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Abstract

This work deals with the numerical and experimental investiga-
tion of unsteady plane liquid jets interacting with an external gaseous
environment. Two flow configurations are analyzed: the gravitational
liquid sheet (curtain) flow issuing into still air, and the planar air-
water mixing layer developing past a splitter plate.

The curtain flow is mainly investigated through theoretical and
numerical methodologies, including volume-of-fluid simulations, lin-
ear stability analysis based on a simplified theoretical model, and
data-driven modal decomposition techniques. Air-water mixing lay-
ers are characterized through time-resolved particle image velocime-
try measurements, performed simultaneously in gas and liquid phases.

As regards the major results, three flow regimes are distinguished
in the curtain dynamics: supercritical, transcritical, and subcritical
regimes (depending on the Weber number), each of them revealing
different features and stability properties. In particular, a disconti-
nuity of the flow natural frequency is found numerically and experi-
mentally in transcritical conditions. The mixing layer configuration
is characterized by the presence of a wake region just behind the split-
ter plate, which is strongly affected by both gas and liquid physical
parameters. The flow dynamics exhibits a rich variety of unsteady
behaviours, including global mode oscillations at high gas Reynolds
numbers and air-water dynamic pressure ratios.

Keywords: curtain flows, two-phase mixing layers, splitter plate,
volume-of-fluid simulation, modal analysis, particle image velocime-
try.
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gas vorticity thickness (δg, panel (b)) variations with
Reynolds number ReHg . Comparisons with literature
results (Fuster et al. [48], Matas et al. [50], Raynal et
al. [39]) are also provided in panel (b). . . . . . . . . 49

3.7 Pictures of the PIV measurement setup. . . . . . . . 52

3.8 Velocity field measurement workflow: acquired raw im-
age (a), pre-processing (b), phases separation (c)-(d),
and post-processing (e). . . . . . . . . . . . . . . . . 54

3.9 Velocity profile in air at different streamwise stations
upstream of the injection section (x/Hg = 0) and
Reynolds numberReHg values: ReHg = 0.67·104 (black
curves), 0.96 · 104 (red), ReHg = 1.62 · 104 (blue).
The numerical solution of the fully-developed turbu-
lent channel flow obtained by Kim et al. [100] at Reynolds
number equal to 13750 is also reported for comparison
(green curve). . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Schematic of computational domain (left) and of adap-
tive grid (right). The sheet of length L? falls under
gravity along x? direction. Red lines define the initial
interface shape, which is magnified by a factor of 10
along y? direction in left panel. . . . . . . . . . . . . 58

xi



4.2 Grid convergence analysis of the contraction ratio CR =

H?
f/H

?
i for the steady solution. From right to left:

∆x?/H?
i = 0.0976 (10 grid cells in H?

i ); ∆x?/H?
i =

0.0488 (20 grid cells in H?
i ); ∆x?/H?

i = 0.0244 (40 grid
cells in H?

i ). Flow parameters specified in Tables 4.1
and 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Steady field in terms of u velocity component (top),
sheet interface (middle), and pressure p (bottom) along
the axial direction y = 0. Numerical solution (black
curve); Torricelli’s solution (red dashed curve). . . . . 63

4.4 Steady solution of u (left), v (middle) and p (right)
y-distribution at different x stations: x = 0 (black
continuous curve); 0.05 (black dashed); 0.15 (red con-
tinuous); 0.3 (red dashed); 0.5 (blue continuous); 0.8

(blue dashed). . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Steady velocity field and interface shape (red line) of

the liquid sheet. . . . . . . . . . . . . . . . . . . . . . 65
4.6 Steady u velocity component (black continuous curve)

and one-dimensional reduction using Eq. (4.4) for φ =

u (black dashed curve). . . . . . . . . . . . . . . . . . 67
4.7 Sequence of instantaneous average v distributions ex-

tracted from the VOF simulation. From left to right,
top to bottom: t = 0, 0.05, 0.21, 0.52. We = 2.5,
Fr = 0.33, rρ = 0.01. . . . . . . . . . . . . . . . . . . 68

4.8 Sequence of instantaneous meanline distributions ex-
tracted from the VOF simulation. From left to right,
top to bottom: t = 0, 0.05, 0.21, 0.52. We = 2.5,
Fr = 0.33, rρ = 0.01. . . . . . . . . . . . . . . . . . . 68

xii



4.9 Instantaneous v velocity component and meanline `
distributions at t = 0.05 extracted from the VOF sim-
ulation (black curve) and computed by Eqs. (2.13)-
(2.14) (blue). We = 2.5, Fr = 0.33, rρ = 0.01. . . . . 69

4.10 Fast Fourier Transform (FFT) of the sheet meanline
deflection extracted from VOF simulations at differ-
ent x stations. The red line represents the least sta-
ble frequency λi = 3.78 arising from stability analysis.
From left to right, top to bottom: x = 0.2, 0.4, 0.6, 0.8.
We = 2.5, Fr = 0.33, rρ = 0.01. . . . . . . . . . . . . 70

4.11 Inner eigenvalues of the spectrum (left), with a zoom of
the upper branch around the least stable part (right).
We = 2.5, Fr = 0.33, rρ = 0.01. . . . . . . . . . . . . 71

4.12 Reynolds number Re effect at different values of the
density ratio rρ on the inner eigenvalues of the spec-
trum: rρ = 0.001 (panel (a)); 0.005 (panel (b)); 0.01

(panel (c)); 0.02 (panel (d)). Re =∞ (black filled cir-
cle); 400 (red open circle); 40 (blue asterisk); 20 (green
filled circle). We = 2.5, Fr = 0.16. . . . . . . . . . . 73

4.13 Temporal evolution of the two-dimensional volume frac-
tion field C computed via VOF simulations for rρ =

0.01 (panels (a), (c), (e)) and rρ = 0.02 (panels (b),
(d), (f)). We = 2.5, Fr = 0.16, Re = 20. . . . . . . . 74

xiii



4.14 Density ratio rρ effect on the temporal evolution of the
energy budgets. From left to right: rρ = 0.001, 0.01, 0.02.
The fast and slow waves expulsion times are t = 0.25

and t = 0.60, respectively. Note that all the terms
have been scaled with respect to the initial total en-
ergy Et0 . For a detailed explanation of the terms, see
Eq. (2.33) in Section 2.1.3. We = 2.5, Fr = 0.16,
Re = 20. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Comparison between the pressure power Lp and the
total energy time derivative dEt/dt for unstable con-
ditions (rρ = 0.02). For a detailed explanation of the
terms, see Eq. (2.33) in Section 2.1.3. We = 2.5,
Fr = 0.16, Re = 20. . . . . . . . . . . . . . . . . . . 77

4.16 Instantaneous view of the volume fraction C (top)
and ambient-phase velocity components u?a/U?

i (mid-
dle) and v?a/U?

i (bottom) fields in unstable conditions.
In all the panels the interface is the black contour line. 78

4.17 u′(x, y) evolution of a random initial disturbance (0 <
x < 1, −0.75 < y < 0.75). We = 2.5, rρ = 0.01.
Field variables have been normalized with respect to
the corresponding maximum. . . . . . . . . . . . . . . 81

4.18 Data driven BiGlobal spectrum. We = 2.5, rρ = 0.01.
Black dots refer to the 2D simulations, red circles rep-
resent 1D model results. Letters denote selected modes. 82

4.19 Spatial distributions of the DMD modes A (panels (a)-
(c)) and B (panels (d)-(f)) in xy plane (0 < x < 1,
−0.75 < y < 0.75). We = 2.5, rρ = 0.01. The black
dashed line represents the interface location. . . . . . 83

xiv



4.20 Varicose component of DMD u′(x, y) modes correspond-
ing to the eigenvalues C, D, E (0 < x < 1, −0.75 <

y < 0.75). We = 2.5, rρ = 0.01. The black dashed
line represents the interface location. . . . . . . . . . 86

4.21 Energy distribution for the modes C (panel (a)), D
(panel (b)) and E (panel (c)) in xy plane (0 < x < 1,
−0.75 < y < 0.75). We = 2.5, rρ = 0.01. The black
dashed line represents the interface location. . . . . . 87

4.22 Schematic representation of the three-dimensional com-
putational domain. The gravity g is directed along the
streamwise x direction, y is the lateral coordinate, z
the spanwise one. . . . . . . . . . . . . . . . . . . . . 88

4.23 Three-dimensional view of the liquid sheet interface
(a), spanwise velocity field w in xz plane (b) and w(z)

profiles at different streamwise x stations (c). AR =

40, We = 2.5. . . . . . . . . . . . . . . . . . . . . . . 90

4.24 Interface shape in yz planes located at different x sta-
tions (panel (a)); maps of spanwise w (panel (b)) and
transverse v (panel (c)) liquid velocity components at
x = 15. AR = 40, We = 2.5. . . . . . . . . . . . . . . 92

4.25 Map in xy plane of the streamwise velocity u (panel
(a)); x-variation of the axial velocity u(x, y = 0) and
y-averaged trend < u(x, y) > (b). The reference Tor-
ricellian velocity utorr and the calculated convergence
length Lc are also reported. AR = 40, We = 2.5. . . 95

4.26 Convergence length Lc variation with Weber number.
The theoretical prediction Lthc is also reported. . . . . 96

xv



4.27 Combined We-Fr effect on the eigenvalues, panels (a)
and (b), and on the normalized least stable eigenfunc-
tion, panel (c): (We,Fr) = (1.2, 0.08), black filled
dot and continuous black line; (1.05, 0.07), black open
dot and dashed black line; (0.95, 0.06), red filled dot
and continuous red line; (0.8, 0.05), red open dot and
dashed red line. Panel (b) shows a zoom of the inner
part of the spectra reported in panel (a). The char-
acteristic frequencies ∆λ+

i and ∆λ−i , whose values are
listed in Table 4.8, are indicated respectively in panels
(a) and (b). . . . . . . . . . . . . . . . . . . . . . . . 98

4.28 Normalized power spectral density of the vibrometer
recordings acquired at different values of the Weber
number. . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.29 Comparison between numerical (f ?n, continuous curves)
and experimental (f ?e , filled circles) natural frequencies
in supercritical (black) and subcritical (red) regimes.
The numerical frequency associated with the fast branch
of spectrum in supercritical conditions is also reported
(black dashed curve). The error bars represent the
standard deviation of the experimental measurements. 102

4.30 Weber number effect on the sheet centreline deflection,
`, as a function of the streamwise station, x, at differ-
ent fractions of oscillation period T : t = 0 · T (black);
0.25 · T (red); 0.5 · T (blue); 0.75 · T (green). The
dashed line denotes the centreline of the unperturbed
curtain. From top to bottom: f ? = 1, 5 and 20 Hz. . 103

xvi



4.31 Reynolds number Re effect on the meanline maximum
oscillation amplitude A` as a function of the stream-
wise direction x at different forcing frequencies f ? (left
column) and of the forcing frequency at different stream-
wise stations (right column). Left column: f ? = 15

(green curve); 20 (brown); 25 (black); 30 (red); 35

(blue); 45 (orange); 55 (purple) Hz. Right column:
x = 0.05 (black); 0.13 (blue); 0.2 (red); 0.4 (purple);
0.6 (green); 0.8 (orange). Natural frequency predicted
by the theoretical model: f ?n = 26.26 Hz. From top to
bottom: Re = 20, 40, 400, 800, 1600. . . . . . . . . . 107

4.32 Reynolds number Re effect on the maximum oscilla-
tion amplitude of transverse velocity component Av as
a function of the streamwise direction x at different
forcing frequencies f ? (left column) and of the forc-
ing frequency at different streamwise stations (right
column). Left column: f ? = 15 (green curve); 20

(brown); 25 (black); 30 (red); 35 (blue); 45 (orange);
55 (purple) Hz. Right column: x = 0.05 (black); 0.13

(blue); 0.2 (red); 0.4 (purple); 0.6 (green); 0.8 (or-
ange). Natural frequency predicted by the theoretical
model: f ?n = 26.26 Hz. From top to bottom: Re = 20,
40, 400, 800, 1600. . . . . . . . . . . . . . . . . . . . 108

4.33 Normalized SPOD spectra at We = 0.75 for different
Reynolds number Re values. The spectra report only
the frequency content of the first 2 modes. Forcing
frequency f ? = 25 Hz (St = 0.076). . . . . . . . . . . 111

xvii



4.34 Cumulative energy distribution of SPOD modes at
We = 0.75 for different Reynolds number Re values. . 112

4.35 Panel (a): sketch of sinuous disturbance. The red
lines denote the interface of the mean field. Panel (b):
streamlines pattern as viewed by an observer moving
with the mean flow. The colour map refers to C ′(x, y)

mode (0 < x < 1, −1 < y < 1). . . . . . . . . . . . . 112

4.36 Panel (a): sketch of varicose disturbance. The red
lines denote the interface of the mean field. Panel (b):
streamlines pattern as viewed by an observer moving
with the mean flow; the colour map refers to the vari-
cose part of C ′(x, y) mode (0 < x < 1, −1 < y < 1). . 113

4.37 Decomposition in sinuous and varicose components of
the flow field atWe = 0.75, Re = 1600. C ′(x, y) mode
(left panel) and its varicose (middle panel) and sinuous
(right panel) components (0 < x < 1, −0.75 < y < 0.75).114

4.38 Spatio-temporal evolution of the transverse velocity
perturbation v(x, t) for We = 0.8 (panel (a)) and
We = 0.4 (panel (b)): t = 0.25 (black line), 2.5

(blue line) and 7.5 (red line). The magenta curve in
both panels represents the initial perturbation (4.5).
Weth = 0.63. . . . . . . . . . . . . . . . . . . . . . . 116

4.39 Temporal evolution of the energy budgets for We =

0.8 (panels (a)-(d)) and We = 0.4 (panels (e)-(h)).
All the terms are scaled with respect to the initial total
energy Et0 . For a detailed explanation of the terms,
see Eq. (2.33) in Section 2.1.3. Weth = 0.63. . . . . . 118

xviii



4.40 Temporal evolution of meanline oscillations amplitude
at x = xp for We = 0.8 (panel (a)) and We = 0.4

(panel (b)): Re = 41.3 (continuous black curve); 413

(continuous red curve); ∞ (continuous blue curve).
The dot-dashed curves represent algebraic (∼ t

1
3 , red)

and exponential (∼ e
1
3
t, blue) growths. Weth = 0.63. 119

4.41 Inner eigenvalues of the spectrum (panel (a)) with a
zoom on the unstable part (panel (b)). The curve λr =

1/3 (dot-dashed blue line) is also reported. Re = ∞,
Weth = 0.63. . . . . . . . . . . . . . . . . . . . . . . 120

4.42 Overview of the air-water mixing layer testing condi-
tions in terms of M values as a function of the gas
velocity Ug, at different values of the liquid velocity Ul. 122

4.43 Time-averaged velocity magnitude V̄ /Ug contour (a)
with zoom next to the nozzle exit section (b). In
both panels, the splitter plate location is highlighted
in black, and velocity vectors are reported. REF case
of Table 4.12. . . . . . . . . . . . . . . . . . . . . . . 122

4.44 Time-averaged streamwise ū(ỹ)/Ug velocity component
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i.e. in air flow immediately downstream of the split-
ter plate. M = 5.78 (a), 1.45 (b), 17.00 (c), 4.25 (d),
25.56 (e), 6.64 (f). . . . . . . . . . . . . . . . . . . . 141

4.58 Dynamic pressure ratio M effect on the peak (dimen-
sionless) frequency of the FFT of v′(t) at (x̃, ỹ) =
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Chapter 1
Introduction

The comprehension of two-phase (and more in general multi-
phase) flows dynamics is matter of critical engineering and scientific
importance, due to the huge variety of industrial applications involv-
ing multiphase flows of one sort or another (Tryggvason, Scardovelli
and Zaleski [1]). From a mathematical point of view, two-phase flow
problems are notoriously difficult: not only the equations governing
the fluid flow in both phases are highly nonlinear, but the position
of the phase boundary must generally be found as a part of the solu-
tion. Exact analytical solutions, therefore, exist only for the simplest
problems. The need for numerical solutions of the governing equa-
tions, as well as experimental investigations, has thus been felt by
the multiphase research community since its origin.

The present thesis deals with the numerical and experimental in-
vestigation of two unsteady two-phase flow systems. The configura-
tions analyzed are both plane liquid jets interacting with an external
gaseous environment: i) the gravitational liquid sheet (curtain) flow;
and ii) the planar air-water mixing layer developing past a splitter
plate. In the first configuration, the liquid jet velocity is relatively
low and gravitational effects on the flow dynamics are relevant; the
mixing layer flow is instead characterized by a relatively high velocity
of the liquid jet, thus making dominant the aerodynamic instability
due to the interaction with the gaseous phase.
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1.1 Motivations and objectives

The first flow configuration here investigated consists of a thin
sheet of liquid issuing vertically into an unconfined quiescent gaseous
environment, under the influence of the gravitational field. The study
of such a flow system is motivated by the variety of its scientific and
technological applications, including coating deposition (Weinstein
and Ruschak [2]), paper making (Soderberg and Alfredsson [3]), and
dam safety (Lodomez et al. [4]) to name a few. Notwithstanding
the large amount of research efforts, several aspects of the unsteady
dynamics of liquid sheet flows are the object of ongoing studies, in
particular those related to the physical mechanisms driving the liquid
sheet towards instability. Therefore, a main target of the present re-
search activity is a combined theoretical-numerical-experimental in-
vestigation of the stability properties of gravitational planar liquid
sheet flows interacting with an unconfined gaseous environment. Such
flow configurations have been investigated by means of direct numer-
ical simulations based on the volume-of-fluid (VOF) method, linear
stability analysis of a simplified low-dimensional theoretical model,
data-driven modal decomposition techniques, and experiments. The
main objective is to summarize a broad theoretical background allow-
ing in future to establish connections between theoretical-numerical
results of the present investigation and three-dimensional observa-
tions of real occurrence.

The second flow configuration is related to the instability of an
atomizing jet, and thus it is of particular importance to model phe-
nomena of industrial interest, such as fuel injection in air-blast at-
omizers (Lefebvre [5]). In the planar configuration here considered,
two parallel co-flowing gas and liquid phases are initially separated
by a splitter plate and, when they meet at its trailing edge, the
velocity difference existing between them triggers a shear instabil-
ity on the gas-liquid interface. Despite extensive research dedicated
to the topic, a comprehensive understanding of the physical mecha-
nisms governing the two-phase mixing layer instabilities has not been
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achieved yet, making the modelling and control of two-phase mixing
layers still challenging tasks nowadays. In particular, one of the most
imperative requests is the accurate knowledge of the flow in the near-
field region, which could then be used for a global stability analysis
to improve the capability to predict the flow dynamics in most of the
experimental conditions. For this reason, another aim of the present
work is the characterization of two-phase mixing layers through two-
dimensional flow field measurements. An experimental investigation
based on time-resolved particle image velocimetry (TR-PIV) has been
performed, aimed at disclosing new aspects of the mean flow topol-
ogy and unsteady dynamics in the near-field region of the flow. This
part of the Ph.D. research activity is the result of a collaboration
between the research group in which the candidate worked in Naples
and the Flow Stability & Control research group at Delft University
of Technology, where the candidate spent a Visiting Scholar period
of one year during his Ph.D. Program.

1.2 Outline

The rest of the thesis is structured as follows. Chapter 2 discusses
more in detail the gas-liquid interfacial flow systems which are object
of this study, namely gravitational liquid sheet (curtain) flows (Sec-
tion 2.1) and planar air-water mixing layers (Section 2.2). Chapter 3
(together with Appendices A and B) contains a detailed description
of the theoretical, numerical and experimental methodologies and
set-ups employed to obtain data described along the thesis. Chap-
ter 4 is dedicated to the results: the physical mechanisms governing
the curtain flow dynamics in stable and unstable conditions are first
investigated in Section 4.1; the air-water mixing layer experimental
characterization is then reported in Section 4.2. The thesis ends with
Chapter 5, containing a summary of the main findings and sugges-
tions for possible future research activities.





Chapter 2
Layout of plane liquid jets

The gas-liquid interfacial flow configurations representing the ob-
ject of this study are detailed discussed in this chapter. Section 2.1
is dedicated to gravitational liquid sheet (curtain) flows issuing into
a still gaseous environment, while two-phase mixing layers are de-
scribed in Section 2.2.

2.1 Gravitational liquid curtains

Liquid sheet flows issuing into a gaseous environment have being
studied since the middle of the last century (Squire [6]), due to their
wide scientific and industrial interest, which involves coating depo-
sition (Weinstein and Ruschak [2]), paper making (Soderberg and
Alfredsson [3]), space industry (Chubb et al. [7]), dam safety and wa-
terfall noise reduction (Lodomez et al. [4]), and other applications.
The literature includes a wide variety of geometrical and physical
configurations, which span both planar (Barlow et al. [8], Weinstein
et al. [9]) and round (Duke et al. [10]) geometries, both high (Zan-
dian et al. [11]) and low speed (gravitational) (Lhuissier et al. [12],
Girfoglio et al. [13]) flows (in the latter case the term curtain is often
used), both quiescent (de Luca and Costa [14]) and co-flowing air
(Tammisola et al. [15]) ambient, which refers to an enclosure located
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on one side of the sheet (De Rosa et al. [16]), or can be considered
unconfined on all sides of it (Barlow et al. [17]).

Notwithstanding the large amount of research efforts, which are
comprehensively summarized in the literature reviews reported within
the historical works by de Luca [18], Finnicum et al. [19], Lin and
Jiang [20], Soderberg [21], and in the more recent contribution by
Torsey et al. [22], several aspects of the unsteady dynamics of grav-
itational liquid curtain flows are the object of ongoing studies and
remain currently open. Among them, the present work focuses on the
unconfined liquid sheet behaviour in supercritical conditions (We >
1), across the supercritical-to-subcritical flow transition (We = O(1),
transcritical regime), and in subcritical regime (We < 1). The Weber
number We is a main governing parameter of the flow system, here
defined as the ratio between inertia and capillary forces within the
liquid phase. Depending on the We value, each of the three regimes
introduced above is characterized by different features and stability
properties.

The open questions in the literature directly related to the present
investigation are discussed in the following Sections 2.1.1 and 2.1.2,
further highlighting motivations and objectives of this study. Later
on, a theoretical model developed within this work for the analysis
of unconfined liquid curtain flows is presented in Section 2.1.3.

2.1.1 Unconfined curtain in critical conditions

It is known that a liquid plane jet (sheet, curtain) interacting with
an unconfined gaseous environment and subjected to gravity effects
does not merely breakup due to the amplification of modal distur-
bances. As a matter of fact, experimental evidence shows that the
sheet breaks up (when the flow rate is reduced) below the critical
threshold We = 1, as a consequence of phenomena such as the for-
mation of holes involving two unsteady oscillating free-edges in the
three-dimensional plane (Brown [23], de Luca and Meola [24], Roche
et al. [25], Kacem et al. [26]). The parameter We is here defined as
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Figure 2.1. Sketch of an unperturbed gravitational liquid curtain of
length L? issuing into a quiescent gaseous ambient. Gravity is directed
along the x? axis, and the gas-liquid interface is represented in blue.
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the ratio between inertia and capillary forces at the slot section of
thickness H?

i (i.e. where the liquid flow issues and the sheet starts to
form, see Fig. 2.1), We = ρlU

?2
i H

?
i /(2σ), U?

i being the inlet mean liq-
uid velocity (Q?

i = U?
i H

?
i is the flowrate), ρl and σ the fluid density

and the surface tension coefficient, respectively. Therefore, an ex-
haustive study of the rupture would require a fully three-dimensional
approach, and it is clear that it must be based on a well-defined
physical modelling of the different curtain flow regimes; results of
direct numerical simulations have to be interpreted on the basis of
this physical knowledge. The theoretical study of unconfined liquid
sheets dynamics involves the resolution of a singularity appearing in
the governing equations of low order modelling (Finnicum et al. [19],
Weinstein et al. [27], Girfoglio et al. [13]) when the Weber number
crosses the critical threshold We = 1, i.e. when the supercritical
(We > 1) to subcritical (We < 1) flow transition occurs. On this
research line, the analysis of the singularity exhibited by the equa-
tion governing the unsteady subcritical behaviour of the so called
liquid nappe, namely the freely falling liquid sheet interacting with a
one-sided closed air chamber, has been fully accomplished only a few
years ago by Girfoglio et al. [13]. The flow of waterfalls, generated
by the overflow of water over long crests of dams or weirs, repre-
sents a typical example of such a configuration. The noise produced
by the oscillation of the waterfall can be radiated far away from the
source and may cause vibrations in windowpanes of buildings nearby,
and even structural damages to the dam itself (Erpicum et al. [28],
Lodomez et al. [29]).

A modelling study aimed at predicting the oscillatory dynamics of
the flow configuration in both supercritical (We > 1) and subcritical
(We < 1) regimes is still missing in literature, and thus represents
a major objective of this work. The topic is also important from
the technological aspect, because unconfined two-dimensional planar
liquid sheets falling under gravity are often employed to deposit liquid
layers on a solid moving surface during coating processes (Weinstein
and Ruschak [2]).
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2.1.2 Subcritical regime

One of the pioneering experimental investigations focusing on the
sheet rupture mechanisms was carried out by Brown [23], who stated
that a condition for the curtain breakup is We < 1. Brown found
the minimum liquid flow rate to guarantee the stability of the sheet
by noticing that equilibrium must be maintained at a free edge be-
tween the inertia forces and the surface tension, and that when a
free edge appears because of the formation of a hole, such a hole
does not grow if the sheet is in supercritical conditions (We > 1),
otherwise it does produce the curtain disintegration. On the other
hand, the historical work by Finnicum et al. [19] reports that stable
liquid curtains can be experimentally observed under a wide range
of flow conditions, spanning both the supercritical and subcritical
regimes. Still on the experimental side, Le Grand-Piteira et al. [30]
studied subcritical liquid sheets falling from a horizontal wet tube and
maintained between two vertical wires. These authors showed that
when We reduces below the unity, the curtain is able to self-sustain
a characteristic chessboard pattern of sinuous waves, whose propaga-
tion velocity is equal to half of the liquid speed at the transonic line,
namely at the vertical station along the curtain where the local (di-
mensionless) velocity equals the Weber number, and does not depend
on the vertical location on the curtain, arguing this behaviour could
be related to global mode oscillations. The latter work provides an
experimental investigation of the curtain response to perturbations
near breakup, outlining different behaviours between We > 1 and
We < 1 conditions, the latter scenario being characterized by possi-
ble holes expansions leading to the liquid sheet rupture.

From theoretical and numerical points of view, the stability con-
dition We > 1 found by Brown [23] was retrieved in the works by
Lin [31], de Luca and Costa [14], Lin and Roberts [32], and Barlow
et al. [17]. In particular, [17] showed through a local spatio-temporal
linear stability analysis that subcritical plane liquid sheets can expe-
rience absolute instability, with algebraic temporal growth of sinuous
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modes superposed on the main flow, in agreement with the previous
investigation by de Luca and Costa [14].

The present work thus aims at representing a further step to-
wards a deeper understanding of gravitational liquid sheets dynam-
ics. Based on the derivation of a simplified linear model of the curtain
flow (Section 2.1.3), its stability properties are elucidated, outlining
relevant physical mechanisms and providing comparisons with two-
dimensional direct numerical simulations, data-driven modal analy-
sis, and experiments. The main objective is to summarize a broad
theoretical background allowing in future to establish connections be-
tween theoretical-numerical results of the present investigation and
three-dimensional observations of real occurrence.

