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Abstract

Quantum Entanglement is one of the key manifestations of quantum mechan-
ics that separate the quantum realm from the classical one. Characterization of
entanglement as a physical resource for quantum technology became of uppermost
importance. While the entanglement of bipartite systems is already well under-
stood, the ultimate goal to cope with the properties of entanglement of multipartite
systems is still far from being realized. This dissertation covers characterization of
multipartite entanglement using algebraic-geometric tools. Firstly, we establish an
algorithm to classify multipartite entanglement by k-secant varieties of the Segre
variety and ℓ-multilinear ranks that are invariant under Stochastic Local Operations
with Classical Communication (SLOCC). We present a fine-structure classification
of multiqubit and tripartite entanglement based on this algorithm. Another funda-
mental problem in quantum information theory is entanglement transformation that
is quite challenging regarding to multipartite systems. It is captivating that the pro-
posed entanglement classification by algebraic geometry can be considered as a
reference to study SLOCC and asymptotic SLOCC interconversions among differ-
ent resources based on tensor rank and border rank, respectively. In this regard, we
also introduce a new class of tensors that we call persistent tensors and construct
a lower bound for their tensor rank. We further cover SLOCC convertibility of
multipartite systems considering several families of persistent tensors.
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Chapter1
Introduction

“When I consider what people
generally want in calculating, I
found that it always is a number.”

Mohammad ibn Musa Kharazmi

1.1 Overview

Quantum entanglement is one of the most strinking features of quantum mechan-
ics. Actually it is synonimous of non-classical correlations between systems that
can be also spatially separated. This peculiar phenomenon first described by Albert
Einstein with his two postdoctoral research associates Boris Podolsky and Nathan
Rosen in their seminal paper entitled “Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?” in 1935 [1]. In this paper, they for-
mulated an apparent paradox of quantum theory which is known as EPR paradox.
Shortly after, Erwin Schrödinger coined the term “entanglement”1 in his seminal
paper [2] to describe this peculiar correlation between quantum systems.

Although quantum entanglement was discovered many decades ago it has re-
cently attracted much attention. Not only does entanglement play a central role
in quantum information theory, but also it is the key ingredient in many quan-
tum information processing and communication. In fact, quantum entanglement
is a physical resource, like energy. In more recent years, it has gained interest
as a fundamental resource in many quantum information protocols such as quan-

1Verschränkung in German which means “folding the arms”.

1



1.1. Overview

tum cryptography and quantum key distribution [3–5], teleportation of quantum
states [6, 7], superdense coding [8], and quantum error-correction [9, 10]. More-
over, entanglement is considered as a crucial component for speed-up in quantum
computation [11–13]. In Ref. [14], the authors have shown that multipartite entan-
glement violates classical principles even stronger than bipartite entanglement as
proposed by John Bell in Ref. [15]. Moreover, it has been established that most
of the multipartite quantum states are even too entangled to be useful for certain
quantum information processing tasks [16]. Furthermore, theoretical and experi-
mental results based on entangled states as resource states have contributed to new
technology involving quantum information2.

Taking all these reasons into account, the characterization, quantification, and
classification of (multipartite) entanglement are crucial milestones in quantum in-
formation theory. For bipartite systems this was done by developing entangle-
ment monotones [18]. However extension of these to multipartite systems soon
appeared quite challenging. That is why a classification of entangled states in
multipartite systems was pursued on the basis of one out of the many properties
satisfied by entanglement monotones, namely the invariance under local opera-
tion and classical communication. Actually, this property is reinforced by requir-
ing stochasticity of local operation and classical communication (SLOCC). Such
an invariance property is relevant to single out states that perform (probabilisti-
cally) equally well quantum information tasks. On the grounds of group theory,
SLOCC equivalence classes are orbits under the action of special linear group
SL(d1,C) × · · · × SL(dn,C) on the set of n-partite quantum states in the ten-
sor product Hilbert space H = ⊗n

i=1C
di . For unnormalised n-partite states, the

number of parameters needed to describe inequivalent states is thus given by the
dimension of the space of orbits, i.e., the quotient space

⊗n
i=1C

di

SL(d1,C)× · · · × SL(dn,C)
.

Therefore the set of equivalence classes under SLOCC depends at least on
2(
∏n
i=1 di − 1 −

∑n
i=1(d

2
i − 1)) parameters. Finding such equivalence classes,

that will provide an entanglement classification based on a finite number of en-
tanglement families, was a long-standing open problem in quantum information
theory [18].

While SLOCC classification works well for small systems like two- and three-
qubit systems which feature two and six orbits, respectively, there are infinitely

2The Nobel Prize in Physics 2022 was awarded to Alain Aspect, John F. Clauser, and Anton
Zeilinger “for experiments with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science” [17].
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1.1. Overview

many (actually uncountable) SLOCC classes for four (or more) qubits [19]. This
will be even worse for higher dimensional systems. Along finding methods that
group the infinite number of SLOCC classes in a finite number of families, there
have been several attempts to classify four-qubit entanglement, the case which
attracted most attention [20–26], and also for n-qubit symmetric states [27–29].
Although the general case of n-qubit entanglement has been addressed, its classifi-
cation suffers from family overlapping [30,31], or still shows an infinite number of
classes [32]. Thus, it necessitates new methods to establish a finite classification.

Formally, (pure) quantum states are rays in a Hilbert space. As a consequence,
the space of states is more appropriately described by projective Hilbert space
P(Hn). Thus, a natural way to study entanglement of pure states is with alge-
braic geometry, which is the “language” of projective spaces. This avenue was
put forward in Refs. [33–36], where the authors investigated the geometry of en-
tanglement and considered small systems (up to C3 ⊗ C2 ⊗ C2) to lighten it.
Following this, it has been recently realized the existence, for four qubit systems,
of families, each including an infinite number of SLOCC classes with common
properties [37–40]. The framework of algebraic geometry also helped to visualize
entanglement families with polytopes [41,42], which would be of practical use if a
finite classification existed.

It is worth noting that in the algebraic-geometric approach, the Segre,
Veronese, and Plücker embedding maps together with their secant varieties are
the key tools (to be used with distinguishable particles, bosons and fermions, re-
spectively) [37, 38, 43].

In this dissertation, by referring to Ref. [44], we introduce an entanglement
classification of “generic” n-qubit pure states under SLOCC that is based on a
finite number of families and subfamilies (i.e., a fine-structure classification). We
do this by employing tools of algebraic geometry that are SLOCC invariants. In
particular, the families and subfamilies are identified by k-secants and ℓ-multilinear
ranks (hereafter ℓ-multiranks), respectively. A k-secant of a variety X ⊂ P(Hn) is
the projective span of k points of X. Geometrically, the k-secant variety is the zero
locus of a set of polynomial equations. Physically, as the k-secant of a variety joins
its k points, it can liaise to the concept of quantum superposition. On the other
hand, ℓ-multiranks are a collection of integers which are just ranks of different
matricizations of a given n-qubit state as an order-n tensor in ⊗nC2. Actually,
the ℓ-multiranks tell us about the separability of such a state; when all of them are
equal to one we are dealing with a fully separable state. Furthermore, each k-secant
is a counterpart of the generalized Schmidt rank [45,46] which is an entanglement
measure. These connections made our classification also operationally meaningful.

Going beyond qubit, more information can be encoded in qudits and more
robustness against noise can be achieved [47]. Also, in quantum cryptography,

3



1.1. Overview

entangled qudits guarantee more security against coherent attacks than using en-
tangled qubits [48]. These facts motivate the classification of entangled states for
higher than two-dimensional systems. Ref [49], has investigated the SLOCC clas-
sification of two- and three-qutrit entanglement based on the inductive method.
However, this method suffers from a flaw already at the qubits level [31], which
propagates to higher dimensional systems [50]. Therefore, there is an overlap be-
tween some families of three-qutrit entanglement, and thus this approach cannot
be used to exactly identify to which family a given three-qutrit state belongs to.
In Ref. [51], the invariants of three-qutrit entanglement has been studied, while
Ref. [52] used singularity theory to study the entanglement of pure three-qutrit
states. More specifically, Refs. [53,54] provided an implicit description of all three
fundamental invariants of SL(3,C)×3, and classified the normal forms in five fam-
ilies, which can also be derived as a special case of entanglement classification of
three-fermions with nine single-particle states [55].

Following Ref. [56] we then pursue the extendibility of the algebraic-geometric
approach of Ref. [44] to multiqudit states using as a benchmark tripartiteCd⊗Cd⊗
Cd systems and achieving in particular a fine-structure classification of three-qutrit
entanglement.

Regarding entanglement classification, there is (uncountably) infinite number
of inequivalent entangled states. Therefore, a natural question is whether two given
(entangled) states can be probabilistically converted to each other via SLOCC.
Since quantum mechanics is inherently probabilistic, the more natural question is
with what probability p one can obtained a target quantum state |φ⟩ from a source
quantum state |ψ⟩ via LOCC. For p = 1, the transformation protocol is called
deterministic (LOCC), and for 0 < p < 1, the protocol is called probabilistic
(SLOCC).

The interconversion between different resources by the SLOCC and asymptotic
SLOCC is another fundamental problem in quantum information theory that we
study in this dissertation by referring to Ref. [57]. This problem encodes some of
the most challenging open problems in mathematics and computer science.

Using the Schmidt rank, one can characterize the SLOCC convertibility of bi-
partite systems. In fact, a bipartite quantum state is SLOCC convertible to another
bipartite quantum state iff the Schmidt rank of the initial state is not smaller than
that of the latter (notation: |ψ⟩ SLOCC−−−−→ |φ⟩ ⇔ rkS(ψ) ≥ rkS(φ)). A generaliza-
tion of Schmidt rank in multipartite systems is the tensor rank. Using the Dirac
bra-ket notation, the tensor rank can be considered as the length of the shortest
bra-ket representation of a quantum state. Another tool relevant to the SLOCC en-
tanglement transformation is the tensor border rank (border rank, for short). The
border rank of a tensor T is defined as the smallest r such that T is a limit of tensors

4



1.1. Overview

of rank r. Both the tensor rank and the border rank have been extensively studied in
algebraic complexity theory [58] and algebraic geometry [59]. Recently, connec-
tions have been discovered between algebraic complexity theory, algebraic geome-
try, asymptotic SLOCC transformations, and SLOCC equivalence. [44–46,60–64].
An important property of the tensor rank is that it is an SLOCC monotone, that is,
if a source quantum state |ψ⟩ can be transformed into a target quantum state |φ⟩
via SLOCC, then the tensor rank of the source is not smaller than that of the target
(notation: |ψ⟩ SLOCC−−−−→ |φ⟩ ⇒ rk(ψ) ≥ rk(φ)). Although in general the inverse
is not necessarily true, as in Ref. [45] it has been shown that a GHZ-equivalent
state (a state in the GHZ orbit) |ψGHZ⟩ can be transformed into another state |φ⟩
iff the tensor rank of the GHZ-equivalent state is not smaller than that of the latter,
i.e., |ψGHZ⟩

SLOCC−−−−→ |φ⟩ ⇔ rk(ψGHZ) ≥ rk(φ). On the other hand, it is well
known that a GHZ state cannot be transformed into a W state by SLOCC [19],
as they belong to distinct entanglement classes of multiqubit states, but one can
asymptotically produce a W-equivalent state from a GHZ-equivalent state with
rate arbitrarily close to one (see Refs. [44, 56, 63] for theory and Ref. [65] for an
experimental way). Actually, the reason is that the tensor rank of the multiqubit
GHZ state is less than the tensor rank of the multiqubit W state, but the border
rank of both of them is the same (geometrically, the W state is in the orbit closure
of the GHZ state; see Ref. [44]). This phenomenon is known as degeneration in
algebraic complexity theory [58] and algebraic geometry [59] and is related to the
asymptotic SLOCC transformation in entanglement theory [44,56,63,64]. Indeed,
the border rank also has the same property as the tensor rank that is SLOCC mono-
tone, i.e., a target quantum state |φ⟩ can be approximated from a source quantum
state |ψ⟩ via SLOCC, then the border rank of the source is not smaller than that
of the target (notation: |ψ⟩ SLOCC−−→ |φ⟩ ⇒ brk(ψ) ≥ brk(φ)). Interestingly, if
a target quantum state |φ⟩ can be obtained approximated from a GHZ-equivalent
state |ψGHZ⟩, then the border rank of the GHZ-equivalent state is not smaller than
that of the target, i.e., |ψGHZ⟩

SLOCC−−→ |φ⟩ ⇔ brk(ψGHZ) ≥ brk(φ).
The proposed entanglement classification by algebraic geometry [44, 56] can

be considered as a reference to study SLOCC and asymptotic SLOCC interconver-
sions among different resources based on tensor rank and border rank, respectively.
In this regard, we introduce a new class of tensors that we call persistent tensors
and have constructed a lower bound for their tensor rank. We present three spe-
cific families of minimum-rank persistent tensors that are different generalizations
of multiqubit W state within multiqudit systems. We further cover SLOCC con-
vertibility of multipartite systems considering several families of persistent tensors.
Furthermore, we show that the obtained tensor rank lower bound can be extended
to direct sums with persistent summands and to even more general combinations

5



1.2. Outline

of tensors, which we call block pyramidal tensors [57].

1.2 Outline

In this dissertation, we address two central problems in quantum information the-
ory. The first one is the entanglement classification of pure multipartite states under
SLOCC. And the second problem is the convertibility between different multipar-
tite entangled states by using SLOCC and asymptotic SLOCC.

The main goals and results of the dissertation are presented in the five next
chapters. Hereafter we shortly describe the content of each of them.

Chapter 2: Quantum Entanglement

This chapter contains the mathematical framework quantum mechanics as well as
basic definitions of some concepts in entanglement theory. Although our purpose
is entanglement classification of pure multipartite states, we have also extended the
definitions to mixed states. Here, we have started by the definition of entanglement
in pure and mixed states in biparite systems and have extended it to multipartite
one. Then, we have introduced most famous quantum local operations, namely,
Local Unitay (LU), Local Operation and Classical Communication (LOCC), and
Stochastic LOCC. This followed by the definition of entanglement monotone and
introducing some important entanglement measures. Finally, we have finalized the
chapter by presenting the SLOCC classification of bipartite syatems and pure and
mixed three-qubit states.

In this chapter, we have used some materials from Refs. [18, 66–68].

Chapter 3: Algebraic Geometry

In order to present algebro-geometric tools to solve our problems in quantum in-
formation theory, we have presented some basic definitions in this chapter. We
introduced the most important concepts in affine and projective geometries. Then,
using the definition of morphism between algebraic varieties we have introduced
two important morphisms in algebraic geometry, namely, Veronese and Segre em-
beddings. Finally, we have introduced algebro-geometric tools that are SLOCC
invariants, namely, tensor rank, border rank, ℓ-multirank, and k-secant varieties of
Segre variety.

For the definitions, lemmas, and theorems presented in this chapter we have
used materials from Refs. [59, 69–73].
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1.2. Outline

Chapters 4 & 5: Fine-Structure Classification of Multiqubit & Tripartite En-
tanglement

In these chapters, we focus on the first problem that is multipartite entangle-
ment classification. To this end, we use k-secant varieties and ℓ-multiranks as the
SLOCC invariants and we present the entanglement classification algorithm based
on them. Regarding this algorithm, one is able to group orbits (classes) into finite
number of families and subfamilies. Then, we study in details two- to five-qubit en-
tanglement (in Chapter 4) and three-qutrit entanglement (in Chapter 5) achieving a
fine-structure classification as relevant examples. Several issues of these cases will
be generalized to multiqudit and multipartite systems.

