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Abstract in lingua italiana

La modellazione analitica dell’impedenza acustica di risuonatori a membrana è
stata oggetto di numerosi studi, al fine di ottenerne una caratterizzazione appropri-
ata ad analisi di tipo previsionale. Tuttavia, i modelli di impedenza maggiormente
utilizzati nella pratica della progettazione acustica si basano sull’ipotesi di moto
pistonico delle membrane, introducendo margini di errore significativi rispetto al
reale comportamento di assorbitori di dimensione finita, in cui il comportamento
modale è predominante. In questo lavoro di tesi viene proposta una espressione
analitica dell’impedenza acustica media superficiale di assorbitori a membrana,
in cui le impedenze di piastre vibranti di diverse forme e condizioni di vincolo,
eccitate trasversalmente da un carico di pressione, sono state sommate in serie con
l’impedenza della cavità retrostante, calcolata mediante il teorema di traslazione
dell’impedenza. Tale espressione è stata validata in condizioni di incidenza normale
piana, sperimentalmente nel caso di piastre isolate e incastrate ai bordi e numeri-
camente nel caso di sistemi accoppiati piastra-cavità. Ulteriori analisi numeriche
sono state effettuate al fine di apprezzare gli effetti dovuti alla presenza di uno
strato di materiale poroso all’interno della cavità. Inoltre, la risposta in termini di
impedenza di un assorbitore di forma quadrata è stata analizzata numericamente e
in via preliminare in condizioni di incidenza sferica in campo libero. L’applicabilità
della formulazione proposta come condizione di impedenza superficiale in modelli
FEM acustici è stata investigata grazie all’applicazione al caso studio di una stanza
reale. Le risposte in frequenza in termini di livello della pressione sonora e i tempi
di riverberazione T30 numerici e sperimentali sono stati confrontati tra loro per due
diverse configurazioni di trattamento acustico, mostrando margini di errore accetta-
bili a bassa frequenza, sebbene lo scarto tra i dati numerici e quelli sperimentali
abbia mostrato un trend in leggera crescita, all’aumentare del numero di pannelli
presenti nella stanza. A questo proposito, si rendono necessarie ulteriori verifiche in
presenza di un quantitativo significativamente più alto di superfici fonoassorbenti
e, possibilmente, perfezionando le metodologie di calibrazione dei modelli numerici
per tenere conto di possibili fonti ignote di dissipazione acustica. Tuttavia, i risul-
tati ottenuti finora suggeriscono una discreta affidabilità nell’applicazione di tale
metodologia, utile ad eludere, quando possibile, l’esigenza di effettuare simulazioni
multifisiche che, generalmente, risultano essere estremamente più dispendiose in
termini di tempi computazionali.
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Abstract

The analytical modelling of the acoustic impedance of panel absorbers has been
extensively addressed for the purpose of acoustic predictive analyses. Nevertheless,
established approximate design equations rely on the assumption of pistonic plate
motion, leading to significant errors with respect to finite sized samples, in which
the flexural multimodal behaviour of the plate is predominant. In this thesis, an
analytical expression of the surface averaged acoustic impedance of finite sized
panel absorbers is obtained, by adding in series the impedance expression of vibrat-
ing plates of various shapes and edge constraints, excited by a transverse pressure
load, to the acoustic impedance of a multilayered air cavity, calculated according
to the impedance translation theorem. Such expressions were validated for normal
sound incidence conditions, experimentally for the isolated clamped plate and
numerically for the panel-cavity coupled system. Further numerical investigations
were performed upon the effects of a porous layer inserted within the cavity as
well as the response of a square panel absorber for conditions of spherical sound
incidence in free field. The applicability of the proposed formulation as a boundary
impedance condition in room acoustics FEM models was investigated for the case
study of an existing room. Results in terms of sound pressure level frequency
responses and T30 were compared against measured data at low frequencies for two
different configurations of treatment, respectively showing reasonable deviations
at low frequency. Since slight error increments were observed by increasing the
number of panel absorbers in the room, further investigation is required by signifi-
cantly increasing the surface area of acoustic treatment and refining calibration
strategies of numerical models when accounting for unknown sources of acoustic
damping. Nonetheless, results observed so far are promising towards the use of
this methodology to bypass, when possible, the need of performing multiphysics
FEM simulations which, in general, are extremely more expensive in terms of
computational costs.
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Introduction

In the practice of room acoustics design, resonant panel sound absorbers are
frequently employed to achieve efficient sound absorption at low frequency, due
to their ease of construction and cost efficiency. Indeed, differently from porous
absorbers which require large thicknesses in order to be effective at low frequency,
panel resonators generally require small cavity depths which, in most cases, are
compliant with architectural design needs. Nevertheless, the most employed design
equations in the acoustic design practice are derived from approximate models,
which present some drawbacks and inaccuracies when applied to non-idealized
cases. In particular, they rely upon the schematization of panel-cavity coupled
systems as single degree of freedom (SDOF) mass-spring oscillators. With this
model, the normal acoustic impedance of plate-cavity coupled systems is obtained
by means of electrical analogies, accounting for panel resistance, inertance and air
cavity acoustic compliance. According to this, resonance frequencies are dependent
primarily on the plate surface mass and bulk stiffness of the air cavity. Nevertheless,
inaccuracies arise due to the underlying physical assumptions. Firstly, pistonic
motion of the plate is assumed: higher order flexural modes of the plate are not
taken into account, as well as the finite size of the sample which, as will be outlined,
have a relevant effect on the resulting resonances of the system, implying absorption
peaks to be significantly shifted in frequency with respect to the SDOF simplified
solution.

On this purpose, the research activity conducted in the context of the doctoral
course and summarized in this thesis, aimed to the definition of an extended
analytical model, including the contribution due to the vibrational modal behaviour
of the plate, with the aim to provide acoustic designers with a tool which may
improve the accuracy of predictive analyses when dealing to noise control at low
frequency, particularly in small rooms, such as recording studio control rooms,
dubbing rooms or similar environments where critical listening represents an
essential requirement. For these purposes, the knowledge of the acoustic surface
impedance of absorptive boundaries becomes crucial to set properly numerical
models, which are necessary to perform accurate predictive analyses, specifically
below the Schroeder frequency, where geometrical acoustics based simulation
methods do not provide reliable results. In this thesis, the outcomes of a set of
experimental and numerical analyses are presented, in order to investigate the
effects of different plate shapes and edge constraint conditions, and particularly
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focusing on rectangular plates coupled to a backing air cavity, with and without
the presence of layers of porous material within the latter.

In order to highlight the methodology adopted, an outline of the thesis is
reported hereby. In the first part, an overview of the basic concepts underlying
the characterization of panel absorbers is provided, by referring to relevant contri-
butions from scientific literature. In particular, after a brief introduction on the
principles of sound absorption mechanisms, sound absorption metrics are described
highlighting the importance of the acoustic impedance for predictive analyses at
low frequency. Then, the derivation of the specific acoustic impedance of vibrating
plates is described starting from the equation of motion as defined according to
the Kirchhoff’s thin plate theory. A frequency dependent expression of acoustic
impedance is reported for circular and rectangular plates in both simply supported
and clamped edge constraint conditions. With reference to panel-cavity coupled
systems, the above mentioned approximate models for the evaluation of acoustic
impedance are described, highlighting possible inaccuracies with the support of
experimental data provided in literature. Existing extended models accounting
for the modal behaviour of plates are also described, the applicability of which is
limited to square shaped samples.

In Part II, preliminary investigations and a set of numerical-experimental
validations are presented. In the first instance, the outcomes of preliminary FEM
analyses are reported, with the aim of highlighting the effects on the surface
impedance of panel absorbers due to the finite size of the sample and to different
edge constraint conditions. Thenceforth, the analytical frequency expressions of
the specific acoustic impedance of clamped rectangular and circular plates were
compared against experimental data resulting from acoustical transmission loss
measurements in an impedance tube. Furthermore, the response of a clamped
rectangular plate to plane oblique sound incidence is investigated by means of
FEM simulations, replicating free field conditions for a set of incidence angles.

Consequently to the validation of impedance expressions of isolated clamped
plates, the analytical expression of the surface averaged acoustic impedance of plate-
cavity coupled resonators is presented for circular and rectangular samples. Such
expression is validated numerically, by means of FEM simulations, assuming plane
wave normal incidence conditions. Furthermore, the effects of porous absorbers
inserted into the cavity are investigated numerically. Finally, the response of a
square resonator to spherical sound incidence is investigated by simulating sound
incidence from a monopole source placed at several heights upon the sample, in
free-field conditions.

In Part III, the applicability of the analytical expression so calculated as
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boundary impedance conditions in FEM room acoustics models was tested, by
means of a numerical-experimental investigation applied to a case study involving
a real sized room. For this purpose, a small sized rectangular room was chosen
and acoustically treated with panel absorbers. In particular, the validation of a
FEM model of the empty room configuration against measured impulse responses
is reported and the results of the modal analysis of the sound field in the room are
presented. The design stages of panel absorbers are described and two configuration
of acoustic treatment are proposed and numerically simulated. FEM models of
treated room configurations are validated against measured data, in terms of sound
pressure level responses and reverberation times at receiver positions.

Concluding remarks, highlighting the limitations of such a methodology and
the proposal of possible further developments are reported in the conclusions.
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Part I

Literature Review
In the following chapters, an overview of the fundamental concepts at the basis of
the characterization of panel sound absorbers is provided. The state of the art and
the scientific international context is analyzed, highlighting the main limitations
and contributions to this research work.
Firstly, a description of porous and resonance sound absorption mechanisms is
introduced, emphasizing the importance of wave based acoustic metrics, such as
acoustic impedance, with respect to energy descriptors, when dealing with room
acoustics predictive analyses in the low modal density region. Indeed, since in this
case wave propagation effects play an important role, complex quantities become
necessary to build up an exhaustive analytical formulation.
A thorough description regarding the dynamic response of thin plates excited by
transverse loads is provided: the basic assumptions and the field of validity of the
thin plate theory are reported and the equation of motion is derived for plates
of different shapes and constraint conditions. Particular attention is paid to the
derivation of a frequency dependent equation of the specific acoustic impedance, due
to its crucial importance in the analytical characterization of panel sound absorbers.
The main differences between infinite and finite sized plates are highlighted, as well
as the influence of different shapes and edge constraint conditions. Plate-cavity
coupling conditions are analyzed and an overview of existing analytical formulations
of the acoustic surface impedance of panel absorbers is reported, ranging from
approximate to more complex models.

1 Principles of sound absorption: a brief overview

When a sound wave in air impinges the surface of an object, part of the sound
energy can be reflected back to the air domain or transmitted through the object,
whilst some other amount of energy can be dissipated across the obstacle material,
depending on its microscopic properties, mechanical behavior and mounting condi-
tions. Such a phenomenon can be defined as sound absorption and it represents
the most important mechanism at the basis of noise control, especially in enclosed
spaces. Depending on the mechanism of energy dissipation, sound absorption
systems can be grouped in two major categories: porous and resonant absorbers.

Porous sound absorption occurs due to the thermoviscous dissipation generated
by the interaction of oscillating air particles with the microstructural skeleton of the
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porous material. The most common materials included in this category are fibers
(such as rockwool, glasswool, woodwool and polyester fiber), foams (melamine,
polyurethane foams) or granular foams (sintered ceramic and metallic materials,
aggregates of recycled materials). Specific intrinsic properties of such materials
are responsible of the amount of sound energy absorbed: in particular, porosity
determines the percentage of air within the material volume, and the quantifies
the amount of air possibly passing through pores; tortuosity describes how much
air flows paths can be irregular through the material, due to the structural shape
of its pores – the greater the tortuosity the less the absorption; air flow resistivity
is a measure of the resistance per unit length encountered by an air flow passing
through the thickness of a porous material. These properties determine, in some
extent, how much friction is generated by the motion of air particles against
pores boundaries, allowing for sound energy dissipation into heat. In light of this,
it becomes crucial that surfaces of porous materials are located in areas where
the profile of air particle velocity becomes maximum. This usually happens at a
distance of a quarter wavelength from the nearest rigid surface: in light of this,
being equal the thickness of the porous material, the smaller the wavelength, the
greater the absorption.

The class of resonant absorbers includes panel and membrane absorbers and
cavity resonators such as Helmholtz resonators. With reference to the former, which
also constitute the main topic of this thesis, they are usually made up of a flexible
thin plate backed by an air cavity volume, in which a layer of porous material is
usually placed in order to increase the damping at maximum absorption frequencies.
Notably, in scientific literature, it is common to point out nomenclature differences
between panel and membrane absorbers: generally, the former refers to thin plates
with no in-plane pre-stress conditions applied, as in the case of the latter, implying
notable differences in terms of their dynamic responses.
On the other hand, Helmholtz resonators are generally made up of a rigid air
cavity connected to the outer air domain by means of a small hole, named neck
having specific length and cross section, which determines the amount of air
mass oscillating against the cavity volume, implying the system to behave as a
mass-spring oscillator. Differently from the case of porous absorption, resonance
absorption happens when maximum sound pressure occurs at the interface between
air and the resonating surface. In resonant absorbers, maximum absorption occurs
at the resonance frequencies of the system, which can be defined depending on
the type of absorber in question. For instance, resonances in panel absorbers
are governed by several factors, such as panel mass and cavity stiffness. Those
quantities are the only considered in very approximate models, which assume the
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motion of the plate to be pistonic, neglecting the panel flexural stiffness and the
contribution of the higher order flexural modes of the plate.

1.1 Acoustic absorption metrics

In light of the comparison between porous and resonance absorbers, it is worthwhile
to point out the frequency ranges where such systems show their best efficiency in
terms of sound absorption. As mentioned, in porous materials sound absorption
usually increases with frequency, fixed the thickness. This allows for a broadband
absorption achieving its highest value at the frequency where air particle velocity is
maximum, namely at a quarter wavelength from the rigid boundaries of an enclosed
space. Nevertheless, commonly employed thicknesses of porous materials are not
large enough to provide effective absorption at low frequencies, in compliance
with usual architectural needs. This implies that, in most cases, sound absorption
provided by porous materials starts to be effective at mid-high frequencies. On the
other hand, resonance absorbers are also defined as pressure absorbers: due to the
configuration of such devices, they are generally designed to resonate – and then
achieve highest absorption – at low frequencies, being placed in areas of maximum
sound pressure rather then velocity and usually large thicknesses of the samples are
not required. Considering this, it is useful to investigate which sound absorption
metrics are more appropriate to quantify the efficiency of such systems depending
on the frequency range of interest. In particular, mid-high frequencies predictive
analyses of sound fields in enclosed spaces are mainly based on geometrical and
statistical evaluations, due to the assumption of a perfectly diffuse sound field:
in this case, it is assumed to be composed of a set of energy rays travelling in
all directions and that the mean square pressure of each propagating wave is
the same, regardless of direction. Under these assumptions, energy descriptors
such as reflection and absorption coefficient are commonly adopted in mid-high
frequency predictive analyses with an acceptable degree of reliability. Conversely,
low frequency modal analysis, generally based on the direct solution of the acoustic
wave equation, requires the definition of appropriate boundary conditions by means
of complex functions, such as the acoustic impedance, in order to take in account
of all possible effects due to wave propagation.
In the following paragraphs, both types of metrics are described, providing a
definition of them and investigating, where possible, their field of applicability,
since their formulation strictly depends on both the characteristics of the incident
sound field and of the material layer in question.
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1.1.1 Wave based metrics: characteristic, mechanical and specific acous-
tic Impedance

Impedance is an important quantity, extensively used in acoustics to describe
how a sound field interacts with an obstacle subjected to acoustic excitation:
it determines the resistance of a particular medium to the propagation of an
acoustic wave through it, providing a useful relationship between acoustic pressure
and particle velocity. Different types of acoustic impedance are generally used in
different contexts of analysis. It is important to note that the expression of such
impedances depends on the properties of the sound field. The assumption at the
basis of impedance definitions is that the application of a harmonic sound pressure
or force to the surface of a material will generate a periodic velocity field with
fixed phase with respect to the applied force.

The first type of impedance is the characteristic acoustic impedance Zc, which
denotes the resistance that a medium opposes to the flow of sound energy. For the
sake of example, assuming a harmonic plane wave travelling in the x direction and
impinging the surface of a fluid layer, its acoustic pressure at the time t can be
written as:

p(x,t) = Aejω(t−kx) (1)

where A is the pressure amplitude, ω is the angular frequency and k = ω
(

ρ
K

)1/2
is

the wavenumber defined as a function of fluid density ρ and bulk modulus K. The
related air particle velocity vector is defined as:

v(x,t) = kA

ρω
ejω(t−x/c). (2)

Considering the two equations above, the ratio between pressure and velocity
provides the following definition of the characteristic impedance:

Zc = (ρK)1/2 (3)

which represents an intrinsic property of the medium for the propagation of plane
waves.

