
 

 

 
 

 
 

 

Università degli Studi di Napoli Federico II 

Ph.D. Program in 

Information Technology and Electrical Engineering 

XXXV Cycle 
 

 

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
 
 
 

D e t e c t i o n  a n d  M e a s u r e m e n t  

o f  i n t e r - a r e a  o s c i l l a t i o n s  

f o r  p o w e r  s y s t e m  s t a b i l i t y  
 

by 

SALVATORE TESSITORE 
 
 
 

Advisor: Prof. Leopoldo Angrisani 

Company Advisor: Ing. Giorgio Maria Giannuzzi (Terna Rete Italia) 

Co-advisor: Prof.ssa Annalisa Liccardo 
 

 
 
 

 
SCUOLA POLITECNICA E DELLE SCIENZE DI BASE 

DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELLE TECNOLOGIE DELL’INFORMAZIONE 



 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time is relative 

its only value is given by what 

 we do while it is spending 

A.Einstein 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 

Detection and Measurement of 
inter-area oscillations for power 

system stability 
 

 
 

Ph.D. Thesis presented 

for the fulfillment of the Degree of Doctor of 

Philosophy in Information Technology and Electrical 

Engineering by 

Salvatore Tessitore 
 

 
October 2022 

 

 
 
 
 

Approved as to style and content by 
 
 
 

Advisor: Prof. Leopoldo Angrisani 

 

 

Company Advisor: Ing. Giorgio Maria Giannuzzi (Terna Rete Italia) 
 
 

Co-advisor: Prof.ssa Annalisa Liccardo 
 

 
Università degli Studi di Napoli Federico II 

Ph.D. Program in Information Technology and Electrical Engineering 
XXXV cycle - Chairman: Prof. Stefano Russo 

 
http://itee.dieti.unina.it 

http://itee.dieti.unina.it/


 

 

 
 

Candidate’s declaration 
 

 

I hereby declare that this thesis submitted to obtain the academic 

degree of Philosophiæ Doctor (Ph.D.) in Information Technology and 

Electrical Engineering is my own unaided work, that I have not used 

other than the sources indicated, and that all direct and indirect sources 

are acknowledged as references. 

Parts of this dissertation have been published in international journals 

and/or conference articles (see list of the author’s publications at the 

end of the thesis). 

 

 
 

Napoli, October 15, 2022 
 
 
 
 
 
 

Salvatore Tessitore 
 



 

 

 
 
 
 
 
 
 
 
 

 

Contents 
 

Abstract ............................................................................................. i 

Sintesi in lingua italiana ................................................................ iii 

List of Figures .................................................................................. vii 

List of Tables ................................................................................... xii 

Chapter  1 ...................................................................................................... 1 

1 Interconnected System and Inter-Area Oscillations ..........................1 

1.1 Electricity Grid and Interconnection .................................. 1 

1.2 National and European Development Plans ....................... 1 

1.3 Frequency Oscillations ........................................................ 4 

1.4 Classification of the Oscillations ......................................... 5 

 1.4.1 Inter-AreaOscillations .................................................................... 7 

Chapter  2 ...................................................................................................... 9 

2 Wide Area Measurement System .....................................................9 

2.1 Overview .............................................................................. 9 

2.2 Applications ....................................................................... 11 



 

 

 2.2.1 Offline Applications ....................................................................... 12 

Post-noise analysis ......................................................................... 12 

Benchmarking, validation and fine-tuning of system models ....... 12 

 2.2.2 Online Applications ....................................................................... 13 

Inter-area oscillation monitoring ................................................... 13 

Monitoring of active and reactive power flows and phase angles . 13 

Frequency monitoring .................................................................... 13 

Voltage level control ....................................................................... 13 

Power grid restoration .................................................................... 14 

Status Estimation .......................................................................... 15 

Thermal monitoring of transmission lines .................................... 15 

2.3 WAMS in Terna ................................................................. 15 

2.4 PMU – Phasor Measurement Unit .................................... 18 

 2.4.1 Synchrophasors ............................................................................. 19 

 2.4.2 Features ......................................................................................... 22 

2.5 STANDARD IEEE C37.118 ............................................... 28 

2.6 Developed Benchmark ....................................................... 30 

Chapter  3 .................................................................................................... 32 

3 Analyzed Methodologies ................................................................ 32 

3.1 Hilbert Transform ............................................................. 32 

 3.1.1 Bedrosian's Theorem ..................................................................... 34 

Statement ....................................................................................... 34 

Demonstration ................................................................................ 34 

Some critical issues ........................................................................ 35 

 3.1.2  Methods of Eliminating the Gibbs Effect ................................... 37 

Hilbert-Boche Method .................................................................... 37 

 3.1.3 Method of Decomposition .............................................................. 39 



 

 

Decomposition theorem .................................................................. 39 

Statement ....................................................................................... 39 

Demonstration ................................................................................ 40 

Identification of bisector frequencies ............................................. 42 

𝐿𝑝  – norm Periodogram ................................................................. 43 

Discrete Fourier Transform ........................................................... 43 

 3.1.4 Parameter Estimation .................................................................. 45 

N.L.S. Classic Approach ................................................................. 45 

Var.Pro ............................................................................................ 45 

3.2 Kalman Filter .................................................................... 47 

 3.2.1 Extended Kalman Filter ............................................................... 48 

 3.2.2 Unscented Kalman Filter ............................................................. 50 

Prediction ........................................................................................ 52 

Correction ....................................................................................... 53 

3.3 Heuristic Approach ............................................................ 54 

 3.3.1 Genetic Algorithm ......................................................................... 54 

GA Structure .................................................................................. 55 

Selection.......................................................................................... 55 

Crossover and Mutation ................................................................. 55 

 3.3.2 Particle Swarm Optimization ....................................................... 55 

PSO Structure ................................................................................ 57 

3.4 Dynamic Mode Decomposition .......................................... 58 

 3.4.1 Singular Value Decomposition ..................................................... 60 

 3.4.2 Matrix Truncation ......................................................................... 62 

 3.4.3 Static Order and Dynamic Order ................................................. 66 

 3.4.4Algorithm Structure ....................................................................... 66 

3.5 Tufts Kumaresan ............................................................... 68 

Chapter  4 .................................................................................................... 71 



 

 

4 Experimental Tests ....................................................................... 71 

4.1 Hilbert Transform ............................................................. 71 

 4.1.1 Simulated tests .............................................................................. 71 

Damping variation ......................................................................... 72 

Frequency variation ....................................................................... 75 

 4.1.2 Experimental Tests ....................................................................... 80 

Damping variation ......................................................................... 80 

Frequency variation ....................................................................... 80 

 4.1.3 Tests with non-coherent sampling ............................................... 81 

4.2 Extended and Unscented Kalman Filters ......................... 82 

 4.2.1 Extended Kalman Filter ............................................................... 83 

Convergence.................................................................................... 84 

3-D Charts ...................................................................................... 85 

 4.2.2 Unscented Kalman Filter ............................................................. 88 

Convergence.................................................................................... 89 

3-D Charts ...................................................................................... 90 

4.3 Heuristic Methods (GA and PSO) ..................................... 92 

4.4 PSO with Continuous Weighted Average ......................... 95 

 4.4.1 3D Charts ....................................................................................... 96 

 4.4.2Convergence .................................................................................... 99 

 4.4.3 Estimation of damping, frequencies and amplitudes ............... 101 

 4.4.4 Signal to noise ratio reduced to 25dB ........................................ 102 

 4.4.5 Non coherent sampling ............................................................... 103 

 4.4.6 Quantization ................................................................................ 104 

 4.4.7 One-component signal ................................................................. 105 

4.5 Experimental Tests ......................................................... 106 



 

 

 4.5.1 Description of the test network .................................................. 106 

 4.5.2 Results.......................................................................................... 107 

4.6 Dinamic Mode Decomposition ......................................... 109 

 4.6.1 Simulated tests ............................................................................ 109 

Change in filter order ................................................................... 110 

4.7 Experimental Tests ......................................................... 113 

 4.7.1 Static order DMD ........................................................................ 113 

 4.7.2 Dynamic Order DMD .................................................................. 114 

 4.7.3 Filter Length Variation............................................................... 116 

 4.7.4 FFT Analysis ............................................................................ 117 

 4.7.5 Change in the dynamic order detection threshold .................... 120 

4.8 Tufts Kumaresan ............................................................. 123 

 4.8.1 Simulatedtests ............................................................................. 124 

Incidence of noise ......................................................................... 132 

 4.8.2 Kundur Test Network ................................................................. 135 

 4.8.3 Experimental Test ....................................................................... 140 

Chapter  5 .................................................................................................. 148 

5 Conclusions ................................................................................ 148 

Bibliography .................................................................................... 150 

Author’s  Publications ...................................................................... 154 
 
 
 
 
 

  



i 

 

Abstract 
 

Interconnected electrical system stability is the ability of the system to find 

a new equilibrium condition following a disturbance. The phenomena of 

stability of the electrical system can be classified into three categories: rotor 

angle stability, frequency stability and voltage stability. In this doctoral 

research activity, the focus is on low-frequency oscillations (LFO), which are 

phenomena related to the stability of the rotor angle. This is a crucial aspect to 

be carefully monitored in the Italian and European electricity system, to 

ensure its safety and reliability. 

Undamped frequency oscillations can compromise the system integrity on 

a large scale: in the past, several accidents have been recorded caused by the 

establishment of high-intensity oscillations around the world. 

Thanks to new technologies, in recent years measurement and 

instrumentation structures based on Wide Area Measurement Systems 

(WAMS) technology have become widespread, which is essential to monitor 

and characterize this type of phenomenology. The possibility of synchronous 

and other frequency sampling, the possibility of a communication protocol 

capable of transmitting high sampling data with low latencies guarantees a 

large amount of data from the phasor units of measurement (PMUs) installed 

throughout the European electricity system, increasing its observability by 

transmission system operators (TSOs). 

A description of the WAMS currently used by the Italian TSO (Terna) 

confirms that the detection of frequency oscillations is one of the main 

functionalities/applications planned by these architectures. The real-time 

detection of dangerous frequency oscillations and then the estimation of the 

relative parameters (frequency, damping, amplitude and phase) is 

fundamental in the framework described above. When potential divergent 

oscillations are detected, all necessary countermeasures must be implemented 

to restore safe and stable operating conditions (e.g., re-dispatching of 

generators, regulation of connecting line flows, load reduction, modification of 

network topology, etc.). For this purpose, the major problems concern the 

complexity in the search for robust identification techniques and accurate 
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characterizations of frequency oscillations. In this regard, several fundamental 

approaches for tracking electromechanical modes in an electrical system are 

reported in the literature. Some approaches use a linearized electrical system 

model around a certain equilibrium point to identify the characteristics of 

electromechanical modes through eigenvalue analysis. Others are based on the 

estimated measurements of an updated model of the electricity system from 

direct measurements of the system, coming from measuring devices installed 

on the electricity grids. 

From the experience gained working for a long time on the subject, I can 

now say that there is no optimal algorithm applicable in all operating 

conditions but rather each one has advantages. This means that, for example, 

one method might show good performance in phase and frequency estimation, 

another might show very good performance in estimating damping and 

amplitude. In addition, one method might work better than another for signals 

sampled without noise, while it could worsen its efficiency when the signal-to-

noise ratio (SNR) decreases. However, there are estimation techniques that are 

generally characterized by good performance compared to others. In the 

present thesis, first different estimation techniques have been analyzed both 

on simulated data and on real data. Subsequently, improvement solutions 

have been proposed compared to that reported in the literature and finally in 

relation to the monitoring or defense objective set with the Italian TSO, the 

most appropriate method for real-time application has been chosen.  

The goal of this research was therefore to create highly accurate and 

resilient estimation algorithms for real-time monitoring and defense of 

electromechanical oscillations, particularly inter-area, in such a large 

interconnected system. Although the PhD course ends by achieving the 

established goals, my research is still ongoing as an employee of the Italian 

TSO (Terna). 

 

Keywords: WAMS, Inter-area oscillations, Transmission grid stability, 

low-frequency oscillations (LFO), online damping estimation. 
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Sintesi in lingua italiana 
 

La stabilità del sistema elettrico interconnesso è la capacità del 

sistema di trovare una nuova condizione di equilibrio in seguito a un 

disturbo. I fenomeni di stabilità del sistema elettrico possono essere 

classificati in tre categorie: stabilità dell'angolo di rotore, stabilità della 

frequenza e stabilità della tensione. In questo dottorato di ricerca, 

l'attenzione si concentra sulle oscillazioni a bassa frequenza (LFO), 

fenomeni legati alla stabilità dell'angolo del rotore. Si tratta di un 

aspetto cruciale da monitorare attentamente nel sistema elettrico 

italiano ed europeo, per garantirne la sicurezza e l'affidabilità. 

Le oscillazioni di frequenza non smorzate possono compromettere 

l'integrità del sistema su larga scala: in passato sono stati registrati 

diversi incidenti in tutto il mondo causati dall'instaurarsi di oscillazioni 

di elevata intensità. 

Grazie alle nuove tecnologie, negli ultimi anni si sono diffuse 

strutture di misura e strumentazione basate sulla tecnologia Wide Area 

Measurement Systems (WAMS), essenziale per monitorare e 

caratterizzare questo tipo di fenomenologia. La possibilità di 

campionamento sincrono e ad altra frequenza, la possibilità di un 

protocollo di comunicazione in grado di trasmettere dati ad alto 

campionamento con basse latenze garantisce una grande quantità di dati 

dalle Phasor Measurement Unit (PMU) installate in tutto il sistema 

elettrico europeo, aumentandone l'osservabilità da parte degli operatori 

del sistema di trasmissione (TSO). 

Una descrizione dei WAMS attualmente utilizzati dal TSO italiano 

(Terna) conferma che il rilevamento delle oscillazioni di frequenza è una 

delle principali funzionalità/applicazioni previste da queste architetture. 

Il rilevamento in tempo reale di oscillazioni di frequenza pericolose e la 

successiva stima dei relativi parametri (frequenza, smorzamento, 
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ampiezza e fase) è fondamentale nel quadro descritto sopra. Quando 

vengono rilevate potenziali oscillazioni divergenti, devono essere attuate 

tutte le contromisure necessarie per ripristinare condizioni operative 

sicure e stabili (ad esempio, ridispacciamento dei generatori, regolazione 

dei flussi delle linee di collegamento, riduzione del carico, modifica della 

topologia della rete, ecc. A questo proposito, in letteratura sono riportati 

diversi approcci fondamentali per il tracciamento dei modi 

elettromeccanici in un sistema elettrico. Alcuni approcci utilizzano un 

modello di sistema elettrico linearizzato attorno a un certo punto di 

equilibrio per identificare le caratteristiche dei modi elettromeccanici 

attraverso l'analisi degli autovalori. Altri si basano sulle misure stimate 

di un modello aggiornato del sistema elettrico a partire da misure dirette 

del sistema, provenienti da dispositivi di misura installati sulle reti 

elettriche. 

Dall'esperienza acquisita lavorando a lungo sull'argomento, posso 

affermare che non esiste un algoritmo ottimale applicabile in tutte le 

condizioni operative, ma piuttosto ognuno di essi presenta dei vantaggi. 

Ciò significa che, ad esempio, un metodo potrebbe mostrare buone 

prestazioni nella stima della fase e della frequenza, mentre un altro 

potrebbe mostrare ottime prestazioni nella stima dello smorzamento e 

dell'ampiezza. Inoltre, un metodo potrebbe funzionare meglio di un altro 

per segnali campionati senza rumore, mentre potrebbe peggiorare la sua 

efficienza quando il rapporto segnale/rumore (SNR) diminuisce. 

Tuttavia, esistono tecniche di stima che sono generalmente 

caratterizzate da buone prestazioni rispetto ad altre. Nel presente 

lavoro, sono state innanzitutto analizzate diverse tecniche di stima sia 

su dati simulati che su dati reali. Successivamente, sono state proposte 

soluzioni migliorative rispetto a quelle riportate in letteratura e infine, 

in relazione all'obiettivo di monitoraggio o difesa fissato con il TSO 

italiano, è stato scelto il metodo più appropriato per l'applicazione in 
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tempo reale.  

L'obiettivo di questa ricerca consisteva nel creare algoritmi di stima 

altamente accurati e resilienti per il monitoraggio e la difesa in tempo 

reale delle oscillazioni elettromeccaniche, in particolare inter-area, in un 

sistema interconnesso di così grandi dimensioni. Sebbene il corso di 

dottorato si concluda con il raggiungimento degli obiettivi stabiliti, la 

mia ricerca è ancora in corso come dipendente del TSO italiano (Terna). 

 

Parole chiave: WAMS, Oscillazioni inter-area, Stabilità della rete 

di trasmissione, Oscillazioni a basse frequenze, stima online dello 

smorzamento. 
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Chapter  1 

 

1 Interconnected System and 
Inter-Area Oscillations 

 
1.1 Electricity Grid and Interconnection 

The term 'network' means in the Italian language, an interweaving of 

threads of various material, crossed with each other regularly. In the 

same way, what we know today as the electricity grid is a system with 

a complex, strongly interconnected configuration that cannot be traced 

to a simplified 'isolated' scheme with a single point of connection, 

between producer and end customer. In a document drawn up by 

ARERA (Regulatory Authority for Energy, Networks and 

Environment) in 2019, the electricity grid is distinguished from the 

Simple Production and Consumption Systems (SSPC) which, on the 

other hand, are attributable to configurations characterized by a 

single producer and a single end customer, electrical configurations 

with a one-to-one ratio [1]. 

Divided into its subsystems, generation, transmission, distribution 

and use, the national electricity system (SEN) is therefore necessarily 

interconnected and supportive. Cooperation between the various parts 

of the network is an essential prerogative for its operation, to increase 

its reliability, to compensate for the production deficits of specific 

areas, but also and above all because what happens in one point of the 

network influences the correct functioning at another point of the 

same. Just consider that frequency and voltage adjustments are 

managed with wide-ranging plans, which provide for the participation 

of several generation groups, a control center, a monitoring at national 

level. 

 

1.2 National and European Development Plans 
To these concepts, which are already sufficient to lean towards an 

increasingly interconnected and cooperative electricity grid, is now 

added the need to move towards an energy transition and towards the 
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achievement of European targets regarding climate and environment 

through the integration of renewable energies. In this regard, the 

association of European Network of Transmission System Operators 

for Electricity (ENTSO-E), which represents 42 electricity 

transmission system operators (TSOs) from 35 countries across 

Europe, updates every two years non-binding ten-year grid 

development plans that provide guiding principles for the coordination 

of research and development activities. The ENTSO-E, in 

collaboration with other European institutions and organizations, 

aims to develop an efficient electricity system and energy market, 

capable of combining sustainability and innovation, ensuring a safe 

and reliable supply to users. In the "Publications" section of the official 

website of ENTSO-E it is possible to consult the documents and have 

more information on the aforementioned ten-year development plan, 

indicated by the acronym TYNDP [2]. 

The TYNDP is the result of a process involving hundreds of experts, 

who starting from scenarios of what the European energy system 

could look like in 2030 and 2040, have evaluated the electricity grid 

strengthening projects presented through European calls. As for Italy, 

the TSO is represented by TERNA, and is involved in 18 TYNDP 

projects, some ongoing, others planned but awaiting permits. For 

example, the national HVDC connection Peninsula – Sicily – Sardinia 

[3] (Figure 1.1), or the international connection Tunisia-Italy (Figure 

1.2) in addition to the strengthening of those with Austria. Without 

going into the details of the projects, this general vision of the 

development plans highlights the importance of electricity 

interconnection, both at national level to cover the demands of 

regional users, sometimes not self-sufficient, and at European and 

non-European level to achieve the so-called "electricity 
interconnection objective". Already in 2014, the European Council 

called on all Member States to increase the interconnection by at least 

10% of their production capacity by 2020 [4]. 

 

 
Figure 1.1 Representation Simulink network test 
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Figure 1.2 Tunisia–Italy connection [5] 

 

From a strictly national point of view, on Terna's website it is possible 

to find some information on the 2021 Development Plan with which 

the company's objectives and lines of action have been outlined on the 

basis of European guidelines (Figure 1.3). 

 

 
Figure 1.3 2021 Development Plan [6] 

 

"The national electricity system is in fact transforming from a 

centralized model to an integrated and distributed one: until 2000 we 

dispatched energy from just over 800 power plants; now we have 

800000 active generation plants in Italy that will become one million 
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in the near future". These are the words found on Terna's website in 

relation to the topic. The same article highlights how fundamental, to 

manage this transformation, the new digital technologies that allow 

to collect and transfer large flows of data, in order to analyze them 

effectively and promptly. [7] 

 

1.3 Frequency Oscillations 
Despite the increase in production from photovoltaic and wind power 

plants in recent years, the national energy needs are still covered for 

the majority by thermoelectric and hydroelectric power plants that 

exploit the turbine-alternator group to produce electricity. A 

synchronous generator or alternator is an electrical machine that 

transforms a primary mechanical source into electrical energy. The 

adjective synchronous immediately clarifies that this machine works 

only at its point of synchronism or when the pulsation of the rotating 

electromagnetic fields of the stator and the rotor and the speed of the 

rotor itself, coincide. The mechanical angular velocity, i.e. the number 

of rotations per minute of the rotating masses of the machine, is 

related to the frequency of the alternative forms of voltage and current 

fed into the electricity grid, according to the equation: 

 

𝑓 =  
𝑁𝑠  ∙ 𝑝

60
 (1.1) 

 

• 𝑁𝑠  [rpm] is the number of rotations per minute; 

• 𝑓 [Hz] is the electrical frequency; 

• 𝑝 is the number of polar pairs. 

 

Theoretically, any frequency can be a point of operation of the 

alternator, as long as the synchronism condition occurs. To this 

technical requirement is added another regulatory one as the nominal 

frequency is fixed and standardized throughout Europe at the value of 

50 Hz. Synchronous generators must therefore keep their speeds 

constant and be synchronized with each other whatever the load they 

supply. It is therefore necessary to regulate them appropriately 

through regulation and control systems throughout the electricity 

grid, so as to avoid instability in operation [8]. Adjusting the frequency 

and therefore the speed, is translated into an active power regulation 

through the D’Alembert equation: 

 

𝑀𝑒  − 𝑀𝑟  = 𝐽 
𝑑𝜔𝑟
𝑑𝑡

 (1.2) 

 

• 𝑀𝑒 [Nm] is the electromagnetic torque; 

• 𝑀𝑟 [Nm] is the durable torque; 
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• 𝐽  [kgm2] is the moment of inertia; 

• 
𝑑𝜔𝑟

𝑑𝑡
 is the angular acceleration. 

Being the driving torque is closely linked to the electrical power 

(𝑃𝑒 = 𝑀𝑒  ∙  𝜔𝑟 [𝑊]) we obtain: 

 

𝑃𝑒  − 𝑃𝑟  = 𝐽 𝜔𝑟
𝑑𝜔𝑟
𝑑𝑡

 (1.3) 

 

To maintain the equilibrium condition, it is necessary to guarantee a 

condition of parity between output power and absorbed power 

(∆𝑃 =  0). Due to sudden changes in the load, the detachment of an 

interconnection line or as a result of a short circuit, this condition is 

continuously disturbed, resulting in an angular acceleration. 

When this happens, the rotating magnetic field generated by rotor 

excitation, whose rotational speed is synchronous with that of the 

rotor, begins to rotate at a different speed than the stator rotating 

magnetic field. The interaction between the two fields gives rise to an 

alternative electromagnetic torque that causes accelerations and 

decelerations of the rotor, and therefore a pendulum oscillation of the 

same. When the amplitude of such oscillations brings the machine into 

conditions of instability, the generator loses its pitch, that is, rotor and 

stator magnetic field permanently lose synchronism and the generator 

will have to be stopped and then restarted. The blackout of a generator 

induces oscillations of the electrical parameters in the electrical 

system, the amplitude of which will be maximum near the generator 

involved and will propagate along the entire transmission network 

with reduced amplitude, also affecting groups belonging to 

interconnected areas. 

Avoiding the loss of the pitch is possible by monitoring the network 

and intervening in a short time whenever an abnormal condition 

arises, compensating for the imbalance between the output powers 

and absorbed powers through the participation of the other generation 

groups present in the network, which provide a sort of reserve to make 

up for the deficit. The whole thing is regulated by the TSO itself and 

is part of a large area of study that goes by the name of frequency and 

active power regulation. 

 

1.4 Classification of the Oscillations 
Going into detail, the oscillations of the electrical system manifest 

themselves as oscillations of the network parameters (voltage, 

current, active and reactive power), which overlap the nominal 

frequency of 50 Hz with variable amplitudes and damping. 

Mathematically, an electrical quantity is presented as a superposition 

of modes, one fundamental at the frequency of 50 Hz and the others 

at various frequencies. Each i-th mode of evolution is represented 
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through the following expression [9]: 

 

𝑦𝑖  (𝑡) =  𝐴𝑖  ∙  𝑒
−𝜎𝑖 ∙𝑡  ∙  sin(2𝜋𝑓𝑖  ∙ 𝑡 + 𝜑𝑖) (1.4) 

 

• 𝑦𝑖  (𝑡) is the i-th oscillation; 

• 𝐴𝑖 is the amplitude of oscillation; 

• 𝑓𝑖 is the frequency of oscillation; 

• 𝜎𝑖 is the damping coefficient; 

• 𝜑𝑖 is the initial phase of oscillation. 

 

From a technical point of view, the oscillations are tolerable if they 

decay over time, and tend to become smaller and smaller as they 

dampen, while they are dangerous if they have high amplitudes and 

are increasing over time. In the presence of divergent modes, in fact, 

a synchronous generator could be brought into conditions of instability 

with consequent loss of pitch. The divergence or convergence of a mode 

of evolution is characterized by the damping or the damping coefficient 

(𝜎𝑖). With positive values of damping the oscillation is convergent, that 

is, it tends to dampen and extinguish, while with negative values of 

damping, the oscillations are not attenuated over time but amplified 

and can reach dangerous amplitudes that trigger the intervention of 

protections. 

According to the value of damping, the modes of evolution are 

classified into: 

• damped → 𝜎𝑖 ∈  (0.05,+∞) [𝑠
−1] 

• weakly damped → 𝜎𝑖 ∈  (0, 0.05) [𝑠
−1]  

• divergent → 𝜎𝑖 ∈  (−∞,−0.05) [𝑠
−1] 

 

The oscillations, according to the frequency range, are divided into: 

• local oscillations; 

• inter-area oscillations; 

• intra-implant oscillations; 

• control oscillations; 

• torsional oscillations. 

 

Local oscillations are electromechanical oscillations that occur 

between groups of synchronous generators installed in a given area 

(same power plant), compared to the rest of the power system. They 

are characterized by a frequency range of 0.8 – 2.0 Hz. 

Inter-area oscillations, on the other hand, include lower-frequency 

oscillations that propagate over long distances along the transmission 

grid. They are the cause of the interconnection of the various 

generation groups and that is why they are defined with the name of 

inter-area, because they depend on the interfacing of different areas. 

They usually occur when two parts of an electrical system with 

significant generation groups are connected by a weak connecting line. 
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The typical frequency range is 0.1 – 0.8 Hz. 