Chapter 6: Persistent Tensors

In this chapter, we introduce a new class of tensors in ⊗n
i=1C

di that we call per-
sistent tensors and construct a lower bound for their tensor rank. We present three
specific families of tensors in this class which the lower bound is tight, and there-
fore, their corresponding n-qudit states can be seen as different generalizations
of the multiqubit W state within multiqudit systems. Then, we provide a chain
of degenerations among the families that can be used to study the entanglement
transformation between them. In addition, we prove that the border rank of these
three families of minimal-rank persistent tensors is equal to d. This will reveal the
fact that different generalizations of multiqubit W state within multiqudit systems
are geometrically in the orbit closure of multiqudit GHZ states. Consequently, we
show that a multiqudit GHZ-equivalent state can can be transformed into each one
of the generalizations of W state via asymptotic SLOCC with rate one. Further-
more, we show that the obtained tensor rank lower bound can be extended to direct
sums with persistent summands and to even more general combinations of tensors,
which we call block pyramidal tensors. Accordingly, we show that the tensor rank
is multiplicative under the Kronecker and the tensor product of minimal-rank per-
sistent tensors with the GHZ tensor, and hence we answer an open question posed
in Ref. [74].

Chapter 7: Summary and Outlook

In this chapter, we summarize results obtained in the dissertation and outlines the
potential applications and open problems for further research.

7



Chapter2
Quantum Entanglement

“I never wish to be easily defined.”

Franz Kafka

In this chapter, the mathematical formulation and the fundamental concepts of
quantum information theory are introduced. We start with the mathematical de-
scription of single quantum systems residing in Hilbert spaces. Then, it will be
shifted to the mathematical description of composite quantum systems where en-
tanglement can be manifested. The main focus of this chapter lies on the descrip-
tion of entangled systems and the mathematical tools needed to characterize and
classify entanglement in bipartite and multipartite quantum systems. In this chap-
ter, we have used some introductory materials and notions from Refs. [18, 66–68].
The last part of this chapter is based on the Ref. [31].

2.1 Hilbert space: space of quantum states

The mathematical formulation of quantum mechanics that permit a rigorous de-
scription of quantum mechanics is due to John von Neumann [75]. In this formal-
ism, the possible states1 that describe a quantum mechanical system are represented
by vectors, called state vectors, residing in a complex separable Hilbert space2.
While any quantum system is identified with a finite or infinite dimensional Hilbert
space, in this dissertation, we will be only concerned with the quantum systems

1By state we mean something that determines the values of observables.
2A Hilbert space is separable iff it admits a countable orthonormal basis.
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2.1. Hilbert space: space of quantum states

having finite dimensional Hilbert space. The Hilbert space representing the possi-
ble states of a d-dimensional quantum state is then H = Cd and dimH = d. In
the following we introduce the notations starting from the definition of the Hilbert
space.

Definition 2.1 (Hilbert space). A Hilbert space, denoted by H, is a complete inner
product space.

In quantum mechanics, we represent elements of the Hilbert space by Dirac
bra-ket notation, firstly introduced by Paul Dirac [76], over the field of complex
numbers C. A ket and a bra are of the form |ψ⟩ and ⟨φ| that denote a vector in the
Hilbert space H and a linear form (also known as a one-form, a covector, or linear
functional) ⟨φ| : H → C, respectively. Actually, the linear form ⟨φ| is a covector
to |φ⟩, and the set of all covectors forms the dual Hilbert space H∨. Hence, the
inner product (or scalar product) is defined as a sesquilinear form:

⟨·|·⟩ : H×H → C , (2.1)

that is antilinear (conjugate-linear) in the first argument and linear in their second,
i.e.,

⟨αφ1 + βφ2|ψ⟩ = α∗⟨φ1|ψ⟩+ β∗⟨φ2|ψ⟩ ,
⟨φ|αψ1 + βψ2⟩ = α⟨φ|ψ1⟩+ β⟨φ|ψ2⟩ , (2.2)

where α, β ∈ C and ∗ denotes the complex conjugation. More generally, the inner
product on any complex Hilbert space is a Hermitian form, that is ⟨φ|ψ⟩ = ⟨ψ|φ⟩∗.
Subsequently, the inner product of a vector state |ψ⟩ and its dual complement
⟨ψ| = (|ψ⟩)†, where † indicates the conjugate transpose (also known as Hermi-
tian transposition), is positive semidefinite, i.e., ⟨ψ|ψ⟩ ≥ 0, and the equality holds
iff the vector state is the zero vector. Concerning this property, a definition of the
norm directly emerges as the square root of the inner product

∥ |ψ⟩ ∥=
√

⟨ψ|ψ⟩ . (2.3)

Finally, completeness is satisfied if every Cauchy sequence of vectors in H has
a limit vector in H. In other words, if {|ψi⟩}∞i=1 is a Cauchy sequence, then there
exists a vector |ψ⟩ ∈ H such that

lim
i→∞

∥ |ψi⟩ − |ψ⟩ ∥= 0 . (2.4)

It is worth noting that the inner product allows to define geometric measures as
the distance between elements of Hilbert space.

For the finite-dimentional Hilbert spaces we have the following proposition.
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2.1. Hilbert space: space of quantum states

Proposition 2.1. Every finite-dimensional complex (or real) Hilbert space is com-
plete with respect to the norm induced by its inner product.

Therefore, a Hilbert space can be defined as a complete metric space (a Banach
space) with respect to the distance function induced by the inner product.

Composite System

In quantum information theory, we frequently deal with quantum systems consist-
ing of several subsystems, called composite systems (or multipartite systems). The
Hilbert space of an n-partite quantum system is the tensor product of the Hilbert
spaces of each individual subsystem, that is

H =
n⊗
i=1

Hi . (2.5)

Definition 2.2 (Tensor product Hilbert space). The tensor product Hilbert space
H1⊗H2 of two Hilbert spaces H1 and H2 is a Hilbert space to which is associated
a bilinear map H1×H2 → H1⊗H2 that maps a pair (|ψ1⟩, |ψ2⟩), where |ψ1⟩ ∈ H1

and |ψ2⟩ ∈ H2, to an element of H1 ⊗ H2 which is denoted by |ψ1⟩ ⊗ |ψ2⟩ ≡
|ψ1 ⊗ ψ2⟩. The inner product of the tensor product Hilbert space is defined by

⟨φ1 ⊗ φ2|ψ1 ⊗ ψ2⟩ := ⟨φ1|ψ1⟩⟨φ2|ψ2⟩ , (2.6)

for all |φ1⟩, |ψ1⟩ ∈ H1 and |φ2⟩, |ψ2⟩ ∈ H2.

Let H1 and H2 be two Hilbert spaces of dimensions d1 and d2, respectively.
The tensor product Hilbert space H1 ⊗H2 is a Hilbert space which has as a basis
the set of all |ei⟩ ⊗ |fj⟩ where {|ei⟩ | i ∈ Zd1} and {|fj⟩ | j ∈ Zd2} are bases of
H1 and H2, respectively. Therefore, the dimension of the tensor product Hilbert
space of an n-partite quantum system, H = ⊗n

i=1Hi, is equal to the product of
dimensions of individual Hilbert spaces, i.e., dimH =

∏n
i=1 dimHi.

2.1.1 Pure quantum states

In classical mechanics, the pure state of the system is represented by a point in
a real vector space that is called phase space. The dimension of phase space is
defined by the number of the degrees of freedom of the system.

The case of quantum mechanics is more subtle. Instead of the real finite dimen-
sional phase space we have a finite dimensional complex separable Hilbert space.
Mathematically, a d-dimensional pure quantum state, which describes an isolated
quantum system, is represented by a norm-one vector belonging to a Hilbert space
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2.1. Hilbert space: space of quantum states

H = Cd. A pure quantum state |ψ⟩ can be expressed as a linear combination of
some orthonormal basis {|ei⟩ | i ∈ Zd} of the Hilbert space Cd:

|ψ⟩ =
d−1∑
i=0

ci|ei⟩ , (2.7)

where due to the normalization, the complex-valued coefficients ci satisfy the fol-
lowing constraint,

∑d−1
i=0 |ci|2 = 1. Thus the set of all pure states corresponds to

the unit sphere in the Hilbert space. We usually use the standard basis (or canonical
basis) in linear algebra, i.e., {|i⟩ | i ∈ Zd}, which is called computational basis in
quantum information and computation.

Pure states are also known as state vectors or wave functions, the latter term
applying particularly when they are represented as functions of position or momen-
tum.

In case of composite systems containing n quantum subsystems, each with a
respective Hilbert space Hj = Cdj , the associated state vector describing a pure
quantum state is an element in the composite Hilbert space, denoted by the tensor
product H1 ⊗ · · · ⊗ Hn, i.e.,

|ψ⟩ =
n∑
j=1

∑
ij∈Zdj

ci1···in |i1⟩ ⊗ · · · ⊗ |in⟩ . (2.8)

It is worth remarking that often for the sake of simplicity, we will omit the tensor
product symbol and merge ket vectors into one, i.e.,

|i1⟩ ⊗ · · · ⊗ |in⟩ ≡ |i1⟩ · · · |in⟩ ≡ |i1 · · · in⟩ . (2.9)

2.1.2 Mixed quantum states

The description of a quantum system by its state vector is possible only if prepara-
tion of the quantum system is fully known. In practice, such perfect information is
mostly not available to specify the state vector of a quantum system but rather we
know that with some probabilities pi the quantum system is in a normalized state
vector |ψi⟩ (see Fig. 2.1). These quantum states that incorporate the incomplete
knowledge about the quantum system are called mixed quantum states.

Mathematically, a mixed quantum state, consisting of several possible pure
states |ψi⟩ ∈ H, each with probability pi of being occupied, is described by a
density matrix of the form:

ϱ =
∑
i

pi|ψi⟩⟨ψi| , (2.10)
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2.1. Hilbert space: space of quantum states

Figure 2.1: Representation of a mixed quantum state as a statistical mixture with
ensemble {pi, |ψi⟩}.

which is an element of B(H) = H⊗H∨ ∼= End(H), the space of endomorphisms
of the Hilbert space H. In other words, the density matrix in Eq. (2.10) is a
square matrix of size equal to the dimension of the Hilbert space H. Since pi’s are
probabilities, they are non-negative real numbers that sum to one, i.e., pi ∈ R+

and
∑

i pi = 1. It follows that the density matrix ϱ is normalized, i.e., tr(ϱ) = 1
where tr denotes the trace. Moreover, since every matrix |ψi⟩⟨ψi| is Hermitian
positive semi-definitive so is the density matrix ϱ, i.e., ϱ† = ϱ and ⟨ϕ|ϱ|ϕ⟩ ≥ 0 for
all |ϕ⟩ ∈ H.

It is worth noting that the decomposition of a density matrix in Eq. (2.10) in a
statistical ensemble of pure states is not unique since the vector states |ψi⟩ need be
neither orthogonal nor linearly independent.

Regarding Eq. (2.10), the density matrix can be seen as a weighted sum of
projectors on all pure states within the statistical ensemble {pi, |ψi⟩}. So it is easy
to see that this general definition of the density matrix also holds for pure states, for
which we will only have one vector state |ψi⟩ with pi = 1, i.e., the density matrix
has rank one and thus ϱ = |ψi⟩⟨ψi| and ϱ2 = ϱ.

Mathematically, pure and mixed state can be distinguished by computing
tr(ϱ2) where ϱ is the density matrix of the given state:

if tr(ϱ2) = 1 ⇔ ϱ is pure,

if tr(ϱ2) < 1 ⇔ ϱ is mixed. (2.11)

The minimum value of tr(ϱ2) is attained when the density matrix is proportional
to the identity matrix corresponding a quantum state called maximally mixed.

In summary, any trace-one Hermitian positive semidefinite matrix is a density
matrix which describes a (pure or mixed) state of a quantum system. Therefore,
the set of all quantum states is a closed convex set with pure states on its boundary.
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2.1. Hilbert space: space of quantum states

Reduced density matrix

As we mentioned before the space state of composite systems is obtained by the
tensor product of its subsystems Hilbert spaces. Suppose now that, given a mul-
tipartite state, we are interested to have information about only one or some parts
of the system. Thus, we need an operation that is somehow contrary to the tensor
product. This operation is called the partial trace. In other word, the information
we are interested can be found by taking the trace over the subspaces of the Hilbert
space that represent subsystems we are not interested in. While the trace is a scalar-
valued function on operators, the partial trace is an operator-valued function. For
example, if we have a bipartite quantum system ϱAB , consisting of the subsystems
A and B, we can obtain a state that has information about subsytem B by taking
the partial trace over subsystem A. It is called reduced density matrix:

ϱB = trA(ϱAB) =

dA−1∑
i=0

⟨i|ϱAB|i⟩ . (2.12)

2.1.3 Observables

In general, an operator Ô is a linear map that takes a quantum state |ψ⟩ and pro-
duces another quantum state Ô|ψ⟩ which, possibly, will not be normalized3. On
the other hand, an observable is a measurable physical quantity. Hence, an observ-
able is a self-adjoint operator (a Hermitian operator in the finite-dimensional case)
since it has real spectrum.

Definition 2.3 (Projective measurement). A projective measurement is described
by an observable M̂ on the Hilbert space of the quantum system being measured.
The observable M̂ has a spectral decomposition

M̂ =
∑
m

mP̂m , (2.13)

where Pm is the projector onto the eigenspace of M̂ corresponding to the eigen-
valuem. The possible outcomes of the measurement correspond to the eigenvalues
of the observable. Upon measuring the state |ψ⟩, the probability of getting result
m is

p(m) = ⟨ψ|P̂m|ψ⟩ . (2.14)

Given that outcomem occurred, the state of the quantum system immediately after
the measurement is

P̂m|ψ⟩√
p(m)

. (2.15)

3In the rest of the thesis, where there is no ambiguity we omit the hat notation of the operator.
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2.1. Hilbert space: space of quantum states

For instance, the square of the absolute value of each coefficient ci in Eq. (2.7),
corresponds to the probability of obtaining an outcome ei, once the system being
measured in the basis {|ei⟩}d−1

i=0 which are the eigenvectors of the measurement
operator. The quantum state after the measurement will be |ψ′⟩ = |ei⟩.

In quantum mechanics, an experimental setup is described by the observable Ô
to be measured, and the state of the system is given by the density matrix ϱ. The
probabilistic expected value of the result (measurement) of an experiment is called
expected value and is defined as follows

⟨Ô⟩ϱ = tr(ϱÔ) . (2.16)

Corollary 2.1. The global phase of a quantum state has no physical consequences,
that is,

|ψ⟩ ∼ eiδ|ψ⟩ = |ψ′⟩ . (2.17)

This is because the global phase δ does not affect the result of any measurement

⟨ψ′|Ô|ψ′⟩ = ⟨ψ|e−iδÔeiδ|ψ⟩ = ⟨ψ|Ô|ψ⟩ . (2.18)

2.1.4 Qubits

In classical information theory, bit, contracted from binary digit, is the most basic
unit of classical information. By its name, a bit is commonly represented as either
0 or 1. It describes a logical state with one of these two possible values. A bit can
be described by a classical system with two independent physical states. These two
states are connected since the classical system can hold a maximum of one bit of
information. In physics, an observable is a physical quantity that can be measured.

Analogously, in quantum information theory, qubit is the fundamental unit of
quantum information. The name of qubit, coined by Benjamin Schumacher [77], is
a portmanteau of quantum bit. A qubit is a two-level quantum-mechanical system
which is the simplest non-trivial quantum system. While a bit is always in precisely
one of two states, i.e., it can be either 0 or 1, the general state of a qubit can be in a
superposition of both states simultaneously, that is a fundamental property of quan-
tum mechanics. Any two-level quantum system can be used to provide a physical
implementation of a qubit. Following are the important physical implementations
of qubit systems:

- The orientation of a spin-half particle (spin up |↑⟩ and spin down |↓⟩).

- The polarization of a photon (horizontal polarization |↔⟩ and vertical polar-
ization |↕⟩).