The mechanical impedance ZM is used in acoustics to describe fluid load effects
provided by a medium upon a vibrating surface. It is defined as the ratio of the
applied force over surface velocity and is expressed in Nm/s. The specific acoustic
impedance ZS , expressed in Pas/m, is defined as the ratio of sound pressure and
particle velocity and is generally used to evaluate reflection and/or transmission of
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propagating sound waves at the interface between different media. Since continuity
condition applies at such interface, it is possible to trace back to the surface
impedance and then to the reflection and absorption coefficients of sound absorbing
materials, which can be represented, for example, by porous linings placed at the
rigid boundaries of untreated rooms.

1.1.2 Energy based metrics: sound Reflection and Absorption coeffi-
cients

As mentioned above, when a sound wave hits the surface of an object, incident sound
energy is partly re-radiated backwards, partly transmitted and partly dissipated
through the object material. Considering the law of conservation of energy, reflected
(Eϱ), transmitted (Eτ ) and dissipated (Eδ) energy amounts can be related to the
total incident energy Ei by means of the following relationship:

Ei = Eϱ +Eτ +Eδ. (4)

Normalizing the equation above with respect to Ei yields:

1 = ϱ+ τ + δ, (5)

where ϱ, τ and δ are the reflection, transmission and dissipation coefficients,
respectively.
Assuming a plane and normally incident sound field upon the surface of a material,
its reflection coefficient R can be defined as the ratio of complex sound pressures
generated by reflected and incident waves, as follows:

R = pref

pinc
. (6)

As mentioned, this is a complex quantity which holds in it the phase relationship
between incident and reflected waves.

Absorption coefficient describes the effective capacity of a material to absorb
sound energy. With reference to the energy balance above, it takes in account not
only the actually dissipated energy, but also the sound power transmitted through
the material. In light of this, the sound absorption coefficient α can be defined as:

α = 1− Eϱ

Ei
= 1−|R|2 . (7)
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As noticeable from the equation above, differently from the reflection coefficient,
the absorption coefficient is a real quantity and does not hold phase information
about reflected and trasmitted sound waves. On this purpose, such a metric is often
used in architectural acoustics application, where such a simplification is more
compliant with the type of acoustic analysis of interest in that field. Furthermore,
when characterizing the effective sound absorption present in a room, the absorption
coefficient may be not completely exhaustive. Hence the need to define the quantity
of sound absorbing units, which represent the summation of the effective surface
area of absorbing materials, multiplied by their associated absorption coefficients,
as follows:

Sα =
n∑

i=1
Siαi. (8)
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2 Specific acoustic impedance of vibrating plates

For an efficient acoustic characterization of panel absorbers, it becomes essential
to define appropriate models to predict the mechanical behaviour of plates, since
they represent the most typical components of such absorbers. In particular, since
practical applications of panel absorbers are mainly concerned with noise control
at low frequencies in non-diffuse sound fields, it is convenient to characterize
their performance in terms of sound absorption by defining their acoustic surface
impedance as a function of frequency. In order to do so, it is necessary to derive
the specific acoustic impedance for each single component of the absorber, and
primarily for the vibrating plate. Such an impedance can be properly defined once
sound pressure loads and velocity distribution over the plate surface are known: on
this purpose, it is necessary to model the mechanical behaviour of plates under
external loads and investigate the relationships among force, displacement, stress
and strain fields.
Nevertheless, an exhaustive mathematical analysis of a vibrating plate modeled
as an elastic three-dimensional solid body would imply extremely cumbersome
computation, requiring the solution of the differential equation of three dimensional
elasticity [3]. Usually, in practical applications, the thickness of such plates is chosen
to be much smaller than the other dimensions. On this purpose, it is generally
accepted to employ the Kirchhoff’s bending theory (also known as “Classical plate
theory”) [3, 2], which introduces significant simplifications in terms of computational
effort still ensuring an accurate modelling of thin plates. Indeed, starting from
assumptions which can be considered valid in most cases, this theory allows for
the reduction from a three-dimensional to a two-dimensional problem, resulting in
a concise derivation of plate governing equations. Once the flexural behaviour of a
plate is predicted, and then the pressure loads and velocity distribution over the
plate surface are known, it becomes straightforward to calculate its mechanical
impedance and then the specific acoustic impedance, which becomes essential for
an appropriate acoustic characterization of the whole system.
In light of the above, principles and assumptions at the basis of the Kirchhoff’s
theory are outlined in the following section, with the aim of providing an exhaustive
description of bending wave propagation and free flexural vibration of plates,
according to the objectives of this thesis. Starting from that point, analytical
models for the computation of specific acoustic impedance of infinite sized, circular
and rectangular plates will then be presented for different constraint conditions at
the edges.
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Figure 1: Flexural deformation of a plate according to the Kirchhoff bending
theory. From [1], p. 65.

2.1 The Kirchhoff’s bending theory for thin plates

As briefly mentioned above, the Kirchhoff’s bending theory for thin plates represents
a direct application of the theory of elasticity. Indeed, the derivation of the flexural
governing equation of thin plates arises from the constitutive, equilibrium and
compatibility equations of elasticity, as long as the basic assumptions of the
Kirchhoff theory are valid. The main advantage of this theory relies upon the
fact that, in most of practical applications, the mechanical behavior of thin plates
subjected to external loading is efficiently modeled by a differential equation of
fourth order, expressed in terms of the transverse displacement field of the plate
middle surface. This simplification allows to circumvent the solution of three-
dimensional equations of elasticity, neglecting the shear stresses and leading to a
reduced two-dimensional problem.

With reference to Figure 1, assuming a three-dimensional plate lying in the
plane xy, with the z axis oriented along the thickness direction, it is possible to state
that the simplifications mentioned above are based on the following assumptions:

1. The plate material is homogeneous, isotropic and linear elastic;

2. The plate is initially flat;

3. The thickness of the plate h is small compared to the other characteristic
dimensions – at least one tenth of the smallest dimension of the plate;

4. Hypothesis of small displacements: the transverse displacements w(x,y) of
the midsurface are small compared to the thickness h (≤ h/10). A straight
line that is normal to the midsurface of the undeformed plate remains straight
and normal to the deformed midsurface (see fig. 1)). The slope or rotation
angle θ, which is equal to the first derivative of the deflection ∂w

∂x , is very
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Figure 2: Infinitesimal volume of an elastic body subjected to external loads in
equilibrium: a representation of the stress tensor. From [2], par. 1.4.1.

small and its square is negligible compared with unity. In light of this, vertical
shear strains γxz, γyz and normal strain εz can be neglected;

5. The normal stress σz in the direction transverse to the plate surface can be
neglected, since it is small compared with the other stress components;

6. Holding the hypothesis of small displacements, the midsurface of the plate is
assumed to be unstrained during deflections.

The governing equations of plate theory are based on the simplifications arose from
these assumptions. Before getting into the details of the derivation, it is worthwhile
to provide a brief overview of the theory of elasticity, which constitutes the ground
for such process.
When a three-dimensional solid body is excited by external loads, consequent
deformations and stresses occur, which depend on the mechanical properties of
the material, on its geometry and on the applied loading. As a basic assumption,
the body is intended to be linear elastic – namely, the stress-strain relationship is
linear –, isotropic and homogeneous – its mechanical properties remain the same
through the volume, regardless of direction.

In order to solve the problem of an elastic three-dimensional body subjected
to external forces in equilibrium, it is necessary to identify the stress, strain and
displacement variables and relate them to appropriate equations. Considering a
cuboid infinitesimal volume – shown in Figure 2 – of an elastic body of whatever
shape, it is possible to identify for each face of the volume an orthogonal tern of
stress components, defined as normal stresses (σi) and shear stresses (τij). Those
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Figure 3: Representation of strain components of the infinitesimal cuboid control
volume. - from Ref. [2], par. 1.4.2

stress components form the so called stress tensor Ts, defined as:

Ts =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 (9)

which is symmetric due to the reciprocity law of shear stresses, which implies that:

τxy = τyx τxz = τzx τzy = τyz. (10)

Hence, only six out of nine stress components result as independent variables.
Similarly to stress components, it is possible to define nine strain vectors with

reference to the infinitesimal volume defined above, starting from the assumption
that rigid translations and rotations are prevented for the elastic body in question.
In particular, referring to figure 3(a), (b), (c), vectors representing the deformation
of the volume edges along the coordinate axes are called normal strains and can
be defined as:

εx = δ(dx)
dx

= ∂u

∂x
, εy = δ(dy)

dy
= ∂v

∂y
, εz = δ(dz)

dz
= ∂w

∂z
. (11)

The remaining three strain vectors – depicted in figure 3(d), (e), (f) – involve not
only an edge deformation but also a modification of the angles between the edges
in the undeformed configuration. They are called shear strains and are defined as:

γxy = ∂u

∂y
+ ∂v

∂x
, γxz = ∂u

∂z
+ ∂w

∂x
, γyz = ∂v

∂z
+ ∂w

∂y
. (12)

As in the case of stress components, strain vectors constitute the three-dimensional
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symmetric strain tensor TD as follows:

TD =


εx

1
2γxy

1
2γxz

1
2γyx εy

1
2γyz

1
2γzx

1
2γzy εz

 (13)

where, similarly to the case of Eq.10 it holds that

γxy = γyx γxz = γzx γzy = γyz . (14)

In light of this, also in this case the independent variables reduce to six out of nine
total strain vectors. Consequently, the elastic problem is characterized by fifteen
independent variables – namely, six stress components, six strain components and
three displacement components.
For each of those variables, the theory of elasticity defines a sufficient number of
equations in order to make the elasticity problem statically determinate. Those
equations are grouped in three categories: constitutive equations (six), equilibrium
equations (three) and compatibility equations (six). For the derivation of the fol-
lowing equations, which is out of the scope of this thesis, please refer to specific
scientific literature [3, 2].

The constitutive equations express the linear elastic behavior of the material and
represent the application of the Hooke’s law to a three-dimensional, homogeneous,
isotropic and linear elastic body. Such equations are defined as follows:

εx = 1
E

[σx −ν(σy +σz)] (15)

εy = 1
E

[σy −ν(σx +σz)] (16)

εz = 1
E

[σz −ν(σy +σz)] (17)

γxy = 1
G
τxy (18)

γxz = 1
G
τxz (19)

γyz = 1
G
τyz (20)

where E is the Young’s modulus, ν is the Poisson’s ratio and G is the shear modulus,
which are related by the relationship G= E

2(1+ν) .

The equilibrium equations constitute a set of three differential equations that
describe the equilibrium conditions of an elastic body when subjected to body
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forces of components Fx,Fy,Fz. Such equations are defined as follows:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+Fx = 0

∂σy

∂y
+ ∂τyx

∂x
+ ∂τyz

∂z
+Fy = 0 (21)

∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+Fz = 0.

At last, the compatibility equations express the continuity of an elastic body,
namely that unstrained plane sections remain plane during deformation and that
strain is homogeneous at all locations within the volume of the medium. These
equations are obtained by successively differentiating and manipulating Eqs.11 and
12, and can be summarized as follows:

∂2εx

∂y2 + ∂2εy

∂x2 = ∂2γxy

∂x∂y

∂2εz

∂x2 + ∂2εx

∂z2 = ∂2γxz

∂x∂z
∂2εy

∂z2 + ∂2εz

∂y2 = ∂2γyz

∂y∂z

∂

∂x

[
∂γxz

∂y
+ ∂γxy

∂z
− ∂γyz

∂x

]
= 2 ∂

2εx

∂y∂z

∂

∂y

[
∂γxy

∂z
+ ∂γyz

∂x
− ∂γxz

∂y

]
= 2 ∂

2εy

∂x∂z

∂

∂z

[
∂γyz

∂x
+ ∂γxz

∂y
− ∂γxy

∂z

]
= 2 ∂

2εz

∂x∂y
.

In light of the assumptions introduced at the beginning of this section together
with the characteristic equations of the theory of elasticity, it is now possible to
derive the governing equation of the classical plate theory, which allows to describe
the deflection function w(x,y) of a thin plate subjected to a transversal distributed
load p(x,y) – as will be highlighted later on, such a load can be comparable to the
mechanical action exerted by the pressure distribution over the upper surface of
the plate due to an external sound field.

With reference to Figure 4, consider an infinitesimal volume of a plate with
dimensions dx×dy, subjected to a static transverse distributed load per unit area
p(x,y). In order to ensure its static equilibrium conditions, the applied pressure
p(x,y) must be balanced by the internal stress resultants and couples applied to
the midsurface of the element. It is worthwhile to highlight that stress components
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Figure 4: Infinitesimal volume of a plate in equilibrium under the action of
external forces and stress resultants and couples. From [2], section 2.3.

σx,σy,τxy,τyx vary from point to point through the element volume: nevertheless,
due to the smallness of the element, such components can be intended to be as
uniformly distributed. Therefore, instead of carrying out a stress analysis by points,
it is convenient to introduce the equivalent forces and moments applied to the
midsurface of the elements, namely the stress resultants and couples just mentioned.
In this way, the three-dimensional stress analysis is reduced to a two-dimensional
problem, by only considering the bending of the midsurface of the plate.
In particular, the stress resultants and couples are defined as follows:

• Shear forces Qx,Qy, which can be expressed as:

 Qx

Qy

=
h/2�

−h/2

 τxz

τyz

zdz (22)

• Bending moments Mx,My, defined as:

 Mx

My

=
h/2�

−h/2

 σx

σy

zdz (23)

• Twisting moments Mxy =Myx, expressed as:

Mxy =
h/2�

−h/2

τxyzdz (24)

In light of the above, it is possible to explicit the static equilibrium conditions of
the infinitesimal element by means of the following equations:
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• Static equilibrium around z axis:

∂Qx

∂x
+ ∂Qy

∂y
+p(x,y) = 0 (25)

• Static equilibrium around x axis:

∂Mxy

∂x
+ ∂My

∂y
−Qy = 0 (26)

• Static equilibrium around y axis:

∂Myx

∂y
+ ∂Mx

∂x
−Qx = 0 (27)

where products of infinitesimal terms have been neglected as terms with a
higher order of smallness.

Writing Eqs. 26 and 27 as a function of Qyand Qx and substituting them into Eq.
25 yields:

∂2Mx

∂x2 +2∂
2Mxy

∂x∂y
+ ∂2My

∂y2 = −p(x,y) (28)

which is the governing equation for the bending of a thin plate, excited by a uniform
transverse load, based on the assumptions of the Kirchhoff’s classical plate theory.
Nevertheless, it is convenient to express Eq. 28 in terms of transverse displacements
w(x,y) of the midsurface of the plate: in order to do so, it is necessary to recall
the characteristic equations of the theory of elasticity. On this purpose, Eqs. 22, 23
and 24 highlight that the stress resultants and couples are nothing but the integral
of the stress components calculated along the thickness h of the plate. Thus, it
becomes necessary to define a law of variation of those stress components through
the thickness h.
In order to do so, consider the constitutive equations 15-20: as long as the as-
sumption of small displacements is valid, εz = γxz = γyz = 0 and then Eqs. 17, 19
and 20 can be neglected. Hence, expressing Eqs. 15, 16 and 18 in terms of stress
components yields: 

σx = E
1−ν2 (εx +νεy)

σy = E
1−ν2 (εy +νεx)

τxy =Gγxy

. (29)

Referring to the schematization reported in Figure 1 and bearing in mind the
assumption of small displacements, the strain components εx, εy and γxy can be
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defined as:

εx = −z ∂
∂x

(
∂w

∂x

)
= −z∂

2w

∂x2

εy = −z ∂
∂y

(
∂w

∂y

)
= −z∂

2w

∂y2 (30)

γxy = −2z ∂
2w

∂x∂y

where the second derivative terms ∂2w
∂x2 , ∂2w

∂x2 and ∂2w
∂x∂y represent the curvature of

the midsurface along the axes x, y and the twisting curvature with respect to the
x and y axes, respectively.
Substituting Eqs. 30 into Eqs. 29 and then into Eqs. 26 and 27 yields:

Mx =−D

(
∂2w

∂x2 +ν
∂2w

∂y2

)

My =−D

(
∂2w

∂y2 +ν
∂2w

∂x2

)
(31)

Mxy = −D(1−ν) ∂
2w

∂x∂y
.

where D = Eh3

12(1−ν2) is the flexural stiffness of the plate.