Intra-plant oscillations, on the other hand, occur precisely in the same 

plant due to the oscillations of the installed machines compared to the 

rest of the system. They have a frequency range typically between 2.0 

and 3.0 Hz, to be evaluated, however, depending on the installed 

power. 

Control oscillations are so called because they result from errors in 

control systems, from a wrong tuning during electricity grid 

monitoring. They are located in the frequency range from 3.0 to 10 Hz.  

Torsional oscillations are associated with the shaft systems of turbine 

generators and fall into a typical frequency range of 10 – 46 Hz. 

The phenomenon taken into account in this Ph.D. research program 

is the inter-area oscillations. 

 

1.4.1 Inter-Area Oscillations 
As defined above, inter-area oscillations [10] are a consequence of the 

interconnection of large areas of electrical systems. For this reason, 

their analysis is the subject of study at European level and requires 

collaboration and cooperation between the various TSOs that must 

provide the associative body (ENTSO-E) with the measures detected 

[11]. When special events occur, such as blackouts or openings of 

connecting lines, or losses of generation groups, oscillations of the 

relevant electrical parameters propagate in the electricity grid. Each 

control center is called upon to identify and report such anomalies. 

These values are used first to start load shedding procedures and 

other adjustment maneuvers, and then they are collected by the 

ENTSO-E which uses them to publish reports on the events that have 

occurred. The available documentation obviously contributes to the 

research and allows to understand practically what happens. Here are 

two examples: 

In 2016, following the opening of a French line, fluctuations were 

detected in other European countries. In the relative document it is 

reported as follows: "the system shows two main modes of oscillation: 

a North - South mode with a frequency of about 0.28 Hz and an 

East - West mode with a frequency of 0.15 Hz. Before the connection 

of Turkey, the East - West mode was in the range of 0.2 – 0.3 Hz due 

to the small size of the system" [12]. 

In a report of December 3, 2017, instead, it can be read: "an interzonal 

oscillation has been detected in the European continental system. The 

frequency of the oscillatory mode under examination was identified at 

0.29 Hz with significant contributions from power plants in Southern 

Italy. The oscillation observed in Southern Italy is in phase with the 

oscillation observed in the countries of the South-Eastern European 

Community and in part of the south of France and Switzerland, but it 

is in the opposite phase to the oscillation recorded in Northern Europe 

(Germany, Denmark and France)" [13]. 
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It has already been said that the interesting frequency range of inter-

area oscillations is 0.1 – 0.8 Hz, but within this range it is possible to 

make a further distinction. Among the inter-area oscillations, the 

most characteristic modes (Figure 1.4) are divided as follows: 

East-West mode: appeared following the connection with Turkey, 

which took place in 2010, concerns the movement of generators in 

Portugal and Spain compared to those in Turkey. It has a typical 

frequency of 0.13 – 0.15 Hz; 

East-Center-West mode: it concerns the movement of generation 

groups in Portugal and Spain compared to those of Greece. The typical 

frequency falls in the range of 0.17 – 0.2 Hz; 

North-South mode: it provides for the relative movement between the 

generators located in southern Italy compared to those installed in the 

North of Germany and Denmark. The typical frequency falls in the 

range of 0.23 – 0.3 Hz 

 

 
Figure 1.4 Inter-area modes 
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Chapter  2 
 

 

2 Wide Area Measurement System 
 

2.1 Overview 
Nowadays, maintaining high network security is one of the 

fundamental requirements for the TSO. Therefore, the acquisition of 

an increasing amount of information on the system is essential to 

predict the dynamic evolution of power systems, in all operating 

conditions, and to identify the most appropriate and effective 

countermeasures that guarantee safe and stable operating conditions. 

The main obstacles in this regard are represented by the inability of 

the TSO to predict with high precision the behavior of the system, but 

also by the technological limitations of traditional supervision, control 

and data acquisition systems. In recent decades a number of factors 

have led to the reduction of the safety margins in which the 

transmission network operates, among them are: 

• the continuous development of interconnections that increase 

the complexity of electricity grid dynamics; 

• the increasingly high energy demand from users, therefore an 

increase in the load for the electricity grid, which leads to an 

increase in power transits without the electricity grid being 

adequately enhanced; 

• the increase in power flows associated with renewable sources, 

which are not controllable as the availability of these sources is 

random and non-programmable. 

A pragmatic solution to the highlighted problems is represented by the 

development of WAMS (Wide Area Measurement System) which 

represents one of the latest technologies for upgrading the traditional 

electricity grid [14]. This improvement has become a necessity after the 

occurrence of major blackouts in power systems around the world, 

among all we remember the one that happened on September 28, 2003 

in Italy, in which a series of events led to the separation of Italy from 

the interconnected European electricity system. In fact, in the final 

report of the UCTE investigative commission, which investigated this 
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blackout, the development of WAMS for the monitoring and real-time 

study of the dynamics of the electricity grid as a useful technology for 

the prevention of heavy events was strongly recommended. 

WAMS is a system of real-time monitoring of a large area based on the 

measurement of synchrophasors through sophisticated devices called 

PMUs (Phasor Measurement Unit) [15]. It is a functional system 

mainly for three purposes: 

• obtain data from different strategic points of the national 

transmission grid; 

• evaluate the parameters of interest for the analysis, both 

dynamic and static, offline and online; 

• possibility to compare data from different areas of the network 

on the basis of a common time reference, as the acquisitions are 

synchronized by means of the GPS. 

 

As it can be seen from Figure 2.1, the WAMS consists mainly of two 

elements: 

• PMU, Phasor Measurement Unit; 

• PDC, Phasor Data Concentrator. 

 

 
Figure 2.1 Architecture of a Wide Area Measurement System 

 

A PMU is a device that performs measurements of synchrophasors 

from the voltage and current waveforms sampled at defined sampling 

instants. The measurements made by the PMU are normally 

timestamped and synchronized on the basis of a common time, provided 

by a highly reliable time source, among all the GPS system. 

A PDC is a device that plays the role of collector for data coming from 

groups of PMUs. Its main function is to synchronize all the different 

data flows coming from the PMUs by creating a single stream of 

synchronized data to be sent to the central server. 

Thus, in a transmission network to be monitored, there are numerous 

PMUs, positioned at strategic points, properly chosen after an in-depth 

study, which carry out the measurements. If the number of PMUs is 

high, there is a division into groups, based on geographical location. 

Each group is headed by a local PDC. The various local PDCs, in turn, 

send the respective synchronized data stream to a "global" PDC, 

usually called "Super PDC" which realizes a single data stream that 
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will be stored and used for the appropriate monitoring and protection 

of the transmission network. 

The development of WAMS technology combined with PMU devices 

allows network operators to monitor the dynamics of the electrical 

system in real time with a degree of precision and detail that was not 

possible with conventional SCADA (Supervisory Control And Data 

Acquisition) systems [16]. This allows a deeper and simpler 

understanding of the conditions of the system, and considerable 

support in deciding the execution of control actions and maneuvers. In 

fact, since PMUs are characterized by a high data acquisition speed, 

the dynamics of the system can be accurately captured when it is 

subjected to disturbances. Figure 2.2 shows the phase shift between 

voltages of two substations acquired with a PMU compared with that 

acquired using a classic EMS (Energy Management System) network 

for state estimation. This comparison clearly demonstrates that a real-

time monitoring system consisting of PMUs provides much more 

accurate and dynamic trends and information than traditional state 

estimate, allowing the electricity grid operator to apply 

countermeasures in a more timely and correct manner downstream of 

disturbances that may compromise the stability of the national power 

system. 

 

 
Figure 2.2 Comparison between PMUs and a classic status estimation 

system (EMS) 

 

2.2 Applications 
The main applications of WAMS are aimed at monitoring, while talking 

about WAMPAC system (Wide Area Monitoring Protection and 

Control) when protection and control of the electricity grid are carried 

out in addition to monitoring [17]. 

Applications are generally divided into two categories: 

• offline applications, used to improve and validate the 

mathematical model of the electrical system, to make studies on 

offline electricity grid stability and to plan actions for increasing 

the reliability. 
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• online applications, i.e. support activities for the network 

operator for monitoring, managing and protecting the electricity 

grid itself in real time. 

 

Figure 2.3 shows the main applications divided into the two categories 

listed above. 

 

 
Figure 2.3 WAMS applications 

 

2.2.1 Offline Applications 

Post-noise analysis 
The main objective of post-disturbance analysis is to study the 

dynamics of the system during large disturbances and analyze the 

sequential events of the system caused by such disturbances. Thanks 

to the use of PMUs, the data collected are synchronized on the time 

reference signal provided by the GPS, therefore the procedure for 

reconstructing the sequence of events following the disturbance has 

been facilitated. 

 

Benchmarking, validation and fine-tuning of system models 
The main tasks of benchmarking and validation activities are the 

testing and identification of potential errors present in the 

mathematical model of the power system and in the analytical 

procedures implemented on it. Accurate and reliable system models are 

essential for the operation of the system itself, its proper management 

planning and for efficient and robust control. Inaccurate system models 

can cause the transmission system operator to make decisions that are 

too conservative or incorrect. 
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2.2.2 Online Applications 

Inter-area oscillation monitoring 
With WAMS technology it is possible to monitor the dynamic behavior 

of the system and identify the modes of inter-area oscillation and if 

alarming conditions occur it will be necessary to intervene suddenly to 

avoid the loss of stability of the transmission network. Figure 2.4 

illustrates an inter-area oscillation identified by the PMU. 
 

 
Figure 2.4 Inter-area oscillation identified with PMU 

 

Monitoring of active and reactive power flows and phase angles 
PMUs make it possible to detect the phase shift between the nodes of 

the electricity grid through the power flows that affect the transmission 

lines. This is advantageous for the network operator when it comes to 

monitoring in real time the stress, from the point of view of power 

transits, to which the network is subjected. This real-time monitoring 

results in a greater degree of confidence in the management of critical 

power transmission corridors. 

 

Frequency monitoring 
The frequency of the power system is one of the most valuable 

information for real-time assessment of grid stability since the 

variation over time in the frequency of the system is the direct measure 

of the balance between power generation and demand. During large 

disturbances the frequency is rapidly variable and very different in 

several areas of the transmission system. The high data reporting rate 

offered by PMUs provided a great opportunity for the system operator 

to obtain accurate measurements of the frequency of the dynamic 

system. If the entire power grid is monitored by a synchronized 

measurement of frequency and its evolution over time, the overall 

dynamic behavior of the network can be considered accurately detected. 

 

Voltage level control 
Through the estimation of the synchrophasors offered by the PMUs it 

is possible to keep under observation the amplitudes of the voltages in 

the main nodes of the transmission network, in particular, in those of 

generation. This application falls within the scope of grid voltage 

regulation. 
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Power grid restoration 
Given the complex nature of the transmission system, it must be 

accepted that in some cases blackout is inevitable, then it becomes 

necessary to undertake strategies to minimize the duration of these 

interruptions. When a portion of the network is restored, there may be 

negative repercussions on other portions of the electricity grid not 

affected by the outage. The PMUs, used during the re-ignition, allow to 

detect in real time information on the phase angles in the portions of 

the electricity grid interconnected with the portion that needs to be 

restored, this gives the grid operator the ability to assess whether or 

not the restoration of this portion can compromise the stability of the 

electricity grid. 

Figure 2.5, taken from a report by the UCTE Committee of 4 November 

2006, shows the measurements of PMUs recorded during attempts to 

reclose interconnection power lines between two European areas, 

followed by the reclosing of interconnection lines between these two 

areas and a third European area. 

 

 
Figure 2.5 PMU measurements belonging to three areas during reclosing 

attempts 
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Status Estimation 
Estimating the status of the power electrical system is one of the most 

important online applications, necessary for the energy management 

system and for operational safety assessments. State estimation means 

knowledge of the modules and voltage angles in all nodes of the 

network. Synchronized measurements and synchrophasors allow a 

better quality in the estimation of the state. As the number of PMUs 

increases, the observability of the network increases until it reaches a 

number of PMUs such as to consider the network completely 

observable, in this way it is possible to use a linear estimation method, 

thus reducing the computational load obtaining greater precision in the 

solution compared to classic nonlinear methods. Thanks to the PMUs 

it is possible to create a real-time parameter identification network 

(real-time estimation of line impedances and transverse admissions). 

 

Thermal monitoring of transmission lines 
It is well known that the power transport capacity of an overhead 

transmission line is limited by the temperature of the conductors. With 

PMUs installed on both terminals of an overhead line, with 

synchronized phasor estimates it is possible to calculate the actual line 

impedance and derive the value of the line resistance. Known the 

characteristics of the conductor, it is possible to estimate in real time 

the temperature of the conductor of the overhead line. 

 

2.3 WAMS in Terna 
The Transmission System Operator in Italy is Terna, which, as TSO, 

has the task of ensuring the correct operation of the transmission grid 

with appropriate control and monitoring activities synchronized in real 

time, and is responsible for the dispatching of electricity in Italy. 

Terna's national transmission grid consists of 66000 km of lines and 

about 870 power stations; it is characterized by five voltage levels 

400 kV, 230 kV, 150 kV, 132 kV and 60 kV. Figure 2.6 shows the 

distribution of the 400 kV lines along the Italian peninsula and the 

three HVDC (High Voltage Direct Current) connections: 

Sardinia – Italian Peninsula, Greece – Italy and Montenegro – Italy. 
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Figure 2.6 Italian 380 kV transmission grid and HVDC connections 

 

Given the particular geographical configuration of the country, the 

Italian Electricity System has some peculiarities: almost all the 

interconnection capacity with foreign countries insists on the northern 

border, while the elongated shape of the peninsula determines the 

presence of "bottlenecks" between the different areas of the country, 

which cause difficulties in optimizing energy flows, especially between 

Northern and Southern Italy and towards the islands. 

The WAMS system developed by Terna consists of a set of PMUs, a 

dedicated data network and computer systems for data processing and 

management, including monitoring and intelligent visualization 

applications [18]. 

Currently about 220 PMUs are installed at the main stations of the 

Italian transmission network, in projection it will reach about 330 PMU 

installed. For the selection of PMU locations, combined heuristic-

analytical criteria have been adopted. Each criterion covers local or 

system aspects, such as proximity to large production units, 

bottlenecks, system boundaries, etc. Figure 2.7 shows a georeferenced 

representation of PMUs on the national territory. 

 



17 

 

 
Figure 2.7 Georeferenced representation of PMUs on the Italian territory 

 

The PMUs of Terna's monitoring system, currently among the largest 

in the world, work with a speed of 50 fps, that is, a block of 

measurements of electrical quantities (voltage amplitude and phase, 

frequency, etc.) is sent every 20 ms. Terna also acquires measurements 

in real time from PMUs installed in neighbor countries that are covered 

by the ENTSO-E, i.e. the European network of transmission system 

operators. It is essential that the network operator has tools capable of 

processing in real time the enormous amount of data available, to 

evaluate the stability of the network and to promptly implement 

corrective actions in case of criticality. For the monitoring of the SEN 

in support of the National Control Centre, Terna uses an integrated 

tool called WEBWAMS. 

Figure 2.8 represents the graphical interface of WEBWAMS, where 

three main sections can be appreciated: 

• Geographical representation: this section shows a geographical 

map (Italian and European) in which the nodes of the electricity 

grid equipped with PMU are indicated by a colored dot, selecting 

one or more dots you can access the action panel for the control 
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of the data transmitted by the selected PMUs. 

• Action panels: this section allows the operator to perform the 

main actions, such as selecting the measured quantities to be 

displayed and performing simple calculations in real time, such 

as detecting the phase shift between two points of the electricity 

grid. Any alarms activated in case of violations of pre-

established thresholds are also reported, including high/low 

voltage modulus, high/low frequency, negative dumping in case 

of oscillations, intervention conditions for load shedding, going 

to the island, voltage collapse. 

• Temporal trends: this section reports the temporal trends of the 

quantities recorded with temporal resolution up to 20 ms, this 

allows you to appreciate very fast dynamics. 

 

 
Figure 2.8 Graphical interface of WEBWAMS 

 

2.4 PMU – Phasor Measurement Unit 
The PMU (Phasor Measurement Unit) is the technology used today by 

Terna that allows to measure amplitude and phase of voltage and 

current, frequency and its derivative taken in certain nodes of the 

transmission network, at time instants synchronized through an 

absolute time signal, the Coordinated Universal Time (UTC). 

Therefore, the PMU is a data acquisition device that produces an 

estimate of synchronized phasors, called synchrophasors, and of the 

parameters mentioned above starting from the voltage and current 

measurements acquired in a synchronized manner using the GPS 

(Global Positioning System) satellite system. The use of GPS receivers 

guarantees a maximum uncertainty of the input data of 1 μs, in any 

geographical area of the planet. In a synchronized measurement 

platform, there can be two types of PMUs: 

• Standalone PMU is a device in which synchronized 

measurement, time stamp and high-precision measurement 

activities are carried out in an independent device; 
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• Integrated PMU is a smart electronic device (IED), in which the 

activities carried out by an independent PMU are integrated 

within a multifunction device. 

 

The reference documents for the characterization of PMUs are: 

• IEC/IEEE 60255-118-1:2018 standard [19], which defines the 

quantities of interest, the requirements and the methods for 

assessing the conformity of the device, with its limits, in both 

dynamic and steady state conditions; 

• IEEE C37.118.2-2011 standard [20], which defines the 

communication protocol between PMUs and PDCs for the real-

time exchange of synchronized data. 

 

2.4.1 Synchrophasors 
The IEC/IEEE 60255-118-1:2018 standard provides the following 

definition of a synchrophasor: "a phasor calculated from data samples 

using a standard synchronization signal as a reference for 

measurement". From a quantitative point of view, a synchrophasor is 

nothing more than a phasor of an alternative electrical quantity at a 

specific frequency, calculated with reference to absolute time. 

In practice, given a sinusoidal signal: 

 

𝑥(𝑡) =  𝑋𝑚  cos(2𝜋𝑓𝑡 +  𝜑) (2.1) 

 

Where 𝑋𝑚, 𝑓 and 𝜑 are the signal amplitude, frequency and phase 

respectively. It is possible to express its phasorial representation 𝑋, as 

well known from the literature, by a complex number: 

 

𝑋 =  
𝑋𝑚

√2
 𝑒𝑗 𝜙 = 

𝑋𝑚

√2
 (cos𝜙 + 𝑗 sin𝜙) =  𝑋𝑟 + 𝑗𝑋𝑖 (2.2) 

 

The representative synchrophasor of the 𝑥(𝑡) signal is the 𝑋 phasor 

defined by equation (2.2) in which 𝜙 is the instantaneous phase relative 

to a cosine function at the nominal frequency of the system 

synchronized to UTC. Thus, in this definition 𝜙 is the offset from a 

cosine function at the nominal frequency of the system synchronized to 

UTC, at the instant of time t = 0. Figure 2.9 illustrates the convention 

that works for the angle of the synchrophasor, showing the relationship 

between this and UTC time. 
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Figure 2.9 Convention for the representation of the synchrophasor and its 

phase angle 

 

Synchrophasors are functions of time in modulus and phase; in fact, 

these will change in value unless the acquired signal is a pure sinusoid 

at the nominal frequency of the system (50 or 60 Hz). In the more 

general case the amplitude of the signal 𝑥(𝑡) is a function of time 𝑋𝑚(𝑡), 
as well as the frequency 𝑓(𝑡), then it is possible to define a function 

𝑔(𝑡), also a function of time and expressed by (2.3), which represents 

the difference between the instantaneous frequency of the signal, 𝑓, 

and the nominal frequency, 𝑓𝑛. 

 

𝑔(𝑡) = 𝑓(𝑡) − 𝑓𝑛 (2.3) 

 

Introduced this function then it is possible to express the sinusoid 𝑥(𝑡) 
as follows:  

 

𝑥(𝑡) = 𝑋𝑚(𝑡)𝑐𝑜𝑠 (2𝜋∫𝑓𝑑𝑡 + 𝜙)  

=  𝑋𝑚(𝑡)𝑐𝑜𝑠 (2𝜋∫(𝑓𝑛 + 𝑔)𝑑𝑡 + 𝜙)  =

= 𝑋𝑚(𝑡)𝑐𝑜𝑠 (2𝜋𝑓𝑛𝑡 + (2𝜋∫𝑔𝑑𝑡 + 𝜙)) 

(2.4) 

 

For this sinusoid the representative synchrophasor turns out to be: 

 

𝑋(𝑡) =
𝑋𝑚(𝑡)

√2
 𝑒𝑗(2𝜋∫𝑔𝑑𝑡+𝜙) (2.5) 

 

In the particular case where the maximum value is constant, 𝑋𝑚(𝑡) =
 𝑋𝑚, and the difference between the instantaneous and nominal 

frequency is constant, 𝑔(𝑡) = 𝑔 = ∆𝑓, the expression of the 

synchrophasor is simplified, with respect to (2.4), and turns out to be a 
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synchronized phasor rotating at the uniform speed ∆𝑓, as shown by the 

relation (2.6). 

 

𝑋(𝑡) =  
𝑋𝑚

√2
 𝑒𝑗(2𝜋∆𝑓𝑡+ 𝜙) (2.6) 

 

If a sinusoid at a nominal frequency is considered, a reference time 

interval equal to the period of the signal is chosen, 𝑇𝑛 = 1 𝑓𝑛⁄ , and 

observed it in the time intervals 0, Tn, 2Tn, 3Tn, ..., nT0 , it is possible to 

derive the corresponding synchrophasors {X0, X1, X2, X3,.. , Xn}. If the 

frequency is different from the nominal one, 𝑓 ≠  𝑓𝑛, and 𝑓 < 2𝑓𝑛 it can 

be observed that the synchrophasor has a constant modulus but the 

phase of the sequence of synchrophasors changes uniformly with step 

2𝜋(𝑓 − 𝑓𝑛) 𝑇𝑛. In Figure 2.10 is shown a sinusoid with a frequency 𝑓 >
 𝑓𝑛, evaluating the synchrophasors in the integer multiple moments of 

the period 𝑇𝑛, it can be noted that the angle 𝜙 of the synchrophasor 

increases evenly with the frequency deviation. All measurements refer 

to a common time base and a common frequency, so that the phase 

angle measurements are directly comparable between the various 

synchronized phasors. The synchrophasor estimate also includes the 

effects associated with local frequency phenomena. 

 

 

Figure 2.10 Uniform increase in the synchrophasor phase 
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2.4.2 Features 
Figure 2.11 shows the basic architecture of a block schematized PMU. 

 

 

Figure 2.11 Functional block diagram of a typical PMU 

 

At the input to the PMU there are analog signals, i.e. the alternating 

waveforms of voltage and current, taken from the electricity grid, with 

frequencies around 50 or 60 Hz (remember that the PMUs are built ad 

hoc to work around the electricity grid frequencies). The acquired 

waveforms, before being converted to digital, by means of an 

appropriate analog-to-digital ADC converter, are filtered through an 

anti-aliasing filter (64 samples for power cycle). At the input of the ADC 

also comes a signal from a phase-locked oscillator that allows the 

sampling of incoming waveforms and the synchronization of 

measurements, thanks to the reference time signal from the GPS 

receiver, which provides a Pulse Per Second (PPS). This impulse is also 

sent to the microprocessor, which at the output provides the estimation 

of the synchrophasor, frequency and other parameters of interest, with 

the help of algorithms that can be more or less complex. The results 

obtained are then transmitted to the PDC. 

The synchronization signal must have suitable levels of reliability and 

accuracy to meet the measurement requirements of electrical systems. 

For each measurement, the PMU assigns a time tag (timestamp) that 

includes the instant of time and the "quality of time" at the time of 

measurement. The timestamp shall accurately determine the 

measurement time at least 1 μs within a specified period of 100 years. 

The time and quality of time for communication and recording are 

derived from the PMU's time tag and converted to the required format 

and content. 

The time reference signal to which the standard refers for the 

evaluation of synchrophasors is the UTC (Universal Time 
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Coordinated), which is the time zone chosen as a global reference, from 

which all the time zones of the world are calculated. The UTC 

synchronization source can be supplied directly from a global 

transmission system (e.g. GPS system) or through the use of a local, 

external or internal clock to the same measuring device. If an internal 

clock is used, the standard sets the maximum timing error. Considering 

the levels of availability, reliability and accuracy required for 

applications in power grids, the only usable synchronization system is 

the global GPS system, thanks to which a maximum uncertainty of 1 

μs is obtained on the synchronized data. 

Theoretically, synchronization could also be achieved using terrestrial 

systems, particularly radio transmissions, achieving a significant 

reduction in system implementation costs. However, the accuracy of 

the synchronization signals achievable through the use of such systems 

is limited; moreover, the level of reliability and availability is currently 

modest, not suitable for applications in electrical systems. The 

reliability aspect is particularly felt by the standard, which, in order to 

ensure the consistency of the measurements performed, requires 

measurement systems to report, by means of an appropriate display 

system, any loss of synchronization of the system itself. 

Despite a relatively simple architecture, PMUs are instruments that 

must provide very high performance, in terms of accuracy. In the 

standard, PMUs are divided into two classes: 

• P-class PMUs, intended for protection applications where short 

response times are required, without the need for special 

filtering; 

• M-class PMUs, employed where accuracy is more important 

than response speed; therefore, filtering techniques become 

significant. 

 

The IEC/IEEE 60255-118-1:2018 standard states that the accuracy 

levels of the synchronization signal must be such as to ensure that the 

Total Vector Error (TVE) parameter, defined by the relation (2.7), is 

maintained within appropriate limits. 

 

𝑇𝑉𝐸 = √
(𝑋̂𝑟(𝑛) − 𝑋𝑟(𝑛))

2
+ (𝑋̂𝑖(𝑛) − 𝑋𝑖(𝑛))

2

𝑋𝑟(𝑛)
2 + 𝑋𝑖(𝑛)

2
 (2.7) 

 

Where 𝑋̂𝑟(𝑛) and 𝑋̂𝑖(𝑛) represent respectively the real and imaginary 

component estimated, that is, provided by the measuring device, in 

association with an input signal evaluated at a certain moment of time 

(𝑛); while 𝑋𝑟(𝑛) and 𝑋𝑖(𝑛) indicate the corresponding theorical 

components, real and imaginary, of the same signal. The PMU must 

receive the time signal from a reliable and accurate source that can 

provide UTC times with sufficient accuracy to maintain the Total 
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Vector Error (TVE), Frequency Error (FE) and the Rate of change of 

Frequency Error (RFE or ROCOF error) within the limits prescribed by 

the standard. 

If, for example, the frequency evaluated by the PMU coincides with the 

theorical one, the phasorial representation will be stationary (invariant 

time) and the phasor coordinates will remain constant over time. In 

this case, the TVE parameter is zero (𝑇𝑉𝐸 =  0). In practical cases, 

which are characterized by a deviation between the theoretical value of 

the signal frequency and the measured value, it will be possible to 

observe continuous oscillations of the phasor in the complex plane, as 

shown above by relation (2.6). The TVE parameter represents a 

characteristic index of these oscillations and its value is proportional to 

the magnitude of the frequency offsets. 

For complete details, the definitions of the other two measurement 

errors in the standard are given: relation (2.8) expresses the Frequency 

Error (FE), and relation (2.9) and the Rate of change of Frequency 

Error (RFE or ROCOF error). 