2.1.3 Theoretical and numerical modelling

A sketch of the analyzed flow configuration is reported in Fig. 2.2,
where the gravitational sheet is represented with the x? axis verti-
cally oriented. In the unperturbed condition, the liquid flows along
the gravity direction with a steady velocity and two symmetrical free
interfaces (blue thin lines in Fig. 2.2, where H? represents the unper-
turbed local thickness). The definitions of centreline `? location and
thickness h? of the sheet are given in terms of the interface positions
y?± as

`?(x?, t?) =
y?+(x?, t?) + y?−(x?, t?)

2
, (2.1a)

h?(x?, t?) = y?+(x?, t?)− y?−(x?, t?), (2.1b)

where superscripts ± refer to right and left interfaces, respectively.
The assumption of a thin sheet with respect to the wavelength

of a disturbance allows one to consider local plug-type velocity pro-
files across the liquid sheet thickness for both the velocity compo-
nents. Starting from the two-dimensional Euler equations (the invis-
cid assumption is made in what follows; a derivation of the governing
equations accounting for viscous effects is reported at the end of this
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Figure 2.2. Sinuous dynamics of a gravitational liquid curtain issuing
into a quiescent gaseous ambient.

section) closed by kinematic and dynamic conditions imposed at the
free interfaces, the following procedure has been adopted to derive
the governing equations of a one-dimensional model of the curtain
dynamics (see also Girfoglio et al. [13]). The mass and x?-momentum
balances are formulated over a generic slice of the curtain of length
dx?; the y?-momentum equation is integrated along the lateral co-
ordinate y?; the unsteady quantities are considered as the sum of a
steady contribution and a perturbation (or fluctuation):

u? = U? + u
′?, (2.2)

v? = V ? + v
′?, (2.3)

p? = P ? + p
′?, (2.4)

h? = H? + h
′?, (2.5)

y?± = Y ?± + y
′?±, (2.6)

where capital letters denote basic (steady) quantities, while the su-
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perscript prime the corresponding fluctuation. Under the assumption
of small perturbations, and V ∗ = 0, the linearized forms of boundary
kinematic condition and y?-momentum equation are written, respec-
tively:

v′? =
∂`′?

∂t?
+ U?∂`

′?

∂x?
, (2.7)

∂v′?

∂t?
+ U?∂v

′?

∂x?
− 2σ

ρlH?

∂2`′?

∂x?2
= − 1

ρlH?

(
p′?+a − p′?−a

)
, (2.8)

where all dimensional quantities except the fluid material properties
(liquid density ρl, surface tension coefficient σ) are denoted with the
superscript ?. In particular, `′? represents the meanline deflection
(dashed line in Fig. 2.2), U? and H? the base flow velocity and thick-
ness distributions, x? and t? the spatial and temporal coordinates. It
is worth noting that the linearization allows for the separation be-
tween anti-symmetric and symmetric (or varicose) modes; Eqs. (2.7)-
(2.8) describe sinuous ones, while the latter are obtained from the
continuity equation and x?-momentum balance, and read

∂h′?

∂t?
= − ∂

∂x?
(U?h′? +H?u′?) , (2.9)

∂u′?

∂t?
+

∂

∂x?
(U?u′?) = − 1

ρl

∂p
′?
a

∂x?
+

σ

2ρl

∂2

∂x?2

[
∂h′?

∂x?

]
, (2.10)

where
p
′?
a =

p′?+a + p′?−a
2

.

Fig. 2.3(a)-(b) reports the sketch to illustrate the sinuous and vari-
cose disturbances, respectively, together with the relevant physical
quantities involved. As outlined by Girfoglio et al. [13], the varicose
modes are not able to sustain any oscillating wave pattern under the
assumptions made to derive the present configuration (namely, the
pressure terms at the right hand side of Eq. (2.10) are of ε2 order,
where ε is the sheet slenderness ratio defined later in this section), and
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Figure 2.3. Sketch of sinuous (a) and varicose (b) disturbances.

thus only the sinuous modes will be the object of the modal analysis.
This statement is consistent with a previous study made by Weinstein
et al. [27], who found that pressure variations do not interact with the
varicose response, and therefore to the order of the approximations
considered in their paper, pressure disturbances induce a deflection of
the curtain without any associated thickness variations; that is, the
front and back interfaces are perturbed in precisely the same way to
preserve the local thickness of the undisturbed curtain. Of course this
basic result holds for the inviscid linear analysis. However, direct nu-
merical simulations reported in Section 4.1.4 will show that, although
the perturbations have small amplitudes and the flow is stable, for
relatively low forcing frequencies and high Reynolds numbers, a non-
linear interaction between anti-symmetric (sinuous) and symmetric
(varicose) modes can occur.

The right hand side of Eq. (2.8) describes the pressure jump be-
tween the liquid and the gaseous fields due to the surface tension σ,
and the variation of the pressure of the external ambient surround-
ing the sides of the sheet. By employing the unsteady Bernoulli’s
equation, in the absence of air velocity, the pressure variation of the
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external ambient can be evaluated as (Kornecki et al. [33])

p′?+a − p′?−a = − 2

π
ρa

∫ L?

0

∂2`′?

∂t?2 ln

∣∣∣∣x? − ξ?L?

∣∣∣∣ dξ?, (2.11)

where ρa denotes the air density and L? the sheet length. The integral
in Eq. (2.11) yields the evaluation of the local pressure variation due
to the influence of the whole sheet deformation. For any x? = ξ? the
integrand is singular, and its evaluation requires a suited treatment
(De Rosa [34]).

Travelling-wave features of the theoretical solution

By employing the following reference quantities (subscript r)

L?r = L?, `?r = H?
i , U

?
r = U?

i , v
?
r = εU?

i , t
?
r = L?/U?

i , (2.12)

where the sheet slenderness ratio ε = H?
i /L

? has been introduced,
the dimensionless form of Eqs. (2.7)-(2.8) is obtained:

∂`

∂t
+ U

∂`

∂x
= v, (2.13)

∂v

∂t
+ U

∂v

∂x
=

1

WeH

∂

∂x

∂2`

∂x2
− (p+

a − p−a ), (2.14)

where the superscript prime for the perturbations quantities has been
suppressed, and

p+
a − p−a = − 2

π

ρa
ρl

1

ε

1

H

∫ 1

0

∂2`

∂t2
ln |x− ξ| dξ. (2.15)

Based on the works by Weinstein et al. [27] and Finnicum et al. [19],
the Torricelli’s free-fall solution is considered as the steady main flow
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in Eqs. (2.13)-(2.14),

U =

√
1 + 2

x

Fr
, UH = 1, P = 0, (2.16)

being Fr = U?2
i /(gL

?) the Froude number. Note also that hereafter
dimensionless quantities will be denoted without apex ?. It is useful
to recast the system of Eqs. (2.13)-(2.14) as a single second order
integro-differential equation

∂2`

∂t2
− 2

π

1

ε

ρa
ρl

1

H

∫ 1

0

∂2`

∂t2
ln |x− ξ| dξ +

+2U
∂2`

∂x∂t
+ U

(
U − 1

We

)
∂2`

∂x2
+ U

∂U

∂x

∂`

∂x
= 0. (2.17)

In terms of substantial derivative, Eq. (2.17) can be conveniently
rewritten as

D2`

Dt2
− 2

π

1

ε

ρa
ρl

1

H

∫ 1

0

∂2`

∂t2
ln |x− ξ| dξ − U

We

∂2`

∂x2
= 0, (2.18)

which is analogous to the classic one representing transverse vibra-
tions of a finite length tensional string. Therefore, for ρa = 0,
Eq. (2.18) features two real and distinct characteristics on the en-
tire physical domain, which are physically represented by travelling
waves with velocities ±

√
U/We relative to that of the basic flow

U (Weinstein et al. [27], Girfoglio et al. [13]). It is worth noting
that, for ρa 6= 0, the system (2.13)-(2.14) is not rigorously hyperbolic
due to the integral term (2.15). However, numerical integrations of
the equations shown later in Section 4.1 reveal solutions represented
by travelling waves with phase velocities and corresponding crossing
times in strict agreement with those obtained for ρa = 0. Based on
this consideration, Eqs. (2.13)-(2.14) are equipped with two bound-
ary conditions imposed at the inlet section (x = 0) for We > 1 (two
downstream-oriented characteristic curves), while forWe < 1, due to
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the upstream-oriented curve U−
√
U/We, only one constraint can be

retained at x = 0. The boundary conditions assignment to properly
close the system (2.13)-(2.14) in both supercritical and subcritical
regimes is addressed in detail in Section 3.2.

A physical interpretation of the sheet dynamics

A different rearrangement of the system (2.13)-(2.14) leads to

∂2`

∂t2
+ U

∂2`

∂t∂x
+RU

∫ 1

0

U
∂2`

∂t∂x
ln |x− ξ| dξ − 1

WelH

∂2`

∂x2
=

−U ∂v
∂x

+RU

∫ 1

0

∂v

∂t
ln |x− ξ| dξ, (2.19)

where the parameter R =
2

π

rρ
ε

has been introduced (rρ = ρa/ρl is
the density ratio), and the substitution U = 1/H from Eq. (2.16) has
been made. According to Eq. (2.19), the oscillatory dynamics of the
average sheet displacement ` appears forced by terms containing the
lateral velocity v, which basically depend on the base flow U . The
second and third terms at the left hand side, namely

U
∂2`

∂t∂x
, (2.20)

RU

∫ 1

0

U
∂2`

∂t∂x
ln |x− ξ| dξ, (2.21)

represent aerodynamic damping terms, since they contain the first
time derivative of the displacement `. Note that the two damping
coefficients, namely the basic flow velocity U and the integral opera-
tor in Eq. (2.21), have opposite sign and, depending on the magnitude
of the parameter R, the total damping coefficient can be negative, as
reported in Fig. 2.4. As will be shown in Section 4.1.2, in supercrit-
ical conditions (We > 1) this makes the system unstable, which, in
the absence of nonlinear saturation, manifests an exponential ampli-
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Figure 2.4. Aerodynamic damping coefficients in Eqs. (2.20)-(2.21):
U (black dotted line); RU

∫ 1
0 U(·) ln |x− ξ| dξ (coloured dashed lines).

Solid lines represent the total damping coefficient: rρ = 0.001 (blue
curve); 0.01 (black); 0.05 (red).

fication of disturbances.

From supercritical to subcritical regime

It has been previously observed in this section that Eq. (2.17) ex-
hibits two real and distinct characteristics curves on the entire physi-
cal domain, which are physically represented by travelling waves with
velocities ±

√
U/We relative to that of the basic flow U . It is there-

fore possible to define the crossing time of each wave as

t±cross =

∫ 1

0

dx

U ±
√
U/We

, (2.22)

namely the time needed for the fast and slow wave, denoted by t+cross
and t−cross, respectively, to cross the entire sheet length. As shown by
Girfoglio et al. [13], the two integrals of Eq. (2.22) can be analytically
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evaluated as

t±cross = 2Fr

[
1

2
(U |1 − 1)∓ 1√

We

(√
U |1 − 1

)]
+

+

 1

We
log

√
U |1 ±

1√
We

1± 1√
We

 , (2.23)

where U |1 =
√

1 + 2/Fr. The fast and slow wave crossing time
variation with the Weber number are reported in Fig. 2.5 for three
different values of the Froude number, namely Fr = 0.5, 1.0 and
2.0. The analysis of Fig. 2.5 reveals that, while t+cross is a continuous
monotonic function in both supercritical (We > 1) and subcritical
(We < 1) ranges, t−cross has a distinctive different behaviour: it ex-
hibits two singularities at We = 1 and We = Weth, where

Weth =
1

U |1
=

1√
1 +

2

Fr

. (2.24)

Moreover, t−cross is a positive, or negative, decreasing function for
We > 1, orWe < Weth, respectively. Of course the formally negative
time refers to a crossing time for a negative velocity. For We > 1
both the fast and slow travelling waves have positive velocity, i.e.
they travel downstream towards the right end of the curtain, and
they are both characterized by formally positive crossing times. As
the Weber number decreases below the unity, but it is still greater
than Weth, the fast wave velocity does not change in sign, while the
slow one becomes negative in the region 0 < x < xs, where xs is
the critical station, i.e. the location where the local Weber number
equals the unity, given by

xs =
Fr

2

(
1

We2
− 1

)
. (2.25)
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Figure 2.5. Froude number effect on the fast (panel (a)) and slow
(panel (b)) wave crossing times t±cross as a function of the Weber number.
In panel (b), coloured dashed lines denote the valuesWeth as a function
of Fr, while the curveWe = 1 is represented as a black dot-dashed line.
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For Weth < We < 1, only the fast (right-travelling) wave determines
the asymptotic liquid sheet dynamics: the associated crossing time
t+cross is the only one physically relevant (Fig. 2.5(a)), whereas t−cross is
not defined (Fig. 2.5(b)). As a consequence, by applying linear sta-
bility analysis (Section 3.2) two branches of spectrum in supercritical
regime and just one branch for Weth < We < 1 will be predicted, as
confirmed by results reported in Section 4.1.3. Furthermore, when
the Weber number decreases below the threshold We = Weth, that
is the flow Weber number for which the critical station is located
at the exit section, substituting Eq. (2.24) into Eq. (2.25) it is ob-
tained that xs > 1, namely the entire liquid sheet is subcritical. It
will be shown in Section 4.1.4 that, as in supercritical conditions, for
We < Weth the crossing time t−cross is related to a physically relevant
wave-propagation mechanism, and formally assumes negative values
being associated to an upstream-travelling disturbance (Fig. 2.5(b));
two branches of spectrum will thus arise also for We < Weth.

Energy budgets equations

The derivation of the energy budgets which will be reported in
Section 4.1 starts from the following Eqs. (2.26)-(2.27),

v′? =
∂`′?

∂t?
+ U?∂`

′?

∂x?
, (2.26)

∂v′?

∂t?
+ U?∂v

′?

∂x?
=

2σ

ρlH?

∂2`′?

∂x?2
+

2ρa
πρlH?

∫ L?

0

∂2`′?

∂t?2 ln

∣∣∣∣x? − ξ?L?

∣∣∣∣ dξ? +
µl
ρl

∂2v′?

∂x?2
, (2.27)

which are the same as Eqs. (2.7)-(2.8) previously introduced in this

section, except for the viscous term
µl
ρl

∂2v′?

∂x?2
(µl is the liquid viscosity).

Note that all the dimensional quantities, except the fluid material
properties (ρa, ρl, µl, σ), are denoted with the superscript ?.
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Let us now define preliminarily the kinetic, E?
c , and surface ten-

sion, E?
σ, energies per unit length of the perturbed field (Olsson and

Henningson [35]), respectively the quantities

E?
c =

ρl
2

∫ L

0

H?v′?2dx?, E?
σ = σ

∫ L

0

(
∂`′?

∂x?

)2

dx?. (2.28)

Multiplying Eq. (2.27) by ρlH?v′? and integrating between 0 and L?
yield the evolution equation of the sinuous perturbation energy:

ρl

∫ L

0

H?∂v
′?

∂t?
v′?dx? + ρl

∫ L

0

U?H?∂v
′?

∂x?
v′?dx? =

2σ

∫ L

0

∂

∂x?

(
∂`′?

∂x?

)
v′?dx? −

∫ L

0

∆p′?a v
′?dx? +

µl

∫ L

0

H?∂
2v′?

∂x?2
v′?dx?. (2.29)

Integrating by parts and taking into account the kinematic condition
(Eq. (2.26)), one can rearrange Eq. (2.29) in the form of an energy
budget equation:

d

dt?
(E?

c + E?
σ) = −ρlU?H?1

2

[
v′?2
]L

0
− σ

[
U?

(
∂`′?

∂x?

)2
]L

0

+

+2σ

[
v′?
∂`′?

∂x?

]L
0

−
∫ L

0

∆p′?a v
′?dx? +

−σ
∫ L

0

∂U?

∂x?

(
∂`′?

∂x?

)2

dx? + µl

∫ L

0

H?∂
2v′?

∂x?2
v′?dx?. (2.30)

The time variation of the total energy, E?
t = E?

c + E?
σ, is thus

determined by:
- the exchanges of kinetic, E?

c , and surface tension, E?
σ, energies
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through the domain boundaries (first and second terms at the right
hand side of Eq. (2.30));

- the work per time unit of the external forces, namely the surface
tension, σ, and the pressure difference, ∆p′?a , caused by the sheet
velocity, v′? (third and fourth terms);

- a production term depending on the surface tension and related
to the interaction between the perturbation, ∂`′?/∂x?, and the base
flow stretching, ∂U?/∂x? (fifth term);

- a dissipation term related to liquid viscous effects (last term).
By employing the reference (dimensional) quantities previously

introduced in this section (Eq. (2.12)), the dimensionless form of
Eq. (2.30) is obtained:

d

dt
(Ec + Eσ) = −1

2

[
v2
]1

0
− 1

2We

[
U

(
∂`

∂x

)2
]1

0

+
1

We

[
v
∂`

∂x

]1

0

+
2

π

rρ
ε

∫ 1

0

(∫ 1

0

(
∂v

∂t
− U ∂2`

∂t∂x

)
ln |x− ξ| dξ

)
vdx

− 1

2We

∫ 1

0

∂U

∂x

(
∂`

∂x

)2

dx+
ε

2Re

∫ 1

0

∂2v

∂x2

v

U
dx, (2.31)

where the superscript prime for the perturbation quantities has been
suppressed. Note that in Eq. (2.31) the Reynolds number Re =
ρlU

?
i H

?
i

2µl
has been introduced, and that Eq. (2.26) has been used to

simplify the second order time derivative in the pressure term. The
dimensionless forms of the kinetic and surface tension energies read
respectively

Ec =
1

2

∫ 1

0

v2

U
dx, Eσ =

1

2We

∫ 1

0

(
∂`

∂x

)2

dx. (2.32)

Finally, the energy budget equation can be conveniently rearranged
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in a more compact form:

d

dt
(Ec + Eσ) = ∆Fc + ∆Fσ + Lσ + Lp + P +D, (2.33)

where the following notations have been introduced:

∆Fc = −1

2
[v2]

1
0;

∆Fσ = − 1

2We

[
U

(
∂`

∂x

)2
]1

0

;

Lσ =
1

We

[
v
∂`

∂x

]1

0

;

Lp =
2

π

rρ
ε

∫ 1

0

(∫ 1

0

(
∂v

∂t
− U ∂2`

∂t∂x

)
ln |x− ξ| dξ

)
vdx;

P = − 1

2We

∫ 1

0

∂U

∂x

(
∂`

∂x

)2

dx;

D =
ε

2Re

∫ 1

0

∂2v

∂x2

v

U
dx.

An energy budget equation for viscous liquid sheets was also de-
rived by Lin et al. [36], in the framework of parallel flow, which
allowed the authors to introduce a spatial Fourier decomposition in
wavenumbers, and the energy budgets were evaluated per unit of
wavelength. On the contrary, the energy budgets are here evaluated
for the entire sheet extension, for comparisons with the global stabil-
ity analysis developed in Section 3.2.
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2.2 Two-phase mixing layers

Investigations of the physical mechanisms determining the inter-
facial instability in gas-liquid mixing layer flows date back to two
centuries ago (Helmholtz [37], Thomson [38]). Typical industrial
configurations where this kind of two-phase flow system can be en-
countered are air-blast atomizers, where a relatively low-speed liquid
jet (density ρl, velocity Ul) is sheared by a faster parallel co-flowing
gaseous phase (ρg, Ug), after the two streams meet downstream a
separator (or splitter) plate at the end of an injection nozzle (Raynal
et al. [39], Ben Rayana et al. [40], Eggers and Villermaux [41]); a
sketch is reported in Fig. 2.6. The velocity difference existing be-
tween the two phases triggers a shear instability at the separating
interface, leading to the generation of a liquid wave which is in turn
affected by secondary instabilities, determining the formation, cor-
rugation and finally breaking of ligaments into droplets (primary at-
omization). The last process leads to the generation of mutually
interacting gas-droplets mixtures, in the so called secondary atom-
ization, i.e. the last stage of this “instability cascade” (Marmottant
and Villermaux [42]). Among many others, the application of such a
flow configuration to fuel injection, where the quality of combustion
and then pollutant generation crucially depend on the characteristics
of the atomization process (Lefebvre [5]), makes the topic of primary
interest for both automotive and aerospace industrial sectors, and
it has been leading scientific research through extensive theoretical,
experimental and numerical investigations for decades. However, a
comprehensive understanding of the physical mechanisms governing
the different stages of the instability cascade has not been achieved
yet, making the modelling and control of two-phase mixing layer flows
still challenging tasks nowadays. An overview of selected works di-
rectly relevant to the aim of this study, concerning planar air-water
mixing layers, is reported in the following Sections 2.2.1-2.2.3. Mo-
tivations and objectives of the work on this research line are further
highlighted in Section 2.2.4.
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Figure 2.6. Sketch of the gas-liquid mixing layer flow developing past
a splitter plate (black). Details of gas (red) and liquid (blue) channels
are highlighted.

2.2.1 Local linear stability theory

The gas-liquid interfacial wave dynamics in proximity of the in-
jection section (i.e., in the near-field region) has been conventionally
investigated through linear stability analysis of small perturbations
superposed on a properly selected base flow, within the parallel (or
quasi-parallel) flow approximation, with the aim of determining the
most unstable frequency and wavelength of the instability. First in-
vestigations were carried out assuming inviscid regime for both the
base flow and the evolution of perturbations (Marmottant and Viller-
maux [42], Eggers and Villermaux [41], Matas et al. [43]). Later on,
Matas et al. [43] included a velocity defect in the base flow (i.e. they
considered a viscous base flow, see Fig. 2.7, where y is the spatial co-
ordinate normal to the splitter plate direction x) to mimic the splitter
plate effect on the near-field flow region. They found that account-
ing for the velocity defect is crucial to obtain reasonable quantitative
agreement between inviscid stability analysis predictions and experi-
mental measurements of the interface oscillations frequency, although
the spatial growth rate is significantly underestimated with this ap-
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Figure 2.7. Typical mixing layer base flow velocity profile with (red
dashed curve) and without (black curve) velocity defect. The gas-liquid
interface is located at y = 0. Adapted from Fuster et al. [48].

proach. On the other hand, a good quantitative match between mea-
sured and theoretically predicted spatial growth rates of the unstable
wave can be obtained including viscous effects in the temporal linear
stability analysis, i.e. by formulating an Orr-Sommerfeld problem for
the two-phase shear layer (Yecko et al. [44], Boeck and Zaleski [45]),
but then frequencies become overestimated.

2.2.2 Numerical-experimental comparisons

To obtain a more satisfactory and systematic agreement between
stability analysis predictions and experimental measurements, Otto
et al. [46] developed a spatio-temporal linear stability approach, im-
proving the match between theoretical and experimental values for
both frequency and spatial growth rate. Moreover, their method
provided for the first time evidence of a transition from convective
to absolute instability (Huerre and Monkewitz [47]) for the injection
conditions reported in the work by Matas et al. [43], with experi-
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Figure 2.8. Numerical prediction of the most unstable frequency f as
a function of M in convective (M < Mc) and absolute (M > Mc) insta-
bility regimes. The red line represents the convective-absolute transition
threshold M = Mc. Adapted from Fuster et al. [48].

mental data spanning both the instability regimes. This aspect was
further clarified by Fuster et al. [48], who showed that the transition
from convective to absolute unstable behaviour of the flow crucially
depends on the dynamic pressure ratio parameter M = ρgU

2
g /(ρlU

2
l )

(Fig. 2.8). In particular, the absolute instability regime found by the
authors was strongly affected by the splitter plate thickness separat-
ing the two streams before the injection, and Bozonnet et al. [49]
pointed out that it was determined by a resonance mechanism be-
tween an upstream-travelling surface capillary wave and the main
downstream-oriented shear wave. In this respect, Matas et al. [50]
outlined that surface tension becomes the physical mechanism trig-
gering the flow absolute instability for a sufficiently low interfacial
velocity. It is interesting to note that a surface tension-induced
global instability was also found by Tammisola et al. [51] for two-
dimensional planar jet and wake flows of two immiscible fluids with
different velocities, which has been recently confirmed by nonlinear
two-phase direct numerical simulations (Schmidt et al. [52]).
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2.2.3 Physical mechanisms of instability

Apart from surface tension acting at the separating fluids inter-
face, another physical mechanism has been recently discovered to play
a key role in triggering the two-phase mixing layer absolute instabil-
ity: the confinement effect, represented by the finite thicknesses of
gas and liquid streams (Matas [53]). As explained in the more gen-
eral framework of jet/wake flows by Juniper [54, 55] and retrieved
for an air-water mixing layer configuration in the combined experi-
mental, theoretical and numerical analysis by Bozonnet et al. [49],
confinement is able to determine absolute instability. This is possible
through a resonance mechanism taking place between velocity per-
turbations cross-stream spatial oscillations within the gaseous phase,
which are induced by the streamwise liquid wave development, and
the confinement length (i.e. the gas stream injection thickness Hg).
While both the convective mode of instability (triggered by viscos-
ity differences across the interface, see Yih [56] and Boeck and Za-
leski [45]) and the surface tension-induced absolute mode (Fuster et
al. [48]) are characterized by relatively small wavelengths, the con-
finement absolute mode reveals a smaller wave number, which better
matches most of the experimental conditions (Matas [53]). A map
of the different mixing layer flow regimes has been recently proposed
by Matas et al. [50], outlining that the velocity defect induced in
the near-field region by the splitter plate has an impact on both the
surface tension and confinement induced absolute instability.

2.2.4 Towards global stability analysis

The literature review summarized above reveals that one of the
most challenging requests to enhance the agreement between the the-
oretical and experimental findings is the accurate knowledge of the
relevant flow field. Numerical simulations of the flow performed both
in three (Agbaglah et al. [57], Ling et al. [58, 59]) and two-dimensional
(Fuster et al. [48], Bozonnet et al. [49]) scenarios have shown that the
two-phase mixing layer is characterized by strong spatial variations
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in the near-field region, where the flow is basically two-dimensional.
The (locally) parallel flow assumption usually done for linear stability
calculations is thus generally not accurate. As pointed out by Bo-
zonnet et al. [49], a global stability analysis, or several local stability
studies, should be performed on linear and/or nonlinear mean flows
to improve the capability to predict the flow dynamics in most of the
experimental conditions.

As a matter of fact, the two-phase mean flow characterization of
such a mixing layer configuration, and more in general of free surface
flows in presence of a wavy interface, poses severe challenges from an
experimental point of view (Sanchis and Jensen [60], Ayati et al. [61],
Andrè and Bardet [62], Buckley and Veron [63], Kosiwczuk et al. [64]).
In most cases, when studying interfacial phenomena through particle
image (PIV) or particle tracking (PTV) velocimetry, the illuminat-
ing light sheet is oriented perpendicular to the interface, eventually
causing undesirable reflections in the form of bright spots. Dynamic
masking techniques can be used to detect the separating fluids inter-
face in such cases, as done in Sanchis and Jensen [60] by applying the
Radon transform algorithm to PIV images of a stratified air-water
flow in a circular pipe, obtaining also the velocity field within the
liquid phase. The large difference in refractive index between phases
can also lead to glare and prevent optical access. Moreover, particu-
lar care must be taken to ensure that the flow tracers do not modify
interface properties such as surface tension and viscosity. Finally, the
huge difference in the two phases mean injection velocities (about two
order of magnitude in mixing layer configurations of practical inter-
est, where the water stream is slower) makes the simultaneous PIV
characterization of the phases a severe issue when using a single-laser
single-camera measuring configuration. Combined particle image ve-
locimetry and laser-induced fluorescence systems have been recently
used to perform the interface detection and mean flow measurements
in the gaseous phase over wind driven surface waves (Buckley and
Veron [63]), while both phases of a stratified air-water flow in a hor-
izontal pipe (Ayati et al. [61]) and for a turbulent spray mixture



30 Chapter 2. Layout of plane liquid jets

(Kosiwczuk et al. [64]) have been characterized by means of sophisti-
cated multi-camera ([64], [61]) and multi-laser ([63]) instrumentation.
PIV measurements of the mean gaseous velocity field have also been
performed by Descamps et al. [65] for a planar air-water mixing layer
configuration.