- A pair of electronic energy levels in an atom, ion, or quantum dot (ground
state |g⟩ and excited state |e⟩).
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2.1. Hilbert space: space of quantum states

Qubit pure states

Definition 2.4 (Qubit). Any two-level quantum state which is an element of two-
dimensional Hilbert space H = C2 is a qubit state. Therefore, a qubit pure state is
represented by

|ψ⟩ = α|0⟩+ β|1⟩ , (2.19)

where α, β ∈ C, |α|2 + |β|2 = 1, and

|0⟩ =
(
1
0

)
, and |1⟩ =

(
0
1

)
, (2.20)

are two orthonormal basis vectors, which form what is known as the computational
basis.

Since |α|2+ |β|2 = 1, and because the state does not care about a global phase
change, we can use the following useful parameterization for the amplitudes of the
qubit sate:

α = cos
θ

2
and β = eiφ sin

θ

2
,

where θ ∈ [0, π] and φ ∈ [0, 2π) that yield4

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ . (2.21)

An n-qubit pure state |ψ⟩ ∈ ⊗nC2 can be represented as follows

|ψ⟩ =
n∑
j=1

∑
ij∈Z2

ci1···in |i1 · · · in⟩ ≡
∑

i∈{0,1}n
ci|i⟩ . (2.22)

We can generalize the concept of qubit to the higher dimensional Hilbert
spaces.

Definition 2.5 (Qudit). Any element of d-dimensional Hilbert space H = Cd is
called a qudit (d-level quantum state) which is represented by

|ψ⟩ = α0|0⟩+ α1|1⟩+ · · ·+ αd−1|d− 1⟩ , (2.23)

where αi ∈ C,
∑d−1

i=0 |αi|2 = 1, and {|i⟩ | i ∈ Zd} is the computational basis.
4In this parameterization, the global phase is omitted (see Corollary 2.1).
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Qubit mixed states

In order to describe a qubit, it is convenient to treat a qubit as a spin-half particle
and to introduce the Pauli operators. Pauli matrices are defined as follows

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.24)

These matrices together with the identity matrix 12 (sometimes considered as the
zeroth Pauli matrix σ0) form a basis for the 4-dimensional real vector space of 2×2
Hermitian matrices. This means that any 2× 2 Hermitian matrix can be written in
a unique way as a linear combination of Pauli matrices, with all coefficients being
real numbers.

Definition 2.6. Any trace-one Hermitian positive semidefinite matrix of size 2× 2
is a qubit state. Therefore, a qubit mixed state can be written as follows

ϱ =
1

2
(12 + r⃗ · σ⃗) , (2.25)

where r⃗ = (r1, r2, r3) ∈ R3, and σ⃗ = (σ1, σ2, σ3)
T (T denotes transposition).

If we calculate tr(ϱ2) for the Eq. (2.25), we will find the following relations{
|r⃗| = 1 ϱ is pure,
|r⃗| < 1 ϱ is mixed.

(2.26)

Remark 2.1. Using Pauli matrices in Eq. (2.24), the matrices {iσi}3i=1 are the
generators of the group SU(2).

Definition 2.7. Any trace-one Hermitian positive semidefinite matrix of size d× d
is a qudit state which can be expressed as follows [78]

ϱ =
1

d
(1d + r⃗ · s⃗) , (2.27)

where r⃗ = (r1, . . . , rd2−1) ∈ Rd2−1, with ri = ⟨si⟩ = tr(ϱ si), and s⃗ =

(s1, . . . , sd2−1)
T, with {isi}d

2−1
i=1 as the generators of the group SU(d).

By calculating tr(ϱ2) for the Eq. (2.27) we will have [79, 80]{
|r⃗| =

√
d− 1 ϱ is pure,

|r⃗| <
√
d− 1 ϱ is mixed.

(2.28)
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2.2. Entangled states

For n-qubit mixed states one can consider the following basis for the state space
⊗n(C2 ⊗C2∨) {

sk
}4n−1

k=0
=

n⊗
j=1

σij , (2.29)

where s0 = 1d and for any j, ij ∈ Z4.
As an example, any two-qubit mixed state can be written in Fano form [81]

ϱ =
1

4

(
14 +

3∑
i=1

αiσi ⊗ 12 +

3∑
i=1

βi12 ⊗ σi +

3∑
i,j=1

γijσi ⊗ σj
)
. (2.30)

Here α⃗ and β⃗ are Bloch vectors of the partially reduced states and γij is a real 3×3
matrix describing the correlations between the two subsystems. If γ = 0, then the
state is separable, but the reverse is not always true.

2.2 Entangled states

Entanglement is a non-classical correlation between two or more quantum sub-
systems with the property that the state of each individual subsystem cannot be
described independently of the states of the other subsystems. Therefore, an entan-
gled state provides complete information about the system as a whole but not about
the subsystems. If we have no information about the subsystems, the entangled
state is maximally entangled. It is also a central element in quantum information
theory. However, it is not easy to give a precise and comprehensive definition of en-
tanglement other than that it is a property of entangled states. Actually, it is simpler
to define an entangled state by what it is not. Mathematically, an entangled state
is described by a single state vector for pure states, or a single density matrix for
mixed states, combining two or more subsystems, that does not factorize as a prod-
uct of states of its local constituents. Factorizing as a product of states means that
a local measurement acting on one subsystem is independent from the local mea-
surement acting on other subsystems. That is, from measurement of one subsystem
we can derive nothing about the measurement results of the other subsystems.

2.2.1 Entangled pure states

Bipartite entanglement

Consider the state of a composite quantum system consisting of two subsystems
that are denoted by A and B and have associated in Hilbert spaces HA and HB ,
respectively, as follows

|ψ⟩AB = |φA⟩ ⊗ |φB⟩ , (2.31)
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2.2. Entangled states

where ⊗ denotes tensor product.
Now, consider that the eigenvalue equations of two observables Â and B̂ that

are defined in subsystems A and B, respectively, are given as follows

Â|ai⟩ = ai|ai⟩ ,
B̂|bj⟩ = bj |bj⟩ . (2.32)

The probability of obtaining the eigenvalue ai (bj) as the outcome of the measure-
ment of the observable Â (B̂) alone is given by

Pr(ai) = |⟨ai|φA⟩|2 ,
Pr(bj) = |⟨bj |φB⟩|2 . (2.33)

If one measures both observables Â and B̂ simultaneously, the probability of ob-
taining the eigenvalues ai and bj , respectively, is given by

Pr(ai, bj) = |⟨ai, bj |ψ⟩AB|2 = |⟨ai ⊗ bj |φA ⊗ φB⟩|2

= Pr(ai) · Pr(bj) . (2.34)

So the probability of the simultaneous measurement of subsystems is equal to the
product of the probabilities of measurements of subsystems separately. Indeed,
in a product state, any measurement on one of the subsystems does not affect the
state of another subsystem. One question then arises: can we always write the state
vector of a composite system as in Eq. (2.31)? The answer is no and the reason
is the fact that in the Hilbert space we have the possibility of linear combination
of vectors (this is often referred to the quantum superposition principle in quantum
mechanics). For instance, consider the following state

|Ψ⟩AB = α|ψ⟩AB + β|ψ′⟩AB
= α(|φA⟩ ⊗ |φB⟩) + β(|φ′

A⟩ ⊗ |φ′
B⟩) . (2.35)

Now, if we measure both observables Â and B̂ simultaneously, the probability of
obtaining the eigenvalues ai and bj , respectively, is given by

Pr(ai, bj) = |⟨ai, bj |Ψ⟩AB|2

= |α⟨ai|φA⟩⟨bj |φB⟩+ β⟨ai|φ′
A⟩⟨bj |φ′

B⟩|2 . (2.36)

From above equation we can conclude that there is a correlation between subsys-
tems of the composite quantum system defined in Eq. (2.35).

We can conclude that entanglement is a direct result from superposition. In
Ref. [82], it has proved that entanglement can exist between different systems iff
superposition can exist in each of them.
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2.2. Entangled states

Definition 2.8 (Bipartite separable state). A pure bipartite quantum state |ψ⟩AB ∈
HA ⊗ HB is called separable, if it can be written as the tensor product of the
quantum states of subsystems |φA⟩ ∈ HA and |φB⟩ ∈ HB , i.e.,

|ψ⟩AB = |φA⟩ ⊗ |φB⟩ . (2.37)

Definition 2.9 (Bipartite entangled state). A pure bipartite quantum state |ψ⟩AB ∈
HA ⊗HB is called entangled (or inseparable), if it is not separable. So, it cannot
be written as the tensor product of the quantum states of subsystems, i.e.,

|ψ⟩AB ̸= |φA⟩ ⊗ |φB⟩ , (2.38)

or in other words,

∄ |φA⟩ ∈ HA and |φA⟩ ∈ HB s.t. |ψ⟩AB = |φA⟩ ⊗ |φB⟩ . (2.39)

Example: The most famous example of an entangled pure state is the two-
qubit EPR state:

|EPR⟩ = 1√
2
(|00⟩+ |11⟩) . (2.40)

This can be understood by trying to write the above mentioned EPR state as the
tensor product of two single qubits, that is

|EPR⟩ ?
= (α|0⟩+ β|1⟩)⊗ (γ|0⟩+ δ|1⟩)
= αγ|00⟩+ αδ|01⟩+ βγ|10⟩+ βδ|11⟩ . (2.41)

Comparing Eqs. (2.40) and (2.41), one concludes that αγ = βδ = 1√
2

and αδ =

βγ = 0, where there is no common solution for this system of equations.
Since a separable pure state can be written as the tensor product of the states of

subsystems it is concluded that the reduced density matrix of each single subsystem
is a pure state. For example, let |ψ⟩AB = |φA⟩ ⊗ |φB⟩ represent a separable pure
state containing two parties, then we have

ϱA = trB(|ψ⟩AB⟨ψ|) = |φA⟩⟨φA| ,
ϱB = trA(|ψ⟩AB⟨ψ|) = |φB⟩⟨φB| . (2.42)

Therefore, concerning Eq. (2.11), entanglement can be related to the purity of the
reduced density matrices as follows

if tr(ϱ2A) = 1 ⇔ |ψ⟩AB is separable,

if tr(ϱ2A) < 1 ⇔ |ψ⟩AB is entangled. (2.43)
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Schmidt decomposition

There is a very powerful tool to characterize entanglement in bipartite systems,
called Schmidt decomposition. Actually, for the special case of pure bipartite
states, any state of the form Eq. (2.8) can be written in the Schmidt decompo-
sition.

Theorem 2.1 (Schmidt decomposition [83]). Let

|ψ⟩ =
dA−1∑
i=0

dB−1∑
j=0

cij |ij⟩ , (2.44)

be a normalized bipartite state in HA ⊗HB . Then there exists orthonormal bases
{ei}dA−1

i=0 and {fi}dB−1
i=0 in HA and HB , respectively, such that

|ψ⟩ =
d−1∑
i=0

√
λi|eifi⟩ , (2.45)

where d = min(dA, dB) and λi ∈ R+ are called Schmidt coefficients.

Schmidt coefficients and Schmidt bases of an arbitrary pure bipartite quantum
state in Eq. (2.44) can be found from the eigenvalues and eigenvectors of its re-
duced density matrices:

ϱA = trB |ψ⟩⟨ψ| =
∑
i

λi|ei⟩⟨ei| ,

ϱB = trA |ψ⟩⟨ψ| =
∑
i

λi|fi⟩⟨fi| . (2.46)

Regarding characterization of entanglement in pure bipartite quantum states,
the Schmidt decomposition is a strong and important tool in quantum information
theory .

Definition 2.10 (Schmidt rank). The number of non-zero Schmidt coefficients is
called Schmidt rank.

Lemma 2.1. A pure bipartite quantum state is separable iff its Schmidt rank is one.

Not only do the Schmidt coefficients determine separability of a pure bipartite
quantum state but they also correlate the amount of entanglement to the mixed-
ness of the reduced density matrix of a pure bipartite quantum state. A separable
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state indicates by a vector with components corresponding to Schmidt coefficients
(Schmidt vector) that has only one non-zero component, i.e.,

λ⃗Sep. =
(
1 0 · · · 0

)
,

and therefore the corresponding reduced density matrix is a pure state. The
Schmidt vector of an entangled state has at least two non-zero components. The
Schmidt vector

λ⃗MES =
1

d

(
1 1 · · · 1

)
,

corresponds to a reduced density matrix that is proportional to identity matrix, i.e.,
the reduced density matrix is a maximally mixed state, indicates an entangled state
which is called a Maximally Entangled State (MES).

The generalized Bell states can be considered as MESs:

|ψMES⟩ =
1√
d

d−1∑
i=0

|eifi⟩ , (2.47)

where d = min(dA, dB). For dA = dB = 2 the original four orthogonal Bell states
are

|Ψ±⟩ = 1√
d
(|01⟩ ± |10⟩) |Φ±⟩ = 1√

d
(|00⟩ ± |11⟩) . (2.48)

Multipartite entanglement

Composite systems get more complicated with the increasing number of parties,
as there exist separability with respect to different partitioning. Here, the situation
could be that in an n-partite system, an arbitrary number of subsystems are en-
tangled but there is no entanglement between other parts. So there exist different
notions of entanglement in multipartite systems. These considerations lead to the
definition of k-separability [18].

In what follows we will be concerned with n-partite pure quantum states

|ψ⟩ =
n∑
j=1

∑
ij∈Zdj

ci1···in |i1 · · · in⟩ , (2.49)

which are elements of the Hilbert space H = ⊗n
j=1Hj = ⊗n

j=1C
dj , with dj stand-

ing for the dimension of the local Hilbert space corresponding to the subsystem
Aj . Now, let αk = {S1, . . . , Sk} denote a partition of [n] := {1, . . . , n} into k dis-
joint nonempty subsets (k ≤ n). Such a partition corresponds to a division of the
system into k distinct subsystems, also called a k-partite split [84]. For instance,
the set {1, 2, 3} has these five different partitions: {{1}, {2}, {3}}, {{1, 2}, {3}},
{{1, 3}, {2}}, {{1}, {2, 3}}, and {{1, 2, 3}}.
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2.2. Entangled states

Definition 2.11 (k-separable pure state). A pure multipartite quantum state in Eq.
(2.49) is called k-separable state with respect to a specific k-partite split, iff it can
be written as tensor product of k factors of subsystem states, i.e.,

|ψks⟩ =
k⊗
i=1

|ϕi⟩ , k ∈ [n] , (2.50)

where the state vector |ϕi⟩ may consist of more than one subsystem with the maxi-
mum number of (n−k+1) subsystems which corresponds the situation of (k−1)
single subsystems and one (n− k + 1)-partite subsystem.

Concerning Eq. (2.50), it follows that two special cases emerge for k = n and
k = 1.

Definition 2.12 (Fully separable pure state). A pure multipartite quantum state in
Eq. (2.50) with k = n is called fully separable. That is iff it can be written as a
tensor product of the quantum states of subsystems |φi⟩ ∈ Hi for all i ∈ [n], i.e.,

|ψfs⟩ =
n⊗
i=1

|φi⟩ . (2.51)

Definition 2.13 (Genuine entangled pure state). A pure multipartite quantum state
in Eq. (2.50) with k = 1 is called genuine entangled state. That is iff

|ψe⟩ ≠ |ϕ⟩S ⊗ |ϕ′⟩S̄ , (2.52)

for any bipartition S|S̄, where S is a subset of [n] which denotes the indices of
subsystems Aj’s and S̄ := [n] \ S denotes the rest of them.

Example: Let |ψ⟩ ∈ ⊗3C2 represent the vector state of a three-qubit system.
We have the following possibilities for different notions of entanglement:

1. Fully separable state: |000⟩.

2. Biseparable states: |0⟩i ⊗ |EPR⟩jk where the indices {i, j, k} = {1, 2, 3}
indicate the corresponding subsystems.

3. Genuine entangled states: |GHZ⟩ = |000⟩+|111⟩ which is known as Green-
berger–Horne–Zeilinger (GHZ) state [85]. |W⟩ = |001⟩ + |010⟩ + |100⟩
which is known as W state [19].

