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Abstract
Continuous gravitational waves (CWs) are promising signals targeted by the LIGO and
Virgo detectors; possible sources of this type of signals are spinning neutron stars with a
non-axisymmetric mass distribution. The "strength" of the signal depends on the ellip-
ticity, the physical parameter that quantifies the mass distribution asymmetry respect to
the rotation axis. According to the assumption and the knowledge of the source parame-
ters (sky position, rotation frequency parameters), different strategies can be adopted to
search for a CW signal. The simplest, but also the most sensitive strategy, is the targeted
search: measuring the electromagnetic emission of the source, as in the case of pulsars,
it is possible to infer with high accuracy the sky position and the rotation parameters.
So far, there is no evidence of a CW signal in LIGO and Virgo data. In this thesis,
I describe the last targeted search from the LIGO and Virgo Collaborations, using the
data from the observing run O3 and analyzing 236 known pulsars with three indepen-
dent analysis pipelines: the Bayesian pipeline, the F-statistic and the 5n-vector method.
Since there was no evidence of a CW signal, it has been possible to set 95% credible
upper limit on the amplitude and also on the ellipticity. For this Collaboration paper, I
contributed as analysts and in the editorial team.
Ensemble procedures can improve the detection probability for CW signals. In this the-
sis, I describe and test the 5n-vector ensemble method, a multiple test for the targeted
search of CW signals from a collection of known pulsars. This method significantly im-
proves the detection probability combining the results from individually undetectable
pulsars if few signals are near the detection threshold. I apply this procedure to the O3
dataset from the LIGO and Virgo detectors considering an ensemble of 223 known pul-
sars. I find no evidence of a signal from the ensemble and set 95% credible upper limit
on a global parameter for the ensemble and, assuming a common exponential distribu-
tion for the pulsars’ ellipticitites, 95% credible upper limit on the mean ellipticity. Using
two independent hierarchical Bayesian procedures, I find 95% upper limit of 2.7×10−9

and 1.8× 10−9 on the mean of the assumed exponential distribution for the 223 pulsars.
This results are more than one order of magnitude below the upper limit of a different
ensemble search where the authors considered a Bayesian procedure on an ensemble of
92 pulsars and data from the LIGO V6 science run.
Application of the 5n-vector ensemble method on the next observing runs will improve
the possibility to detect a CW signal from rotating neutron stars for the first time.
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Introduction
The LIGO and Virgo gravitational wave detectors have achieved historical discoveries
over the last seven years reaching the experimental detection of gravitational waves by
ground-based interferometers and initiating the new era of the gravitational wave as-
tronomy.
The first detection, GW150914 - on September 14, 2015 by the LIGO Hanford and
LIGO Livingston observatories - demonstrated the existence of binary stellar-mass black
hole systems and was also the first observation of a binary black hole merger.
The first confirmed multi-messenger counterpart to a gravitational wave observation
came instead with GW170817, a signal from a binary neutron star coalescence which
was accompanied by detection across the electromagnetic spectrum.
So far, the LIGO and Virgo detectors have detected 90 gravitational wave signals from
compact binary coalescences across the first three observing runs. These observations,
described in the third Gravitational-wave Transient Catalog (GWTC-3), explore the
most extreme conditions of spacetime and of matter testing the General Relativity at
the relativistic, strong-field regime and providing insights into the formation and evolu-
tion of black holes and neutron stars.
This thesis deals with a quite different and as-yet-undiscovered gravitational wave signal
type, defined by persistence and near-monochromaticity over long time scales, namely
continuous gravitational waves (CWs).
CWs are promising signals targeted by the LIGO and Virgo detectors; possible sources
of this type of signals are spinning neutron stars with a non-axisymmetric mass distri-
bution. The "strength" of the signal depends on the ellipticity, the physical parameter
that quantifies the mass distribution asymmetry respect to the rotation axis.
According to the assumption and the knowledge of the source parameters (sky position,
rotation frequency parameters), different strategies can be adopted to search for a CW
signal. The simplest, but also the most sensitive strategy, is the targeted search: mea-
suring the electromagnetic emission of the source, as in the case of pulsars, it is possible
to infer with high accuracy the sky position and the rotation parameters, which include
the source rotation frequency and the spin-down. The spin-down is the decrease of
the rotation frequency induced by the electromagnetic, and possibly gravitational wave,
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emission. Given the long-lived nature of CW signals, the signal can be integrated over
a long time duration to improve the signal-to-noise ratio.
At the source, the CW signal is almost monochromatic with the CW frequency that,
according to the considered emission model, is proportional to the rotation frequency.
At the detector, the CW signal has a frequency phase modulation due to the Doppler
effect for the relative motion between the source and the Earth (and other minor effects,
like the Einstein and Shapiro effect).
De-modulation techniques, as the heterodyne method, are useful for correcting pulsar
signals for the phase modulation caused by the spin-down/Doppler shift and hence to
precisely unwind the apparent phase evolution of the source. Once this correction has
been applied, a CW signal would become monochromatic except for the sidereal mod-
ulation due to the antenna patterns. This depends on the detector position on the Earth
and it is used by the 5n-vector method to define a detection statistic as well as to esti-
mate the signal parameters.
So far, there is no evidence of a CW signal in LIGO and Virgo data. The last targeted
search from the LIGO and Virgo Collaborations, using the data from the observing run
O3 analyzed 236 known pulsars using three independent analysis pipeline: the Bayesian
pipeline, the F-statistic and the 5n-vector method. Since there was no evidence of a CW
signal, it has been possible to set 95% credible upper limit on the amplitude and also on
the ellipticity.
This thesis tries to improve the detection probability for the targeted search of CWs
considering an ensemble of individually undetectable pulsars. In order to improve the
detection probability, since few signals are expected near the detection threshold, it may
be more desirable to consider the combined evidence for subsets of hypotheses. Indeed,
the proposed ensemble procedure, the 5n-vector ensemble method, defines a statistic of
ensemble T (k) as the partial sum of the statistics of single pulsar ranked for increasing
p-values. To control the look-elsewhere effect, the statistics T (k) must be considered
as the partial sum of order statistics; a Monte Carlo procedure is needed to reconstruct
both the noise and the signal distributions for each value of k.
Since the classical definition of the 5n-vector statistic follows a noise distribution that
depends on the analyzed pulsar, I propose a normalized definition of this statistic that
allows to rank pulsars according to the p-values. The proposed ensemble procedure is a
rank truncation method that selects the top ranking sources according to the significance
of the corresponding individual test.
Using the statistics T (k), I define a p-value for the ensemble as a function of k, that is a
p-value for the overall hypothesis of the presence of CWs from an ensemble of known
pulsars.
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In case of no detection, I describe a Bayesian procedure to set 95% credible upper limit
on a global parameter that describes the ensemble, and two independent hierarchical
procedures to return information about the population properties.
The goal of this PhD thesis is the design, implementation, test and application to O3
data of the 5n-vector ensemble method. The thesis is organized as follows.
Chapter 1 is divided in two parts. In the first part, I briefly introduce the General Relativ-
ity theory and describe the generation and emission mechanism of the CW radiation. In
the second part, I review the astrophysical and observational properties of neutron stars,
the possible sources of CWs, focusing on the theoretical reasons for a non-axisymmetric
mass distribution.
In Chapter 2, I introduce the general idea and the main features of the ground-based
interferometric detectors that allowed the first gravitational wave detection. In the last
Sections, I focus on the searches for CWs describing in detail the targeted search from
known pulsars. I review the main pipelines used for this search describing the latest
results by the LIGO and Virgo Collaborations.
In Chapter 3, I describe extensively the 5n-vector pipeline composed by the Band Sam-
ple Data framework - an optimized data framework for the CW search - and by the
5n-vector method. This pipeline has been developed in the last decade by the Rome
Virgo group; the contribution to this pipeline due to my research is the implementation
of the Doppler correction for sources in binary system and the characterization of a
different multi-detector extension that takes into account the different detectors’ noise
level.
Chapter 4 describes the 5n-vector ensemble method and the rank truncation method in-
troduced in this thesis to improve the detection probability. In the last Section, I describe
how to set upper limits on a global parameter of ensemble and also two independent hi-
erarchical procedures to return information about the population properties.
Chapter 5 shows the validation tests of the method and it is divided in three parts. In
the first part, I present different tests for the analysis of single pulsar using the 5-vector
pipeline. In the second part, I validate the ensemble procedure using a theoretical test
and also real data, considering hardware and software injections and highlighting weak-
nesses and strengths of the method. In the last part, analyzing different sets of injected
signals, I validate and test the upper limit procedures.
Finally, Chapter 6 shows the application and the results of the analysis of O3 data for
223 known pulsars considering three different ensembles. Since there is no evidence of
a CW signal, I report the results of the upper limits on the mean of the assumed expo-
nential distribution for the ellipticities. Different applications and future prospects are
also presented.





Chapter 1
Gravitational waves and pulsars
In this Chapter, I introduce the gravitational wave (GW) formalism and describe the
astrophysical properties of pulsars - spinning neutron stars detected mainly in the radio
band - that could be sources of a periodic GW radiation.
First, I start introducing the general concepts of General Relativity focusing on the lin-
earized formulation of the Einstein equations that entails a wave equations and a rela-
tively simple solution in a certain gauge condition.
Then, exploring the possible sources of GWs for ground-based detectors, I analyze how
non-axisymmetric spinning neutron stars can emit a GW radiation. Briefly reviewing the
astrophysical properties of neutron stars and pulsars, I analyze the theoretical sources
of the neutron stars’ non-axisymmetry and a theoretical upper limit for the amplitude of
the expected GW radiation.

1.1 Einstein field equations

In 1907, Albert Einstein realized that, as a consequence of the equality of inertial and
gravitational mass1, it is not possible to detect an external homogeneous constant gravi-
tational field in a freely falling system [1] and suggested that gravity is a property of the
space itself. In his paper of 1916 [2], Einstein showed that the gravitational field, the
distribution of matter/energy and the geometry of spacetime are intimately linked and
ruled by field equations.
This idea could be summarized with the words of the American physicist John Wheeler:
"Space acts on matter, telling it how to move. In turn, matter reacts back on space, telling
it how to curve" [3].

1This is the historical formulation of the equivalence principle, already present in the Philosophae
naturalis principia matematica written by Isaac Newton in 1686.
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6 Chapter 1. Gravitational waves and pulsars

The equations describing how matter generates gravity must have form [4]:

O(gµν) = kTµν , (1.1)

where O is a differential operator on the metric tensor gµν , k is a proportionality factor
and Tµν is the stress-energy tensor, that is the "geometric object" that must act as the
source of gravity [3, 5]. As a consequence of the equivalence principle, if there is
a local law of physics that is expressed in tensor notation in special relativity (SR),
then its mathematical form should be the same in a locally inertial frame of a curved
spacetime. It is the so called "comma goes to semicolon law"2 because if a law contains
derivatives in its special-relativistic form ("commas"), then it has these same derivatives
in the local inertial frame. To generalize to a curved spacetime, you need to replace the
partial derivatives with covariant ones ("semicolons") [4].
For this reason, since in SR the law of local energy-momentum conservation implies
that Tαβ,β = 0, in a curved spacetime and for any reference frame it reads [3]:

T µν ;ν = 0. (1.2)

The stress-energy tensor, on the right-hand side of the equation (1.1), is a symmetric,
divergence-free tensor. On the left-hand side of the equation (1.1), there is the "geomet-
ric object" that characterizes gravity and accordingly it must be:

• a second rank, symmetric, divergence-free tensor;

• it must vanish when spacetime is flat;

• it must be a measure of curvature, that is linear in the Riemann curvature tensor;

It can be demonstrated [1, 4] that the Einstein curvature tensor Gµν ,

O(gµν) ≡ Gµν = Rµν −
1

2
gµνR, (1.3)

is the only tensor that satisfies these conditions. Rµν is the Ricci tensor defined as:

Rµν = Rα
µαν (1.4)

that is by contraction of the Riemann tensor,

Rα
βµν = Γαβν,µ − Γαβµ,ν + ΓσβνΓ

α
σµ − ΓσβµΓ

α
σν (1.5)

2For the factor ordering problems in the application of "comma goes to semicolon law" see [3].
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where Γλµν is the Christoffel symbol defined as:

Γλµν =
1

2
gλα[gαµ,ν + gαν,µ − gµν,α] , (1.6)

whereas R is the scalar curvature,

R ≡ Rµ
µ . (1.7)

In component notation, the Einstein field equations, describing the generation of curva-
ture by mass-energy, are3:

Gµν = kTµν . (1.8)

The field equations in (1.8) are a system of ten coupled differential equations that have
to be solved for the ten components gµν when the source is given. These equations are
nonlinear, but from given initial data they determine future values of gµν , that is the
evolution of geometry. However, the ten components are not all independent.
The Bianchi identities,

Gµν
;ν = 0, (1.9)

are four constraints that reduce to six the independent components of gµν , that charac-
terize the geometry independently of the coordinates [4].
For the sake of completeness, in the following I describe the equation of motion for a
falling body [6]. For SR, the action for a free particle is given by:

A = −mc
∫
ds = −mc

∫ √
ηµνdxµdxν (1.10)

where ds is the line element that is the simplest scalar on the table. Using the variational
principle δA = 0, the equation of motion for a free particle in SR - that is the geodesic
equation in a flat spacetime - can be obtained. Because of the equivalence principle, the
generalized action becomes:

S = −mc
∫
ds = −mc

∫ √
gµνdxµdxν (1.11)

and the equation of motion derived from the principle of least action is

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 . (1.12)

3In this work, it is used the "Landau-Lifshitz Spacelike Convention", as in [3].
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For a flat spacetime, the Christoffel symbols vanish and the equation corresponds to the
equation for the geodesics in the Minkowski space. Indeed, the gravitational field is in
the second term of the equation (1.12), that is in the components of the metric tensor, as
has been said. The equation (1.12) is the geodesic equation for a curved spacetime and,
given the initial conditions on xµ and dxµ

ds
, its solution is uniquely determined.

1.2 Correspondence structure of General Relativity

When a new physical theory gives a better description or a more accurate explanation
of the same domain than an older theory - as in the case of GR - the unity of physics is
preserved by a network of correspondence principles. These principles link simpler and
older theory to more accurate and more sophisticated ones [3].
For example, Newtonian mechanics is recovered from SR when the considered veloci-
ties are negligible4 compared to the speed of light c.
Einstein’s GR theory has different limiting cases that depend on the chosen approxima-
tions. For example, the Newtonian limit is the limit of GR in the approximation of weak
field, low velocities and small pressures.
In the next Section, I describe in detail the weak-field limit, the so-called "linearized
theory of gravity".

1.2.1 The Linearized theory of Gravity

The Linearized theory of Gravity (LG) is the limit of GR for weak gravitational fields
[3], that is

gµν = ηµν + hµν |hµν | ≪ 1 . (1.13)

Note that the condition |hµν | ≪ 1 requires both the gravitational field to be weak and
in addition constrains the coordinate system to be approximately Cartesian. hµν is the
metric perturbation and, as it will be seen, entails the propagation of GWs.
In LG, the "smallness" of the perturbation means that only terms which are linear in
hµν are significant. As a consequence, indices are raised and lowered using the flat
metric ηµν . The metric perturbation hµν transforms as a tensor under Lorentz transfor-
mations, but not under general coordinate transformations [7]. Before proceeding, it is
important to focus on the gauge symmetry of GR. In facts, Einstein’s field equations are
invariant under general coordinate transformations. More precisely, given an arbitrary

4Specifically, the Galileo transformation laws are obtained from Lorentz transformation laws in the
limit c→ +∞ rather than in the limit v ≪ c (for a limit of small velocities but not newtonian, see [6]).
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diffeomorphism:
xµ −→ x′µ(x) (1.14)

the Einstein field equations do not change their form if the metric tensor transforms as:

gµν(x) −→ g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.15)

The group of general coordinate transformations is a symmetry group for Einstein’s
field equations, and it is said that GR is diffeomorphism-invariant 5.
Choosing a reference frame where the equation (1.13) holds, the invariance of GR is
broken. From a transformation of coordinates:

xµ −→ x′µ(x) = xµ + ξµ(x) (1.18)

using the equation (1.15), it follows that:

hµν(x) −→ h′µν(x
′) = hµν(x)− (∂µξν + ∂νξµ) . (1.19)

If the derivatives |∂νξ(x)µ| are of the same order of "smallness" as |hµν | (see equation
(1.13)), these slowly varying diffeomorphisms are a symmetry of linearized theory [9].
In the chosen reference frame, the Einstein equations can be analyzed by expanding in
the metric (1.13) and keeping terms to first order in hµν [7]. Because of the equation
(1.6), the Christoffel symbols are given by:

Γµνγ =
1

2
ηµδ(∂γhδν + ∂νhδγ − ∂δhνγ) , (1.20)

and the Ricci tensor is

Rµν = Rγ
µγν =

1

2
(∂γ∂νh

γ
µ + ∂γ∂µhνγ −□hµν − ∂µ∂νh) (1.21)

5It is important to underline the difference between invariance (a symmetry property of a set of equa-
tions) and covariance (a property of the formal apparatus used in a physical theory) [8]. For example, the
wave equation

∂2Φ

∂(x0)2
+

∂2Φ

∂(x1)2
+

∂2Φ

∂(x2)2
+

∂2Φ

∂(x3)2
= 0 (1.16)

is invariant under Lorentz transformations but not under general transformations. The equation (1.16) can
be rewritten in covariant form,

ηµν∂µ∂νΦ = 0. (1.17)

but, by no means has this cosmetics enlarged the invariance group of the equation (1.16) [8]. The pos-
sibility to write the wave equation in the form (1.17) does not automatically imply an invariance group
larger than the Lorentz one."Hence, GR invariance is not a fictitious property of Einstein’s equations, due
to the fact that they are usually written using tensors. On the contrary, it is a precise symmetry that shows
up most clearly when the equations are written down explicitly in coordinates" [8].
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where h = ηµνhµν and □ = ∂γ∂γ . Since the curvature scalar is now defined as R =

ηµνRµν , the Einstein tensor can be written as

Gµν = Rµν−
1

2
ηµνR =

1

2
(∂γ∂νh

γ
µ+∂

γ∂µhνγ−□hµν−∂µ∂νh−ηµν∂γ∂δhγδ +ηµν□h) .
(1.22)

This expression can be reduced defining a new perturbation tensor h̄µν as

h̄µν = hµν −
1

2
ηµνh (1.23)

whose trace is h̄ ≡ ηµν h̄µν = h − 2h = −h (trace-reversed perturbation). In this way,
the equation (1.23) can be inverted to give:

hµν = h̄µν −
1

2
ηµν h̄. (1.24)

Using the equation (1.24), all terms with the trace h are canceled in the Einstein tensor
Gµν and the Einstein field equations in LG become:

∂γ∂ν h̄
γ
µ + ∂γ∂µh̄νγ −□h̄µν − ηµν∂γ∂

δh̄γδ = +
16πG

c4
Tµν . (1.25)

Choosing an appropriate coordinate system (or gauge) this expression can be simplified
further6. Using the gauge freedom (1.19), it could be chosen the reference frame where
the Lorentz gauge condition7

∂ν h̄µν = 0 , (1.26)

is verified. To prove that it is possible to use this gauge, suppose that our metric pertur-
bation is not in Lorentz gauge. In terms of the trace-reversed perturbation, the equation
(1.19) becomes:

h̄′µν = hµν − (∂µξν + ∂νξµ)−
ηµν
2

(h− 2∂γξγ)

= h̄µν − (∂µξν + ∂νξµ − ηµν∂
γξγ)

(1.27)

where h′ ≡ ηµνh
′
µν = h− 2∂γξγ and therefore

∂ν h̄µν =⇒ ∂ν h̄′µν = ∂ν h̄µν − (∂ν∂µξν + ∂ν∂νξµ − ∂µ∂
γξγ)

= ∂ν h̄µν −□ξµ .
(1.28)

6Gauge transformations in GR are just coordinate transformations [7].
7"Lorentz gauge" derives its name from the electromagnetism, but it is a misprint because in electro-

magnetism, there is the "Lorenz gauge". However this misprint is universally into use [9].
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Any metric perturbation hµν can be put into a Lorentz gauge by making an infinitesimal
coordinate transformation that satisfies:8

□ξµ = ∂ν h̄µν (1.29)

In the Lorentz gauge, the Einstein field equations in LG are:

□h̄µν = −16πG

c4
Tµν . (1.30)

In vacuum, where Tµν = 0 this equation admits a class of homogeneous solutions which
are superposition of plane waves [7]:

h̄µν = Re
{∫

d3k Aµν(k) exp(ik·x)
}

(1.31)

with k = (ω/c,k), where k is the wave vector and ω/c = |k|.
Physically, the approximations implicit in the LG implies that the sources of GWs are
taken to move in flat spacetime, along the trajectories described by Newtonian gravity.
The response of test masses to the GWs generated is rather computed using the relation
(1.13) and neglecting terms not linear in the perturbation metric when evaluating the
Christoffel symbols or the Riemann tensor [9].

1.3 The transverse-traceless gauge

To study the propagation and the interaction of GWs, it is useful to analyze the equation
(1.30) in vacuum [9].
In the last Section, I used the Lorentz gauge to simplify the Einstein field equations
in LG. For the coordinate transformation in (1.15), the components h̄µν transform ac-
cording to the equation (1.19), but there could be another coordinate transformation (or
residual gauge freedom)

xµ −→ x′µ(x) = xµ + pµ(x) (1.32)

with the condition:
□pµ = 0 . (1.33)

8Since □ is an invertible operator, the equation (1.29) always admits solutions using the Green func-
tion method.
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If this condition holds, then □pµν = 0 where

pµν = ∂µpν + ∂νpµ − ηµν∂
γpγ (1.34)

Subtracting the functions pµν from the six independent components hµν , the Einstein
field equations in vacuum

□h̄µν = 0 (1.35)

do not change. It means that, choosing opportunely the four functions pµ, there are only
two independent components as in the case of the Electromagnetic Theory.
In the transverse-traceless (TT) gauge the pµ are chosen to have h̄ = 0 and h̄0i = 0. For
these conditions, it follows that h̄µν = hµν . In conclusion, in the TT gauge the following
relations hold considering also the Lorentz gauge:

h0µ = 0 hii = 0 ∂jhij = 0. (1.36)

Considering a single plane wave9, the components of the metric in the TT gauge hTTij
can be written as:

hTTij (t, z) =

h+ h× 0

h× −h+ 0

0 0 0


ij

cos[ω(t− z/c)] (1.37)

where n = k/|k| is the direction of propagation that it is chosen along the z axis.
h+ and h× are called the amplitude of the "plus" and the "cross" polarization and are
two independent waveforms of the GW [7].
The TT gauge conditions fix completely all the local gauge freedom, simplify greatly
the Einstein equation and lead to a transverse and traceless metric tensor.

1.4 The generation of GWs

Since the Einstein equations in the Lorentz gauge in (1.30) are linear in the hµν compo-
nents, it can be solved using the method of Green’s function [9]. As in the case of the
Electromagnetic Theory, using a retarded Green’s function, the appropriate solution is:

h̄µν(t, x) =
4G

c4

∫
d3x′

Tµν(t− |x−x′|
c
, x′)

|x − x′|
. (1.38)

9The TT gauge works only in vacuum, not for example inside the source of GWs.
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This solution can be evaluated in vacuum and also in the TT gauge, using the Lambda
tensor.
The GW in the TT gauge is defined in terms of the spatial components of the hµν :

hTTij = Λij,klh
kl (1.39)

where the components of the Lambda tensor are defined as (n̂ is the propagation versor):

Λij,kl(n̂) = PikPjl − PijPkl with Pij(n̂) = δij − ninj (1.40)

If the detector is at distance r, much larger than the typical dimension d of the source
and in the case of a non relativistic source, the following approximations hold:

|x − x′| ≃ r − x′ · x̂ with x̂ =
x
r
≡ x

|x|
, (1.41)

λ̄ ≡ c

ω
∼ c

v
d≫ d (1.42)

where v is the typical velocity within the system [1] and ω the GW frequency. The re-
lation (1.42) implies that the typical velocities inside the source are small compared to
the speed of light. In this limit of "small velocities" and large distance from the source,
it is possible to perform a multipole expansion for the stress-energy tensor [7]. This
expansion can be written in terms of the momenta of the T00 energy density using the
energy-momentum conservation [9].
The emission of radiation is governed by the lowest multipole moments and at the lead-
ing order,

hTTij (t, x) =
2G

c4
Λij,kl(n̂)

r
M̈kl(t− r/c) . (1.43)

where Mkl is:
Mkl(t, x) =

1

c2

∫
d3xT 00(t, x)xkxl (1.44)

In the non relativistic limit, the mass density is ρ(t, x) = T00/c
2 and in terms of the

quadrupole tensor10

Qij ≡M ij − 1

3
δijMkk =

∫
d3x ρ(t, x)

(
xixj − 1

3
r2δij

)
. (1.46)

10More precisely, Qij is the reduced quadrupole moment linked to the quadrupole moment,

qij =

∫
dx3 ρxixj , by the relation: Qij = qij − 1

3
δijq . (1.45)
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It follows that the equation (1.43) is:

hTTij (t, x) =
2G

c4
Λij,kl(n̂)

r
Q̈kl(t− r/c) , (1.47)

since Λij,klMkl = Λij,klQ
kl. Considering n̂ ≡ ẑ and therefore the consequent expression

for the Lambda tensor, the two polarization amplitudes are:

h+(t, x) =
G

c4
Q̈11 − Q̈22

r
(1.48)

h×(t, x) =
2G

c4
Q̈12

r
. (1.49)

where the right-hand side is computed at the retarded time t− r/c.
The factor 2G/c4 ∼ 8 · 10−50s2/g cm in the equation (1.43), entails that the ampli-
tude of GWs is very weak unless the quadrupole deformation is very strong. The only
interesting sources of GWs will be those which have very large masses undergoing ex-
tremely rapid variation; even in this case, the expected strain from typical sources is tiny.
The smallness of GWs reflects the fact that gravity is the weakest of the fundamental
interactions [7].

1.5 GWs sources overview

As previously mentioned, asymmetries in the shape and/or in the motion of the source
are necessary conditions for generating a GW radiation. Specifically, in the equation
(1.47), the second time derivative of the quadrupole tensor components of the stress-
energy tensor must be non-zero.
According to Figure 1.1, it is useful to categorize GW sources (and the methods for
detecting the emitted waves) by the frequency band in which they radiate [7]. Broadly
speaking, the GW spectrum can be divided in different frequency bands: a very low
frequency band 10−18 Hz < f < 10−7 Hz, a low frequency band 10−7 Hz < f < 1Hz
and a high frequency band 1Hz < f < 104 Hz.
In this Section, I describe briefly the "high frequency" band that is targeted by the
ground-based laser interferometric detectors. The interferometric method is described
in Section 2.2.
The lower limit of the "high frequency" band is set due to the gravitational coupling
of ground vibrations, human activity, and atmospheric motions with the test masses [7,
11] of the interferometric detectors while the high end is set by astrophysical reasons.
Indeed, it is unlikely that any interesting GW source radiates at frequencies higher than
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Figure 1.1: A review of potential sources linked to the frequency (in Hz) of the GW emitted
and to the relevant detectors. Credit to [10].

a few kHz that means relatively low masses (≲ M⊙, solar masses). In this mass range,
there are no known theoretical or observational indications of gravitationally collapsed
objects [7].
In the next paragraphs, I briefly describe the possible sources of GW radiation for
ground-based detectors.

Coalescing compact binaries Binary stars systems in which each member is a neu-
tron star or black hole are referred as compact binaries. The coalescences of compact
binaries are currently the best known sources of GWs. This kind of signal has short
duration (fraction of second) and a well defined signature [12] that can be divided in
three different phases.
The inspiral phase is the first phase of the coalescence; over thousand years, the binary
system progressively move to smaller and closer orbits, increasing their speed. The
signal looks like an oscillating function, whose amplitude and frequency oscillation are
increasing with time, dissipating orbital energy.
The merger phase is characterized by the strongest GW emission, because the collision
of the two objects, once they get close enough, occurs. As a result, the newly-forming
object experiences a large distortion in its own shape, which gradually vanishes during
the ringdown phase.
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The typical strain amplitude of a GW from a compact binary, estimating the quadrupo-
lar moment for a binary system [13] and assuming typical values for the masses and
distance from the Earth, is of order of 10−21 at a frequency of 100 Hz.
The first detection of GWs by ground-based detectors, GW150914 [14], was the detec-
tion of a binary black holes merger at a luminosity distance of 410 Mpc with estimated
black hole masses, in the source frame, of 36 M⊙ and 29 M⊙, and the final black hole
mass of 62 M⊙. The era of GW astronomy began with this detection.

Burst GWs Burst GWs come from short-duration unknown or unanticipated sources
with a not so well defined signature. Likely sources could be supernovae or γ ray burst,
which are transient astrophysical events [15].
Stellar collapse certainly exhibits all of the necessary conditions for strong GWs gener-
ation, that is large amounts of mass flowing in a compact region at relativistic speeds.
However, these conditions are not sufficient to guarantee strong emission since the de-
gree of asymmetry in collapse is not particularly well understood. Too little information
about these systems are available up to now, but instabilities occurring during the col-
lapse of the inner core of the star could lead to fragmentation of the stellar material in
numerous components, which might reveal as a strong source of GWs.

Stochastic GWs Stochastic backgrounds are “random” GWs, arising from a large
number of independent, uncorrelated sources that are not individually resolvable. A par-
ticularly interesting source of stochastic waves is the dynamics of the early Universe,
which could produce an all-sky GWs background, similar to the cosmic microwave
background even if with amplitude relatively small. These waves can extend over a
wide range of frequencies; waves from inflation in particular span all bands, from very
low frequency to high frequency [7] (see Figure 1.1).
Because of their random nature, stochastic GWs look just like noise. Supposing sta-
tionary, isotropic and homogeneous stochastic GWs, ground-based detectors measure
stochastic backgrounds by comparing data at multiple sites and looking for “noise” that
is correlated.

Continuous GWs Periodic sources of GWs radiate at constant or nearly constant fre-
quency. The prototypical source of continuous GW (CW) is a spinning neutron star.
The search of CW radiation is the main topic of this thesis.
In the next Subsection, I analyze how a spinning triaxial body can generate GW radia-
tion if non-axisymmetric respect to the rotation axis. In the remaining Sections of the
Chapter, I review the neutron stars as astrophysical objects focusing on pulsars and on
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Figure 1.2: A representation of an ellipsoid with semi-axes a, b and c, rotating around the z
axis.

the physical mechanisms that allow a GW emission.

1.5.1 Generation of GWs from a triaxial body

As previously mentioned, spinning neutron stars could be interesting sources of periodic
GW radiation.
The production of GWs of these astrophysical objects can be deduced by using the
equations (1.48) and (1.49). In this Section, I describe the approximated but illustrative
case of a rigid body which rotates around one of its principal axes.
Considering the constant density ellipsoid in Figure 1.2; a, b and c are the semi-axes, ρ
the density, V = 4/3πabc the volume whereas ẑ = x̂3 is the direction of rotation with
angular velocity ω = (0, 0,Ω).
In the reference frame {x′i} co-rotating with the ellipsoid, the inertial tensor is diagonal:

I ′ij =

I1 0 0

0 I2 0

0 0 I3

 =
M

5

b2 + c2 0 0

0 c2 + a2 0

0 0 a2 + b2

 (1.50)

since the inertial tensor is defined as:

I ′ij =

∫
V

d3x ρ(x⃗)(r2δij − xixj) with r2 = (x′1)
2 + (x′2)

2 + (x′3)
2 . (1.51)
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In the inertial frame {xi}, the inertial tensor components are:

Iij =

 I1 cos
2(Ωt) + I2 sin

2(Ωt) − sin(Ωt) cos(Ωt)(I2 − I1) 0

− sin(Ωt) cos(Ωt)(I2 − I1) I1 cos
2(Ωt) + I2 sin

2(Ωt) 0

0 0 I3

 (1.52)

because the two frame are related by the rotation matrix

Rij =

cos(Ωt) − sin(Ωt) 0

sin(Ωt) cos(Ωt) 0

0 0 1

 (1.53)

and the following relations hold:

xi = Rijx
′
j , Iij = RikRjlI

′
kl . (1.54)

The quadrupolar moment is linked to the inertial tensor by the relation:

Qij = −(Iij −
1

3
δijTr(I)) = −Iij + const (1.55)

since the trace of a tensor is invariant under rotation, that is Tr(I) = I1+I2+I3 = const.
For this reason, the components Qij can be written as:

Qij(t, x) =
I2 − I1

2

cos(2Ωt) sin(2Ωt) 0

sin(2Ωt) − cos(2Ωt) 0

0 0 0

+ const (1.56)

using the relation cos(2Ωt) = 2 cos2(2Ωt)− 1 where all the constant terms are included
in const. Using equations (1.48) and (1.49), it is easy to show that the GW polarization
amplitudes received by an observer at a distance r, whose line-of-sight makes an angle11

i with the direction of rotation of the star, is12:

h+(t, x) =
1

r

4GΩ2

c4
(I1 − I2)

1 + cos2(i)

2
cos[2Ω(t− r/c)] (1.57)

11Equations (1.48) and (1.49) are obtained in a frame where the GW propagates in the ẑ = x̂3 direction.
In a general frame, the component Q′

ij are linked to the components in (1.46) by the general relation
Q′

ij = RikRjlQkl where the rotation matrix R is completely defined when the usual transformation
angles ϑ, ϕ are known (in (1.57), ϑ = i and ϕ = 0) .

12"Recall that h+ and hx are defined in terms of the components of hij in the plane transverse to the
propagation direction. Therefore these are "the" polarization amplitudes, and are denoted by h+ and hx ,
rather than h′+ and h′x" [9].
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h×(t, x) =
1

r

4GΩ2

c4
(I1 − I2) cos(i) sin[2Ω(t− r/c)] . (1.58)

It is useful to introduce the ellipticity ϵ = (I2 − I1)/I3, that in the limit of small asym-
metry a ≃ b becomes:

ϵ ≃ b− a

a
, (1.59)

and the GW frequency fgw = Ω/π.
The polarization amplitudes can be rewritten as:

h+(t, x) = h0
1 + cos2(i)

2
cos[2πfgw(t− r/c)] (1.60)

h×(t, x) = h0 cos(i) sin[2πfgw(t− r/c)] . (1.61)

where h0 is:

h0 =
16π2G

c4
f 2
rotϵI3
r

(1.62)

and frot = Ω/2π is the rotation frequency.
The analyzed model entails a periodic GW radiation with frequency that is twice the
rotation frequency of the star fgw = 2frot.
Different models [16], for example considering a precessing rigid body ("wobbling"
stars), imply a dual-harmonic emission, i.e a GW radiation both at once and twice the
rotation frequency. A different mechanism described in [17] that entails a dual-harmonic
emission without a modulation of the observed radio emission, assumes a pinned super-
fluid component with a misaligned rotation axis within the star.
More complex emission models exist (see [18] for a complete discussion) and the emis-
sion may happen on more than two harmonics. In general, it can be assumed that the
GW frequency fgw is proportional to the rotation frequency frot and also to the preces-
sion frequency fprec by

fgw = k(frot + fprec) (1.63)

(as shown in this Section, if fprec = 0, k = 2). Typically, the complex models discussed
above are not considered in real searches since the relation in (1.63) dramatically com-
plicates the signal waveform to be searched for.

1.6 Spinning neutron stars as possible CW sources

As shown in Section 1.5.1, non-axisymmetric spinning rigid body can generate a con-
tinuous GW radiation. This kind of signal is referred as "continuous waves" since their
lifespan is expected to be longer than the observation period of experiments.
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Canonical CW sources for ground-based detectors are Galactic, non-axisymmetric, spin-
ning neutron stars both in accreting systems or as isolated sources. Different exotic sce-
narios, as bosons clouds surrounding a fast spinning black hole [19], or CW-like signals
potentially induced by dark matter candidates [20], will not be discussed here.
First theorized by Baade and Zwicky [21] in 1934, the observational evidence of a neu-
tron star came with the discovery of the first radio pulsar in 1967 [22] by Hewish and
Bell. They observed a very regular, clock-like, pulsing radio signal - from which the
name pulsar - at a particular sky position. The identification of pulsars with neutron
stars is due to Pacini and Gold [23]; rotating neutron stars are responsible for the ob-
served pulsating radio signals. This explanation was confirmed by the discovery of the
Crab and Vela pulsar in 1968 at the heart of supernova remnants.
The analysis of the time of arrivals of the pulses in the Hulse-Taylor binary system, dis-
covered in 1974 [24], showed that neutron star binary system looses energy due to GW
emission [9]. This was the first indirect evidence of the existence of GWs.
In general, isolated neutron stars can emit GWs due to two main processes: normal
modes of oscillation of the fluid core or crustal deformations of the star. In this Section,
I consider only the second process of emission where the neutron star is not a simple
fluid (see [16] for a review of normal modes emission) but can instead support some
sort of strain (see Subsection 1.6.2).
The relation in (1.62) for the expected amplitude can be used to estimate the typical
CWs amplitude. Most of the parameters in (1.62) can be constrained by astronomical
observations (for example, measuring the radio signal from pulsars), except for the el-
lipticity ϵ that characterizes the degree to which the star is distorted. For example, for a
Galactic source (distant from Earth a few kpc) assuming a rotation period of the order
of a few ms, a typical value of the neutron star moment of inertia13 of 1038 kg · m2 and
ellipticity as small as 10−6, h0 in (1.62) can be parametrized as:

h0 ≃ 10−27

[
fgw

100Hz

]2 [
10 kpc
r

] [
I

1038 kg · m2

] [ ϵ

10−6

]
. (1.64)

The expected amplitude is several orders of magnitude lower than the one expected by
binary coalescences. Measuring CW radiation requires coherently tracking the signal
for a large number of wave cycles since they are periodic sources.
It is clear the the expected amplitude depends on the parameter ϵ, that is poorly under-
stood and linked to the unknown neutron star equation of state. As described in Section
2.7, CWs searches by ground-based detectors can constrain the value of ϵ for known

13Neutron stars have typically a radius R ∼ 10 km and a mass M ∼ 1.4M⊙; it follows that I ∼
2MR2/5 ∼ 1038Kg · m2.
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pulsars.
In the next Sections, I briefly describe the neutron star formation, structure and popula-
tion analyzing also the theoretical reasons for a non-axisymmetric structure that could
generate a CW emission.