 

𝐹𝐸 = |𝑓𝑟𝑒𝑎𝑙𝑒 − 𝑓𝑚𝑖𝑠𝑢𝑟𝑎𝑡𝑎| = |𝛥𝑓𝑟𝑒𝑎𝑙𝑒 − 𝛥𝑓𝑚𝑖𝑠𝑢𝑟𝑎𝑡𝑎| (2.8) 

𝑅𝐹𝐸 = |(
𝑑𝑓

𝑑𝑡
)
𝑟𝑒𝑎𝑙𝑒

− (
𝑑𝑓

𝑑𝑡
)
𝑚𝑖𝑠𝑢𝑟𝑎𝑡𝑎

| (2.9) 

 

Obviously, the real value and the measured value refer to the same 

instant of time, which is provided by the timestamp of the estimated 

values. 

The standard specifies the requirements that the PMU must meet, 

through its own estimates, to be considered uniform to the standard 

itself: the PMU must provide the measurement of synchrophasors, 

frequency and ROCOF in accordance with the requirements of the 

standard. These requirements must be met at all times and in all 

configurations, whether the PMU function is an independent physical 

unit or included as part of a multifunction unit; also for both steady 

state operating conditions and dynamic conditions. 

Steady-state conformity must be confirmed by comparing evaluations 

of the synchrophasor, frequency and ROCOF, obtained under steady-

state conditions at the corresponding theoretical values of the real (𝑋𝑟) 
and imaginary (𝑋𝑖) synchrophasor components, frequency and ROCOF. 

Stationary conditions occur in the case when the amplitude of the test 

signal, its pulsation (𝜔) and its phase (𝜑), and all other influence 

quantities are constant for the measurement period. 

Table 2.1, extracted from the IEC/IEEE 60255-118-1:2018 standard, 

shows the maximum values of the TVE that must guarantee the PMU 

in stationary conditions for the estimation of the synchrophasor. 
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Table 2.1 Maximum values of the TVE under stationary conditions for the 

estimation of synchrophasors 

 
 

With regard to the requirements to be met for frequency and ROCOF 

in terms of errors, Table 2.2 shows the requirements extracted from the 

IEC/IEEE 60255-118-1:2018 standard. 
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Table 2.2 Requirements for frequency and ROCOF estimation under 

stationary conditions 

 
 

With regard to dynamic operating conditions, the requirements must 

be verified in several scenarios: 

• linear ramp variation of the frequency; 

• step variation of the amplitude of voltage tern; 

• step variation of the phase of the voltage tern; 

• step variation in both amplitude and phase of the voltage tern; 

• latency test. 

 

With regard to the evaluation of synchrophasors, the standard does not 

recommend a specific algorithm to be implemented in PMUs, but leaves 

freedom to individual manufacturers as long as they meet the 

compliance requirements of the measures in the standard. However, 

the standard provides guidelines regarding the management and 

transmission of data, thus ensuring correlation of large amounts of 

data from different measurement units, typically present in a 

monitoring system of the transmission network. 

One parameter that is set by the standard is the rate of phasor 

evaluations per second (𝐹𝑠) that the PMU must support. This speed is 

called frames per second (fps), where frame means a set of measures of 

synchrophasors, frequencies and/or ROCOF characterized by the same 

timestamp (this term is used to differentiate a data frame from a 

sample, which means a point of an analog waveform). 

The transmission rates can be chosen by the user among the values 

dictated by the standard, these are submultiples of the nominal 

frequency of the electricity grid and are shown in Table 2.3. 

 

 

 



27 

 

Table 2.3 Allowable values of the observation rate of PMUs 

 
 

This type of choice is made so that the measurements are equally 

spaced over the second of observation. The choice of higher speeds, 

multiples of the network frequency, such as 100 fps or 120 fps is also 

allowed; a speed of 1 fps is also permitted. 

Having fixed 𝐹𝑠 then the number N of observations to be made in one 

second is established, after that, it is necessary to associate each data 

output from the measurement units with a specific time tag in order to 

uniquely characterize the measured quantity. The time tags associated 

with each synchrophasor are identified by a number (frame number) 

ranging from 0 up to N-1. 

The standard gives an example of estimating synchrophasors for the 

waveforms in Figure 2.9. These values are shown for the angles of 0° 

and -90° at the time marker of 1 PPS provided by the GPS. 

Table 2.4 shows the example of a phasorial representation, in terms of 

amplitude and phase, of a sinusoidal quantity with effective value 

𝑋𝑚/√2 observed at a speed of 10 fps, so ten synchrophasors (N = 10) per 

second. The results reported are related to the case of signals 

characterized by a frequency value (respectively 50, 60, 51 and 61 Hz) 

that remains constant throughout the observation range. 

 
Table 2.4 Synchrophasor values captured at 10 fps speed 

 
 

The measurement time instant must consist of three numbers: a second 

of century count (SOC), a fraction of a second count (FRACSEC), and a 
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message time quality indicator. 

The SOC count is a count of seconds from midnight (00:00:00) on 

January 1, 1970 to the second in which the measurement took place. 

This count must be represented as a 32-bit unsigned integer. From this 

count, intercalary seconds must be added or deleted as needed to keep 

it synchronized with UTC. The time count can always be determined 

by the current time by multiplying the number of days from 01/01/1970 

by the number of seconds per day (86400 s). The second must be divided 

by an integer number of subdivisions defined as TIME_BASE. The term 

FRACSEC is an integer and must be zero when it coincides with the 

flipping of one second. 

The transmission of data in real time from the PMU to the PDC takes 

place according to a precise communication protocol, below are the 

main reference standards that have been developed over the years: 

• IEEE 1344-1995; 

• IEC 61850-90-5; 

• IEEE C37.118-2005; 

• IEEE C37.118.2-2011; 

• IEC/IEEE 60255-118-1:2018. 

 

During my research activity the IEEE C37.118.2-2011 standard was 

used for the real-time transmission of data from PMUs; therefore, in 

the next paragraph an overview of this standard is made. 

 

2.5 STANDARD IEEE C37.118 
The IEEE C37.118.2-2011 standard, called "IEEE Standard for 
Synchrophasor Data Transfer for Power Systems", defines a method for 

exchanging synchronized data between equipment in the electrical 

power system, namely measuring devices (PMUs) and data 

concentrators (PDCs). Defines messaging framework requirements for 

synchronized measurements, including message types, usage, content, 

and data formats. It does not place any restrictions on the means of 

communication used and the communication protocol, since these are 

typically dependent on the application. This method was established by 

the IEEE C37.118-2005 standard. 

Mainly, the standard was designed for RS-232 serial communication, 

but past implementations show great success of fiber optic IP 

telecommunications, using TCP/IP (Transmission Control Protocol) 
and/or UDP (User Datagram Protocol). 

The standard is divided into six paragraphs, of particular interest is 

the sixth paragraph in which the real time communication protocol and 

the format of the messages are defined; the first five paragraphs, on the 

other hand, recall concepts on synchrophasors, already present in the 

first part of the IEEE C37.118-2011 (now replaced with the standard 

IEC/IEEE 60255-118-1:2018). 

A simple structure of a synchronized phasor network consists of PMUs 
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and PDCs, as shown in Figure 2.12, an example shown in the first part 

of the standard. If, for example, there are multiple Intelligent 

Electronic Devices (IEDs) in a substation that provide synchrophasor 

measurements (PMUs), a local PDC can be installed in the substation. 

Typically, many PMUs located in various key substations collect and 

send real-time data to a PDC located at a station, where the data is 

aggregated. 

 

 
Figure 2.12 Example of a simple synchronized data collection network 

The data collected by the PDC can be used to support many 

applications, ranging from displaying information and alarms to 

monitor the situation, to those that provide sophisticated analytical, 

control or protection capabilities. Applications, such as monitoring 

network dynamics, use full-resolution real-time data along with 

network models to support both operational and planning functions. 

The application shows locally measured frequency, primary voltages, 

currents, real and reactive power flows and other quantities for system 

operators. Local PDCs can be connected to a central PDC (Super PDC) 

to aggregate data between the various measuring stations, in order to 

provide a snapshot of the measurements of the electricity grid at the 

interconnection level. 

Real-time data transmission takes place in conjunction with the 

measurement process. If the PMU device is to be used with other 

systems where phasor information is to be transmitted in real time, 

implementation of this protocol is required for compliance with this 

standard. If the PMU device is used only for data storage or recording, 

then this protocol is not mandatory. Any communication system, or 

medium, can be used for data transmission. Message frames are 

transmitted in their entirety. This messaging protocol can be used to 

communicate with a single PMU or with a secondary system that 

receives data from multiple PMUs. The secondary system, a PDC, must 

be assigned its own identification code, IDCODE, assigned by the user. 
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The protocol allows the use of the necessary identifying information, 

such as PMU IDCODE and system state, to be incorporated into the 

data structure, for a correct interpretation of the measured data. 

 

2.6 Developed Benchmark 
The progress achieved in the field of simulation, together with the 

technological innovations introduced with the fourth industrial 

revolution, have led to an important turning point: today it is no longer 

necessary to create expensive physical prototypes to test the 

performance of an object, of a system, but it can be done through the 

use of a Digital Twin, now considered an indispensable tool in 

innovation projects in the field of IoT (Internet of Things). By Digital 

Twin, therefore, we mean the virtual copy of a physical system, a 

fictitious representation that allows you to virtually analyze new 

scenarios and strategies before implementing them in the real physical 

system. The purposes for which it can be used are manifold, including: 

• perform simulations without affecting the physical system; 

• observe the response of the system in different scenarios, with 

particular attention to situations of high stress, allowing the 

identification of any discrepancies in operation; 

• perform predictive analysis; 

• tuning of estimation algorithms. 

 

The Digital Twin is used, in particular, in the engineering phase. In 

fact, during the development of a new product, many questions emerge, 

for example what to modify from a structural and morphological point 

of view to have an optimization of a certain objective function. It 

provides well-defined answers, reproducing the operating conditions of 

the system whenever a change in its configuration is made. 

In the Italian transmission grid managed by Terna there are about 220 

PMUs that acquire the measurements of the quantities to be observed 

(module and phase of the voltage, frequency, etc.), these are sent to a 

PDC; therefore, in the benchmark to be realized it is necessary to create 

a PMU emulator. 

As previously described, the data sent by the individual PMUs have 

their own timestamp, so before they can be sent to the openECA 

software that it allows projects to be created in different programming 

languages (i.e. Matlab), used in the benchmark as a frame reception 

software from the PDC and conversion into data format that can be 

processed by computers (i.e. Matlab), a synchronization and alignment 

operation in a single frame. For this purpose, openPDC is used. Both of 

the software mentioned are open source and made available by the GPA 

(Grid Protection Alliance). This description concerns the structure of 

the benchmark for WAMS in the most generic case, Figure 2.14 

illustrates a schematization. 
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Figure 2.13 Benchmark structure for WAMS simulation in the most 

generic case  
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Chapter  3 
 

3 Analyzed Methodologies 
 

In this chapter all the methodologies analyzed in the doctoral course 

are described; in Chap. 4 the results obtained for each methodology on 

both simulated and real signals are reported. 

The choice of methodologies was made both considering what was used 

by Terna at the beginning of the doctoral work and after a deep 

analysis of what was already available in the literature.  

The methodologies analyzed can be divided into: 

• Single channel methods 

• Multi channel methods 

In particular, the single channel methods analyzed are: 

• Hilbert Transform 

• Kalman Filter 

• Genetic Algorithm 

• Particle Swarm Optimization 

• Tuft Kumaresan 

While the multi channel method analyzed is: 

• Dynamic Mode Decomposition (DMD) 

As can be seen in the results obtained and reported in Chapter 4, the 

DMD method has many advantages in view of the possibility on the 

part of the TSO to acquire from different points the synchronized 

measurements along the entire European electrical system. 

 

3.1 Hilbert Transform 
The Hilbert transform is a particular representation that, unlike other 

transforms (Fourier, Laplace, Z) does not realize a change in the 

domain of definition. In other words, starting from a function of time, 

the Hilbert transform is still a function of time. The Hilbert transform 

of a real signal 𝑎(𝑡) is defined as the following convolution integral: 
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𝐻[𝑎(𝑡)] =
1

𝜋
𝑉. 𝑃.∫

𝑎(𝜏)

𝑡 − 𝜏
𝑑𝜏 =

+∞

−∞

1

𝜋
𝑉. 𝑃.∫

𝑎(𝑡 − 𝜏)

𝜏
𝑑𝜏

+∞

−∞

 (3.1) 

 

where it is necessary to consider the Cauchy main value integral (V.P.) 

because of the possible singularity of the integrand at values 𝜏 = 𝑡 
and 𝜏 = 0. The usefulness of employing this operator lies in the 

property of the Hilbert transform to phase shift the real signal with 

positive pulsation of −
𝜋

2
 radians. Thanks to this feature it is possible 

to obtain the analytical signal [21]: 

 

𝑔(𝑡) = 𝑎(𝑡) + 𝑗 ∙ 𝑎𝐻(𝑡) = 𝐴(𝑡) ∙ 𝑒
𝑗𝜗(𝑡) 

𝐴(𝑡) = √𝑎(𝑡)2 + 𝑎𝐻(𝑡)
2 
 

𝜗(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑎𝐻(𝑡)

𝑎(𝑡)
) 

(3.2) 

 

• 𝑎𝐻(𝑡) = 𝐻[𝑎(𝑡)]; 
• 𝐴(𝑡) = instantaneous amplitude of the analytical signal; 

• 𝜗(𝑡) = instantaneous phase of the analytical signal. 

 

In 1948 Ville introduced the notion of instantaneous frequency (IF) in 

the field of signal processing as the derivative of the "analytical signal" 

phase: 

 

𝑓(𝑡) =
1

2𝜋

𝑑𝜗𝑢(𝑡)

𝑑𝑡
    𝑤𝑖𝑡ℎ    𝜗𝑢(𝑡) = 𝜗(𝑡) + 𝛬(𝑡) 

𝜁(𝑡)  =  −
𝑑

𝑑𝑡
[𝑙𝑛 (𝐴(𝑡)] 

(3.3) 

 

Where 𝜗(𝑡) is the phase of the analytical signal 𝑔(𝑡) and the term 𝛬(𝑡) 
is an integer multiple of 𝜋, function placed to ensure phase continuity. 

The first property of the Hilbert transform concerns the continuity and 

differentiability of the amplitude: 

 

𝐻[𝑎(𝑡) + 𝛿𝑎(𝑡)] → 𝐻[𝑎(𝑡)]  𝑠𝑒 ‖𝛿𝑎(𝑡)‖ → 0 (3.4) 

 

The second property of the Hilbert transform concerns the 

homogeneity and independence of the phase from scaling operations. 

If the signal 𝑎(𝑡) is replaced with 𝑘 ∙ 𝑎(𝑡), using the linearity of the 

transformation it is shown that: 
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𝐻[𝑘 ∙ 𝑎(𝑡)]

𝑘 ∙ 𝑎(𝑡)
=
𝐻[𝑎(𝑡)]

𝑎(𝑡)
 → 𝐻[𝑘 ∙ 𝑎(𝑡)] = 𝑘 ∙ 𝐻[𝑎(𝑡)] (3.5) 

 

The third property of the Hilbert transform concerns the harmonic 

correspondence. Assuming constant and positive the amplitude and 

frequency of a sinusoidal signal, for every A, f and φ it is shown that: 

 

𝐻[𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡 + 𝜑)] = 𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡 + 𝜑) (3.6) 

 

3.1.1 Bedrosian's Theorem 

Statement 
According to Bedrosian's theorem [22], it is possible to establish a 

fundamental result for the Hilbert transform, i.e. in the case of a 

product transform, if the functions meet the following conditions: 

• the spectrum of 𝑓(𝑥) shows frequencies lower than those 

included in 𝑔(𝑥); 
• the spectrum of 𝑔(𝑥) shows frequencies higher than those 

included in 𝑓(𝑥); 
• the spectra of 𝑓(𝑥) and 𝑔(𝑥) are not overlapping at any point; 

 

then: 

 

𝐻[𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝑓(𝑥) ∙ 𝐻[𝑔(𝑥)] (3.7) 

 

where 𝑓(𝑥) and 𝑔(𝑥) are two generic complex functions of the 𝑥 

variable in 𝐿2(𝑅) [23,24]. The term 𝐻[𝑔(𝑥)] corresponds to the Hilbert 

transform of 𝑔(𝑥), which can be represented equivalently as follows:  

 

𝐻[𝑔(𝑥)] =
1

𝜋
𝑉. 𝑃.∫

𝑔(𝑦)

𝑥 − 𝑦
𝑑𝑦

 

𝑅

 (3.8) 

 

Demonstration 
The Bedrosian's identity can be proved through the following steps. 

Consider the Fourier transform of the product 𝑓(𝑥)𝑔(𝑥): 
 

𝐻[𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝐻 [
1

(2𝜋)2
∫ 𝑑𝑠∫ 𝐹(𝑠)𝐺(𝑡)𝑒𝑗(𝑠+𝑡)𝑥𝑑𝑡

+∞

−∞

+∞

−∞

] (3.9) 

 

using a well-known result of the Hilbert transform, i.e.  𝐻[𝑒𝑗𝑘𝑥] =

𝑗 𝑠𝑔𝑛(𝑘) 𝑒𝑗𝑘𝑥, the equation can be rewritten as follows: 
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𝐻[𝑓(𝑥) ∙ 𝑔(𝑥)] =
1

(2𝜋)2
∫ 𝑑𝑠∫ 𝐹(𝑠)𝐺(𝑡) ∙ jsgn(s + t) ∙ 𝑒𝑗(s+t)𝑥𝑑𝑡

+∞

−∞

+∞

−∞

 (3.10) 

 

Now, since the value of sgn(s + t) coincides globally with sgn(t) in the 

integration region (where the integrating 𝐹(𝑠)𝐺(𝑡) is non-zero), the 

above equation becomes: 

 

𝐻[𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝑓(𝑥) ∙
1

2𝜋
∫ 𝐺(𝑡) ∙ jsgn(t) ∙  𝑒𝑗t𝑥𝑑𝑡
+∞

−∞

 (3.11) 

 

The term that multiplies 𝑓(𝑥) is exactly the Hilbert transform of the 

function 𝑔(𝑥) in fact: 

 

𝐻[𝑔(𝑥)] =
1

2𝜋
∫ 𝐺(𝑡) ∙ H[ 𝑒𝑗t𝑥] 𝑑𝑡 =

1

2𝜋
∫ 𝐺(𝑡) ∙ jsgn(t) ∙  𝑒𝑗t𝑥𝑑𝑡
+∞

−∞

+∞

−∞

 (3.12) 

 

so, as it was intended to prove: 

 

𝐻[𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝑓(𝑥) ∙ 𝐻[𝑔(𝑥)] (3.13) 

 

The result found corresponds to the Hilbert transform of the product 

of a low-frequency 𝑓(𝑥) function and a high-frequency 𝑔(𝑥) function 

whose spectra are therefore not overlapping. The conditions described 

above are fundamental for the validity of the result of Bedrosian's 

theorem and therefore to obtain a correct formulation of the analytical 

signal. 

 

Some critical issues 
In order to clarify this aspect, an example available in the literature 

is reported, where, the signal, whose analytical representation is to be 

obtained, does not meet the conditions of Bedrosian's theorem. 

Consider then the signal 𝑥(𝑡): 
 

𝑥(𝑡) = sin(2𝜋𝑓𝑡) + sin(2𝜋2𝑓𝑡) (3.14) 

 

which can be represented equivalently, using prostapheresis 

formulas, as follows: 

 

𝑥(𝑡) = 2 sin (2𝜋
3

2
𝑓𝑡) cos (2𝜋

1

2
𝑓𝑡) = 𝐴(𝑡) ∙ cos (𝜗(𝑡)) (3.15) 

 

• 𝐴(𝑡) =  2 sin (2𝜋
3

2
𝑓𝑡) ; 
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• 𝜗(𝑡) =  2 sin (2𝜋
1

2
𝑓𝑡). 

 

As it is clearly visible from their expression, the amplitude 𝐴(𝑡) 
changes with a speed that is three times higher than that of the phase 

𝜗(𝑡). It is clear that the proposed signal does not comply with the 

conditions of Bedrosian's theorem. 

Consider the following terms: 

 

𝑦𝐵 = 𝐴(𝑡) ∙ 𝐻[cos(𝜗(𝑡))] =  2 sin (2𝜋
3

2
𝑓𝑡) sin (2𝜋

1

2
𝑓𝑡) 

𝑦𝐻 = 𝐻[𝐴(𝑡) ∙ cos(𝜗(𝑡))] =  𝐻 [2 sin (2𝜋
3

2
𝑓𝑡) cos (2𝜋

1

2
𝑓𝑡)] 

 

(3.16) 

 

• 𝑦𝐵 = quadrature signal at 𝑥(𝑡) calculated with the Bedrosian 

identity; 

• 𝑦𝐻 = quadrature signal at 𝑥(𝑡) calculated with Hilbert applied 

to the whole signal. 

 

 
Figure 3.1 Graphical representation of the two signals 

 

From Figure 3.1 it is directly clear that in this case the result obtained 
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with the Bedrosian identity does not apply, as the two quadrature 

signals differ [25]. 

In the case of inter-area oscillations, the function that typically 

describes the trend of the i-th mode is: 

 

𝐴𝑖 ∙ 𝑒
𝜎𝑖𝑡 ∙ cos (𝜔𝑡) (3.17) 

 

In this case compliance with the conditions of Bedrosian is ensured if 

the relationship  
𝝈

𝝎
≪ 𝟏. 

 

 

3.1.2 Methods of Eliminating the Gibbs Effect 
The Hilbert transform of a signal is characterized by the Gibbs effect 

(edge effect), because of the signal discontinuity [26]. The effect is 

manifested by visible discrepancies between the initial and final 

values of the original mono-component signals and those calculated by 

the proposed decomposition method, which uses H.T. The 𝑀𝑎𝑡𝑙𝑎𝑏® 

standard algorithm for calculating H.T. is not exempt from this, as can 

be clearly seen in Figure 3.2. 

 

 
Figure 3.2 Gibbs effect on 𝑀𝑎𝑡𝑙𝑎𝑏® standard algorithm 

 

In order to improve the result of the transform, the Hilbert-Boche 

method is proposed. 

 

Hilbert-Boche Method 
Boche's algorithm uses equations that originate from the Nyquist–

Shannon sampling theorem [27]. Given an analog signal 𝑦(𝑡) in 𝐿2(𝑅), 
of limited band and such that the sampling rate, Fs, is greater than 2 

times the maximum frequency, Fmax, of the signal,  𝐹𝑠 > 2𝐹𝑚𝑎𝑥 , 
(therefore belonging to the class  𝑊𝜋), sampled in n values 𝑦𝑖 at discrete 

and equispaced instants 𝑡𝑖, there will be a function 𝑔  ∈ 𝑊𝜋 such that: 
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𝑔(𝑡𝑖) = 𝑦𝑖 

𝑔 (𝑡) = ∑𝑏𝑘,𝑛 ∙
sin (𝜋(𝑡 − 𝑡𝑘))

𝜋(𝑡 − 𝑡𝑘)

𝑛

𝑘=1

 

𝑔𝑛 (𝑡𝑖) = ∑𝑏𝑘,𝑛 ∙
sin (𝜋(𝑡𝑖 − 𝑡𝑘))

𝜋(𝑡𝑖 − 𝑡𝑘)

𝑛

𝑘=1

 

(3.18) 

 
   

 

For the calculation of coefficients 𝑏𝑘,𝑛 it is enough to solve the following 

system of n linear equations: 

 

[

𝑔𝑛 (𝑡1)

⋮
𝑔𝑛 (𝑡𝑛)

] = [

𝑎11 … 𝑎1𝑛
⋮ 𝑎𝑖𝑘 ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

] 𝑥 [
𝑏1𝑛
⋮
𝑏𝑛𝑛

] (3.19) 

 

where the terms 𝑎𝑖𝑘 = 
sin (𝜋(𝑡𝑖−𝑡𝑘))

𝜋(𝑡𝑖−𝑡𝑘)
=  sinc (𝑡𝑖 − 𝑡𝑘). 

Thanks to the particular properties of the class 𝑊𝜋, the punctual 

convergence of the series 𝑔𝑛  is guaranteed. Once the coefficients 𝑏𝑘,𝑛 

have been determined, the H.T. of 𝑔𝑛(𝑡) is considered: 

 

𝐻{𝑔 }(𝑡) = ∑𝑏𝑘,𝑛 ∙
1 − cos (𝜋(𝑡 − 𝑡𝑘))

𝜋(𝑡 − 𝑡𝑘)

𝑛

𝑘=1

 (3.20) 

 

Since the coefficients 𝑏𝑘,𝑛 are already known, this equation gives the 

numerical approximation of the Hilbert transform. 

The great advantage of this method lies in the significant reduction of 

the Gibbs effect.  

Figure 3.3 shows the differences between the mono-component signals 

calculated using the 𝑀𝑎𝑡𝑙𝑎𝑏® standard H.T. and the Hilbert-Boche 

method. The original signal is characterized as follows: 

 

𝑦(𝑡) = 20𝑒−0.3𝑡 sin(𝜋𝑡) + 8𝑒−0.1𝑡 sin(𝜋𝑡)   

𝑤𝑖𝑡ℎ 𝑇𝑠 = 0.02 𝑠 𝑎𝑛𝑑 𝑇𝑎𝑐𝑞. = 10𝑠 
(3.21) 
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Figure 3.3 Hilbert-Boche method 

 

3.1.3 Method of Decomposition 

Decomposition theorem 

Statement 
In order to obtain the mono-component signals, each characterized by 

a single frequency, the following method is proposed. Let 𝑦(𝑡) be a 

generic real signal of the variable 𝑡 in 𝐿2(−∞,+∞), characterized by 

the sum of m signals whose frequencies are 𝑓1, 𝑓2, … , 𝑓𝑚 . Let 𝐹̂ (𝜔) be 

the Fourier transform of the 𝑦(𝑡) signal. This can be decomposed into 

m elementary signals 𝑦𝑖
𝑑(𝑡), whose Fourier spectrum 𝑌̂𝑖

𝑑
(𝜔) is 

equivalent to 𝐹̂ (𝜔) within the i-th interval and is zero elsewhere, as 

shown in Figure 3.4. 

 

 
Figure 3.4 Spectra of the signal components 

 

The m mutually exclusive intervals are defined through specific 

angular frequencies 𝜔𝑏𝑖 called bisector angular frequencies. In 
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particular, 𝜔𝑏𝑖 ∈ [𝜔𝑏1 , 𝜔𝑏𝑚−1] and will be calculated as an average of 

the frequencies of 2 signals, with contiguous interval. With this 

subdivision, each narrowband signal can be determined as follows: 

 

𝑦 
 (𝑡) =∑𝑦𝑖

𝑑(𝑡)

𝑚

𝑖=1

 

𝑦𝑖
𝑑(𝑡) = 𝑠𝑖

 (𝑡) − 𝑠𝑖−1
 (𝑡)  , … ,   𝑦𝑚

𝑑 (𝑡)

= 𝑦  (𝑡) − 𝑠𝑚−1
 (𝑡) 𝑤𝑖𝑡ℎ 𝑠0

 (𝑡) = 0 

(3.22) 

 

where each term 𝑠𝑖
 (𝑡) is calculated as: 

 

𝑠𝑖
 (𝑡) = sin(𝜔𝑏𝑖𝑡)𝐻[𝑦(𝑡) cos(𝜔𝑏𝑖𝑡)] − cos(𝜔𝑏𝑖𝑡)𝐻[𝑦(𝑡)cos (𝜔𝑏𝑖𝑡)] (3.23) 

 

Demonstration 
A generic signal 𝑦(𝑡) can be represented as the sum of two signals 

𝑠1
 (𝑡) and 𝑠1

 ̅̅ ̅(𝑡), whose Fourier transform 𝑠1
 ̂(𝜔) and 𝑠1̂(𝜔) cancels out 

for |𝜔| > 𝜔𝑏 and |𝜔| < 𝜔𝑏, respectively. 