In general, characterization of entanglement in pure multipartite state is quite
challenging, especially for what concerns the characterization of different types of
genuine multipartite entangled states.
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2.2.2 Entangled mixed states

Since bipartite system is a special case of multipartite systems, here we just give
the definition for the general case.

In what follows we will be concerned with n-partite mixed quantum states

ϱ ∈
n⊗
i=1

(Hi ⊗H∨
i ) . (2.53)

Definition 2.14 (k-separable mixed state). A mixed multipartite quantum state in
Eq. (2.53) is called k-separable state, iff it can be written as a convex combination
of k-separable pure states, i.e.,

ϱks =
∑
j

pj |ψ(j)
ks ⟩⟨ψ

(j)
ks | =

∑
j

pj
(
⊗k
i=1 ρ

(j)
i

)
, (2.54)

where pj ∈ R+,
∑

j pj = 1, and k-separable states |ψ(j)
ks ⟩ might be k-separable

with respect to different k-partite splits.

It is worth noting that if pure states |ψ(j)
ks ⟩ in Eq. (2.54) are k-separable with

respect to a specific k-partite split, then the mixed state is called αk-separable [86].

Definition 2.15 (Fully separable mixed state). A mixed multipartite quantum state
in Eq. (2.54) with k = n is called fully separable. That is iff it can be written as a
convex combination of fully separable pure states, i.e.,

ϱfs =
∑
j

pj |ψ(j)
fs ⟩⟨ψ(j)

fs | =
∑
j

pj
(
⊗n
i=1 ϱ

(j)
i

)
, (2.55)

where pj ∈ R+,
∑

j pj = 1 and fully-separable states |ψ(j)
fs ⟩ are defined in Eq.

(2.51).

Note that whenever a state is k-separable, it is automatically also l-separable for
all 1 ≤ l ≤ k. If we denote the set of all k-separable states byDk, then each setDk

is a convex set and embedded within the next set, i.e., Dn ⊂ Dn−1 ⊂ · · · ⊂ D1.
The complement D1 \ Dk of Dk in D1 is the set of all k-nonseparable states. In
particular, the complement D1 \ D2 is the set of all 2-nonseparable states which
are called genuine n-partite entangled states. Therefore, the cone of fully separable
states lies in the middle and the cone of genuine multipartite entangled states lies
at the outermost one (see Fig. 2.2).

23



2.3. Quantum operations

Figure 2.2: Convex set of k-separable states.

2.3 Quantum operations

In quantum mechanics, the term quantum operation (also known as quantum dy-
namical map, quantum process or quantum superoperator) defines the class of
transformations that a quantum system can undergo. Mathematically, a quantum
operation is a linear map Λ: B(H) → B(H) that evolves a density matrix ϱ to
another density matrix Λ(ϱ) = ϱ′. The map Λ is necessarily characterized by the
following properties:

1. The probability that a physical process represented by map Λ occurs is given
by tr

(
Λ(ϱ)

)
, where ϱ is the initial state. Thus

0 ≤ tr
(
Λ(ϱ)

)
≤ 1 . (2.56)

2. The map Λ has to be a convex-linear map on the set of density matrices, that
is, for probabilities {pi},

Λ
(∑

i

piϱi
)
=
∑
i

piΛ(ϱi) . (2.57)

3. Since in quantum information we mostly deal with composite systems, the
map Λ has to be completely positive. A positive map Λ is called completely
positive if any tensor extension to a larger Hilbert space, i.e., 1d ⊗ Λ, is a
positive map. Here, d denotes the dimension of the extension and is arbitrary.
So we have

1dA ⊗ ΛB(ϱAB) ≥ 0 ∀ ϱAB ∈ B(HA)⊗ B(HB) . (2.58)
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2.3. Quantum operations

In summary, any quantum operation that describes a physical process a quan-
tum system can undergo, is described by a Completely Positive Trace-Preserving
linear map (CPTP map).

Note that in the context of quantum information and computation, a quantum
operation is called a quantum channel.

Unitary evolution is the simple example of quantum operation, for which

ΛU (ϱ) = UϱU † . (2.59)

Example: A two-qubit controlled NOT (CNOT) gate that is a fundamental
quantum logic gate (or simply quantum gate) is a quantum operation. Actually, it
is a unitary operation which is defined as follows

UCNOT = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ σ1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.60)

where the matrix representation is with respect to the canonical basis
{|00⟩, |01⟩, |10⟩, |11⟩}. The quantum circuit illustration of this gate is represented
in Fig. 2.3.

α |0⟩+ β |1⟩
α |00⟩+ β |11⟩

|0⟩

Figure 2.3: Quantum circuit of two-qubit CNOT gate.

As another example of quantum operation, we can consider quantum measure-
ment with outcomes labeled by m which is described by Positive Operator-Valued
Measure (POVM)5. POVM is a set of {Mm} such that

∑
mM

†
mMm = 1. So

quantum measurement can be defined as the following map

Λm(ϱ) =MmϱM
†
m . (2.61)

The state of the quantum system immediately after the measurement is

ϱm =
Λm(ϱ)

tr(Λm(ϱ))
, (2.62)

5Projective measurement (discussed in Section 2.1.3) is the simplest case of a POVM which is a
set of orthogonal projectors.
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and the probability of obtaining this measurement result is

p(m) = tr(Λm(ϱ)) . (2.63)

In general, quantum operations (CPTP-maps) can be represented in an elegant
form known as the Kraus representation [87].

Theorem 2.2 (Kraus representation of CPTP-maps). Any quantum operation Λ
acting on a quantum system with associated a d-dimensional Hilbert space H can
be represented as

Λ(ϱ) =
N∑
i=1

KiϱK
†
i ,

N∑
i=1

K†
iKi = 1 , (2.64)

where the operators Ki : H → H are called Kraus operators (also known as ef-
fects) and 1 ≤ N ≤ d2.

It is worth noting that when the map Λ is describing a quantum measurement,
the trace does not need to be preserved. It is because of this fact that the trace
of the post measurement state, i.e., tr(Λ(ϱ)) gives the probability with which the
measurement outcome does occur (see Eqs. (2.62) and (2.63)). Therefore, in the
case where the process is deterministic, that is, no measurement is taking place,
this reduces to the following requirement

tr
(
Λ(ϱ)

)
= tr(ϱ) = 1 ∀ ϱ ∈ B(H) . (2.65)

Overall, all valid quantum operations can be written in Kraus representation.
There are two main classes of quantum operations:

1. Trace-preserving quantum operations, that is
∑

iK
†
iKi = 1.

2. Trace decreasing quantum operations, that is
∑

iK
†
iKi < 1.

It is worth noting that the Kraus representation is not unique.

Local quantum operations

Local quantum operations can be written as the tensor product of CPTP maps
Λi : B(Hi) → B(Hi) acting on all subsystems respectively, that is

Λi =

n⊗
i=1

Λi . (2.66)
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Regarding Kraus representation, any local quantum operation can be represented
in terms of the Kraus operators {Kji} as follows

Λ(ϱ) =
∑

j1,...,jn

(
⊗n
i=1 Kji

)
ϱ
(
⊗n
i=1 K

†
ji

)
, (2.67)

where
∑

ji
(⊗n

i=1K
†
ji
Kji) = 1 and

∑
ji
(⊗n

i=1K
†
ji
Kji) < 1 hold for trace-

preserving quantum operations and for trace decreasing quantum operations, re-
spectively.

Below we give a brief review of three most studied operations: Local Uni-
tary (LU), Local Operations and Classical Communication (LOCC), and Stochastic
LOCC (SLOCC).

2.3.1 LU operations

Unitary operations belong to the class of deterministic CPTP maps. A unitary
transformation is a transformation corresponding to a change of a basis so it pre-
serves the inner product . A LU transformation corresponds to a change of a basis
in each of the subsystems. These transformations simply reflect the choice of our
point of view rather than any specific manipulation of the physical system. It re-
flects the fact that two equivalent states under local unitary operations have the
same matrix form, only the choice basis of subsystems is different.

Definition 2.16 (LU equivalence). Given two n-partite quantum states ϱ, σ ∈
B(H)

ϱ
LU∼ σ iff ∃ U = U(d1)⊗ · · · ⊗U(dn) s.t. ϱ = UσU† . (2.68)

For two pure n-partite quantum states |ψ⟩, |ϕ⟩ ∈ H = ⊗n
i=1C

di , the LU equiv-
alence between them implies:

|ψ⟩ LU∼ |φ⟩ iff ∃U(di) ∀ i ∈ [n] s.t. |ψ⟩ = U(d1)⊗ · · · ⊗U(dn)|φ⟩ . (2.69)

2.3.2 LOCC operations

LOCC is one of the most important classes of quantum operations in quantum
information theory. Generally, LOCC is a method where a local operation is per-
formed on a part of the system, and the result of that operation is communicated
classically to another part where usually another local operation is performed con-
ditioned on the information received. All CPTP maps in Eq. (2.67) can be con-
sidered as LOCC operations. More precisely, LOCC can be considered as local
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unitary operations, local measurements and coupling to ancillary systems followed
by their removal. These operations are able to answer the question whether or
not a multipartite quantum state can be transformed deterministically into another
multipartite quantum state in case each party of the multipartite system has access
exclusively to its own subsystem.

LOCC is also known as the “free operation” in the resource theories of entan-
glement since entanglement cannot be produced from separable states via LOCC.
This can be understood by considering a general local operation on a bipartite
quantum system as follows

Λ(ϱ) =
∑
i

(Ki ⊗ Li)ϱ(K
†
i ⊗ L†

i ) , (2.70)

where Ki and Li are Kraus operators and
∑

iK
†
iKi ⊗ L†

iLi = 1HA⊗HB
. For a

bipartite product state ϱ = ϱA ⊗ ϱB we have

Λ(ϱ) =
∑
i

(KiϱAK
†
i )⊗ (LiϱBL

†
i ) =

∑
i

piϱ̃
i
A ⊗ ϱ̃iB , (2.71)

where

ϱ̃iA =
KiϱAK

†
i

tr(KiϱAK
†
i )
, ϱ̃iB =

LiϱBL
†
i

tr(LiϱBL
†
i )
, pi = tr(KiϱAK

†
i ) tr(LiϱBL

†
i ) .

(2.72)
Regarding Eq. (2.71), one can see that by a general local operation on a bipartite
product state we could produce classical correlation but the produced state is still
separable.

For pure quantum states it has been shown that the LOCC equivalence coin-
cides with the LU equivalence [88].

2.3.3 SLOCC operations

For pure quantum states we have the following definition [19].

Definition 2.17 (SLOCC equivalence). Given two n-partite quantum states |ψ⟩
and |φ⟩ in H = ⊗n

i=1C
di

|ψ⟩ SLOCC∼|φ⟩ iff ∃Ai ∈ SL(di,C) ∀ i ∈ [n] s.t. |ψ⟩ = A1 ⊗ · · · ⊗An|φ⟩ .
(2.73)
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Entanglement transformation

Entanglement transformation is a fundamental problem in quantum information
theory. For bipartite systems, the problem is completely solved. Nielsen has pro-
vided necessary and sufficient conditions for the LOCC convertibility of pure bi-
partite states [89].

Definition 2.18 (Majorization). For a vector x ∈ Rd let x↓ ∈ Rd be a vector with
the same components of the vector x, but sorted in descending order. Given two
d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) inRd we say that x
is majorized by y (equivalently y majorizes x), denoted by x ≺ y, iff

k∑
i=1

x↓i ≤
k∑
i=1

y↓i ∀ k ∈ {1, . . . , d} , (2.74)

with equality holding when k = d.

Theorem 2.3 (Ref. [89]). A pure bipartite quantum state |ψ⟩ can be transformed
deterministically to another pure bipartite quantum state |φ⟩ via LOCC operations
iff the Schmidt Coefficients of the first state is majorized by those of the second one,
i.e.,

|ψ⟩ LOCC−−−→ |φ⟩ iff λψ ≺ λφ . (2.75)

Regarding SLOCC operations, any bipartite state |ψ⟩ can be probabilistically
transformed into |φ⟩ iff the Schmidt rank of the reduced density operator of |ψ⟩ is
greater than that one of |φ⟩, i.e.,

|ψ⟩ SLOCC−−−−→ |φ⟩ iff rkS(ψ) ≥ rkS(φ) . (2.76)

2.4 Entanglement quantification

Regarding entanglement as a resource, one would like to know how much of that
resource is available in any given situation. An entanglement measure is a function
that quantifies the amount of entanglement present in a quantum state. Actually, an
entanglement measure is an entanglement monotone that vanishes on all separable
states. An entanglement monotone is a linear form that maps a quantum state
to a positive real numbers. More precisely, we have the following definition of
entanglement monotone [90].

Definition 2.19 (Entanglement monotone). An entanglement monotone is a func-
tion µ : B(H) → R+ which maps density operators to positive real numbers. This
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function is invariant under unitary operations and non–increasing, on average, un-
der LOCC. That is,

µ(ΛLOCCϱ) ≤ µ(ϱ) ∀ ϱ ∈ B(H) & ΛLOCC . (2.77)

The phrase “on average” refer to the general case, in which a pure state ϱ is
transformed by a probabilistic local operation into a mixture,

ϱ→
∑
i

piϱi ⇒ µ(ϱ) ≥
∑
i

piµ(ϱi) . (2.78)

In the following, we give the requirements for a good entanglement measure.
See Ref. [91] for a review on the subject.

2.4.1 Entanglement measure

A good entanglement measure E has to fulfill several requirements. However, it is
still an open question whether all of these conditions are indeed necessary.

1) Discriminance: E(ϱ) = 0 iff ϱ is separable.

2) Monotonicity under LOCC: applying local operations to ϱ and classically
communicating cannot increase the entanglement of ϱ, i.e.,

E(ΛLOCC(ϱ)) ≤ E(ϱ) . (2.79)

3) Convexity: The entanglement measure should be a convex function, i.e.

E(pϱ+ (1− p)σ) ≤ p E(ϱ) + (1− p)E(σ) , (2.80)

for 0 ≤ p ≤ 1.

4) Continuity: In the limit of vanishing distance between two density matrices
the difference between their entanglement should tend to zero, i.e.,

E(ϱ)− E(σ) → 0 for ∥ ϱ− σ ∥1→ 0 .6 (2.81)

5) Additivity: A certain number n of identical copies of the state ϱ should
contain n times the entanglement of one copy,

E(ϱ⊗n) = n E(ϱ) . (2.82)
6The trace norm ∥ O ∥1 of an operator O is the sum of its singular values. That is

∥ O ∥1= tr
√
OO†.
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6) Subadditivity: The entanglement of the tensor product of two states ϱ and σ
should not be larger than the sum of the entanglement of each of the states,

E(ϱ⊗ σ) ≤ E(ϱ) + E(σ) , (2.83)

7) Normalization: The entanglement of a maximally entangled state of two
d-dimensional systems is given by

E(|ψMES⟩⟨ψMES|) = log d . (2.84)

Some important entanglement measures

Following we introduce some important entanglement measures, without making
the attempt to discuss all existing entanglement measures.

- Entropy of entanglement [92]: For pure bipartite states, the entropy of en-
tanglement is defined as the von Neumann entropy of the reduced density
matrix, i.e.,

EE(|ψ⟩AB) = S(ϱA) = − tr(ϱA log ϱA) . (2.85)

- Distillable entanglement [93–95]: The distillable entanglement tells us how
much maximally entangled state can be extracted from a given entangled
state ϱ by LOCC. Mathematically, it is the ratio of the number of maximally
entangled state |ψMES⟩ as output states over the needed input states ϱ, max-
imized over all LOCC operations, in an asymptotic setting, i.e.,

ED(ϱ) = sup
{ΛLOCC}

lim
nϱ→∞

nout|ψMES⟩

ninϱ
. (2.86)

- Entanglement of formation [93, 94]: The entanglement of formation is the
averaged von Neumann entropy of the reduced density matrices of the pure
states |ψi⟩, minimized over all possible decompositions ϱ =

∑
i pi |ψi⟩⟨ψi|,

i.e.,
EF(ϱ) = inf

{pi,|ψi⟩}

∑
i

piEE(|ψi⟩) . (2.87)

Actually, entanglement of formation EF is an extension of entropy of entan-
glement for mixed via the convex roof extension.