1.6.1 Neutron star observables, structure and population

Neutron stars are the final states of stars with mass between 10 and 25 M⊙, too mas-
sive to form white dwarfs and too light to form black holes upon collapse after fuel
consumption. The formation of a neutron star could happen mainly [25] due to core-
collapse supernova explosions but also after a binary neutron star merger.
It is thought that neutron stars have a crust with outer radius between 10 and 15 km and
a thickness of almost 1 km [16], composed near the top of a tight lattice of neutron-
rich heavy nuclei, permeated by neutron superfluid. Deeper in the star, as pressure and
density increase, the nuclei may become distorted and elongated, forming a “nuclear
pasta” of ordered nuclei and gaps [26]. Still deeper, the pasta gives way to a hyperdense
neutron fluid and perhaps undergoes phase transitions.
As a result of the collapse with the reduction of the outer surface of the star, it is expected
that neutron stars have strong magnetic fields ranging from 108 G to 1015 G [27]. The
strongest magnetic fields can be observed in some young neutron stars, the so-called
magnetars.
The neutron star matter equation of state (EOS) [28] directly reflects on the star’s ob-
servable global parameters such as the mass and the radius. To set constraints on the
EOS of isolated neutron stars, both mass and radius should be measured, and some as-
sumptions on the pulse profiles should be made. Indeed, due to the high density and the
strong conditions, the EOS is not experimentally accessible in terrestrial laboratories.
Neutron star masses are typically measured from pulsar observations, while radius mea-
surements are more challenging and strongly depend on the X-ray emission model as-
sumed. The neutron star measured masses lie in the range 1 ÷ 2 M⊙ [29]. Estimates
of the radius can be made only indirectly, for instance, by combining the measured flux
and temperature with the source distance. According to latest results [29, 30], neutron
star radii should be in the range 9÷ 13 km.
The detection of the first neutron star merger event GW170817 by LIGO and Virgo [31],
followed by the gamma-ray burst GRB170817 [32], and the optical transient signal of
a kilonova AT 2017gfo [33], provided a new tool for neutron star mass and radius esti-
mates [34] and hence, for the EOS analysis. Future detection of neutron star merger in
the coming observing runs will provide new constraints on the neutron star EOS.
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Form supernovae observations, the expected number [35] of neutron stars in our galaxy
is up to 108÷9; only a small fraction, almost 103, has been detected as pulsars (see Sec-
tion 1.7). Other neutron stars can be detected [36] from X-ray thermal emission or from
accretion in binary system, as in the case of low-mass X-ray binary.

1.6.2 Potential sources of neutron star non-axisymmetry

As shown in Subsection 1.5.1, if a neutron star is not perfectly axisymmetric it emits
GWs, with the GW frequency proportional to the rotation frequency.
If the GW emission mechanisms are well understood (see e.g. [37]), the actual factors
that cause the asymmetry in neutron stars are still under debate. The asymmetry respect
to the rotation axis is traditionally [38] ascribed to crustal deformations or to the pres-
ence of a strong inner magnetic field not aligned with the star’s rotation axis.
Crustal deformations, or in other words "mountains" on the neutron stars surface, can
create a time-varying quadrupole on a neutron star. "The idea is that the crust can sustain
a “mountain” on the neutron star in much the same way as the terrestrial crust sustains
mountains on Earth" [39].
Models of the neutron stars crust [16] provide evidence for a maximum value of the
ellipticity that the crust can support:

ϵ < 2× 10−5
(µbreak

0.1

)
(1.65)

where µbreak is the maximum stress that the crust can support, normalized to the shear
modulus (value of 0.1 is much larger of any terrestrial material). It is clear that the
obtained maximum value strongly depends on the assumed EOS and on the breaking
strain of the crust.
It is known, already in [40] by Chandrasekhar and Fermi, that magnetic fields induce
quadrupolar deformations on spherically symmetric stars. In other words, mountains
can also be supported by the strong magnetic field of the neutron star, which deforms
the spherical shape of the star.
The expected deformation due to magnetic field strongly depends on the magnetic field
morphology and on the assumed EOS (see e.g. [39]). For example, if the magnetic field
is purely poloidal [16],

ϵ ≈ 10−12

(
B̂

1012G

)2

(1.66)

where B̂ is the average magnetic field. In contrast, a toroidal magnetic field induces a
smaller value and also a prolate deformation. The estimated ellepticity depends again
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by the EOS used and can vary almost one order of magnitude [41] among the different
proposed models.
In binary systems, quadrupolar deformations can be present in accreting neutron stars
also due to temperature gradients in the accreted crust (the so-called "thermal moun-
tains"). Indeed, as the matter accretes, it is buried and compressed until nuclear reac-
tions occur (electron capture, neutron emission, etc.). These reactions heat the crust,
and since the accreted matter is expected to be asymmetric, the temperature gradient
produced by nuclear reactions is also asymmetric, giving rise to quadrupolar deforma-
tions in the neutron star [37].
As described in [16], a possible value for the typical ellipticity in young neutron star
should be of the order of 10−7; since ϵ ≈ ∆R/R (see (1.59)) detecting a GW radiation
due to ϵ ≈ 10−7 means to detect the effect of a deformation, or mountain, with a height
of few millimeters for radius R = 10 km.

1.7 Pulsars: lighthouses in space

Most of the neutron stars in the Galaxy has been detected as pulsar, spinning neutron
stars characterized by a periodic radio emission (but also detected in the X-ray and
gamma-ray band) and a strong dipole magnetic field. Even though the word pulsar is a
combination of "pulse" and "star," pulsars are not pulsating stars; their radio emission
is actually continuous but the magnetic axis is tilted respect to the rotation axis.
During the rotation, the pulsating radiation is detectable every time one of the conical
beams produced by the magnetic field crosses the field of view of the observer. Since
the pulse periods (typically from a few milliseconds up to ten seconds) equal the rota-
tion periods of spinning neutron stars, they are quite stable. This is the lighthouse (or
rotating dipole) model for the electromagnetic pulsar emission (see Figure 1.3).
To date (ATNF Catalogue v1.6714), more than 3000 pulsars are known in our Galaxy.
This is expected to be a small part of the pulsar population due to strong selection ef-
fects. First, the flux density can not be detected beyond few kpc for the current radio
telescope sensitivities. Then, there is also a beaming effect since we can detect pulsars
only if the radio beam intercept our line of sight. It is estimated that, with the SKA
(Square Kilometer Array) project fully operational, the current known population of
pulsars will grow tenfold [42].
The radio emission originates in the magnetosphere and can be explained by the polar
cap model. Since the Lorentz force vastly exceeds the gravitational force, charged par-

14http://www.atnf.csiro.au/research/pulsar
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Figure 1.3: Representation of the dipole magnetic field configuration around a pulsar. The
magnetic axis is not aligned with the rotation axis and thus electromagnetic beams can be ob-
served as pulses with regular rotation periods. The light cylinder, outlined in dashed green, is
the radius out to which the co-rotation speed of the magnetic field approaches the speed of light.
Credit to [43].

ticles flow freely along the magnetic field lines, forming a magnetosphere co-rotating
with the neutron stars. Co-rotation is limited by relativity to the light cylinder (Fig-
ure 1.3), where the field lines are closed. Modelling of the magnetosphere is difficult,
but charges should flow until the Lorentz force is balanced by an electric force. Re-
gions in the magnetosphere where this force-free state cannot be maintained are called
‘gaps’. One of these is above the (magnetic) polar cap, where a depleted concentration
of charges results in a net force on a charge. Gamma ray photons from these accel-
erating charges interact with the magnetic field to generate electron/positron pairs and
a cascade of radiation and particles close to the surface of the neutron star. The pair
cascade is thought to generate the coherent15 emission detected as radio waves.
Radio pulsars can exhibit several timing irregularities, as in the case of the so-called
glitches. While most objects are observed to steadily spin-down due to the emission
of electromagnetic waves (and, possibly, also GWs), many pulsars show glitches, that

15The particles emit coherently at low frequencies, in the sense that N particles radiate N2 times the
power per individual particle. Coherent emission explains the much greater apparent brightness pulsar
temperature respect to what is achieved by random processes.
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is sudden, impulsive increases in their spin in some cases followed by an increase in
their spin-down rate [44]. The exact mechanism driving a glitch is not fully understood,
although it is clear that a sudden transfer of angular momentum occurs between the
rapidly rotating superfluid interior and the outer crust.

1.7.1 The spin-down and the P − Ṗ diagram

It is observed that the pulse period (and hence, the rotation period) from known pulsars
increases. For example, in 1969 using few months of data, it was already observed the
uniform increase of the period P for the Crab pulsar at a rate of about 34 ns/day, i.e.
Ṗ ≈ 4.2× 10−13.
A phenomelogical model for the pulsar spin-down is a power law:

ḟ = Kfn (1.67)

where f is the rotation (or gravitational) frequency, ḟ the first time derivative and K, a
negative constant. The exponent n is the braking index and can be deduced assuming
a certain spin-down mechanism. For example, if the spin-down is entirely due to the
magnetic dipole radiation, it follows that n = 3 while if the increase in the rotation
period is due to the emission of GWs, n = 5.
From the power-law model (1.67), the second derivative is:

f̈ = −nKfn−1ḟ (1.68)

and from this relation, it follows that:

n =
ff̈

ḟ 2
(1.69)

The measurement of the spin-down parameters for known pulsars can be used to con-
strain the braking index.
Assuming the same power law has applied since the birth of the star, the characteristic
age τ of the star can be related to its birth rotation frequency f0 and current frequency
f by:

τ = −
[

f

(n− 1)ḟ

] [
1−

(
f

f0

)]
(1.70)

and in the limit f ≪ f0,

τ ≈ −
[

f

(n− 1)ḟ

]
(1.71)
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Figure 1.4: P − Ṗ scatter plot for known pulsars with counter plots for constant values of
the characteristic age, magnetic field strength and spin-down luminosity. Rotating Radio Tran-
sients (RRATs) are pulsars that sporadically emit single pulses instead of continuous pulse trains.
Credit to [47].

For the Crab pulsar, the characteristic age τ assuming a magnetic dipole radiation
(n = 3) is τ ≈ 1240 yr since P ≃ 33 ms and Ṗ ≃ 4.2 × 10−13; while considering
the measured [45] breaking index n ≃ 2.515, τ ≈ 1600 yr. These estimates are in
agreement with the supernova explosions associated to the Crab pulsar of AD 1054.
Measured braking indices inferred from frequency derivatives of known pulsars are typ-
ically ranging between 2 and 3, although several have large uncertainties. These mea-
surements suggest that the model of a neutron star spinning down with constant mag-
netic field is, most often, inaccurate.
Several mechanisms that entail braking indices below 3 have been proposed [46]. How-
ever, it is also clear that for many pulsars a phenomenological model with time-independent
K and n is not realistic due to possible magnetic field decay or glitches.
The properties of pulsars population are well summarized in the scatter diagram (Figure
1.4) of all known pulsars in the P − Ṗ (period-period derivative) plane [47]. Indeed,
P and Ṗ return some indication of the age, magnetic field and luminosity of the pulsar.
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From (1.71), the characteristic age τ ∝ P/Ṗ , while it can be shown [16] that the mag-
netic field B ∝ (PṖ )1/2 and the spin-down luminosity L ∝ Ṗ /P 3.
Young pulsar, born on supernova explosion as the Crab pulsar, appears in the upper-left
corner (short period) of the P − Ṗ diagram. Then, they gradually move to the right and
down (for the spin-down), along lines of constant magnetic field and crossing lines of
constant characteristic age.
Pulsars with characteristic ages < 105 yr are often found in or near recognizable su-
pernova remnants while older pulsars are not, either because their supernova remnants
have faded to invisibility or because they escaped for high kick velocities.
Most of the pulsars are in the region of periods between 0.1 and few seconds and Ṗ
values between 10−13 and 10−17.
A clear separate population is in the lower left corner, for the so-called millisecond (or
recycled) pulsars, and in the upper right corner for the magnetars. Millisecond pulsars
are old pulsars with short rotation periods spun-up by accretion from a binary compan-
ion.
There is a clear absence of pulsars in the lower right of the diagram, to the left of the
"death line" where the radio emission is predicted to shut off. Indeed, due to the low
rotation and/or magnetic field, the curvature radiation near the polar surface is no longer
capable of generating particle cascades.

1.7.2 The spin-down amplitude limit

In this Subsection, I describe how to set a theoretical limit for the expected GW ampli-
tude assuming that the spin-down of the pulsar is entirely due to the GWs emission.
GWs carry energy and cause a deformation of spacetime. The stress-energy carried
by GWs can not be localized within a wavelength. Instead, one can say that a certain
amount of stress-energy is contained in a region of the space which extends over several
wavelengths. The energy flux has all the properties one would anticipate by analogy
with electromagnetic waves: it is conserved, it can be absorbed by detectors, and it can
generate curvature like any other energy source in Einstein’s formulation of relativity
[48].
It can be possible to derive [9, 48] in the TT gauge of the linearized theory, the grav-
itational luminosity as a function of the third-order time derivative of the quadrupole
moment tensor:

Lgw = −dE
dt

=
G

5c5

〈
∂3Qij

dt3
∂3Qij

dt3

〉
(1.72)
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where the brackets represent the average over several wavelengths.
Using the expressions (1.46), the gravitational luminosity of a rotating compact star is:

Lgw =
32G

5c2
ϵ2I23Ω

6 . (1.73)

As showed in the previous Section, pulsars slow down mainly because, having a time
varying magnetic dipole moment, they radiate electromagnetic waves. A further braking
mechanism is provided by GW emission.
Supposed that the pulsar radiates its rotation energy entirely in GWs, it is possible to
infer a theoretical limit on the emitted GW amplitude.
The rotation kinetic energy, in the Newtonian approximation, is:

Erot =
1

2
IΩ2 (1.74)

where I = Iijω̂iω̂j . The kinetic energy lost as the pulsar slows down is:

dErot
dt

= 4π2Ifrot|ḟrot| (1.75)

with ḟrot, the derivative of the star’s rotation frequency.
Equating the gravitational luminosity with the expression (1.75), it follows that:

|ḟrot| ∝ f 5
rot (1.76)

that is the breaking index is n = 5 if the neutron stars loses energy via GW emission.
Rewriting the equality in terms of an expected strain amplitude [49], the spin-down limit
is:

hSD0 =

(
5GI|ḟrot|
2c3d2frot

)1/2

. (1.77)

The spin-down limit on the signal amplitude corresponds to an upper limit on the star’s
ellipticity. Setting an upper limit on the amplitude of a CW below the spin-down limit
is an important achievement and indication for the detectors sensitivity.
It is important to note that spin-down limits on the GW luminosity are plausible, but
model dependent. They assume a model for the structure of the neutron star (for in-
stance, that it is not accreting and is rigidly rotating, in addition to assumptions about
its EOS), and they take dispersion measure distance as a consistently good measure
of true distance. There is some considerable uncertainty associated with all of these
assumptions.



Chapter 2
Gravitational wave detectors and the
CW search
In the years after the GR formulation, there was strong skepticism about the physical
reality of GWs. It was Einstein himself to doubt and to consider GWs as "pure gauge".
In 1956, Felix Pirani published a paper, “On the physical significance of the Riemann
tensor”, showing that GWs "move particles back and forth as they pass by" [50]. The
results were presented at the Chapel Hill Conference1 in 1957 that might be considered
the starting point and the inspiration for the entire GW detection program2 [51].
In the first part of this Chapter, I analyze how GWs interact with test masses and describe
the interferometric method that allows the LIGO and Virgo Collaboration to detect the
first GW signal from a binary black hole merger. Then, I focus on the actual detectors
describing briefly the main instrumental features and the observational results achieved
so far.
In the second part, I focus on the searches for CW signals describing in detail the tar-
geted search from known pulsars. I review the main pipelines used for this analysis
describing the results of the last observing runs.

2.1 Interaction of GWs with test masses

As described in the previous Chapter, the notion of “gravitational force” disappears in
GR, replaced instead by the idea that freely falling bodies follow geodesics in spacetime
described by the geodesic equation inferred in (1.12). The linearized Einstein equations

1Chapel Hill conference, at the University of North Carolina in Chapel Hill, played a central role in
the future development of classical and quantum gravity. In addition to the questions linked to GWs,
during the conference many questions were formulated, including ideas that are topical even today, like
the Everett’s parallel universes interpretation of quantum physics.

2See Appendix A for a brief history of GW detectors.
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allow GWs to propagate through spacetime at the speed of light, and using an appropri-
ate system of coordinates - the TT gauge - it is possible to infer the expression for the
components of the perturbation tensor.
The geodesic equation has a simple expression in the TT gauge. If a test mass is at rest
at τ = 0, the equation for the coordinate acceleration is:

d2xi

dτ 2
= 0 (2.1)

since the Christoffel symbols (see (1.6)), related to the first derivatives of hµν , are all
null to the first order in the component hµν . This means that in the TT gauge for non-
relativistic motion the coordinate location of freely falling body is unaffected by the
GW. It follows that also the coordinate separation remain constant.
The TT gauge shows that the physical effects of GWs are not described in the coordinate
system since the theory is invariant under coordinate transformation [9]. The physical
effect of GW can be described in terms of proper distance that is a coordinate-invariant
observable [52].
Let us consider two spatial freely falling particles, located at z = 0 and separated on the
x axis by a coordinate distance Lc. Consider a GW in TT gauge that propagates down
the z axis (see (1.37)), hTTµν (t, z).
The proper distance L between the two particles in the presence of the GW is given by:

L =

∫ Lc

0

√
gxxdx =

∫ Lc

0

√
1 + hTTxx (t, z = 0)dx (2.2)

≃
∫ Lc

0

(
1 +

1

2
hTTxx (t, z = 0)

)
dx = Lc

(
1 +

1

2
hTTxx (t, z = 0)

)
(2.3)

that is the proper separation of the two particles oscillates with a fractional length
change,

δL

L
≈ 1

2
hTTxx (t, z = 0) (2.4)

This expression is obtained in the TT gauge but the results is gauge independent.
Let us consider the reference frame of the laboratory - the proper detector frame - where
the distance between two free-falling test masses is measured. In this reference frame,
the study of the effects of GWs is easier considering the geodesic deviation equation
[3]. To first order in hµν and assuming that the coordinate time and proper time are
equivalent (i.e. test-masses that are slowing moving):

d2ξi

dτ 2
=
d2ξi

dt2
= Ri

µνβU
µUνξβ (2.5)
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Figure 2.1: The line of forces on the x- and y-axis corresponding to a plus and cross polarized
GW that propagates along the z-axis.

where ξi is the vector connecting two geodesics andUµ is the four-velocity vector (Uµ =

dxµ/dτ ) of the free-falling test-masses.
Considering two test-masses separated along the x-axis by L, the geodesic deviation
equation becomes:

dξi

dt2
≡ ξ̈i = Ri

00xL (2.6)

The Riemann tensor can be evaluated in the TT gauge since it is invariant. It follows
that:

ξ̈i =
1

2
ḧTTij ξ

j (2.7)

that is, the effect of GW in the proper detector frame can be described in terms of a
Newtonian force applied to the mass m: Fi = mξ̈i. This expression is valid as long as
the distance L is small compared to the GW reduced wavelength.
The relative length change is thus defined at first order:

δL

L
≈ 1

2
hTTxx (2.8)

The important result is that the effect of a GW on the spacetime metric has an intrin-
sic differential nature. This means that the distance between two nearby test masses in
the metric generated by a GW is modulated at the wave frequency in the direction per-
pendicular to the propagation direction. Indeed, GWs are "transverse" waves since the
effect is in the plane perpendicular to the direction of propagation, and also "traceless"
waves since the effect is equal and opposite in the two perpendicular directions, as in
Figure 2.1. The relative change in the distance is given by the amplitude of the GW,
usually called strain amplitude.
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2.2 Interferometric method

A Michelson interferometer is designed to be highly sensitive to changes in the path
length of two arms that are orthogonal to each other (see Figure 2.2). A light source is
sent into a beam splitter, which divides the beam in half. At the end of each arm, there
is a mirror that reflects the light back to the beam splitter. At the beam splitter, the light
from each arm is split again, such that half of the light is sent back towards to input,
while the other half is sent to the output.
Choosing a coordinates system such that the interferometer’s two arms lie along the x-
and y-axes, with the beam splitter at the origin, the input beam to the interferometer is
characterized by the electric field:

Ein = E0e
i(2πft−kLx) (2.9)

where kL = 2π/λ is the wave vector and λ the laser wavelength. This input field
encounters a 50/50 beam splitter with reflection and transmission amplitude coefficients
of rB = 1/

√
2 and tB = 1/

√
2; the light transmitted down the x and y-axes is described

as
Ex =

E0√
2
e−i(2πft−kLx) Ey =

E0√
2
e−i(2πft−kLy) (2.10)

After travelling down the length of each arm, and reflecting on the end mirrors, each
field picks up a factor of −1. Reflecting back to the beam splitter and recombining, the
final output field is [9]:

Eout = −E0

2
e−i(2πft−2kLLx)+

E0

2
e−i(2πft−2kLLy) = −iE0e

−i(2πft−kL[Lx+Ly ]) sin(kL∆L)

(2.11)
where ∆L = Ly − Lx. The total power output, i.e. the measurable quantity, is:

Pout =
Pin
2

(1 + cos(2kL∆L)) (2.12)

where Pin = E2
0 is the input power.

At the output port, either constructive or destructive interference can occur based on
the path distance along each arm. If the path length differs by an integer number of
wavelengths, constructive interference occurs, while a difference of a half wavelength
results in destructive interference.
In a more realistic case, for generic values rb/tb of the reflectivity/transmissivity of the
beam splitter and values r1 and r2 for the reflectivities of the mirrors at the end of each
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Figure 2.2: Sketch of a simple Michelson interferometer. Credit to [53].

arm, the power output is:

Pout = Pinr
2
b t

2
b(r

2
1 + r22)(1 + C cos(2kL∆L)) (2.13)

where C is the contrast C = (2r1r2)/(r
2
1 + r22) that quantifies the asymmetries in reflec-

tivities of the two arms.
Let us assume, for example, in the TT gauge a GW with a plus polarization propagating
along the z-axis,

h+(t, z = 0) = h0 cos(ωgwt) (2.14)

The GW strain shortens one arm while lengthening the other as it passes the detector,
resulting in a slight difference in round-trip travel time for the laser light due to the
mirrors displacement ∆L. The mirrors’ displacement leads to a phase shift of the light
in one arm of the detector relative to the other, creating a change in light intensity at
the photodetector of the output port. The time-dependent intensity recorded by the
photodetector reconstructs the propagating GW.
The phase shift ∆Φ induced by a passing GW in an interferometer is:

∆Φ = Φ0 + δΦGW = Φ0 + 2kLh0Lsinc(ωgwL/c) cosωgw(t− L/c) (2.15)

with kL the laser wave vector, L = (Lx + Ly)/2 and Φ0 = kL∆L.
The effect is a variation of the power detected at the output port which can be expressed
at first order in the GW amplitude:

Pout = P0 sin
2(Φ0 + δΦGW ) =

P0

2
[1− cos(2Φ0 + δΦGW )] (2.16)
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In the limit ωgwL/c≪ 1, the phase shift due to the GW is:

δΦGW ≈ h+(t− L/c)kLL (2.17)

and it follows that:
∆L

L
≈ h0 (2.18)

The phase Φ0 is a parameter that can be chosen by the experimenter to fix the best
working point of the interferometer. Since the effect to be observed is small, the inter-
ferometer must work as a null instrument that when there is no signal, records a zero
output. The working point is the dark fringe3.
Expanding to the first order in h0 the expression for the electric field, the effect of the
GW on the laser light is to generate sidebands in the light propagating in each of the
two arms. To the laser carrier at frequency ωL, the GW signal adds two sidebands at the
frequencies ωL ± ωgw.

2.2.1 Fabry-Perot cavities

The optimal arms’ length L is given by computing which is the length that maximizes
the phase shift in (2.15), i.e. when ωgwL/c = π/2 and

L ∼ 750 km
(
100Hz
fgw

)
(2.19)

Since it is not technically (and also financially) easy to have arms longer than 3 - 4 km,
one way to increase the effective length of the arms is to substitute them with resonant
cavities. In this way, the light is stored for a longer time inside the arms, being reflected
multiple times back and forth, and therefore enhancing the dephasing due to GWs. The
cavity is on resonance when its length is tuned in order to have constructive interference
between the field transmitted by the input mirror and the one which has done a round trip
inside the cavity. In this condition, the power stored inside the cavity can be enhanced
by a large factor, which depends on the finesse F of the cavity that depends on the
mirrors reflectivities r1 and r2:

F =
π
√
r1r2

1− r1r2
(2.20)

3There is actually a small DC offset since at the dark fringe dP/d∆L = 0, and the interferometer
would detect effect O(h2).
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The finesse defines the storage time τs, that is the average time spent by a photon inside
the cavity:

τs ≃
L

c

F
π

(2.21)

For example, considering LIGO detectors, a Finesse of 450 with 4 km-long arms results
in a light storage time of τs ≈ 2 ms and an effective arm length of τsc/2 ≈ 2800 km.
It is important to stress that the light storage time must be less than the period of the GW
(both in the simple Michelson and in the Fabry-Perot version). If not, the consecutive
maxima and minima from the same GW will cancel out the change in phase of the light
in the arm. Defining the pole frequency fp as:

fp ≡
1

4πτs
(2.22)

it can be shown [9] that the cavity is optimally sensitive to GWs at frequencies f ≪ fp,
while for frequencies f ≫ fp the sensitivity degrades linearly with f .
To enhance as much as possible the optical response to a GW signal, the light beam
must be resonant inside the long arm Fabry-Perot cavities, that means kLL = nπ with
n = 0,±1,±2, .... Hence, the mirrors of the resonant cavities must be hold in the
right position within a precision4 of ≈ 10−10 m. This is achieved by a length sensing
and control system that "lock" the Fabry-Perot cavities of the two arms at the resonant
length and the interferometer on some dark fringe.

2.2.2 Noise sources

For a GW amplitude of h0 ∼ 10−21, the displacement of the mirrors is ∆L ≈ h0L (see
(2.18)) and for L ∼ 4 km:

∆L ≈ 10−18 m (2.23)

that is smaller5 than the size of a nucleus of a factor 103.
Several noise sources can affect the detectors’ sensitivity at this level. This means that
there are different noise sources that can produce a fluctuation in the power detected at
the output port disturbing or compromising a possible detection.
Usually, the detectors’ sensitivity is described in terms of amplitude spectral density
S
1/2
n (f) (see Section 2.3) with dimension Hz−1/2.

4The laser beam has a transverse size of few cm at the mirrors. This means that the laser beam senses
the position of the surface of the mirror averaged over a scale of few cm. In this way, the length of the
mirror is well defined also at this small scale.

5It is important to stress that this is the coherent displacement of all the atoms of a macroscopic body,
i.e the mirror. The corresponding phase shift that should be measured is for a Fabry-Perot interferometer
with a finesse of 200, ∆Φ ≈ 10−8 rad [9].
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Quantum noise Shot noise and radiation pressure are the lowest reachable noise lev-
els; they come from the quantum nature of light and can affect the power detected by a
photodiode. The union of these noises is called quantum noise.
Shot noise originates from the fact that the laser light comes in discrete quanta, the pho-
tons. This noise can be intuitively explained as the Poisson distribution related with the
process of counting the photons at the output port.
Let Nγ be the number of photons that arrives on the photodetector in an observation
time T . Then the average power measured at the photodetector during this observation
time is:

P =
NγℏωL
T

(2.24)

Whenever we count a number of discrete independent events, the set of outcomes fol-
lows the Poisson distribution. For large counts N , the Poisson distribution approaches
to a Gaussian, with standard deviation equal to

√
N . Therefore, the fluctuation in the

number of photons produces a fluctuation in the observed power given by:

(∆P )shot =

√
NγℏωL
T

=

(
ℏωL
T

P

)1/2

. (2.25)

Considering for semplicity a Michelson interferometer, with no Fabry-Perot cavites in
the arms and in the absence of GWs, the contribution due to the shot noise is:

S1/2
n (f)shot =

√
λL
4πL

2ℏωL
Pin

. (2.26)

Equation (2.26) indicates that, to reduce the shot noise, the power of the laser should
be increased. This is achieved with a power-recycling mirror, i.e a partially transmitting
mirror between the laser and the beam splitter that creates a resonance cavity for the
light exiting the beam splitter in the direction of the laser. In this way, a new Fabry-
Perot cavity is created where the end mirror is the whole interferometer. In addition,
fixing the working point at the dark fridge, the light leaving the beam splitter directed
to the laser increases.
If a GW signal is present, the effect in the interferometer is the creation of small side-
bands (as described in the previous Section); introducing a mirror at the output port -
the signal-recycling mirror - and tuning its position to create a Fabry-Perot cavity, the
sidebands can resonate in the interferometer.
However, it is not possible to increase the laser power without limit. Indeed, a beam
of photons that impinges on a mirror and it is reflected back, exerts a pressure on the
mirror itself. If this radiation pressure were constant, it could simply be compensated by
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the mechanism that holds the mirrors in place. However, since the number of photons
arriving on the mirror fluctuates, the radiation pressure fluctuates, too, and generates a
stochastic force that shakes the mirrors [9]. If, in order to beat the shot noise, the power
increases beyond a certain limiting value, the fluctuations in the radiation pressure will
become important and will dominate over the shot noise.
In addition, the shot noise contribution is proportional to P−1/2

bs while the radiation pres-
sure to P 1/2

bs . The situation is conceptually similar to the Heisenberg microscope. Using
photons to measure the position of an object, the photons impart non-deterministically
a recoil to the object, here in the form of fluctuations of the radiation pressure, and this
recoil disturbs the measure that we are performing. So, a quantum effect due to the
uncertainty principle can be important in the measurement of the position of a macro-
scopic body like the mirror of an interferometer, which typically weights tens of kg.
The detector sensitivity can be improved beyond the so-called quantum noise limit
via the injection of squeezed states of light into the output of the interferometer [54].
Squeezed light is a special state of light where the amplitude uncertainty or the phase
uncertainty can be reduced at the price of a degradation of the other. Replacing the
vacuum fluctuations at the output port by the continuous injection of squeezed vacuum
states of light facilitates a manipulation of the measurement uncertainty.

Free-falling masses and seismic noise So far, I have considered the interferometric
mirrors as free falling masses. The mirrors obviously cannot be truly free.
The mirrors can behave as if free in a certain frequency region suspending them to a set
of pendulums in cascade.
A single pendulum with resonance frequency F0, at frequencies F ≫ F0 attenuates the
strain sensitivity by a factor F 2

0 /F
2 , and a multistage filter made by N stages provides

an attenuation factor ∼ (F 2
0 /F

2)N . Therefore one must choose F0 much smaller than
the GW frequency of interest in order to have the mirrors acting as free masses even
though they are held in place.
Since the interferometers can work only if the beams are well aligned with each other
and the arms length are and remain very closed matched, it is necessary the use of a
feedback control system that limits the crucial degrees of freedom in position and angle
at the required operational point.
However, the Earth’s ground is in continual motion, with amplitudes of order a few
microns. In the region 1 ÷ 10 Hz, this is mostly due to human activity such as local
traffic, trains, etc. as well as to local phenomena such as winds. In addition, the micro-
seismic background can affect a GW interferometer mostly in the form of surface waves
that shake the suspension mechanisms and, finally, the mirrors.
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These effects influence the strain sensitivity, which can be expressed as [9]:

S1/2
n (f)|sism ≃ A

(
1Hz
f

)ν
m · Hz−1/2 (2.27)

where ν ≈ 2 when f > 1 Hz and A is of the order of 10−7 in a quiet location.
In practice for the actual ground-based detectors, the seismic noise can be reduced be-
low a level interesting for GW detection only at frequencies above 10 Hz due to the
resonance frequency of the pendula. This is the main reason why a ground-based inter-
ferometer cannot search for GWs below the 10 Hz region [9].
Including the pendulum wire, that has some finite mass, the equation of motion of the
chain of pendulum is obviously more complicated showing a harmonic series of reso-
nances (called “violin modes”) that cause amplification at each resonance. In typical
interferometer designs, the fundamental violin mode comes at a few hundred Hz.
In addition, Newtonian noise - or gravity gradient noise - is an effect which comes from
the Newtonian non-stationary gravitational forces acting on a moving body. An exam-
ple is given by the fluctuation of the gravitational field of the Earth, coupling to the
test masses of the interferometer, due to the micro-seismic noise. The fact that grav-
itational forces can’t be shielded ensures that this noise can’t be attenuated in case of
ground-based detectors.

Thermal noise Thermal noise arises from the random movements of the particles that
compose a body in thermodynamical equilibrium with the sorrounding environment. In
GWs detectors, thermal noise affects mainly the mirrors and their suspending wires.
The main contributions come from the pendulum thermal noise at frequencies between
3 and 30 Hz.
The intermediate region between 30 and 300 Hz is instead limited by the sum of the
contributions coming from the thermal excitation of the suspension wire violin modes
and of the mirror resonant mode.
The thermal noise is also rexponsable for the Brownian motion of the mirrors. The
atoms of a mirror at temperature T have a Brownian motion due to their kinetic energy.
which gives rise to mirror thermal noise. Just as with the violin modes, its effect can
be computed performing a normal mode decomposition. This is presently the dominant
noise between a few tens and a few hundred Hz.
Thermal noise is mitigated by using heavier mirrors and suspending the mirrors with
high quality factor wires and/or cooling the mirrors at cryogenic temperatures.
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Figure 2.3: Sketch of the Advanced Virgo configuration.

Other noises So far, I have described fundamental noises that come from the intrinsic
limits of the detector. There are also different noise sources that can reduce the detector
sensitivity:

• control noises, introduced in the system or amplified by the control loops used to
maintain the correct operating point;

• enviromental noises, like electromagnetic fields coupling to the detector output,
originated by the natural setting where the detector is constructed. To limit pertur-
bations from outer environment (gas density fluctuations, ‘gas damping’ effects,
acoustic noise...), the optics and the laser beam are under vacuum;

• technical noises, coming from the actual implementation of the detector. For
example, the laser frequency and power noises fluctuations can be relevant, or if
there is not a perfect match between the arms, the so-called frequency noise can
appear at the output port (generally, limited by a mode cleaning cavity).

To summarize the general configuration of the actual ground-based interferometer de-
tectors, I will describe the Virgo detector configuration for the last observing run O3
[55]. There are of course some differences with the two LIGO detectors (for example,
the signal-recycling mirror not present in Virgo during O3).
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The Virgo interferometer is a 3 km-long power-recycled Fabry-Perot Michelson, located
at Cascina, Italy (the optical scheme is in Figure 2.3). All the mirrors of the interferom-
eter are suspended to a chain of pendulums for seismic isolation. The last suspension
stage is a monolithic silica fiber fused to the mirror on one side and attached to a mar-
ionette on the upper side. The input beam is provided by a laser with a wavelength in
the near infrared λ = 1064 nm that travels in ultra-high vacuum tubes. The power at the
input of the interferometer during O3 was about 25 W. The beam of the low-noise laser
source is filtered geometrically and has its amplitude and beam pointing fluctuations
further reduced by a 140 m long triangular cavity, called Input Mode Cleaner.
The finesse of the 3 km long Fabry–Perot cavities in the arms was 450, which means
that the effective length travelled by the beams is increased by a factor 290 with respect
to the physical arm length. The resulting increase of light power in the arms induced
input mirrors deformation and required a thermal compensation system. Since the inter-
ferometer is locked close to a dark fringe, the power recycling mirror is used to enhance
the power on the beam-splitter mirror. Frequency-independent squeezing technique was
installed and used during O3 to reduce the quantum noise limit above a few hundreds
Hz.
The readout of the interferometer main output signal is based on homodyne (or DC)
detection [56] and the used photodiode signal is proportional to the interferometer dif-
ferential arm length.

2.2.3 Calibration of GW detectors

As described, the interferometer mirrors must be controlled to hold all crucial degrees
of freedom at the required operating point. For this reason, the strain amplitude of the
GW detector x(t) must be reconstructed from the dark fringe photodiode measurement
but also from the control signals that are applied to maintain the free-falling masses at
their nominal position.
The control system of advanced detectors is rather complex with the goal to keep a de-
structive interference at the interferometer output port (for more details, see [55] ). As
a consequence, below a few hundred Hz it is necessary to subtract the control signals
from the dark fringe signal before reconstructing x(t). Above a few hundred Hz, the
suspended mirrors behave as free-falling masses and the length variations induced by
a passing GW generate directly variations of the output power of the interferometer.
To reconstruct x(t), it is necessary to calibrate the sensing and control loop elements
by measuring their transfer functions using the Photon Calibrator technique [57]. This
consists in the injection of deterministic excitation signals using radiation pressure in-
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duced by auxiliary lasers whose power is known absolutely.
The reconstruction of x(t) is also the opportunity to subtract well identified noise sources,
whose contribution is measured by witness channels. Not all sources of noise can be
subtracted but detectors’ sensitivity can be improved in some frequency range.
Absolute timing calibration is also critical when performing multi-detector analysis for
both detection (cross-correlation assumed the arrival time of the GW to be synchro-
nized) and source sky position determination based also on the arrival time of the signal
in each detector. The master timing system is controlled by GPS and provide coherent
timing information to all detectors elements. The absolute timing precision is of the
order of 0.01 ms or less since the typical timing accuracy of the CBC searches is of the
order of 0.1 ms.
Using known signals "injected" in the interferometer, also known as calibration lines, it
is possible to estimate the uncertainties in the reconstructed strain. The calibration lines
consist in excitation signals (sinusoidal or flat in a frequency band) applied to the end
test masses. The uncertainties are estimated comparing the reconstructed strain to the
known forced motion applied to the end mirrors.
For the Virgo detector during O3, the upper limit on bias and associated uncertainty
was 5% in amplitude, 35 mrad in phase and 10 µs in timing in most of the sensitive
frequency band [55].

