 90° computed from the image 
𝑓(𝑥, 𝑦) in (b). (d) Sinogram 𝑅(𝜃, 𝑡) of the image 𝑓(𝑥, 𝑦) in (b). (e) FBP 

reconstruction �̂�(𝑥, 𝑦) of the central slice 𝑓(𝑥, 𝑦) in (b). (Figure a reproduced from 
Ref. [60]) 

In summary, the FBP algorithm is made of four successive steps, i.e. 

1. collection and FT of the projections 𝑃𝜃(𝑡) at multiple beam directions 

𝜃 in order to obtain the corresponding transformed projections 𝑆𝜃(𝑤); 

2. high-pass filtering of the transformed projections 𝑆𝜃(𝑤) by 

multiplying them by the |𝑤| term; 

3. inverse FT of the filtered spectrum |𝑤|𝑆𝜃(𝑤) in order to obtain the 

filtered projections 𝑄𝜃(𝑡) at multiple 𝜃; 

4. summing up of the filtered projections 𝑄𝜃(𝑡) back projected along the 

lines 𝑡 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃. 
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The reconstructed slice is illustrated in Figure 1.7(e), in which some artefacts 

due to the filtering step can be noticed. When used in TPM to reconstruct the 

3D RI distribution of a biological specimen, the 2D FBP algorithm is 

implemented slice-by-slice by extracting each sinogram from the QPMs 

recorded at multiple viewing angles [49]. 

1.3.3 Regularized TPM 

As discussed in Section 1.2, the missing cone problem in TPM-ISC systems can 

cause the elongation of an object along the 𝑧-axis (i.e., the optical axis), thus 

reducing axial resolution. Importantly, this issue results in underestimation of 

RI values [61]. It has been proposed that, by combining angle scanning and 

sample rotation techniques, one can fill the whole Ewald sphere to achieve 

isotropic resolution in TPM. However, this latter solution requires a complex 

management of the system. Over the past decades, there has been intensive 

research work on relieving the missing cone problem and improving the 

accuracy of reconstructed tomograms mainly in the areas of CT, electron 

microscope, and magnetic resonance imaging. In the last years, some of the 

ideas have been innovatively introduced into TPM to significantly enhance the 

quality of reconstructed RI maps [49] [61] [66] [67] [68] [70] [76]. Basically, 

all these methods are based on constructing a cost function comprising one 

quadratic ℓ2 norm error term and one regularization term, which is expressed 

as 

(1.38)  𝐽(𝑓) = ‖𝐴𝑓 − 𝑔‖ℓ2
2 + 𝛼𝑅(𝑓), 

where 𝑓 is the unknown variable to be solved, 𝐴 is the forward operator 

characterized by the reconstruction model, 𝐴𝑓 represents the computed field, 

𝑔 is the measured field, 𝛼 is the regularization coefficient, and 𝑅(𝑓) is the 

regularization term. Specifically, for TPM-ISC, the error term in the cost 

function in Eq. (1.38) can be further expressed as 

(1.39)  ‖𝐴𝑓 − 𝑔‖ℓ2
2 = ∑ ‖𝐴(𝑚)𝑓 − 𝑔(𝑚)‖

ℓ2

2
𝑚 , 
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where 𝑚 denotes different illumination angles, 𝑓 corresponds to the scattering 

potential to be reconstructed (note that earlier it was 𝜒), 𝐴(𝑚)𝑓 can be 

interpreted as the 𝑚-th diffraction projection of 𝑓 onto the sample plane 𝑧 =

0, which provides a 2D scattering field of a 3D object with respect to the 𝑚-th 

incident beam illumination direction unit vector �̂�𝒊
(𝑚)

=

(�̂�𝑥𝑖
(𝑚)
, �̂�𝑦𝑖

(𝑚)
, �̂�𝑧𝑖

(𝑚)
), and 𝑔(𝑚) is the 𝑚-th measured scattered field. 

According to the ODT theorem [76], the forward operator can be further 

specified as a 2D FT relation 

(1.40)  𝐴(𝑚)𝑓 = ∬
1

𝑞(𝑚)
𝑓(𝑈, 𝑉,𝑊)𝑒𝑖(𝑈𝑥+𝑉𝑦)𝑑𝑈𝑑𝑉, 

where 𝑓 is the scattering potential function in the 3D Fourier space (𝑈, 𝑉,𝑊), 

as indicated by its variables 𝑈 = 𝑘𝑥 − �̂�𝑥𝑖
(𝑚)

, 𝑉 = 𝑘𝑦 − �̂�𝑦𝑖
(𝑚)

, and 

(1.41)  
𝑊 = 𝑞(𝑚) − �̂�𝑧𝑖

(𝑚)
=

= √𝛽2 − (𝑈 + �̂�𝑥𝑖
(𝑚)
)
2

− (𝑉 + �̂�𝑦𝑖
(𝑚)
)
2

− �̂�𝑧𝑖
(𝑚)

. 

The error term in Eq. (1.38) measures the difference between the computed 

field and experimentally measured field, and the regularization term imposes 

certain constraints on the reconstructed image by using prior knowledge of 

target samples. Then, an iterative algorithm is utilized to minimize this cost 

function until a convergence is reached. The first used prior information is the 

non-negativity constraint (NNC), which is grounded in the truth that the 

difference between the RIs of samples and the surrounding medium should 

always be non-negative. It has been demonstrated that the missing cone issue 

is significantly reduced compared with when no regularization is imposed 

[49]. NNC is easy to implement and can always be combined with other 

methods [76]. Later on, the TV regularization method, which measures the 

total image gradient and possesses stronger constraining effects, has been 

implemented to TPM [61] [67] [70]. The TV regularizer has two common 

variants [77]. One is isotropic TV, i.e. 
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(1.42)  𝑅𝑖𝑇𝑉(𝑓) ≡ ∑ ‖[∇𝑓]𝑛‖ℓ2 =𝑛 ∑ √([∇𝑥𝑓]𝑛)
2 + ([∇𝑦𝑓]𝑛

)
2
+ ([∇𝑧𝑓]𝑛)

2
𝑛 . 

where 𝑛 is the pixel index. The isotropic TV has the capability of denoising, de-

blurring, and invasively yielding sharp edges. It works best for piece-wise 

smooth images that consist of piece-smooth regions separated by sharp edges. 

In this case, this functional can smooth out noise while well preserving the 

boundaries [78]. On the other hand, this isotropic TV regularizer can be 

interpreted as an ℓ1 penalty on the magnitudes of the image gradient, which 

bears the sparsity promoting effects on the gradient components of images. 

Thanks to this sparsity property, the isotropic TV regularizer has been 

demonstrated enhancing the accuracy of the solution to ill-posed inverse 

problems that affected by high under-sampling conditions [68]. Benefitted 

from the edge-preserving (EP) characteristic of the isotropic TV regularizer, 

the so-called EP regularization was proposed by further adding a function to 

the ℓ2 norm of the image gradient. Therefore, this regularizer can be 

formularized as [78] 

(1.43)  𝑅𝐸𝑃(𝑓) ≡ 𝜙(∑ ‖[∇𝑓]𝑛‖ℓ2𝑛 ), 

where 𝜙 is determined by prior knowledge about sample edges that need to 

satisfy certain defined conditions. For example, 𝜙(𝑡) = 𝑇2𝑙𝑛(1 + 𝑡 𝑇⁄ ) is one 

of the choices, where the parameter 𝑇 can be tuned depending on how sharp 

the edges need to be kept. Therefore, in the case when sharp edges of samples 

are highly desired, this functional 𝜙(𝑡) can be implemented. In Figure 1.8(a-d), 

a comparison of different regularization methods, including respectively no 

regularization, NNC, EP regularization, and TV regularization, is reported for 

3D RI reconstruction of a hepatocyte cell [47]. As can be seen in Figure 1.8(d), 

the isotropic TV regularizer can significantly smooth out the noise, while 

making the edges of the cell’s inner structures sharp and clear. Furthermore, 

the RI values are no longer underestimated compared with the case using no 

regularization, as shown in Figure 1.8(a). By sacrificing some noise removal 
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capability, EP regularization can further sharpen the edges, as shown in Figure 

1.8(c). 

In the other TV regularizer, i.e. the anisotropic TV, the cost function is very 

similar to that of the isotropic TV, but the regularizer form is replaced with 

(1.44)  𝑅𝑎𝑇𝑉(𝑓) ≡ ∑ ‖[∇𝑓]𝑛‖ℓ1 =𝑛 ∑ |[∇𝑥𝑓]𝑛| + |[∇𝑦𝑓]𝑛|
+ |[∇𝑧𝑓]𝑛|𝑛 . 

This anisotropic TV regularizer can be interpreted as an ℓ1 penalty directly on 

the image gradient. It is a very strong regularizer, which offers improvements 

on reconstruction quality to a great extent compared with the isotropic 

counterpart [79]. However, unlike isotropic TV, the anisotropic TV is not 

rotationally invariant, which causes geometric distortions by favoring edge 

orientations that are aligned with coordinate axes [80]. Therefore, its usage is 

limited when biological samples have complex inner structures. 

 

Figure 1.8 Comparison of the 3D RI distribution of a hepatocyte cell 
reconstructed by different methods in a TPM-ISC system. 
(a) Direct Fourier mapping without regularization. (b) NNC regularization. (c) EP 
regularization. (d) Isotropic TV regularization. The scale bar is 5 µm. (Figure 
reproduced from Ref. [47]) 
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1.3.4 Machine Learning-Based Reconstruction 

During the last decade, a significant shift has been visible within the research 

groups working in the field of TPM toward development of reconstruction 

procedures that are utilizing ML [47] [81]. One example includes a sparse 

dictionary learning algorithm which specifically addresses the missing-cone 

artifacts in TPM-ISC [82]. In this approach, first a TV-regularized 

reconstruction is calculated with traditional algorithms. From the obtained 

result, features from lateral planes are extracted to form a dictionary which is 

then used in the final reconstruction to correct features in the lateral and axial 

directions, thus minimizing the missing-cone artifacts. Another method, called 

deep prior diffraction tomography, uses a deep convolutional neural network 

(DCNN) without training [83]. DeepRegularizer is a more traditional 

approach, in which pairs of reconstructions have been generated, one with a 

quick low-resolution algorithm and another with a high-resolution procedure 

that utilizes TV regularization [84]. These pairs have been then used to train a 

DCNN, which later was applied to rapidly transform low-resolution 

reconstructions into high-quality ones. Furthermore, a DCNN has been trained 

to reconstruct the 3D RI distribution from 2D phase measurements by using a 

numerical cell phantom, and it has been demonstrated working on 

experimental RBCs [85]. 

1.3.5 Learning Tomography 

In the Born or Rytov approximation-based tomographic reconstruction 

models described in Section 1.3.1, weak light scattering or single scattering in 

the unknown objects must be assumed. A BPM-based tomographic 

reconstruction model allows considering multiple scattering events by 

dividing the object into multiple layers and subsequently forming an artificial 

neural network geometry to model the RI distribution [68] [70], as sketched 

in Figure 1.9(a). For this reason, this technique has been called Learning 

Tomography (LT) [73] [86]. Therefore, the BPM reconstruction model applies 
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to thicker or highly inhomogeneous biological objects and uses complex field 

measurements from a typical TPM-ISC system. In the BPM model, an 

inhomogeneous sample is virtually divided into thin slices along the 

propagation direction 𝑧. Light propagation is modeled as phase modulation 

based on the paraxial wave equation. After each layer, the optical field is 

described as [68] 

(1.45)  𝑈(𝒓) = 𝑎(𝒓)𝑒𝑖𝛽0𝑛𝑚𝑧, 

where 𝑎(𝒓) is a complex envelope function that models light diffraction in each 

sample layer. The sample RI distribution 𝑛(𝒓) is decomposed into a constant 

medium 𝑛𝑚 and a perturbation 𝛿𝑛(𝒓) due to inhomogeneity. Therefore, the 

propagation constant in the sample, 𝛽𝑠(𝒓), is written as 

(1.46)  𝛽𝑠(𝒓) = 𝛽0𝑛(𝒓) = 𝛽0(𝑛𝑚 + 𝛿𝑛(𝒓)). 

The complex envelope 𝑎(𝒓) evolves along the optical axis as [68] 

(1.47)  

𝑎(𝑥, 𝑦, 𝑧 + 𝛿𝑧) = 𝑒𝑖𝛽0𝛿𝑛(𝒓)𝛿𝑧 ×

× ℱ𝒯−1

{
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, 

where 𝛿𝑧 is the step size or sample slice size along 𝑧 direction. The right-hand 

side of this equation can be decomposed into two parts. The first term 

𝑒𝑖𝛽0𝛿𝑛(𝒓)𝛿𝑧 takes refraction into account, whereas the other term deals with 

the diffraction. By repeatedly using this equation step-by-step, it can be known 

how the complex field evolves after propagating over an arbitrary distance 

along the optical axis. In other words, once given the initial condition, the 

optical field distribution can be obtained anywhere in space (note that 

reflected light has not been considered in the current BPM model). Therefore, 

in LT, the plane wave for each illumination direction is propagated through 

the estimate of the reconstruction with the BPM model. Then, the resultant 

field is compared with the measured field.  
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Figure 1.9 LT based on BPM. 
(a) Schematic diagram of object reconstruction by learning the 3D RI distribution 
that minimizes the error 𝜀, defined as the mean squared difference between the 
experimental measurement and the prediction of a computational model based on 
the BPM. (b) Reconstruction results of a yeast cell by using Rytov (first row) and 
LT (second row). (Figure a reproduced from Ref. [70]; Figure b reproduced from 
Ref. [73]) 

The difference between the fields is treated as a cost function, which is 

minimized with an optimization procedure. As a result, the reconstruction is 

corrected in each iteration. By applying constraints in each iteration, such as 

non-negativity or smoothness of the result, this approach allows minimization 

of the missing-cone artifacts [68] [70]. Compared with the ODT reconstruction 

model, BPM no longer uses the scattering potential to represent the RI in a 

quadratic function. Instead, it directly seeks an equation to link RI and the 

measured electromagnetic field, which makes the BPM model non-linear. 
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Therefore, compared with its linear counterpart, this non-linear physical 

model can be more accurate when the scattering effects are strong, as 

displayed in Figure 1.9(b) [73]. 

1.4 Biological Insight and Applications 

TPM is able to non-invasively retrieve the 3D RI distributions of biological 

samples, providing rich information about subcellular structures without any 

exogenous contrast agents. Based on the RI maps, both morphological and 

biochemical information can be further extracted to achieve comprehensive 

label-free visualization and quantification of living cells, which opens a new 

avenue to the investigation of their functionalities and mechanisms at the 

individual level [47]. 

Thanks to the 3D imaging capability, 3D geometric parameters can be easily 

obtained by TPM, making it a powerful tool to deeply explore the cells in the 

morphological world. For example, surface-to-volume ratio is a typical 

parameter, which is known to have an influence on the uptake of light, 

digestion of nutrients, and release of waste of a cell. RBC is one of most popular 

candidates due to its special biconcave shape and simple inner structures. 

Based on the TPM technique, it has been found out that the volume and surface 

area of the cord RBCs of newborn infants are much larger than those of the 

RBCs of non-pregnant women and flatter than those of adults [87]. Moreover, 

the 3D RI mapping of living cells can implicate some pathological states that 

accompany human diseases. RI distribution has been intensively explored for 

visualizing the morphological alterations of RBCs caused by parasitic 

protozoa, such as P. falciparum [88] and B. microti [89]. The cytoplasm of RBCs 

is mainly composed of Hb, which is the iron-containing oxygen-transport 

metalloprotein. The properties of Hb are sensitive to subtle alterations of 

pathological states of RBCs resulting from infectious diseases and genetic 
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disorders, e.g., malaria and sickle cell diseases. To quantify Hb, mean 

corpuscular Hb concentration and mean corpuscular Hb content are being 

used for medical diagnosis on a daily basis in medical laboratories, and they 

can be measured with TPM [90]. 

 

Figure 1.10 Examples of 3D RI tomograms by TPM. 
(a,b) Cross-sectional slices of the RI distribution of a lymphocyte and 
corresponding isolevels representation, respectively. The scale bar is 4 µm. (c,d) 
Cross-sectional slices of the RI distribution of a macrophage and corresponding 
isolevels representation, respectively. The scale bar is 3 µm. (e,f) Cross-sectional 
slices of the RI distribution of an SHSY5Y neuroblastoma cell and corresponding 
isolevels representation, respectively. (Figure a-d reproduced from Ref. [91]; 
Figure e,f reproduced from Ref. [92]) 
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Besides RBCs, TPM has also been widely utilized to study the morphological 

features of other types of eukaryotic cells, such as white blood cells (WBCs) 

(Figure 1.10(a-d)) [91], neuron cells (Figure 1.10(e,f)) [92], hepatocytes [60], 

phytoplanktons [51], and cancer cells [60]. TPM time-lapses have confirmed 

the appearance of membrane blebs, cytoskeleton disruption, neurite 

shortening, cell shrinkage, and rounding inside neurons treated with a 

substance known to cause Parkinson’s disease [92]. Quantitative monitoring 

capabilities of TPM were also used to quantify differences in single live platelet 

in its morphology, cell volume, as well as changes in biophysical parameters 

[93]. Most recently, multimodal approaches combining TPM and FM 

techniques have been used in the correlative study of cell pathophysiology 

[94]. 

Besides being able to unfold biophysical features, RI maps of living cells can 

also carry biochemical information about cells. This is due to the linear 

relation between the RI value of a biological sample, 𝑛(𝑥, 𝑦, 𝑧), and the dry 

mass concentration (or called dry mass density) of organic molecules 

𝜎(𝑥, 𝑦, 𝑧), i.e. 

(1.48)  𝜎(𝑥, 𝑦, 𝑧) =
𝑛(𝑥,𝑦,𝑧)−𝑛𝑚

𝛼
, 

where 𝛼 is the refractive increment [1] and 𝑛𝑚 is the RI of the surrounding 

medium. Therefore, the dry mass quantifies the total mass of all the non-

aqueous contents of a cell. To make reliable the use of the 3D RI map from 

TPM, the volume integral of the dry mass density can give the total cell dry 

mass, which is inaccessible through a 2D QPI modality. Applying dry mass and 

dry mass density determined by TPM measurements as a biomarker enables 

measurement and monitoring of cell processes such as mitosis or cell death, 

either as apoptosis or necrosis. It has been demonstrated that compaction and 

decompaction of chromosomes induced by osmotic change were 

characterized by linked changes in chromosome RI, volume, and the motilities 

of fluorescent proteins [95]. Variations in induced apoptosis have been 

presented, like responses of normal muscle cells and rhabdomyosarcoma cells 
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to calcium electroporation, which previously has been reported as an effective 

method of rhabdomyosarcoma cells reduction [96]. 

Cell size, balanced by cell growth and division, is an important phenotypic 

characteristic of any type of cell. Although the process of how it is regulated 

has fascinated generations of biologists, details have remained largely 

obscure, mainly because accurate measurements at the single-cell level were 

difficult to carry out [97]. With high image contrast, TPM can accurately 

retrieve cell volume and dry mass parameters simultaneously, even at the 

nanoscale level [98], without any exogenous labeling agent. Dry mass density 

can be then calculated. All these features make TPM a perfect tool for 

quantifying cell size in the study of cell growth, proliferation, apoptosis, etc. By 

quantitatively monitoring the dry mass of lymphoblasts and epithelial cells 

during cell division, it has been found out that both cell types maintain a linear 

relation between average growth rate and cell mass over the majority of size 

range [99]. Utilizing TPM to take time-lapse measurements of cell volume, dry 

mass, and dry mass density of mouse chondrocytes simultaneously, three 

distinct phases of hypertrophic cell enlargement have been discovered [100]. 

This result is remarkable as it reveals the mechanism of cell size increase and 

the regulation of growth rate. 

Finally, an important field of application of TPM systems is cancer biology. 

Recently, 3D RI tomograms of human alveolar epithelial A549 cells infected 

with H3N2 influenza have been reconstructed [101]. The 3D RI of healthy and 

cancerous epithelial cells (CA9-22 and BCC cell lines) were measured and 

analyzed [102], live HT29 cells were investigated to image a human colon 

adenocarcinoma cell line [65], the mass of chromosomes in intact living cells 

was quantified and two human colon cancer lines HT-29 and T84 cells were 

differentiated [66]. Angle- and wavelength-dependent light scattering 

distributions provide information about the morphological changes 

accompanying early-stage malignancy of cancers, thus making light scattering 

a valuable tool for cancer diagnosis over the past decade. For instance, a light 

scattering analysis based on TPM showed that the total light scattering cross 
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section and backscattering cross section of cancerous cell lines (CA9-22, BCC) 

were both significantly higher than those of normal cell lines (HaCaT, SG) 

[102]. 

1.5 Intracellular TPM for Plant Cells 

As will be discussed in detail in Chapter 4, due to the absence of exogeneous 

markers, QPI and TPM suffer the lack of intracellular specificity, which is 

instead the main strength in FM. This means that the phase or RI values can 

hardly be assigned to specific organelles inside the reconstructed cell. The 

main reason is the lack of a suitable phase contrast in the recorded QPMs. 

However, to cope this issue in the case of plant cells, herein an alternative 

strategy for realizing intracellular TPM has been proposed [6]. In particular, 

the dehydration process has been induced in non-invasive way in epidermal 

onion cells in order to enhance the phase contrast and promote the nuclear 

rotation, at the aim of reconstructing the 3D RI tomogram directly at the 

nuclear level and then segmenting the nucleolus by means of a RI threshold. 

In fact, the dehydration provokes the progressive loss of intracellular water 

content inducing rotation of the cell nucleus over a wide range of angles, thus 

permitting the accomplishment of 3D imaging by TPM without any mechanical 

or electro-optical laser beam scanning device. The dehydration process has 

been studied through DHM time-lapse experiments, and an optimal time 

window has been determined to observe the sample before plasmolysis starts, 

when the induced process is reversible. Thus, TPM has been realized in 

nondestructive manner. In fact, plant cells contain the vacuole, i.e. a roundish 

tank surrounded by the tonoplast membrane. In a mature plant cell, the 

vacuole occupies between the 80 % and the 90 % of the internal cell volume 

and is responsible for turgor pressure. Turgor pressure gives solidity to the 

cell and is generally determined by the water content of the vacuole. By 
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controlling the environmental temperature and humidity, the cell turgor can 

be altered through the variation of its aqueous content. Upon the dehydration 

process starts, curved streamlines develop in the liquid inside the cell. At the 

same time, dehydration also leads to a rearrangement of the cytoskeletal 

structures and to a relaxation of the mechanical constraints that keep the 

nucleus fixed in its initial position [103] [104]. As a result, the nucleus begins 

to rotate. Here it has been demonstrated that, when specific conditions are 

met, it is possible to exploit this induced rotation to accomplish TPM of the 

nuclei. However, the rotations experienced by the nuclei occur spontaneously, 

thus they are unknowns in the tackled problem. For this reason, an ad hoc 

angle tracking algorithm has been developed to estimate them. In particular, 

an equivalent 3D ellipsoid representing the nucleus has been created, and its 

rotation has been simulated according to the variation of the nucleus area in 

the DHM time lapse, in order to fit the unknown rolling angles. The FPM 

algorithm has been implemented to reconstruct the 3D RI tomogram directly 

at the nuclear level and, thanks to the enhanced contrast, a RI threshold has 

been set to segment the inner nucleolus. Finally, both the nucleus and 

nucleolus have been quantitatively characterized in label-free manner by 

means of RI-based parameters, like the dry mass [6]. 

The results of the 3D tomographic pipeline for two analyzed nuclei are 

reported in Figure 1.11. In Figure 1.11(a,d), the rolling angles recovered by 

using the method described above are shown. The two leftmost images in 

Figure 1.11(b,e) show two central slices of the 3D reconstructed nucleus, cut 

along two orthogonal directions. The tomographic technique allows to obtain 

the 3D spatial distribution of RI. In the leftmost slice in Figure 1.11(b), it is 

clear the presence of a localized region at the highest RI values, which can be 

identified as the nucleolus. Therefore, the nucleus has been segmented into 

nucleoplasm and nucleolus by finding the corresponding interval of RI values. 

The third image in Figure 1.11(b,e) is an iso-levels representation of the 

nucleus, in which the nucleolus is highlighted in red. Finally, the histograms of 

the RI values of the nucleus and nucleolus are reported in Figure 1.11(c,f).  
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Figure 1.11 3D tomographic reconstructions of two plant cells’ nuclei. 
(a,d) Rolling angles recovered by the minor axes’ lengths of the elliptic binary 
masks used to segment QPMs. (b,e) Central slices taken from the 3D reconstructed 
tomograms along two different directions (first two images) and iso-levels 
representation with the nucleolus highlighted in red (third image). (c,f) 
Histograms of the RI distribution of the nucleus (yellow) and the nucleolus (red). 

It is worth remarking that this simple strategy proposed here is fully 

reversible as wide angle rotations are observed before the plasmolysis event. 

Thereby, the dehydration process can be stopped before the cells experience 

irreversible damages. This means the sample could be brought back to its 

normal healthy state by reversing the dehydration process after the 

tomographic shooting. The presented results are a proof of concept of the 

possibility to exploit a natural biological process like dehydration in a 

functional way, i.e. as a tool that allows 3D tomographic imaging of nuclei in 

plant cells using a conventional setup, thus providing a possible strategy for 

recovering the missing intracellular specificity in label-free TPM. The 

approach demonstrated here could improve the investigation in plant biology 

by a non-destructively controlled procedure and by means of a conventional 

label-free holographic microscope able to furnish 3D quantitative analysis at 

sub-nuclear level.



 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 
 

CHAPTER 

2 Holo-Tomographic Imaging 
Flow Cytometry 

Several types of high-throughput instrumentation for analyzing and 

quantifying different aspects of cell biology are available, such as for example 

plate readers, sequencing platforms, DNA, RNA and protein microarrays, 

Western blotting, and so on. However, many platforms allow only analysis at 

the cell population level. Instead, cellular populations are often heterogeneous 

with respect to cell cycle phase, size, volume, physiological state, and their 

individual development history. Therefore, an overall analysis that only 

provides average measurements risks discarding the intra-cellular variability, 

which is instead essential for assaying diversity and searching for rare cells 

with specific features (e.g., tumor cell, stem cells, etc.). FC is a sophisticated 

technology measuring multiple physical characteristics of a single cell 

simultaneously (e.g., size and granularity) as the cell flows in suspension 

through a measuring device. Its working depends on the light scattering 

features of the cells under investigation, which may be derived from dyes or 

monoclonal antibodies targeting either extracellular molecules located on the 

surface or intracellular molecules inside the cell. This approach makes FC a 

powerful tool for detailed analysis of complex populations in a short period of 

time due to the high-throughput property related to the flow condition [105]. 

A remarkable enhancement of the FC potential has been represented by the 

development of IFC systems, in which each cell is associated to a bright-field 

image, a dark-field image, and several fluorescent images related to a specific 

marked intracellular component. As such, IFC has greatly extended the set of 

possible single-cell measurements despite the limitations of the fluorescence 
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imaging. The last frontier of IFC is the implementation of these systems in the 

label-free modality, thus yielding to the development of HIFC for the label-free 

QPI in FC environment. But, as discussed in Chapter 1, the most powerful 

evolution of QPI is TPM. The first attempts to realize TPM of cells flowing in a 

microfluidic channel date back to 2014 [106]. The TPM paradigm has been 

demonstrated effectively working in FC conditions at ISASI-CNR in 2017, thus 

realizing for the first time a TPM-FC system [107]. Therefore, TPM-FC 

combines two powerful techniques in order to provide the 3D, label-free, and 

quantitative characterization of single cells in high-throughput. 

In this Chapter, an overview of the FC and IFC tools and the very recent 

achievements in HIFC are presented. After that, the TPM-FC technique is 

introduced. After describing the TPM-FC working principle, the 

automatization process of the reconstruction pipeline herein developed is 

described [108], which aims to move this technique towards the analysis of 

large number of cells. Finally, the possibility of reaching the TPM-FC high-

throughput property is discussed by performing fluid dynamic numerical 

simulations to replicate in-flow experimental results [109]. 

2.1 Flow Cytometry 

Historically, the first developed flow cytometer was a single-parameter 

instrument detecting only the cell size. Currently, highly sophisticated 

instruments have evolved with the capability of detecting 14 parameters 

simultaneously [110]. FC has the ability to measure the optical and 

fluorescence characteristics of a single cell or any other particle such as 

microorganisms, nuclei and chromosome preparations in a fluid stream when 

they pass through a light source [111]. Size, granularity and fluorescent 

features of the cells, derived from either antibodies or dyes, are also examples 

of parameters used to analyze and differentiate the cells. The underlying 
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principle of FC is related to light scattering and fluorescence emission, which 

occurs as light from the excitation source (commonly a laser beam) strikes the 

moving particle, as sketched in Figure 2.1(a). The data obtained could give 

valuable information about biochemical, biophysical and molecular aspects of 

particles. Light scattering is directly related to structural and morphological 

properties of the cell while fluorescence emission derived from a fluorescence 

probe is proportional to the amount of fluorescent probe bound to the cell or 

cellular component [111]. Two types of light scatter occur, named as forward 

scatter (FSC) and side scatter (SSC) [105], as illustrated in Figure 2.1(b). The 

factors affecting total light scatter include the membrane, nucleus, granularity 

of the cell, cell shape and surface topography. FSC light is a result of diffraction 

collected along the same axis as the laser beam. FSC is proportional to cell 

surface area or size and suitable for detecting particles greater than a given 

size, that makes it the most commonly used method for immunophenotyping. 

On the other hand, SSC light is a measurement of mostly refracted and 

reflected light, which is collected at approximately 90° to the laser beam. SSC 

is proportional to cell granularity or internal complexity. In order to 

differentiate the cell types in a heterogeneous population, correlated 

measurements of FSC and SSC can be used [112]. 

The main components of flow cytometers are basically fluidics, optics 

(excitation and collection), an electronic network (detectors) and a computer 

[105]. The fluidics is responsible for directing liquid containing particles to the 

focused light source. The excitation optic focuses the light source on the 

cells/particles while collection optics transmits the light scatter or fluorescent 

light of the particle to an electronic network. The electronic network detects 

the signal and converts it to a digital data that is proportional to light intensity, 

and the computer is also required to analyze data. FC data analysis consists in 

finding a gate, i.e. one or more regions in a 2D chart selected according to the 

measured parameters [105]. For example, in this way unwanted particles such 

as dead cells and debris can be eliminated. The most common application of 

gating strategy is to use FSC and SSC plots, as shown in the example in Figure 
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2.1(c), in which the different physical characteristics of some WBCs, i.e, 

granulocytes, monocytes and lymphocytes, allow them to be distinguished 

from other blood cells. Additionally, a gate is a numerical or graphical 

boundary that can be used to define the characteristics of particles for further 

analysis. For example, in a blood sample containing a mixed population of 

cells, the analysis can be restricted to the sole lymphocytes. A gate can be set 

on the FSC vs. SSC plot for the analysis of lymphocytes, and then the 

fluorescence properties of the sole lymphocytes can be performed, as reported 

in Figure 2.1(d). Furthermore, a quadrant marker can divide a 2D plot into four 

sections to discriminate populations as negative, single positive or double 

positive to certain labels, as displayed in Figure 2.1(e) about the identification 

of lymphocytes within the peripheral blood mono-nuclear cells (PBMCs). 

Scatter plots in Figure 2.1(c-e) are density plots, since they display two 

parameters as a frequency distribution by using the color to code the different 

frequencies of events. 

The distinctive property of FC technology of collecting information about large 

datasets while keeping the single-cell level makes it an eligible tool for several 

biomedical applications [105]. For this reason, FC is now routinely used as a 

diagnostic technology for health disorders, especially hematologic diseases 

[113]. FC is used in various applications based on the detection of the 

membrane, cytoplasmic and nuclear antigens. Additionally, whole cells and 

cellular components such as organelles, nuclei, DNA, RNA, chromosomes, 

cytokines, hormones and protein content can also be investigated by FC. 

Analysis of cell proliferation and cell cycle, measurements of calcium flux and 

membrane potentials are the commonly used examples of methods developed 

for FC [105]. Cells undergoing apoptosis (i.e., programmed cell death) can be 

revealed by FC by rapidly collecting cell apoptotic properties. 

Immunophenotyping or phenotypic characterization of cells is the 

identification and quantification of a specific cell group in the mixed 

population using FC, e.g. immune cells of the blood, by detecting specific cell 

surface membrane proteins. 
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Figure 2.1 FC working principle and applications. 
(a) In a FC system, the sample is illuminated by a laser while flowing along a 
channel, and the light scatter or fluorescent light is collected. (b) Light scattering 
in FC. FSC is proportional to cell size while SSC is proportional to cell granularity 
or internal complexity. (c) FC gating of granulocytes, monocytes, and lymphocytes 
with respect to the other blood cells. (d) FC rectangular gating of the lymphocytes 
within the PBMCs. (e) FC quadrant gating of the lymphocytes (upper-right 
quadrant) within the PBMCs. (f) Cell sorting based on the electrostatic deflection 
of charged droplets. (Figure reproduced from Ref. [105]) 

Moreover, a cell sorting module can be integrated to a FC system and exploit 

its collected information, as sketched in Figure 2.1(f). For example, 

Fluorescent Activated Cell Sorters (FACS) are flow cytometers that have the 

capacity to sort fluorescent-labeled cells from a mixed cell population [110]. 

Cell sorting is responsible for capturing and separation of the cells based on a 

single parameter or a combination of several parameters [105]. Once the cells 

of interest are collected, they can be used for further analysis such as 
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microscopic, biochemical and functional studies. A single parameter or 

combination of several parameters can be used for cell sorting. 

In the field of FC, many advantages have been provided by the development of 

microfabricated flow cytometers that use microfluidics [105]. Microfluidics 

are defined as cutting-edge science and technology in which small amounts of 

fluids (10-9–10-18 liters) can be processed and manipulated in channels with 

very small dimensions. Therefore, microfluidic flow cytometers can be used to 

analyze single cells in a small population, cellular differences in gene 

expression or response to a drug within a population of cells. These chip-based 

flow cytometers are cost- and size-effective and portable when compared to 

conventional benchtop instruments. Microfluidic flow cytometers have 

several advantages over conventional flow cytometers. For instance, a typical 

flow cytometer delivers a sample of interest at rates of 10–100 µl per minute, 

which is not practical to detect the cells such as CTCs and hematopoietic stem 

cells found in very small numbers in the total sample. Conventional flow 

cytometers require analysis of several milliliters of the sample to detect small 

numbers of cells. Instead, microfluidic flow cytometers have the ability to 

concentrate cells and particles at the center of a microfluidic channel for direct 

analysis. Therefore, a high-throughput screening is enabled, in which small 

volumes of hundreds of thousands of samples can be analyzed simultaneously. 

2.2 Imaging Flow Cytometry 

Due to its high-throughput and multiparametric analysis, by supporting 

detection of single cell properties at rates from hundreds to 105 cells per 

second, conventional FC is an irreplaceable cytologic instrumentation when a 

study of high-volume cell populations and subpopulations needs to be 

performed. However, although FC can identify and sort rare cell populations 

with high speed, dealing with rare cell detection using this approach is plagued 
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by the contamination of false-positive events due to autofluorescence, 

nonspecific immunostaining, and cell aggregates [114]. Meanwhile, due to the 

lack of spatial resolution in exchange for higher throughput, users have to 

make gating decisions blind to some of the most informative and relevant 

sample attributes contained in cell images. Imaging is indubitably 

indispensable for cell analysis because images effectively convey certain 

messages about cells, such as cell size, shape, morphology, and distribution or 

location of labeled biomolecules within cells. As cellular morphology analysis 

plays an important role in various biological studies and clinical diagnoses 

(e.g., cancer screening), conventional FC is much anticipated to incorporate 

imaging capabilities. In contrast to pure quantitative measurements provided 

by conventional FC, microscopy allows capturing cell images that contain a 

wealth of information about a cell. For example, while conventional FC 

measures FSC light to estimate the relative cell size, microscopy yields the 

exact cell size through its brightfield image. Recent advances in imaging 

technologies, electronics, and digital computing have enabled IFC [115] [116]. 

IFC combines the single-cell imaging capabilities of microscopy with the high-

throughput capabilities of conventional FC. Therefore, it becomes an ideal 

approach to simultaneously fulfill both analysis of morphological 

characteristics and phenotypic characterization of single cells within an 

enormous and heterogeneous population. Also, as the interest in performing 

IFC systems grows, the necessity of combining this technique with cell sorting 

becomes evident [117]. The basic idea behind IFC is scaling up FC spatial 

resolution to analyze more properties of cells. IFC aims at the fluidic-based 

platforms that have optical imaging functionality at informative spatial 

resolution while retaining the main features of conventional FC. For this 

reason, recent advances in IFC are remarkably revolutionizing single-cell 

analysis [115]. 

The IFC developed by Millipore, e.g. Amnis ImageStream® and FlowSight®, 

relies on high-speed CCD cameras that use the time delay and integration 

(TDI) technique, which is originally designed to image objects moving along 
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one axis at low light levels [118]. The ImageStream® system is sketched in 

Figure 2.2(a). Using spectral decomposition elements, 12 images per cell can 

be acquired simultaneously by 2 CCD cameras. Because of the rich subcellular 

information acquired by Amnis ImageStream®, various analyses and ML 

algorithms can be applied to study cell phenotype and subgroup classification. 

As the translation of the cell is exactly synchronized with the vertical charge 

transfer of each pixel on the CCD, using the TDI reading out technique requires 

a closely controlled fluidic system to ensure cells are centered and flow at a 

constant speed without rotation. This strict requirement hinders the system 

to adopt a sorting mechanism, since any minor fluidic disturbance from 

downstream cell sorting can cause imaging instability. One limitation of the 

system speed is the inherent data downloading method of CCD. On the other 

side, obtaining enough sensitivity without any gain like electron multiplication 

also prevents the system to reach throughput higher than 1000 cells per 

second. Although the sensitivity can be improved by increasing the excitation 

laser power, it may lead to photobleaching or saturation of fluorescence. 

For blood cells, bone marrow cells, and many cancer cells flowing in the blood 

vessels, IFC is the most promising approach to study their morphological 

changes [114] [119]. The multiple applications of IFC include analysis of 

nuclear-cytoplasmic translocation [120], quantification of apoptosis based on 

the changes in nuclear morphology [121], and quantitative analysis of 

internalized bacteria and protozoan parasites [122]. In recent years, IFC was 

also employed for the evaluation of asymmetric cell division [123], 

internalization of CypHer5E-conjugated antibodies and PKH-labeled 

exosomes [124], intercellular communication by exchange of cytoplasmic 

material [125], and analysis of cell interactions and immune synapse [126]. 

Recently, IFC, combined with cell sorting pre-enrichment, was successfully 

employed for the identification and characterization of a novel pluripotent 

population of very small embryonic-like stem cells (VSELs) in human and 

animal tissues [127]. 
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As an example of single-cell analysis using camera-based IFC, a quantitative 

evaluation of nuclear factor kB (NF-kB) activation of mammalian cells based 

on a commercial IFC, i.e. Amnis ImageStream®, is discussed [128] [129]. NF-

kB is a transcription factor that regulates cellular processes such as 

proliferation, apoptosis, and survival.  

 

Figure 2.2 Amnis ImageStream®. 
(a) Sketch of the otpo-fluidic recording system. (b) Unstimulated ML1 cells and (c) 
ML1 cells stimulated with 10 ng/mL TNFα. The gray, green, and red colors 
represent bright-field, FITC (specific to NF-kB), and DRAQ (specific to nuclei) 
images, respectively. The scale bars are 10 µm. (d) Scatterplot of Jurkat cells in four 
distinct states (blue, live; green, early stage of apoptosis; red, late stage of 
apoptosis; yellow, necrosis). (e) Examples of captured images of Jurkat cells in (d) 
(bright-field, dark-field, and fluorescence images). The fluorescence images are 
obtained by 7-aminoactinomycin D staining and represent nucleus morphology. 
(Figure a reproduced from Ref. [118]; Figure b-e reproduced from Ref. [128]) 
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Since the p65 fragment of an active NF-kB complex is translocated to the 

nucleus, the activation level of NF-kB can be measured by the similarity of 

fluorescence images of NF-kB/p65 and the nucleus in a cell. Fluorescence 

images of unstimulated ML1 cells and ML1 cells stimulated with 10 ng/mL 

tumor necrosis factor α (TNFα) obtained by Amnis ImageStream® are shown 

in Figure 2.2(b,c), respectively. Whereas images of unstimulated ML1 cells 

show distinct differences between an NF-kB/p65 image and a nucleus image, 

images of stimulated ML1 cells show similarities between the two 

fluorescence images as a result of the activation of NF-kB. Note that these 

results cannot be obtained either by a conventional FC or by a bright-field IFC, 

hence demonstrating the strong utility of fluorescence IFC. 

Another example of single-cell analysis where camera-based IFC plays a key 

role is the analysis of cell death [128] [130]. A scatterplot of four populations 

of Jurkat cells with distinct states (live, early stage of apoptosis, late stage of 

apoptosis, and necrosis) is displayed in Figure 2.2(d), while examples of three-

color (bright-field, dark-field, and fluorescence of nuclei stained by 7-

aminoactinomycin D) images obtained by Amnis ImageStream® are reported 

in Figure 2.2(e). The differences between the cell area (obtained by a bright-

field image) and nucleus area (obtained by a nucleus fluorescence image), and 

the spatial scattering frequency (obtained by the dark-field image) are used as 

the horizontal and vertical axes in the scatter plot in Figure 2.2(d), 

respectively. The plot clearly discriminates the four states. On the other hand, 

standard FC cannot differentiate them under the same sample conditions 

because of the lack of morphological information, such as the cell area and 

nucleus area. This proof-of-concept demonstration indicates that camera-

based IFC can be used for monitoring populations of modes of cell death in a 

large population of cells [128]. 

In commercial IFC instruments like Amnis ImageStream®, the high-

throughput of 1000 events per second is counterbalanced by a poor resolution 

with respect to traditional microscopy (i.e., ~ 0.5 µm per pixel). Moreover, the 

maximal speed can only be achieved with a relatively high sample 
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concentration that is about 107 cells per milliliter. The acquisition timescale in 

IFC ranges in minutes, all the way from tenths of a minute to 100 minutes 

needed to push through tens of thousands of events from samples with a low 

cellular concentration. In this case, an issue could be represented by the lack 

of availability of nutrients and oxygen over long time periods, because samples 

presumably are run in phosphate-buffered saline. Focusing is a large 

contributor to the length of time required for analysis, because a large 

percentage of cells will be excluded from analysis due to focusing problems. 

Moreover, if fluorescence labeling with cell tracking and vital dyes is used, 

additional experiments are required to exclude phototoxicity as a reason for 

observed differences between the experimental and control cells [114]. 

Compared to the data format in conventional FC, including integral, peak and 

width of light intensity, cell images produced by IFC are much more complex. 

Since IFC can produce thousands of multi-spectral cell images per second, files 

generated by IFC can tremendously burden the digital image transportation 

and processing realized by the back-end data handling unit. A test of a few 

minutes can easily create a data file beyond tens of GB. For a possible solution, 

a compressive sensing theory-based method has recently been explored to 

build analog compression directly into the acquisition process so that the 

sampling can be significantly more efficient [131]. Computational 

requirements for IFC platforms are unprecedented. There are many software 

packages and tools for use in high-throughput image analysis, mainly for 

microscopy platforms, including CellProfiler and ImageJ, but in general, the 

pipelines of these tools are for offline image analysis [132]. In order to 

combine cell sorting with IFC to fully realize its tremendous potential, real-

time image construction and analysis is required. Hence, the ability to 

produce, measure and analyse cell images, and sort cells in a real-time manner 

will be the next major milestone for IFC. Possible approaches to extract cell 

characteristics in real time include the use of field-programmable gate arrays 

(FPGA) or graphics processing units (GPUs) to implement various image 

processing and AI. Recently, thanks to AI, the FACS has been transferred into 
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the IFC world, thus implementing an Image-Activated Cell Sorter (IACS) [133] 

[134] [135]. 

Although the images have a high information content, containing rich 

morphological and spatial information (even in a single bright-field channel), 

data analyses often have low information content, that is, analyses are based 

on only very few selected features, which are often manually identified by the 

user by applying binary gates on cell populations of interest [136]. These 

approaches are highly subjective, thus operator bias always have to be 

considered, require significant user interaction, and only utilize a few 

morphological features instead of the hundreds that are inherently present in 

the data. Yet, even with these limitations, some IFC applications are already 

heading toward the clinic, such as the diagnostic assessment of acute leukemia 

[137], even if IFC is currently primarily used in research. These issues might 

be overcome with AI approaches. As well, there is a need for standardization 

of IFC, which should include standard operating procedures and standardized 

quality control of hardware performance. Although a common practice for 

conventional FC, this has not yet been implemented as such in IFC. 

Furthermore, cloud computing can overcome the computational 

infrastructure hurdles. These developments are key for practical IFC 

applications to reach the clinic, fueling the applicability of IFC as a diagnostic, 

prognostic, and therapeutic tool [136]. 

2.3 Label-Free Imaging Flow Cytometry 

A major challenge in many modern biological laboratories is obtaining 

information-rich measurements of cells in high-throughput and at single-cell 

level. In conventional FC and IFC, the fluorescent stains are used to label 

cellular components or processes, revealing specific cell phenotypes in the 

population and quantifying the particular state of each cell. However, often 
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these stains are incompatible with live cell analysis and may have confounding 

effects on the cells. For example, the commonly used Hoechst 33342 stain, 

which binds to the minor groove of the double-stranded DNA, can induce 

single-strand DNA breaks [138], or DRAQ5, the nuclear stain that intercalates 

with the cell’s DNA, can influence chromatin organization and lead to histone 

dissociation [139]. Also, several different markers are usually required to 

unambiguously identify all cell cycle phases [140]. Moreover, exogenous 

biochemical markers are not always effective, especially when there is poor 

prior knowledge of the markers of a yet-to-be identified population [141]. For 

instance, cell surface markers or other factors that are expressed by the 

unknown and rare cell types in a highly heterogeneous population (such as 

stem/progenitor cells and aberrant rare cancer stem cells) might not be 

known. Furthermore, large-scale biochemical cellular assays are costly, labor-

intensive, and time-consuming, thus hindering their applications for routine 

disease diagnosis or screening. Finally, above all in long experiments, 

photobleaching could alter the overall imaging and photodamaging could 

change the cell physiology. Therefore, a label-free assay that avoids the stains 

required to characterize single-cells in high-throughput mode is particularly 

attractive [142]. Besides, state-of-the-art IFC does not provide quantitative 

images of cells from which biophysical cell properties can be extracted [143], 

such as RI, dry mass and biovolume, which are related to various cellular 

functions and features [5] [144] [145]. To obtain new scientific insights and to 

enrich the diagnostic toolsets, it is of great value to explore alternative 

biomarkers, involving simple and cost-effective methods with sufficient 

statistical power, which can correlate with the information provided by 

existing biochemical markers [141]. To this end, cellular biophysical 

properties are the effective intrinsic indicators of a multitude of cellular 

processes, ranging from cell-cycle progression [146] and cell differentiation 

[147] [148] [149] to malignant transformation [150] [151]. For example, it has 

been demonstrated that the label-free assessment of cell mass density is as 
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effective, or even more accurate, descriptor of cellular heterogeneity, 

compared to the conventional fluorescence markers [152] [153]. 

As discussed in Section 1.1, QPI is an emerging optical technique for 

nondestructive testing and minimally invasive analysis of almost transparent 

biological specimens such as living cells, which allows the extraction of 

absolute biophysical cell parameters like RI, dry mass and biovolume. For 

these reasons, the combination between QPI and FC is expected to greatly 

enlarge the potential of conventional IFC.  

 

Figure 2.3 HIFC for quantitive characterization of pancreatic tumor cells 
PaTu 8988S. 
(a) Sketch of the HIFC setup. MO, microscopic objective; TL, tube lens; M1 and M2, 
mirrors; NPBS, non-polarizing beam splitter cube. Insert in upper left corner, 
configuration of the Michelson interferometer-based self-interference DHM unit; 
insert at middle left panel, representative recorded digital off-axis hologram; insert 
in upper right corner, enlarged sketch of the flow field observation area including 
the micro-capillary inside a cubic silica block. (b) QPM with three PaTu 8988S cells 
after segmentation and digital refocusing. (c) Dry mass histograms of PaTu 8988S 
recorded in static and in flow conditions. (Figure reproduced from Ref. [143]) 
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Actually, the development of label-free IFC has been aided by one of the most 

powerful properties of DHM, i.e. the possibility of numerically refocusing cells 

after the experiment instead of recording each of them in their corresponding 

focal plane, a priori calibrated before the experiment. Hence, the DHM 

recording of single cells could move towards the high-throughput feature 

typical of the IFC paradigm, without using exogenous markers and providing 

a high-content quantitative information about the cell biophysical properties. 