- Entanglement cost [93]: The entanglement cost tells us how expensive it is
to create an entangled state ϱ. Mathematically, it is the ratio of the number of
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maximally entangled states |ψMES⟩ as input states over the produced output
states ϱ, minimized over all LOCC operations, in an asymptotic setting, i.e.,

EC(ϱ) = inf
{ΛLOCC}

lim
nϱ→∞

nin|ψMES⟩

noutϱ

. (2.88)

Entanglement cost can be related to entanglement of formation as follows
(see Ref. [96])

EC(ϱ) = lim
n→∞

EF(ϱ⊗n)
n

. (2.89)

- Relative entropy of entanglement [97]: The relative entropy can be seen
intuitively as the “distance” of the entangled ϱ to the closest separable state
σ, although it is not a distance in the mathematical sense,

ER(ϱ) = S(ϱ ∥ σ) = inf
σ∈D

tr[ϱ(log ϱ− log σ)] . (2.90)

where D is the set of separable states.

It is worth noting that the extension of any entanglement measure for pure
states to an entanglement measure for mixed states can be done by the convex roof
construction [98].

In Ref. [99, 100] Hill and Wootters introduced the concurrence as a measure
for two-qubit systems. It is defined as the overlap of a given state |ψ⟩ with its
spin-flipped state, i.e., |ψ̃⟩ = σ2|ψ∗⟩. That is

C(|ψ⟩) = ⟨ψ|σ2 ⊗ σ2|ψ∗⟩ . (2.91)

It can also be extended to mixed states by the convex roof construction. That is

C(ϱ) = inf
{pi,|ψi⟩}

∑
i

piEE(|ψi⟩) . (2.92)

An explicit formula for this is given as follow

C(ϱ) = max{
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} , (2.93)

where λi’s are eigenvalues of the Hermitian operator

ϱϱ̃ with ϱ̃ = σ2 ⊗ σ2ϱ
∗σ2 ⊗ σ2 (2.94)

which are sorted in descending order. The concurrence has been generalized to
higher dimensional systems [101]

C(ϱ) =
√
2(1− tr(ϱr)) , (2.95)
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where ϱr is the reduced density matrix.
Moreover, based on the concurrence, an entanglement measure for three-qubit

states is defined in Ref. [102]. That is the tangle:

τ = C2
A(BC) − C2

AB − C2
AC . (2.96)

2.5 Entanglement classification

Multipartite entanglement is a physical resource, like energy, associated with the
complex nonclassical correlations that are a basis for quantum-enhanced applica-
tions. Hence, it is important to characterize entanglement in order to learn which
states are more powerful. Thanks to Schmidt decomposition, this was done by
developing entanglement monotones for bipartite systems (see Section 2.4). How-
ever, extension of these to multipartite systems is quite complicated. That is why
a classification of multipartite entanglement is required to single out states that
perform (probabilistically) equally well quantum information tasks. This is done
by considering the following questions: Let us have two quantum states. How
can we transfer entanglement from one state to another one? In other words, how
can we testify entanglement equivalency of two quantum states using only local
operations?

Because of nonlocality of quantum entanglement, a proper equivalent relation
should be local operation. The most studied local operations are LU, LOCC, and
SLOCC for mixed states and LU and SLOCC for pure states.

In this dissertation, we focus on pure multipartite quantum states.
While LU equivalence can provide a useful division into different equivalence

classes, already for bipartite systems, a mathematical analysis is only possible in
some lower dimensional systems [103, 104]. In contrast, SLOCC equivalence pro-
vides a neat characterization of different classes of entanglement.

2.5.1 Entanglement classification of bipartite systems

Thanks to the existence of the Schmidt decomposition, bipartite entanglement clas-
sification can be fully determined under SLOCC.

Theorem 2.4. Schmidt rank is an SLOCC invariant that provides us with a com-
plete entanglement classification of all bipartite states.

In the next chapters, we will see that the rank of the coefficient matrix of a
quantum state is equal to its Schmidt rank.
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Table 2.1: SLOCC classification of three-qubit entanglement.

Class Representative CAB CAB CAB τ

|Sep⟩ |000⟩ = 0 = 0 = 0 = 0

|B1⟩ |000⟩+ |011⟩ ̸= 0 = 0 = 0 = 0

|B2⟩ |000⟩+ |101⟩ = 0 ̸= 0 = 0 = 0

|B3⟩ |000⟩+ |110⟩ = 0 = 0 ̸= 0 = 0

|W⟩ |001⟩+ |010⟩+ |100⟩ ≠ 0 ̸= 0 ̸= 0 = 0

|GHZ⟩ |000⟩+ |111⟩ ̸= 0 ̸= 0 ̸= 0 ̸= 0

2.5.2 Classification of three-qubit entanglement

In this section, we recall the complete entanglement classification for both pure
and mixed three-qubit states under SLOCC [19, 105].

Pure three-qubit states

Although there is no Schmidt decomposition for arbitrary states of more than two
parties [106,107] there is a generalization of Schmidt decomposition for pure mul-
tipartite quantum states [108–110].

For instance, In Ref. [109] the authors gave a generalized Schmidt decomposi-
tion for three-qubit pure states, in the sense that the coefficients of this decomposi-
tion carry all the information about the non-local properties of the state.

Theorem 2.5 (Ref. [109]). Up to an LU operation, any three-qubit pure state can
be written as follows

|ψ⟩ = λ0|000⟩+ λ1e
iθ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩ , (2.97)

where λi ≥ 0, 0 ≤ θ ≤ π, and
∑

i λ
2
i = 1.

The concurrence and the tangle of the state in Eq. (2.97) reads

CAB = 2λ0λ3 CBC = 2
√

(λ1λ4)2 + (λ1λ3)2 − 2λ1λ2λ3λ4 cos θ

CAC = 2λ0λ2 τ = 4λ20λ
2
4 . (2.98)

Since these entanglement measures are SLOCC invariants, we have the follow-
ing complete entanglement classification for pure three-qubit states under SLOCC:
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2.5. Entanglement classification

(a) (b)

Figure 2.4: (a) SLOCC orbits of three-qubit entanglement. (b) Hasse diagram of
the SLOCC classification of three-qubit entanglement. The direction of the arrows
indicates noninvertible SLOCC transformations between classes that generate the
entanglement hierarchy.

1. Fully separable: This class contains fully separable states denoted by Sep.
This class represents all fully separable states that are SLOCC equivalent to
|000⟩, i.e., all pure three-qubit states with zero concurrences and tangle in
Eq. (2.98).

2. Biseprable B1: This class contains biseparable states such that parties
B and C are entangled and they are separable from party A. So this
class contains all biseparable states that are SLOCC equivalent to |B1⟩ =
|0A⟩|EPRBC⟩, i.e., all pure three-qubit states with CAB = CAC = τ = 0
and CBC ̸= 0.

3. Biseprable B2: This class contains biseparable states such that partiesA and
C are entangled and they are separable from party B. So this class contains
all biseparable states that are SLOCC equivalent to |B2⟩ = |0B⟩|EPRAC⟩,
i.e., all pure three-qubit states with CAB = CBC = τ = 0 and CAC ̸= 0.

4. Biseprable B3: This class contains biseparable states such that partiesA and
B are entangled and they are separable from party C. So this class contains
all biseparable states that are SLOCC equivalent to |B3⟩ = |0C⟩|EPRAB⟩,
i.e., all pure three-qubit states with CAC = CBC = τ = 0 and CAB ̸= 0.
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5. W: This class represents all genuine entangled states such that are SLOCC
equivalent to |W⟩ = |001⟩ + |010⟩ + |100⟩, i.e., all pure three-qubit states
with non-zero concurrences and zero tangle in Eq. (2.98).

6. GHZ: This class which is denoted by |GHZ⟩ = |000⟩+ |111⟩ represent all
genuine entangled states that are SLOCC equivalent to |GHZ⟩, i.e., all pure
three-qubit states with non-zero concurrences and tangle in Eq. (2.98).

In summary, regarding entanglement classification of pure three-qubit states
under the SLOCC, we have six different classes, namely, fully separable states,
three different classes of biseparable states with respect to three different biparti-
tions, and two inequivalent genuine entangled states W and GHZ. These classes
and the their representative states from each class are summarized in Table 2.1. A
visual representation of these SLOCC orbits is illustrated in Fig. 2.4 (a).

According to Eq. (2.73), a noninvertible local operator transforms |ψ⟩ into
|φ⟩ where at least one of the local operators is not full rank. So it is possible to
transform each of GHZ and W states to one of the biseparable states or even to
fully separable states. Note that the inverse transformations, e.g., from the class
of fully separable states to one of the biseparable or genuine entangled states, are
impossible as they would imply an increase of the rank of at least one of the reduced
density operators. These results are summarized in Fig. 2.4 (b).

Mixed three-qubit states

Now, we present a complete entanglement classification for mixed three-qubit
states under SLOCC [105]. A mixed three-qubit state ϱ can be written as a con-
vex combination of pure three-qubit states (See Eq. 2.10 in Subsection 2.1.2).
Regarding the entanglement classification of pure three-qubit states and using Def-
inition 2.14 in Subsection 2.2.2 we have following classes:

1. Fully separable: If ϱ can be decomposed as a convex combination of pro-
jectors onto only pure separable states, then it belongs to the convex compact
set of fully separable states, denoted by Sep.

2. Biseparable (B): If in the decomposition of ϱ at least one pure biseparable
state of any kind (and no genuine entangled state) is needed, then it belongs
to the convex compact set of biseparable states. More precisely ϱ belongs to
B \ Sep.

3. W: If in the decomposition of ϱ at least one pure W state (and no pure GHZ
state) is needed, then it belongs to the convex compact set of W states. More
precisely ϱ belongs to W \ B.
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Figure 2.5: Entanglement classification of mixed three-qubit states under SLOCC.
Sep: fully separable class; B: biseparable class (convex hull of biseparable states
with respect to any bipartition), W class, and GHZ class.

4. GHZ: If in the decomposition of ϱ at least one pure GHZ state is needed,
then it belongs to the convex compact set of GHZ states. More precisely ϱ
belongs to GHZ \W.

It is worth noting that these classes are embedded into each other (compare
with Fig. 2.2), i.e.,

Sep ⊂ B ⊂ W ⊂ GHZ .

Also, it is important to note that GHZ ⊂ W is not correct since otherwise the class
GHZ would not be compact, as can be seen by studying the most general form of
a W-type state versus a GHZ-type state, as given in [109]. In the next chapter, we
also will see that we cannot produce a GHZ-type state from a W-type state but the
reverse is approximately possible.

In summary, regarding entanglement classification of mixed three-qubit states
under the SLOCC, we have four different classes, namely, fully separable class,
biseparable class that is a convex hull of biseparable states with respect to any
bipartition, W class, and GHZ class. A visual representation of these SLOCC
classes is illustrated in Fig. 2.5.

2.5.3 Inductive entanglement classification

It is known that for four or more qubits there are an (uncountable) infinite number
of SLOCC classes [19]. Hence, it is desirable to bunch the infinite number of
SLOCC classes in a finite number of families with the common physical and/or
mathematical properties.
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In Ref. [20], Verstraete et al., have introduced an entanglement classification
of four-qubit systems. They have benefited from the the following elegant isomor-
phism

SL(2,C)× SL(2,C) ∼= SO(4,C) , (2.99)

and grouped the infinite number of SLOCC classes into nine families. However,
this method cannot be extended to more than four qubits since there is no known
isomorphism for this purpose.

Lamata et al. [111] also introduced an inductive method to partition the infinite
number of SLOCC classes into a finite number of families. Based on this method,
they have bunched four qubits SLOCC classes into eight entanglement families
(up to qubit permutation) [112]. Some years later Backens has shown that the
inductive approach yields ten entanglement families for four-qubit entangled states
[113]. The main idea of this approach is to investigate the possible entanglement
families of the right singular subspace of the coefficient matrix of each pure state
|ψ⟩ expressed in the canonical basis. In this order, one can write an n-qubit pure
state as

|ψ⟩ = |e0⟩|φ0⟩+ |e1⟩|φ1⟩ , (2.100)

where |e0⟩ and |e1⟩ are two linearly independent states of the i-th (i = 1, · · · , n)
qubit, and |φ0⟩ and |φ1⟩ are the states of the rest n− 1 qubits. In general, normal-
ization is not needed as SLOCC operations can change the norm of the states. The
entanglement families are determined by considering all combinations of entangle-
ment types of the rest n− 1 qubits in different spanning sets for span{|φ0⟩, |φ1⟩}.
In Refs. [111, 112], the authors label the entanglement families according to the
types of entangled vectors in the spanning set where |φ0⟩ and |φ1⟩ can take the
values 000, 0kΨ, GHZ, or W. Here, 000 denotes a fully separable state, while 0kΨ
denotes a biseparable state where 0k is the k-th single qubit in a product with an
entangled state of the remaining qubits.

Here, we present two examples of four qubits states that invalidates this ap-
proach when we consider different partitioning of subsystems.

In Ref. [111–113], the authors have considered the partition of the first qubit
from the rest (1|23 and 1|234) but there should be no loss of generality in choosing
other partitions as it was also mentioned in Ref. [111]. For the first example, let
us consider two states of the family span{000, 0kΨ} for four qubits where the
partition is 1|234

|0000⟩+ |1100⟩+ |1111⟩ = |0⟩|000⟩+ |1⟩|1⟩(|00⟩+ |11⟩) ,
|0000⟩+ |1101⟩+ |1110⟩ = |0⟩|000⟩+ |1⟩|1⟩(|01⟩+ |10⟩) .
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Now, let to consider the partition 123|4 for the above states. We will have

|0000⟩+ |1100⟩+ |1111⟩ = (|00⟩+ |11⟩)|0⟩|0⟩+ |111⟩|1⟩ ,
|0000⟩+ |1101⟩+ |1110⟩ = (|000⟩+ |111⟩)|0⟩+ |110⟩|1⟩ .

As we see by changing the partition (changing the algorithm) the first state
remains in the family span{000, 0kΨ} but the second one goes to the family
span{000,GHZ}. We can also see this problem with two other states of the family
span{0kΨ, 0kΨ} by considering the partition as 1|234

|0000⟩+ |1100⟩+ λ1|0011⟩+ λ2|1111⟩ =
|0⟩|0⟩(|00⟩+ λ1|11⟩) + |1⟩|1⟩(|00⟩+ λ2|11⟩) ,

and

|0000⟩+ |1100⟩+ λ1|0001⟩+ λ1|0010⟩+ λ2|1101⟩+ λ2|1110⟩ =
|0⟩|0⟩(|00⟩+ λ1|01⟩+ λ1|10⟩) + |1⟩|1⟩(|00⟩+ λ2|01⟩+ λ2|10⟩) .

But when we consider the partition as 123|4 we have

|0000⟩+ |1100⟩+ λ1|0011⟩+ λ2|1111⟩ =
(|00⟩+ |11⟩)|0⟩|0⟩+ (λ1|00⟩+ λ2|11⟩)|1⟩|1⟩ ,

and

|0000⟩+ |1100⟩+ λ1|0001⟩+ λ1|0010⟩+ λ2|1101⟩+ λ2|1110⟩ =
(|000⟩+ |110⟩+ λ1|001⟩+ λ2|111⟩)|0⟩+ (λ1|00⟩+ λ2|11⟩)|0⟩|1⟩ ,

where the first state remains in the family span{0kΨ, 0kΨ} and the second one
goes to the family span{0kΨ,GHZ}. It is worth noting that since genuine en-
tanglement families for three qubits are merely W and GHZ with the symmetric
canonical forms, there is no such a problem. Clearly this is due to the fact that
these two inseparable classes are invariant under exchanging the parties and hence
under changing the partition. The situation is different in the systems of four or
more qubits. Indeed, from the above examples one can easily find out that there are
some genuine entanglement families for four qubits for which the canonical forms
are not symmetric and these are where violation to the classification of Ref. [112]
takes place. Evidently, symmetric genuine entanglement families for four or more
qubits are invariant under changing the partition, e.g. the family span{000, 000}
and the family span{000,W} in four qubits systems. Generally, entanglement fam-
ilies W and GHZ are symmetric in n ≥ 3 qubits systems.
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In summary, if by changing the partition all states from one family are mapped
to another family there would be no problem7, but we have seen that with the
approach of Ref. [111, 112] it may happen that only some states go to another
family. Hence, there is an overlap between some families of four-qubit entangled
states and thus this approach cannot be used to exactly identify to which family a
given four-qubit state belongs to. Furthermore, being the approach inductive, the
entanglement classification turns out to be flawed also for more than four qubits
systems.