2.3 Strain sensitivity and noise budget

The output of any GW detector is a time series, which describes for instance the oscil-
lation state of a resonant bar, or the phase shift of the light recombined after traveling
in the two arms of an interferometer. This output will be a combination of (hopefully) a
GW signal and of noise.
To understand how signal and noise combine, it is useful to think of a GW detector as a
linear system. The input and output of the detector are scalar quantities, while the GW
is described by a tensor hij . So, in general, the input of the detector will have the form

x(t) = h(t) + n(t) (2.28)

where
h(t) = Dijhij (2.29)

and Dij is a constant tensor which depends on the detector geometry.
For a linear system, the output of the detector in the frequency space is a linear function
of the input by the transfer function of the system. n(t) in (2.28) is a fictitious noise
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that, if it were injected at the detector input and if there were no other noise inside
the detector, would produce at the output the noise that is actually observed [9]. The
input signal can be used to compare the performances of different detectors since the
detectors’ transfer functions can be very different.
The great advantage of referring everything to the input is that n(t) gives a measure
of the minimum detectable value of h(t) that, apart from the geometrical factor Dij ,
depends only on the incoming GW.
To characterize the noise n(t) of the detector, the power spectral density (PSD) Sn(f)
is defined as [58]:

⟨ñ∗(f)ñ(f ′)⟩ = δ(f − f ′)
1

2
Sn(f) (2.30)

where the angle brackets denote an ensemble average over many noise realizations.
The ensemble average can be measured considering different segments of duration T ,
computing the Fourier transform ñ(f) with resolution 1/T for each segment, and then
taking the average. Since the GW signal and detector output are both real, it follows that
h̃(f) = h̃(−f) and ñ(f) = ñ(−f); therefore, Sn(f) = Sn(−f). For this reason, Sn(f)
is called the one-sided PSD and Fourier integrals over all frequencies can be written as
integrals over positive frequencies only.
More rigorously6, for a time series7 x(t), the PSD is defined as the Fourier transform of
the auto-correlation function R(τ):

1

2
Sn(f) =

∫ +∞

−∞
e−i2πfτR(τ)dτ (2.31)

where8

R(τ) = lim
T→∞

1

2T

∫ +T

−T
x(t+ τ)x(t)dt . (2.32)

The physical units of the power spectrum are [x]2/Hz where [x] is the physical unit of
the considered time series.
The square root of the PSD is the amplitude spectral density (ASD) S1/2

n (f) also called
spectral strain sensitivity, or spectral amplitude. If the noise increases of a common
factor, the ASD scales linearly while the PSD scales with the squared factor.
The noise budget compares the measured detector sensitivity with the incoherent sum
of all known noise contributions. Each noise projection depends on the noise level, as

6In general, n(t) does not satisfy the conditions for a well-defined Fourier transforms; for example, it
goes not to 0 for t→ ±∞.

7The time series is considered as an ergodic process. A stochastic process is said to be ergodic if its
statistical properties can be deduced from a single, sufficiently long realization of the process.

8The auto-correlation function goes to 0 very fast for τ → ±∞. For white noise, since the noise at
time t is uncorrelated to the noise at the time t+ τ , R(τ) = δ(τ) [9].
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Figure 2.4: Virgo noise budget for the observing run O3 generated at a time of near best sen-
sitivity of the detector (February 8th, 2020). The different noise sources shown are described
in the text. The green line represents the sum of these noises and it can be compared to the
measured total noise shown in black. Credit to [59].

measured by external probes, and of its coupling to the strain channel [59].
The noise budget in Figure 2.4 shows the current understanding of the limiting noise
sources for the last observing run O3 of the Virgo detector (for the LIGO’s detectors
during O3 see [60]). The green solid trace shows the sum of all known contributing
noise sources. There is excellent agreement between the modeled and measured noise
(black trace) above roughly 100 Hz, while additional noise sources below 100 Hz are
not yet understood. More in details, at frequencies above 1 kHz the sensitivity is mostly
limited by quantum shot noise. In the most sensitive frequency range, between 80 Hz
and 200 Hz, there are significant contributions from three sources: quantum shot noise,
mirror coating thermal noise and a “flat noise” of unknown physical origin. At low
frequencies between 20 Hz and 50 Hz, the dominant noise sources are quantum radiation
pressure noise that is increased by the frequency independent light squeezing and the
laser intensity noise. The 30% of the noise remains not understood in that frequency
range, so other significant noise sources must be identified.

2.4 The LIGO-Virgo-Kagra Collaboration

The current network of ground-based detectors is composed of the two Advanced LIGO
detectors located at Hanford and Livingston in the USA, the Advanced Virgo detector
located at Cascina in Italy, the GEO-600 detector located near Hannover in Germany
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and the underground KAGRA detector near Kamioka in Japan (see [61] and references
therein). A copy of Advanced LIGO detector is currently under construction in India.
The arms of Advanced LIGO are 4 km long while Advanced Virgo and KAGRA have
arms of 3 km. GEO-600 arms are 600 m long which makes the detector less sensitive
than Advanced LIGO and Advanced Virgo and is mainly used so far to test advanced
technology. KAGRA is the first detector located underground and whose Fabry-Perot
mirrors are cooled down at 20 K to reduce respectively seismic noise and thermal noise.
From 2010 the LSC (LIGO Scientific Collaboration) and the Virgo Collaboration sci-
entists combine and jointly analyze all data that come from their interferometers. The
combined data improved measurements of source locations on the sky and confidence
in detected signals. Beginning in 2021, the KAGRA Collaboration, that developed the
3 km-long underground interferometer, is also co-authoring observational results from
the second half of the last observing run and onward. Together, these three entities com-
prise the LIGO-Virgo-KAGRA Collaboration (or LVK Collaboration for short).
Ground-based detectors alternate between phases of observation (observing runs) and
periods of commissioning and upgrades to improve the sensitivity of the instruments.
Three runs have been performed so far with Advanced Virgo and Advanced LIGO.
The first run O1 operated from September 2015 to January 2016. On the February 11,
2016 the LIGO and Virgo Collaboration announced the observation of the first GW sig-
nal, GW150914 (see next Subsection).
In the second run O2, from November 2016 to August 2017, LIGO detectors saw sev-
eral further GW events. Some of them were also seen by the Virgo Collaboration as the
extraordinary event GW170817 that came from the collision of two neutron stars and it
was also detected electromagnetically by γ-ray satellites and optical telescopes.
The O3 run started on 1 the April 2019, and finished on 27 March 2020. This last run
has produced a large number of detection, a total of 90 combined with the previous runs
(see Figure 2.5). These detection allow to estimate the rate of compact binary mergers
in the universe, probe the population of compact objects and unveil the distribution of
blak hole/neutron star masses [62].

2.4.1 GW detections

The first GW signal detected by ground-based detectors was GW150914 on September
14, 2015 at 09:50:45 UTC. The signal was observed only by LIGO detectors since at
that time the Virgo detector was being upgraded. With only two detectors the source
position was primarily determined by the relative arrival time and localized to an area
of approximately 600 deg2 (90 % credible region).
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Figure 2.5: Cumulative events detected during the three observing runs with the LIGO and
Virgo detectors. The increase in the detected events reflects the improvement of the detectors’
sensitivity.

The basic features of GW150914 describe [14] the coalescence of two black holes at a
luminosity distance of 410 Mpc. In the source frame, the estimated black hole masses
are 36 M⊙ and 29 M⊙, and the final black hole mass is 62 M⊙.
The detected waveform matches the predictions, accurately modeled by post-Newtonian
approximation, for the inspiral and the merger of black holes and the ringdown of the
resulting single black hole. In 0.2 s the signal swept in frequency from 35 to 250 Hz,
reaching a peak GW strain of 1× 10−21 with a signal-to-noise ratio of 24.
This was the first direct detection of GWs and the first observation of a binary black
hole merger. The era of GW astronomy began with this detection.
GW170817 was the first GW signal from a binary neutron star coalescence which was
accompanied by the observations across the electromagnetic spectrum [31]. Approxi-
mately 1.7 s after the GW detection by the LIGO and Virgo detectors on the August
17, 2017, the Fermi Gamma-ray Burst Monitor detected and triggered on the short
γ-ray burst 170817A [63], marking the first confident joint EM–GW observation in
history. These detection triggered an observing campaign across the whole electromag-
netic spectrum, and a counterpart was detected 11 hours after the initial GW alert in
NGC 4993 [64]. Less than two years after the debut of GW astronomy, GW170817
marks the beginning of a new era of discovery, confirming the long-held hypothesis that
binary neutron stars mergers are linked to short γ-ray bursts and to kilonova emission.
The source has been followed in ultraviolet, optical, infrared and radio waves. A search
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for high-energy neutrinos was also conducted with no detection.
The multi-messanger detection allow also to set important constrains [32] on the speed
of GWs, on modified gravity theories and finally to infer the first measurement of the
Hubble constant with GWs.
The multi-messenger astronomy represents the only way to obtain a complete knowl-
edge of the astrophysical sources and their emission engines, providing complementary
insight into the physics of the progenitors and their environment9 [65].
Starting with the O3 observing run, the LVK Collaboration sends prompt Public Alerts
for any GW transient event detection with a latency within minutes. These alerts enable
the physics and astronomy community to pursue multi-messenger observations of GW
sources and maximize the science reach of the GW instruments.
Some of the exceptional events observed during the last observing run O3 are [66]:

• GW190412, the merger of two black holes with asymmetric masses;

• GW190425, the second observed binary neutron star merger (without the detec-
tion of the electromagnetic counterpart);

• GW190521, the first detection of an intermediate mass black hole;

• GW190814, a system with a secondary that could be either a black hole or a
neutron star;

• GW200105 and GW200115, the first detected neutron star-black hole binary merg-
ers.

2.4.2 Future perspectives

The GW detections by the ground-based interferometric detectors have open a new win-
dow on the Universe. The next observing runs of Advanced LIGO and Advanced Virgo
are already planned; O4 should start in March 2023 for a duration of 1 year and a sen-
sitivity further improved compared to O3. The designed sensitivity of Advanced LIGO
and Advanced Virgo should be reached during O5 by 2025 leading to a detection rate
of more than one GW event per day.
The increasing sample of the detected compact binary mergers will provide more in-
formation on the populations of black holes and neutron stars with especially better
measurement of the black hole spins. More detections of binary neutron star mergers

9Indeed, GWs and neutrinos carry information from the inner regions of the astrophysical engines,
from which photons and charged cosmic rays cannot reach us. Photons can give a precise (arcsecond)
localization, to identify the host galaxy and the source environment.
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with electromagnetic counterparts will provide new insight on the EOS, on the physics
of neutron stars and also a more accurate measurement of the Hubble constant.
Improving the detectors sensitivities, new sources of GW - not related to compact binary
mergers - could be detected such as rotating neutron stars, magnetars, core-collapse su-
pernovae or the stochastic GW background.
In the more distant future, third-generation detectors like the proposed Einstein Tele-
scope (ET) [67] or Cosmic Explorer (CE) [68] may reach sensitivities an order of mag-
nitude higher than what is achieved by Advanced LIGO and Advanced Virgo. ET is
currently envisioned as an underground infrastructure in Europe housing three inter-
ferometers in a triangular configuration, each with 10 km arm lengths. CE retains the
‘L’-shape interferometer configuration used in the current interferometers but increases
the arm lengths to up to 40 km.

2.5 CW searches

The GW signals detected so far come from the coalescence of compact objects, as black
holes or neutron stars. In Section 1.5, I have described the different types of signals and
sources that, in principle, could be detected by ground-based detectors.
CW signals emitted by a spinning neutron stars are the main targets of the pipeline
developed in this work. As reported in Subsection 1.5.1, CW signals can be fully char-
acterized by the set of parameters:

θ = (α, δ, f , h0, ψ.ι, ϕ) (2.33)

where α and δ are the ascension and the declination that fixes the sky position, f =

(f, ḟ , f̈ ..) are the rotation frequency spin-down parameters, h0 is the amplitude of the
CW signal, ϕ the phase while ψ and ι are the angles related to the wave polarization.
In the case of pulsars, for example, the parameters linked to the source - the extrinsic
parameters (α, δ, f) - are known through radio observation. Sometimes, like in the case
of the Vela pulsar, the values of the angles ψ and ι are also known from X-ray observa-
tions (see [69]).
As shown in Subsection 1.5.1 for a rigid body rotating around a principal axis of inertia,
the CW signal is monochromatic at the source with the GW frequency that is twice (or
for different emission mechanisms, proportional to) the rotation frequency of the source.
In Subsection 1.7.2, it is also shown that due to the emission of electromagnetic (and
hopefully also gravitational) waves, neutron stars lose energy and hence, the rotation
frequency decreases in time.
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Intrinsic parameters Extrinsic parameters

h0 Amplitude α Right ascension

ψ Polarization parameter δ Declination

η Polarization parameter f Rotation frequency

ϕ Phase ḟ , f̈ , .. Spin-down parameters

Table 2.1: Table of the intrinsic and extrinsic parameters that define a CW signal.

Given the long-lived and weak nature of CWs, the signal must be integrated over a
long time duration to be detected with statistical significance. For example, let us con-
sider a CW signal that needs 1 yr of coherent integration time to be clearly detected
in the Fourier spectrum of the data. Since the frequency resolution is 1/yr ≈ 10−7

Hz, to remain in the same frequency bin during that year, the first derivative ḟ of the
GW frequency would need to satisfy ḟ · 1yr < 1/1yr, or ḟ < 10−15 Hz/s and its second
derivative f̈ < 6×10−23 Hz/s2 (assuming a Taylor expansion of the rotation spin-down).
In general, the measured parameters for known sources are much larger of these values.
In order to maintain the benefit of long observation times, it is therefore necessary to
remove the effects of the source spin-down from the data. It also necessary to take into
account the Earth’s orbital motion around the Sun that spreads the CW signal in several
frequency bins due to the Doppler effect.
It is clear that according to our knowledge of the source, the search for a CW signal
must be different and should also take into account the computational cost of the anal-
ysis. Indeed, if the evolution of the rotation parameters is known via electromagnetic
observations, it is possible to correct for the time evolution of the expected GW fre-
quency. In addition, if the sky position is accurately known, it is possible to correct for
the Doppler modulation via barycenteric correction. If the shape of the signal is known,
matched filtering, or coherent methods, can be used.
In general, the more we know about the sources parameters, the more computationally
feasible it is to integrate data coherently for longer time periods in order to improve the
sensitivity (see Figure 2.6).
As the knowledge about the source parameters decreases, the parameter space to in-
vestigate increases, making the use of fully coherent searches impractical [71]. In this
case, semi-coherent techniques can be used (see [72] for a detailed review of CWs
searches for unknown sources). In semi-coherent methods, the available data are di-
vided in chunks that are first analyzed coherently (e.g., using a matched filter on a
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Figure 2.6: Schematic plot of the different types of CW search in terms of sensitivity and
computational cost. Credit to [70].

template bank) and then combined incoherently, for instance, by summing the detection
statistics computed in each chunk to construct a single final detection statistic.
In the next paragraphs, I review the different searches that can be performed according
to the assumption on the source.

Targeted search Targeted searches assume to know with high accuracy the extrinsic
parameters observing the electromagnetic emission from the source. The targets are
known pulsars for which the observations in radio, optical, X-ray and gamma-ray bands
provide ephemerides for the sky position, and also accurate measurements of the rota-
tion frequency and the spin-down parameters (e.g. for the Crab and Vela pulsars).
The minimum detectable amplitude for targeted searches, defined as the average ampli-
tude that entails a detection probability of 90% for a false alarm rate of 1%, is [73]:

hmin ≈ 11

√
Sn(f)

Tobs
(2.34)

where Sn(f) is the one-sided power spectral density of the noise detector and Tobs the
observation time. The expression for hmin is obtained considering the average over
different positions, inclinations, and polarization of the source. The numerical factor
depends on the specific matched filter implementation.
In Section 2.6, I analyze the required accuracy for the electromagnetic observations and
the matched filter technique.
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Narrow-band search In targeted searches, the GW frequency is assumed propor-
tional to the rotation frequency. When this assumption is relaxed, “narrow-band” searches
investigate small region around the expected GW frequency for the models analyzed in
the targeted searches. In this way, narrow-band searches take into account more sophis-
ticated models, e.g., a differential rotation between the rigid crust and superfluid parts
of the star. In general, a narrow-band search for a given target is less sensitive than its
respective targeted case due to the increased trial factor. For example in [49], it is esti-
mated that the minimum detectable amplitude is ∼ 2÷3 times worse than the sensitivity
of a targeted search.

Directed search In directed searches, the star’s position is known, but the rotation
parameters are unknown, e.g. a non-pulsating X-ray source at the center of a supernova
remnant. With respect to targeted and narrow-band searches, these pipelines are usually
less sensitive, but allow to explore a larger number of waveform templates. Directed
searches are usually carried out by semi-coherent method and the minimum detectable
signal is:

hmin ≈ 30÷ 40

√
Sn(f)

(TobsTcoh)1/4
(2.35)

where Tcoh is the time length of each chunk for the semi-coherent method (see for ex-
ample [74]).

All-sky search All-sky searches are performed if there is no assumptions on the source
parameters. These searches are mainly based on hierarchical semi-coherent procedures
in which the data is divided in short chunks and combined incoherently.
Considering N segments each with observation time Tcoh, the minimum detectable sig-
nal can be estimated [75] as:

hmin ≈ A

N1/4

√
Sn(f)

Tcoh
(2.36)

where the exact numerical factor A depends on the specific hierarchical method em-
ployed and on the chosen parameter space.
It is of great interest to perform all-sky searches since, even though these searches are
the least sensitive, the closest observed neutron star (i.e. pulsar) is almost at 100 pc
while the population synthesis calculations indicate that in a sphere of radius 100 pc,
there should be 103÷4 neutron stars [16] that could emit "stronger" CW signals since
closer (indeed, h0 ∝ 1/r).
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These searches can produce the so-called "search candidates", potential astrophysical
signals that need to be investigated in detail [76]. These candidates undergo a series of
post-processing veto steps, e.g. searching for known instrumental lines near the outlier
frequency, and then, the most interesting ones are followed up with different techniques
in order to clearly establish their significance (see [72]).
If no CW signal detection can be claimed, CW searches can provide upper limits on the
signal strain. For a given confidence level, the upper limit curve determines the value
of the signal amplitude h0 above which it is possible to exclude the existence of CW
signals for a particular source or frequency. Upper limits are useful to set astrophysi-
cal constraints on some strain-related quantities, as in the case of the ellipticity for the
targeted searches.

2.6 Targeted search

As described in the previous Section, targeted searches assume to know with high ac-
curacy the source parameters, as the sky position and the rotation parameters. Due to
the source spin-down, coherent methods must take into account the time evolution of
the rotation frequency of the source. Indeed, assuming the GW phase Φ(t) locked to the
rotation phase, to match the expected signal one needs to track the time evolution of the
rotation frequency.
The observed GW frequency changes in time also because of the Doppler effect due
to the Earth’s rotation motion around its axis and the Earth’s orbital motion around the
Sun. It can be shown [16] that the frequency shift for the Doppler effect due to the rota-
tion motion is of the second order compared to the orbital one since the orbital velocity
vorb/c ≃ 10−4 while the rotation velocity vrot/c ≃ 10−6.
To first order in v/c, the frequency measured by an observer with a velocity v⃗ respect to
the source is

f = f0

(
1 +

v⃗ · r̂
c

)
(2.37)

where r̂ is the unit vector in the direction of the source. Since the term v⃗ · r̂ changes in
time10, the shift in frequency in a time T is:

∆fDoppler = f0
(∆v)T
c

(2.38)

10If the term v⃗ · r̂ was constant, there would be only a constant shift in the frequency that would be
easily identified in the frequency spectrum.
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where (∆v)T is the change of the component of the velocity in the direction of the
source during the observing period T .
To correct the Doppler effect, both the detector position and the source sky position
must be measured with high accuracy. The detector position, measured with respect to
the Solar System Barycenter (SSB), is well known also considering small effects as the
oscillations of the Earth around the Earth-Moon barycenter. It follows that the main
error comes from the uncertainty on the angular position of the source [16].
For an observation time T , the Earth rotates of an angle ∆θ and to correct for the
Doppler shift with an accuracy smaller than the experimental resolution, in order of
magnitude it is necessary that:

f0
c
(∆v)T∆θ <

1

T
(2.39)

Taking11 (∆v)T ≈ vorbωorbT , to apply the Doppler correction the accuracy of the source
location must be with a rough estimate:

∆θ < 0.1 arcsec
(
107 s
T

)2(
1 kHz
f0

)
(2.40)

This is the requirement to properly correct the Doppler effect and the relative shift in
frequency in a CW search. For many pulsars (hence, for the targeted search), this re-
quirement is satisfied since the position is known to this accuracy or better and coherent
analysis over large time period can be performed.
In the next Subsection, I describe the matched filtering, a very general data analysis tech-
nique that allows to dig out a signal whose shape is known in a larger noise. Matched
filtering is widely used in GW data analysis, for example for the detection of CBC sig-
nals [77] and also for the targeted search of CW signal in the F-statistic and in the
5-vector method.
In Subsections 2.6.2 and 2.6.3, I briefly review the F-statistic and the Bayesian method:
the two independent pipelines that - with the 5-vector method - are used by the LVK
Collaboration for the targeted search of CW signals.

2.6.1 Matched filtering

Matched filter methods can be used to recover the signal h(t) whose expected shape is
known but buried into the noise n(t), i.e. |h(t)| ≪ |n(t)|. The detector output s(t) is

11During a time T , the Earth orbits the Sun of an angle ∆θ ≈ ωorb · T . If ∆θ ≪ 1, in order of
magnitude the change in time of the velocity component along the source direction is (∆v)T /vorb ∼ ∆θ.
The approximation ∆θ ≪ 1 is valid if T ≲ 4 months.
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modelled as:
s(t) = h(t) + n(t) (2.41)

Matched filtering is based on the application of a filter K(t) that matches the expected
signal h(t) whose shape must be known. The filter K(t) defines the quantity ŝ:

ŝ =

∫ +∞

−∞
s(t)K(t)dt (2.42)

Then, K(t) is chosen to maximize the signal-to-noise ratio S/N where S is the mean
value of ŝ when the signal is present and N is the root mean square value of ŝ when the
signal is absent [16].
By defining the Fourier transform of a time series x(t) as x̃(f) and the complex conju-
gate as x̃∗(f), it follows that:

S =

∫ ∞

−∞
⟨s(t)⟩K(t)dt =

∫ ∞

−∞
h̃(f)K̃∗(f)df (2.43)

N2 =
[
⟨ŝ2(t)⟩ − ⟨ŝ(t)⟩2

]
h=0

=

∫ ∞

−∞

1

2
Sn(f)|K̃(f)|2df (2.44)

because of the definition of the one-sided noise spectral density Sn(f) in (2.30) and
⟨ŝ(t)⟩2h=0 = 0. The signal-to-noise ratio is:

S

N
=

[⟨ŝ⟩]h̸=0

[⟨ŝ2⟩ − ⟨ŝ⟩2]1/2h=0

=

∫∞
−∞ h̃(f)K̃∗(f)df(∫∞

−∞
1
2
Sn(f)|K̃(f)|2df

)1/2 (2.45)

Defining the scalar product for two time series A(t) and B(t) as:

(A|B) = Re
∫ ∞

−∞

Ã∗(f)B̃(f)

(1/2)Sn(f)
df (2.46)

the S/N can be written in terms of a time series u(t) whose Fourier transform is ũ(f) =
1
2
Sn(f)|K̃(f)|2 as

S

N
=

(u|h)
(u|u)1/2

(2.47)

It is clear that to maximize the S/N the two "vectors" must be parallel, which means
ũ(f) proportional to h̃(f):

K̃(f) ∝
h̃(f)

Sn(f)
(2.48)
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This is the matched filtering theory that allows to dig out a signal whose shape is known
from a much larger noise. As described in Section 3.5, the 5-vector method, the data
analysis pipeline that is the starting point of the ensemble procedure described in this
work, is a matched filter in the frequency domain.

2.6.2 The F-statistic

The F-statistic is a frequentist data analysis pipeline for the CW search, described in
[78, 79]. It is based on the maximum likelihood detection which consists of maximizing
the likelihood function with respect to the parameters of the signal. The starting point
is the natural logarithm of the likelihood function:

ln Λ = (x|h)− 1

2
(h|h) (2.49)

where the inner product (·|·) is defined in (2.46), i.e. by a filter matched to the detec-
tion noise spectrum. The F-statistic is obtained by maximizing the likelihood function
with respect to the four intrinsic parameters (h0, ψ, ι, ϕ) leaving the dependence on the
extrinsic parameters. Since in a targeted search the extrinsic parameters are supposed to
be known, a targeted search based on the F-statistic would reduce to the computation of
one value for the statistic, that is later compared to the expected noise-only distribution
for Gaussian noise in order to assign the significance.
The analysis is based on the rewrite of the expected signal as the linear combination of
four terms;

h(t) =
4∑

a=1

λaha(t) (2.50)

Each term corresponds to a particular combination of the intrinsic phase evolution and
of the sidereal modulation where the four basis waveforms are:

h1(t) = F+(t) cosΦ(t) h2(t) = F×(t) cosΦ(t) (2.51)

h3(t) = F+(t) sinΦ(t) h4(t) = F×(t) sinΦ(t) (2.52)

where F+/× are the antenna patterns, that define the response of the detector to the GW
signal12. Then the F-statistic, defined to be twice the log of the maximized likelihood

12The functions F+/× are inferred from the scalar product of the detector tensor Dij , defined for an
interferemoter with arms along the x- and y-axis

Dij =
1

2
(x̂ix̂j − ŷiŷj) (2.53)
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ratio, is just

2F = (x|x)− (x−
4∑

a=1

λbhb(t)|x−
4∑
c=1

λcha(t)) =
∑
a,d

(Γ−1)a,d(x|ha)(x|hd) (2.55)

where the matrix Γ is defined as (a, d = 1, 2, 3, 4):

Γa,d ≡
(
∂h

∂λa
| ∂h
∂λd

)
= (ha|hd) (2.56)

and the best-fit values for the λa are:

λa =
∑
b

(Γ−1)a,b(x|hb) (2.57)

If the data are composed purely of Gaussian noise, it is easy to show [78] that the
F-statistic satisfies a non-central χ2 distribution with 4 degrees of freedom and has a
non-centrality parameter equal to the squared optimal SNR ρ2 ≡ (h|h), defined by

ρ =
256π4ϵ2I2f 4K

d2
Tobs

Sh(fgw)
(2.58)

for an observation time Tobs and a single-sided noise special density Sh(f). The term
K depends on the sky location, orientation of the source and the number of considered
detectors.
The F-statistic is optimal in the Neyman-Pearson sense whereby the detection proba-
bility is maximized at a fixed false-alarm probability [80].

2.6.3 The Bayesian pipeline

Bayesian statistics provide a complete and straightforward framework to perform a tar-
geted search and to infer the parameters that best describe the signal if present [70].
The Bayesian method is applied after a complex heterodyne method, described in [81],
to reduce the amount of data to analyze and to unwind the apparent phase evolution of
the source (due to spin-down and Doppler effect). Then, the posterior on the amplitude

and the polarization tensors ê+/× in (3.1):

F+/×(n̂) = Dij · êij+/×(n̂) (2.54)

where n̂ refers to the sky position.
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is

p(h0|x, I) ∝
∫ θ

p(x|h0, θ, I)p(h0|I)p(θ|I)dθ (2.59)

where x are the heterodyned data, θ = {cos ι, ϕ, ψ} while p(x|h0, θ, I) is the likelihood
given the signal model and p(h0|I) the prior on the amplitude. The prior is usually cho-
sen flat between zero and some cut-off or with a Fermi-Dirac-like distribution.
From the posterior, it is possible to infer an estimation for the unknown parameter or
in case of no detection, a 95% credible upper limit using the cumulative posterior.
The marginalization on the parameters θ is usually performed numerically, e.g. us-
ing Markov Chain Monte Carlo [82] in which the parameter space is explored more
efficiently and without spending much time in the areas with very low probability den-
sities, or using nested sampling [83].
The marginal likelihood, or Bayesian evidence, ZM for a particular model M is

ZM ≡ p(x|I) =
∫ h0

∫ θ

p(x|h0, θ, I)p(h0|I)p(θ|I)dθdh0 (2.60)

that can be compared to the evidence that the data consists of only Gaussian noise (null
hypothesis) to form the odds O for the two models [83]

O =
ZM
Znoise

(2.61)

and to perform model selection.

2.7 Latest results for the targeted search

The latest targeted search for CWs from known pulsars is reported in [84] analyzing a
set of 236 pulsars using LIGO and Virgo O3 data combined with O2 data.
The analysis take into account the glitches for some pulsars during the considered runs
and also if there are information from electromagnetic observations to restrict the pri-
ors on the ι and ψ parameters. The ephemerides come from the observations from the
CHIME, Hobart, Jodrell Bank, MeerKAT, Nancay, NICER and UTMOST observato-
ries.
The three independent pipelines used in the search are: the time-domain Bayesian
method, the F-statistic method (described in the previous Subsections) and the 5-vector
method (see next Chapter). All the pipelines searched for the standard single har-
monic GW emission with a frequency at twice the pulsar rotation frequency but only
the Bayesian method has been broadly applied to a large number of targets.
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Figure 2.7: Results for the targeted search of the O3 data of the LIGO and Virgo detectors using
the Bayesian pipeline and considering a set 236 known pulsars. The blue stars are the 95%
credible upper limits on the GW amplitude while the grey triangles are the spin-down limits and
the pink line is the minimum detectable amplitude. Upper limits that are below the spin-down
limits are circled. Credit to [84].

In addition, the Bayesian and the F-statistic pipelines assumed a dual harmonic emis-
sion scenario with a GW frequency at once and twice the rotation frequency. To com-
plete the search, the 5-vector method limited the search to the single harmonic sce-
nario but assuming a GW frequency at the star rotation frequency. Furthermore, the
F-statistic has been used to test the dipole radiation as predicted by the Brans-Dicke
theory [85].
No GW detection has been reported, and upper limits on the amplitudes are given in
Figure 2.7 while the upper limits on the ellipticity are shown in Figure 2.8. Figure 2.9
shows the results for the spin-down ratio, i.e., the ratio between the amplitude upper
limit and the amplitude corresponding to the theoretical spin-down limit.
The pulsar with the smallest upper limit on h0 was J1745-0952 with 4.72× 10−27 while
the best limit on the ellipticity is 5.26× 10−9 for J0711-6830.
Among the 236 pulsars, 90 millisecond pulsars have a spin-down ratio less than 10
while 23 pulsars have strain amplitudes lower than the limits calculated from their elec-
tromagnetically measured spin-down rates. 9 of these 23 pulsars beat their spin-down
limits for the first time.



58 Chapter 2. Gravitational wave detectors and the CW search

102 103

Gravitational-wave Frequency (Hz)

10−9

10−7

10−5

10−3

El
lip

tic
ity

ε
τ = 10 3

y

τ = 10 5
y

τ = 10 7
y

τ = 10 9
y

Results
below spin-down limit
spin-down limits

1028

1029

1030

1031

1032

1033

1034

1035

l
=
m

=
2

Q
ua

d
ru

p
o

le
M

o
m

e
n

t,
Q

2
2

(k
g

m
2
)

Figure 2.8: Results for the targeted search of the O3 data of the LIGO and Virgo detectors using
the Bayesian pipeline and considering a set 236 known pulsars. The blue circles are the 95%
credible upper limits on the ellipticity while the grey triangles are the spin-down limits. Upper
limits that are below the spin-down limits are circled while the pink lines are contour lines of
equal characteristic age τ . To the right of the plot, histograms of both these direct limits and
spin-down limits are shown by filled and empty bars respectively. Credit to [84].

For the Crab and Vela pulsars, these limits are factors of ∼ 100 and ∼ 20 lower than
their spin-down limits, respectively. A previous search using O1 plus O2 data on 222
pulsars is given in [86]. In that search, the percentage of GW emission contributing to
the spin-down luminosity for Crab and Vela pulsars was less than 0.017% and 0.18%,
respectively. Compared to the O2+O3 search described above, these numbers decrease
as expected to 0.009% for Crab but increased for Vela up to a maximum of 0.27%. This
unexpected result is due to the presence of a significant noise line in the LIGO Hanford
detector very close to the expected GW frequency for the Vela during O3.
A separate dual harmonic search has been performed on the same dataset (O2+O3) for
the energetic young pulsar and frequent glitcher J0537-6910 in [87]. No CW signal has
been detected in this search but, for the first time, the spin-down limit for this type of
GW emission on this source has been surpassed.
The latest results from the O3 fully coherent narrow-band search can be found in [88].The
search looks for CW from 18 pulsars using the 5-vector and F-statistic narrow-band
pipelines. For 7 of these pulsars, the upper limits are lower than their spin-down lim-
its. These results overcome the corresponding ones from the previous narrow-band
searches, improving the upper limits even if the parameter space investigated in this
search is larger.
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Figure 2.9: Histogram of the spin-down ratios for the upper limits in Figure 2.7. Credit to [84].

2.8 Challenges in CW signal detection

As shown for the targeted search in the previous Section but also for the other type of
searches, there is no evidence of a CW signal in the LIGO and Virgo data.
Over the next years, current detectors and also the new detector generation (e.g. Ein-
stein Telescope) will improve the detection likelihood increasing the explored range in
the Galaxy. At the same time, theoretical uncertainties in what sensitivity is needed for
the first CW detection are very large; whether the first detection is imminent or still
many years distant remains unclear.
A recent phenomenological population synthesis study [89], based on an exponentially
decaying ellipticity with a maximum value ∼ 10−5 with a supernova rate of once per
century concluded that the expected number of detectable, young and isolated neutron
stars for Advanced LIGO sensitivity is less than 1 and is almost 25 for Einstein Tele-
scope during 1 year-long observing run.
In the following, I describe the critical issues that could in principle get more difficult
the detection of CW signal by a targeted search.

• It is not unlikely that the assumed models are not well representative of the re-
alistic emission scenario for CW. This means that it is also important to improve
the pipelines robustness with respect to the model [76]. For example, the emis-
sion mechanism described in Subsection 1.5.1, assumes the neutron star as a rigid
body rotating around a principal axis of inertia not considering a realistic model
for the neutron star structure. For this reason, narrow-band searches consider a
possible mismatch between the emitted and the theoretical GW frequency.
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• A not correct frequency evolution can be due to a difference between the measured
spin-down parameter and the intrinsic parameter due to dynamical effects that
entail an excess in the measured spin-down value [90].

• The proper motion of the source can be relevant if not uniform13. For example,
gravitational fields in globular cluster - where many pulsars are found - can accel-
erate the source producing a frequency modulation compared to the one induced
by the spin-down evolution [16].

• A motion of the source can in principle produce a shift of the sky position during
the observation time of the order of the accuracy required for the targeted search
(in principle, this can be corrected if the source transverse velocity is known).

13A uniform motion would produce a constant shift in frequency



Chapter 3
Targeted search using the 5-vector
pipeline
As described in the previous Chapters, the targeted search is the most sensitive search
for CW signals since the source position and rotation frequency are known and fully
coherent methods can be used.
In this Chapter, I describe the 5-vector pipeline used by the LVK Collaboration for
different CW searches. The pipeline has been developed in the last years by the Rome
Virgo group and is composed by an optimized data framework for the CW search, the
Band Sample Data framework, and by the 5-vector method, the data analysis procedure
for the single pulsar targeted search. I also describe the contribution to this pipeline due
to my research: the Doppler correction implementation for sources in binary system
and the characterization of a different multi-detector extension that takes into account
the different detectors’ noise level.

3.1 The Band-Sample Data framework

At fixed computing cost (especially for "expensive" analysis), a good and quick data
management is equivalent to an increase in sensitivity since it is possible to explore
with a better sensitivity a broader parameter space. Therefore, the choice of an opti-
mized data management for the selected search is an important point for any analysis.
The Band Sampled Data (BSD) collection is a new data framework - developed by the
Rome Virgo group [91] - that consists of band-limited, down-sampled time series, called
BSD files. This framework can be described as a database of sub-databases where the
BSD file is a complex time series that covers 10 Hz/1 month of the original data (see
Figure 3.1). Using the BSD libraries, it is possible to extract frequency sub-bands (less
than 10 Hz) or time sub-periods (less than 1 month). As well, it is possible to select

61
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Figure 3.1: Time versus frequency representation of BSD data, where each block represents
a 10 Hz and one month of data (one BSD file). Using BSD libraries it is possible to extract
frequency sub-bands (less than 10 Hz) or time sub-periods (less than 1 month). As well, it is
possible to select larger frequency bands (more than 10 Hz), grouping the 10 Hz pieces, and/or
larger-periods, grouping the one month data. Credit to [91].

larger frequency bands (more than 10 Hz), grouping the 10 Hz pieces, and/or larger-
periods, grouping the one month data.
The starting point for the construction of the BSD collection is a database of overlapped
by half in time Fast Fourier Transforms (FFTs), called Short FFTs DataBase (SFDB)
[92]. The SFDB is composed of FFTs computed using chunks of calibrated data sam-
pled at 4096 Hz whose duration is linked to the frequency resolution (chosen bigger
than the frequency spread due the time Doppler effect).
The step-by-step procedure for the BSD files production is shown in Figure 3.2 and can
be summarized in these steps:

• Start with a list of SFDB covering 1 month of data

• For each FFT in the SFDB extract a selected 10 Hz frequency band

• Switch to time domain of the selected frequency band using inverse-FFT (produc-
ing complex data sampled at 10 Hz)

• Select the central half of the chunck

• Store in a BSD file which contains 10 Hz sampled data for a 10 Hz frequency
band spanning 1 month of data

One of the great advantage in the use of the BSD collection is the possibility to elaborate
the files as required and rapidly produce one single instance of the data, ready for the
next step of the analysis. This flexibility allows, for example, to create a set of FFTs
with a duration (and hence a frequency resolution) optimized for the search. The BSD
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Figure 3.2: Each FFT appears as a (vertical, labeled from 1 to n) box. The horizontal box in
yellow indicates the selected 10 Hz. The extraction, and hence the sub-sampling, is done on
each FFT and is represented by the flesh-colored box for the first FFT. Only the positive half of
each FFT is used and this brings to the construction of a complex time series, which it is called
reduced-analytic time series (in figure represented by the blue block). The procedure described
above, is repeated for all the required 10 Hz sub-bands. Credit to [91]

framework includes also detailed information, stored as a header in every file, which is
needed in several steps of the analysis. The information are, for example, the starting
time of each dataset and the position and velocity of the detector in a chosen reference
frame, in particular the Solar System barycenter (SSB) which is used to remove the
Doppler effect in the case of CW searches. Given the set of FFTs, the BSD construction
is computationally very cheap and fast. As an example, the total creation time is only
a few core-hours for a band of 1024 Hz, four months of data and two detectors. The
needed storage capacity is also very small, of the order of 260 GB.
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Figure 3.3: Analytic signal compared with the reduced analytic signal used in the BSD file.
Credit to [91].