Substituting Eqs. 31 into Eq. 28 yieds:
(
∂4w

∂x4 +2 ∂4w

∂x2∂y2 + ∂4w

∂y4

)
D = p(x,y) (32)

which is a fourth order linear partial differential equation having constant co-
efficients and represents the static governing equation for the deflection of thin
plates subjected to distributed loads, which is expressed in terms of the transverse
displacement of the plate midsurface. Please note that Eq. 32 does not take in
account for any dynamic effect on the plate motion. Indeed, the applied external
loads are intended to be time-invariant.
Nevertheless, in engineering applications, it is often necessary to introduce the
dynamic effects due to time-dependent external forces. These forces can be either
harmonic – in the case they are periodic forces – or transient - randomly time-
dependent. In order to obtain an exhaustive mathematical model of the dynamic
case, but still holding the validity of Kirchhoff’s assumptions, it is necessary to
introduce a dynamic governing equation for the forced deflection of thin plates. In
order to do so, it is possible to integrate the static case of Eq. 32 by introducing
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the following extensions:

• the deflection terms w(x,y, t) and the applied external loads p(x,y, t) are now
considered as space and time dependent;

• according to the D’Alembert principle, inertial forces are taken in account.
These represent the effective forces resulting from the accelerations of the
plate mass. They are space and time dependent and can be written as:

m
∂2w

∂t
(x,y, t) (33)

where m= ϱh is the surface mass of the material.

Leaving aside for the moment the introduction of additional damping forces, it is
now possible to write the differential equation of forced, undamped motion on thin
plates subjected to dynamic loads, expressed as follows:

D∇4w(x,y, t)+m
∂2w

∂t
(x,y, t) = p(x,y, t). (34)

This equation represents a significant simplification of the elastic problem, by
reducing its dimensions to a two-dimensional case and taking in account for
dynamic effects on the plate motion due to external loads. Together with the static
governing equation (Eq. 32), it represents the starting point for the derivation of
the velocity field of the plate during deflection and the consequent determination
of the specific acoustic impedance functions of thin plates. Such a derivation will
be addressed in the following subsections for different boundary conditions of the
plate.

2.2 Infinite sized plates

In the case of a homogeneous plate of infinite extent lying in the plane xy and
subjected to a spatially distributed plane wave pressure p(x,y, t), its specific acoustic
impedance can be defined as:

Zs = p(x,y, t)
v(x,y, t) (35)

where v(x,y) is the velocity distribution over the upper surface of the plate. In
this case, the response and the excitation load must refer to the same frequency
and spatial distribution, as highlighted by Cremer et al. [9]. Considering the above
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defined equation of motion of a thin plate (Eq. 34), and expressing it in terms of
the harmonic velocity v = jωw, yields:

∇4v(x,y)−k4
Bv(x,y) = jω

D
p(kx,ky)e−jkxxe−jkyy (36)

where k4
B = ω2m

D is the bending wavenumber of waves propagating through the
plate and p(x,y) = p(kx,ky)e−jkxxe−jkyy has been written as an harmonic space
dependent function.
Since the plate is infinite and homogeneous, and holding the assumption for the
definition of Eq. 35, v(x,y) can be expressed as:

v(x,y) = v(kx,ky)e−jkxxe−jkyy. (37)

In light of this, Eq. 36 reads

[(k2
x +k2

y)2 −k4
B]v(kx,ky) = −jω

D
p(kx,ky) (38)

and consequently, the impedance Zs can be expressed as:

Zs = jωm

[
1−

(k2
x +k2

y)2

k4
B

]
. (39)

2.3 Circular plates

In the case of circular plates subjected to uniform loads, it is convenient to express
Eq. 34 in polar coordinates, by applying the following relationships:

x= r cosφ

y = r sinφ

r =
√
x2 +y

φ= atan
(
y

x

)

where, with reference to Figure 5, r and φ represent the polar coordinates of a
point of the plate having cartesian coordinates (x,y).

The derivation of Eq. 34 in polar coordinates, which is reported in specific
literature [3, 2, 10, 11], leads to the following relationship:

∇4
rw(r,φ)−k4

Bw(r,φ) = p(r,φ)
D

. (40)

Integrating the equation above and expressing it in terms of linear displacements
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Figure 5: Relationship between Cartesian and polar coordinates in a circular
plate. From [3], section 1.4.

w, reads [12, 13]:

w(r) = −p(r)
k4

B

+AJ0(k4
Br)+BI0(k4

Br) (41)

where J0 and I0 are the angular and modified Bessel’s functions of the first kind
of order zero, respectively, and the coefficients A and B are determined from the
boundary conditions.
Eq. 41 is a solution of the partial differential equation 40, obtained by assuming
a uniform pressure distribution over the plate surface and considering only the
axisymmetric modal bending of the circular plate. The latter assumption is generally
valid when the applied loading and the edge constraints are uniform and independent
of the angular coordinate φ. In this way, the deflection of the plate and the related
stresses will only depend on the radial coordinate r.
By applying the appropriate boundary conditions to Eq. 41, the governing equations
for the deflection of circular plates with different constraint conditions can be
derived, as will be highlighted in the following subsections.

2.3.1 Simply supported edges

The simply supported constraint condition of a plate implies that both displacement
w and radial moment Mr must be zero at the edges. This is expressed by the
following homogeneous boundary conditions:


w(r = a) = 0

∂2w
δr2

∣∣∣∣
r=a

+ ν
r

∂w
δr

∣∣∣
r=a

= 0
(42)
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where a is the length of the radius.
Applying the relationships above to Eq. 41, it leads to to the following expressions
for the constants A and B [13]

A= p

k4
BD

·

(
I

′′
0 (kBa)+ ν

aI
′
0(kBa)

)
∆

(43)

B = − p

k4
BD

·

(
J

′′
0 (kBa)+ ν

aJ
′
0(kBa)

)
∆

where ∆ = J0
(
I

′′
0 (kBa)+ ν

aI
′
0(kBa)

)
−I0

(
J

′′
0 (kBa)+ ν

aJ
′
0(kBa)

)
and the superscript

of the Bessel’s functions indicate respectively the first and second order derivative.
Assuming a uniform pressure load p(r) acting on the surface of the plate, the
mechanical impedance Zm can be calculated by considering the following force-
velocity ratio:

Zm =
�

S p(r)dS
jω 1

S

�
Sw(r)dS

(44)

where S is the surface area of the plate and the term at denominator represents
the time derivative of the mean transverse displacement w(r) over the surface
of the plate. Holding the validity of the above assumption and stated that the
specific acoustic impedance Zs can be written as a function of the mechanical
impedance (Zs = Zm/S), the following expression of the surface averaged specific
acoustic impedance ⟨Zs⟩ of a circular simply supported plate subjected to static
uniform loads can be obtained by substituting Eqs. 43 into Eq. 44 with successive
rearrangements [13]:

⟨Zs⟩ =

 jω

k4
BD

2
k4

Ba

{(
I

′′
0 + ν

aI
′
0
)
J1 −

(
J

′′
0 + ν

aJ
′
0
)
I1
}

−∆

∆


−1

(45)

where the argument of the Bessel’s functions is still kBa.

2.3.2 Clamped edges

The boundary conditions of a plate clamped all around edges imply that both
transverse displacements and rotations are zero at the edges. The corresponding
boundary conditions for Eq. 41 reads:

37



 w(r = a) = 0
∂w
δr

∣∣∣
r=a

= 0
(46)

where a is the radius of the plate. The application of conditions 46 to Eq. 41 yields
the following constants A and B [12, 13]:

A= p

k4
BD

· I1(kBa)
J0(kBa)I1(kBa)+J1(kBa)I0(kBa)

(47)

B = p

k4
BD

· J1(kBa)
J0(kBa)I1(kBa)+J1(kBa)I0(kBa) .

Similarly to the case of simply supported plates, referring to Eq. 44, by means of
subsequent arrangements it is then possible to derive the following expression of
the surface averaged specific acoustic impedance ⟨Zs⟩ of a circular clamped plate
subjected to stationary loads:

⟨Zs⟩ = −jωϱh · I1(kBa)J0(kBa)+J1(kBa)I0(kBa)
I1(kBa)J2(kBa)−J1(kBa)I2(kBa) . (48)

2.4 Rectangular plates

As mentioned in the foregoing section, the governing equations for the deflection of
thin plates (Eqs. 32, 34) are partial differential equations of the fourth order having
constant coefficients. Generally, in the case of rectangular plates, different methods
are available to solve such equations and, depending on the shape of the plate and
its boundary conditions, they may be more or less computationally expensive.
As reported by Szilard [3], the rigorous classical approaches aimed to solve the
governing equations for displacements in the differential form, can be summarized
as follows:

• closed form solutions: such solutions are very rare and generally cumbersome
in the case of plates with complex boundary conditions. Nevertheless, few
cases are available when this boundary value problem can be solved directly
([3]);

• superposition principle: this method has been used by several authors for the
analysis of plate vibration ([14, 15, 16, 17]). It consists in superimposing the
solution of the homogeneous governing equation with a particular solution of
the same general equation, depending on the boundary condition;
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• double trigonometric series solutions: they were proposed by Navier with
reference to the case of a rectangular simply supported plate. This kind
of approach reduces the solution of a differential equation to an algebraic
solution. A drawback lies in the slow convergence of the method in the case
of concentrate and discontinuous loads;

• single series solutions: this approach shows a considerably faster convergence
with respect to other methods. However, it is limited to the case when the
plate has two opposite simply supported sides and the shape of the distributed
load is constant in the direction parallel to the two other edges.

Alongside the rigorous approaches introduced above, energy methods are available
which are based on the application of the virtual work principle. Although they
represent an approximation, such methods are more generally applicable to plates
of various shapes and boundary conditions. Moreover, their application is easier
with respect to classical methods when dealing with rectangular plates.
Several energy methods were introduced over time by Rayleigh [18], Ritz, Galerkin
and Vlasov, to mention a few, which also constitute the basis for finite element
analysis. Such methods have been extensively employed in plate analysis by several
authors, such as Warburton [19], who resorted to the Rayleigh method to derive
frequency expressions for all modes of vibrating plates subjected to various boundary
conditions as well as possible combinations of them.

In particular, energy methods are also known as variational methods, since they
lie on an alternative mathematical approach to elastic problems, called calculus of
variation. Specifically, the determination of the plate displacement field function
(but either stress or strain fields) can be reduced to an integral of the function
itself, called functional: the displacement field can then be retrieved by assuming
conditions of extremum of this functional. Such conditions can be expressed by
postulates also referred to as variational principles. In the elastic analysis of
structures, assuming that a system is conservative and holding the validity of the
small-deflection theory, such a variational principle can be successfully represented
by the Principle of Minimum Potential Energy, introduced by Lagrange, which
states that

among all admissible configurations of an elastic body, the actual
configuration (that satisfies static equilibrium conditions) makes the
total potential energy Π stationary with respect to all small admissible
virtual displacements. For stable equilibrium, Π is a minimum [2].

This principle can be intended as a specialization of the principle of virtual work.
In particular, the potential energy Π of an elastic system can be written as
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Π = U +V (49)

where:
– U = −Wi is the potential energy of internal forces of the system and it is

equal to the negative work of internal forces;
– V = −We is the potential energy of external forces of the system and it is

equal to the negative work of external forces.
By applying the virtual work principle as

δW = δWi + δWe = 0 (50)

it follows that

δW = −δU − δV = −δ(U +V ) = δΠ = 0 (51)

where δΠ is the variation of the total potential Π due to the introduction of
virtual displacements compatible to the elastic system in question. This relationship
provides a mathematical expression of the principle of minimum potential energy.
In particular, the expression δΠ = 0 mathematically means that the function Π has
a point of minimum or maximum. In the case of the elastic theory problem, which
is based on the assumption of small displacements, the only possible configuration
of equilibrium is that stable: in light of this, the potential energy Π has to be a
minimum. Therefore, the aim of the variational methods introduced above is to
find out, among a set of admissible functions, the solution that minimizes the total
potential energy.

This principle can be used to obtain approximate solutions of structural me-
chanics problems, in particular plate bending problems with complex boundary
conditions. On this purpose, for the scope of this thesis, one of the above mentioned
variational methods, namely the Vlasov’s method, has been employed in order to
derive frequency expressions for the deflections of rectangular plates either clamped
or simply supported at the edges and, consequently, their relative specific acoustic
impedance functions.

2.4.1 Impedance of simply supported and clamped plates: an applica-
tion of Vlasov’s method

As mentioned above, the dynamic response of vibrating rectangular plates, subjected
to various and complex boundary conditions, can be investigated by means of
energy methods. On this purpose, the application of Vlasov’s method to the case
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of a clamped rectangular plate subjected to different types of loads has led to
the derivation of an analytical expression of its specific acoustic impedance, as
highlighted by authors such as Sung and Jan [20], Huang et al., [21] and Jiménez
et al. [22]. Such a method represents an extension of the Galerkin’s method, the
discussion of which is out of the scope of this thesis, although it can be readily
found in literature [3, 2].

Let us consider an undamped rectangular thin plate lying in the xy plane and
subjected to a harmonic concentrated load pe(x,y, t), oriented along the z axis and
applied at the point (ξ,η). The governing equation for the deflections of such a
plate is represented by Eq. 34 that, for the case in question, can be written as:

D∇4w(x,y, t)+m
∂2w(x,y, t)

∂t2
= pe(x,y, t) (52)

where w(x,y, t) is the transverse displacement of the midsurface of the plate, and
the remaining quantities hold the same meaning as in Eq.34. Since w(x,y, t) and
pe(x,y, t) are harmonic quantities, they can be expressed as:

w(x,y, t) =W (x,y)ejωt, pe(x,y, t) = P (x,y)ejωt . (53)

Introducing Eq. 53 into Eq. 52 yields:

D∇4W (x,y)−mω2W (x,y)−P (x,y) = 0 . (54)

The transverse displacement ad load functions can be expanded by eigenfunctions,
as follows:

W (x,y) =
∞∑

m=1

∞∑
n=1

Wmn(x,y)ϕmn(x,y)

(55)

P (x,y) =
∞∑

m=1

∞∑
n=1

Pmn(x,y)ψmn(x,y)

where, the terms ϕmn and ψmn can be further expanded by using separation of
variables, as:

ϕmn = ψmn =Xm(x)Yn(y) (56)

the functions Xm(x) and Yn(y) being orthogonal functions which satisfy the
boundary conditions of a beam subjected to transverse deflection. Referring to the
Fourier series expansion of P (x,y) (Eq. 55), the constant Pmn can be written as a
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function of Xm(x) and Yn(y) as follows:

Pmn =
� a

0
� b

0 P (x,y)Xm(x)Yn(y)dxdy� a
0
� b

0 X
2
m(x)Y 2

n (y)dxdy
(57)

where a and b represent the side lengths of the plate. Recalling the principle of
virtual work, it is possible to state that a system is in equilibrium if the work done
by all the elementary forces acting through kinematically admissible displacements
equals zero. For the case in question, the elementary forces are represented by the
left-hand term of Eq. 54, which can be defined as an intensity of an unbalanced
loading acting upon the surface area A of the plate. On the other hand, infinitesimal
displacements δW , admissible with the bending of a thin plate can be defined as:

δW =
∞∑

i=1

∞∑
k=1

δWikϕik(x,y) (58)

and, in light of Eqs. 54 and 58, the principle of virtual work can be expressed by
means of the following Galerkin equation [2]:

� b

0

� a

0
[D∇4W (x,y)−mω2W (x,y)−P (x,y)]δW dxdy = 0 . (59)

By substituting Eq. 55 into Eq. 59 yields:

D
∞∑
m,i

∞∑
n,k

Wmn

� b

0

� a

0
ϕik∇4ϕmn dxdy

−mω2
∞∑
m,i

∞∑
n,k

Wmn

� b

0

� a

0
ϕikϕmn dxdy

−
∞∑
m,i

∞∑
n,k

Pmn

� b

0

� a

0
ϕikψmn dxdy = 0 . (60)

Introducing Eqs. 56-57 and taking in account for the orthogonality properties of
functions Xm(x) and Yn(y), defined as follows [20]:

� a
0 Xp(x)Xq(x)dx=

� a
0 X

′′
p (x)X ′′

q (x)dx= 0

� b
0 Yp(y)Yq(y)dy =

� b
0 Y

′′
p (y)Y ′′

q (y)dy = 0

 if p ̸= q . (61)
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Eq. 60, by successive manipulations, becomes:

D
∑
m

∑
n
Wmn(I1I2 +2I3I4 + I5I6)+

−mω2∑
m

∑
n
WmnI2I6 =

∑
m

∑
n

� b

0

� a

0
P (x,y)XmYn dxdy (62)

where

I1 =
� a

0
X(4)

m Xm dx, I2 =
� b

0
Y 2

n dy ,

I3 =
� a

0
X ′′

mXm dx, I4 =
� b

0
Y ′′

n Yn dy ,

I5 =
� b

0
Y (4)

n Yn dy , I6 =
� a

0
X2

m dx. (63)

Rearranging Eq. 62, the displacement field at a single modeshape Wmncan be
written as

Wmn =
� b

0
� a

0 P (x,y)XmYn dxdy
D(I1I2 +2I3I4 + I5I6)−mω2I2I6

(64)

and, accounting for Eq. 55, the dynamic response of a plate subjected to a harmonic
transverse load can be expressed as

W (x,y) =
∞∑
m

∞∑
n

� b
0
� a

0 P (x,y)XmYn dxdy
D(I1I2 +2I3I4 + I5I6)−mω2I2I6

Xm(x)Yn(y) . (65)

Shape functions Xm(x) and Yn(y) can be chosen as linearly independent sets
of quasi-orthogonal functions satisfying the boundary conditions of the plate:
specifically, they are represented by the eigenfunctions of vibrating beams of length
equal to the sides of the plate. Solving the differential equation of motion of a
vibrating beam [20] leads to the following set of eigenfunctions:

• in the case of a beam simply supported at both ends, one obtains:

Xm(x) = sin
(
mπx

a

)
, Yn(y) = sin

(
nπy

b

)
(66)

where m and n represent the modal indices of the beam modeshapes;

• in the case of clamped boundaries, it reads:
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Xm(x) =G

(
λmx

a

)
−
[
G(λm)
H(λm)

]
H

(
λmx

a

)
(67)

Ym(y) =G

(
λny

b

)
−
[
G(λn)
H(λn)

]
H

(
λny

b

)
(68)

where the functions

G(u) = cosh(u)− cos(u)
(69)

H(u) = sinh(u)− sin(u)

λm and λn satisfying the following relationship:

cosh(λ)cos(λ) = 1 . (70)

Eq. 69 can be solved by means of root-finding algorithms such as Muller’s
[23] or Newton-Raphson methods [24].