 

{
 

 

 𝑠1
 ̂(𝜔) =

{
 

 
0, |𝜔| > 𝜔𝑏

𝐹̂ (𝜔)

2
, |𝜔| = 𝜔𝑏 

 𝐹̂ (𝜔), |𝜔| < 𝜔𝑏

 

{
 

 

 𝑠1̂(𝜔) =

{
 

 
0, |𝜔| < 𝜔𝑏

𝐹̂ (𝜔)

2
, |𝜔| = 𝜔𝑏 

 𝐹̂ (𝜔), |𝜔| > 𝜔𝑏

 

 

(3.24) 

 

The angular frequency 𝜔𝑏 is an arbitrary positive value, defined as the 

bisector angular frequency. This property together with Parseval's 

theorem in the Fourier transform, allows to establish that 𝑠1(𝑡) and 

𝑠1
 ̅̅ ̅(𝑡) are real functions in𝐿2(−∞,+∞): 

 

 

 

 



41 

 

∫ |𝑠1
 (𝑡)|2𝑑𝑡

+∞

−∞

= ∫ |𝑠1
 ̂(𝜔)|2𝑑𝜔

+∞

−∞

≤
1

2𝜋
∫ |𝐹̂ (𝜔)|

2
𝑑𝜔

+∞

−∞

= ∫ |𝑦  (𝑡)|2𝑑𝑡
+∞

−∞

< ∞ 

∫ |𝑠1
 ̅̅ ̅(𝑡)|2𝑑𝑡

+∞

−∞

= ∫ |𝑠1
̂ (𝜔)|

2
𝑑𝜔

+∞

−∞

≤
1

2𝜋
∫ |𝐹̂ (𝜔)|

2
𝑑𝜔

+∞

−∞

= ∫ |𝑦  (𝑡)|2𝑑𝑡
+∞

−∞

< ∞ 

 

(3.25) 

 

To prove the statement, consider the functions 𝑠𝑎
 (𝑡) = cos(𝜔𝑏𝑡) and 

𝑠𝑏
 (𝑡) = sin (𝜔𝑏𝑡) whose Fourier transform is non-zero within the same 

mutually exclusive intervals of 𝑠1(𝑡) and 𝑠1
 ̅̅ ̅(𝑡) (consider that they 

cancel for every frequency value except in |𝜔| = 𝜔𝑏) . The Hilbert 

transform of the product 𝑠𝑎
 (𝑡) ∙ 𝑦(𝑡) and 𝑠𝑏

 (𝑡) ∙ 𝑦(𝑡) becomes: 

 
𝐻[ 𝑠𝑎

 (𝑡) ∙ 𝑦(𝑡)] = 𝐻[ 𝑠𝑎
 (𝑡) ∙ 𝑠1

 (𝑡)] + 𝐻[ 𝑠𝑎
 (𝑡) ∙ 𝑠1

 ̅̅ ̅(𝑡)] 

𝐻[ 𝑠𝑏
 (𝑡) ∙ 𝑦(𝑡)] = 𝐻[ 𝑠𝑏

 (𝑡) ∙ 𝑠1
 (𝑡)] + 𝐻[ 𝑠𝑏

 (𝑡) ∙ 𝑠1
 ̅̅ ̅(𝑡)] 

(3.26) 

 

Using the Bedrosian identity, which states that the product of a low-

frequency signal 𝑠𝑙𝑓
 (𝑡) and a high-frequency signal 𝑠ℎ𝑓

 (𝑡) with a non-

overlapping spectrum is given by:  
 

𝐻[𝑠𝑙𝑓
 (𝑡) ∙ 𝑠ℎ𝑓

 (𝑡)] = 𝑠𝑙𝑓
 (𝑡) ∙ 𝐻[𝑠ℎ𝑓

 (𝑡)] (3.27) 

 

Therefore 

 
𝐻[ 𝑠𝑎

 (𝑡) ∙ 𝑦(𝑡)] = 𝑠1
 (𝑡) ∙ 𝐻[ 𝑠𝑎

 (𝑡)] + 𝑠𝑎
 (𝑡) ∙ 𝐻[ 𝑠1

 ̅̅ ̅(𝑡)] 

𝐻[ 𝑠𝑏
 (𝑡) ∙ 𝑦(𝑡)] = 𝑠1

 (𝑡) ∙ 𝐻[ 𝑠𝑏
 (𝑡)] + 𝑠𝑏

 (𝑡) ∙ 𝐻[ 𝑠1
 ̅̅ ̅(𝑡)] 

(3.28) 

 

These two equations represent a system of two equations in two 

unknowns 𝑠1
 (𝑡) and 𝐻[ 𝑠1

 ̅̅ ̅(𝑡)], calculable thanks to the following 

relations: 
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𝑠1
 (𝑡) =

𝑠𝑏
 (𝑡) ∙ 𝐻[ 𝑠𝑎

 (𝑡) ∙ 𝑦(𝑡)] − 𝑠𝑎
 (𝑡) ∙ 𝐻[  𝑠𝑏

 (𝑡) ∙ 𝑦(𝑡)]

𝑠𝑏
 (𝑡) ∙ 𝐻[ 𝑠𝑎

 (𝑡)] − 𝑠𝑎
 (𝑡) ∙ 𝐻[𝑠𝑏

 (𝑡)]
 

𝐻[ 𝑠1
 ̅̅ ̅(𝑡)] =

𝐻[ 𝑠𝑎
 (𝑡)] ∙ 𝐻[ 𝑠𝑏

 (𝑡) ∙ 𝑦(𝑡)] − 𝐻[ 𝑠𝑏
 (𝑡)] ∙ 𝐻[  𝑠𝑎

 (𝑡) ∙ 𝑦(𝑡)]

𝑠𝑏
 (𝑡) ∙ 𝐻[ 𝑠𝑎

 (𝑡)] − 𝑠𝑎
 (𝑡) ∙ 𝐻[𝑠𝑏

 (𝑡)]
 

(3.29) 

 

Since: 

 
𝑠𝑏
 (𝑡) ∙ 𝐻[ 𝑠𝑎

 (𝑡)] − 𝑠𝑎
 (𝑡) ∙ 𝐻[𝑠𝑏

 (𝑡)] = 1 

𝐻[ 𝑠𝑎
 (𝑡)] = sin(𝜔𝑏 𝑡) 

𝐻[ 𝑠𝑏
 (𝑡)] = −cos(𝜔𝑏 𝑡) 

(3.30) 

 

The above equations can be rewritten as: 

 
𝑠1
 (𝑡) = sin(𝜔𝑏 𝑡) ∙ 𝐻[ 𝑦(𝑡) ∙ cos(𝜔𝑏 𝑡)] −  cos(𝜔𝑏 𝑡) ∙ 𝐻[𝑦(𝑡) ∙ sin(𝜔𝑏 𝑡)] 

𝐻[ 𝑠1
 ̅̅ ̅(𝑡)] = sin(𝜔𝑏 𝑡) ∙ 𝐻[𝑦(𝑡) ∙ sin(𝜔𝑏 𝑡)] + cos(𝜔𝑏 𝑡) ∙ 𝐻[𝑦(𝑡) ∙ cos(𝜔𝑏 𝑡)] 

(3.31) 

 

The terms 𝑠1
 ̅̅ ̅(𝑡) and 𝐻[𝑠1

 (𝑡)] can be directly obtained from the 

following relations: 

 
𝑠1
 ̅̅ ̅(𝑡) = 𝑦(𝑡) − 𝑠1

 (𝑡) 

𝐻[ 𝑠1
 (𝑡)] = 𝐻[ 𝑦 

 (𝑡)] − 𝐻[ 𝑠1
 ̅̅ ̅(𝑡)] 

(3.32) 

 

The decomposition now demonstrated for 𝜔𝑏  is generalizable, 

applying m-1 times the bisection process with respect to bisector 

angular frequencies 𝜔𝑏𝑖 ∈ [𝜔𝑏1 , 𝜔𝑏𝑚−1]. Therefore, the following 

relationships will apply: 

 
𝑦(𝑡) = 𝑠1

 (𝑡) − 𝑠1
 ̅̅ ̅(𝑡) = 𝑠2

 (𝑡) − 𝑠2
 ̅̅ ̅(𝑡) = ⋯ = 𝑠𝑚−1

 (𝑡) − 𝑠𝑚−1
 
(𝑡) 

𝑠𝑖
 (𝑡) = sin(𝜔𝑏𝑖𝑡)𝐻[𝑦(𝑡) cos(𝜔𝑏𝑖𝑡)] − cos(𝜔𝑏𝑖𝑡)𝐻[𝑦(𝑡)cos (𝜔𝑏𝑖𝑡)] 

𝑦𝑖
𝑑(𝑡) = 𝑠𝑖

 (𝑡) − 𝑠𝑖−1
 (𝑡)  , … ,   𝑦𝑚

𝑑 (𝑡) = 𝑦  (𝑡) − 𝑠𝑚−1
 (𝑡) 

𝑤𝑖𝑡ℎ   𝑠0
 (𝑡) = 0   𝑤𝑖𝑡ℎ 𝑖 = 1,2, … ,𝑚 − 1 

(3.33) 

 

Identification of bisector frequencies 
In order to obtain the signals 𝑦𝑖

𝑑(𝑡)  to which only one frequency is 

associated, that is, the single-component signals, the decomposition 

method seen in the previous paragraph is used [28]. However, it 

remains to be established the method by which to obtain the value of 

bisector angular frequencies, calculated as an average of the 

frequencies of mono-component signals. To achieve this, the signal 
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analysis methodologies typically used are:  
• 𝐿𝑝  – norm Periodogram; 

• Discrete Fourier Transform (DFT). 

 

Both methodologies are able to identify the frequencies of the mono-

component signals even if they are very close to each other on the 

frequency axis. 

 

𝑳𝒑  – norm Periodogram 

Direct extension of the Laplace periodogram (p=1) and the ordinary 

periodogram (p=2), the periodogram 𝐿𝑝  is defined as follows: 

 

𝑃(𝜔) =
1

𝑛
|∑𝑦𝑡 ∙ 𝑒

−𝑗𝑡𝜔

𝑛

𝑡=1

|

𝑝

   𝑤𝑖𝑡ℎ    𝑝 ∈ {1 , 2} 

𝑃(𝜔) =
𝑛

4
‖𝛽𝑛(𝜔)‖

2 

𝛽𝑛(𝜔) = 𝑎𝑟𝑔 min
𝛽∈𝑅2

∑|𝑦𝑡 − 𝑐𝑡
𝑇(𝜔)𝛽 |

𝑝

𝑛

𝑡=1

 

(3.34) 

 

It basically consists in minimizing the norm by the method of least 

squares, through the trigonometric regressor 𝑐𝑡 = [cos(𝜔𝑡) , sin(𝜔𝑡)]
𝑇. 

Once calculated 𝛽𝑛(𝜔) containing the coefficients representative of the 

amplitude of the cosine and sine component as 𝜔 varies, it is possible 

to obtain the graphic representation of the periodogram. The 

recommended choice of p in the literature is p=1.5. It turns out to be 

an excellent compromise between the robustness to noise of the 

Laplace periodogram (p=1) and the efficiency against spectral 

dispersion of the ordinary periodogram (p=2). 

 

Discrete Fourier Transform 
Discrete Fourier Transform (DFT) is a particular type of Fourier 

transform. Unlike the continuous Fourier transform, the DFT 

requires at input a discrete function whose values are generally 

complex and have a limited duration. For an acquired signal of N 

points: 

 

𝑉𝑘 = ∑ 𝑣𝑛𝑒
−𝑗(

2𝜋
𝑁
)𝑘𝑛

𝑁−1

𝑛=0

   𝑤𝑖𝑡ℎ    𝑘 = 0,1, …  , 𝑁 − 1 (3.35) 

 

At the base of these uses there is the possibility of efficiently 

calculating the DFT using the algorithms for the Fast Fourier 
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Transform (FFT). 

The signal 𝑣𝑛 is obtained from a discrete (unfinished) signal 𝑥𝑛 

through multiplication by a rectangular window. Thanks to the 

Fourier transform, the ordinary product becomes a convolution 

product: 

 
𝑣𝑛 = 𝑤𝑛 ∙ 𝑥𝑛 

V(𝜔) =
1

2𝜋
∫ X(𝜔) ∙ W(𝜔 − 𝜃)𝑑𝜃
+𝜋

−𝜋

 

{ 𝑤𝑛
𝑅𝑒𝑡𝑡 = {

1,   0 ≤ 𝑛 < 𝑁
 

 0,   0 > 𝑛 ≥ 𝑁
 

(3.36) 

 

There are different types of windows that can be used in the DFT, each 

with different characteristics but with the common intent to solve two 

fundamental problems: 

• Scallop Loss; 

• Spectral Leakage. 

 

The goal is to accurately identify the bisector angular frequencies and 

to do so it is necessary to identify, through a maximum-finding 

algorithm, the frequency values to which the local maxima of |V(𝜔)| 
are associated. For this purpose, the classic rectangular window will 

be used (Figure 3.5). The rectangular window, unlike other types of 

window, ensures the lower width of the main lobe, which translates 

into greater precision of frequency estimation; it also offers the 

greatest robustness against noise. Since in the specific case of inter-

area oscillations we cannot guarantee synchronous sampling 

conditions (being non-periodic phenomena and not knowing their 

period) it is not possible to eliminate the so-called "sidelobes". 

Compared to the other windows, the rectangular window loses in 

terms of spectral leakage (related to sidelobes), but the error on the 

estimation of the frequency is poorly affected, instead it is particularly 

affected by the problem of scallop loss (linked to the amplitude of the 

main lobe). 
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Figure 3.5 Rectangular window 

 

3.1.4 Parameter Estimation 

N.L.S. Classic Approach 
Downstream of the separation of the signal in its components 𝑦𝑖

𝑑(𝑡) 
provided by the PMU, it is necessary to estimate the parameters of the 

electromechanical oscillations. For this purpose, a non-linear 

quadratic minimization method, named Non-linear Least Squares 

(N.L.S.) is used [29]. Minimization occurs after taking as a basic form 

of regression: 

 

𝑦𝑖
𝑑(𝑡) ≅ 𝐴𝑖𝑒

𝜎𝑖𝑡𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜑𝑖) (3.37) 

 

• 𝐴𝑖= amplitude of the i-th oscillation; 

• 𝜎𝑖= damping of the i-th oscillation; 

• 𝜔𝑖= angular frequency of the i-th oscillation; 

• 𝜑𝑖= phase of the i-th oscillation. 

 

The terms described above represent the unknowns of the 

minimization problem. The type of N.L.S. approach considered is the 

Variable Projection method (Var.Pro). 

Var.Pro 
The starting point of the proposed regression method is the 

reformulation of 𝑦𝑖
𝑑(𝑡) in the form: 

 

𝑦𝑖
𝑑(𝑡) = 𝐴𝑖𝑒

𝜎𝑖𝑡𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜑𝑖) = 

= 𝐴𝑖𝑒
𝜎𝑖𝑡 sin(2𝜋𝑓𝑖𝑡) cos(𝜑𝑖) + 𝐴𝑖𝑒

𝜎𝑖𝑡 cos(2𝜋𝑓𝑖𝑡) sin(𝜑𝑖) = 

= 𝐶1𝑖𝑒
𝜎𝑖𝑡 sin(2𝜋𝑓𝑖𝑡) + 𝐶2𝑖𝑒

𝜎𝑖𝑡cos (2𝜋𝑓𝑖𝑡) 

(3.38) 
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The peculiarity of the Var.Pro method is to carry out the nonlinear 

regression only with respect to the parameters 𝜎𝑖 and 𝑓𝑖, the remaining 

parameters 𝐶1𝑖 and 𝐶2𝑖 are estimated through a linear regression, 

without any need for initial estimates. 

The structure of the objective function is as follows: 

 

𝐿𝑖(𝛼𝑖, 𝛽𝑖) =∑[𝑦𝑖
𝑑(𝑡𝑗) − 𝜃𝑖(𝛽𝑖, 𝑡𝑗)𝛼𝑖]

2
ℎ

𝑗=1

= 

= [𝑦𝑖
𝑑 − 𝜃𝑖(𝛽𝑖)𝛼𝑖]

𝑇 ∙ [𝑦𝑖
𝑑 − 𝜃𝑖(𝛽𝑖)𝛼𝑖]

 = 

= ‖[𝑦𝑖
𝑑 − 𝜃𝑖(𝛽𝑖)𝛼𝑖]

 ‖
2
 

(3.39) 

 

• 𝛼𝑖 = [𝐶1𝑖 𝐶2𝑖] vector of linear parameters; 

• 𝛽𝑖 = [𝜎𝑖, 𝑓𝑖] vector of nonlinear parameters; 

• 𝜃𝑖 = 𝜃𝑖 (𝛽𝑖, 𝑡𝑗) non-linear regressor; 

• ℎ number of samples. 

 

Minimization can then be reformulated as: 

 

𝐿𝑖 (𝛼𝑖⏞ , 𝛽𝑖⏞) = min
𝛽𝑖
{‖min

𝛼𝑖
{𝑦𝑖

𝑑 − 𝜃𝑖(𝛽𝑖)𝛼𝑖}
 ‖
2

} (3.40) 

 

It is easy to see that if the value of 𝛽𝑖 is fixed, the internal 

minimization becomes a linear regression problem. It follows that the 

minimum of linear parameters is: 

 

𝛼𝑖⏞ (𝛽𝑖) = 𝜃𝑖
+(𝛽𝑖)𝑦𝑖

𝑑 (3.41) 

 

where 𝜃𝑖
+ is the pseudo-inverse matrix of 𝜃𝑖(𝛽𝑖). 

Substituting the result obtained in the objective function we get: 

 

𝐿𝑖 (𝛼𝑖⏞ , 𝛽𝑖⏞) = min
𝛽𝑖
{‖min

𝛼𝑖
{𝑦𝑖

𝑑 − 𝜃𝑖(𝛽𝑖) ∙ 𝜃𝑖
+(𝛽𝑖)𝑦𝑖

𝑑}
 
‖
2

} (3.42) 

 

The minimization is now function only by the parameter 𝛽𝑖, calculable 

through an iterative process, allowing then to derive the value of 

 

𝛼𝑖⏞ (𝛽𝑖) = 𝜃𝑖
+(𝛽𝑖)𝑦𝑖

𝑑 (3.43) 

 

Finally, to trace the value of 𝐴𝑖 and 𝜑𝑖 it will be sufficient to apply the 

following relations: 
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𝐴𝑖 = √𝐶1𝑖
2 + 𝐶2𝑖 

2  

𝜑𝑖 = 𝑡𝑔
−1 (

𝐶2𝑖
𝐶1𝑖
) 

(3.44) 

 

3.2 Kalman Filter 
An important mathematical tool able to extrapolate the 

characteristics of interest of the signals, starting from the 

measurements obtained through the PMU, is the Kalman Filter (KF) 

[30]. 

The KF is essentially a predictive-corrective estimator made through 

a set of mathematical equations. The concept of optimum generally 

associated with this tool is related to its ability to minimize the 

covariance matrix associated with the state vector, the estimation of 

which is the objective of the analysis conducted. The term filter is 

associated with the estimator's ability to operate even in noisy 

conditions, i.e. with measurements affected by noise. 

The Discrete Kalman Filter (DKF) solves the universal problem of 

estimating the state 𝑥 ∈ 𝑅𝑛 of a discrete-time linear dynamical system 

characterized by the difference equation: 

 

𝑥𝑘 = 𝐴 𝑥𝑘−1 + 𝐵 𝑢𝑘 +𝑤𝑘−1 (3.45) 

 

with the measure 𝑧𝑘 ∈ 𝑅
𝑚  linked to the state by the relationship:  

 

𝑧𝑘 = 𝐻 𝑥𝑘 + 𝑣𝑘 (3.46) 

 

The random terms 𝑤 and 𝑣 represent process and measurement noise, 

respectively. It is assumed that they are unrelated, white and 

characterized by a zero-centered normal probability distribution 

function: 

 

𝑝(𝑤)~𝑁(0, 𝑄) 

𝑝(𝑣)~𝑁(0, 𝑅) 
(3.47) 

 

The process noise (𝑄) and measurement (𝑅) covariance matrices may 

vary at each step, but for simplicity it is assumed that they are 

constant. 

The KF thus behaves as a control system with output feedback, i.e., 

for each instant of sampling, the prediction (or first estimation) of the 

state is then readily corrected due to the feedback provided by the 

measured sample, thus obtaining a later estimate. 
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The equations that make up the Kalman filter are then divided into 

two groups: 

• predictive (or time update) 

• corrective (or measure update) 

 

The first are then responsible for projecting the state vector and 

covariance matrix forward in time; the second implement a correction 

of the predicted parameters through knowledge of the measured 

sample [31]. 

• A simplified diagram of the recursive action of the Kalman 

Filter is shown in Figure 3.6. Where: 

• 𝑥𝑘
−
 is the prediction of the state at the k-th step 

•  𝑃𝑘
− is the prediction of the covariance matrix at the k-th step 

• 𝐾𝑘  is the gain of the filter at the k-th step 

•  𝑥𝑘 is the estimated state at the k-th step 

•  𝑃𝑘 is the matrix of covariances estimated at the k-th step. 

 

 
Figure 3.6 Simplified Kalman Filter scheme 

 

3.2.1 Extended Kalman Filter 
The DKF introduced above solves the problem of estimating the state 

of discrete-time processes described by a linear difference equation. 

However, most of the problems for which an estimate of the state 

vector is required are characterized by the nonlinearity of the 

equations of state and measurement: 
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𝑥𝑘 = 𝑓( 𝑥𝑘−1,  𝑢𝑘 ,  𝑤𝑘−1) 

𝑧𝑘 = ℎ( 𝑥𝑘  ,  𝑣𝑘) 
(3.48) 

 

The Kalman filter that linearizes the functions 𝑓 and ℎ around the 

expected value of the state vector and its covariance matrix is called 

the Extended Kalman Filter (EKF) [32]. 

It is important to note that the main defect of the EKF, resulting from 

the model linearization, is the alteration of the probability distribution 

of the random variable to be measured. Another consideration of 

fundamental importance is the voluntary omission of random process 

and measurement noises during the prediction phase: 

 

𝑥̃𝑘 = 𝑓( 𝑥𝑘−1,  𝑢𝑘 , 0) 

𝑧̃𝑘 = ℎ( 𝑥𝑘  , 0) 
(3.49) 

 

The linearized model on which the EKF is based is: 

 

 𝑥𝑘 = 𝑥̃𝑘 + 𝐴 (𝑥𝑘−1 − 𝑥𝑘−1) +𝑊𝑤𝑘−1 

𝑧𝑘 = 𝑧̃𝑘 +𝐻( 𝑥𝑘 − 𝑥̃𝑘) + 𝑉𝑣𝑘−1 
(3.50) 

 

Where: 

• 𝑥𝑘 and 𝑧𝑘 are the state and measure values; 

• 𝑥̃𝑘 and 𝑧̃𝑘 are the approximate values of state and measure 

around which linearization occurs; 

• 𝑥𝑘  is the later estimate of the state; 

• 𝑤𝑘 and are the process and measurement noises𝑣𝑘; 

• 𝐴 is the Jacobian matrix obtained from the partial derivatives 

of 𝑓 with respect to the state x and calculated at the point 

(𝑥𝑘−1, 𝑢𝑘 , 0); 
• 𝑊 is the Jacobian matrix obtained from the partial derivatives 

of 𝑓 with respect to noise w and calculated at the point 

(𝑥𝑘−1, 𝑢𝑘 , 0); 
• 𝐻 is the Jacobian matrix obtained from the partial derivatives 

of ℎ with respect to the state x  and calculated at the point 

(𝑥̃𝑘 , 0); 
• 𝑉 is the Jacobian matrix obtained from the partial derivatives 

of ℎ with respect to noise v and calculated at the point (𝑥̃𝑘 , 0). 
 

It should be noted that the matrices A, H, W, V can vary at each step 

k, although these are not marked with the subscript k [33]. 

Like the DKF, the EKF also has two sets of equations well represented 

in Figure 3.7. 
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Figure 3.7 Simplified Extended Kalman Filter scheme 

 

3.2.2 Unscented Kalman Filter 
The EKF is probably the most widely used estimator for nonlinear 

systems. Nevertheless, over the years it has been observed a difficulty 

of calibration and a lower reliability for applications on systems not 

sufficiently linear in the 𝛥𝑡 range of sampling. In order to overcome 

these limitations, the Unscented Transform was developed, which 

allows the propagation of information on media and covariance 

through a nonlinear transformation [34]. Such a transformation is 

more accurate, easier to implement (does not require Jacobian 

calculation) and computationally heavy as EKF [35]. 

The Unscented Transformation is based on the idea that "it is easier 

to approximate a probability distribution function than to 

approximate a nonlinear function or transformation". The strategy 

pursued is shown in Figure 3.8. 

 

 
Figure 3.8 Unscented Transformation 
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A set of points, called sigma points, is chosen, known average 𝑥̅ and 

covariance 𝑃𝑥 of the input probability distribution function, so that its 

mean and covariance coincide with the latter. A group of sigma points 

S consists of a set of n state vectors and their weights: 

 

𝑆 = {𝑖 = 0, 1,… , 𝑝 ∶  𝑋(𝑖),𝑊(𝑖)} (3.51) 

 

The 𝑊(𝑖) weights can be both positive and negative but, in order to 

guarantee an estimate free from conditioning, the relationship must 

be respected: 

 

∑𝑊(𝑖)

𝑝

𝑖=0

= 1 (3.52) 

 

Assigned S, the output of the system is obtained as follows. 