For example, the HIFC system sketched in Figure 2.3(a) has been used to 

reconstruct the QPMs of flowing pancreatic tumor cells PaTu 8988S, as 

displayed in Figure 2.3(b), which corresponding histogram of the measured 

dry mass is reported in Figure 2.3(c) [143]. HIFC has been exploited to 

characterize RBCs in flow by measuring the Hb content [154], for extracting 

the quantitative signature of cancer cells [155], for investigating the 

biophysical properties of WBCs [156], and for identifying shape variations in 

leukemia cells [157]. 

However, it is worth noticing that, limited by the fundamental trade-off 

between the camera’s frame rate and its sensitivity, classical optical 

microscopy, including QPI, lacks the ability to offer sufficient image quality to 

resolve subcellular structures at high imaging throughput [141]. This explains 

that the available label-free IFC techniques either can provide the bulk single-

cell biophysical knowledge (e.g., cell size, cell shape) at high throughput [147] 

[148], or have to scale down the throughput by 102–103 times to preserve high 

image resolution required for cellular assay [155] [157]. In this regard, the 

gold-standard label-free IFC technique is a time-stretch interferometer 

microscope (namely multi-ATOM), which enables single-cell QPI at sub-

cellular resolution even operating at a high cell imaging throughput (>10000 

cells/s), at least 100 times faster than classical QPI [141] [158]. 

Despite their significant impact, current commercial FC systems are limited by 

high cost, large instrumentation size and the constant requirement of highly 

trained personnel for maintenance (the latter two resulting from its complex 

system configuration). A typical flow cytometer with cell-sorting function 
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costs US$200000–1000000. Most cell analysis/sorting tests are typically 

performed at well-funded, centralized share facility laboratories and hospitals 

due to the economic reasons. Instead, in global healthcare there is an 

increasing need of medical equipment with devices able to provide affordable, 

sensitive, specific, user-friendly, robust, rapid, equipment-free, and 

deliverable testing for clinical diagnosis [159]. These requests are particularly 

needed in first-line clinical offices and in developing countries that lack 

adequate and costly facilities. In the last years, many research efforts have 

been spent to realize LOC devices for point-of-care applications satisfying 

these requirements [160], in particular exploiting the advantages of optical 

imaging techniques for diagnostic purposes as they are high resolution, real-

time, and able to measure macroscopic parameters in microscopic devices 

[161]. Moreover, rapid diagnostics should skip long and cumbersome analytic 

procedures that eventually request complex laboratory equipment and 

multistep pretreating. In terms of rapidity and flexibility, a direct diagnosis on 

human physiological liquids would be greatly beneficial if an imaging 

microfluidic device were used on samples without any preparation (i.e., urine 

or blood sampled from human body and directly analyzed). Also, diagnostic 

analysis of flowing and not-adherent cells needs to be quantitative, label-free, 

and as fast and accurate as possible [159]. In this scenario, lens-free on-chip 

DHM offers a flexible, compact and cost-effective alternative for many on-chip 

diagnostics applications such as whole blood analysis [162]. In fact, lens-free 

on-chip DHM is an emerging technique that allows imaging of biological 

samples within a large FOV without using bulky lenses or optical components. 

Based on a compact, cost-effective and robust architecture, lens-free on-chip 

DHM offers a tool capable of meeting the emerging needs of microscopic 

analysis and diagnosis with low mechanical resources for telemedicine 

applications. Such a setup is shown in Figure 2.4(a). It is based on consistent 

in-line DHM which achieves a relative high resolution. In this platform, the 

sample is placed directly on an array of optoelectronic sensors. A partially 

coherent light source employing LEDs is used to illuminate the sample.  
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Figure 2.4 DHM miniaturization. 
(a) Schematic illustration of a lens-free on-chip DHM system. The objects are 
placed directly on a digital sensor array with typically z2 < 5 mm distance to its 
active area. A partially coherent light source, such as an LED, is placed z1 ∼ 4–10 
cm away from the objects, and filtered by a pinhole of diameter d ∼ 0.05–0.1 mm 
to record the digital inline holograms of objects with unit fringe magnification over 
a large FOV, e.g., 24 mm2. (b) Photos and schematic illustration of a portable HIFC 
device. The water sample is constantly pumped through the microfluidic channel 
at a rate of 100 mL/h during imaging. The illumination is emitted simultaneously 
from red, green, and blue LEDs in 120-μs pulses and triggered by the camera. Two 
triple-bandpass filters are positioned above the LEDs, and the angle of incidence of 
the light on the filters is adjusted to create a <12 nm bandpass in each wavelength 
to achieve adequate temporal coherence. The light is reflected from a convex 
mirror before reaching the sample to increase its spatial coherence while allowing 
a compact and lightweight optical setup. (c) Schematic illustration of a lens-free 
on-chip HIFC device with zoomed-in on the right the S-type micro-channel. (Figure 
a reproduced from Ref. [162]; Figure b reproduced from Ref. [163]; Figure c 
reproduced from Ref. [164]) 
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The light produced by the source is filtered through a small hole. During 

vertical propagation, the beam tends to increase in diameter, thus allowing a 

coherent illumination of micro-objects in a large FOV. If the density of the 

objects is not excessively large or if the objects are weakly scattering, as occurs 

with most biological samples, much of the light does not interact with the 

objects and therefore acts as a reference beam. Instead, a small sample portion 

of light is scattered by and thus forms the object wave. The degree of 

coherence (both spatial and temporal) on the sensor plane allows the object 

wave and the reference wave to overlap and form an interference pattern, i.e. 

the hologram. In this system, the high-throughput recording is obtained by the 

large FOV instead of the FC mode. 

A field-portable and cost-effective HIFC system has been proposed for 

capturing QPMs of micro- and nano-plankton inside a continuously flowing 

water sample at a throughput of 100 mL/h [163]. The device is based on 

partially coherent lens-free DHM and acquires the diffraction patterns of 

flowing micro-objects inside a microfluidic channel without the use of external 

labeling. Operated by a laptop computer, this portable device, shown in Figure 

2.4(b), measures 15.5 cm × 15 cm × 12.5 cm, weighs 1 kg, and costs less than 

$2500. Therefore, compared to standard IFC, it provides extreme reductions 

of cost, size and weight while also giving a high volumetric throughput over a 

large object size range. Finally, a lens-free HIFC system has been implemented 

on-chip in microfluidic conditions [164], as sketched in Figure 2.4(c). In 

particular, the system causes cells to flow through a micro-channel in a PDMS 

microfluidic chip above a contact image sensor (CIS). A near-coherent light 

source is mounted above the microfluidic chip, and diffraction shadow images 

of cells generated by the near-coherent light source are then captured by the 

CIS. Because of the low intensity of near-coherent light caused by a pinhole, 

the exposure time of the image sensor in the system is longer than 400 ms. 

Therefore, there is stronger motion blur while the cells are quickly flowing in 

the micro-channel. To solve this problem, the cells in the micro-channel are 

imaged simultaneously in a large FOV instead of with a FC method in which 
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the cells pass through the testing area at high speed. In other words, the 

method takes advantage of the larger FOV of the CIS to reduce the cell flow 

velocity. To utilize the large FOV of the CIS, an S-type channel shape is 

employed. As a result, the CIS captures the maximum possible number of cells 

in a frame. In addition, the cells in current frame flow out of the micro-channel 

completely before the next exposure of the CIS. Thus, all the cells in each frame 

are new cells, and the cells in each individual frame can be evaluated to 

increase the number of tested cells. Regarding cost, the CIS is commonly used 

in industrial cameras and mobile phones, so the price is very low (below $10). 

The microfluidic chip comprises a PDMS channel and a piece of thin glass (0.18 

mm), making it very cheap and easy to replace. Using whole blood cells to test 

the cell counting precision, the reached error less than 2% has outlined the 

high-precision of this LOC device. 

2.4 TPM-FC Paradigm 

As discussed in Chapter 1, the 3D quantitative and label-free characteristic is 

bringing out TPM as promising optical imaging technique to be used 

individually or combined with other imaging modalities to effectively and 

efficiently tackle many unresolved but important biological and medical 

problems in the future. Over the last years, the TPM technique has started to 

trade into the industry by means of NanoLive Inc. [165] and TomoCube Inc. 

[166]. Both companies use the TPM-ISC mode to obtain label-free 3D images 

of entire cells and tissue slices, and promise to open numerous unexplored 

applications in biology and medicine. This attempt to extend the TPM 

technique from lab research to public use is contributing to making it even 

more popular among biologists and physicians all over the world. Another 

important step toward a remarkable reduction of the production cost is the 

employment of LEDs as light source, which aims at the same time to increase 
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the TPM resolution thanks to the higher signal-noise ratio [167] [168]. 

However, although TPM has been intensively developed over the past 10 

years, its applications are still limited to cell biology studies. Thus, it needs to 

be fully explored for more translational research. Due to the shortcomings of 

the currently available methods, many long-standing problems remain in the 

biomedical field, but they can be potentially solved with TPM. For instance, 

immunocyte phenotyping, stem cell multipotency identification, cancer cell 

screening, and tissue pathology are promising directions in which TPM may 

contribute. However, in order to achieve actual success in these important 

topics, thus making TPM really compatible with the already established 

clinical procedures, a major improvement must be addressed, i.e. the high-

throughput feature [47]. In fact, clinical diagnostics on cells, such as blood 

testing, usually needs to deal with millions of cells to obtain statistical 

understanding on the cell populations, as occurs in FC and IFC. Current 

reported TPM systems work in static modality, have a very limited FOV (∼50 

μm × 50 μm), and at least tens of measurements are needed to generate one 

tomogram, which takes a lot of time. To tackle the low-throughput issue, in 

2017, for the first time, the TPM tool has been demonstrated working in FC 

mode, thus implementing the TPM-FC paradigm [107]. In fact, the 3D RI 

tomogram of a single-cell has been reconstructed while flowing and rotating 

in a microfluidic channel. Therefore, by exploiting the well-established feature 

of FC about the single-cell high-throughput analysis, the TPM-FC aims to 

deeply broaden the great potential of the TPM technique by overcoming its 

main limitation toward its spreading in the clinical world. 

2.4.1 TPM-FC System at ISASI-CNR 

The current TPM-FC system built up at ISASI-CNR labs is based on a DH 

microscope developed in off-axis telecentric configuration employing a Mach-

Zehnder interferometric scheme, as sketched in Figure 2.5(a). A laser light 

(Laser Quantum Torus 532) is used as illumination source , emitting at 532 
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nm with an output power equal to 750 mW. The laser beam is split by a 

polarizing beam splitter (PBS) cube into object and reference beams, which 

are reflected and transmitted, respectively. In addition, to balance the ratio 

between intensity of object and reference beam, maintaining the same 

polarization, two half-wave plates are placed in front of and behind the PBS, 

respectively. Object beam passes through a microfluidic chip (Microfluidic 

ChipShop 10000107 - 200 μm × 1000 μm × 58.5 mm) and then it is collected 

by a MO (MO1, Zeiss Plan-Apochromat, 40×, NA=1.3, Oil immersion) and sent 

to a tube lens (TL1 with focal length 150 mm). Reference beam passes through 

a beam expander shaped by a MO (MO2, NewPort, 20×, NA=0.40) and a second 

tube lens (TL2 with focal length 250 mm). Then, both collimated beams are 

recombined by a beam splitter cube with a small angle between them in order 

to achieve off-axis configuration and generate the interference pattern 

digitally recorded by the CMOS camera (Genie Nano-CXP Cameras, 5120×5120 

pixels and 4.5 μm pixel size). The camera is equipped by a video recording 

system ensuring long time acquisition mode. The FOV is 640×640 μm2 with a 

spatial resolution of 0.5 μm. Hence, the camera records (along the optical 𝑧-

axis) at 30 fps a sample of cells while flowing (along the 𝑦-axis) and rotating 

within a microfluidic channel thanks to the hydrodynamic forces of a laminar 

flow (~ 50 nL/s) generated by an automatic syringe pump (Syringe Pump 

neMESYS 290N). The latter is a low-pressure system which allows a high-

precision and pulsation-free dosing of liquids at micro and nanoliter scale 

ensuring a very homogeneous flow inside the microchannel. In fact, the Hagen-

Poiseuille equation relates the pressure drop ∆𝑃 in a fluid flowing through a 

long pipe with its volumetric flow rate 𝑄 as 

(2.1)  ∆𝑃 = 𝑅ℎ𝑦𝑑𝑄, 

where 𝑅ℎ𝑦𝑑 is the hydraulic resistance of the channel. The main assumptions 

of the equation are that the fluid is viscous and incompressible, and the flow is 

laminar. These conditions are completely satisfied in microfluidics [169].  
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Figure 2.5 TPM-FC recording system at ISASI-CNR. 
(a) Sketch of the TPM-FC system. PBS – Polarizing Beam Splitter; WP –Wave Plate; 
M – Mirror; L1, L2 – Lens; MO – Microscope Objective; MC – Microfluidic Channel; 
MP – Microfluidic Pump; TL – Tube Lens; BS – Beam Splitter; CMOS – Camera. (b) 
Scheme of rotation of cells due to the velocity gradient and chosen reference 
coordinate system. Cells flow along the 𝑦-axis, rotate around the 𝑥-axis, and are 
illuminated along the 𝑧-axis. (c) Digital hologram taken from the recorded DHM 
sequence, with fibroblast cells flowing along the 𝑦-axis from the input line to the 
output line used for detecting them. The scale bar is 50 μm. (d) Five cuts of digital 
holograms of the same fibroblast cell at different time frames. 

The general solution for the flow velocity in a channel with a rectangular cross-

section is given by [170] 
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where 𝑑𝑝 𝑑𝑥⁄  is the pressure drop across the channel, and ℎ and 𝑤 are the 

height and the width of the channel cross-section {𝑥, 𝑧}, respectively. This 

analytic solution says that a Hagen-Poiseuille flow is characterized by a 

parabolic velocity profile, in which the velocity of flow in the center of the 

channel is greater than that toward the outer walls. As sketched in Figure 

2.5(b), due to the parabolic velocity profile, if a cell is close to the wall, its 

surface will be affected by different velocity values. In particular, the cell side 

closer to the center of the channel is affected by a higher velocity than the side 

closer to the wall. The couple of forces acting on the cell generates a torque, 

and so a rotation is induced. Therefore, several digital holograms are recorded 

while the cell is rotating with respect to the fixed illumination beam direction, 

thus fulfilling the TPM recording principle. In particular, TPM-FC frames 

within the TPM-SRC modality in terms of the missing cone problem, i.e. 

isotropic reconstruction can be achieved. However, unlike the conventional 

TPM-SRC tools, TPM-FC comes with some advantages. The biological sample 

is not altered by the mechanical/optical external forces needed to rotate it. 

Moreover, the hydrodynamics-based rotation is not limited to handle one 

single cell for each experiment, thus moving toward the high-throughput 

property since the difficult and time-consuming recording can be skipped. 

Furthermore, cells are not fixed at rest on a surface, but they are analyzed in 

suspension in a buffer solution (e.g., Phosphate Buffered Saline). This latter 

property is important above all when cells that circulate in the human 

bloodstream must be characterized by TPM, as their natural condition is 

considered. An example of recorded digital hologram is displayed in Figure 

2.5(c), while a sequence of successive holograms cut in the same vertical 

region is reported in Figure 2.5(d) to show the cell flow along the 𝑦-axis. 

2.4.2 Automatic Reconstruction Processing 

The first requirement to process a high number of cells is the implementation 

of an automatic reconstruction code, which has been developed herein. Each 
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recorded hologram is pre-processed with the aim to detect and track each 

flowing cell within the FOV. Due to the inherent contrast between cells and 

their background in the digital hologram, a threshold-based method is 

exploited to detect the frames in which a cell enters and exits the FOV by 

passing through the input and output lines shown in yellow in Figure 2.5(c). 

According to the reference system in Figure 2.5(c), the microfluidic pump 

ensures that cells flow along the 𝑦-axis with a quasi-uniform speed while 

keeping about the same 𝑥-position, as shown in Figure 2.5(d). Therefore, the 

𝑥-coordinates of the intermediate positions are computed as the mean value 

between the detected input and output 𝑥-coordinates, while the 

corresponding 𝑦-coordinates are computed by assuming a uniform movement 

between the input and the output lines, i.e. 

(2.3)  𝑦𝑘 = 𝑦𝑖 +
𝑦𝑓−𝑦𝑖

𝑓−𝑖
(𝑘 − 𝑖), 

where 𝑘 = 𝑖, … , 𝑓 is the intermediate frame index ranging from the detected 

input frame 𝑖 and output frame 𝑓, and 𝑦𝑖  and 𝑦𝑓 are the 𝑦-coordinates of the 

fixed input and output lines, respectively. Then, a sliding patch of sizes 

384×384 pixels is centered on these raw positions (see red box in Figure 

2.5(c,d)). In summary, a video sequence of 5120×5120 pixels holographic 

images turns into tens of sequences of 384×384 pixels sub-holograms, each of 

them containing the cell during its rotation. Finally, each sub-hologram is 

numerically reconstructed by implementing the processing pipeline described 

in Section 1.1.3 and shown in Figure 2.6(a). In particular, the suppression of 

undesired diffraction orders is made by Fourier spectrum filtering to select 

and center the real diffraction order (i.e., hologram demodulation). 

Afterwards, the demodulated hologram is numerically refocused to provide 

the in-focus complex amplitude from which the phase-contrast image is 

obtained by calculating its argument [13]. The residual optical aberrations, 

superposed to the retrieved phase-contrast image, are subtracted by using a 

reference hologram, acquired without the sample in the imaged FOV [171]. 

Then, the 2D windowed FT filtering is employed as denoising method [172] 
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and the PUMA algorithm is used for the phase unwrapping [18]. Finally, the 

QPM is centered in the cell transversal position [13]. The processing is then 

repeated for all the different positions occupied by the cell during its flow 

along the FOV. 

In particular, among other features, DHM allows the accurate a posteriori 

retrieval of the spatial coordinates of an object, thus providing a 3D particle 

tracking in the entire imaged FOV. Therefore, DHM is often used in different 

branches of bio-microfluidics, such as the study of the migration and motility 

of biological samples [13] [173]. Due to this distinctive property, DHM can be 

easily combined to FC without even the need for controlling a priori the cell 

focus, as instead occurs in conventional IFC. Classical holographic tracking 

methods are typically composed of two main steps, i.e. numerical refocusing 

for retrieving the position of the targets along the optical axis, and evaluation 

of the transverse position of the refocused object. As regards the axial 

localization (or refocusing), it is possible because a digital hologram contains 

information about all planes along the optical 𝑧-axis. In fact, thanks to the 

Angular Spectrum method in Eq. (1.19), the demodulated hologram can be 

numerically propagated along the 𝑧-axis. At each 𝑧-position, the image 

contrast of the amplitude of the propagated complex wavefront is computed 

by means of the Tamura Coefficient (TC), defined as [174] 

(2.4)  𝑇𝐶{𝐼} = √
𝜎{𝐼}

𝜇{𝐼}
, 

where 𝜎 and 𝜇 are the standard deviation and average value of a certain image 

𝐼, respectively. As illustrated in Figure 2.6(b), the TC computed throughout the 

𝑧-stack defines a convex functional which minimum corresponds to the focal 

plane of the analyzed cell, as a biological sample is a phase object whose 

information is mainly contained in the phase modulation of the incident 

wavefront. The TC-based method allows implementing a fully automatic 

refocusing method. While the axial localization operates on the amplitude of 

the complex wavefront, the transversal localization is instead based on the 
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unwrapped in-focus QPM. The transversal position is computed after 

segmenting the cell from its background and by computing the weighted 

centroid, i.e. the cell centroid weighted by the cell phase values [13]. In Figure 

2.6(c), the same QPM is reported before (at the top) and after (at the bottom) 

having been moved in the ROI center, i.e. after aligning the cell weighted 

centroid with the ROI center to avoid motion artefacts in the tomographic 

reconstruction. All the TPM-FC codes herein presented have been 

implemented in Matlab®. 

 

Figure 2.6 Holographic processing for TPM-FC. 
(a) Steps of the holographic processing pipeline to compute the QPM of a fibroblast 
cell from the corresponding holographic ROI (384×384). (b) Autofocusing of the 
cell based on the minimization of the TC computed throughout the 𝑧-stack. The 
focal plane corresponds to the blue circle. ∆𝑧 is the distance along the optical 𝑧-axis 
from the recording 𝑧-position. The amplitude of the complex wavefront 
propagated at three 𝑧-positions is reported at the top, highlighting different image 
contrasts, as quantified by the TC. (c) At the top, segmented non-centered QPM, 
with the cell weighted centroid (red dot) non corresponding to the ROI center (blue 
dot). At the bottom, segmented centered QPM, with the cell weighted centroid (red 
dot) corresponding to the ROI center (blue dot). The scale bars are 10 µm. 
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2.4.3 Rolling Angles Recovery 

In order to perform a 3D tomographic reconstruction, two inputs are 

requested, i.e. the set of 2D projections and the corresponding viewing angles. 

In TPM-FC, the 2D projections are the centered QPMs, while the viewing angles 

correspond to the rolling angles of the cell flowing along the microfluidic 

channel. However, unlike the conventional TPM setups, in TPM-FC the 

viewing/rolling angles are not a priori known, therefore they must be 

estimated to reconstruct the cell tomogram. In the previous implementations 

of TPM-FC, three different numerical methods have been created to recover 

the unknown rolling angles. The first one was developed for cells with quasi-

homogenous RI distribution and demonstrated for RBCs. This approach 

models RBCs as microlenses [21], thus providing a mathematical relation 

between the rolling angles and the variation of Zernike coefficients during the 

cell rotation [107]. The second one was developed for cells having high RI 

variations and demonstrated for marine algae particles like diatoms. In this 

case, the maximization of the correlation coefficient between pairs of mirrored 

phase images permits the rolling angles identification of each pair such that 

the angles sum is 180° [107]. However, these two recovery methods work 

efficiently for cells having non-spherical shapes, as in the case of RBCs and 

diatoms, and above all they exploit information that in general are not always 

available a priori. Therefore, a third approach was investigated for quasi-

spherical cells, which exploits information deduced from a theoretical 

microfluidic model of cell rotation and centroids movement [175]. This last 

method was also demonstrated for single cells as well as cell clusters. 

However, it was strongly dependent on the noise level, above all in the case of 

single cells, and in addition it was very slow since for each cell in each 

experiment, a complex theoretical microfluidic model had to be created. 

Therefore, herein an alternative general strategy to recover the unknown 

rolling angles of the flowing cells is proposed, not depending on the cell shape, 

the RI content, and complex microfluidic models [108].  
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Figure 2.7 Cell roto-translation in TPM-FC. 
(a) Parabolic velocity profile in the cross section of the microfluidic channel. The 
red rectangle is the region in which cells are recorded. (b) Three cuts of digital 
holograms of the same MCF7 cell at different time frames. The shape variation of 
the cell highlights its rotation around the 𝑥-axis while it is flowing along the 𝑦-axis. 
The scale bar is 10 µm. (c) Tracking of the cell in (b) within the channel’s sections 
𝑥𝑦 and 𝑦𝑧, with reported at the top the cell drift along the 𝑥- and 𝑧-directions as 
standard deviation of the corresponding positions. 

In fact, it exploits only the 3D holographic tracking outcome and the 

microfluidic properties of the TPM-FC system. This tracking-based rolling 

angles recovery method was demonstrated on data captured in both the 

current TPM-FC system and in a previous one, equipped with a microfluidic 

channel with 200 µm × 200 µm cross section and coupled to a 2048×2048 CCD 

camera. In Figure 2.7(a), the parabolic velocity profile in the latter channel’s 

cross section is reported, related to Eq. (2.2). The red rectangle in Figure 2.7(a) 

highlights the region wherein the flowing cells are usually observed and 

recorded. Within this region, the velocity gradient in the 𝑧-direction can be 

neglected with respect to that in the 𝑥-direction. Therefore, the cells can be 

assumed to rotate around the 𝑥-axis while flowing along the 𝑦-axis. In Figure 
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2.7(b), three cuts of the recorded digital holograms of the same human breast 

cancer cell (MCF7) at different time frames are reported as example, in which 

it is evident the cell rotation around the 𝑥-direction due to the flip of the cell 

shape along the 𝑦-direction. In Figure 2.7(c), the 3D holographic tracking of 

the cell is displayed by visualizing the trajectory within the xy- and yz-sections. 

It is noted that the cell drift, evaluated as the standard deviation of the 

estimated positions along the 𝑥- and 𝑧-axes (𝜎𝑥  and 𝜎𝑧, respectively) is 

negligible, being 𝜎𝑥 = 0.31 µm and 𝜎𝑧 = 0.77 µm, which can be expected as the 

length of the channel along the flow 𝑦-axis (i.e., 7 cm) is much greater than the 

size of the channel’s cross section. This demonstrates the quasi-constant 

positioning of the cell within the channel’s cross section xz, a key point to 

assume the continuous and quasi-uniform cell roto-translation. As a 

consequence, as the angular increment is small because of the high frame rate, 

it can be safely supposed that the incremental rolling angle around the 𝑥-axis 

between two consecutive frames is proportional to the translation velocity 

with which the cell is moving between the two corresponding 𝑦-positions. 

Assume that a sequence of 𝐾 digital holograms of a flowing cell has been 

recorded. After calculating the 3D positioning of the cell (𝑥𝑘,𝑦𝑘 ,𝑧𝑘) for the 𝑘-th 

frame through the holographic tracking strategy, and after reconstructing the 

corresponding QPMs, the proposed method recovers the rolling angles 

according to the following two steps. 

1. Estimation of the frame index 𝑓180 at which the 180° of rotation has 

occurred with respect to the QPM of the frame 𝑘 = 1. 

2. By assuming the proportionality between translation and rotation, 

and a null initial rotation angle 𝜃1 = 0° for the frame 𝑘 = 1, the rolling 

angle is calculated, for each frame 𝑘 = 2, 3,… , 𝐾, as 

(2.5)  𝜃𝑘 = 180°
𝑦𝑘−𝑦1

𝑦𝑓180−𝑦1
. 

The key-enabling step is the identification of a phase image rotated by 180° 

with respect to the first one. The Tamura Similarity Index (TSI) has been 
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proposed as the QPM similarity metric used to solve this problem, since it is 

expected to exhibit more robustness against other possible metrics. TSI is 

based on local measurements of the image contrast through the TC. In 

particular, let 𝑄𝑃𝑀(𝑘) be the phase reconstruction of the 𝑘-th frame with sizes 

𝑁 ×𝑀, and 𝑆𝑖,𝑗(𝑘) a 3 × 3 patch within 𝑄𝑃𝑀(𝑘), centered in the pixel of 

coordinates (𝑖, 𝑗), with 𝑖 = 2,… , 𝑁 − 1 and 𝑗 = 2,… ,𝑀 − 1. By replacing each 

pixel of the 𝑄𝑃𝑀(𝑘) with the contrast value of 𝑆𝑖,𝑗(𝑘) calculated by using TC, a 

new image of sizes (𝑁 − 2) × (𝑀 − 2) is obtained, namely the local contrast 

image (LCI), whose generic element is 

(2.6)  𝐿𝐶𝐼𝑖,𝑗(𝑘) = 𝑇𝐶{𝑆𝑖,𝑗(𝑘)}, 

with 𝑖 = 2,… ,𝑁 − 1, 𝑗 = 2,… ,𝑀 − 1, and 𝑘 = 1,… , 𝐾. Finally, the TSI is 

obtained as 

(2.7)  𝑇𝑆𝐼(𝑘) = 𝑇𝐶{𝐿𝐶𝐼(1)./𝑓𝑙𝑖𝑝{𝐿𝐶𝐼(𝑘)}}, 

where 𝑓𝑙𝑖𝑝 is the vertical flipping operator to take into account the mirroring 

property with respect to the 𝑥-axis and ./ denotes an elementwise division. 

𝑇𝑆𝐼(𝑘) defines a functional whose global minimum point 

(2.8)  𝑓180 = argmin
𝑘

{𝑇𝑆𝐼(𝑘)} 

is the sought for index 𝑓180. Once 𝑓180 is estimated, the unknown rolling angles 

can be computed by means of Eq. (2.5). 

To assess the performance of TSI, it has been compared with some of the most 

used similarity indices, i.e., the Spatial Correlation Coefficient (SCC) [107], the 

Structural Similarity Index (SSIM) [176], the Universal Image Quality Index 

(UIQI) [177] and the Gradient Magnitude Similarity Deviation (GMSD) [178]. 

All these metrics define in turn functionals enable of estimating 𝑓180 as for the 

TSI. In particular, for SCC, SSIM and UIQI, the global maximum is of interest 

while, for the GMSD, the global minimum is relevant. Furthermore, a 3D 

numerical cell phantom has been simulated in order to reproduce the rotation 

of a flowing cell within the microfluidic channel. In particular, the numerical 
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model of the 3D RI distribution of a cell has been created by considering the 

main four sub-cellular structures, i.e., the cell membrane (RI = 1.350), the 

cytoplasm (RI = 1.365), the nucleus (RI = 1.380) and some mitochondria (RI = 

1.410). The shapes of the structures and the corresponding nominal RIs have 

been chosen by taking inspiration from measured values reported in literature 

for the MCF7 cell line [179] [180]. Assumed the straight-ray approximation, 

after the numerical integration of the 3D RI distribution along different 

orientations around the same axis and with fixed angular step, synthetic QPMs 

are obtained. To evaluate the accuracy and the robustness of the similarity 

metrics, 180 test cases have been simulated, drawn by combining the 

following possibilities 

• 2 possible Gaussian distributions of the RIs for each sub-cellular 

structure with average values corresponding to the nominal RIs 

reported above and standard deviations 𝜎𝑅𝐼 = {0.01, 0.02}; 

• 2 possible cell membrane structures, i.e., spherical and non-spherical; 

• 5 possible cell rolling angles sets; 

• 9 possible zero-mean Gaussian noises with standard deviations 𝜎𝑁 

varying within [0,0.2] rad with uniform step, added to each QPM. 

Among the simulated rolling angles sets, three of them, with Δ𝜃 = {3°, 4°, 5°}, 

provide the exact 180° cell rotation at the frame 𝑓180 = 61, 𝑓180 = 46 and 

𝑓180 = 37, respectively. The other two cases are designed by adding small 

perturbations on rolling angles created with Δ𝜃 = {3°, 5°}, in order to simulate 

two angle sequences without the exact 180° cell rotation. In the latter two 

cases, similarity metrics must identify the frames with the rolling angles 

closest to 180°, which are 180.6° and 180.8° in such simulations, respectively. 

In Figure 2.8(a), the numerical model of the 3D RI distribution of a cell 

obtained by simulating the nominal RI values is reported. Figure 2.8(b) shows 

the QPMs obtained from Figure 2.8(a) by numerical integration along the 

orientations at 0° and 180°. In this example, the simulated angular step is 𝛥𝜃 =
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3°, so the 180° of rotation occurs at frame 𝑓180 = 61. Figure 2.8(c) displays the 

corresponding noisy QPMs obtained by adding the Gaussian noise with 𝜎𝑁 =

0.175 rad in the case 𝜎𝑅𝐼 = 0.01. Finally, Figure 2.8(d) reports the SSC, SSIM, 

UIQI, GMSD and TSI similarity metrics, normalized to their respective maxima 

for visual comparison, for the considered test case. In the legend, the estimated 

𝑓180 of the five methods are reported. Notably, for the considered test case, TSI 

provides the right 𝑓180 showing also a sharp extreme point, enabling the 

determination of 𝑓180 with a high reliability. 

 

Figure 2.8 Numerical simulation to evaluate the performance of similarity 
metrics in f180 searching. 
(a) 3D RI distribution of an MCF7 cell simulated with the nominal RI values and a 
non-spherical shape. (b) QPMs obtained by numerical integration of the cell 
phantom in (a) along the orientations at 0° and 180° (simulated angular step Δ𝜃 =
3°, then f180 = 61). (c) QPMs noisy images (𝜎𝑁 = 0.175 rad) obtained in the case of 
𝜎𝑅𝐼 = 0.01 corresponding to QPMs in (b). (d) Comparison among similarity 
metrics, normalized between 0 and 1. As reported in the legend, only TSI provides 
the right result, showing also a sharper extreme point than the other metrics. (e) 
Reference reconstruction obtained with the exact rolling angles. The scale bar is 5 
µm. (f) Reconstruction obtained with the rolling angles calculated with TSI. (g) 
Reconstruction with wrong estimations of f180 obtained with SSIM, UIQI, and GMSD. 
(h) Reconstruction with wrong estimation of f180 obtained with SCC. In (f-h), the 
RMSE values with the reference in (e) are reported. 
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The overall accuracy for each metric is now reported and indicated as 𝐴. The 

accuracy is calculated as the ratio between the number of correct 

identifications and the total number of test cases, i.e., 180. The correct 

identification consists in determining the frame with cell rotation equal to 

180° when 𝛥𝜃 = {3°, 4°, 5°} or the one with cell rotation closest to 180° for the 

other two rolling angle sets. The results are 𝐴𝑇𝑆𝐼 = 98.33%, 𝐴𝑆𝑆𝐼𝑀 = 80.56%, 

𝐴𝐺𝑀𝑆𝐷 = 79.44%, 𝐴𝑈𝐼𝑄𝐼 = 77.22% and 𝐴𝑆𝐶𝐶 = 67.78%. As it can be seen, TSI 

shows the best results. It fails only in 3 cases, related to higher noise levels. 

However, in such cases, the error amounts at ±1 frame. The other compared 

metrics show worse performances with the lowest accuracy reached by the 

SCC. One can expect this since the SCC has demonstrated to be efficient for 

non-spherical objects only [107]. 

It is important to underline that a wrong 𝑓180 estimation induces errors in any 

rolling angle and finally provokes artefacts in the tomographic reconstruction. 

To highlight such tomographic distortions, tomographic reconstructions have 

been performed from the simulated QPMs sequence in Figure 2.8(b) by using 

in Eq. (2.5) the rolling angles recovered by the considered similarity metrics 

and a sequence of 𝑦-positions fixed by exploiting the assumed proportionality 

between translation and rotation. In particular, it is assumed that the particle 

translates of one pixel for a rotation of 0.1°, accordingly to the microfluidic and 

recording conditions. Figure 2.8(e) illustrates the reference reconstruction in 

which the central slice is obtained by implementing the inverse RT through 

the FBP algorithm with the exact rolling angles. In Figure 2.8(f), the same 

reconstruction is reported, but obtained by using the rolling angles estimated 

by the TSI. The considered test case is the one leading to a 180.6° cell rotation. 

In this case, TSI estimates as 180° the actual 180.6° rotation. A Root Mean 

Square Error RMSERI = 0.0007 is obtained between the reference 

reconstruction and the reconstruction with recovered rolling angles. Finally, 

Figure 2.8(g) shows the same reconstruction as before, but obtained when the 

rotation is estimated by SSIM, GMSD or UIQI. Indeed, the latter three methods 

achieve the same estimate 𝑓180 = 60, as it can be inferred from Figure 2.8(d). 
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Similarly, Figure 2.8(h) displays the case when the rotation is evaluated by SCC 

for which 𝑓180 = 58. For both the considered reconstructions, lower and 

spreading RI values occur (see black arrows) as well as artefacts caused by the 

wrong estimations of 𝑓180 (violet arrows). RMSERI increases of one order of 

magnitude with respect to TSI. 

In the experimental condition, the cell’s rotation is sampled with an angular 

step that in general is not an exact divisor of 180°, therefore the cell’s 

projection at which the exact 180° of rotation occurs is not acquired. As also 

investigated through the numerical cell phantom, this confirms the need of an 

accurate metric able to precisely identify the frame of the closest rolling angle 

with respect to 180°. In particular, the cell analysed in Figure 2.9(a-c) is the 

one reported in Figure 2.7(b), whose holographic tracking results have been 

shown in Figure 2.7(c). The second cell in Figure 2.9(d-f) is more spherical and 

it has been selected to show how similarity metrics work for real spherical 

objects. Also in this case, position drifts along 𝑥- and 𝑧-axes are very limited, 

resulting in 𝜎𝑥 = 0.13 µm and 𝜎𝑧 = 0.48 µm, i.e. the cell has quasi-constant 

positioning within the channel’s cross section 𝑥𝑧 during the flow. The TSI 

curves are displayed in Figure 2.9(a,d), showing their global minima at the 

frames 𝑓180 = 51 and 𝑓180 = 41, respectively. Then, all the rolling angles are 

calculated through Eq. (2.5), thus obtaining that the highest cells orientations, 

corresponding to the rolling angles calculated at the last frames, are 𝜃𝐾 = 

349.0° and 𝜃𝐾 = 356.1°, with 𝐾 = 102 and 𝐾 = 81, respectively. Moreover, in 

Figure 2.9(b,e), the acquired data are shown in the spectral domain. As the 

blue spectral lines of the polar plot corresponding to [0°,180°) do not coincide 

with the red spectral lines corresponding to [180°,360°), the latter acquisition, 

although being in principle equivalent to the former, is capable to complement 

[0°,180°), thus allowing better tomographic results. The reconstructed QPMs 

of the first frame of each sequence and the ones corresponding to the 

estimated 180° sample rotation are reported within Figure 2.9(a,d). Finally, 

tomographic reconstructions, obtained by using rolling angles sequences 
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calculated with the proposed method, are shown in Figure 2.9(c,f), in which 

the isotropy of the TPM-FC reconstruction can be inferred. 

It is worth remarking that the proposed tracking-based rolling angles recovery 

method can be also applied in the case of the microfluidic channel with a 

rectangular cross section 200 μm × 1000 μm. In fact, in this case, the property 

of cell rotation around the sole 𝑥-axis is even more assured as, due to the larger 

width (i.e., 1000 μm) with respect to the height (i.e., 200 μm), the side walls of 

the channel contribute much less to the cell rotation around the 𝑧-axis with 

respect to a channel with square cross section. 

 

Figure 2.9 Tomographic reconstructions of a non-spherical (a-c) and a quasi-
spherical (d-f) MCF7 cell. 
(a,d) TSI-based recovery method to identify the f180 frame (red circles) and the 
corresponding QPMs at 0° and 180°. (b,e) Polar grid plot with the distribution of 
detected rolling angles in [0°,180°) (blue lines) and the distribution of detected 
rolling angles in [180°,360°) (red lines). (c,f) 3D slice-by-slice tomographic 
reconstructions (on the left) and corresponding iso-levels representations (on the 
right). 
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2.4.4 TPM-FC in High-Throughput Modality 

Among the TPM techniques, TPM-FC is the only one that can potentially 

perform high-throughput recording and analysis thanks to the FC modulus. 

Even if other tomographic IFC systems have been proposed [181], the type of 

data that TPM-FC can collect is much more informative than conventional IFC 

(i.e., 3D, label-free, and quantitative). This means that reaching the high-

throughput property is more challenging in a TPM-FC system with respect to 

an IFC one. In IFC, the recorded image can be directly analyzed after being 

collected, while, in TPM-FC, the recorded holograms must be firstly processed 

to extract the corresponding QPMs, recover the unknown rolling angles, and 

finally reconstruct the tomogram to analyze. For this reason, a fully automatic 

reconstruction code is requested, as described in Sections 2.4.2 and 2.4.3. 

Moreover, the holographic processing is time- and resource-consuming, 

therefore its speeding-up is strongly needed, as will be described in Section 

3.1. Furthermore, in TPM-FC, each cell is represented by a 3D array instead of 

a 2D array as in conventional IFC, thus a problem of huge memory occupation 

exists. A strategy to perform a quasi-lossless tomographic compression will be 

proposed in Section 4.5. Finally, while in conventional IFC one single 2D image 

is recorded per cell, in TPM-FC tens or hundreds of holograms must be 

recorded per cell in order to reconstruct its 3D RI tomogram. For this reason, 

in principle the achievable throughput can be one or two orders of magnitude 

lower than IFC. However, in IFC, one cell at time must be imaged in its focal 

plane, thus the cells are made to flow in single file under focusing conditions. 

Instead, in TPM-FC, the 3D holographic particle tracking can be exploited to 

record more than one cell per frame while flowing in the same FOV. In this 

case, an upper bound must be fixed about the cell concentration as a too high 

value could produce mutual hydrodynamic interactions able to deform the 

cells or change their rotation, thus losing the tomographic condition. Here 

numerical fluid dynamic simulations have been combined to experimental 

TPM-FC data in order to model this problem and assess an upper bound of the 

potential throughput of the TPM-FC system [109].  
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Figure 2.10 Experimental measurements of cells flowing and rolling in a 
microfluidic channel. 
(a) Digital hologram taken from the recorded DH sequence, with highlighted the 
transversal positions of some flowing cells (dots). The yellow lines are the 
channel’s edges. (b) QPMs of three cells in (a). The scale bar is 5 μm. (c) 3D 
positions inside the microfluid channel of the cells highlighted in (a). (d) Channel’s 
cross section positions and translational velocities of 35 cells. The circles 
correspond to the cells highlighted in (a). (e) Rolling angles θk of the cells 
highlighted at the k-th frame in (a) by coloured dots, with respect to the rolling 
angles θ1 at which each cell appears for the first time in the FOV (i.e., θ1=0°). 

At this aim, again the microfluidic channel with 200 µm × 200 µm cross section 

has been used but coupled to a 1024×1024 CCD camera and a 20× MO in order 
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to image also the channel’s walls inside the FOV. In the TPM-FC experiment, 

ISK cells have been used, i.e. a well-differentiated endometrial cancer (EC) cell 

line. An example of 1024×1024 digital hologram taken from the recorded DH 

sequence is displayed in Figure 2.10(a), while the QPMs about some cells in 

the reported frame are shown in Figure 2.10(b). The 3D cell positions have 

been computed through the holographic tracking algorithm, as illustrated by 

the colored dots in Figure 2.10(a). It is worth noting that the QPMs are not 

informative when the cell is too far away from the holographic recording plane 

along the optical 𝑧-axis. Therefore, in such case, the 𝑥- and 𝑦-positions are 

estimated with lower accuracy directly from the digital holograms by 

assuming a uniform movement along the flow direction (black dots in Figure 

2.10(a)). In order to study the flow properties by means of these experimental 

data, the 𝑥- and 𝑧-positions must be referred to the reference system of the 

microfluidic channel, while at this stage the 𝑥-positions refer to the 

holographic FOV and the 𝑧-positions refer to the holographic recording plane. 

To cope with this issue, the presence of the channel’s edges within the imaged 

FOV has been exploited. In particular, the edges have been refocused through 

the TC method, thus obtaining the distance between the channel’s bottom and 

the holographic recording plane as well as the 𝑥-positions of the channel’s 

edges, highlighted in yellow in Figure 2.10(a). Hence, in Figure 2.10(c), the 3D 

positions of the cell localized in Figure 2.10(a) have been reported in the 3D 

space of the microfluidic channel. 

As discussed in Section 2.4.3, the laminar flow inside the microchannel is 

characterized by a parabolic velocity profile within the channel’s cross-section 

(i.e., the 𝑥𝑧-plane). For this reason, cells are expected to move faster along the 

flow direction (i.e., the 𝑦-axis) the closer they are to the center of the channel 

with respect to both the 𝑥- and 𝑧-axis. This property is verified on average by 

the experimental measurements about the translational speeds of 35 cells 

reported in the channel’s cross section displayed in Figure 2.10(d).  
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Figure 2.11 Fluid dynamic modellation of an axperimental test case. 
(a) Scheme of the computational domain employed in the numerical simulations. 
(b) Top-view zoom-in with the 5 modelled cells flowing in (a). (c) Experimental 
digital hologram used to simulate the 5 cells in (a,b). (d) Scheme of a scalene 
ellipsoid highlighting the semiaxes 𝐿, 𝐵, 𝑊, and the orientation unit vector 𝒑. 

Table 1 Values of the volume and aspect ratio of the ellipsoidal particles 

considered in the numerical simulations. 

Cell number Volume [µm3] 𝐋 𝐁⁄  𝐋 𝐖⁄  

1 1035.7 1.05 1.07 

2 908.8 1.05 1.13 

3 1618.6 1.07 1.10 

4 916.2 1.12 1.18 

5 957.7 1.07 1.17 
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In addition, as the holographic recording plane is near to the channel’s bottom, 

the cells for which the QPMs can be reconstructed mainly rotate around the 𝑥-

axis, since the gradient along the 𝑧-axis is greater than that along the 𝑥-axis. 

Their rolling angles have been retrieved by means of the tracking-based 

method described in Section 2.4.3 [108]. The rolling angles reached by the 

colored cells at the 𝑘-th frame imaged in Figure 2.10(a) are reported in Figure 

2.10(e) with respect to the rolling angles at which each cell appears for the 

first time in the FOV, which has been arbitrarily set to 0°. 

In order to assess whether adjacent cells flowing through a microfluidic 

channel can have an effect on each other during tomographic recordings, the 

worst case within the recorded holographic sequence has been selected, i.e. 

the most adjacent group of 5 cells reported in Figure 2.10(a). The 

computational domain reported in Figure 2.11(a) has been considered, 

namely, a portion of a squared cross-section microfluidic channel with side 

𝐻 = 200 μm. A saline solution carrying ISK cells is fed to the channel with a 

flow rate 𝑄 = 1 μL/min. In the simulations, the selected 5 cells (see Figure 

2.11(a) and the top-view zoom in Figure 2.11(b)) are modelled as ellipsoidal 

elastic particles, whose semiaxes are computed by matching the optically 

measured values of the volume and the aspect ratios of the cells identified with 

numbers from 1 to 5 in Figure 2.11(c), which reports a frame taken from the 

experimental video (the same as in Figure 2.10(a)). Also cell initial relative 

positions mimic those shown in Figure 2.11(c). In Figure 2.11(d), a scheme of 

an arbitrarily oriented scalene ellipsoid is displayed, highlighting the semiaxes 

𝐿, 𝐵, 𝑊, and the orientation unit vector 𝒑, i.e., a unit vector identifying the 

orientation of the ellipsoid major semiaxis 𝐿, whereas in Table 1 they are 

reported the quantitative values of the volume and aspect ratio of the 

ellipsoidal particles considered in the numerical simulations. It is worth 

remarking that, since all the values of the aspect ratios 𝐿 𝐵⁄  and 𝐿 𝑊⁄  are quite 

close to 1, the cells are quasi-spherical. 

The motion of the suspension carrying the cells is governed by the mass and 

momentum balance equations on both the cells and the suspending liquid. 
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Preliminarily, the Reynolds number is evaluated, measuring the relative 

importance of inertial and viscous forces, as 

(2.9)  𝑅𝑒 = 𝜌�̅�𝐻/𝜂, 

with 𝜌 ∼ 1000 kg/m3 the liquid density, �̅� = 𝑄 𝐻2⁄ = 3.33 × 10−4 m/s the 

liquid average velocity, 𝐻 = 2 × 10−4 m the channel characteristic dimension, 

and 𝜂 ∼ 10−3 Pa s the liquid viscosity. Since 𝑅𝑒 is in the order of 10−2, inertial 

effects are neglected. Furthermore, let assume that both the phases are 

incompressible, thus the mass and momentum balance equations read 

(2.10)  
𝛁 ⋅ 𝒖 = 0
𝛁 ⋅ 𝑻 = 0

, 

with 𝒖 the velocity vector and 𝑻 the stress tensor. According to the Newtonian 

constitutive equation, in the suspending medium it can be written 

(2.11)  𝑻 = −𝑝𝑰 + 2𝜂𝑫, 

with 𝑝 the pressure, 𝑰 the identity tensor, and 𝑫 = (𝛁𝒖 + 𝛁𝒖T)/2 the 

symmetric part of the velocity gradient tensor. Concerning the cells, let 

assume they obey the neo-Hookean constitutive equation, thus  

(2.12)  𝑻 = −𝑝𝑰 + 𝝉, 

where 𝝉 is the extra-stress tensor, for which the neo-Hookean constitutive 

equation reads 

(2.13)  𝝉
∇
= 2𝐺𝑫, 

with 𝝉
∇
= 𝐷𝝉/𝐷𝑡 + 𝛁𝒖T ⋅ 𝝉 + 𝝉 ⋅ 𝛁𝒖 the so-called upper-convected time 

derivative and 𝐺 the shear elastic modulus of the material. In the presented 

simulations, 𝐺 = 0.9 kPa is considered as a characteristic value for ISK cells 

[182]. The balance equations describing the system are supplied with the 

following boundary conditions 

(2.14)  𝒖|𝜕Ωw = 𝟎, 

(2.15)  𝒖|𝜕Ωin = 𝒖|𝜕Ωout , 
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(2.16)  −(𝑻 ⋅ 𝒏)|𝜕Ωin = (𝑻 ⋅ 𝒏 − Δ𝑝𝒏)|𝜕Ωout . 