Once the transverse displacement function of the plate has been derived, it is
possible to define a surface averaged frequency expression of its specific acoustic
impedance. Recalling its definition as a pressure-velocity ratio, it can be written
as:

⟨Zs⟩ =
� b

0
� a

0 pe(x,y, t)dxdy
v̄(t)S

=
� b

0
� a

0 pe(x,y, t)dxdy
∂w(t)

∂t S

=
� b

0
� a

0 P (x,y)dxdy
jωW̄ (x,y)S

(71)

where S = ab is the surface area of the plate, v̄ and W̄ are the surface averaged
velocity and displacement of the plate, respectively. Introducing the displacement
field W (x,y) as defined in Eq.65, the averaged specific acoustic impedance ⟨Zs⟩
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reads:

⟨Zs⟩ =
� b

0
� a

0 P (x,y)dxdy

jω

{� b
0
� a

0

[∑∞
m
∑∞

n

� b
0
� a

0 P (x,y)XmYn dxdy

D(I1I2+2I3I4+I5I6)−mω2I2I6
Xm(x)Yn(y)

]
dxdy

} . (72)

This expression is generally valid for rectangular plates and can be suitably adapted
depending on the edge constraint conditions, by introducing proper definitions of
Xm and Yn functions. Besides the simply supported and clamped cases of Eqs.
66-68, more complex boundary conditions can be introduced by resorting to the
eigenfunctions for uniform beams reported in literature by several authors, such as
Szilard [3].
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3 Acoustic surface impedance of panel-cavity cou-
pled resonators

Complex frequency expressions of specific acoustic impedance of panel absorbers
have been widely proposed in literature. Starting from the simplest configuration
of a panel-cavity system without porous layer, one of the most common approaches
lies on the schematization as a single-degree of freedom (SDOF) mass-spring
oscillator. This approximate model, based on lumped parameters equations, has
been discussed by Cox [4], and Kuttruff [25] in their textbooks, where the normal
acoustic impedance of plate-cavity coupled systems was obtained by means of
electrical analogies, accounting for panel resistance, inertance and air cavity acoustic
compliance. According to this, resonance frequencies are related to the only plate
surface mass and bulk stiffness of the air cavity. Alongside to this models, a
thorough analytical expression of the acoustic impedance of finite-sized and edge-
clamped panel absorbers was provided by Ford and McCormick [26], accounting
for mass, flexural stiffness, and internal damping of the panel by solving the
equation of motion of a clamped plate for the first four eigenmodes. The resulting
averaged surface impedance was determined by applying the virtual work principle,
considering the potential and kinetic energies of the panel and the potential energy
of the backing air cavity. The effect of placing a porous material into the cavity
was investigated and experimentally validated along with the developed surface
impedance function. However, although in the general formulation of panel potential
and kinetic energies they accounted for rectangular plates, the matrix solution
proposed seems to work only for square panels. This formulation was adopted by
Frommhold et al. [27], who investigated the sound absorption performance of a
flexible square plate backed by a honeycomb structure of Helmholtz resonators.
In light of the above, an extension to rectangular plates is necessary, due to their
frequent employment in room acoustics treatment. In addition, the shape of the
plate, alongside to its surface extension, can have a significant impact on the
resulting eigenvalues of the flexural modes.

3.1 Approximate Impedance models

As mentioned above, panel absorbers are generally composed of an impervious
flexible plate backed by a sealed air cavity, which must be narrow enough to ensure
an adequate bulk stiffness, namely preventing transverse acoustic modes occurring
within its volume. Usually, the cavity can be partially filled with a layer of porous
material to provide additional damping to the fundamental resonance of the coupled
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system and broadening the range around the maximum absorption frequency. In
light of this, sound energy is dissipated by means of either flexural damping –
due to the panel bending – and to thermoviscous losses occurring throughout the
porous layer. In several cases, such a system has been modelled as a single degree
of freedom mass-spring resonator: in this system, the panel mass is supposed to
vibrate against a spring constituted by the air stiffness of the cavity. Changing
parameters such as the mass density of the plate or the cavity depth will influence
the resonance frequency where maximum absorption occurs.
Simple design equations were derived by adding plate resistance and mass terms
to the surface impedance of the rigid backed air cavity. The latter impedance was
derived by applying the transfer matrix method assuming a plane wave normal
incidence upon the surface of such a layer. In light of this, the surface impedance
of the rigidly backed air cavity reads:

Zs1 = −jZccot(k0d) (73)

where Zc = ρ0c is the characteristic impedance, k0is the wavenumber and d is the
depth of the air layer. By adding in series the resistance (rm) and the mass (jωm)
terms of the plate, it becomes:

Zs2 = rm − j[ωm−Zccot(k0d)] . (74)

Assuming the cavity to be narrow enough to ensure that kd ≪ 1, the resonance
frequency of the system can be calculated when the imaginary part of Eq. 74
vanishes, leading to the following expression:

fres = c

2π

√
ρ0
md

. (75)

This formulation has also been integrated with the application of the transfer
matrix method to take in account for the possible presence of a porous layer to
partially fill the cavity. With reference to Figure 6, the porous layer is assumed to
be adjacent to the rigid backing of the absorber. The specific acoustic impedance
of such a multi-layered system can be calculated according to the impedance
translation theorem, reported by Allard et al. [28]. Starting from the assumption
of plane normal incidence and locally reactive fluid media, the specific acoustic
impedance at the interface point Mi between layers (i− 1) and (i+ 1) can be
calculated as follows:

Z(Mi) = Zc(i−1) −
jZ(Mi−1)cotg(ki−1di−1)+Zc(i−1)

Z(Mi−1,bot)
(76)
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where Zc(i−1) ,ki−1, di−1 are respectively the characteristic impedance, the complex
wavenumber and the thickness of the (i−1) layer. Z(Mi−1,bot) is the impedance at
the bottom end of the (i−1) layer. In the case of the multi-layered system shown
in Figure 6, considering that Z(Mi) is infinite at the rigid end, the impedance at
the interface between the porous and air layers is calculated by reducing Eq.76 to:

Z(M2) = −jZc1cot(k1d1) (77)

where d1 is the thickness of the porous layer and Zc1 and k1 are calculated adopting
the Delany-Bazley-Miki model [29]. Due to continuity conditions, Z(M2) = Z(M3)
and Z(M4) can be then calculated by using Eq. 76. In light of this, the surface
averaged impedance ⟨Zs⟩ of the whole panel absorber is obtained by coupling in
series the impedance Z(M4) to the panel mass and resistance terms, according
to Eq. 74. Nevertheless, approximate design equations are often inaccurate due
to their underlying physical assumptions. Firstly, pistonic motion of the plate is
assumed: in light of this, higher order flexural modes of the plate are not taken
in account as well as the finite size of the sample which, as will be outlined, has
a relevant effect on the resulting resonances of the system, implying absorption
peaks to be significantly shifted in frequency with respect to the SDOF simplified
solution. This has been highlighted by Cox [4] who compared analytical results
against impedance measurements carried out in a Kundt’s tube of large cross
section (Figure 7). Further uncertainty arises in the determination of the panel
resistance term: energy losses due to either the internal damping of the panel
material or to mechanical friction occurring at the edges are not clearly separated,
highlighting the need for a more detailed formulation.

3.2 Acoustic-structure coupling of cavity backed plates by
virtual work principle

The limitations of the approximate model presented above have been partially
overcome in a study carried out by Ford and McCormick [26]. They developed a
frequency expression of the normal acoustic impedance of a square panel absorber,
taking in account for the finite size and consequently the modal behavior of the plate,
together with the effect provided by the air cavity. Panel material damping and
the effects of introducing a porous material into the cavity were also investigated.
Starting from the equation of motion of a flexible, clamped square panel, they
applied the principle of virtual work in order to calculate the average surface
velocity of the coupled system for a single mode. Considering the first four plate
eigenmodes, they simultaneously solved those equations by the use of matrices,
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Figure 6: Stratigraphy of a panel absorber with a porous-air multilayered backing.

Figure 7: Measured and predicted normal incidence absorption coeffi-
cient for a commercial membrane absorber. - from [4], par. 7.2.1
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and then calculating the average surface impedance, known the pressure.
In particular, starting from the assumption of a thin plate, they calculated the
displacement field over the panel surface by superimposing the eigenmode functions
of a double clamped beam, as follows:

w =
∑
m

∑
n
ϕmnfm(x)gn(y) (78)

where ϕmn is the maximum displacement occurring over the panel surface and fm(x)
and gn(y) are the equations of double clamped beams along x and y directions,
defined as:

f(x) = cosγ
(
x

a
− 1

2

)
+kcoshγ

(
x

a
− 1

2

)
, (79)

g(y) = cosϵ
(
y

b
− 1

2

)
+ ccoshϵ

(
y

b
− 1

2

)
, (80)

where a and b are the side lengths of the plate and k and c are:

k = sin
γ

2/sinh
γ

2 (81)

c= sin
ϵ

2/sinh
ϵ

2 (82)

tan
γ

2 + tanh
γ

2 = 0 (83)

tan
ϵ

2 + tanh
ϵ

2 = 0 . (84)

In order to apply the virtual work principle, the total energy of the cavity-plate
coupled system was calculated, which includes the potential and kinetic energies of
the panel and the potential energy of the cavity air volume. The potential energy
Up of the vibrating plate was defined as:

Up = D

2

� a

0

� b

0

(
∂2w

∂x2

)2
+
(
∂2w

∂y2

)2
+2

(
∂2w

∂x∂y

)
dxdy. (85)

Considering Eq.78 and that the acoustic impedance of the absorber the po-
tential energy Up has to be expressed in terms of the average displacement
w̄mn = 1

ab

� a
0
� b

0 wmn dxdy, Eq.85 for a square panel after integration becomes:

Up = D

2a2
∑
m

∑
n

(1+ jgmn)Bmnw̄
2
mn (86)

where gmn is the hysteretic loss factor of the panel material and Bmn is defined as:
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Bmn = γ2ϵ2

256 [(γ4 + ϵ4)(1+ c2)(1+k2)+2γ2ϵ2(1− c2)(1−k2) (87)

+4γϵ(2− ϵ(1− c2)−γ(1−k2))].

The kinetic energy Tp of the vibrating plate was defined as:

Tp = M

2

� a

0

� b

0

(
∂w

∂t

)2
dxdy (88)

where, M is the surface mass of the panel. Accounting again for Eq. 78 and the
average displacement w̄mn, Tp for a square panel reads:

Tp = Ma2

2
∑
m

∑
n
Amn ¯̇w2

mn (89)

where

Amn = ϵ2γ2

256 (1+ c2)(1+k2) . (90)

Finally, the potential energy Ua of the air cavity volume, which is supposed to
be narrow enough to prevent any standing waves occurring in it, can be defined as:

Ua = γ0P0
2V (δV )2 (91)

where V is the volume of the air cavity and P0is the atmospheric pressure. Hence,
for a square panel, it becomes:

Ua = γ0P0
2d a2

(∑
m

∑
n
w̄mn

)2
. (92)

Once calculated the potential and kinetic energies of the system, the virtual
work principle can be applied, stating that for a system in static equilibrium, at
every infinitesimal virtual displacement δw, it is associated a null mechanical work.
In light of this, named F = pa2 the driving force of the system, the virtual work
principle can be expressed as:

∂Tp

∂w̄
∂w̄+ ∂Up

∂w̄
∂w̄+ ∂Ua

∂w̄
∂w̄ = Fejωt∂w̄ . (93)

Accounting for Eqs. 86, 89 and 92, the equation above becomes:

MAmn ¯̈wmn + D(1+ jgmn)
a4 Bmnw̄mn + γ0P0

d

∑
m

∑
n
w̄mn = pejωt. (94)
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This is the equation of motion for a single mode of the coupled panel-cavity system.
Remembering that the average velocity V̄mn for each single mode can be obtained
from:

¯̇wmn = V̄mne
jωt (95)

a set of equations of the type of Eq. 94 can be solved simultaneously in matrix
form, in order to calculate the average velocity V̄mn for each mode. Then, recalling
that

Za = p∑
m
∑

n V̄mn
(96)

a frequency expression of the average specific acoustic impedance of the panel
absorber can finally be derived.

52



Part II

Preliminary investigations and
numerical-experimental
validations

4 Preliminary study on the effects of panel size
and edge constraints

In this chapter, the results of preliminary numerical simulations are presented, in
order to investigate to what extent panel size and edge constraint conditions affect
the behavior of panel absorbers in terms of acoustic impedance and absorption. In
the first place, a numerical analysis was conducted on panel absorbers of different
size, holding the same constraint conditions and exciting them by a plane sound
field at normal incidence. Surface impedances evaluated from multiphysics FEM
simulations were then compared to those obtained from analytical approximate
models. Discrepancies in terms of resonance frequencies and the accuracy of approx-
imate models were investigated. A further numerical investigation was performed
on a plate resonator under the same excitation conditions as the case above, by
changing in turn the edge constraint conditions with the aim of highlighting the
effects on the acoustic behaviour of such a sample due to different mounting condi-
tions. Again, effects on the resulting impedances and absorption coefficients were
investigated.

4.1 Panel size effects for plane wave incidence

As mentioned in the previous chapter, analytical approximate formulations, intro-
duced in Section 3.1, model the coupled panel-cavity systems as SDOF mass-spring
oscillators, accounting for only air cavity stiffness and the surface mass of the plate
and neglecting the actual surface extension of the panel itself. In order to highlight
the main inaccuracies that such a formulation implies against a realistic model of a
panel absorber, FEM simulations of a standing wave tube test-rig were performed
(Figure 8), with the aim of evaluating the surface impedance of the sample. The
sample, assumed to behave as a homogeneous isotropic and elastic material, was a
circular aluminum plate of thickness h= 0.5 mm, the mechanical and geometrical
properties of which are listed in Table 1. The plate was clamped all around the
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ϕ [cm] h[mm] E [GPa] ν [-] η [-] ρ [kg/m3]
10, 30, 60 0.5 70 0.32 0.0015 3000

Table 1: Geometrical and mechanical properties of the aluminum plate: diameter
ϕ, plate thickness h, elastic modulus E, Poisson’s ratio ν, loss factor η, mass density
ρ.