1) Transformation of sigma points: 

 

𝑌(𝑖) = ℎ(𝑋(𝑖)) (3.53) 

 

2) Output prediction: 

 

𝑦̅ =∑𝑊(𝑖)

𝑝

𝑖=0

𝑌(𝑖) (3.54) 

 

3) Calculation of the output covariance: 

 

𝑃𝑦 =∑𝑊(𝑖)

𝑝

𝑖=0

 (𝑦̅ − 𝑌(𝑖)) (𝑦̅ − 𝑌(𝑖))
𝑇
 (3.55) 

 

In most cases, a number of sigma points 𝑝 equal to 2𝑁𝑥 + 1, is chosen, 

having indicated with 𝑁𝑥 the size of the state vector. The distribution 

of sigma points can be obtained from the following relations: 

 

 

 

 

 

 

 

 



52 

 

𝑋(0) = 𝑥̅ 

𝑊(0) = 𝑊(0) 

𝑋(𝑖) = 𝑥̅ + (√
𝑁𝑥  𝑃𝑥

1 −𝑊(0)
)

𝑖

 

𝑊(𝑖) =
1 −𝑊(0)

2𝑁𝑥
 

𝑋(𝑖+𝑁𝑥) = 𝑥̅ − (√
𝑁𝑥  𝑃𝑥

1 −𝑊(0)
)

𝑖

 

𝑊(𝑖+𝑁𝑥) =
1 −𝑊(0)

2𝑁𝑥
 

 

(3.56) 

 

Where the term (√
𝑁𝑥 𝑃𝑥

1−𝑊(0))
𝑖

 represents the i-th row/column of the 

matrix expressed in round brackets.1 

The only degree of freedom available in such a system of equations is 

the weight 𝑊(0) associated with the sigma point coinciding with the 

expected value of the imposed distribution. 

The choice of 𝑊(0) affects the position of the other points with respect 

to the point 𝑥̅: 

• If 𝑊(0) > 0 the dots tend to move away from the origin 𝑥̅; 

• If 𝑊(0) ≤ 0 the dots tend to approach the origin 𝑥̅. 
 

The set of UKF equations is summarized below. 

 

Prediction 
• Calculation of Sigma Points and their weights: 

 

𝑆 = {𝑖 = 0, 1,… , 𝑝 ∶  𝑋(𝑖),𝑊(𝑖)} (3.57) 

 

• Projection of sigma points: 

 

𝑋̂𝑎,𝑘 = 𝑓(𝑋𝑎,𝑘−1
(𝑖)

,  𝑢𝑘) (3.58) 

 

 
1 If the matrix A square root of P is in the form 𝑃 = 𝐴𝐴𝑇 then the sigma points 

are obtained from the lines of A. Otherwise, if 𝑃 = 𝐴𝑇𝐴, columns are used. 
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• Prediction of the state vector: 

 

𝑥𝑎,𝑘
− =∑𝑊(𝑖)

𝑝

𝑖=0

𝑋𝑎,𝑘
(𝑖)

 (3.59) 

 

• Projection of the covariance matrix: 

 

𝑃𝑎,𝑘
− =∑𝑊(𝑖)

𝑝

𝑖=0

(𝑋𝑎,𝑘
(𝑖)
− 𝑥𝑎,𝑘

− )(𝑋𝑎,𝑘
(𝑖)
− 𝑥𝑎,𝑘

− )𝑇 (3.60) 

 

• Transformation of sigma points: 

 

𝑌(𝑖) = ℎ (𝑋𝑎,𝑘
(𝑖)
, 𝑢𝑘) (3.61) 

 

• Output prediction: 

 

𝑦̂𝑘 =∑𝑊(𝑖)𝑌𝑘
(𝑖)

𝑝

𝑖=0

 (3.62) 

 

• Calculation of the output covariance: 

 

𝑃𝑦,𝑘 =∑𝑊(𝑖)

𝑝

𝑖=0

 (𝑦̂𝑘 − 𝑌𝑘
(𝑖)
) (𝑦̂𝑘 − 𝑌𝑘

(𝑖)
)
𝑇
 (3.63) 

 

• Calculation of the state-exit covariance matrix: 

 

𝑃𝑥𝑦,𝑘 =∑𝑊(𝑖)

𝑝

𝑖=0

 (𝑦̂𝑘 − 𝑌𝑘
(𝑖)
) (𝑥𝑘

− − 𝑋𝑘
(𝑖)
)
𝑇
 (3.64) 

 

Correction 
• Calculation of filter gain 

 

𝐾𝑘 = 𝑃𝑥𝑦,𝑘 𝑃𝑦,𝑘
−1 (3.65) 

 

• Updating the Status Vector 

 

𝑥𝑘 = 𝑥𝑎,𝑘
− + 𝐾𝑘 (𝑧𝑘 − 𝑦̂𝑘) (3.66) 
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• Reduced covariance matrix update (to state only) 

 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝑃𝑦,𝑘𝐾𝑘

𝑇 (3.67) 

 

3.3 Heuristic Approach 
A Heuristic Approach means a problem-solving process based on mere 

intuition and disregarding scientific rigor. 

In order to comply with the aforementioned requests, i.e. to estimate 

the modal parameters of the oscillations manifested on the electricity 

grid, the heuristic algorithms analyzed and tested are as follows: 

• Genetic Algorithm (GA); 

• Particle Swarm Optimization (PSO). 

 

3.3.1 Genetic Algorithm 
Genetic Algorithms (GA) are complex, adaptive procedures, aimed at 

solving research and optimization problems and conceptually based on 

the principles that regulate the natural evolution of species [36]. The 

idea behind the GAs is therefore to select the best solutions and to 

recombine them in some way with each other in such a way that they 

evolve towards a point of optimum. In the language of GA the function 

to be maximized is called fitness 𝐹. Suppose that the fitness function 

depends on 𝑛 variables: 

 

𝐹 =  𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) (3.68) 

 

A set of 𝑛 values 𝑥1, 𝑥2, … , 𝑥𝑛 belonging to a certain range is called 

individual (or solution). A set of individuals forms a population. A 

solution can be coded biunivocally in binary code. The specific 

sequence (string) of 0 and 1 that make up an individual (solution) is 

called chromosome. Considering that we are in the presence of a 

temporal evolution of the population, we speak of generation to 

indicate the population in a given instant of time. 

In nature, individuals reproduce by mixing in this way their genetic 

heritage, that is, their chromosomes: the new individuals generated 

will therefore have a genetic heritage derived partly from the father 

and partly from the mother. Natural selection (i.e. the reuse of good 

solutions) ensures that only the strongest, "most suitable" individuals 

are able to survive and therefore reproduce, that is, those with the 

highest fitness (closer to the optimum); the average fitness of the 

population will therefore tend to increase with the generations, thus 

leading the species to evolve over time. 
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GA Structure 
1) Defining the initial build 

Define (even at random) a first set of possible solutions to the 

considered problem. Each genome is identified by a string of bits. 

2) Evaluation of each solution and selection of the best 

Evaluate all possible solutions, associating each one with a quality (or 

fitness) indicator so that it can be ordered. 

3) Defining a New Generation 

Define a new group of solutions by appropriately modifying the 

solutions with high quality, so as to favor development at the expense 

of the worst ones.  

4) Conclusion of processing 

If the number of iterations established has been reached or the quality 

of the best available solution is acceptable (above a tolerance 

threshold) processing can be terminated, otherwise return to step 2 to 

define a new set of solutions. 

 

Selection 
The selection of an individual depends on his fitness value (i.e. how 

"good" the individual is at solving the problem): a higher fitness value 

corresponds to a greater chance of being chosen as parent to create the 

new generation. One of the most used criteria is that of Holland who 

attributes a probability of choice proportional to fitness. Thanks to the 

mechanism of selection, only the best individuals have the opportunity 

to reproduce and then pass on their genome to subsequent 

generations. 

 

Crossover and Mutation 
For the creation of new individuals at each generation, two operations 

inspired by biological evolutionism are used: crossover and mutation. 
Once a pair of parents with the selection mechanism has been 

identified, their genomes can undergo each of the two operations: 

• Crossover: given two strings, a point is identified that 

separates each of them into two parts; the head of the first 

string combines with the tail of the second and vice versa. 

• Mutation: inversion of one or more bits that make up the string 

(from 1 to 0 and vice versa). 

 

3.3.2 Particle Swarm Optimization 
The origin of this particular approach can be summarized by Figure 

3.9 [37]. It is not a graph or a formula, but a swarm of birds in flight 

that, moving according to a well-defined logic, is looking for a "global 

optimum", which could be translated into a safe place for winter or the 

food search [38]. 
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Figure 3.9 Flock of birds in motion (principle behind PSO) 

 

The characteristics of the flock, which can be of birds, ants or fish, are 

taken up in the fundamental concepts of Particle Swarm Optimization 

(PSO). 

The search for solutions to complex problems, such as the one treated 

in this work, is based on "particles" (individual elements of the flock) 

that moving in the solution space, seek a solution very close to the 

optimal one by exploiting two fundamental principles [39]: 

• Exploration: the particles explore the decisive space in search 

of what is the optimal solution; once they find the best position 

at that moment they keep memory of it, continuing their 

exploration. Only at the end of the exploration process will the 

particles return to what has been their "best place". 

• Exploitation: Particles exchange their knowledge to help each 

other find the best place to position themselves. 

 

It is now understandable how PSO can be defined as bio-inspired, that 

is, inspired by the world of biology. 

The population-based approach, on which the PSO is based, is 

characterized by individual elements (particles) that seek excellent 

solutions within a space [40]. The most interesting aspect of PSO is 

the interaction between particles, a kind of "dialogue" where each 

particle shares its results and at the same time constantly obtains 

information from the rest of the swarm. Precisely the interaction 

between these particles produces a result close to optimal, as 

individually they are not able to deal with the problem. To better 

facilitate the search for solutions in the eligible region, it is correct to 

assume that the particles should not be placed in a single point, as 

they would risk producing results that are too similar to each other, 

neglecting other unexplored areas with a certain probability. 

Therefore the initial placement of the particles occurs randomly in the 

space of solutions, called 𝐷. Each individual particle 𝑖 is characterized 

in iteration 𝑡 by:  

• a position 𝑥𝑖
𝑡 ∈ 𝑅𝑛; 
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• speed 𝑣𝑖
𝑡, at which the particle explores the space of solutions; 

• a fitness function (𝑓: 𝑆 → 𝑅 𝑤𝑖𝑡ℎ 𝑆 ⊆ 𝑅𝑛) that represents a quality 
index associated with the particle; 

• 𝑝𝑖
𝑡   represents the memory of the particles, that is, the best position 

assumed until the instant 𝑡 (personal best) by the i-th individual. 

 

In addition to the 𝑝𝑖
𝑡, representing a local optimum, at the moment 𝑡 

is defined the best position assumed, up to that moment, by the entire 

group of particles 𝑔𝑡 (global best). This parameter, unlike the personal 

best, therefore arises from the communication between the different 

units that make up the swarm, and therefore represents the position 

of absolute optimum at the generic instant 𝑡. 
The initial position will therefore be the vector (𝑥𝑖

0, 𝑣𝑖
0) with a certain 

fitness function (which can at most inform about its good initial 

positioning), while in 𝑝𝑖
𝑡 the fitness function it will be 𝑝𝑏𝑒𝑠𝑡,𝑖

𝑡 = 𝑓(𝑝𝑖
𝑡). 

Finally, the vector (𝑔𝑡) that represents the best position of the entire 

group of particles is associated with a fitness function 𝑔𝑏𝑒𝑠𝑡
𝑡 = 𝑓(𝑔𝑡). 

 

PSO Structure 
The classic algorithm [41] is executed by iterating the following steps: 

1) Random initialization of the particle population in terms of 

location and velocity. 

2) Evaluation of the fitness function associated with each particle. 

3) Compare the fitness function (step 2), with the function 𝑝𝑏𝑒𝑠𝑡
𝑡 . If the 

current value is better than 𝑝𝑏𝑒𝑠𝑡
𝑡  , arises 𝑝𝑖

𝑡+1 = 𝑥𝑖
𝑡. 

4) Identify the particle that has achieved the best fitness function, 
that is, the best position𝑔𝑡, and fix 𝑔𝑏𝑒𝑠𝑡

𝑡 = 𝑓(𝑔𝑡). 

5) Update of position and speed according to the equations:2 

 

𝑣𝑖
𝑡+1 = 𝑤𝑡𝑣𝑖

𝑡 + 𝑐1𝑈1
𝑡⨂(𝑝𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐2𝑈2

𝑡⨂(𝑔𝑡 − 𝑥𝑖
𝑡) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

(3.69) 

 

Where: 

• 𝑤𝑡 is the inertia of the particle to stabilize its velocity (0 <
w < 1.1); 

• 𝑐1(𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡) 𝑎𝑛𝑑 𝑐2(𝑠𝑜𝑐𝑖𝑎𝑙 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡)  
are two positive constants imposed in the programming 

phase and particularly incidents on the performance of the 

algorithm; 

• 𝑈1
𝑡 𝑒 𝑈2

𝑡 are two independently generated vectors for each 

particle, of similar size to 𝑥𝑖
𝑡 and composed of elements 

 
2 The symbol ⨂ indicates the element-by-element multiplication between two 

matrices or vectors of similar dimensions. 
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obtained from a uniform distribution function defined in 

the range [0;1] .3 

6) If the stop condition is reached4, the cycle ends and a solution is 

obtained, otherwise return to step 2. 

Particular attention should be paid to the term 𝑤 (variant time). A 

larger inertia value produces a rapid increase in velocity and 

exploration over a larger region of state space. Conversely, a 

smaller value allows a smaller portion of space to be meticulously 

screened. In order for a "coarse" exploration of the state space to 

be allowed initially and, only subsequently, to proceed with a "fine" 

investigation on a reduced portion of space, a variant and 

decreasing time inertia must be provided at each iteration step 

[42]. Therefore, in order to guarantee this result, the only band 

belonging to 𝑤, i.e. the terms: 

• 𝑤0 initial value of inertia; 

• 𝑤𝑡𝑚𝑎𝑥  final value of inertia. 

 

The law by which inertia decreases linearly is:5 

 

𝑤𝑡 = (𝑤0 −𝑤𝑡𝑚𝑎𝑥)
(𝑡𝑚𝑎𝑥 − 𝑡)

𝑡𝑚𝑎𝑥
+𝑤𝑡𝑚𝑎𝑥 (3.70) 

 

3.4  Dynamic Mode Decomposition 
Dynamic Mode Decomposition (DMD), is an emerging data-driven 

technique used to obtain reduced linear models for complex systems of 

large dimensions, extracting from a data matrix, coherent spatio-

temporal structures that dominate the measurements of the dynamic 

system under consideration [43]. Originally introduced to the 

scientific community of fluid dynamics by Peter Schmid and later 

extended to generic nonlinear dynamical systems by Koopman's 

theory, the DMD algorithm is the subject of applications in different 

fields, such as neuroscience, video processing, robotics, finance, social 

media and more. Its adaptability is due to the fact of disregarding the 

equations that govern the system under consideration, if there is a 

huge availability of data, of measures of the system itself [44]. 

Consider a dynamic system that evolves over time, for example a 

signal or fluid distributed in a two-dimensional space that changes its 

 
3 These "random" terms allow to avoid stalling at local minimum points of the fitness 
function. 
4 Different shutdown conditions can be imposed: maximum number of iterations; maximum 
tolerance; maximum number of iterations for which the fitness function is below a 
threshold value. 
5 In literature are presented other methods that allow to obtain a reduction of inertia with 
each iteration. 
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shape over time. Suppose that the mathematical dynamic model 

describing its evolution over time is unknown. Proceed as 

schematically shown in Figure 3.10. 

 

 
Figure 3.10 Conceptual scheme of DMD algorithm 

 

1) Data collection: take snapshots of the system for each time interval 

(which is the sampling period ∆𝑡) and for each generic instant 𝑡 the 

spatial distribution of the system, the state of the system, is had. 

 

2) Data reorganization: The data is organized into two matrices. Each 

state of the system at the instant 𝑡𝑘 is reshaped as a column vector, 

and as time increases, after each ∆t, the subsequent columns of the 

matrix are filled. Imagining to sample up to the instant 𝑡𝑚, the 

first matrix 𝑋 will be formed by the samples for 𝑘 = (1,2,3,… ,𝑚 −
1), while the second matrix 𝑋′ will be identical to the first but 

translated by a later time interval with the samples for 𝑘 =
(2,3,4,… ,𝑚): 
 

𝑋 = (
| | |
𝒙1 𝒙𝟐 …
| | |

   
|

𝒙𝑚−1
|
 ); 𝑋′ = (

| | |
𝒙2 𝒙𝟐 …
| | |

   
|
𝒙𝑚
|
 ) (3.71) 

 

3) Application of DMD: DMD aims to estimate the best linear 

operator that can transform 𝑋 into 𝑋′. So, the basic hypothesis is 

to describe the system under consideration with a linear time-

invariant model, which has a matrix structure of the type: 

 

𝑋′ ≅ 𝐴𝑋 (3.72) 

 

That is, each element of the matrix 𝑋′ is bound to that of the matrix 

𝑋 by the following equation: 
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𝒙𝑘+1 = 𝐴(𝒙𝑘) (3.73) 

 

Consequently, the solution that best approximates matrix 𝐴 is 

given by: 

 

𝐴 = 𝑋′𝑋−1 (3.74) 

 

where 𝑋−1 representing the pseudo-inverse of X. This solution is 

capable of minimizing the error  ||𝑋′ − 𝐴𝐗||
𝟐
. 

 

Ultimately, the goal of the DMD algorithm is to derive eigenvectors 

and eigenvalues of the matrix 𝐴 to describe the mathematical model 

of the system, to predict its future state or possibly to control it. 

 

3.4.1 Singular Value Decomposition 
The 𝑋 and 𝑋′ data matrices usually have millions of elements in a 

column and/or row, they are characterized by a 'narrow and long' 

shape, having one of the two dimensions preponderant over the other. 

These are orders of magnitude that return an array A the size of 

𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑥 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. From a computational point of view, it therefore 

becomes extremely complex to have to calculate the operator 𝐴, and 

also useless since the important information is contained in a reduced 

part of the matrix. Before proceeding to step 3 then, a decomposition 

to singular values is made: Singular Value Decomposition (SVD). The 

goal is to bring 𝑋 and X' back to small matrices, of the order of 

thousands or hundreds of rows and/or columns, without losing 

information in terms of eigenvalues and eigenvectors [45]. 

Given a matrix X, real or complex, of dimension 𝑛 𝑥 𝑚 its 

decomposition to singular values is the representation of X as a 

product of three matrices, with particular characteristics: 

 

𝑋 = 𝑈Σ𝑉𝑇 

𝑋
(𝑛 𝑥 𝑚)

= [
| | |
𝑢1 . . 𝑢𝑛
| | |

] [
𝜎1 0 0
0 … 0
0 0 𝜎𝑚

] [
| | |
𝑣1 . . 𝑣𝑚
| | |

]

𝑇

(𝑛 𝑥 𝑛) (𝑛 𝑥 𝑚) (𝑚 𝑥 𝑚)

 
(3.75) 

 

These matrices enjoy the following properties: 

• U and V are unitary matrices.6 The column vectors of U are 

called left singular vectors, while those of 𝑉𝑇 are called right 

 
6 A unit matrix is a complex square matrix that satisfies the condition: 

 𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝐼, where I is the identity matrix. 
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singular vectors. 

• Every left singular vector is of the same shape as the column 

vector of X, but with the particularity that the vectors 𝑢 are 

eigenvalues arranged in hierarchical order. The vector 𝑢1 is in 

a sense more capable of describing the characteristics of the 

matrix X than the next vector 𝑢2. In addition, the U matrix is 

orthogonal and forms a basis.  

• 𝛴 is a diagonal matrix whose elements are called singular 

values of X. They are non-negative elements, and they are 

hierarchically ordered so that the amplitude decreases as the 

index increases. Is: 

 

𝜎1 ≥ 𝜎2 ≥. . ≥ 𝜎𝑚 ≥ 0 (3.76) 

 

• The vector 𝑣1 is a representation of how the mode 𝑢1 evolves 

over time. Each vector 𝑥 consists of a certain amount of the 

mode 𝑢1 but how this mode varies in the considered time 

interval is described by the vector 𝑣1. It is important to note, 

however, that the SVD considers the transpose of V that is thus 

generated: 

 

𝑉𝑇 = [
− 𝑣1

𝑇 −
− … −
− 𝑣𝑚

𝑇 −
] (3.77) 

 

The first column of 𝑉𝑇 is an expression of the composition of 

modes 𝑢𝑘 necessary to equal 𝑥1, the second column informs us 

of the mixture of ways 𝑢𝑘 necessary to describe 𝑥2, and so on. 

• It can be shown that the rank of the matrix 𝑋 is equal to that 

of the matrix Σ. In particular, it is observed that the rank of Σ 

is just equal to the number of non-zero singular values. 

 

These properties, in particular the consideration that the elements 

and vectors of the U, V and 𝛴 matrices are ordered hierarchically, leads 

us to the fundamental result that the first vector 𝑢, the first sigma 

element, and the first line 𝑣, will be more important than the 

subsequent ones in terms of describing the starting matrix X. It means 

that the information contained in the first elements is more 

descriptive of the matrix X, and they already manage to give us a good 

approximation of the matrix X itself, without having large dimensions 

in terms of rows and columns. Most often, significantly non-zero 

singular values are concentrated in a small submatrix of 𝛴, and then 

the other elements can be discarded without losing information. 
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3.4.2  Matrix Truncation 
The above considerations suggest that it is possible to reduce the X 

matrix to an approximation of it, but to understand quantitatively 

what it consists of and what term to stop at, we must focus our 

attention on the matrix 𝛴 and its rank. The rank of the 𝛴 matrix is 

shown to be equal to that of the starting matrix but since this matrix 

consists of singular values, gradually decreasing, it can be truncated 

to a lower rank, which can be arbitrarily chosen based on the number 

of information of interest. To better understand this concept, it is 

useful to propose an example described by Steven Brunton and 

Nathan Kutz in the book "Data-Driven Science and Engineering" [46]. 

By importing a photo into MATLAB, and applying the singular value 

decomposition, it is possible to visually notice how the approximate 

matrix is able to well represent the starting matrix and how 

convincing results are achieved even with a truncation of the relevant 

rank. In the example shown, a photo of a dog is considered, report it 

in black and white to make it a two-dimensional matrix, and apply its 

SVD on MATLAB using the simple command: 

[U,S,V] = svd(X)  (The matrix 𝛴 on MATLAB is denoted by letter S).  

The dimensions of the matrices considered are: 

 
𝑋

(2000 𝑥 1500)
=

𝑈 Σ 𝑉𝑇

(2000 𝑥 2000) (2000 𝑥 1500) (1500 𝑥 1500)
 (3.78) 

 

To understand what happens intuitively, it is useful to see a numerical 

example. First of all, the matrix 𝛴 is rectangular and diagonal, which 

means that outside the diagonal there are all null elements and that 

it can in the very first analysis always be reduced to its square shape 

by eliminating all excess zeros (in this case, 500 elements can be 

eliminated). In addition, the difference between the first two elements 

is remarkable, as Figure 3.11 shows: the first is an order of magnitude 

greater than the second. It is clear, therefore, that choosing a lower 

rank allows us to work with a few singular but preponderant values. 

 

 
Figure 3.11 Example of an SVD S matrix 



63 

 

To impose the rank of the matrix 𝑆 equal to 5 is to work with the 

following dimensions:  

 
𝑋

(2000 𝑥 1500)
≅

𝑈 Σ 𝑉𝑇

(2000 𝑥 5) (5 𝑥 5) (5 𝑥 1500)
 (3.79) 

 

Figure 3.12 compare four different cases, with variable and increasing 

rank: 

• Rank = 5. A satisfactory approximation is not reached even if a 

dog and its characteristic traits can be distinguished. 

• Rank = 20. All the main information and sufficient clarity of 

the image are obtained, but some details are still unclear. 

• Rank = 100. A more than satisfactory result is achieved. The 

image looks the same as the original. Note that rank equal to 

100 means having reduced the number of singular values taken 

into account by 15:1. 

• Rank = 500. Despite the increase in the singular values 

considered, there is no noticeable improvement compared to 

the previous case. Only by paying more attention, some 

differences can be noticed. 

 

 
Figure 3.12 Approximation of the image, as the rank considered changes 

 

Therefore, as an initial option, it is possible to choose an arbitrary and 

fixed number to be assigned to the rank of the sigma matrix, perhaps 

identified based on experimental evidence and through comparison of 

results. In this example, rank 100 can be chosen, which cuts the 

computational load sufficiently but is extremely like the input matrix. 

This is the static rank. If, on the other hand, a more precise statement 

is desired, the sum of all singular values can be considered and each 

element weighed in relation to the total, highlighting its contribution. 
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In the Figure 3.13 on the left are shown the orders of magnitude of 

each element constituting the diagonal, and the strong decrease is 

once again evident. On the right, however, the cumulative sum of the 

singular values is shown on a logarithmic scale, with respect to the 

total sum of the same. It can be seen that in this example about 90% 

of the energy is contained in the first 500 elements alone and how 

choosing rank = 100 means identifying about 70% of the energy. 

 

 
Figure 3.13 Evolution of singular values, and their cumulative sum on a 

logarithmic scale 

 

It is therefore not difficult to guess that the algorithm itself can be 

asked to stop as soon as a sufficient energy threshold is reached, and 

to identify the rank at that threshold accordingly. This condition can 

be imposed through a simple find command that identifies the index 

of the element that first reaches, for example, 70% of the energy. This 

command was applied to the previous example and the figures 

demonstrate the consistency between the results obtained graphically 

and numerically. In fact, in Figure 3.14 it is shown how, according to 

the MATLAB find command, 0.756 of the energy is associated with the 

index element 100 on the diagonal, while the first singular value that 

reaches 0.90 of the energy is that of index 336. Graphically these 

values are confirmed in Figure 3.15. This is the dynamic rank. 
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Figure 3.14 Index detection of the required energy threshold via MATLAB 

command 

 

 
Figure 3.15 Index detection of the required energy threshold via graph 
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3.4.3 Static Order and Dynamic Order 
Thanks to these considerations the DMD algorithm can be distinguish 

in two sub-cases: with static order or dynamic order. It is important to 

note the connection between the choice of the rank of the S-matrix of 

the SVD, and the choice of the order of the DMD algorithm. Reducing 

the sigma matrix to a matrix of 𝑛 elements, whether they are 

identified by the static or dynamic rank, benefits not only in 

computational terms but allows to focus attention on the most 

relevant modes of the studied system, and therefore gives important 

information on the number of modes that DMD detects. The dynamic 

rank of the SVD corresponds to a dynamic order of the DMD, just as 

the static rank corresponds to a static order [47]. 

• Static order: a fixed value is arbitrarily chosen to which to 

truncate the size of the matrix, which may be between 2 and 

the size of the matrix itself. This will correspond to the same 

number of ways. It is necessary to have an even number of 

complex conjugate eigenvalues in order to reconstruct the 

oscillatory dynamics typical of the signals we will examine; 

reason why, minimum rank equal to 2 will be imposed and a 

condition to always choose it even. Obviously, the smaller the 

order, the better and faster the algorithm will perform, but the 

more information will be lost. 

• Dynamic order: an energy threshold is chosen. With a condition 

on the cumulative sum, after reaching 90% of the energy, the 

matrix is chosen to be truncated and thus take that index as 

the order of the DMD. This leaves the algorithm with the task 

of identifying the preponderant modes that make up the 

system. 

 

3.4.4 Algorithm Structure 
To understand what is meant by ways of the system, and understand 

how they are found by the DMD algorithm, it is necessary to know the 

algorithm framework itself, or the mathematical steps that compose it 

[48]. Returning to its application, after the collection of data and their 

reorganization in the two input matrices 𝑋 and 𝑋′, the following steps 

are taken: 

1) Singular value decomposition of the input data array 𝑋: 

 

𝑋 ≈ 𝑈Σ𝑉∗ (3.80) 

 

In this step, it is necessary to choose which order to refer to, whether 

to the static or the dynamic one and consequently choose which rank 

to cut the SVD matrices. 