The Eq. (2.14) expresses the no-slip and no-penetration conditions for the 

liquid velocity on the channel wall 𝜕Ωw, whereas Eq. (2.15) and Eq. (2.16) 

express the periodicity of velocity and traction in the suspending liquid 

between the channel inlet 𝜕Ωin and the outlet 𝜕Ωout, with Δ𝑝 the pressure drop 

between the two sections (to be computed) and 𝒏 the outwardly directed unit 

vector normal to the boundary. The periodicity condition means that the 

computational domain is part of a channel that repeats indefinitely along the 

flow direction 𝑦. Of course, this means that the actual length 𝐿 of the 

computational domain must be chosen such that the 5 cells hydrodynamically 

interact among them but do not feel their periodic images along 𝑦. This is 

verified for 𝐿 = 1.2 mm. At the channel inlet, the flow rate of the suspending 

liquid 𝑄 = 1 μL/min is imposed as 

(2.17)  −∫ 𝒖 ⋅ 𝒏 = 𝑄
𝜕Ωin

. 

The boundary conditions on each interface between the suspending medium 

and a cell are the continuity of velocity and traction across the interface. Since 

both the cells and the suspending medium are inertialess, no initial conditions 

on the velocities are required. Only an initial condition for the extra-stress in 

the cells needs to be specified, and the cells are assumed to be initially stress-

free, i.e. 

(2.18)  𝝉|𝑡=0 = 𝟎. 

Finally, it is worth mentioning that all the results reported and discussed 

below refer to an initial orientation of the cells such that 𝒑0 = {√3/3, √3/

3, √3/3}, yet other values of 𝒑0 have been considered, showing no significant 

effects neither on cell dynamics nor on the quantitative values of the results 

shown in what follows. The equations reported above are solved with the 

arbitrary Lagrangian Eulerian (ALE) finite element method (FEM) using well-

known stabilization techniques, such as SUPG and log-conformation [183]. 

Both the matrix fluid and the suspended particles are discretized by a mesh 
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made of quadratic tetrahedra. During the simulations, the elements of the 

mesh progressively deform because of cell deformation, rotation, and 

translation in the channel. Any time the quality of the mesh elements in the 

computational domain becomes unacceptable in terms of a threshold, a 

remeshing is performed and the solution is projected from the old mesh to the 

new one [184] [185]. For the reported simulations, a mesh with about 

2.5 × 104 tetrahedra and a time-step of 0.01 s has been found to be adequate. 

The simulations have been performed through the commercial software 

COMSOL Multiphysics™ V5.5 on 2 cores of a DELL Power Edge M710HD blade 

with 2 Intel Xeon E5649 hexacore processors @ 2.53 GHz and 48 GB of RAM, 

yielding a computational time of about 2 days.  

In Figure 2.12(a), the trajectories along the 𝑦 flow direction of the 5 cells 

highlighted in Figure 2.11(c) are reported. The solid lines refer to the results 

of the numerical simulations, whereas the symbols represent the 

experimental data. The initial 𝑦-position of cell 5, 𝑦P5,0, namely, the position of 

such cell when it appears in the experimental observation window, is taken as 

a reference, so the values on the vertical axis are computed as a difference with 

respect to 𝑦P5,0. Each data set is characterised by a colour referring to the 

colour code in Figure 2.11(c). By comparing the numerical and the 

experimental results, a fair quantitative agreement can be observed, thus the 

cell model adopted in numerical simulations, based on ellipsoidal particles 

with shapes, dimensions, and mechanical properties chosen as illustrated 

above, describes quite effectively the actual behavior of the cells observed in 

the experiments, including their hydrodynamic interactions. In Figure 2.12(b-

f), the history of the 𝑧-positions of the cells under investigation is illustrated. 

In this case, it is apparent that the experimental data are affected by a larger 

uncertainty. In fact, the symbols are quite scattered and do not arrange along 

a smooth curve (the thin solid lines connecting them have the scope of guiding 

the eye). On the other hand, the numerical results follow trends showing either 

a slight increase or a decrease of the cell vertical position, which can be 

attributed to the hydrodynamic interactions among the particles. 
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Figure 2.12 Temporal histories of the positions of the 5 cells highlighted in 
Figure 2.11(c) computed through numerical simulations in the presence 
(solid lines) and in the absence (dashed lines) of the other cells, and 
experiments (symbols). 
(a) Cell 𝑦-positions. All the values are computed with reference to the initial 𝑦-
position of cell 5, 𝑦P5,0. (b-f) Cell 𝑧-positions. The colour of each data set refers to 

the colour code in Figure 2.11(c). 
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In addition, it can be observed that, unlike Figure 2.12(a), the initial 𝑧P-values 

considered in numerical simulations do not match the initial experimental 

values. Indeed, given the uncertainty on cell vertical positions, the numerical 

initial 𝑧P-values are searched in the range of the experimentally observed ones 

that could yield a satisfactory agreement on the 𝑦P-data shown in Figure 

2.12(a). To evaluate the effects of hydrodynamic interactions on cell dynamics, 

numerical simulations of the behavior of cells 1 to 5 have been performed in 

the absence of the others, keeping the same geometrical and constitutive 

parameters used in the complete simulation. The dashed lines in Figure 2.12 

report the results of such simulations. Regarding the motion along the flow 

direction (see Figure 2.12(a)), two comments can be made. On the one hand, 

there are some quantitative differences between the trajectories of the cells 

with and without the other ones. In particular, cell 1 is slightly slower when it 

is alone, i.e., hydrodynamic interactions push it forward along the flow 

direction, whereas cells 2 and 5 are slightly faster when the other cells are 

absent, i.e., hydrodynamic interactions slow them down along the flow 

direction, and cells 3 and 4 show almost no difference between the two cases. 

On the other hand, the observed differences are moderate, thus the 

hydrodynamic interactions arising in the complete system do not alter cell 

translational dynamics dramatically. Regarding cell motion in the vertical 

direction (see Figure 2.12(b-f)), it is apparent that, when the particles are 

isolated, there is no displacement along such direction. Indeed, in the absence 

of hydrodynamic interactions, the portion of the channel under investigation 

is too short to observe lateral migration towards the channel centerline in the 

given flow conditions [186]. Finally, it is worth mentioning that cell 

displacement in the transversal 𝑥-direction is substantially irrelevant both in 

the experimental and in the numerical case, thus it is not reported here for 

brevity. In Figure 2.13, the simulated orientational dynamics of the cells are 

reported when they are considered all together (solid lines) and one by one 

(dashed lines). In particular, the 𝑦-component of the orientation unit vector 𝒑 

is shown in Figure 2.13(a), whereas its 𝑧-component is shown in Figure 
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2.13(b) (the 𝑥-component is not reported as it automatically comes from the 

condition that the magnitude of 𝒑 is equal to 1). As it is apparent, all the curves 

start from √3/3, since 𝒑0 = {√3/3,√3/3, √3/3} for all the cells, yet there are 

no significant effects on the cell rotational velocity when different 𝒑0-values 

are considered. Two main observations can be made by looking at Figure 2.13. 

First, all the cells perform more than one complete rotation in the imaged FOV, 

during which they displace less than 200 μm in the flow direction (see Figure 

2.12(a)). This is also consistent with the experimental observation that, within 

the 𝑦-axis FOV of 235 μm, the necessary full cell rotation is obtained. 

Moreover, it is worth mentioning that, given the cell mechanical properties 

and the flow conditions considered in the simulations, cell deformation is 

completely negligible, so no deformation effects are expected to affect the 

tomographic reconstruction of the cells. Second, by comparing for each cell the 

solid line with the corresponding dashed one, it can be observed that, even if 

hydrodynamic interactions have a quantitative effect on cell rotational 

behavior, cells are still able to perform a complete rotation within the 

observation window. 

 

Figure 2.13 Temporal histories of components of the orientation unit vector 𝒑 
for the 5 cells highlighted in Figure 2.11(c) computed through numerical 
simulations in the presence (solid lines) and in the absence (dashed lines) of 
the other cells. 
(a) Cell 𝑦-components. (b) Cell 𝑧-components.The colour of each data set refers to 
the colour code in Figure 2.11(c). 
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This means that, despite the spatial proximity, it is possible to reconstruct the 

3D RI tomograms of the analysed 5 cells, as indeed displayed in Figure 2.14. At 

this aim, the FBP algorithm has been employed. For this reason, the 

throughput of the tomographic measurement can be increased by analyzing 

more cells simultaneously. In particular, the 𝑥𝑦-section of the microfluid 

channel imaged by the employed DH microscope measures 200 μm × 235 μm. 

By cropping a central region of analysis of size 160 μm × 215 μm and by 

considering that, in the studied worst case, 5 cells occupy a region of size 60 

μm × 60 μm, the throughput of the system can be increased up to 50 cells per 

frame, which means that up to 30 tomograms per second can be recorded 

inside an active area of 160 μm × 215 μm since each cell takes on average 40-

45 s to cross the FOV. It is important to note that, for the tested flow rate, the 

results of numerical simulation do not report mechanical deformation of the 

cells. This means that the high throughput could be further potentially 

improved by increasing the flow rate. In fact, to reconstruct the tomogram, a 

single full rotation is enough, while in the presented experiments, cells 

experience on average 1.5 rotations. Hence, by setting the right flow rate, cells 

could take 25-30s to undergo a full rotation inside the imaged FOV, thus 

leading to an upper bound of 50-60 tomograms per second. At the same time, 

a larger FOV can be designed in order to further increase the throughput. For 

example, in the TPM-FC system in Figure 2.5, a very large FOV of 640×640 μm2 

has been reached. Of course, other more efficient microfluidic solutions can be 

investigated at the aim of fulfilling the high-throughput need. Among them, the 

inertial focusing in microfluidics [187] can be exploited to force the cells to 

enter in the microfluidic channel in a precise and known position, thus 

controlling exactly the cell flow and rotation. In fact, in this solution, cells 

would flow and rotate in single file at controlled velocities, thus matching the 

best condition for obtaining a unique full rotation of the cell in the imaged FOV 

in the shortest possible time by avoiding cell deformation. Moreover, this 

solution would extremely simplify, speed up and make more accurate the 

overall processing for the tomographic reconstruction, from the cell 
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detection/tracking to the rolling angles estimation. Finally, the very large FOV 

(i.e., 640 μm × 640 μm) could be exploited in an optimized way to create 

parallel tracks for the cell roto-translation by means of parallel inertial 

focusing [187], thus filling the gap with conventional IFC in terms of 

throughput. 

 

Figure 2.14 TPM-FC reconstructions at high concentrations. 
Central slice of the 3D RI tomograms of the 5 adjacent cells in Figure 2.11(c). 

 

 



 

 
 

CHAPTER 

3 Artificial Intelligence for 
Single-Cell Analysis in 
TPM-FC 

A cell’s phenotype is the culmination of several cellular processes through a 

complex network of molecular interactions that ultimately can result in a 

unique morphological signature [188]. Visual cell phenotyping is the 

characterization and quantification of these observable cellular traits in 

images. Microscopy has become a fundamental tool for cell biology because it 

overcame the limitations of the human eye and allowed to observe single cells 

in their microenvironments. However, advanced single-cell analysis based on 

visual cell phenotyping often involves multistep workflows challenging to 

those who are not computational experts [136]. Therefore, momentum to 

enable a broader group of biomedical researchers and clinicians to carry out 

complex and automatic single-cell analyses is growing. A revolution in the 

biophysical cytometry has been introduced by AI [189]. In particular, AI has 

been demonstrated fitting perfectly to IFC as each of these two techniques 

takes advantage from the other's capabilities [190]. In fact, AI requires a large 

number of informative examples for training a model and IFC can quickly 

produce millions of single-cell images. The combination between AI and IFC 

has opened up new avenues for innovation across a wide variety of high-

throughput cell biology applications, which are moving toward well-defined 

protocols for the final clinical approval [191]. A remarkable boosting of the AI-

based cell phenotyping has been recently provided by QPI, thanks to the 

wealth of label-free biophysical information that can be measured in the QPM 

of a single cell [192]. For example, hematologic disorders have been diagnosed 
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[193] [194] [195], infectious like COVID-19 have been detected [196] [197], 

and the cell cycle stages [198] and the cell states [199] have been classified. 

Further biomedical applications based on HIFC include the classification of 3-

part leukocytes [200], human PBMCs and leukemic cells [141], healthy and 

pathological leukocytes [201], healthy and cancer cells [155] [202] [203], as 

well as the detection of RBCs infected by P. falciparum [204] and cancer cells 

in blood [205] [206], and the assessment of the drug resistance in cancer cells 

[207]. Very recently, the use of AI has started to be investigated also in the 3D 

case of static TPM [208] [209]. However, despite these important advantages, 

DHM-based systems are not as widely used as other microscopy modalities, 

such as brightfield or fluorescence microscopes, mainly because a heavy 

holographic processing, time and resource-consuming, must be implemented 

in order to retrieve the phase information. Therefore, in recent years, AI has 

been exploited not only for solving automatic classification problems with 

high accuracy in the DHM world, but also to greatly lighten the computational 

time and the hardware resource requested by the holographic processing 

[210] [211], which is highly demanded for LOC implementations [212].

In this Chapter, AI-based applications herein developed for the single-cell 

analysis in the TPM-FC field are described. After presenting a DL approach 

proposed here for speeding up the holographic processing for TPM-FC [213], 

several classification problems are solved in three different scenarios. In 

particular, DL is exploited to identify cancer cells directly from the holographic 

diffraction patterns recorded in FC mode [214]. Then, phenotyping of flowing 

cancer cells is performed by means of ML through the fractal characterization 

of their phase signature [215] [216]. Finally, a ML tool for recognizing the drug 

resistance in cancer cells is fed for the first time by features extracted from the 

tomograms [217]. 
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3.1 Speeding up the Holographic Processing 

In Section 2.4, the TPM-FC paradigm has been introduced and its promising 

features have been highlighted with respect to conventional TPM, with 

particular focus on the possibility of reconstructing the 3D RI tomograms of 

single cells at high-throughput. At this aim, an automatic processing has been 

implemented to reconstruct tomographic data from the holographic recording 

(see Section 2.4.2). However, to reach the high-throughput property, a very 

large number of digital holograms has to be recorded, thus the numerical 

holographic reconstruction process becomes the bottleneck that prevents 

reliable and exploitable applications at LOC scale due to the demanding 

algorithms and the huge computational time. Depending on the hologram size 

(i.e., the number of pixels of the sensor camera) and the imaging configuration 

(i.e., in-line or off-axis), the entire processing pipeline to reconstruct one single 

QPM from the recorded digital hologram can take minutes on a basic desktop 

computer. To cope with this computational limitation, recently, DCNNs have 

been employed to speed up the holographic processing pipeline [210] [218]. 

In particular, the numerical refocusing step is addressed as a DCNN-based in-

focus distance regression problem [219] [220], or through DCNNs for 

classification [221]. The phase aberration compensation has been solved by 

using a simplified version of the U-Net model for the background detection and 

subtraction [222]. Instead, DCNNs inspired by the ResNet model have been 

employed for both the automatic phase aberration compensation [223] and 

phase unwrapping process [224]. Recently, by suitably adapting the encoder-

decoder models, it has been demonstrated that the entire holographic 

reconstruction process can be skipped, thus enabling the direct reconstruction 

from raw holograms without any prior knowledge about the imaging 

parameters [225] [226] [227] [228] [229]. Despite the remarkable results 

achieved in these works in terms of the accuracy for recovering the QPMs from 

digital holograms, such DCNN architectures usually employ tens of millions of 

learnable parameters and need a remarkable amount of memory to store 
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them. Instead, here, for the first time in DHM, the multi-scale context 

aggregation network (CAN) [230] [231] is proposed at the aim of speeding up 

the numerical holographic processing for TPM-FC [213]. At this purpose, the 

TPM-FC system in Figure 2.5 has been employed for experiments of fibroblast 

cells of the NIH-3T3 cell line. As detailed in Figure 2.6(a), the overall 

conventional holographic processing to obtain the unwrapped QPM from the 

recorded digital hologram takes about 7.71 s by using an Intel® Core™ i9-

9900K CPU with a 64Gb RAM through the Matlab® 2021a environment. This 

time must be multiplied for the hundreds of digital holograms needed to be 

processed to obtain the 3D tomograms of one single cell, thus strongly limiting 

the high-throughput feature. To cope with this issue, the CAN architecture 

sketched in Figure 3.1 has been trained as end-to-end DCNN to reconstruct an 

unwrapped QPM from the corresponding recorded digital hologram [213]. 

The CAN is a fully convolutional network as the resolution of the input (i.e., 

𝑀 ×𝑀) is not changed throughout the layers of the network up to the output 

layer. The network has a depth 𝑑 = 8 and all the convolutional layers 𝐶𝐿𝑆, with 

1 ≤ 𝑆 ≤ 𝑑, have a width 𝑤. In particular, the layers 𝐶𝐿𝑆, with 1 ≤ 𝑆 ≤ 𝑑 − 1, 

are based on 𝑤 3 × 3 kernels and are followed by a Leaky ReLU nonlinearity, 

while the last layer 𝐶𝐿𝑑  employs 𝑤 1 × 1 kernels with no nonlinearity. Let 𝑥𝑆 

be the output of a convolutional layer 𝐶𝐿𝑆, with 1 ≤ 𝑆 ≤ 𝑑 − 1. The input 𝑦𝑆 of 

the successive Leaky ReLU layer is computed through an adaptive 

normalization process as follows 

(3.1)  𝑦𝑆 = 𝜆𝑆𝑥𝑆 + 𝜇𝑆𝐵𝑁(𝑥𝑆), 

where 𝐵𝑁 is the batch normalization operator and 𝜆𝑆, 𝜇𝑆 ∈ ℛ are learnable 

scalar weights. Thanks to the adaptive normalization step, the batch 

normalization layer is strengthened and the overall model can better 

approximate the phase retrieval operator. More important, the fully-

resolution intermediate layers allow aggregating the global context of the 

input image through a multi-scale analysis due to the several dilation factors 

𝑟𝑆 of the convolutional layers 𝐶𝐿𝑆. 
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Figure 3.1 CAN model. 
Sketch of the CAN architecture for the end-to-end prediction of the QPM from the 
recorded digital hologram. The Layers 1-7 are zoomed in the dotted boxes. 

In particular, the dilation factor 𝑟𝑆 increases as 2𝑆−1 for 𝑆 = 1,… , 𝑑 − 2, while 

the layer 𝐶𝐿𝑑−1 has no dilation. Hence, the receptive field expands 

exponentially with the network’s depth, thus including the multi-scale global 

context despite the compactness of the CAN architecture. In fact, the number 

of learnable parameters of the model with the described configuration is very 

low with respect to the tens of millions of parameters of the classical encoder-

decoder networks like the U-Net. Furthermore, the network requests a small 

memory during the forward step because there are no skip connections across 

non-consecutive layers. For these reasons, the CAN model is expected to be 

accurate (due to aggregation of the multi-scale global context), fast (due to the 
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compactness of the architecture), and particularly suited for on board 

computing (due to the small memory requested) [230]. Of course, these three 

properties depend on the setting of the width 𝑤 and the input size 𝑀. In Table 

2, the comparison among different network configurations has been reported 

to identify a suitable trade-off. In fact, the memory occupation increases with 

the width 𝑤, while the prediction time increases with both the width 𝑤 and 

the input size 𝑀. Obviously, the smallest and fastest configuration is 𝑤 = 32 

and 𝑀 = 64, which allows reaching a video-rate QPM prediction with a 214 kB 

memory occupation. However, as shown in Figure 2.5(c), the whole cell 

information is contained in a 384 × 384 ROI, which means that a down 

sampling up to 64 × 64 leads to an excessive loss of resolution. On the other 

hand, the most accurate configuration is 𝑤 = 128 and 𝑀 = 512, which 

however requires megabytes for the memory occupation and seconds for the 

QPM prediction. Therefore, an intermediate configuration is more suitable in 

respect to the proposed TPM-FC recording system. In fact, 𝑤 = 64 and 𝑀 =

256 have been chosen, since they allow computing a QPM in 168 ms by 

occupying only 818 kB of memory (due to just 223183 parameters) with a 

negligible resolution loss with respect to the original ROI size. 

Table 2 Comparison among different CAN configurations. Prediction times (in 

milliseconds) obtained by varying the width 𝑤 (and then the memory 

occupation) and the input size 𝑀. The selected configuration is highlighted 

in green. 

 
𝐰 = 𝟑𝟐 

𝟐𝟏𝟒𝐤𝐁 

𝐰 = 𝟔𝟒 

𝟖𝟏𝟖𝐤𝐁 

𝐰 = 𝟏𝟐𝟖 

𝟑𝟐𝟑𝟏𝐤𝐁 

𝐌 = 𝟔𝟒 36 43 57 

𝐌 = 𝟏𝟐𝟖 49 69 36 

𝐌 = 𝟐𝟓𝟔 94 168 333 

𝐌 = 𝟓𝟏𝟐 258 547 1207 
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The dataset for training the neural network has been created by considering 

the NIH-3T3 fibroblast cell line. For multiple flowing cells, hundreds of 

5120 × 5120 holograms have been recorded. For each cell within the FOV, a 

384 × 384 ROI has been cropped from the recorded hologram around the cell 

to preserve all the diffraction information useful for the autofocusing operator, 

as shown in Figure 2.5(c). Hence, the corresponding QPM has been computed 

through the conventional holographic processing. Then, the hologram and the 

corresponding QPM have been resized to 256 × 256, thus becoming the input 

and the target of the network, respectively. In particular, the training set and 

the validation set have been created by randomly selecting respectively 4000 

and 1000 images from 100 flowing and rotating cells. To train the network, 

some hyperparameters have been tuned. In particular, the Leaky ReLU 

coefficient has been set to 0.2, and a Dropout operation has been added to the 

Layer 7 with 0.5 factor to improve the generalization property of the network. 

Moreover, a mini-batch with 100 observations has been used. Finally, the 

ADAM optimizer has been employed to learn the parameters by minimizing 

the Mean Absolute Error (MAE) computed as follows by the final Regression 

Layer 

(3.2)  𝑀𝐴𝐸 =
1

𝐾
∑

1

𝑃
∑ |𝑧𝑘,𝑝 − �̂�𝑘,𝑝|𝑝𝑘 , 

where 𝐾 is the number of observations in the mini-batch, 𝑃 is the number of 

pixels 𝑝 in an image, 𝑧 is an output image, and �̂� is the corresponding target 

image. It is worth noting that, in addition to the input size 𝑀 and the width 𝑤, 

performances of CAN also depend on the setting of the depth 𝑑. To select the 

best 𝑑, a mini-training of the network has been repeated at different depth 

values, i.e. the training of the network realized for 50 epochs with a quarter of 

the overall dataset and a mini-batch made of 25 observations. The original 

CAN architecture was demonstrated to obtain the best results with 𝑑 = 9 in 

approximating image processing operators [230]. Instead, in the presented 

phase retrieval problem, 𝑑 = 8 has been fixed in order to avoid the too large 

dilation factor 𝑟7 = 64 (instead of the maximum 𝑟6 = 32 in the 𝑑 = 8 case) that 
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could have caused an excessive smoothing of the QPM output at the cost of 

even more parameters. 

The CAN model has been trained for 100 epochs by using the aforementioned 

desktop computer. The training step has required about 92h. However, as 

shown in Figure 3.2(a), the loss function curves of both the training and 

validation sets drop quickly after a few epochs, and they saturate around the 

50th epoch. Therefore, the training time can be safely halved. The correctness 

in the QPM restoration has been evaluated by computing the SSIM between 

the target QPM and the predicted QPM reported at the original 384 × 384 size.  

 

Figure 3.2 Assessment of the QPM reconstruction by DL. 
(a) MAE loss function computed at different epochs from the training set (yellow) 
and the validation set (violet). (b-d) Input, target, and output, respectively, of the 
trained CAN model containing a test cell. The SSIM between the target and the 
output is 0.961. The scale bar is 10 μm. (e) Phase profiles of the QPM target (blue) 
and QPM output (red) selected from the lines highlighted in (c,d), respectively. (f,g) 
Comparison between the histograms of the average phase and the average area, 
respectively, computed from the QPM targets (blue) and the QPMs outputs (red) 
of each cell belonging to the test set. The percentage error between the measured 
features is reported at the top. 
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In particular, the trained CAN model allows reaching a 0.962 ± 0.013 accuracy 

measured over the 4000 images of the training set and a 0.961 ± 0.015 

accuracy measured for the 1000 images of the validation set. Moreover, a test 

set has been created by randomly selecting other 2000 images (not used to 

feed the network during the training step), achieving 0.961 ± 0.013 of 

accuracy, thus indicating the substantial capability of generalization of this 

network. In Figure 3.2(b-d), an observation belonging to the test set is shown, 

made of the input (i.e., the holographic ROI), the target (i.e., the QPM obtained 

by the standard processing), and the output (i.e., the QPM computed by the 

network), respectively, in which an average SSIM of 0.961 is obtained. 

Beyond the numerical assessment of the regression performance, a 

comparison between phase profiles is also reported in Figure 3.2(e). This 

clearly shows the proficiency of the CAN in the realm of DHM to preserve not 

only the mere cell morphology, but also the quantitative content of its 2D 

phase-contrast map. It is worth to remark that such process is also very fast. 

In fact, the trained model takes about 0.17 seconds to get the unwrapped QPM 

from the hologram, which is 45 times faster than the conventional holographic 

processing. This property is crucial in FC systems, since it allows analyzing a 

much larger number of cells in the same time-period, thus enabling 

statistically relevant studies about specific cell populations. In fact, from the 

QPMs, 2D label-free features can be measured for diagnostic purposes. As a 

consequence, a further way to validate the proposed architecture consists in 

checking whether the QPM outputs lead to the same features that would be 

measured from the corresponding QPM targets. To this aim, the 2000 cells 

belonging to the test set have been segmented from the background within the 

QPMs. The average phase and the average area have been computed for each 

cell in both the target and the output cases, which corresponding histograms 

are compared in Figure 3.2(f,g), respectively. To quantify the matching 

between the histograms, the percentage error has been computed as follows 

(3.3)  𝐸𝑟𝑟 = 100
1

𝑁
∑ |

𝑓𝑖−�̂�𝑖

�̂�𝑖
|𝑁

𝑖=1 , 
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where 𝑁 is the number of observation, 𝑓 is a feature computed from the output 

image, and 𝑓𝑖 is the same feature computed from the corresponding target 

image. In the case of the average cell phase, a 3.90% error is obtained, while in 

the case of the average cell area, a 2.35% error is obtained. 

In order to further assess the performances of the CAN architecture in 

correctly reconstructing the QPM, in Figure 3.3 some particular cases are 

shown in which the network works surprisingly well, thus supporting its 

generalization property. In fact, the model has been trained by using single live 

spherical-like cells centered in their ROIs, as displayed in Figure 3.2(b-d).  

 

Figure 3.3 Assessment of the CAN performances in some particular cases. 
(a) QPM target and QPM output of a dead cell, with the phase profile corresponding 
to the highlighted lines. (b) QPM target and QPM output of a distorted cell, not 
centered in its ROI. The scale bar is 10 μm. 
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An example is reported in Figure 3.3(a), in which the QPMs of a dead cell are 

shown after reconstruction with the conventional method and the proposed 

one. A healthy cell has a convex phase profile, while a dead cell loses its 

content, thus resulting in an internal phase concavity [32]. The phase profiles 

plotted in Figure 3.3(a) highlight that the network prediction is accurate in 

reproducing also the phase concavity, even though the network model had 

never received this kind of image as an example during the training step. 

Moreover, as the cells are suspended in the microfluidic flow, they usually 

have a spherical shape. However, when the cell suffers a stress condition, it 

could exhibit a distorted shape, and the reconstruction architecture should be 

able to reproduce it in order to be reliable for diagnostics. Remarkably, also in 

this case the network correctly predicts the QPM, as shown in Figure 3.3(b). It 

is worth remarking that, besides being not spheroid-like shaped, the cell in 

Figure 3.3(b) is not centered in its ROI, unlike all the cells used in the training 

set. The highlighted special cases, in addition to the results reported in Figure 

3.2, underline that the network has learned the right mathematical operator 

that converts a hologram into the corresponding QPM. 

To test the potentiality of the proposed network in the TPM-FC framework, 65 

tomograms have been reconstructed by using both the standard and the 

DCNN-based approaches to recover the QPMs. In particular, 65 cells 

correspond to 14462 recorded holograms, whose QPM retrieval takes about 

31 hours by using the standard processing and only 41 minutes by exploiting 

the CAN model, i.e. the CAN inference can do the same task using only the 2% 

of the time required to the conventional method. In Figure 3.4(a), the central 

slices of the 3D RI tomograms of the same cell are displayed, respectively 

reconstructed from the QPMs obtained in the standard processing modality 

and through the proposed network. A great similarity has been reached, as 

also underlined by the good agreement between the RI profiles reported in 

Figure 3.4(b). A further proof is the high symmetry of the corresponding RI 

violin histogram in Figure 3.4(c), corresponding to an SSIM = 0.997 computed 

between the two tomograms. 
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Figure 3.4 Assessment of the tomographic reconstruction by DL. 
(a) Central slice of the 3D RI tomogram reconstructed from 234 QPMs retrieved 
(on the left) in the standard way in about 32 min and (on the right) by the CAN 
model in about 42 s. (b) RI profile corresponding to the lines highlighted in (a) 
from the standard tomogram (blue) and the CAN tomogram (red). (c) Violin 
histogram of the 3D RI distribution about the standard tomogram (blue) and the 
CAN tomogram (red) in (a), which SSIM is reported at the top. (d-g) Comparison 
between the histograms of the average RI, the equivalent radius, the dry mass, and 
the standard deviation RI, respectively, computed from 65 standard tomograms 
(blue) and CAN tomograms (red). The percentage error between the measured 
features is reported at the top. 

As well as in the 2D case, also in the 3D case it is important to preserve the 

truthfulness of the statistical measurements, especially their adherence to the 

quantitative ground-truth. To this aim, the histograms of the average RI and 

the equivalent radius (i.e., the radius of a sphere having the same volume of 

the analysed cell) calculated for the 65 reconstructed tomograms are reported 

in Figure 3.4(d,e), where a 0.07% and a 0.70% percentage errors are obtained, 

respectively. An important quantitative feature that can be inferred from the 

3D RI tomogram is the dry mass, obtained by multiplying the dry mass density 

defined in Eq. (1.48) to the cell volume. The dry mass can be considered a 

bioindicator of the health state of the cell as it is related to its biophysical 

properties. Therefore, the fast and accurate quantification of the dry mass for 
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a large number of cells could encourage further developments of diagnostic 

applications in biomedicine based on TPM-FC [5]. For this reason, the low 

percentage error of 3.77% obtained in the case of the dry mass reported in 

Figure 3.4(f) by using the CAN architecture acquires even more importance. 

As a counterweight to the abovementioned advantages of the reported results, 

a limitation can be recognized in the partial loss of internal RI contrast. This 

effect is clearly visible in the central slice comparison in Figure 3.4(a), and is 

quantified as a percentage error of 11.92% about the RI standard deviation in 

Figure 3.4(g), where a shift to lower values of the histogram obtained from 

DCNN processing can be noticed with respect to the standard one. Finally, 9 

3D RI tomograms are reported in Figure 3.5 to show a greater variety of cases 

about the typical tomographic performances in terms of both reproducibility 

and computational time. 

In order to assess the ability of the network in preserving high frequency 

features, in Figure 3.6 an NIH-3T3 cell is analyzed, in which LDs are clearly 

visible inside and distinguishable from the surrounding cytoplasm. In fact, in 

the QPM target shown in Figure 3.6(a), two LDs can be recognized at the 

highest phase values. The same LDs can be equally well observed in the 

corresponding QPM output in Figure 3.6(b), even if with a slight reduced 

contrast, as shown in the phase profile reported in Figure 3.6(c). As a 

consequence, the same property can be found in the corresponding 3D case in 

Figure 3.6(d-f). In particular, the two LDs are well defined at the highest RIs in 

the standard tomogram in Figure 3.6(d). Instead, they become more 

widespread in the CAN tomogram in Figure 3.6(e), as can be also inferred from 

the RI profiles reported in Figure 3.6(f). However, despite the loss of contrast, 

both Figure 3.6(e) and Figure 3.6(f) point out that LDs can be segmented even 

in the 3D RI tomogram reconstructed through the neural network. Moreover, 

the SSIM between the two tomograms is very high (i.e., 0.996), thus confirming 

that the global content is preserved and only the fine details at the high 

frequencies are lost. 
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Figure 3.5 3D tomographic reconstructions. 
Comparison between the central slices of 9 3D RI tomograms reconstructed by 
using the QPMs obtained through the standard holographic processing (on the left) 
and the CAN model (on the right). For each cell, the number of QPMs, the SSIM 
between the tomograms, and the computational time of the standard phase 
retrieval and the CAN-based phase retrieval are reported at the top. 

Therefore, the 11.92% error in Figure 3.4(g) can be related to the loss of 

details (i.e., high frequencies) due to the employment of the network, which 

partially limits an intracellular analysis. However, in Figure 3.4(d-f), the CAN 

architecture has been demonstrated to provide a fast and accurate 

measurement of the global cellular features from the 3D RI tomograms, which 

can be exploited for diagnostic purposes. Therefore, using the network output 

or the result of the conventional pipeline would provide similar results in 

terms of global features and thus the same diagnostic response. 

In order to analyze a possible diagnostic application, the ability of the network 

in preserving the 3D morphological differences between a healthy and a 

distorted cell is assessed in Figure 3.7. The QPMs target and the QPMs output 

of the distorted cell shown in Figure 3.3(b) have been used to reconstruct the 
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corresponding standard and CAN tomograms, respectively. The 3D shape of 

the distorted cell obtained through the standard method in Figure 3.7(a) is 

very similar to the corresponding one obtained through the CAN method in 

Figure 3.7(b). Moreover, the 3D shape of the distorted cell is significantly 

different from the quasi-spherical shape of a healthy cell displayed in Figure 

3.7(c,d), obtained from the standard and CAN tomograms, respectively. An 

example of quantitative descriptor of the 3D morphology is the sphericity, 

which is 1 in the case of a perfect spherical cell otherwise is less than 1 in the 

case of a non-spherical cell. 

 

Figure 3.6 Assessment of the CAN performances in visualizing intracellular 
LDs. 
(a,b) QPM target and QPM output, respectively, with two LDs visible at the highest 
phase values. The scale bar is 5 μm. (c) Phase profile of the QPM target (blue) and 
QPM output (red) selected from the lines highlighted in (a,b), respectively, passing 
through LDs. (d,e) Central slice of the 3D RI tomogram reconstructed by the 
standard method and the CAN method, respectively, with two LDs visible at the 
highest RI values. The SSIM between the tomograms is reported below. (f) RI 
profile corresponding to the lines highlighted in (d,e) from the standard tomogram 
(blue) and the CAN tomogram (red), respectively, passing through LDs. 
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In fact, it is defined as the ratio between the surface area of a sphere having 

the same volume of the analyzed cell and the surface area of the cell. The box 

plot in Figure 3.7(e) regarding the sphericity of the standard and CAN 

tomograms of 65 healthy cells allows to quantify the 3D morphological 

similarity between the standard and CAN shapes. The slightly greater median 

value and the smaller standard deviation of the CAN sphericity, with respect 

to the standard one, can be explained again with the loss of details about the 

external surface introduced by the DCNN (see Figure 3.7(a-d)) that leads to 

smaller surface areas. However, the red asterisks in Figure 3.7(e) point out 

that the 3D morphological difference between the distorted and healthy cells 

can be easily recognized also in the CAN case, thus preserving the diagnostic 

potentiality of the TPM-FC tool.  

 

Figure 3.7 Assessment of the CAN performances in discerning between 
healthy and distorted cells. 
(a,b) External shape of the 3D RI tomogram of a distorted cell reconstructed by the 
standard method and the CAN method, respectively. (c,d) External shape of the 3D 
RI tomogram of a healthy cell reconstructed by the standard method and the CAN 
method, respectively. In (a-d), the sphericity is reported at the top. (e) Box plot of 
the sphericity of the standard and CAN tomograms of 65 healthy cells compared to 
the sphericity of the distorted cell in (a,b) (red asterisk). 
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In Figure 3.8, the CAN performances at different widths 𝑤 have been assessed. 

In particular, a mini-training of the 𝑤 = 32, 𝑤 = 64, and 𝑤 = 128 

architectures has been performed in order to compare their outputs. The 

central slice of the same cell shown in Figure 3.4(a) is reported in Figure 3.8(a) 

after reconstructing the tomogram by means of these three trained models. As 

also visible in the RI profiles displayed in Figure 3.8(b), the accuracy of the 

network in reconstructing the correct 3D RI tomogram increases with the 

width 𝑤, as expected. To quantify this property, the 65 tomograms are 

reconstructed again and, for each of them, the average RI, the equivalent 

radius, the dry mass, and the standard deviation RI are measured. The 

percentage errors between these features measured in the standard case and 

the same ones measured in the three CAN cases are reported in Figure 3.8(c), 

in which it can be noted the decreasing trend of the error as the width 𝑤 

increases. It is worth noting that, as the training dataset has been reduced by 

a quarter, the percentage errors reported in Figure 3.8(c) regarding the 𝑤 =

64 architecture are bigger than the corresponding ones computed through the 

same architecture and reported in Figure 3.4(d-g). Nevertheless, the 

percentage errors of dry mass and standard deviation RI even reach a lower 

value in the case of the 𝑤 = 128 model trained with the reduced dataset with 

respect to the 𝑤 = 64 model trained with the entire dataset, i.e. 3.23% and 

11.05%, respectively. However, a larger width 𝑤 results in a greater number 

of parameters. In such a case, with the same hardware resources, the training 

and the prediction time would become longer, and the network would require 

a bigger memory occupation, as discussed in Table 2. Therefore, this means 

that the width of the network must be tuned according to the specifications of 

the tool to be implemented. Definitely, the proposed DCNN model provides 

enough compactness and computing velocity to be fit into on-chip SRAM, 

opening to the possibility of performing onboard computations, which is a 

highly demanded property for LOC devices with low processing hardware 

resources. 
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Figure 3.8 Assessment of the CAN performances after a mini-training of the 
architecture at different widths 𝒘. 
(a) Central slice of a 3D RI tomogram reconstructed by the standard method and 
the CAN method with 𝑤 = 32, 𝑤 = 64, and 𝑤 = 128. (b) RI profile corresponding 
to the lines highlighted in (a). (c) Percentage errors between the average RI, the 
equivalent radius, the dry mass, and the standard deviation RI measured in 65 
standard tomograms and the same features measured in the corresponding CAN 
tomograms obtained with 𝑤 = 32, 𝑤 = 64, and 𝑤 = 128. The percentage errors of 
the average RI are zoomed in the inset. 

3.2 Classifying Cells from their Holographic 
Diffraction Patterns 

Neuroblastoma (NB) is the most common paediatric solid tumor of the 

sympathetic nervous system [232]., represents a biological and clinical 

heterogenous cancer that ranges from tendency for spontaneous regression to 

a highly aggressive metastasized tumor phenotype that could be unresponsive 

to standard treatment [232]. This malignancy, which develops anywhere 
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along the sympathetic chain, exhibits early age of onset, with a median age at 

the diagnosis of about 19 months, and accounts for approximately 15% of 

children cancer-related mortality [232]. In the last years, the identification of 

diverse genomic markers has contributed to the risk stratification and 

improvement of NB patients’ survival rate [233]. Indeed, several recurrent 

segmental chromosomal alterations have been demonstrated to discriminate 

between low-risk and high-risk patients [233]. Additionally, genome-wide 

association studies, high-throughput sequencing and microarray gene 

expression-based studies have identified multiple genetic changes that 

characterize NB both hereditable and somatically acquired [234] [235] and 

that are promising prognostic predictors and therapeutic targets. Despite 

these advances in genomic research, treatment of NB is still unsuccessful in 

half of the patients diagnosed with the high-risk form. To date, for NB 

diagnosis and monitoring, tumor biopsy followed by serial imaging scans and 

blood and urine catecholamine tests are used [236]. Although tissue biopsy is 

considered to be the gold standard for biomarkers identification for 

personalized medicine, it seems to be unable to capture the complexity 

underlying NB heterogeneity. Moreover, besides the limitations linked to costs 

and risks for patients, this test is representative only of the sampling site and 

most importantly it does not allow the monitoring of cancer progression and 

therapy adjustment [237]. Therefore, In pediatric patients, the risks linked to 

tissue biopsy sometimes may exceed benefits. 

Over the last years, the sampling and analysis of non-solid biological tissue 

(e.g. blood), named LB, has been aimed to overcome these limitations (see 

conclusions in Chapter 5 for more details). Peripheral blood from cancer 

patients may contain tumor-derived and tumor-associated components. 

Recently, it has been showed that the deep targeted sequencing approach to 

identify tumor-specific alterations in cell-free tumor DNA can be a valid tool 

for improving diagnosis and monitoring disease progression [238]. In addition 

to cell-free tumor DNA, CTCs represent a snapshot of overall tumor bulk 

(primary tumor and metastases) [239]. CTCs detach from the primary tumor 
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and disseminate to distant sites via blood singularly or in clusters [240]. The 

detection of CTCs has been shown to be of prognostic value in the evaluation 

of cancer progression and for the study of the mechanisms of resistance to 

treatment [241]. Current methods of enrichment and isolation of CTCs depend 

on specific tumor antigens for the recognition of tumor cells [242] [243]. 

However, NB has a high intra-tumor heterogeneity with different cells 

showing distinctive morphological and phenotypic profiles. Therefore, most 

LB NB studies referring to the detection of any tumor-derived material 

circulating in body fluids involved circulating tumor DNA or mRNA due to the 

universal and specific cell surface marker not available for CTCs. In this 

context, Advanced technologies combining microfluidic platforms with label-

free DHM and AI may represent a useful tool to efficiently discriminate tumor 

cells from other cell types or within a background of blood cells. Nowadays, 

many clinical tests are based on in-flow running of biological matter so that a 

long computational apparatus is not really workable when a decision-making 

is needed, for example in sorting devices. Indeed, in case of diagnostic 

strategies based on microfluidic systems, it would be a desirable configuration 

method working quasi real-time on flowing samples. 

Reducing the computational time to obtain a preliminary phenotyping result 

will be the route to pursue. In the DHM framework, one possibility would be a 

fast processing of a digital hologram based on DCNN, as discussed in Section 

3.1. However, another solution would be based on the direct employment of 

the recorded digital hologram. A raw digital hologram stores the complex 

amplitude of the sample in the form of a modulated fringe pattern. In principle, 

to associate an object to a certain population, its information does not really 

need to be decoded from the recorded pattern, provided that a suitable AI 

model is properly trained with a fair number of examples. Based on this idea, 

the possibility to directly use raw recorded digital holograms for carrying out 

cells classification tasks through learning approaches has been here 

investigated, thus skipping the entire holographic reconstruction process 

[214]. In this prospective study, two NB cell lines are classified by means of 
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their holographic diffraction patterns, i.e., the CHP134, consisting of the 

patient’s tumor previously treated with chemotherapy and irradiation 

therapy, and the SKNSH, established by primary bone marrow tumor. Actually, 

in DH, the possibility to solve classification problems by using digital 

holograms as input of a learning-based classifier has been recently explored 

[244] [245] [246]. Here, for the first time this approach is implementing for 

phenotyping of NB CTCs in FC mode. 

The pipeline used to classify the NB cells consists of three main steps. 

• First, DH video frames containing cells from the two cell lines are 

collected with two different methodologies. In-flow DH frames 

recorded through the TPM-FC system in Figure 2.5 (microfluidic 

channel with 200 µm × 200 µm cross section coupled to a 2048×2048 

CCD camera with 5.5 µm pixel size recording at 35 fps and a 40× MO, 

oil immersion, NA=1.30) are used as training and validation sets, while 

DH frames collected on Petri dishes are used as test set. The in-flow 

frames give about 80-100 different views of the same cell, thus 

augmenting the dataset, while the advantage of using Petri dishes is 

the ability to obtain many different cells in few frames, thus evaluating 

the robustness of the classifiers more accurately. 

• Second, using transfer learning on COCO dataset [247], a Mask R-CNN 

model is trained on a subset of the training set cells. The Mask R-CNN 

is used to segment cells from both the in-flow video frames and the 

Petri dish images, in order to build the training, validation and test 

sets. A visual inspection is applied on the masks to remove the output 

False Positives. 

• Finally, the single cells obtained in the previous step are fed to a binary 

classifier in order to discriminate between the two different NB cell 

lines. Here, both feature-based ML algorithms and a DL model have 

been tested. In particular, a shallow Multilayer Perceptron (MLP) and 

Logistic Regression (LR) have been used on a set of 10 manually 
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extracted features [248]. For the DL approach, a LeNet-like DCNN has 

been employed. The DCNN learns the features automatically during 

the training stage using an augmented dataset, which has been 

obtained by rotating each cell 36 times in the image plane, in order to 

obtain a rotationally invariant classifier. 

More precisely, the dataset consists of 12 in-flow DH video sequences for 

training and validation, from which a total of 21852 frames have been 

extracted. In each DH video sequence, cells belong to the same phenotype, 

therefore each detected cell is automatically labelled with the corresponding 

class. Moreover, in order to test the network generalization capabilities, 120 

cells have been recorded in Petri dish. Three frames from the in-flow video 

sequences related to CHP134 and SKNSH cell lines are shown in Figure 

3.9(a,b), respectively, while two static images recorded in Petri dish are shown 

in Figure 3.9(c). In order to build a prototype for the fast NB cell classification, 

real-time detection and segmentation of cells is required. Therefore, these 

processes have been automated by employing a Mask R-CNN [249]. Mask R-

CNN is a state-of-the-art DCNN used for the task of instance segmentation, that 

is, it is able to detect the bounding boxes that delimit object instances 

belonging to a target class while also being able to output a mask which 

precisely segments the object inside each bounding box. In this case, a Mask 

R-CNN pre-trained on the COCO dataset has been used [247]. The head of the 

network has been replaced with a 2-class classification head in order to only 

predict cells vs. background. This architecture has been trained for 40 epochs 

in Keras in Python 3 [250] to identify and segment cells (independently from 

their class) by using 200 cells manually extracted from the training set. The 

network has been then run on the holographic frames, thus obtaining 983 

CHP134 cells and 918 SKNSH cells for the training set, 413 CHP134 cells and 

584 SKNSH cells for the validation set, and 301 CHP134 cells and 207 SKNSH 

cells for the test set. 
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As regards the classification stage, a DL model has been firstly considered. In 

particular, a binary classification model based on a DCNN is applied to 

distinguish among cells of the CHP134 and of the SKNSH lines. 

 

Figure 3.9 DH frames of NB cancer cells. 
(a,b) Three successive frames with CHP134 and SKNSH cells, respectively, 
recorded in flow condition with an interval of 10 frames. (c) CHP134 (on the left) 
and SKNSH (on the right) cells recorded on a Petri dish. In (a-c), a zoomed cell view 
cropped from the holograms is shown on the right. 
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The employed DCNN is an adaptation of the well-known LeNet-5 [251], as 

shown in Figure 3.10(a). The network is made of two main parts, i.e. a feature 

extractor and a classifier head. The input to the network has size 256 × 256 

pixels, with each pixel being normalized in the range [0,1]. The feature 

extractor is made of consecutive blocks of convolutional and max-pooling 

layers, in an alternating fashion. All the convolutional blocks have a 3 × 3 

kernel size, while all the pooling blocks perform down sampling using a 

window of size 2 × 2. The 4 convolutional layers have respectively 32, 64, 128 

and 128 filters. All the convolutional layers use a ReLU as activation function. 

The network head is instead composed of 2 fully-connected layers, the first 

comprising 512 neurons, while the last one has 1 single neuron with a sigmoid 

activation function, in order to obtain a probability class score (if the value is 

less than 0.5, the cell is predicted as belonging to the CHP134 class, otherwise 

as belonging to the SKNSH one). To avoid overfitting, two main strategies have 

been adopted. The first one is the use of data augmentation on the training set. 

Each cell from the training set has been rotated 36 times by 10° in the image 

plane. This helps the network to compute rotational-invariant features during 

the training phase and prevents overfitting by obtaining a training set that is 

effectively 36 times larger than the original one. The second technique is the 

use of a dropout layer between the two fully connected layers. The dropout 

layer randomly disables some of the connections between the two layers 

during training, forcing the network to be more robust to random noise and 

thus reducing overfitting to the training data. The LeNet-like DCNN has been 

trained using binary cross-entropy as a loss function. The dropout factor has 

been set to 0.5. The Adam optimization algorithm has been used with a 

learning rate of 0.0001. With these settings, the network has been trained for 

40 epochs with a batch size of 32 images, using the validation accuracy to 

perform early stopping, i.e. to choose the epoch which performed best on the 

validation set. The LeNet-like DCNN has been implemented in Keras in Python 

3. The training has been performed on a NVIDIA GeForce GTX 970 GPU with a 

4 GB of VRAM. 
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Figure 3.10 AI-based classification of CHP134 and SKNSH NB cancer cells. 
(a) DL pipeline. The cell masks are extracted from each holographic frame by using 
a Mask R-CNN (left). Data augmentation is then performed by rotating each 
extracted cell by 10° for 36 times in the image plane (center). The LeNet-like DCNN 
architecture is finally trained, consisting of a feature extraction backbone and a 
classifier head (right). The backbone is made of a series of convolutional and max 
pooling layers. ReLU activation is used after each convolutional layer. The classifier 
head consists of two fully-connected layers of 512 and 1 neurons, respectively. A 
sigmoid activation function σ is applied to the last layer to obtain the class 
probability. (b) First two PCA components over training set, validation set, and test 
set. The two cell lines (CHP134 in orange and SKNSH in blue) are quasi perfectly 
separable. 