Figure 8: FEM meshed model of a standing wave tube test-rig. The sample,
modelled as a shell coupled to a backing air domain, was a cylindrical panel
absorber with an air cavity of 10 cm depth.

edges and coupled with an air cavity of 4.5 cm depth. Parametric FEM simulations
were then performed, by progressively increasing the plate diameter from 10 cm to
30 cm and 60 cm. According to Eq. 74 the surface impedance of the system was
calculated as follows:

Zs = j[ωm−Zccot(k0d)] . (97)

where k0 and d are the wavenumber and depth of the air cavity, and m is the surface
mass of the plate. Material damping was accounted for by defining a complex
material density as:

ρ= ρ0(1− jη) (98)

where η is the isotropic loss factor reported in Table 1.
The analytical surface impedance Zs resulting from FEM simulations, was

evaluated by extracting complex sound pressure values at two points within the
air domain of the tube, according to the transfer function method, as defined in
ISO 10534-2:1998 [6]. The related absorption coefficient was calculated according
to the equation:
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α =
4Re

{
ZS
Z0

}
∣∣∣ZS

Z0

∣∣∣2 +2Re
{

ZS
Z0

}
+1

. (99)

Numerical and analytical impedances (in terms of phase) and absorption
coefficients were compared in Figures 9, 10 and 11. As visible from the graphs, the
analytical results show always the same and only resonant frequency, occurring
at 230 Hz, regardless of the surface area of the plate. Looking at Figure 9, it is
noticeable that the first numerical resonance frequency occurs at 501 Hz, showing a
relevant discrepancy in terms of modal behaviour with respect to the approximate
model. As long as the panel diameter is increased, being equal the clamped edge
conditions, further modes appear in the numerical solution, while the resonance
frequency of the panel-cavity coupled system approaches the analytical value. This
is noticeable in Figure 10, where the first numerical resonance frequency occurs
now at 241 Hz, and additional modes are detected at 145 Hz and 462 Hz, where
new absorption peaks are visible. This is even more evident in Figure 11, where
alongside the 230 Hz resonance, further modes occur at 104, 183, 319, 456 and 620
Hz. These additional resonances can be identified as structural radiative modes of
the plate: such modeshapes are always symmetric with respect to the displacement
occurring at the center of the panel, which is coincides to an antinode, namely a
point where the displacement field occurring over the surface of the panel reaches
its maximum. Regardless of the shape of the plate, the highest radiation efficiencies
occur at the fundamental radiative mode and at higher order odd modes. Generally,
for circular plates, such modeshapes are consituted by an antinodal area occurring
at the center of the plate with additional concentric antinodal circumferences,
which increase the more the higher the eigenfrequency. This is noticeable in Figure
12 where the first and second radiative modeshapes of a circular clamped aluminum
plate of 30 cm diameter are shown.
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Figure 9: Surface Impedance phase (top) and absorption coefficient (bottom) of a
10 cm diameter panel resonator: approximate model, FEM simulation.

Figure 10: Surface Impedance phase (top) and absorption coefficient (bottom) of
a 30 cm diameter panel resonator: approximate model, FEM simulation.
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Figure 11: Surface Impedance phase (top) and absorption coefficient (bottom) of
a 60 cm diameter panel resonator: approximate model, FEM simulation.

Figure 12: First (left hand side) and second (right hand side) radiative modeshapes
of an aluminum clamped circular plate (30 cm diameter).

From this preliminary analysis, the following outcomes are worth to be high-
lighted:

• approximate models are far more inaccurate with respect to numerical simu-
lations, the smaller the surface area of the panel. This comes from the basic
assumption of pistonic motion of a plate of infinite extent, which neglects the
effect of edge constraints on the dynamic response of the plate. Being equal
the cavity depth and the edge constraints of the plate, there is a surface area
extent at which approximate model starts to be efficient in predicting just
one of the plate-cavity resonance frequency (60 cm diameter panel in the
case reported here);
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• the greater the surface of the plate, the more the actual resonant frequencies
of the system. Indeed, additional eigenfrequencies can appear above and below
the coupled system resonance frequency, and are represented by radiative
modes of the plate. Considering the same frequency range, the number of
this modes increases with the surface area extent of the plate.

In light of the above, it is evident that more thorough analytical models of panel
absorbers are necessary in order to ensure accurate acoustic predictive analyses:
these should take in account the influence of panel size on the modal behaviour of
the plate, which is responsible, as seen, of the additional resonant peaks experienced
by a realistic panel resonator.

4.2 Edge conditions effects for plane wave incidence

In this paragraph, a preliminary FEM analysis is presented in order to investigate
the effect of edge constraint conditions upon the resonant behaviour of panel
absorbers. As in the case of the previous analysis, a cylindrical panel absorber was
used as a sample, modeling an impedance tube virtual test-rig and assuming plane
wave incidence conditions. The diameter size of the plate was hold to be 10 cm
wide, as well as the cavity depth, which was equal to 4.5 cm. Three simulations were
performed by applying different constraint conditions at the edges: clamped, simply
supported and free edge condition. The geometrical and mechanical properties of
the plate are again summarized in Table 1. Also in this case, surface impedances
and absorption coefficients were evaluated and compared in the frequency range
100-650 Hz, in which only the first resonance mode of the system is observable.

As noticeable from the graphs in Figure 13, a gradual decrease in frequency of
the first eigenmode is observable when changing edge constraints from clamped
(501 Hz) to simply supported (301 Hz) and then to free edge condition (229 Hz).
This is due to the increased stiffness provided by edge constraints as long as they
approach to clamping. In this case indeed, edge rotations and linear displacements
are both suppressed, implying the actual deflection to involve the smallest amount
of plate mass: similarly to what observed above, the smaller the vibrating surface
area, the higher the eigenfrequency of the first structural mode.

A further relevant effect is noticeable by analyzing the absorption coefficient
graph. Indeed, alongside the frequency shifting effect, a gradual decrease of absorp-
tion peak is observable as long as the constraint conditions become less rigid, being
equal the plate material damping: in the clamped case indeed, absorption achieves
the maximum value of 0.7; in the simply supported case it decreases to 0.3, whilst
in the extreme conditions of free edges, absorption becomes zero. Since no source
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edge condition fres [Hz] (uncoupled plate) ηres [-] Tstruct [s]
free edge 9.22×10−5 0.9998 2.41×104

simply supported 233.57 0.0075 1.25
clamped 476.88 0.0075 0.61

Table 2: Structural decay times at the first eigenmode of a circular plate with
three different constraint conditions.

of damping other than internal material loss factor was considered in the model,
this phenomenon can be attributed to the relationship between material damping
and the flexural stiffness resulting from different constraint conditions. Indeed,
since a clamped plate is less free to vibrate with respect to a simply supported or
free-edged plate, sound energy is more easily dissipated by deflection. This is also
observable from the impedance trends: as long as constraint become less rigid, the
phase curve becomes less damped, up to the free edge case where a steep trend is
observable in correspondence of the resonance frequency. A further demonstration
of such phenomenon can be provided by evaluating the structural modal decay
times for the same plate subjected to different edge conditions. Structural decay
times Tstruct can be calculated by inverting the relationship provided by Cremer
[9], as follows:

Tstruct = ln(106)
2πfresηres

(100)

where fres and ηres are respectively the real part and the damping ratio associated
to the eigenfrequency in question. These quantities can be readily calculated by
means of a FEM eigenfrequency study. As summarized in Table 2, structural
modal decay times decrease from a value of 2.41×104 seconds for the free edge
case to values of 1.25 and 0.61 seconds for the simply supported and clamped edge
conditions, respectively.

The outcomes of this preliminary analysis revealed that:

• as noticeable from Figure 13, analytical approximate models provide the same
results in terms of impedance and absorption coefficient as those resulting
from FEM simulations of free edge panels: this is in compliance with the
assumption of pistonic motion and infinite sized vibrating panels, although
it represents the less realistic condition when compared to the build-up of
real absorbers;

• from now on, the analysis will be focused on panel absorbers with clamped
edges, since they represent the closest condition to the building process of
a real panel absorber, due to its ease of construction and affordable costs.
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Figure 13: Surface Impedance phase (top) and absorption coefficient (bottom) of a
10 cm diameter panel resonator for different constraint conditions: approximate
model, FEM clamped edges, FEM simply supported edges, FEM free
edges.

Nevertheless, it is the most mathematically far condition from approximate
models, hence the need for a more detailed characterization, which is one of
the main objectives of this thesis.
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5 Impedance of finite-sized clamped plates: ex-
perimental and numerical analysis

In this chapter, analytical formulations of the specific acoustic impedance of finite-
sized clamped plates are validated against numerical simulations and experimental
measurements. Circular and rectangular plates are tested within a standing wave
tube, with the aim of evaluating their transmission loss and then specific acoustic
impedance, by means of the acoustic method proposed by Song and Bolton [5]
and implemented in the ASTM E2611-19 standard [30]. Resulting quantities are
compared against analytical formulations of Eq. 48 for circular plates and Eq.
72 for rectangular plates. Possible variations in the resulting acoustic impedance
due to oblique sound incidence are investigated numerically and analytically, by
introducing slight but significant integrations to Eq. 72, to account for plane oblique
incidence in the case of rectangular clamped plates.

5.1 Acoustical measurement of the specific acoustic impedance
of a plate

A transfer matrix based method for evaluating the acoustical properties (such as
characteristic impedance and complex wavenumber) of homogeneous and isotropic
porous materials was proposed by Song and Bolton [5] and successively implemented
in the ASTM E2611-19 standard [30]. Here the basic formulations are presented and
some considerations are introduced in order to extend the method to applications
involving elastic plate samples in bending.

The experimental test-rig for the application of such a method is schematized
in Figure 14: an impedance tube is divided in two segments by the sample holder,
which is placed halfway of its length. A plane wave normally incident sound field
is radiated into the section upstream of the sample by a loudspeaker placed at one
end of the tube. Sound pressure values are measured at positions P1 to P4,two of
them being located in the downstream segment of the tube. The other end of the
tube is capped by means of an anechoic termination (usually a layer of porous
material). Complex sound pressures measured at positions 1 to 4 can be written as
the superposition of positive and negative going sound waves A,B,C,D as follows:
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P1 = (Ae−jkx1 +Bejkx1)ejωt, (101)
P2 = (Ae−jkx2 +Bejkx2)ejωt,

P3 = (Ce−jkx3 +Dejkx3)ejωt,

P4 = (Ce−jkx4 +Dejkx4)ejωt,

where x1to x4 represent the coordinates of the four microphone positions, k is the
wavenumber in air and A,B,C and D can be written as:

A= j(P1ejkx2 −P2ejkx1)
2sink(x1 −x2) (102)

B = j(P2e−jkx1 −P1e−jkx2)
2sink(x1 −x2)

C = j(P3ejkx4 −P4ejkx3)
2sink(x3 −x4)

B = j(P4e−jkx3 −P3e−jkx4)
2sink(x3 −x4) .

In light of the above, transfer matrix calculation can be applied to relate each
other pressure and normal particle velocity fields at the upstream and downstream
interfaces of the sample, as follows:

 P

V


x=0

=
 T11 T12

T21 T22

 P

V


x=d

(103)

where x= 0 and x= d are the linear coordinates of the two faces of the sample.
Pressure and velocity values can be expressed as a function of the travelling waves
A,B,C,D as follows:

P |x=0 = A+B (104)

V |x=0 = A−B

ρ0c
(105)

P |x=d = Ce−jkd +Dejkd (106)

V |x=d = Ce−jkd −Dejkd

ρ0c
(107)

where ρ0c is the characteristic impedance of plane waves in air and d is the
sample thickness. Equation 103, which represents an overdetermined system of
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equations, can be reduced to a linear system and solved by taking in account the
principles of reciprocity and simmetry, yielding:

T11 = T22 (108)
T11T22 −T12T21 = 1.

In light of this, the terms Tij can be written as:

T11 = P |x=d V |x=d + P |x=0 V |x=0
P |x=0 V |x=d + P |x=d V |x=0

(109)

T12 = P |2x=0 − P |2x=d

P |x=0 V |x=d + P |x=d V |x=0
(110)

T21 = V |2x=0 − V |2x=d

P |x=0 V |x=d + P |x=d V |x=0
(111)

T22 = P |x=d V |x=d + P |x=0 V |x=0
P |x=0 V |x=d + P |x=d V |x=0

. (112)

The Tijterms if the matrix in Eq. 103 can be related to the acoustic properties
of elastic plates in bending by considering the following formulation reported by
Allard et al. [28]:

 σx

vx


x=0

=
 1 −Zp(ω)

0 1

 σx

vx


x=d

(113)

where σx and vx are the normal stresses and velocities on the faces of the plate and
Zp represents its mechanical impedance, given as a ratio of pressure over velocity.
Due to the acoustical excitation of the vibrating plate, this can also be intended as
the specific acoustic impedance of the plate, which can be calculated by means of
Eq. 72 for rectangular plates and Eq. 48 for circular plates.
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Figure 14: Schematic of the tube test-rig for the application of the Song-Bolton
method. Taken from ref. [5].

5.1.1 Rectangular clamped plate

The normal specific acoustic impedance of a rectangular clamped plate has been
calculated according to Eq. 72. In order to validate such a formulation against
experimental data, sound transmission measurements were performed by means
of an impedance tube of rectangular cross section. An acrylic plate was tested,
the geometrical and mechanical properties of which are reported in Table 3. The
acoustic method proposed by Song and Bolton [5] was employed for measuring
the specific acoustic impedance of the plate. As suggested by the authors, a steel
standing wave tube of 143×93 mm rectangular cross section was used, with an
additional tube segment mounted downstream of the sample holder. The acrylic
plate was secured to the tube structure by means of through screws on side flanges
of the tube, in order to simulate edge clamped conditions. A half-inch microphone
was placed at four locations along the tube, two upstream the sample holder and
the others across the additional tube section, which was provided with a polyester
fiber anechoic termination. A schematic of the measurement set up is shown in
Figure 15. Analytical impedance, calculated from Eq. 72, is compared to that
measured, showing a good agreement in terms of magnitude and phase (Figure
16). Phase inversion occurs at the first radiative mode of the plate (1,1), whose
associated modeshape is depicted in Figure 17.

Lx[mm] Ly[mm] h [mm] E [GPa] ν[−] η [−] ρ [kgm−3]
143.00 93.00 2.00 2.89 0.35 0.01 1078.58

Table 3: Geometrical and mechanical properties of the acrylic plate: Lx and Ly

(side lengths), h (thickess), E (elastic modulus), ν (Poisson’s ratio), η (material
loss factor), ρ (mass density).
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Figure 15: Schematic of the setup for sound transmission measurements of a
rectangular plate in a standing wave tube. Dimensions are expressed in mm.

Figure 16: Magnitude and phase of the specific acoustic impedance of a rectangular
clamped acrylic plate: measured values; analytical values.

Figure 17: Modeshape of a 143 mm × 93 mm plate at the first radiative resonant
frequency (506 Hz), obtained from FEM eigenfrequency study on an acrylic shell
clamped at the edges.
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5.1.2 Circular clamped plate

Similarly to the case above, the Song-Bolton method was applied also to the
case of circular plates. On this purpose, a circular steel impedance tube was
used in order to test a circular aluminum plate. Geometrical and mechanical
properties of the plate are reported in Table 4. The choice of a very reduced
sample thickness, allowed for emulating edge clamping conditions by framing the
aluminum plate in the middle of the profiled joint connecting the two tube segments
(see Figure 18). Also in this case, acoustic impedance calculated from Eq. 48 is
compared to that measured in terms of magnitude and phase within the range of
frequency of 250-2000 HZ, in which plane wave assumption is valid. As visible from
Figure 19, results are in good agreement over frequency, and at both resonances
visible at 477 Hz and 1833 Hz, corresponding to the first two radiative modes of
the plate, the modeshapes of which are similar to those depicted in Figure 12.
Some deviation between measured and analytical values is observable close to the
antiresonance peak in the impedance magnitude: this may be expected in light of
the sudden transition from a resonant to a rigid behaviour in correspondence of
the antiresonance. Nevertheless, the measured impedance value at antiresonance is
far more greater than the characteristic impedance of air, suggesting a fairly rigid
behavior of the plate, as expected at that frequency.

ϕ[mm] h [mm] E [GPa] ν[−] η [−] ρ [kgm−3]
100.00 0.50 69 0.33 0.015 3006.63

Table 4: Geometrical and mechanical properties of the circular aluminum plate: ϕ
(diameter), h (thickess), E (elastic modulus), ν (Poisson’s ratio), η (material loss
factor), ρ (mass density).

Figure 18: Schematic of the setup for sound transmission measurements of a
circular plate in a standing wave tube. Dimensions are expressed in mm.
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Figure 19: Magnitude and phase of the specific acoustic impedance of a circular
clamped aluminum plate: measured values; analytical values.

5.2 Numerical investigation on the plate response to oblique
plane waves

In the analytical formulations adopted so far, sound fields exciting the samples
under analysis were always assumed to be plane and normal to the surface of the
plate. Under this assumption, the pressure distribution over the plate surface is
uniform, regardless of frequency and the dimensional relationship between acoustic
wavelengths and the characteristic dimensions of the sample. In light of that, a
numerical investigation was carried out on a baffled rectangular plate, by varying
the angle of incidence of the impinging sound field, in order to test the validity of
Eq. 72, which was properly integrated to account for such an external condition. In
particular, the term P (x,y), representing the incident pressure distribution defined
over the surface of the plate, can be more generally defined by accounting for
oblique angles of incidence, as follows:

P (x,y) = p0e
−jk0[xsinθcosφ+y sinθsinφ], (114)

where θ and φ respectively represent the zenithal and azimuthal angles of incidence
and p0 is the pressure amplitude. Substituting P (x,y) as defined in Eq. 114 into
Eq. 72, it would be possible to calculate the resulting acoustic impedance, in
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Lx[mm] Ly[mm] h [mm] E [GPa] ν[−] η [−] ρ [kgm−3]
143.00 93.00 0.50 70 0.25 0.02 3000

Table 5: Geometrical and mechanical properties of the acrylic plate: Lx and Ly

(side lengths), h (thickness), E (elastic modulus), ν (Poisson’s ratio), η (material
loss factor), ρ (mass density).