As an important step to assist future global stability studies, this
work provides a detailed experimental characterization of the two-
dimensional air-water wake/mixing layer flow developing downstream
of a splitter plate, which initially separates the two currents. The ex-
periments are designed in such a way that the ratio of the plate to the
air vorticity thickness is grater than one. By means of a proper light
sheet optics arrangement, two-components time-resolved particle im-
age velocimetry (TR-PIV) measurements are performed simultane-
ously in air and water streams (Section 3.5.2). The two-phase mean
(time-averaged) and unsteady features of the flow are thus charac-
terized for several injection conditions, spanning both the convective
and the absolute instability regimes discussed above. Although sev-
eral studies reported in literature show the possibility to apply PIV
methods to mixing layer flows (Descamps et al. [65]), to more gen-
eral interfacial flows (Sanchis and Jensen [60], Ayati et al. [61], Andrè
and Bardet [62], Buckley and Veron [63], Li et al. [66]), and even to
turbulent spray mixtures (Kosiwczuk et al. [64]), a TR-PIV charac-
terization of a planar mixing layer performed simultaneously in gas
and liquid phases is still lacking in literature, and therefore represents
a major novel contribution of the present investigation.



Chapter 3
Numerical and experimental
methodologies

The present chapter is dedicated to the numerical and experimen-
tal investigation approaches employed in this work. Direct numerical
simulation and linear stability analysis for two-phase flows are first
described (Sections 3.1 and 3.2), with emphasis on the flow configura-
tions introduced in Chapter 2. The modal decomposition techniques
applied to numerical data are then presented (Section 3.3), and the
experimental methodologies finally discussed in Sections 3.4 and 3.5.

3.1 Direct numerical simulations

The accurate prediction of multiphase flows dynamics is of crucial
industrial and scientific interest, representing a problem into which
computer simulations are giving unprecedented insights nowadays
(Tryggvason, Scardovelli and Zaleski [1]). Direct numerical simu-
lation of two-phase flows based on the so called one-fluid formula-
tion is briefly recalled hereafter, providing examples inspired from
results later discussed in Section 4.1 regarding gravitational liquid
sheet flows.
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3.1.1 One-fluid formulation

The mathematical modelling of the interface separating immis-
cible fluids is a crucial aspect to obtain accurate numerical predic-
tions of multiphase flows behaviour. A modern approach consists in
deriving the governing equations for two-phase flows following the
single-phase formulation (Scardovelli and Zaleski [67]). Given the
assumption of incompressible flow, and restricting the attention to
a two-dimensional case within the xy Cartesian space to simplify
notations, continuity and momentum equations in the one-fluid for-
mulation read (in Einstein notation) as

∂ui
∂xi

= 0, (3.1a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ FS, (3.1b)

with (u1, u2)T = (u, v)T representing the velocity vector, p the pres-
sure, (x1, x2)T = (x, y)T the spatial coordinates, ρ the density, µ the
dynamic viscosity. The term FS represents the surface tension force
acting at the separating fluids interface, and it reads as FS = σκniδS,
where κ is the mean interface curvature, (n1, n2)T = (nx, ny)

T the
outward pointing normal vector, and σ the surface tension coefficient.

The phase boundary is the only region of the domain where the
term FS is different from zero. Indeed δS is a Dirac distribution
function, equal to 1 at the interface, 0 otherwise. Therefore, density
and viscosity fields are evaluated as

ρ = ρg + (ρl − ρg)C, (3.2a)
µ = µg + (µl − µg)C, (3.2b)

where subscripts g and l respectively refer to the gas and liquid in-
teracting flow phases, and C(x, y, t) is the volume fraction, a (dimen-
sionless) Heaviside function equal to the liquid-to-total volume ratio.
Computational cells where C = 1 are located in the liquid phase and
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Figure 3.1. Volume fraction C(x, y) contour representation of a two-
dimensional liquid jet injected in still air: C = 1 (red region) in liquid
phase (ρ = ρl), 0 (blue region) in the gaseous ambient (ρ = ρg).

cells with C = 0 are situated in the gaseous phase; 0 < C < 1 for
cells crossing the interface (see Fig. 3.1).

An additional equation is required to localize the interface, namely
the volume fraction advection equation

∂C

∂t
+
∂Cui
∂xi

= 0, (3.3)

which, coupled with the system (3.1a)-(3.1b), closes the problem.

3.1.2 Volume-of-fluid method in BASILISK

The equations introduced in Section 3.1.1 are numerically solved
using the finite volume method in BASILISK, an open-source code
suitable for the solution of partial differential equations on adaptive
Cartesian meshes, originally developed by Popinet (basilisk.fr).
The salient features of the code are briefly summarized hereafter:
for a detailed description of the implemented numerical schemes, the
reader can refer to Popinet [68, 69].

The governing equations are solved, as is usual for incompressible
flows, by the so-called projection method, where a temporary veloc-
ity field is firstly found by ignoring the pressure gradient, and, in the

basilisk.fr
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second step, it is projected onto a space of divergence-free velocity
fields by adding the appropriate pressure gradient information. The
interface is tracked with the Volume-Of-Fluid (VOF) method [70],
solving Eq. (3.3) for the volume fraction advection. With the ve-
locity field known, a one-dimensional scheme is used to advect the
volume fraction field along each coordinate direction. The local vol-
ume fraction fluxes are calculated from the local velocities, and the
geometric reconstruction of the interface is realized in each cell by
knowledge of the corresponding volume fraction value. The interface
in each cell is a segment described by n1x1 +n2x2 = c, where ni is the
partial derivative of C with respect to the corresponding spatial co-
ordinate xi, and c represents the shortest distance from the segment
to the current coordinate below it. In practice, an analytical formula
can be used to determine c (Scardovelli and Zaleski [67]).

The surface tension term in Eq. (3.1b) is evaluated using a bal-
anced Continuum Surface Force (CSF) formulation (see Francois et
al. [71]), which adopts a height-function method to estimate the in-
terface curvature with second-order accuracy (Cummins et al. [72]).
A momentum conserving scheme is used for the advection term in
Eq. (3.1b) for small density ratios (e.g. air/water flow) to avoid nu-
merical instabilities.

Apart from a classic uniform structured grid, BASILISK allows
the generation of a hierarchical quad-tree adaptive grid structure (an
example is shown in Fig. 3.2) to dynamically refine the grid at each
time step according to user-defined adaptation criteria. The dynamic
grid helps the user to retain a high resolution in the flow field region
of interest, while simultaneously allowing for coarse resolution away
from it, that decreases the computational cost of the entire simula-
tion. The refinement of a generic grid cell is performed at each itera-
tion reducing by one and then increasing again its grid level, resulting
in a down- and up-sampling of the stored scalar fields. Therefore, the
error χ = ||φ − φ+|| between the original φ and the up-sampled φ+

field can be estimated; the cell is refined if χ > β and coarsened if
χ < β, where β is the error threshold of the specific scalar field. For



3.2. Linear stability analysis 35

Figure 3.2. Adaptive grid structure employed to obtain the numerical
solution shown in Fig. 3.1.

a detailed explanation of the adaptive grid-strategy implemented in
BASILISK, the reader is referred to van Hooft et al. [73].

3.2 Linear stability analysis

To determine the asymptotic behaviour of a flow system, and to
provide comparisons with results arising from direct numerical simu-
lations and experiments, a boundary value eigenvalues problem can
be formulated. For the case of a gravitational liquid sheet flow (Sec-
tion 2.1), this has been carried out starting from Eqs. (2.13)-(2.14)
of the linear inviscid one-dimensional theoretical model presented in
Section 2.1.3.

By eliminating the second time derivative from Eq. (2.14), one
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obtains the following system

∂v

∂t
−RU

∫ 1

0

(
∂v

∂t
− U ∂2`

∂t∂x

)
ln |x− ξ| dξ =

−U ∂v
∂x

+
U

We

∂2`

∂x2
, (3.4)

∂`

∂t
= v − U ∂`

∂x
, (3.5)

where the substitution 1/H = U (Eq. (2.16)) has been made in
Eq. (3.4). The classic global temporal modes position is then en-
forced assuming the following form of the disturbances:

`(x, t) = ˆ̀(x) · eλt, (3.6)
v(x, t) = v̂(x) · eλt, (3.7)

where ˆ̀ and v̂ are eigenfunctions and λ is the complex eigenvalue.
This permits one to recast the governing equations into the following
matrix form

λM

(
v̂
ˆ̀

)
= A

(
v̂
ˆ̀

)
, (3.8)

where the temporal operator is the block matrix

M ≡

 I −RU ·I N T RU ·I N T · U ·D

O I

 ,

and the spatial operator is the block matrix

A ≡

 −U ·D U/We ·D2

I −U ·D

 ,

with I denoting the identity operator, O = 0 · I , D (D2) is the
first (second) spatial derivative operator, and I N T represents the
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Figure 3.3. Typical eigenvalue spectrum obtained from Eq. (3.8) (left
panel) in supercritical conditions (We > 1), with zoom around the least
stable part (right panel).

integral
∫ 1

0
(·) ln |x− ξ| dξ.

Eigenvalues and eigenfunctions are numerically computed by a
Chebyshev collocation method in the MATLAB environment, with
both differential and integral terms being spectrally accurate. As an-
ticipated in Section 2.1.3, a countable set of separated modes is found
in the spectrum, which in supercritical conditions (We > 1) appears
clustered in two separated branches, each one being characterized
by eigenvalues with different real λr (i.e. growth rate) and evenly
spaced imaginary λi (i.e. frequency) coefficients; an example is re-
ported in Fig. 3.3. In supercritical regime, two boundary conditions
are required at the inlet section to close the system (3.8), i.e.

ˆ̀(0) = 0, (3.9)
∂ ˆ̀

∂x

∣∣∣∣
0

= 0. (3.10)

On the contrary, for subcritical cases, We < 1, due to the up-
stream directed wave characteristic velocity U −

√
U/We (see again

Section 2.1.3), the condition ˆ̀ = 0 can only be retained at the inlet
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boundary. On the other hand, the system (3.8) becomes singular, and
the condition removing the singularity constitutes the required second
constraint to calculate the spectrum in subcritical regime (We < 1).
This aspect is detailed in Appendix A.1, together with the proper
modifications required to account for viscous effects within the liquid
sheet (Appendix A.2).

3.3 Data-driven decomposition techniques

The comprehension of complex flows takes advantage from the
recognition of physically important features, associated with modes
characterizing the spatial topology. Modes can also be used to con-
struct reduced-order modelling and to control the flow itself as shown
in Schmidt and Colonius [74]. Several techniques have been devel-
oped to extract the main flow features, as reported in the reviews
by Rowley and Dawson [75], Taira et al. [76], Towne et al. [77].
Proper orthogonal decomposition (POD, Berkooz et al. [78]), Spectral
POD (Towne et al. [77]), and dynamic mode decomposition (DMD,
Schmid [79] and Tu et al. [80]) are the most used techniques for this
purpose. In particular, the POD provides the minimal number of ba-
sis functions (the modes) to capture as much energy as possible, the
SPOD allows one to characterize the spatial and temporal evolution
of coherent structures through the decomposition in the frequency
domain of the flow in various modes, ordered by their energy con-
tent, whereas DMD is based on the eigendecomposition of a best-fit
linear operator that approximates the dynamics present in the data.

Recent works on this topic have been carried out to extract the
features of swirling coaxial jets (Kadu et al. [81]) and of the flow
around a square-section building (Zhang et al. [82]), to character-
ize the dynamics of flows past finite curved cylinders by Chiatto et
al. [83], and the dynamics of actively controlled flow past a back-
ward facing ramp by the same authors [84]. In the present context,
the SPOD and DMD techniques are applied to numerical data of
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two-dimensional liquid sheets flow fields computed by means of the
two-phase code BASILISK (Section 3.1.2).

3.3.1 Spectral proper orthogonal decomposition

Defining the fluctuation of a stochastic field q(x, t), with x the
position and t the discrete time, as

q′(x, t) = q(x, t)− q̄(x), (3.11)

where q̄ = E {q(x, t)} is the ensemble average (and E {·} the expec-
tation operator), in accordance with the works by Towne et al. [77],
the SPOD decomposition provides the best representation of q′(x, t),
with the least number of modes, in the space-time domain (Schmidt
and Colonius [74]).

The SPOD modes satisfy the eigenvalue problem of the cross-
spectral density tensor S, and are computed with Welch method [74].
Accordingly, the flow snapshots (each snapshot representing a flow
field realization at a given time instance) are grouped in Nb blocks
of equal length Nf (Nf being the number of snapshots per block):
Q(j) =

[
q

(j)
1 , q

(j)
2 , ..., q

(j)
Nf

]
, with j = 1, ..., Nb. For clarity, the su-

perscript {·}′ (which represents the fluctuation) has been removed.
Each block overlaps with adjacent ones (a 50% overlap has been used
herein).

For each block j, the weighted discrete Fourier transform Q̂(j) =
F
{
Q(j)WT

}
(where WT is the matrix of window weights) is first

computed (Welch [85]). Then all Fourier transform realizations at the
same kth frequency are collected in matrices as Q̂k, which are defined
as Q̂k =

[
q̂

(1)
k , q̂

(2)
k , ..., q̂

(Nb)
k

]
, and the cross-spectral density tensor

Sk = Q̂kQ̂
∗
k is computed one frequency at a time, thus obtaining the

SPOD modes (Φk) and eigenvalues (Λk).
Once the SPOD modes have been identified, a low rank recon-

struction of the fluctuation field can be obtained through the inverse
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weighted (discrete) Fourier transform Q(j) = F−1
{
Q̂(j)W−1

T

}
to

come back in the time domain. This approach was recently pre-
sented by Nekkanti and Schmidt [86] and applied by Chiatto et
al. [84] to reconstruct the flow past a backward facing ramp (with and
without active flow control) considering a limited number of SPOD
modes. More in detail, the Fourier realizations matrix is expressed as
Q̂k = ΦkΛkΨ

∗
k, where Ψ∗k is the matrix containing the eigenvectors

of Q̂∗kQ̂k. For low rank reconstruction only r eigenvalues are retained
and Q̂k is approximated as

Q̂k ≈ Φ̃kΛ̃kΨ̃
∗
k, (3.12)

where Φ̃k and Ψ̃k are, respectively, the first r columns of Φk and Ψk.
As previously stated, once the reconstruction procedure of the Q̂k

has been completed, the Fourier realizations are re-arranged into the
blocks form Q̂(j) =

[
q̂

(j)
1 , q̂

(j)
2 , ..., q̂

(j)
Nf

]
, and the snapshots in the time

domain are obtained through an inverse weighted Fourier transform.
Particular attention needs to be paid to avoid the ambiguity for the
snapshots belonging to two different blocks. To solve the ambiguity,
as proposed by Nekkanti and Schmidt [86], the snapshot with the
higher windowing weight w(j) is chosen.

3.3.2 Dynamic mode decomposition

The DMD technique is applied in this work to VOF simulations
(Section 3.1) data of gravitational liquid sheet flows, to obtain in-
sights into the two-dimensional global spectrum of the system, and
to give comparisons with results of a classic linear stability analy-
sis performed on the simplified one-dimensional curtain model (Sec-
tion 3.2).

In the framework of two-phase flows, it is convenient to define the
state vector q (see Eq. (3.11)) by stacking the velocity components
and the volume fraction at every time instance. With this assump-
tion, the governing equations (system (3.1a)-(3.1b) and Eq. (3.3))
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can be recast in the form of a classic first order dynamical system,

q̇ = f(q), (3.13)

with f being a non-linear operator depending on q. By means of the
decomposition represented by Eq. (3.11), it is possible to obtain the
linearized form of Eq. (3.13):

q̇′ = Lq̄q′, (3.14)

with Lq̄ being the Jacobian operator evaluated at the base flow.

The computation of Lq̄ is numerically prohibitive; in the hypothe-
sis of small perturbations, Theofilis [87] and Bagheri et al. [88] showed
that its evaluation can be simplified when based on instantaneous q′

fields (i.e. snapshots), obtained by a high-order solver (in the present
case, the code BASILISK). Moreover, following Gomez et al. [89] a
proper set of snapshots is constructed through the Fréchet derivative:

q̇′ = Lq̄q′ =
∂f(q)

∂q

∣∣∣∣
q̄

q′ ≈ f(q̄ + q′)− f(q̄), (3.15)

that when integrated from a generic time instance t = tn to t = tn+∆t
leads to

q′n+1 = eLq̄∆tq′n = Aq′n ≈
∫ tn+∆t

tn

f(q̄ + q′)dt−
∫ tn+∆t

tn

f(q̄)dt.

(3.16)
The inspection of Eq. (3.16) highlights the linear relationship be-
tween two subsequent snapshots q′n and q′n+1 through the matrix A.
More in details, Aq′n is approximated by the difference between the
perturbed and the base flow fields variation. The base flow q̄ has
been assumed coincident with the flow field after an evolving time
t0 = 6tr, with tr = L?/U?

i (see Eq. (2.12) in Section 2.1.3). The
perturbed field has been obtained by adding a purely random per-
turbation to the base flow at t = t0. In particular, the perturbation
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is modelled as white noise, with an amplitude equal to 0.01U?
i for the

velocity components (u and v), and 0.01 for the volume of fraction
in the interface region.

The matrix A has been obtained by means of the DMD technique
(Ranjan et al. [90]), which decomposes time-resolved data into modes
with distinct frequencies and growth rates. Considering a standard
DMD algorithm (Tu et al. [80]), it is convenient to define a physically
meaningful norm for q′ related to the fluctuations energy of the veloc-
ity components and of C ′. In particular, the norm is ‖q′‖2

P = q′∗Pq′,
where (·)∗ denotes the conjugate transpose operator and P represents
a weight matrix, whose elements have been computed according to
Chu [91]. This provides the following energy norm:

E =

∫
Ω

[
ρ̄
(
u′2 + v′2

)
+
(
ū2 + v̄2

) ∆ρ2

ρ̄
C ′2
]
dΩ, (3.17)

being Ω the entire flow field region. In this way, P takes into account
the integration quadratures and appropriate scaling of heterogeneous
variables of the problem. Finally, a Cholesky decomposition P =
F∗F, has been computed to obtain ‖q′‖2

P = q′∗F∗Fq′ = ‖Fq′‖2
2. The

DMD algorithm considers the snapshots (Fq′k) collected as columns
in the matrices Q1 and Q2,

Q1 = F

 | | |
q′1 · · · q′k · · · q′M
| | |

 , (3.18)

Q2 = F

 | | |
q′2 · · · q′k+1 · · · q′M+1

| | |

 , (3.19)

where Q1,Q2 ∈ RN×M , N being the cardinality of the state vector
q′ and M the number of snapshots. In this view, the linear operator
approximates the temporal dynamics of the data such that

Q2 ≈ ΘQ1. (3.20)
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It is worth noting that the matrix Θ is related to the matrix A by
Θ = FAF−1; it shares the same eigenvalues of A and its eigenvectors
are scaled by F. Moreover, snapshots collected within the matrices
Q1 and Q2 can also refer to several simulations with different random
initializations (Herrmann et al. [92]). The present analysis considers
200 simulations, each one of 200 snapshots, with ∆t = 0.003 tr.

The leading coherent structures (namely the DMD modes) are
evaluated through the SVD decomposition of Q1, according to which
Q1 = UΣV∗. In this way, Eq. (3.20) becomes Θ = Q2VΣ−1U∗,
which generally requires a large computational cost. To mitigate this
effort, it is convenient to introduce the matrix Θ̃ = U∗Q2VΣ−1 that
shares the same non-zero eigenvalues of Θ (and of A), but it has a
lower dimension and thus requires a reduced numerical cost. Finally,
the DMD modes Φ are retrieved as Φ = Q2VΣ−1W, with W being
the matrix of eigenvectors of Θ̃. The dimensionless spectrum of the
underlying linear operator Lq̄ is thus computed as

λk = λr + iλi =
log (µk)

∆t
2πtr, (3.21)

where µk is the kth (complex) eigenvalue of Θ̃, λr the growth rate,
and λi the frequency.

The convergence and the saturation of the DMD algorithm are
evaluated by means of the L2 norm of the residual r. Indeed, con-
sidering the qr factorization of the snapshots matrix (Q1 = SR) the
residual r is defined as:

r = q′M+1 −Q1R
†S∗q′M+1, (3.22)

in which q′M+1 is the last snapshot and (·)† is the pseudoinverse oper-
ator. Note that r is the reconstruction error field of the last snapshot
q′M+1, and it simply represents how well the last snapshot can be
approximated as a linear combination of the first M ones.
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3.4 Curtain flows experimental setup

The experimental setup realized to perform curtain flows exper-
iments is a remake of that described in detail by de Luca and Me-
ola [24]; a sketch is reported in Fig. 3.4. Starting from an overflow
tank and through flexible tubes, the liquid fluid goes into a stagnation
chamber equipped with a perforated plate, and it is ejected by means
of a stainless steel nozzle. The flow rate is controlled with a regu-
lating valve and a flow meter. Two lateral Plexiglas plates, placed
at each end of the nozzle, facilitate the formation of the sheet and
guarantee the two-dimensionality of the base motion; details of the
experimental sheet and the nozzle cross-section are reported on the
right in Fig. 3.4. Particular care is taken to eliminate any vibration
source and to control the ambient air to be quite still. The liquid is
collected in a reservoir below the test section and then pumped back
to the tank. Tests are carried out on liquid sheets issuing from a
nozzle with a horizontal exit section, 180 mm long, having discharge
width H?

in equal to 2 mm.
To enhance the optical detection of the sheet oscillations as de-

scribed in Section 3.4.1, the working fluid was obtained by diluting a
very small amount of white ink (Lefranc & Bourgeoi coloured drawing
ink) in water, so as to obtain a low-concentration aqueous solution
with 1% of ink. The characterization of the solution has been carried
out by measuring the fluid properties: the nominal (or bulk) surface
tension has been obtained by means of a tensiometer through the pen-
dant drop method, and it is equal to 0.0605 N/m; the fluid density
is 0.998 Kg/m3, and a falling-sphere viscometer has provided a value
of the dynamic viscosity equal to 1.05 · 10−3 Pa·s. The temperature
in the room was stable and equal to 20◦ during the experiments.

3.4.1 Natural oscillation frequency detection

Time-resolved measurements of the sheet oscillations in the lat-
eral plane xy (normal to the nozzle spanwise direction z) are carried
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Figure 3.4. Sketch of the apparatus for curtain flows experiments.
Details of the two-dimensional liquid sheet and the nozzle are reported
on the right. The red spot in the curtain plane denotes the measuring
point.
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out by recording the transverse velocity signal v(t) by means of a
scanning Laser Doppler Vibrometer (LDV) (Polytec PSV400−H4)
at a proper measuring point, located 20 mm downstream of the noz-
zle exit section, as indicated by the red spot on the right in Fig. 3.4.
The acquired frequency does not depend on the measuring point lo-
cation. The frame-rate of acquisition is equal to 256 Hz, and 2048
samples are taken for each measurement. The aqueous solution of
white ink is necessary to make the test fluid opaque, thus allowing
the laser measurements. The curtain oscillations are excited through
the impulse motion of a thin plate, 0.5 mm in thickness, moving in
the horizontal yz plane, 0.2 mm below the nozzle exit section. This
contact method, used to set the curtain in motion, does not disrupt
the sheet for all the test conditions.

3.5 Mixing layers experimental investiga-
tion

The apparatus employed to perform air-water mixing layer exper-
iments (inspired by previous works from Ben Rayana et al. [40], Ray-
nal et al. [39], Matas et al. [43]) is presented in Section 3.5.1, followed
by a description of the measurement technique used to characterize
the two-phase flow (Section 3.5.2). Further details regarding the de-
sign and realization of the apparatus are reported in Appendix B.

3.5.1 Experimental apparatus

A schematic representation of the air-water wind tunnel employed
in experiments is shown in Fig. 3.5(a)-(b). The first panel gives
an overview of all the main components, including the measurement
setup (later discussed in Section 3.5.2), while the second focuses on
the near-field flow region of the mixing layer, i.e. immediately after
the nozzle exit section, which is located at x = 0. A water stream
flows along the streamwise x direction below a parallel faster air
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Figure 1: Experimental apparatus.
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Figure 3.5. Overall schematic representation (panel (a)) and two-
dimensional sketch close to the nozzle exit section (panel (b)) of the
experimental setup.
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current, the two fluids being separated by a stainless steel splitter
plate with thickness e = 2 mm (Fig. 3.5(b)). The shape of water
and air channels is the same: walls are made in Plexiglas, the cross-
sectional area (in yz plane) is initially 100 × 100 mm2 (y and z are
the normal-to-flow and spanwise coordinates, respectively), then a
two-dimensional converging nozzle reduces the channel height from
100 mm to Hg = Hl = 20 mm at x = 0, where the flows issue
into a test section (see Table 3.1). Three-dimensional effects due
to the later confinement of the test section walls on the liquid jet
are negligible in the near-field region of the flow, where the two-
dimensional PIV measurements are realized. An overflowing tank
(Fig. 3.5(a)), positioned 1.5 m above the splitter plate, drives the
liquid flow by gravity, and it is continuously filled up by a pump
(T.I.P. TVX 12000 Dompelpomp), thus realizing a closed-loop circuit
for the water stream. The flowrate, which is kept constant during
each experiment, is regulated by means of a valve located upstream
of the water channel entry; different values measured by a LVB-25-A
vortex flowmeter are obtained, corresponding to liquid inlet velocities
(i.e. at x = 0) in the range Ul ∈ [0.10, 0.30] m/s. The air stream
is generated by a blowing machine (ruck Ventilatoren RS315LEC)
allowing to obtain injection velocities between Ug = 2 m/s and Ug =
15 m/s, as measured by a Pitot tube located at the gas nozzle exit
section midpoint (i.e. at x = 0, y = 10 mm), and cross-checked by
static pressure probes positioned at inlet (x = −250 mm) and outlet
(x = 0) sections of the gas nozzle. Flow conditioners are used both
in liquid and gas currents to damp velocity fluctuations; two 50 mm
long hexagonal cells Aluminum honeycombs (aluNID from Alucoat)
are employed in the liquid phase, while a combination of the same
honeycomb and screens is used in the air channel.