7It is worth to mention that for four or more qubits, the number of SLOCC classes is infinite,
indeed an uncountable infinite. Therefore, Cantor’s theorem ensures that there are infinite ways to
allocate them into a finite number of families. It means that there are infinite number of ways to
“classify entanglement" into families. However, most of them are meaningless classifications from
the point of view of physics. Hence, even if all states from one family are mapped to another family
we have a meaningless entanglement classification.
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Chapter3
Algebraic Geometry

Where are you?
In the boundless expanse of this
world,
Where are you?
I am standing at the farthest end of
the world.
By your side.

Ahmad Shamloo, Meeting point

Projective space plays a central role in algebraic geometry. The aim of this
chapter is to define the notion of multpartite entanglement in terms of abstract al-
gebraic geometry. So, within this chapter, we introduce some algebro-geometric
tools that are needed to characterize multipartite entanglement. We start by the
definition of affine space and affine variety and then we define projective space and
projective variety. As examples, we introduce Veronese and Segre varieties. Then,
we investigate their k-secant and k-tangent varieties. On the one hand any multi-
partite quantum state is indeed a tensor on the other hand the notion of k-secant
variety is deeply connected to the notion of rank and border rank of tensors. There-
fore, we also introduce tensor flattening and multilinear rank (multirank, for short).
We will see that k-secant variety and ℓ-multirank can be used as SLOCC invariants
for the purpose of multipartite entanglement classification. In this chapter, we have
used some materials and notions from Refs. [59, 69–73]. The last section of this
chapter is based on the Refs. [44, 56].
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3.1 Motivation

One of the fundamental principles of quantum mechanics is that a quantum state
that describes a quantum system corresponds to a vector in a Hilbert space H, and
that the Born rule gives the probability for a system in state |ψ⟩ to be in state |φ⟩
by

Pr(|ψ⟩, |φ⟩) = |⟨ψ|φ⟩|2

|⟨ψ|ψ⟩| |⟨φ|φ⟩|
. (3.1)

Now, for any λ ∈ C \ {0}, one can see that Pr(|ψ⟩, |φ⟩) = Pr(λ|ψ⟩, |φ⟩) =
Pr(|ψ⟩, λ|φ⟩) = Pr(λ|ψ⟩, µ|φ⟩). Therefore, |ψ⟩ is said to be equivalent to the state
λ|ψ⟩, i.e.,

|ψ⟩ ∼ λ|ψ⟩ ∀ λ ∈ C \ {0} , (3.2)

since these states will yield the same results when we use them in the Born rule.
More precisely, the equivalence in Eq. (3.2) comes from U(1) gauge symmetry
in quantum theory. That is, if we consider normalized states ⟨ψ|ψ⟩ = 1, then the
quantum states |ψ⟩ and λ|ψ⟩ represent the same physical state, for any λ = eiδ

with 0 ≤ δ < 2π called the global phase (see Corollary 2.1). It is known that one
can not measure the global phase of the quantum states. So, one postulates that any
calculation of a measurable quantity must be invariant under any change of phases,
and therefore, the theory must be symmetric1 under such phase shifts.

Therefore, from a physics point of view and the fact that quantum mechanics is
a U(1) gauge invariant theory, equivalent vectors in the Hilbert space represent the
same pure quantum states. As a consequence, the proper state space of a quantum
system is not the original Hilbert space H but rather the projective Hilbert space
P(H) where sets of equivalent states are its points. Thus, a natural way to study
entanglement of pure states is with algebraic geometry, which is the “language” of
projective spaces.

3.2 Affine geometry

In 1748, Leonhard Euler introduced the term “affine” in his book, “Introductio in
analysin infinitorum” [115]. After Felix Klein’s Erlangen program, affine geometry
was recognized as a generalization of Euclidean geometry [116]. Actually, affine
geometry is an incidence geometry that generalizes the Euclidean geometry when
one forgets the notions of distance and angle. The only properties that are preserved
are those related to parallelism and ratio of lengths for parallel line segments.

1The importance of such symmetries comes from Noether’s theorem which states that such gauge
symmetries lead to the conservation of a related quantity [114].
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Figure 3.1: Inside the vector space R3 we can choose two planes P1 (the green
one) and P2 (the blue one). While the plane P1 that passes through the origin is
a vector subspace (P1

∼= R2 ⊂ R3), the plane P2 is not a vector subspace. This
is because 0 ∈ P1 and a⃗ + b⃗ ∈ P1 for any vectors a⃗, b⃗ ∈ P1 but 0 /∈ P2 and
u⃗+ v⃗ /∈ P1. The plane P2 is an affine subspace.

An affine space is nothing more than a vector space whose origin we try to
forget about, by adding translations to the linear maps [117]. In fact, the origin
plays no special role in the affine space. Hence, any vector space is an affine space
but the inverse is not true since in an affine space there is no distinctive point that
serves as the origin. Therefore, we cannot associate a unique vector to a point
in affine space. Instead, there are translation vectors between two points of the
affine space. Hence, it makes sense to subtract two points of the space, giving
a translation vector, but it does not make sense to add two points of the space.
Subtraction of two points of the affine space can be seen in another way: adding
a translation vector to a point of an affine space results in a new point translated
from the starting point by that vector. See, for instance, Fig. 3.1.

Definition 3.1 (Affine space). Given a field K and a positive integer d, we define
the d-dimensional affine space over K, denoted by Ad

K , to be the set Kd of all
d-tuples of elements from K, i.e.,

A
d
K = {(a0, . . . , ad−1) | aj ∈ K ∀ j ∈ Zd} . (3.3)

The elements of an affine space are called points.

It worth remarking that within this chapter, K is a commutative field.

Remark 3.1. The dimension of an affine space is defined as the dimension of its
associated vector space that contains translations.

Specifically, A1
K and A2

K are called affine line and affine plane, respectively.
A (d− 1)-dimensional affine subspaceAd−1

K in an affine space (or a vector space)
of dimension d is called an affine hyperplane.
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3.2.1 Affine variety

To link algebra and geometry, we need to relate polynomials over a field K to an
affine space over the same field.

Definition 3.2 (Monomial). A d-variate monomial is a product of the form

xα =
∏
k∈Zd

xαk
k , (3.4)

where α = (α0, . . . , αd−1) is a d-tuple of nonnegative integers. The total degree
of this monomial is the sum α0 + · · ·+ αd−1.

Definition 3.3 (Polynomial). A d-variate polynomial f is a finite linear combina-
tion of d-variate monomials with coefficients in a field K. That is

f(x0, . . . , xd−1) =
∑
α

aαx
α , (3.5)

where aα ∈ K and the sum is over a finite number of d-tuples α = (α0, . . . , αd−1).

Definition 3.4 (Polynomial ring). The set of all d-variate polynomials f with co-
efficients in a field K is denoted by K[x0, . . . , xd−1] which refers to a polynomial
ring.

Actually, under addition and multiplication,K[x0, . . . , xd−1] satisfies all of the
field axioms except for the existence of multiplicative inverses because, for exam-
ple, x−1 is not a polynomial. Such a mathematical structure is called a commutative
ring.

The key idea of seeing how polynomials relate to an affine space is that a poly-
nomial f ∈ K[x0, . . . , xd−1] corresponds to a multilinear form

f : Ad
K → K . (3.6)

It is obvious that if we are given by a (a0, . . . , ad−1) ∈ Ad
K , then we can replace

every xi in the expression of f by ai. Since the coefficients of f are also in the
field K, this function gives an element of the field K, i.e., f(a0, . . . , ad−1) ∈ K.

Definition 3.5 (Algebraically closed field). A field K is algebraically closed if
every nonconstant polynomial in K[x0, . . . , xd−1] has a root in K.

Therefore,R is not algebraically closed, whereas C is2.
Roughly speaking, every variety can be defined as the locus of vanishing a

finite number of polynomials.
2It is proved as the fundamental theorem of algebra (see Ref. [118]).
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Figure 3.2: The affine variety V(3(x2 + y2 + z2)− 2(x2y2 + x2z2 + y2z2)− 3).

Definition 3.6 (Affine variety). Let F = {f1, . . . , fs} ⊆ K[x0, . . . , xd−1] be a set
of polynomials. The zero locus of the set of polynomials F , i.e.,

V(F ) = {(a0, . . . , ad−1) ∈ Ad
K | fi(a0, . . . , ad−1) = 0 ∀ fi ∈ F} . (3.7)

is called affine variety.

In other words, an affine variety V(F ) ⊆ Ad
K is the the set of all solutions of

the system of equations f1(x0, . . . , xd−1) = · · · = fs(x0, . . . , xd−1) = 0.

Example: The affine variety V(f) with

f(x, y, z) = 3(x2 + y2 + z2)− 2(x2y2 + x2z2 + y2z2)− 3 ,

is shown in Fig. 3.2.

Definition 3.7 (Orbit). Let G ⊆ GL(d,K) be a group and X ⊆ Ad
K be an affine

variety. The G-orbit of a point p = (a0, . . . , ad−1) ∈ X is the set

[p]G := G · p = {g · p | g ∈ G} . (3.8)

That is the full set of points that p is sent to under the action of group G.

Definition 3.8 (Orbit space). The orbit space, is the set of all orbits of X ⊆ Ad
K

under the action of a group G and is denoted by

X

G
. (3.9)

It is also called the quotient of the action.
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Since orbits are equivalence classes, therefore the orbit spaceAd
K/G is the set

of equivalence classes of ∼G. Moreover, the orbits are disjoint since ∼G is an
equivalence relation.

Remark 3.2. Given an action (G,X), the problem of finding the parameterization
of X/G and the orbits is known as the classification problem.

Theorem 3.1. The orbit space X/G has the structure of an affine variety.

Lemma 3.1. If X,Y ⊆ Ad
K are two affine varieties, then X ∪ Y and X ∩ Y are

also affine varieties.

In Lemma 3.1, suppose that X = X(f1, . . . , fs) and Y = Y(g1, . . . , gt). Then,

X ∪Y = V(figj | 1 ≤ i ≤ s, 1 ≤ j ≤ t) , (3.10)

and
X ∩Y = V(f1, . . . , fs, g1, . . . , gt) , (3.11)

are affine varieties.

Definition 3.9 (Irreducible variety). An affine variety V ⊂ Ad
K is called reducible

if it can be written as a non-trivial union of two subvarieties V = V1 ∪V2 where
V1 ̸= ∅ and V2 ̸= ∅. Otherwise it is called irreducible.

Definition 3.10 (Ideal). A subset I ⊆ K[x0, . . . , xd−1] is called an ideal if it satis-
fies the following:

(i) 0 ∈ I.

(ii) If f1, f2 ∈ I, then f1 + f2 ∈ I.

(iii) If f ∈ I and g ∈ K[x0, . . . , xd−1], then fg ∈ I.

Definition 3.11 (Ideal of a variety). Let V ⊆ Ad
K be an affine variety. We define

the ideal of this variety as follows

I(V) = {f ∈ K[x0, . . . , xd−1] | f(a0, . . . , ad−1) = 0 ∀ (a0, . . . , ad−1) ∈ V} .
(3.12)

Remark 3.3. The ideal of an affine variety V ⊆ Ad
K , I(V), is an ideal.

Definition 3.12 (Subset closure). The algebro-geometric closure of a subset of an
affine space S ⊂ Ad

K is defined as follows

S̄ = {(a0, . . . , ad−1) ∈ Ad
K | f(a0, . . . , ad−1) = 0 ∀ f ∈ I(S)} = V(I(S)) .

(3.13)
A subset S ⊂ Ad

K is closed if S = S̄; T ⊂ Ad
K is open if its complementAd

K \ T
is closed inAd

K .
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Lemma 3.2. (i) A finite union of affine varieties ∪Ni=1Vi is an affine variety.
(ii) An arbitrary intersection of affine varieties ∩jVj is an affine variety.

The Lemma 3.2 shows that closed subsets of an affine space (in the sense of
algebraic geometry) satisfy the axioms of a topological space.

Definition 3.13 (Zariski topology on an affine space). The Zariski topology on an
affine spaceAd

K is the topology whose closed subsets are the affine varieties V(I)
for I ⊆ K[x0, . . . , xd−1].

Definition 3.14 (Zariski topology on an affine variety). The Zariski topology on
an affine variety X ⊆ Ad

K is the restricted topology, that is, the closed subsets of X
are subvarieties of X, i.e., {X ∩V(I) | I ⊆ K[x0, . . . , xd−1]}.

3.3 Projective geometry

Projective geometry has its origins in the early Italian Renaissance, particularly in
the architectural drawings of Filippo Brunelleschi (1377–1446) and Leon Battista
Alberti (1404–72), who invented the method of perspective drawing [119].

Projective geometry is less restrictive than affine geometry. A projective space
can be seen as an extension of a Euclidean space, that is an affine space with points
at infinity, in such a way that there is one point at infinity of each direction of
parallel hyperplanes, and so two hyperplanes always intersect. Actually, in pro-
jective space there is a hyperplane at infinity which is the locus of all points of
intersections of parallel hyperplanes.

Consider the real projective planeRP2 which is an example of a compact non-
orientable two-dimensional manifold, i.e., it is a one-sided surface. Möbius strip
can be constructed from a square by gluing two of its sides together with a half-
twist. The real projective plane can thus be constructed from a Möbius strip by
gluing opposite open edges of the strip together.

We define an equivalence relation ∼ on non-zero points of an affine spaceAd
K

by setting
(a0, . . . , ad−1) ∼ (b0, . . . , bd−1) , (3.14)

if there is a non-zero element λ ∈ K such that

(a0, . . . , ad−1) = λ(b0, . . . , bd−1) . (3.15)

Definition 3.15 (Projective space). A d-dimensional projective space over the field
K, denoted by Pd−1

K , is the set of equivalence classes of ∼ onAd
K . That is

P
d−1
K =

Ad
K

∼
. (3.16)
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Definition 3.16 (Ray). Equivalence classes of ∼ onAd
K are called rays (or fibers).

So,
P
d−1
K

∼= {rays through the origin in Kd} .

Given a point p = (a0, . . . , ad−1) ∈ Ad
K , its equivalence class [p] ∈ Pd−1

K

will be denoted by [a0 : · · · : ad−1], and we will say that [a0 : · · · : ad−1] are
homogeneous coordinates of point p. Thus, for λ ∈ K \ {0} we have

[a0 : · · · : ad−1] = [b0 : · · · : bd−1] ⇔ (a0, . . . , ad−1) = λ(b0, . . . , bd−1) .
(3.17)

Whenever a0 ̸= 0, we may assume that a0 = 1, and with this assumption the
other coordinates are uniquely determined. Thus, we may identify the subset

{[a0 : a1 · · · : ad−1] | a0 ̸= 0} ⊂ Pd−1
K , (3.18)

withAd−1
K by letting [a0 : a1 : · · · : ad−1] correspond to (a1a0 , . . . ,

ad−1

a0
). The set

{[a0 : a1 : · · · : ad−1] | a0 = 0} ⊂ Pd−1
K , (3.19)

corresponds to the points at infinity. This subset may in turn be identified with
P
d−2
K in an obvious way by forgetting the first coordinate a0, which is zero. We

obtain the following description of Pd−1
K :

P
d−1
K = Ad−1

K ∪Pd−2
K , (3.20)

and we say that the projective space Pd−1
K is obtained by adjoining to an affine

spaceAd−1
K a projective space space Pd−2

K of points at infinity.