Figure 20: Free-field FEM meshed domain: the baffled rectangular clamped shell
lies in the xy plane (mapped quadratic elements), surrounded by a spherical air
domain (tetrahedral meshes). External PML shells are discretised by means of
swept meshes.

presence of a plane and oblique condition of incidence. In order to investigate the
validity of this formulation, a set of numerical FEM simulations was performed, by
considering a baffled and clamped rectangular plate in free field conditions, excited
by a background sound pressure field at various angles of incidence. In order to do
so, a three-dimensional model was set up considering a baffled plate lying on the
middle plane of a sphere, which was modeled as an acoustic domain with its external
shells defined as Perfectly Matched Layers (PML): such numerical conditions are
essential to guarantee a perfect sound absorption at the boundaries, with the aim
of effectively simulating acoustic free field conditions. In the first instance, the
model was validated by assuming normal plane wave incidence, and comparing
the acoustic impedance evaluated as the ratio of the surface averaged acoustic
pressure and particle velocity over the surface of the plate. Such an impedance, was
then compared to that calculated from Eq. 72, assuming plane wave field normal
incidence. The geometrical and mechanical features of the plate in question are
summarized in Table 5, whilst the meshed FEM domain is depicted in Figure 20.

On this purpose it is worth to highlight that mapped quadratic mesh elements
were chosen to discretise the structural domain, by identifying the smallest element
size as λstruct/10, where λstruct is the smallest bending wavelength. The adjacent
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Figure 21: Top: Magnitude and phase of the specific acoustic impedance of a rect-
angular clamped aluminum plate for plane wave incidence at θ = 0◦: analytical
values; FEM simulated values. Bottom: representation of the incident sound
pressure field at 1 kHz within the air domain of the FEM model. The baffled plate
lies in the xy plane and PML shells surround the spherical air domain.
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Figure 22: Top: Magnitude and phase of the specific acoustic impedance of a rect-
angular clamped aluminum plate for plane wave incidence at θ= 30◦: analytical
values; FEM simulated values. Bottom: representation of the incident sound
pressure field at 1 kHz within the air domain of the FEM model. The baffled plate
lies in the xy plane and PML shells surround the spherical air domain.
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Figure 23: Top: Magnitude and phase of the specific acoustic impedance of a rect-
angular clamped aluminum plate for plane wave incidence at θ= 45◦: analytical
values; FEM simulated values. Bottom: representation of the incident sound
pressure field at 1 kHz within the air domain of the FEM model. The baffled plate
lies in the xy plane and PML shells surround the spherical air domain.
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Figure 24: Top: Magnitude and phase of the specific acoustic impedance of a rect-
angular clamped aluminum plate for plane wave incidence at θ= 60◦: analytical
values; FEM simulated values. Bottom: representation of the incident sound
pressure field at 1 kHz within the air domain of the FEM model. The baffled plate
lies in the xy plane and PML shells surround the spherical air domain.
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Figure 25: Top: Magnitude and phase of the specific acoustic impedance of a rect-
angular clamped aluminum plate for plane wave incidence at θ= 75◦: analytical
values; FEM simulated values. Bottom: representation of the incident sound
pressure field at 1 kHz within the air domain of the FEM model. The baffled plate
lies in the xy plane and PML shells surround the spherical air domain.
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Figure 26: Magnitude and phase of the analytical specific acoustic impedance
of a rectangular clamped aluminum plate for plane wave incidence at θ =
0◦,30◦,45◦,60◦,75◦.

air domain was meshed using free tetrahedral elements according to the λ/8 rule
of thumb, whilst for PMLs swept meshes were used. Specific acoustic impedances
are compared in Figure 21: as noticeable from the graph, in the frequency range of
300-1000 Hz, the first two radiative modes are observable (352 Hz and 848 Hz),
showing a good agreement between numerical and analytical data.

Once such a model was validated, the zenith angle of incidence θ with respect
to the normal direction to the plate, of the impinging sound field was gradually
varied across values of θ = 30◦,45◦,60◦,75◦. For each of this value, a new simulation
was performed and the plate acoustic impedance was evaluated and then compared
to the analytical solution from Eq. 72, which was properly integrated considering
the oblique incident pressure P (x,y) from Eq. 114. As visible from Figures 22-
25, analytical results are again in good accordance with numerical impedances,
confirming the validity of the analytical model also for plane oblique incidence
conditions. Furthermore, it was highlighted that the eigenfrequencies of the first
two radiative modes are held constant regardless of the angle of incidence. A
relevant change is detected at the first antiresonance, which, as shown in Figure 26,
results to be gradually shifted up in frequency as the zenith angle θ increases. This
is also associated to a progressive reduction of the impedance magnitude peaks,
the greater the angle θ. This last effect, due to sound pressure phase lags on the
surface of the sample generated by the oblique wavefront, requires further analyses
in order to be properly implemented in the analytical model.
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6 Surface impedance of panel absorbers: a nu-
merical validation

In this chapter, the analytical surface impedance of plate-cavity coupled absorbers
has been calculated for circular and rectangular samples. As will be highlighted in
the following sections, specific acoustic impedances obtained from Eq. 48 and Eq.
72 were coupled in series with the impedances of the backing cavities, in some cases
extending the analysis also to multilayered backings with porous layers, which
were taken in account by integrating the analytical formulation with the transfer
matrix method (Eq. 76). Analytical impedances so calculated were then compared
to the normal acoustic impedance of circular and rectangular samples, which were
numerically evaluated either as pressure-velocity ratios over the plate surface or
by applying the transfer function method [6] to the results of FEM simulations
that virtually replicated sound incidence conditions of an impedance measurement
test-rig in a standing wave tube. Further analyses were carried out on a square
absorber, in order to investigate the validity of the analytical surface impedance
formulation also in the case of spherical sound incidence. On this purpose, a
hemispherical free-field FEM model was set, in order to simulate diversified sound
incidence conditions on a baffled panel absorber.

6.1 Circular panel absorber

A circular panel absorber was tested in order to validate the analytical formulation
of its normal surface impedance introduced below. The sample in question, shown
in Figure 27, was constituted of a circular and edge clamped aluminum plate
(whose geometrical and mechanical properties are listed in Table 4) backed by
a 4.5 cm deep air cavity. The normal surface impedance of the coupled system
was analytically obtained by adding in series the specific acoustic impedances of a
circular clamped plate, as defined in Eq. 48 to that of an air cavity of depth d, as
defined in Eq. 73. Combining the two expressions above, yields:

⟨ZS⟩ = ⟨Zp⟩+Za = −j
(
ωm · I1(kBa)J0(kBa)+J1(kBa)I0(kBa)

I1(kBa)J2(kBa)−J1(kBa)I2(kBa) +Z0cot(k0d)
)

(115)
where k4

B = ω2m
D is the bending wavenumber of waves propagating through the plate,

m is the plate surface mass, a is the plate radius, Z0 is the characteristic impedance
of air, k0 is the wavenumber in air and d is the cavity depth. The impedance resulting
from Eq. 115 was compared to the numerical surface impedance retrieved from a
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FEM model replicating the experimental test rig as defined by ISO 10534-2:1998
[6], and applying the transfer function method described in the same standard. A
multiphysics FEM simulation was set by modelling a circular edge clamped plate
as a shell: the structural-acoustics coupling was assigned by introducing continuity
conditions of velocity at the interface between the shell domain and the adjacent
air domains, represented by the backing cavity and by the tube segment where
an incident plane sound field was assigned as an external excitation. According to
Figure 28, the system was discretised by using free triangular elements for the shell
domain, whose maximum size was equal to λstruct/10. Free tetrahedral meshes were
employed to discretise air domains and sized according to the λmin/10 criterion.
Normal plane wave incidence conditions were set by assigning an inward normal
velocity to the end of the tube corresponding to the loudspeaker diaphragm.

Numerical and analytical impedances are compared in Figure 29, showing a
good agreement over frequency, especially at the first resonance occurring at 504
Hz, where a shift of 3 Hz is observable between numerical and analytical curves.
Nevertheless, a greater shift of 25 Hz is detectable at the second resonance mode,
occurring at 1828 Hz for the FEM solution and at 1854 Hz for the analytical
model. Sound absorption peaks around 0.70 are observable at the first and second
resonance respectively (Figure 30), in both numerical and analytical results.

Figure 27: Schematic of the circular panel absorber simulated in FEM.
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Figure 28: Meshed FEM model of the experimental test-rig as defined by ISO
10534-2:1998 [6]. The shell was meshed using free triangular elements, air domains
were discretised by means of free tetrahedral elements according to the λmin/10
criterion.

Figure 29: Magnitude and phase of the normal surface acoustic impedance of a
circular clamped aluminum plate backed by a 4.5 cm deep air cavity: analytical
values; FEM simulated values.
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Figure 30: Normal sound absorption coefficient of a circular clamped aluminum
plate backed by a 4.5 cm deep air cavity: analytical values; FEM simulated
values.

6.2 Rectangular panel absorber

Similarly to the case of a circular sample, the analytical surface impedance of a
rectangular panel absorber was calculated by adding in series the surface averaged
acoustic impedance of a clamped rectangular plate, as defined in Eq. 72 and the
impedance of a cavity of depth d, yielding the following relationship

⟨ZS⟩ = ⟨Zp⟩+Za =
� b

0
� a

0 P (x,y)dxdy

jω

{� b
0
� a

0

[∑∞
m
∑∞

n

� b
0
� a

0 P (x,y)XmYn dxdy

D(I1I2+2I3I4+I5I6)−mω2I2I6
Xm(x)Yn(y)

]
dxdy

}
(116)

− jZ0cot(k0d) (117)

where the variables involved hold the same meaning introduced in the Subsection
2.4.1.

The impedance so calculated was compared to the numerical impedance eval-
uated from FEM multiphysics simulations assuming plane wave normal sound
incidence upon the surface of the absorber (Figure 34). The latter was constituted
of an acrylic rectangular plate, clamped at the edges and coupled to a backing
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cavity of 3 cm depth. Geometrical and mechanical properties of the absorber are
summarized in Figure 31 and Table 6. This test-rig was modeled in FEM by setting
up a multiphysics simulation where the thin plate was defined as an edge clamped
shell and the structural-acoustics coupling conditions to the adjacent air volumes
was achieved by applying velocity continuity conditions. The resulting normal
acoustic impedance was evaluated as the surface averaged pressure-velocity ratio
at the plate-air interface towards the domain of the incident sound field.

Analytical and numerical surface impedances and absorption coefficients are
compared in Figures 32 and 33. As noticeable from the graphs, the curves are in
good agreement in terms of amplitude and resonance frequencies: in particular, a
shift of 2 Hz is observable between the analytical and numerical solution at the first
resonance frequency occurring at 319 Hz. Figure 34 shows the numerical pressure
distribution within the backing cavity and external air volumes and the transverse
velocity distribution over the shell surface at the first resonance frequency: as
visible from the plots, the shell vibrates according to the first radiative modeshape
(1,1) of a rectangular clamped plate – occurring at 238 Hz in the case of uncoupled
conditions – achieving the maximum amplitude of transverse displacement at the
center of the surface, consequently transmitting sound energy into the backing
cavity. Given that, a sound absorption peak of 0.47 is observable in Figure 33.
A further absorption peak, related to the second radiative plate mode (3,1), is
observable at 568 Hz. At this point, it is interesting to evaluate the effect of the air
backing cavity onto the resulting acoustic impedance of the whole coupled system
with respect to the specific acoustic impedance calculated for the isolated plate
vibrating in uncoupled conditions. As visible from Figure 32, the first flexural
mode (1,1) of the uncoupled clamped plate occurring at 238 Hz is shifted up to
319 Hz, when coupling the plate to a narrow air cavity. A smaller shift is also
observable at the second mode (3,1), which is shifted up in frequency of 10 Hz.
This phenomenon is due to the additional stiffness provided by the air spring
represented by the backing cavity, which should be narrow enough to ensure an
adequate bulk stiffness, namely preventing transverse acoustic modes occurring
within its volume. Given that, according to equation 116, narrower cavities will
increase the frequency shifting effect, whilst wider cavities will reduce it or at most
cancel it out, when the cavity volume is big enough to allow for transverse standing
waves to occurr in the frequency range of interest.
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Figure 31: Schematic of the rectangular panel absorber simulated numerically.

Ly[mm] Lz[mm] h [mm] E [GPa] ν[−] η [−] ρ [kgm−3]
143 93 1 2.89 0.35 0.02 1190

Table 6: Geometrical and mechanical properties of the rectangular acrylic plate:
Lxand Ly (side lengths), h (thickness), E (elastic modulus), ν (Poisson’s ratio), η
(material loss factor), ρ (mass density).

Figure 32: Magnitude and phase of the normal surface acoustic impedance of a
rectangular clamped acrylic plate backed by a 3 cm deep air cavity: analytical
values; FEM simulated values. analytical acoustic impedance values of
the uncoupled plate.
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Figure 33: Normal sound absorption coefficient of a rectangular clamped acrylic
plate backed by a 3 cm deep air cavity: analytical values; FEM simulated
values.

Figure 34: Left hand side: meshed 3D domain: quadratic mapped elements were
used for the shell, air domains were meshed by using free tetrahedral elements; in
the middle: distribution of the total acoustic pressure within cavity and external
air domains at 319 Hz; right hand side: transverse velocity distribution over the
shell surface at 319 Hz.

6.2.1 Effects of porous layers within the backing cavity

A further numerical analysis was conducted in order to investigate the effects of
partially filling the air cavity with a layer of porous material. In this case, the
sample tested in the analysis above was updated by adding a 1.5 cm thick layer of
porous material into the cavity, with air flow resistivity σ = 5000 rayls/m, placed
in contact with the rigid end of the backing cavity, as shown in Figure 35. In such
a way, the thickness of the air layer, adjacent to the thin plate, was halved to
1.5 cm. A FEM simulation with the same setup as the case above was carried
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out, in order to calculate the resulting surface averaged acoustic impedance. The
analytical model of a multilayered backing with a layer of porous material partially
filling the air cavity was accounted for, by applying the transfer matrix method
according to Eq. 76. In this case, the surface averaged acoustic impedance ⟨ZS⟩
becomes:

⟨ZS⟩ = ⟨Zp⟩+Za,2 =
� b

0
� a

0 P (x,y)dxdy

jω

{� b
0
� a

0

[∑∞
m
∑∞

n

� b
0
� a

0 P (x,y)XmYn dxdy

D(I1I2+2I3I4+I5I6)−mω2I2I6
Xm(x)Yn(y)

]
dxdy

}
(118)

− Za,1jZ0cot(k0d)+ρ2
0c

2
0

Za,1 − jZ0cot(k0d)
,

where Za,1 = −jZporcot(kpordpor) is the surface impedance at the interface
between the porous layer and the air gap, with Zpor and kpor were calculated from
Miki model and dpor is the thickness of the porous material.

A comparison between the absorber with and without porous layer within the
cavity is shown in Figures 36 and 37 in terms of surface impedance and absorption
coefficient. As noticeable from the graphs, the first resonance peak was shifted
down in frequency of 9 Hz, whilst a slighter frequency downshift of 1 Hz is observed
at the second resonance. Additional dissipation is provided at the first resonance
frequency, increasing the sound absorption peak from 0.46 to 0.87. On the other
hand, sound absorption at the second resonance was slightly decreased from 0.94
to 0.89. These results suggests that:

• the more the acoustic damping is increased into the backing cavity by placing
a layer of porous material within its volume, the less the stiffness of the
air layer is dominant, slightly shifting down the resonance frequencies of
the system towards the eigenfrequencies of the plate modes in uncoupled
conditions;

• sound absorption at eigenfrequencies corresponding to the higher order modes
of the plate, which are not significantly affected by the air cavity stiffness in
coupled conditions, is slightly decreased when adding a porous layer within
the cavity;

• sound absorption at the eigenfrequencies of the plate which are significantly
affected by the stiffness of the backing cavity in coupled conditions, is
significantly increased when adding a porous layer within the cavity.
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Figure 35: Schematic of the rectangular panel absorber with a porous layer
partially filling the air cavity, simulated numerically.