3.1.1 The analytical signal

The data stored in the BSD is a complex-valued time series that is a slightly different
version of the classical analytic signal, namely a reduced analytic signal with no nega-
tive frequency components.
In general, to obtain the analytic signal, first you need to select the 10 Hz frequency
band from the SFDB shifting the initial frequency to 0 Hz. Then, each frequency do-
main chunk has to be zero-padded and inversely Fourier-transformed.
The reduced-analytic signal is instead built discarding the negative zero component sam-
pling at the maximum frequency of the positive band (see Figure 3.3).
From the point of view of signal reconstruction, for a standard analytic signal the sam-
pling frequency is equal to that of the original real valued signal, i.e. at least two times
the maximum frequency of the band, as required by the Nyquist theorem. In the BSD
data, the sampling frequency is half of the one used for analytic signals. However, there
is a perfect equivalence between the analytic signal and the reduced-analytic signal since
the latter can be obtained taking only the odd time samples of the former.
Using appropriate normalization factors, it can be shown [91] that the power spectrum
of the reduced-analytic signal is equal to the power spectrum of the starting real data
with the amplitude of the reduced-analytic signal that is half of the original real data.
The BSD procedure, compared to the construction of the analytic signal, has the advan-
tage of reducing the computing time (half data to be handled) in the data processing,
while saving the full information needed to analyze the data or even reconstruct the full
time series, if needed.
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3.2 The GW strain signal

In Subsection 1.5.1, I have computed the CW signal emitted by a triaxial neutron star
rotating around a principal axis of inertia. The perturbation metric h(t) is:

h(t) = h+(t)ê+ + h×(t)ê× . (3.1)

while the polarization amplitudes h+ and h×, can be written as:

h+(t) = h0
1 + cos2(i)

2
cos[Φ(t)] (3.2)

hx(t) = h0 cos(i) sin[Φ(t)] . (3.3)

where Φ(t) = 2πfgw(t− r/c) and h0 is the amplitude defined in (1.62) for a rigid body
rotating around a principal axis. The unit vectors ê+ and ê× are defined as:

ê+ =

1 0 0

0 −1 0

0 0 0

 , ê× =

0 1 0

1 0 0

0 0 0

 (3.4)

In the next Subsections, I describe the signal at the output of a ground-based detector
and introduce the formalism used by the 5-vector method.

3.2.1 Response of the detector

To evaluate the GW strain at the detector, first I need to write the expression (3.1) in the
detector frame:

H(t) = M(t)h(t)M(t)T (3.5)

where M(t) is the three-dimensional orthogonal matrix of transformation form the TT
frame to the detector’s proper reference frame (the apix T indicates the matrix transpo-
sition). This rotation matrix can be written as the combination of three rotations:

M(t) =M3M2M
T
1 (3.6)

where M1 is the rotation matrix from the wave frame to the celestial sphere coordinate
frame, M2 the rotation matrix from the celestial coordinates to the cardinal coordinates
of the Earth and M3, the rotation matrix from the cardinal coordinates to the detector
reference frame (see [93] for the complete expressions).
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The response of the interferometric detectors in the long wavelength approximation1 is
well known [93]; it is defined as the difference between the wave induced relative length
changes of the two interferometer arms:

h(t) =
1

2
n1 · [H(t) · n1]−

1

2
n2 · [H(t) · n2] (3.7)

where n1/2 are the unit vectors parallel to the interferometer arms,

n1 = (1, 0, 0) n2 = (cos ξ, sin ξ, 0) (3.8)

with ξ the angle between the arms2.
It follows that, the GW strain at the detector can be described as:

h(t) = h+F+(t;ψ) + h×F×(t;ψ) (3.9)

where the two beam-pattern functions, F+(t;ψ) and F×(t;ψ), are periodic functions of
time with period of one sidereal day and given by (see [93] for the detailed computa-
tion):

F+(t;ψ) = sin ξ [a(t) cos(2ψ) + b(t) sin(2ψ)] , (3.10)

F×(t;ψ) = sin ξ [b(t) cos(2ψ)− a(t) sin(2ψ)] . (3.11)

where ψ is the wave polarization angle defined as the angle from ẑ × x̂ to the x-axis of
the wave frame, measured counterclockwise with respect to n̂, where ẑ is the direction
of the north celestial pole (see Figure 3.4).
The two functions a(t), b(t) depend on the source position in the sky (α and δ) and on
the detector position and orientation on the Earth (λ is the latitude and γ is the angle
measured counterclockwise from East to the bisector of the interferometers arms) [94]:

a(t) = +
1

16
sin 2γ(3− cos 2λ)(3− cos 2δ) cos [2(α− Φr − Ω⊕t)]

− 1

4
cos 2γ sinλ(3− cos 2δ) sin [2(α− Φr − Ω⊕t)]

+
1

4
sin 2γ sin 2λ sin 2δ cos (α− Φr − Ω⊕t)

− 1

2
cos 2γ cosλ sin 2δ sin [α− Φr − Ω⊕t]

+
3

4
sin 2γ cos2 λ cos2 δ

(3.12)

1In the long wavelength approximation, the reduced wavelength of the GW signal is much larger of
the size of the detector.

2For the actual interferometric detectors, ξ = π/2 and n2 is parallel to the y-axis.



3.2. The GW strain signal 67

where Φr is a deterministic phase which defines the position of the Earth in its diurnal
motion at t = 0 (the sum Φr−Ω⊕t coincides with the local sidereal time of the detector’s
site), and

b(t) = + cos 2γ sinλ sin δ cos [2(α− Φr − Ω⊕t)]

+
1

4
sin 2γ(3− cos 2λ) sin δ sin [2(α− Φr − Ω⊕t)]

+ cos 2γ cosλ cos δ cos (α− Φr − Ω⊕t)

+
1

2
sin 2γ sin 2λ cos δ sin (α− Φr − Ω⊕t)

(3.13)

Three-dimensional representations of the absolute value of F+/× as a function of the
sky position are often called antenna patterns.
The two beam-pattern functions, F+(t;ψ) and F×(t;ψ), are periodic functions in time.
Their time dependency is sinusoidal and cosinusoidal with arguments Ω⊕t and 2Ω⊕t,
where Ω⊕ is the sidereal angular frequency of the Earth.
The effect of detector response on a monochromatic signal with angular frequency ω0

is to introduce an amplitude and phase modulation which determine a split of the signal
power into five frequencies ω0, ω0 ± Ω⊕, ω0 ± 2Ω⊕. The distribution of power among
the five bands depends on the source and detector angular parameters.

3.2.2 The 5-vector formalism

The expression (3.1) can be described in a different way by a polarization ellipse. The
polarization ellipse is characterized by the ratio η = a/b of its semiminor to its semima-
jor axis and by the angle that defines the direction of the major axis a with respect to the
celestial parallel of the source. This angle is equal to angle ψ introduced previously. The
ratio η varies in the range [−1, 1], where η = 0 for a linearly polarized wave and η = ±1

for a circularly polarized wave (η = 1 if the circular rotation is counterclockwise). The
complex form of (3.1) can be expressed as:

h(t) = H0[H+ê+ +H×ê×]eiΦ(t) , (3.14)

where
H+ =

cos(2ψ)− jη sin(2ψ)√
1 + η2

(3.15)

H× =
sin(2ψ) + jη cos(2ψ)√

1 + η2
. (3.16)
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Introducing the two functions A+ = F+(ψ = 0) and A× = F×(ψ = 0):

A+ = a0 + a1c cos(Ω⊕t) + a1s sin(Ω⊕t) + a2c cos(2Ω⊕t) + a2s sin(2Ω⊕t) (3.17)

A× = b1c cos(Ω⊕t) + b1s sin(Ω⊕t) + b2c cos(2Ω⊕t) + b2s sin(2Ω⊕t) (3.18)

where the coefficients depend on source and detector position [95], it is possible to
re-write the GW strain at the detector as:

h(t) = H0(H+A+ +H×A×)e
iΦ(t) (3.19)

For the computation of the two functions A+ and A×, it is important to note that the
Earth’s sidereal angular frequency Ω⊕ is linked to the local sidereal time Θ, the source
right ascension α and the detector longitude β by the relation Ω⊕t = Θ− α + β.
Since the real part of the complex strain in (3.19) must be equal to the expression in
(3.1), it follows that:

η = − 2 cos(i)

1 + cos2(i)
(3.20)

H0 = h0

√
1 + 6 cos2(i) + cos4(i)

4
(3.21)

For ψ = 0 the following relations can be found:

H+(ψ = 0) =
h+
H0

and Im(H×(ψ = 0)) = −h×
H0

(3.22)

As shown in equation (3.19), h(t) is the product of two terms: the first, (A+H+ +

A×H×), is a “slow” amplitude and phase modulation at the sidereal frequency while the
exponential term is a “fast” term, due to the intrinsic source frequency.

3.3 Pre-processing

The phase Φ(t) in (3.19) shows a time dependence due to different phenomena that
modulate in time the received signal frequency. The main physical phenomena to be
considered are the spin-down and the Doppler effect due to the Earth motion.
Indeed, the spin-down entails a time model for the phase in the neutron star source
frame. Choosing to time the signal phase evolution with respect to the Solar System
barycenter (SSB), which is an inertial reference frame, the phase can be expressed as
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the Taylor expansion respect to the baricentric time τ

Φsrc(τ) = 2π

[
f(τ − τref ) +

1

2
ḟ(τ − τref )

2 + ...

]
(3.23)

where τref is the reference time and f, ḟ , f̈ , ... are the CW frequency (f = ∂Φ/∂τ ) and
the spin-down parameters.
The phase in the detector frame can be computed considering the relation of the wave-
front detector arrival time tarr to its source emission time τ [96],

Φ(tarr) = Φsrc(τ(tarr)) (3.24)

For the moment, let us consider isolated neutron stars where the relation is:

τ(tarr) = tarr +∆R +∆E +∆S (3.25)

where ∆R is the classic Roemer delay that gives the main contribution while the Einstein
delay ∆E and the Shapiro delay ∆S are relativistic wave-propagation effects.
The main contribution (up to ≈ 8.5 minutes [97]) is given by the classic Roemer delay:

∆R =
r⃗ · n⃗
c

(3.26)

where r⃗ is the vector identifying the detector position in the SSB and n⃗ is the unit vector
toward the source3.
The term ∆E is the Einstein delay which is the sum of two contributions, one due to
the gravitational redshift produced by the Sun and the other due to the time dilation
produced by Earth’s motion. ∆S is the Shapiro delay due to the curvature of spacetime
near the Sun. The Einstein delay is of order of about 2 · 10−3 s, while the Shapiro delay
brings a negligible contribution for CW, unless the source line of sight passes very near
the Sun’s limb.

3.3.1 The BSD heterodyne correction

As described in the previous Section, the CW signal is modulated mainly by the spin-
down and Doppler effect. Different approaches [94, 97] have been proposed to de-
modulate the strain data in order to enhance the signal-to-noise ratio of the expected
CW signal.

3For the closest pulsars, there is also a parallax timing term in the Roemer delay that takes account of
the curvature of the wave fronts emitted from the source [97].
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In the BSD approach, detector’s data are ready to be corrected without the need to apply
filters or to re-sample, since this is already done by construction. This difference is
useful in order to have a more general data framework which can be used also for other
searches if needed.
In the following, I assume the frequency and spin-down parameters [f, ḟ , f̈ , ..] for a
given source at the reference time τref , to be known. The signal phase shift due to the
source spin-down can be written as:

Φsd = 2π

∫ t

τref

[
ḟ(t′ − τref ) +

1

2
f̈0(t

′ − τref )
2 + . . .

]
dt′ . (3.27)

The corresponding phase factor for the Doppler correction is (up to a constant term):

Φd = 2π

∫ t

τref

f0(t
′)
r⃗ · n̂
c
dt′ ≈ 2π

c
pn̂(t)f(t) (3.28)

where pn̂(t) is the position of the detector in the chosen reference frame, projected along
the source sky position n̂.
The total signal phase correction can be written as the sum of the spin-down and the
Doppler contributions:

Φcorr(t) = Φsd(t) + Φd(t) (3.29)

Heterodyne de-modulation is then applied by multiplying the data by the exponential
factor e−iΦcorr(t),

x(t) = [h(t) + n(t)]e−iΦcorr(t) (3.30)

This technique is useful for correcting pulsar signals for the phase modulation caused
by the spin-down/Doppler shift and hence to precisely unwind the apparent phase evo-
lution of the source. Once this correction has been applied, a CW signal would be-
come monochromatic except for the sidereal and residual modulations. These might be
present due to inappropriate modeling of the frequency evolution (higher order spin-
down terms, source frequency glitches) or to parameter uncertainties like a not perfect
estimation of source position parameters.
The amplitude modulation due to the antenna pattern is different for each detector of
the network and can be used to build a detection statistic as well as to estimate signal
parameters, as shown in Section 3.5.
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3.4 Binary system correction

If the source is in a binary system, the relation (3.25) should include the term ∆bin that
takes into account the shift in the time of arrival of the signal due to the motion of the
source within the binary system.

Figure 3.4: Top-plot Source in binary orbit to show orbital parameters definition. Bottom-plot
Projection in two dimension assuming circular orbit. Credit to [98].

The term ∆bin is the light-time travel across the orbit (i.e. the Roemer delay for the
binary motion) and can be written as:

∆bin = −R(τ)
c

(3.31)

where R is is the radial distance of the CW emitting source from the binary barycenter
(BB) with R > 0 if the source is further away from us than the BB. Following [99],

R(τ)

c
= ap

[
sinω (cosE − e) + cosω sin(E

√
1− e2)

]
(3.32)
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where ap = a sin ι/c is the projected semi-major axis4 ( with ι the inclination angle and
a the semi-major axis) and e the orbital eccentricity. The eccentric anomalyE is defined
by the Kepler’s equation:

τ − τp =
P

2π
(E − e sinE) (3.33)

with P the orbital period and τp the time of periapse.
Knowing the source sky position allows to rewrite the timing relation (3.25)

τ(tSSB) = tSSB − R(τ)

c
(3.34)

that is equivalent to consider the detector in the SSB.
Using a linear phase model approximation, the phase can be approximated as

Φ(t) ≈ 2πf

[
∆t− R(t)

c

]
(3.35)

where ∆t = tSSB − τref . It is possible to approximate E(τ) ≈ E(t) since the change
in E during R/c is negligible and to consider

t− tp ≈
P

2π
(E − e sinE) (3.36)

It follows that:

Φ(t) ≈ 2πf
[
∆t− ap

(
sinω (cosE − e) + cosω sin(E

√
1− e2)

)]
(3.37)

that is the phase model for eccentric orbit.
In the case of low eccentric orbit (e → 0), the phase model can be simplified. This
is not a strong assumption since the 75% of the pulsars in binary system in the ATNF
catalogue has e < 0.01. Considering E(t) = E0(t) + eE1(t) + ... and the Kepler’s
equation, the Roemer delay to leading order in e is:

R(t)

c
= ap

[
sinψ(t) +

k

2
sin 2ψ(t)− β

2
cos 2ψ(t)− 3

2
β

]
(3.38)

with
k = e cosω (3.39)

4Note that most of the astronomical observations provide the projected semi-major axis and not the
semi-major axis since they are only sensitive to the projection of the binary orbit in the absence of polar-
ization information.
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β = e sinω (3.40)

and the mean orbital phase
ψ(t) = Ω(t− tasc) (3.41)

measured from the time of ascending nodes tasc. For small eccentricity and mean orbital
angular velocity Ω = 2π

P
, tasc is:

tasc = tp −
ω

Ω
(3.42)

For the linear phase model and for the small-eccentricity limit, it follows that:

Φ(t) ≈ 2πf

[
∆t− ap

(
sinψ(t) +

k

2
sin 2ψ(t)− β

2
cos 2ψ(t)− 3

2
β

)]
(3.43)

Starting from this phase model, I use the heterodyne method to remove the signal mod-
ulation due to the orbital motion of the source and to apply the 5-vector pipeline also to
binary systems.

3.5 The 5-vector method

The data analysis method chosen in this work for the single pulsar analysis is the 5-
vec method, a matched filter in the Fourier frequency domain [95]. Assuming that the
detectors strain data x(t) can be written as the sum of the noise n(t) with the expected
signal h(t),

x(t) = h(t) + n(t) (3.44)

and assuming stationary and Gaussian noise n(t), the barycentric and spin-down cor-
rections are applied on x(t) as described in Subsection 3.3.1. As a consequence, the
signal is now monochromatic apart from an amplitude and phase sidereal modulation
and is given by [49]:

h(t) = H0(H+A+ +H×A×)e
i(ω0t+γ) (3.45)

that is, the product of a fast periodic term, with frequency f0 = ω0/2π and absolute
phase γ, and a slow term given by a linear combination of sines and cosines with argu-
ment Ω⊕ and 2Ω⊕. Then, the signal is completely described by its Fourier components
at the 5 angular frequencies ω0, ω0±Ω⊕, ω0±2Ω⊕. This set of 5 complex numbers con-
stitutes the signal 5-vector. Given a generic time series g(t), the corresponding 5-vector
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is:
G =

∫
T

g(t)e−i(ω0t−kΩ⊕t)dt (3.46)

where k = [0,±1,±2] and T is the observation time. In the following, I will indicate
with X the data 5-vector and with A+,A× the template 5-vectors, obtained by applying
the definition (3.46) to equations (3.17) and (3.18). These two last quantities depend
only on known parameters and on the signal templates.
Introducing the generator 5-vectors V,

V = e−ikΩ⊕t = Wejk(α−β) (3.47)

where5 W = ejkΘ, it is easy to show that:

h(t) = H0A · Wei(ω0t+γ) (3.48)

where A is:
A = H+A+ +H×A× . (3.49)

A is a combination of the + and × template 5-vectors with components that depend on a
combination of the coefficient introduced in (3.17) and (3.18) weighted with exponential
of α− β [95].
The data 5-vector is:

X =

∫
T

x(t)Ve−iω0tdt =

∫
T

(h(t) + n(t))Ve−iω0tdt

= H0e
iγS + N .

(3.50)

where N is the noise 5-vector,

N =

∫
T

n(t)e−i(ω0t−kΩ⊕t)dt , (3.51)

and S is the "empirical" computation of the signal 5-vector A:

S =

∫
T

s(t)e−i(ω0t−kΩ⊕t)dt (3.52)

for
s(t) =

h(t)

h0eiγ
(3.53)

5The second equation holds for the relation Ω⊕t = Θ − α + β where Θ is the local sidereal time, α
is source right ascension and β the detector longitude.
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The construction of the signal 5-vec S is “empirical” and this is a very important point
of the method. The detection of the signal is based on the construction of a matched
filter to the signal + and × components: if these components were obtained using the
definition in (3.49), the matching condition would not take into account the presence of
holes in the data and the effect of all the operations done on the data, such as cleaning.
Then, in practice it is necessary to simulate in time domain the signal s+(t) and s×(t)
components, which depend only on the source and detector position and approximate
the quantities A+ and A×. By operating on them with all the procedures used for the
data, it is possible to compute the corresponding empirical 5-vec S+,S× by using the
definition (3.46).

3.5.1 Parameters estimation

For the estimation of the unknown parameters (amplitude and polarization parameters),
it is important to consider two different cases.
In the first case, the two polarization parameters η and ψ are known6 ("2 degrees of
freedom" case), therefore the shape of the signal is also known and the matched filter
theory can be used. To estimate the amplitude and the phase of the signal, h0 and γ, the
matched filter transfer function7 is A∗

|A|2 . The filter output is the estimation of the signal
complex amplitude8:

ĥ0 =
X · A
|A|2

. (3.54)

In the second case ("4 degrees of freedom" case), the polarization parameters are un-
known and it is possible to estimate only the two quantities:

Ĥ+ =
X · A+

|A+|2
and Ĥ× =

X · A×

|A×|2
. (3.55)

Ĥ+ and Ĥ× are complex numbers that can be interpreted as two matched filter between
the data and the signal templates A+/×, used in order to maximize the signal-to-noise
ratio.
Assuming the noise is Gaussian with mean value zero, the two matched filters are esti-
mators [49] of the signal plus and cross amplitudes H0e

iγH+, H0e
iγH×.

6For example, estimations of η (or i) and ψ can be provided by X-ray observations [94] because these
observations provide accurate determination of the orientation of spin axis of the selected pulsar. On the
other hand, the physics of pulsar is complex, and a model leading to the above estimations could have
several uncertainties.

7The superscript ∗ in A∗ refers to the complex conjugation of the complex vector A.
8It is important to underline that in all the equations starting from this section with A, I will always

refer to its empirical realization S.
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The estimator of the signal amplitude is given by:

Ĥ0 =

√
|Ĥ+|2 + |Ĥ×|2 . (3.56)

Introducing the quantities A,B and C

H+H
′
× = A+ iB and |Ĥ+|2 − |Ĥ×|2 = C (3.57)

it is simply to infer the estimations of η and of ψ,

η̂ =
−1 +

√
1− 4B2

2B
, (3.58)

cos(4ψ̂) =
C

4A2 + C2
, (3.59)

sin(4ψ̂) =
2A

4A2 + C2
. (3.60)

3.5.2 5-vector detection statistic

In [95], the detection statistic S for the 5-vector method is defined as:

S = |A+|4|Ĥ+|2 + |A×|4|Ĥ×|2, (3.61)

in order to check the statistical significance of a candidate by making a comparison
between its value and its expected distribution in the case of noise.
In the hypothesis of Gaussian noise with zero mean, variance σ2 and no signal, the two
complex estimators have also Gaussian distribution with mean zero and variance:

σ2
+/× =

σ2
x

|A+/×|2
(3.62)

with σ2
x = σ2 · T and T , the observation time. σ2

x is the variance of each component of
the noise 5-vector, following a Gaussian distribution with zero mean. This means that
the real and the imaginary part of (3.55) are independent normally distributed random
variables with mean zero and variance σ2

+/×/2 [49].
In general, the central-χ2 distribution can be seen as the distribution that models the sum
of squares of several independent and identically distributed Gaussian random variables
with the same mean and variance. For this reason, if a complex random variable Y has
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a Gaussian distribution, that is:

Re(Y ) ∼ N(x; 0, σ2) and Im(Y ) ∼ N(x; 0, σ2) , (3.63)

the random variableR = |Y |2 = |Re(Y )|2+|Im(Y )|2 has a central-χ square distribution
with 2 degrees of freedom:

R ∼ 1

2σ2
e−

x
2σ2 . (3.64)

The distribution in (3.64) is an exponential distribution,

R ∼ exp(x; θ) =
1

θ
e−

x
θ (3.65)

with mean θ = 2σ2 = σ2
+/×. Therefore, the statistic S is the weighted combination of

two random variables S+ = |Ĥ+|2, S× = |Ĥ×|2 with exponential distribution. Since

R ∼ exp(x; θ) =⇒ aR ∼ 1

|a|
exp(

x

a
; θ) , (3.66)

and
S = aS+ + bS× , (3.67)

the distribution of S is the convolution of two exponentials with different means.
It follows that the distribution of S in the case of Gaussian noise with zero mean, vari-
ance σ2 and no signal, is:

S ∼ f(S) =
e
− S

σ2
x|A×|2 − e

− S

σ2
x|A+|2

σ2
x(|A×|2 − |A+|2)

(3.68)

if a = |A+|4 and b = |A×|4.
The situation is quite different if a signal of amplitude H0 is present into the data.
In this case, the real and the imaginary part of (3.55), have still Gaussian distribution
but with different mean values. Therefore the random variable R = |Y |2 = |Re(Y )|2 +
|Im(Y )|2, where

Re(Y ) ∼ N(x;µ1, σ
2) and Im(Y ) ∼ N(x;µ2, σ

2) , (3.69)

has a noncentral-χ2 distribution with 2 degrees of freedom (apart from the factor k):

g(x;H0) =
k

2
e−

kx+β
2 I0(

√
kβx) (3.70)



78 Chapter 3. Targeted search using the 5-vector pipeline

where I0 is the modified Bessel function of the first kind of zero order, and

x = |Ĥ+/×|2 ≡ S+/× , k = 2
|A+/×|2

σ2
x

, β = 2
H2

0 |ejΦ0H+/×A+/×|2

σ2
x

. (3.71)

The distribution of S is now the more complicated convolution of the function g(y+) and
g(y×) where y+ = |A+|4|Ĥ+|2 and y× = |A×|4|Ĥ×|2 that can be resolved by numerical
integration for given signal parameters [49].

3.5.3 Multidetector extension

Let us consider a network of n detectors and for the j-th detector, let us compute the
corresponding signal Xj and template 5-vectors A+/×

j .
In [100], the 5n-vectors are defined as:

X = [X1, ...,Xn] (3.72)

A+ = [A+
1 , ...,A

+
n ], (3.73)

A× = [A×
1 , ...,A

×
n ] (3.74)

combining the data 5-vectors Xj and the template 5-vectors A+/x
j (with j = 1, .., n) for

the considered pulsar in the j-th detector. For instance, in a multidetector search using
the two LIGO detectors, the data 10-vector are composed by the first five components
equal to the LLO 5-vector components and the last five equal to the LHO 5-vector
components.
Using the 5n-vectors, the multi-detector single pulsar statistic S is:

S = |A+|4|Ĥ+|2 + |A×|4|Ĥ×|2 (3.75)

where (the same for Ĥ×)

Ĥ+ =
X · A+

|A+|2
=

n∑
j=1

Xj · (A+
j )

∗

n∑
k=1

A+
k · (A+

k )
∗
=

=
1

|A+|2
(
|A+

1 |2 · Ĥ+,1 + ...+ |A+
n |2 · Ĥ+,n

) (3.76)

In the two estimators Ĥ+/×, each data 5-vector “interacts" only with the corresponding
template.
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In the hypothesis of Gaussian noise with zero mean and variance σ2
j in the j-th detec-

tor, the corresponding components of the data 5-vector are also distributed according to
a complex Gaussian distribution with mean value zero and variance σ2

j · Tj . Therefore,
the two complex estimators Ĥ+/× have also Gaussian distributions,

Ĥ+/× ∼ Gauss
(
x; 0, σ2

+/×
)

(3.77)

with

σ2
+/× =

n∑
j=1

σ2
j · Tj · |A

+/×
j |2

|A+/×|4
(3.78)

Since |Ĥ+/×|2 = Re[Ĥ+/×]2 + Im[Ĥ+/×]2, it follows that:

|Ĥ+/×|2 ∼ Exp(x;σ2
+/×) =

1

σ2
+/×

e
− x

σ2
+/× (3.79)

It is possible to compute the noise S distribution considering the weighted linear com-
bination in (3.75).

If a CW signal is present into the analyzed data, the distributions of the two complex
estimators Ĥ+/× are:

Ĥ+/× ∼ Gauss
(
x ; H0 · ejγ ·H+/× , σ

2
+/×
)

(3.80)

where H+/× are the polarization functions, H0 is the amplitude and γ the phase.
|Ĥ+/×|2 have a non central-χ2 distribution (apart from the factor k+/×):

|Ĥ+/×|2 ∼
k+/×
2

e−
k+/×x+λ+/×

2 I0(
√
k+/×λ+/×x) (3.81)

where I0 is the modified Bessel function of the first kind, and

k+/× =
2

σ2
+/×

λ+/× = k+/× · |H+/×|2 ·H2
0 . (3.82)

Compared to the single detector case, the distributions are the same. The difference is
the expression for the variances σ2

+/×.
As an example, let us consider a network of n detectors with the same observation time
t and co-located |A+/×

k |2 = |A+/×
1 |2 ,∀ k. The variances σ2

+/× in this case are:

σ2
+/× =

t

|A+/×
1 |2

∑n
j=1 σ

2
j

n
(3.83)
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This is equal to the case of one detector with variance equal to the arithmetic mean of
the variances of the n detectors.
Compared to the most sensitive detector (i.e. the detector with smallest σ2), not neces-
sarily a multidetector analysis outperforms the most sensitive detector.
In Section 3.6, I describe a different way to construct the 5n-vector weighting the 5-
vectors according to the detector noise and observation time.

3.5.4 5n-vector for multiple sources detection

The 5n-vectors generalize the 5-vector procedure to a network of n detectors. The
definition in (3.72) combines together the 5-vectors computed from each detector.
Fixing a set of n pulsars, I can also consider the 5n-vector as the combination of the 5-
vectors of different pulsars in the same detectors. In this case, I consider the 5n-vector
as a matched filter at the 5n frequencies where the combined signal is expected.
The noise distributions of Ĥ+/× are the same since there is just a re-definition of n, that
in this case, is the number of pulsars.
For the signal distributions, I need to consider that each pulsar can emit with different
amplitudes. The signal distributions of Ĥ+/× are:

Ĥ+/× ∼ Gauss

(
x ;

n∑
i=1

(
|A+,i|2

|A+|2
H0,i · ejγi ·H+/×,i

)
, σ2

+/×

)
(3.84)

In the case of single pulsar in n detectors, this expression is the same of (3.80) since the
amplitude and the polarization functions do not depend on the index i.
In [49], the λ+ (the same for λ×) parameter is defined as:

λ+ =

(
E

[
Re{H+}
σ+/

√
2

])2

+

(
E

[
Im{H+}
σ+/

√
2

])2

(3.85)

that, considering equation (3.84), implies

λ+
k+

=

[
n∑
i=1

(
|A+,i|2

|A+|2
H0,i · Re{ejγiH+,i}

)]2
+

[
n∑
i=1

(
|A+,i|2

|A+|2
H0,i · Im{ejγiH+,i}

)]2
(3.86)

For n = 1 or in the case of single pulsar in n detectors, the expressions of λ+/× are the
same found in the previous Subsection.
It is clear that for a large pulsars set where few signals are expected near the detection
threshold, this procedure is not efficient and robust since the matched filter is computed
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simultaneously at the expected 5n frequencies.

3.5.5 Upper limit computation

If the data are consistent with the noise hypothesis, it is possible to set upper limit on the
pulsar amplitude. In the description of the upper limit computation, I follow the mixed
frequentist/Bayesian procedure in [86].
Using the Bayes theorem, the posterior distribution on the amplitude H0, given the
measured value S of the detection statistic, is:

P (H0|S) =
L(S|H0)Π(H0)∫
L(S|H ′

0)Π(H
′
0)dH

′
0

(3.87)

where L(S|H0) is the likelihood, Π(H0) the prior on the amplitude and∫
L(S|H ′

0)Π(H
′
0)dH

′
0 is the evidence.

The 95% credible upper limit on the amplitude is the value H95%
0 that entails a cumula-

tive distribution probability of 0.95, i.e. P (H0 > H95%
0 |S) = 0.95.

The upper limit computation is a mixed Bayesian/frequentist procedure since the like-
lihood is estimated considering the signal distribution of the statistic S at the measured
value S for the signal amplitude H0.
The signal distribution for the amplitude H0 can be inferred considering the linearity of
the 5-vector:

X = Xn(t) +Xh(t) (3.88)

where Xn(t) is the data 5-vector when there is only noise x(t) = n(t) and Xh(t) is the
data 5-vector computed for the expected signal x(t) = h(t). It follows that:

Ĥ+/× = Ĥ
n(t)
+/× + Ĥ

h(t)
+/× (3.89)

since the two estimators are linear due to the scalar product with respect to the sidereal
templates. The term Ĥ

h(t)
+/× can be written as:

Ĥ
h(t)
+/× = H0 · Ĥh(t)/H0

+/× (3.90)

where Ĥh(t)/H0

+/× is the estimator computed for H0 = 1. This allows to reduce the com-
putational cost since the estimators can be computed just once and then, re-scaled using
a scalar amplitude without performing the spin-down and Doppler correction each time.
To fix the signal distribution, one need also to fix the two polarization parameters η
and ψ. Assuming uniform priors for ψ and for cos ι, it is possible to marginalize over
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these two parameters taking random values in the corresponding range for each noise
5-vector, i.e. for each realization of Ĥh(t)

+/×.
Starting from a set of possible signal amplitudes from a prior distribution Π(H0), I re-
construct the signal distribution for S for each amplitude value, hence the likelihood
L(S̄|H0).
The posterior in (3.87) can be used to set an upper limit on the amplitude H0 of the
complex definition of the expected signal defined in (1.62).
To compare the obtained upper limit with the result of the Bayesian pipeline (or the
F-statistic), the upper limits on H0 is converted to the upper limits on h0. The relation
between the two definitions is (see Section 3.2):

h0 =
2√

1 + 6 cos2(ι) + cos4(ι)
·H0 (3.91)

The upper limit on h0 can be inferred considering the mean value of the conversion
factor due to the marginalization over the parameter cos(ι). In this way, it follows that
h95%0 ≈ 1.37H95%

0 .

3.6 Weighted multidetector extension

In this Section, I propose a different way to consider a multidetector extension that
takes into account the different sensitivities of the detectors. Indeed, the 5n-vector in
(3.72) combines together the 5-vectors from each detector. Since the noise level in
the detectors can be very different, the 5n-vector can reduce the signal to noise ratio
compared to the 5-vector of the most sensitive detector.
The weighted data 5n-vector is:

X = [c1X1, ..., cnXn] (3.92)

where the weights cj are defined as:

cj =

√
n√

n∑
i=1

(
Ti
Si

)
√
Tj
Sj

=
√
H ·

√
Tj
Sj

(3.93)

Sj and Tj are the PSD (that is ∝ σ2
j ) and the observation time in the j-th detector while

H is the harmonic mean of the time-weighted power spectral densities.
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The matched filters are (the same for Ĥ×):

Ĥ+ =
X · A+

|A+|2
=

n∑
j=1

cjXj · (A+
j )

∗

n∑
k=1

A+
k · (A+

k )
∗

=

=
1

|A+|2
(
c1|A+

1 |2Ĥ+,1 + ...+ cn|A+
n |2Ĥ+,n

) (3.94)

In the hypothesis of Gaussian noise for the j-th detector with variance σ2
j , the two com-

plex estimators Ĥ+/× have also Gaussian distributions,

Ĥ+/× ∼ Gauss
(
x; 0, σ2

+/×
)

(3.95)

with

σ2
+/× =

n∑
j=1

(cjσj)
2 · Tj · |A+/×

j |2

|A+/×|4
(3.96)

Using the cj , I re-define the noise variance in each detector:

(cjσj)
2 ∝ c2j · Sj =

n · Tj
n∑
i=1

(
Ti
Si

) (3.97)

If the observation time was the same (∀ j, Tj = t), this corresponds to "equalize" the
noise in each detector. In this case, it follows that:

σ2
+/× =

n∑
j=1

(cjσj)
2 · Tj · |A+/×

j |2

|A+/×|4
=

n∑
j=1

n · t · |A+/×
j |2

n∑
i=1

(
1
σ2
i

)
|A+/×|4

=

=
n · t

n∑
i=1

(
1
σ2
i

)
|A+/×|2

=
n · t

n∑
i=1

(
1
σ2
i

) n∑
k=1

|A+/×
k |2

(3.98)

Let us consider the toy case of n co-located detectors where |A+/×
k |2 = |A+/×

1 |2 , ∀ k;
the variances are

σ2
+/× =

t
n∑
i=1

(
1
σ2
i

)
|A+/×

1 |2
(3.99)



84 Chapter 3. Targeted search using the 5-vector pipeline

This is equal to the case of one detector with observation time t and variance V 2:

V 2 =
1

n∑
i=1

(
1
σ2
i

) =
H
n

(3.100)

where H is the harmonic mean of the variances. Since there is the condition:

min{σ2
1, ..., σ

2
n} ≤ H ≤ n ·min{σ2

1, ..., σ
2
n} (3.101)

this means that:
min{σ2

1, ..., σ
2
n}

n
≤ H

n
≤ min{σ2

1, ..., σ
2
n} (3.102)

It follows that for n co-located detectors with the same observation time, I always have
an improvement in the detection sensitivity using the coefficients cj , differently of what
I have found in (3.83) for the classic definition of the 5n-vector.
For example, let us consider the case of two co-located detectors n = 2 (equal to con-
sider different datasets of the same detector), with σ2

2 = C · σ2
1 and C > 1:

σ2
+/× =

C · σ2
1 · t

(C + 1) · |A+/×
1 |2

(3.103)

The minimum detectable signal is hmin:

hmin ∝

√
C

C + 1

σ2
1

t
(3.104)

It is clear that in the general case (different detectors’ locations and observation times),
the multi-detector analysis not necessarily outperforms the most sensitive detectors.
It is important to briefly describe the signal distribution for |Ĥ+/×|2. If a CW signal
is present into the analyzed data, the distributions of the two complex estimators Ĥ+/×
are:

Ĥ+/× ∼ Gauss
(
x ; H0 · ejγ ·H+/× ·M+/× , σ

2
+/×
)

(3.105)

where H+/× are the polarization functions, H0 is the amplitude, γ the phase and

M+/× =
n∑
j=1

cj · |A+/×
j |2

|A+/×|2
(3.106)
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is a known factor for the targeted search.
|Ĥ+/×|2 have a non central-χ2 distribution (apart from the factor k+/×):

|Ĥ+/×|2 ∼
k+/×
2

e−
k+/×x+λ+/×

2 I0(
√
k+/×λ+/×x) (3.107)

where I0 is the modified Bessel function of the first kind, and

k+/× =
2

σ2
+/×

λ+/× = k+/× · |H+/×|2 ·H2
0 ·M+/× . (3.108)

Respect to the classic definition of the 5n-vector, the distributions do not change. There
is just a re-definition of the variances for the detectors noise. This means that using the
coefficients cj , it is changed how λ+/× depends on the detectors’ sensitivity.





Chapter 4
The 5n-vector ensemble method
As described in Section 2.7, targeted searches for the detection of CW signals from
known pulsars found no evidence of signals using the data from the last observing runs
of the LIGO and Virgo detectors. This thesis tries to improve the detection probability
for the targeted search using a statistical ensemble method. The idea is to statistically
combine the effects of several sources - i.e. an ensemble of pulsars - that are individually
undetectable but near the detection threshold.
In this Chapter, I describe first the ensemble procedures developed so far in the GW
community. Then, I focus on the ensemble procedure designed in this thesis to improve
the detection probability, and based on the definition of a new ensemble statistic and on
a rank truncation procedure. In addition, I describe the statistical properties of the new
statistic and the procedure to set upper limits on global parameters.

4.1 Ensemble procedures

In the hypothesis of weak signals that can not be individually detectable, different meth-
ods have been proposed that look at a signal from an ensemble, i.e. a set, of pulsars.
An ensemble signal is defined as the superposition of signals from different individually
undetectable sources.
The methods proposed to detect an ensemble signal can be gathered in two main groups.
In the first group, the expected signals are combined together and the methods look at a
stochastic GW signal. I will refer to this group as "Stochastic procedures".
In the second group, there are the methods that statistically combine the information
from individual sources, inferred using CW analysis described in Section 2.7. In gen-
eral, these methods are multiple tests that consider a set of statistical inferences simul-
taneously. I will refer to this group as "Multiple test procedures".