In addition to the DL model, two feature-based ML algorithms have been 

employed for the classification task, i.e. the shallow MLP and the LR. First, 10 

morphological/texture features are extracted from each cell image [248]. The 

features extracted are the first order pixel statistics of standard deviation, 

kurtosis and skewness, second order texture statistics of contrast, correlation, 
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homogeneity and energy, and the shape parameters of area, eccentricity and 

perimeter. Before the training step, all the collected features are normalized 

by subtracting the mean of the whole datasets (training, validation and test 

sets) and then scaled to unit variance. The Principal Component Analysis 

(PCA) algorithm [252] has been applied to the 10 extracted features, and the 

first two principal components are shown in Figure 3.10(b). Among the 

several architectures of the shallow MLP tested, the best one consists of an 

input layer of 10 neurons related to the 10 different features extracted from 

the cells, one hidden layer with 𝑡𝑎𝑛ℎ activation function made of 32 neurons, 

and an output layer made of 1 neuron and a sigmoid function to obtain the 

class membership score. The network has been trained in Keras using Adam 

optimizer with a learning rate of 0.001. Furthermore, looking at the 10 

extracted features, it is possible to apply a LR to separate cells from the two 

lines in the feature space using a hyperplane. After a fine-tuning step to obtain 

the best accuracy on training and validation sets, Newton has been chosen as 

solver and no regularization has been applied. 

ML and DL approaches outline different performances. As regards DCNN 

learning, both the training and validation accuracy quickly reach a plateau of 

100% from the 30th epoch. Therefore, the best weights to evaluate the 

network on the test set have been chosen at epoch 30 of the training. As a 

result, the test accuracy is also 100%. Instead, the MLP takes more epochs to 

reach the 100% of accuracy on both training and validation sets. The test 

accuracy is of 92.2% with only 38 classification errors by misclassifying 

SKNSH cells. Finally, the LR on the 10 extracted features reaches 92.5% of 

accuracy on the test set. 

In conclusion, the attained results demonstrate that a highly phenotyping 

accuracy of CHP134 and SKNSH NB cancer cells is achievable even with raw 

holograms, thus avoiding the phase retrieval reconstruction process. In 

particular, the combination between Mask R-CNN and LeNet-like DCNN 

applied to these two cell lines has reached the best accuracy in real-time 

classification during biological samples holographic acquisition. Therefore, 
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this strategy could be useful in the case of biomedical applications based on 

microfluidic systems where high-throughput is needed. Finally, it is worth 

remarking that, although the proposed approach completely skips the 

holographic reconstruction process, the use of DH imaging is decisive to 

achieve the above results. In fact, since both phase and amplitude information 

are encoded within a hologram, this pattern is more informative than a 

diffracted pattern obtainable with a single beam [253]. Moreover, using an 

interferometric system is advantageous also for post-classification tasks. 

Indeed, once a cell is classified and associated to a certain population, it could 

be of interest to achieve additional morphometric information a posteriori 

(e.g., its dry mass, biovolume, thickness, shape information). 

3.3 Classifying Cells from their Phase Signatures  

In Section 3.2, the holographic diffraction patterns have been classified in 

order to discern between two different NB subtypes, i.e., SKNHS and CHP134 

cells. Therefore, in a binary classification problem between two well separated 

classes, the holographic processing can be avoided and the raw recorded data 

can be directly employed for ML and DL. However, for more difficult 

classification problems, extracting the phase signature pattern is expected to 

enhance the final result even if at the expense of longer computational times, 

since the cell biophysical information can be better taken into account after 

discarding the useless terms in Eq. (1.13) contained within the recorded 

digital hologram. Here, a more realistic scenario for the label-free LB is 

emulated [215], in which four different NB subtypes are distinguished among 

them and recognized from monocytes. At this aim, the QPMs obtained through 

the TPM-FC system are exploited to measure quantitative features, which are 

then classified through ML. In fact, in the case of raw holograms classification, 

a suitable feature set can be only extracted by means of a DCNN. Instead, the 
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phase signature is appropriate for measuring a set of informative and 

explainable features related to the cell biophysics (e.g., dry mass and 

biovolume). Herein, in addition to the conventional QPI parameters, a new set 

of features based on the fractal geometry framework is introduced. Instead, as 

regards the classification step, a hierarchical ML strategy is proposed, in which 

the NB phenotyping is performed throughout three successive levels of binary 

classifications. As a first step of the hierarchical approach, NB cells are 

discriminated from monocytes by using their QPMs obtained in flow condition. 

This is a key issue, worth to be pointed out, as monocytes are the most similar 

WBCs that can be failed to be filtered out by existing sorting technologies. The 

second task of the processing pipeline is remarkably more challenging to 

tackle. Following the hierarchical classification scheme, a new inference 

strategy is proposed to identify four different NB subtypes, i.e. CHP212, 

SKNBE2, SHSY5Y, and SKNSH. In particular, for this study, four cell lines have 

been selected, i.e. two cell lines with (CHP212 and SKNBE2) and two cell lines 

without (SHSY5Y and SKNSH) MYCN amplified and 1p36 deletion, well-known 

genomic markers of unfavorable clinical outcome. The cell line SHSY5Y is a 

subline of SKNSH, thus, having similar phenotypes, these cell lines are a good 

control for assessing the classification ability of the proposed method. One of 

the key-points that allowed solving this difficult and realistic problem is linked 

to the quite common behavior of suspended cells flowing along a microfluidic 

channel. In fact, a profitable case for imaging purposes occurs when cells 

experience rotation while they flow inside the FOV. Rotation allows to collect 

a very large dataset of QPMs where the system offers different views of each 

cell. Hence, it can be avoided the common paradigm of data augmentation 

employed in all the conventional AI-based classification approaches, in which 

the rotation of images is implemented numerically. Therefore, in this study, 

the TPM-FC system is not used for performing the tomographic 

reconstruction, but only for collecting hundreds of digital holograms for each 

cell from different viewing angles through a quite fast recording step and for 
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improving the classification performance by means of a max-voting strategy, 

as discussed hereafter. 

 

Figure 3.11 TPM-FC for distinguishing several subtypes of NB cells (i.e., 
CHP212, SKNBE2, SHSY5Y, and SKNSH) from monocytes. 
Overall pipeline of the proposed strategy. 𝑁 QPMs (200 × 200 square pixels size, 5 
μm scale bar) for each cell are numerically retrieved from the recorded digital 
holograms, and 37 features are measured for each of them. The extracted features 
are fed to a hierarchical classifier. The 𝑁 predicted outputs are used to infer the 
cell line of the analysed cell by means of max-voting. 

Table 3 Dataset collected by the TPM-FC system. 

Cell Line # Cells # QPMs 

Monocyte THP1 247 30291 

Neuroblastoma 

CHP212 115 12108 

SKNBE2 106 11959 

SHSY5Y 66 9416 

SKNSH 151 18820 
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To solve the problem of identifying the NB cells among the most similar WBCs 

in size, i.e. the monocytes, and to further distinguish NB cancer subtypes (i.e., 

CHP212, SKNBE2, SHSY5Y, and SKNSH), the TPM-FC system sketched in 

Figure 2.5 has been employed. In particular, for each cell, several digital 

holograms like that in Figure 2.5(c) are acquired along a fixed beam direction 

at multiple viewing angles. Then, their corresponding QPMs are numerically 

retrieved, as shown in Figure 3.11. In this way, 82594 QPMs related to 563 

cells have been collected, distributed among different cell lines as reported in 

Table 3. Due to the possibility of measuring label-free quantitative features 

related to the cell biophysical properties, the QPMs have been exploited for 

detecting the NB cells and their subtypes. To this aim, the pipeline sketched in 

Figure 3.11 has been followed. After reconstructing the 𝑁 QPMs of a flowing 

and rolling cell, 37 features are measured from each of them and are fed to a 

hierarchical ML classifier. The classes predicted for the QPMs of a single cell 

are combined by means of a max-voting strategy in order to infer the cell line 

it belongs to. For each QPM, a set of 24 features has been firstly computed, 

selected among those usually measured in QPI-based ML problems and 

termed here conventional features. Among them, 11 features are strictly 

related to the OPL, 9 features derive from the cell 2D morphology, and the 

remaining 4 features are based on the Gray-Level Co-occurrence Matrix 

(GLCM). In particular, the OPL-based features are computed from the phase 

values of the cell segmented in its QPM. They include the mean value, the 

standard deviation, the maximum value, the skewness, the entropy, the 

kurtosis, the median, the I quartile, the III quartile, and the mode of the cell 

phase values. In addition, to measure the amount of non-aqueous content 

inside the cell, the dry mass is computed according to Eq. (1.23). Instead, the 

morphology-based features include the cell area, the extent (i.e., the ratio 

between the cell area and the area of the bounding box, that is the smallest box 

containing the segmented cell), the solidity (i.e., the ratio between the cell area 

and the area of the convex hull that encloses the cell), the maximum diameter 

and minimum diameter (i.e., respectively the maximum and minimum 
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distance between any two boundary points on the antipodal vertices of convex 

hull that encloses the segmented cell). Circularity is obtained as 

(3.4)  𝐶 =
4𝜋𝐴

𝑃2
, 

where 𝐴 and 𝑃 are the cell area and perimeter, respectively, and it is 1 for a 

perfect circle and goes down as far as 0 for highly non-circular shapes. 

Moreover, let the equivalent ellipse be the ellipse having the same second-

order moments as the segmented cell. The major axis is the length of the major 

axis of the equivalent ellipse, while the eccentricity is the ratio of the distance 

between the foci of the equivalent ellipse and its major axis length. Finally, 

normalized centroids distance is the distance between the centroid and the 

weighted centroid of the segmented cell, normalized to its equivalent radius, 

that is the radius of a circle having the same area of the segmented cell. Instead, 

the GLCM takes into account the different combinations of the grey levels 

within an image. Indeed, the GLCM 𝐺(𝑖, 𝑗, 𝜃, 𝑑) measures how many times a 

pixel with value 𝑖 occurs along the direction 𝜃 at distance 𝑑 in respect to a pixel 

with value 𝑗. Herein, among the different GLCMs depending on the values of 

the offset 𝑑 and the angle 𝜃, the parameters 𝑑 = 1 and 𝜃 = 0° have been 

chosen, and the GLCM contrast, correlation, energy, and homogeneity have 

been computed [254]. In Figure 3.12(a-c), the histograms of the dry mass 

(OPL-based), the area (morphology-based), and the energy (GLCM-based), 

measured on monocytes and NB cells, have been reported. In addition, a set of 

other 13 features has been considered, computed by applying the principles 

of fractal geometry and therefore termed here fractal features. The fractal 

features have been selected to define a more distinctive fingerprint about the 

analyzed cell lines. Indeed, fractal geometry was introduced to provide a full 

insight of nature, more complete than the classical Euclidean one [255]. For 

this reason, it has gone beyond the integer vision of reality by moving towards 

a powerful multi-scale point of view, which has opened the route for a deeper 

understanding of natural phenomena [256]. The advantages of fractal 

geometry have been also demonstrated in biology and medicine [257]. In 
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particular, thanks to its ability of providing a precise overview about complex 

networks of objects, it has been employed in the fields of biological tissues like 

the arterial tissue [258] [259], bone tissue [260] [261], and neuronal tissue 

[262] [263] [264] [265]. Instead, here the fractal concepts have been applied 

at the single-object level for the first time at the aim of classifying human 

circulating cells. A detailed description about the computation of the 13 fractal 

features here proposed is reported in Appendix A.1 in reference to the 

problem of identifying microplastics among diatoms by means of ML and QPI, 

for which they have been firstly exploited [216]. The histograms of some of 

these features, i.e. the fractal dimension, the lacunarity index and the 

regularity index, measured on monocytes and NB cells, are displayed in Figure 

3.12(d-f). The holographic processing, the feature extraction, and the 

following ML problems have been solved in Matlab® 2021b environment. 

In order to further deepen the data investigation, the PCA has been carried out 

over the whole dataset, i.e. considering both conventional and fractal features. 

In Figure 3.12(g), the first two PCA components are shown by highlighting the 

monocytes versus all the NB cells, while, in Figure 3.12(h), the first two PCA 

components of the four NB subtypes are represented. The existence of two 

distinct groupings inside the NB family is evident in Figure 3.12(h), i.e. 

CHP212+SKNBE2 and SHSY5Y+SKNSH, as indicated by the circles. This is 

quantitatively confirmed by the distance between all the possible groups of 2 

classes computed by means of the Fisher’s criterion [266] over the first two 

PCA components, that is 0.00002 for CHP212+SHSY5Y vs. SKNBE+SKNSH, 

0.00003 for CHP212+SKNSH vs. SKNBE2+SHSY5Y, and 0.00144 for 

CHP212+SKNBE2 vs. SHSY5Y+SKNSH. This first result can be interpreted as a 

sort of negative control, i.e. the capability of the system as a whole in 

recognizing subtypes expected to be similar from dissimilar phenotypes. 

Indeed, this grouping is also suggested by the genomic and phenotypic 

features, because both CHP212 and SKNBE2 carry 1p36 deletion and MYCN 

amplified, while SHSY5Y and SKNSH cells are both wild-type for the same 

genomic alterations and, moreover, SHSY5Y is a subclone of SKNSH.  
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Figure 3.12 Inspection of the dataset collected by the TPM-FC system. 
(a-c) Box plots about some conventional features, i.e. dry mass, area, and GLCM 
energy, respectively, computed from the QPMs for each single cell. (d-f) Box plots 
about some fractal features, i.e. fractal dimension, lacunarity index, and regularity 
index, respectively, computed from the QPMs for each single cell. (g) Scatter plot 
of the first two PCA components computed from all the conventional and fractal 
features about monocytes and NB cells. (h) Scatter plot of the first two PCA 
components computed from all the conventional and fractal features about the 
four NB subtypes. (i) Sketch of the hierarchical classifier made of three levels (L1, 
L2, and L3) and four single classifiers (L1, L2, L3.1, and L3.2). The intermediate 
NB1 class includes CHP212 and SKNBE2 cells (grey circle in (h)). The intermediate 
NB2 class includes SHSY5Y and SKNSH cells (cyan circle in (h)). 



132 3.3.     CLASSIFYING CELLS FROM THEIR PHASE SIGNATURES 

 

Following the clues provided by the first-cut data inspection, the hierarchical 

classifier sketched in Figure 3.12(i) has been designed. It is made of a cascade 

of three levels of classification, having single classifiers in the first two levels 

and two alternative classifiers in the last one (L1, L2, L3.1, and L3.2 in Figure 

3.12(i)). In the first level L1, the NB cells are identified with respect to the 

monocytes. Once a NB cell is found, the second level L2 is accessed, in which 

two intermediate NB classes are discriminated, namely NB1 (i.e., CHP212 and 

SKNBE2) and NB2 (i.e., SHSY5Y and SKNSH), consisting of cells lines herein 

artificially grouped inspiring by the Figure 3.12(h). Finally, the third level L3 

is accessed, in which, if the NB1 class is detected, the classification L3.1 

between the CHP212 and SKNBE2 cells is performed, whereas upon detection 

of NB2, the classification L3.2 is realized between the SHSY5Y and SKNSH cells. 

In order to cope these classification tasks, a training set and a test set have 

been created, as summarized in Table 4. In particular, the training set for the 

classification L1 is made of 10000 monocytes QPMs and 10000 NB QPMs. The 

latter are used to create the training set for the classification L2, i.e. 5000 NB1 

QPMs and 5000 NB2 QPMs. Finally, training sets for the classifications L3.1 

and L3.2 are made of 2500 CHP212 QPMs and 2500 SKNBE2 QPMs, and 2500 

SHSY5Y QPMs and 2500 SKNSH QPMs, respectively. To avoid data 

redundancy, 50 QPMs per cell for each cell line have been randomly selected, 

as highlighted in Table 4. The remaining QPMs of the cells belonging to the 

training set have been discarded and not added to the test set, in order to avoid 

any bias in the evaluation of the classification performances. Therefore, the 

test set is created using 29851 QPMs of cells not used for the training. The 

training set is further analysed by using the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [267] to better inspect the dataset by reducing its 

dimensionality. In particular, over the rows of Figure 3.13, the t-SNE results 

are shown when this is applied to the training sets of the four classifiers by 

considering the 24 conventional features (first column), the 13 fractal features 

(second column), and the overall 37 features (third column), termed here 

hybrid features. 
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Table 4 Dataset used for training and testing the different levels of the hierarchical 

classifier. 

Cell Line 
Training Set Test Set 

# Cells # QPMs # Cells # QPMs 

Monocyte THP1 200 10000 47 4032 

Neuroblastoma 

CHP212 50 2500 65 5826 

SKNBE2 50 2500 56 5880 

SHSY5Y 50 2500 16 1717 

SKNSH 50 2500 101 12396 

Total 400 20000 285 29851 

 

Each binary classification task of the hierarchical classifier has been solved by 

training a shallow neural network (one fully connected layer with 100 nodes 

and ReLU activation function) through conventional features, fractal features, 

and hybrid features. This classifier has been chosen among the others due to 

its ability of generalizing better to data belonging to the test set never seen 

before. Moreover, a 5-fold cross-validation has been used to improve the 

generalization property. To quantify the classification performance, the recall 

(𝑅𝐸𝐶) and the accuracy (𝐴𝐶𝐶) have been measured. For a binary classification 

problem between classes 𝐴 and 𝐵, the recall of class 𝐴 is defined as 

(3.5)  𝑅𝐸𝐶𝐴 = 100
𝑇𝐴

𝑇𝐴+𝐹𝐵
, 

while the accuracy of the classifier is defined as 

(3.6)  𝐴𝐶𝐶 = 100
𝑇𝐴+𝑇𝐵

𝑇𝐴+𝑇𝐵+𝐹𝐴+𝐹𝐵
 , 

where 𝑇𝐴 is the number of elements belonging to class 𝐴 and correctly 

classified as class 𝐴, 𝑇𝐵 is the number of elements belonging to class 𝐵 and 

correctly classified as class 𝐵, 𝐹𝐴 is the number of elements belonging to class 

𝐵 and wrongly classified as class 𝐴, and 𝐹𝐵 is the number of elements 

belonging to class 𝐴 and wrongly classified as class 𝐵.  
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Figure 3.13 Representation of the training sets by means of the t-SNE 
algorithm for each classification problem (rows) and for each feature set 
(columns). 
(a-c) Training set for discriminating Monocyte vs. NB cells by means of 24 
conventional features, 13 fractal features, and 37 hybrid features, respectively. 
(d-f) Training set for discriminating NB1 vs. NB2 by means of 24 conventional 
features, 13 fractal features, and 37 hybrid features, respectively. (g-i) Training set 
for discriminating CHP212 vs. SKNBE2 by means of 24 conventional features, 13 
fractal features, and 37 hybrid features, respectively. (j-l) Training set for 
discriminating SHSY5Y vs. SKNSH by means of 24 conventional features, 13 fractal 
features, and 37 hybrid features, respectively. 
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Therefore, the recall 𝑅𝐸𝐶𝐴 is the percentage of elements belonging to class 𝐴 

correctly classified as class 𝐴, while the accuracy 𝐴𝐶𝐶 is the overall percentage 

of elements correctly classified by the model. In Figure 3.14(a,b), respectively 

the recall and the accuracy related to the four classification problems reported 

in Figure 3.12(i) have been computed by using the conventional features, the 

fractal features and the hybrid features, measured over the QPMs of the test 

set. As expected, the highest accuracies in Figure 3.14(b) are reached with the 

hybrid features. Moreover, according to what is observed in Figure 3.13, the 

worst accuracy is related to the classification problem L3.2 because of the 

intrinsic strong similarity between the SHSY5Y and SKNSH NB cells. 

In this analysis, each QPM of the test set is used separately to predict the class 

it belongs to. However, it is possible to exploit the fact that multiple QPMs per 

cell have been collected by implementing a max-voting strategy for each 

classification task of the hierarchical classifier, thus leading to the 

performance reported in Figure 3.14(c,d). The max-voting strategy [193] is 

sketched in Figure 3.14(e) referring to a generic binary classification between 

classes 𝐴 and 𝐵. On the left, some of the 𝑁 QPMs of a single cell flowing and 

rotating along the microfluidic channel are shown. Each QPM is given in input 

separately to the trained model, thus obtaining 𝑁 = 𝑁𝐴 +𝑁𝐵 outputs, where 

𝑁𝐴 is the number of QPMs classified as 𝐴 and 𝑁𝐵 is the number of QPMs 

classified as 𝐵. Finally, the max-voting strategy consists in assigning a cell to 

the class most frequently predicted by the trained model, i.e. 

(3.7)  {
𝑐𝑒𝑙𝑙 ∈ 𝐴𝑖𝑓𝑁𝐴 > 𝑁𝐵
𝑐𝑒𝑙𝑙 ∈ 𝐵𝑖𝑓𝑁𝐵 > 𝑁𝐴

 . 

By comparing the results without and with max-voting summarized in Table 

5 and reported in Figure 3.14(a,b) and Figure 3.14(c,d), respectively, the 

enhancement brought by this strategy is evident in terms of performance for 

each of the classification tasks within the hierarchical model.  
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Figure 3.14 Classification performances within the hierarchical model. 
(a,b) Recall and accuracy, respectively, computed over the QPMs of the test set 
without max-voting by using the conventional features, fractal features, and hybrid 
features. (c,d) Recall and accuracy, respectively, computed over the cells of the test 
set through max-voting by using the conventional features, fractal features, and 
hybrid features. (e) Sketch of the max-voting strategy. For each cell flowing along 
the 𝑦-axis and rotating outside the image plane, 𝑁 QPMs are recorded. For each 
QPM, its features are extracted to feed a shallow neural network and predict its 
class (𝐴 or 𝐵). The cell is assigned to the class that has occurred more times (𝑁𝐴 >
𝑁𝐵  or 𝑁𝐵 > 𝑁𝐴). (f) Sketch of the hierarchical model along with the best 
performances of each classifier obtained after using the reported feature sets 
combined to max-voting. 
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Table 5 Performances of the trained classifiers evaluated over the single QPMs of 

the test sets without max-voting and over the single cells of the test sets 

with max-voting. For each classification problem, the best score is 

highlighted. Values are expressed in %. 

Classification 
Problem 

Feature Set 

Recall [%] Accuracy [%] 

No Max-Voting 
(QPMs) 

Max-Voting 
(Cells) 

No 
Max-

Voting 
(QPMs) 

Max-
Voting 
(Cells) 

L1 

 Monocyte NB Monocyte NB  

Conventional 88.9 85.1 97.9 88.2 85.6 89.8 

Fractal 87.3 85.9 93.6 88.7 86.1 89.5 

Hybrid 90.2 89.0 97.9 95.0 89.2 95.4 

L2 

 NB1 NB2 NB1 NB2  

Conventional 96.4 90.0 98.3 90.6 92.9 94.5 

Fractal 94.9 90.3 96.7 94.9 92.4 95.8 

Hybrid 95.6 92.1 98.3 96.6 93.6 97.5 

L3.1 

 CHP212 SKNBE2 CHP212 SKNBE2  

Conventional 85.6 78.9 93.8 83.9 82.2 89.3 

Fractal 81.8 75.9 90.8 76.8 78.8 84.3 

Hybrid 87.5 79.6 95.4 83.9 83.5 90.1 

L3.2 

 SHSY5Y SKNSH SHSY5Y SKNSH  

Conventional 69.7 64.4 75.0 70.3 65.1 70.9 

Fractal 64.0 65.9 81.2 80.2 65.7 80.3 

Hybrid 65.9 67.3 75.0 75.2 67.1 75.2 

 

In particular, by using the max-voting approach for classifiers trained with 

hybrid features, the accuracy in discriminating monocytes and NB cells 

(classification problem L1) increases from 89.2% to 95.4%, the accuracy in 

discriminating NB1 and NB2 cells (classification problem L2) increases from 

93.6% to 97.5%, and the accuracy in discriminating CHP212 and SKNBE2 cells 

(classification problem L3.1) increases from 83.5% to 90.1%. An even more 

remarkable increment is observed in the most difficult classification problem 

L3.2, consisting in discriminating SHSY5Y and SKNSH cells, in which the best 

accuracy obtained without max-voting (i.e., 67.1% by means of the hybrid 
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features) grows up to 80.3%. However, unlike the other cases, the best 

accuracy is reached by the use of the sole fractal features that outperform the 

hybrid set. This can be an interesting outcome from the AI perspective, since 

the sole fractal geometry can handle the huge informative power of a QPM and 

seems to be able of defining a so distinctive fingerprint for the analyzed cells 

that even adding the conventional features to the fractal set ends up with a 

performance worsening. Finally, the best performance obtained by max-

voting for each classifier within the hierarchical model are reported in Figure 

3.14(f). Notice that, the recall values reported in Figure 3.14(f) are not the 

probabilities of correctly classifying each cell line, since they refer separately 

to each single classifier of the hierarchical model. Instead, to obtain the global 

scores, the probabilities along the several paths of the hierarchical tree must 

be multiplied.  

 

Figure 3.15 Classification and QPM visualization of several cell lines by means 
of TPM-FC. 
(a-e) Global probabilities 𝑃 of correctly classifying monocytes and CHP212, 
SKNBE2, SHSY5Y, and SKNSH NB cells, respectively, obtained after multiplying the 
recall values found along each corresponding path inside the best hierarchical tree. 
(f-j) QPMs taken from dataset exploited for the max-voting-based classification of 
the cell lines in (a-e), respectively. Scale bar is 5 μm. 
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Table 6 Probability of correctly classifying a cell line by means of three different 

models combined to the max-voting strategy. For each cell line, the best 

score is highlighted. Values are expressed in %. 

Classification Model 
Cell Line 

Monocyte CHP212 SKNBE2 SHSY5Y SKNSH 

Hierarchical (3 
classification levels) 

97.9 89.1 78.4 74.5 73.6 

Hierarchical (2 
classification levels) 

97.9 80.4 78.0 71.3 60.2 

Non-Hierarchical 78.7 83.1 69.6 56.2 73.3 

 

For example, the global probability 𝑃𝐶𝐻𝑃212of correctly classifying a CHP212 

cell depends on the probability of correctly classifying a NB cell in the problem 

L1 (i.e., 95.0%), the probability of correctly classifying a NB1 cell in the 

problem L2 (i.e., 98.3%), and the probability of correctly classifying a CHP212 

cell in the problem L3.1 (i.e., 95.4%). Therefore, by multiplying them, the 

global probability 𝑃𝐶𝐻𝑃212 = 89.1% is obtained. This concept is visually shown 

in Figure 3.15(a-e) for each of the cell lines under analysis with the aim to 

provide a global perspective of the expected classification accuracy in the case 

of cell phenotypes identification in a completely blind case where the whole 

hierarchical tree has to be crossed. The corresponding global probabilities are 

summarized in Table 6, while in Figure 3.15(f-j), a QPM for each of the 

analyzed cell line is displayed. Furthermore, the global performances of the 

proposed hierarchical classifier have been compared with those obtained 

through two other possible solutions, i.e. a non-hierarchical model and a 

hierarchical model with 2 levels of classification (the intermediate level L2 

shown in Figure 3.14(f) is avoided), again following the max-voting criterion 

and trained by using the hybrid features (that yielded the best results). In 

particular, in the non-hierarchical model, the shallow neural network is 

trained to directly solve a 5-class classification problem. Instead, the 

hierarchical model with 2 levels of classification solves first a binary 

classification problem between monocytes and NB cells and then a 4-class 
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classification problem among all the NB subtypes. However, as reported in 

Table 6, the performance of the non-hierarchical and hierarchical models with 

2 levels of classification are lower than the hierarchical model with 3 levels of 

classification proposed here, which strongly supports the adopted approach. 

3.4 Classifying Cells from their 3D RI Tomograms 

EC is the sixth most diagnosed cancer in women worldwide [268]. In the past 

few decades, the incidence of EC has increased in many countries [269]. 

Although surgical treatment is effective for early-stage cancers, it is more 

complex for high-risk and advanced diseases. In these latter cases, the best 

therapeutical approach is chemotherapy, which mainly exploits platinum-

based drugs. Among them, cisplatin is believed to effectively affect EC 

proliferation and apoptosis. Unfortunately, the recurrent or advanced disease 

that develops in a minority of patients reduces the therapeutical efficacy 

because of chemoresistance [270]. Hence, in such cases, an accurate 

evaluation of the drug sensitivity of the patient can allow planning a more 

effective individualized chemotherapy. So far, the chemotherapy sensitivity in 

EC patients has been mainly evaluated by the tumour physicians based on the 

presence of tumour biomarkers, gynaecological examinations, magnetic 

resonance or CT imaging [271], without however obtaining very satisfactory 

results [272]. Therefore, in recent years, an alternate method based on a 

biological model of the tumour tissue has been proposed to visually predict 

drug resistance. In particular, the chemotherapy resistance is assessed into 

nude mice after subcutaneous transplantation of tumour tissue or purified 

tumour cells. However, this approach turns out to be expensive and time-

consuming, thus limiting its clinical applications due to a low success rate, too 

[273]. Cell line models are another preclinical tumor model to examine drug 

sensitivity by evaluating the metabolic activity of cells through methyl 
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thiazolyl tetrazolium (MTT) assays as a reflection of cell viability or analyzing 

the RNA-sequencing to detect multiple drug resistance genes. However, 

tumors are genetically diverse, and the cells in the tumor are likely to have a 

small population that is drug-resistant. MTT can only be used to evaluate 

purified tumor cells, which require a long time to establish, and the sensitivity 

of RNA sequencing is relatively low. A promising solution to this challenging 

clinical issue can be found in the well assessed discovery about distinctive 

morphological changes in drug resistant cancer cells [274] [275] [276], which 

means that the sensitivity of tumor cells to different kinds of chemotherapy 

could be accessed through the analysis of parameters from cell morphology. 

Then, single-cell analysis becomes the key-technique to fully exploit this 

property, and IFC is the eligible tool to accomplish this task. However, in FIFC, 

the 2D morphological information can be altered by the exogenous staining 

(photobleaching and photodamaging), and quantitative information about the 

cell biophysical properties cannot be measured from the recorded images, 

thus limiting the understanding of complex phenomena like drug resistance. 

Hence, a label-free and quantitative IFC is needed to study drug resistance. 

Recently, it has been demonstrated that changes of living cells corresponding 

to different chemotherapeutic sensitivity could be quantitatively evaluated 

using QPMs [272]. Furthermore, ML has been exploited for detecting epithelial 

ovarian cancer cells (A2780) with the drug-resistance property [207]. In 

particular, a 92.2% classification accuracy has been reached by training an 

SVM classifier with 20 features extracted from the QPMs of about 2000 cells 

recorded through a HIFC system. In recent years, the employment of AI for 

solving classification problems based on QPI has rapidly increased. Thanks to 

the label-free and quantitative information provided by QPMs, the 

combination between AI and QPI is showing fruitful results. Of course, a 

remarkable boosting of the classification performance is expected by the 

employment of 3D TPM in place of 2D QPI, since the 3D spatial distribution of 

the cell RI can be exploited. However, so far few examples exist in this 

direction [208] [209].  
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Figure 3.16 TPM-FC recording and reconstruction of two ISK cells (a-e) and 
two ISK-CisR cells (f-j). 
(a,f) Recorded holograms of cells flowing along the 𝑦-axis and rotating around the 
𝑥-axis. The scale bar is 20 μm. (b,c,g,h) Centered QPM ROIs containing the cells 
highlighted in (a,f). (d,e,i,j) Three-isolevels representation of the 3D RI tomograms 
of the cells in (b,c,g,h), respectively. For each cell, the intermediate thresholds have 
been set as the 65% and the 90% of the maximum RI value, as reported in the 
colorbars below. 
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The main limitation is the difficulty in creating large datasets for training an 

AI model. For this reason, the high-throughput property of TPM-FC is expected 

to provide a solution to overcome this obstacle. Here, for the first time, the 

TPM-FC has been exploited to characterize the 3D RI tomograms of suspended 

cells and classify them by means of ML models [217]. In particular, this 

strategy is followed for solving the challenging problem of detecting non-drug 

resistant and drug resistant cells within the same EC cell line (i.e., ISK cells and 

ISK-CisR cells, respectively). The ISK cell line is a well-differentiated 

adenocarcinoma, oestrogen receptor α (ERα)(+), ERβ(+), and progesterone 

receptor (PR)(+) cell line derived from the American Type Culture Collection. 

The drug-resistant characteristic of ISK-CisR cells has been induced by 

exposing ISK cells to cisplatin for 10 months. The TPM-FC system in Figure 2.5 

(microfluidic channel with 200 µm × 200 µm cross section coupled to a 

1024×1024 CCD camera with 5.5 µm pixel size recording at 20 fps and a 20× 

MO, NA=0.50) has been employed to reconstruct the 3D RI tomograms of 89 

ISK cells and 89 ISK-CisR cells. Two frames from the recorded holographic 

videos are shown in Figure 3.16(a,f) about the ISK and ISK-CisR cells, 

respectively, while the corresponding QPMs and 3D RI tomograms are 

displayed in Figure 3.16(b,c,g,h) and Figure 3.16(d,e,i,j), respectively. 

From the 3D tomograms, 67 features have been extracted, which can be 

grouped as morphological and texture features, as summarized in Table 7. In 

particular, there are 26 morphological features, such as volume, surface, 

sphericity, and equivalent diameter. The remaining texture parameters can be 

divided into four categories of statistical features based on the histogram, 

GLCM, neighborhood grey-tone difference matrix (NGTDM), and grey-level 

size zone matrix (GLSZM). Instead, from one single 2D QPM for each 

reconstructed tomogram, 54 corresponding features have been measured to 

compare the classification performance. More details and a list of all the 

features are provided in Appendix A.2. In Figure 3.17, the histograms of 5 

corresponding 3D and 2D features are displayed. From the histograms, it can 

be seen that there are some differences in the feature data distribution 
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between the two cancer cells, especially the gradient feature in Figure 

3.17(d,i). However, by comparing the overall distribution of 3D features with 

respect to the 2D ones, a slightly higher difference between the two 

populations can be inferred. Moreover, the distributions of ISK cells’ 3D 

features are more concentrated, while ISK-CisR cells are relatively dispersed. 

 

Figure 3.17 Histograms of different 3D features (a-e) and 2D features (f-j) of 
EC cells. 
(a) Surface. (b) Volume. (c) 3D diameter. (d) Mean gradient. (e) GLCM contrast. 
(f) Perimeter. (g) Area. (h) 2D diameter. (i) Mean gradient. (j) GLCM contrast. 

Table 7 Feature extraction from 3D RI tomograms and 2D QPMs. 

Feature Type 
# Features from 3D 

tomograms 
# Features from 2D 

QPMs 

Morphology 26 13 

Histogram 6 6 

GLCM 19 19 

NGTDM 5 5 

GLSZM 11 11 

Total 67 54 
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To further explore and understand the performance of the extracted features, 

three different univariate analysis methods have been used, i.e. variance 

analysis [277], Pearson correlation coefficient [278], and Chi-square test 

[279]. Variance represents the divergence of the data distribution. A lower 

variance means that the feature data are relatively concentrated, and their 

contribution to the classifier is smaller. The significance level 𝛼 in this method 

has been set as 0.01. Pearson correlation coefficient is a simple way to 

understand the correlation between a certain feature and its responding 

variable. Herein, a feature has been considered statistically significant 

whether no correlation with the other ones is observed, i.e. the Pearson 

correlation coefficient is always less than 0.2. At last, a two-sided p-value less 

than 0.05 from the Chi-square test has been considered statistically significant. 

The result of the significance evaluation of features is shown in Figure 3.18(a). 

There are differences in the results obtained by different methods. The 

number of significant features evaluated by the Pearson method is much more 

than by the Chi-square test, although 0.2 is a very strict standard for the 

Pearson method. The numbers of non-significant features by variance analysis 

are the same in 3D and 2D. However, the proportion of significant parameters 

in the 3D features set is higher than the corresponding proportion in the 2D 

features set for all the methods. This is a remarkable result suggesting that 3D 

features, which contain more cell information, can distinguish cells' drug 

resistance better. In Figure 3.18(b,c), the heat maps of correlation coefficients 

between extracted features are reported. The darker the color, the stronger 

the correlation between them, and the less informative they are when used 

jointly, indicating that they can yield more similar contributions to the cells 

classification task. The diagonal elements of the matrix are autocorrelation of 

each feature and thus have value 1. In Figure 3.18(b), the subsets in the yellow 

box show a large correlation between several 3D morphology features. In 

Figure 3.18(c), two subsets of 2D morphology and GLCM features show a large 

correlation. This means that features in the boxes describe more similar cell 

information, but it does not mean that their classification performances are 
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worse than other features. Overall, the correlation between 2D features is 

higher than 3D features. 

Several ML methods have been used to classify the feature data of the two 

kinds of EC cells, such as Trees, Naïve Bayes, k-nearest neighbor (KNN), 

support vector machine (SVM), LR, and linear discriminant analysis (LDA). 

The ensemble learning strategy of the random subspace method (RSM) [280] 

has been used to randomly select partial features to train the classifiers in 

order to reduce redundant features' influence on classification results. 

 

Figure 3.18 Significance analysis of the 3D and 2D features extracted from EC 
cells. 
(a) Number of significant and non-significant 3D and 2D features tested by three 
different univariate analysis methods. (b,c) 5 correlation matrix of 67 3D features 
and 54 2D features, respectively, visualized as heat maps. The diagonal elements 
of the matrix are autocorrelation of each parameter. 
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The performances of the classifiers have been evaluated by the predicted 

results and receiver operating characteristic (ROC) analysis. Specificity, 

sensitivity, and accuracy of predicted results, and area under ROC curve (AUC) 

have been applied as the evaluation parameters. 

As the feature number of the 3D RI tomograms is 67, the data set for ML is a 

matrix with 178×67 data points. The 54 features extracted from the 

corresponding 2D QPMs form a 178×54 dataset. The order difference between 

different features is large, influencing classification learning. So, the feature 

sets have been first standardized between 0 and 1 using the linear 

normalization method. For more accurately training and testing the datasets 

and avoiding the overfitting problem, 5-fold cross-validation has been used in 

the training process. Each dataset is divided into 6 subsets. For each round, 

there are 4 subsets for training and 1 subset for validation in the training 

process, and the left 1 subset for testing the trained classifier. The final 

performance of each classification method is calculated by averaging the 

results of 6 rounds. Table 8 shows the performance of different classification 

methods on 3D and 2D features. In Table 8, the LDA classifier achieves the best 

performance for 3D image classification with the highest score on the four 

evaluation parameters, while SVM achieves the highest score for 2D feature 

data. Although the best performance of 2D features is not as good as that of 3D 

features, 2D features still get better classification results by Trees and Naïve 

Bayes classifiers. The sensitivity is generally higher than specificity for all the 

classifiers with 2D features, but 3D features does not show this rule, which 

indicates that 3D feature data are more robust. Then, the RSM has been 

applied to the LDA classifier to test the classification performances when a 

different number of features is selected. As shown in Figure 3.19, the 

classification accuracy of the feature set with numerousness from 10 to 54 for 

2D features and 10 to 67 for 3D features has been tested. As can be seen from 

the curves, the classification accuracy increases as the number of features 

increases when the number is relatively small. 
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Table 8 Comparison of the performance of different classifiers with 3D / 2D image 

features. 

Classifier 
Performance 

Specificity Sensitivity Accuracy AUC 

Trees 0.79 / 0.86 0.82 / 0.83 0.803 / 0.847 0.84 / 0.86 

Naïve Bayes 0.72 / 0.76 0.82 / 0.87 0.770 / 0.816 0.85 / 0.90 

KNN 0.79 / 0.83 0.92 / 0.86 0.854 / 0.847 0.93 / 0.90 

SVM 0.88 / 0.88 0.97 / 0.86 0.921 / 0.874 0.96 / 0.93 

LR 0.89 / 0.88 0.98 / 0.82 0.933 / 0.800 0.96 / 0.84 

LDA 0.91 / 0.84 0.98 / 0.88 0.944 / 0.863 0.97 / 0.90 

Subspace-LDA 
(50 features / 
 40 features) 

0.94 / 0.86 0.98 / 0.89 0.961 / 0.879 0.98 / 0.94 

 

 

Figure 3.19 LDA classification accuracy of the different subspace of features 
selected by RSM. 
In the 3D case, the maximum 96.1% accuracy is obtained with 50 features, while, 
in the 2D case, the maximum 87.9% accuracy is reached with 40 features. 

However, after a certain number of features, increasing the number reduces 

the classification accuracy, indicating that the features have become 

redundant. In this case, the optimal number for 2D features is about 40 and for 

3D features is about 50, as detailed in the last row in Table 8. It can be seen 
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that using the RSM to select multiple subsets of features can improve the 

classification performance for both 2D and 3D features. Remarkably, the 3D 

feature set allows recognizing the drug-resistant cells with 96.1% accuracy, 

94% sensitivity, and 98% specificity. 

In summary, chemotherapy is important in the treatment of EC. Identifying 

drug resistance in EC cells is critical for chemotherapeutic treatment. 

However, there is no rapid and effective method to identify drug-resistant 

cancer cells for now. Here it has been proved for the first time that TPM-FC 

combined to ML allows identifying two EC cells (i.e., drug-sensitive ISK cells 

and drug-resistant ISK-CisR cells) with the best classification accuracy of 

96.1% reached by the LDA classifier fed by 50 3D features selected through 

RSM [217]. 



 

 

 
 

 

 

 

 

 

 

 



 

 
 

CHAPTER 

4 Stain-Free Intracellular 
Specificity in TPM-FC 

Traditional tools of histopathology will evolve soon, and the future of early 

diagnosis and precision medicine will pass through the accurate screening of 

single cells. A key challenge that will allow the next jump forward is achieving 

a more informative label-free microscopy. As discussed in previous Chapters, 

the gold standard imaging tool in cell biology is FM, in which stains or 

fluorescent tags are used to make the biological sample visible on a selective 

basis. Nevertheless, due to the FM limitations, avoiding staining permits one 

to access non-destructive, rapid, and chemistry-free analysis in biology and 

medicine. However, the advantages of label-free QPI and TPM are 

counterbalanced by the lack of direct intra-cellular specificity. Recently, 

significant progresses have been reported to introduce specificity in QPI by AI. 

Generative networks for cross-modality imaging and virtual staining are good 

examples in this sense. Networks for improving data analysis have been 

reported and commercialized as well, as in the case of the Nikon NIS.AI 

software suite that virtually stains and can segment the organelles from label-

free images of cells in adhesion. In NIS.AI, conventional segmentation of 2D 

labelled images is used to pre-train the network, which can then emulate the 

process when requested by the users. 

To illustrate the state of the art for intracellular specificity, the summary 

diagram shown in Figure 4.1 compares various label-free and fluorescent 

techniques. Unlike the label-free bioimaging (blue box), the FM bioimaging 

(yellow box) has intracellular specificity because organelles are marked, but it 

is qualitative and limited by the staining itself.  
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Figure 4.1 Comparison between label-free and fluorescent bioimaging in 
microscopy. 
The methods in the red box allow to fill the specificity gap between the (blue box) 
label-free and (yellow box) FM techniques. The dashed lines highlight the FM 
techniques that could be replaced by the label-free ones. DL has been employed to 
virtually stain unlabelled tissues [281] [282] [283] as well as single cells [284] 
[285] in QPMs. The concept of virtual staining has then been extended to 3D RI 
tomograms of adherent samples, thus showing an AI-based RI to fluorescence 
mapping for the identification of the stain-free nucleus [286] and other 
endogenous subcellular components [287]. The computational techniques here 
proposed (green pathway) fill a blank in the bioimaging realm because, in terms of 
specificity, they make the TPM-FC consistent with both the 2D FIFC, the 3D FM 
confocal microscopy, and the 3D FIFC. 

The methods in the red box allow to fill the specificity gap between the label-

free and FM techniques (dashed lines). In particular, a Generative Adversarial 

Network has been employed to virtually stain unlabelled tissues (PhaseStain 

[281]) as well as single cells (PICS [284] and HoloStain [285]) in QPMs, i.e. in 

a 2D imaging case. Digital staining through the application of DCNNs has been 

successfully applied to multi-modal multi-photon microscopy in 

histopathology of tissues [282]. A neural network has also been used to 

translate autofluorescence images into images that are equivalent to the 

bright-field images of histologically stained versions of the same samples, thus 

achieving virtual histological staining [283]. In the 3D imaging case, organelles 
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of unlabelled and adhered cells have been identified using a DCNN [286] [287] 

to introduce specificity in TPM reconstructions, thus making 3D label-free 

TPM equivalent to the well-established 3D confocal microscopy, but only for 

static analysis of fixed cells at rest on a surface. Instead, the specificity 

property of FM confocal microscopy has not been replicated yet on static 

suspended cells in a label-free manner. In addition, the light-sheet FM has been 

recently integrated to microfluidic circuits, thus creating a 3D FM flow 

cytometer [288] [289], but the label-free technique equivalent in terms of 

specificity does not exist yet. 

In this Chapter, computational methods herein developed for segmenting 

stain-free intracellular organelles in 3D RI tomograms reconstructed by 

TPM-FC are described. In particular, it is discussed the segmentation of 

endogenous organelles like the nucleus [290], nucleolus [290], and LDs [291], 

even exploiting the intracellular biolens signature [292] [293], as well as 

exogenous particles like nanoGraphene Oxide (nGO) [294]. As sketched by the 

green dashed lines in Figure 4.1, the proposed technology allows filling a blank 

in the bioimaging realm because, in terms of specificity, TPM-FC is the only 

tool able to become consistent with 3D FIFC. But, unlike the 3D FIFC, TPM-FC 

can provide direct measurements at the stain-free intracellular level of 

intrinsic 3D parameters (morphology, RI, and their derivatives, like dry-mass) 

correlated to cell physiology and health state. Finally, a method for 

compressing the 3D RI tomogram into a greatly smaller 1D sequence with a 

negligible intracellular information loss is herein introduced [295].

4.1 Nucleus Specificity  

Among all intracellular structures, the nucleus is the principal one in the 

eukaryotic cell since it contains most of the genetic material and it is 

responsible for the cellular lifecycle. Identifying the nucleus through label-free 
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3D imaging is a challenging task since the nuclear size and RI can vary among 

different cell lines, within the same cell line, and even within the same cell, 

depending on the lifecycle’s phases. In addition, different subcellular 

structures show similar RI values [296], thus making any threshold-based 

detection method ineffective. So far, the only method for segmenting the 

nucleus from RI tomograms has been proposed in static TPM and is based on 

the employment of a DCNN, which is trained by means of FM confocal images 

of single-cells with the nucleus stained by exogenous labels [286]. However, 

any network that learns from examples of fluorescence emissions is inherently 

biased by the labelling process itself (e.g., photobleaching and 

photodamaging) and thus cannot perform better than the ground-truth. 

Moreover, in the case of flowing biological cells in suspension, a voxel-level 

registration between 3D RI and 3D fluorescence is not obtainable, so that 

DCNNs cannot learn from examples of tomograms pairs. In the absence of a 

deterministic ground-truth, the method proposed here, named as 

Computational Segmentation based on Statistical Inference (CSSI), avoids the 

learning step and exploits a robust ad hoc clustering algorithm for segmenting 

the nucleus in 3D TPM-FC, i.e., it recognizes statistical similarities among 

groups of nucleus voxels [297]. The output of the CSSI algorithm is the best 

convex hull that overlaps to the cell nucleus, i.e., the smallest convex region 

that on average contains it. Although this approximation error is expected to 

be low as the nucleus has mostly a convex shape, hereafter the segmented 

region will be referred as nuclear organelle convex hull (OCH). 

To validate the CSSI method, it has been firstly tested and assessed on a 3D 

numerical cell phantom simulation, modelled with the cell membrane, 

nucleus, cytoplasm, and mitochondria, as shown in Figure 4.2(a) (see 

Appendix A.3 for more details). As reported by the histogram in Figure 4.2(b), 

a RI distribution has been assigned to each of the four sub-cellular structures. 

This 3D numerical cell phantom has been used to assess the proposed CSSI 

algorithm for nucleus segmentation. However, nucleus segmentation is only 

one case of a more general technique which in principle can segment any kind 
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of subcellular structure with a suitable spatial resolution, because it only 

exploits the hypothesis of knowing the location of a group of voxels belonging 

to the organelle to be segmented, considered as the initial reference set. In fact, 

the CSSI method is based on the Wilcoxon-Mann-Whitney (WMW) test [298] 

[299], that is a statistical test used to reject or not the hypothesis for which a 

test set has been drawn from the same distribution as the designed reference 

set. In particular, the steps depicted in the scheme in Figure 4.2(c) are 

performed as follows. 