 

2) The matrix 𝐴 could be obtained by the pseudo-inverse of 𝑋 obtained 
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by SVD according to the formula: 
   

𝐴 = 𝑋′𝑉Σ−1𝑈∗ (3.81) 

 

At the computational level it is more efficient to work on the matrix 𝐴̃, 

obtainable through Proper Orthogonal Decomposition: 
 

𝐴̃ = 𝑈𝐴𝑈∗ = 𝑈∗𝑋′𝑉Σ−1 (3.82) 

 

The matrix 𝐴̃ define a small-size linear model of the dynamic system:  
 

𝒙̃𝑘+1 = 𝐴̃𝑥̃𝑘 (3.83) 

 

3) The spectral decomposition of the matrix 𝐴̃ is calculated: 

 

𝐴̃𝑊 = 𝑊Λ (3.84) 

 

In which the columns of W represent the eigenvectors and 𝚲 is a 

diagonal matrix that contains the corresponding eigenvalues 𝜆𝑘. 

 

4) Finally, it is possible to reconstruct the spectral decomposition of 

𝐴 starting from the knowledge of 𝑊 and Λ. In particular, the 

eigenvalues of 𝐴 are given by Λ, while the eigenvectors of 𝐴, defined 

 DMD modes, or the searched modes, are given by the columns of 
the matrix Φ, obtainable as: 

 

Φ = 𝑋′𝑉Σ−1𝑊 (3.85) 

 

Obtained eigenvectors and eigenvalues of the matrix 𝐴, it is now 

possible to reconstruct the entire dynamics of the system, for any 

future state. Reporting in continuous time the eigenvalues 

 

𝜔𝑘 =
ln(𝜆𝑘)

∆𝑡
 (3.86) 

 

the solution approximated to the generic instant 𝑘 is written as: 

 

𝒙(𝑡) ≈ ∑  𝜙𝑘𝑒
(𝜔𝑘𝑡)𝑏𝑘 = 𝚽e(𝛀𝑡)𝒃

𝑛

𝑘=1 

      (3.87) 

 

Where 𝑏𝑘 represents the initial amplitude of each mode, 𝚽 is the 
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matrix whose columns correspond to the eigenvectors 𝜙𝑘 obtained by 

DMD and Ω is the diagonal matrix of the eigenvalues 𝜔𝑘. As already 

discussed in the previous paragraph, it is possible to interpret the 

equation (3.87) as the best least squares approximation of the discrete-

time dynamic system: 

 

𝒙𝑘+1 = 𝐴(𝒙𝑘) (3.88) 

 

The matrix 𝐴 is reconstructed in such a way that at each sampling 

instant the error is minimized 

 

 ||𝒙𝑘+1 − 𝐴𝐱k||
𝟐
 (3.89) 

 

Finally, to derive the value of the coefficients 𝑏𝑘, the state vector 𝒙(0) 
must be considered at the initial instant 𝑡 = 0. From equation (3.87) it 

is derived that: 

 

𝒙(0) =  𝚽𝐛 (3.90) 

 

From the pseudoinverse of 𝚽, the coefficients 𝑏𝑘 can be derived: 

 

𝐛 = 𝚽†𝒙(0) (3.91) 

 

3.5 Tufts Kumaresan 
The Tufts-Kumaresan method was first proposed in 1982 as an 

extension of well-known Prony's analysis to noise-corrupted signals 

[49,50]. A feature of the method is the display of the estimated results 

and the ability to easily distinguish between the modes associated 

with the noise or the signal itself, with the discriminating factor of 

falling inside or outside the unit circle in Gaussian space. In this 

research, however, this peculiarity will not be considered because for 

the proposed application it is more useful to display the results in a 

different way. As mentioned above, the purpose of the method is to 

obtain the parameters that characterize a signal, that is the 

parameters of frequency, amplitude, damping and phase. In fact, an 

oscillatory signal can be described mathematically as a sum of several 

modes: 

 

𝑥(𝑡) =  ∑𝐴𝑖e
−σ𝑖t sin(2𝜋𝑓𝑖𝑡 − 𝜑𝑖)

𝑀

𝑖=1

 (3.92) 
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Where M is the number of modes that make up the signal, A, σ, f, 𝜙, 

are respectively the amplitude, damping, frequency and angle of the 

general mode i. 
To achieve the goal, the Tufts-Kumaresan technique uses backward 

linear prediction, that is, it estimates the samples of a signal with a 

linear function of its subsequent samples; and uses the SVD to cut 

noise in the mass of processed measurements [51,52]. To explain this, 

consider now having N samples of a signal, such as the frequency 

measurements provided by WAMS, taken at different moments of 

time, each ∆𝑡. The method hypothesis is that the signal is a sum of 

dampened exponentials, which are modes 𝑀𝑠, ideally equal to 𝑀. 

 

𝑦(𝑛) =  ∑ 𝑎𝑘𝑒
𝑠𝑘𝑛

𝑀𝑠

𝑘=1

       𝑛 = 1,… .𝑁 (3.93) 

 

The samples are arranged in this way to construct the Hankel matrix 

𝐴 and the vector ℎ, as follows:  

 

𝐴 = [

𝑦∗(1) 𝑦∗(2) . . 𝑦∗(𝐿)

𝑦∗(2)
. .

𝑦∗(𝑁 − 𝐿)

. . . . . .

. . . . . .

. . . . 𝑦∗(𝑁 − 1)

]  ℎ = [

𝑦∗(0)
𝑦∗(1)
. .

𝑦∗(𝑁 − 𝐿 − 1)

] (3.94) 

 

Where "*" indicates the complex conjugate values. N is the number of 

samples and L is a constant. 

The linear approximation is carried out by the linear function defined 

as the polynomial prediction-error filter with order L.  

 

𝐵(𝑧) = 1 + 𝑏(1)𝑧−1 +⋯ .+𝑏(𝐿)𝑧−𝐿 (3.95) 

 

It is possible to impose the following equation that clarifies the concept 

of backward prediction: 

 

𝐴𝑏 = −ℎ (3.96) 

 

where 𝑏 is the vector of the coefficients of the prediction-error filter. 

From this formula it is easy to determine the vector 𝑏 with the inverse 

matrix operation which, as has been shown, minimizes the quadratic 

norm. 

The method consists in finding the roots of the prediction-error filter; 

𝐵(𝑧) will have zeros at 𝑒−𝑠𝑘∗ ;  𝑘 = 1,2, . . . 𝐿. In the case of noise-free data 

and in the case of 𝐿 = 𝑀 these zeros would be exactly the complex 

conjugate values of 𝑠_𝑘, with a changed sign. From this it is easy to 
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determine the damping and frequency since 𝑠𝑘 = −𝜎𝑘 ± 𝑗2𝜋𝑓𝑘 the 

parameters are taken from the imaginary and real part. To determine, 

instead, the amplitude and the phase it is necessary to go back in the 

equation (3.93). Once the terms 𝑒𝑠𝑘𝑛 and the 𝑦(𝑛) are known, the only 

variables to be determined are the coefficients 𝑎𝑘. With the inverse 

equation it is therefore easy to estimate these values, whose absolute 

value and angle, will give the desired amplitude and phase. 

The crucial point of the algorithm is to identify the right value of the 

constant 𝐿 and here the SVD becomes relevant. Before calculating the 

vector 𝑏, the Hankel matrix 𝐴 is processed by means of an SVD 

decomposition [53]. The matrix 𝑆, containing the singular values, is a 

diagonal matrix whose elements are non-negative values, placed in 

descending order. The most significant information about the system 

is somewhat concentrated in the highest part of the 𝑆 matrix, so it is 

convenient to truncate the matrix to a lower rank that will be the order 

of the new Hankel matrix and the number of estimated modes. 

Operationally the steps are: starting from a hypothetical value of 𝐿, 

the first Hankel matrix is created; then the matrix is subjected to an 

SVD and then with the truncation of the matrix 𝑆 to an acceptable 

value, normally chosen as a threshold on an estimated standard 

deviation of noise, a new constant 𝑀𝑠, less than 𝐿, is estimated, which 

is replaced as the new dimension of the Hankel matrix. 

The discrimination between significant singular values and noisy 

components is obtained by calculating the average of the elements in 

the lower part of the matrix 𝑆, usually considering the elements whose 

index ranges from a percentage of 𝐿, called 𝐿1, to 𝐿 itself. In practice, 

it is possible to select the index of the first singular value greater than 

a threshold of this mean, such as a constant 𝑀𝑠, which is the number 

of modes that the algorithm intends to estimate. 

After this stage, the Hankel matrix is reshaped, and the calculation of 

the parameters is carried out as explained above. 
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Chapter  4 
 

4 Experimental Tests 
In this chapter, the algorithms described in Chapter 3 are tested on 

both simulated signals and real data provided by Terna. The use of 

the latter necessarily involves a pre-processing step characterized by: 

1. Fill missing of NaNs 

2. Filtering for noise elimination 

3. Detrending of the mean value. 

 

The real data used in this chapter have already been pre-processed, so 

the steps listed above are not further described 

In addition, all algorithms must be characterized by lower 

computation times of the processing window. In fact, the latter is 

chosen with reference to the monitoring application but normally not 

chosen greater than 30 s. 

 

4.1 Hilbert Transform 
4.1.1 Simulated tests 

In order to determine the accuracy of parameter estimation, of a 

numerically synthesized signal (frequency), through the proposed 

algorithm a canonical signal was initially chosen: 

 

𝑦(𝑡) = 1𝑒𝜎1𝑡 sin(2 ∙ 𝜋 ∙ 𝑓1 ∙ 𝑡) + 1𝑒
𝜎2𝑡sin (2 ∙ 𝜋 ∙ 𝑓2 ∙ 𝑡) (4.1) 

 

On this signal several tests were carried out as the parameters of 

interest varied, namely: 

1) In the first scenario, the frequencies are fixed and the dampings 

are varied: 

• 𝑓1 = 0.1 𝐻𝑧; 
• 𝑓2 = 0.6 𝐻𝑧; 
• 𝜎1 = [−0.05; 0.05; 0.1; 0.15; 0.2; 0.25; 0.3]; 
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• 𝜎2 = [−0.05; 0.05; 0.1; 0.15; 0.2; 0.25; 0.3]. 
 

2) In the second scenario, the dampings were fixed and the 

frequencies varied: 

• 𝜎1 = 0.1; 

• 𝜎2 = 0.3; 

• First case, 𝑓2 = 1 and 𝑓1 = (0.1; 0.9); 
• Second case, 𝑓1 = 0.1 and 𝑓2 = (0.9; 0.2). 

As the 𝛥𝑓 changed, it was possible to analyze both cases in 

which both components are at low frequencies and cases in 

which they are at high frequencies. 

 

In all tests, error in estimating the parameters of interest, i.e., 

damping, is assessed: 

 

𝑒𝑟𝑟𝑜𝑟𝑒% =
𝑥 − 𝑥

𝑥
 ∙ 100 (4.2) 

 

Where 𝑥 is the estimated parameter and 𝑥 is the real parameter. These 

are then depicted appropriately with respect to the values of the 

variable parameters. 

 

Damping variation 
In the Figure 4.1 are shown on the z axis the damping error related to 

the i-th component and on the x and y axes the variations of the 

damping of the individual components. 

 

  

(a) (b) 

Figure 4-1 (a) Damping error of first component (b) Damping error of second 

component 

 

As can be seen from the Figure 4.1, the higher errors are obtained, in 



73 

 

this case, when the two components turn out to have damping of 

opposite sign, this can also be seen from the Table 4.1 where in the 

two cases, chosen randomly, the error is reduced by an order of 

magnitude. 

This essentially happens because the spectrum of the signal is more 

influenced by the component characterized by a negative damping. 

This result can be seen in the Figure 4.2, where two spectra 

reproducing two different cases are shown. In the case of components 

with damping of opposite sign the minimum point between the spectra 

of the mono-components is raised, this implies a greater error on 

parameter evaluation due to a greater portion of the spectrum of the 

negative damping component being approximated. 

 
Table 4.1 Damping error of first component and of second component 

 
 

 
Figure 4-2 Signal Spectrum 
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For further analysis, even during the simulated tests, a 8-bit 

numerical quantization error and a Gaussian white noise of a signal-

to-noise ratio of 40 dB were applied to the above synthesized signal. 

As an example, Figure 4.3 shows one of the adopted simulated signal, 

where the quantization effect is clearly evident. 

 

 
Figure 4-3 Signal generated 

 

Proceeding to process all possible combinations related to the 

considered scenario, it can be seen (Figure 4.4) that in the ideal case 

of the signal not affected by any noise, the error committed on the 

damping estimation is of the order of 10-4%, while applying to it the 

quantization error and the noise shows an increase in the estimation 

error, which remains below 1% in any case. 

 

  

(a) (b) 

Figure 4-4 (a) percent error of damping of component 1; (b) percentage error 

of component damping 2 
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Frequency variation 
In the case of frequency variation, as mentioned above, it was decided 

to vary only one parameter at a time, so as to be able to analyze the 

various scenarios. This implies a reproduction of the estimation error 

no longer with respect to three axes but only with respect to the x and 

y axes, which represent, respectively, the difference 𝛥𝑓 between the 

frequency of components and the estimation error of the i-th damping 

(Figure 4.5). 

 

  

(a) (b) 

Figure 4-5 (a) percent error of damping of component 1; (b) percentage error 

of component damping 2 

 

Also in this scenario, the case in which a quantization error is applied 

to the canonical signal was analyzed. The results obtained show that 

the estimation error remains less than 1% until the 𝛥𝑓 is greater than 

or equal to 0.3 Hz. If the frequency distance between the components 

is lower than 0.3 Hz, the error begins to grow (Figure 4.6). 
 

  

(a) (b) 

Figure 4-6 (a) percent error of damping of component 1; (b) percentage error 

of component damping 2 
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The critical point occurs at a 𝛥𝑓 =  0.1 𝐻𝑧 where, given the adopted 

frequency resolution, it is not possible deriving the bisector frequency 

from the frequency. 

Consider the signal reported in equation (4.1), where: 

• 𝑓1 = 0.2 𝐻𝑧 
• 𝑓2 = 0.3 𝐻𝑧 
• 𝜎1 = 0.1 s-1 

• 𝜎1 = 0.3 s-1 

 

Figure 4.7 shows the representation of this signal in the time domain 

and frequency domain. 

 

 

(a) 

  

(b) 

Figure 4-7 (a) Signal generated; (b) Signal spectrum 

 

The algorithm as a first approach to this problem acquires 10 s of the 

signal, makes the frequency analysis and not recognizing the two 

peaks related to the two mono-components behaves as if it had 

acquired a signal consisting of a single component, obtaining the 

parameters of interest. With the latter reconstructs the signal and a 

comparison is applied with the windowed acquired signal. 
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Figure 4-8 Comparison of generated and estimated signal 

 

As shown in Figure 4.8, the first reconstruction of the signal is affected 

by a big error due, essentially, to the presence of a second component 

not considered. This error is evaluated by the algorithm through the 

mean square error between the samples of estimated and synthesized 

signals: 

 

𝜀 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑡,𝑖)

2

𝑁

𝑖=1

 (4.3) 

 

After numerous tests, a threshold of 0.1 was set for 𝜀 ; when this 

threshold is reached, the algorithm finishes applying moving 

windows. In the considered example, this occurrence is verified in the 

second window, as can be seen from the Figure 4.9. 

 

 
Figure 4-9 Comparison of generated and estimated signal 
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What occurs in this case is that, after 10 seconds, the component with 

greater damping is cancelled and consequently the error on the 

parameter estimation decreases dramatically. 

To solve these critical cases, it was decided to obtain as soon as 

possible the sign of the damping of the predominant component so as 

to understand if one of the two components is divergent. On the other 

hand, if the two components are convergent, it is necessary to derive 

the parameters of the weakly dampened component to ensure the 

stability of the system over time. 

It is interesting to analyse a further example, where one of the two 

components appears to be divergent and it is therefore of fundamental 

importance to obtain this information as soon as possible. 

In particular the parameters are: 

• 𝑓1 = 0.2 𝐻𝑧 
• 𝑓2 = 0.3 𝐻𝑧 
• 𝜎1 = −0.05 s-1 

• 𝜎1 = 0.3 s-1 

 

In the Figure 4.10 the representation of this signal both in the time 

domain and in the frequency domain is shown. 

 

  

(a) (b) 

Figure 4-10 Evolution of the synthesized signal both in time (a) and in 

frequency (b) domain. 

 

As can be seen from the Figure 4.11, the estimation of the parameters 

of the windowed signal on the first 10 s is affected by a high error. 
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Figure 4-11 Comparison of generated and estimated signal 

 

The overall signal is the sum of two or more components, so its 

damping turns out to be the sum of exponentials. For this reason the 

sign of overall damping is strongly influenced by the presence of a 

divergent component. As it can be observed in these cases, despite the 

value of the average damping is affected by a notable error, in the first 

10 s it is possible to establish with extreme accuracy the damping sign, 

which allows to verify the presence of a divergent component in order 

to give an alarm signal, and then obtain greater accuracy by giving 

time to the algorithm to analyze, as can be seen from the Figure 4.12, 

where in the second window of the signal the error is negligible. 

 

 
Figure 4-12 Comparison of generated and estimated signal 
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4.1.2 Experimental Tests 
In order to test the proposed algorithm on signals actually provided by 

real devices, to verify the errors made in the evaluation of damping 

even in real cases, the method has been assessed through a signal 

provided by a signal generator. The obtained signals are acquired by 

an oscilloscope and transmitted to a computer through a GPIB 488.2 

in order to analyze them with the algorithm developed in Matlab 

environment. In particular, the experimental station consists of: 

• Agilent 33220A Signal Generator 

• Tektronix TDS 2024 Oscilloscope 

• GPIB USB-HS National Instrument 

As done in numerical tests, even in the experimental phase the 

performed tests are based on the reproduction of two scenarios, similar 

to those described above. 

Damping variation 
The results obtained in the experimental phase, as can be seen from 

Figure 4.13, are congruent with those obtained in the numerical 

phase, where the critical points arise more in cases where the 

components exhibit damping of opposite sign. Although during this 

phase the signal is subject to real quantization noise, errors are 

contained below 10%. 

 

  

(a) (b) 

Figure 4-13 (a) percent error of damping of component 1; (b) 

percentage error of component damping 2 

 

Frequency variation 
As it can be seen from the Figure 4.14, even in experimental tests the 

same events occur as in simulated tests with the difference that given 

the presence of quantization noise on the acquired signal there is a 

small increase in the range of errors  
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(a) (b) 

Figure 4-14 (a) percent error of damping of component 1; (b) percentage 

error of component damping 2 

 

4.1.3 Tests with non-coherent sampling 
In order to reproduce all the possible test scenarios of the proposed 

algorithm, the case of application of non-coherent sampling was also 

analyzed in the simulated phase. In the reality of inter-area 

oscillations it is not possible to guarantee a coherent sampling being 

non-periodic phenomena and not knowing a priori the period. Consider 

the signal reported in equation (4.1), where: 

• 𝑓1 = 0.22 𝐻𝑧 
• 𝑓2 = 0.65 𝐻𝑧 
• 𝜎1 = 0.1 

• 𝜎2 = 0.3 

 

The results of the parameters of interest obtained at the output of the 

algorithm are shown in the Table 4.2. 

 
Table 4.2 Risultati ottenuti per il componente 1 e il componente 2 
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As it can be seen from the obtained results, even applying non-

coherent sampling, the estimation error remains below a threshold of 

1%. 

 

4.2 Extended and Unscented Kalman Filters 
Referring to the effective value of the main voltage components: 

 

𝐸 = 𝐸50 +∑𝐴𝑖 ∙ 𝑒
−𝜎𝑖∙𝑡 ∙ sin(2𝜋𝑓𝑖 ∙ 𝑡 + 𝜑𝑖)

𝑛

𝑖=2

 (4.4) 

 

and assuming the filtering of the component associated with 50 Hz, 

the effects of electromechanical oscillation on electrical quantities are 

accurately described by the relationship: 

 

𝐸𝑜𝑠𝑐𝑖𝑙𝑙 =∑𝐴𝑖 ∙ 𝑒
−𝜎𝑖∙𝑡 ∙ sin(2𝜋𝑓𝑖 ∙ 𝑡 + 𝜑𝑖)

𝑛

𝑖=2

 (4.5) 

 

This mathematical model therefore represents the first significant 

hypothesis of the analysis conducted. Another hypothesis underlying 

the tests carried out is that the component tones of the oscillation are 

two in number.  

It can also be observed from the previous relation how, also in this 

case, four free parameters are associated with each damped 

exponential mode: 

• Damping 𝜎𝑖; 
• Frequency 𝑓𝑖; 
• Amplitude  𝐴𝑖; 
• Phase 𝜑𝑖. 

 

At a preliminary stage, amplitudes and phases were assumed known, 

limiting the estimation to the damping and frequency of each 

component mode only. 

The frequencies were assumed to belong to the characteristic set of the 

mode sought: 

 

f = {0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1} Hz 

 

The damping to the set: 

 

D = {-0.05 -0.04 -0.03 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5} s-1 



83 

 

 

Further imposition is the consistent sampling condition, i.e. the ratio 

of sampling rate to signal frequencies is obtainable from the 

relationship: 

 
𝑓𝑠
𝑓𝑖
=
𝑁

𝑀
   𝑤𝑖𝑡ℎ N ed M integers (4.6) 

 

The last hypothesis is the addition of white noise in order to guarantee 

a signal to noise ratio of 50 dB. 

 

4.2.1 Extended Kalman Filter 
As anticipated in the previous chapter, the Extended Kalman Filter 

(EKF) involves a linearization of the model around a reference point. 

The linearization process is all the more effective the slower the signal 

evolution over time. The oscillations examined fall fully within the 

class of slowly variable signals and, therefore, the EKF produces 

satisfactory results in this type of application. 

During the calibration phase, the following parameters were defined: 

• Q = 10−2 I4x4 (process noise covariance matrix) 

• R = 10−2 (measurement noise covariance matrix) 

 

For the initialization of the state vector and its matrix of convariances, 

the only information available in the preliminary phase was exploited, 

namely the intervals of belonging to the parameters of interest: 

• σi ∈ [−0.05; 0.5] s
−1 

• fi ∈ [0.1; 1] Hz 
 

Starting from a condition of absence of information, it is assumed that 

the state vector, in the role of random variable, is defined by a function 

of uniform probability distribution. The consequence of this 

assumption is the following initialization of the filter: 

 

𝑥0
𝑖 = 𝜇𝑖 = ∫ Xi pdf(Xi) dX

+∞

−∞

 

𝑣𝑎𝑟0
𝑖 = ∫ (Xi − 𝜇𝑖)

2 pdf(Xi) dX

+∞

−∞

 

(4.7) 

 

Where the superscript 'i' is the i-th element of the state vector. 
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Filter performance is inevitably affected by the sampling rate of 

PMUs. The linearization required by the EKF is all the more effective 

the smaller the time interval on which it is carried out. Therefore, the 

higher the sampling rate, the shorter the period over which 

linearization is carried out, increasing the performance of the filter. 

The EKF then works with a sampling frequency of 50 Hz, the 

frequency at which the Italian PMUs operate. 

 

Convergence 
To highlight the convergence of the filter, the case reported in Table 

4.3 was considered. 

 
Table 4.3 Parameters of both components 

 
 

The Figure 4.15 show a saturation of the correcting action of the filter 

over time. Convergence, although with minimal error, is guaranteed. 

An advantage of algorithmic methods is that with them there is an 

estimator of the measurement uncertainty due to the updating of the 

state parameters' covariance matrix. Since the filter is a mathematical 

tool that aims to minimize the variances associated with the state, it 

is observed that, as time passes, the band of uncertainty affecting the 

measurement becomes progressively thinner. 

 

  

(a) (b) 
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(c) (d) 

Figure 4-15 (a) Estimation of sigma1 damping over time, (b) Filter 

saturation on sigma1 estimate, (c) Estimation of frequency f1 over time and 

(d) Saturation of the filter on the estimate of f1 

 

3-D Charts 
The method has been assessed according to two scenarios. In the first 

case,CASE 1, the adopted signal parameters are reported in Table 4.4. 

 
Table 4.4 Signal parameters of Case 1 

 
 

As shown in Figure 4.16, after only two seconds the sign of damping 

is estimated correctly. 
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Figure 4-16 Damping error over time in percentage (left) and absolute terms 

on logarithmic scale (right) 

 

The estimation of frequencies (Figure 4.17) is considerably faster; 

errors of less than ten percentage points are achieved after only two 

seconds. 

 

  

Figure 4-17 Frequency error over time in percentage (left) and absolute 

terms on logarithmic scale (right) 

 

In the simulation phase, a deterioration in the performance of the 

filter was manifested as the values of the frequency distance 𝛥𝑓 

between the components.  

Then, the CASE 2 (whose parameters are reported in Table 4.5) was 

considered. 

 
Table 4.5 Signal parameters of Case 2 

 
 

This case is the case where the worst performance of the EKF is 

recorded but convergence is still guaranteed. Unlike the previous case, 

in order for the damping sign to be guaranteed, it is necessary to wait 
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a time equal to four seconds (Figure 4.18). 

 

  

  

Figure 4-18 Damping error over time in percentage (left) and absolute terms 

on logarithmic scale (right) 

 

However, the EKF performs poorly if one of the two tones oscillates at 

a frequency of 0.1 Hz. In such case, a 𝛥𝑓 =  0.3 𝐻𝑧 (loss of resolution) 

is required for the two tones to be observed correctly. As it can be seen 

by comparing the results of the previous case by imposing two 

frequencies of 0.1 and 0.2 Hz, the performance of the filter is extremely 

degraded. 
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Figure 4-19 Frequency error over time in percentage (left) and absolute 

terms on logarithmic scale (right) 

 

4.2.2 Unscented Kalman Filter 
As with the EKF, the same introductory assumptions were made for 

the Unscented Kalman Filter (UKF) The state vector and its 

covariance matrix were initialised according to the equations (4.7). 

During the calibration phase, the following parameters were defined: 

• 𝑛𝑎 = 5  (increased size of the state vector); 

• 𝑛𝑆𝑃 = 2𝑛𝑎 + 1 (number of sigma points); 

• 𝑅 = 1−4 (measurement noise covariance matrix); 

• 𝑊(0) =
1

3
 (weight of the 'central' sigma point); 

• 𝑊(𝑖) =
(1−𝑊(0))

𝑛𝑆𝑃−1
 (weight of 'peripheral' sigma points). 

 

Unlike the EKF, with the UKF, as no linearisation is required, there 

is no lower limit to the sampling rate. In the simulation phase, the 

following results were highlighted: 

• Operating with a sampling rate of 50 Hz, the performance of 

the filter is degraded in the detection of 'low' frequencies (e.g. 

0.2 Hz, 0.3 Hz). 

• Operating with a sampling rate of 10 Hz, minimum for PMUs, 

a specular behaviour is obtained, i.e. the performance is 
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degraded for the measurement of 'high' frequencies (e.g. 0.8 Hz, 

0.9 Hz). 

 

The compromise between the two requirements led to the choice of a 

sampling rate of 25 Hz. 