Particular care is taken in designing the flow conditioners for the
gas phase to control its turbulence intensity level, which has been
shown to affect the mixing layer development both in experimental
(Matas [53]) and numerical (Jiang and Ling [93, 94]) studies, and
that strongly depends on screen geometrical properties and relative
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Figure 3.6. Air flow experimental characterization in terms of turbu-
lence intensity level (u′rms/ū, panel (a)) and inlet gas vorticity thickness
(δg, panel (b)) variations with Reynolds number ReHg . Comparisons
with literature results (Fuster et al. [48], Matas et al. [50], Raynal et
al. [39]) are also provided in panel (b).
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Name Variable Value Unit
Gas nozzle inlet height Hi,g 100 mm

Gas nozzle outlet height Hg 20 mm

Liquid nozzle inlet height Hi,l 100 mm

Liquid nozzle outlet height Hl 20 mm

Splitter plate thickness e 2 mm

Table 3.1. Relevant geometrical quantities of the two-phase mixing
layer experimental setup (see also Fig. 3.5(b)).

streamwise spacing in a multiple screens configuration (see for exam-
ple the works by Mehta and Bradshaw [95], Marhsall [96], Groth and
Johansson [97]). Following [97], a combination of three screens was
chosen (Fig. 3.5(b)), with mesh size progressively decreasing from 1
mm (coarse screen) to 0.5 mm (fine) and constant relative spacing
equal to 20 mm, while a distance of 50 mm was selected between
the honeycomb and the more upstream coarse screen. This configu-
ration gives a turbulence intensity level below 1% for all the testing
conditions, as reported in Fig. 3.6(a). The turbulence intensity is
quantified in terms of root-mean-square of the gas velocity fluctu-
ation u′(t) = u(t) − ū, where u(t) is the streamwise velocity com-
ponent measured (with liquid stream turned off) by a hot-wire lo-
cated at the gas nozzle exit section midpoint, and ū its time-averaged
value. Reynolds number values reported in Fig. 3.6(a) correspond to
Ug = 2, 5, 7, 10, 12 and 15 m/s, the Reynolds number here being de-
fined as ReHg = ρgUgHg/µg, ρg and µg being respectively the gas den-
sity and dynamic viscosity. The inlet gas vorticity thickness δg, which
is defined as δg = ∆ū/(dū/dy)|max (∆ū = ū(y = Hg/2)− ū(y = e/2))
and is known to play a crucial role in the mixing layer instability se-
lection mechanisms (Matas et al. [43], Fuster et al. [48]), has also been
measured positioning the hot-wire at a downstream distance equal to
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x = e/2. The obtained values are reported in Fig. 3.6(b), revealing
good agreement with analogous results selected from literature.

3.5.2 Two-phase particle image velocimetry

The single-laser single-camera measurement system designed to
achieve the TR-PIV characterization of the flow simultaneously in
the two phases is schematically shown in Fig. 3.5(a), while pictures
of the experimental setup highlighting its main components are re-
ported in Fig. 3.7(a)-(b). As previously discussed in Section 2.2.4,
performing this type of measurement is challenging, and other strate-
gies such as combining PIV with laser-induced fluorescence (Buckley
and Veron [63]) or multi-camera multi-laser configurations (Ayati et
al. [61], Kosiwczuk et al. [64]) have been employed to date. Among
other reasons, the major issues are related to the laser light reflection
and refraction across the interface, and to the high relative velocity
between the two phases (about two order of magnitude).

In the present work, to enlighten simultaneously air and water
flows overcoming light reflections at the fluids interface, a Contin-
uum Mesa PIV 532-120M laser (item 1 in Fig. 3.7) with pulse at 2
kHz repetition rate (pulse energy 18 mJ) is used to generate a light
beam, which is separated in two by a beam splitter (item 2). A first
beam (horizontal green arrow between items 2 and 5) goes through a
combination of two spherical and one cylindrical lenses (item 5) and
a mirror (item 7), thus becoming a thin sheet enlightening the liquid
phase (item 9). A second beam (vertical arrow between items 2 and
3) is rotated horizontally by a mirror (item 3), and it is transformed
into an analogous sheet for the air flow (superposed on the sheet for
water, item 8) by the same combination of lenses and mirror (items 4
and 6). A high speed (2 kHz repetition rate in double exposure mode)
camera (Photron, Fastcam SA-1, 1024 × 1024 pixels, item 10), whose
axis is orthogonal to the laser sheets plane, and a programmable tim-
ing unit (LaVision, HSC, not shown in Figs. 3.5 and 3.7), complete
the measurement setup. Liquid particles (mean diameter 1 µm) are
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Figure 3.7. Pictures of the PIV measurement setup.
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seeded in the air channel by a fog generator (SAFEX, Fog 2010+) us-
ing a working fluid of water–glycol mixture, while a 20 µm polyamide
Vestosint powder is used to seed the liquid phase.

A 54e × 18e (e = 2 mm) field of view is imaged by mounting a 105
mm objective (Nikon, Micro-Nikkor) on the high-speed camera, thus
giving a two-dimensional x ∈ [−18, 108] × y ∈ [−18, 18] mm2 region
of interest within the plane positioned midway from the channel side
walls. By adjusting the camera focus, particle images approximately
2–3 px in diameter are obtained in both liquid and gas phases, as
shown in the raw image reported in Fig. 3.8(a). A pre-processing al-
gorithm written in MATLAB is used to clean the raw images (panel
(b)) and separate air and water phases (panels (c)-(d)), which are
then post-processed separately through LaVision Davis 10 (the same
software is also used in the acquisition process). An iterative multi-
grid cross-correlation scheme with window deformation (Scarano and
Riethmuller [98]) is used to compute velocity fields, and results are
post-processed with the universal outlier detection algorithm (West-
erweel and Scarano [99]). The time delay between two successive
frames in air is adjusted from ∆tg = 200 µs to 70 µs for Ug ∈ [2, 15]
m/s, while values ranging from ∆tl = 10.5 ms to 1.2 ms are employed
for cross-correlation in water (Ul varying between 0.10 m/s to 0.30
m/s), to guarantee a peak particle displacement of approximately
10 pixels in both phases. For each couple of Ug and Ul values, the
time delay for cross-correlation in water ∆tl is simply adjusted by
skipping the number of frames necessary to achieve the same peak
particle displacement as in air (i.e. Ul∆tl = Ug∆tg). In the final pass
of cross-correlation operation, the interrogation window size and the
overlapping ratio are 16 px × 16 px and 50%, respectively, leading
to a spatial resolution of 1 mm/vector. Mean quantities are esti-
mated based on 8000 realizations (acquisition rate equal to 2 kHz),
with average measurement uncertainty on the streamwise and verti-
cal velocity components respectively in the range [0.62, 9.43]% and
[0.71, 6.28]% of the injection velocities (increasing value moving to-
wards walls). A qualitative representation of a typical velocity field



54 Chapter 3. Numerical and experimental methodologies

Figure 3.8. Velocity field measurement workflow: acquired raw image
(a), pre-processing (b), phases separation (c)-(d), and post-processing
(e).
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thus obtained is reported in Fig. 3.8(e), which reveals the presence
of a wake region behind the splitter plate separating air and water
currents (red and dark blue regions, respectively).

The PIV measurements allow to complete the air stream charac-
terization in terms of inflow conditions as shown in Fig. 3.9. In par-
ticular, the mean streamwise velocity component profile ū (defined
by Eq. (4.16) in Section 4.2.1) is shown at three different streamwise
stations upstream of the injection section: x/Hg = −1 (panel (a)),
x/Hg = −0.5 (b) and x/Hg = −0.1 (c). Note that the normal-to-flow
coordinate y has been vertically shifted by e/2 (y? = y − e/2), such
that ū = 0 at y? = 0, and that Ug here denotes the mean velocity at
each station. Three velocity profiles are reported in each panel, corre-
sponding to ReHg = 6.7·103 (black curves), 9.6·103 (red) and 16.2·103

(blue), and the numerical solution of the fully-developed turbulent
channel flow obtained by Kim et al. [100] at Reynolds number equal
to 13750 is also reported for comparison (green curve). The velocity
profiles denote a progressive transition towards turbulent inflow con-
ditions by increasing ReHg . This occurrence seems to be confirmed
by the trend of the turbulence intensity reported in Fig. 3.6(a), show-
ing an initially increasing behaviour followed by a plateau. Note also
that the non symmetric velocity profiles with respect to the y direc-
tion are due to the non symmetric shape of the exit nozzle, limited
by the flat splitter plate and the converging lateral wall (where the
boundary layer is thinner).
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ū/Ug

y
?
/H

g

(a) x/Hg = −1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
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Figure 3.9. Velocity profile in air at different streamwise stations
upstream of the injection section (x/Hg = 0) and Reynolds number
ReHg values: ReHg = 0.67 · 104 (black curves), 0.96 · 104 (red), ReHg =
1.62·104 (blue). The numerical solution of the fully-developed turbulent
channel flow obtained by Kim et al. [100] at Reynolds number equal to
13750 is also reported for comparison (green curve).



Chapter 4
Results

The flow configurations presented in Chapter 2 are here investi-
gated by means of the theoretical, numerical and experimental method-
ologies described in Chapter 3. Section 4.1 is dedicated to the study
of gravitational liquid sheet flows, while air-water mixing layers are
analyzed in Section 4.2.

4.1 Gravitational liquid curtains

The aim of the present section is the investigation of the spatio-
temporal evolution of a perturbed planar liquid sheet, interacting
with an unconfined gaseous ambient located on the sides of the liq-
uid phase. The analysis is performed in supercritical (We > 1, Sec-
tions 4.1.1 and 4.1.2), transcritical (We = O(1), Section 4.1.3), and
subcritical (We < 1, Section 4.1.4) conditions.

4.1.1 Base case configuration

A sketch of the flow configuration has been previously reported in
Fig. 2.2 (Section 2.1.3), where the gravitational sheet is represented
with the x? axis vertically oriented. In the unperturbed condition,
the liquid flows along the gravity direction with a steady velocity and
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Figure 4.1. Schematic of computational domain (left) and of adaptive
grid (right). The sheet of length L? falls under gravity along x? direction.
Red lines define the initial interface shape, which is magnified by a factor
of 10 along y? direction in left panel.

two symmetrical free interfaces (thin blue lines in Fig. 2.2).

VOF computational layout

A schematic description of the VOF computational domain is re-
ported in the left panel of Fig. 4.1, where for computational con-
venience the gravity direction x∗ is represented horizontally. The
computational domain is a square whose side length is equal to the
liquid sheet length L? = 50H?

i , where H?
i is the inlet sheet thickness,

which is located at the centre of the left boundary. The origin of
the reference frame Ox?y? coincides with the mean point of the in-
let sheet thickness, while the red lines define the initial rectangular
shape of the interface, employed to start the computation. Dirichlet
boundary conditions are enforced at the inlet: in the liquid region,
around the symmetry axis, a fully developed parabolic velocity profile
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is imposed, and the conditions read

u? =
3

2
U?
i

[
1−

(
2y?

H?
i

)2 ]
, (4.1a)

v? = 0, (4.1b)
C = 1, (4.1c)

where U?
i represents the mean liquid velocity at the inlet. On the

remaining part of the left edge (gaseous phase) a no-slip condition
is imposed. The top and lower edges are equipped with Neumann
boundary conditions for all variables. At the right edge a standard
outflow condition

∂u?

∂x?
=
∂v?

∂x?
=
∂C

∂x?
= p? = 0, (4.2)

is considered. The liquid sheet region is initialized with a rectangular
interface shape, and the same Poiseuille velocity profile adopted as
inlet boundary condition is used throughout the entire sheet length.
Note that the outlet condition for the differential pressure reproduces
the far downstream condition, meaning that the atmospheric pressure
is recovered at large downstream stations.

The physical quantities involved in the problem are listed in Ta-
ble 4.1, where a set of numerical values is also specified, represent-
ing the base case considered in the present investigation. Following
the Buckingham π theorem, the dimensional parameters can be ar-
ranged in 6 dimensionless quantities: a possible choice is reported in
Table 4.2. Furthermore, assuming that the liquid phase is water, the
liquid density and viscosity, ρl and µl, as well as, to within a certain
approximation, the surface tension coefficient σ, are fixed. Note that
the surface tension is a chemical property, and thus its value can be
assumed independent of the gas-liquid pair of phases (see for exam-
ple Tammisola et al. [51]). If also the gas viscosity µa is considered
constant, the independent dimensionless parameters reduce to:
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• We =
ρlU

?2

i H
?
i

2σ
, Fr =

U?2

i

gL?
, ε =

H?
i

L?
, rρ =

ρa
ρl
,

where the slenderness parameter ε is intrinsically a small quantity
whose order generally ranges from O(10−3) to O(10−2). If not differ-
ently specified, it has been assumed ε = 0.02 for all the computations
reported in the present section. On the other hand, for the standard
case of g = 9.81 m/s2, the corresponding dimensional parameters are:

• U?
i , H?

i , L?, ρa.

It is clearly evident that there exists a 1:1 correspondence between
the set of governing dimensionless numbers and the set of physical pa-
rameters. This correspondence will be considered in the subsequent
parametric investigation, which will be carried out by hypothesizing
the variation of one physical parameter at a time (for instance the
liquid velocity), leading to the variation of the related dimensionless
parameters. Accordingly, the physical quantities can be conveniently
made dimensionless by employing the reference quantities introduced
in Section 2.1.3 (Eq. (2.12)); note that hereafter dimensionless quan-
tities will be denoted without apex ?. This section is concluded by
describing the grid adopted in the computations, shown in the right
panel of Fig. 4.1. It is a quadtree-structured grid which retains its
maximum level of refinement in a rectangular region containing the
entire liquid sheet: −0.5 < y?/H?

i < 0.5, 0 < x?/L? < 1. The maxi-
mum resolution is limited to N = 11 levels of refinement, correspond-
ing to a minimum dimensionless cell edge length of ∆x?/H?

i = 0.0244
(40 grid cells within H?

i ). A grid convergence analysis has been per-
formed, and results in terms of thickness contraction ratio, which
is a global parameter defined as the ratio of the outlet to the inlet
sheet thickness, CR = H?

f/H
?
i , are reported in Fig. 4.2: no variations

between the two finest grid levels are detected.
The simulation time-step is evaluated at each iteration as

∆t? = min

(
0.5∆x?

u?
,

√
ρl + ρa

2

∆x?3

πσ

)
, (4.3)
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Table 4.1. Dimensional physical quantities involved in the problem,
reporting the values referring to the base case.

Name Variable Value Unit

Gas density ρa 9.97 Kg m−3

Liquid density ρl 997 Kg m−3

Gas viscosity µa 1.84 · 10−5 Kg m−1 s−1

Liquid viscosity µl 8.90 · 10−4 Kg m−1 s−1

Gravity acceleration g 9.81 m s−2

Inlet liquid mean velocity U?
i 0.49 m s−1

Inlet sheet thickness H?
i 1.5 · 10−3 m

Sheet length L? 75 · 10−3 m

Surface tension coefficient σ 72.5 · 10−3 N m−1

Table 4.2. Dimensionless parameters corresponding to the base case
of Table 4.1.

Name Relation Value

Gas-to-liquid density ratio rρ = ρa/ρl 0.01

Gas-to-liquid viscosity ratio rµ = µa/µl 0.02

Sheet slenderness ratio ε = H?
i /L

? 0.02

Reynolds number Re = ρlU
?
i H

?
i /(2µl) 420

Froude number Fr = U?2
i /(gL

?) 0.33

Weber number We = ρlU
?2
i H

?
i /(2σ) 2.5
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Figure 4.2. Grid convergence analysis of the contraction ratio CR =
H?
f/H

?
i for the steady solution. From right to left: ∆x?/H?

i = 0.0976
(10 grid cells in H?

i ); ∆x?/H?
i = 0.0488 (20 grid cells in H?

i ); ∆x?/H?
i =

0.0244 (40 grid cells in H?
i ). Flow parameters specified in Tables 4.1

and 4.2.

which is the minimum value between the CFL-based time-step and
the oscillation period of the smallest capillary wave that can be cap-
tured by the grid. The adopted mesh structure has been obtained
thanks to the adaptive-grid feature implemented in the BASILISK
solver. A detailed description of the adaptive grid refinement strategy
is given in van Hooft et al. [73].

Steady solution achievement

The steady solution of the falling liquid sheet is obtained starting
from the initial condition shown in Fig. 4.1, which corresponds to a
rectangular interface shape with a parallel Poiseuille velocity profile
enforced along the entire length. For the base case parameters spec-
ified in Tables 4.1 and 4.2, a computational time equal to ts = 1.5
was required to reach the steady configuration.

The computed flow field is represented in Fig. 4.3 in terms of u
velocity component, interface shape, and p distribution along the liq-
uid sheet centreline. As a reference, the free-fall Torricelli’s solution
is also reported (Eq. (2.16) in Section 2.1.3). As expected, velocity,
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Figure 4.3. Steady field in terms of u velocity component (top), sheet
interface (middle), and pressure p (bottom) along the axial direction
y = 0. Numerical solution (black curve); Torricelli’s solution (red dashed
curve).
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interface shape, and pressure profiles tend to the inertia-gravity Tor-
ricelli’s model as the distance from the inlet increases. In the initial
part of the sheet the velocity appears slightly greater than the ref-
erence solution; in agreement with this finding the interface shape
restricts (remember that the Reynolds number is relatively high)
and the pressure is lower (it attains negative relative values). Far
downstream the flow accelerates under the gravity effect and then
approaches the free-fall model, where viscous and surface tension
effects, related to the sheet interface curvature, become negligible.
Fig. 4.4 depicts lateral profiles of velocity components and pressure.
Axial u velocity profiles clearly show that the initial parabolic trend
tends to relax towards a quite plug distribution as the distance from
inlet increases. The maximum values of transverse velocity compo-
nent v profiles accordingly are reduced towards the bottom section.
Note explicitly that v values appear magnified by the adopted scale:
v = v?/(εU?

i ). The present velocity profiles well agree with the cor-
responding numerical and experimental results reported in Fig. 2 of
Soderberg [21] and Fig. 5 of Soderberg and Alfredsson [3]. The ex-
perimental data were obtained for Reynolds number Re = 700 and
Weber number We = 12.5, both greater but comparable with the
present simulation data, while the numerical solutions were obtained
neglecting both surface tension and inertia effects of the surrounding
gas [3]. Moreover, the numerical solutions reported in [3] were com-
puted including an entrance length for the liquid phase, which some-
how helps the flow to relax towards the plug profile. Regarding the p
profile, for which to our knowledge there are neither experimental nor
numerical data to compare with, it is possible to observe the jump
in pressure distribution due to the surface tension effect at x = 0,
where the liquid sheet curvature is maximum. Moving along the liq-
uid sheet, the interface shape becomes nearly parallel to x axis and
consequently pressure y-distributions become quite uniform, across
both liquid and gas phases. The simulated two-dimensional velocity
field shown in Fig. 4.5 allows one to appreciate the phenomenon of
gas entrainment.
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Figure 4.4. Steady solution of u (left), v (middle) and p (right) y-
distribution at different x stations: x = 0 (black continuous curve);
0.05 (black dashed); 0.15 (red continuous); 0.3 (red dashed); 0.5 (blue
continuous); 0.8 (blue dashed).

Figure 4.5. Steady velocity field and interface shape (red line) of the
liquid sheet.
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One-dimensional data reduction

A one-dimensional reduction of VOF data is required to com-
pare the numerical results with predictions of the linear theoretical
approach introduced in Section 3.2, which is based on a simplified
one-dimensional model of the flow system. This reduction is based
on the relationship

φ1D =

∑Ny

i=1 Ciφi∑Ny

i=1Ci
, (4.4)

where φ1D is the spatial-averaged value over the lateral y direction,
evaluated at every x station, of the generic physical quantity φ; Ny

is the total number of grid cells at the selected x station, while Ci is
the volume fraction in the cell i. In particular, for φ = y, the average
deflection (meanline) of the sheet is obtained. Note that the imple-
mentation of Eq. (4.4) allows one to extract the average value of φ for
the liquid phase only, being Ci = 0 in the gas phase. As an example,
Fig. 4.6 shows the result obtained for φ = u for the steady configu-
ration. Observe that the centreline u velocity component (solid line)
converges towards the one-dimensional reduced mean value (dashed
line) as x increases, in agreement with considerations concerning the
convergence of the field towards the Torricelli’s solution made above
in this section (Figs. 4.3 and 4.4).

4.1.2 Supercritical regime

The unsteady behaviour of the liquid sheet forced by an impulse
perturbation for the base (supercritical) configuration (Tables 4.1
and 4.2 of Section 4.1.1) represents the main topic of the present
section. Results of the two-dimensional VOF simulations are treated
according to the 1D reduction technique illustrated in Section 4.1.1,
and they are compared with corresponding findings from the linear
stability theory (Section 3.2). Features of the flow system in a realistic
three-dimensional configuration are finally discussed.
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Figure 4.6. Steady u velocity component (black continuous curve)
and one-dimensional reduction using Eq. (4.4) for φ = u (black dashed
curve).

Travelling-waves dynamics

The computation via VOF of the unsteady response of the fluid
system is performed forcing at the initial instant the steady config-
uration by means of an impulse disturbance applied at a specified x
station. The adopted perturbation is a Gaussian bump in v velocity
component

vf = Ae−
1
2(x−x0

∆ )
2

, (4.5)

where A is the amplitude, x0 the peak station, and ∆2 represents the
variance of the Gaussian function. To guarantee a linear response,
at least at the initial instants after the forcing, the following typical
parameters have been adopted for all the computations: A = 5ε,∆ =
0.1ε, x0 = 0.3. Figs. 4.7 and 4.8 depict the x trends of average lateral
velocity v and sheet meanline `, extracted from the VOF simulation,
at various time instants. The first panel of both figures reproduces
the initial condition. The sequence of panels of Fig. 4.7 clearly shows
that the initial v perturbation splits in two down-winding travelling
wave fronts, which leave the domain through the right exit section at
t = 0.22 and t = 0.53, respectively. Comparing these results with the
expulsion times provided by the theoretical one-dimensional model
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Figure 4.7. Sequence of instantaneous average v distributions ex-
tracted from the VOF simulation. From left to right, top to bottom:
t = 0, 0.05, 0.21, 0.52. We = 2.5, Fr = 0.33, rρ = 0.01.
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Figure 4.8. Sequence of instantaneous meanline distributions ex-
tracted from the VOF simulation. From left to right, top to bottom:
t = 0, 0.05, 0.21, 0.52. We = 2.5, Fr = 0.33, rρ = 0.01.
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Figure 4.9. Instantaneous v velocity component and meanline ` dis-
tributions at t = 0.05 extracted from the VOF simulation (black curve)
and computed by Eqs. (2.13)-(2.14) (blue). We = 2.5, Fr = 0.33,
rρ = 0.01.

(Section 2.1.3) a good agreement is found, with differences of 2%
and 7% for the fast and the slow travelling waves, respectively. The
expulsion times of fast and slow waves, of wave speed respectively
equal to U ±

√
U/We, are analytically evaluated as

texp± =

∫ 1

x0

dx

U ±
√
U/We

, (4.6)

x0 = 0.3 being the station where the impulse perturbation is intro-
duced (see also Eq. (2.22) in Section 2.1.3). As regards the meanline
evolution, Fig. 4.8 shows that the perturbation in v produces a cor-
responding deformation of the meanline shape. This induced pertur-
bation does not split in two wave fronts, as for the v signal, but it
exhibits a compact front whose ends travel downstream with the two
characteristic speeds, which determines the enlargement of the per-
turbation front as t increases. Fig. 4.9 shows the snapshots of v and `
perturbations obtained by numerical integration in MATLAB envi-
ronment of Eqs. (2.13)-(2.14) of the theoretical model, superimposed
on VOF results. It has to be stressed that the features presented in
previous Figs. 4.7 and 4.8 are recovered, with a relatively small delay
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Figure 4.10. Fast Fourier Transform (FFT) of the sheet meanline
deflection extracted from VOF simulations at different x stations. The
red line represents the least stable frequency λi = 3.78 arising from
stability analysis. From left to right, top to bottom: x = 0.2, 0.4, 0.6, 0.8.
We = 2.5, Fr = 0.33, rρ = 0.01.

of the theoretical signals with respect to VOF data. This result rep-
resents a validation of the VOF simulation, which is able to capture
the underlying physics of the system under consideration.

Natural frequency prediction

One of the main findings of the present investigation is that, af-
ter the complete expulsion of the perturbation from the computa-
tional domain, the meanline time evolution is characterized by low
frequency sinuous oscillations. This oscillatory behaviour has been
investigated by performing simulations for a final time equal to t = 8
and computing frequency spectra of meanline temporal signals stored
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Figure 4.11. Inner eigenvalues of the spectrum (left), with a zoom
of the upper branch around the least stable part (right). We = 2.5,
Fr = 0.33, rρ = 0.01.

at different x stations along the liquid sheet. The results are shown
in Fig. 4.10, which reports frequency spectra computed with the
Fast Fourier Transform (FFT) algorithm. The presence of two low-
frequency peaks is clearly detected at all the stations considered. In
particular, for x = 0.2 the highest peak occurs for fmax = 5.83, but
it moves to fmax = 4.37 for x = 0.4, and then it remains constant
for all the other stations. In panels of Fig. 4.10 the frequency of
the least stable eigenvalue predicted by linear stability is also repre-
sented as a red vertical line, while Fig. 4.11 shows a wide part of the
spectrum of complex conjugate eigenvalues. Note the presence of two
branches corresponding to the slow (upper) and fast (lower) travelling
waves, exhibiting an almost constant spacing between the frequen-
cies. This spacing is associated with the corresponding crossing time,
∆λi = 2π/tcross, where tcross is given by Eq. (2.23) (Section 2.1.3).

The low-frequency peak detected from VOF simulations via FFT
analysis differs from the frequency of the least stable eigenvalue of the
stability analysis, belonging to the upper branch of the spectrum, by
a relative spread of 14%. Moreover, it is also interesting to evaluate
the ratio between the frequency of the leading eigenvalue and the
spacing ∆λi of the relevant branch. This ratio is equal to 0.67 for the
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Table 4.3. Summary of results for the base case in terms of VOF-1D
model comparison. We = 2.5, Fr = 0.33, rρ = 0.01.

Variable VOF simulation 1D model Relative spread

tcross 0.97 1.07 9%

2π/tcross 6.48 5.86 9%

fmax 4.37 3.78 14%

fmax
2π/tcross

0.67 0.64 4%

f ?max 4.56 Hz 3.95 Hz 14%

VOF data and 0.64 for the stability analysis, with a 4% spread. This
occurrence is reminiscent of the integer-plus-one-quarter resonance
criterion of forced transverse vibrations of the nappe-string, already
uncovered by De Rosa et al. [16] in the absence of surface tension, and
by Girfoglio et al. [13] considering this effect. For the present case
of a free-free interface liquid sheet, a modified criterion is proposed,
providing the possible natural frequencies with the relationship

f =
2π

tcross

(
n+

2

3

)
, (4.7)

where n is an integer (n ≥ 0). Table 4.3 summarizes the comparison
of the characteristic parameters of frequency response obtained with
VOF simulation and the theoretical one-dimensional model. Data
referring to the slow wave crossing time show a 9% spread, which
is also the spread of the associated frequency, namely the almost
constant spacing between the frequencies of the spectrum, ∆λi =
2π/tcross. The VOF crossing time reported in Table 4.3 has been
computed applying the integral of Eq. (4.6) to simulation data for
x0 = 0, i.e. by integration along the entire sheet length.
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Figure 4.12. Reynolds number Re effect at different values of the
density ratio rρ on the inner eigenvalues of the spectrum: rρ = 0.001
(panel (a)); 0.005 (panel (b)); 0.01 (panel (c)); 0.02 (panel (d)). Re =∞
(black filled circle); 400 (red open circle); 40 (blue asterisk); 20 (green
filled circle). We = 2.5, Fr = 0.16.