Figure 36: Magnitude and phase of the normal surface acoustic impedance of
a rectangular clamped acrylic plate backed by a 1.5 cm deep air cavity and 1.5
cm thick layer of porous material (σ = 5000 rayls/m): analytical values;
FEM simulated values. numerical acoustic impedance values of the panel
absorber without porous layer (3 cm air cavity).
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Figure 37: Normal sound absorption coefficient of a rectangular clamped acrylic
plate backed by a 1.5 cm deep air cavity and 1.5 cm thick layer of porous material
(σ = 5000 rayls/m): analytical values; FEM simulated values.
numerical absorption coefficient of the panel absorber without porous layer (3 cm
air cavity).

In order to find out how such a damping effect may be enhanced, a numerical
parametric analysis was conducted by increasing either the thickness or the air flow
resistivity of the porous layer, changing those quantities in turn. At a first instance,
the surface impedance was calculated for the same panel absorber configuration as
depicted in Figure 35, leaving unaltered the thickness d1 of the porous layer and
by choosing among a set of different values of air flow resistivity σ equal to 2000
rayls/m, 5000 rayls/m and 10000 rayls/m, which represent plausible values of σ
for porous materials commonly used in acoustic applications. Sound propagation
within the porous layer volume was again modelled by resorting to the Miki
model [29]. In Figure 38, the trend of the normal sound absorption coefficient is
depicted, showing negligible effects due to the variation of flow resistivity, in terms
of frequency shifting and absorption. For the sake of clarity, the resulting resonance
frequencies and absorption coefficient peaks for each value of air flow resistivity
are summarized in Table 7.

An additional parametric numerical analysis was carried out by choosing
different thicknesses of the porous layer among values of d1 equal to 0.5 cm, 1.5
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Figure 38: Normal sound absorption coefficient of a clamped rectangular acrylic
plate backed by a 1.5 cm deep air gap and a 1.5 cm thick layer of porous material
with different values of air flow resistivity σ.

Figure 39: Normal sound absorption coefficient of a clamped rectangular acrylic
plate backed by an air layer d2 and a porous layer d1. Values are reported for
different values of d1 and d2.
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d1[cm] σ[rayls/m] fres,1 [Hz] α at fres,1 [−] fres,2 [Hz] α at fres,2 [−]
1.5 2000 312 0.84 565 0.90
1.5 5000 310 0.87 565 0.89
1.5 10000 308 0.86 564 0.89

Table 7: First and second resonance frequencies and related sound absorption for
different values of the air flow resistivity of the porous layer d1.

d1[cm] d2[cm] σ[rayls/m] fres,1 [Hz] α at fres,1 [−] fres,2 [Hz] α at fres,2 [−]
0.5 2.5 5000 314 0.65 566 0.93
1.5 1.5 5000 310 0.87 565 0.89
2.5 0.5 5000 305 0.98 563 0.80

Table 8: Sound absorption values at the first and second resonance frequencies
for different values of thickness of layers d1 and d2.

cm and 2.5 cm, and accordingly varying the air layer thickness d2 in order to keep
the depth of the whole cavity d1 +d2 equal to 3 cm, as shown in Figure 35. FEM
simulations were performed by leaving unaltered the model setup used for previous
analyses, and air flow resistivity σ was kept constant to 5000 rayls/m. Results
in terms of sound absorption coefficient are shown in Figure 39 and summarized
in Table 8: as noticeable, significant effects are observed in terms of frequency
shifting and absorption peak variations when changing the thickness of the porous
layer. In particular, being equal the thickness d1 +d2, an increase of the porous
layer thickness d1 implies a downshift of resonance frequencies, enhancing sound
absorption at the first mode and decreasing it at the second resonance. Vice versa, a
decrease of the porous layer d1 shifts up the eigenfrequencies, decreasing absorption
at the first resonance and increasing it at the second one. A progressive reduction
of the porous layer thickness d1 implies the resulting impedance and absorption
coefficient approach those of a rectangular panel backed by a 3 cm air cavity,
reported in Figures 32 and 33.

6.3 Numerical investigation on the resonator response to
spherical sound incidence

Alongside the validation of the surface averaged impedance of panel aborbers
for normal plane wave incidence, a numerical analysis was performed in order to
investigate the response of a square panel absorber under spherical wave excitation
and consequently the effects of such a wavefront on the resulting surface impedance
evaluated as a pressure-velocity ratio over the surface of the panel. In particular,
a set of FEM simulations was carried out by simulating the acoustical excitation
of such a panel, inserted in a rigid baffle in order to minimize edge effects, by a
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L [cm] d [cm] h [cm] E [GPa] ν[−] η [−] ρ [kgm−3] d1 [cm] d2 [cm]
45 10 0.50 3.7 0.25 0.05 760 5 5

Table 9: Geometrical and mechanical properties of the square absorber composed
by a MDF plate coupled to a multilayered porous-air backing cavity: L (side
length), h (plate thickness), E (elastic modulus), ν (Poisson’s ratio), η (material
loss factor), ρ (mass density), d1 (thickness of the porous layer), d2 (depth of the
air gap).

monopole source placed at different heights above the panel in free field. Geometrical
and mechanical properties of the absorber are summarized in Table 9.

The square shape of the absorber was chosen in order to ensure geometrical
symmetry of the test-rig. This was simulated by modelling a hemispherical air
domain of radius equal to 1.80 m, surrounded by a perfectly matched layer (PML),
which ensures the minimization of sound reflections occurring at the boundaries
of the model (Figure 41). As in the case of Section 5.2, the efficiency of PML
was validated against analytical relationships, by comparing the numerical sound
pressures evaluated at several points assuming a perfectly rigid floor to the pressure
values calculated analytically at the same points. The increased overall dimension
of the absorber, with respect to those analyzed in the previous investigations, was
chosen in order to provide a sufficient sound pressure variation along the surface
of the plate, in light of the spherical wavefront. A preliminary evaluation of such
variation was performed analytically by gradually increasing the height of the
monopole source. The resulting sound pressure was calculated along the x direction
from the center point to the edge of the plate according to the following relation:

p(x) = A

r
sin(ωt−kr) (119)

where A is the pressure amplitude of the spherical wave, t is time, k is the
wavenumber in air, ω is the angular frequency and r is calculated as

√
x2 +h2

according to the schematization depicted in Figure 40. According to this, the
variation of sound pressure levels along the x direction on the surface of the plate
was calculated as follows:

△Lp(x) = |Lp(x)−Lp(0)| . (120)

Such variations are reported in Figure 42, at 50 Hz for different source heights,
namely 0.20 m, 0.40 m, 0.60 m, 1.20 m and 1.50 m, along the direction normal to
the panel and passing through its center.

Considering those source heights, a set of FEM simulations was performed
according to the model setup depicted in Figure 41. For each simulation the averaged

87



Figure 40: Monopole source S placed at a height h from the top surface of the
absorber. Sound pressure is calculated at several points along x, as a function of
the distance r.

Figure 41: Three dimensional FEM model setup of a monopole source radiating
over a baffled panel absorber in free field conditions. The hemispherical air domain
of 1.80 m radius is surronded by a Perfectly Matched Layer (PML) to prevent
sound reflection from the boundaries.
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Figure 42: Sound Pressure Level variation calculated at different distances from
the center of the panel for several heights of a monopole source radiating at 50 Hz.

Figure 43: Distribution of the total sound pressure field [Pa] in the three
dimensional FEM model of a monopole radiating over a baffled panel absorber
in free field conditions. For the case in Figure, the source was placed at a height
h= 1.50 m.
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Figure 44: Comparison of the surface averaged analytical impedance of the panel
absorber against those evaluated from the free field FEM model for several heights
of the monopole source.

Figure 45: Comparison of the analytical absorption coefficient of the panel
absorber against those evaluated from the free field FEM model for several heights
of the monopole source.
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surface impedance of the absorber was calculated as the average pressure-velocity
ratio over the surface of the panel. Such numerical impedances are compared
in Figure 44 against the analytical impedance, calculated according to Eq. 118.
Results are also shown in terms of absorption coefficients in Figure 45.

The results shown in the graphs provide some insights on two main effects:

• surface impedance and absorption coefficients show no significant variations
in correspondence of the panel resonance frequencies, holding the same values
of absorption peaks regardless of the source height;

• relevant effects are observable in proximity of the antiresonance occurring
at 289 Hz, where the impedance becomes smaller the closer the monopole
source to the absorber top surface.

As expectable, the latter point may be attributable to phase lag effects due to
the spherical wavefront, which do not occur in the case of a plane wave normal
incidence. Nevertheless, some further analytical and experimental investigations
are in progress, in order to thoroughly analyze the relationship between direct
and scattered sound pressure fields in proximity of the absorber surface. However,
the unchanged acoustic behaviour of the panel around resonance frequencies is
promising with regards to the potential of the analytical model to account for
different conditions of sound incidence.
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Part III

Real room case study
Sound absorption of acoustic resonances in the low modal density region of enclosed
spaces has been extensively studied over time and still presents a challenging topic
with reference to room acoustics predictive analyses. As it is well known, geometrical
acoustics simulation techniques [31, 32] do not account for wave propagation effects
resulting from the interaction of sound waves with room boundaries. Numerical
methods such as FEM [33, 34], BEM [35, 36, 37] or FDTD [38, 39] are necessary to
achieve an acceptable degree of reliability, especially in the case of arbitrarily shaped
rooms. In particular, in FDTD simulations, immersed boundary methods seem to be
a promising approach to model complex impedance surfaces [40, 41]. To this end, an
exhaustive definition of a complex and frequency dependent acoustic impedance at
room boundaries is required. While this has been achieved with acceptable accuracy
for porous absorbers [42, 43, 44], a certain degree of uncertainty is still present in
the case of resonant panel absorbers. Nevertheless, the latter represent one of the
most employed solutions for low frequency room modes absorption, due to their
affordable cost, ease of construction and compliance with architectural constraints.
As described in the chapters above, such systems are generally composed of an
impervious flexible plate backed by a sealed air cavity, which must be narrow
enough to ensure an adequate bulk stiffness, namely preventing transverse acoustic
modes occurring within its volume. Usually, the cavity is partially filled with a
layer of porous material to provide additional damping and broaden the spectrum
of sound absorption around resonance frequencies. As a result, sound energy is
dissipated by means of either flexural damping – due to the panel bending – or
by thermoviscous losses occurring throughout the porous layer. In order to allow
for a proper vibroacoustic excitation of the plate, panel absorbers must be placed
at high sound pressure areas in the room – usually corners and/or rigid walls:
this way, the particle velocity profile in the cavity becomes sufficiently high to
ensure the effectiveness of the porous material in terms of sound absorption. The
analytical frequency expression of the surface averaged acoustic impedance of
rectangular panel absorbers, calculated as described in the chapters above, was
numerically validated for plane wave normal incidence conditions. From now on,
the applicability of such an expression as an impedance boundary condition into
FEM room acoustics models will be investigated experimentally and numerically. In
particular, the acoustic behaviour of an existing cuboid room has been studied and
a FEM model was built and validated against room impulse response measurements
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carried out at several receiver positions within the room. Once the modal behaviour
of the empty room was analyzed and the main eigenmodes were identified, two
configurations of acoustic treatment were proposed, based on the use of panel
absorbers. Treated room FEM models were then validated against experimental
measurements, similarly to the case of the empty room configuration. The main
assumption underlying this investigation relies on the fact that the actual surfaces
corresponding to the panel absorbers were assigned with a frequency dependent and
surface averaged acoustic impedance, calculated for normal incidence conditions
and assuming the surface to behave as a locally reacting material, namely implying
that surface impedance is not dependent on the angle of incidence. If such an
hypothesis may lead to significant errors in some cases [45], it is also true that
the sound field in rooms at lowest frequency eigenmodes generates wide areas
where sound pressure distribution is uniform in proximity of the boundary surfaces.
In light of this, although some errors can be expected and would need further
investigation, the use of this methodology, when properly validated (as in this
case), may help to circumvent the need of performing multiphysics simulations,
which imply considerably higher computational costs. In the following chapters,
the empty room FEM model validation, the design of the acoustic treatment,
discussion of results, limitations of the method and its possible improvements will
be addressed.
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7 Experimental validation of an empty room
FEM model

For this numerical-experimental analysis, an existing cuboid room, acoustically
untreated, was chosen in the premises of the Acoustics and Audio Communication
Department of the Technische Universität of Berlin, in the context of a joint
research project. The surface extension of the room was equal to 21.7 m2 and its
volume equal to 60.7 m3. Most of the boundary surfaces were acoustically rigid:
a tiled ceramic floor, 4.6 m2 of glazing and two concrete walls were present in
the room (Figure 46). False ceiling and two perimeter walls were consisting of
plasterboard, and the possible presence of porous materials within their cavity
backing was not investigated, since not relevant for the scope of the experiment.
The room was chosen due its regular shape and small volume, which allows to
observe a strong modal behaviour and well defined modeshapes at frequencies
below 200 Hz, in order to appreciate the effect of panel absorbers to be designed
with the aim of damping low frequency eigenmodes.

Figure 46: Pictures of the empty room from two different points of view.

7.1 Room Impulse Response measurements

Room impulse response measurements were performed at three receiver points
randomly distributed throughout the room (Figure 47), one of them being placed
at a corner, in order to properly identify the highest number of room resonance
frequencies. The acoustic equipment used to perform measurements consisted of a
Norsonic Nor276 dodecahedron with a frequency response defined in the 50-5000
Hz range; a Norsonic Nor280 power amplifier; a NTI MA220 omnidirectional
microphone connected to a digital audio interface for signal acquisition. The sound
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Figure 47: Plan section of the empty room with side dimensions (expressed in
m) and source and receivers positions.

power level response of the loudspeaker provided by the manufacturer is reported in
third octave bands in Figure 48. An exponential sine sweep defined in the 20-2000
Hz range was used as a test signal, with a sample rate of 48 kHz. Source and
receiver positions are shown in the plan section in Figure 47: the source height
was fixed at 0.40 m whilst receivers were placed at a 0.65 m height, in order to
excite and detect as best as possible the peaks of sound pressure level responses
associated to room modes.

7.2 FEM model setup

A three-dimensional acoustic FEM model was then set up, according to the room
geometry: the acoustic air domain was meshed using tetrahedral according to
the λmin/6 rule of thumb (Figure 49), assuming all the boundaries to behave
as sound rigid surfaces. Unknown acoustic damping already present in the room
was taken in account according to a procedure proposed by Roozen et al. [46]: a
frequency dependent acoustic loss factor was extracted from reverberation time
measurements, according to the following relationship:

ξ = ln(106)
2ωT30

≈
1.1
fT30

. (121)

This expression is equivalent to a relation proposed by Cremer [9] to calculate
the structural loss factor η of a harmonically vibrating structure as a function

95



Figure 48: Sound power level frequency response of the Norsonic Nor276 dodeca-
hedron, expressed in third octave bands. Taken from the manufacturer website:
https://web2.norsonic.com/product_single/dodecahedron-loudspeaker-nor276/.

of Tstruct, which is the time required for the structure to dissipate its vibrational
energy to one-millionth of its initial value. The acoustic loss factor was then
included into a complex sound wave velocity defined in the FEM acoustical domain,
as follows:

c= c0(1+ jξ̄) (122)

where ξ̄ is the loss factor averaged among all the receiver positions within
the room. The complex sound speed frequency expression was defined by using
a piecewise cubic interpolation function across the third octave bands values
retrieved from T30 measurements. Although it relies on non trivial assumptions,
this methodology is generally useful to calibrate FEM models, including sources of
unknown damping already present in the room, without the need of performing
multiphysics simulations.