• Rough clustering of the organelle voxels, exploiting the WMW test to 

infer the statistical similarity between different voxel clouds (i.e. the 

test sets) and a certain voxel cloud (i.e. the initial reference set) which 

contains the voxels supposed to belong to the organelle of interest. 

• Filtering of the outlier organelle voxels when they are too far away 

from the centroid of the rough organelle cluster in terms of both 

geometric and statistical distances. 

• Refinement of the filtered organelle cluster to improve its external 

shape by adding/removing smaller voxel clouds. 

• Filling of the holes and smoothing of the corners of the refined 

organelle cluster by common morphological operators. 

Notice that, whenever the WMW test is used, the reference set is randomly 

selected from the last estimation of the organelle cluster until that 

moment, to match its dimensionality with that of the test set, thus 

preserving the fairness of the statistical test. Due to this random selection, 

by repeating several times the described steps, at each iteration 𝑗 =

1, 2, … , 𝐾, a slightly different estimation of the OCH can be obtained. The 

output of each iteration is a binary valued 3D volume whose non-null 

values correspond to the voxels associated with the organelle. Therefore, 

the sum of all the𝐾 outputs provides a tomogram of occurrences, from 

which the probability that a voxel belongs to the organelle can be inferred 
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through a normalization operation. Finally, the OCH is identified by a 

suitable probability threshold. A detailed description of the CSSI algorithm 

is reported in Appendix A.4. Here the problem of stain-free nucleus 

segmentation is considered, therefore the initial reference set is associated 

to the central voxels of the cell. Indeed, for many kinds of suspended cells, 

the central voxels belong to the nucleus. This property occurs especially in 

the case of cancer cells. 

 

Figure 4.2 Numerical assessment of the CSSI algorithm applied to segment 
the 3D nuclear OCH from a 3D numerical cell phantom. 
(a) Isolevels representation of the 3D cell model, simulated with four sub-cellular 
components, i.e., cell membrane, cytoplasm, nucleus, and 18 mitochondria. (b) 
Histogram of the RI values assigned to each simulated sub-cellular structure in (a). 
The red arrow at the top highlights the RI values assigned to the transition region 
between the nucleus and cytoplasm. (c) Block diagram of the CSSI method to 
segment the nuclear OCH from a stain-free 3D RI tomogram. (d) Visual comparison 
between the simulated 3D nucleus and the 3D nuclear OCH segmented from the 
simulated RI tomogram in (a). The simulated nucleus and the segmented nucleus 
are marked in red within the blue cell shell. The clustering performances obtained 
in this simulation are reported below (see their definitions in Table 9). 
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This is confirmed by the 2D images of the SKNSH NB cells recorded through a 

2D FIFC system (i.e., Amnis ImageStream®), as shown in Figure 4.3, by the 3D 

morphological parameters reported in the literature for human breast cancer 

MCF7 cells imaged through a 3D FM confocal microscope [179], and more 

generally by the increase of the nucleus-cytoplasm ratio demonstrated in 

cancer cells [300] [301] [302] [303] [304]. On the left in Figure 4.2(d), the sole 

simulated nucleus is reported in red within the blue cell shell, while on the 

right the nucleus segmented from the 3D numerical cell phantom through the 

CSSI algorithm is displayed. The visual comparison in Figure 4.2(d) suggests 

that the proposed CSSI method allows segmenting a nucleus region very close 

to the original one, as also confirmed by the great quantitative performances 

reported below the tomograms. Moreover, to numerically assess the proposed 

3D CSSI algorithm, it has been applied to reconstruct the nuclei of 1000 

numerical cell phantoms simulated by randomly drawing their morphological 

and RI parameters from the distributions described in Appendix A.3.  

 

Figure 4.3 2D FIFC images of SKNSH cells recorded by Amnis ImageStream®. 
Three cells recorded simultaneously in brightfield images (top) and fluorescent 
images with the stained nucleus (bottom). The contour of the nucleus segmented 
by using the fluorescence information is overlapped in red. Scale bar is 5 μm. 
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The overall CSSI performances are summarized in the first column of Table 9 

by means of 9 metrics, which corresponding histograms are displayed in blue 

in Figure A.8. It is worth pointing out that, in order to simplify the description 

of the CSSI algorithm and highlight its results about the stain-free nucleus 

identification, so far the presence of the nucleolus within the 3D numerical cell 

phantoms has been neglected. The extended analysis with the simulation of 

the nucleolus reported in Appendix A.5 highlights that the presence of nucleoli 

inside the nucleus does not substantially deteriorate the performances of the 

CSSI nucleus segmentation algorithm (see the second column of Table 9 and 

the corresponding orange histograms in Figure A.8). For example, the 

accuracy passes from an average value of 𝐴𝐶𝐶 = 96.28 % in the case without 

the nucleolus to an average value of 𝐴𝐶𝐶 = 95.86 % in the case with nucleolus. 

As regards the experimental assessment of the CSSI algorithm, the TPM-FC 

system in Figure 2.5 (microfluidic channel with 200 µm × 200 µm cross section 

coupled to a 2048×2048 CMOS camera with 5.5 µm pixel size recording at 35 

fps and a 40× MO, oil immersion, NA=1.30) has been employed to record the 

holograms of five human SKNSH NB cancer cells and three human MCF7 breast 

cancer cells. The tomographic reconstructions obtained by the FBP algorithm 

has been used in this study as initial guess of the LT algorithm described in 

Section 1.3.5, here exploited for enhancing the quality of the 3D RI tomograms 

[86]. The proposed CSSI method has been used to retrieve the 3D nuclear 

OCHs inside the reconstructed tomograms. The isolevels representation of an 

SKNSH cell is shown in Figure 4.4(a), highlighting in red the 3D segmented 

nuclear OCH within the blue cell shell. Moreover, its central slice is displayed 

in Figure 4.4(b), in which the segmented nucleus is marked by the red line, 

while in Figure 4.4(c) the corresponding 3D RI histogram is reported in green, 

separating in red and in blue the contributions of the 3D nuclear OCH and the 

3D non-nucleus region, respectively. To experimentally assess the 3D 

segmentation technique, the segmented 3D TPM-FC reconstruction has been 

projected back to 2D where the experimental 2D FIFC images are available for 

comparison.  
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Table 9 Performances in computing the nuclear OCH (without and with nucleoli) 

and a single nucleolar OCH over the same dataset of 1000 3D numerical 

cell phantoms. TP (True Positive) is the number of voxels that are correctly 

classified as organelle, TN (True Negative) is the number of voxels that are 

correctly classified as non-organelle, FP (False Positive) is the number of 

voxels that are wrongly classified as organelle, and FN (False Negative) is 

the number of voxels that are wrongly classified as non-organelle. 

Metric Mathematical Definition 

Mean ± Standard Deviation [%] 

Nuclear OCH Single 

Nucleolar 

OCH 

Without 

Nucleoli 

With  

Nucleoli 

True Positive 

Rate (Sensitivity 

or Recall) 

TPR = SENS =
TP

TP + FN
 

94.97 ± 

5.01 

92.08 ± 

5.47 

88.84 ± 

5.11 

True Negative 

Rate (Specificity) 
TNR = SPEC =

TN

TN + FP
 

96.92 ± 

2.59 

97.69 ± 

2.05 

99.88 ± 

0.06 

Positive 

Predictive Value 

(Precision) 

PPV =
TP

TP + FP
 

93.75 ± 

4.28 

95.07 ± 

3.74 

89.86 ± 

4.19 

Negative 

Predictive Value 
NPV =

TN

TN + FN
 

97.61 ± 

2.46 

96.29 ± 

2.82 

99.87 ± 

0.07 

Accuracy ACC =
TP + TN

TP + TN + FP + FN
 

96.28 ± 

1.71 

95.86 ± 

1.65 

99.75 ± 

0.07 

Balanced 

Accuracy 
BA =

TPR+ TNR

2
 

95.95 ± 

2.17 

94.89 ± 

2.31 

94.36 ± 

2.54  

F1 Score F1 =
2TP

2TP + FP + FN
 

94.17 ± 

2.42 

93.36 ± 

2.33 

89.16 ± 

2.34 

Matthews 

Correlation Coeff. 

(Phi Coeff.) 

MCC

=
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN+ FN)
 

91.60 ± 

3.36 

90.53 ± 

3.28 

89.13 ± 

2.30 

Fowlkes–

Mallows Index 
FM = √PPV × TPR 

94.26 ± 

2.27 

93.47 ± 

2.22 

89.25 ± 

2.27 
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In particular, the segmented RI tomogram is digitally rotated from 0° to 150° 

with 30° angular step around 𝑥-, 𝑦-, and 𝑧-axes, and then its silhouettes along 

the 𝑧-, 𝑥-, and 𝑦-axes, respectively, are considered to create 2D TPM-FC 

segmented projections, as sketched in Figure 4.4(a). According to the ray 

optics approximation in Eq. (1.1), the phase measured by DH is directly 

proportional to the integral of the RI values along the direction perpendicular 

to the plane of the camera. In this way, 18 unlabelled QPMs are obtained. As 

shown in a re-projected QPM on the left in Figure 4.4(d), it is cumbersome to 

recognize a sub-cellular structuring since no label is employed. However, 

thanks to the proposed 3D CSSI algorithm, the region occupied by the nucleus 

can be also marked (red line) in the 2D TPM-FC projection within the outer 

cell (blue line). This process has been exploited to further assess the proposed 

segmentation algorithm, by comparing the 3D results obtained through the 

TPM-FC technique with a conventional 2D FIFC system (i.e. Amnis 

ImageStream®). The latter has been used to record 11549 2D FIFC images of 

flowing SKNSH single cells, in which the nuclei have been stained through 

fluorescent dyes. On the right in Figure 4.4(d), the bright-field image of an 

SKNSH cell has been combined with the corresponding fluorescent image of 

the marked nucleus, therefore the false-color visualization makes the nucleus 

easily distinguishable (red line) with respect to the outer cell (blue line). 

Amnis ImageStream® can record a single random 2D image for each cell since 

it goes through the FOV once. Instead, TPM-FC allows the 3D tomographic 

reconstruction of a single cell. Through the reprojection process, the transition 

of the reconstructed cell within the Amnis ImageStream® FOV has been 

simulated at different 18 3D orientations with respect to the optical axis. In 

this way, the Amnis ImageStream® recording process has been digitally 

replicated and the dataset of 2D TPM-FC images has been increased avoiding 

a high correlation between the reprojections of the same cell, thanks to the 

choice of a big angular step (i.e., 30°).  
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Figure 4.4 Experimental assessment of the CSSI algorithm in segmenting the 
3D nuclear OCHs from unlabelled TPM-FC reconstructions of 5 SKNSH cells, 
by comparison with the morphological parameters of a 2D FIFC system. 
(a) 3D segmented nucleus (red) within the 3D cell shell (blue) of an SKNSH cell 
reconstructed by TPM-FC. The segmented tomogram is rotated around the x-, y-, 
and z-axes (orange arrows) and then reprojected along the z-, x-, and y-axes (white 
arrows), thus obtaining 2D TPM segmented projections in xy-, yz-, and xz-planes, 
respectively. (b) Central slice of the isolevels representation in (a), with nucleus 
marked by the red line. (c) RI histogram of the SKNSH cell in (a,b) reconstructed 
by 3D TPM-FC (green), along with the RI distributions of its 3D nuclear OCH (red) 
and non-nucleus region (blue) segmented by CSSI algorithm. (d) 2D segmented 
projection with nucleus (red line) and non-nucleus (blue line) regions, obtained 
(on the left) by reprojecting 3D unlabelled TPM-FC RI reconstruction in (a,b) and 
(on the right) by recording 2D labelled FIFC images. The scale bar is 5 μm. (e) 3D 
scatter plot of nucleus size vs. nucleus shape vs. nucleus position measured in 
11549 FIFC (blue dots) and 90 TPM (red dots) 2D projections. (f-h) 2D scatter 
plots of nucleus size vs. nucleus shape, nucleus size vs. nucleus position, and 
nucleus shape vs. nucleus position, respectively, containing the same points in (e). 
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Hence, in the 3D scatter plot in Figure 4.4(e), some 2D morphological 

parameters representative of nucleus size, nucleus shape, and nucleus 

position have been compared, i.e. nucleus-cell area ratio (NCAR), nucleus 

aspect ratio (NAR), and normalized nucleus-cell centroid distance (NNCCD), 

respectively, measured from both 90 TPM images (red dots) and 11549 FIFC 

images (blue dots). In particular, the NAR has been computed as the ratio 

between the minor axis and the major axis of the best-fitted ellipse to the 

nucleus surface, while the nucleus-cell centroid distance refers to 2D centroids 

and has been normalized to the radius of a circle having the same area of the 

cell, thus obtaining NNCCD. The 3D scatter plot highlights the very good 

agreement between TPM-FC and FIFC 2D nuclear features since the TPM-FC 

red dots are completely contained within the FIFC blue cloud. In addition, by 

using the one-sample multivariate Hotelling's T2 test [305] between TPM-FC 

and FIFC measurements about NCAR, NAR, and NNCCD, a high p-value has 

been obtained, i.e. 0.962, according to which it is not rejected with high 

confidence level the hypothesis that TPM-FC and FIFC 2D nuclear features 

have been drawn from the same distributions. This quantitative comparison 

is summarized in Table 10. Moreover, to better visualize the 3D scatter plot in 

Figure 4.4(e), it has been split into three different 2D scatter plots, shown in 

Figure 4.4(f-h). 

Table 10 2D morphological parameters of SKNSH cells measured in labelled nuclei 

segmented from 11549 2D FIFC images and in unlabeled nuclei segmented 

by CSSI algorithm from 90 2D reprojections of five TPM-FC 

reconstructions. 

 

 

Mean Value p-value 

Hotelling’s T2 test TPM-FC FIFC 

nucleus size nucleus-cell area ratio 0.404 0.406 

0.962 nucleus shape nucleus aspect ratio 0.839 0.838 

nucleus position normalized nucleus-cell 
centroid distance 

0.116 0.118 
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As regards the MCF7 cells, an example of RI reconstruction and CSSI nucleus 

segmentation is shown in Figure 4.5(a,b). In particular, the nucleus shell is 

marked in red within the blue cell shell in the isolevels representation of 

Figure 4.5(a), which segmented central slice is displayed in Figure 4.5(b). 

Moreover, in Figure 4.5(c), its 3D RI histogram is displayed in green, also 

separating the RI distribution of the 3D nuclear OCH (red) and the 3D non-

nucleus region (blue).  

 

Figure 4.5 Experimental assessment of the CSSI algorithm in segmenting the 
3D nuclear OCHs from unlabelled TPM-FC reconstructions of 3 MCF7 cells, by 
comparison with the morphological parameters of a 3D FM confocal 
microscope. 
(a) 3D segmented nuclear OCH (red) within unlabelled 3D cell shell (blue) 
reconstructed through TPM-FC. (b) Central slice of the isolevels representation in 
(a), with nucleus marked by the red line. (c) RI histogram of the MCF7 cell in (a,b) 
reconstructed by 3D TPM-FC (green), along with the RI distributions of its 3D 
nuclear OCH (red) and non-nucleus region (blue) segmented by CSSI algorithm. 
(d-f) Scatter plots of nucleus size vs. nucleus shape, nucleus size vs. nucleus 
position, and nucleus shape vs. nucleus position, respectively, measured in three 
segmented TPM-FC MCF7 nuclei (red dots) along with the corresponding FM 
intervals (blue rectangles) around the average values, with half-width 1σ, 2σ, and 
3σ (σ is the standard deviation of the measurements).  
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In this case, the experimental assessment is based on a quantitative 

comparison with the 3D morphological parameters measured in [179], in 

which a confocal microscope has been employed to find differences between 

viable and apoptotic MCF7 cells through 3D morphological features 

extraction. In that study, 206 suspended cells were stained with three 

fluorescent dyes to measure average values and standard deviations of 3D 

morphological parameters about the overall cell and its nucleus and 

mitochondria. A synthetic description of 3D nucleus size, shape, and position 

is given by nucleus-cell volume ratio (NCVR), nucleus surface-volume ratio 

(NSVR), and normalized nucleus-cell centroid distance (NNCCD), respectively. 

In particular, in this case, the nucleus-cell centroid distance refers to 3D 

centroids and has been normalized with respect to the radius of a sphere 

having the same cell volume, thus obtaining NNCCD. Moreover, it is worth 

underlining that NCVR and NSVR are direct measurements reported in [179], 

while NNCCD is an indirect measurement since it has been computed by using 

the direct ones in [179]. In the 2D scatter plots in Figure 4.5(d-f) regarding 

nucleus size, shape, and position, the three TPM-FC measurements (red dots) 

are reported along with three blue rectangles, which are the intervals 𝜇 ± 1𝜎, 

𝜇 ± 2𝜎, and 𝜇 ± 3𝜎, with 𝜇 the average value and 𝜎 the standard deviation of 

the same parameters measured by 3D FM confocal microscopy. These scatter 

plots highlight a very good agreement between the 3D nucleus identified in 

labelled static MCF7 cells by confocal microscopy and the 3D nucleus 

segmented in unlabelled flowing MCF7 cells by the proposed CSSI algorithm. 

In fact, all the TPM-FC values are located in the 1σ-interval around the FM 

average values, except for shape measurement, that is anyway located in the 

2σ-interval around the FM average value (Figure 4.5(d,f)). The values shown 

in Figure 4.5(d-f) are summarized in Table 11. 
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Table 11 3D morphological parameters of MCF7 cells measured in labeled nuclei 

segmented from 3D FM confocal images [179] and in unlabeled nuclei 

segmented by CSSI algorithm from three TPM-FC reconstructions. 

 

 
FM 

TPM 

cell 1 

TPM 

cell 2 

TPM 

cell 3 

nucleus size nucleus-cell volume ratio 0.3396 ± 0.0939 0.296 0.415 0.315 

nucleus shape nucleus surface-volume 
ratio [μm-1] 

0.713 ± 0.103 0.702 0.531 0.635 

nucleus position normalized nucleus-cell 
centroid distance 

0.152 ± 0.108 0.053 0.141 0.172 

 

In summary, in this study an entirely new strategy for bridging the gap 

between FM and TPM in terms of subcellular specificity has been introduced 

and discussed. In particular, for the first time it has been demonstrated the 

capability to identify the cell nucleus from 3D RI tomograms in stain-free cells 

analyzed in FC modality. To provide a general overview of the differences, 

advantages, and limitations of the main methods that aim at introducing 

nucleus specificity, the most significant efforts towards this goal have been 

compared in Table 12 by just pointing out the field of application of each listed 

technique in respect of what was claimed in the related work. Therefore, each 

cell of Table 12 is filled with flags or crosses depending on whether the 

corresponding method possesses or lacks a certain attribute, each of them 

being highly pursued in the bioimaging field. The CSSI method is very 

promising to promote label-free TPM with nucleus specificity since it 

addresses all the required attributes shown in Table 12. In particular, the 

proposed CSSI algorithm allows TPM-FC to reach the same results of 2D FIFC, 

but without using dyes and preserving its high-throughput property. 

Furthermore, the TPM reprojections are much more informative than the FM 

images (see Figure 4.4(d)).  



166 4.1.     NUCLEUS SPECIFICITY 

 

Table 12 Properties of the methods for the nucleus identification. 

 Label-free 3D Flow 

Cytometry 
Specificity  

QPI ✔ ✕ ✔ ✕ 

TPM ✔ ✔ ✔ ✕ 

FIFC ✕ ✕ ✔ ✔ 

FM Confocal Microscopy  ✕ ✔ ✕ ✔ 

Light-Sheet FM [288] [289] ✕ ✔ ✔ ✔ 

PhaseStain [281] – PICS [284] ✔ ✕ ✕ ✔ 

HoloStain [285] ✔ ✕ ✔ ✔ 

TPM + DL [286] [287] ✔ ✔ ✕ ✔ 

TPM-FC + CSSI [297] ✔ ✔ ✔ ✔ 

 

Indeed, the phase values contain a quantitative measurement about both the 

3D sub-cellular morphology and RI distribution, which can be associated to 

the cell biology, instead of the 2D FM images, from which the sole 2D 

morphological parameters can be inferred. Similarly, besides the 3D 

morphological analysis of the 3D FM confocal microscopy, in the proposed 

technology a complete 3D label-free quantitative characterization of the RI-

based fingerprint at the sub-cellular single-cell level is possible, as reported in 

the histograms in Figure 4.4(c) and Figure 4.5(c). Furthermore, the confocal 

microscope can only image static samples. Instead, in the range of FM 

methods, recently a light-sheet FM strategy has been implemented to retrieve 

3D volumetric imaging of single cells while they are flowing in microfluidic 

circuits. Although promising compared with confocal microscopy, light-sheet 

FM combined to FC is still qualitative and limited by the staining drawbacks as 

the a priori knowledge of the target proteins, the phototoxicity and 

photobleaching. 

As demonstrated here, the CSSI approach is an ad hoc clustering algorithm 

based on the computation of statistical similarities among groups of voxels 
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inside the same cell. CSSI strength lies in completely avoiding training neural 

networks through FM images, which leads to the abovementioned advantages. 

At the same time, the proposed approach comes with two main drawbacks. 

The computational times are significantly higher than DCNN inference times. 

Moreover, the accuracy of the estimated associations depends on the 

statistical significance of the tests the algorithm performs. Thus, as 

demonstrated above, a poor tomographic resolution can limit the accuracy in 

identifying small subcellular structures. However, a combined approach 

between DL and statistical inference is expected to be successfully attempted 

in the future. For instance, CSSI could be used to generate a dataset of 

tomograms pairs to train a DCNN to emulate the CSSI process and obtain real-

time inference in nucleus identification in flowing cells. 

It is worth pointing out that, to date, the CSSI is the sole method able to retrieve 

the 3D nuclear specificity in stain-free suspended single-cells in FC mode, thus 

providing quantitative measurements at the sub-cellular level with statistical 

significance on a large number of cells by potentially exploiting the high-

throughput property. Finally, the CSSI algorithm could be prospectively 

transferred to other scenarios. In fact, as the CSSI method is based on the sole 

property of having different statistical distributions of the reconstructed 

quantity among the several intracellular organelles, it can be also applied to 

other flow cytometric tomographic phase imaging techniques [106]. In 

particular, the WMW statistical test can be considered a non-parametric 

hypothesis test able to disclose differences between the medians of two 

statistical distributions. Therefore, if each intracellular organelle is associated 

to a distinct RI statistical distribution, the proposed CSSI method is in principle 

able to segment an organelle whether the difference between its RI median 

value and the RI median values of all the other intracellular organelles is 

greater than the RI precision of the employed tomographic system. For this 

same reason, the CSSI is expected to work well when the signal-to-noise ratio 

is high enough to make perceptible the differences between the RI statistical 

distributions of the several cell organelles. In fact, in the simulations and 
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experimental segmentations herein reported, the tomograms have been put in 

the worst case that still ensures to respect this property, i.e. the RI values have 

been rounded to the third decimal place, since this minimal condition of RI 

resolution is respected by most of the TPM setups (being easily obtainable). Of 

course, a higher signal-to-noise ratio (i.e., a better RI resolution) is expected to 

improve the CSSI performances. 

4.2 Nucleolus Specificity 

The CSSI algorithm introduced in Section 4.1 is based on the computation of 

statistical similarities among groups of voxels inside the same cell by starting 

from an initial guess on the organelle location. To implement it, the sole 

property that must be satisfied consists in having different statistical 

distributions of the reconstructed quantity among the several intracellular 

organelles, as occurs for example in the RI case [5]. For this reason, the same 

strategy, based on statistics approach, can be also exploited to segment other 

cell organelles. In particular, the steps of the CSSI algorithm described in 

Appendix A.4 have been developed on the basis of this statistics working 

principle at the aim of identifying a single compact organelle having a 

distinctive RI distribution inside the cell, and it has been demonstrated for 

segmenting the nucleus. Here, it is shown that the same algorithm can be 

implemented to segment another single compact organelle, like the nucleolus 

in case a cell has a single nucleolus (e.g., in slowly cycling cells [306]) [297]. As 

regards the nucleolus location, two different situations have to be analyzed, 

namely case 1 and case 2. To describe them, in Figure 4.6 and Figure 4.7, a 

numerical cell phantom is considered with 15 mitochondria and a spherical 

nucleolus with a 27 times smaller volume than the surrounding nucleus. In the 

case 1 in Figure 4.6, the nucleolus is not in the center of the cell, as shown by 

the violet sphere in Figure 4.6(a). In the case 2 in Figure 4.7, the nucleolus is 
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located in the center of the cell, as displayed by the violet sphere in Figure 

4.7(a). As reported in the RI histograms in Figure 4.6(b) and Figure 4.7(b), the 

RI values assigned to the nucleoli simulated in the cases 1 and 2, respectively, 

are greater than the corresponding outer nuclei but still included in their RI 

distributions in order to consider the worst case condition for segmentation. 

As regards the case 1, the CSSI algorithm starts looking for nuclear voxels from 

the central cube (i.e., the yellow reference cube 𝐶𝑅 in Figure 4.6(c) overlapped 

to the red simulated nucleus). 

 

Figure 4.6 Numerical assessment of the CSSI algorithm applied to segment a 
single 3D nucleolar OCH when far from the center of the 3D numerical cell 
phantom (case 1). 
(a) Isolevels representation of the 3D cell model, simulated with five sub-cellular 
components, i.e., cell membrane, cytoplasm, nucleus, nucleolus, and 15 
mitochondria. (b) Histogram of the RI values assigned to the nucleus and the 
nucleolus in (a). (c,d) Respectively, simulated nucleus and corresponding nuclear 
OCH (red) segmented by the CSSI algorithm despite the presence of the not-
centered nucleolus in (a). In (c), the starting central reference cube CR of the CSSI 
algorithm is overlapped in yellow. (e,f) Respectively, simulated nucleolus and 
corresponding nucleolar OCH (violet) segmented by the CSSI algorithm after the 
nucleus identification (red) in (d). In (e), the starting reference cube CR of the CSSI 
algorithm is overlapped in yellow in the zone of the segmented 3D nuclear OCH in 
(d) having the highest RIs. 
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As the CSSI algorithm is able to segment the nuclear OCH, i.e. the best convex 

hull that on average overlaps to the cell nucleus, the hole left by the presence 

of the nucleolus is automatically closed. Consequently, the correct nucleus 

segmentation shown in Figure 4.6(d), directly comparable with the simulated 

nucleus in Figure 4.6(c), can be obtained. Then, as the nucleolus has the 

highest RIs inside the nucleus, the CSSI algorithm can be easily adapted to 

search for its voxels by setting as starting reference cube 𝐶𝑅 the cube having 

the highest average RI within the segmented nucleus (i.e., the yellow cube in 

Figure 4.6(e) overlapped to the simulated nucleolus). As displayed in violet in 

Figure 4.6(f), the CSSI output is the nucleolar OCH, i.e. the best convex hull that 

on average overlaps to the cell nucleolus simulated in Figure 4.6(e). Instead, 

the case 2 is exactly the opposite of case 1. In fact, if the nucleolus is in the 

center of the cell (violet simulated region in Figure 4.7(c)) and the CSSI 

algorithm normally starts from the central reference cube 𝐶𝑅 (yellow cube in 

Figure 4.7(c)), the first output is the nucleolar OCH, as reported in violet in 

Figure 4.7(d). In such a case, it can be easily inferred that the segmented region 

is the nucleolus rather than the nucleus due to its much smaller size. Then, the 

second step consists in searching for the nucleus by starting from a reference 

cube 𝐶𝑅 that is adjacent to the outer side of the segmented nucleolus (e.g., the 

yellow cube in Figure 4.7(e)). Again, the nuclear OCH is correctly segmented, 

as shown in red in Figure 4.7(f) with respect to the red simulated nucleus in 

Figure 4.7(e).  

Therefore, starting from the same 1000 3D numerical cell phantoms used to 

assess the CSSI performances, 500 phantoms for the case 1 and 500 phantoms 

for the case 2 have been simulated by using the same distributions presented 

in Appendix A.5 by fixing one single nucleolus per cell. In the third column of 

Table 9, the values of 9 metrics are reported to quantify the CSSI performances 

in segmenting the stain-free nucleolus, which are just slightly worse than the 

stain-free nucleus ones because of the much smaller number of voxels 

representative of this organelle.  
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Figure 4.7 Numerical assessment of the CSSI algorithm applied to segment a 
single 3D nucleolar OCH when in the center of the 3D numerical cell phantom 
(case 2). 
(a) Isolevels representation of the 3D cell model, simulated with five sub-cellular 
components, i.e., cell membrane, cytoplasm, nucleus, nucleolus, and 15 
mitochondria. (b) Histogram of the RI values assigned to the nucleus and the 
nucleolus in (a). (c,d) Respectively, simulated nucleolus and corresponding 
nucleolar OCH (violet) segmented by the CSSI algorithm because, by starting from 
the central reference cube CR overlapped in yellow in (c), the centered nucleolus 
in (a) is found. (e,f) Respectively, simulated nucleus and corresponding nuclear 
OCH (red) segmented by the CSSI algorithm after recognizing that the region 
segmented in (d) is the nucleolus due its small size. In (e), the starting reference 
cube CR of the CSSI algorithm is overlapped in yellow in the adjacent zone to the 
outer side of the segmented 3D nucleolar OCH in (d). 

In fact, the principal factor that could limit the success of the CSSI algorithm in 

case of a single compact organelle is a low imaging spatial resolution with 

respect to the size of the analyzed organelle, which means that the organelle 

is represented by a very low number of voxels. In such a case, to take into 

account a lower number of voxels representing a certain organelle, the 

resolution factor ε can be reduced. However, it cannot be excessively 

decreased otherwise the opposite effect is obtained, i.e. a bad segmentation of 
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the organelle due to a too low statistical power of the WMW test. The statistical 

power is indeed the probability of correctly classifying a voxel as non-

organelle when it actually does not belong to that organelle, and it is well 

known that the statistical power of a hypothesis test increases with the 

number of observations. To demonstrate this property, a 3D numerical cell 

phantom with 15 mitochondria has been simulated and used to create 8 

possible resolution scenarios, i.e., inside it, the same spherical organelle has 

been simulated with a radius changing from 15 to 50 pixels (step of 5 pixels). 

In Figure 4.8(a), three of these phantoms are shown corresponding to the 50, 

30, and 15 pixels radii. For each of these 8 resolution scenarios, the CSSI 

algorithm has been implemented by using three resolution factors, i.e. ε=10 

px, ε=8 px, and ε=6 px, which segmentation results are reported in Figure 

4.8(b-d), respectively, for the 50, 30, and 15 pixels radii. In order to 

quantitatively compare the CSSI segmentation at different organelle sizes (i.e., 

imaging spatial resolutions) and resolution factors ε, the F1 scores have been 

computed through the formula in Table 9. In Figure 4.8(e), it is evident that by 

fixing a too low resolution factor (i.e., ε=6 px), the segmentation performances 

significantly drop because of the low statistical power of the WMW test. 

Instead, the segmentation performances are much higher in the ε=10 px and 

ε=8 px cases, which means that starting from the resolution factor ε=8 px, the 

statistical power (i.e., the number of observations) of the WMW test is enough 

to guarantee a good segmentation output. Moreover, as can be expected, the 

zoom-in of the F1 score plot in Figure 4.8(f) highlights a growing trend of the 

classification performances with the organelle pixel size (i.e., with the imaging 

spatial resolution). In particular, the ε=8 px curve shows the best behavior 

since it has the lowest slope, which means that, by reducing the imaging spatial 

resolution, the segmentation performance decreases more slowly than the 

ε=10 px case. In fact, after reaching a sufficient statistical power by selecting 

ε>6 px, the ε=8 px resolution factor allows following better the external 

organelle shape due to a better spatial resolution despite the number of 

observations is lower than the ε=10 px case.  
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Figure 4.8 CSSI performances in segmenting a generic organelle with respect 
to the imaging spatial resolution (i.e., its number of voxels) and the CSSI 
resolution factor 𝜺. 
(a) Three 3D numerical cell phantoms with 15 mitochondria (green) and a 
spherical organelle (red) having an equivalent radius of 50 px (left), 30 px (center), 
and 15 px (right). (b-d) CSSI segmentation of the red organelles in (a) by using the 
resolution factors 𝜀=10 px, 𝜀=8 px, and 𝜀=6 px, respectively. (e) F1 score in 
segmenting the red organelle in (a) by using the resolution factors 𝜀=10 px, 𝜀=8 px, 
and 𝜀=6 px while changing its equivalent radius (i.e., the imaging spatial 
resolution) between 15 px and 50 px. (f) Zoom-in of the 𝜀=10 px and 𝜀=8 px curves 
in (e). 

It is worth pointing out two other important points. First, by using a resolution 

factor ε at least equal to 8 px, an organelle with an equivalent radius less than 

15 pixels cannot be examined since the organelle would be covered by very 

few distinct cubes. Furthermore, the CSSI computational time increases in a 

nonlinear way with the resolution factor ε, therefore ε=10 px has been selected 
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as a good trade-off to analyze the simulated and experimental tomograms in 

this study. Hence, remarkably the CSSI algorithm can be used to segment other 

single compact organelles different from the nucleus but, in case they are very 

small, the imaging spatial resolution must be able to provide an equivalent 

radius greater than 15 pixels to implement the CSSI algorithm with at least a 

resolution factor ε=8 px. Otherwise, the statistics of the WMW test are not 

robust and this greatly worsens the segmentation performances. Instead, in 

case of multiple organelles, the same working principle based on the statistical 

similarities can be exploited. However, the algorithm implemented in 

Appendix A.4 must be slightly modified to avoid the constraints herein used to 

gather all the candidate cubes at the aim of segmenting a single compact 

region, i.e. the nucleus. 

4.3 Identification of Lipid Droplets  

4.3.1 Segmentation in 3D RI Tomograms 

LDs are ubiquitous intracellular organelles specialized in triacylglycerols and 

steryl esters storage, found in some prokaryotes and in most eukaryotic cells, 

where they reside primarily in the cytoplasm [307]. Initially described 

exclusively as storage organelles, LDs are now recognized as dynamic entities 

that play several other pivotal roles in intracellular homeostasis. For example, 

LDs provide a defense mechanism against numerous stress conditions (e.g., 

lipotoxicity, endoplasmic reticulum (ER) stress, oxidative stress, 

mitochondrial damage during autophagy), and control certain proteins’ 

expression by supporting their maturation, storage and turn-over [308]. In 

addition to ER from which they derive, LDs dynamically interact with most 

intracellular organelles, including mitochondria, peroxisomes, lysosomes, 

Golgi apparatus, and nuclei [308], which contribute to the final 3D spatial 

organization of LDs inside the cellular volume. Although the mechanisms 
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linking specific LD structural characteristics to a certain function are still not 

completely understood, a vast number of evidences shows that variation in 

LDs number, size, ultrastructure, motility, lipid/protein content and 

interactions with other organelles significantly influences many cellular 

processes [308] [309]. Consequently, their dysregulation may have 

implications in diseases, and evaluation of LDs-related parameters may be 

exploited as a biomarker. Indeed, LDs have been described to have a role in 

various pathologies, including diabetes [310], atherosclerosis [311], fatty liver 

disease [312], neurodegenerative diseases [313] and cancer [314] [315]. 

Moreover, they are recognized as structural markers of inflammation, since a 

remarkable increase in LDs number and size rapidly occurs in immune cells in 

response to inflammatory stimuli [316] [317]. Most recent evidence shows 

that monocytes from COVID-19 affected patients display an increased LDs 

accumulation with respect to healthy blood donors, suggesting a possible 

involvement of these organelles in the SARS-CoV-2 pathogenesis [318]. 

However, the limitations of currently available techniques for LDs 

characterization still prevent from completely understanding their functions 

and exploiting their potential for clinical purposes. In particular, development 

of new non-destructive techniques is required, which provide fast LDs 

detection, quantification, and characterization, ensuring powerful statistical 

data, with the aim of discovering novel insights on this prominent issue. 

Among the various techniques used for LDs investigation, TEM and FM are 

probably the most exploited for this purpose [319] [320]. The LDs 

ultrastructure can be easily determined by TEM due to their homogeneous 

spherical shape and their recognizable electron density [321]. However, only 

small areas of a sample can be analyzed by TEM, thus strongly limiting the 

ensemble study of LDs inside the cell, and the method requires skilled and 

highly trained operators. FM is a somewhat more user-friendly technique, 

with a growing number of fluorescent lipophilic dyes used for LDs detection, 

most popular being Nile Red, Bodipy® 493/503, LipidTOX and Oli Red O 

[322]. These reagents come with the advantage of being easy to use, thus 
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allowing tracing LDs dynamics, even by the live cell imaging. These dyes may 

also be used in FC, allowing higher throughput, but providing no information 

on LDs volumetric distribution. It is important to note that fluorescent dyes 

are subjected to photobleaching, may interfere with cell function, especially 

during long exposure times, and induce phototoxicity. These limitations have 

prompted the development of label-free methods for live imaging. 

Among label-free approaches, DHM is a valuable non-destructive tool for LDs 

analysis, as their RI substantially differs from the surrounding cell inner 

structure, and the DH method relies on the RI difference as a contrast agent. 

The first demonstration in visualizing and measuring LDs in live cells by DH 

was reported in the last decade [323]. Recently, TPM has been applied for LDs 

3D imaging within mammalian cells [324] [325] [326] and microalgae [327], 

for 4D tracking of the LDs dynamics in live hepatocytes [328], and for 

recording time-lapses of living foam cells [329]. Nevertheless, the up-to-date 

available label-free techniques allow to investigate LDs only in static, adherent 

cells, strongly limiting both throughput and reliability of the information 

regarding the LDs volumetric organization, the latter being significantly 

affected by the cell culture mode. Furthermore, imaging methods developed 

for operating on adhesion samples exclude the possibility to investigate 

populations that naturally exert their functions in circulation, such as cells in 

bodily fluids. Although TPM apparatuses are really powerful, they cannot 

furnish in simple way high-throughput analysis, that can instead be achieved 

only by imaging techniques capable to operate in FC modality. Instead, an 

imaging modality for phenotyping the cells in flow-through is highly 

demanded for investigating the sample in an environment that well mimics 

physiological conditions and can guarantee statistically significant assays by 

investigating a high number of cells in a single experiment. For this reason, 

here, for the first time, LDs are visualized and quantitatively measured in 3D 

in live cell suspensions through TPM-FC while they are flowing along a simple 

and commercially available microfluidic channel [291]. 
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Figure 4.9 LDs in A2780 QPMs. 
(a-c) Three QPMs of an A2780 cell while flowing along the 𝑦-axis and rotating 
around the 𝑥-axis. The spots with the biggest phase values (dark red) are the LDs. 
Scale bar is 5 μm. (d-f) Pseudo-3D visualization of the 2D QPMs in (a-c), 
respectively, in which the LDs are well-separated from the outer cell because of 
their greater height. (g) Trend of the phase similarity metric, which is null in the 
starting frame of the QPM sequence (orange dot) and is minimum when the first 
(green dot) and the second (blue dot) full cell rotations have occurred. (h) QPM at 
the first frame and (i) QPM after two full rotations, in which LDs are located in the 
same positions. 
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By means of the TPM-FC system in Figure 2.5, 54 human ovarian cancer cells 

(A2780) and 34 monocytes (THP1) have been recorded. Three typical QPMs 

of an A2780 cell are reported in Figure 4.9(a-c), in which the rotation around 

the 𝑥-axis of the cell flowing along the 𝑦-axis can be observed. In fact, as the 

RIs of the LDs are higher than the other organelles, they can be recognized 

within the QPMs as the red spots. To mark this property, the same QPMs are 

shown in a pseudo-3D visualization in Figure 4.9(d-f), in which the height 

codifies the phase values. Hence, LDs correspond to the isolated peaks, which 

change their position because of the cell rotation in the microfluidic channel. 

As discussed in Section 2.4.3, to recover the unknown rolling angles of the 

flowing cell, a full rotation is detected through a suitable phase image 

similarity metric, and then a proportion with the positions along the flow 

direction is implemented [108]. However, this method suffers when the 

similarity metric does not have a trend with pronounced minima. In that case, 

an error can be committed in retrieving the unknown rolling angles, which 

propagates to the tomographic reconstruction. Instead, the presence of 

intracellular LDs provides a great help in making more accurate the rolling 

angles recovery and then the 3D RI tomogram. In fact, as shown in Figure 

4.9(a-c), the LDs are phase peaks which move in the QPM sequence according 

to the cell rotation, thus providing a highly distinguishable marker for the 

phase similarity. This property is highlighted in the phase similarity metric 

reported as example in Figure 4.9(g). It is computed by comparing all the 

QPMs with the first one of the sequence. Hence, it is 0 in the first frame, while 

the other local minima, which are well defined thanks to the LDs, correspond 

to full rotations (i.e., 360°). Indeed, a full rotation can be easily detected when 

LDs come back to their starting positions, as shown in Figure 4.9(h,i). Once the 

unknown viewing/rolling angles are estimated, the pairs consisting of the 

QPMs and the corresponding rolling angles are given in input to the FBP 

algorithm in order to reconstruct the 3D RI spatial distribution at the single 

cell level. 
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In Figure 4.10(a), the central slice of the 3D reconstructed tomogram of one 

typical A2780 cell is shown. The LDs presence is clearly visible. Moreover, it 

can be noted from the colour scale of the plot that LDs reach RI values much 

higher than the surrounding medium. In fact, the corresponding RI histogram 

in Figure 4.10(b) goes up to 1.500, that is a very high value for these types of 

cells, thus suggesting that a threshold-based method is enough for numerical 

segmenting the LDs and thus to extract the quantitative measurement of each 

LD. In Figure 4.10(c-e), three isolevels representations of the same 3D 

tomogram are reported after having segmented LDs with three different 

thresholds numerical value (i.e., 1.400, 1.420, and 1.440, respectively). All 

three results are plausible, since separate particles have been isolated in the 

same cell location. Obviously, the greater the RI threshold, the smaller the 

volume of particles identified. Hence, a criterion to set the LDs-threshold is 

requested. The RI values of LDs change based on the type of cell, the 

temperature, and the wavelength [330]. Segmenting intracellular organelles is 

always problematic in a label-free technique since an exogenous calibrated 

marker is missed. In the 2D case, a DL approach has been employed to identify 

LDs inside the QPMs [331]. Instead, in the 3D case, to segment LDs in 

microalgal cells [327] and in foam cells [329], the RI threshold has been 

selected according to the FM image of the same cell obtained from the channel 

mounted on the static TPM system. However, this is not possible in TPM-FC. 

Instead, to fix an average RI threshold, here independent 2D FM 

measurements about the number and the diameter of LDs have been exploited 

(see Appendix A.6), as well as the high number of cells reconstructed through 

the TPM-FC technique. The TPM-FC configuration selected for these 

experiments has a lower spatial resolution than the 2D FM images in order to 

provide a very large FOV. Therefore, as shown in Figure 4.10(c-e), in this 

experiment LDs cannot be resolved when they are too close each other. For 

this reason, the number of LDs measured through the TPM-FC is expected to 

be smaller than the FM technique. 
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Figure 4.10 Segmentation of the LDs within the 3D RI tomograms of A2780 
live cells. 
(a) Central slice of the 3D RI tomogram of an A2780 live cell, in which LDs take the 
highest RI values. (b) Histogram in logarithmic scale of the 3D RI distribution of 
the cell in (a). (c-e) Isolevels representation of the tomogram in (a), in which LDs 
(orange) have been segmented by using the RI thresholds reported above. (f) 
Average volume per cell of the LDs segmented in 54 TPM-FC tomograms of A2780 
live cells by using different RI thresholds. The selected LDs-threshold (yellow line) 
allows computing the same average volume measured in 2D FM images (blue line). 
(g-i) Isolevels representation of separated LDs or LDs clusters segmented in 3 
A2780 tomograms by using the LDs-threshold selected in (f), and (j-l) 
corresponding RI histograms. (a-e,g,j) are the same cell. 
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However, the overall volume of LDs must be unchanged. Within the 2D FM 

images, the average LDs volume per cell can be computed indirectly by 

multiplying the average number of LDs and their average diameter, thus 

obtaining 6.10 μm3 in the A2780 case. Instead, as reported in Figure 4.10(f), 

the LDs average volume per cell can be measured directly from the 54 

tomograms by varying the RI threshold, thus obtaining the expected 

decreasing curve. The LDs-threshold can be finally selected in such a way to 

guarantee the same average volume, which is RI ≥ 1.423 in the A2780 case. By 

using the computed LDs-threshold, all the 54 tomograms of the A2780 cells 

have been segmented. In Figure 4.10(g-i), three of these segmented 

tomograms are displayed by painting separated LDs or LDs clusters with 

different colours, and the corresponding RI distributions in 3D are reported in 

Figure 4.10(j-l), which are very similar to each other. 

In recent years, TPM has emerged because it allows label-free quantitative 

measurements at the single-cell level of features about both the 3D 

morphology and the RI statistics, which are related to the cell biophysical 

properties (e.g., dry mass). The implementation of the TPM-FC system further 

allows the replication of the same measurement on a large number of cells, 

thus reaching a statistical significance, which can be exploited for 

characterizing a certain phenomenon. Therefore, in Figure 4.11, the 

histograms of several properties about the hundreds of reconstructed LDs are 

reported. In particular, in Figure 4.11(a-e), the mean value, the standard 

deviation, the entropy, the kurtosis, and the skewness of the 3D RI distribution 

about each LD are respectively shown. The equivalent radius displayed in 

Figure 4.11(f) is the radius of a sphere having the same volume of the analyzed 

LD. The dry mass reported in Figure 4.11(g) is the mass of the biological 

sample without its water content, calculated as in Eq. (1.48).  
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Figure 4.11 LDs features extracted from 54 A2780 3D RI tomograms. 
(a-e) Histograms of respectively the mean value, standard deviation, entropy, 
kurtosis, and skewness of the 3D RI distributions of each LD. (f-h) Histograms of 
respectively the equivalent radius, the dry mass, and the sphericity of each LD. (i) 
Histogram of the distance between each LD centroid and the corresponding cell 
centroid, normalized to the cell equivalent radius. (j) Histogram of the distance 
between each LD centroid and the centroid of all the LDs inside the same 
corresponding cell, normalized to the cell equivalent diameter. (k) Mean RIs 
(orange dots) of concentric inner zones (orange regions) selected inside the same 
LD, with overlapped in blue the parabolic fitting. (l) Bivariate histogram of the first 
and second order coefficients of the parabolic fitting in (k) measured in all the LDs 
(black dots). 
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The sphericity shown in Figure 4.11(h) is instead computed as the ratio 

between the surface area of a sphere with same volume of the LD and its actual 

surface area, thus providing a quantification of the particle’s shape (sphericity 

is 1 if the particle is a perfect sphere, otherwise it is smaller than 1 the more 

the particle has a non-spherical shape).  

 

Figure 4.12 Segmentation of the LDs within the 3D RI tomograms of THP1 live 
cells. 
(a) Average volume per cell of the LDs segmented in 34 TPM tomograms of THP1 
live cells by using different RI thresholds. The selected LDs-threshold (yellow line) 
allows computing the same average volume measured in 2D FM images (blue line). 
(b,c) QPMs of two THP1 cells, one without LDs (b) and the other one with LDs (c) 
(dark red spots). Scale bar is 5 μm. (d,e) Central slices of the 3D RI tomograms of 
the cells in (b,c), respectively, in which LDs take the highest RI values. (f) 
Histogram in logarithmic scale of the 3D RI distribution of the cells in (d) (yellow) 
and (e) (red). (g) Isolevels representation of the tomogram in (e), in which LDs 
(orange) have been segmented by using the LDs-threshold selected in (a). 
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Furthermore, the proposed TPM-FC allows reconstructing the 3D tomograms 

of suspended cells rather than adhered cells, therefore the 3D spatial 

arrangement of LDs inside the cell can be accessed and investigated. In 

particular, in order to set parameters about this assay, the distance between 

the centroid of each LD and the centroid of the cell that contains it has been 

computed, normalized to the cell equivalent radius. It is worth to remark that 

the corresponding histogram, reported in Figure 4.11(i), shows a bimodal 

distribution. The central region of a cancer cell is usually occupied by the 

nucleus [302] and LDs are usually expected to be found inside the cytoplasm 

[332]. For this reason, most of LDs are about the 80% of the cell equivalent 

radius away from the cell centroid. However, there is a minor amount of LDs 

closer to the cell centroid, which can be explained considering that LDs are 

sometimes found also within the nucleus [333]. Moreover, the 3D tomograms 

in Figure 4.11(g-i) have confirmed the property of LDs of concentrating in the 

same region of the cytoplasm [334], which has been also observed in the 2D 

FM images. To quantify this property, for each cell, the centroid of all the LDs 

has been computed, and its distance from each LD has been calculated, 

normalized to the cell equivalent diameter. The corresponding histogram is 

displayed in Figure 4.11(j), which provides a characterization of the spread of 

the LDs positions around their own ensemble centroid. From a structural 

point of view, LDs are formed by an inner core which mainly stores 

triacylglycerols and steryl esters and are surrounded by a phospholipid 

monolayer studded with LD-specific proteins [335]. Therefore, the RI is 

expected to change passing from the outer zone to the inner zone of the LD. 