87
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4.1.1 Stochastic procedures

In CW analysis, the first method to detect CW signals from an ensemble of pulsars was
proposed by Giazotto et al. in [101]. In this paper, the authors proposed a "quadratic
detection" measuring the square of the gravitational signal and detecting the sidereal
modulation which results from the detector position and from the anisotropy of the neu-
tron stars distribution. This technique is very similar to the radioastronomy observation
technique that consists in scanning the sky around the source, and in measuring the dif-
ferences of the total signal on/off of the source.
As well explained in [101], "the problem of detection of the gravitational wave emission
from an ensemble is very close to the search for a gravitational cosmological back-
ground". Indeed, the superposition of weak signals from individually undetectable
pulsars can form an astrophysical stochastic gravitational-wave background (SGWB)
which could be observed by current detectors [102]. The observation of a SGWB from
neutron stars can be used to constrain population ensemble properties, e.g. the number
Nband of neutron stars in a certain analysis frequency band and the average ellipticity
ϵav of the considered population.
Recent results in [103] constrain the average ellipticity of Galactic neutron stars to
ϵav < 1.8 × 10−8 with Nband = 1.6 × 107 performing a cross-correlation to search
for a common signal in multiple datasets simultaneously. In a different search [104], the
authors found ϵav < 1.1 × 10−7 with Nband = 8.8 × 104 for the Galactic millisecond
pulsar performing a stochastic targeted search for an anisotropic SGWB knowing a pri-
ori its angular distribution along with the spectral properties.
Stochastic procedures could provide insights into the ensemble properties for the en-
tire set of neutron stars in the Galaxy and not merely for the set of known pulsars. On
the contrary, stochastic searches are less sensitive compared to the CW targeted search
where the known source properties allow to correct for the spin-down and the Doppler
effect increasing the detection probability for a CW signal.
As explained in [103], "Because SGWB and CW searches attempt to answer different
physical questions, they can work in synergy. Using the methods of the former, it would
be possible to perform rapid, blind all-sky searches for neutron star signals and trans-
mit the coordinates of possible outliers as inputs of the latter, for a more refined and
sensitive search".

4.1.2 Multiple test procedures

The problem of combining independent tests has been discussed and described in dif-
ferent works (see for example [105]). In this Section, I briefly review the most used
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methods for multiple testing.
Let us considerN independent experiments that try to detect an effect linked to a certain
parameter θi for the i-th experiment.
The null hypothesis Hi : θi = 0 is tested against the alternative Ki : θi > 0 for the
i-th experiment, according to a test statistic Si. The p-value Pi for the i-th experiment is
defined as:

Pi = P (Si ≥ si|Hi) (4.1)

where si is the observed value for Si. If Si has a continuous distribution, Pi is a uniform
random variable in the interval [0, 1] under theHi hypothesis. "Smalls" values of Pi lead
to rejection ofHi; that is, the statistic Si would indicate rejection at the significance level
α if si ≥ sα where sα : P (Si > sα|Hi) = α.
A multiple test considers the combined null hypothesis H:

H = H1 ∩ ... ∩HN : θ1 = ... = θN = 0 (4.2)

versus the combined alternative hypothesis K,

K = K1 ∪ ... ∪KN : at least one θi > 0 (4.3)

Multiple test combine the data from the N experiments into a single detection statistic
to test N against K efficiently.
Traditional multiple tests use the single p-values Pi to test either each hypothesis sep-
arately, as in the Bonferroni-like procedures [106], or all hypotheses simultaneously as
in the case of the non parametric procedures [107] (as for the Fisher test [108]).
The Bonferroni-like procedures are based on individual hypothesis tests but do not con-
sider combined evidence. The Bonferroni criterion compares the minimum p-value with
a threshold adjusted to achieve a desired significance level and to control the Family-
Wise Error Rate (FWER). The FWER is the probability of making at least one Type I
Error ("false alarm" error) [109]. It is known [110] that these procedures increase the
probability of producing false negatives reducing statistical power.
Non parametric procedures are test statistics that consider the combination of P1, ..., PN .
In these procedures, the Pi are assumed independent and uniform random variables un-
der the null hypothesis regardless the form of the statistics Si.
In 1925 [108], Fisher was the first to suggest a method of combining the p-values con-
sidering the statistic F = −2

∑N
i=1 logPi that under the null hypothesis follows a χ2
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distribution:

F = −2
N∑
i=1

logPi ∼ χ2(x; 2N) (4.4)

since −2 logPi ∼ χ2(x; 2). The significance of the test is established considering the
p-value for the statistic F .
Based on this statistic, different methods have been proposed considering, for example,
a weighted combination of the p-values, a truncation method [111], and also a rank
truncation method [112].
Commonly used statistics for combining p-values that can be found in literature are the
Pearson statistic P = −

∑N
i=1 log(1 − Pi) or the Stouffer statistic S =

∑N
i=1 Φ

−1(Pi)

where Φ is the standard normal cumulative distribution function. Each of this definition
is monotonic in the p-values, and therefore optimal in some setting [113]. Indeed, it has
been shown [105] that the multiple optimal test is different according to the analyzed
problem.
As said in [107], "Combining p-values is usually required in one of two situations: (1)
when either the values of the actual statistics that need to be combined or the forms of
their distributions are unknown or (2) this information is available but the distributions
are such that there is no known or reasonably convenient method available for construct-
ing a single overall test".
For the targeted search of CWs, the distribution of Si under the null hypothesis is, in
general, well-known and an overall test can be constructed starting from the Si. In addi-
tion, since I expect few signals near the detection threshold, these traditional tests could
be ineffective and have substantial power loss [114].

4.1.3 CW multiple test procedures

In the CW analysis, the N experiments considered in the previous Section are the N
individual searches for the set of pulsars considered in a targeted search for a given
dataset. The null hypothesis corresponds to the noise hypothesis while the parameter θi
for the i-th pulsar is the amplitude of the CW signal.
Ensemble procedures can improve the detection probability combining individually un-
detectable sources that are hopefully near the detection threshold. In this Subsection, I
describe two different procedures proposed in the last years for the detection of CWs
from an ensemble of known pulsars.
In [79], the authors describes a multiple test which combines the detection statistics of
single pulsar rather than the measured p-values. The original idea was proposed by Cut-
ler and Shutz in [80] and based on the detection of the single source: they defined an
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overall F-statistic as the linear combination of the Fi statistics for each pulsar (defined
in Subsection 2.6.2),

F =
N∑
i=1

Fi (4.5)

for an ensemble of N pulsars. This procedure takes into account also weak sources,
reducing the SNR of the combined statistic.
The authors in [79] define an ensemble statistic as the weighted linear combination of
Fi statistics, optimizing the definition in [80]. They evaluated the prior distribution of
the GW "strength" from each source into the ensemble and by applying the general
theory of hypothesis testing, they obtained a Neyman-Pearson criterion for detecting
GWs from an ensemble of pulsars. This leads to an optimal detection statistic, which
in idealized situations (i.e., when prior knowledge of the signal and model for the noise
are an accurate representation of reality) provides the highest detection probability with
a given false-alarm probability.
The authors found that the most efficient combination entails weights ai proportional to
the expected value of the optimal SNR of each source:

ai ∝
f 4
i Ki

d2i Sn(2fi)
(4.6)

where fi is the rotation frequency, di the distance and Ki is an averaged geometrical
factor describing the GW polarization and orientation of the i-th pulsar.
A hierarchical Bayesian method for combining GW observations from an ensemble of
known pulsars is described in [115] for two purposes: to create a detection statistic
for identifying a signal from the ensemble, and to estimate the parameters of the dis-
tribution of the pulsars ellipticities. Incorporating assumed common distribution as a
common prior on the ellipticity of stars, with an unknown hyperparameter, a more ef-
ficient detection statistic can be produced than combining the data for the ensemble of
pulsars in a nonhierarchical way.
The authors performed a pilot search using real data for 92 pulsars from the LIGO S6
science run, with the assumption of the same two ellipticity distributions: an exponen-
tial and a half-Gaussian. They found no evidence of a signal from the ensemble, but set
upper limits on the two distributions hyperparameter. These upper limits are almost 2
orders of magnitude less constraining than those that can be produced using the electro-
magnetically derived pulsar spin-down limits.
In the next Section, I consider an ensemble procedure similar to [79] defining a new en-
semble statistic as the simple linear combination of the statistics defined by the 5-vector
method.
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4.2 Simplest definition of the ensemble statistic

The simplest way to define an ensemble statistic for a set of N pulsars is the linear
combination of the statistics of single pulsar Si:

t =
N∑
i=1

aiSi (4.7)

This multiple test procedure based on the definition of a new ensemble statistic is similar
to the procedure introduced in [79]. The coefficients ai are in general unknown and
should be chosen trying to maximize the detection probability.
In this Section, I describe different choices for the coefficients of the statistic t and show
the corresponding detection probabilities in a specific case. I also describe the issues
related to the statistic t in the case of large ensemble and few expected signals.

Theoretical choice Let us consider a random variable Y =
∑N

i=1 aiXi, that is the
linear combination of N random variables Xi with unknown coefficients ai.
Let us suppose that in the case of signal the Xi distribution is a non central-χ2 dis-
tributions with K degrees of freedom and non-centrality parameter Λi (with no signal
Λi = 0). The critical ratio CR is defined as:

CR =
(µsig − µn)

2

Θ2
n

(4.8)

where µsig is the mean of the signal distribution of Y , while µn and Θ2
n are respectively

the mean and variance of Y when there is noise only.
According to the Xi distribution, the CR is:

CR =
(
∑N

j=1 ajΛj)
2

2K
∑N

k=1 a
2
k

(4.9)

Indeed, for a generic non central-χ2 distribution with J degrees of freedom and non-
centrality parameter L, the mean value µ is:

µ = J + L (4.10)

while the variance Θ2 is:
Θ2 = 2(J + 2L) (4.11)
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Maximizing the CR for the coefficients ai,:

∂(CR)
∂ai

= 2

(
N∑
j=1

ajΛj

)
Λi · 2K

N∑
k=1

a2k −

(
N∑
t=1

atΛt

)2

· 4Kai = 0

= 4K

(
N∑
j=1

ajΛj

)(
Λi

N∑
k=1

a2k − ai

N∑
t=1

atΛt

)
= 0

(4.12)

It follows that there is a hyperplane where the function CR(a1, .., aNs) has the maximum
value:

ai =
λi
∑N

k=1,k ̸=i a
2
k∑N

t=1,t ̸=i atΛt
(4.13)

A simple choice for the coefficients āi that maximizes the CR is:

āi = Λi . (4.14)

For example, the F-statistic has 4-D χ2 distribution with non centrality parameter equal
to the squared optimal signal to noise ratio ρ2 in the case of signal [93]. Linearly com-
bining the F-statistic values from different pulsars, the coefficients that maximize the
CR are āi = ρ2i , in agreement with [79].
If the statistic Si is defined using the 5-vector method (Subsection 3.5.2), the statistic t
can be rewritten as:

t =
N∑
i=1

aiSi =
N∑
i=1

(b+,iS+,i + b×,iS×,i) (4.15)

where S+/×,i are the squared modulus of the two matched filters for the i-th pulsar.
S+/×,i have 2-D χ2 distributions (apart from the factor k+/×,i, see Equations (3.79) and
(3.70)). Therefore, the coefficients that maximize the CR are:

b̄+/×,i = λ+/×,i · k+/×,i =
|H+/×,i|2|A+/×

i |4H2
0,i

σ4
i · T 2

obs

(4.16)

These results are in agreement with [116], since the coefficients that maximize the CR
for the single pulsar (N = 1) statistic S are b+/× = |H+/×|2|A+/×|4.
If S is defined using the 5n-vector method (Subsection 3.5.3), the coefficients of t that
maximize the CR are:

b̄+/×,i = λ+/×,i · k+/×,i =
|H+/×,i|2|A+/×

i |8H2
0,i

(
∑n

j=1 σ
2
j · Tj · |A

+/×
j,i |2)2

(4.17)
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where |A+/×
i |2 =

∑n
j=1 |A

+/×
j,i |2 and Tj is the observation time in the j-th detector. As

sanity check, if n = 1 the expression in (4.17) is equal to (4.16).
The coefficients in (4.17) depend on the polarization functions H+/×,i and on the am-
plitude H0,i that are unknown in a real analysis.
The ensemble statistic with coefficients in (4.17) represents the theoretical limit that one
can approach with an appropriate choice for the coefficients.

With 5-vectors In the preliminary study in [116], I proposed a joint ensemble statistic
using 5-vectors and combining multi-detector statistics for single pulsar, defined as the
noise-weighted sum of the detection statistics in each detector:

t =
N∑
i=1

(
n∑
j=1

1

σ 2
j · Tj

· Si,j

)
(4.18)

where i is the index of the pulsar and j, the index of the detector. Si,j is the "classic"
detection statistic defined in (3.61) for the i-th pulsar in the j-th detector.

With 5n-vectors In [117], I proposed a different ensemble statistic, based on the 5n-
vectors and on (4.15), considering the coefficients:

b+/×,i =
|A+/×

i |4∑n
j=1 σ

2
j · Tj · |A

+/×
j,i |2

(4.19)

As described in the next Section, the coefficients in (4.19) normalize the single pulsar
statistic with respect to the detectors’ sensitivity and observation time. In this way, the
noise distribution of this normalized single pulsar statistic is the same for each pulsar,
while the signal distribution also has an analytic expression in contrast to [100, 116].

Detection probabilities comparison To test the different definitions of the t statistic,
I considered a set of 100 fake pulsars. For each fake pulsar, I fixed randomly the sky
position. I chose a uniform distribution for the polarization parameters, an exponential
distribution for the GW frequency between 20 Hz and 120 Hz and a uniform distribution
for the first derivative of the GW frequency. I ranked these signals by decreasing values
of α, defined as the ratio between the injected amplitudeH and the minimum detectable
amplitude hmin:

H = α · hmin ≈ α · 11

√
S(fgw)

Tobs
(4.20)
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Figure 4.1: Detection probability for a fixed false alarm probability of 1% increasing the num-
ber of simulated pulsars in the ensemble and considering Gaussian noise in two detectors equal
to LLO in O3a run. The injected signals are ranked by decreasing values of α (see Equation
(4.20)). The dashed line is obtained considering the t definition with coefficients in (4.17), the
continuous line with coefficients in (4.19), the ’+’ and ’·’ line with the t definition using 5-
vectors as in [116]. The ’·’ line is obtained considering only one detector.

where S(fgw) is the one-sided power spectral density at the expected signal frequency
fgw, and Tobs the observation time.
In Figure 4.1, I considered two ideal detectors with sensitivity and observation time
equal to LLO design case for O3a run. As α prior distribution with 0.01 < α < 0.6, I
chose an exponential distribution with mean value equal to 0.09.
The continuous line, obtained with coefficients in (4.19), approaches the t definition
with coefficients in (4.17) and outperforms the t definition in [116]. In Figure 4.1, the
detection probability increases twofold compared to single detector case and is 20%

better compared to [116].
For each definition (except for the dashed line where the coefficients are amplitude-
weighted), the detection probability increases with an increasing number of signals in
the ensemble up to a maximum and then starts to decrease. This is linked to the prior
exponential distribution that fixes the signals’ “strength"; by adding smaller and smaller
signals, they do not contribute to the ensemble signal but, rather, to the noise.
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Problems In Figure 4.1, I ranked the pulsars in the ensemble for decreasing values of
α. This allows to optimize the detection probability for each of the explored definitions
since I added pulsars to the t statistic according to the "strength" of the signal. The
factor α fixes the strength of the signal since it fixes the amplitude.
In a real analysis, the amplitude of the expected signal is clearly unknown. Since α is
unknown, the realistic procedure is to consider the entire ensemble, i.e. the last point in
Figure 4.1 for each definition. From Figure 4.1 but also theoretically, this can not be an
optimal procedure since for large ensembles and for the actual detectors’ sensitivity, I
will expect few signals near the detection threshold.
For example, let us consider the set of 236 known pulsars used for the O3 targeted search
of the LVK Collaboration [84]. Of the analyzed pulsars, only 23 pulsars have an upper
limit on the amplitude that is lower than the spin-down limit. The spin-down limit is
computed in the strong assumption that the pulsar radiates its rotation energy entirely in
GWs (see Subsection 1.7.2).
Figure 4.1 shows that if I want to optimize the detection probability for an ensemble
where there are few "strong"1 signals, I need to define a criteria to rank pulsars and also
to define an ensemble statistic as a function of the number of pulsars.

4.3 The normalized 5n-vectors

In this Section, I describe the main features of the single pulsar statistic S with the
coefficients defined in (4.19):

S = b+S+ + b×S× = b+ · |Ĥ+|2 + b× · |Ĥ×|2

=
|A+|4∑n

j=1 σ
2
j · Tj · |A+

j |2
|Ĥ+|2 +

|A×|4∑n
k=1 σ

2
k · Tk · |A

×
k |2

|Ĥ×|2
(4.21)

where n is the number of considered detectors and |Ĥ+/×|2 are defined in (3.76) for the
5n-vector method. The definition in (4.21) is still valid if one detector (i.e. n = 1) is
considered.
As shown in the previous Section, this choice of the coefficients increases the detec-
tion probability of the ensemble statistic t compared to the definitions in [116] and
approaches the results of the theoretical choice in the case analyzed in Figure 4.1.

1In this contest, "strong" means near the detection threshold and individually undetectable.
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The coefficients in (4.19) are equal to the inverse of the variance in (3.95):

b+/× =
|A+/×|4∑n

j=1 σ
2
j · Tj · |A

+/×
j |2

≡ 1

σ2
+/×

(4.22)

In the case of Gaussian noise and considering (3.79), the distribution of b+/× · S+/× is:

b+/× · S+/× ≡ b+/× · |Ĥ+/×|2 ∼ Exp(x; 1) = e−x (4.23)

The normalized statistic S is the sum of two exponential random variables with mean
values equal to one. It follows that:

S ∼ Erlang(x; 2, 1) = x · e−x (4.24)

that is the Erlang distribution with the scale and shape parameters, equal to 2 and 1,
respectively. A random variable X has an Erlang distribution with shape parameter α
and scale parameter β if the probability distribution function is:

X ∼ Erlang(x;α, β) =
x(k−1)e−x/β

βk(k − 1)!
(4.25)

If a signal is present into the data, b+/× ·S+/× distribution is proportional to non central-
χ2 distribution:

b+/× · S+/× ∼ 2 · χ2(2x; 2, λ+/×) =

= e−x+
λ+/×

2 I0(
√
λ+/×2x)

(4.26)

Therefore, the S signal distribution is the sum of two non central-χ2 random variables
that is again non central-χ2 distributed with four degrees of freedom and non centrality
parameter λ:

λ = λ+ + λ× = H2
0

(
k+ · |H+|2 + k× · |H×|2

)
= 2 ·H2

0

(
|A+|4 · |H+|2∑n
j=1 σ

2
j · Tj · |A+

j |2
+

|A×|4 · |H×|2∑n
k=1 σ

2
k · Tk · |A

×
k |2

)
(4.27)

This is a significant result since for the normalized S statistic, the signal distribution
is analytical respect to the classical definition (see Subsection 3.5.2). Analytical signal
distributions can be easily and effectively used to test theoretically the sensitivity of the
proposed method without considering real data.
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Figure 4.2: Theoretical distributions for the normalized S statistic. The red dashed line is the
noise distribution (the Gamma(2,1)) while the continuous lines are two signal distributions for
different λ values. The red star is the value of the detection statistic Ŝ that entails a false alarm
probability of 1%, i.e. P (S > Ŝ|noise) = 0.01.

The signal distribution for the normalized S statistic is fixed by λ. According to (4.27),
λ depends on the squared amplitude but also on the polarization parameters in the func-
tions H+/× and on the orientation of the j-th detector respect to the source in the A+/×

j .
In a theoretical test (see Section 5.2), I can choose different values of λ to consider
different signals, without fixing amplitude, polarization parameters, sky position of the
source and sensitivities of the considered detectors.
Figure 4.2 shows the noise and signal distributions for two different values of λ while
Figure 4.3 shows the detection probability at the 1% false alarm probability as a func-
tion of λ.
The value of λ fixes the signal distribution and hence, the detection probability that is
P (S > Ŝ|signal) where Ŝ is the value that entails a false alarm of 1% (red star in Figure
4.2). For single pulsar analysis, the value of λ that entails a detection probability of 95%
is almost 25.
In Section 5.2, I will describe a theoretical sensitivity test for the proposed ensemble
method using the theoretical distributions for the normalized S statistic described in
this Section.
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Figure 4.3: Detection probability at 1% false alarm probability for the normalized S statistic as
a function of λ that fixes the signal distribution.

4.4 The rank truncation method

As shown in Figure 4.1, in order to improve the detection probability for the ensemble
method, I need to rank pulsars trying to estimate each signal ‘strength’. Indeed, in a real
analysis the α parameter that ranks the sources in Figure 4.1 is unknown.
In [116], I used the single pulsar p-value as a statistical parameter to rank the sources
in the ensemble. Nevertheless, by increasing the number of pulsars, a series of non-
significant results may together suggest significance. This is the well-known look-
elsewhere effect.
For a set of 100 pulsars, that means 100 measurements or points in the parameter space,
I expect on average 1 p-value from single pulsar analysis below a fixed 1% threshold
in the hypothesis of noise (see Figure 4.4). Hence, by considering an ensemble statistic
with the simple sum of the statistics from these low p-values pulsars, I would obtain a
significant result also in the noise hypothesis.
The definition of the new ensemble statistic must consider the number of trials, or rather
the number of pulsars in the ensemble.
In general, the single pulsar p-value can be a statistical criteria to rank pulsars since to
the smallest p-values could correspond to signals. If the noise distributions are the same
(as for the normalized S statistic), ranking pulsars for increasing p-values is equal to
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Figure 4.4: Binomial distribution B(n;N, p) with N = 100 and p = 0.01. B(n;N, p) is the
probability to obtain n single pulsar p-values below the fixed threshold p analyzing a set of N
pulsars. The mean value of this Binomial distribution is Np = 1.

rank pulsars for decreasing values of the single pulsar statistic:

S(1) < S(2) < ... < S(N) (4.28)

By considering S(i) as order statistic (see Appendix B), I can control the look-elsewhere
effect since the S(i) distribution depends on N , the number of measured statistics (i.e
the number of analyzed pulsars).
In [117], I proposed the partial sum T (k) of the order statistics,

T (k) =
N∑

i=N−k+1

S(i) (4.29)

as the ensemble detection statistic for the rank truncation method. Indeed, the T (k)
distributions depend on N for each k; in this way, I combine pulsars with the smallest
p-values that are assumed near the detection threshold controlling the look-elsewhere
effect.
If I knew that among the N pulsars there is at most one signal, the optimal procedure
to control the look-elsewhere effect would be the Šidák correction, as used in CWs
narrow-band analysis [49, 88].
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4.5 The statistic T(k)

In this Section, I characterize the T (k) statistics trying to reconstruct the noise distri-
butions for each value of k. Indeed, the aim is to construct a p-value of ensemble as a
function of k using the T (k) statistics.
The proposed ensemble statistic T (k),

T (k) =
N∑

i=N−k+1

S(i) (4.30)

is defined as the partial sum of the order statistics for the normalized S statistic.
For k = N , the T (N) statistic coincides with the t statistic. In this case, considering the
entire set of pulsars, the order is no more important and T (N) is the simple sum of the
N normalized statistics. Since in the noise hypothesis S ∼ Erlang(x; 2, 1), the statistic
T (N) follows the Erlang distribution:

T (N) ∼ Erlang(x; 2 ·N, 1) (4.31)

that is a Gamma distribution with integer shape and scale parameters. For k = 1, T (1)
is the largest order statistic of an Erlang(2, 1) random variable since T (1) = S(N).
From order statistic theory (see Appendix B), the distribution fN(x) of the largest order
statistic is

fN(x) =
dFN(x)

dx
= N · [F (x)](N−1) · f(x) (4.32)

where F (x) and f(x) are the cumulative distribution function (cdf) and the probability
distribution function (pdf) of the starting statistic. Since in the noise hypothesis S ∼
Erlang(x; 2, 1),

T (1) ∼ N · [1− xe−x](N−1) · xe−x (4.33)

see Figure 4.5. k = 1 and k = N are special cases where the distributions of the T (k)
statistic are analytical.
In the general case 1 < k < N , the convolution of order statistics has no simple expres-
sion. The complexity of the analytic form of T (k) is due to the dependency introduced
by ordering the p-values (i.e. the statistics values): when the (k+1)-th p-value, that is a
random variable, happens to be relatively small, the k smallest p-values have to squeeze
into a relatively tiny interval from zero to that value.
In [118], the authors analyzed the distribution of the sum of the largest order statistics
from Gamma random variables with n degrees of freedom (rate parameter equal to 1). If
n is integer, the pdf and cdf are given by a finite sum of Gamma densities (see Equation
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Figure 4.5: Noise distribution (blue histogram) for T (1) and inferred using the Monte Carlo
algorithm described in Subsection 4.5.1. The dashed line is the single pulsar noise distribution
using the normalized statistic. The continuous line is the theoretical probability distribution
function for the largest order statistic for N = 100 defined in (4.33).

(2.6) in [118]). However, this expression is quite complicated.
In the next Subsection, I use a Monte Carlo algorithm to recover the T (k) noise distri-
butions as a function of k.

4.5.1 Noise distribution

To describe the Monte Carlo algorithm, first I consider the case of Gaussian noise with
zero mean value (i.e. S ∼ Erlang(x; 2, 1)).
To infer the T (k) noise distribution for an ensemble of N pulsars, I propose the follow-
ing procedure.

1. Generate anErlang(x; 2, 1) distribution with 200 000 points to simulate the noise
distribution of single pulsar.

2. Select randomly N points to simulate an ensemble detection.

3. Rank for decreasing values these N points (that is for increasing p-values).

4. Repeat steps 1− 3, M times (e.g. M = 10 000).

The variable T (k) is the sum of the k largest points selected each times. In this way,
I can reconstruct the distribution of T (k) for each value of k with M (that is a tunable
parameter) points.
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Figure 4.6: Noise distribution (blue histogram) for T (28) inferred using the Monte Carlo algo-
rithm described in Subsection 4.5.1. The dashed line is the distribution of the simple sum of 28
Erlang random variables. The continuous line is the fitted Gamma distribution to the histogram.

The described procedure can be generalized to real data starting the Monte Carlo algo-
rithm from the N different experimental distributions for the S statistic. Empirically, I
have found that a Gamma function can fit the distribution to a good approximation for
all values of k, see Figure 4.6.
As shown in Figure 4.7, the distribution of T (N) coincides with the distribution of t,
since the shape parameter approaches 2N = 200 and the scale parameter tends towards
1, as expected. The fitting parameters in Figure 4.7 depend only on N , the number of
considered pulsars and clearly on the assumption of Gaussian noise for the detectors’
data.

4.5.2 P-value of ensemble

Reconstructing the T (k) noise distributions for each k, I can compute the p-value of
ensemble as a function of k. In Section 5.2, I will show the improvement in the detection
probability respect to the single pulsar analysis.
Fixing a set of N sources, I compute the N p-values from the single pulsar analysis and
then, defining the T (k) statistic, a p-value of ensemble as a function of k. It is important
to stress that k is the number of order statistics rather than the number of pulsars with
the k smallest p-values.
For example, let us consider an ensemble of 100 pulsars and suppose that for k = 10, the
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Figure 4.7: Shape and scale parameters as a function of k, inferred from the fit to the T (k)
noise distributions from the Monte Carlo algorithm using a Gamma distribution. The coloured
region shows the 95% confidence interval for the fitted parameter.

p-value of ensemble for the T (10) statistic is well below a fixed false alarm threshold,
e.g. 1%:

P
(
T (10) > T (10)|noise

)
≪ 1% (4.34)

where T (10) is the detected value of T (10) according to the single pulsar analysis.
Can I infer the detection of a CW signal from each of the 10 pulsars with the smallest
p-values? Following [119], I suggest that the answer to this question is no. Indeed,
the p-value is computed from the noise distribution of T (10), that is the sum of the 10
largest order statistics. This means that the T (10) distribution is computed from the N
different distributions from each pulsar.
It follows that, even though I have defined a p-value of ensemble as a function of k,
the statistical inference concerns the entire set of considered pulsars. The claim of a
rank truncation method is the same of the Fisher’s combination test that there are some
effects among all the N tests, regardless that a certain k < N led to a rejection.
Assuming that Hi is the null hypothesis for the i-th pulsar, the p-values for the T (k)
statistics test the overall hypothesis that each Hi is true.
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4.5.3 Signal distribution

In the hypothesis of Gaussian noise, the signal distribution for the normalized single
pulsar statistic is a non-central χ2 distribution with four degrees of freedom and non-
centrality parameter λ, defined in (4.27), that fixes the "strength" of the signal.
First, let us consider k = N . In this case, the order is no important since I am con-
sidering the entire set of pulsars. T (N) can be defined as the sum of N non-central χ2

distributions. It follows that:

T (N) ∼ χ2(x; 4N,Λ) (4.35)

The non-centrality parameter Λ for T (N) is the sum of the non-centrality parameters λi
from the i-th pulsar:

Λ =
N∑
i=1

λi =
N∑
i=1

2 ·H2
0,i

(
|A+

i |4 · |H+,i|2∑n
j=1 σ

2
j · Tj · |A+

j,i|2
+

|A×
i |4 · |H×,i|2∑n

k=1 σ
2
k · Tk · |A

×
k,i|2

)
(4.36)

Λ fixes the T (N) distribution univocally and depends on the weighted sum of the
squared amplitudes.
For a generic value of k, I have to consider the convolution of the k largest order statis-
tics for non-central χ2 random variables.
To reconstruct the T (k) signal distributions for each k, I propose a Monte Carlo algo-
rithm similar to the procedure described for the noise distribution:

1. Fix the value of λ for each pulsar.

2. Generate N non-central χ2 distributions with 200 000 points with the appropriate
λ to simulate individual signal distributions.

3. Select randomly N points, one from each distribution to simulate an ensemble
detection.

4. Rank for decreasing values these N points (that is for increasing p-values).

5. Repeat steps 2− 5, M times (e.g. M = 10 000).

Reconstructing the T (k) signal distributions is important to compute the detection prob-
ability for the ensemble procedure as a function of k, as described in Section 5.2.
The procedure can be generalized to real data starting the Monte Carlo algorithm from
the N different experimental signal distributions for the S statistic.
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4.6 Upper limit of ensemble

In the single pulsar analysis, if the p-value is consistent with the noise hypothesis, it
is possible to set the upper limit on the amplitude using a mixed frequentist-Bayesian
approach, as described in Subsection 3.5.5.
For the classical definition of the statistic S, the signal distribution is not analytical.
Marginalizing on the polarization parameters and using the linearity of the 5-vectors, it
is possible to reconstruct the signal distribution for different values of the amplitude.
The posterior distribution on the amplitude H0, given the measured value S̄ of the de-
tection statistic, is:

P (H0|S̄) =
L(S̄|H0)π(H0)∫
L(S̄|H ′

0)π(H
′
0)dH

′
0

(4.37)

where L(S̄|H0) is the likelihood (the value of the signal distribution at S̄), π(H0) the
prior on the amplitude and

∫
L(S̄|H ′

0)π(H
′
0)dH

′
0 the evidence.

Introducing the normalized S statistic, the signal distribution is analytical and fixed by
the non-centrality parameter λ.
Marginalizing over the polarization parameters, λ is ∝ H2

0 (the other parameters are
known for targeted search). Since H0 > 0, the signal distribution is fixed by H0 validat-
ing the procedure in Subsection 3.5.5.
Assuming Gaussian noise, an upper limit can be also set on the λ parameter without
marginalizing over the polarization parameters, just replacing H0 with λ in (3.87).
The ensemble analysis, using the T (k) statistic, computes a p-value of ensemble for
each value of k. This Section explores the possibility to set upper limit using the en-
semble statistic in the case of no detection.
The upper limit must be set on population parameters since from a multiple test, I can not
infer statistical information about the single pulsar parameters. This is clear considering
Gaussian noise and the Λ parameter that is the sum of the non-centrality parameters λi
of single pulsar. Indeed, different combinations of λi could entail the same value of
Λ, i.e. different weighted combinations of the squared amplitudes could have the same
value. For this reason and also because the T (k) signal distributions are not analytical,
the entire set of pulsars and the T (N) statistic should be considered.
In the next Subsections, I describe two different approaches; first, considering the upper
limit on a population parameter that fixes the T (N) distribution, then two independent
hierarchical procedures to constrain the value of an hyper-parameter for the assumed
common distribution for the amplitudes (or for the ellipticities).
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4.6.1 Λ parameter

The ensemble parameter that fixes the T (N) signal distribution is Λ defined in (4.36).
I can use a Bayesian framework and the measured value T (N) to set the upper limit on
the Λ parameter:

P (Λ|T (N)) =
L(T (N)|Λ)Π(Λ)∫
L(T (N)|Λ′)Π(Λ′)dΛ′ (4.38)

where L(T (N)|H0) is the likelihood (the value of the signal distribution at T (N)),
Π(H0) the prior on the amplitude and

∫
L(T (N)|H ′

0)π(Λ
′)dΛ′ the evidence. From the

measured value of the ensemble statistic, I can estimate the value Λ95% that entails a
detection probability of 95%, P (Λ > Λ95%|T (N)) = 0.95.
The definition of Λ can be written as:

Λ =
N∑
i=1

H2
0,i · fi(η, ψ). (4.39)

where the terms fi are:

fi(ψ, η) = 2 ·

(
|A+

i |4 · |H+,i|2∑n
j=1 σ

2
j · Tj · |A+

j,i|2
+

|A×
i |4 · |H×,i|2∑n

k=1 σ
2
k · Tk · |A

×
k,i|2

)
(4.40)

The coefficients fi(ψ, η) depend on the polarization parameters ψ and η in the polar-
ization functions |H+/×,i|2. Assuming a uniform distribution for cos(ι) and ψ, I can
consider an averaged value fi for each fi(ψ, η). It follows that:

Λ ≈
N∑
i=1

H2
0,i · fi (4.41)

From the relation in (4.41), Λ95% can be used to constrain, for example, the sum of the
weighted squared amplitudes.
It is also possible to return information about global parameters depending on some
assumptions for the single pulsars amplitudes.

• Assuming an equal amplitude h for each pulsar in the ensemble,

Λ ≈ h
2 ·

N∑
i=1

fi (4.42)
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I can constrain the value h using Λ95%:

h ≈

√
Λ95%∑N
i=1 fi

(4.43)

• Assuming that each amplitude is a multiple of the single pulsar upper limit with a
common factor δ:

Λ ≈ δ2 ·
N∑
i=1

(µH0,i)
2fi (4.44)

where µH0,i is the upper limit on the amplitude for the i-th pulsar. It follows that:

δ ≈

√
Λ95%∑N

i=1(µH0,i)
2fi

(4.45)

• Since Λ =
∑N

i=1 λi where λi = H2
0,i · fi is the parameter that fixes the signal

distribution for the i-th pulsar, I can also consider an averaged λ:

λ =

∑N
i=1 λi
N

(4.46)

and constrains the amplitudes using Λ95%:

H0,i =

√
Λ95%

N · fi
(4.47)

• Assuming that only the j-th pulsar emits CWs. In this case, Λ = λj and

H
(1)

0,j =

√
Λ95%

fj
=

√
N ·H0,j (4.48)

The described procedure works in case of Gaussian noise where the T (N) signal dis-
tribution is analytical. In the case of real data, the T (N) distribution inferred from the
Monte Carlo procedure can be different. For a large ensemble of pulsars and using a
multidetector analysis, I expect that the Gaussian noise could be a reasonable approxi-
mation.



4.6. Upper limit of ensemble 109

4.6.2 Hierarchical Bayesian method

Hierarchical Bayesian inference (see Appendix C) allows to study population properties
of the analyzed ensemble of pulsars [120].
Assuming a common distribution for the amplitudes (or the ellipticities) of the pulsars
in the ensemble, it is possible to set upper limits on the hyperparameter that fixes the
assumed common distribution.
Let us consider an ensemble of N pulsars and a common distribution fixed by the hy-
perparameter µα for the set of amplitudes Hi where i = 1, .., N .
Let T (N) be the measured value of the ensemble statistic according to the analyzed
data. I can constrain the value of the hyperparameter µα considering the posterior pdf
inferred from a Bayesian procedure:

P (µα|T (N)) ∝ L(T (N)|µα)Π(µα) (4.49)

Π(µα) is the prior distribution on the hyperparameter while the likelihood L(T (N)|µα)
can be defined as the value of the signal distribution for T (N) at the value T (N) if the
common distribution of the amplitudes is fixed by the hyperparameter µα. The T (N)

signal distribution and hence, the likelihood, is fixed by Λ:

L(T (N)|µα) =
∫
L(T (N)|Λ)Π(Λ|µα)dΛ (4.50)

From the definition in (4.36), deducing the analytical prior on Λ for an assumed expo-
nential distribution of the amplitudes with hyperparameter µα is not straightforward.
For the Central Limit Theorem, it is possible to approximate this prior with a Gaus-
sian distribution with appropriate mean and variance that depend on µα. Indeed, if
Hi ∼ Exp(x;µα), Λ is the sum of N squared exponential random variables and for
N ≫ 1 the prior can be approximated with a Gaussian distribution where the mean is
the weighted sum (with coefficients f̄i) of the mean values for the squared exponential
random variables. I will describe an example in Section 5.3.
Differently, I can also consider:

L(T (N)|µα) =
∫
L(T (N)|H1, .., HN)Π(H1, .., HN |µα)dH1..dHN (4.51)

where since the Hi are independent:

Π(H1, .., HN |µα) =
N∏
i=1

Π(Hi|µα) (4.52)
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The order in the parameters H1, .., HN in L(T (N)|H1, .., HN) is important because to
fix the signal distribution you need to consider the value H1 for the first pulsar, H2 for
the second and so on. Indeed, Λ is the weighted sum of the squared amplitudes with
weights that depend on the sky position and on the detectors sensitivity at the expected
GW frequency for each pulsar. It follows that:

P (µα|T (N)) ∝

[∫
L(T (N)|H1, .., HN)

(
N∏
i=1

Π(Hi|µα)

)
dH1..dHN

]
Π(µα) (4.53)

In this case, since N could be large (order of hundreds) the posterior in (4.53) involves
a large number of integrals and to explore a large prior volume all at once.
To solve this problem, I can consider a classic hierarchical procedure where the integral
is broken into individual integrals for each event. This corresponds to consider:

L(T (N)|H1, .., HN) ≈
N∏
i=1

L(Si|Hi) (4.54)

where Si is the measured value of the statistic Si for the i-th pulsar and T (N) =∑N
i=1 Si.