 

Convergence 
To highlight the convergence of the filter, the case reported in Table 

4.6 was considered. 

 
Table 4.6 Parameters of both components 

 
 

As shown in Figure 4.20, comparing the performance of the UKF with 

that of the EKF shows that: 

The transitional phase of the UKF is faster than that characterizing 

the EKF, i.e., the measurement error first falls below a certain 

threshold. 

When fully operational, the estimate obtained through UKF exhibits 

errors comparable to those obtained with EKF. 
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(c) (d) 

Figure 4-20 Estimate of (a) sigma1 over time, (b) sigma1 at full speed, (c) f1 

over time and (d) f1 at full speed 

 

3-D Charts 
From the following graphs, it can also be seen that the UKF has 

degraded performance if the two components have a spectral distance 

of 0.2 Hz. In fact, it can be seen from the results of case 2 that the 

frequency estimation error at 0.2 Hz is still high. 

Considering the CASE 1 reported in Table 4.4, the results shown in 

Figures 4.21 and 4.22 are obtained. 
 

  

  

Figure 4-21 Damping error over time in percentage (left) and absolute terms 

on logarithmic scale (right) 
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Figure 4-22 Frequency error over time in percentage (left) and absolute 

terms on logarithmic scale (right) 

 

Case 2 

CASE 2 is reported in Table 4.5 

 

  

Figure 4-23 Damping error over time in percentage (left) and absolute terms 

on logarithmic scale (right) 
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Figure 4-24 Frequency error over time in percentage (left) and absolute 

terms on logarithmic scale (right) 

 

However, the method guarantees the convergence if the frequency 

distance Δf is equal to 0.2 Hz, evan if one of the two frequencies is 

equal to 0.1 Hz, as evidenced by the graphs below. 

 

  

Figure 4-25 Estimation of damping over time 
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methods was carried out 7. Both predict as a fitness function the 

inverse of the root mean square error (RMSE) between the real signal 

(z) and the estimated one (y) 8: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑧𝑖 − 𝑦𝑖)

2𝑁
𝑖=1

𝑁
 (4.8) 

 

In order to evaluate the dispersion of GA and PSO solution, each 

algorithm was tested a hundred times on the same signal, and, at the 

end of the process, the probability distribution functions related to the 

four parameters obtained at the output were reconstructed for both 

the approaches. 

The test signal is modelled as follows: 

 

𝐸𝑡𝑒𝑠𝑡 = 1 ∙ 𝑒
𝜎1∙𝑡 ∙ sin(2𝜋𝑓1𝑡) +1 ∙ 𝑒

𝜎2∙𝑡 ∙ sin(2𝜋𝑓2𝑡 + 𝜋) + 𝑛𝑜𝑖𝑠𝑒 (4.9) 

 

Where the parameters are: 

• 𝜎1 = −0.03 𝑠
−1 

• 𝜎2 = 0.03 𝑠
−1 

• 𝑓1 = 0.1 𝐻𝑧 
• 𝑓2 = 0.2 𝐻𝑧 

 

By imposing a window of 4s the following results are obtained. 

 

  

(a) (b) 

Figure 4-26 (a) Pdf sigma1 via GA (blue) and PSO (red) and (b) Pdf sigma2 

via GA (blue) and PSO (red) 

 
7 For both the GA and the PSO, the functions already present in MatLab. 
8 The "Theoretical" signal is the one reconstructed with the estimates of the 

parameters. 
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Table 4.7 Mean, Median and Standard Deviation of the two distributions, 

Sigma1 (a) and Sigma2 (b) 

  

(a) (b) 

 

The Figure 4.27 shows a greater dispersion of the estimates obtained 

through a GA compared to the results given by PSO. This result is 

evidenced by the values of mean and standard deviation obtained by 

imposing a time window of four seconds (Table 4.7). 

The anomalous behaviour of the PSO represents the inspiration that 

led to the creation of the algorithm proposed in the next section. In 

fact, it can be observed how the error tends to fall below the percentage 

point when considering the distribution's median. Since the target 

algorithm of this thesis has to work in real time, it is impossible for it 

to perform repeated measurements on the detected track. The concept 

of test repeatability will therefore be guaranteed by making 

measurements with a cadence of one second, considering a window 

that expands and guarantees the selection of larger portions of the 

track at each step. This time increment in the windowing will be 

precisely equal to the step at which the updating of the estimate will 

take place (1 s). 

For the frequencies, on the other hand, the following results were 

obtained (Figure 4.27). 

 

  

(a) (b) 

Figure 4-27 (a) Pdf f1 via GA (blue) and PSO (red) and (b) Pdf f2 via GA 

(blue) and PSO (red) 
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Also in this case, the GA approach exhibits a greater dispersion if 

compared to the PSO. Nevertheless, the performance may be 

considered comparable. Reducing the width of the working window 

shows a deterioration in the performance of both proposed methods. 

Increasing the duration of the window, on the other hand, does not see 

significant improvements. 

 

4.4 PSO with Continuous Weighted Average 
According to the previously shown tests, the PSO has been selected as 

heuristic method for the realization of an algorithm operating in real 

time. In the literature, most of the conducted research involves the use 

of PSO for the regulators sizing operating on the electrical system. The 

poor research that sees the PSO used as an estimator of the 

parameters that characterize the electromechanical oscillations seem 

to highlight an absolute convergence of the method, neglecting the 

problem of "anomalies" recorded during the characterization of the 

method itself (Figure 4.28). 

 

 
Figure 4-28 Damping probability distribution function obtained with PSO 

 

The proposed algorithm, in order to ensure greater reliability during 

the measurement phase, provides, in addition to the PSO, the use of 

an expandable window and a weighted average. The cadence with 

which the output is updated is 1 s. At each step 'k' the following 

operations are therefore planned: 

1) Extension of the time window by 1 s: [0; k − 1] 𝑠 → [0; k] s ; 
2) Start of PSO with the RMSE calculated on the estimate obtained 

from the window set in step 1 as the fitness function. 

3) Parameters are calculated by weighted averaging of the different 

estimates obtained up to the k-th step via PSO. Each estimate is 

weighted for the same parameter k (indicating the window 

duration) so that estimates made on longer frames, being more 

reliable, have greater relevance. 
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It should be noted that, in order for the algorithm to operate correctly, 

the calculation time, due to the PSO and the average step (𝑇𝑐), must 

be less than 1 s. Whatever the value of 𝑇𝑐, the effect produced by the 

intervention of the PSO is a translation of the output along the time 

axis (delay in information). In the worst case (𝑇𝑐 = 1 𝑠), at step 'k' the 

estimate shown to the user will be the one calculated on the signal 

seen between 0 s and (k-1) s. Downstream of the considerations carried 

out, the results obtained with the aforementioned algorithm are 

shown below. The PSO has been calibrated as follows: 

• Number of particles: 100 

• Tolerance: 1e-6 

• Maximum number of iterations: 2n (with n = number of 

variables) 

• Maximum number of iterations below tolerance: 25 

• Inertia range: [0.1 ; 1] 

• Self-adjustment weight (c1): 1.49 

• Social adjustment weight (c2): 1.49 

 

The signal, taken from the PMUs, is supposed to be sampled at 50 Hz. 

 

4.4.1 3D Charts 
The following graphs were obtained by choosing two frequencies from 

the set {0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1} Hz and varying the damping 

in the set {-0.05 -0.04 -0.03 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5} s-1 

The most critical case involves the following set of parameters: 

CASE 1 reported in Table 4.4. 

It is observed that, unlike Kalman filters, the "worst" case examined 

involves the measurement of two frequencies equal to 0.1 Hz and 0.2 

Hz. These conditions, particularly critical for the mathematical 

estimator, do not seem to cause any particular problems for the 

proposed method.  

From the Figure 4.24 it is clear that: 

• The estimate improves over time, i.e. the greater the portion of 

the track that can be observed; 

• The largest percentage errors on damping are observed around 

zero, i.e. for weakly dampened or slowly diverging oscillations.9 

 

 
9 It should be noted that, by way of example, a 10% error related to a damping of 

0.03 s-1 is equivalent to an error in absolute terms of 0.003 s-1 (order of 1e-3).  
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Figure 4-29 Damping error in percentage (left) and absolute terms on 

logarithmic scale (right) 
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Frequency estimation takes place more quickly. In just four seconds 

the percentage error is lower, in the worst case, than 10% of the 

imposed value (Figure 4.30). 

 

  

Figure 4-30 Frequency error in percentage (left) and absolute terms on 

logarithmic scale (right) 

 

The results shown so far refer to the worst case, that is, considering a 

spectral distance between the two components of 0.1 Hz. If, on the 

other hand, the two components have a greater spectral distance, that 

is, the two frequencies differ by an amount greater than 0.1 Hz, the 

convergence time of the algorithm is shorter. 

 

Consider the CASE 2 reported in Table 4.5. 

 

It denotes in this case, with the same percentage error, almost a 

halving of the convergence time (Figures 4.31 and 4.32). 

 

  

Figure 4-31 Damping error1 in percentage terms (left) and absolutes on 

logarithmic scale (right) 
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Figure 4-32 Damping error2 in percentage (left) and absolute terms on 

logarithmic scale (right) 

 

It is worth noting that the phenomenon taken into account regards the 

electromechanical oscillations of the electrical system. This 

phenomenon may compromise the stability of the entire electricity 

grid. In real-time estimation, it is therefore of fundamental 

importance to know the sign of damping in the shortest possible time. 

An algorithm capable of realizing this request thus gives Terna (the 

TSO) full knowledge of what is happening to the electricity system, 

highlighting any conditions of imminent danger. 

 

4.4.2 Convergence 
Assuming in the ideal case 𝑇𝑐 =  0 𝑠 and referring to the set of 

parameters of the CASE 1, the following results are observed: 

As regards the CASE 1 reported in Table 4.4, 

from the Figure 4.28, it is clear how the algorithm is able to estimate 

the sign of damping after just four seconds. It is also highlighted how 

the output is updated with a cadence equal to 1 s. 

 

  

(a) (b) 

Figure 4-33 Estimate of (a) damping1 and (b) damping2 
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If a non-zero calculation time were considered, a translation along the 

time axis of the estimation of a quantity equal to Tc would be obtained. 

Once again, the proposed case is one of the most complex. If we move 

towards higher frequencies, a greater speed of convergence is observed 

(Figure 4.34). 

 

  

(a) (b) 

Figure 4-34 Estimate of (a) frequency1 and (b) frequency2 

 

Referring to the CASE 2 reported in Table 4.5, the trends shown in 

Figure 4.30 are observed. 

 

It can be concluded that the higher the frequencies, the more efficient 

is the algorithm. As already appreciated for the other approaches, the 

algorithm performance is higher when the frequency distance𝛥𝑓 

between the oscillations increases (Figure 4.35). 

 

  

(a) (b) 

Figure 4-35 Estimate of (a) damping1 and (b) damping2 
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proposed algorithm in conditions of greater "stress" i.e., trying to 

estimate the amplitude as well. 

 

4.4.3 Estimation of damping, frequencies and amplitudes 
The test frequencies are: f1=0.1 Hz and f2=0.2 Hz. The trends, shown 

in Figure 4.36, are obtained 

 

 
Figure 4-36 Estimation of damping, frequencies and amplitudes 

 

Imposing f1=0.5 Hz and f2=0.9 Hz the trends, shown in Figure 4.37, 

are obtained. 

 

0 2 4 6 8 10

Tempo [s]

0

0.1

0.2

0.3

s
ig

m
a

1
 [
1

/s
] Algoritmo

Valore Reale

2 4 6 8

Tempo [s]

0

0.05

0.1

0.15

s
ig

m
a

2
 [
1

/s
] Algoritmo

Valore Reale

0 2 4 6 8 10

Tempo [s]

0.1

0.1001

0.1002

0.1003

f1
 [
H

z]

Algoritmo

Valore Reale

0 2 4 6 8 10

Tempo [s]

0.2

0.22

0.24

0.26

f2
 [

H
z]

Algoritmo

Valore Reale

0 2 4 6 8 10

Tempo [s]

0.4

0.6

0.8

1

a
1

 [
p

.u
.]

Algoritmo

Valore Reale

0 2 4 6 8 10

Tempo [s]

0.4

0.6

0.8

a
2

 [
p

.u
.]

Algoritmo

Valore Reale



102 

 

 
Figure 4-37 Estimates of damping, frequencies and amplitudes 

 

It is observed that, although the obtained results are still acceptable, 

in order to improve the performance of the method it is necessary to 

increase the values of the frequencies and the spectral distance 

between them. 

 

4.4.4 Signal to noise ratio reduced to 25dB 
In order to guarantee a signal-to-noise ratio of 25 dB, assuming an 

amplitude of the two tones equal to 1 p.u., a white noise with variance 

equal to 0.08 is required. In addition, to obtain reliable results, 0.1 Hz 

and 0.2 Hz are always used as test frequencies. As shown in Figure 

4.38, even in the case of a higher signal-to-noise ratio, the algorithm 

ensures rapid convergence. 
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Figure 4-38 Estimates obtained in the case of a signal-to-noise ratio of 25 

dB 

 

4.4.5 Non coherent sampling 
The following frequencies are imposed: f1=0.34 Hz and f2=0.23 Hz. The 

Figure 4.39 show a slight deterioration in performance, but in any case 

the reliability of the algorithm is not affected. In fact, after only three 

seconds the sign of both damping coefficients is detected. Performance 

improves once again at higher frequencies. In fact, by increasing the 

frequencies (Figure 4.40)the method exhibits notable performance 

even with 𝛥𝑓 less than 0.1 Hz. The test frequencies are: f1=0.97 Hz and 

f2=1 Hz. 

 

 
Figure 4-39 Estimates obtained in case of non-coherent sampling 
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Figure 4-40 Estimates obtained in case of non-coherent sampling 

 

4.4.6 Quantization 
The quantization noise resulting from the use of an 8-bit analog-to-

digital converter was also simulated, with a full scale equal to 5 V peak 

to  peak.  

Worst case and best case are reported in Figure 4.41 and 4.42, 

respectively. 

 

 
Figure 4-41 Estimates obtained with simulated quantization 
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Figure 4-42 Estimates obtained with simulated quantization 

 

4.4.7 One-component signal 
In the case where the detected signal is mono-component, i.e., modeled 

by the equation: 

 

𝑦(𝑡) = 𝐴 ∙ 𝑒−𝜎∙𝑡 ∙ sin(2𝜋𝑓 ∙ 𝑡 + 𝜑) (4.10) 

 

the proposed algorithm allows to detect all four parameters of interest 

(Figure 4.43). 

 

 
Figure 4-43 Estimates obtained in the case of a one-component signal 
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4.5 Experimental Tests 
4.5.1 Description of the test network 

In order to perform the validation of the proposed algorithm, it is 

necessary to refer to a test network. The model widely adopted for 

generating low frequency oscillations in literature is the four-machine, 

two-area Kundur model [19] (Figure 4.44) 

 

 
Figure 4-44 Test Network 

 

The equivalent Simulink representation of the test network is 

reported in Figure 4.45. 

 

 
Figure 4-45 Representation Simulink network test 

 

This network is composed by two areas, interconnected through a 

double three-phase HVAC line of nominal voltage 230 kV. Each area 

sees two properly controlled synchronous generators (of 900 MVA - 20 

kV) and a load. Each generator receives the mechanical power Pm and 

the excitation voltage Vf by means of a system of turbines/regulators 

and an exciter/Pss, in which the frequency and voltage adjustments 

are made. The description of the control logic [1], incident on the 
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voltage and frequency parameters, is independent of the objective of 

this work and here is not addressed. . 

Each step-up transformer has an impedance of 0 + j0.15 p.u. (taking 

900 MVA and 20 kV as basic parameters). The transmission system 

has a nominal voltage of 230 kV and the line parameters, taking as a 

basis S = 100 MVA and V = 230 kV, are: 

 

r=0.00001 

p.u./km 

xW=0.001 

p.u./km 

bC=0.00175 

p.u./km 

 

In order to simulate the perturbation, a self-extinguishing three-phase 

short circuit of 200 ms duration is generated. 

 

Due to the computational time required by the MATLAB® platform, it 

is not possible to validate the algorithm online in a Simulink 

environment. Therefore, the analyses were carried out off line on the 

signal detected by the test network. 

 

4.5.2 Results 
Using a sampling rate of 50 Hz, results in the reconstruction shown in 

Figure 4.46a. Doubling the duration of the time window results in a 

reconstruction more faithful to the original signal (Figure 4.46b). 

 

  

(a) (b) 

Figure 4-46 Reconstruction after (a) 5 s and (b) 10 s 

 

The mean square error, calculated on a ten-second window, exhibits 

the temporal trend shown in the Figure 4.47a. It is therefore deduced 

that as the observation time on which the PSO works increases, better 

results are obtained, that is, the RMSE10 (calculated on a ten-second 

window) has a monotonous decreasing trend over time. It is also 
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interesting to note the value of the RMSE at each iteration of the PSO 

(RMSEk), calculated on the time window equal to that on which the 

PSO itself works. In this case it is observed how there is an anomaly 

in correspondence of a window equal to 1 s (Figure 4.47b). 

 

  

(a) (b) 

Figure 4-47 (a) RMSE10 calculated on a ten-second time window and (b) 

RMSEk as a function of time 

 

The absence of monotony of the RMSE function, calculated on variable 

portions of the signal, is due to the fact that the optimization related 

to a one-second window produces different results than the 

optimization carried out on a window of longer duration (Figure 4.48). 

What therefore represents a local maximum of the RMSE, used as a 

fitness function of the PSO, is not actually an absolute maximum, 

where the concept of absolute is related to the maximum duration of 

the window (10 s).  

 

 
Figure 4-48 Reconstruction after 1s 
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4.6 Dinamic Mode Decomposition 
4.6.1 Simulated tests 

Two signals with the following characteristics are created in the 

MATLAB environment: 

• f1= 0.2 Hz; amplitude 0.5; positive damping  

• f2=0.3 Hz; amplitude 0.2; negative damping 

The static DMD algorithm is deliberately required to identify 3 modes, 

aware that the third mode in this case does not exist. The algorithm's 

response is shown in Figure 4.49. 

 

 
Figure 4-49 Static order DMD algorithm output with a simulated signal 

input 

 

It is clear that the DMD responds to its inputs with extreme rigor, 

returning as requested, 3 modes even if they do not exist. The third 

mode, introduced by DMD is in fact almost superimposed on one of the 

two simulated, with a frequency slightly different from the 0.3 Hz 

created. In addition, the existence of two modes very close in frequency 

involves an anomaly in the detection of amplitudes (mode mixing) that 

are attributed alternately to one component or to the other mode, as 

shown by the third plot of Figure 4.49.  

The result obtained with the same input signal, but using the dynamic 

order DMD algorithm is much better. As Figure 4.50 shows, the 

dynamic order is not forced to identify any non-existent mode, so the 

reliability in terms of faithful reproduction of real scenario is much 

higher. In addition, for the same reason, the algorithm is able to show 

when the first mode has become extinct, and does not present 

problems in the detection of amplitudes. 
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Figure 4-50 Output of the dynamic order DMD algorithm with a simulated 

signal input 

 

Change in filter order 
In signal theory, the phenomenon of spectral dispersion is known. 

Windowed signals and then transformed into Fourier series suffer 

errors in the spectrum due to the window itself. This happens for any 

digital signal, since samples are taken for finite time windows: 

mathematically it means having multiplied the signal by a function, 

through a convolution product 10. In practice, spectral dispersion 

consists in dispersing the frequency, that is, detecting part of the 

signal power no longer concentrated at its nominal frequency but also 

distributed on secondary frequencies. It results in a spread frequency 

spectrum, which shows harmonic components in secondary lobes. In 

the present case, while not carrying out any Fourier analysis, but 

rather, using an algorithm that wants to be alternative to it, it is still 

a signal acquired for a reduced time interval and also filtered then 

windowed precisely through a digital filter that acts within the for 

cycle, filtering for each iteration 1000 samples, to eliminate the noise 

contained in it and to limit the output only to the frequencies of 

interest contained in the range (0.1 – 0.5 Hz). 

Digital filters are special LTI (Linear Time-Invariant) discrete-time 

systems. The main ones used are the FIR (Finite Impulse Response) 

and IIR (Infinite Impulse Response) filters. In this case, a FIR filter 

was used. Technically, a FIR filter is a causal LTI system with finite 

impulse response: 

 
10The convolution is an operation between two functions of a variable that 

consists in integrating the product between the first and second translated of a 

certain value 



111 

 

h(n) = 0 for n < 0 and for n ≥ M with M > 0 (4.11) 

 

whose transfer function turns out to be a polynomial in 𝑧−1. 
The input-output ratio is, in fact, described by the following equation: 

 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1 

𝑘=0

 (4.12) 

 

Turning to the z-transforms 

 

𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) (4.13) 

 

Where 𝑋(𝑧) and 𝑌(𝑧) are the z-transforms of 𝑥(𝑛) and  𝑦(𝑛). 𝐻(𝑧) is a 

polynomial in 𝑧−1: 
 

𝐻(𝑧) = ∑ ℎ(𝑘)𝑧−𝑘
𝑀−1 

𝑘=0

 (4.14) 

 

The digital filter used in this case is FIR type and is called Hilbert 

with a transfer function of the type: 

 

𝐻(𝑧) =
∑ 𝑏𝑘𝑧

−𝑘𝑀−1 
𝑘=0

∑ 𝑎𝑘𝑧
−𝑘𝑀−1 

𝑘=0

 (4.15) 

 

It was built in a MATLAB environment using the following 

commands: 

 
% FILTRO HILBERT (TERNA) 

m=[0,0,1,1,0,0]; 

f=[0,(segn.fh-segn.fb) * (2*segn.Ts1), 

segn.fh*(2*segn.Ts1), segn.fl 

*(2*segn.Ts1),(segn.fl+segn.fb)*(2*segn.Ts1),1]; 

segn.numeratore_filtro=firpm(segn.N,f,m,'hilbert'); 

 

The parameters m, f and N, define the numerator and denominator 
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polynomials of equation (4.15). Then, with the command 'firpm' and 

the option 'Hilbert' are realized the characteristics of the required 

filter. In particular, the parameter N (in the script called segn.N 

because part of a structure), is the order of the digital filter or the order 

of the numerator polynomial. This parameter is very significant 

because it gives information on the accuracy with which the points 

that will describe the spectrum of the filter itself will be interpolated. 

As the order increases, the accuracy increases. For this reason, 

analyses were carried out as the order of the filter changed, focusing 

only on the ambient case with dynamic order. The Hilbert filter can 

cause the incorrect estimation of frequencies in the ambient case 

processed with dynamic order. To have a consistent and valid 

comparison, as the order of the filter changes, the length of the window 

considered in the iterations must be increased. It was chosen to keep 

constant the ratio: 

 
𝑓𝑖𝑙𝑡𝑒𝑟 𝑜𝑟𝑑𝑒𝑟

𝑛° 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑤𝑖𝑛𝑑𝑜𝑤
 (4.16) 

 

considering as base values: 600/1000=0.6. In practice, if the order of 

the filter is varied, the number of samples per window is determined 

accordingly through this ratio; the knowledge of the window samples 

and the sampling time allows to calculate the length of the window to 

be adopted. 

In Fig. 4.51, the frequency response of three designed increasing-order 

filters is shown. The Figure shows the spectra of the filters, the basic 

one with order 600 (a), one with order 900 (b), and the other with order 

1500 (c). 

 

   

(a) (b) (c) 

Figure 4-51 Spectrum of a Hilbert filter of order (a) 600, (b) 900 and (c) 1500 

 

The improvement is evident: secondary lobes are reduced, frequencies 

outside the required range are not only attenuated but cut off totally. 
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As expected, as the filter order increases, the roll-off becomes 

narrower. Also, in Figure 4.51(a) and (b), the pass band ripple is 

greater than the 10%; as a consequence, frequencies around 0.3 Hz are 

attenuated and frequencies close to 0.2 Hz are amplified. This 

situation also no longer occurs in the 1500-order filter (Figure 4.51c). 

 

4.7 Experimental Tests 
To have a first clear scenario of the performance of the DMD 

algorithm, several traces of frequencies acquired through Terna's 

WAMS system in the two cases of static and dynamic order were 

tested.  

• For the static order, a number of required modes equal to 3 is 

fixed, with the intent of displaying the 3 inter-area modes, 

North-South, East-West, East-Center-West. 

• For the dynamic order, an energy threshold of 0.9 is imposed, 

i.e. the DMD is asked to identify the index of the first element 

that incorporates 90% of the energy in terms of the cumulative 

sum of the singular values, and to detect that number of modes 

of evolution accordingly. 
Signals will be distinguished in: 

1) Transient: signal characterized by a significant oscillation (Figure 

4.52) 

 

 

Figure 4-52 Transient signal 

 

2) Ambient: signal characterized by the absence of oscillations or by 

very low amplitude random oscillations, due to the random change 

of the grid loads (Figure 4.53) 

 

 

Figure 4-53 Ambient signal 

 

4.7.1 Static order DMD 
The static order algorithm is tested with 3 fixed modes, input of the 

DMD 'function', first for the transient signal and then for the ambient 

signal. The graphs obtained at the output are shown in the Figures 

4.54 and 4.55. 
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Figure 4-54 Static order DMD algorithm outputs with an input transient 

signal 

 

 
Figure 4-55 Static order DMD algorithm outputs with an ambient input 

signal 

 

It is evident that in both cases, the 3 required modes described by the 

three different colours (red, yellow, blue) were returned. It can be 

noted that the oscillation that induces the activation of a trigger, in 

Figure 4.54 is well described by the increase in the amplitudes of the 

modes observed, in those moments, totally in contrast with the very 

low amplitudes detected instead in Figure 4.55, representing existing 

modes but their contribution to the signal energy is negligible. 

 

4.7.2 Dynamic Order DMD 
The dynamic order algorithm is tested, with a threshold set equal to 

0.90, for both types of signal. The graphs obtained at the output are 
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shown in the Figures 4.56 and 4.57. The results are extremely 

different from the Static Order DMD. In fact, the Dynamic Order 

algorithm returns (Figure 4.56) for a transient signal, a single mode 

with a frequency approximately equal to 0.3 Hz, and with a strongly 

increasing and then decreasing amplitude at the beginning of the 

emerging oscillation, and at its extinction. When considering the 

ambient signal, however, in Figure 4.57 the answer is ambiguous: it 

can be certainly detected one mode for the entire duration of the trace, 

the frequency of which is in the same range as that identified for the 

transient signal (close to 0.3 Hz); there are, then, some time intervals, 

for which the DMD also returns a second mode (red plot). 

 

 
Figure 4-56 Dynamic order DMD algorithm outputs with an input transient 

signal 

 

 
Figure 4-57 Dynamic order DMD algorithm outputs with an ambient input 

signal 
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A fundamental stage of the research activity was focused on the causes 

leading to the different results provided by the two approaches. Since 

the static order DMD detects three modes, it is important to 

understand if they are real existing modes or ficticious modes that the 

DMD provides because the algoritm has been set to detect three 

modes. Another questions regards the second mode detected by the 

dynamic order DMD in the ambient data. It has to be determined if 

that mode is truthful or whether it may be the effect of some undesired 

phenomenon such as spectral dispersion. To answer these questions 

an analysis regarding the variation of the filter order and a 

characterization of the signal in the frequency domain has been 

performed. 