For this reason, concentric volumes inside the same LD have been considered. 

In Figure 4.11(k), it is shown a sequence of the same LD as the size of the 

internal structure decreases (orange regions) along with the corresponding 

mean RIs (orange dots). The mean RI increases passing from the overall 

volume, made of both the membrane and the inner core, to the sole inner core. 

Moreover, the computed data are perfectly fitted by a parabolic curve.  
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Figure 4.13 LDs features extracted from 34 THP1 3D RI tomograms. 
(a-e) Histograms of respectively the mean value, standard deviation, entropy, 
kurtosis, and skewness of the 3D RI distributions of each LD. (f-h) Histograms of 
respectively the equivalent radius, the dry mass, and the sphericity of each LD. (i) 
Histogram of the distance between each LD centroid and the corresponding cell 
centroid, normalized to the cell equivalent radius. (j) Histogram of the distance 
between each LD centroid and the centroid of all the LDs inside the same 
corresponding cell, normalized to the cell equivalent diameter. (k) Mean RIs 
(orange dots) of concentric inner zones (orange regions) selected inside the same 
LD, with overlapped in blue the parabolic fitting. (l) Bivariate histogram of the first 
and second order coefficients of the parabolic fitting in (k) measured in all the LDs 
(black dots). 
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Table 13 Average values and standard deviations of the features about each LD 

segmented in 54 A2780 and 34 THP1 live cells. 

 A2780 THP1 

RI Mean Value 1.437 ± 0.006 1.420 ± 0.004 

RI Standard Deviation 0.008 ± 0.003 0.006 ± 0.002 

RI Entropy 2.851 ± 0.570 2.389 ± 0.501 

RI Kurtosis 2.310 ± 0.280 2.236 ± 0.238 

RI Skewness 0.520 ± 0.134 0.479 ± 0.131 

Volume [μm3] 2.267 ± 2.430 1.678 ± 1.272 

Equivalent Radius [μm] 0.751 ± 0.215 0.708 ± 0.141 

Surface Area [μm2] 8.873 ± 7.038 7.109 ± 3.672 

Sphericity [a.u.] 0.914 ± 0.086 0.940 ± 0.074 

Dry Mass [pg] 1.757 ± 1.920 1.085 ± 0.861 

LD-Cell Normalized Distance [a.u.] 0.666 ± 0.178 0.686 ± 0.139 

LD-LDs Centroid Normalized Distance [a.u.] 0.251 ± 0.093 0.261 ± 0.104 

1st Order Coefficient Parabolic Fitting [μm-1] -0.037 ± 0.011 -0.028 ± 0.007 

2nd Order Coefficient Parabolic Fitting [μm-2] -0.006 ± 0.010 -0.003 ± 0.004 

 

Therefore, the parabolic fitting has been performed for all the LDs, and their 

first order and second order coefficients have been reported in Figure 4.11(l) 

(black dots), overlapped to the corresponding bivariate histogram. This 

analysis confirms the higher density of the inner LD core with respect to its 

surrounding region. In general, the plots shown in Figure 4.11(k-l) can be used 

as a tool to inspect the inner LD RI distribution. 
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By using the same pipeline, about two hundreds of THP1 cells have been 

analyzed. As shown in Figure 4.12(a), by comparing the average LDs volume 

per cell with the 2D FM measurement, the LDs-threshold RI ≥ 1.411 has been 

selected. This threshold allowed identifying LDs in 34 THP-1 live cells. In 

Figure 4.12(b,c), the QPMs of a monocyte without LDs and with LDs are 

respectively shown, while the central slices of the corresponding 3D RI 

tomograms are reported in Figure 4.12(d,e), respectively. In both 2D and 3D 

cases, the LDs are clearly recognizable as distinguishable spots with the 

highest phase or RI values, respectively. For this reason, in the histogram of 

the 3D RI distribution in Figure 4.12(f), the two cells can be easily identified. 

Indeed, as expected, only the monocyte with LDs, which isolevels 

representation is displayed in Figure 4.12(g), shows an inflated distribution of 

RIs, due to a large number of occurrences for higher RI values. The 3D RI 

tomograms of the 34 THP1 monocytes have been exploited to measure the 

same features about LDs described in the case of A2780 cells, as shown in 

Figure 4.13. The average values and the standard deviations of these 

parameters are resumed in Table 13 for both the A2780 and THP1 cells. On 

average, LDs in A2780 cells have a greater RI mean value, standard deviation, 

entropy, kurtosis, and skewness than the THP1 monocytes. Moreover, as they 

are bigger in size too, they also have a greater dry mass. Again, the histogram 

of the LD-cell normalized distance shows a bimodal distribution, as displayed 

in Figure 4.13(j). In general, the 3D disposition inside the cell is about the same 

in both cases. 

4.3.2 Detection through Biolensing Effect 

Recently, it has been found that biological samples behave as optical elements. 

The essential biophotonic probes, based on a single-cell hierarchy, include 

biolasers, waveguides, and biolenses [22] [336]. Ambition for integrating 

these elements into the performance of photonics arises from the need for 

such biocompatible and available micro components. In particular, it has been 
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proved that many cell types, including RBCs, exhibit the biolensing effect and 

thus can behave as active micro-lenses, characterized by flexible focal lengths 

and magnifications, making them available for many applications, e.g., 

imaging, light coupling, and lithography [21] [337] [338]. Such a concept is 

useful for diagnosis at single-cell level. In fact, changes in biolens performance 

can be correlated directly to the living cell morphology and to the typical 

biochemical activities [30] [339] [340] [341] [342]. Herein, monocytes and 

lymphocytes, which are similar in RIs but different in sizes, have been 

exploited to prove the biolensing effect of the whole cell in TPM-FC [343]. In 

particular, the TPM-FC system in Figure 2.5 has been employed for recording 

the holograms of 221 monocytes and 189 lymphocytes. The holographic 

processing described in Section 2.4.2 has been implemented for refocusing the 

complex amplitude of the recorded cells. As WBCs have been recorded in flow 

modality, their shape is quasi-spherical as they are suspended in a buffer 

medium, therefore they can be treated as micro-size biolenses. Notably, as 

sketched in Figure 4.14(a), a sphere of RI 𝑛 and diameter 𝑑, surrounded by a 

medium of RI 𝑛𝑚, and distant 𝑙 from borders with the air, behaves as a lens 

with focal distance 𝑓 given by 

(4.1)  𝑓 =
𝑛𝑑

4(𝑛−𝑛𝑚)

1

𝑛𝑚
+ 𝑙 (1 −

1

𝑛𝑚
), 

which, for small distances 𝑙 (in comparison to the first term), can be 

approximated as 

(4.2)  𝑓 ≈
𝑛𝑑

4(𝑛−𝑛𝑚)

1

𝑛𝑚
. 

This means that larger spheres of equal 𝑛 exhibit longer focal distances than 

the smaller spheres if (𝑛 − 𝑛𝑚) > 0. Here, the complex amplitude propagated 

along the optical axis has been investigated to compare focal distances of 

lymphocytes and monocytes. The cell plane has been found as the axial 

coordinate 𝑧𝑇𝐶𝑚𝑖𝑛 where TC, calculated for intensity, reaches the minimum. 

Subsequently, the image plane has been localized as the distance 𝑧𝑇𝐶𝑚𝑎𝑥 

where TC, calculated for intensity, reaches its maximum [174].  
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Figure 4.14 Focusing fingerprint by sphere-shaped lenses. 
(a) Focusing by micro-spheres. (b) On the left, amplitude and phase profiles of 
round-shaped WBCs (monocytes and lymphocytes) and, on the right, propagated 
intensity profiles with corresponding focal distances. 

Thus, the focal distance 𝑓𝑇𝐶 has been calculated as the difference between 

these two planes, i.e. 

(4.3)  𝑓𝑇𝐶 = 𝑧𝑇𝐶𝑚𝑎𝑥 − 𝑧𝑇𝐶𝑚𝑖𝑛. 

Secondly, the focal distance 𝑓𝐼𝑚𝑎𝑥 has been calculated as the distance between 

the cell plane 𝑧𝑇𝐶𝑚𝑖𝑛 and the plane of maximal intensity 𝑧𝐼𝑚𝑎𝑥 (i.e. the plane 

where intensity reaches its global maximum), i.e. 

(4.4)  𝑓𝐼𝑚𝑎𝑥 = 𝑧𝐼𝑚𝑎𝑥 − 𝑧𝑇𝐶𝑚𝑖𝑛. 

In Figure 4.14(b), 𝑓𝑇𝐶 and 𝑓𝐼𝑚𝑎𝑥 are shown for one lymphocyte and one 

monocyte. As expected from Eq. (4.2), both the focal distances are higher in 

the case of monocytes since they have larger sizes but similar RIs than 

lymphocytes. 

Possible applications of the cell biolensing effect in FC modality would be in 

the field of label-free discrimination of different cell populations in cytometric 

approach. There is a great demand in finding morphological biomarkers that 

avoid the use of fluorescent labels in order to reduce the time consumption of 

sample preparation and also avoid phototoxicity to allow faster and more 

efficient downstream analysis. Biolens modelling would be a valuable route to 

marker-free samples clustering because the focused light encodes information 
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both on shape and RI distribution inside the cell volume. Such modelling 

would in principle avoid the feature calculation from the whole 2D QPM. 

Indeed, a realistic implementation of a cytometer based on biolensing 

properties does not necessary need the whole DH image processing pipeline 

but it would be necessary the recording of the intensities by putting the 

camera in a well-defined range of distances and propagating the field at a 

nominal distance, thus strongly reducing the processing time. The use of AI 

would speed up the entire processing to allow video rate image analysis. In the 

optimized system, the expected throughput for data acquisition would be 

potentially the same of current IFC systems (thousands of cells per second). 

Moreover, also cell sorting would be feasible when video rate image analysis 

is supported by AI [212] [133]. 

However, as well as the whole cell, it has been proved that also LDs could act 

as intracellular micro-lenses [344]. As discussed in Section 4.3.1, as LDs are 

involved in a lot of pathologies, label-free methods capable to provide a fast 

and high-throughput detection of LDs inside single cells are strongly 

requested in order to aid biomedical diagnostic applications. Here a novel 

strategy based on HIFC for revealing in simple way the presence of 

intracellular LDs in each suspended living cell flowing along a microfluidic 

channel is investigated [345]. In particular, LDs are detected by evaluating the 

way their presence changes the focusing properties of the whole biolens (i.e. 

the hosting cell). As first step of this study, an advanced numerical simulation 

combined to the TPM-FC experiments has been performed in order to 

investigate this phenomenon. In particular, two living cell lines have been 

considered, that are A2780 human ovarian cancer cells as positive case, i.e., 

cells with high amount of LDs [291] [346], and Jurkat T-lymphocyte WBCs as 

negative case since, in physiological conditions, the number and the size of 

their LDs are very low [317] [347]. In fact, in case WBCs are in healthy 

conditions, LDs are not completely absent, but their number and size are low. 

When LDs have sizes comparable with the wavelength, they cannot be 

detected due to sensitivity of the presented system, that depends on the trade-
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off between LDs size and axial resolution. For this reason, Jurkat T-

lymphocytes have been considered as negative case. Finally, another line of 

WBCs, i.e., human monocytes THP1, has been recorded by the TPM-FC system 

before and after the appearance of LDs, in order to test the ability of the 

proposed approach in correctly identifying the presence of LDs. Therefore, 

here it has been demonstrated that the time and resource consuming 3D 

TPM-FC reconstruction and the nontrivial downstream segmentation of LDs 

can be avoided for the purpose of identifying them inside single flowing cells, 

since a much simpler and faster 2D HIFC system can solve this same task by 

exploiting the LDs biolens features. 

The TPM-FC system in Figure 2.5 has been used to reconstruct the 3D RI 

tomograms of the A2780 ovarian cancer cell and the Jurkat T-lymphocyte cell 

reported in Figure 4.15(a,f), respectively. In the isolevels representation of the 

tomographic reconstruction displayed in Figure 4.15(b,g), the LDs are only 

visible in the A2780 cell, in which they have been segmented at the highest RIs 

(corresponding to the highest phase values in Figure 4.15(a)), as described in 

Section 4.3.1 [291]. The BPM forward model has been implemented to 

simulate the in-focus complex wavefront produced by the RI tomogram [348]. 

The simulated QPMs about the overall A2780 cell, the sole LDs segmented 

from the A2780 cell, and the Jurkat T-lymphocyte cell are shown in Figure 

4.15(c,d,h), respectively. Moreover, the corresponding experimental QPMs 

numerically retrieved from the recorded holograms about the A2780 and the 

Jurkat T-lymphocyte cell are displayed in Figure 4.15(e,i), respectively, to 

show the reliability of the BPM. 
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Figure 4.15 Simulation of the light beam propagation through an 
experimental tomogram of an A2780 ovarian cancer cell (a-e) and a Jurkat T-
lymphocyte WBC (f-i) obtained by TPM-FC. 
(a,f) Slice of the 3D RI tomogram reconstructed by means of the TPM-FC method. 
(b,g) Isolevels representation of the reconstructed tomograms in (a,f), 
respectively. In (b), LDs have been segmented at the highest RIs (red volume). In 
(g), LDs are missing. (c,d,h) QPM simulated through the BPM forward model 
starting from all the RIs in (a), the RIs of the sole segmented LDs in (a,b), and all 
the RIs in (f). (e,i) QPM numerically retrieved from the first frame of the 
experimental DH sequence used for reconstructing tomograms in (a,f), 
respectively. The experimental QPMs in (e,i) correspond to the simulated ones in 
(c,h), respectively. In (c-e), the red lines pass for the maximum phase value in (e). 
In (h,i), the blue lines pass for the maximum phase value in (i). 

Then, both the simulated and recorded in-focus complex wavefronts have 

been propagated at different distances along the optical 𝑧-axis by means of the 
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Angular Spectrum method (see Eq. (1.19)). For each 𝑧 position, the intensity 

of the propagated complex field has been considered. To deepen the effect due 

to the presence of LDs, within the QPMs in Figure 4.15(c-e), the vertical lines 

passing for the maximum phase value found in the experimental QPM in Figure 

4.15(e) have been selected. In the same way, within the QPMs in Figure 

4.15(h,i), the vertical lines passing for the maximum phase value found in the 

experimental QPM in Figure 4.15(i) have been selected. Hence, in Figure 

4.16(a-e), for each 𝑧 propagation distance, the intensity values extracted 

respectively from the QPMs in Figure 4.15(c-e,h,i) along the selected lines are 

reported. It can be noted that the intensity mapping has a remarkable 

difference between the A2780 and lymphocyte case. In fact, in both the 

simulated and the experimental intensity mapping about the A2780 cell (see 

Figure 4.16(a,c), respectively), there are small maximum values in the initial 

part of the optical 𝑧-axis (see the arrows before 10 µm), while they miss in 

both the simulated and the experimental intensity mapping about the Jurkat 

T-lymphocyte cell (see Figure 4.16(d,e), respectively). These maximum 

regions are due to LDs that behave as biolenses. In fact, due to their smaller 

sizes, LDs focalize much before the entire cell in a distinguishable region 

within the intensity mapping because of their higher RIs. This is confirmed by 

the intensity mapping in Figure 4.16(b) related to the sole LDs, in which the 

maximum areas are in the same 𝑧 region as the overall cell in Figure 4.16(a,c), 

as underlined by the arrow (note that spurious frequencies are related to the 

numerical error in the QPM simulation visible in Figure 4.15(d) due to the high 

RI contrast between the LDs and the surrounding medium).Instead, in the 

Jurkat T lymphocyte case, there is only the maximum region at longer 𝑧 

distances due to the focalization of the overall cell, which can be in turn 

considered as a bigger quasi-spherical lens. Note that the focalization of the 

overall cell is missing in the A2780 case since a lateral line has been selected. 
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Figure 4.16 Alteration of the focalization property of the whole cell due to the 
presence of LDs. 
(a-e) Intensity values of the complex wavefront propagated along the optical 𝑧-
axis, taken from the 𝑦 lines selected in Figure 4.15(c-e,h,i) regarding the simulated 
QPM of the overall A2780 cell, the simulated QPM of the sole A2780 LDs, the 
experimental QPM of the overall A2780 cell, the simulated QPM of the overall 
Jurkat T-lymphocyte cell, and the experimental QPM of the overall Jurkat T-
lymphocyte cell, respectively. Arrows in (a-c) highlight the perturbation of the cell 
biolens features by LDs. (f,g) Max-intensity of the complex wavefront propagated 
along the optical 𝑧-axis about the analyzed A2780 cell and Jurkat T-lymphocyte 
cell, respectively. (h) Average max-intensity computed among all the Jurkat T-
lymphocyte cells (blue line) and A2780 cells (red line). The high peaks (black 
circles) are related to the focalization of the overall cell. The small peak (green 
circle) is related to the focalization of LDs. 
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To consider the effect of the overall QPM without selecting a specific line, for 

each 𝑧 distance, the maximum intensity value of the propagated complex 

wavefront has been computed, thus obtaining the max-intensity curves in 

Figure 4.16(f,g) about the analyzed A2780 and lymphocyte cell, respectively. 

In Figure 4.16(f), two main peaks are visible about the experimental cell, the 

farthest and highest one due to the focalization of the outer cell, and the closest 

and lowest one (before 10 µm) due to the perturbation introduced by LDs, as 

also confirmed by the max-intensity curve related to the sole LDs. Instead, in 

Figure 4.16(g), only the farthest peak related to the focalization of the whole 

cell can be observed. Essentially, in order to summarize the concept behind 

the detection of LDs, it can be useful to consider that LDs are themselves 

biolenses and therefore the optical properties of the overall biological optical 

system consists in the whole cell (primary biolens) and a number of smaller 

embedded biolenses (i.e. intracellular LDs). It is important to underline that 

the LDs detection accuracy is strictly related to the sensitivity of the max-

intensity measures to provide the peak, as reported in Figure 4.15(f-h). This 

sensitivity depends on the trade-off between LDs size and axial resolution, i.e. 

LDs having sizes comparable with the wavelength cannot be detected. This 

suggests that such biological-lens system is more complex in respect to the 

single lensing effect of the cell itself. 

To assess the perturbation introduced by the LDs to the biolens features of the 

whole cell, as summarized in Table 14, 537 QPMs of 202 Jurkat T-lymphocytes 

and 575 QPMs of 60 A2780 ovarian cancer cells have been recorded through 

the TPM-FC system, used here as HIFC system, while flowing and rotating 

along the microfluidic channel. In Figure 4.16(h), the max-intensity curves 

computed for each 2D QPM have been averaged inside the Jurkat T-

lymphocyte cell line (blue) and the A2780 cell line (red), at the aim of 

analyzing the focalization property of these two populations on a greater 

number of cells. The two average max-intensity curves show again a maximum 

peak due to the focalization of the overall cell (black circles), while, as expected 

from the biological point of view, the smaller peak due to the presence of LDs 



196 4.3.     IDENTIFICATION OF LIPID DROPLETS 

 

is instead localized at the initial 𝑧 distances only in the A2780 case (green 

rectangle). For this reason, it is expected that the variation of the cell 

focalization property caused by LDs could be exploited for a fast detection of 

cells with LDs inside by means of HIFC. At this aim, the Jurkat T-lymphocyte 

WBC and the A2780 ovarian cancer cell studied in Figure 4.15 have been 

considered again, and the comparison between their max-intensity curves has 

been displayed in Figure 4.17(a). 

 

Figure 4.17 Quantitative characterization of the alteration of the cell biolens 
features by LDs. 
(a) Comparison between the max-intensity curve of the Jurkat T-lymphocyte cell 
(blue line) and the A2780 cell (red line) analyzed in Figure 4.15. (b) Zoom-in of the 
max-intensity curves in (a) in the [0,2] µm region (green box). (c) Zoomed-in max-
intensity curves in (b) normalized to their maxima. (d) Normalized max-intensity 
curves (dots) with overlapped the 2nd order polynomial fitting (black line). 
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As shown in Figure 4.17(b), to deepen the perturbation due to LDs, analysis 

about the max-intensity curve has been limited only to the first 2 µm along the 

optical 𝑧-axis, since it is the region between the focal plane of the cell and the 

location of the LDs peak in the max-intensity curve. In fact, this region is 

expected to provide the best detection accuracy in the shortest possible time, 

since this is the region in which the difference between the cases with and 

without LDs (red and blue curve, respectively) is maximized, and at the same 

time the depth of the 𝑧-stack along which the QPM is numerically propagated 

by means of the Angular Spectrum formula is very small (i.e., the numerical 𝑧-

scanning is fast). To avoid errors related to the different cell sizes and not to 

the presence of LDs, the two zoomed-in max-intensity curves have been 

normalized to their maxima in the range from 0 to 2 µm, thus obtaining the 

normalized max-intensity curves displayed in Figure 4.17(c). As the maximum 

value of the zoomed-in max-intensity curve about the A2780 cell is much 

greater than the Jurkat T-lymphocyte one (see Figure 4.17(b)), the average 

value of the normalized max-intensity curve about the A2780 cell is much 

smaller than the Jurkat T-lymphocyte one (see Figure 4.17(c)). Moreover, the 

presence of LDs leads to different slopes in the initial regions of the max-

intensity curves. For this reason, the normalized max-intensity curves have 

been fitted through a 2nd order polynomial, as reported in Figure 4.17(d)). 

Hence, in order to characterize the normalized max-intensity curves reported 

in Figure 4.17(c,d), two parameters have been considered, i.e., the average 

value and the quadratic coefficient of the 2nd order polynomial fitting. In the 

scatter plot of Figure 4.18(a), the QPMs of the recorded Jurkat T-lymphocyte 

and A2780 cells have been represented by means of their max-intensity 

average values and quadratic coefficients. Remarkably, these two parameters 

can provide a great separation between these two cell lines due to the 

presence or not of LDs, as also demonstrated by the boundary line computed 

through the LDA [349]. 
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Figure 4.18 Identification of cells with LDs from the in-flow QPMs represented 
through their max-intensity average values and quadratic coefficients. 
(a) Scatter plot of Jurkat T-lymphocyte (blue dots) vs. A2780 (red dots) cells, 
separated by the line boundary computed through the LDA (black line). (b) Scatter 
plot of monocytes without (blue dots) and with (red dots) LDs, separated by the 
LDA boundary found in (a). 

Table 14 Dataset of Jurkat T-lymphocyte and A2780 ovarian cancer cells collected 

through the TPM-FC. 

 # QPMs # Cells 

Lymphocyte 537 202 

A2780 575 60 

 

To test the proposed method in recognizing cells with LDs from the 

experimental QPMs, another dataset has been considered, made of monocytes 

THP1 recorded before and after the appearance of LDs. In fact, within the 

WBCs, a remarkable increase in the number and size of LDs in response to 

stress conditions has been demonstrated [308]. For this reason, in order to 

promote the appearance of many and large LDs, no external agent has been 

exploited, but monocytes population without LDs has been left in culture for 

some days reducing the culture medium perfusion and thus inducing a stress 

condition. In particular, as summarized in Table 15, 864 QPMs related to 96 
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monocytes without LDs and 450 QPMs related to 50 monocytes with LDs have 

been considered. In Figure 4.18(b), the same LDA boundary found in the 

lymphocytes vs. A2780 scatter plot has been exploited to recognize the 

presence of LDs inside monocytes. It is worth remarking that, although the 

LDA has been set on a different problem, also in this case the presence of LDs 

has been correctly identified in most of the experimental QPMs by only 

exploiting the perturbation that intracellular LDs introduce to the biolens 

features of the whole cell. In fact, in Figure 4.18(b), an accuracy of 81.2% has 

been obtained in detecting or not LDs inside the 1314 analyzed QPMs. 

Depending on the size and RI, LDs in some angular positions in 2D QPMs can 

be difficult to be detected or even non detectable at all. For example, the LDs 

can be occluded by the complexity of the nuclei’s structure. A possible solution 

would be recording more than one QPM of the same cell during its rotation, as 

occurs in the proposed system. In fact, cell rotation can allow to obtain one or 

more directions along which the LDs are more easily detectable, still without 

the need to retrieve the 3D RI tomograms. For example, in the presented case 

study, as reported in Table 15, only 9 QPMs per cell have been recorded. 

Nevertheless, by using a max-voting strategy, remarkably the accuracy 

increases up to 100% in detecting or not LDs inside the 146 analyzed cells.  

Table 15 Dataset of monocytes THP1 collected through the TPM-FC system before 

and after the appearance of LDs. 

 # QPMs # Cells 

No LDs Monocyte 864 96 

LDs Monocyte 450 50 
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4.4 Internalized nanoGraphene Oxide for Drug 
Delivery Monitoring 

Recently, nanographene and its derivatives have captured much attention due 

to their electronic properties [350] [351] and promising applications in 

biomedicine field, even including approaches to fight or detect infections 

caused by the new coronavirus SARS-CoV-2 (COVID-19) [352] [353]. Indeed, 

graphene and graphene oxide (GO) have been used in making DNA-based 

optical sensors for drug delivery [354] and for the detection of nucleic acids 

[355], proteins [356], virus [357], metal ions [358] and small molecules [359]. 

Furthermore, nGO is a promising candidate as vaccine carrier and adjuvant for 

efficient intracellular vaccine protein delivery [360] [361]. Different 

techniques are continuously developed and refined to study the interactions 

of Graphene Family Materials (GFMs) with biological samples. The MTT assay 

is used for the nonradioactive and spectrophotometric quantification of the 

cell proliferation, the viability in cell populations, and the in vitro toxicology 

[362]. A careful validation of MTT assay procedures is needed in experiments 

where GFMs are one of the constituents, to avoid a potential bias in concluding 

results of cytotoxicity studies [363]. In fact, GO is a universal fluorescence 

quencher [360] [364]. Hence, the use of fluorescence techniques for revealing, 

quantifying, and visualizing GO can be affected by the fluorescent quenching 

due to the interactions of nanoparticles (NPs) with fluorophores and organic 

dyes [365]. Thus, fluorescence-based methods are not suitable for toxicity 

testing of carbon-based nanomaterials. The gold standard technique to study 

nanomaterials-cells interaction or even mapping the GO intracellular 

distribution exploits electron-based microscopy, such as TEM. Furthermore, 

many interesting developments have been achieved recently about other 

imaging modalities for measuring intracellular processes as in confocal 

microscopy [366], multimodal optical-electron imaging [367], and hybrid 

Raman fluorescence spectral imaging [368] [369]. However, despite all the 

above-mentioned methods provide imaging and measurements in cells, very 
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few studies have been devoted to visualize the 3D spatial distribution of NPs 

uptake in a quantitative way. Confocal microscopy would be the elective 

optical tool to this aim. Indeed, it has been demonstrated that Confocal Raman 

imaging can be used for tracking the nGO cellular uptake in living cells 

avoiding any additional fluorescent or plasmonic tag [370]. However, while it 

is quite easy to perform 3D confocal scanning of cells on a flat surface, it is 

impossible on suspended or flowing cells. FC has been demonstrated being a 

suitable technology to provide quantitative measurements of the cellular 

uptake of NPs [371] [372], because the SSC has been correlated to the cellular 

granularity [371]. Unfortunately, such technology does not allow retrieving 

the exact localization of NPs inside the cell volume. Alternatively, the 

fluorescence signal of labelled NPs provides a more robust analysis [372], but 

fluorescent tags can influence the particle properties and behavior. DH has 

been recently adopted as a valuable full-field, label-free, non-invasive and 

high-resolution tool for nanomaterial toxicity and cell interaction studies by 

morphologic characterization [373] [374]. Biophysical and morphological 

parameters such as cell volume, thickness, density, dry mass, RI variation in 

time, and bio-distribution of NPs inside cell cytoplasm can be measured by 

phase-contrast images, without the use of chemical compounds that could 

interfere with nanomaterials. The ability of DH to evaluate the bio-distribution 

of nGO internalized in adhered live cells for 24 h and 48 h has been 

demonstrated [375]. However, in the previous studies, analysis was limited to 

2D spatial distribution of internalized nGO inside adhered cells, while there is 

still a strong lack of understanding of its true 3D spatial distribution within 

suspended cells. TPM-FC could be exploited for this purpose. However, nGO 

and their aggregates strongly scatter visible light, therefore phase-contrast 

microscopy cannot be effective in retrieving their 3D spatial distribution. To 

overcome this issue, here an alternative strategy has been proposed for 

revealing the 3D spatial intracellular distribution of nGO, namely 

Tomographic Amplitude Microscopy (TAM) in FC [294]. In particular, for the 

first time, here it has been demonstrated that a 3D tomogram can be obtained 
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by using the amplitude maps (AMs) computed from the recorded digital 

holograms in place of QPMs, thus furnishing a complete visualization in 3D of 

the internalized nGO aggregates. By using fibroblast cells after 24 h and 48 h 

of nGO internalization, some geometrical descriptors have been here 

proposed to characterize the 3D intracellular spatial distributions of these NPs 

inside the reconstructed TAM-FC tomograms. 

Murine embryonic fibroblasts NIH-3T3 cells have been chosen to analyze the 

effects of nGO in-vitro. NIH-3T3 cells have been grown in DMEM 

supplemented with 10% FBS (both Life Technologies, Carlsbad, CA), 2 mM L-

glutamine (Sigma, St. Louis, MO), 100 U/mL penicillin, and 100 μg/mL 

streptomycin. Then, the fibroblasts have been seeded at a cell density of 5 × 

104 cells/mL in a 35 mm Petri dish (WillCo) and incubated at 37 °C and in a 

humidified 5% CO2 atmosphere in an incubator (Esco). To investigate the 3D 

intracellular distribution of nGO, 50 μg/mL of nGO at intermediate oxidation 

degree (nGO2 [375]) has been added in the complete DMEM medium. Then, 

the cell culture has been monitored at different time points at 24 h and 48 h. 

At time points of 24 h and 48 h, cells have been detached by trypsin-EDTA and 

injected into a microfluidic channel to collect holographic images of flowing 

and rotating cells. The TAM-FC system employed for experiments corresponds 

to the TPM-FC system in Figure 2.5 (microfluidic channel with 200 µm × 200 

µm cross section coupled to a 2048×2048 CCD camera recording at 30 fps with 

5.5 µm pixel size and a 40× MO, oil immersion, NA=1.30). The sole difference 

between TAM-FC and TPM-FC can be found in the numerical post-processing 

for the tomographic reconstruction. The holographic reconstruction 

processing described in Section 2.4.2 has been implemented to obtain the in-

focus complex wavefront, from which the AMs and QPMs have been recovered. 

Then, after recovering the unknown rolling angles as in Section 2.4.3 [108], for 

each flowing and rotating cell, TPM-FC reconstruction has been performed. 

Unlike cells, nGO is a strong scattering material in the visible spectrum, which 

causes alterations within the periodic interference fringe pattern recorded by 

DH. When the amount of internalized graphene is low, this disruptive 
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phenomenon is localized in a little region within the cell, as highlighted in 

Figure 4.19(a,f,k) by the blue inserts within the digital holograms of three 

NIH-3T3 cells treated with nGO for 24 h. The effect of the nGO cluster can be 

observed as a dark spot in the red inserts within the retrieved QPMs shown in 

Figure 4.19(b,g,l). Moreover, this dark spot appears in several images of the 

QPM sequence, changing its position every time because of the cell rotation. 

After performing the TPM-FC reconstruction on first two cells in Figure 4.19, 

the 3D visualization of accumulated nGO is obtained by setting a suitable 

threshold that allows its recognition at the lowest RI values, as shown in 

Figure 4.19(c,h) by black regions within the red cell shells. Instead, a third 

NIH-3T3 cell recorded with the same experimental conditions (i.e. after 24 h 

from the nGO adding in the DMEM medium) is reported in Figure 4.19(k-o), 

where the high light absorption caused by the nGO accumulation has led to a 

greater loss of information among all the holograms of the recorded sequence. 

Indeed, the effect of light absorption in some sample areas causes the loss 

fringes in the hologram, as shown in the blue insert in Figure 4.19(k). This loss 

of information in digital holograms provokes distortions in most of the 

corresponding QPMs, thus making the visualization of nGO grains unfeasible 

in the TPM-FC reconstruction. In fact, in Figure 4.19(m), the TPM-FC 

reconstruction lacks the nGO cluster, even if the graphene internalization is 

clearly visible in some QPMs of the sequence, as displayed in Figure 4.19(l). To 

overcome this drawback, here the AMs have been adopted instead of the QPMs 

to reconstruct the 3D tomogram, because they can collect much better the light 

absorption information. Figure 4.19(d,i,n) shows the AMs for the three 

analyzed test cases, in which the nGO grains are still visible in any image of the 

sequence but without the abrupt jumps that characterize the corresponding 

QPMs. The FBP algorithm has been implemented with the AMs and the same 

angles calculated by means of the recovery method explored for TPM-FC 

[108]. Therefore, this technique has been indicated as TAM-FC.  
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Figure 4.19 3D graphene reconstruction through TPM-FC and TAM-FC 
methods in three NIH-3T3 cells after 24h-treatment with nGO. 
(a,f,k) Holographic ROIs with the NIH-3T3 cells, altered by the internalized nGO 
(blue insert). (b,g,l) Numerically retrieved QPMs, with highlighted in the red insert 
the dark spot due to nGO disturbance in (a,f,k). (c,h,m) Isolevels representation of 
the 3D TPM-FC reconstructions. In (c,h), the nGO accumulation (black) is 
segmented from the outer cell (red), while this is not possible in (m). (d,i,n) 
Numerically retrieved AMs, with highlighted in the green insert the dark spot due 
to nGO disturbance in (a,f,k). (e,j,o) Isolevels representation of the 3D TAM-FC 
reconstructions, in which the nGO accumulation (black) is segmented from the 
outer cell (green). Scale bars are 10 μm. Colorbars intervals refer to the inserts. 
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While in TPM-FC the reconstructed tomogram is the quantitative 3D spatial 

distribution of cell RI, in TAM-FC the reconstructed tomogram can only be 

considered as a 3D visualization of intracellular regions having different light 

attenuation coefficients. However, the lack of artifacts in the AMs allows the 

complete identification of the 3D graphene spatial distribution within the 

tested NIH-3T3 cells by means of TAM-FC also in the third analyzed cell for 

which TPM-FC fails, as reported in Figure 4.19(o). Moreover, as proof of the 

effectiveness of the proposed approach, the TAM-FC reconstructions about the 

other two test cases in Figure 4.19(e,j) show remarkable similarities with the 

TPM-FC ones in Figure 4.19(c,h), respectively, but at the same time it is clear 

that TAM-FC improves the 3D visualization of the nGO cluster, which instead 

is incomplete in TPM-FC because of the loss of information in the generative 

QPMs. 

It is worth pointing out that the higher the quantity of internalized nGO, the 

less the ability to provide an effective TPM-FC reconstruction. Therefore, in 

case of huge nGO internalization, the proposed TAM-FC reconstruction 

method is the key-approach for detecting accurately the 3D spatial 

distribution of nGO within cells. To prove this, an NIH-3T3 cell has been 

studied after a 48h-treatment, in which a massive nGO internalization can be 

observed. This is evident in the four frames taken from the recorded 

holographic sequence displayed in Figure 4.20(a). Graphene has arranged as 

a ring within the cell around the nucleus (nuclear decoration [372] [375]), 

thus occupying a large cell volume. Consequently, phase retrieval fails for any 

hologram of the sequence, thus preventing the TPM-FC reconstruction, as 

displayed in Figure 4.20(b). In fact, when the cluster absorbs too much light, 

the signal collected by the sensor is too low to properly detect the object 

wavefront modulation of the fringe’s carrier. As a result, information in that 

area is lost, and in turn the QPM signal cannot be retrieved. The phase signal 

is discontinuous in this sense, since it varies from defined values to undefined 

values.  
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Figure 4.20 3D graphene reconstruction in an NIH-3T3 cell after 48h-
treatment with nGO. 
(a) Four frames taken from the recorded holographic sequence of the rolling cell, 
from which a ring-shaped nGO spatial distribution can be inferred. (b) QPMs 
numerically retrieved from (a), in which the phase jumps are not corrected by the 
unwrapping algorithm. (c) AMs numerically retrieved from (a), in which the dark 
regions are due to the light attenuation of the internalized graphene. (d,e) Three 
views of the isolevels representation of the tomogram reconstructed through SFS 
and TAM-FC algorithms, respectively, in which the internalized nGO (black), 
segmented and isolated from the outer cell (yellow and green, respectively), 
distributes as a 3D ring, as observed in 2D images in (a-c). Scale bar in (a) is 10 μm. 
In (a-c), the estimated viewing angles are reported at the top. 
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If phase unwrapping is performed to obtain the quantitative optical thickness 

map, this will show unreliable values in that area and the unwrapping error 

might propagate also in different areas [17]. Thus, one cannot rely on the QPM 

in the presence of highly absorbing clusters for achieving quantitative 

information. Instead, the dark ring region is properly preserved in the AMs in 

Figure 4.20(c), thus the TAM-FC approach is able to recover the 3D 

visualization of internalized nGO with high accuracy, as shown by three 

different views of the TAM-FC reconstruction in Figure 4.20(e). To further 

demonstrate the effectiveness of TAM-FC algorithm, a comparison with a well-

established 3D shape reconstruction method has been performed, namely 

Shape From Silhouette (SFS) [376], already demonstrated to recover the 3D 

visualization of live cell [377]. Here, the SFS algorithm has been performed 

separately on the overall cell to reconstruct the cell shell, and on the nGO 

distribution obtained from AMs. The result, reported in Figure 4.20(d), clearly 

shows low resolution in defining the nGO shape if compared to the TAM-FC 

reconstruction in Figure 4.20(e). 

The tomographic results reported here allow a much more complete 

understanding of the nGO internalization process in respect to the previous 

2D methods [375]. In fact, by means of the proposed TAM-FC, a 3D visual 

analysis is immediately available, thus furnishing insights on how nGO is 

clustering and spatially distributing within the cell volume. Besides, beyond 

this very useful full 3D direct visualization, quantitative 3D measurements 

have been here extracted for a full nGO characterization. These quantitative 

parameters can be the bases for the definition of biomarkers for nGO-cell 

interaction in terms of 3D spatial intracellular deployment of nGO. At the aim 

to define some 3D morphological parameters to investigate nGO positioning 

and shapes, the TAM-FC reconstructions at 24 h of Figure 4.19(e,j,o) are 

reported again in Figure 4.21(a-c) and named cell 1, cell 2 and cell 3, 

respectively. 
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Figure 4.21 3D quantitative Euclidean analysis from TAM-FC reconstructions 
of nGO uptake in NIH-3T3 cells after 24h-treatments. 
(a-c) TAM-FC reconstructions of three 24h-cells (green) and their nGO clusters 
(black). 𝐶 is the cell centroid, 𝐺 is the graphene centroid, and 𝑀 is the nearest point 
of the external cell membrane to point 𝐺. Line 𝑐 joins points 𝐶 and 𝐺, and line 𝑚 
joins points 𝑀 and 𝐺. Line 𝑔 passes for point 𝐺 and is orientated like 3D nGO 
cluster. (d) Cartesian plot of graphene-cell normalized distance 𝛿(𝐺, 𝐶) vs. 
graphene-membrane normalized distance 𝛿(𝐺,𝑀). (e) Cartesian plot of graphene 
sphericity Ψ𝐺  vs. graphene equivalent radius 𝜌𝐺 . (f) Polar plot in which the radial 
coordinate is the graphene sphericity Ψ𝐺  and the angular coordinate is the 
graphene-cell angle 𝜃𝐺𝐶 . (g) Polar plot in which the radial coordinate is the 
graphene-cell normalized distance 𝛿(𝐺, 𝐶) and the angular coordinate is the 
graphene-cell angle 𝜃𝐺𝐶 . 
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In particular, they have been measured the graphene-cell normalized distance 

𝛿(𝐺, 𝐶), the graphene-membrane normalized distance 𝛿(𝐺,𝑀), the 

orientation of the detected nGO cluster (i.e. the graphene-cell angle 𝜃𝐺𝐶), its 

sphericity Ψ𝐺 , and its equivalent radius 𝜌𝐺 . In all three cases, nGO clusters are 

about in the same relative position between cell centroid and cell membrane, 

as shown by the 𝛿(𝐺, 𝐶) vs. 𝛿(𝐺,𝑀) plot in Figure 4.21(d), and moreover they 

are closer to the cell membrane, as displayed in Figure 4.21(a-c). Their 

sphericity Ψ𝐺  decreases with a bigger graphene equivalent radius 𝜌𝐺 , as 

reported in Figure 4.21(e), and with a bigger graphene-cell angle 𝜃𝐺𝐶, as 

shown by polar plot in Figure 4.21(f). In addition, as also visible in Figure 

4.21(a-c), nGO clusters are oriented about orthogonally with respect to cell 

radius, but graphene-cell angle 𝜃𝐺𝐶 slightly decreases with the graphene-cell 

normalized distance 𝛿(𝐺, 𝐶), as reported in the polar plot in Figure 4.21(g). 

Hence, passing from 24 h to 48 h, as the volumes of nGO clusters increase, their 

sphericities reduce since they stretch orthogonally with respect to cell radius, 

in order to finally form a unique 3D ring structure, as visible in Figure 4.21(e).  

Furthermore, the test case reported in Figure 4.20 needs a more sophisticated 

morphological analysis. The 3D shape of nGO in Figure 4.20(e) has been 

modeled as a toroid having its same volume, as shown by the inset in Figure 

4.22(a). The toroid provides a rough estimation of the nuclear size, since the 

3D nGO ring distributes around nucleus without accessing it, because nGO 

particles are larger than the functional diameter of the nuclear pores [375]. 

This information is very valuable in a label-free technique such as DHM, in 

which the intracellular identification is still an open and challenging issue, 

since no dyes are used to make nucleus visible and easily detachable from the 

surrounding cytoplasm. Moreover, the toroidal modelling can be exploited for 

an additional quantitative analysis about 3D nGO distribution by unrolling its 

shape through the conversion in spherical coordinates, i.e. azimuthal angle, 

elevation angle and radial distance, as reported in yellow in Figure 4.22(a).  
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Figure 4.22 3D quantitative Euclidean analysis from TAM-FC reconstructions 
of nGO uptake in NIH-3T3 cells after 48h-treatments. 
(a) Modelled toroid (yellow) and 3D nGO ring structure (black) unrolled by 
converting the cartesian coordinates in spherical coordinates. In the insert, toroid 
used to model 3D nGO ring structure of the 48h-cell. 𝐶𝑇 is the centre of the toroid 
and 𝑐𝑇 is the centre of its generator circle (black), which radius is 𝑟𝑇 (inner radius). 
The outer radius 𝑅𝑇 is the distance between centres 𝐶𝑇 and 𝑐𝑇 . (b-d) Comparison 
between the histograms of the modelled toroid (yellow) and the 3D nGO ring 
structure (black) about the azimuthal angle, the elevation angle and the radial 
distance, respectively. 
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Table 16 Morphometric features measured in the TAM-FC reconstructions of four 

NIH-3T3 cells, analysed after 24 h and 48 h from the nGO adding in DMEM 

medium. 

 

24 h 
cell 1 

24 h 
cell 2 

24 h 
cell 3 

48 h 

Figure 
4.19(e) 

Figure 
4.19(j) 

Figure 
4.19(o) 

Figure 
4.20(e) 

Cell Volume [μm3] 6006.59 3053.92 3092.40 9478.44 

Cell Equivalent Radius [μm] 11.28 9.00 9.04 13.13 

Graphene Volume [μm3] 12.10 8.66 13.25 2339.69 

Graphene Equivalent Radius [μm] 1.42 1.27 1.47 8.24 

Graphene-Cell Volume Ratio [%] 0.20 0.28 0.43 24.68 

Graphene Surface Area [μm2] 28.69 22.12 30.22 1933.38 

Graphene Sphericity [%] 0.89 0.92 0.90 0.44 

Graphene 1st Principal Axis [μm] 3.47 2.85 3.60 - 

Graphene 2nd Principal Axis [μm] 2.90 2.47 2.64 - 

Graphene 3rd Principal Axis [μm] 1.72 1.77 2.08 - 

Graphene-Cell Distance [μm] 8.35 5.51 6.25 1.79 

Graphene-Membrane Distance [μm] 2.90 3.38 2.64 - 

Graphene-Cell Normalized Distance [a.u.] 0.74 0.62 0.70 - 

Graphene-Membrane Normalized Distance [a.u.] 0.26 0.38 0.30 - 

Graphene-Cell Angle [deg] 83.63 77.17 86.76 - 

Toroid Outer Radius [μm] - - - 9.88 

Toroid Inner Radius [μm] - - - 3.47 

Azimuthal Angle Percentage Error [%] - - - 24.40 

Elevation Angle Percentage Error [%] - - - 54.82 

Radial Distance Percentage Error [%] - - - 30.72 

 

The same calculation has been performed on the nGO shape, reported in black 

in Figure 4.22(a), enabling a quantitative evaluation about the surface 

irregularity through histograms of spherical coordinates in Figure 4.22(b-d). 

A detailed discussion about the geometrical analysis is provided in Appendix 

A.7. 

To summarize all the quantitative descriptors, a set of parameters measured 

from the TAM-FC reconstructions discussed in Figure 4.19(e,j,o) and Figure 

4.20(e) is reported in Table 16, including those described in Figure 4.21, 

Figure 4.22, and in Appendix A.7. In particular, the graphene volume increases 

of two orders of size in passing from 24 h to 48 h. As a consequence, the cell 
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equivalent radius grows by few microns, since a large amount of graphene is 

internalized. These volumetric measurements could be very useful to study 

the cytotoxicity effects due to nGO uptake, for example to kill sick cells, such 

as tumour cells [378]. 

4.5 Encoding Tomographic Data via 3D Zernike 
Descriptors 

In the last decade, very promising results of TPM in biomedicine have 

demonstrated the effectiveness of this technology as a novel imaging modality 

for single-cell studies (see Chapter 1). The recent demonstration of TPM-FC 

has added the missing milestone for employing this technology in high-

throughput modality, as discussed in Section 2.4, and several applications 

have been herein demonstrated. Depending on the number and the velocity of 

cells simultaneously imaged in the FOV, the throughput can vary from tens to 

thousands of cells per minutes. While this is a unique opportunity for in-depth 

single-cell analysis with high statistical relevance, it also poses a non-

negligible problem in terms of data management. In the case of TPM-FC, 

usually tens to hundreds QPMs have to be reconstructed in focus for each cell 

to estimate its 3D RI tomogram. Of course, reducing the number of probing 

directions relaxes data managing and computational burden but trading off 

resolution. The huge amount of data has pushed the scientific community to 

improve computational processing in terms of costs and speed through AI 

[211]. The latest result herein reported regards the use of DL to make the 

holographic reconstruction process up to 45 times faster (see Section 3.1) 

[213]. Recently, it has been demonstrated the possibility to achieve potentially 

more than 10000 tomograms per second, using only 4 views acquired 

simultaneously with an angle-multiplexing illumination strategy and 

exploiting DL to recover the missing information [379]. It is evident that, 
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storing and managing 3D data in a fast and accessible way will be necessary to 

make TPM-FC technology truly exploitable in clinical applications. This issue 

can be framed within the wide field of volumetric image analysis. In fact, a 

large variety of image coding techniques exist [380], such as transform based 

techniques like Discrete Wavelet Transforms (DWTs). Other approaches use a 

different paradigm based on video coding methodologies such as 

H.264/MPEG-4 AVC and H.265/MPEG-HHEVC [381] to compress 3D and 4D 

medical image datasets. Despite very recent and highly performing 3D coding 

strategies [382] [383] [384], at present, the most commonly used volumetric 

image analysis methods are based still on 3D DWTs [385]. An alternative 

scheme, based on the 3D extension of Zernike polynomials, was proposed by 

Canterakis [386] with the aim to have an all-round tool for 3D image analysis 

and recognition. It was demonstrated that the 3D Zernike representation is a 

natural extension of spherical harmonics based descriptors, providing 

complete orthonormal affine invariants and guaranteeing very high coding 

performance, especially for objects having spherical-like symmetries. Indeed, 

this methodology was successfully employed in a wide range of applications, 

ranging from the conventional 3D shape compression and retrieval [387] and, 

very recently, to 3D protein shape investigation [388]. 