The posterior is:

P (µα|S1, .., SN) ∝

(
N∏
i=1

∫
L(Si|Hi)Π(Hi|µα)dHi

)
Π(µα) (4.55)

It is difficult to evaluate the approximation in (4.54). The T (N) signal distribution is the
convolution of the Si signal distributions since T (N) =

∑
Si that can be very different

from the simple product.
The posterior in (4.55) is independent from the ensemble procedure that I have described
in this Chapter and is similar to what is proposed in [115]. It does not depend on the
Gaussian noise hypothesis and it can be used to constrain the hyperparameter µα using
the likelihood L(Si|Hi) computed for the i-th pulsar analysis.



Chapter 5
Method validation
In Chapter 3, I have described the 5-vector method pipeline for the single pulsar targeted
search while in Chapter 4, I have introduced the T (k) statistics and the rank truncation
method to optimize the detection probability for an ensemble of known pulsars.
In this Chapter, I describe the sensitivity tests that I performed for the single pulsar
analysis and for the proposed ensemble procedure using the T (k) statistics to validate
the proposed pipeline.
In Section 5.1, first I describe how to reconstruct the noise distribution for the statistic
S for the single pulsar targeted search. Then, considering the hardware injections in the
O3 data for the LIGO detectors, I test the single pulsar analysis procedure estimating the
intrinsic parameters also using a mixed frequentist-Bayesian method (as for the upper
limit computation).
In Section 5.2, I show the improvement in the detection probability for an ensemble
of pulsars with the T (k) statistics using theoretical tests and also hardware/software
injections in the O3 dataset of the LIGO detectors.
In Section 5.3, I test the upper limit procedures described in Section 4.6 on the global
parameter Λ and on the hyper-parameter of the assumed common distribution for the
amplitudes/ellepticities.

5.1 Tests of the single pulsar analysis

The normalized detection statistic S, introduced in this thesis and defined in Equation
(4.21), entails a common theoretical noise distribution - Gamma(x; 2, 1) - for any pul-
sar. From the normalized detection statistic, I can introduce the ensemble statistics T (k)
and compute the ensemble p-value.
In this Section, first I describe the "off-source frequencies" method to reconstruct the
experimental noise distribution for the S statistic. Then, I report different tests of the
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5-vector pipeline based on the detection of hardware injections. I also provide an in-
dependent estimation of the amplitude using the posterior pdf, used for the upper limit
computation.

5.1.1 Experimental noise distribution

In general, detectors data can show departure from Gaussianity and the theoretical noise
distribution for the detection statistic can not be used for the p-value or upper limit com-
putation. Indeed, the theoretical distribution is inferred in the hypothesis of stationary
and Gaussian noise for the detectors’ data.
Using the BSD files and the related libraries, it is possible to select and organize the
data in small frequency band around the expected GW frequency in order to reduce the
amount of data to analyze and hence, the computational cost of the analysis. Below
≈ 80 Hz, large disturbances (or vetted lines) can influence the data in the selected fre-
quency band; when the Gaussian hypothesis does not hold, it is important to reconstruct
the distribution of the detection statistic from the data itself.
The experimental noise distribution for the detection statistic can be built from the data
itself considering a range of off-source frequencies near but different from the one where
the signal is supposed to be [49]. For each of the selected off-source frequencies, that
means for each of the selected bins in the frequency domain, I compute the value of the
S statistic using the 5-vectors. In this way, I reconstruct the experimental noise distri-
bution for the statistic.
The general procedure to reconstruct the experimental distribution can be summarised
in the following steps:

• From the BSD files, extract a sub-band around the expected GW frequency

• Bands with known lines are excluded (not considering the corresponding bins)

• Bands with unidentified lines are excluded (±0.01 Hz)

• Consider a band around the expected GW frequency and select randomly a set of
off-source frequencies

• For each off-source frequency, compute the value of the detection statistic

The procedure can be slightly different if small datasets are considered. For example,
if I analyzed the entire O3 dataset, the frequency resolution would be ≈ 10−8 Hz and
there would be enough points (i.e. off-source frequencies) to accurately reconstruct the
noise distribution considering frequency band of ≈ 0.1 Hz.
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Figure 5.1: Test of the veto procedure introduced in this thesis. For the BSD frequency band
[108.7838; 108.9189] Hz (in the case of the hardware injection P03, see Subsection 5.1.2), I add
to the file with the known lines provided by the LVK Collaboration, two fake frequency bands to
veto: [108.8520; 108.8540] Hz and [108.8575; 108.8590] Hz. The Figure shows the histogram
of the off-source frequencies used to reconstruct the S noise distribution and selected by the veto
procedure.

On the contrary, analyzing one day-long datasets I could fix 1 Hz-wide frequency band
to have at least 86400 points to reconstruct the distribution.
The veto method for the known and unidentified lines has been introduced in this thesis.
A MATLab function performs the veto, reading the file provided by the LVK Collab-
oration of the frequency bands with vetted lines and excluding these bands from the
selected off-source frequencies.
A test for the veto procedure is described in Figure 5.1, where fake bands to veto have
been added in the file provided by the LVK to test the MATLab function. Figure 5.1
shows the histogram of the chosen off-source frequencies to reconstruct the experimen-
tal noise distribution.

5.1.2 Hardware injections

Hardware injections are simulated signals added to the detectors data physically dis-
placing the detectors’ test masses [121]. Differential displacement of the test masses
mimics the detectors’ response to a GW signal. Continuous hardware injections can be
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Figure 5.2: Experimental noise distribution (blue histogram) for the normalized single pulsar
statistic for the P03 inferred from a set of off-source frequency around the expected GW fre-
quency. The red line is the theoretical noise distribution - Gamma(x; 2, 1) - for stationary
Gaussian noise.

used to test CW analysis methods.
During the O3 run, 17 hardware injections that simulate different CW signals from
spinning neutron stars were added in the two LIGO detectors. The list of injected pulsar
parameters can be found in [122]. For Virgo, no CW injections were performed during
O3 (there were some injections during O3b but the signal was removed a posteriori in
the strain data).
In this Section, I consider two different hardware injections to test the 5-vector pipeline.
I report the results for the injected pulsar P03 (SNR(1 yr) ≈ 30) that simulates an iso-
lated spinning neutron stars with fgw ≃ 108.8 Hz and for P16 (SNR(1 yr) ≈ 68), a
neutron star in binary system with fgw ≃ 234.5 Hz.
I use the normalized detection statistic defined in (4.21) that entails theGamma(x; 2, 1)
as noise distribution in the hypothesis of stationary Gaussian noise.
As shown in Figure 5.2 for PO3 and LLO O3 data, the experimental S noise distribution
is in good agreement with theGamma(x; 2, 1) distribution, showing that in the selected
frequency band (0.2 Hz wide), the noise is Gaussian distributed.
Figures 5.3 and 5.4 show the amplitude spectral density in the frequency band around
the expected GW frequency for P03 (the same for P16 in Figure 5.5 and 5.6) and for
each detector after the Doppler and spin-down corrections using the BSD heterodyne
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Figure 5.3: Amplitude spectral density for P03 and LLO data after the corrections for Doppler
and spin-down effect. The right plot is the zoom around the GW frequency; the red dots show the
expected 5 frequencies due to the Earth sidereal motion. Central peak frequency is the expected
GW frequency.
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Figure 5.4: Amplitude spectral density for P03 and LHO data after the corrections for Doppler
and spin-down effect. The right plot is the zoom around the GW frequency; the red dots show the
expected 5 frequencies due to the Earth sidereal motion. Central peak frequency is the expected
GW frequency.
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Hardware Injection Detector ϵH0 ϵη ϵψ

P03
LLO 0.93 0.54% 1.49%

LHO 0.95 1.27% 0.39%

P16
LLO 0.91 0.66% -

LHO 0.93 0.90% -

Table 5.1: Table of the parameters mismatch for the hardware injections P03 and P16 analyzing
O3 data from the two LIGO detectors.

method. The red dots are the theoretical expected 5 frequency peaks for the GW signal
due to the sidereal modulation. The different "heights" of corresponding peaks in the
two detectors depend on the antenna pattern, i.e. on the signal 5-vector templates A+/×.
It is important to note that the formalism used to construct the hardware injections’ sig-
nal is independent from the 5-vector method.
In Table 5.1, there are the results obtained for the two hardware injections considering
the O3 datasets of the two LIGO detectors. The estimation of the intrinsic parameters
(see Subsection 3.5.1) is not influenced by the choice of the detection statistic since it
depends only on the estimators Ĥ+/×.
The parameter mismatch definition depends on the considered parameter:

• ϵH0 is the ratio between the estimated Ĥ0 and injected amplitude H0,

ϵH0 =
Ĥ0

H0

(5.1)

• ϵη is the normalized relative errors, defined as:

ϵη =

∣∣∣∣ η − η̂

(ηmax − ηmin)

∣∣∣∣ = ∣∣∣∣η − η̂

2

∣∣∣∣ , (5.2)

that is normalized in such a way that the maximum relative error between two
values is 1 (in fact ηmax = +1 and ηmin = −1)

• the normalized relative error ϵψ will be:

ϵψ =

∣∣∣∣∣ ψ − ψ̂

(ψmax − ψmin)

∣∣∣∣∣ =
∣∣∣∣∣ψ − ψ̂

π

∣∣∣∣∣ . (5.3)

since ψmax = π/2 and ψmin = −π/2.
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Figure 5.5: Amplitude spectral density for P16 and LLO data after the corrections for Doppler
and spin-down effect. The right plot is the zoom around the GW frequency; the red dots show the
expected 5 frequencies due to the Earth sidereal motion. Central peak frequency is the expected
GW frequency.

The small discrepancies (below 10%) in Table 5.1 for the amplitude fall within the
uncertainties of the actuation system used for the injections. For P16, the ψ parameter
is not well defined, since η ≈ 1 and the signal is circularly polarized.

5.1.3 Posterior pdf

In Subsection 3.5.5, I have described the hybrid Bayesian procedure for the computation
of the upper limit on the amplitude using the 5-vector method.
The posterior, defined in Equation (3.87), is

P (H0|S) =
L(S|H0)Π(H0)∫
L(S|H ′

0)Π(H
′
0)dH

′
0

(5.4)

where S is the measured value of the detection statistic.
I can use the posterior P (H0|S) to compute an independent estimation of the amplitude
as in [121]. Indeed, since for the hardware injection the SNR is high considering the en-
tire O3 dataset, I expect that the posterior should be peaked near the injected value. This
is also an indirect test for the upper limit computation since an accurate reconstruction
of the posterior entails an accurate computation of the upper limit.
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Figure 5.6: Amplitude spectral density for P16 and LHO data after the corrections for Doppler
and spin-down effect. The right plot is the zoom around the GW frequency; the red dots show the
expected 5 frequencies due to the Earth sidereal motion. Central peak frequency is the expected
GW frequency.

Figures 5.7 and 5.8 show the posterior pdf for the amplitude for P03 and P16 consid-
ering each LIGO detector and also the multi-detector case using the 5n-vectors. The
posterior is obtained marginalizing over the parameters ψ and cos ι using uniform pri-
ors, and considering a set of amplitudes in the range between 0 and a multiple of the
minimum detectable amplitude in the selected frequency band.
For each value of the amplitude, using the Bayes theorem in (5.4) with uniform prior,
I reconstruct the posterior P (H0|S). The likelihood L(S|H0) is the signal distribution
for the statistic S fixed by the amplitude H0 and evaluated at the measured value of the
statistic S.
The median value of each posterior - that can be considered as an estimator of the
injected amplitude - is in good agreement with the independent results in Table 5.1 in-
ferred from the classic procedure for the amplitude estimation of the 5-vector method.
Table 5.2 shows the parameter ϵH0 , that is the ratio between the median value of each
posterior and the injected value for the considered hardware injection, and the 95% cred-
ible interval inferred from the posteriors. There is a small discrepancy for the amplitude
that fall within the uncertainties of the actuation system used for the injections. The ϵH0

values mirror the distance between the median value of the posterior and the injected
value (dashed line).
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Figure 5.7: Posterior distribution for P03 as a function of fixed values of the amplitude for each
detector (blue dots for LLO, red dots for LHO) and for the multi-detector case (yellow dots).
The dashed line is the injected value.
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Figure 5.8: Posterior distribution for P16 as a function of fixed values of the amplitude for each
detector (blue dots for LLO, red dots for LHO) and for the multi-detector case (yellow dots).
The dashed line is the injected value.
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Hardware Injection Detector ϵH0 95% Credible interval

P03

LLO 0.91 (5.5× 10−26, 6.6× 10−26)

LHO 0.97 (5.7× 10−26, 7.1× 10−26)

Joint 0.94 (5.8× 10−26, 6.6× 10−26)

P16

LLO 0.91 (1.4× 10−25, 1.6× 10−25)

LHO 0.94 (1.4× 10−25, 1.9× 10−25)

Joint 0.92 (1.5× 10−25, 1.6× 10−25)

Table 5.2: Table of the amplitude estimation using the posteriors for the hardware injections
P03 and P16 inferred from O3 data and considering the two LIGO detectors for single and multi
detectors analysis. In this case, ϵH0 is the ratio between the median of the posteriors in Figures
5.7 and 5.8, and the H0 injected value (6.64× 10−26 for P03 and 1.66× 10−25 for P16).

The posteriors in Figures 5.7 and 5.8 show also that the injected value is near the edge
of the credible interval for some posteriors. This could be due to the high SNR that
entails narrow distributions.
The accuracy of the parameters estimation can be improved noticing that the 5 frequen-
cies where the signal is expected could have sidebands. These sidebands spread the
signal in more bins respect to the expected peaks reducing the accuracy of the detection.
The sidebands are not due to the Doppler or spin-down corrections but are linked to
the presence of gap into the data1. The estimation of the amplitude, and in general of
the CW parameters, can improve making a folding of the data and templates over the
sidereal day before computing the 5-vectors.

5.2 Tests of the ensemble procedure

In Chapter 4, I have described a rank truncation method for the CW targeted search for
an ensemble of N known pulsars. The proposed method ranks the pulsars in the en-
semble according to the p-values Pi (with i = 1, ..., N ) computed using the normalized
statistic Si distribution and the measured value Si: Pi = P (Si ≥ Si|noise).
Ranking the pulsars in the ensemble for increasing Pi, I have introduced the ensemble
statistic T (k) as the partial sum of the first k order statistics (statistic Si with the k-th

1For example, the sideband can be observed very clearly also in the spectrum of the template functions
where no noise is present and no correction is performed. Indeed, the signal templates are computed
considering the same gap of the data (see Section 3.46). By removing the gaps, the sidebands in the
A+/× spectrum disappear.
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smallest Pi) and defined a p-value of ensemble P (k) as a function of k:

P (k) = P (T (k) ≥ T (k)|noise) (5.5)

with

T (k) =
N∑

i=N−k+1

S(i) (5.6)

and S(i) is the i-th smallest measured value for the detection statistic for a certain pulsar
in the ensemble. For example, for an ensemble of N pulsars with Pj ≤ Pi ∀i and
Pk ≥ Pi ∀i, the smallest and the largest order statistics are S(1) ≡ Sk and S(N) ≡ Sj ,
respectively.
In this Section, I describe the sensitivity tests for the ensemble procedure described in
Section 4.5. First, I consider a theoretical test to verify that using the statistic T (k),
I can optimize the detection probability for a set of pulsars. Then, I generalize the
Monte Carlo procedure that reconstructs the T (k) distributions, and the results of the
theoretical test, considering software and hardware injections in the last observing run
for the LIGO and Virgo detectors.

5.2.1 Theoretical test

For the theoretical test of the T (k) detection probability for the ensemble procedure, I
consider the theoretical distributions for the single pulsar statistic both in the case of
noise and in the case of signal. Indeed, using the normalized Si statistic (introduced in
(4.21)) for the analysis of the i-th pulsar, the noise distribution is the Gamma2 distri-
bution - Si ∼ Gamma(x; 2, 1) - while the signal distribution is also analytical - non
central-χ2 distribution Si ∼ 2χ(2x; 4, λi) - and fixed by the parameter λi defined in
(4.27).
Starting from the theoretical noise and signal distributions for Si, I need only to fix the
number N of pulsars in the ensemble and the strength of the signals, that is the λi pa-
rameter for the i-th pulsar. Indeed, I do not need to consider real data to reconstruct the
S distributions in the case of noise and especially in the case of signals. Choosing the
λi parameter corresponds to fix the extrinsic parameters (and so, the detectors sensitiv-
ity) but also the amplitude and the polarization parameters. This allows to reduce the
computational cost of the test since I do not need to reconstruct the distribution and to
inject signals into real data.

2The Erlang distribution, described in Section 4.3, is the Gamma distribution with integer shape and
scale parameters.
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1. Generate a Gamma(x; 2,1) distribution 
with 200k points to simulate the noise 

distribution of single pulsar.

2. Select randomly N points to simulate an ensemble.

3. Rank for decreasing values these N 
points (that is for increasing p-values).

4. T(k) is the sum of the k 
top-ranked values

Repeat steps 1−4, M 
times to reconstruct T(K) 

noise distributions

Figure 5.9: Workflow of the Matlab function MCnoise() that for a fixed N reconstructs the
theoretical T (k) noise distribution for each k using the Monte Carlo procedure described in
Subsection 4.5.1.

I can reconstruct the T (k) noise and signal distributions for each k following the Monte
Carlo procedure described in Subsections 4.5.1 and 4.5.3. In Figure 5.9 and in Figure
5.10, there are the workflows of the two MATLab functions that reconstruct the T (k)
noise and signal distributions.
The theoretical test aims to show the improvement of the detection probability using the
statistic T (k) compared to the detection probability of single pulsar. I want also to test
that the proposed rank truncation method can optimize the detection probability for the
targeted search if there are few signals in the ensemble.
To fix the signal “strength", I consider two different distributions for the λi parameters.
Specifically, I consider an exponential distribution with different mean values Λ and a
flat distribution with only 10 signals present, fixing the corresponding λi value to a given
Pd. Pd is the detection probability for single pulsar at a fixed false alarm probability of
1%:

Pd = P (S ≥ S1%|signal) (5.7)

where
S1% : P (S ≥ S1%|noise) = 0.01 (5.8)

Figure 5.11 (the same for Figure 5.12) shows in the left plot, the detection probability for
the statistics T (k) at the 1% false alarm probability compared with Pd for each pulsar
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1. Generate N non-central χ2 distribution 
with 200 000 points with the appropriate λ to 

simulate individual signal distributions.

2. Select randomly N points to simulate an ensemble.

3. Rank for decreasing values these N 
points and construct T(k).

4. Compute the p-value for the ensemble as a 
function of k using the T(k) noise distributions

Repeat steps 1−4, M 
times to reconstruct the 
T(K) signal distributions

Fix the λ distribution for an 
ensemble of N pulsars

For each k, compute 
the median value for 

the M p-values of 
ensemble

Compute detection 
probability at f.a. of 1 %

Figure 5.10: Workflow of the Matlab function MCsig() that fixing the strength for each pulsar
(that is the λ parameter) reconstructs the theoretical T (k) signal distribution for each k using the
Monte Carlo procedure described in Subsection 4.5.3.

while the right plot shows the median values of the P (k) signal distributions for the
statistics T (k) as a function of k. The P (k) signal distributions are inferred from the
Monte Carlo procedure shown in Figure 5.10 using the T (k) noise distributions. The
set of median p-values is an indication of the sensitivity of the method since you have
50% of probability to obtain a set of p-values below the considered curve.
By increasing the mean value Λ, the median of the p-value decreases (right plot in
Figure 5.11) as expected since the detection probability for the T (k) increases (left plot
in Figure 5.11). The "stars" in the left plot indicates the Pd for each pulsar according to
the fixed λi value, and allow to easily compare the detection probability of the ensemble
with the detection probability of each pulsar.
Figure 5.12 shows that using T (k), I improve the detection probability even if there are
few signals in the ensemble. Indeed, Figure 5.12 clearly shows the importance of the
proposed rank truncation method. Considering only the simple sum of the statistics for
the entire pulsars set (i.e. T (100) in Figure 5.12), I would obtain the last point in the
left/right plot. For example, for 10 signals each with Pd = 25% (red line/red stars),
T (N) entails a detection probability of ≈ 40% and a median p-value of ≈ 2%. Ranking
pulsars for decreasing p-values and defining the statistics T (k), I optimize the detection
probability since for k ≈ 10, the detection probability curve has a maximum at ≈ 55%

while the minimum of the median p-value is below the 1% threshold. The larger is the
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Figure 5.11: Left plot: detection probability at 1% false alarm probability for the T (k) statistics
as a function of k for N = 100 and choosing the λi parameter from exponential distributions
with different mean values Λ. The stars show the detection probability of single pulsar for each
value of λi from each exponential distribution. In this way, it is possible to compare the detection
probability of ensemble with the largest detection probability for single pulsar analysis. Right
plot: Median p-value for the distribution of the p-value inferred from the Monte Carlo procedure
using the noise distribution parameter for the statistic T (k) as a function of k.

difference between the maximum T (k) detection probability and the T (N) detection
probability, the more efficient is the rank truncation method.

5.2.2 Dependence on N

It is clear that fixing the number of signals and Pd for each signal, you can improve
the detection probability decreasing N . Similarly, if the number and the strength of the
signals are fixed, the detection probability for the statistics T (k) decreases increasing
N . This is shown in Figure 5.13 and in Figure 5.14, where the λ distributions are the
same analyzed in Figure 5.11 and 5.12 but the number of pulsars is N = 500.
Increasing the number of pulsars with λ = 0 decreases the performance of the proposed
rank truncation method. Indeed, the T (k) noise/signal distributions depends on N for



5.2. Tests of the ensemble procedure 125

0 50 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100

10
-1

10
0

10
1

10
2

Figure 5.12: Left plot: detection probability at 1% false alarm probability for the T (k) statistics
as a function of k for N = 100 and choosing the λi different from 0 only for 10 pulsars. The
value of λi is fixed from the detection probability of single pulsar (for example, the red line is
obtained considering 10 pulsars, each with detection probability of 25%). Right plot: Median
p-value for the distribution of the p-value inferred from the Monte Carlo procedure using the
noise distribution parameter for the statistic T (k) as a function of k.
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Figure 5.13: Same case of Figure 5.11 but considering an ensemble of 500 pulsars to show the
dependence of the detection probability of ensemble on the number of pulsar N .

each k.
These tests show the dependencies on N for the ensemble procedure for a fixed number
of signals. In a real analysis, however, I cannot optimize N . For example, I can fix a
criterion to select the most promising sources. If this criterion is based on the data, I
will necessarily introduce an “order" in the set of pulsars. This is, for example, the case
of the coherence, an independent parameter that measures the resemblance between the
shape of the expected signal and the data [95].
The coherence is not strictly related to the value of the measured statistic but it can
happen that the highest values for the coherence correspond to the smallest p-values,
also in the hypothesis of no signal. In general, any statistical parameter computed from
the data is in some way related to the p-value since it is linked to the measured value of
the statistic.
A reasonable choice is to fix N according to physical observations. For example, I
can fix N considering only the "high target" pulsars that have upper limit on the strain
amplitude below the spin-down limit or considering the set of millisecond pulsars.
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Figure 5.14: Same case of Figure 5.12 but considering an ensemble of 500 pulsars to show the
dependence of the detection probability using the statistics T (k) on the number of pulsar N .

5.2.3 Monte Carlo generalization for real data

Detectors noise in real data does not necessarily follow a stationary Gaussian distribu-
tion. As described in Subsection 5.1.1, to reconstruct the S noise distribution, I select
a set of off-source frequencies in a small frequency band around the expected GW fre-
quency. Similarly, I need to reconstruct the experimental distributions for the T (k)
statistics in order to apply the ensemble procedure to real data.
For an ensemble of N pulsars, I can reconstruct the experimental noise distributions
for the T (k) statistics starting from the N experimental noise distribution for the single
pulsar statistic. To generalize the Monte Carlo algorithm described in Subsection 4.5.1,
I replace the Gamma distribution in step one of Figure 5.9 with the N different exper-
imental noise distributions inferred from the data. For each k, I fit the experimental
T (k) noise distributions using a Gamma distribution. If the detector noise followed a
Gaussian distribution in the fixed frequency band for each pulsar, I would expect the
fitted shape and scale parameters for T (N) close to 2N and 1, respectively.
From the T (k) experimental noise distributions, I can compute the p-value of ensemble
P (k) considering the Gamma distribution with the fitted shape and scale parameters.
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5.2.4 Tests with hardware injections

To test the ensemble procedure considering real data and the experimental Monte Carlo
procedure, I can first use the hardware injections that are present in the strain data.
Considering the entire O3 dataset, the hardware injections can be easily detected due
to their high signal to noise ratio SNR (see Subsection 5.1.2). To test the ensemble
procedure, I need to consider signals that can not be individually detectable and hope-
fully, near the detection threshold. To reduce the SNR for hardware injections, I have to
reduce the observation time in order to increase the minimum detectable signal that is
proportional to ∝ 1/

√
Tobs (see Equation (2.34)).

Using the BSD framework (Section 3.1), I can fix the smallest3 datasets (1 day long) to
have hardware injections that can not be detected with high significance for 1 Hz-wide
frequency band. Then, I can consider an ensemble of different days and perform, for
each day, a targeted search for the fixed hardware injection. Using the obtained results,
I construct the statistics T (k) and compute the ensemble p-value as a function of k.
In this test, I fix the hardware injection (P03 in [121]) and consider an ensemble with
N = 20 of consecutive 1-day long datasets starting from 15/08/2019 of the LIGO Liv-
ingston detector.
Figure 5.15 shows a summary plot for the analysis of ensemble; the top-left plot shows
the scale and shape parameters of the Gamma distribution fitted to the experimental Si
noise distributions (where i is the index of the day), the top-right plots show the results
of the fits using a Gamma distribution for the T (k) noise distributions for each k while
the bottom plot compares the ordered Pi (red dots) with the p-value of ensemble P (k)
(blue line). This is a summary plot because it is possible to check the results of the fit
to the experimental distributions for the single pulsar statistics (hence the noise in the
frequency band selected for each pulsar), to the T (k) noise distributions for each k, and
to compare the ensemble p-value with the single pulsar p-values.
For this test, where I have fixed the hardware injection considering different datasets
(20 consecutive days), the top-left plot shows how the noise in the detector evolves in
time and how much different is from the Gaussian assumption. The parameters of the
Gamma distribution from the fit to the experimental noise distribution can be very dif-
ferent from the expected values for Gaussian noise depending on the considered day.
The time evolution of the noise from one day to the next modifies also the SNR of the
hardware injection.
As shown in Figure 5.15, the p-values for each day are consistent with the noise hy-
pothesis while the p-value of ensemble is well below the 1% threshold showing clear

3"Smallest" according to the 5-vector method that is based on the sidereal modulation of the expected
CW signal.
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Figure 5.15: Top-left plot Fitted shape (red triangle) and scale parameters (blue square) using a
Gamma distribution to the experimental Si noise distribution for the i-th pulsar, inferred using a
range of off-source frequencies. Top-right plots Fitted shape and scale parameters (dashed lines)
with 95% confidence level (coloured area) for the T (k) noise distributions for each k inferred
from the Monte Carlo procedure. Bottom plot P-value of ensemble (blue line) P (k) defined in
(5.5) compared with the single pulsar p-value, ranked for increasing values.

evidence for a signal from the ensemble. Increasing the number of considered days the
p-value of ensemble decreases. In this case, since the ensemble has only signals, the
best choice for the ensemble statistic is the simple sum of the statistics, i.e. T (N).

5.2.5 Tests with software injections

In order to have more and different signals to test the pipeline, software injections can
be added to the detectors data series with the expected spin-down and Doppler modu-
lations. The fake signal must be injected at the beginning of the analysis, i.e. before
the heterodyne corrections and all the analysis procedure must be followed in order to
compute the detection statistic corresponding to a software injection.
For the software injections, it is necessary to pick the parameters for the expected CW
signal. First, I fix N = 100, that is an ensemble of 100 pulsars. For each simulated
pulsar, I fix randomly the sky position, a uniform distribution for the parameters ψ and
cos ι, a uniform distribution for the GW frequency between 100 Hz and 110 Hz and a
uniform distribution for the first derivative of the GW frequency.
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Figure 5.16: Ensemble of 100 simulated pulsars with only noise (α = 0 for each pulsar).
Top-left plot Fitted shape (red triangle) and scale parameters (blue square) using a Gamma dis-
tribution to the experimental Si noise distribution for the i-th pulsar, inferred using a range of
off-source frequencies. Top-right plots Fitted shape and scale parameters (dashed lines) with
95% confidence level (coloured area) for the T (k) noise distributions for each k inferred from
the Monte Carlo procedure. Bottom plot P-value of ensemble (blue line) P (k) defined in (5.5)
compared with the single pulsar p-value, ranked for increasing values.

I fix the sensitivity and the observation time considering O3 design sensitivity and O3
run duration (almost 11 months) for the LIGO Livingston detector. The injected ampli-
tude H is chosen as a fraction α of the minimum detectable amplitude for the targeted
search hmin (see (2.34))

H = α · hmin ≈ α · 11

√
S(fgw)

Tobs
(5.9)

where S(fgw) is the one-sided power spectral density at the expected GW frequency and
Tobs is the detector observation time.
Figure 5.16 is the summary plot for the simulated ensemble with no injected signals
(α = 0 for each simulated pulsar). I do not consider any signals to check the perfor-
mance of the procedure in case of noise.
The fitted shape and scale parameters are almost 2 and 1 respectively (top-left plot) since
the pulsars’ fgw are in a frequency band where the LLO O3 data are almost stationary
and Gaussian. This is shown also in the top-right plots since for k = N , T (N) is the
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Figure 5.17: Ensemble of 100 simulated pulsars with only 10 signals, each with single test de-
tection probability of ∼ 25%. Top-left plot Fitted shape (red triangle) and scale parameters (blue
square) using a Gamma distribution to the experimental Si noise distribution for the i-th pulsar,
inferred using a range of off-source frequencies. Top-right plots Fitted shape and scale parame-
ters (dashed lines) with 95% confidence level (coloured area) for the T (k) noise distributions for
each k inferred from the Monte Carlo procedure. Bottom plot P-value of ensemble (blue line)
P (k) defined in (5.5) compared with the single pulsar p-value, ranked for increasing values.

simple sum of N Gamma random variables and T (N) ∼ Gamma(x; 2N, 1).
The ensemble p-value P (k) are full consistent with noise as expected. The single pulsar
p-values Pi are also consistent with noise with one pulsar with a p-value below the 1%,
as expected for an ensemble of N = 100 pulsars.
In Figure 5.17, I consider only 10 pulsars, out of 100, with α ̸= 0. The α value for each
signal is 0.5, that corresponds to a detection probability for the single pulsar analysis of
about 25%. The detection probability of single pulsar is almost equal since the detectors
sensitivities are similar (for each pulsar, 100 Hz < fgw < 110 Hz)
The single pulsar p-values show no clear evidence of a signal, with the exception of
four pulsars with Pi between 0.01% and 1%. The ensemble p-value has a minimum at
k ≈ 10 with P (10) ≈ 0.01% with the expected shape as showed in Figure 5.12. The
V-shape justifies the proposed rank truncation method to optimize the detection proba-
bility if few signals are present into the analyzed ensemble.
The ensemble p-value shows no strong evidence of a signal from the considered ensem-
ble but it returns some hints and strong motivation for a follow-up at least for the pulsars
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with the smallest p-values.

5.3 Ensemble upper limits tests

To test the upper limit procedures described in Section 4.6, I use the same set of 100
simulated pulsars described in the previous Section, with different distributions for the
set of injected amplitudes. I fix the 100 injected amplitudes taking the factor αi for the
i-th pulsar from a chosen distribution. I describe in this Section three different cases for
the α distribution: exponential distribution, uniform distribution (see Figure 5.18) and
the noise case (αi = 0∀i).
The upper limits procedures constrain the global parameter Λ and the hyper-parameter
of the common distribution assumed for the amplitudes. Figures 5.19, 5.20 and 5.21
show the results for the three analyzed cases: for each figure, the left-plot shows the
posterior and the upper limit on Λ while the right-plot shows the posteriors and the upper
limits on the hyper-parameter using the hierarchical procedures described in Section 4.6.

5.3.1 Λ parameter

The Λ parameter, defined in (4.36), fixes the theoretical signal distribution for the T (N)

statistic. For the Bayes theorem, the posterior on Λ is (see Section 4.6):

P (Λ|T (N)) =
L(T (N)|Λ)Π(Λ)∫
L(T (N)|Λ′)Π(Λ′)dΛ′ (5.10)

where T (N) is the measured value of the ensemble statistic, Π(Λ) is the prior and
L(T (N)|Λ) is the likelihood. The likelihood can be estimated form the theoretical T (N)

signal distribution evaluated at the value T (N) for different Λ.
The upper limit Λ95% on the Λ parameter is defined as:

Λ95% :

∫ Λ95%

0

P (Λ|T (N))dΛ = 0.95 (5.11)

I choose a uniform prior for the Λ parameter since it is difficult to guess a priori the
distribution for Λ, that is the linear combination of the squared amplitudes. The lowest
value for the uniform prior can be set considering the "no-signals" case, i.e. Λ = 0,
while the largest values can be set considering an ideal case where for each pulsar λi ≈ 5

(and hence Pd ≈ 20%) that entails Λ ≈ 500.
The results in the left-plot of Figures 5.19 and 5.20 show that the the injected values
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are in the 95% credible interval for the estimated hyper-parameter. The discrepancies
between the peaks of the posterior and the injected value can be due to the selected
priors; choosing a common distribution for the α factors entails also a distribution for
the Λ parameter, different from the uniform prior chosen in these tests. Indeed, Λ is
defined as the weighted sum of squared amplitudes, and so in this case of the α factors.
For large values of N and if the α factors follow a common distribution, the Λ prior
can be approximated by a Gaussian distribution (as it will be described in the next
Subsection). A uniform prior for Λ is more general and does not entail any assumptions
of the common distribution for α, as in the case of hierarchical procedures.
For the noise case with no signals - Figure 5.21 - the posterior is consistent with Λ = 0

as expected. The upper limit Λ95% is Λ95% ≃ 60.

5.3.2 Hierarchical procedures

In Section 4.6, I have introduced two independent hierarchical procedures to constrain
the hyper-parameter of the common distribution for the amplitudes.
Since the αi factors for the injected amplitudes follow a common distribution, the hier-
archical procedures must constrain the hyper-parameter µα of this common distribution.
The two hierarchical procedures consider the parameter Λ, setting the upper limit µ(Λ),
or the single pulsar likelihoods to infer the upper limit µ(S).
From Equation (4.49), the upper limit µ(Λ) is:

µ(Λ) :

∫ µ(Λ)

0

P (µα|T (N))dµα = 0.95 (5.12)

with

P (µα|T (N)) ∝

(∫
L(T (N)|Λ)Π(Λ|µα)dΛ

)
Π(µα) (5.13)

Choosing a uniform prior for the hyper-parameter µα, the prior Π(Λ|µα) must be eval-
uated. This conditional probability depends on the distribution of the factors αi.
Since I expect few signals near the detection threshold, it is reasonable to consider an
exponential distribution for αwith mean value µα. For large ensembleN ≫ 1, Π(Λ|µα)
can be approximated with a Gaussian distribution for the Central Limit Theorem.
The mean and variance of the Gaussian distribution depends on the chosen prior and
on the value of µα since Λ is the weighted sum of the squared αi factors. Choosing
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an exponential prior4 for αi, the mean/variance value of the Gaussian distribution that
approximates Π(Λ|µα) is the weighted sum of the mean/variance values for the squared
exponential random variables.
From Equation 4.55, the upper limit µ(S) is

µ(S) :

∫ µ(S)

0

P (µα|S1, .., SN)dµα = 0.95 (5.17)

where

P (µα|S1, .., SN) ∝

(
N∏
i=1

∫
L(Si|Hi)Π(Hi|µα)dHi

)
Π(µα) (5.18)

If an exponential distribution for αi is assumed, the prior Π(Hi|µα) can be chosen ex-
ponential since Hi = αi · hmin. The term L(Si|Hi) is the likelihood for the i-th pulsar.
Using the results for the upper limit of the single pulsar analysis, it is straightforward to
evaluate the posterior P (µα|S1, .., SN).
In other words, I consider three different injected distributions for α (exponential, uni-
form and the noise case) while for the hierarchical procedures, the prior for the α dis-
tribution is chosen exponential. It is possible to evaluate different priors changing ac-
cordingly Π(Hi|µα), and the mean and the variance of the Gaussian distribution that
approximates Π(Λ|µα).
The right-plot in Figures 5.19, 5.20, 5.21 show the posteriors for the two hierarchical
procedures: P (µα|T (N) (blue dots) and P (µα|S1, .., SN) (yellow dots). The results
(for example, the upper limit) are consistent for the two independent procedures.
The case of Figure 5.19 is instructive since the priors - Π(Λ|µα) and Π(Hi|µα) - mirror
the injected α distribution and the peak of the hyperparameter posteriors are close to the
injected value as expected.
In Figure 5.20, the prior is based on a wrong assumption since the injected α distribu-

4If X is an exponential random variable with pdf f(x) and mean value µ, the squared exponential
random variable X2 has pdf fX2(x),

fX2(x) = f
(√
x
) d√x
dx

=
1

2

e
−

√
x√
xµ

µ
(5.14)

and the mean value µX2 is

µX2 =

∫ ∞

0

x · f(x) = 2µ2 (5.15)

Similar argument can be used for the variance σ2
X2 :

σ2
X2 =

∫ ∞

0

(
x− 2µ2

)2 · f(x) = 20µ4 (5.16)
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Figure 5.18: Set of αi values (with 1 < i < 100 that indicates the pulsar in the ensemble of
the 100 simulated pulsars) used to reconstruct the two distributions for the α factor defined in
(4.20): exponential distribution with mean value 0.15 (blue dots) and uniform distribution with
0 < α < 0.55 (red dots).

tion is uniform. The injected value is still in the confidence interval of the posteriors but
in this case, the signals are "stronger" with twenty pulsars with 0.4 < α < 0.5 as shown
in Figure 5.18. This can be seen also in the left-plot of Figure 5.20 where the posterior
P (T (N)|Λ) peaks almost at 200 while in Figure 5.19, the peak is at almost 100.
For the noise case in Figure 5.21, the posteriors and the upper limits µ(Λ) and µ(S) are
consistent.
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Figure 5.19: Ensemble of 100 simulated pulsars with exponential distribution with mean value
0.15 for the α factors. Left plot Posterior distribution (blue curve) and upper limit (red point)
on the Λ parameter assuming a uniform prior. The dashed line is the injected value of Λ .Right
plot Posterior distribution and upper limit on the hyper-parameter µα for the two independent
hierarchical procedures using Λ (yellow curve) or the single pulsar likelihoods (blue curve).
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Figure 5.20: Ensemble of 100 simulated pulsars with uniform distribution between 0.005 <
α < 0.5. Left plot Posterior distribution (blue curve) and upper limit (red point) on the Λ param-
eter assuming a uniform prior. The dashed line is the injected value of Λ .Right plot Posterior
distribution and upper limit on the hyper-parameter µα for the two independent hierarchical pro-
cedures using Λ (yellow curve) or the single pulsar likelihoods (blue curve).
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Figure 5.21: Ensemble of 100 simulated pulsars with α = 0 for each pulsar. Left plot Posterior
distribution (blue curve) and upper limit (red point) on the Λ parameter assuming a uniform
prior. The dashed line is the injected value of Λ .Right plot Posterior distribution and upper limit
on the hyper-parameter µα for the two independent hierarchical procedures using Λ (yellow
curve) or the single pulsar likelihoods (blue curve).