7.3 Results and discussion

The experimental validation of the FEM room model was achieved by comparing the
measured sound pressure level responses against those evaluated numerically at the
same receiver positions. Results are shown in the 50-200 Hz frequency range: lower
and upper limits were respectively chosen due to the lower frequency limit of the
loudspeaker response and to the fact that panel absorbers were supposed to exhibit
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Figure 49: Meshed tridimensional model of the empty room: as a purely acoustical
FEM model, the air domain was meshed according to the λmin/6 criterion.

their highest efficiency at the first few room modes, occurring far below 200 Hz. In
Figure 50, numerical and measured full scaled sound pressure level (SPL) responses
are compared at each receiver, both normalized with respect to the maximum value
of the experimental curve. A reasonable agreement between them is observable
across their trend with peaks and troughs, which correspond to acoustic resonances
and antiresonances. A quantitative error analysis was performed, showing that the
frequency averaged deviation between measured and numerical responses at each
receiver is always smaller than 4 dB. In this preliminary error analysis, possible
effects due to the loudspeaker response were not taken in account. A more detailed
analysis has been carried out and discussed later on. In light of this validation, the
FEM model of the empty room was used as a basis for subsequent simulations of
the treated room, holding the complex sound velocity function previously defined
to take in account unknown existing acoustic damping.
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Figure 50: SPL full scaled frequency responses at receiver positions for the
empty room configuration at receivers R1, R2 and R3. measured values;

simulated values.
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8 Design of panel absorbers for acoustic treat-
ment at low frequency

Once the FEM model of the empty room was validated, a numerical modal
analysis was performed to identify significant room modes and consequently define
appropriate strategies of acoustic treatment. Considering the axes orientation as
depicted in Figure 51, the room mode (0,1,1) occurring at 66.6 Hz was chosen
since it is responsible for one of the highest SPL peaks in the frequency responses
shown in Figure 50. Although a Schroeder frequency equal to 335 Hz was retrieved
from reverberation time measurements, the main goal here was to identify lowest
modes to be damped by means of resonant absorption peaks typical of a single
panel absorber. In light of the above, a panel absorber was designed according to
Eq. 118, following the most common stratigraphy of such devices, as depicted in
Figure 52. It was composed of the following elements:

• a MDF plate of 5 mm thickness secured to the lateral MDF rigid frames
by means of wood screws, in order to emulate clamping conditions at the
edges. Mechanical properties of the material were partially provided by the
manufacturer and partially found in literature [8]. They are summarized,
together with geometrical features, in Table 10;

• an air layer of 2 cm thickness;

• a rigid backed glasswool layer of 16 cm thickness, with an air flow resistivity
σv=5537 rayls/m. This quantity was experimentally measured by means of
an acoustic method developed by Dragonetti et al. [7].

Ly[m] Lz[m] h[mm] E∗ [GPa] ν∗ [−] η∗ [−] ρ [kgm−3]
1.35 1.00 5.00 3.70 0.25 0.05 760.00

Table 10: Mechanical properties of the MDF thin plate: Ly and Lz (side lengths),
h (thickness), E (elastic modulus), ν (Poisson’s ratio), η (material loss factor), ρ
(mass density). The values of quantities denoted with * notation are drawn from
Bies and Hansen [8].

For this last purpose it is worthwile to highlight the experimental procedure
adopted to retrieve the air flow resistivity of the porous layer. As well established,
steady state and alternate airflow based methods are defined by the standards [47]
and [48]. Nevertheless, both would require very specific instrumentation, namely a
flow meter for the former case and high performance microphones able to properly
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Figure 51: Room mode (0,1,1) at 66.6 Hz in the empty room configuration.

Figure 52: Stratigraphy of the designed panel absorber: a 5 mm thick MDF plate
is backed by a 20 mm deep air gap and a 160 mm thick glasswool layer, rigidly
backed by a 25 mm thick MDF frame.
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detect pressure fluctuations at 2 Hz, in the latter case. Such requirements were
overcome with the method proposed by Dragonetti et al. [7], which implies the
use of standard measurement microphones due to the application of an indirect
acoustical method based on alternate airflow at frequencies higher than 2 Hz. The
experimental test-rig, depicted in Figure 53, was constituted of an impedance tube
segment of circular cross section of 10 cm diameter, in which two cavities were
present above and below the loudspeaker driver. According to proper assumptions
and approximations which are well explained in the related paper [7], the flow
resistance Ra can be obtained according to the equation:

im(r) = −ωC̄dwRa (123)

where ω is the angular frequency, C̄dw is the acoustic compliance of the cavity
downstream of the loudspeaker and im(r) is the imaginary part of the ratio between
the sound pressures measured in the upper and lower cavities. An in depth analysis
revealed that im(r) decays almost linearly in frequency below a certain upper limit
flim. According to this, the flow resistance Ra of the glasswool samples in question
was calculated as the slope of the linear regression of im(r) which, for the sample
and the measurement apparatus, in question was considered valid below 40 Hz
(Figures 53-54). The average value of measurements carried out on three different
samples turned out to be equal to 5537 rayls/m, which is in good accordance to
the manufacturer technical datasheet which provided a value of air flow resistivity
of 5000 rayls/m.

The resulting surface impedance and absorption coefficient are reported in
Figures 56 and 57. As noticeable from the graphs, the highest absorption peak
above 50 Hz is achieved within the 65-75 Hz frequency interval, which includes
the (0,1,1) eigenfrequency occurring at 66.6 Hz. Additional absorption peaks are
observable at 92, 137, 156, 161 Hz and 179 Hz, although resonances above 100 Hz
result to be significantly more damped than the others. Two different treatment
configurations were proposed in accordance with the room modeshape shown
in Figure 51. Since a uniform sound pressure distribution is clearly noticeable
in correspondence of room corners, and considering that all the standing wave
antinodes are located in that areas, a first treatment configuration was proposed
by placing one single panel absorber at a room corner. In order to enhance sound
absorption effects, a further configuration was introduced, placing an additional
panel absorber with the same characteristics at the other corner along the same
side of the room (Figure 58).
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Figure 53: Trend of im(r) over frequency: a linear decay is observable below
flim = 40 Hz.

Figure 54: Linear regression of im(r) values within the frequency interval 0-40
Hz.
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Figure 55: Experimental test-rig for the evaluation of the air flow resistance of
porous materials, according to the method proposed by Dragonetti et al. [7].

Figure 56: Magnitude (top) and phase (bottom) of the surface acoustic impedance
of the panel absorber depicted in Figure 52.
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Figure 57: Sound absorption coefficient of the panel absorber depicted in Figure
52.

Figure 58: 3D models of the treated room configurations: single panel treatment
(left-hand side); double panel treatment. Impedance conditions are assigned to the
surfaces highlighted in blue (right-hand side).
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9 The acoustic FEM model of a treated room:
experimental validation

Treated room configurations were modelled in FEM by assigning a surface averaged
and frequency dependent impedance condition, as defined in Eq. 118, to the bound-
ary surfaces corresponding to panel absorbers, according to the three-dimensional
models depicted in Figure 58. It is worth noting that absorptive surfaces were as-
sumed to behave as locally reacting. Besides the introduction of such an impedance
function, unknown acoustic damping already present in the untreated room was
introduced by using the same frequency dependent complex speed of sound, as in
the case of the empty room model validation. Assigning an impedance boundary
condition to panel absorbers relies on the aim of circumventing the need of a
multiphysics simulation, reducing the model to a purely acoustic domain and
consequently the physics involved in the model and its number of nodes. Room
impulse response measurements were carried out, by installing one panel absorber
at a time, according to the two configurations of treatment proposed, as shown
in Figure 59. Test signal, equipment and data postprocessing were the same as
the case of empty room measurements. Numerical and measured SPL responses
were compared at receivers R1, R2 and R3 for both configurations of treatment
(Figures 60-61).

Figure 59: Pictures of the sound panel absorbers installed at room corners: single
panel configuration (left-hand side); double panel configuration (right-hand side).

Given the results shown in Figures 60 and 61, a more detailed comparison
between measured and simulated data is presented here, by performing analyses in
both frequency and time domain. In the first instance, difference spectra ∆Lp at
receiver positions between empty room and treated room responses were calculated
in terms of sound pressure level, as follows:

∆Lp,i(f) = Lp,empty(f)−Lp,i(f), (124)
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Figure 60: SPL full scaled frequency responses at receiver positions for the single
panel treatment configuration at receivers R1, R2 and R3. measured values;

simulated values.
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Figure 61: SPL full scaled frequency responses at receiver positions for the double
panel treatment configuration at receivers R1, R2 and R3. measured values;

simulated values.
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Receiver ∆Lp,1 avg error [dB] ∆Lp,2 avg error [dB]
R1 2.52 3.85
R2 2.45 4.09
R3 2.03 2.73

Table 11: Frequency averaged errors between measured and simulated ∆Lp,1 and
∆Lp,2 at R1, R2 and R3 receiver positions.

where the index i= 1,2 respectively refers to the single panel (i= 1) and double
panel (i= 2) treatment configurations. Difference spectra were calculated to high-
light absorption effects due to the single and double panel treatments with respect
to the empty room configuration, minimizing possible non linear effects due to the
loudspeaker response, which may affect error estimation between numerical and
measured data. Figure 62 shows the difference spectra ∆Lp,1 and ∆Lp,2 calculated
at the receiver R1. As visible from the graph, numerical and measured spectra are
in good accordance, showing frequency averaged errors of 2.52 dB for ∆Lp,1 and
3.85 dB for ∆Lp,2. Averaged errors for each receiver and treatment configuration
are summarized in Table 11. Difference spectra were calculated as well for the
SPL responses evaluated at receiver positions in a FEM multiphysics simulation.
On this purpose, an additional FEM model was set up in which, differently from
the acoustics FEM simulations, panel absorbers were modelled in the same way
done for the numerical analyses in Chapter 6, by assigning specific physics to each
element of the resonator. In particular, the clamped vibrating plate was modelled
as a clamped shell, holding valid the assumption of thin plate behaviour; the air
cavity was modelled as a separate acoustic domain and the porous layer as an
equivalent fluid domain by adopting the Miki model (Figure 63).

The resulting difference spectra at R1 were compared to those evaluated from
the acoustic FEM simulations, showing a sensible reduction of the frequency
averaged errors for both treatment configurations, as summarized in Table 12. This
suggests that a relevant amount of deviation between experimental and acoustic
FEM data may be attributable to measurements uncertainties, as expectable. In
particular, it is worthwhile evaluating the deviation between difference spectra
at the room resonance occurring at 66.6 Hz: as visible from the graphs in Figure
62, in the case of a single panel treatment, the deviation between acoustic FEM
and measured data is equal to 2.49 dB and it reduces to 1.68 dB when comparing
acoustic FEM to multiphysics FEM data. In the case of a double panel treatment
such deviations become respectively equal to 3.28 dB and 2.88 dB.
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Figure 62: SPL difference spectra at receiver R1: ∆Lp,1 (top); ∆Lp,2 (bottom).
Measured values; acoustic FEM simulated values, multiphysics FEM

simulated values.

Figure 63: Left-hand side: meshed 3D model for FEM multiphysics simulations
of the single panel treatment configuration: air domains were meshed using free
tetrahedral elements, the shell was discretised by means of quadratic mapped
meshes. Structural-acoustics coupling was assigned as a velocity continuity condition
at the interface between air and shell domains. Right-hand side: sound pressure
distribution [Pa] throughout the room and within the resonator backing cavity at
66.6 Hz. As visible, at this frequency sound energy is transmitted into the cavity
through shell resonant vibration, contributing to the damping of the room mode.

109



Receiver ∆Lp,1 avg error [dB] ∆Lp,2 avg error [dB]
R1 0.59 1.00
R2 0.52 1.09
R3 0.44 0.67

Table 12: Frequency averaged errors between multiphysics FEM and acoustic
FEM ∆Lp,1 and ∆Lp,2 at R1, R2 and R3 receiver positions.

(a)

(b)

(c)

Figure 64: T30 for the three room configurations at receiver R1: (a) Empty
Room; (b) single panel; (c) double panel; measured values; acoustic FEM
simulated values.
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A time domain evaluation of the simulation method was also carried out in
order to assess its accuracy in predicting time decays. By means of Inverse Fast
Fourier Transform it was possible to convert frequency-domain complex pressure
values from stationary acoustic simulations to time-domain impulse responses.
These were then compared with the impulse responses measured in the room. The
parameter selected for comparison was T30 in third octave bands. Here, T30 is
adopted as an arbitrary measure of energy decay since the measurement procedure
does not comply with the relevant room acoustic standard due to proximity to room
boundaries. As it can be observed in Figure 64 results and comparable and trends
are similar. Average estimation error has been calculated, showing that the error
increases with increasing number of panels: in particular, a frequency averaged
deviation of 0.15 s was calculated for the empty room configuration, which increases
to 0.27 s and 0.30 s in the case of single and double panel treatment, respectively.
This is likely to be partly due to an uncertainty build-up of the measurement set
up where perfect geometry and idealized conditions are not achievable. Another
source of uncertainty may also be the calibration of the empty room model through
introduction of the acoustic loss factor within FEM models. Since the loss factor is
calculated based on third octave T30 values, which are interpolated for the required
frequency steps, an accurate depiction of the modal decay times is not achievable
within the empty room model. With the introduction of absorbers, individual room
modes present within a band may be damped while adjacent modes may not, in a
fashion that is possibly not accountable for by the interpolation function. This may
partly lead to some of the divergence shown within the plot for the treated cases.
Results show nonetheless reasonable accuracy for the purpose of T30 predictions.
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Conclusions

The aim of this thesis was to provide a thorough characterization of the acoustic
behaviour of panel absorbers, resulting in the proposal of an analytical predictive
model of their surface averaged acoustic impedance, which takes in account the
multimodal vibrational behaviour of the thin plate component. In particular, with
respect to the existing mass-spring models, here the effects of finite size, the shape
of the sample and its edge constraint conditions are investigated and properly
included in the formulations. The resulting impedance was obtained by coupling in
series existing impedance expressions of the backing cavity to those evaluated for
finite sized thin plates of various shapes, subjected to external transverse excitation.

Particular focus was devoted to the analysis of edge clamped panel absorbers,
since such type of constraint, although idealized, represents the closest condition to
the actual physical behaviour of real plates fixed at the edges. On this purpose, a set
of preliminary numerical analyses provided evidence about the critical effects due
to different boundary conditions on the resulting eigenfrequencies of a transversely
vibrating plates.

The analytical expression of the acoustic impedance of circular and rectangular
isolated clamped plates was compared against experimental acoustic measurements
in an impedance tube, showing their validity in the case of plane normal sound
incidence. Once this impedance was validated, it was coupled in series to the acoustic
impedance of a backing cavity, including the option of a multilayered cavity with
a layer of porous material inserted. Numerical validations of such expressions
were achieved by means of FEM simulations, still assuming a plane wave normal
incidence condition. Furthermore, the effects of porous layers within the cavity
were investigated by parametrically varying their thickness and flow resistivity.
Results showed that, changing the air flow resistivity among a plausible range of
value for porous materials used in acoustical applications, does not significantly
affects the overall efficiency of the system in terms of sound absorption. Conversely,
different thicknesses of the porous layer have a relevant effect in terms of resonance
frequencies shifting and absorption peaks. Furthermore, a preliminary numerical
investigation was conducted in order to evaluate the response of a baffled square
panel absorber in conditions of spherical incidence, for several heights of the sound
source above the sample. In this case, the impedances evaluated numerically show
no significant changes in proximity of the resonance frequencies as predicted by
the analytical model. Nonetheless, relevant effects are observable in proximity of
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the antiresonances, where the numerical impedances become smaller the closer
the source to the absorber surface. Such an effect may be attributed to pressure
phase lags occurring over the surface of the sample due to the spherical wavefront,
although a more detailed experimental investigation is required for a more precise
estimation.

The applicability of the analytical surface impedance expression as a boundary
impedance condition in room acoustic FEM models was then tested, by performing
a numerical-experimental analysis. In particular, a real sized room with a reason-
ably extended low modal density region (20-335 Hz), was chosen for testing in-situ
the absorption efficiency of panel absorbers, with particular reference to their
effectiveness in dampening low frequency room modes. For this purpose, a FEM
model of the empty room was validated against impulse response measurement by
comparing sound pressure level responses at several receiver positions, showing a
frequency averaged error smaller than 4 dB between numerical and experimental
responses. Once the empty room was validated, two different configurations of
acoustic treatment were presented, by designing panel absorbers according to the
proposed analytical model. The resulting surface impedances were then assigned
to the boundary surfaces associated to the position of panel absorbers within the
room, setting a purely acoustical FEM model. In light of this, treated room FEM
models for single and double panel configurations were validated against impulse
response measurements. Results were compared in terms of difference spectra
between the empty room and treated configurations, for both FEM and measured
data. The frequency averaged deviation between FEM and experimental difference
spectra was smaller than 3 dB in the case of a single panel and smaller than 4.5
dB in the case of a double panel configuration. Difference spectra deviations were
also calculated comparing FEM data against the results of additional multiphysics
FEM simulations. In this case, a maximum deviation value of 1.09 dB was observed,
suggesting that a relevant amount of deviation between experimental and acoustical
FEM data may be partly attributable to the uncertainty build-up of the experi-
mental set up. Numerical and experimental results were also compared in terms of
reverberation time T30, showing a slight increment in deviations by increasing the
number of absorbing panels. Given the above, further work is planned to investigate
the accuracy of the method by significantly expanding the surface extension and
the type of panel absorbers in the room, in which other kinds of absorptive surfaces,
such as porous absorbers, are eventually present. Nonetheless, the results obtained
so far are promising towards the chance of bypassing multiphysics simulations when
modelling panel absorbers in a room, at least at low frequency, by adopting such
a methodology. This would be beneficial in terms of computational costs, which
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would be extremely reduced in the case of purely acoustical FEM simulations.
Possible further developments may involve the implementation of this methodology
into different numerical methods, in order to test its spectrum of applicability.
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