Considering that in the natural environment of cells, such as in continuous 

flow, their 3D shape can be considered almost spherical, here the Zernike 

polynomials basis in 3D space is introduced for representing single-cell 

tomograms. In particular, it is described the possibility to encode 3D 

tomographic data into a sequence (i.e. a 1D numerical string) of the 

corresponding 3D Zernike Descriptors (3DZD) without significant loss of 

information [295]. In this way, the 3DZD can encode tomographic data with a-

priori chosen fidelity. Squeezing single-cells tomograms via 3DZD has not 

been investigated before. Moreover, an intrinsic relation between Zernike 

polynomials and single-cell QPI has been recently discovered, showing that 

cells can be modeled as biological opto-fluidic microlenses [21]. Here, such 

modelling is extended to 3D TPM. Since the cell’s QPM is the 2D projection of 
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the 3D real object (i.e. the tomogram), the 3D extension of Zernike polynomials 

can be also considered as the generalization of the microlens volumetric 

shaping. This concept opens to a new paradigm for managing tomograms 

through 3D Zernike polynomials, not only limited to the compression and 

reconstruction of 3D tomographic data but interpreting the 3DZD and related 

aberrations as the fingerprint of the subcellular structures. The 3DZD-based 

reconstruction is firstly demonstrated with a simulated tomographic cell 

phantom (i.e. a ground truth), with the aim to define the Zernike polynomials 

order needed to reach a reconstruction’s fidelity score, fixed as < 1% of the 

Normalized Root Mean Square Error (NRMSE) between the reconstruction 

and the ground truth. Moreover, a performance analysis of the proposed 

Zernike based encoding scheme is reported, in comparison with the most used 

volumetric image compression strategy based on the 3D DWTs. Then, the 

method is validated on several single-cell tomograms data, recorded by TPM 

systems in static [389] as well as in the most relevant case of flow cytometry 

conditions, i.e. TPM-FC. This breakthrough methodology can pave the way for 

novel approaches in tomographic data management and storage, since it 

allows to replace 3D data with 1D sequences (i.e. the 3DZD), reducing the 

problem dimensionality while maintaining the same degree of data richness. 

In optical imaging, Zernike polynomials are commonly used to study 

wavefront aberrations [390], but they have been recently exploited to model 

QPMs of living cells [22]. In analogy to the 2D case, the 3D version of Zernike 

polynomials and the relative coefficients, i.e. 3DZD, can be used to represent 

single-cell 3D RI distributions. Let 𝑇(𝐱) be a tomographic reconstruction. Its 

reconstruction using the 3D Zernike basis functions 𝑍𝑛𝑙
𝑚(𝐱) is 

(4.5)  𝑇(𝐱) ≈ �̃�(𝐱) = ∑ Ω𝑛𝑙
𝑚𝑍𝑛𝑙

𝑚(𝐱)𝑛,𝑙,𝑚 , 

where �̃�(𝐱) is the approximated tomogram, 𝐱 = (𝑥, 𝑦, 𝑧)𝑇 are the Cartesian 

coordinates, 𝑛, 𝑙,𝑚 are integer indexes such that 𝑛𝜖[0, 𝑁], 𝑙 ≤ 𝑛 with 𝑛 − 𝑙 

even numbers and 𝑚 ∈ [−𝑙, 𝑙], and 𝑁 is the maximum polynomial order. The 

Ω𝑛𝑙
𝑚  value are the 3DZD that can be calculated by solving the equivalent linear 
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system after vectorizing the terms in Eq. (4.5), i.e. in the similar way to the 2D 

case for the wavefront aberrations computing [390]. All details about the 

mathematical derivation of 3D Zernike basis functions in Eq. (4.5) and the 

computation of the 3DZD are reported in Appendix A.8. Theoretically, the 

exact reconstruction of a tomogram can be achieved if and only if 𝑁 → ∞, so 

the left side of the Eq. (4.5) holds with the sign of equality. 

 

Figure 4.23 Proof of 3DZD encoding for high fidelity recovery of tomographic 
data. 
(a) Isolevel image of a tomographic cell phantom with three inset images reporting 
the central slices along orthogonal directions. (b) Shapes visualization of the first 
20 Zernike polynomials (up to order 𝑁 = 3). (c) 3DZD obtained by fitting the 
tomographic cell phantom with Zernike polynomials up to order 𝑁 = 30 
(corresponding to 5456 descriptors). (d) Tomogram recovery by using the 3DZD, 
reporting a fidelity score of 𝑁𝑅𝑀𝑆𝐸 = 0.81%. The retrieved isolevel image and 
relative central slices show high visualization fidelity too if compared to (a). (e) 
NRMSE vs. Zernike order. Inset figures report isolevel images reconstructed by 
fixing the Zernike polynomials order up to 5, 10, 15, 20, 25, showing the retrieval 
of tiny details when the order of basis functions employed for fitting grows. 
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Of course, one can obtain only an approximation of the tomogram by using a 

finite value of 𝑁. Here the aim is to find the value of 𝑁 such that the 

reconstruction via 3DZD is as faithful as possible to the ground truth 𝑇(𝐱). To 

do this, the NRMSE between the 3DZD reconstruction and the original 

tomogram has been used, and the desired fidelity has been fixed at 𝑁𝑅𝑀𝑆𝐸 <

1% to guarantee the quasi lossless data encoding. Figure 4.23 reports the 

demonstration of the ability of 3DZD to reproduce a simulated tomographic 

cell phantom of sizes 50 × 50 × 50 pixels by using 3D Zernike polynomials up 

to order 𝑁 = 30, which corresponds to 5456 Zernike basis functions and 

related 3DZD. In particular, Figure 4.23(a) shows the isolevel RI distribution 

of the simulated phantom with three inset images reporting the central slices 

along the three main orthogonal directions. Figure 4.23(b) displays only the 

first 20 Zernike basis functions, corresponding to the order 𝑁 = 3, while 

Figure 4.23(c) reports the estimated 3DZD. The isolevels RI distribution and 

the related central slices of the recovered tomograms calculated by using the 

right side of the Eq. (4.5), i.e. �̃�(𝐱), and resulting in a 𝑁𝑅𝑀𝑆𝐸 = 0.81%, are 

reported in Figure 4.23(d). Finally, Figure 4.23(e) shows the trend of the 

tomogram recovery fidelity in terms of NRMSE using the 3DZD when the order 

of Zernike polynomials employed for the fitting grows. Notice that, tiny details 

(i.e. substructures with smaller sizes) become visible for high order Zernike 

polynomials (greater than 20) as highlighted by the inset isolevels images in 

Figure 4.23(e).  

In order to further evaluate the performance of the proposed method, the 

comparison among the 3DZD-based representation and some 3D DWTs is 

reported in Figure 4.24, in case of two different sizes of the simulated 

tomographic cell phantom, i.e. 50 × 50 × 50 pixels, used for the results 

reported in Figure 4.23, and 100 × 100 × 100 pixels. In particular, three 

wavelet basis sets are considered, namely Symlet 4, Daubechies 4, and Coiflet 

4, up to six decomposition levels. For this analysis, two complementary 

performance metrics are considered, i.e. the above used NRMSE and the 

percentage of the memory space saving, calculated as  
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(4.6)  𝑠𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔 = 100
#𝑣𝑜𝑥𝑒𝑙𝑠−#3𝐷𝑍𝐷

#voxels
, 

where the symbol # is the operator that quantifies the cardinality of a set. In 

the case of the results in Figure 4.23, #𝑣𝑜𝑥𝑒𝑙𝑠 = 503 and #3𝐷𝑍𝐷 = 5456, 

hence resulting in a 𝑠𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔 = 95.64% with a corresponding 𝑁𝑅𝑀𝑆𝐸 =

0.81%. Figure 4.24(a,b) report the comparison, respectively in terms of 

NRMSE and space saving, among the 3DZD encoding method (dashed green 

lines) and the considered 3D DWTs (by varying the decomposition level from 

1 to 6) in the case of #𝑣𝑜𝑥𝑒𝑙𝑠 = 503. Notice that, to reach a 𝑁𝑅𝑀𝑆𝐸 < 1%, all 

wavelet basis functions need to be used with a decomposition level 1, as 

reported in Figure 4.24(a), which corresponds to a lower space saving (i.e., 

82.44%) in respect to the 3DZD strategy, as reported in Figure 4.24(b). 

Conversely, to guarantee a space saving value greater than 95%, the 3D DWTs 

have to be used with at a decomposition level greater than 1, as reported in 

Figure 4.24(b), but the corresponding NRMSE increases up to 2.94%, as 

reported in Figure 4.24(a). Moreover, notice that the wavelet basis Coiflet 4 is 

not able to exceed a space saving value greater than 90% even with the highest 

decomposition level. In summary, the proposed 3DZD representation shows 

superior performance respect to the selected 3D DWTs, in terms of the 

coupled metrics NRMSE and space saving. Among the three wavelet basis sets, 

Symlet 4 shows the best overall performance, therefore it is considered for the 

comparison with the 3DZD approach when the sizes of the simulated 

tomogram increase up to #𝑣𝑜𝑥𝑒𝑙𝑠 = 1003. In this case, from Figure 4.24(c,d), 

it can be observed that the 3DZD method achieves a 𝑠𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔 > 99% (i.e., 

99.45%) but still preserving the fidelity score with a 𝑁𝑅𝑀𝑆𝐸 < 1% (i.e., 

0.95%). On the contrary, the Symlet 4 can approximate better the simulated 

phantom (𝑁𝑅𝑀𝑆𝐸 = 0.10%) at decomposition level 1, as reported in Figure 

4.24(e), but with a space saving of 85.11%, as reported in Figure 4.24(f). 

Instead, by fixing a space saving greater than 99%, achievable with a 

decomposition level 3, just a 𝑁𝑅𝑀𝑆𝐸 = 3.19% can be reached. 
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Figure 4.24 Performance analysis of the 3DZD method vs. 3D DWTs. 
(a,b) NRMSE and space saving, respectively, obtained by encoding the tomogram 
through three different 3D DWTs (i.e., Symlet 4, Daubechies 4, and Coiflet 4) at six 
decomposition levels. The dashed green lines correspond to the NRMSE and space 
saving, respectively, of the 3DZD approach at the order 𝑁 = 30. (c,d) NRMSE and 
space saving, respectively, obtained by fitting the tomogram through different 
orders of the 3DZD at two spatial resolutions (i.e., 50 × 50 × 50 and 100 × 100 ×
100). (e,f) NRMSE and space saving, respectively, obtained by fitting the tomogram 
through different decomposition levels of the Symlet 4 at two spatial resolutions 
(i.e., 50 × 50 × 50 and 100 × 100 × 100). 
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The validation of the proposed approach is achieved in the case of 

experimental data on living cells, acquired using different TPM systems, i.e. 

TPM-FC and TPM-ISC, and processed by different tomogram reconstruction 

algorithms, i.e. the conventional FBP algorithm and the LT method, 

respectively. In all cases, to perform a fair comparison in terms of NRMSE and 

visual inspection, the spatial resolution of original tomographic data is set at 

50 × 50 × 50 and the 3D Zernike polynomials are used up to the order 𝑁 =

30, i.e. calculating #3𝐷𝑍𝐷 = 5456 corresponding to a fixed 𝑠𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔 =

95.64%. Figure 4.25 reports three quasi-spherical cells approximated with the 

3DZD recovery method. Among them, the THP-1 monocyte in Figure 4.25(a) 

and the SKOV3 ovarian cancer cell in Figure 4.25(b) have been acquired by the 

TPM-FC system in Figure 2.5 and reconstructed with the FBP method, while 

the tomographic data of the Yeast cell in Figure 4.25(c) has been collected with 

a TPM-ISC system [389] and reconstructed with the LT algorithm [391]. Notice 

that the NRMSE for the cells in Figure 4.25(a,b) is less than 1%, while the 

approximation of the Yeast cell in Figure 4.25(c) provides a 𝑁𝑅𝑀𝑆𝐸 = 1.80%.  

 

Figure 4.25 Comparison between experimental tomographic data and the 
corresponding 3DZD reconstructions for a THP-1 cell (a), a SKOV3 cancer cell 
(b), and a Yeast cell (c). 
Left side: central slices of tomographic reconstructions of cells from experimental 
data. Right side: central slices of tomograms recovered via 3DZD. The NRMSE 
values are reported at the top. 
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This is mainly caused by the about double RI contrast. Of course, it is possible 

to push the value of NRMSE below the desired fidelity score by increasing the 

polynomials order 𝑁. The proposed 3D Zernike representation guarantees 

very high coding performance especially for objects having spherical-like 

symmetries as in Figure 4.25. To evaluate the performance also in cases of 

non-spherical cells, the 3DZD reconstruction of two different cells is reported 

in Figure 4.26(a,b), namely a RBC and a cluster of two SKNSH NB cancer cells, 

both acquired with the TPM-FC system in Figure 2.5 (microfluidic channel 

with 200 µm × 200 µm cross section coupled to a 2048×2048 CMOS camera 

with 5.5 µm pixel size recording at 35 fps and a 40× MO, oil immersion, 

NA=1.30) and reconstructed using the FBP approach. In both cases, a 

remarkable fidelity score is still achieved, as reported by the NRMSE values on 

the top. 

The results reported in Figure 4.25 and Figure 4.26 aim to demonstrate the 

ability of the proposed 3DZD representation to approximate cells’ 

tomographic data with high accuracy and achieving a very high 

𝑠𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔 > 95% corresponding to a data compression ratio ~22.9.  

 

Figure 4.26 Assessment of the 3DZD method in the case of two non-spherical 
cells, namely a RBC (a) and a cluster of two SKNSH NB cancer cells (b). 
Left side: central slices of tomographic reconstructions of cells from experimental 
data. Right side: central slices of tomograms recovered via 3DZD. The NRMSE 
values are reported at the top. 
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However, the effective tomographic data manipulation by using the 1D strings 

of 3DZD instead of the original 3D tomograms needs to be proved also for cell 

lines characterization. To demonstrate also this key-enabling potentiality of 

the proposed method, in Figure 4.27 it is reported the comparison about the 

histograms of the most common used morphometric features that can be 

calculated from single-cell tomographic data, i.e. the average RI, the biovolume 

and the dry mass. In particular, these features are calculated from 66 original 

tomograms (i.e. ground truth images) of NIH-3T3 mouse cell line recorded 

through the TPM-FC system in Figure 2.5 (reconstructed by the FBP 

algorithm) and from the corresponding reconstructions obtained using the 

3DZD representation. A 𝑁𝑅𝑀𝑆𝐸 = 1.55%± 0.28% is obtained, calculated as 

the average NRMSE and the related standard deviation from the 66 3DZD 

reconstructions. Notice that the relative difference between average values of 

each pair of histograms is less than 0.5% for the average RI and the dry mass 

and about 2% for the biovolume, thus demonstrating the effectiveness of the 

proposed method also to represent a cell line accurately. 

Tomographic data encode all the information needed to study the subcellular 

structures, exploiting the 3D distribution of the RI as an endogenous 

biomarker to identify organelles at the single-cell level. However, the 

statistical characterization of a cell population requires the collection of 

thousands of images that, in the case of conventional 2D IFC systems, requires 

storing and managing one snapshot per cell, that is to say a memory usage of 

megabytes. Instead, in the case of single-cell tomograms, one can expect to 

store from gigabytes to terabytes of data, without considering the potentially 

high computational cost needed to implement advanced algorithms for the 

identification of sub-populations and/or rare cells. On the one hand, this could 

be considered a hardware limitation only, which can be mitigated by 

employing highly-performance computers and GPUs. On the other hand, all 

LOC-oriented applications, which usually require software installed into on-

chip SRAM and a small memory footprint, would remain excluded from a 

massive adoption of the new TPM-FC technology and related advantages.  



222 4.5.     ENCODING TOMOGRAPHIC DATA VIA 3D ZERNIKE DESCRIPTORS 

 

 

Figure 4.27 Quantitative characterization of the NIH-3T3 cell line 
reconstructed through 3DZD. 
Histograms of (a) average RI, (b) biovolume, and (c) dry-mass, calculated from 
both experimental tomograms and corresponding reconstructions via 3DZD. 

The results presented here demonstrate, for the first time in the field of 

TPM-FC, the possibility to squeeze single-cell tomograms by using the 3D 

version of Zernike polynomials. They open the route to a potentially killer 

methodology to store, manipulate and process volumetric images, especially 

for LOC systems. Moreover, the possibility to replace volumetric data with the 

corresponding 3DZD sequence allows to address clinical challenges related to 

label-free single-cell phenotyping, for which the current solution is based on 

DL classification [209]. In principle, by the proposed method, it would be 

possible to switch from deep 3D image classification to deep 1D sequence 

classification, preserving the same degree of data richness and allowing a very 

remarkable memory and computational time reduction for the training of 

DCNNs. Finally, the possibility to employ 3DZD as morphological biomarkers 

to identify specific subcellular structures may be achieved as a direct 

generalization from the 2D case, in which the Zernike fitting is used to 

characterize aberrations of cells [21]. Just like the introduction of compressed 

formats for audio and video files promoted their widespread sharing by a 

community of billions users independently on the hardware resources they 

had access to, it is believed that lightening the weight of cells’ 3D tomograms 

will unlock the massive employment of this technology by the widest audience 

of researchers, biologist and physicians.



 

 
 

CHAPTER 

5 Conclusions 

This Ph.D. Thesis aimed to achieve a remarkable step toward the development 

of the TPM-FC technology. Starting from the first proof of concept of TPM-FC, 

herein many aspects of this tool have been tackled in order to fully exploit its 

theoretical potential and fix its main drawbacks for a practical 

implementation. Therefore, the attained results pave the way toward the first 

real world clinical applications of TPM-FC. 

➢ From the technological point-of-view, herein it has been demonstrated 

the feasibility of high-throughput TPM-FC, thanks to the optimization of 

the opto-fluidic recording system and to 

✓ the implementation of an automatic method for retrieving the 

unknown positions and viewing angles of the flowing/rolling cells 

within the microfluidic channel [108]; 

✓ the speeding-up of the holographic processing via DL [213]; 

✓ the quasi-lossless compression of the RI tomograms by 3D Zernike 

polynomials [295]; 

✓ the study of the hydrodynamic mutual interactions among cells 

inside the microfluidic channel [109]. 

➢ In terms of clinical applications, herein the TPM-FC system has been 

exploited for 

✓ the DL classification of human NB cancer cells (SKNSH vs. CHP134) 

based on the raw holographic diffraction patterns [214]; 
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✓ the ML classification of human monocytes WBCs vs. NB cancer cells 

and the downstream tumor phenotyping (CHP212 vs. SKNBE2 vs. 

SHSY5Y vs. SKNSH) based on the phase-contrast signature [215] 

interpreted by means of fractal geometry [216]; 

✓ the ML classification of drug resistance in human EC cells (ISK vs. 

ISK-CisR) based on the 3D RI spatial distribution [217]. 

➢ The main gap with FM in terms of lack of chemical intracellular specificity 

in label-free TPM-FC has been herein filled by means of computational 

strategies, thus providing reliable biomarkers for clinical applications, 

such as 

✓ the nucleus, commonly recognized as cancer biomarker, segmented 

through a statistical method [297]; 

✓ the nucleolus, containing most of the genetic material, segmented 

through a statistical method in TPM-FC [297], but also identified in 

plant cells through an alternative static TPM based on the induced 

cell dehydration [6]; 

✓ the LDs, recently related to a lot of pathologies, detected by means 

of a RI threshold inside 3D tomograms [291] or by exploiting 

changes of the focalization property of the whole cell, considered as 

a biolens [343], due to the presence of LDs inside 2D QPMs [345]; 

✓ the nGO internalized by the cell, useful for diagnostic and 

therapeutical purposes like drug delivery, visualized by means of 

TAM-FC, i.e. a variant of TPM-FC in which the AMs are employed in 

place of QPMs for the tomographic reconstruction [294]. 

The technological nature of TPM-FC, combined to the reported results, make 

it eligible for introducing a breakthrough in several clinical applications based 

on single-cell analysis, both diagnostic and therapeutic, thanks to the 

possibility of high-throughput recordings of high numbers of single cells, from 

which the most informative quantitative content can be extracted, i.e. the 3D 
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RI tomogram, also at the stain-free intracellular level. Among several possible 

applications, these remarkable properties, combined to the ability of working 

in microfluidic environment, bode well that TPM-FC will be able to offer a 

practical solution in the next future to the fascinating but not yet realized LB 

paradigm [392]. 

Histological evaluation, coupled to the analysis of genetic alterations from 

tissue biopsies, is the current standard method for cancer risk stratification 

and therapeutic choice. However, tissue biopsies have many limitations, like 

high invasive nature, subjective evaluation of an individual pathologist, and 

high procedural costs in the case of molecular pathology. Conversely, LB has 

been emerging in the last years as a blood test to search for cancer cells (CTCs) 

or cancer-derived free molecules (DNA, RNA, exosomes, etc) that are 

circulating in the blood. LB can be used to identify cancer at an early stage, to 

guide the patient treatment, to evaluate the treatment efficacy, or to validate 

whether cancer has relapsed [241]. LB is a non-invasive, easily repeatable, and 

potentially low-cost approach, thus it is revealing as a promising alternative 

to solid biopsy. In particular, CTCs are vital cells exfoliated from primary 

tumors and metastatic sites that enter the bloodstream. Their detection and 

characterization via LB has been deeply investigated for the development of 

novel protocols in management of cancer patients [393]. CTCs clinical trials 

are currently employed in breast, prostate, lung, and colorectal cancers [394] 

[395]. The study of CTCs and evolving CTC technologies are offering also 

additional models to accelerate oncologic drug development [396].  

To date, the potential clinical value of CTCs has been established, but still some 

limitations should be addressed before CTCs-based LB becomes a routine test 

in clinical practice. Most of the commonly used approaches for CTCs detection, 

enumeration, and isolation are based on the recognition of a known, specific 

CTCs marker, such as a surface antigen, a DNA mutation, a gene expression 

profile, or even a certain functional property that discriminates CTCs from the 

rest of the circulating blood cells. The only Food and Drug Administration-

approved diagnostic protocol for CTCs detection regards the CellSearch® 
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system, which bases the CTCs identification and enumeration on the surface 

epithelial cell adhesion molecule (EpCAM) expression [397]. However, even 

though the knowledge on CTCs biology is increasing, the main limitations of 

the current techniques based on the CTCs molecular and functional properties 

are (a) the fragility and rarity of CTCs (1-10 cells per 10 mL), (b) the a priori 

knowledge of the exact protein composition on the CTCs surfaces, (c) the lack 

of universal markers able to identify all heterogeneous CTCs in the 

bloodstream, and (d) the lack of validated, standardized approaches in pre-

analytical, analytical, and post-analytical phases of CTCs detection [241]. For 

these reasons, so far the development of innovative, comprehensive, and 

standardized methods for CTCs isolation and detection is still 

unaccomplished. 

Currently, label-free imaging methods combined with AI algorithms are 

revealing as a promising approach for LB [155] [248] [398] [399]. In 

particular, the sole QPI has been demonstrated able to distinguish between 

tumor cells and corresponding non transformed cell lines. Great effort has 

been spent in the integration of DH imaging with compact LOC and 

microfluidic devices to expand the potentialities of such imaging modality. The 

most valuable opportunity is the label-free analysis of flowing samples [156] 

[159] [253] [106]. A proof of principle on the use of fast and high-throughput 

DH to discriminate between CTCs and the other components of a blood stream 

has been provided [205] [400]. But, although promising, this approach did not 

fully exploit the precious content of information of the holographic pattern. 

Instead of using one single QPM that provides pseudo-3D information deriving 

from an integral imaging process, a high-resolution 3D representation of the 

inner distribution of the cell’s RI is obtainable by adopting a TPM approach. 

Herein, the novel TPM-FC has been demonstrated and discussed, thus 

achieving full 3D label-free characterization in continuous flow at the single-

cell level. In order to manage the huge amount of label-free biophysical 

information provided by the TPM-FC from a wide range of cell populations 

found in blood, AI becomes pivotal for capturing low number of CTCs without 
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the requirement for a specific biological marker. AI can extend the range of 

diagnostic problems one can tackle in automatic way and is designed to make 

the diagnostic response objective, that is, not dependent on the level of 

experience or specific skills of the pathologist.  

 

Figure 5.1 Integration between label-free TPM-FC, LOC flow engineering, and 
AI for the advanced single-cell analysis of blood streams. 
The core of the scheme is a microfluidic LOC system able to sort the lighter blood 
components (RBCs and platelets) and put in rotation CTCs and WBCs to perform 
QPI measurements at different angles for realizing the TPM-FC reconstructions. All 
the retrieved 2D and 3D label-free data are then processed by AI approaches to 
classify CTCs populations (e.g., using DCNN). When available, prior information 
from fluorescence channels can be exploited to generate a reliable diagnostic 
response. (Figure reproduced from Ref. [241]) 
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At this scope, AI is hungry for informative data and, in the context of cell type 

discrimination, high-throughput TPM-FC is in turn the most appropriate 

candidate to satisfy this need. Hence, the integration of label-free TPM-FC, AI, 

and microfluidics on board of LOC represents the most promising platform for 

searching, detecting and isolating CTCs into the bloodstream at the aim of 

realizing the LB paradigm [241]. As sketched in Figure 5.1, the ideal system 

would be made of several modules. A microfluidic chip performs a first 

filtration of the blood sample, thus removing the lighter blood components 

(i.e., RBCs and platelets). The CTCs and WBCs, which have similar 

morphologies, continue to flow along the microfluidic channel and, after 

focusing them in a fixed position inside the cross section and after inducing 

their rotation, they are recorded through the TPM-FC system. The TPM-FC 

processing is implemented to retrieve the 2D QPMs and 3D RI tomograms of 

the collected single cells. Computational approaches are applied to bypass the 

lack of exogeneous markers and retrieve the intracellular biomarkers. When 

possible, the label-free quantitative characterization of the single cells can be 

enriched by the specific characterization provided by a second fluorescent 

channel within a multimodal recording system. Then, AI is exploited to handle 

the huge amount of collected information, thus identifying CTCs from WBCs 

and phenotyping them in order to recognize their cancer origin. The last 

modulus is an AI-based IACS system that, according to the classification 

output, collects the CTCs and makes them available for a downstream analysis 

(e.g., genetic), possible when the label-free property is met. 

The results obtained in this Ph.D. Thesis represent a remarkable starting point 

toward the implementation of such a system, and research in the near future 

will be devoted to integrate the missing pieces. The microfluidic modulus must 

be better engineered in order to achieve a higher throughput, comparable with 

that of conventional IFC. The optical component of the TPM-FC system must 

be perfectly matched to the microfluidic component in order to maximize 

contrast and resolution and reduce the waste of hardware resources. Then, the 

numerical processing must be able to handle the greater number of cells and 
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provide a fast analysis. The DCNN-based speeding up of the holographic 

processing demonstrated here must be coupled to another DCNN, trained to 

provide a real-time detection of the flowing cell within the recorded 

holographic video sequence. The eukaryotic cell is very complex in terms of 

internal structure, therefore other computational strategies are requested for 

identifying the several intracellular organelles in addition to the reported 

nucleus, nucleolus, and LDs (e.g., lysosomes, Golgi apparatus, mitochondria). 

As regards the classification step, here different possibilities have been 

investigated, based on the raw holographic patterns, the phase signature, and 

the 3D RI distribution. Actually, in general a best solution does not exist, which 

means that the adopted strategy must be chosen according to the selected 

problem. However, the TPM-FC tool keeps all three possibilities open, which 

can be also combined if necessary. Of course, the range of CTCs is extremely 

wide, therefore a great effort must be spent in the definition of a very 

distinctive fingerprint at the single-cell level through the combination 

between AI and TPM-FC. Furthermore, the last modulus realizing the cell 

sorting must be added. Finally, the proposed system must be miniaturized for 

starting the clinical practice, and, at this aim, the problem about the memory 

storage must be fixed, using for example a compression strategy like that 

proposed here for the 3D tomograms. 

Development of such innovative instrumentation for biomedical applications, 

whose expected cost will be extremely competitive in respect to the actual 

approaches for LB, can really push toward a new generation of clinical tools 

that will have a very huge market worldwide. There are a lot of efforts to 

improve in the near future this integrated and intelligent LOC platform 

because it is expected that the detection of CTCs in blood would provide a great 

aid to the early diagnosis of cancers and the development of personalized 

therapies. Finally, it is also important to outline that label-free modality does 

not produce chemical waste, thus drastically reducing the impact both on the 

management and usage of chemicals, which makes this technology a totally 

green issue.



 

 

 
 

 

 

 

 

 

 

 

 



 

 
 

Appendix 

A.1 Fractal Analysis at Single-Particle Level 

In order to describe the set of 13 fractal features here proposed for better 

extrapolating the phase signature of a single cell for its characterization and 

discrimination, the wrapped QPM 𝜓 of the microplastic displayed in Figure 

A.1(a) is considered as example since this fractal analysis has been here 

introduced for the first time for identifying microplastics among diatoms in 

water environment [216]. From the wrapped QPM 𝜓, the object support 𝑆𝜓 is 

computed by conventional segmentation, as shown in Figure A.1(b), while the 

hole support Γ𝜓 reported in Figure A.1(c) is obtained by the logic or between 

the support frontier (obtainable by means of edge estimation operators) and 

the binarization of 𝜓 using a zero threshold. The wrapped QPM 𝜓, the object 

support 𝑆𝜓, and the hole support 𝛤𝜓, respectively shown in the example in 

Figure A.1(a-c), have 𝑙 = 256 pixels per side. Over the years, several 

parameters have been defined to quantify the fractality of an object. One of the 

most important is the fractal dimension. The topological dimension of an 

object is the miminum number of coordinates to describe its points. Therefore, 

it is 0 for a point, 1 for a line, 2 for a plane object and 3 for a solid object. 

Instead, fractal dimension measures how an object fills the space and, unlike 

the topological one, can take non-integer values. A possible definition of fractal 

dimension is the Minkowski–Bouligand dimension, which can be easily 

understood through the most used method to compute it, i.e. the box-counting 

method [401]. An image of size 𝑙 can be rescaled of a factor 𝜀 = 𝑙 𝑟⁄ , i.e. it can 

be covered by 𝜀2 distinct boxes of size 𝑟 = 1, 2, 4, 8,… , 𝑙. For example, the red 

grid in Figure A.1(b,c) is associated to a scale factor 𝜀 = 8, since the 

microplastic of size 𝑙 = 256 has been divided in 𝜀2 = 64 distinct boxes of size 
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𝑟 = 32. Let 𝑛 be the number of distinct boxes that contain at least a non-zero 

value in the hole support 𝛤𝜓 (𝑛 = 31 in the proposed example). Of course, 𝑛 

depends from the scale factor 𝜀 and, according to the Minkowski–Bouligand 

definition [402], the fractal dimension 𝐷 can be expressed as 

(A.1)  𝐷 = 𝑙𝑖𝑚
1
𝜀⁄ →0

𝑙𝑜𝑔𝑛(𝜀)

𝑙𝑜𝑔 𝜀
, 

where the logarithm can have any base. In the log-log plot in Figure A.1(d), red 

dots are the values 𝑛(𝜀) measured over the hole support 𝛤𝜓 in Figure A.1(c). 

The box-counting method computes fractal dimension 𝐷 as the slope of the 

linear fitting to data 𝑛(𝜀), i.e. red line in Figure A.1(d). In this example, 𝐷 =

1.634 is obtained. Instead, in the ideal case of a full square of size 𝑙, 𝑛(𝜀) = 𝜀2 

for any 𝜀 = 1, 2, 4, 8, … , 𝑙, hence the fractal dimension corresponds to the 

topological one 𝐷 = 2, as reported in green in Figure A.1(d). It is worth 

pointing out that, in the described box-counting method, the scale factor 𝜀 can 

assume only powers of 2 values within the [1, 𝑙] interval since the image 

processing operations take place in the discrete space. Instead, in continuous 

space, 𝜀 can take all the real values within [1, +∞) interval, from which limit 

in Eq. (A.1) follows. 

However, the sole fractal dimension is not able to describe a fractal image. 

Indeed, it is possible that two distinct images have the same fractal dimension. 

Therefore, another parameter used in addition to fractal dimension is 

lacunarity, which is a measure of the distribution of the hole sizes in an image 

[255]. Lacunarity is commonly computed through the gliding box algorithm 

[403]. Like the fractal dimension measurement, also the lacunarity is based on 

a multi-scaled analysis of the image. However, in this case the image is scanned 

by gliding rather than distinct (i.e. non overlapping) boxes at different scale 

factors 𝜀 = 1, 2, 4,8,… , 𝑙. For a fixed 𝜀, let 𝐻(𝜀) be a 𝑟 × 𝑟 matrix with 1 values. 

The 𝐴(𝜀) and 𝐵(𝜀) maps are computed as the 2D convolution of (1 − Γψ) and 

𝑆𝜓 with 𝐻(𝜀) mask, respectively. Let 𝑚(𝑎, 𝜀) be the probability distribution 

associated with the 𝐴(𝜀) map, with𝑎 = 1, 2, … , 𝑟2, obtained after dividing the 
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frequency distribution by the number of non-zero elements in 𝐵(𝜀), and let 

𝑝1(𝜀) and 𝑝2(𝜀) its first and second order moments, respectively. The 

lacunarity 𝛬 at scale 𝜀 is defined as [403] 

(A.2)  𝛬(𝜀) =
𝑝2(𝜀)

𝑝1
2(𝜀)

. 

For example, in the hole support in Figure A.1(c), 𝛬(8) = 1.066 is obtained. In 

the semi-log plot in Figure A.1(e), red dots are the values of 𝛬(𝜀) measured 

over the map 𝛤𝜓 of Figure A.1(c). Instead, the red line in Figure A.1(e) is the 

exponential fitting of the curve 𝛬(log2(𝜀)), which is calculated as 𝑦 = 𝑏0 +

𝑏1𝑒
𝑏2𝑥. The lacunarity index 𝐿 = 𝑏2 is defined as a synthetic descriptor of 

lacunarity. It depends on the fill ratio 𝐹, which is defined as the ratio between 

the number of non-zero values within the hole support 𝛤𝜓 and the area of the 

object support 𝑆𝜓 (𝐹 = 0.510 in Figure A.1(c)). Since the calculation of the 

lacunarity is made on the negative of the hole support, i.e. (1 − Γψ), images 

with only one single hole covering the entire support have fill ratio 𝐹 = 0 and 

lacunarity 𝛬(𝜀) = 1 for any 𝜀 = 1, 2, 4, 8, … , 𝑙, from which lacunarity index 𝐿 =

0. Hence, a low lacunarity index 𝐿 indicates a big lacunarity. 

However, two images with the same fill ratio 𝐹 could have different lacunarity 

index 𝐿, according to the regularity of their geometry [403]. Regularity can be 

interpreted as a measure of how the zero and non-zero elements are uniformly 

distributed with respect to the hole support. With the same fill ratio 𝐹, 

lacunarity index 𝐿 changes according with the regularity [403]. A synthetic 

descriptor of regularity is here proposed, namely regularity index 𝑅, as 

follows. Let 𝐶 be the centroid of the support map 𝑆𝜓, which generic point is 𝑃. 

Let 𝑍 and �̅� be the generic zero and non-zero points within the hole support 

𝛤𝜓, respectively. The elements of vectors 𝑑𝑥,𝑃, 𝑑𝑥,𝑍 and 𝑑𝑥,𝑍 are computed as 

the differences between the 𝑥-coordinates of point 𝐶 and points 𝑃, 𝑍 and �̅�, 

respectively, and the elements of vectors 𝑑𝑦,𝑃, 𝑑𝑦,𝑍 and 𝑑𝑦,𝑍 are computed as 

the differences between the 𝑦-coordinates of point 𝐶 and points 𝑃, 𝑍 and �̅�, 

respectively. Histograms of vectors 𝑑𝑥,𝑃, 𝑑𝑥,𝑍 and 𝑑𝑥,𝑍 and histograms of 
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vectors 𝑑𝑦,𝑃, 𝑑𝑦,𝑍 and 𝑑𝑦,𝑍, normalized to their maxima, are compared in 

Figure A.1(f,g), respectively. Let 𝑅𝑥,𝑍, 𝑅𝑦,𝑍, 𝑅𝑥,�̅� and 𝑅𝑦,�̅� be the Pearson 

Correlation Coefficients [278] between normalized histograms of vectors 𝑑𝑥,𝑍 

and 𝑑𝑥,𝑃, 𝑑𝑦,𝑍 and 𝑑𝑦,𝑃, 𝑑𝑥,𝑍 and 𝑑𝑥,𝑃, 𝑑𝑦,𝑍 and 𝑑𝑦,𝑃, respectively. The regularity 

index 𝑅 is defined as the module of the average value among the four 

correlation coefficients. To reach the maximum value 𝑅 = 1, both the zero 

elements and the non-zero elements in the hole support 𝛤𝜓 must have the 

same spatial distribution of the support elements in map 𝑆𝜓. In the example in 

Figure A.1(b,c), maps have high regularity index, hence 𝑅 = 0.895 is obtained.  

Moreover, for both curves 𝑛(𝜀) and 𝛬(𝜀), 

(A.3)  
𝑑𝑛 (𝜀) =

𝛻 𝑙𝑜𝑔2 𝑛(𝜀)

𝛻 𝑙𝑜𝑔2 𝜀

𝑑𝛬 (𝜀) =
𝛻𝛬(𝜀)

𝛻𝜀

 

are calculated, where ∇ is the gradient operator, and they are shown through 

red dots in the semi-log plot in Figure A.1(h,i), respectively. Both curves are 

characterized through their contrast, computed as the ratio between their 

standard deviations and their average values, thus obtaining the fractal 

dimension contrast 𝐶𝐷and lacunarity contrast 𝐶𝐿, respectively. In order to 

clarify how these parameters characterize the fractality of a pattern, the case 

of a non fractal object, i.e. a full square of size 𝑙, can be considered for 

comparison. In this case, it results 𝑑𝑛 (𝜀) = 2 for any 𝜀 = 1, 2, 4, 8, … , 𝑙, as 

reported by the green line in Figure A.1(h). Instead, in the case of an empty 

image, it results 𝑑𝛬(𝜀) = 0 for any 𝜀 = 1, 2, 4, 8, … , 𝑙, as reported by the green 

line in Figure A.1(i). Therefore, it is also worth measuring the RMSEs, 𝐸, 

between red and green curves in both Figure A.1(h,i), thus obtaining the 

fractal dimension RMSE, 𝐸𝐷, and the lacunarity RMSE, 𝐸𝐿, respectively. 

Another parameter here employed to describe the fractality of the hole 

support 𝛤𝜓 is the vertex density 𝑉, although it is not a classical fractal 
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parameter. It is defined as the ratio between the number of corners of the hole 

support 𝛤𝜓 and the number of pixels of its support 𝑆𝜓.  

 

Figure A.1 Fractal characterization of a microplastic. 
(a-c) Wrapped QPM 𝜓, object support 𝑆𝜓 and hole support 𝛤𝜓, respectively. Red 

grid in (b,c) is associated to a scale 𝜀 = 8, since maps are covered by distinct boxes 
of size 𝑟 = 32. Scale bar is 5 μm. (d) In red, counted boxes 𝑛 at different scales 𝜀 
(dots) along with their linear fitting (solid line) for the hole support in (c). In green, 
counted boxes 𝑛 at different scales𝜀 (dots) along with their linear fitting (solid 
line) for an ideal full square of size 𝑙 = 256 (fractal dimension=topological 
dimension= 2). (e) Lacunarity 𝛬 at different scales 𝜀 (dots) along with their 
exponential fitting (solid line) for the hole support in (c). (f) Histograms of x-
distances 𝑑𝑥,𝑃, 𝑑𝑥,𝑍 and 𝑑𝑥,𝑍 and (g) histograms of y-distances 𝑑𝑦,𝑃 , 𝑑𝑦,𝑍 and 𝑑𝑦,𝑍, 

normalized to their maxima, used to compute regularity index 𝑅 of the hole 
support in (c). (h) In red and in green, curves 𝑑𝑛 (𝜀) obtained from red and green 
counted boxes 𝑛(𝜀) in (d), respectively. (i) In red, curve 𝑑𝛬 (𝜀) obtained from red 
data in (e). In green, curve 𝑑𝛬 (𝜀) obtained from lacunarity curve 𝛬(𝜀) of an empty 
image of size 𝑙 = 256. (j) Hole support 𝛤𝜓 with vertices highlighted in red and (k) 

the vertex map 𝑉𝜓 obtained from its binarization. Distances are expressed in pixels. 
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From the example in Figure A.1(j), in which corners are marked by red 

asterisks, 𝑉 = 1.730% is obtained. Moreover, as shown in Figure A.1(k), a 

vertex map 𝑉𝜓 is created, in which pixels that have been identified as corners 

are set to 0 within the object support 𝑆𝜓. Finally, the described lacunarity 

analysis is applied on the vertex map 𝑉𝜓 as well, thus computing its vertex 

regularity index, 𝑅𝑉, vertex lacunarity index, 𝐿𝑉, vertex lacunarity contrast, 

𝐶𝐿𝑉 , and vertex lacunarity RMSE, 𝐸𝐿𝑉 . 

For the sake of clarity, the meaning of the proposed regularity index 𝑅 is 

detailed with an example. In particular, starting from the object support 𝑆𝜓 of 

Figure A.1(b), three hole supports 𝛤𝜓 are simulated having the same fill ratio 

𝐹 = 0.500. In the hole support 𝛤𝜓,1 in Figure A.2(a), the object support is 

replaced with a chessboard. In the hole support 𝛤𝜓,2 in Figure A.2(f), the outer 

space is filled with 1 and the inner space is filled with 0. In the hole support 

𝛤𝜓,3 in Figure A.2(k), the left side is filled with ones and the right side is filled 

with zeroes. Each of the three simulated hole supports follows a different idea 

of regularity. However, here it is exploited the idea of regularity expressed by 

the hole support 𝛤𝜓,1 in Figure A.2(a). Let 𝐶 ≡ (𝑥𝐶 , 𝑦𝐶) be the centroid of the 

object support 𝑆𝜓, which generic point is 𝑃 ≡ (𝑥𝑃 , 𝑦𝑃). Instead, within the hole 

support 𝛤𝜓, let 𝑍 ≡ (𝑥𝑍 , 𝑦𝑍) and �̅� ≡ (𝑥𝑍, 𝑦𝑍) be generic inner zero and non-

zero points, respectively. The elements of vectors 𝑑𝑥,𝑃, 𝑑𝑦,𝑃, 𝑑𝑥,𝑍, 𝑑𝑦,𝑍, 𝑑𝑥,𝑍 and 

𝑑𝑦,𝑍 are respectively computed as 

(A.4)  

𝑑𝑥,𝑃 = 𝑥𝑃 − 𝑥𝐶 ; 𝑑𝑦,𝑃 = 𝑦𝑃 − 𝑦𝐶
𝑑𝑥,𝑍 = 𝑥𝑍 − 𝑥𝐶 ; 𝑑𝑦,𝑍 = 𝑦𝑍 − 𝑦𝐶
𝑑𝑥,𝑍 = 𝑥𝑍 − 𝑥𝐶 ; 𝑑𝑦,𝑍 = 𝑦𝑍 − 𝑦𝐶

. 

Let ℎ(∙) be the histogram of a vector, normalized to its maximum. The 

quantities 

(A.5)  
𝑅𝑥,𝑍 = 𝑐𝑜𝑟𝑟 (ℎ(𝑑𝑥,𝑍), ℎ(𝑑𝑥,𝑃)); 𝑅𝑦,𝑍 = 𝑐𝑜𝑟𝑟 (ℎ(𝑑𝑦,𝑍), ℎ(𝑑𝑦,𝑃))

𝑅𝑥,𝑍 = 𝑐𝑜𝑟𝑟 (ℎ(𝑑𝑥,𝑍), ℎ(𝑑𝑥,𝑃)); 𝑅𝑦,𝑍 = 𝑐𝑜𝑟𝑟 (ℎ(𝑑𝑦,𝑍), ℎ(𝑑𝑦,𝑃))
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are computed, where 𝑐𝑜𝑟𝑟(∙,∙) is the Pearson Correlation Coefficient between 

two vectors [278], which ranges from −1 to 1 (𝑐𝑜𝑟𝑟 = −1 indicates perfect 

negative correlation, 𝑐𝑜𝑟𝑟 = +1 indicates perfect positive correlation, and 

𝑐𝑜𝑟𝑟 = 0 indicates no correlation between two vectors). Finally, the regularity 

index is defined as 

(A.6)  𝑅 = |
𝑅𝑥,𝑍+𝑅𝑦,𝑍+𝑅𝑥,�̅�+𝑅𝑦,�̅�

4
|. 

Hence, the normalized histograms ℎ(𝑑𝑥,𝑃) and ℎ(𝑑𝑦,𝑃) are used as a reference, 

since 𝑃 is a generic point of the object support 𝑆𝜓 with centroid 𝐶. On this basis, 

a hole support 𝛤𝜓 is regular if both its zero elements 𝑍 and non-zero 

elements�̅� have the same spatial distribution of points 𝑃 within object 

support 𝑆𝜓. For this reason, to analyze the hole support 𝛤𝜓,1, the normalized 

histograms ℎ(𝑑𝑥,𝑃) and ℎ(𝑑𝑥,𝑍), ℎ(𝑑𝑦,𝑃) and ℎ(𝑑𝑦,𝑍), ℎ(𝑑𝑥,𝑃) and ℎ(𝑑𝑥,𝑍), and 

ℎ(𝑑𝑦,𝑃) and ℎ(𝑑𝑦,𝑍), are respectively compared in Figure A.2(b-e). At the top 

of Figure A.2(b-e), the corresponding correlation coefficients 𝑅𝑥,𝑍, 𝑅𝑦,𝑍, 𝑅𝑥,�̅� 

and 𝑅𝑦,�̅� are respectively reported to evaluate the similarity between the 

distributions of points. Due to the simulated chessboard, in this example the 

zero elements 𝑍 and the non-zero elements �̅� follow exactly the same 

distribution of the support points 𝑃, therefore all the correlation coefficients 

are 1. As a consequence, the hole support 𝛤𝜓,1 has maximum regularity index 

𝑅 = 1. The same analysis reported in Figure A.2(b-e) is repeated in Figure 

A.2(g-j) and Figure A.2(l-o) for hole supports 𝛤𝜓,2 and 𝛤𝜓,3, respectively. In 

particular, the zero elements rather than the non-zero elements of the hole 

support 𝛤𝜓,2 in Figure A.2(f) are distributed like the object support (high 

correlation coefficients in Figure A.2(g,h) and low correlation coefficients in 

Figure A.2(i,j)). Instead, the 𝑦-coordinates rather than the 𝑥-coordinates of 

both zero and non-zero elements of the hole support 𝛤𝜓,3 in Figure A.2(k) are 

distributed approximately like the object support (high correlation 

coefficients in Figure A.2(m,o) and low correlation coefficients in Figure 

A.2(l,n)). However, hole supports 𝛤𝜓,2 and 𝛤𝜓,3 have about the same regularity 
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index, i.e. 𝑅 = 0.508 and 𝑅 = 0.538, respectively. Moreover, with the same fill 

ratio 𝐹, a different regularity index 𝑅 leads to a different lacunarity index 𝐿. In 

fact, as reported at the top of Figure A.2(a,f,k), hole supports 𝛤𝜓,1, 𝛤𝜓,2 and 𝛤𝜓,3 

have lacunarity index 𝐿 = 0.005, 𝐿 = 0.292 and 𝐿 = 0.097, respectively. 

 

Figure A.2 Concept and definition of regularity index 𝑹. 
(a,f,k) Three hole supports 𝛤𝜓,1, 𝛤𝜓,2 and 𝛤𝜓,3, respectively, simulated starting from 

the same microplastic object support, with the corresponding values of regularity 
index 𝑅 and lacunarity index 𝐿 at the top. In (a), the chessboard inner structure is 
highlighted in the yellow insert. (b,g,l) Comparison between the 𝑥-distances 
normalized histograms of the support points 𝑃 (green) and the zero elements 𝑍 
(red) within maps in (a,f,k), respectively. (c,h,m) Comparison between the 𝑦-
distances normalized histograms of the support points 𝑃 (green) and the zero 
elements 𝑍 (red) within maps in (a,f,k), respectively. (d,i,n) Comparison between 
the 𝑥-distances normalized histograms of the support points 𝑃 (green) and the 
non-zero elements�̅� (blue) within maps in (a,f,k), respectively. (e,j,o) Comparison 
between the 𝑦-distances normalized histograms of the support points 𝑃 (green) 
and the non-zero elements �̅� (blue) within maps in (a,f,k), respectively. In (b-
e,g-j,l-o), correlation coefficients between the normalized histograms are reported 
at the top. 
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As regards the fractal characterization of the human circulating cells discussed 

in Section 3.3 [215], the 13 fractal features here described have been 

computed starting from the unwrapped QPMs. In particular, as shown in 

Figure A.3(a), the QPM has been zero-padded in order to pass from a 

200 × 200 square pixels size to a 256 × 256 square pixels size, since the 

numerical implementation of the fractal geometry principles requests a power 

of 2 size. Then, from the zero-padded QPM, two auxiliary maps have been 

calculated, i.e., the support map and the hole support. The support map 

corresponds to the binary map with the segmented cell obtained from the 

padded QPM, as displayed in Figure A.3(b). Instead, to obtain the hole support, 

the gradient magnitude is computed from the padded QPM and normalized to 

its maximum value (see Figure A.3(c)), and then a 0.3 threshold is applied, thus 

leading to the hole map in Figure A.3(d). The support map and the hole 

support are finally exploited to compute the 13 fractal features. 