Chapter 6
Results using O3 data
In this Chapter, I show the results of the application of the 5n-vector ensemble method
to the set of known pulsars in Table 6.1 using O3 data from the LIGO and Virgo detec-
tors. The set of pulsars almost coincide with the one in [84].
As described in Chapter 4, the 5n-vector ensemble method is based on the analysis of
single pulsars; indeed, combining the normalized statistics of single pulsar, I construct
the statistics T (k) to improve the detection probability for a signal of ensemble.
In the first part of this Chapter, I describe the O3 dataset and the set of pulsars based on
the LVK targeted search in [84]. Then, I present the first results of the targeted search -
also for binary systems - using the 5n-vector method.
In the second part, I show the results of the ensemble procedure considering three dif-
ferent set of pulsars. Since there is no evidence of a CW signal from the ensemble, I set
the 95% confidence upper limit on the global parameter Λ and using two independent
hierarchical Bayesian frameworks, the upper limit on the hyperparameter of an assumed
exponential distribution for the ellipticities.

6.1 Data set

As described in Section 2.5, targeted searches assume to know with high accuracy the
source parameters, namely the sky position and the rotation parameters. Therefore, tar-
geted searches have a strong multi-messenger approach since electromagnetic observa-
tions can constrain the source extrinsic parameters. These electromagnetic observations
have been made in radio and X-ray wavelengths.
In this Section, I describe the data set used for the analysis and composed by the GW
data set, that is the data from the LIGO and Virgo detectors, and the electromagnetic
data set from the different telescopes that provide the pulsar parameters.

139
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6.1.1 GW data

The O3 observing run started the 2019 April 1 (MJD: 58574.625) and ended the 2020
March 27 (MJD: 58935.708) for both the LIGO and Virgo detectors. O3 consisted of
two sections, separated by a one month-long commissioning break. O3a ran from 2019
April 1, 15:00 UTC until 2019 October 1, 15:00 UTC. O3b ran from 2019 November 1,
15:00 UTC, to 2020 March 27, 17:00 UTC.
The duty cycles for this run were 76%, 71%, and 76% for LLO, LHO, and Virgo, respec-
tively. The O3 data set is publicly available via the Gravitational Wave Open Science
Center1.
For O3, the maximum 1 σ amplitude uncertainties for the frequency band 10-2000 Hz
were in the range [-5,+7]% and [-5.5,+5.5]% for LHO and LLO, respectively, and for
Virgo the maximum uncertainty was 5%. These ranges are the maximum upper and
lower bound over the full frequency range and over different measurement epochs over
the run, so at specific frequencies/times the uncertainty can be far smaller. The data used
underwent cleaning processes, specifically the removal of narrowband spectral artifacts
corresponding to calibration line frequencies and power line frequencies. A discus-
sion on the consequences of performing a search using LIGO data with the narrowband
cleaning can be found in Appendix A of [84].

6.1.2 EM data

The set of analyzed pulsars in Table 6.1 corresponds almost with the set analyzed in
[84].
The observatories which have contributed to the data set are: the Canadian Hydrogen
Intensity Mapping Experiment (CHIME), the Mount Pleasant Observatory 26 m tele-
scope, the 42 ft telescope and Lovell telescope at Jodrell Bank, the MeerKAT project, the
Nancay Decimetric Radio Telescope, the Neutron Star Interior Composition Explorer
(NICER) and the Molonglo Observatory Synthesis Telescope (as part of the UTMOST
pulsar timing programme). The ephemerides have been created using pulse time-of-
arrival observations that mainly overlapped with O3 observing period.
To estimate the theoretical spin-down limit or the upper limit for the fiducial ellipticity
for a certain source, the pulsars’ distances are needed. For many pulsars, the distance
can be found in the ATNF Pulsar Catalog [123]. These are distances mostly based on the
observed dispersion measure and calculated using the Galactic electron density distri-
bution model of [124], although others are based on parallax measurements, or inferred
from associations with other objects or flux measurements. The distances used for each

1https://www.gw-openscience.org/O3/index/
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pulsar are given in Table 6.1. Distance errors are primarily based on uncertainties in
the Galactic free electron distribution, which can lead to distance errors on the order
of a factor of two. Nearby pulsars, for which parallax measurements are possible, will
generally have smaller distance uncertainties.
The spin-down limits require also the value for the first period derivative of the pulsar.
The observed spin-down does not necessarily reflect the intrinsic spin-down of the pul-
sar, as it can be contaminated by the relative motion of the pulsar with respect to the
observer. This is particularly revalent for millisecond pulsars, which have intrinsically
small spin-downs that can be strongly affected, particularly if they are in the core of a
globular cluster where significant intracluster accelerations can occur, or if they have
a large transverse velocity with respect to the Solar System. The spin-down can also
be contaminated by the differential motion of the Solar System and pulsar due to their
orbits around the Galaxy. For the non-globular-cluster pulsars, if their proper motions
and distances are well enough measured, these effects can be corrected for to give the
intrinsic period derivative.
I select the pulsars whose rotation frequency is greater than 10 Hz to match the sensitiv-
ity band of the GW detectors. This leads to primarily targeting millisecond pulsars and
fast spinning young pulsars. There are 165 millisecond pulsars with frequencies above
about 100 Hz.
In this analysis, I have not considered the pulsars that glitched during O3. In general,
for the pulsars which experienced glitching, each inter-glitch period is analyzed inde-
pendently and then the resulting statistics are summed. For the single pulsar analysis,
this procedure entails a decrease of the search sensitivity. For simplicity, I decide to not
consider glitching pulsars in this analysis.

6.2 Single pulsars analysis

In this Section, I describe the results of the analysis of single pulsar using the 5n-vector
method. I use the normalized single pulsar statistic S defined in 4.21 using the weighted
multidetector extension of the 5-vector, described in Section 3.6. The results described
here are obtained using O3 data from the two LIGO and Virgo detectors.
For each pulsar, I consider a small frequency band - at least 0.1 Hz wide - around the
expected GW frequency that is assumed exactly two times the rotation frequency of the
source (single harmonic search). The frequency band extracted from the BSD files is
chosen considering the spin-down of the source and in case of binary systems, consid-
ering also the Doppler effect due to the orbital motion.
Using the heterodyne correction described in Subsection 3.3.1, I remove the spin-down



142 Chapter 6. Results using O3 data

10
1

10
2

10
3

10
-27

10
-26

10
-25

10
-24

Figure 6.1: Strain amplitude as a function of the frequency for O3 data of the LIGO and Virgo
detectors. Blue stars are the upper limits inferred using the Bayesian method for the 223 ana-
lyzed pulsars as in [84] while the red circles are the upper limits for the 5n-vec method. The
continuous pink line is the hmin, the minimum detectable amplitude for the O3 run considering
a multidetector analysis.

and the Doppler frequency modulation for the expected GW signal. For the first time
for the 5n-vectors, I implement the Doppler correction for binary systems described in
Section 3.4. Using the BSD framework, the computational cost of the analysis is re-
duced to a few CPU-minutes per source per detector.
The experimental noise distribution is inferred considering a range of off-source fre-
quencies as described in Subsection 5.1.1. The measured value of the statistics is com-
pared with the noise distribution computing the p-value.
In agreement with [84], there is no evidence of a CW signal from any pulsar in O3 data.
Using the procedure in Subsection 3.5.5, I set 95% credible upper limit on the amplitude
h0 for each pulsar2.
As shown in Figure 6.1, the upper limits from the 5n-vector method (red circles) are in
agreement with the results of the Bayesian method (blue stars as in [84]). The com-
parison is also shown in Figure 6.2 with the histogram of the normalized difference Dn

2The 5n-vector method uses a description of the GW signal based on the concept of polarization
ellipse. The relation of the amplitude parameter H0 used by the 5n-vector method with both the standard
strain amplitude h0 is described in Subsection 3.5.5
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Figure 6.2: Histograms of the normalized difference Dn of the upper limits defined in (6.1) to
compare the 5n-vector method and the Bayesian method results.

defined as:
Dn =

X − Y

max(X, Y )
(6.1)

where X is the upper limit from the 5n-vectors for a certain pulsar and Y is the corre-
sponding upper limit from the Bayesian method. Figure 6.2 shows that the distribution
is peaked almost at zero with a preference for negative values ofDn. This means that the
5n-vector method provides upper limits that are slightly smaller than the corresponding
Bayesian upper limits.
Figure 6.3 shows the so-called spin-down ratio, that is the ratio between the upper limit
on the amplitude from the 5n-vector method and the theoretical spin-down limit.
In Figure 6.4, there is the comparison between the upper limits on the ellipticity from
the 5n-vector method (red circles) and the Bayesian method (blue stars). The much
lower limits on ϵ inferred for the millisecond pulsars easily follow from the frequency
scaling in the ellipticity definition (from Equation 1.62).
These results rely on the pulsar distance, frequency derivative and principal moment of
inertia, which all have associated uncertainties. As in [84], these uncertainties are not
taken into account in this analysis, since I use the best-fit values listed in Table 6.1 and
a fiducial moment of inertia of 1038 kg m2 , which is the standard fiducial number used
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Figure 6.3: Histograms of the spin-down ratio for the analyzed pulsars - for which calculating
a spin-down rate was possible - obtained by using the 5n-vector method.

in the literature.
From the 5n-vector results, 17 pulsars have upper limits below the corresponding spin-
down limit (high-value pulsars), with 102 pulsars within a factor of 10 of their spin-
down limit. For the Bayesian analysis, the high value pulsars are 23 (82 pulsars within
a factor of 10). The missing high-value pulsars for the 5n-vector method are the 3
glitching pulsars (Crab, J0908-4913, J1105-6107) and the three pulsars J1745-0952,
J1756-2251, J1925+1720 that have spin-down ratio for the 5n-vector of 1.16, 1.33 and
1.17 respectively.
In the following, as high-value pulsars I consider the pulsars with the spin-down ratio
≲ 1; in this way, apart form the glitching pulsars, the high-value pulsars set correspond
to the one in [84].

6.3 Ensemble analysis

In this Section, I show the results of the ensemble analysis proposed in this thesis based
on O3 data and the set of 223 pulsars analyzed in Section 6.2.
I choose three different ensemble from the set in Table 6.1: the entire set for the three
detectors, the millisecond pulsars (fgw > 100 Hz) set for the LIGO detectors and the
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Figure 6.4: Upper limits on the ellipticity for the set of analyzed pulsars from the 5n-vector
method (red dots) and from the Bayesian method (blue stars).

high-value pulsars set (h95%0 /hsd ≲ 1) for the LIGO detectors. This corresponds to fix
N = 223 for the first set, N = 165 for the millisecond pulsars set and N = 20 for the
high-value pulsars set.
After analyzing each pulsar singularly, I reconstruct the statistics T (k) and compute a p-
value of ensemble as a function of k. The results are shown in the form of summary plot;
the top-left plot shows the fitted shape and scale parameters of a Gamma distribution
for the experimental noise distribution for the statistic S as a function of the pulsar
frequency, the top-right plots show the fitted shape and scale parameters to the T (k)
noise distributions as a function of k while the bottom-plot compares the ordered single
pulsar p-values with the ensemble p-values from the T (k) statistics.
Since there is no evidence of signal form the ensemble, I set 95% credible upper limit
on the global parameter Λ and on the hyperparameter µϵ that is the mean value of the
assumed exponential distribution for the ellipticities.

6.3.1 All pulsars, all detectors

The summary plot for the entire set of analyzed pulsars is shown in Figure 6.5. For this
analysis, I consider the two LIGO and Virgo detectors.
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I use a criterion based on noise to select the detectors that are used for the multi-detector
analysis of single pulsar. Since the normalized statistic S in the hypothesis of Gaussian
noise is distributed according to a Gamma(x; 2, 1), from the fitted parameters to the
experimental noise S distribution (top-left plot in Figure 6.5) I can easily check the
Gaussianity in the selected frequency band for each pulsar. For the multi-detector anal-
ysis, I consider the detectors that have fitted shape and scale parameters respectively in
the range [1.6, 2.4] and [0.8, 1.2] (that is a maximum difference of 20% from the theoreti-
cal values). This procedure allows to exclude the detectors with large noise disturbances
that can influence the Monte Carlo procedure for the T (k) noise distributions.
From the bottom-plot of Figure 6.5, there is no evidence of a signal form the ensemble.
Three pulsars have single pulsar p-value (red dots) slightly below 1% as expected for a
set of 223 pulsars. The p-value computed for the statistics T (k) are consistent with the
noise hypothesis.

6.3.2 Millisecond pulsars, LIGO detectors

The summary plot for the millisecond pulsars is shown in Figure 6.6. For this analysis,
I consider only the two LIGO detectors with the same noise criteria introduced in the
previous Subsection. In this case, I do not consider the Virgo detector that has a higher
noise level. As shown in Section 3.6, a multidetector analysis does not necessarily entail
a better sensitivity compared to the most sensitive detectors considered in the analysis.
As shown in the bottom plot in Figure 6.6, there are four pulsars - J2055+3829,
J0824+0028, J1551-0658, J1751-2857 - below the 1% threshold. There is no evidence
for any of these pulsars; the combination of the two LIGO detectors entails lower p-
values respect to the three detectors case.
For example considering the pulsar J2055+3829, the p-values for the single detector-
single pulsar analysis are 0.12, 0.01, 0.76 for LLO, LHO and Virgo respectively. The
multidetector analysis considering all the three detectors entails a p-value of 0.009 while
considering only the two LIGO detectors, the p-value is 0.0015.
The ensemble p-value has a minimum of almost 2% for k = 4 with no evidence of
signal from the ensemble. The strong decrease for the first values of k is due to the
presence of the four pulsars with relatively small p-values below the 1%. For a set of
165 pulsars, the expected number of p-values below 1% should be almost 2.

6.3.3 High-value pulsars, LIGO detectors

The summary plot for the high-value pulsars, that is the set of analyzed pulsars with
spin-down ratio ≲ 1, is shown in Figure 6.7. For this analysis, I consider only the two
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Figure 6.7: Summary plot of the ensemble composed by the high-value pulsars with spin-
down ratio ≲ 1 (see Figure 6.3) considering O3 data and the two LIGO detectors. Top-left plot
Fitted shape (red triangle) and scale parameters (blue square) using a Gamma distribution to the
experimental noise distribution for each pulsar as a function of the frequency for the considered
pulsar. Top-right plots Fitted shape and scale parameters (dashed lines) with 95% confidence
level (coloured area) for the T (k) noise distributions for each k inferred from the Monte Carlo
procedure. Bottom plot P-value of ensemble (blue line) compared with the single pulsar p-value
(red dots), ranked for increasing values.

LIGO detectors with the same noise criteria introduced in the previous Subsection.
The high-value pulsars for O3 data are 20 (as in [84] excluding the glitching pulsars) .
As showed by the the blue line in the bottom plot of Figure 6.7, the p-value of ensemble
is full consistent with the noise hypothesis.

6.3.4 Upper limits

The procedures to set upper limits with the ensemble procedure are described in Section
4.6 and validated in Section 5.3.
The validation tests reported in Section 5.3 consider a set of 100 simulated pulsars with
GW frequency between 100 Hz and 110 Hz. The injected amplitudes H are fixed by the
factor α since H = α · hmin. Assuming a common distribution (exponential in Figure
5.19 and uniform in Figure 5.20) for the α factors, the two independent hierarchical
procedures, described in Subsection 4.6.2, show the posterior distribution of the mean
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of the assumed exponential distribution for α.
For the single pulsar analysis, I set the 95% credible upper limits on the amplitude and
- assuming a fiducial moment of inertia value and the distance without uncertainties -
the 95% credible upper limits on the ellipticity. Indeed, in a real analysis the physical
parameters to constrain are the amplitude and the ellipticity linked to the CW strength
and to the neutron star EOS.
For the upper limit computation, I consider the entire set of known pulsars in Table 6.1
and the O3 dataset for the LIGO and Virgo detectors.
Using the statistic T (N), that is the simple sum of the statistics for the pulsars in the
analyzed ensemble, I set 95% credible upper limit on the parameter Λ that fixes the
T (N) signal distribution. Λ, defined in Equation (4.36), is the weighted sum of the
squared amplitudes. The upper limit is fixed with a mixed Bayesian-frequentist pro-
cedure similar to the procedure for the single pulsar case. The prior on Λ is chosen
uniform while the likelihood is the value of the T (N) signal distribution evaluated at
the measured value T (N). The posterior P (Λ|T (N)), shown in the left plot of Figure
6.4, is compatible with 0 as expected for the noise case. The 95% credible upper limit
is:

Λ95% = 96.4 (6.2)

It is not possible to infer information for the single pulsar from the upper limit Λ95%

since Λ is a global parameter for the ensemble. Λ95% can be used to show the improve-
ment in the method sensitivity analyzing future runs or, as described in Subsection 4.6.1,
it can be used to constrain different global parameters of the ensemble based on some
assumptions for the single pulsars amplitudes.
For example, by assuming that each pulsar in the ensemble have the same amplitude h,
from the upper limit Λ95% it follows that h = 2 × 10−27; while by assuming that each
amplitude is a multiple of the single pulsar upper limit with a common factor δ, from
the upper limit Λ95% it follows that δ = 0.07.
For the hierarchical procedures, considering the analysis in [115] and the stochastic
searches in [103, 104], I assume a common exponential distribution for the ellipticities
with the hyperprior Π(µϵ) that is log-uniform between 10−10 and 10−7. The posteriors
P (µϵ|T (N)) and P (µϵ|S1, .., SN) are shown in the right plot of Figure 6.4.
The upper limit on µϵ is

µ(Λ)
ϵ = 2.7× 10−9 (6.3)

for the hierarchical procedure using the Λ parameter, and

µ(S)
ϵ = 1.8× 10−9 (6.4)
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Figure 6.8: Upper limits inferred from the ensemble procedure considering the set of 223 pulsars
in Table 6.1 and considering the O3 data for the LIGO and Virgo detectors. Left plot: posterior
distribution for the global parameter Λ (defined in Equation 4.36). The red point indicates the
95% credible upper limit for Λ. Right plot: posterior distribution for the two independent hier-
archical procedures described in Subsection 4.6.2 to set the upper limits on the mean µϵ of the
assumed exponential distribution. The continuous line is the log-uniform hyperprior on µϵ. The
blue and yellow points indicate the 95% credible upper limit for µϵ.

for the hierarchical procedure using the single pulsar results.
The results and also the posteriors can be directly compared with Figure 8 in [115]
where the authors analyzed 92 pulsars using data from the LIGO S6 science run. The
90% upper limit on the mean of the assumed exponential distribution is 3.8 × 10−8 in
[115].
The upper limit set in this thesis is more than one order of magnitude below this value.
It should be noted that the ensemble analyzed here is larger than the ensemble in [115],
and in addition, the combined O3 data for the LIGO and Virgo detectors are largely
more sensitive than the LIGO S6 science run data.
The upper limits in [103, 104] on average ellipticity for the neutron star population
are O(10−8) from cross-correlation-based searches of a stochastic gravitational wave
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background. It is not straightforward to compare these limits with the one obtained in
this thesis since targeted searches are focused on known pulsars that represent only a
small subset of the entire set of neutron stars in our Galaxy. Indeed, the results in [103,
104] depend on the estimated number of neutron stars that emit CWs in the analyzed
frequency band.

6.3.5 Comments

As shown in Figures 6.5, 6.6 and 6.7 there is no evidence of CW signal from the three
different ensemble considered in this thesis. In the following, I report some comments
and assumptions on the 5n-vector analysis that should be taken into account.

• The results described in the previous Subsections consider a single harmonic
emission whit the GW frequency that is exactly twice the rotation frequency of
the source. So far, the dual harmonic search (GW frequency at both once and
twice the rotation frequency) is not implemented for the 5n-vector method.

• For the first time using the 5n-vector method, I show the results for the analysis
of pulsars in binary systems. The heterodyne correction for binary systems is
described in Section 3.4.

• Using the multidetector procedure in Section 3.6, the results are in agreement with
[84]. However, it is still not clear when a multidetector analysis outperforms the
most sensitive detector analysis. A criteria depending on the source sky position
and on the detectors’ sensitivities and observation times should be studied in the
next future to choose when and which detectors should be used in a multidetector
analysis.

• Glitching pulsars, as the Crab, are not considered in the single pulsar analysis
and therefore, also in the ensemble analysis. The general procedure for glitching
pulsar is to analyze each inter-glitch period independently and then to sum the
resulting statistics. In future searches, glitching pulsars can be included in the en-
semble procedure considering the resulting statistic for the single pulsar analysis
or considering each inter-glitch period as an independent pulsar.

• The upper limits on the ellipticity for the single pulsar analysis and also on the hy-
perparameter for the exponential distribution do not consider the uncertainties on
the distance. As in [115], the distance should be included as a variable assuming,
for example, a Gaussian prior with a mean given by each pulsar’s best fit distance,
and a standard deviation of 20% of that value, and a hard cutoff at zero.
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• The hierarchical procedures assume that all the analyzed pulsar ellipticities are
drawn from a common distribution that can be too simplistic to describe the
true ϵ distribution. For example, the population of young pulsars and old recy-
cled millisecond pulsars have undergone different evolution that could mean that
the distribution of ellipticities for these two populations may be quite different.
Therefore, a bimodal distribution or two independent exponential distributions
with different means could be more appropriate.

• The upper limits procedures from the ensemble statistic T (N) use the theoretical
signal distribution to evaluate the likelihood. Theoretical distribution can be used
in the hypothesis of Gaussian noise in the analyzed frequency band for each pul-
sar. This can be controlled looking at the fitted Gamma parameters for the T (N)

statistic in the top-right plot of Figures 6.5, 6.6 and 6.7.

6.4 Application and future prospects

In this Section, I describe the possible application and the future prospects for the pro-
posed ensemble procedure. The next observing runs for the LIGO and Virgo detectors
and especially the next generation of GW detectors will improve the sensitivity and
hopefully bring us closer to detect CWs from pulsars for the first time. In addition, the
ensemble procedure can improve the detection probability for targeted searches.
The rank truncation method developed in this thesis can be easily generalized to differ-
ent pipelines, e.g. to the F-statistic, and also to different search methods, e.g. to the
semi-coherent searches.
In Subsection 6.4.3, I describe also a possible application of the ensemble method to the
comb identification for the noise detector characterization.

6.4.1 O4 run and 3G detectors

LIGO, Virgo, and KAGRA are closely coordinating to start the O4 Observing run to-
gether. The start for the O4 run is programmed for March 2023 and it will last one full
year with a one-month break for maintenance in the middle. LIGO projects a sensitivity
goal of 160-190 Mpc for the binary neutron stars range. Virgo projects a target sensitiv-
ity of 80-115 Mpc. KAGRA is expected to start observing alongside Virgo and LIGO,
and then at some point, step away for commissioning and return to observing with a
greater sensitivity toward the end of O4.
In the more distant future, third-generation (3G) detectors like the proposed Cosmic
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Figure 6.9: Minimum ellipticity detectable by ET at 90% confidence level in a targeted search,
assuming an observation time 5 yr. Dashed line are theoretical limit for the ellipticity assuming
different equation of state. Two detector sensitivity curves, ET-B and ET-D, are taken into
account (details in [125]).

Explorer or Einstein Telescope may reach sensitivities one order of magnitude higher
than what is achieved by Advanced LIGO and Advanced Virgo. Figure 6.9 shows the
minimum detectable ellipticity (at 90% confidence level) for currently known pulsars
potentially emitting in the detector band, assuming two proposed ET configurations and
a full coherent matched filter analysis over an observation time of 5 years. The min-
imum detectable value of the ellipticity for each pulsar is inferred from the minimum
detectable amplitude for targeted search considering the design sensitivity (Equation
(2.34)). ET will be sensitive to ellipticities of the order of few times 10−10 for the
nearest millisecond pulsars, and of 10−6 − 10−7 for young pulsars.

Follow-up

The 5n-vector method and the ensemble procedure described in this thesis use a fre-
quentist approach: the significance of a certain candidate, characterised by a value of
the detection statistic, is established through the p-value, that is the probability to obtain
a larger value for the statistic in the hypothesis of noise only.
Given an observed data sample, claiming the discovery of a new signal requires deter-
mining that the sample is sufficiently inconsistent with the hypothesis that only back-
ground is present in the data. The test statistic T (k) can be used to measure the inconsis-
tency of the observation in the hypothesis of the presence of background only, typically
assumed as a null hypothesis. The p-value has, by construction, a uniform distribution
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between 0 and 1 for the background-only hypothesis H0 and tends to have small values
in the presence of the signal (hypothesis H1 ). A researcher will often "reject the null
hypothesis" when the p-value turns out to be less than a predetermined threshold (called
significance level), often 0.01.
If this p-value is very small, usually less than or equal to the significance level, it sug-
gests that the observed data is inconsistent with the assumption that the null hypothesis
is true, and thus that hypothesis must be rejected. The p-value refers only to the null
hypothesis and does not make reference to or allow conclusions about any other hy-
potheses, such as the alternative hypothesis.
As reported in [126], "It should be emphasized that in an actual scientific context, re-
jecting the background-only hypothesis in a statistical sense is only part of discovering
a new phenomenon. One’s degree of belief that a new process is present will depend
in general on other factors as well, such as the plausibility of the new signal hypothesis
and the degree to which it can describe the data". In this work, a small p-value can be
used to recognize interesting ensemble of pulsars as starting point for the detection.
The question is: what happens if a p-value of ensemble is below a fixed significance
threshold?
A targeted search presents perhaps the most challenging case for confirmation, since
the search is already based on a matched filter and hence there is little or no additional
SNR to be gained in follow-up. Moreover, the SNR value is unlikely to be high, given
the previously unsuccessful searches. This scenario implies that taking further data may
be necessary, to gain confidence. It is clear that to claim a detection, the signal should
be seen in different pipelines; the Bayesian approach for both the single pulsar and the
ensemble searches is an important alternative pipeline to be considered.
It is also clear that the results for the ensemble search are based on the analysis of single
pulsar. A p-value of ensemble that is below the fixed threshold for a certain value of k
can be an alert for the k pulsars in the analyzed subset. To follow-up these candidates,
the self consistency of the signal should be analyzed. For example, the maximum SNR
for combined interferometers should generally be higher than the maximum SNR of any
single interferometer. Then, a CW signal from a non-glitching neutron star should have
the SNR that grows with the square root of the observation time.
It would also be desirable to infer the noise distribution not from the detectors noise
(e.g. using off-source frequencies) but considering a large number of randomly chosen
points in the sky to better assess confidence (sky-shifting technique [127]). This would
be an independent way to check the significance of a particular candidate.
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6.4.2 Extension to different search methods

The rank truncation method described in Section 4.4 can be easily generalized to dif-
ferent pipelines for the targeted search and/or also to different CW searches. Indeed,
the rank truncation method is a general multiple testing procedure that improves the
detection probability for a signal from the ensemble when few signals are present near
the detection threshold. Ranking pulsars for increasing p-values and then, defining the
statistics T (k) as the partial sum of order statistics do not imply any assumptions on the
used statistic S for the analysis of single pulsar.
In Subsection 5.2.4, I have showed a different application of the ensemble procedure
fixing the hardware injection to analyze. Then, considering consecutive days where the
signal was injected but below the detection threshold, I performed an ensemble proce-
dure to improve the detection probability. It follows that a different use of the ensemble
procedure could be in directed searches where semi-coherent methods are used.

F-statistic

Let us suppose that the Si statistic used for the targeted search of the i-th pulsar is de-
fined by the F-statistic method.
As described in Subsection 2.6.2, the F-statistic uses a frequentist approach; the p-value
computed from the measured value of the statistic quantifies the consistence of the data
with the noise hypothesis. In the case of Gaussian noise, the F-statistic follows a non-
central χ2 distribution with 4 degrees of freedom and has a non-centrality parameter
equal to the squared optimal SNR ρ2.
The main difference with the 5n-vector method is the normalized noise distribution for
the statistic. Indeed in the case of no signal, the F-statistic follows a χ2 distribution
with 4 degrees of freedom.
In this thesis, I introduce a normalized definition of the statistic S in Equation (4.21)
since the rank truncation method can only be applied if the considered statistic for the
single pulsar analysis has the same noise distribution for each pulsar. With a different
noise distribution, ranking for increasing p-values does not necessarily correspond to
rank for decreasing values of the detection statistics and order statistics can not be used.
The application of a rank truncation method to the F-statistic is straightforward; the
Monte Carlo procedure to reconstruct the T (k) noise/signal distributions is the same
described in Figures 5.9 and 5.10. The only difference is the starting noise/signal distri-
butions for each pulsar.
In [78], the authors define an ensemble statistic as the weighted sum of the F-statistics
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with coefficients ai that depend on the average optimal SNR:

ai ∝
f 4
i Ki

d2i Sn(2fi)
(6.5)

where fi is the rotation frequency, di the distance and Ki is an averaged geometrical
factor describing the GW polarization and orientation of the i-th pulsar. Discussing the
obtained results, the authors try to answer to the questions: "Will collecting more pulsars
return higher PDE values than an individual detection? How many sources should be
combined to obtain the maximum PDE at given PFA?" (PDE is the detection probability
while PFA is the false alarm probability). These questions are essential for an ensemble
procedure; to answer to these, I introduce the rank truncation method to optimize the
detection probability when there are few signals in the ensemble.
A detailed study that compares the performance of the rank truncation method with the
definition in [78] is needed. It is important to stress that by fixing N - the number of
pulsars in the ensemble - the procedure in [78] entails the computation of a "single"
ensemble statistic that should be compared with T (N).

Narrow band and semi-coherent searches

Narrow-band searches allow a mismatch between the GW frequency and the rotation
frequency of the source. The frequency/spin-down plane is divided into frequency sub-
bands (typically 10−4 Hz wide). For each point of the grid, the detection statistic and
the corresponding p-value is computed. To take into account the number of trials, the
computed p-values must be adjusted using, for example, the Šidák correction. The out-
liers are identified among the candidates using a threshold nominally corresponding to
1%.
A simple extension of the ensemble method is to consider the maximum value of the de-
tection statistics from the frequency/spin-down grid for each pulsar and then, to perform
the ensemble search as described in this thesis. Narrow band searches, as described in
Section 2.5, have lower sensitivity due to the trial factors. A more detailed analysis on
how the ensemble procedure is influenced by the narrowband sensitivities, is needed.
Ensemble procedures can be also extended to semi-coherent searches. The general idea
for semi-coherent searches (common to different pipelines) can be sketched as:

• divide the full dataset in several “short” segments;

• compute the statistic Si over each segment;

• take the sum of the statistic Si.
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In other words, a semi-coherent search is an ensemble procedure where the neutron star
is fixed, and the information of consequent short segments are combined together.
Neglecting the details of the particular pipeline, a rank truncation method can be useful
to increase the detection probability. Indeed, the short segments are of the order of
sidereal days; detectors noise can change considerably during the observing run and
from one day to the next. This means that the sensitivity of the coherent search over the
short segments (and hence the SNR) changes in time and depends on the considered time
segments. The same signal could be near the detection threshold for a particular segment
but deeply buried into noise in a different one. Applying the ensemble procedure - as
in the case of the test with hardware injection in Subsection 5.2.4 - will optimize the
semi-coherent search if there are few segments where the signal is near the detection
threshold.

6.4.3 Comb identification

In the Paragraph 3 of Section D in [128], it is described a method to detect "Sub-
threshold combs in coherence data". Combs are frequency lines in the coherence be-
tween GW noise detectors that occur in a distinct pattern with even spacing in frequency
between each tooth (each single line) of the comb. Tooth frequencies are given by
fn = f0 + n · δf , where f0 is the offset (from 0 Hz) of the comb, δf is the spacing,
and n is an integer. These combs are associated with linear or non-linear coupling of
non-sinusoidal sources or with non-linear coupling of sinusoidal sources.
"Sub-threshold comb" means that there is no obvious single frequency that exceeds the
typical levels of noise, but there is a set of frequencies with a specific spacing that, when
summed together, gives something larger than expected if the same number of bins were
chosen in random way and summed.
The “comb-finder” in [128] is a tool which sums the power over many possible tooth
spacing and offset and checks whether that sum is larger than expected. To calculate
the significance of the combined power, a cross correlation estimator is used for each
of the tooth frequency and then, "the optimal way to combine these statistics is using a
weighted sum" [128]. For a comb with N teeth:

Ŷ N
comb =

∑N
i Ŷiσ̂

−2
Yi∑N

i σ̂
−2
Yi

(6.6)

and the variance

σ̂Ncomb =

[
N∑
i

σ̂−2
Yi

]−1/2

(6.7)
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Figure 6.10: Output of the comb-finder where the pixels colour indicate Sm,n the strength of
the SNR. The loudest pixels indicate a coherent 1 Hz comb with 0.5 Hz offset identified during
O1. Credit to [128].

where Ŷi is the cross-correlation estimator and σ̂Yi the associated standard deviation and
the subscript i indicates the discrete frequency bin fi so that, for example, Ŷi = Ŷ (fi).
Then, the SNR can be evaluated as a function of the offset number of binsm and spacing
n that determine which frequency bins contribute to the comb in question. For a search
over a given frequency band ∆f = fmax − fmin, with a frequency resolution of δf , the
number of teeth in a comb with bin spacing n will be given by N = 1 + floor(∆f/n).
The combined SNR statistic Sm,n is:

Sm,n =
Ŷ

(m,n)
comb

σ̂
(n,m)
comb

=

∑N
i Ŷm+i·nσ̂

−2
Ym+i·n[∑N

i σ̂
−2
Ym+i·n

]1/2 (6.8)

An example from O1 data is shown in Figure 6.10.
This is an interesting application of an ensemble procedure. The comb has in general
consequent peaks and the SNR Sm,n is a sort of partial sum where you do not need to
order because you know that if there is a comb the power will decrease with i. The
comb finder in [128] depends on the chosen frequency band (e.g. in Figure 6.10 it is 3
Hz wide). The use of a rank truncation method could allow to increase the frequency
window and to simplify the search for the offset, that is the first frequency of the comb.
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Table 6.1: Table of the parameters (name, GW frequency in Hz, distance in kpc, spin-down
limit) and the results inferred using the 5n-vector method (upper limit on the amplitude, upper
limit on the ellipticity, p-value) for the 223 analyzed pulsars. More details about the references
for the ephemerides and distance estimation can be found in [84].

Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J0023+0923 655.7 1.1 1.3 · 10−27 9.1·10−27 2.2 · 10−8 0.5

J0030+0451 411.1 0.3 3.6 · 10−27 6.5·10−27 1.2 · 10−8 0.71

J0034-0534 1065.4 1.4 8.9 · 10−28 2.0·10−26 2.2 · 10−8 0.046

J0101-6422 777.3 1.0 9.7 · 10−28 1.2·10−26 1.9 · 10−8 0.11

J0102+4839 674.7 2.3 6.8 · 10−28 1.2·10−26 5.6 · 10−8 0.092

J0117+5914 19.7 1.8 1.1 · 10−25 6.6·10−25 2.9 · 10−3 0.66

J0125-2327 544.2 0.9 2.0 · 10−27 6.7·10−27 2.0 · 10−8 0.82

J0154+1833 845.8 1.6 3.4 · 10−28 1.2·10−26 2.5 · 10−8 0.38

J0218+4232 860.9 3.1 1.5 · 10−27 7.9·10−27 3.2 · 10−8 1

J0340+4130 606.2 1.6 7.2 · 10−28 9.3·10−27 3.8 · 10−8 0.3

J0348+0432 51.1 2.1 9.3 · 10−28 1.1·10−26 8.2 · 10−6 0.58

J0406+3039 766.7 - - 8.6 · 10−27 - 0.73

J0407+1607 77.8 1.3 1.1 · 10−27 9.1·10−27 1.9 · 10−6 0.22

J0437-4715 347.4 0.2 8.0 · 10−27 7.4·10−27 9.3 · 10−9 0.23

J0453+1559 43.7 0.5 3.1 · 10−27 9.5·10−27 2.4 · 10−6 1

J0509+0856 493.1 0.8 9.6 · 10−28 1.1·10−26 3.6 · 10−8 0.085

J0509+3801 26.1 1.6 5.3 · 10−27 3.8·10−26 8.2 · 10−5 0.78

J0557+1550 782.4 1.8 7.5 · 10−28 8.1·10−27 2.3 · 10−8 0.92

J0557-2948 45.8 4.3 2.4 · 10−28 1.1·10−26 2.2 · 10−5 0.66

J0609+2130 35.9 0.6 2.9 · 10−27 1.7·10−26 7.3 · 10−6 0.73

J0610-2100 518.0 3.3 1.3 · 10−28 3.5·10−26 4.0 · 10−7 0.4

J0613-0200 653.2 0.6 2.2 · 10−27 7.4·10−27 9.9 · 10−9 0.88

J0614-3329 635.2 0.6 3.0 · 10−27 8.0·10−27 1.2 · 10−8 0.58

J0621+1002 69.3 0.4 2.4 · 10−27 8.9·10−27 7.4 · 10−7 0.33

J0636-3044 506.9 0.7 2.6 · 10−27 3.1·10−26 8.1 · 10−8 0.71

J0636+5129 697.1 0.2 4.2 · 10−27 7.7·10−27 3.1 · 10−9 0.73

J0645+5158 225.9 1.2 3.7 · 10−28 4.8·10−27 1.1 · 10−7 0.85

J0709+0458 58.1 1.2 2.2 · 10−27 8.6·10−27 2.9 · 10−6 0.85

J0711-6830 364.2 0.1 1.2 · 10−26 4.8·10−27 3.8 · 10−9 0.92

J0721-2038 128.7 2.7 5.1 · 10−28 6.1·10−27 9.4 · 10−7 0.55

J0732+2314 489.0 1.1 8.5 · 10−28 5.9·10−27 2.7 · 10−8 0.98
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Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J0740+6620 693.1 1.1 1.1 · 10−27 7.6·10−27 1.7 · 10−8 0.68

J0751+1807 574.9 0.6 1.9 · 10−27 7.7·10−27 1.3 · 10−8 0.77

J0824+0028 202.8 1.7 1.8 · 10−27 1.1·10−26 4.2 · 10−7 0.01

J0835-4510 22.4 0.3 3.4 · 10−24 1.1·10−25 5.6 · 10−5 0.26

J0921-5202 206.6 0.4 2.9 · 10−27 6.7·10−27 6.0 · 10−8 0.26

J0931-1902 431.2 3.7 1.8 · 10−28 5.9·10−27 1.1 · 10−7 0.82

J0955-6150 1000.3 2.2 9.9 · 10−28 1.3·10−26 2.6 · 10−8 0.5

J1012-4235 644.9 0.4 3.1 · 10−27 7.9·10−27 6.6 · 10−9 0.62

J1012+5307 380.5 0.7 1.6 · 10−27 4.7·10−27 2.2 · 10−8 0.97

J1017-7156 855.2 3.5 2.5 · 10−28 7.3·10−27 3.3 · 10−8 0.98

J1022+1001 121.6 0.6 1.8 · 10−27 6.2·10−27 2.5 · 10−7 0.64

J1024-0719 387.4 1.2 - 6.3 · 10−27 4.8 · 10−8 0.7

J1035-6720 696.4 1.5 2.2 · 10−27 6.6·10−27 1.9 · 10−8 0.92

J1036-8317 586.7 0.9 2.6 · 10−27 6.5·10−27 1.7 · 10−8 0.76

J1038+0032 69.3 6.0 2.1 · 10−28 7.8·10−27 9.2 · 10−6 0.55

J1045-4509 267.6 0.6 2.1 · 10−27 5.4·10−27 4.2 · 10−8 0.7

J1101-6101 31.8 7.0 4.2 · 10−26 2.3·10−26 1.5 · 10−4 0.61

J1101-6424 391.4 2.2 2.2 · 10−28 6.0·10−27 8.0 · 10−8 0.6

J1103-5403 589.5 1.7 5.0 · 10−28 5.5·10−27 2.5 · 10−8 1

J1125-5825 644.7 1.7 2.0 · 10−27 6.9·10−27 2.7 · 10−8 0.81

J1125-6014 760.3 1.4 7.1 · 10−28 7.4·10−27 1.7 · 10−8 0.85

J1125+7819 476.0 0.9 - 8.1 · 10−27 3.0 · 10−8 0.3

J1142+0119 394.1 2.2 - 7.4 · 10−27 9.8 · 10−8 0.42

J1207-5050 413.0 1.3 6.9 · 10−28 8.3·10−27 5.9 · 10−8 0.18

J1216-6410 565.1 1.1 5.0 · 10−28 8.3·10−27 2.7 · 10−8 0.35

J1231-1411 542.9 0.4 2.9 · 10−27 6.8·10−27 9.2 · 10−9 0.84

J1300+1240 321.6 0.6 - 6.3 · 10−27 3.5 · 10−8 0.58

J1302-3258 530.4 1.4 7.4 · 10−28 6.7·10−27 3.2 · 10−8 0.76

J1302-6350 41.9 2.3 7.7 · 10−26 9.9·10−27 1.2 · 10−5 0.97

J1312+0051 473.0 1.5 7.6 · 10−28 9.9·10−27 6.1 · 10−8 0.2

J1327-0755 746.8 25.0 - 7.8 · 10−27 3.3 · 10−7 0.91

J1327+3423 48.2 - - 1.3 · 10−26 - 0.5

J1337-6423 212.2 5.9 1.9 · 10−28 4.2·10−27 5.3 · 10−7 0.97

J1400-1431 648.5 0.3 5.1 · 10−28 1.2·10−26 7.5 · 10−9 0.094

J1411+2551 32.0 1.1 8.5 · 10−28 2.8·10−26 2.9 · 10−5 0.33
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Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J1412+7922 33.8 2.0 9.5 · 10−26 2.0·10−26 3.3 · 10−5 0.48

J1420-5625 58.6 1.3 8.5 · 10−28 7.8·10−27 2.9 · 10−6 0.91

J1421-4409 313.2 2.1 3.8 · 10−28 6.0·10−27 1.2 · 10−7 0.58

J1431-5740 486.6 3.5 2.8 · 10−28 1.2·10−26 1.8 · 10−7 0.01

J1435-6100 214.0 2.8 4.6 · 10−28 4.7·10−27 2.7 · 10−7 0.83

J1439-5501 69.8 0.7 2.7 · 10−27 8.0·10−27 1.0 · 10−6 0.29

J1446-4701 911.3 1.5 1.1 · 10−27 8.0·10−27 1.4 · 10−8 0.97

J1453+1902 345.3 1.3 8.0 · 10−28 7.0·10−27 7.1 · 10−8 0.44

J1455-3330 250.4 1.0 1.3 · 10−27 6.5·10−27 9.9 · 10−8 0.46

J1502-6752 74.8 7.7 3.0 · 10−28 7.1·10−27 9.3 · 10−6 0.48

J1513-2550 943.8 4.0 6.5 · 10−28 9.7·10−27 4.1 · 10−8 0.83

J1514-4946 557.2 0.9 1.6 · 10−27 8.4·10−27 2.3 · 10−8 0.48

J1518+0204A 360.1 8.0 2.8 · 10−28 5.6·10−27 3.3 · 10−7 1

J1518+4904 48.9 1.0 6.3 · 10−28 1.0·10−26 3.8 · 10−6 0.93

J1525-5545 176.1 3.1 8.7 · 10−28 4.1·10−27 4.0 · 10−7 1

J1528-3146 32.9 0.8 2.1 · 10−27 2.5·10−26 1.7 · 10−5 0.41

J1529-3828 235.7 4.3 3.4 · 10−28 4.4·10−27 3.2 · 10−7 0.97

J1537+1155 52.8 1.1 6.0 · 10−27 1.3·10−26 4.8 · 10−6 0.17

J1543-5149 972.3 1.1 1.9 · 10−27 1.5·10−26 1.8 · 10−8 0.089

J1544+4937 926.2 3.0 3.1 · 10−28 1.0·10−26 3.3 · 10−8 0.59

J1545-4550 559.4 2.2 1.4 · 10−27 9.6·10−27 6.4 · 10−8 0.31

J1547-5709 466.1 2.7 3.9 · 10−28 7.1·10−27 8.3 · 10−8 0.48

J1551-0658 281.9 1.3 1.0 · 10−27 8.5·10−27 1.3 · 10−7 0.16

J1600-3053 555.9 3.0 4.0 · 10−28 1.0·10−26 9.2 · 10−8 0.23

J1603-7202 134.8 3.4 2.5 · 10−28 4.6·10−27 8.2 · 10−7 0.91

J1614-2230 634.8 0.7 1.2 · 10−27 7.5·10−27 1.2 · 10−8 0.77

J1618-3921 166.8 5.5 3.1 · 10−28 9.2·10−27 1.7 · 10−6 0.038

J1618-4624 337.2 3.0 1.9 · 10−28 8.2·10−27 2.1 · 10−7 0.13

J1622-6617 84.7 4.0 2.9 · 10−28 5.3·10−27 2.8 · 10−6 0.9

J1623-2631 180.6 1.8 1.3 · 10−27 5.2·10−27 2.7 · 10−7 0.88

J1628-3205 622.7 1.2 - 7.1 · 10−27 2.1 · 10−8 0.81

J1629-6902 333.3 1.0 1.1 · 10−27 5.8·10−27 4.7 · 10−8 0.83

J1630+3734 602.8 1.2 1.1 · 10−27 8.1·10−27 2.5 · 10−8 0.49

J1640+2224 632.2 1.5 3.4 · 10−28 1.1·10−26 3.9 · 10−8 0.17

J1641+3627A 192.7 7.1 3.2 · 10−28 4.2·10−27 7.6 · 10−7 1



163

Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J1643-1224 432.7 1.2 1.3 · 10−27 1.1·10−26 6.7 · 10−8 0.042

J1652-4838 528.4 - - 5.9 · 10−27 - 0.91

J1653-2054 484.4 2.6 5.0 · 10−28 1.0·10−26 1.1 · 10−7 0.13

J1658-5324 819.9 0.9 1.9 · 10−27 1.1·10−26 1.4 · 10−8 0.27

J1705-1903 806.4 2.4 9.8 · 10−28 1.4·10−26 5.0 · 10−8 0.091

J1708-3506 443.9 3.3 3.4 · 10−28 6.2·10−27 9.9 · 10−8 0.76

J1709+2313 431.9 2.2 1.9 · 10−28 6.4·10−27 7.1 · 10−8 0.68

J1713+0747 437.6 1.0 1.1 · 10−27 7.1·10−27 3.5 · 10−8 0.57

J1719-1438 345.4 0.3 2.6 · 10−27 7.7·10−27 2.1 · 10−8 0.3

J1721-2457 572.0 1.4 - 7.9 · 10−27 3.1 · 10−8 0.6

J1727-2946 73.8 1.9 1.3 · 10−27 9.4·10−27 3.1 · 10−6 0.2

J1729-2117 30.2 1.0 1.3 · 10−27 2.6·10−26 2.6 · 10−5 0.85

J1730-2304 246.2 0.5 2.0 · 10−27 5.7·10−27 4.2 · 10−8 0.66

J1732-5049 376.5 1.9 6.2 · 10−28 6.4·10−27 8.0 · 10−8 0.52

J1737-0811 479.0 0.2 5.4 · 10−27 8.6·10−27 7.4 · 10−9 0.43

J1738+0333 341.9 1.5 1.1 · 10−27 5.4·10−27 6.4 · 10−8 0.9

J1741+1351 533.7 1.1 2.1 · 10−27 1.4·10−26 4.9 · 10−8 0.011

J1744-1134 490.9 0.4 2.6 · 10−27 1.1·10−26 1.8 · 10−8 0.099

J1745-0952 103.2 0.2 7.5 · 10−27 8.8·10−27 1.8 · 10−7 0.15

J1745+1017 754.1 1.2 6.0 · 10−28 1.1·10−26 2.2 · 10−8 0.35

J1747-4036 1215.4 7.2 2.9 · 10−28 2.1·10−26 9.7 · 10−8 0.035

J1748-2446A 173.0 6.9 3.3 · 10−28 5.5·10−27 1.2 · 10−6 0.72

J1748-3009 206.5 5.0 - 8.1 · 10−27 9.0 · 10−7 0.13

J1750-2536 57.6 3.2 5.1 · 10−28 8.9·10−27 8.1 · 10−6 0.72

J1751-2857 510.9 1.1 1.2 · 10−27 6.4·10−26 2.5 · 10−7 0.089

J1753-1914 31.8 2.9 1.6 · 10−27 2.6·10−26 7.2 · 10−5 0.54

J1753-2240 21.0 3.2 8.0 · 10−28 1.8·10−25 1.2 · 10−3 0.33

J1755-3716 156.4 8.2 1.5 · 10−28 5.2·10−27 1.7 · 10−6 0.77

J1756-2251 70.3 0.7 6.6 · 10−27 8.8·10−27 1.2 · 10−6 0.43

J1757-1854 93.0 19.6 4.6 · 10−28 1.2·10−26 2.5 · 10−5 0.016

J1757-5322 225.5 0.9 1.5 · 10−27 7.2·10−27 1.3 · 10−7 0.18

J1801-1417 551.7 1.1 7.4 · 10−28 9.0·10−27 3.1 · 10−8 0.4

J1801-3210 268.3 6.1 - 8.7 · 10−27 7.0 · 10−7 0.089

J1802-2124 158.1 0.8 2.5 · 10−27 6.7·10−27 1.9 · 10−7 0.41

J1804-0735 86.6 7.8 2.9 · 10−28 7.8·10−27 7.7 · 10−6 0.39
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Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J1804-2717 214.1 0.8 1.9 · 10−27 6.5·10−27 1.1 · 10−7 0.39

J1807-2459A 653.7 3.0 7.6 · 10−28 9.5·10−27 6.3 · 10−8 0.39

J1809-1917 24.2 3.3 1.4 · 10−25 5.5·10−26 2.9 · 10−4 0.88

J1810+1744 1202.8 2.4 5.5 · 10−28 1.2·10−26 1.8 · 10−8 0.84

J1810-2005 60.9 3.5 2.9 · 10−28 9.6·10−27 8.6 · 10−6 0.48

J1811-2405 751.7 1.8 9.9 · 10−28 1.2·10−26 3.7 · 10−8 0.2

J1813-1749 44.7 6.2 2.2 · 10−25 1.1·10−26 3.2 · 10−5 0.83

J1813-2621 451.5 3.2 - 5.5 · 10−27 8.0 · 10−8 0.97

J1821+0155 59.2 1.7 4.3 · 10−28 9.1·10−27 4.2 · 10−6 0.91

J1823-3021A 367.6 7.9 2.9 · 10−28 8.7·10−27 4.8 · 10−7 0.14

J1824-2452A 654.8 5.5 4.1 · 10−28 8.6·10−27 1.0 · 10−7 0.56

J1825-0319 439.2 3.9 2.6 · 10−28 8.6·10−27 1.6 · 10−7 0.27

J1826-2415 425.9 2.7 5.7 · 10−28 7.0·10−27 10.0 · 10−8 0.52

J1828-1101 27.8 4.8 7.7 · 10−26 3.2·10−26 1.9 · 10−4 0.92

J1829+2456 48.8 0.9 10.0 · 10−28 1.4·10−26 5.1 · 10−6 0.6

J1832-0836 735.5 1.6 - 1.3 · 10−26 3.7 · 10−8 0.1

J1833-0827 23.4 4.5 5.9 · 10−26 6.1·10−26 4.7 · 10−4 0.9

J1835-0114 390.9 3.5 2.7 · 10−28 6.1·10−27 1.3 · 10−7 0.77

J1838-0655 28.4 6.6 1.0 · 10−25 3.5·10−26 2.7 · 10−4 0.67

J1840-0643 56.2 5.0 2.6 · 10−28 8.7·10−27 1.3 · 10−5 0.8

J1841+0130 67.2 4.2 3.2 · 10−27 1.2·10−26 1.1 · 10−5 0.042

J1843-1113 1083.6 1.3 1.4 · 10−27 2.2·10−26 2.2 · 10−8 0.019

J1843-1448 365.5 3.5 - 8.2 · 10−27 2.0 · 10−7 0.23

J1849-0001 51.9 7.0 7.0 · 10−26 1.5·10−26 3.8 · 10−5 0.081

J1853+1303 488.8 1.3 8.9 · 10−28 6.8·10−27 3.6 · 10−8 0.8

J1856+0245 24.7 6.3 1.1 · 10−25 5.9·10−26 5.7 · 10−4 0.64

J1857+0943 373.0 1.2 1.2 · 10−27 6.6·10−27 5.3 · 10−8 0.64

J1902-5105 1147.8 1.6 1.1 · 10−27 1.1·10−26 1.3 · 10−8 0.78

J1903+0327 930.3 6.1 3.9 · 10−28 1.4·10−26 9.4 · 10−8 0.23

J1903-7051 555.9 0.9 1.3 · 10−27 6.2·10−27 1.8 · 10−8 0.9

J1904+0412 28.1 4.6 2.2 · 10−28 2.9·10−26 1.6 · 10−4 0.97

J1905+0400 528.5 1.1 8.0 · 10−28 7.0·10−27 2.5 · 10−8 0.76

J1909-3744 678.6 1.1 6.6 · 10−28 1.0·10−26 2.4 · 10−8 0.26

J1910+1256 401.3 1.5 7.2 · 10−28 8.3·10−27 7.3 · 10−8 0.27

J1911-1114 551.6 1.1 1.3 · 10−27 8.2·10−27 2.7 · 10−8 0.56
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Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J1911+1347 432.3 1.4 1.1 · 10−27 7.1·10−27 4.9 · 10−8 0.52

J1913+1011 55.7 4.6 5.3 · 10−26 8.6·10−27 1.2 · 10−5 0.82

J1914+0659 108.0 8.5 1.2 · 10−28 8.2·10−27 5.7 · 10−6 0.22

J1915+1606 33.9 5.2 1.9 · 10−27 2.6·10−26 1.1 · 10−4 0.24

J1918-0642 261.6 1.1 1.3 · 10−27 6.5·10−27 9.9 · 10−8 0.49

J1923+2515 528.0 1.2 9.1 · 10−28 1.0·10−26 4.1 · 10−8 0.15

J1925+1720 26.4 5.1 5.9 · 10−26 7.0·10−26 4.8 · 10−4 0.035

J1928+1746 29.1 4.3 8.2 · 10−26 3.4·10−26 1.6 · 10−4 0.54

J1933-6211 564.4 0.7 1.1 · 10−27 7.2·10−27 1.4 · 10−8 0.6

J1935+2025 25.0 4.6 1.5 · 10−25 4.9·10−26 3.4 · 10−4 0.66

J1939+2134 1283.9 4.8 1.4 · 10−27 1.4·10−26 3.8 · 10−8 0.65

J1943+2210 393.4 6.8 1.6 · 10−28 6.6·10−27 2.7 · 10−7 0.55

J1944+0907 385.7 1.2 7.4 · 10−28 6.1·10−27 4.7 · 10−8 0.76

J1946+3417 630.9 6.9 6.5 · 10−29 9.4·10−27 1.6 · 10−7 0.32

J1946-5403 737.8 1.1 7.0 · 10−28 7.5·10−27 1.5 · 10−8 0.81

J1949+3106 152.2 7.5 2.9 · 10−28 5.6·10−27 1.7 · 10−6 0.72

J1950+2414 464.6 7.3 2.4 · 10−28 6.8·10−27 2.2 · 10−7 0.69

J1952+3252 50.6 3.0 1.0 · 10−25 1.3·10−26 1.5 · 10−5 0.21

J1955+2527 410.4 8.2 1.5 · 10−28 7.7·10−27 3.6 · 10−7 0.34

J1955+2908 326.1 6.3 2.9 · 10−28 6.3·10−27 3.6 · 10−7 0.54

J2007+2722 81.6 7.1 7.1 · 10−28 1.1·10−26 1.1 · 10−5 0.032

J2010-1323 382.9 1.2 5.3 · 10−28 8.3·10−27 6.2 · 10−8 0.23

J2017+0603 690.6 1.4 9.6 · 10−28 1.2·10−26 3.3 · 10−8 0.16

J2019+2425 508.3 1.2 4.4 · 10−28 5.5·10−26 2.3 · 10−7 0.044

J2022+2534 755.9 - - 7.6 · 10−27 - 0.91

J2033+1734 336.2 1.7 5.5 · 10−28 5.2·10−27 7.6 · 10−8 0.92

J2039-3616 610.7 1.7 7.6 · 10−28 6.8·10−27 2.9 · 10−8 0.84

J2043+2740 20.8 1.5 6.3 · 10−26 1.7·10−25 5.6 · 10−4 0.31

J2045+3633 63.1 5.6 6.2 · 10−28 9.0·10−27 1.2 · 10−5 0.35

J2047+1053 466.6 2.8 6.4 · 10−28 8.2·10−27 10.0 · 10−8 0.39

J2053+4650 158.9 3.8 7.8 · 10−28 4.7·10−27 6.7 · 10−7 0.91

J2055+3829 957.3 4.6 1.1 · 10−28 1.9·10−26 9.1 · 10−8 0.0091

J2124-3358 405.6 0.4 2.3 · 10−27 7.8·10−27 2.0 · 10−8 0.32

J2129-5721 536.7 7.0 2.6 · 10−28 7.7·10−27 1.8 · 10−7 0.42

J2144-5237 396.7 1.7 6.5 · 10−28 6.2·10−27 6.2 · 10−8 0.59
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Pulsar name fgw Distance hsd h 95%
0 ϵ95% P-value

(J2000) (Hz) (kpc)

J2145-0750 124.6 0.8 1.3 · 10−27 5.4·10−27 2.7 · 10−7 0.85

J2150-0326 569.7 - - 7.8 · 10−27 - 0.71

J2205+6012 828.0 3.5 6.5 · 10−28 9.8·10−27 4.8 · 10−8 0.53

J2214+3000 641.2 0.6 2.7 · 10−27 8.5·10−27 1.2 · 10−8 0.51

J2222-0137 60.9 0.3 2.0 · 10−27 7.3·10−27 5.0 · 10−7 0.91

J2229+2643 671.6 1.8 3.1 · 10−28 1.1·10−26 4.2 · 10−8 0.2

J2229+6114 38.7 3.0 3.3 · 10−25 1.3·10−26 2.5 · 10−5 0.76

J2234+0611 559.2 1.5 8.2 · 10−28 1.3·10−26 5.9 · 10−8 0.08

J2234+0944 551.4 0.8 1.9 · 10−27 1.1·10−26 2.8 · 10−8 0.11

J2235+1506 33.5 1.5 6.5 · 10−28 2.3·10−26 2.9 · 10−5 0.53

J2236-5527 289.5 2.0 4.6 · 10−28 4.3·10−27 1.0 · 10−7 0.97

J2241-5236 914.6 1.1 1.2 · 10−27 1.1·10−26 1.3 · 10−8 0.44

J2256-1024 871.6 1.3 1.3 · 10−27 1.6·10−26 2.7 · 10−8 0.057

J2302+4442 385.2 0.9 1.5 · 10−27 7.0·10−27 3.8 · 10−8 0.39

J2317+1439 580.5 2.2 3.3 · 10−28 7.7·10−27 4.7 · 10−8 0.67

J2322+2057 415.9 1.0 6.5 · 10−28 6.1·10−27 3.4 · 10−8 0.8

J2322-2650 577.5 0.2 1.2 · 10−27 7.9·10−27 5.2 · 10−9 0.56



Conclusion
This PhD thesis tries to improve the detection efficiency for continuous gravitational
wave (CW) signals combining information from weak sources, such as known pulsars,
that could not be individually identified. “Known” indicates objects like the Crab or
Vela pulsar, whose position, frequency and frequency evolution are known with high
accuracy. This search, that is a targeted search, assumes that the gravitational frequency,
emitted by non-axisymmetric neutron star rotating around one of its principal axes of in-
ertia, would be proportional to the rotation frequency of the star. In the simplest model
of a rigid body rotating around a principal axis of inertia, the gravitational wave fre-
quency is exactly twice the rotation frequency of the source.
The 5n-vector method, developed by the Rome Virgo group, is one of the three pipelines
used in the LIGO and Virgo Collaborations for the detection of a CW signal. In Chapter
3, I review the 5-vector pipeline describing the improvement due to my research: the
implementation of the heterodyne correction for pulsars in binary systems, and the opti-
mization of the multidetector extension weighting the considered detectors according to
the sensitivity and observation time. For the first time, the 5-vector method can be ap-
plied to binary systems for the targeted search and compared with the Bayesian results.
The single harmonic search (i.e. gravitational wave frequency exactly twice the rotation
frequency of the source), described in Chapter 6, on the 223 known pulsars in Table 6.1
using O3 data shows very good agreement with the Bayesian results in [84]. There is no
evidence of a CW signal from the analyzed pulsars and hence, upper limits on the am-
plitude and on the ellipticity can be set. The pulsar with the smallest upper limit on the
strain amplitude is J1745-0952 with 4.72 × 10−27 while the best limit on the ellipticity
is 5.26× 10−9 for J0711-6830.
The single pulsar analysis can be seen as an hypothesis test where the null hypothesis of
pure noise is tested against the alternative hypothesis of the presence of a CW signal in
the data. To improve the detection probability, I propose a multiple test for the targeted
search of CWs from an ensemble of known pulsars, combining multi-detector single
pulsar statistics defined through the 5n-vector method. In order to maximize the detec-
tion probability when few signals are expected near the detection threshold, I propose a
rank-truncation method to select the most promising sources within the ensemble, based
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on the p-values for single pulsar detection. To rank pulsars according to the p-values,
I define a normalized statistic of single pulsar for the 5n-vector method that entails the
same noise distribution for each pulsar. The normalized statistic implies also analytical
signal distribution that can be easily and effectively used in theoretical test without con-
sidering real data.
The ensemble statistics T (k) for the rank truncation method is defined as the partial sum
of the k largest order statistics to control the look-elsewhere effect. The convolution of
order statistics has in general no simple expression; to reconstruct the T (k) noise and
signal distributions for each k, I use a Monte Carlo procedure that can be easily general-
ized to real data. Reconstructing the T (k) noise distributions for each k, I can compute
the p-value of ensemble as a function of k, that is a p-value for the overall hypothesis of
the presence of CWs from the ensemble.
To validate the proposed ensemble method, several tests have been described in Chapter
5 using both the theoretical distributions and also real data considering hardware and
software injections. The obtained results show a significant improvement in the detec-
tion efficiency and a dependence mainly on the power of the combined individual tests
and not on the form of the underlying data.
In case of no detection, I propose different procedures to set upper limits using the
ensemble procedure and the statistic T (N), i.e. the statistic for the entire ensemble.
Using a mixed frequentist-Bayesian procedure, I can constrain the value of the global
parameter Λ that fixes the T (N) signal distribution. Assuming a common exponential
distribution for the ellipticities, I propose two independent hierarchical procedures to
set upper limit on the mean µϵ of the exponential.
Chapter 6 shows the application of the ensemble procedure to the set of 223 pulsars in
Table 6.1 considering O3 data. Three different ensemble are analyzed: the full set for
the LIGO and Virgo detectors, the millisecond pulsar set for the two LIGO detectors
and the high value pulsars set for the two LIGO detectors. The results are shown in
the "summary plot" in Figures 6.5, 6.6 and 6.7: the top-left plot shows the scale and
shape parameters of the Gamma distribution fitted to the experimental noise distribu-
tions for the statistic of single pulsar, the top-right plots show the results of the fits using
a Gamma distribution for the T (k) noise distributions for each k while the bottom plot
compare the ordered single pulsar p-values (red dots) with the p-value of ensemble (blue
line).
There is no evidence of a CW signal from the ensemble; the p-values as a function of k
are well above the assumed 1% threshold.
The upper limits procedures are applied to the entire set of pulsars considering the LIGO
and Virgo detectors and O3 data. The posterior on the Λ parameter and on µϵ are shown
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in Figure 6.4. The upper limit set on Λ is Λ95% = 96.4 while the upper limit on µϵ
is 2.7 × 10−9 for the hierarchical procedure using the Λ parameter and 1.8 × 10−9 for
the hierarchical procedure using the single pulsar results. These results are more than
one order of magnitude below the upper limit in [115] where the authors considered a
classic hierarchical Bayesian procedure on an ensemble of 92 pulsars and data from the
LIGO V6 science run.
The 5n-vector ensemble method improves the detection probability for the targeted
search of CWs from known pulsars. Application of this procedure on the next observing
runs will improve the possibility to detect a CW signal from rotating neutron stars for
the first time.





Appendix A
Brief history of GW detectors
As discussed in the introduction of Chapter 2, Pirani’s paper - “On the physical sig-
nificance of the Riemann tensor” published in 1956 - can be considered as the starting
point and the inspiration for the entire GW detection program.
Actually, this paper was mostly ignored at the time since the community was focused
on whether GWs could transmit energy. The question was linked to the complicated
definition of "energy" in GR. Energy is conserved if the system is invariant under time,
but in GR, "time" is part of the coordinate system, and normally it depends on the po-
sition. Therefore, globally, energy is not conserved. However, any curved space–time
can be considered to be locally flat and, locally, energy is conserved. This matter was
settled by a thought experiment1 proposed by Richard Feynman during the first "GR"
conference at Chapel Hill in 1957. Feynman focused on whether GW could do work or
not, and convinced most of the audience that GWs transmit energy.
At the Chapel Hill conference [50], Joseph Weber, an engineer at the University of
Maryland, became fascinated by discussions about GWs and decided to design a device
that could detect them. In the 1960s, Weber pioneered the effort to build detectors for
GWs, using large cylinders of aluminum [129]. Basically, Weber proposed the detec-
tion by measuring vibrations induced in a mechanical system; he designed and built a
large metal cylinder as a sort of “antenna” to observe the resonant vibrations eventually
produced by a transit of a GW pulse. His “antenna” was a big aluminum cylinder about
66 cm in diameter and 153 cm in length, weighing 3 tons. The cylinder was hanging
by a steel wire from a support built to isolate vibrations of its environment. In addi-
tion, the instrument was placed inside a vacuum chamber and a belt of piezoelectric
crystals were placed around the cylinder to convert mechanical vibrations into electrical
impulses. Weber built two detectors; in this way, if a detected signal was not recorded
simultaneously in both detectors, the signal should be discarded because spurious. In

1For the description of the Feynman thought experiment, see [50].
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two papers at the end of 1960s, Waber claimed the detection of GWs. Several next ex-
periments, based on "resonant bars", did not confirm Weber’s results [50].
Despite his failure, Weber is considered a pioneer in experimental gravitation and greatly
motivated the research in the field of GWs’ detection.
In 1962 Michael Gertsenshtein and Vladislav Pustovoit in Moscow, and independently
several years later Weber and Rainer Weiss in America, proposed the use of laser inter-
ferometry to monitor the relative motion of freely hanging mirrors for the detection of
GWs. In 1967, Weiss demonstrated a laser interferometer with sensitivity limited only
by photon shot noise, and in 1972 he completed the invention of the interferometric GW
detector by identifying all the fundamental noise sources that such a detector must face,
and how to deal with each of them.
In 1980, the American National Science Foundation funded the study of a large interfer-
ometer led by MIT (Paul Linsay, Peter Saulson, Rainer Weiss), and the following year,
Caltech constructed a 40-meter prototype (Ronald Drever and Stan Whitcomb); this was
the born of the “Laser Interferometer Gravitational-Wave Observatory” (LIGO) project.
After several failures, in 1994, Barry Barish was appointed laboratory director, and the
NSF made clear that LIGO had one last chance for support. Barish’s team created a
new project plan proposing to build LIGO as an evolutionary detector, where detection
of GWs with initial LIGO would be possible, and with advanced-LIGO would be prob-
able. The project established the construction of two detectors in Hanford (Washington)
in late 1994 and in Livingston (Louisiana) in 1995.
The Weiss proposal fell handily also to the German group of the Max Planck Institute
as they were in the process of designing a novel Weber antenna cooled to temperatures
near absolute zero to reduce thermal noise. However, following LIGO, they decided
to try the interferometric method with the project GEO600, a Michelson interferometer
with two 600 meter long arms built in the lowlands near Hannover and started in 1995.
In the 1996, thanks to the effort of Alain Brillet and Adalberto Giazotto [50], the French
CNRS and the Italian INFN started the construction of a new detector, Virgo, in Cascina
near Pisa.
From 2007 the LSC (LIGO Scientific Collaboration) and Virgo scientists combine and
jointly analyze all data that come from their interferometers. The combined data im-
proved measurements of source locations on the sky and confidence in detected waves.
After 2010, LIGO went off-line for several years for a major upgrade, installing the new
Advanced LIGO detectors in the LIGO Observatory infrastructures. Initial Virgo was
upgraded to Advanced Virgo, which began operating in 2017. The two LIGO detectors
operated from 2009 onwards, during LIGO science run 6 (S6, Jul 2009 to Oct 2010)
and LIGO observing runs O1 (Sep 2015 to Jan 2016) and O2 (Nov 2016 to Aug 2017).
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The Virgo detector operated from 2007 onwards, with an overlap with the LIGO science
runs S5 and S6, and the LIGO observing run O2.
The first run O1 operated at a sensitivity roughly 3 times greater than initial LIGO and
on 11 February 2016, LIGO and Virgo Collaborations announced the observation of the
first GW signal, GW150914.
In the second run O2, LIGO detectors saw several further GW events. Several of them
were also seen by the Virgo Collaboration. The most important event is GW170817 that
came from the collision of two neutron stars and was also detected electromagnetically
by γ-ray satellites and optical telescopes.
The third run O3 began on 1 April 2019. Further observing runs will be interleaved with
commissioning efforts to further improve the sensitivity.





Appendix B
Order statistics
Let X1, X2, .., XN be a set of independent and identically distributed random variables.
Let F (x) and f(x) be the cumulative distribution function (cdf) and the probability
distribution function (pdf), respectively.
Consider a single realization/measurement for each of these N random variables:

x1, x2, · · · , xN (B.1)

and order these measurements for increasing values.
The k-th order statistic X(k) is defined as the k-th smallest value of the obtained sample
[130],

X(1) < X(2) < ... < X(k) < ... < X(N) (B.2)

X(k) takes the value of xk if xk is the k-th value when the realizations are ranked in
ascending order.
It is straightforward to infer the cdf FN(x) for X(N):

FN(x) = P (X(N) < x) = P (X1 < x ∪ ... ∪XN < x)

= P (X1 < x) ∪ ... ∪ P (XN < x) = [F (x)]N
(B.3)

It follows that the pdf fN(x) is:

fN(x) =
dFN(x)

dx
= N · [F (x)](N−1) · f(x) (B.4)

With similar considerations we can infer the cdf for X(1),

F1(x) = P (X(1) < x) = 1− P (X(1) > x) =

= 1− [P (X1 > x) ∪ ... ∪ P (XN > x)] =

= 1− [1− F (x)]N

(B.5)
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and the pdf,

f1(x) =
dF1(x)

dx
= N · [1− F (x)](N−1) · f(x) (B.6)

The smallest and largest order statistic cdf/pdf are special cases of the k-th order statistic
cdf/pdf:

Fk(x) = P (X(k) < x) =
N∑
i=k

(
N

i

)
[F (x)]i[F (x)]N−i (B.7)

fk(x) =
N !

(k − 1)!(N −K)!
[F (x)]k−1[1− F (x)]N−kf(x) (B.8)

Interesting functions of order statistics are the range R(X1, · · · , XN) = X(1) − X(N),
known as a good estimator of the variance, and the sample median M(X1, · · · , XN),

M(X1, · · · , XN) =


X(k), when N is odd and k =

N + 1

2
X(k) +X(k+1)

2
, when N is even and k =

N

2

(B.9)

widely used as a smoother of a time series.
An interesting application of order statistics is the "German tank problem" that has a
historical context in World War II [131].
The Germans inscribed their tanks with sequential serial numbers 1, 2, . . . ,mwhen they
were manufactured. The total number of tanks m that the Germans had, however, was
unknown to the Allied forces. The Allies captured an assumed random sample of n
tanks from the German forces without replacement and observed their serial numbers,
x1, x2, . . . , xn. The German tank problem is to estimate the total number of tanks m
from the observed serial numbers. The statistical estimates of m can be inferred from
order statistic theory.
The "tank capturing" can be seen as a stochastic process governed by a uniform random
selection, without replacement, from the set of integers from 1 to n. The order statistic
X(i) with i = 1, · · · , n has pdf

P
[
X(i) = x

]
=

(
x−1
i−1

)(
m−x
n−i
)(

m
n

) , x ∈ {i, i+ 1, . . . ,m− n+ i} (B.10)

where X(i) = x means that i−1 sample values are less than x and n− i are greater than
x, and

(
m
n

)
is the total number of unordered samples.

Unbiased estimators of the total number m based on order statistics is Ui:

Ui =
n+ 1

i
X(i) − 1 for i = 1, · · · , n (B.11)
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since the expected value of the order statistic

E
[
X(i)

]
= i

m+ 1

n+ 1
(B.12)

and E [Ui] = m. It is clear that the estimators improve as i increases, i.e. Un is the best
estimator of the total number of tanks. This statistical estimate turned out to be much
more accurate than the intelligence estimates.





Appendix C
Bayesian inference and the hierarchical
method
Bayesian inference is based on the Bayes theorem and on the idea that the probability
associated with a hypothesis is a measure of degree of belief (subjective probability).
For statistical inference, where experimental data check the consistency of a certain
theory, the Bayes theorem can be written as

P (theory|data) ∝ P (data|theory)P (theory) (C.1)

P (theory) represents the prior probability that the theory is true, and the likelihood
P (data|theory) is the probability, under the assumption of the theory, to observe the data
which were actually obtained. The posterior probability that the theory is correct after
seeing the result of the experiment is then given by P (theory|data).
While the frequentist approach is based on frequencies of events, the Bayesian formal-
ism is based on our knowledge of events. The Bayes theorem updates the initial guess
- the prior - that means the information obtained from the data is used to turn the prior
belief into a posterior belief.
Considering, for example, the case of a binary black hole coalescence whose signal is
defined by a set of 15 parameters indicated with θ⃗ = (θ1, · · · , θ15). The posterior distri-
bution p(θ⃗|d) is the probability density function for the parameters given the strain data
d. According to Bayes theorem, the posterior distribution is:

p(θ⃗|d) = L(d|θ⃗)Π(θ⃗)
Z

(C.2)

L(d|θ⃗) is the likelihood function of the data given the parameters, Π(θ⃗) is the prior dis-
tribution, and Z is a normalization factor called the “evidence”. By writing down the
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likelihood, it is implicitly introduced a noise model that for GW astronomy, is typically
a Gaussian-noise model. The ratio of the evidence for two different models (for exam-
ple, signal model against noise model) is called the Bayes factor.
To look at the posterior distribution for just one parameter, it is possible to marginalize
over the other parameters called “nuisance parameters” to obtain a marginalized poste-
rior:

p(θi|d) =
∫ ∏

k ̸=i
dθk p(θ⃗|d) (C.3)

Hierarchical Bayesian inference is a formalism to study the population properties from
many individual measurements [120]. Considering CW analysis, it is possible to assume
that the ellipticities of the set of N analyzed pulsars follow a common distribution fixed
by the parameter Λ (in this case, θ⃗ = (ϵ1, · · · , ϵN) is the set of ellipticities). Hierarchical
methods try to constrain Λ, called the hyper-parameter, considering the Bayes theorem:

p(Λ, θ⃗|d) ∝ L(d|Λ, θ⃗)Π(Λ, θ⃗) (C.4)

Marginalizing over the nuisance parameters,

p(Λ|d) ∝
∫
dθ⃗ L(d|Λ, θ⃗)Π(Λ, θ⃗) (C.5)

it is obtained the posterior for the hyper-parameter. Using the basic property of condi-
tional probability, the prior can be written as:

Π(Λ, θ⃗) = Π(θ⃗|Λ)Π(Λ) (C.6)

where Π(Λ) is the hyper-prior. It follows that:

p(Λ|d) = L(d|Λ)Π(Λ)
ZΛ

(C.7)

with the hyper-evidence

ZΛ =

∫
dΛL(d|Λ)Π(Λ) (C.8)

In the case of N independent event, the likelihood is

L(d|Λ) =
∫
dθ⃗ L(d|Λ, θ⃗)Π(θ⃗|Λ) ≡

N∏
i=1

∫
dθi L(d|θi)Π(θi|Λ) (C.9)

and it is possible to break the integral into individual integrals for each event to reduce
the dimensionality and hence, the computational cost.
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