 

4.7.3 Filter Length Variation 
Compared to what was done for Figure 4.57, the DMD algorithm was 

tested with filter length increased from order 600 and 900 (Figure 

4.58). 

 

 

 
Figure 4-58 First estimate obtained with order filter 900 and second 

estimate obtained with order filter 1500 

 

As the order of the filter increases, the result changes significantly: 

the presence of the second mode decreases until it disappears. This 

seems to show that the second mode does not exist, but that it is due 

to a spectral dispersion. A spectral analysis, using the FFT, is used to 

verify this result. 
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4.7.4 FFT Analysis 
It was chosen to consider particularly significant cases, focusing on 

the trace parts of the signal in which the number of modes found 

varied, and placing itself downstream and upstream of this variation. 

The FFT analysis was conducted both before and after filtering. Note, 

that the time difference visible in the following Figures is due to the 

variability of the length of the window. The results are reported as the 

filter changes in Figure 4.59 and 4.60. 
 

 

(a) 

 

(b) 
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(c) 

Figure 4-59 Frequency spectra of the ambient signal, before and after 

filtering for the stretch between 8 and 9 min, with filter of order (a) 600, (b) 

900 and (c) 1500 

 

 

 

(a) 
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(b) 

 

(c) 

Figure 4-60 Frequency spectra of the ambient signal, before and after 

filtering for the time window between 9 and 10 min., with filter of order (a) 

600, (b) 900 and (c) 1500 

 

It is not feasible to recognize significant components by observing the 

spectrum of the raw data, without a proper filter. When the filter is 

applied, it is possible, with proper zooming, to detect in the part of 

interest (0.1 -0.4 Hz) three frequency peaks that are then clearly 

evident and readable in the spectrum. The Figure 4.60c is of particular 

interest because it concerns the case with filtering at order 1500, thus 

the one that when used in the DMD algorithm returned only one mode 

for the entire duration of the trace, leading the operator into the 

mistake of believing that there was only one mode in the processed 

signal.  

Note, however, that the amplitude of this mode reaches almost unity 
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(the amplitudes are normalized with respect to the maximum value), 

thus a considerable value that may in a certain way have contributed 

to the obscuration of the other frequencies with much smaller 

amplitudes. 

 

4.7.5 Change in the dynamic order detection threshold 
As already explained, the dynamic order is performed downstream of 

the SVD, by means of a condition on the cumulative sum of the 

singular values of the matrix S. In Figure 4.61 is reported a section of 

the MATLAB code that determines the dynamic order. 

 

 

Figure 4-61 Section of MATLAB code that determines dynamic order 

 

The parameter 'lim' had been chosen equal to 0.90, with the hypothesis 

that this threshold could be a good compromise between the not 

excessive computational overload and the necessity of detecting the 

modes characterizing the system. After the FFT analysis, in which the 

existence of the 3 modes is highlighted, it is believed that the modes 

identified by the DMD algorithm in static order are real and existing. 

This means that the dynamic order did not show the other two 

components, because the first component reaches the set energy 

threshold; the remaining part of the signal is, then, discarded. 

Therefore, an optimal tuning of the energy threshold was carried out, 

making it vary in the range between 0.90 to 0.97. As it can be seen the 

number of estimated modes increases. As the energy threshold 

increases even by only 0.02, the second mode becomes more visible 

and, furtherly increasing the threshold, the third mode also appears. 

In the Figure 4.62 are reported three examples, with 3 different 

thresholds, with the ambient signal input and a filter order of 600 and 
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1500. 

 

 

(a) 

 

(b) 

Figure 4-62 Modes detected when the threshold determining the dynamic 

order changes, with an order filter of (a) 600 and (b) 1500 

 

There are differences in the accuracy of frequency detection, 

attributable to the different length of the considered window. 

Finally, as a further test, the algorithm has been assessed with a 

signal given by the union of the ambient and transient signal 

considered in the previous tests.The test is performed as the threshold 

changes and the results obtained are reported in Figure 4.63. 
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Figure 4-63 Frequency detection with dynamic order DMD algorithm as the 

threshold changes 

 

The result is surprising: the dynamic order DMD algorithm turns out 

to dynamically identify the modes contained in the reference signal, 

depending on whether or not it consists of modes of excited evolutions. 

In fact, in the so-called trigger area, i.e., between the activation of the 

trigger and the extinction of the excited mode, it somewhat selects the 

excited mode by virtue of its property that binds it to the energy 

threshold. As the amplitude of that mode increases, the order of 

magnitude of the singular value associated with it varies accordingly, 

and for that reason, it quickly reaches the imposed energy threshold. 

From an application point of view, the dynamic order is extremely 

useful since it can return all the modes identified by the static order 

without having to doubt their actual existence, provided an 

appropriate threshold is chosen, and it is also capable of varying the 

number of modes identified, the moment that dangerous oscillations 

occur. This means that, in real time, one can visually and promptly 

see when a mode is increasing its energy and thus when the National 

Electric System begins to approach an unstable point, and if necessary 

intervene promptly. To conclude, the value 0.95 is chosen as the new 

threshold 'lim' and the output of the DMD algorithm is returned to 

dynamic order complete with amplitude and damping parameters 

(Figure 4.64). 
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Figure 4-64 Dynamic Order DMD algorithm with threshold 0.95 

 

4.8 Tufts Kumaresan 
For the assessment of TK algorithm, the sampling rate is a fixed 

parameter as it depends on the PMUs that acquire data from the 

network, while the variable parameters of the algorithm are: 

• The number of acquired samples (N) that varies according to 

the time width of the processed window Tw; 

• L (order of the prediction filter) which is usually chosen equal 

to half the number of samples N; 

• K (the energy threshold) that allows to distinguish the signal 

modes from not significant components due to noise. 

 

In the algorithm there is also another parameter, L1, which has no real 

meaning for the purposes of the method, in fact, it is inserted for the 

purpose of making the algorithm more dynamic. Starting from the 

assumption of not knowing how many modes "M" the signal has, the 

algorithm provides two phases: 

• In the first phase, fixed K and the length of the acquired 

window, and then N, the Hankel matrix and the vector h to find 

the vector b of the prediction coefficients backwards are 

constructed. Being signals corrupted by noise, the SVD is 

applied to the Hankel matrix, which returns the values of 

"sigma", which are used to estimate, together with the chosen 

K, the possible number of signal modes (Ms). In order to take 

the elements corrupted by noise, L1 is imposed at a value close 

to L (i.e. equal to 80%) and the standard deviation of noise is 

calculated as the average of sigma values ranging from L1 to L. 

The estimate of Ms is then determined by adding all those 



124 

 

values (K.*estimated noise) that are greater than sigma. 

• In the second phase, once estimated Ms, L is set equal to Ms; 

again, as in the first phase, the equation to find the signal zeros 

of the polynomial B(z) is solved and the parameters of interest 

are calculated: amplitude, phase, frequency and damping.  

• In the various tests carried out, a number of estimated modes 

(Ms) greater than the actual ones will be notice. So a filtering 

technique, for discarding the noisy found components, is used. 

The amplitudes will be ordered in a descending way, that is, 

the components characterized by greater amplitude, which 

corresponds to a greater energy threshold, will be arranged 

before the others; moreover, among the detected components, 

the algorithm will select only that characterized by the 

frequencies ranging from 0 to 0.8 Hz, that are typical values 

associated with inter-area oscillations. 

 

4.8.1 Simulated tests 
In order to assess the accuracy of parameter estimation of a synthetic 

signal, the generic model with M exponentially damped sinusoids 

corrupted by a white Gaussian noise of value w(n) was chosen: 

 

1

( ) ( ) 0,1,.., 1k

M
s n

k

k

y n a e w n n N
=

= + = −  (4.17) 

 

Where 𝑎𝑘 are the amplitudes, 2 1,2,.., Mk k ks j f K = − + = , k  

is the damping and kf  frequency. 

The tests will be performed on a synthetic signal with M equal to 1, 2 

and 3 and as the parameters K, N, L vary; then the SNR will be varied 

to evaluate the robustness of the method, after which the relative 

percentage error will be determined, which is defined as follows: 

 

%

ˆ
100

x x
errore

x

−
=   (4.18) 

 

Where x̂ is the estimated parameter and x is the real parameter. 

TEST 1) The signal composed of only one mode (M = 1) and with SNR 

= 80 dB has: 

• 1 0.33f =  Hz; 
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• 1 0.002 = − ; 

• 1 0.01a = . 

The time evolution of this signal is shown in the Figure 4.65. 

 

 
Figure 4-65 Signal trend with M = 1, SNR = 80 dB. 

 

The Table 4.8 shows the various tests carried out, keeping the L equal 

to half the number of N samples and varying: 

• The window, Tw, from a minimum of 10 s to a maximum of 150 

s; 

• The parameter K set equal to 1, 5, and 7. 

 
Table 4.8 Estimated values for the synthetic signal with M = 1 
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It is noted, from the reported data, that the frequency estimation and 

damping do not present any percentage error for any value of K and 

Tw, while the amplitude estimate has an error that varies from 1 to 

3% as the window increases. As K changes, on the other hand, there 

is an improvement in the estimation of Ms, since with a value greater 

than K the most significant modes are taken. 

TEST 2) Test signal with two modes (M = 2) and with SNR = 80 dB: 

• 1 0.2f =  Hz 2 0.3f =  Hz; 

• 1 20.001 0.0003 = − = ; 

• 1 20.001 0.002a a= = . 

 

The time evolution of this signal is shown in the Figure 4.66. 

 

 

Figure 4-66 Signal trend with M = 2, SNR = 80 dB 

 

The Table 4.9 shows, in the same way as in mode 1, the tests carried 

out. 

It can be seen, from the reported data, that the frequency estimation 

and damping do not present any relative percentage error, except in 

the case of K = 7 and K = 5 for a window of 10 s, while the amplitude 

estimate has a small error. 
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Table 4.9 Estimated values for the synthetic signal with M = 2 

 
 

TEST 3) The signal with three modes (M = 3) and with SNR = 80 dB:  

• 1 0.1f =  Hz 2 0.2f =         Hz 3 0.3f =       Hz; 

• 1 2 30.0004 0.001 0.0006  = − = − = ; 

• 1 2 30.0001 0.01 0.002a a a= = = . 

 

It has the trend shown in the Figure 4.67. 
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Figure 4-67 Signal trend with M = 3, SNR = 80 dB 

 

The Table 4.10 shows, always in the same way, the tests carried out. 

 
Table 4.10 Estimated values for the synthetic signal with M = 3 
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It is noted, from the reported data, that there is a good estimate of 

both frequency and damping, except for some cases that have been 

deliberately selected to stress the algorithm and evaluate its 

performance. The parameter that has a greater deviation from its 

reference value is certainly the amplitude, but it must be considered 

that the frequencies under consideration are very close to each other 

and, consequently, the damping and amplitude values are really small 
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numbers; therefore, it can be said that the TK method exhibits notable 

performance for estimating the oscillation parameters. 

In addition, to evaluate the actual weight that L has on the estimation 

of the parameters of our interest, it is equal to N/10, even if in previous 

tests it had been chosen equal to N/2, as reported by the studies 

carried out by Tufts Kumaresan. The tests performed on the signals 

with M = 1 and M = 3 and evaluated for both L equal to N/2 and N/10 

were compared and reported in the Tables 4.11 and 4.12. 

 
Table 4.11 Estimated values for the synthetic signal with M =1 and varying 

L 
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Table 4.12 Estimated values for the synthetic signal with M = 3 and varying 

L 

 

WAY 3 

SNR=80dB 

Tw=20 Tw=90 Tw=150 

L=N/10 L=N/2 L=N/10 L=N/2 L=N/10 L=N/2 

K=1 

σ ESTIMATED 

- 

-0.0009 

0.0008 

-0.0003 

-0.0010 

0.0006 

-0.0004 

-0.0010 

0.0006 

-0.0004 

-0.0010 

0.0006 

-0.0004 

-0.0010 

0.0006 

-0.0004 

-0.0010 

0.0006 

f ESTIMATED 

- 

0.2001 

0.2998 

0.1000 

0.2000 

0.3000 

0.1000 

0.2000 

0.3000 

0.1000 

0.2000 

0.3000 

0.1000 

0.2000 

0.3000 

0.1000 

0.2000 

0.3000 

a ESTIMATED 

- 

0.0098 

0.0020 

0.0001 

0.0098 

0.0020 

0.0001 

0.0021 

0.0021 

0.0001 

0.0092 

0.0021 

0.0001 

0.0085 

0.0022 

0.0001 

0.0083 

0.0023 

Ms 90 450 411 2039 693 3383 

K=5 

σ ESTIMATED 0.0014 

0.0209 

-0.0011 

0.0006 

- 

0.0144 

- 

-0.0004 

-0.0010 

0.0006 

- 

0.0167 

- 

-0.0004 

-0.0010 

0.0006 

f ESTIMATED 0.2049 

0.0992 

0.2000 

0.3000 

- 

0.2066 

- 

0.1000 

0.2000 

0.3000 

- 

0.2073 

- 

0.1000 

0.2000 

0.3000 

a ESTIMATED 0.0099 

0.0001 

0.0098 

0.0020 

- 

0.0087 

- 

0.0001 

0.0091 

0.0021 

- 

0.0065 

- 

0.0001 

0.0085 

0.0022 

Ms 5 199 5 777 7 1227 

K=7 

σ ESTIMATED 0.0014 

- 

-0.0009 

0.0008 

- 

0.0144 

- 

0.0023 

-0.0010 

0.0006 

- 

0.0167 

- 

-0.0004 

-0.0010 

0.0006 

f ESTIMATED 0.2049 

- 

0.2001 

0.2998 

- 

0.2066 

- 

0.1001 

0.2000 

0.3000 

- 

0.2073 

- 

0.1000 

0.2000 

0.3000 

a ESTIMATED 0.0099 

- 

0.0098 

0.0020 

- 

0.0087 

- 

0.0001 

0.0091 

0.0021 

- 

0.0065 

- 

0.0001 

0.0086 

0.0022 

Ms 5 92 5 280 7 393 
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It is noted that the estimates of the parameters for L equal to N/10 

worsen considerably, this is related to the fact that the Hankel matrix, 

imposing that value of L, is excessively reduced and does not allow a 

proper estimation of the signal components. 

 

Incidence of noise 
High noise levels could seriously affect the performance of the 

estimation algorithm, therefore a dedicated analysis must be 

performed to analyse the response with respect to different signal-to-

noise ratio levels. In particular, the results reported here refer to an 

addition of white Gaussian noise to the signal through a value of SNR 

= 50dB, a classic noise associated with the quantization of 

measurement instrumentation. 

The test will be carried out on the signal with M = 1,2,3, K and Tw 

variable and a L fixed at N/2. 

TEST 1) Signal with M = 1 

There is no relevant variation. For M = 1 the algorithm is robust 

against noise with an SNR = 50dB. 

TEST 2) Signal with M = 2 

The trend is shown in the Figure 4.68 and the estimated values are 

reported in Table 4.13. 

 

 
Figure 4-68 Signal trend with M = 2 and SNR = 50dB 
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Table 4.13 Estimated values for the synthetic signal with M = 2 and SNR = 

50dB 

 
 

For each value of K, the window equal to 20 s has only a small 

variation on the value of the damping, so, even for the signal with M 

= 2, the method can be considered robust against noise. 

TEST 3) Signal with M = 3 

The trend is shown in the Figure 4.69 and the estimated values are 

reported in Table 4.14. 
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Figure 4-69 Signal trend with M = 3 and SNR = 50dB 

 

 
Table 4.14 Estimated values for the synthetic signal with M = 3 and SNR = 

50dB 
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As can be seen from the data, higher noise results in a worse estimate 

of damping and sometimes also of frequency, while amplitude does 

not. 

In the vector of backward prediction coefficients B(z), the 

perturbations introduced by the noise can only be partially mitigated 

so, approximately, the higher the noise, the worse the estimate. 

The TK method, like any other method using a truncated SVD, only 

works well when the signal-to-noise ratio is above a certain threshold, 

in fact, below this, some singular values of the noise become larger 

than those of the signal. Thus, the singular values of the noise 

intervene in the calculation of the b-vector, which leads to a significant 

degradation of performance. This phenomenon is called the threshold 

effect. 

 

4.8.2 Kundur Test Network 
The two-area Kundur [19] test network is made as reported in Figure 

4.44. 

Despite having a limited extension, this system is able to simulate in 

detail what really happens in a real interconnected electrical system. 

The description of the control logic, incident on the parameters of 

voltage and frequency, is independent of the objective of this thesis, 

for it, in fact, refers to the scientific literature of reference [1]. 
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The equivalent representation of the test network in the Simulink 

environment is reported in the Figure 4.70. 

 

 
Figure 4-70 Simulink representation of the Kundur network 

 

In the Figure 4.71 is shown a zoom of the single area. 

 

 
Figure 4-71 Zoom of the single area 
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Disabling the PSS in the simulation creates an inter-area oscillation 

between area 1 and area 2; it is measured by measuring the voltage 

on the bus leaving area 1. In Figure 4.72 are the trends in the power 

transmitted from area 1 to area 2 and the speed of the generators. 

 

 
Figure 4-72 Trend of transmitted power 

 

The temporal evolution of these quantities reveals the danger that 

inter-area oscillations have on the network (Figure 4.73). 

 

 
Figure 4-73 Trend of the time of the generators speed 

 

From the measured voltage phasor, Figure 4.74, the phase for 
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calculating the supply frequency is derived. 

 

 
Figure 4-74 Simulink schema 

 

Therefore, the trends of the voltage taken, and the frequency acquired 

are reported (Figure 4.75). 

 

  

(a) (b) 

Figure 4-75 Trend over time of the effective value of the mains voltage (a) 

and (b) frequency 

 

As can be seen from the Figure 4.75b, the frequency reaches high 

damping values towards the end of the 80 s window; therefore, the 

results of the algorithm will definitely show damping values related 

to the last 20 s varied and unreliable. 

The used measurement procedure simulated the presence of a PMU 

capable of acquiring data with a sampling rate of 50 Hz. The time 

window analyzed has a duration of 80 s, and the sampled signal is 
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divided into four packets of 20 s each, in such a way as to use them as 

input to the TK aglorithm to estimate the parameters of the system's 

inter-area oscillation. The Kundur network [19], in fact, has an inter-

area oscillation characterized by a frequency of 0.64 Hz with a positive 

damping of σ = 0.13 1/s. The results obtained by varying K and L are 

shown in the Table 4.15 (the window and thus N were fixed at the time 

the signal was divided into packets). 

 
Table 4.15 Estimation of parameters on the Kundur network 

 
 

Also onthe Kundur network it is possible to say that the TK method is 

particularly valid for estimating the frequency. 
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4.8.3 Experimental Test 
The experimental test is carried out on two real signals acquired by 

the Italian WAMS system and supplied by Terna. 

Before giving an input signal to the TK algorithm, it must be properly 

treated. Initially, taking into account the different PMUs with the 

relative data provided by these, in the presence of the Not A Number 

(NaN) and therefore of impossibility for the PMUs to detect the 

information, the system responds by counting the NaN and if these 

are in greater number than 30 the examined PMU is excluded, 

otherwise a moving average interpolation of the held data is carried 

out, obviously leaving out the NaN results from the aforementioned 

PMU from this operation. At a later time, a Detrend operation is 

carried out: the 50 Hz one is subtracted from the measured 

frequencies. 

 

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −𝑚𝑒𝑎𝑛(𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 
 

Finally, to the frequencies detected by the PMUs, a numerical filter is 

applied that allows to discriminate the frequency between 0.1 and 0.4 

Hz. 

The tests on the first signal were carried out by imposing K equal to 

1, 5 and 7, varying the Tw window from 20 to 90 s and showing the 

difference with and without the application of a filtering action. Figure 

4.76 shows the results obtained by setting K = 1. 

In the graph at the window from 00:12 to 00:16, there is what is known 

as mode mixing: when there are two or more different modes of the 

same signal (to which as many close frequencies correspond) being 

composed in the time domain, it is difficult to distinguish the 

frequency components belonging to the different modes, resulting in 

alternating amplitudes in Figure 4.76. 

This phenomenon is also present in the case of non-filtering signal 

that are reported in Figure 4.79 for a Tw equal to 40 s. 

 



141 

 

 
Figure 4-76 Simulation with: K = 1, Tw = 20 and filter 

 

 
Figure 4-77 Simulation with: K = 1, Tw = 40 and filter 

 

The results for K = 5 are shown in Figure 4.78. 

 



142 

 

 
Figure 4-78 Simulation with Tw = 20, K = 5 and without filter. 

 

As can be seen from the Figure 4.78 without the action of the filter and 

with K placed equal to 5, a mode is identified that has an amplitude 

profile very similar to the real signal. 

To better understand the difference between the implementation of 

the filtered and unfiltered signal, the following tests are reported for 

a Tw = 40 s with the filtering action active and not (Figure 4.79). 

 

  

(a) (b) 

Figure 4-79 Simulation with: Tw = 40, K = 5 and (a) filter (b) without filter 

 

In the test in which the filter action is active (Figure 4.79a), more 

modes, and therefore more frequencies, are recorded than in the test 

in which this same action is absent (Figure 4.79b); this occurs because 

the filter response is not flat and enhances some frequencies. Since, 

from what we have learned, the filter could introduce dummy modes 
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and the algorithm turns out to be robust to noise, we prefer to show 

the results obtained without the filter action since they are considered 

satisfactory for the purposes of the paper. 

To complete the tests performed with K = 5, in Figure 4.80 the results 

are shown for a Tw = 90 s and without filter. 

 

 
Figure 4-80 Simulation with Tw = 90, K = 5 and without filter 

 

Having increased N and therefore the length of the window which is 

now equal to 90 s, in the Figure 4.76 there is the presence of more 

modes because, with K always equal to 5, it is cut in fact on a larger 

Henkel matrix, which is why the number of ways found is greater. 

Finally, the tests developed for K = 7 are reported in the Figure 4.81. 

In particular, the test performed for a window of 20 s with the action 

of the filter active is shown because in this case the presence of a high 

value of K allows to cut the fictitious frequencies introduced by the 

filter and to reach a satisfactory result. 
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Figure 4-81 Simulation with Tw = 20, K = 7 and with filter 

 

The tests are inserted without the action of the filter, for windows of 

20 and 40 s (Figure 4.82). 

 

 
 

(a) (b) 

Figure 4-82 Simulation with Tw = 20, K = 7 and (a) with filter (b) without 

filter 

 

Finally, the same tests were carried out on the second signal, but only 

the tests at K = 5 (Figure 4.83). and 7 (Figure 4.84) for the Tw = 20 s 

are reported as they are the ones that have reported the most 

significant results. 
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Figure 4-83 Simulation with Tw = 20, K = 5 and without filter 

 

 
Figure 4-84 Simulation with Tw = 20, K = 7 and without filter 

 

As can be seen in both Figures 4.83 and 4.84 from 11:00 onwards the 

amplitude trend would faithfully follow that of the signal if it were not 

for the presence of peaks due to either the lack of data from the PMU 
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or abrupt frequency variations; however, this figure does not appear 

to be worrying since the presence of these peaks will be mitigated 

when the signals from multiple PMUs are considered. The validity of 

this consideration is confirmed by the absence of the aforementioned 

peaks when the same signal is processed by the DMD algorithm, 

which, precisely, considers more PMU. 

All the results obtained come from the study of national data of a 

single PMU, however, in the future, it is planned to use the TK method 

on data from multiple PMUs in order to improve the estimation of the 

parameters of our interest. 
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Chapter  5 
 

5 Conclusions 
 

This thesis addressed the problem of real-time estimation of inter-area 

oscillations in power systems through the use of enabling technologies 

such as WAMS and advanced estimation methodologies. The 

occurrence of inter-area oscillations in modern power systems is quite 

common, especially at the European level. Therefore, following the 

recommendations of ENTSOE, the work done attempts to provide 

valuable support to the TSO in improving the monitoring of these 

phenomena by counteracting critical conditions while enhancing the 

possibility of very fast reactions. Such support consisted of defining an 

estimation algorithm that would be (i) highly accurate to increase the 

TSO's situational awareness of critical and non-critical inter-area 

oscillation phenomena, (ii) characterized by a low computational load 

and flexible enough to be implemented in the TSO's simulation 

platforms interfaced with WAMS, and (iii) highly robust against all 

potential situations encountered in routine operation. In the early 

stages of the research activity, we focused on the most widely used 

algorithms in the accredited scientific literature, coding them, 

implementing them in the simulation in the Italian TSO environment 

interfaced with WAMS, and proposing enhancement from the basic 

solution that would overcome some of the encountered limitations. In 

fact, the results obtained with real data made it possible to identify 

the strengths to be preserved and the downsides to be overcome. 

Single-channel algorithms (i.e., Huang Hilbert, Tuft Kumaresan), 

heuristic algorithms (Particle Swarm Optimization) and multi-

channel algorithms (Dynamic Mode Decomposition) were studied, 

implemented and tested to the purpose. 

The results showed that among the single-channel algorithms the one 

that is most accurate, even when the spectral components to be 

characterized are very close to each other in the frequency domain, is 

the Tukt Kumaresan (TK). In fact, the latter applied over long-period 

windows succeeds in describing the characteristics of the modes of 
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interest with good accuracy. The disadvantage of this type of solution 

is definitely being single channel and therefore not being able to give 

a system view to the room operator. For this reason, on this algorithm 

we will proceed with a multi-channel-like development so as to 

aggregate, downstream of the estimation of the individual TKs, the 

different characteristics by clustering the modes and allowing the hall 

operator to have under control and continuouslt monitori the state of 

the whole electrical system.  

The heuristic algorithm, Particle Swarm Optimitazion (PSO), even 

proposing an advanced version for overcoming some of the limitations 

it had in the basic version, continues to have an relevant limitation for 

this application, namely, the estimation error of signal characteristics 

increases with the number of unknowns (Amplitude, frequency, 

damping, phase) and the reduction of spectral resolution. For this 

reason, this type of algorithm has not been implemented on the TSO 

environments.  

The multi-channel algorithm, Dynamic Mode Decomposition (DMD), 

was implemented by proposing the dynamic order variant. The results 

obtained from the tests carried out both on simulated and actual data 

showed greater accuracy and the elimination of one of the main 

problems present in the basic version from the algorithm, namely 

mode mixing. In addition, the proposed solution has, especially during 

transients, the great advantage of focusing only on the excited mode. 

This provides greater accuracy for both monitoring and automatic 

oscillation contrast applications. Given the obtained results, this type 

of algorithm has been implemented on the TSO platform and still used 

by the real time room operator in continuous monitoring of the state 

of the whole Italian power system. 

In addition, all algorithms considered in this work were tested against 

some critical effects of wide-area communication networks, i.e., noise 

and data packet drop. The response of the developed algorithm, 

thanks to the characteristics of Mode Decomposition and the proposed 

damping calculation method, is also successful in these situations. 

A general activation criterion of Warning and Alarm has also been 

defined to ensure that the excitation of the inter-area oscillation is 

immediately intercepted by the operator to apply counteracting 

actions such as redispatching the generators, adjusting the link line 

flows, reducing the load and changing the network topology. 
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