Corollary 3.1. In projective geometry, affine space means the complement of a
hyperplane at infinity in a projective space.

Regarding Eq. (3.20), One can divide Pd−2
K in a similar way, and repeating the

process all the way down to P0
K , that is,

P
d−1
K = Ad−1

K ∪Ad−2
K ∪ · · · ∪A1

K ∪P0
K , (3.21)

where P0
K is just only one point at infinity, i.e., P0

K = {∞}.

3.3.1 Projective Hilbert space

Definition 3.17 (Ray). The equivalence class of a vector |ψ⟩ ∈ H for the equiva-
lence relation ∼

|ψ⟩ ∼ |φ⟩ iff ∃ λ ∈ C \ {0} s.t. |ψ⟩ = λ|φ⟩ , (3.22)

is called a ray. For |ψ⟩, the associated ray is the set

[ψ] =
{
|φ⟩ ∈ H

∣∣ |φ⟩ = λ|ψ⟩ ∀ λ ∈ C \ {0}
}
. (3.23)
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Therefore, it is more convenient to work on the projective Hilbert space by
considering each ray as a point of it.

Definition 3.18 (Projective Hilbert space). Projective Hilbert space is the set of
all rays of non-zero vectors in the Hilbert space which is induced by equivalence
relation ∼. In other words, it is the quotient space

P(H) :=
H \ {0}

∼
. (3.24)

Points in the projective Hilbert space P(H) are one-dimensional rays in the
Hilbert space H or equivalently one-dimensional projectors:

|ψ⟩ → Pψ :=
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

. (3.25)

In this dissertation, we shall consider only finite dimensional complex Hilbert
spaces, i.e., we assume H = Cd. Hence, normalized quantum pure states |ψ⟩ ∈ Cd
can be considered as points on a unit (2d−1)-dimensional sphere ((2d−1)-sphere,
for short)

S2d−1 = {|ψ⟩ ∈ Cd | ⟨ψ|ψ⟩ = 1} . (3.26)

Now, two normalized quantum pure states |ψ⟩ and |φ⟩ as points on the unit
(2d − 1)-sphere S2d−1 are equivalent iff |φ⟩ = eiδ|ψ⟩. Therefore, the corre-
sponding projective Hilbert space can be considered as a quotient space of the
unit (2d− 1)-sphere in Cd under the action of U(1), i.e.,

P(H) = CPd−1 :=
S2d−1

U(1)
∼=
S2d−1

S1
. (3.27)

the last equality can be considered by the topology of the group U(1), that is
U(1) ∼= S1.

Concerning Eq. (3.20), we also can write the following equality

CP
d−1 = Cd−1 ∪CPd−2 . (3.28)

Specifically, CP1 = C ∪ {∞}.
On the other hand, the transitive group of CPd−1 is SU(d), that is, for every

p, q ∈ CPd−1 there exists a g ∈ SU(d) such that

ϖg : SU(d)×CPd−1 → CP
d−1 ,

p→ ϖg(p) = q . (3.29)

The isotropy group (or stabilizer) of CPd−1 is the group U(d− 1), hence

CP
d−1 ∼=

SU(d)

U(d− 1)
. (3.30)
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Figure 3.3: Bloch sphere: the projective Hilbert space of a qubit P(C2) = CP1.
Each point on this sphere represents a class of equivalent one-qubit pure states (see
Eq. (2.21)).

Bloch sphere

A well known example of the projective Hilbert space is CP1 (also known as the
complex projective line or Riemann sphere) which is the state space of one-qubit
states.

CP
1 =

S3

U(1)
∼= S2 . (3.31)

This two-dimensional sphere is known as the Bloch sphere in quantum mechanics
(see Fig. 3.3). Regarding Eq. (2.25), the r⃗ is called the Bloch vector. Therefore,
any point on this sphere, i.e., |r⃗| = 1, corresponds to a class of equivalent qubit
pure states3. If we consider a Bloch ball corresponding to |r⃗| < 1, then any point
in the Bloch ball represents a class of equivalent qubit mixed states and |r⃗| is called
the Bloch ball radius.

3.3.2 Projective variety

Here, our goal is to extend the definition of the variety in the affine space to the
projective space. For this purpose, we will see that some care must be taken. For
instance, in RP2, we can try to construct the variety V(x2 − y − z). This variety
is the zero locus of the polynomial x2 − y − z. Moreover, in projective space, we

3Elements of the projective Hilbert space are not states but rather a class of equivalent states.
However, since the members of the equivalent class represent the same quantum states (by the U(1)
gauge invariance), we can use the term state for the elements of the projective Hilbert space. Indeed,
we usually use a minimal form of a state from an Hilbert space as a representative of a point of the
projective Hilbert space.
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3.3. Projective geometry

should consider the equivalency of points (see Eqs. (3.14) and (3.15)). We can
see that the point p = [x : y : z] = [2 : 2 : 2] appears to be in this set since the
components of p satisfy the equation x2 − y − z = 0. Although we know that the
same point p can be represented by the homogeneous coordinates p = [4 : 4 : 4]
but if we substitute these components into the polynomial x2 − y − z, we obtain
16 − 4 − 4 = 8 ̸= 0. Therefore, we get different results depending on which
homogeneous coordinates we choose. To avoid this problem, we use homogeneous
polynomials in the projective space.

Definition 3.19 (Homogeneous polynomial). A homogeneous d-variate degree-n
polynomial f ∈ K[x0, . . . , xd−1]n is a finite linear combination of d-variate
degree-n monomials with coefficients in the field K. That is

f(x0, . . . , xd−1) =
∑
α

aαx
α , with

∑
k∈Zd

αk = n , (3.32)

where α = (α0, . . . , αd−1) and aα ∈ K.

Lemma 3.3. Let f ∈ K[x0, . . . , xd−1] be a homogeneous polynomial. If f van-
ishes on one of the homogeneous coordinates representing a point p ∈ Pd−1

K , then
f vanishes for all homogeneous coordinates of p.

Therefore, V(f) = {p ∈ Pd−1
K | f(p) = 0} for a homogeneous polynomial

f , is a well-defined subset of the projective space Pd−1
K . So we can define the

projective variety as follows.

Definition 3.20 (Projective variety). The zero locus of a set of homogeneous poly-
nomials F = {f1, . . . , fs} ⊂ K[x0, . . . , xd−1] is called a projective variety. That
is

V(F ) = {[a0 : · · · : ad−1] ∈ Pd−1
K | fi(a0, . . . , ad−1) = 0 ∀ fi ∈ F} . (3.33)

Definition 3.21 (Projective equivalence). We say V ⊆ Pd−1
K and W ⊆ Pd−1

K are
projectively equivalent if they are transformed into each other by a linear change of
coordinates in Pd−1. It means that there exists a linear map A ∈ GL(d,K) which
establishes an isomorphism

A : V → W

a⃗→ Aa⃗ , (3.34)

Where a⃗ = (a0, . . . , ad−1). The inverse of the linear map is given then by the
inverse matrix A−1.
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Note that in this situation A and λA define the same transformation in the
projective space Pd−1

K for λ ∈ K \ {0}, and in fact the group which acts on the
projective space is

PGL(d,K) = P
(
GL(d,K)

)
=

GL(d,K)

K \ {0}
. (3.35)

Definition 3.22 (Closed subset). A subset of a projective space S ⊂ Pd−1
K is called

closed subset if it consists of all points at which a finite number of homogeneous
polynomials vanish.

It is worth noting that the set of all homogeneous polynomials in
K[x0, . . . , xd−1] that vanish at all points p ∈ S forms an ideal I(S), called the
ideal of the closed set S. Therefore, the closure of a subset of a projective space is
the variety of the ideal of that subset, i.e.,

S̄ = {[a0 : · · · : ad−1] ∈ Pd−1
K | f(a0, . . . , ad−1) = 0 ∀ f ∈ I(S)} = V(I(S)) .

(3.36)

Remark 3.4. A closed subset defined by one homogeneous equation f = 0 is
called a hypersurface, as in the affine case. The degree of the polynomial is the
degree of the hypersurface. A hypersurface of degree two is called a quadric.

Definition 3.23 (Zariski topology on a projective space). The Zariski topology on
a projective space Pd−1

K is the topology whose closed subsets are the projective
varieties. The Zariski topology on a projective variety V ⊆ P

d−1
K is the induced

topology.

3.4 Morphisms

In algebraic geometry, a morphism between algebraic varieties is made of local
functions between the algebraic varieties that is given by a polynomial map.

Definition 3.24 (Morphism). A morphism of affine spaces

F : Ad1
K → A

d2
K , (3.37)

is given by a polynomial map

(a0, . . . , ad1−1) 7→ (f0(a), . . . , fd2−1(a)) , (3.38)

where a = (a0, . . . , ad1−1), F = (f0, . . . , fd2−1), and fi ∈ K[x0, . . . , xd1−1] for
each 0 ≤ i ≤ d2 − 1.
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A morphism F : V → W between affine varieties V ⊆ Ad1
K and W ⊆ Ad2

K is
given by a polynomial map F : Ad1

K → A
d2
K that restricts to V, such that F (V) ⊆

W.
It is worth noting that an isomorphism is a morphism which has an inverse

morphism.

Remark 3.5. Generally speaking, the image of a morphism need not be an affine
variety.

Remark 3.6. A morphism of projective spaces is the same as the morphism of
affine space where the local functions are homogeneous polynomials.

3.4.1 Veronese embedding

Definition 3.25 (Veronese embedding). The degree n Veronese embedding

Vnd−1 : P
d−1
K ↪→ P

m
K , (3.39)

is an injective morphism defined by

[a0 : · · · : ad−1] → [f0(a) : · · · : fm(a)] , (3.40)

where a = (a0, . . . , ad−1) and {fi}mi=0 are all of the d-variate degree-nmonomials.
That is, each fi has the form∏

k∈Zd

xαk
k , with

∑
k∈Zd

αk = n . (3.41)

For 0 ≤ αk ≤ n we have
(
n+d−1
n

)
different forms. Therefore, m =

(
n+d−1
n

)
− 1.

The image of this morphism is called Veronese variety.

Definition 3.26 (Catalecticant matrix). Let [z0 : · · · : zm] denote the homogeneous
coordinates of the local functions in Eq. (3.40). The i-th catalecticant matrix of a
point p ∈ Pm is defined as

Ci(p) =


z0 z1 · · · zi
z1 z2 · · · zj+1
...

...
. . .

...
zm−i zm−i+1 · · · zm

 , (3.42)

for 1 ≤ i ≤ m− 1.
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Figure 3.4: Twisted cube: the Veronese variety ofRP1 ↪→ RP3.

Remark 3.7. The Veronese embedding can also be represented as follows

Vnd−1 : P
(
Kd
)
↪→ P

(
SymnKd

)
[v] → [vn] , (3.43)

where SymnKd, the d-th symmetric power of vector space Kd, is the quotient of
n-fold product (Kd)×n : Kd×· · ·×Kd by the permutation action of the symmetric
group Sn, i.e.,

(Kd)×n

Sn
. (3.44)

Rational normal curve

In Eq. (3.39), for d− 1 = 1, i.e.,

Vn1 : P1
K ↪→ P

n
K . (3.45)

the Veronese variety is known as the rational normal curve. For n = 1 the Veronese
map is the identity map on the projective line. For n = 2 the Veronese variety is
the standard parabola, [a2 : ab : b2], in affine coordinates [1 : z : z2]. For n = 3
the Veronese variety is the twisted cubic, [a3 : a2b : ab2 : b3], in affine coordinates
[1 : z : z2 : z3] (see Fig. 3.4).

If we let [z0 : z1 : z2 : z3] denotes the homogeneous coordinates of P3
K , then

twisted cubic can be defined as the intersection of the following three quadrics
which can be obtained by 2× 2 minors of the catalecticant matrix in Eq. (3.42)

z0z2 − z21 = 0 ,

z1z3 − z22 = 0 ,

z0z3 − z1z2 = 0 .

(3.46)
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3.4.2 Segre embedding

The Zariski topology is strictly finer than the product topology4. It means that the
Zariski topology on P2

K is not identical with the product topology on P1
K × P1

K .
So, the Segre embedding is used to consider the Cartesian product of projective
spaces as a projective subvariety of a bigger projective space and restrict the Zariski
topology on the projective space to the subvariety.

Definition 3.27 (Segre embedding). The Segre embedding is an injective mor-
phism defined by

Σ2
(d1−1,d2−1) : P

d1−1
K ×Pd2−1

K ↪→ P
d1d2−1
K , (3.47)

which takes a pair of points ([a], [b]) ∈ Pd1−1 ×Pd2−1 to their products

([a0 : · · · : ad1−1], [b0 : · · · : bd2−1]) → [a0b0 : · · · : aibj : · · · : ad1−1bd2−1] ,
(3.48)

where the notation refers to homogeneous coordinates and the aibj are taken in
lexicographical order. The image of this morphism is called Segre variety.

Remark 3.8. The Segre embedding can be considered as matrix multiplication5.
That is

Σ2
(d1−1,d2−1) : P

(
Kd1

)
×P

(
Kd2

)
↪→ P

(
Kd1 ⊗Kd2

)
, (3.49)

which is defined by
([a], [b]) → [a⊗ b] = [aibj ] . (3.50)

Indeed,

([a0 : · · · : ad1−1], [b0 : · · · : bd2−1]) →


 a0

...
ad−1

(b0 · · · bd−1

) . (3.51)

Example: Consider the following Segre map

Σ2
(1,1) : P

1
K ×P1

K ↪→ P
3
K , (3.52)

which is defined by

[a0 : b1]× [b0 : b1] → [a0b0 : a0b1 : a1b0 : a1b1] . (3.53)

4In topology, a product space is the Cartesian product of a family of topological spaces equipped
with a topology called the product topology

5Notice that it is true for Segre embedding of two factors.
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Figure 3.5: The real Segre embeddingRP1 ×RP1 ↪→ RP3: the Segre variety is
a hyperboloid ruled by straight lines.

Regarding [z0 : z1 : z2 : z3] as the homogeneous coordinates ofP3
K , then it is easy

to check that the Segre variety in P3
K has equation

z0z3 − z1z2 = 0 . (3.54)

Thus, the Segre variety is a smooth quadric inP3
K . If we take the real fieldK = R,

then the Segre variety would be a hyperboloid ruled by straight lines (see Fig. 3.5).

The Segre map in Eq. (3.52) can be also defined as follows

[a0 : a1]× [b0 : b1] →
(
a0b0 a0b1
a1b0 a1b1

)
. (3.55)

Therefore, the Segre variety represents the set of 2×2 matrices of rank at most one
and the ideal of the Segre variety is generated by the vanishing of the determinant
of the generic matrix (

z0 z1
z2 z3

)
. (3.56)

In the next section, we will present algebraic tools that are profitable for entan-
glement characterization. Particularly, we study flattening a tensor corresponding
to a multipartite quantum state. We see that a given ℓ-multilinear rank configura-
tion determines a determinantal variety in the projective Hilbert spaceP(H) which
is a subvariety of k-secant varieties of the Segre variety.

It is worth remarking that for the sake of simplicity, we write CPd ≡ Pd in
the rest of this thesis since we mainly work with the complex field K = C, unless
otherwise noted.
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3.5 Algebraic geometry and SLOCC invariants

3.5.1 Tensors

Since rank and border rank of a tensor are invariant under the SLOCC they are
profitable tools to study our central problems, that is, multipartite entanglement
classification and the interconversion between different resources by the SLOCC
and asymptotic SLOCC. Therefore, we provide these tools in this section.