Supercritical unstable behaviour

The gas-to-liquid density ratio rρ effect on the spectral properties
of the flow (for We = 2.5, Fr = 0.16) is reported in Fig. 4.12: each
panel corresponds to a different rρ value, which is in turn analyzed
in the range Re ∈ [20;∞[, therefore including viscous effects in the
simplified theoretical analysis (see Appendix A.2). The inviscid flow
(Re = ∞) becomes unstable when the density ratio increases. In
particular, when the onset of instability is approaching, pairs of in-
ner eigenvalues move towards each other (Fig. 4.12(b)), and then for
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Figure 4.13. Temporal evolution of the two-dimensional volume frac-
tion field C computed via VOF simulations for rρ = 0.01 (panels (a),
(c), (e)) and rρ = 0.02 (panels (b), (d), (f)). We = 2.5, Fr = 0.16,
Re = 20.
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Figure 4.14. Density ratio rρ effect on the temporal evolution of the
energy budgets. From left to right: rρ = 0.001, 0.01, 0.02. The fast
and slow waves expulsion times are t = 0.25 and t = 0.60, respectively.
Note that all the terms have been scaled with respect to the initial total
energy Et0 . For a detailed explanation of the terms, see Eq. (2.33) in
Section 2.1.3. We = 2.5, Fr = 0.16, Re = 20.
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each couple the growth rate of an eigenvalue remarkably increases
(Fig. 4.12(c)), until the slow wave branch of the spectrum appears
as divided into two distinct sub-branches, one of the two containing
some unstable eigenvalues having positive real part (Fig. 4.12(d)). It
can be also noted that the fast and slow branches of the spectrum
become hardly distinguishable when unstable conditions are reached.
The viscous analysis (Re 6=∞) clearly retrieves the previous results,
recovering the flow instability also for low values of the Reynolds
number. Moreover, viscous results make clearer the distinction be-
tween the two slow sub-branches of the spectrum: the stable one
behaves like the fast branch and undergoes the viscous damping, the
other one is almost unaffected by viscosity and contains unstable
eigenvalues. The unstable temporal behaviour at high density ratios
rρ is retrieved in VOF simulations, as can be appreciated by look-
ing at Fig. 4.13. In particular, a transient growth of perturbations
(panel (c)) followed by damping at relatively long time (panel (e)) at
rρ = 0.01, and an unstable evolution at rρ = 0.02 (panels (b), (d),
(f)) followed by breakup for t > 1 (not shown here) are highlighted
by the VOF analysis.

To shed light on the physical mechanisms determining the flow un-
stable dynamics outlined by both the eigenvalues and VOF analyses,
a budgets decomposition of the total energy of the system (Eq. (2.33)
in Section 2.1.3) is performed. Results are reported in Fig. 4.14 in
terms of the energy budgets temporal evolution, for the three values
of density ratio so far considered. The first row of panels shows that
the total energy evolution Et, which is stable at rρ = 0.001, undergoes
transient growths at rρ = 0.01 in the time interval t ∈ [0.25; 0.60],
and then rapidly decreases to zero, which is in agreement with the
asymptotic temporal stability prediction (Fig. 4.12) and VOF results
(Fig. 4.13). For rρ = 0.02, the unstable behaviour can be recovered in
the exponential growth of the total energy and its two contributions,
Ec and Eσ, reaching values of O(100) before the waves expulsion
(t ≈ 0.2). The decomposition of Et into budgets allows one to iden-
tify the physical mechanism that drives the system towards the in-
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Figure 4.15. Comparison between the pressure power Lp and the
total energy time derivative dEt/dt for unstable conditions (rρ = 0.02).
For a detailed explanation of the terms, see Eq. (2.33) in Section 2.1.3.
We = 2.5, Fr = 0.16, Re = 20.

stability: it is basically related to Lp term, which represents the work
per time unit exchanged between the liquid sheet and the gaseous en-
vironment, interacting through the ambient pressure field. Looking
at the green continuous curves shown in Fig. 4.14, one can indeed de-
tect that Lp plays an increasing destabilizing role (Lp > 0, meaning
that the work is undergone by the liquid sheet, which drains energy
from the interacting environment) as rρ increases. The destabilizing
effect of the pressure power Lp is balanced by the other (stabilizing)
contributions (∆Fc and ∆Fσ, blue curves, P and D, magenta curves)
until rρ = 0.01, whereas these are completely overwhelmed by Lp in
unstable conditions (rρ = 0.02). In other terms, the flow features a
convective amplification of the perturbation as it travels downstream.
For low density ratio values, these amplifications are eventually ex-
pelled at the downstream domain exit leaving the flow globally stable;
for high density ratios, the large convective amplification cannot be
expelled from the domain and the flow suffers of a global instability.
These results agree with previous findings by de Luca and Costa [14]
and Barlow et al. [17]. The comparison between the total energy
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Figure 4.16. Instantaneous view of the volume fraction C (top) and
ambient-phase velocity components u?a/U?i (middle) and v?a/U?i (bottom)
fields in unstable conditions. In all the panels the interface is the black
contour line.

time derivative dEt/dt and Lp reported in Fig. 4.15 better clarifies
the dominant role of the latter term in unstable conditions; it com-
pletely dominates the exponential temporal energy evolution, as can
be appreciated by the almost perfect superposition between black
and green curves.

This section is concluded providing an analogy between the global
unstable behaviour exhibited by the liquid sheet as the density ratio
rρ increases, and the surface tension-induced global instability found
by Tammisola et al. [51] . These authors computed two-dimensional
linear temporal global modes of planar jet and wake flows of two im-
miscible fluids with different velocities, and found that surface tension
can induce global instability for large enough values of the shear ratio
Λ, which measures the external flow velocity effect, being the under-
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lying physical mechanism located in the shear layer. Apart from the
differences in the two physical configurations, the role of the shear ra-
tio parameter Λ underlined by [51] (when surface tension is present)
can be related to the density ratio effect rρ in the present analy-
sis, where the relatively strong entrainment effect of high density gas
plays the destabilizing role. This analogy is also supported by the
good qualitative agreement between Fig. 11 of [51], reporting global
eigenmodes for a wake flow (Λ < 1) for different values of the Weber
number, and Fig. 4.16 reported herein, showing the unstable liquid
sheet shape together with the distributions of velocity components
ua and va of the ambient gaseous phase.

The oscillatory flow pattern exhibited by the u eigenmode at
We = 5 in Fig. 11(e) of [51] can be recovered in the ua distri-
bution shown by the middle panel of Fig. 4.16, in particular for
30 < x?/H?

i < 40, which is the liquid sheet region where the ampli-
fication of disturbances is not yet significantly affected by nonlinear
effects. Furthermore, remember that in Section 2.1.3 it has been ob-
served, Eq. (2.19), that the oscillatory dynamics of the average sheet
displacement ` resembles that of a tensional string forced by terms
containing the lateral velocity v, and subjected to a total damping
coefficient which can assume negative values. Accordingly, one can
argue that the distribution of the ambient velocity component va,
showed in the bottom panel of Fig. 4.16, represents the forcing term
which leads the system towards the instability when, for relatively
high density ratios rρ, the total damping coefficient becomes nega-
tive.

The comparison with wake rather than jet flows of [51] is moti-
vated by the observation that the inner stream acceleration and inter-
face contraction experienced by wake flows (Fig. 1 of [51]), due to the
shear effect of the higher velocity outer stream, can be regarded as
the counterpart of the gravity effect considered in the present work.
On the other hand, the analogy seems to fail in the initial part of
the sheet, where the shear-induced velocity of the gaseous phase is
weaker.
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Data-driven global stability by DMD on random perturba-
tions

The methodology described in Section 3.3.2 is here applied to
VOF data, providing an estimation of the BiGlobal spectrum in a
non-intrusive way, namely without the linearization of the governing
equations. The analysis is performed in stable supercritical condi-
tions (We = 2.5, rρ = 0.01); further details regarding the data-driven
global spectrum in subcritical regime and for unstable conditions can
be found in Colanera, Della Pia and Chiatto [101]. As discussed in
Section 3.3.2, a random perturbation (white noise) in both the ve-
locity components and volume fraction fields is superposed at t = 0
on the base (steady) flow. The temporal evolution of the axial ve-
locity perturbation field u′(x, y) is shown in Fig. 4.17 (x = x?/L?,
y = y?/H?

i ). Panel (a) contains the white noise added to the base
flow; panels (b) and (c) show the evolution of these disturbances
that, while reducing in amplitude, excite dynamics characterized by
different scales.

The DMD technique is exploited to obtain the global spectrum.
In this case, 200 simulations, corresponding to 40000 snapshots, have
been used for the analysis. The DMD spectrum of the base case is
reported in Fig. 4.18, together with the corresponding one (e.g. in
the same flow conditions) given by the 1D model (red circles) for a
direct comparison. Here, only 400 DMD modes are reported, which
retain more than the 99.9% of the POD total energy, avoiding the
introduction of spurious modes (Schmid [79]).

Generally speaking, the BiGlobal spectrum highlights a wider fre-
quency content than the 1D results, and it exhibits a further branch
between the upper and lower branches previously discussed. All the
eigenvalues have a negative real part due to the stable nature of the
flow; the less damped eigenvalues are located at low frequencies. The
leading mode, labelled A, is equal to λ = −0.54 + i 3.64, which per-
fectly matches the value predicted by the low order analysis. Other
interesting eigenvalues are highlighted with blue circles in the spec-
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(a) t = 0 (b) t = 5 ∆t (c) t = 10 ∆t

Figure 4.17. u′(x, y) evolution of a random initial disturbance (0 <
x < 1, −0.75 < y < 0.75). We = 2.5, rρ = 0.01. Field variables have
been normalized with respect to the corresponding maximum.
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Figure 4.18. Data driven BiGlobal spectrum. We = 2.5, rρ = 0.01.
Black dots refer to the 2D simulations, red circles represent 1D model
results. Letters denote selected modes.

trum and are located on different branches: modes A and B belong to
the upper branch, modes C, D and E are on the middle one, and mode
F lies on the lower branch. The corresponding values are reported in
Table 4.4.

The DMD technique also provides insights on the topology of the
flow through the analysis of the coherent structures associated with
the main modes. In particular, for the liquid sheet flow under study,
the DMD provides the spatial distributions of both velocity compo-
nents (u′, v′) and volume fraction (C ′). Fig. 4.19 reports the real part
of the structures corresponding to modes A and B, scaled with respect
to their maximum. Note that the black dashed line represents the in-
terface location due the mode’s action, that is computed considering
only the correspondent mode in the C reconstruction according to
Tu et al. [80] and Schmid [79]. Panels (a) and (c) show antisymmet-
ric distributions of u′ and C ′, while panel (b) contains a symmetric
distribution of v′, as is typical for a sinuous motion. The v′ distribu-
tion (panel (b)) along the axis y = 0 features an almost monotonic
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(a) u′ mode (b) v′ mode (c) C ′ mode

(d) u′ mode (e) v′ mode (f) C ′ mode

Figure 4.19. Spatial distributions of the DMD modes A (panels (a)-
(c)) and B (panels (d)-(f)) in xy plane (0 < x < 1, −0.75 < y < 0.75).
We = 2.5, rρ = 0.01. The black dashed line represents the interface
location.
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Table 4.4. Selected eigenvalues for the case of We = 2.5, rρ = 0.01.

λ

A −0.54 + i 3.64

B −3.86 + i 20.36

C −10.36 + i 19.73

D −6.75 + i 36.08

E −10.33 + i 55.51

F −18.96 + i 19.84

increase along the downstream direction. A similar behaviour can be
also observed for the mode B, which is a generic mode representative
of the flow topology in this branch. Indeed, panels from (d) to (f)
report structures with smaller spatial scales with respect the previ-
ous ones, but still characterized by a sinuous motion. The topology
described above is retrieved, with different scales, in all modes of
this branch, which is therefore characterized by a purely sinuous be-
haviour. The same characteristics are obtained for the mode F (not
reported herein) belonging to the lower branch. Bearing in mind that
the 1D model is purely sinuous, it is not surprising that for these two
sinuous branches there is a good agreement between the 1D and 2D
spectra.

As will be detailed in the following, the additional 2D middle
branch is associated with a varicose flow behaviour, which could not
be predicted by the 1D model, accounting for the sinuous dynamics
only. To proceed further with the discussion of the spectrum, it
is convenient to decompose each mode ϕj in sinuous and varicose
contributions:

ϕj(x, y) = ϕs
j(x, y) + ϕv

j (x, y), (4.8)

being ϕs
j(x, y) and ϕv

j (x, y) the sinuous and varicose components of
the mode, respectively. ϕs

j(x, y) contains the antisymmetric part
(with respect to the axis y = 0) of u′ and C ′ modes and the symmetric
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Table 4.5. Sinuous and varicose energy contributions of the selected
DMD modes. We = 2.5, rρ = 0.01.

λ Es(%) Ev(%)
A 93.5% 6.5%

B 93.5% 6.5%

C 78.0% 22.0%

D 47.9% 52.1%

E 22.9% 77.1%

F 89.0% 11.0%

one of v′, while ϕv
j (x, y) represents the complementary distributions.

Note that sinuous and varicose components are orthogonal to each
other by definition. This decomposition can be directly extended to
the perturbations energy E (see Eq. (3.17) in Section 3.3.2). In this
way, the energy reads E = Es + Ev, where Es and Ev represent the
sinuous and varicose contributions, respectively. Table 4.5 reports
the energy contents for the selected DMD modes. One can note that,
as expected, the first two modes (A and B) contain a sinuous energy
contribution around the 93%; a similar value can be observed also for
the mode F, for which Es = 89%. Different energy contents are ob-
served in the central branch for increasing frequencies; indeed, modes
C, D and E exhibit a growing varicose energy content, respectively
equal to Ev = 22.0%, 52.1% and 77.1%.

Bearing in mind the previous energy distributions, Fig. 4.20 re-
ports the varicose component of u′ modes for the eigenvalues C, D
and E. The black dashed line represents the interface location, high-
lighting the cross-section area variation in varicose regime. Moving
from C to E, a frequency increase is accompanied by a global decrease
of the spatial scales. The resulting wavelength reduction determines
a more uniform energy distribution along the sheet length. This can
be inferred considering the spatial distributions of the modes’ am-
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(a) mode C (b) mode D (c) mode E

Figure 4.20. Varicose component of DMD u′(x, y) modes correspond-
ing to the eigenvalues C, D, E (0 < x < 1, −0.75 < y < 0.75). We = 2.5,
rρ = 0.01. The black dashed line represents the interface location.
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(a) mode C (b) mode D (c) mode E

Figure 4.21. Energy distribution for the modes C (panel (a)), D (panel
(b)) and E (panel (c)) in xy plane (0 < x < 1, −0.75 < y < 0.75).
We = 2.5, rρ = 0.01. The black dashed line represents the interface
location.

plitude, which represents the local contribution of the mode to the
energy defined in Eq. (3.17). The corresponding energy distributions
are reported in Fig. 4.21; the energy of the mode C is mainly concen-
trated downstream of the station x = 0.6, whereas the modes D and
E show a more homogeneous distribution starting from x = 0.5 and
0.4, respectively.

The procedure applied herein to evaluate the BiGlobal spectrum
of the flow in supercritical conditions applies straightforward to the
subcritical regime, revealing the presence of both sinuous and varicose
modes in the spectrum also for We < 1. Further details are given in
Colanera, Della Pia and Chiatto [101].
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Figure 4.22. Schematic representation of the three-dimensional com-
putational domain. The gravity g is directed along the streamwise x
direction, y is the lateral coordinate, z the spanwise one.

Three-dimensional flow simulations

A schematic description of the computational domain employed
to simulate a three-dimensional liquid curtain is reported in Fig. 4.22.
It consists in a cubic region [0, L?] × [−L?/2, L?/2] × [−L?/2, L?/2]
extending in the x (streamwise), y (transverse) and z (spanwise)
directions, respectively. In dimensionless terms the spatial coordi-
nates x, y and z have been scaled here with respect to the inlet
sheet thickness H?

i , while the corresponding streamwise u, transverse
v and spanwise w velocity components have been made dimension-
less with respect to the inlet mean liquid velocity U?

i (u = u?/U?
i ,

v = v?/U?
i , w = w?/U?

i ). The curtain issues into an initially quies-
cent gaseous environment (blue region in Fig. 4.22) from a rectan-
gular slot of dimensions H?

i ×W ?
i , representing the initial thickness

(along the transverse y coordinate) and width (along the spanwise
z direction) of the sheet, respectively. The origin of the reference
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frame coincides with the centre of the slot, and the curtain shape is
initialized as a parallelepiped L?×H?

i ×W ?
i (red region in Fig. 4.22,

where C(x, y, z, 0) = 1), which is employed to start the computation.
Dirichlet boundary conditions are enforced at the inlet: following
Kacem [102], in the liquid region (i.e., for −1/2 < y < 1/2 and
−AR/2 < z < AR/2, being AR = W ?

i /H
?
i the sheet aspect ratio) a

fully developed parabolic velocity profile with a proper error function
modification at the slot boundaries (i.e., at y = ±1/2, z = ±AR/2)
is imposed, and the conditions read

u =
3

2

(
1− 4y2

)
erf
(
AR

2
− z
)
erf
(
AR

2
+ z

)
, (4.9a)

v = w = 0, (4.9b)
C = 1, (4.9c)

while on the remaining part of the inlet plane, namely within the
gaseous phase, a no-slip condition is imposed. The four lateral bound-
ary planes (y = ±25, z = ±25) are equipped with Neumann bound-
ary conditions for all variables, and on the outlet plane (x = 50)
a standard outflow condition is considered (analogously to the two-
dimensional case). No symmetry conditions are thus employed to
reduce the computational domain. The same u(y, z) profile adopted
as inlet boundary condition (Eq. (4.9a)) is used as initial velocity
distribution throughout the entire sheet length. The computational
domain is discretized with an adaptive mesh up to a maximum num-
ber of 29 grid points along each spatial dimension, corresponding to
a minimum mesh size ∆? ≈ H?

i /11, and approximately 134 million
cells if an uniform grid was used. Note that a lower resolution of
∆?/H?

i ≈ 6 has been recently shown to be effective in capturing
holes expansion and collision in a thin (H?

i = 25 · 10−6 m) liquid
sheet by Agbaglah [103].

A typical three-dimensional curtain flow steady solution is shown
in Fig. 4.23 in terms of three-dimensional interface shape (a), surface
distribution of spanwise velocity component w(x, z) in y = 0 plane
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Figure 4.23. Three-dimensional view of the liquid sheet interface (a),
spanwise velocity field w in xz plane (b) and w(z) profiles at different
streamwise x stations (c). AR = 40, We = 2.5.
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(b), and w(z) profiles at different streamwise x stations within the
same plane. Fig. 4.23(a) depicts the typical shape assumed by the
curtain once steady conditions are achieved starting from the paral-
lelepiped initial condition previously described. It exhibits the char-
acteristic triangular shape outlined by previous theoretical and ex-
perimental analyses (among others, notable are the works by Chubb
and White [104], Chubb and Calfo [105], Chubb et al. [106, 7], Kacem
et al. [26], Jaberi and Tadjfar [107]), due to the edges retraction
and convergence towards the central axis (x = 0) under the effect
of surface tension. By inspection of the three-dimensional inter-
face, it is possible to observe striped patterns indicating the presence
of surface capillary waves, which manifest as stationary ripples in
the transition area between the lateral rims and the planar part of
the sheet, resulting from the competition between viscous and cap-
illary forces. The dimensionless parameter representing the relative
importance of viscous and surface tension effects is the Ohnesorge
number Oh = µ/

√
2H?

i ρlσ, which in the present case is equal to
Oh = 0.0019 << 1, leading to the formation of capillary waves near
the rims as theoretically and numerically predicted by Sunderhauf et
al. [108], Savva and Bush [109], Pierson et al. [110], Deka and Pier-
son [111], Karim et al. [112], and experimentally observed by Kacem
et al. [26].

The spatial evolution of ripples is quantified by showing the span-
wise velocity component w(x, z) distribution (Fig. 4.23(b)) and the
profiles w(z) at different x stations (panel (c)) in y = 0 plane. At
x = 5 (black curve in panel (c)), it can be seen that the velocity
oscillates between negative and positive values after it drops down
steeply in the region between the rim and the inner part of the cur-
tain; the same behaviour was highlighted by Sunderhauf et al. [108]
in the study of the edge retraction of a planar liquid sheet for low Oh
values (see in particular Fig. 8 in [108]). Moving along the stream-
wise x direction, further crests appear starting from the curtain rims,
which are displaced towards the central part of the sheet due to
the rim retraction (as depicted by the black, red and blue curves
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Figure 4.24. Interface shape in yz planes located at different x stations
(panel (a)); maps of spanwise w (panel (b)) and transverse v (panel (c))
liquid velocity components at x = 15. AR = 40, We = 2.5.

in Fig. 4.23(c)). As a combined effect of gravity acceleration and
rims retraction, the waves coming from the edges interfere with each
other for x > 20, producing a criss-cross pattern, as also found exper-
imentally by Kacem et al. [26]. Moreover, the competition between
gravity and surface tension forces determines a streamwise variation
of w at the rims, with values ranging from 0.5 to 0.9 for x ∈ [5; 25];
the order of magnitude agrees with the theoretical prediction of rim
retraction velocity given by the classic Culick formula (Culick [113]),

uc =
1

U?
i

√
2σ

ρlH?
i

= 0.63, a reference value which does not take into

account the vertical gravity acceleration nor viscous effects.
From Fig. 4.23(b)-(c), it can be also noted that the ripples wave-



4.1. Gravitational liquid curtains 93

length λc, estimated as the distance between two successive peak
values of w in the central part of the sheet (blue curve in panel (c)
for −5 < z < 5 ) is approximately equal to 1.85, in good agreement

with the capillary length lc =
1

H?
i

√
σ

ρlg
= 1.81, representing a typical

length scale in flows driven by capillary effects. It is interesting to
note that a similar value equal to λc = 1.63 has been recently found
in the study of an axisymmetric filament retraction at low Oh and
high aspect ratio values [110] (see the discussion on page 8 of Pierson
et al. [110]), being the wavelength scaled with respect to the filament
diameter. Furthermore, from Fig. 4.23(c) it can be appreciated that
the sheet evolution perturbs the initially quiescent ambient phase,
which manifests the phenomenon of gas entrainment, that is to say
w < 0 (> 0) for z > 0 (< 0) outside the curtain, respectively.

The overall flow topology is further elucidated by observing the
curtain interface shapes in three cross sections taken with planes
parallel to x = 0 plane, namely x = 5, 15 and 25 (Fig. 4.24(a)),
together with the colour maps of spanwise w and transverse v velocity
components within the liquid phase at x = 15 (panels (b) and (c) of
Fig. 4.24, respectively). It can be seen that, as the curtain width
reduces along the streamwise direction, the rims thicken (panel (a))
and the capillary ripples are displaced towards the curtain centre,
thus producing varicose patterns (i.e., symmetric with respect to y =
0 axis) and associated transverse v velocity distributions in yz planes.

The distribution of the streamwise velocity component u(x, y) in
z = 0 plane within the liquid phase is reported in Fig. 4.25 (panel
(a)), while the comparison between various estimates of the centreline
streamwise velocity is illustrated in Fig. 4.25 (panel (b)). In partic-
ular the latter compares the u streamwise trend for y = 0 (red line)
with the y-averaged velocity in xy plane, < u(x, y) >, defined as

< u(x, y) >=
1∫ L/2

−L/2C(x, y)dy
·
∫ L/2

−L/2
C(x, y)u(x, y) dy, (4.10)
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Table 4.6. Comparison between theoretical (Lthc ) and numerical (Lc)
values of the convergence length by varying Weber and Froude numbers.
The relative percentage spread is defined as εc = 100 · (Lc − Lthc )/Lc.
AR = 40.

We Fr Lthc Lc εc

2.5 0.41 27.96 32.19 13.14 %

2.25 0.37 26.76 29.94 10.62 %

2.0 0.33 25.46 28.18 9.65 %

1.75 0.29 24.10 26.32 8.43 %

1.5 0.25 22.65 24.66 8.15 %

where L = L?/H?
i (black continuous line), and the free-fall Torricelli’s

theoretical solution utorr =
√

1 + (2x)/(ARFr) is indicated by the
black dashed line.

The analysis of Fig. 4.25 allows one to distinguish three differ-
ent regions of the flow field. In the first one, extending from x = 0
to approximately x = 20, the flow develops nearly two-dimensional
in the plane xz; due to gravity action, the sheet thickness reduces
and the streamwise velocity increases. The initial parabolic velocity
profile tends to relax towards a quite plug distribution, as shown by
the convergence between the axial value of the velocity u(x, y = 0)
and the one-dimensional reduction < u(x, y) >, which well agrees
with the theoretical value utorr as x increases. The second region
is located in the range 20 < x < Lc (with Lc ≈ 32), where the
streamwise velocity displays an oscillating trend (see the superposi-
tion of red and black continuous curves) as a result of the interference
between right-rim and left-rim incoming capillary waves, producing
the characteristic criss-cross pattern already discussed (Fig. 4.23(b)).
Finally, in the third region (x > Lc), downstream of the rims con-
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Figure 4.25. Map in xy plane of the streamwise velocity u (panel
(a)); x-variation of the axial velocity u(x, y = 0) and y-averaged trend
< u(x, y) > (b). The reference Torricellian velocity utorr and the calcu-
lated convergence length Lc are also reported. AR = 40, We = 2.5.
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Figure 4.26. Convergence length Lc variation with Weber number.
The theoretical prediction Lthc is also reported.

vergence (see again Fig. 4.25(a)) the sheet is characterized by a tail
with increasing thickness in xy plane denoting a switching axis effect.
Note that Lc has been calculated as the x value corresponding to the
maximum of u(x, y = 0). It is interesting to observe that the present
estimate of Lc agrees with the theoretical prediction made with the
simplified model by Chubb et al. [7],

Lthc =
FrAR

2

(1 +
3

2Fr

√
We

8

) 4
3

− 1

 . (4.11)

Table 4.6 shows that the relative percentage spread εc = 100 ·
(Lc − Lthc )/Lc in the range We ∈ [1.5, 2.5] is less than 15%. Note
that the numerical simulations at different Weber number values are
performed by decreasing the inlet velocity U?

i , thus determining a
corresponding reduction of the Froude number as highlighted in Ta-
ble 4.6. The variation of the convergence length with the Weber
number is also shown in Fig. 4.26, together with the theoretical pre-
diction Lthc .

4.1.3 Supercritical-to-subcritical flow transition

The free and forced responses of gravitational liquid sheet flows
interacting with an unconfined air ambient are hereafter analysed nu-
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merically and experimentally in transcritical conditions, namely for
Weber number values traversing from supercritical (We > 1) to sub-
critical (We < 1) regime. The numerical investigation is based on the
linear inviscid one-dimensional model presented in Section 2.1.3. The
eigenvalues analysis (Section 3.2) is employed to determine numer-
ically the natural response, while the numerical integration of the
governing equations (Eqs. (2.13)-(2.14) in Section 2.1.3), equipped
with an inlet boundary condition including a harmonically oscillat-
ing transverse velocity, gives the forced behaviour of the sheet. Ex-
perimental tests are performed to measure the free response of the
flow system (Section 3.4) and provide comparisons with numerical
predictions.