 

Figure A.3 2D images used for feature extraction. 
(a) QPM (200 × 200 square pixels) of an SHSY5Y NB cancer cell (yellow) and its 
zero-padded 256 × 256 version. (b) Support map obtained by segmenting the 
zero-padded QPM in (a). (c) Gradient magnitude of the zero-padded QPM in (a) 
normalized to its maximum value. (d) Hole support obtained by applying a 0.3 
thresholding to the normalized gradient magnitude in (c). Scale bar is 5 μm. 
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A.2 Feature Extraction from 2D QPMs and 3D RI 
Tomograms 

For classifying EC cells, 54 features have been extracted from the 2D QPMs and 

67 features have been measured from the 3D RI tomograms [217]. As shown 

in Figure A.4, there is a huge increment of information from 2D region to 3D 

volume, thus introducing more complex features. The perimeter and area in 

the 2D region correspond to the surface and volume in 3D space for 

morphological features. Among the texture features, histogram features are 

the first order statistical parameters calculated from the image histogram, i.e. 

mean, variance, skewness, kurtosis, energy, and entropy. GLCM is a matrix 

obtained by counting the number of the two grayscales at a certain direction 

and distance and describes the image texture by calculating the statistics of 

the grayscale matrix. The image has been divided into 16 gray scales, and each 

GLCM-feature value is the average of statistical features from 13 different 

directions, as shown in Figure A.4. NGTDM describes the relationship between 

a pixel and its surrounding pixel values. GLSZM counts the number of a certain 

gray level with a certain region size. Table A.1 shows the list of both 2D and 

3D feature categories.  

 

Figure A.4 3D volume for feature calculation. 
The 13 directions for calculating the GLCM-feature values are reported. 
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Table A.1 List of features for characterizing 2D QPMs and 3D RI tomograms of EC 

cells. 

Feature Type 2D 3D 

Morphology 

Perimeter √ - 

Area √ - 

Volume √ - 

Major axis length √ - 

Minor axis length √ - 

Diameter √ - 

Eccentricity √ - 

Area at 25% phase √ - 

Max phase √ - 

Mean phase at 25% √ - 

Max gradient √ - 

Mean gradient √ - 

Mean gradient at 25% √ - 

Surface - √ 

Volume - √ 

Volume-RI - √ 

Ratio of surface to volume - √ 

Surface ratio of the same volume sphere - √ 

Max-slice perimeter - √ 

Mean slice perimeter - √ 

Max slice area - √ 

Mean slice area - √ 

Max slice major axis length - √ 

Mean slice major axis length - √ 

Max-slice minor axis length - √ 

Mean slice minor axis length - √ 
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Max slice diameter - √ 

Mean slice diameter - √ 

Max slice eccentricity - √ 

Mean slice eccentricity - √ 

Max slice gradient - √ 

Max slice average gradient - √ 

Mean slice gradient - √ 

Mean slice max gradient - √ 

Max slice variance - √ 

Mean slice variance - √ 

Sum RI at 10% - √ 

Sum RI at 50% - √ 

Sum RI at 90% - √ 

Histogram features 

Mean √ √ 

Variance √ √ 

Skewness √ √ 

Kurtosis √ √ 

Energy √ √ 

Entropy √ √ 

Grey-level co-occurrence matrix (GLCM) 

Autocorrelation √ √ 

Cluster prominence √ √ 

Cluster shade √ √ 

Contrast √ √ 

Correlation √ √ 

Difference entropy √ √ 

Difference variance √ √ 

Dissimilarity √ √ 

Energy √ √ 
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Entropy √ √ 

Homogeneity √ √ 

Information measure of correlation 1 √ √ 

Information measure of correlation 2 √ √ 

Inverse difference √ √ 

Maximum probability √ √ 

Sum average √ √ 

Sum entropy √ √ 

Sum of squares √ √ 

Sum variance √ √ 

Neighbourhood grey tone difference matrix (NGTDM) 

Coarseness √ √ 

Contrast √ √ 

Busyness √ √ 

Complexity √ √ 

Texture Strength √ √ 

Grey level size zone matrix (GLSZM) 

Small zone emphasis √ √ 

Large zone emphasis √ √ 

Low gray level emphasis √ √ 

High gray level emphasis √ √ 

Small zone low gray level emphasis √ √ 

Small zone high gray level emphasis √ √ 

Large zone low gray level emphasis √ √ 

Large zone high gray level emphasis √ √ 

Gray level nonuniformity √ √ 

Zone size nonuniformity √ √ 

Zone percentage √ √ 

Zone size variance √ √ 

Zone size entropy √ √ 
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A.3 3D Numerical Cell Phantom 

In [179], a confocal microscope has been employed to find differences 

between viable and apoptotic MCF7 cells through 3D morphological features 

extraction. In particular, 206 cells were stained with three fluorescent dyes in 

order to measure the average value and standard deviation of 3D 

morphological parameters about the overall cell and its nucleus and 

mitochondria. These measurements have been here exploited to simulate a 3D 

numerical cell phantom [297], by setting 1 px = 0.12 μm. It is made of four sub-

cellular structures, i.e., cell membrane, cytoplasm, nucleus, and mitochondria. 

Cell, nucleus, and mitochondria have been shaped as ellipsoids, then the cell 

external surface has been made irregular, and finally the cytoplasm has been 

obtained through a morphological erosion of the cell shape. Moreover, in each 

simulation, the number of mitochondria has been drawn from the uniform 

distribution 𝑈1{𝑎1,𝑏1}. A 3D numerical cell phantom is displayed in Figure 

4.2(a), in which 18 mitochondria have been simulated. To each simulated 3D 

sub-cellular component, a RI distribution has been assigned, as shown by the 

RI histogram in Figure 4.2(b). Measuring accurate RI values at sub-cellular 

level is still a deeply debated topic [404] [405]. Hence, realistic RIs cannot be 

replicated since they are not yet well known, therefore the unfavorable case 

for the testing purpose segmenting the nucleus from cytoplasm has been 

simulated, i.e., overlapped subcellular distributions of the RI values have been 

modelled. In particular, for each cell membrane voxel, its RI is drawn from 

distribution 𝑁1(𝜇1, 𝜎
2). Instead, without knowing if the nucleus RIs are greater 

than the cytoplasm ones or vice versa, in each simulation, cytoplasm and 

nucleus are randomly assigned to distributions 𝑁2(𝜇2, 𝜎
2) or 𝑁3(𝜇3, 𝜎

2). It is 

worth remarking that, to strengthen the numerical assessment, the 

randomness of the RI assignments among the different simulations has been 

increased, because each voxel belonging to cell membrane, nucleus, and 

cytoplasm is drawn from gaussian distributions 𝑁1, 𝑁2, and 𝑁3 (or 𝑁1, 𝑁3, and 

𝑁2), respectively, which average values 𝜇1, 𝜇2, and 𝜇3 are in turn drawn from 
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other gaussian distributions for each voxel extraction, i.e. 𝑁𝜇1(𝜇𝜇1 , 𝜎𝜇
2), 

𝑁𝜇2(𝜇𝜇2 , 𝜎𝜇
2), and 𝑁𝜇3(𝜇𝜇3 , 𝜎𝜇

2), respectively. Instead, as regards mitochondria, 

each of them has a RI gaussian distribution 𝑁4(𝜇4, 𝜎
2) which average value 𝜇4 

is drawn from the gaussian distribution 𝑁𝜇4(𝜇𝜇4 , 𝜎𝜇
2) for each mitochondrion 

and not for each voxel. Moreover, a RI transition zone straddling the nucleus 

to cytoplasm is created, thus avoiding any discontinuity that could somehow 

facilitate the segmentation. In particular, after drawing all nucleus and 

cytoplasm values, RIs that are in the middle of their average values are 

assigned to the voxels of the transition zone, as highlighted by the red arrow 

at the top of Figure 4.2(b). This transition zone is obtained through 

morphological erosion and dilation of the nucleus ellipsoid, by using a 

spherical structuring element, which radius is drawn from the uniform 

distribution 𝑈2{𝑎2,𝑏2} px for each simulation, thus resulting in an internal 

nucleus volume that is about 85-95 % of the total nucleus volume. In the 

example in Figure 4.2(a,b), a 3 px radius has been selected. All the described 

parameters are reported in Table A.2. 

Table A.2 Parameters used for simulating the 3D numerical cell phantoms. 

𝜇𝜇1 = 1.352 𝜇𝜇3 = 1.368 𝜎 = 0.005 𝑎1 = 10 

𝜇𝜇2 = 1.365 𝜇𝜇4 = 1.370 𝜎𝜇 = 0.003 𝑏1 = 20 

𝑎2 = 1 𝑎3 = 1 𝑎4 = 25 𝑎5 = 𝜇N +
1

3
[𝑞0.95(𝑁) − 𝜇N] 

𝑏2 = 3 𝑏3 = 10 𝑏4 = 30 𝑏5 = 𝜇N +
2

3
[𝑞0.95(𝑁) − 𝜇N] 
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A.4 CSSI Algorithm 

In order to describe the steps of the proposed CSSI algorithm [297] sketched 

in Figure 4.2(c), the 3D numerical cell phantom shown in Figure 4.2(a,b) is 

used. 

1. The 3D RI tomogram of the analyzed cell is centered in its 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 

array, that is then divided into distinct cubes, each of which has an 

edge measuring 𝜀 pixels, as shown in the central xz-slice in Figure 

A.5(a). 

The 𝜀 parameter is the resolution factor at which the 3D array is firstly 

analyzed. It must be an even number and, after dividing each side of the 3D 

array by 𝜀, an odd number must be obtained. Therefore, each distinct cube 

contains 𝜀3 voxels (i.e. RI values). The cubes completely contained within the 

cell shell are the investigated cubes 𝐶𝐼 (yellow cubes within the blue cell shell 

in Figure A.5(a)). The central cube is not an investigated cube, since it is taken 

as a reference cube 𝐶𝑅 (green cube in Figure A.5(a)), which vertices have 𝑥-, 𝑦-

, and 𝑧-coordinates taken from pairs (𝑉1𝑥, 𝑉2𝑥),(𝑉1𝑦, 𝑉2𝑦), and (𝑉1𝑧, 𝑉2𝑧), 

respectively. In Figure A.5(b), the 3D array from which the central xz-slice of 

Figure A.5(a) has been selected is displayed. 

As discussed in Section 4.1, the CSSI algorithm is based on the WMW test [298] 

[299]. It is a rank-based non-parametric statistical test, thus distributions do 

not have to be normal. With a certain significance level γ, it allows rejecting or 

not the null hypothesis H0 for which two sets of values have been drawn from 

the same distribution. The significance level γ is the probability of making an 

error of 1st species, i.e. of rejecting the null hypothesis H0 when it is true. The 

confidence level is defined as 1-γ, i.e. it is the probability of not rejecting the 

null hypothesis H0 when it is true. An important parameter in a statistical test 

is the p-value, which ranges from 0 to 1. The p-value is the observed 

significance level, i.e. the smallest significance level at which H0 is rejected. It 

can be also defined as the probability of obtaining results at least as extreme 
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as the results actually observed, when the null hypothesis H0 is true. 

Therefore, a low p-value leads to reject the null hypothesis H0, because it 

means that such an extreme observed result is very unlikely when the null 

hypothesis H0 is true. In fact, if the p-value≥γ, H0 is not rejected with 

significance level γ, while if p-value<γ, H0 is rejected with significance level γ. 

Therefore, the greater the p-value the greater the confidence level with which 

two sets of values have been extracted from the same population. Hence, the 

proposed algorithm performs multiple comparisons between the investigated 

cubes 𝐶𝐼 and the reference one 𝐶𝑅 through the WMW test, because the 𝐶𝑅 

voxels are assumed belonging to the subcellular structure of interest, thus if a 

certain 𝐶𝐼 has been drawn from its same distribution, then also the 𝐶𝐼 voxels 

belong to the subcellular structure of interest. Without loss of generality, here 

the method is described in the case of the nucleus segmentation. As discussed 

in Section 4.1, for many kinds of suspended cells (e.g., cancer cell lines) the 

central voxels of the cell belong to the nucleus, therefore the reference cube 

𝐶𝑅 is associated to the central cube of the 3D RI tomogram. 

2. An adaptive threshold 𝑇𝑃 is set according to the p-values computed 

through the WMW test between the investigated cubes 𝐶𝐼 and the 

reference cube 𝐶𝑅. It is chosen as the maximum value less than or equal 

to 𝜏, such that for at least one 𝐶𝐼 it happens that p-value≥ 𝑇𝑃. 

3. A first rough clustering is performed through repeated 𝑀-iterations 

loops, to create a preliminary nucleus set 𝒩𝑃. For each of them 

a. A temporary set 𝒩𝑇 is created with the RIs of the sole 

reference cube 𝐶𝑅. 

b. At each of 𝑀 iterations 

i. A reference set ℛ is created by randomly drawing 𝜀3 

values from the temporary set 𝒩𝑇. 
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ii. For each investigated cube 𝐶𝐼, the corresponding p-

value is computed with respect to the reference set 

ℛ through the WMW test. 

iii. The investigated cubes 𝐶𝐼 such that their p-value≥

𝑇𝑃 are added to the temporary set 𝒩𝑇. 

c. After an 𝑀-iterations loop, all the investigated cubes 𝐶𝐼 added 

to the temporary set 𝒩𝑇 are moved to the preliminary nucleus 

set 𝒩𝑃, and then the temporary set 𝒩𝑇 is reset. 

d. Steps a-c are repeated until at least 𝑛 investigated cubes 

𝐶𝐼have been stored within the preliminary nucleus set 𝒩𝑃, 

which is shown in Figure A.5(c). 

4. A filtering operation is performed to delete outlier cubes from the 

preliminary nucleus set 𝒩𝑃, thus creating a filtered nucleus set 𝒩𝐹. 

Let 𝐶𝒩𝑃,𝑖 be a cube within 𝒩𝑃, with 𝑖 = 1,2,… , 𝑛. 

a. The reduced nucleus set 𝒩𝑖
𝑃− is created after removing the 

cube 𝐶𝒩𝑃,𝑖 from the preliminary nucleus set 𝒩𝑃, with 𝑖 =

1, 2, … , 𝑛. 

b. A p-value vector �̅� of length 𝑛 is created, which 𝑖-th element is 

the p-value computed through the WMW test between the 

cube 𝐶𝒩𝑃,𝑖 and the reduced nucleus set 𝒩𝑖
𝑃−. 

c. A distance vector �̅� of length 𝑛 is created, which 𝑖-th element is 

the Euclidean distance between the centre of cube 𝐶𝒩𝑃,𝑖 and 

point 𝐵, i.e., the centroid of the preliminary nucleus set 𝒩𝑃. 

d. The p-value vector �̅� is sorted in ascending order, thus 

obtaining the sorted p-value vector �̅�𝑆, shown in Figure A.5(d). 
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e. The distance vector �̅� is sorted in ascending order and 

normalized to its maximum, thus obtaining the sorted distance 

vector �̅�𝑆, shown in Figure A.5(e) by blue dots. 

Both vectors �̅�𝑆 and �̅�𝑆 are used to remove outlier cubes within the 

preliminary nucleus set 𝒩𝑃. In fact, a cube 𝐶𝒩𝑃,𝑖 is considered an outlier if it 

is far from the centroid 𝐵 and has a low p-value with respect to the other cubes 

in 𝒩𝑃. 

f. A fourth-degree polynomial is fitted to the sorted distance 

vector �̅�𝑆, thus obtaining the vector �̅�𝑆𝐹 and its first difference 

�̅�𝑆𝐹, that are reported in red in Figure A.5(e,f), respectively. 

g. Let 𝑚 be the index of the lowest value with null slope in vector 

�̅�𝑆𝐹, as highlighted by the black dot in Figure A.5(f). If in the 

vector �̅�𝑆𝐹 there is no point with null slope, 𝑚 is chosen as the 

index of the global minimum. 

h. After computing thresholds 𝑇1, 𝑇2, 𝑇3, 𝑇4, and 𝑇5, the filtered 

nucleus set 𝒩𝐹 reported in Figure A.5(g) is formed by cubes 

𝐶𝒩𝑃,𝑖 that satisfy one of the following conditions 

(A.7)  

1)
𝑑𝑖
𝑆𝐹

𝑑𝑚𝑎𝑥
𝑆𝐹 ≤ 𝑇1

2)𝑇1 <
𝑑𝑖
𝑆𝐹

𝑑𝑚𝑎𝑥
𝑆𝐹 ≤ 𝑇2&𝑝𝑖

𝑆 > 𝑇4

3)𝑇2 <
𝑑𝑖
𝑆𝐹

𝑑𝑚𝑎𝑥
𝑆𝐹 ≤ 𝑇3&𝑝𝑖

𝑆 > 𝑇5

, 

where & is the logical and operator, 𝑑𝑖
𝑆𝐹 and 𝑝𝑖  are elements 

of vectors �̅�𝑆𝐹 and �̅�𝑆, respectively, with 𝑖 = 1,2, … , 𝑛, and 𝑑𝑚𝑎𝑥
𝑆𝐹  

is the maximum value of vector �̅�𝑆𝐹 . 

However, to build a filtered nucleus set 𝒩𝐹, a strong spatial and statistical 

filtering has been made, in order to store only cubes that belong to the nucleus 

with high probability, thus leading to a strong underestimation of the nucleus 
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region. Moreover, to increase the statistical power of the WMW test, the 

resolution factor 𝜀 should not be too small. As a consequence, the 𝜀-cubic 

structuring element leads to a low spatial resolution. 

5. A refinement step is performed, in order to transform the filtered 

nucleus set 𝒩𝐹 into a refined nucleus set 𝒩𝑅, shown in Figure A.5(h). 

For each cube 𝐶𝒩𝐹,𝑖 within the filtered nucleus set 𝒩𝐹, 

a. Let the augmented cube 𝐶
𝒩𝐹,𝑖
𝐴  be the smallest cube centered in 

𝐶𝒩𝐹,𝑖 with an edge multiple of 𝜀 px, such that the p-value 

computed through the WMW test between its RIs and all the 

𝒩𝐹 values is greater than or equal to 𝛽𝜇(�̅�), where 𝜇(∙) is the 

average operator. 

b. To enhance the resolution, the augmented cube 𝐶
𝒩𝐹,𝑖
𝐴  is in turn 

divided into distinct sub-cubes with edges measuring 𝜀/2 px. 

c. For each of these sub-cubes 

i. Its 𝜀3 8⁄  values are compared with 𝜀3 8⁄  RIs 

randomly drawn from the filtered nucleus set 𝒩𝐹. 

ii. If the computed p-value≥ α𝑇𝑃, the examined sub-

cube is inserted into the refined nucleus set 𝒩𝑅. 

6. All the possible pairs of sub-cubes in the refined nucleus set 𝒩𝑅 are 

linked through a line segment. 

7. A morphological closing is performed to smooth the corners of the 

resulting 3D polygonal and fill its holes, thus finally obtaining the 

partial nucleus set 𝒩𝑗, displayed in Figure A.5(i). 

8. Steps 1-7 are repeated 𝐾 times on the same cell, thus obtaining 𝐾 

partial nucleus sets 𝒩𝑗, with 𝑗 = 1, 2, … , 𝐾, that are slightly different 

from each other, because in some of the performed WMW tests, the 

reference set is randomly drawn from a greater one. 
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9. The sum of all the 𝐾 partial nucleus sets 𝒩𝑗 provides a tomogram of 

occurrences, in which each voxel can take integer values 𝑘 ∈ [0, 𝐾] 

since each voxel may have been classified nucleus 𝑘 times. In Figure 

A.6(a), the central slice of this tomogram of occurrences is reported. 

10. An adaptive threshold 𝑘∗ is set to segment the tomogram of 

occurrences. Let 𝑉𝑘 be the number of voxels that have been classified 

nucleus at least 𝑘 times, with 𝑘 = 1, 2, … , 𝐾. Therefore, 𝑉1 is the 

number of voxels of logical or among all the 𝐾 partial nucleus sets 𝒩𝑗, 

while 𝑉𝐾 is the number of voxels of logical and among all the 𝐾 partial 

nucleus sets 𝒩𝑗.  

a. A vector �̅�𝑃 of percentage volumes is created, which elements 

are computed as 

(A.8)  𝑉𝑘
𝑃 =

𝑉𝑘

𝑉1
, 

with 𝑘 = 1,2,… , 𝐾, as reported in Figure A.6(b) by blue dots. 

The 3D segmented nuclear OCH should be computed as the set of voxels that 

have occurred at least 𝑘𝑜𝑝𝑡 times. The parameter 𝑘𝑜𝑝𝑡 should maximize 

simultaneously the accuracy, sensitivity, and specificity of the proposed CSSI 

method. In Figure A.6(c), these performances are reported for each 3D 

segmented region composed by voxels that have occurred at least 𝑘 times, 

with 𝑘 = 1,2,… , 𝐾, along with the 𝑘𝑜𝑝𝑡 value, highlighted by the vertical green 

line. However, in a real experiment these trends are unknown, thus the 

intersection point cannot be computed. Therefore, a criterion is requested to 

find the 𝑘∗ threshold, i.e., a suitable estimate of the 𝑘𝑜𝑝𝑡 threshold. 

b. The 𝑘∗ threshold (red vertical line in Figure A.6(b)) is found as 

the 𝑘 index at which the percentage volume vector �̅�𝑃 is 

nearest to a threshold 𝑇𝑉 (orange horizontal line in Figure 

A.6(b)). 
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Figure A.5 CSSI of the stain-free nuclear OCH in a 3D numerical cell phantom. 
(a) Central xz-slice of the 3D array divided into distinct cubes with edge 𝜀 =10 px. 
The central reference cube 𝐶𝑅 is highlighted in green while the investigated cubes 
𝐶𝐼 are highlighted in yellow within the cell shell in blue. (b) 3D array from which 
the central xz-slice in (a) has been selected. (c) Preliminary nucleus set 𝒩𝑃  made 
of 𝜀-cubes classified nucleus after a first rough clustering. (d) Vector of sorted p-
values �̅�𝑆 computed through the WMW test between each cube 𝐶𝒩𝑃,𝑖  in the 

preliminary nucleus set 𝒩𝑃  and the reduced nucleus set 𝒩𝑖
𝑃−, with 𝑖 = 1,2, … , 𝑛. 

(e) Vector of sorted and normalized Euclidean distances �̅�𝑆 (blue dots) between 
each cube 𝐶𝒩𝑃,𝑖  in the preliminary nucleus set 𝒩𝑃  and the centroid of all cubes in 

𝒩𝑃 , along with the fourth-degree polynomial fitting �̅�𝑆𝐹  (red line), with 𝑖 =
1,2, … , 𝑛. (f) First difference �̅�𝑆𝐹  (red line) of vector of fitted sorted distances �̅�𝑆𝐹  
in (b), with highlighted in black the lowest value with null slope. (g) Filtered 
nucleus set 𝒩𝐹  made of 𝜀-cubes classified nucleus after a spatial and statistical 
filtering of the preliminary nucleus set 𝒩𝑃  in (c). (h) Refined nucleus set 𝒩𝑅  made 
of 𝜀/2-cubes classified nucleus after increasing resolution in the filtered nucleus 
set 𝒩𝐹  in (g) through sub-cubes of size 𝜀/2. (i) Partial nucleus set 𝒩𝑗  obtained by 

linking sub-cubes in (h) through segment lines and by using morphological closing. 
In (b,c,g-i), the blue region is the cell shell and the red region is the segmented 
nucleus at different steps of the CSSI algorithm. 
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In Figure A.6(c), where the 𝑘∗ threshold is highlighted by the red vertical line, 

it is clear that, despite 𝑘∗ ≠ 𝑘𝑜𝑝𝑡, 𝑘∗ is located in the same quasi-constant 

region of 𝑘𝑜𝑝𝑡, hence this estimated threshold leads to very little differences 

in terms of clustering performances with respect to the optimal one. 

11. The final 3D nuclear OCH 𝒩 is made of voxels that have been classified 

nucleus at least 𝑘∗ times, as shown in Figure 4.2(d). 

In Figure 4.2(d), it is evident that the proposed CSSI algorithm allows 

segmenting a 3D nuclear OCH very close to the original one, as underlined by 

accuracy, sensitivity, and specificity reported below the tomograms. 

Moreover, these values are very close to the optimal ones that could be 

obtained by using the optimal threshold 𝑘𝑜𝑝𝑡 instead of the estimated one 𝑘∗, 

i.e. 𝐴𝐶𝐶𝑜𝑝𝑡 = 98.22 %, 𝑆𝐸𝑁𝑆𝑜𝑝𝑡 = 98.57 %, and 𝑆𝑃𝐸𝐶𝑜𝑝𝑡 = 98.10 %. 

 

Figure A.6 Setting of the estimated threshold 𝒌∗. 
(a) Central xz-slice of the tomogram of occurrences, in which each voxel can take 
an integer value 𝑘 from 0 to 𝐾 = 20, i.e. the number of times it has been classified 
nucleus after repeating 𝐾 times steps 1-7 of the CSSI algorithm on the same cell. 
The blue line is the cell contour. (b) Percentage volumes 𝑉𝑘

𝑃 (blue dots), i.e. number 
of voxels 𝑉𝑘  classified nucleus at least 𝑘 times normalized to 𝑉20, along with the 
threshold 𝑇𝑉  (horizontal orange line) used to find the estimated threshold 𝑘∗ 
(vertical red line) by an intersection analysis. (c) CSSI performances associated to 
each possible threshold 𝑘 for creating the final 3D nucleus set 𝑁, expressed in 
terms of accuracy (blue), sensitivity (magenta), and specificity (orange), along with 
the optimum threshold 𝑘𝑜𝑝𝑡  (vertical green line in which performances are 
simultaneously maximized) and its estimation 𝑘∗ (vertical red line) computed in 
(b). 



254 A.4.     CSSI ALGORITHM 

 

All the parameters involved in the proposed CSSI algorithm are described in 

Table A.3. It is worth underlining that, in the presented experiments, a 

resolution factor 𝜀=10 px has been set to analyse arrays made of at least 

190 × 190 × 190 voxels, since it was an optimum compromise between the 

need of having both high resolution in nucleus segmentation and high 

statistical power in WMW test (see the analysis about the imaging spatial 

resolution in Section 4.2). The proposed computational processing takes tens 

of minutes on a conventional desktop computer. However, it can be easily 

speeded up using GPUs, parallel processing strategies, and faster 

programming languages (in the proposed implementation, MATLAB® R2020a 

has been used). 

Table A.3 Setting of the parameters involved in the CSSI algorithm to segment the 

stain-free 3D nuclear OCH from TPM-FC reconstructions (⌊∙⌋, ⌈∙⌉, and ⌊∙⌉ are 

the floor, ceil, and nearest integer operators, respectively). 

𝜀 = 10𝑝𝑥 𝑉1𝑥 =
𝐿𝑥 − 𝜀 + 2

2
 𝑉2𝑥 =

𝐿𝑥 + 𝜀

2
 𝑉1𝑦 =

𝐿𝑦 − 𝜀 + 2

2
 

𝑉2𝑦 =
𝐿𝑦 + 𝜀

2
 𝑉1𝑧 =

𝐿𝑧 − 𝜀 + 2

2
 𝑉2𝑧 =

𝐿𝑧 + 𝜀

2
 𝜏 = 0.99 

𝑀 = 10 𝑛 = ⌊
2

𝜀

𝐿𝑥 + 𝐿𝑦 + 𝐿𝑧

3
⌉ 𝑇5 =

1

2
[𝜇(�̅�) + 𝑝𝑚𝑎𝑥] 𝑇4 = 𝜇(�̅�) 

𝑇3 =

{
 
 

 
 0.7 𝑖𝑓

𝑚 + 1

𝑛
< 0.15

0.95 𝑖𝑓
𝑚 + 1

𝑛
> 0.85

0.7 +
5

14
(
𝑚 + 1

𝑛
− 0.15) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇𝑉 =

{
 
 

 
 
⌊5𝜇(�̅�𝑃)⌋

5
𝑖𝑓𝜇(�̅�𝑃) > 50%

⌈5𝜇(�̅�𝑃)⌉

5
𝑖𝑓𝜇(�̅�𝑃) < 50%

𝜇(�̅�𝑃) 𝑖𝑓𝜇(�̅�𝑃) = 50%

 

𝑇2 = 𝑇3 − 0.1 𝑇1 = 𝑇2 − 0.1 𝛼 = 0.9 𝛽 = 0.5 𝐾 = 20 
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A.5 CSSI Performances of the Stain-Free Nucleus 
Identification in Presence of Nucleoli 

The nucleolus is the biggest structure inside the nucleus and it is a region 

particularly dense of genetic material, therefore its malfunctioning has been 

related to different human diseases [406] [407]. For example, the nuclear-

nucleolar volume ratio is expected to change in a cancer cell [408], as well as 

the number of nucleoli [409]. Moreover, due to its denser genetic composition, 

on average the nucleolus has a higher RI than the surrounding nucleus [5]. 

Therefore, the nucleolus has been integrated to the same 1000 numerical 3D 

cell phantoms described in Section 4.1 and in Appendix A.3 in order to check 

whether its presence could negatively alter the correct identification of the 

stain-free nucleus by CSSI [297]. Since in diploid human cells there are up to 

ten possible nucleoli per cell [409], for each phantom the number of nucleoli 

are randomly drawn from the uniform distribution 𝑈3{𝑎3,𝑏3}. The overall 

volume of all the nucleoli in a cell is computed from the nucleus-nucleolus 

volume ratio randomly drawn from the uniform distribution 𝑈4{𝑎4,𝑏4} [408], 

and then it is divided equally among all the nucleoli, each of them being 

simulated as a sphere. The nucleolus RIs are randomly drawn from the 

gaussian distribution 𝑁5(𝜇5, 𝜎
2), where the mean value 𝜇5, in turn randomly 

drawn from the uniform distribution 𝑈5{𝑎5,𝑏5}, depends on the nucleus RIs in 

order to emulate the biological condition in which the nucleolus average RI is 

higher than the nucleus one. All the described parameters are reported in 

Table A.2. Within the 1000 3D numerical cell phantoms, the multiple nucleoli 

are randomly localized inside the nucleus. In Figure A.7(a,d,g,j), four numerical 

cell phantoms are displayed with the same 15 mitochondria and the same 

nucleus, and with 0, 3, 6, and 9 nucleoli, respectively. As reported in the 

corresponding RI histograms in Figure A.7(b,e,h,k), respectively, the RI values 

assigned to the nucleoli are greater than the corresponding outer nuclei but 

still included in their RI distributions in order to consider the worst case 

condition for segmentation.  
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Figure A.7 Numerical assessment of the CSSI algorithm applied to segment 
the 3D nuclear OCH after the addition of the nucleoli. 
(a,d,g,j) Isolevels representation of the 3D cell model, simulated with the same cell 
membrane, cytoplasm, nucleus, and 15 mitochondria, and with 0, 3, 6, and 9 
nucleoli, respectively. (b,e,h,k) Histogram of the RI values assigned to the nucleus 
and the nucleoli in (a,d,g,j), respectively. (c,f,i,l) Nuclear OCH segmented by the 
CSSI algorithm within the cell phantoms in (a,d,g,j), respectively. The 
corresponding CSSI accuracy, sensitivity, and specificity are reported at top right. 
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In Figure A.7(c), the nuclear OCH segmented by the CSSI method without 

considering the presence of nucleoli is mostly overlapped to the nuclear OCHs 

displayed in Figure A.7(f,i,l) obtained by the CSSI method in presence of 3, 6, 

and 9 nucleoli, respectively, as also suggested by the values of accuracy, 

sensitivity, and specificity reported in Figure A.7(c,f,i,l). After applying the CSSI 

algorithm to the 1000 numerical 3D cell phantoms, the values of 9 metrics 

have been computed to quantify the CSSI performances in segmenting the 

stain-free nucleus in the presence of the nucleoli (see the second column of 

Table 9). 

 

Figure A.8 Histograms of the several metrics in Table 9 used to quantify the 
performances in computing the nuclear OCH over a dataset of 1000 3D 
numerical cell phantoms without (blue) and with (orange) the presence of 
the nucleoli. 
(a) Sensitivity (Recall or True Positive Rate). (b) Specificity (True Negative Rate). 
(c) Positive Predictive Value (Precision). (d) Negative Predictive Value. (e) 
Accuracy. (f) Balanced Accuracy. (g) F1 Score. (h) Matthews Correlation 
Coefficient (Phi Coefficient). (i) Fowlkes–Mallows Index. 
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The values of the 9 metrics can be directly compared with the corresponding 

ones in the first column of Table 9 regarding the segmentation of the stain-free 

nucleus without the simulation of the nucleoli. Moreover, the comparison in 

Figure A.8 between the histograms of these 9 metrics about the two case 

studies clearly shows that, despite the presence of the nucleoli, even if 

performances of the CSSI in identifying the stain-free nucleus have slightly 

decreased, they still keep very high, over the 90%. Therefore, the presence of 

the nucleoli inside the nucleus does not substantially worsen the 

performances of the CSSI nucleus segmentation algorithm. 

A.6 Conventional 2D Imaging of Lipid Droplets 

With the aim to demonstrate the advantages of TPM-FC, the results reported 

in Section 4.3.1 are compared with the currently available gold-standard 

techniques for LD analysis, namely TEM and FM upon Nile Red staining [291]. 

Thanks to the high spatial resolution and contrast of TEM images, LDs are 

visible with a high level of details in A2780 and THP1 cells (see Figure 

A.9(a,g)), with average LD dimension being 963 nm (SD+/- 242) and 736 nm 

(SD+/- 150), respectively. The reliable LD counting is not possible when using 

TEM, due the small FOV and the limited sample section (80 nm) with respect 

to the cell size (tens of microns). These intrinsic drawbacks of TEM prevent 

the precise determination of the number of cells harboring LDs, allowing only 

approximate estimation. On the other hand, the FM analysis permits LD 

quantification, revealing a higher number of LDs in ovarian cancer model 

(p<0.005, see Figure A.9(b-f) and Figure A.9(h-l)). In particular, LDs have been 

counted in 11 A2780 and THP1 live cells, obtaining on average 26.55 (SD+/- 

4.18) and 10.55 (SD+/- 1.96) organelles per cell, respectively (see Figure 

A.9(e,k)). In line with TPM data, LDs have been detected in all A2780 cells 

while they are missing in some THP1 cells.  
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Figure A.9 Conventional 2D imaging of A2780 (a-f) and THP1 (g-l) live cells. 
(a,g) TEM images of LDs. Scale bar is 0.5 μm. (b,h) Representative FM images of 
nuclei (blue) and LDs (green). Scale bar is 10 μm. (c,i) FM images of nuclei stained 
with Hoechst. (d,j) FM images of LDs stained with Nile Red. (e,k) Number of LDs 
in 11 live cells imaged by FM. (f,l) Diameters of 30 LDs imaged by FM. 
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No significant difference in LDs size has been observed between the two 

models. The diameter of 30 LDs per cell type has been measured, revealing the 

average values of 760 nm (SD+/- 39) in A2780 and 820 nm (SD+/- 29) in THP1 

model (see Figure A.9(f,l)). Interestingly, FM images show that LDs within the 

A2780 cytoplasm are not uniformly distributed, but mainly assembled near 

the nucleus, confirming the same phenomenon observed in the TPM-FC 

reconstructions. 

A.7 3D Morphological Inspection of nanoGraphene 
Oxide within Cells 

In order to describe the morphometric parameters used to characterize the 

internalization of nGO after 24 h of cell culture, cells in Figure 4.21(a-c) are 

considered as example [294]. Let 𝐶 be the cell centroid and 𝐺 be the nGO 

cluster centroid. Let M be the nearest point of the external cell membrane to 

point 𝐺. The line passing for 𝐶 and 𝐺 is indicated by 𝑐, while the line passing 

for 𝑀 and 𝐺 is indicated by 𝑚. Moreover, let 𝑔 be the line passing for point 𝐺 

and having as slope the 3D nGO cluster orientation. 

The graphene-cell normalized distance is defined as 

(A.9)  𝛿(𝐺, 𝐶) =
𝛥(𝐺,𝐶)

𝛥(𝐺,𝐶)+𝛥(𝐺,𝑀)
 

and the graphene-membrane normalized distance is defined as 

(A.10)  𝛿(𝐺,𝑀) =
𝛥(𝐺,𝑀)

𝛥(𝐺,𝑀)+𝛥(𝐺,𝐶)
, 

where Δ(∙,∙) is the Euclidean distance between two points. The normalized 

distances in Eq. (A.9) and Eq. (A.10) can take values from 0 to 1. In the three 

cells at 24 h, nGO clusters are about in the same relative position between cell 

centroid and cell membrane, as shown by the 𝛿(𝐺, 𝐶) vs. 𝛿(𝐺,𝑀) plot in Figure 



APPENDIX 261 

 
 

4.21(d). Moreover, nGO clusters appear much closer to cell membrane than 

cell center. This marginal position can be explained by considering that most 

of cell volume is occupied by nucleus, that in fact does not internalize nGO 

particles, because they are larger than the functional diameter of the nuclear 

pores [375]. Moreover, the sphericity Ψ𝐺  is used as a synthetic descriptor 

parameter of the graphene shape, defined as [410] 

(A.11)  𝛹𝐺 =
√𝜋(6𝑉𝐺)

23

𝐴𝐺
 , 

where V𝐺  and A𝐺  are the volume and the surface area of the nGO cluster, 

respectively. Therefore, Ψ𝐺  measures how similar the shape of the nGO cluster 

is to that of a perfect sphere, and it takes values in the range [0,1] (1 in the 

spherical case). In Figure 4.21(e), Ψ𝐺  is reported versus the graphene 

equivalent radius 𝜌𝐺 , i.e. the radius of a sphere with the same volume. On the 

basis of the defined descriptors, it is inferred that the nGO clusters in cell 1 and 

cell 3 have about the same equivalent radius and sphericity, while the nGO 

cluster in cell 2 is smaller with a quasi-spherical shape. Moreover, as displayed 

by the polar plot in Figure 4.21(f), to the higher nGO sphericity Ψ𝐺  corresponds 

a lower graphene-cell angle 𝜃𝐺𝐶, i.e. the angle between lines 𝑔 and 𝑐 in Figure 

4.21(a-c), which takes values from 0° to 90°. The lower graphene-cell angle 

𝜃𝐺𝐶 of cell 2 also corresponds to a lower graphene-cell normalized distance 

𝛿(𝐺,𝑀), as reported by the polar plot in Figure 4.21(g). From Figure 4.21(a-

c,f,g), it is clear that nGO clusters arrange within all three 24h-cells with an 

angle between 75° and 90° with respect to line 𝑐. 

Instead, for the 3D nuclear decoration observed within the cell in Figure 4.20, 

a toroid model is used (see inset in Figure 4.22(a)). Its volume can be 

computed as 

(A.12)  𝑉𝑇 = 2𝜋
2𝑅𝑇𝑟𝑇

2, 

where 𝑅𝑇 is the toroid outer radius, i.e. the distance between the centre of the 

tube 𝑐𝑇 and the centre of the toroid 𝐶𝑇, and 𝑟𝑇 is the toroid inner radius, i.e. the 

radius of the generator circle of the tube. The volume V𝑇 is set equal to the 
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volume of the nGO ring structure in Figure 4.20(e), while 𝑅𝑇 is calculated as 

the mean distance between its centroid and all voxels. Then, 𝑟𝑇 can be obtained 

by inverting Eq. (A.12). By this way, the 𝑟𝑇 value measures an estimation of the 

thickness of the nGO cluster, while 𝑅𝑇 provides a rough estimation of the 

nuclear size, since the 3D nGO structure spreads around nucleus without 

entering within it [375]. By converting the cartesian coordinates in spherical 

ones (i.e. azimuthal angle, elevation angle and radial distance), the toroid can 

be unrolled, thus obtaining a cylinder, as represented in yellow in Figure 

4.22(a). The same transformation is done for the nGO ring structure of Figure 

4.20(e), as reported in black in Figure 4.22(a). Beyond the clear visual 

comparison, the unrolling procedure shown in Figure 4.22(a) enables a 

quantitative evaluation about the surface irregularity of the nGO structure. 

Indeed, in the case of an ideal toroid, the azimuthal angle takes values in 

[−180°, 180°], the elevation angle takes values in 

[− tan−1(𝑟𝑇 𝑅𝑇⁄ ) , tan−1(𝑟𝑇 𝑅𝑇⁄ )], and the radial distance takes values in 

[𝑅𝑇 − 𝑟𝑇 , 𝑅𝑇 + 𝑟𝑇], as confirmed by their yellow histograms in Figure 

4.22(b-d). Same histograms (in black) are obtained for the nGO cluster in 

Figure 4.22(b-d). To quantify the nGO cluster irregularities with respect to the 

toroid used as reference, the percentage error between histograms is 

calculated, resulting in 24.40% for the azimuthal angle, 54.82% for the 

elevation angle and 30.72% for the radial distance. 

A.8 Mathematical Derivation and Computation of 3D 
Zernike Descriptors 

The 3D Zernike functions can be defined in spherical coordinates as 

(A.13)  𝑍𝑛𝑙
𝑚(𝑟, 𝜗, 𝜑) = 𝑅𝑛𝑙(𝑟)𝑌𝑙

𝑚(𝜗, 𝜑), 
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where 𝑛, 𝑙,𝑚 are integer indexes such that 𝑛 ≥ 0, 𝑙 ≤ 𝑛 with 𝑛 − 𝑙 even 

numbers and 𝑚 ∈ [−𝑙, 𝑙]. The radial part 𝑅𝑛𝑙(𝑟) of Eq. (A.13) is defined as 

(A.14)  𝑅𝑛𝑙(𝑟) = 𝑟
𝑙 ∑ 𝑞𝑘𝑙

𝑣 𝑟2𝑣𝑘
𝑣=0 , 

where 𝑘 =
𝑛−𝑙

2
 and the coefficients 𝑞𝑘𝑙

𝑣  are determined so that the resulting 

basis functions are orthonormal in the unit ball, i.e. 

(A.15)  𝑞𝑘𝑙
𝑣 =

(−1)𝑘

22𝑘
√
2𝑙+4𝑘+3

3
(2𝑘
𝑘
)(−1)𝑣

(𝑘𝑣)(
2(𝑘+𝑙+𝑣)+1

2𝑘
)

(𝑘+𝑙+𝑣𝑘 )
. 

The angular part 𝑌𝑙
𝑚(𝜗, 𝜑) is set as the spherical harmonics, given by 

(A.16)  𝑌𝑙
𝑚(𝜗, 𝜑) = 𝑁𝑙

𝑚𝑃𝑙
𝑚(𝑐𝑜𝑠 𝜗)𝑒𝑖𝑚𝜑, 

where 𝑃𝑙
𝑚 denotes the associated Legendre functions and 𝑁𝑙

𝑚 is a 

normalization factor defined as 

(A.17)  𝑁𝑙
𝑚 = √

(2𝑙+1)

4𝜋

(𝑙−𝑚)!

(𝑙+𝑚)!
. 

In order to formulate the 3D Zernike polynomials as homogenous polynomials 

in the Cartesian coordinates 𝐱 = (𝑥, 𝑦, 𝑧)𝑇, it is needed to rewrite spherical 

harmonics in harmonic polynomials. By using the conversion between 

Cartesian and spherical coordinates and the integral formula for associated 

Legendre functions, one can express the harmonic polynomials as follows 

(A.18)  ℎ𝑙
𝑚(𝒙) =  𝑟𝑙𝑌𝑙

𝑚(𝜗, 𝜑) = 𝑐𝑙
𝑚 (

𝑖𝑥−𝑦

2
)
𝑚
𝑧𝑙−𝑚∑ ( 𝑙

𝜇
) ( 𝑙−𝜇

𝑚−𝜇
) (−

𝑥2+𝑦2

4𝑧2
)
𝜇⌊

𝑙−𝑚

2
⌋

𝜇=0 , 

where 𝑐𝑙
𝑚 are normalization factors defined as 

(A.19)  𝑐𝑙
𝑚 = 𝑐𝑙

−𝑚 =
√(2𝑙+1)(𝑙−𝑚)!(𝑙+𝑚)!

𝑙!
. 

The Eq. (A.18) yields homogenous polynomials for 𝑚 > 0. For 𝑚 < 0 the 

following symmetry relation is used 

(A.20)  ℎ𝑙
−𝑚(𝒙) = (−1)𝑚ℎ𝑙

𝑚(𝒙)̅̅ ̅̅ ̅̅ ̅̅ . 

Therefore, the Eq. (A.13) can be rewritten in Cartesian coordinates 
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(A.21)  𝑍𝑛𝑙
𝑚(𝒙) = ∑ 𝑞𝑘𝑙

𝑣 |𝒙|2𝑣𝑘
𝑣=0 ℎ𝑙

𝑚(𝒙). 

To implement the Eq. (A.21), one can derive a more compact formulation by 

expanding 𝑍𝑛𝑙
𝑚(𝐱) through the Eq. (A.18). After some mathematical 

manipulations (see more details in [386] [387]), the Eq. (A.21) can be 

rewritten as 

(A.22)  𝑍𝑛𝑙
𝑚(𝒙) = ∑ 𝜒𝑛𝑙𝑚

𝑤𝑠𝑡 𝑥𝑤 𝑦𝑠𝑧𝑡𝑤+𝑠+𝑡≤𝑛 , 

where 𝜒𝑛𝑙𝑚
𝑤𝑠𝑡  is set as 

(A.23)  
𝜒𝑛𝑙𝑚
𝑤𝑠𝑡 = 𝑐𝑙

𝑚2−𝑚∑ 𝑞𝑘𝑙
𝑣 ∑ (𝑣

𝛼
)∑ (𝑣−𝛼

𝛽
)∑ (−1)𝑚−𝑢𝑚

𝑢=0
𝑣−𝛼
𝛽

𝑣
𝛼=0

𝑘
𝑣=0 ×

× (𝑚
𝑢
)𝑖𝑢∑ (−1)𝜇2−2𝜇 ( 𝑙

𝜇
) ( 𝑙−𝜇

𝑚+𝜇
)∑ (𝜇

𝜚
)

𝜇
𝜚=0

⌊
𝑙−𝑚

2
⌋

𝜇=0

, 

and 𝑤 = 2(𝜚 + 𝛼) + 𝑢, 𝑠 = 2(𝜇 − 𝜚 + 𝛽) +𝑚 − 𝑢, 𝑡 = 2(𝑣 − 𝛼 − 𝛽 − 𝜇) + 𝑙 −

𝑚. Since the functions in Eq. (A.22) form a complete orthonormal system, it is 

possible to approximate any 3D object by a finite number of 3DZD. For the 

presented application, let 𝑇(𝐱) be the tomographic reconstruction. Its 

approximation using the Zernike basis is 

(A.24)  𝑇(𝒙) ≈ ∑ 𝛺𝑛𝑙
𝑚𝑍𝑛𝑙

𝑚(𝒙)𝑛,𝑙,𝑚 , 

where Ω𝑛𝑙
𝑚  are the 3DZD. In the proposed implementation, the tomographic 

reconstruction is enforced to be fitted by Eq. (A.24), hence the 3DZD can be 

calculated by solving the equivalent linear system after vectorizing the terms 

in Eq. (A.24). Without lack of generality, the tomogram 𝑇(𝐱) is considered 

calculated within a cube having 𝑉voxels per side, such that 𝑉3 is the total 

number of voxels. Let 𝑁 be the Zernike fitting order, such that 𝑛𝜖[0, 𝑁]. It is 

possibile to evaluate the number of Zernike basis functions to be generated by 

fixing 𝑁 as the sum of the first 𝑁 + 1 triangular numbers. Let 𝑀 be this 

summation, 𝑀 = (𝑁 + 1)(𝑁 + 2)(𝑁 + 3) 6⁄ , hence the Zernike functions can 

be seen as 4D vector with sizes 𝑉 × 𝑉 × 𝑉 ×𝑀, i.e. 𝑍𝑛𝑙
𝑚(𝐱) =

[𝑍{1}, 𝑍{2},… , 𝑍{𝑀}] with 𝑍{𝑗} having the same dimension of 𝑇(𝐱) ∀𝑗𝜖[1,𝑀]. 

Therefore, the Eq. (A.24) can be rewritten and solved as 
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(A.25)  �̂� ≈ �̿��̂� ⇒  �̂�𝐷 = 𝑝𝑖𝑛𝑣{�̿�}�̂�, 

where �̂� = 𝑣𝑒𝑐(𝑇) and �̂�𝐷 = 𝑣𝑒𝑐(Ω𝐷) with dimensions 𝑉3 × 1 and 𝑀 × 1, 

respectively, and �̿� = [𝑣𝑒𝑐(𝑍{1}), 𝑣𝑒𝑐(𝑍{2}),… , 𝑣𝑒𝑐(𝑍{𝑀})], thus having sizes 

𝑉3 ×𝑀. The operator 𝑝𝑖𝑛𝑣 indicate the pseudo-inverse matrix calculation. 

Finally, �̂�𝐷 is the vector containing the 3DZD. 
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