Natural frequency discontinuity

Results of the spectral analysis for Weber numbers around unity
are hereafter presented to shed light on the natural response of the
flow when crossing the critical regime. Fig. 4.27, panels (a) and (b),
compares spectra obtained in supercritical and subcritical conditions,
with panel (b) depicting a zoom of the spectrum inner part; the
relevant dimensionless parameters are listed in Table 4.7. Since the
Weber number is modified by varying the inlet velocity, the Froude
number accordingly changes, ranging from Fr = 0.08 to 0.05 as the
Weber number varies from We = 1.2 to 0.8.

As discussed by Girfoglio et al. [13] for the nappe problem, and re-
covered in Section 4.1.2 for the present liquid sheet configuration, the
supercritical regime is characterized by the presence of two branches
exhibiting an almost constant spacing ∆λi between the imaginary
part of the eigenvalues (frequency), which is directly associated with
the crossing time of slow (upper branch, ∆λ−i ) and fast (lower branch,
∆λ+

i ) travelling waves (i.e., with velocity ∓
√
U/We relative to that

of the base flow U , respectively) featuring the solution of Eqs. (2.13)-
(2.14). On the other hand, when the Weber number is reduced below
the unity, the spectrum reveals the fast branch only; therefore, for
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Figure 4.27. Combined We-Fr effect on the eigenvalues, panels
(a) and (b), and on the normalized least stable eigenfunction, panel
(c): (We,Fr) = (1.2, 0.08), black filled dot and continuous black line;
(1.05, 0.07), black open dot and dashed black line; (0.95, 0.06), red filled
dot and continuous red line; (0.8, 0.05), red open dot and dashed red
line. Panel (b) shows a zoom of the inner part of the spectra reported in
panel (a). The characteristic frequencies ∆λ+

i and ∆λ−i , whose values
are listed in Table 4.8, are indicated respectively in panels (a) and (b).
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Variable Value

rρ 0.001

ε 0.01

Fr 0.08, 0.07, 0.06, 0.05

We 1.2, 1.05, 0.95, 0.8

Table 4.7. Dimensionless parameters involved in the numerical analysis
of supercritical-to-subcritical flow transition.

We = 1.05 the characteristic frequency of the system, ∆λ−i = 6.16,
is associated with the crossing time of the slow wave, whilst for
We = 0.95 it is ∆λ+

i = 33.80 (Fig. 4.27 and Table 4.8), thus exhibit-
ing a jump when traversing the critical regime (Table 4.8). An anal-
ogous discontinuity was found by Girfoglio et al. [13] for the nappe
configuration; note also the continuous trend of ∆λ+

i around the We
critical threshold. The natural frequency discontinuity corresponds to
an abrupt change in the eigenmode shape ˆ̀ associated with the least
stable frequency of the spectrum, which is reported in Fig. 4.27(c)
for We progressively reduced from We = 1.2 to We = 0.8. Note
that each curve is normalized with respect to its maximum, which
for all cases occurs at the domain exit section, such that ˆ̀(1) = 1.
It is worth noting that the theoretical prediction of the liquid sheet
natural frequency, and therefore its jump when the supercritical-to-
subcritical flow transition occurs, strongly relies on two features of
the curtain flow model here employed (Eqs. (2.13)-(2.14)): accounting
for the sheet-ambient interaction via Eq. (2.15) (see Section 2.1.3),
and considering a sheet of finite length L?. As a matter of fact, if one
neglects the pressure term (2.15) in case of a finite length curtain,
the linear stability analysis yields an empty spectrum, i.e. no natural
frequency is detected, and consequently no frequency discontinuity.
On the other hand, if a curtain of infinite length is considered, the
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Figure 4.28. Normalized power spectral density of the vibrometer
recordings acquired at different values of the Weber number.

We 1.2 1.05 0.95 0.8

∆λ−i 7.22 6.16 − −

∆λ+
i 29.83 31.99 33.80 36.88

Table 4.8. Global frequency in supercritical (∆λ−i , We > 1) and
subcritical (∆λ+

i , We < 1) flow regimes.

natural frequency predicted by the theoretical analysis vanishes; the
latter question is addressed in detail by Chiatto and Della Pia [114]
and not reported herein.

Results of the natural flow response experimental investigation
are presented in Fig. 4.28, which reports the normalized power spec-
tral density (PSD) of the signals acquired by the vibrometer for the
following Weber number values: We = 3.50, 2.43, 1.56, 1.12, 0.94.
The lowest value of We corresponds to the minimum flow rate allow-
ing to maintain a stable two-dimensional liquid sheet. For each test
condition, the measurement was repeated 20 times. At We = 3.5
the flow is fully in supercritical conditions, and the PSD exhibits a
peak at f ?e = 2.38 Hz. WhenWe decreases, according to the stability
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We f ?e (Hz) f ?n (Hz) ε s

3.50 2.38 2.52 5.56 % 16.4 %

2.43 2.00 2.30 13.04 % 10.2 %

1.56 1.88 2.00 6.00 % 11.0 %

1.12 1.63 1.67 2.40 % 11.8 %

0.94 4.75 4.84 1.86 % 8.0 %

Table 4.9. Experimental and numerical values of the natural frequency
varying the Weber number. The relative percentage spread ε is defined
as ε = 100·(f?n−f?e )/f?n. The last column reports the standard deviation
of the experimental measurements.

analysis predictions, the PSD peak moves towards lower f ?e values,
while a higher frequency dynamics is excited, as revealed by the sec-
ondary peak at f ?e ≈ 6 Hz for We = 1.12. A further decrease in the
Weber number determines the flow transition from supercritical to
subcritical regime, with the measured peak frequency undergoing a
jump from f ?e = 1.63 Hz (We = 1.12) to f ?e = 4.75 Hz (We = 0.94).
Table 4.9 and Fig. 4.29 show the agreement between experimental
values (f ?e ) and numerical predictions (f ?n) of the natural frequency,
and confirm the occurrence of the discontinuity atWe = 1. Note that
the error bars reported in Fig. 4.29 and in last column of Table 4.9
represent the standard deviation (s) of the experimental measure-
ments, whose values vary between 8% and 16% of the corresponding
mean quantities. The reference frequency employed to convert the
numerical data ∆λ±i in dimensional form f ?n is f ?r = U?

i /(2πL
?).

Forced dynamic response

The forced oscillatory dynamics of the sheet centreline is shown
in Fig. 4.30 for supercritical (We = 1.05, left panels) and subcritical
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Figure 4.29. Comparison between numerical (f?n, continuous curves)
and experimental (f?e , filled circles) natural frequencies in supercritical
(black) and subcritical (red) regimes. The numerical frequency associ-
ated with the fast branch of spectrum in supercritical conditions is also
reported (black dashed curve). The error bars represent the standard
deviation of the experimental measurements.

(We = 0.95, right panels) conditions. Results are obtained by solving
Eqs. (2.13)-(2.14) enforcing the following boundary conditions

`(0, t) = 0, (4.12)
v(0, t) = vf (t) = A sin(2πft). (4.13)

Three (dimensional) forcing frequencies f ? are considered in the anal-
ysis, namely f ? = 1, 5, 20 Hz, while the prescribed oscillation ampli-
tude is A = 5 (corresponding to 5% of the inlet velocity magnitude
U?
i in the scale adopted). The initial unperturbed sheet centreline,

y = 0, is denoted as a dashed line, while the solid lines indicate
the centreline shapes at fixed times expressed as fractions of (di-
mensionless) oscillation period T . A transient solution is present in
the domain after the forcing is introduced via the boundary condi-
tion (4.13) at t = 0. However, after less than one reference time
(t = 1), the transient is expelled, and the sheet oscillations converge
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Figure 4.30. Weber number effect on the sheet centreline deflection,
`, as a function of the streamwise station, x, at different fractions of
oscillation period T : t = 0·T (black); 0.25·T (red); 0.5·T (blue); 0.75·T
(green). The dashed line denotes the centreline of the unperturbed
curtain. From top to bottom: f? = 1, 5 and 20 Hz.
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to periodic solutions for all the forcing frequencies considered, which
are the ones reported in Fig. 4.30. Moreover, it has been verified that
the converged values of the curtain centreline amplitude within each
oscillation cycle do not depend on the specific boundary condition
initial value, v(x = 0, t = 0), i.e. on the forcing phase.

For all f ? and We values investigated, one observes that as the
forcing frequency is increased the oscillation wavenumber also in-
creases, whilst the maximum amplitude of sheet deflection corre-
spondingly decreases. An analogous behaviour has been recently
highlighted by Torsey et al. [22]. At the highest forcing frequency,
panels (e)-(f), the sheet response shows a convective character and a
shorter wavelength. As a major result of the analysis of the forced
oscillatory curtain dynamics, it is possible to appreciate that, for
each f ? value, the sheet response varies continuously when the flow
undergoes the supercritical-to-subcritical transition, with both the
sheet shapes and amplifications being quite similar for We = 1.05
and We = 0.95. Considering the analogous result found by Torsey et
al. [22] in case of an infinite liquid sheet subjected to imposed ambi-
ent pressure disturbances not coupled with the curtain motion, one
can infer that the continuous behaviour of the finite length curtain
forced dynamics at the transcritical threshold does not depend on
the specific curtain-ambient interaction model employed. The latter
consideration is further corroborated by the analysis provided in Chi-
atto and Della Pia [114], where it is shown that, even neglecting the
coupling (2.15) in Eqs. (2.13)-(2.14), the forced oscillatory dynamics
varies continuously between We > 1 and We < 1.

4.1.4 Subcritical regime

The major aim of this section is to report on direct numerical
simulations of subcritical liquid curtains continuously forced by a
sinuous perturbation in lateral velocity. The forcing is applied at the
sheet inlet section and basically excites sinuous modes of the sys-
tem related to the natural impulse response, whose properties have
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Parameter Value

rρ 0.01

rµ 0.02

ε 0.02

Re 20, 40, 400, 800, 1600

Fr 0.329

We 0.75

Table 4.10. Dimensionless parameters involved in the subcritical
regime analysis.

been characterized in previous Sections 4.1.2 and 4.1.3. However, it
will be shown through the application of the SPOD technique (Sec-
tion 3.3.1) to numerical data that, in particular resonance conditions,
also varicose modes are triggered due to nonlinear effects of interac-
tion among modes. A surface tension-induced instability of the flow
in highly subcritical regime is finally highlighted, by means of the
energy budget decomposition of numerical data (Section 2.1.3) and
linear stability analysis (Section 3.2).

Forced behaviour

Volume-of-fluid simulations of the forced curtain subcritical dy-
namics are performed for flow conditions specified in Table 4.10. Note
that the critical station xs (Eq. (2.25) in Section 2.1.3) and the nat-
ural frequency f ?n predicted by the inviscid theoretical analysis in
these conditions are respectively equal to xs = 0.13 and f ?n = 26.26
Hz. The sheet oscillations are excited via Eq. (4.13), i.e. by a time-
continuous forcing introduced in the lateral velocity at inlet (x = 0),
and different Reynolds number Re are considered. The oscillatory
signals are post-processed through the FFT algorithm; results are
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first presented in Fig. 4.31, where the left panels show the mean-
line maximum oscillation amplitude A` as a function of the stream-
wise direction x for various forcing frequencies f ?, and right panels
as a function of the forcing frequency at several stations. Depend-
ing on the Reynolds number, two different dynamical behaviours are
observed (right panels). At low Reynolds numbers, Re ≤ 40, the
high viscosity effect makes the system overdamped, being the oscilla-
tion amplitude monotonically decreasing with the forcing frequency
as is usual for standard forced-damped oscillators of low degrees-of-
freedom. As Re increases, Re ≥ 800, for which the inviscid condi-
tions are approaching, the frequency response exhibits a resonance
frequency which closely agrees with the natural frequency predicted
by the linear stability analysis. Furthermore, the envelope of oscil-
lation amplitudes (left panels) is quite uniform along the streamwise
extent of the sheet at the higher Reynolds numbers, whilst it exhibits
remarkably greater values towards the tail of the sheet at the lower
Re. From one hand, this is due to the fact that the tail region is
practically locally inviscid. On the other hand, as discussed later by
application of the SPOD technique, in resonance conditions at high
Re numbers the sheet thickness displays a varicose shape, that re-
duces the envelope amplitude. Fig. 4.31 shows that the resonance
frequency occurs in a global way, i.e. it is the same at all the sheet
stations, when the Reynolds number is progressively increased from
Re = 20 to Re = 1600. As a global resonance frequency, it can be
therefore actually compared with the global natural frequency pre-
dicted by the inviscid model.

To shed light on the mechanisms producing the resonance phe-
nomenon as the Reynolds number varies, the frequency response of
the one dimensional reduced transverse velocity field (Eq. (4.4) in
Section 4.1.1 applied to v(x, y) field) has also been investigated by
applying the FFT technique. Results in terms of oscillation ampli-
tude of lateral velocity, Av, are reported in Fig. 4.32, as a function of
x for various forcing frequencies (left column), and as a function of
the forcing frequency f ? for various stations x (right column). The
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Figure 4.31. Reynolds number Re effect on the meanline maximum
oscillation amplitude A` as a function of the streamwise direction x at
different forcing frequencies f? (left column) and of the forcing frequency
at different streamwise stations (right column). Left column: f? = 15
(green curve); 20 (brown); 25 (black); 30 (red); 35 (blue); 45 (orange);
55 (purple) Hz. Right column: x = 0.05 (black); 0.13 (blue); 0.2 (red);
0.4 (purple); 0.6 (green); 0.8 (orange). Natural frequency predicted by
the theoretical model: f?n = 26.26 Hz. From top to bottom: Re = 20,
40, 400, 800, 1600.
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Figure 4.32. Reynolds number Re effect on the maximum oscilla-
tion amplitude of transverse velocity component Av as a function of the
streamwise direction x at different forcing frequencies f? (left column)
and of the forcing frequency at different streamwise stations (right col-
umn). Left column: f? = 15 (green curve); 20 (brown); 25 (black); 30
(red); 35 (blue); 45 (orange); 55 (purple) Hz. Right column: x = 0.05
(black); 0.13 (blue); 0.2 (red); 0.4 (purple); 0.6 (green); 0.8 (orange).
Natural frequency predicted by the theoretical model: f?n = 26.26 Hz.
From top to bottom: Re = 20, 40, 400, 800, 1600.
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analysis of Fig. 4.32, right panels, reveals that at Re = 400 a local
peak of Av at f ? = 25 Hz (i.e. in practice at the leading natural fre-
quency) appears in correspondence of the critical station predicted by
the simplified theoretical model, xs = 0.13, while at lower Reynolds
numbers the function Av(f ?) monotonically increases at the critical
station. It is interesting to note that the peak frequency f ? = 25
Hz, which has a local character at Re = 400, becomes global further
increasing the Reynolds number up to 1600. As matter of fact, the
resonance peaks at the various streamwise stations synchronize with
each other at this frequency for Re ≥ 800 (while at Re = 400 they
depend on the x station considered). The Av synchronization of all
the streamwise locations at the resonance frequency as the Reynolds
number increases, approaching the almost inviscid conditions, allows
one to state that f ? = 25 Hz is a global natural frequency of the
system, thus recovering the considerations previously made. From
another point of view, one can argue that the various x stations syn-
chronize with the critical station as the Reynolds number increases,
and therefore it forces the global oscillations of the entire flow field.
This behaviour of the critical station xs resembles the concept of
wavemaker, which has been characterized both through local (Pier
and Huerre [115]) and global (Giannetti and Luchini [116]) stability
studies for unstable flows. Pier and Huerre [115] studied the self-
sustained oscillations of wake flows applying the local spatio-temporal
stability analysis, and they were able to identify the non-linear wake
oscillation frequency with the local frequency of the convective/ab-
solute transition station, which therefore imposes its own frequency
over the entire flow field. Giannetti and Luchini [116] analyzed the
stability properties of the flow past an infinitely long circular cylinder
in the context of linear theory. The core of the instability was iden-
tified by inspecting the spatial structure of the product between the
direct and adjoint eigenfunctions. This quantity takes into account
the feedback which is at the origin of the self-excited oscillation and
which is located in a region of the flow which acts as a wavemaker. In
the context of gravitational liquid sheet flows, de Luca and Costa [14]
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found that the critical station separates the upstream subcritical re-
gion, where the flow is absolutely unstable, from the supercritical
downstream one, where the flow is convectively unstable. It is worth
pointing out that analyzing the flow field structure to obtain infor-
mation about the mechanisms underlying the global oscillations of
flow systems has been so far applied to study unstable flows, which
exhibit self-sustained oscillations. In the present case, such a kind of
investigation is performed on a forced globally stable flow system.

Sinuous-varicose modes interaction in resonance conditions

To shed light on the liquid curtain flow behaviour in subcriti-
cal resonance conditions, a SPOD analysis of VOF data obtained at
We = 0.75 for the different Reynolds number Re values is performed.
The state vector q(x, t) is obtained by stacking the fluctuations of
the velocity components (u′ and v′) and of the volume fraction (C ′)
in a column vector for a given time instance. N = 2500 snapshots
have been considered, dividing the data in Nb = 12 blocks of equal
length (Nf = 374). The Strouhal number St = f ?H?

i /U
?
i ranges

from 0 to 0.30, with a resolution of ∆St = 0.0017; St = 0.076
corresponds to the forcing frequency f ? = 25 Hz. The normalized
SPOD spectra at various Re are reported in Fig. 4.33. The flow
presents a clear modal separation at the forcing frequency and its
harmonics at all Reynolds numbers. At the highest Reynolds num-
ber (Re = 1600), a peak occurring at the sub-harmonic frequency
St = 0.038 is also detectable, this being a typical behaviour of nonlin-
ear phenomena (Hayashi [117]), associated with the quadratic phase
coupling (Schmidt [118]).

Fig. 4.34 shows the normalized cumulative energy distribution of
SPOD C ′ modes at various Reynolds numbers for a driving frequency
close to the natural one. At low Re, the first 10 modes contribute for
approximately 99% to the total energy of the flow. As the Reynolds
number increases, due to nonlinear effects, higher modes are excited
and about 100 modes are needed to capture the same amount of
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Figure 4.33. Normalized SPOD spectra at We = 0.75 for different
Reynolds number Re values. The spectra report only the frequency
content of the first 2 modes. Forcing frequency f? = 25 Hz (St = 0.076).
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Figure 4.34. Cumulative energy distribution of SPOD modes atWe =
0.75 for different Reynolds number Re values.

(a) (b)

Figure 4.35. Panel (a): sketch of sinuous disturbance. The red lines
denote the interface of the mean field. Panel (b): streamlines pattern
as viewed by an observer moving with the mean flow. The colour map
refers to C ′(x, y) mode (0 < x < 1, −1 < y < 1).
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(a) (b)

Figure 4.36. Panel (a): sketch of varicose disturbance. The red lines
denote the interface of the mean field. Panel (b): streamlines pattern
as viewed by an observer moving with the mean flow; the colour map
refers to the varicose part of C ′(x, y) mode (0 < x < 1, −1 < y < 1).
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Figure 4.37. Decomposition in sinuous and varicose components of
the flow field at We = 0.75, Re = 1600. C ′(x, y) mode (left panel)
and its varicose (middle panel) and sinuous (right panel) components
(0 < x < 1, −0.75 < y < 0.75).

energy at Re > 1000. The same results are retrieved when applying
the POD technique (not reported).

A main result coming from the SPOD of the flow fields is the
nonlinear behaviour of the system approaching the inviscid regime,
revealed by the appearance of secondary varicose modes when the
curtain is sinusoidally forced in resonance conditions, which super-
pose on the main sinuous deformation of the sheet shape. The sinu-
ous contributions show an antisymmetric behaviour for u′(x, y) and
C ′(x, y) and a symmetric one for v′(x, y) (Fig. 4.35, x = x?/L? and
y = y?/H?

i ), whereas the opposite holds for the varicose contribu-
tions, as sketched in Fig. 4.36(a). The panel (b) depicts the stream-
lines pattern as viewed by an observer moving with the mean flow.
The colour map reports the spatial distribution of varicose part of C ′
mode. To recover sinuous and varicose structures, any mode ϕj can
be decomposed according to Eq. (4.8). Fig. 4.37 reports the varicose
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and sinuous components extracted for the C ′ mode at Re = 1600,
where ϕs

j and ϕv
j are defined as:

ϕs
C′(x, y) =

[
ϕC′(x, y)−ϕC′(x,−y)

]
/2, (4.14a)

ϕv
C′(x, y) =

[
ϕC′(x, y) + ϕC′(x,−y)

]
/2. (4.14b)

Further details regarding the sinuous-varicose modes interaction in
resonance conditions, including a parametric analysis of the flow be-
haviour at different We and St numbers, and the flow field low-order
reconstruction by means of SPODmodes, are given in Colanera, Della
Pia, Chiatto, de Luca and Grasso [119].

Subcritical unstable behaviour

Numerical simulations of the curtain dynamics excited by means
of the impulse perturbation (4.5) are performed for We < 1, follow-
ing the same approach used in supercritical regime (Section 4.1.2).
Two Weber number values are considered, respectively greater and
lower than Weth (Eq. (2.24) in Section 2.1.3), namely We = 0.8 and
We = 0.4. Results of the spatio-temporal evolution of the transverse
velocity perturbation v(x, t) are reported in Fig. 4.38(a)-(b). As the-
oretically recalled in Section 2.1.3, the velocity signal splits into two
travelling waves with opposite directions (i.e. left and right travelling
waves) forWe < 1. Following the temporal evolution of the meanline
perturbation (black line is for t = 0.25, blue line for t = 2.5, red line
for t = 7.5), it is clearly evident that at We = 0.8 the flow is asymp-
totically globally stable; the spatial oscillations amplitude tends to
vanish at every station of the curtain at t = 7.5 (Fig. 4.38(a)). The
analysis of Fig. 4.38(b) reveals instead an unstable growth of the
perturbation superposed on the base flow at We = 0.4, with con-
sequent temporal amplification of spatial oscillations on the whole
domain. To shed light on the physical mechanisms determining the
flow instability outlined above, the energy budgets temporal evolu-
tion (Eq. (2.33) in Section 2.1.3) is reported in Fig. 4.39 forWe = 0.8
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Figure 4.38. Spatio-temporal evolution of the transverse velocity
perturbation v(x, t) for We = 0.8 (panel (a)) and We = 0.4 (panel
(b)): t = 0.25 (black line), 2.5 (blue line) and 7.5 (red line). The
magenta curve in both panels represents the initial perturbation (4.5).
Weth = 0.63.
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(panels (a)-(d)) and We = 0.4 (panels (e)-(h)). The sum of kinetic
and surface tension energies Et reveals, as expected, an asymptotic
decreasing behaviour for We = 0.8, while an unstable growth occurs
for We = 0.4 (black curves). Both the energy exchanges through
the domain boundaries, ∆Fc and ∆Fσ (blue curves), and the viscous
D and inviscid P dissipations terms (magenta curves), play a stabi-
lizing role on the subcritical flow dynamics, regardless of the Weber
number value. On the other hand, it is found that the surface ten-
sion, through the work per unit time Lσ, is the physical mechanism
driving the flow instability when We is progressively reduced, as can
be clearly appreciated by the temporal amplification of oscillations in
Lσ when We is reduced from We = 0.8 to We = 0.4 (dashed green
curves). The latter result confirms the crucial role of surface tension
in the destabilization of gravitational liquid curtains, which was out-
lined in previous stability analyses by de Luca and Costa [14] and
Barlow et al. [17]. Note that Tammisola et al. [51] and Schmidt et
al. [52] also found a surface tension-induced global instability of two-
dimensional planar jet and wake flows of two immiscible fluids with
different velocities. It is also interesting to observe that the pressure
term Lp (green solid curve in Fig. 4.39), which has been found to play
the main destabilizing role in supercritical regimes (Section 4.1.2), is
almost not involved in the energy balance in subcritical conditions.

The instability onset occurring as the Weber number progres-
sively decreases is further elucidated in Fig. 4.40, which shows the
temporal evolution of the meanline oscillations amplitude at x = xp,
that is the station where the perturbation is introduced, respectively
for We = 0.8 (panel (a)) and We = 0.4 (panel (b)). The numeri-
cal analysis is performed for three different values of Reynolds num-
ber (Re = 41.3, 413 and ∞). In asymptotically stable conditions
(We = 0.8), the meanline amplitude undergoes a transient growth
in the initial time instants, which is well fitted by the power law t

1
3 .

When the Weber number decreases down to We = 0.4, after an ini-
tial (t < 0.5) transient growth characterized by the same algebraic
trend observed at We = 0.8 (i.e., t

1
3 ), the perturbation amplitude
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Figure 4.39. Temporal evolution of the energy budgets for We = 0.8
(panels (a)-(d)) and We = 0.4 (panels (e)-(h)). All the terms are scaled
with respect to the initial total energy Et0 . For a detailed explanation
of the terms, see Eq. (2.33) in Section 2.1.3. Weth = 0.63.
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Figure 4.40. Temporal evolution of meanline oscillations amplitude at
x = xp for We = 0.8 (panel (a)) and We = 0.4 (panel (b)): Re = 41.3
(continuous black curve); 413 (continuous red curve); ∞ (continuous
blue curve). The dot-dashed curves represent algebraic (∼ t 1

3 , red) and
exponential (∼ e 1

3
t, blue) growths. Weth = 0.63.

exhibits an unstable evolution described by the exponential trend e
1
3
t

(Fig. 4.40(b)). It is also worth noting that results obtained by varying
the Weber number are not dependent on the particular value of the
Reynolds number considered, as shown by the perfect superposition
of solid curves in Fig. 4.40 (panels (a)-(b)), namely the viscosity does
not play any key role.

The previous findings agree with the results by de Luca and
Costa [14] and Barlow et al. [17]. These authors employed a local
spatio-temporal stability approach, and found an absolute algebraic
unstable growth of disturbances for liquid sheets in subcritical regime,
described by the power law t

1
3 . Analyzing the sheet flow on a fi-

nite domain from a global perspective, an initial transient algebraic
growth of the perturbation (∼ t

1
3 ) in asymptotically stable conditions

(We = 0.8) is found herein, while in unstable conditions (We = 0.4)
the initial algebraic amplification is followed by an asymptotic expo-
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Figure 4.41. Inner eigenvalues of the spectrum (panel (a)) with a zoom
on the unstable part (panel (b)). The curve λr = 1/3 (dot-dashed blue
line) is also reported. Re =∞, Weth = 0.63.

nential growth. The latter result is confirmed by the linear stability
analysis: the spectra calculated in inviscid conditions (Re =∞) and
reported in Fig. 4.41 reveal that the leading eigenvalue (i.e., with
maximum growth rate λr) becomes unstable at We = 0.4, with a
growth rate close to the value λr = 1/3 arising from numerical sim-
ulations (relative spread of 12.12 %). Note also that two branches of
spectrum are obtained for We < Weth, as predicted in Section 2.1.3.
Further details regarding the Froude and Weber number effects on
the flow subcritical instability are given in Della Pia et al. [120].
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4.2 Two-phase mixing layers

The experimental characterization of the planar air-water mixing
layer represents the aim of the present section. The two-phase mean
(time-averaged) flow is characterized for several injection conditions
in Section 4.2.1 (an overview is summarized in Fig. 4.42). Insights
into the unsteady flow dynamics are gained through the velocity com-
ponent fluctuations spectral analysis (Section 4.2.2), and the global
oscillatory behaviour of the flow is finally discussed in Section 4.2.3.

4.2.1 Mean flow field characterization

The mean flow topology is first presented and discussed for a
selected case defined as the REF case, which is characterized by values
of the flow quantities reported in Table 4.11. Later on, the effect of
injection conditions on the two-phase flow field will be investigated by
means of a parametric analysis involving the following dimensionless
parameters

Reg =
ρgUgδg
µg

, Wel =
ρlU

2
l δl
σ

, M =
ρgU

2
g

ρlU2
l

, (4.15)

whose values are reported in Table 4.12 for the main cases consid-
ered in the analysis. The Reynolds number based on the gas vorticity
thickness Reg varies from 256 to 768. The inlet liquid vorticity thick-
ness δl, which is defined analogously to δg and is obtained from the
PIV measured velocity profiles in water, is used to define the liquid
Weber number Wel, which varies from 0.19 to 2.97. Note also that,
being the ratio e/δg greater than unity for all the cases examined
(last row in Table 4.12), the present investigation lies within the so
called injector-influenced regime outlined by Fuster et al. [48].
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Figure 4.42. Overview of the air-water mixing layer testing conditions
in terms of M values as a function of the gas velocity Ug, at different
values of the liquid velocity Ul.
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Figure 4.43. Time-averaged velocity magnitude V̄ /Ug contour (a) with
zoom next to the nozzle exit section (b). In both panels, the splitter
plate location is highlighted in black, and velocity vectors are reported.
REF case of Table 4.12.
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Name Variable Value Unit

Gas density ρg 1.177 Kg m−3

Liquid density ρl 997 Kg m−3

Gas viscosity µg 1.84 · 10−5 Kg m−1 s−1

Liquid viscosity µl 8.90 · 10−4 Kg m−1 s−1

Surface tension σ 72.5 · 10−3 N m−1

Inlet liquid velocity Ul 0.15 m s−1

Inlet gas velocity Ug 7 m s−1

Gas vorticity thickness δg 1.1 · 10−3 m

Liquid vorticity thickness δl 2.7 · 10−3 m

Splitter plate thickness e 2.0 · 10−3 m

Table 4.11. Dimensional quantities corresponding to the REF case.

Case REF WElo WEme WEhi RElo REtr REme REhi REgl

Reg 493 493 493 493 384 704 714 768 768

Wel 0.84 0.19 1.27 2.97 0.84 0.84 0.84 0.84 0.19

M 2.57 5.78 1.45 0.64 1.31 5.25 7.56 11.81 25.56

e/δg 1.81 1.81 1.81 1.81 1.62 1.83 2.15 2.60 2.60

Table 4.12. Overview of the main cases considered in the analysis.
Dimensionless parameters are defined in Eq. (4.15).
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Figure 4.44. Time-averaged streamwise ū(ỹ)/Ug velocity component
profiles at different x̃ stations: x̃ = 0.55 ( ); 10.88 ( ); 21.76 ( );
32.10 ( ); 42.98 ( ); 53.31 ( ). The dashed and dotted lines
represent the values ū/Ug = 0 and 1, respectively, while error bars
denote the average measurement uncertainty. REF case of Table 4.12.

Base case

The time-averaged velocity magnitude V̄ contour is shown in
Fig. 4.43(a) together with the velocity vectors distribution, and a
zoom around the splitter plate immediately downstream of the noz-
zle exit section is provided in Fig. 4.43(b). For all cases discussed
within this work, the mean quantities ū and v̄ are computed as

ū(x, y) =
1

T

∫ T

0

u(x, y, t) dt, v̄(x, y) =
1

T

∫ T

0

v(x, y, t) dt, (4.16)

where u and v are the instantaneous measured velocity components
along x and y directions, respectively, and the averaging time T spans
8000 temporal realizations of the flow (T = 4.0 s). Note that in
Fig. 4.43 the velocity magnitude has been scaled with respect to Ug,
and the spatial coordinates have been made dimensionless by means
of the splitter plate thickness, i.e. x̃ = x/e and ỹ = y/e.

After issuing from the injection section (x̃ = 0), the air and water
flows meet downstream of the splitter plate. By moving along the
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Figure 4.45. Velocity profiles ū(ỹ)/Ug at different x̃ stations (a)
with zoom near the liquid phase (b) and velocity defect (ūmin−Ul)/Ug
streamwise distribution (c). The vertical red line in panel (c) denotes
the wake region length x̃w, while error bars represent the average mea-
surement uncertainty. REF case of Table 4.12.



126 Chapter 4. Results

streamwise direction, two distinct regions can be detected: a wake
flow region (0 < x̃ < x̃w), and a pure mixing layer region (x̃ >
x̃w), with x̃w = xw/e = 17.5. The wake region length x̃w has been
calculated as the last streamwise station (starting from x̃ = 0) where
ū(ỹ) < 0 (i.e. ū > 0 for x̃ > x̃w). The spatial development of the
mixing layer is more clearly quantified in Fig. 4.44, which reports
ū(ỹ) profiles at different streamwise stations spanning both air and
water streams, together with the corresponding average measurement
uncertainty. The reverse flow component within the wake region is
highlighted by the negative values of ū for ỹ around zero. Far from
ỹ = 0, the velocity profile is characterized by an almost uniform
distribution in both air (ỹ > 2) and water (ỹ < −1.1) streams, while
it undergoes strong spatial variations within the region −1.1 < ỹ < 2.
Downstream of the wake region, the velocity profile is influenced by
the air-air shear layer forming between the injected gas stream and
the still ambient, with consequent reduction of the local ū value by
increasing ỹ (phenomenon of jet expansion, see Descamps et al. [65]).

By moving along x̃, the momentum exchange between the faster
gas and slower water stream leads to the progressive reduction of the
velocity defect, namely the difference between the minimum local ve-
locity and the free-stream value, ūmin − Ul. This aspect is clarified
in Fig. 4.45, which shows the velocity profile at three selected down-
stream stations, respectively inside (x̃ = 0.55, black curve), just out-
side (x̃ = 20.13, red) and far from (x̃ = 53.31, blue) the wake region
(panels (a)-(b)), and the velocity defect streamwise distribution (c),
together with the corresponding average measurement uncertainty.

The different regions characterizing the flow topology are further
highlighted by ū(x̃) and v̄(x̃) velocity profiles, respectively shown in
Fig. 4.46(a)-(b), for vertical stations spanning both air and water
streams. The distribution ū(x̃, ỹ = 0) highlights the strong spa-
tial variation characterizing the flow field in the wake region (blue
curve in panel (a)), while v̄(x̃) profiles reveal the downward devia-
tion of the gas stream (i.e. negative values of v̄(x̃)) in the near-field
region, as a result of the combination of water jet contraction (Ag-
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ỹ = 2.72
ỹ = 0
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v̄(x̃)/Ug (b) velocity component profiles at different ỹ stations. REF
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baglah et al. [57]) and air recirculation within the wake. Furthermore,
Figs. 4.47 and 4.48 show the Reynolds stress tensor components u′u′
(panels (a)), v′v′ (b) and u′v′ (c) in terms of contour representations
and ỹ-profiles, respectively. Note that the white circles in Fig. 4.47(b)
represent monitoring locations, which will be used for the analysis of
unsteady velocity fluctuations in Section 4.2.2. The x̃-velocity com-
ponent fluctuation is evaluated as u′ = u − ū, and the same applies
for v′. The u′u′(ỹ) distribution (panels (a)) is characterized by larger
peaks than the others (panels (b) and (c)), as also found by Ling et
al. [58] by means of three-dimensional direct numerical simulations.
Moreover, all the distributions are peaked in correspondence of the
maximum momentum exchange locations, namely at the air-water
and air-air mixing layers interfaces (see also Jiang and Ling [94]).
Similarly, the streamwise u′u′(x̃) distribution reported in Fig. 4.48(d)
reveals two peaks; the first one immediately downstream of the split-
ter plate, and the second one at x̃w = 17.5, namely at the end of the
recirculation region. It is also possible to appreciate that, for each
ỹ location, a constant value is asymptotically reached as x̃ increases,
revealing that the mixing layer progressively achieves a self-similar
state moving far from the wake flow region (Mehta [121]).

Theoretical-experimental comparison

The analysis of the REF case is concluded by reporting a compar-
ison between the velocity profiles here measured and the theoretical
base flows proposed by Otto et al. [46] and Fuster et al. [48] in the
context of linear stability analysis. The comparison is performed at
two distinct streamwise stations: a first one inside the wake region
(x̃ < x̃w, panels (a)-(b) in Fig. 4.49), and a second one just outside
it (x̃ > x̃w, panels (c)-(d)). Note that the measured profiles (black
curves) have been vertically shifted in such a way that the air-water
interface is located at y = 0, to facilitate the comparisons with theo-
retical formula (red curves) hereafter provided.
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Figure 4.49. Theoretical-experimental comparison of velocity profiles
inside (panels (a)-(b)) and outside ((c)-(d)) the wake region of length
x̃w = 17.5. REF case of Table 4.12.
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The analytical velocity profile used in Fig. 4.49(c)-(d) reads as

u+

Um
=


− Ul
Um

erf
(
y

δl

)
+

ū0

Um

[
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(
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)]
, y ≤ 0,

Ug
Um

erf
(
y

δg

)
+

ū0

Um

[
1− erf

(
y

δd

)]
, y ≥ 0,

(4.17)

which is the same as that reported by Fuster et al. [48] once small
notational differences are rectified, while a modified version (discon-
tinuous at y = 0) is adopted for comparisons in the wake region
(Fig. 4.49(a)-(b)),

u−

Um
=


− Ul
Um

erf
(
y

δl

)
+

ū0

Um

[
1 + erf

(
y

δd

)]
, y ≤ 0,

Ug
Um

erf
(
y − ymin

δg

)
+
ūmin
Um

[
1− erf

(
y − ymin

δd

)]
, y > 0.

(4.18)
In Eqs. (4.17)-(4.18), the error function erf(y) is employed, Um =
(Ug + Ul)/2, ū0 is the measured velocity at the air-water interface
(an analytical estimation based on continuity of shear stresses across
the interface was used by Fuster et al. [48]), ūmin is the minimum
(negative) measured value within the wake region (at the vertical
location y = ymin), and δd is an adjustable parameter introduced by
Otto et al. [46] to mimic experimental velocity profiles in the near-
field region of the mixing layer.

Results of the comparison reveal a strict agreement between the
measured and theoretical velocity profiles, both inside (i.e. negative
value of velocity defect) and outside the wake region. Values of the
ratio δd/δg giving the best match with experimental data are respec-
tively equal to 0.75 (for x̃ < x̃w) and 0.78 (x̃ > x̃w). According to
Otto et al. [46], δd/δg is found to be less that the unity in both cases,
due to the presence of a velocity defect in the mean flow profile.
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Figure 4.50. Weber numberWel effect on V̄ /Ug flow field. The splitter
plate is highlighted in black, and velocity vectors are reported. WElo
(a), REF (b), WEme (c) and WEhi (d) cases of Table 4.12.
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Figure 4.51. Weber number Wel effect on the time-averaged stream-
wise ū(ỹ)/Ug velocity component at different x̃ stations: x̃ = 0.55 ( );
10.88 ( ); 21.76 ( ); 32.10 ( ); 42.98 ( ); 53.31 ( ). REF
(a) and WEhi (b) cases of Table 4.12.

Effect of liquid Weber number

The effect of Weber number Wel variation on the two-phase flow
topology at fixed Reg is investigated by modifying the injection ve-
locity Ul. Results are shown in Fig. 4.50 in terms of time-averaged
velocity magnitude contour and velocity vectors distribution; the We-
ber number varies between Wel = 0.19 (WElo case, panel (a)) and
Wel = 2.97 (WEhi case, panel (d)). The gas Reynolds number is
equal to Reg = 493, as in the REF case previously discussed.

The recirculation region characterizing the flow downstream of
the injection section progressively reduces as Wel increases, and it
vanishes in the WEhi case. The increase in inlet momentum reduces
the relative importance of capillary to inertia forces, thus leading to
an almost unperturbed air-water interface at the splitter plate edge in
the last case. For the WEhi case, the liquid velocity field is basically
not influenced by the co-flowing gaseous phase, developing parallel
to the streamwise direction and to the injected air stream.

The wake flow region reduction when the Weber number increases
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is quantified in Fig. 4.51, where ū(ỹ) distributions at different stream-
wise stations are reported for REF (a) and WEhi (b) cases. In the
latter configuration, the absence of the wake flow component deter-
mines an almost spatially invariant flow along the streamwise direc-
tion up to ỹ = 5, where slight differences among the velocity profiles
are due to the air-air mixing layer development.

Effect of gas Reynolds number

Results of the investigation performed by varying the gas Reynolds
number are first shown in Figs. 4.52-4.53, respectively in terms of ve-
locity magnitude contours with superposed vectors distributions, and
ū(ỹ) profiles at different streamwise locations; the liquid velocity is
kept constant and equal to that of the REF case, so thatWel = 0.84.

By looking at the two-dimensional flow fields, it can be seen that
the wake region progressively shortens by increasing the Reynolds
number from the RElo (a) to the REme (c) case, with x̃w decreas-
ing from 21.2 to 9.8. Accordingly, the peak of the Reynolds stress
component u′u′ is shifted towards lower x̃ values, and it achieves its
maximum at Re = 704, as reported in Fig. 4.54. The liquid phase
development is strongly affected by the gas Reynolds number: the
increase in Reg augments the momentum transferred by shear from
the gas to the liquid stream, with consequent stronger acceleration
and contraction of the water jet in the near-field region (Agbaglah
et al. [57]). Fig. 4.52 shows the liquid jet progressive contraction
when Reg increases: moving along x̃, the gas flow appears deflected
upwards due to interactions with liquid waves developing along the
streamwise direction (Matas et al. [43], Fuster et al. [48], Ling et
al. [58]). The momentum flux difference in the air-air mixing layer
also increases with increasing Reg, leading to a reduction in ū(ỹ)
moving towards the top of the domain, as shown by the evolution of
velocity profiles in Fig. 4.53, from panel (a) to (c).

For the highest value of Reynolds number considered (REhi case,
Figs. 4.52-4.53(d)), the wake region vanishes, i.e. x̃w = 0; as a conse-
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Figure 4.52. Reynolds numberReg effect on the time-averaged velocity
magnitude V̄ /Ug. The splitter plate is highlighted in black, and velocity
vectors are reported. RElo (a), REF (b), REme (c) and REhi (d) cases
of Table 4.12.
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Figure 4.56. Dynamic pressure ratio M effect on the wake region
length x̃w at different values of the Reynolds number Reg.

quence, no peak in the Reynolds stress component u′u′ distribution
can be detected (blue curve in Fig. 4.54). To shed light on this as-
pect, the curve x̃w(Reg) is reported in Fig. 4.55 for different values of
the Weber number Wel. Four cases are reported: Wel = 0.19 (blue
curve), 0.84 (black), 1.27 (green) and 2.97 (magenta), corresponding
to the flow fields shown in Fig. 4.50(a)-(d) for Reg = 493 (vertical
red line in Fig. 4.55). It can be seen that the progressive decreasing
of the recirculation region with Reg is enhanced by increasing the
liquid Weber number, in agreement with the Wel effect at fixed Reg
previously outlined. In particular, at Wel = 2.97 no wake is detected
at any Reg value.

Effect of gas-to-liquid dynamic pressure ratio

The trend of the wake length as a function of the gas-to-liquid
dynamic pressure ratio x̃w(M) is finally summarized in Fig. 4.56, for
different values of the gas Reynolds number. It can be seen that, for
a fixed Reg, relatively low M values (high liquid velocities) promote
a reduction of the wake, which eventually vanishes. This is analogous
to the Wel effect outlined in Fig. 4.55 and by the velocity contours



140 Chapter 4. Results

reported in Fig. 4.50. Moreover, the M value denoting the transition
from a wake regime to a purely mixing layer regime increases as
Reg increases. Therefore, only at relatively high values of the gas
Reynolds number the flow behaves as a pure mixing layer in a wide
range of liquid injection velocities (i.e. wide range of M values).

4.2.2 Unsteady dynamics analysis

The air-water mixing layer oscillatory dynamics is first analyzed
by applying a Fast Fourier Transform (FFT) algorithm to the PIV
measured vertical velocity component fluctuations v′, considering dif-
ferent streamwise x̃ and normal-to-plate ỹ locations (see Fig. 4.47(b)
in Section 4.2.1). The effects of Weber (Wel) and Reynolds (Reg)
numbers on the signals frequency spectra are first examined; note
that the dynamic pressure ratio M also varies by changing both Wel
and Reg values. Results are shown in Fig. 4.57, where two Wel (0.19
and 1.27) and three Reg (493, 714 and 768) values are considered,
and a monitoring station immediately after the splitter plate in air
flow is selected, i.e. (x̃, ỹ) = (0.55, 5.44). Note that the fluctuation
amplitudes Av′ are made dimensionless by the inlet gas velocity value
Ug for each case.

At relatively low Reynolds number (panels (a)-(b)), the spectra
appear noisy and the order of magnitude of peak frequencies is equal
to O(f) = 102 Hz. By fixing Wel and increasing Reg (i.e. by moving
from top to bottom in each column of Fig. 4.57), the noise signif-
icantly reduces, and at the same time the peak frequency is low-
ered down to O(f) = 1 Hz. For the higher Weber number value
(Wel = 1.27) the peak frequency depends on the specific Reg con-
sidered: it increases from f = 6.42 Hz to f = 8.94 Hz for Reg going
from 714 (panel (d)) to 768 (f). The peak frequencies ratio between
the latter and former case is equal to 1.39, and it is in close agree-
ment with the scaling

(
Ug(f)/Ug(d)

) 3
2 = 1.40, where Ug(f) = 15 m/s

and Ug(d) = 12 m/s. This scaling was also found in the experimental
analyses by Raynal et al. [39] and Marmottant and Villermaux [42]
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Figure 4.57. Wel and Reg effects on the FFT of vertical velocity
component fluctuation v′(t)/Ug at (x̃, ỹ) = (0.55, 5.44), i.e. in air flow
immediately downstream of the splitter plate. M = 5.78 (a), 1.45 (b),
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Figure 4.58. Dynamic pressure ratioM effect on the peak (dimension-
less) frequency of the FFT of v′(t) at (x̃, ỹ) = (0.55, 5.44) for different
values of the Reynolds number Reg.

for a multitude of gas injection velocities Ug. On the other hand,
when Wel reduces to 0.19, the peak frequency is not dependent on
the specific Reg value, and it is equal to f = 5.51 Hz (panels (c) and
(e), respectively).

A more significant data reduction is reported in Fig. 4.58, where
the dimensionless peak frequencies fδg/Ug are shown as a function of
the dynamic pressure ratioM . This representation of data allows the
comparison between present results and theoretical predictions from
local spatio-temporal stability analyses and direct numerical simu-
lations of literature (Fuster et al. [48], Otto et al. [46], Bozonnet et
al. [49]). In particular, Otto et al. [46] pointed out that, at relatively
low M and Reg values, the flow behaves like a noise amplifier, being
characterized by convective instability. In this case, numerical sim-
ulations performed by Fuster et al. [48] and lately by Bozonnet et
al. [49] have shown that frequency spectra of the gas-liquid interface
oscillatory dynamics strongly depend on the injected noise level (e.g.
the turbulence fluctuations within the gas phase, characterized by
high frequency values) and on the selected streamwise station. This
behaviour is analogous to the one previously outlined at Reg = 493
in Fig. 4.57(a)-(b), and it is summarized in Fig. 4.58 for a wider
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range of Reynolds number values (Reg ≤ 493, black, red and blue
curves). On the other hand, at relatively high Reg, Otto et al. [46]
and Fuster et al. [48] outlined a transition from convective to absolute
instability of the flow when M increases beyond a critical threshold
Mc (Mc = O(1) for ρg/ρl = 0.001 in Fuster et al. [48]). In the latter
case, the flow acts as an oscillator, driving the unsteady dynamics
at a specific forcing frequency not related to the noise perturbations
spectrum. This result is also analogous to what previously shown in
Fig. 4.57, panels (c) and (e), respectively corresponding to M = 17
and 25.56 for Reg ≥ 714. Moreover, Fuster et al. [48] found that at
relatively high Reg the most unstable frequency is characterized by
a monotonic decreasing trend as M increases, approaching the value
fδg/Ug = 5 · 10−4 as M increases and the instability becomes abso-
lute. This finding is retrieved in Fig. 4.58 for Reg ≥ 714 (magenta
and orange curves), where fδg/Ug = O(10−4) for M > 4.25. Finally,
it can be noted that the case Reg = 704 (green curve) is similar to
the two highest Reg cases previously discussed, but it is character-
ized by a higher peak frequency fδg/Ug = O(10−2) beyond the value
M = 4.25.

4.2.3 Global oscillatory behaviour

For the highest M value here investigated, corresponding to the
REgl case of Table 4.12, Fig. 4.59 shows the frequency spectra at
different stations along the streamwise direction, spanning the range
x̃ ∈ [0.55, 32.10] (from panel (a) to (d)). Each panel reports three
curves, corresponding to three different monitoring vertical locations
within the air flow. It can be seen that the measured peak frequency
does not vary moving along the streamwise and/or vertical direction.
In this respect, it can be inferred that the flow features global mode
oscillations, i.e. temporal velocity fluctuations synchronized over a
large spatial extent at the flow natural frequency. It can be also
noted that the unsteady dynamics in presence of global oscillations
is characterized by a low-order behaviour, i.e. the flow oscillates at
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Figure 4.59. FFT of v′(t) at different (x̃, ỹ) locations: ỹ = 8.16 (black
curve); 5.44 (red); 2.72 (blue). REgl case of Table 4.12.
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the peak (dimensionless) frequency fδg/Ug = 2.8 · 10−4 and its first
super-harmonic 5.6 · 10−4, the energy content at other frequencies
being negligible. An analogous behaviour has been recently outlined
for one-phase mixing layers formed between parallel streams of dif-
ferent velocities by Dutta et al. [122]. The measured peak frequency
fδg/Ug = 2.8 · 10−4 is in close agreement with various experimen-
tal literature findings reported in Table 5 on page 171 by Fuster et
al. [48].

To shed light on the spatio-temporal flow dynamics in presence of
global mode oscillations, the analysis of the REgl case is concluded by
performing the proper orthogonal decomposition (POD) of u′ velocity
fluctuations,

u′(x̃, ỹ, t) = u(x̃, ỹ, t)− ū(x̃, ỹ) =
∞∑
j=1

aj(t)ϕj(x̃, ỹ). (4.19)

The Gappy POD iterative algorithm (Everson and Sirovich [123],
Venturi and Karniadakis [124], Gunes et al. [125]) is applied to de-
noise the data and extract the leading modes, with a spatial weight
matrix (defining the state vector norm) accounting for the different
densities of gas and liquid phases.

The POD energy distribution is reported in Fig. 4.60(a), while
panels (b)-(f) show the first five POD modes. The first mode (panel
(b)) denotes a normal-to-flow oscillatory (flapping) dynamics of the
interface, while the couples of modes 2nd−3th and 4th−5th represent
spatially coherent structures advected along the streamwise direc-
tion, each couple being characterized by the typical shift of modes
along the x̃ axis. The power spectral density (PSD) of the tempo-
ral coefficients ai associated to the leading modes is finally reported
in Fig. 4.61. All the modes are peaked at the (dimensionless) fre-
quency fδg/Ug = 2.8 · 10−4, which is the same value outlined by the
local spectral analyses previously shown in Fig. 4.59. Moreover, the
product between the second POD mode wavelength, λ̃ = λ/e = 25
(see Fig. 4.60(c)), and the secondary peak frequency of PSD(a2),
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(a) POD modes energy (%) (b) 1st u′ POD mode

(c) 2nd u′ POD mode (d) 3rd u′ POD mode

(e) 4th u′ POD mode (f) 5th u′ POD mode

Figure 4.60. POD analysis of the REgl case of Table 4.12. Energy
distribution (panel (a)); leading u′ modes (each scaled with respect to its
maximum, panels (b)-(f)). In each panel, the splitter plate is highlighted
in grey, and the mean interface location is denoted by the white dashed
line.
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Figure 4.61. Power spectral density (PSD) of the temporal coefficients
ai associated to the leading POD modes shown in Fig. 4.60. The vertical
red dashed lines denote the peak frequency fδg/Ug = 2.8 · 10−4 and its
first super-harmonic fδg/Ug = 5.6 · 10−4.
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fδg/Ug = 5.6 · 10−4 (Fig. 4.61), yields a dimensional velocity of the
disturbance travelling wave equal to U = λf = 0.55 m/s. This value
is in close agreement with the interfacial wave propagation speed
given by Dimotakis [126], UD = (

√
ρlUl+

√
ρgUg)/(

√
ρl+
√
ρg) = 0.59

m/s (relative spread of 6.78% for Ul = 0.1 m/s and Ug = 15 m/s, cor-
responding to the REgl case here analyzed), which was obtained as-
suming the gas and liquid dynamic pressures in balance in a reference
frame moving with the wave speed. These last findings highlight the
relationship between the global mode velocity oscillations measured
within the flow field and the gas-liquid interfacial spatio-temporal
dynamics.



Chapter 5
Conclusion

The main goal of the work described in this thesis is twofold:
i) to advance towards a more complete understanding of the physi-
cal mechanisms underlying gravitational liquid curtains unsteady dy-
namics; and ii) to provide an experimental characterization of two-
phase mixing layer flows simultaneously in gas and liquid phases,
preparing the way towards a global stability analysis in the next fu-
ture.

To accomplish these objectives, theoretical, numerical and exper-
imental methodologies have been developed and employed, including
volume-of-fluid direct numerical simulations, linear stability analy-
sis, data-driven modal decomposition techniques, and time-resolved
particle image velocimetry (Chapter 3). The last methodology has
been applied for the experimental characterization of the two-phase
mixing layer velocity field, as a result of the collaboration between
the research group in which the candidate worked in Naples and the
Flow Stability & Control research group at Delft University of Tech-
nology, where the candidate spent a Visiting Scholar period of one
year during his Ph.D. Program.

The main conclusions that can be drawn from this work are here-
after summarized, separately for the two gas-liquid interfacial flow
systems investigated. Recommendations for possible future develop-
ments of the work are finally reported.
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5.1 Conclusions

5.1.1 Gravitational liquid curtains

The unsteady dynamics of gravitational liquid curtain flows cru-
cially depends on the Weber number We, namely the ratio between
inertia and capillary forces within the liquid phase. Three flow regimes
with different peculiar features can be distinguished depending on the
Weber number value: supercritical (We > 1), transcritical (We =
O(1)), and subcritical (We < 1) regimes.

In supercritical conditions (Sections 4.1.1 and 4.1.2), the major
novel finding is that the sheet becomes unstable for relatively high
values of the gas-to-liquid density ratio rρ, as predicted by a simpli-
fied theoretical linear model of the curtain dynamics and confirmed
by two-dimensional fully nonlinear numerical simulations. Since the
oscillatory dynamics of the average sheet displacement resembles that
of a tensional string forced by terms containing the lateral velocity,
and it is subjected to a total damping coefficient which can assume
negative values, it can be argued that the distribution of the trans-
verse velocity component of the ambient gaseous phase represents
such a forcing term, which leads the system towards the instability.
The role of the gaseous ambient phase on the sheet instability has
been thus quantified by means of an energy budget analysis, shedding
light on the physical mechanisms underlying the curtain dynamics.
The energetic analysis has revealed that the key term driving the
instability is the work per unit time made by the atmospheric en-
vironment on the liquid phase by means of pressure perturbations;
the weight of this energy budget overwhelms progressively all other
budgets as the density ratio is increased.

When the Weber number traverses the critical threshold We = 1
(transcritical regime, Section 4.1.3), experimental measurements of
the curtain oscillatory dynamics reveal an original discontinuous be-
haviour of the flow system, namely its natural frequency abrupt in-
creases going from supercritical to subcritical conditions. The theo-
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retical predictions of the flow natural frequency and its jump when the
supercritical-to-subcritical flow transition occurs remarkably agree
with experimental measurements, and strongly rely on two features
of the simplified curtain model employed: accounting for the liquid
sheet–air ambient interaction, and considering a sheet of finite length.
As a matter of fact, if one neglects the pressure term in case of a finite
length curtain, the linear stability analysis yields an empty spectrum,
i.e. no natural frequency is detected, and consequently no frequency
discontinuity. On the other hand, if a curtain of infinite length is con-
sidered, the natural frequency predicted by the theoretical analysis
vanishes.

In subcritical conditions (Section 4.1.4), direct numerical sim-
ulations show a nonlinear sinuous-varicose modes interaction when
forcing the liquid curtain at its natural frequency, namely when the
sheet oscillates in resonance conditions. Although the linear inviscid
theory (accounting for sinuous modes only) is able to quantitatively
predict the natural frequency also in presence of sinuous–varicose
modes interaction, it is obviously not able to foresee the varicose dis-
tortions. The latter modes can be instead predicted by a data-driven
approach based on the dynamic mode decomposition of random per-
turbations superposed on the base flow, which has been employed to
obtain the two-dimensional global (BiGlobal) spectrum of the flow
in both supercritical and subcritical conditions. The role of sinu-
ous and varicose contributions in the dynamics and topology of the
subcritical flow has been further clarified by means of the spectral
proper orthogonal decomposition of numerical data. In resonance
conditions, the varicose component of the leading SPOD mode be-
comes progressively more important (energy-wise) as We decreases,
attaining a maximum at We = 0.75, whereas the sinuous contribu-
tion increases with We. The excitation of the varicose mode when
the Weber number is decreased, with a progressive shift from higher
harmonics towards the leading frequency, can be interpreted as a pre-
lude to the rupture experienced by the liquid sheet, experimentally
observed when We is reduced (by progressively reducing the inlet
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flow rate). Finally, the energy budget decomposition shows that the
work per unit time done by the surface tension is the physical mech-
anism responsible for the flow instability in subcritical conditions,
as the Weber number is progressively decreased down to Weth, with
Weth being the inlet We number for which the sheet is entirely sub-
critical (local Weber number less than the unity everywhere along
the curtain). In these conditions, a transient algebraic growth of per-
turbations is found in both asymptotically stable (Weth < We < 1)
and unstable (We < Weth) regimes. In the latter case, the tempo-
ral evolution of disturbances eventually follows an asymptotic modal
growth, which is also recovered in the eigenvalues spectra evaluated
by the linear stability analysis.

5.1.2 Two-phase mixing layers

The time-averaged flow topology and the unsteady dynamics of
air-water mixing layer flows past a finite thickness splitter plate are
affected by both gas and liquid physical parameters, related to the
air Ug and water Ul injection velocities. In particular, the effects of
the gas Reynolds number Reg, the liquid Weber number Wel, and
the gas-to-liquid dynamic pressure ratio M are the most relevant,
and have been investigated through two-phase time-resolved particle
image velocimetry measurements, for the first time performed simul-
taneously in gaseous and liquid streams. The experiments have been
designed so as to work at a relatively high plate-to-air vorticity thick-
ness ratio, e/δg, i.e. in the so called injector-influenced regime.

The analysis of a selected base case configuration (Reg = 493,
Wel = 0.84) reveals that the mean two-phase flow is affected by
the presence of a recirculation wake region behind the splitter plate
located at the injection section (x̃ = 0), whose extension x̃w depends
on the interplay between liquid Weber and gas Reynolds numbers.
A very good agreement between the experimental data ū(x̃, ỹ) and
theoretical velocity profiles provided in literature is obtained, both in
the pure mixing layer region (x̃ > x̃w) and inside (x̃ < x̃w) the wake
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region, where a negative value of the velocity defect (i.e. difference
between the minimum and free-stream liquid velocity, ūmin- Ul) is
found.

A parametric analysis of the flow behaviour has been then per-
formed by varying separately the governing parametersWel and Reg,
and thus the gas-to-liquid dynamic pressure ratio M . By fixing
Reg = 493, the wake region vanishes as Wel increases up to 2.97,
and the air-water mixing layer becomes parallel, namely spatially in-
variant along the streamwise direction x̃. Analogously, the wake pro-
gressively shortens as Reg increases at fixed Wel, and for the highest
value of Reynolds number considered (Reg = 768) it vanishes in a
wide range of M values (0 < M < 12). Therefore, it is found that
only at relatively high values of the gas Reynolds number the flow
behaves as a pure mixing layer in a wide range of liquid injection
velocities.

The unsteady flow dynamics is initially investigated through the
frequency spectra of velocity fluctuations, evaluated at different loca-
tions within the air phase. In agreement with spatio-temporal local
linear stability predictions of literature, the spectral analysis reveals
that the flow amplifies random noise (e.g. generated by free stream
turbulence) at low Reg and M values, while for high Reg a clear
peak frequency fδg/Ug = 2.8 · 10−4 arises as M progressively in-
creases beyond the threshold value M = 4.25. In this case, the flow
exhibits a global mode behaviour, namely the temporal velocity fluc-
tuations are synchronized with the peak frequency over a large extent
in the spatial domain. The proper orthogonal decomposition of ve-
locity fluctuations finally gives insights onto the dominant structures
of the flow, and reveals the relationship between global mode oscilla-
tions measured within the gaseous phase and the gas-liquid interfacial
spatio-temporal dynamics.
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5.2 Recommendations for future work

This work has successfully given insights on the physical mecha-
nisms underlying the unsteady dynamics of two typical gas-liquid in-
terfacial flow configurations, namely gravitational liquid curtain flows
and two-phase mixing layers.

A combined theoretical-numerical-experimental investigation has
shed light on the curtain two dimensional flow stability properties
in supercritical (We > 1), transcritical (We = O(1)) and subcrit-
ical (We < 1) regimes. The numerical simulation and data-driven
modal decomposition methodologies used and developed herein apply
straightforward to three-dimensional scenarios. Future work should
thus aim at providing comparisons and establishing the connections
between present two-dimensional results and three-dimensional cur-
tain configurations of real occurrence, focusing in particular on the
subcritical sheet dynamics and the related breakup mechanisms. Pre-
liminary work in this direction is reported in Section 4.1.2 and in the
Master Thesis of M. R. Acquaviva “Hole-induced dynamics of a grav-
itational liquid curtain: a numerical approach" (Unina, 2022), and
it has been also presented at the European Congress on Computa-
tional Methods in Applied Science and Engineering 2022 (Della Pia
et al. [127] and Colanera et al. [128]).

On the experimental side, the major contribution of this work is
certainly represented by the air-water mixing layer velocity field char-
acterization through time-resolved particle image velocimetry. The
measurements here provided may represent the starting point to per-
form a data-driven global stability analysis of the flow by application
of modal decomposition techniques (SPOD/DMD) to the experimen-
tal data.



Appendix A
Insights into liquid curtains
numerical treatment

A.1 Boundary conditions in subcritical
regime

Dividing Eq. (2.17) (Section 2.1.3) by U and enforcing the tem-
poral modes position (Section 3.2) leads to the following Sturm-
Liouville-like eigenvalue integro-differential equation:

d
dx

[(
U − 1

We

)
dˆ̀

dx

]
+2λ

dˆ̀

dx
+λ2

[
1

U
−R

∫ 1

0

(·) ln |x− ξ| dξ
]

ˆ̀= 0.

(A.1)
The equation is singular since the second order term coefficient van-
ishes at the location where the flow, accelerating due to gravity,
reaches a critical velocity equal to 1/We. The procedure developed to
remove this singularity, inspired by Finnicum et al. [19] and Girfoglio
et al. [13], is hereafter described.

Integrating Eq. (A.1) from the inlet location (x = 0) to the generic
location x and resolving for dˆ̀/dx (by taking into account the kine-
matic boundary condition, Eq. (2.13) in Section 2.1.3), yield an ex-
pression for the local slope of the sheet centreline, which depends on
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the slope value at the inlet location(
U − 1

We

)
dˆ̀

dx
= − λˆ̀− λ

∫ x

0

( v
U
−RFdξ +RG

)
dξ+

+

(
U − 1

We

)
dˆ̀

dx

∣∣∣∣
0

,

(A.2)

where F (x) =
∫ 1

0
v̂ ln |x− ξ| dξ and G(x) =

∫ 1

0
Udˆ̀/dx ln |x− ξ| dξ,

respectively.

Note that in a supercritical regime the coefficient U − 1

We
at

left hand side does not vanish in any location. The scenario entirely
changes in subcritical regime since at the critical station, where the
local Weber number Wel = UWe is unity, this coefficient vanishes.
Since for inlet Weber numbers weakly less than unity the sheet can
survive without rupture, one can hypothesize that the sheet assumes
an initial slope which is able to eliminate the singularity (Finnicum et
al. [19]). As made for the nappe problem by Girfoglio et al. [13], one
can evaluate the initial slope dˆ̀/dx|0 which nullifies the right hand
side of Eq. (A.2) and substitute it into the equation itself, so as to
obtain an undetermined equation:

dˆ̀

dx
=
λ
(

ˆ̀(xs)− ˆ̀(x)
)
− λ

∫ x
xs
v/Udξ +Rλ

∫ x
xs
Fdξ −Rλ

∫ x
xs
Gdξ

U − 1

We

,

(A.3)
where xs is the critical station introduced in Section 2.1.3 (Eq. (2.25)).
Applying de L’Hôspital’s rule allows one to calculate the singular
limit as

dˆ̀

dx

∣∣∣∣
xs

=
−λv̂(xs)/U + λR[F (xs)−G(xs)]

λ+We/Fr
. (A.4)

Therefore, for subcritical inlet, the boundary conditions to be en-
forced in solving the eigenvalue problem (3.8) (see Section 3.2) are
expressed by Eq. (A.4) together with the condition ˆ̀(0) = 0.
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A.2 Viscous modification of the eigenval-
ues analysis

The matrix operators M and A introduced in Section 3.2 modify
for viscous conditions (Re 6=∞) as follows:

M ≡

 I −RU ·I N T RU ·I N T · U ·D

O I

 ,

A ≡

 −U ·D +
ε

2Re
D2 U

We
D2

I −U ·D

 .

All symbols are analogous to those of Eq. (3.8) in Section 3.2, ex-
cept for the viscous modification (depending on the Reynolds number
Re) of A11 (see Eq. (2.27) in Section 2.1.3). The eigenvalue integro-
differential equation (A.1) accordingly modifies as

d
dx

[(
U − 1

We

)
dˆ̀

dx

]
+

(
2λ− ε

2URe

d2U

dx2

)
dˆ̀

dx
=

−λ2

[
1

U
−R ·I N T

]
ˆ̀+

ελ

2URe

d2 ˆ̀

dx2
+

ε

2Re

d3 ˆ̀

dx3
+

+
ε

URe

dU

dx

d2 ˆ̀

dx2
. (A.5)

It is evident that the presence of the viscous term removes the sin-
gularity exhibited by the flow in inviscid conditions; in fact, at the
critical station xs, namely where U = 1/We, the second order term
of Eq. (A.5) does not vanish. From the other hand, one can still
manipulate the equation using the same approach adopted in Ap-
pendix A.1, thus determining the second boundary condition to be
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applied in subcritical viscous regime:

dˆ̀

dx

∣∣∣∣
xs

=
−λWev̂(xs) + λ[RF (xs)−RG(xs) + SI(xs)]

λ+We/Fr
+

+
S[H(xs) + L(xs) +M(xs)]

λ+We/Fr
, (A.6)

where the following parameters have been defined:

S =
ε

2Re
, F (x) = I N T · v̂, G(x) = I N T ·

(
U
dˆ̀

dx

)
,

H(x) =
1

U

d2U

dx2

dˆ̀

dx
, I(x) =

1

U

d2 ˆ̀

dx2
, L(x) =

d3 ˆ̀

dx3
, M(x) =

2

U

dU

dx

d2 ˆ̀

dx2
.



Appendix B
Details of the mixing layer
experimental apparatus

B.1 Experiment core

A three dimensional sketch (realized in CATIA V5) of the air-
water wind tunnel representing the core part of the mixing layer
experimental apparatus is reported in Fig. B.1, together with the
corresponding block diagram representation. The main components
of the (hereafter called) experiment core are:

• 2 ducts; 1 splitter plate; 2 nozzles,

and are respectively described in Tables B.1, B.2 and B.3. Honey-
combs are placed in the liquid tunnel, and a combination of honey-
combs and anti-turbulence screens is employed in the gas tunnel (see
Section 3.5 for details about the flow conditioners design). The com-
ponents dimensions are expressed as a function of four parameters:

• l = 500 mm; h = w = 100 mm; e = 2 mm.

Both liquid and gas channels have a 100×100 mm2 cross-section, and
the contraction ratio of the nozzles is 5:1. Fig. B.2 shows the main
views of the experiment core; the occupied space is approximatively
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Figure B.1. Block diagram representation (top) and three dimensional
sketch (bottom) of the experiment core components. The splitter plate
separates the gas and liquid ducts.
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3D view

side view (xy)

top view (xz)

side view (yz)

Figure B.2. Main views of the experiment core components.
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Figure B.3. Picture of the experiment core realized in Plexiglas. The
test section is also shown (on the right).

Table B.1. Gas and liquid ducts dimensions. Each duct has a rectan-
gular cross section (in yz plane); the area occupied by each phase (gas
or liquid) is Ayz = h · w.

Name Variable Expression Value (mm)
Length (x axis) LD l 500

Height (y axis) HD h 100

Width (z axis) WD w 100

equal to x× y× z = 700× 202× 100 mm3. All the components have
been realized in Plexiglas; a picture is reported in Fig. B.3.

B.2 Air circuit

A three-dimensional sketch of the main air circuit components is
shown in Fig. B.4, together with the corresponding block diagram
representation. The core assembly is also reported. The components
added to the experiment core are:

• 1 blower; 1 connection duct; 1 connection flange.
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Table B.2. Splitter plate dimensions. It has a e×w rectangular cross
section (in yz plane). Parameters values: l = 500 mm; h = w = 100
mm; e = 2 mm.

Name Variable Expression Value (mm)
Length (x axis) LE l + 2/5 · l 700

Height (y axis) HE e 2

Width (z axis) WE w 100

Table B.3. Gas and liquid nozzles dimensions. Each nozzle has a
contoured cross section (in yz plane) with contraction ratio H i/Hf = 5.
Parameters values: l = 500 mm; h = w = 100 mm; e = 2 mm.

Name Variable Expression Value (mm)
Length (x axis) LN 2/5 · l 200

Max height (y axis) H i
N h 100

Min height (y axis) Hf
N Hf/H i · h 20

Width (z axis) WN w 100
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Figure B.4. Block diagram representation (top) and three dimensional
sketch (bottom) of the gas circuit (plus the core) components. The air
flow seeding and the pressure taps are not represented.
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Figure B.5. Picture of the connection component between the blower
(on the right) and the air duct (on the left).

The blower accelerates the gas flow from quiescent conditions (Ug =
0) up to a maximum velocity Ug,max: the required power is calculated
in Section B.2.1. The connection between the blower and the duct
has been schematized as a pipe with diameter D1 = 315 mm, equal
to the blower exit section, and length L1 = 500 mm. Finally, a flange
connects the pipe to the gas duct. Note that a more sophisticated
blower-duct connection with variable cross-sectional area has been
designed and employed in the realized apparatus (see Fig. B.5).

B.2.1 Air blower power estimation

The power required to accelerate the gas flow up to Ug,max =
30 m/s (higher than the maximum velocity designed for the PIV
measurements, see Section 3.5.1) can be estimated starting from the
energy conservation equation applied between section a and b:

pa
ρg

+
v2
a

2g
+ za =

pb
ρg

+
v2
b

2g
+ zb + hf +

∑
hi − he, (B.1)
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Table B.4. Minor losses coefficients for the air circuit: data from
Munson et al. [129] and White [130]. In particular, the estimationK = 4
is taken from Chapter 8 of [129].

Loss coefficient K
Sharp entrance (gas duct entrance) 0

Honeycomb 4

Anti-turbulence screens 4

Nozzle 0

Table B.5. Gas circuit head losses varying the working velocity Ug.
The required power Pe is calculated assuming a precautionary value of
η = 0.75 for the blower efficiency.

Head losses (m) Ug = 10 m/s Ug = 30 m/s
hp 0 0

hv 5.1 (75.11%) 46 (74.92%)

hz 0 0

hf 0.06 (0.89%) 0.4 (0.65%)∑
hi 1.63 (24.0%) 15 (24.43%)

he(total) 6.79 (100%) 61.40 (100%)

Head losses (Pa) 78.36 704

Blower power (hp) 0.003 0.08
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where section a is the blower inlet and section b is the gas nozzle
outlet. The total head loss he can thus be determined from Eq. (B.1),

he = hp + hv + hz + hf +
∑

hi = 61.40 m, (B.2)

where the different terms have been evaluated as:

• hp =
pb − pa
ρg

= 0;

• hv =
v2
b − v2

a

2g
= 46 m;

• hz = zb − za = 0 m;

• hf = hf1 +hf2 =
f1L1

D1

· v
2
1

2g
+
f2L2

D2

· v
2
2

2g
= 0.20 m + 0.20 m= 0.40

m;

•
∑
hi = K1

v2
1

2g
+K2

v2
2

2g
+K3

v2
3

2g
= 0.0 · v

2
1

2g
+ (4 + 4) · v

2
2

2g
= 15 m.

The kinetic head (hv) is determined assuming the gas at rest out-
side the blower (va = 0) and evaluating the velocity at the nozzle exit
section as vb = Q/Ab, with the flowrate Q = vb ·Ab = 0.06 m3/s esti-
mated in section b, where both the required velocity vb = 30 m/s and
the cross-section area Ab = 2 · 10−3 m2 are known. With the flowrate
Q assigned, the fluid velocity at the different stations is evaluated as
vi = Q/Ai. The term hp is assumed equal to zero, because sections
a and b are both considered at atmospheric pressure (pa = pb). The
term hz is also assumed equal to 0 m, because the blower exit section
is supposed to be horizontally aligned with the duct inlet section.
The friction losses in the pipe, hf1 , and in the gas duct, hf2 , are both
estimated as hf = fL/D · v2/(2g), where D2 = 0.1 m is the equiva-
lent (hydraulic) diameter of the duct rectangular cross-section, and
L2 = LD = 0.5 m is its length (see Table B.1). Note that the Darcy
friction factor fi = f(ReDi

, ε/Di) is evaluated with the well-known
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Colebrook formula, assuming a roughness coefficient ε = 0.0015 mm:
f1 = 0.022 and f2 = 0.022, respectively. Finally, the minor losses in
the gas circuit are estimated as hi = Ki ·v2

i /(2g), with the coefficients
Ki taken from [129], [130] and reported in Table B.4. The friction
losses in the nozzle have been neglected (Chapter 8 of Munson et
al. [129]).

The required power Pe of the blower is thus calculated as

Pe = ρgQhe/η ≈ 56 W (0.08 hp), (B.3)

where ρ = 1.177 Kg/m3, g = 9.81 m/s2, and a precautionary value
equal to η = 0.75 has been assumed for the blower efficiency. The
head losses estimation at Ug = Ug,max is summarized in Table B.5,
including also a lower working velocity case (Ug = 10 m/s). Based
on this performance estimation, a ruck Ventilatoren RS315LEC has
been chosen as the air blower of the experimental apparatus.

B.3 Liquid circuit

A sketch of the experimental apparatus including the liquid circuit
is reported in Fig. B.6. The liquid circuit components added to the
experiment core are:

• 2 tanks; 4 pipes; 1 connection flange; 1 test section; 1 liquid
collector; 1 pump; 1 regulating valve; 1 flowmeter.

An overflowing tank is positioned 0.5 m above the liquid channel and
is schematized as a 500 × 500 × 500 mm3 cube. A 50 mm diameter
pipe allows the liquid to flow from the tank to the channel entrance,
where it is constrained through a properly designed flange to the
duct. A regulating valve is positioned upstream of the liquid channel
entrance, allowing to regulate the (constant) flowrate during each
experiment. After the channel, the liquid enters the test section,
which is schematized as a 500 × 42 × 100 mm3 parallelepiped open
on the top, left and right sides (yellow component in Fig. B.6). A
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Figure B.6. Block diagram representation (top) and three dimensional
sketch (bottom) of the final version of the experimental apparatus. The
flowmeter, the pressure taps, the regulating valve and the flows seeding
are not represented.
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collector is positioned below the final part of the test section: it
discharges the liquid into a second tank positioned 400 mm below
the test section. A pump thus allows the liquid to flow back from
the second to the first (overflowing) tank through two different pipes
38.1 mm (1 + 1/2 in.) in diameter.

B.3.1 Overflowing tank design

The driving force in the liquid circuit is gravity acting on the
fluid. The gravitational energy ρg(zb − za) required to obtain an
injection velocity equal to Ul,max = 1 m/s (higher than the maximum
velocity designed for the PIV measurements, see Section 3.5.1) can
be estimated starting from Eq. (B.1) applied between section a and
b,

pa
ρg

+
v2
a

2g
+ za =

pb
ρg

+
v2
b

2g
+ zb + hf +

∑
hi.

In this case, section a is the liquid free surface in the tank, and section
b is the nozzle outlet connected to the liquid channel. The unknown
quantity hz = zb − za can thus be determined from Eq. (B.1),

hz = hp + hv + hf +
∑

hi = 695 mm. (B.4)

The different terms have been evaluated as

• hp =
pb − pa
ρg

= 0;

• hv =
v2
b − v2

a

2g
= 51 mm;

• hf = hf1 + hf2 =
f1L1

D1

· v
2
1

2g
+
f2L2

D2

· v
2
2

2g
= 44 mm + 0 mm= 44

mm;
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•
∑
hi = K1

v2
1

2g
+K2

v2
2

2g
+K3

v2
3

2g
= (0.5 + 0.5 + 10 + 0.05) · v

2
1

2g
+

(4 + 4) · v
2
2

2g
= 600 mm.

The kinetic head, hv, is determined assuming a constant liquid
level in the tank during the entire experiment (va = pa = 0) and
evaluating the velocity at the nozzle exit section as vb = Q/Ab, with
the flowrate Q = vb · Ab = 0.002 m3/s estimated in section b, where
both the required velocity vb = 1 m/s and the cross-section area
Ab = 2 · 10−3 m2 are known. With the flowrate Q assigned, it is
easy to determine the velocity in the different sections of the gas
circuit as vi = Q/Ai. The term hp is zero because both sections
a and b are assumed at atmospheric pressure. The friction losses
in the pipe, hf1 , and in the liquid duct, hf2 , are both estimated as
hf = fL/D ·v2/(2g). In particular, D1 = 0.05 m, L1 = 2 m, D2 = 0.1
m is the equivalent (hydraulic) diameter of the duct rectangular cross-
section, and L2 = LD = 0.5 m is its length (see Table B.1). Note
that the Darcy friction factor fi = f(ReDi

, ε/Di) is evaluated with
the well-known Colebrook formula, assuming a roughness coefficient
ε = 0.0015 mm: f1 = 0.02 and f2 = 0.025, respectively. The minor
losses between the overflowing tank and the nozzle are estimated as
hi = Ki · v2

i /(2g), with the coefficients Ki taken from [129], [130],
[131] and reported in Table B.6. Note that the friction losses in the
nozzle have been neglected (Chapter 8 of Munson et al. [129]).

Therefore, assuming ρ = 997 Kg/m3, g = 9.81 m/s2, and the
overflowing tank bottom located Z = 500 mm above the channel, a
liquid level equal to hz−Z = 195 mm is obtained. The corresponding
pressure head has allowed to realize the PIV measurements in the
designed Ul operative range (see Section 3.5.1).

B.3.2 Liquid pump power estimation

The pump allows the liquid to flow back from the waste to the
overflowing tank, thus creating a continuous system which avoids the
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Table B.6. Minor losses coefficients relative to the first part of the liq-
uid circuit (from the overflowing tank to the nozzle): data from Munson
et al. [129], White [130]. * The ball valve head loss coefficient K = 0.05
is taken from Chapter 8 of [129]. ** The head loss coefficient K = 10 is
purely indicative; it can vary in a range [1;100] depending on the type of
flowmeter and the operating conditions [131]. *** The honeycomb head
loss coefficient K = 4 is taken from Chapter 8 of Munson et al. [129].

Loss K
Sharp exit (tank exit section) 0.5

Regulating valve 0.05∗

Flowmeter 10∗∗

Sharp entrance (liquid duct entrance) 0.5
Honeycombs 8∗∗∗

Nozzle 0.2

waste of PIV tracers. A preliminary estimation of the required pump
power at Ul,max = 1 m/s can be realized by employing the following
equation:

pa
ρg

+
v2
a

2g
+ za =

pb
ρg

+
v2
b

2g
+ zb + hf +

∑
hi − hpump.

In this case, sections a and b are the liquid free surfaces in the waste
and overflowing tanks, respectively. The total head loss hpump can
thus be determined as

hpump = hp + hv + hz + hf +
∑

hi = 2084 mm, (B.5)

where the different terms have been evaluated as

• hp =
pb − pa
ρg

= 0;

• hv =
v2
b − v2

a

2g
= 0;
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• hz = zb − za = 1500 mm;

• hf = hf1 + hf2 =
f1L1

D1

· v
2
1

2g
+
f2L2

D2

· v
2
2

2g
= 278 mm;

•
∑
hi = K1

v2
1

2g
+K2

v2
2

2g
= 0.5 · v

2
2

2g
+ (0.5 + 0.95) · v

2
3

2g
= 306 mm.

The head losses hv and hp are both zero, because the liquid
is assumed at rest in both the tanks. With a flowrate equal to
Q = 0.06 m3/s known, it is easy to determine the velocity in the
two pipes (see Fig. B.6): v1 = v2 = 1.75 m/s (D1 = D2 = 38.1
mm). The friction losses in the pipes, hf1 and hf2 , are both esti-
mated as hf = fL/D · v2/(2g). Note that the Darcy friction factor
fi = f(ReDi

, ε/Di) is evaluated with the well-known Colebrook for-
mula, assuming a roughness coefficient ε = 0.0015 mm for both the
pipes: f1 = f2 = 0.02. The minor losses reduce to the sharp exit/en-
trance of the two tanks (K = 0.5), but a further coefficient equal to
K = 0.95 has been considered, to account for head losses due to any
bending of the longer (flexible) pipe.

The required power Ppump that the pump must supply is thus
calculated as (ρ = 997 Kg/m3, g = 9.81 m/s2)

Ppump = ρgQhpump/η ≈ 55 W (0.07 hp), (B.6)

where a value of η = 0.75 has been assumed for the pump efficiency.
Based on this performance estimation, a T.I.P. TVX 12000 Dom-
pelpomp has been chosen as the water pump of the experimental
apparatus.

B.4 Final assembly

A picture of the final assembly of the experimental apparatus
components is shown in Fig. B.7. Note that for practical convenience
the water pump has been positioned inside the waste tank (on the
bottom in Fig. B.7).
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Figure B.7. Picture of the final assembly of the experimental appara-
tus components.
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