A tensor is an algebraic object that can be represented by a multidimensional
array of components that are functions of the coordinates of a space. We provide a
general definition of a tensor based on multilinear maps in multilinear algebra.

Definition 3.28 (Multilinear map). Let V1, . . . , Vn, and W be vector spaces. An
n-linear map is a function

ϕ : V1 × · · · × Vn →W , (3.57)

such that (v1, . . . , vi, . . . , vn) is a linear function on vi ∈ Vi if all of the variables
but vi are held constant, for each i ∈ {1, . . . , n}. Therefore, a multilinear map is a
function of several variables that is linear separately in each variable.

Definition 3.29 (Multilinear complexity). Let us assume that there exists a se-
quence (f (1)1 , . . . , f

(n)
1 , w1 : · · · : f (1)r , . . . , f

(n)
r , wr) with f (j)k ∈ V ∨

j and wk ∈W
such that the multilinear map in Eq. (3.57) can be written as

ϕ(v1, . . . , vn) =
r∑

k=1

f
(1)
k (v1) · · · f (n)k (vn)wk ∀ vj ∈ Vj , (3.58)

The minimum r is called multilinear complexity or the rank of the multilinear map
ϕ in Eq. (3.57).

The border rank of the multilinear map ϕ in Eq. (3.57) is defined as the smallest
r such that ϕ can be written as a limit of a sequence of bilinear maps of rank r.

A multilinear map can be thought of as a tensor in V ∨
1 ⊗ · · · ⊗ V ∨

n ⊗ W .
Therefore, Eq. (3.58) can be considered as decompositions of this tensor and the
rank and border rank of the multilinear map coincides with the tensor rank and
tensor border rank. In addition, it can be concluded that there is a natural one-to-
one correspondence between the multilinear map ϕ in Eq. (3.57) and the following
linear map

T : V1 ⊗ · · · ⊗ Vn →W , (3.59)

where V1 ⊗ · · · ⊗ Vn denotes the tensor product of vector spaces V1, . . . , Vn. The
relation between these two maps is given by ϕ(v1, . . . , vn) = T (v1 ⊗ · · · ⊗ vn).
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Remark 3.9. Any pure multipartite quantum state |ψ⟩ ∈ ⊗n
i=1C

di corresponds to
an order-n tensor (or simply n-tensor). So one can treat a multipartite quantum
state like a tensor.

Remark 3.10. A tensor of the form v1⊗· · ·⊗vn in ⊗n
i=1Vi is called simple tensor.

Therefore, a nonzero simple tensor is equivalent to a fully separable quantum state.

Let us consider the bilinear complexity of the matrix multiplication as an ex-
ample. The matrix multiplication of two 2 × 2 matrices can be seen as a bilinear
map

MaMu: C4∨ ×C4∨ → C
4 , (3.60)

Now, the question is: what is the minimum number of scalar multiplications over
the ground field that are required to compute the map MaMu in Eq. (3.60)? Actu-
ally, the answer of this question is equal to the rank of the bilinear map.

Let A and B be two 2× 2 matrices

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
. (3.61)

Using the definition of matrix multiplication we need eight scalar multiplications
to compute their product. That is

A×B =

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
. (3.62)

However, in Ref. [120], Strassen presents an algorithm such that using the follow-
ing seven scalar multiplications

M1 = (a11 + a22)(b11 + b22) ,

M2 = (a21 + a22)b11 ,

M3 = a11(b12 − b22) ,

M4 = a22(b21 − b11) ,

M5 = (a11 + a12)b22 ,

M6 = (a21 − a11)(b11 + b12) ,

M7 = (a12 − a22)(b21 + b22) , (3.63)

we can obtain A×B as

A×B =

(
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

)
. (3.64)
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While one needs n3 scalar multiplications to compute the matrix multiplication
of two n×nmatrices based on its definition, one can do it by 7m scalar multiplica-
tion for n = 2m, using Strassen’s algorithm iteratively. Therefore, this algorithm
lowers the upper bound for the complexity of matrix multiplication from n3 to
nlog2 7 ≃ n2.81. A long-standing open problem in algebraic complexity theory is
whether we can lower this upper bound to n2.

The bilinear map in Eq. (3.60) is equivalent to a three-tensor

MaMu ∈ C4 ⊗C4 ⊗C4 . (3.65)

Therefore, considering the bilinear map as a tensor, we can write MaMu as a lin-
ear combination of simple tensors where each simple tensor represents an scalar
multiplication. The naive algorithm for matrix multiplication implies that MaMu
can be written as a linear combination of eight simple tensors. However, con-
cerning Strassen’s algorithm in Eq. (3.63), the tensor MaMu can be written as
MaMu =

∑7
i=1 xi ⊗ yi ⊗ zi. It means that the upper bound of the tensor rank

of MaMu is seven. Later, it was shown that the rank of MaMu is optimal [121].
Furthermore, Landsberg proved that the border rank of MaMu is seven [122].

The rank of a tensor T is defined as the minimum number of simple tensors
that sum to T and it extends the notion of the rank of a matrix in algebra [123],
so it can be seen as a generalization of Schmidt rank. The following is a concrete
definition of tensor rank.

Definition 3.30 (Tensor rank). Let T ∈ V1 ⊗ · · · ⊗ Vn be a tensor where each Vi
is a vector space. The tensor rank of T is defined as follows

rk(T ) = min
{
r
∣∣ T =

r∑
p=1

v
(p)
1 ⊗ · · · ⊗ v(p)n , for some v(p)i ∈ Vi

}
. (3.66)

If n = 2, the tensor rank of T is equal to the matrix rank of the linear map
T : V ∨

1 → V2.
The tensor border rank (border rank, for short) of a tensor T is defined as the

smallest r such that T is a limit of tensors of rank r, or equivalently the smallest
r such that T lies in the Zariski closure of the set of tensors of rank r [59], so it
can be seen as a counterpart of the generalized Schmidt rank. The following is a
concrete definition of border rank of a tensor T .

Definition 3.31 (Border rank). Let T ∈ V1 ⊗ · · · ⊗ Vn be a tensor where each Vi
is a vector space. The border rank of T is the smallest r such that T is a limit of
tensors of rank r, i.e.,

brk(T ) = min
{
r
∣∣ T = lim

ε→0
Tε , s.t. ∀ε ̸= 0, rk(Tε) = r

}
. (3.67)
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Clearly, brk(T ) ≤ rk(T ).
It is useful to introduce symmetric tensors and symmetric tensor rank (or War-

ing rank).

Definition 3.32 (Symmetric tensor). Let T ∈ V1⊗· · ·⊗Vn be a tensor where each
Vi is a vector space. The tensor T is symmetric if it is invariant under the action
of a symmetric group that permutes the tensor factors, that is, for all p ∈ Sn,
p(T ) = T .

Symmetric tensors correspond to symmetric multipartite quantum states that
are invariant under any permutations of the parties. To estimate the symmetric
tensor rank of a symmetric quantum state |ψ⟩, denoted by srk(ψ), there is a corre-
spondence between symmetric quantum states and homogeneous polynomials.

Definition 3.33 (Waring rank). The Waring rank of a homogeneous d-variate
degree-n polynomial f ∈ C[x0, . . . , xd−1]n is the minimum number of terms con-
tained in f when it is expressed as a combination of nth powers of linear forms,
that is, the minimum number of s in the following symmetric decomposition

f(x0, . . . , xd−1) =

s∑
i=1

(β
(i)
0 x0 + · · ·+ β

(i)
d−1xd−1)

n . (3.68)

The Waring rank is a much-studied problem in algebraic geometry [124–128].
Since there is a unique correspondence between a symmetric quantum state |ψ⟩ and
a homogeneous d-variate degree-n polynomial f , up to scaling the variables, the
symmetric tensor rank is identical to the Waring rank. Although it is known that the
symmetric tensor rank is not equal to the tensor rank [127], it can be considered as
an upper bound for the tensor rank of a symmetric tensor Tsym (see Refs. [46,125]),
that is,

rk(Tsym) ≤ srk(Tsym) . (3.69)

The Waring rank of a general monomial has been found in Ref. [126].

Theorem 3.2 (Ref. [126]). Let α = (0 < α0 ≤ · · · ≤ αd−1) ∈ Nd+1. The Waring
rank of the monomial xα0

0 · · ·xαd−1

d−1 is equal to

rk(xα0
0 · · ·xαd−1

d−1 ) =

d−1∏
i=1

(αi + 1) . (3.70)

In addition, the conjecture in Ref. [128] provides the symmetric border rank of
a general monomial.
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Conjecture 3.1 (Ref. [128]). Let α = (0 < α0 ≤ · · · ≤ αd−1) ∈ Nd+1. The
symmetric border rank of the monomial xα0

0 · · ·xαd−1

d−1 is equal to

brk(xα0
0 · · ·xαd−1

d−1 ) =

d−2∏
i=0

(αi + 1) . (3.71)

3.5.2 Flattening

Although it is customary to look at an n-partite quantum state

|ψ⟩ =
n∑

α=1

dα−1∑
iα=0

ci1···in |i1 · · · in⟩ , (3.72)

as a vector, such a vector results from the vectorization of an n-tensor in the Hilbert
space Hn = ⊗n

i=1C
di . In multilinear algebra, this vectorization is a kind of tensor

reshaping. Here, we shall use a tensor reshaping known as tensor flattening (or
matricization) [59]. It consists in partitioning the n-fold tensor product space (here,
Hn) to two-fold tensor product spaces with higher dimensions. With respect to the
partitioning, we define an ordered ℓ-tuple I = (i1, i2, . . . , iℓ) where 1 ≤ ℓ ≤ n− 1
and 1 ≤ i1 < · · · < iℓ ≤ n and an ordered (n− ℓ)-tuple related to complementary
partition Ī such that I ∪ Ī = (1, 2, . . . , n). Therefore, Hn ≃ HI ⊗ HĪ where
HI = ⊗iℓ

α=i1
Cdα and HĪ is the complementary Hilbert space. For any state ψ

with vector representation |ψ⟩ ∈ Hn, the ℓ-partition I leads to a linear operator
MI [ψ] which maps the dual H∨

I of HI to HĪ ,

MI [ψ] : H∨
I → HĪ . (3.73)

Using Dirac notation, the matricization of |ψ⟩ reads

MI [ψ] = (⟨e1|ψ⟩, . . . , ⟨edI |ψ⟩)
T , (3.74)

where {|ej⟩ = |i1 · · · iℓ⟩}dI=Πdα
j=1 is the computational basis of HI and T denotes

the matrix transposition. Clearly, we shall consider all ordered ℓ-tuples I to avoid
overlapping of entanglement families [31]. Hence, for a given |ψ⟩ we have as
many matrix representations MI [ψ] as the number of possible ℓ-tuples I , which
is
(
n
ℓ

)
. In this way, we can define ℓ-multilinear rank (ℓ-multirank, for short) [59]

of |ψ⟩ as a
(
n
ℓ

)
-tuple of ranks of

(
n
ℓ

)
different flattening MI [ψ]. Obviously, the

zero-multirank is just a number, namely 1, as well as the n-multirank.
It is worth noting that it is enough to check ℓ-multiranks for partition I with

1 ≤ ℓ ≤ ⌊n2 ⌋, because for complementary partition Ī the matrices MĪ [ψ] are just
the transposes of MI [ψ] and transposition does not alter the rank of the matrix.
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Figure 3.6: Flattening of |ψ⟩ ∈ Cd1 ⊗Cd2 ⊗Cd3 to three different matrices.

Moreover, when n is an even integer the half digits of
(
n
n
2

)
-tuple corresponding to

n
2 -multirank is iterative. Therefore, the number of independent flattening ranges
from

(
n
1

)
to (1/2)n+1 mod 2

(
n

⌊n
2
⌋
)
.

Remark 3.11. Recall that a matrix has rank less than r iff all of its (r+1)×(r+1)
minors vanish. Similarly, a tensor has multilinear rank less than (r1, . . . , rm) iff all
of its (ri + 1)× (ri + 1) minors of the i-flattening vanish for all i.

Remark 3.12. Not only do the integers of the tuples (ℓ-multiranks) tell us about the
separability of the state but also the greater the integers are the more entanglement
the parties of the state have. Each integer equals one means there is a separability
between two parties

Example: Let us consider |ψ⟩ ∈ Cd1 ⊗ Cd2 ⊗ Cd3 . Regarding Eq. (3.73),
we have three different matrices corresponding to partitions: Ii = (i) for all i ∈
{1, 2, 3}. That is

MI1 [ψ] ∈ Cd1 ⊗Cd2·d3 ,
MI2 [ψ] ∈ Cd2 ⊗Cd1·d3 ,
MI3 [ψ] ∈ Cd3 ⊗Cd1·d2 . (3.75)

These three different flattening is illustrated in Fig. 3.6. Therefore, one-multirank
is a triple (r1, r2, r3) where ri = rank(MIi).
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Remark 3.13. The rank of MI [ψ] is the same as the rank of the reduced density
matrix obtained after tracing over the parties identified by the (n− ℓ)-tuple Ī , i.e.,

ϱI = TrĪ (|ψ⟩⟨ψ|) = MI [ψ]M†
I [ψ] . (3.76)

Theorem 3.3. ℓ-multirank is an SLOCC invariant.

Proof. Regarding SLOCC equivalent states, i.e.,

|ψ̃⟩ = (⊗n
i=1Ai) |ψ⟩ , (3.77)

where |ψ⟩ ∈ Hn and Ai ∈ SL(di,C), we have following relation between their
flattenings

MI [ψ̃] = (⊗i∈IAi)MI [ψ]
(
⊗i∈ĪAi

)T
, (3.78)

that does not alter the matrix rank. Therefore, ℓ-multirank is an SLOCC invariant.
■

Remark 3.14. A state is genuinely entangled iff all ℓ-multiranks are greater than
one.

3.5.3 Auxiliary varieties

Since ℓ-multiranks only depend on the quantum state, and not on the representa-
tion, and, furthermore, because statements about rank can be rephrased as state-
ments about minors which are determinants, it follows that a given ℓ-multirank
configuration determines a determinantal variety in the projective Hilbert space
PH. Actually, the determinantal variety is a subset of all matrices with rank r or
less in PH, that is just the common zero locus of the (r + 1) × (r + 1) minors.
Pure multipartite states which have ℓ-multiranks bounded by a given integer se-
quence make a subvariety of PH. In particular, the Segre variety is an example
of a determinantal variety; it is the zero locus of the 2 × 2 minors of the coeffi-
cient matrices in Eq. (3.72), i.e., common zero locus of the quadratic polynomials
MijMkl − MilMkj . Therefore, the projective variety of fully separable three-
qudit states has the structure of a Segre variety [34, 129] which is embedded in the
ambient space as follows:

Σnd-1 : P
d1−1 ×Pd2−1 × · · · ×Pdn−1 ↪→ P

D . (3.79)

Here, d-1 = (d1−1, . . . , dn−1),D = (Πni=1di)−1, and × is the Cartesian product
of sets. One can readily check that Σnd-1 is indeed the projective variety of fully
separable states. Actually, if all partial traces are pure states, the corresponding
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ranks are all one. So we have that for all ℓ-partitions the rank of MI [ψ] is always
one. Conversely, if all ranks are one, the state is fully separable.

It is worth noting that multipartite symmetric separable states with identical
parties of dimension d have the structure of Veronese variety.

Definition 3.34 (Secant variety). Let projective varieties X and Y be subvarieties
of a projective variety. The joining of X and Y is given by the algebraic closure,
for the Zariski topology, of the lines from one to the other,

J(X,Y) =
⋃

x∈X,y∈Y,x ̸=y
P1
xy , (3.80)

where P1
xy is the projective line that includes both x and y. If X = Y, the joining

is called the secant variety of X , i.e., σ(X) = J(X,X).

Remark 3.15. The determinantal varieties in Eq. (3.79) are subvarieties of secant
varieties of the Segre variety.

Definition 3.35 (Tangent variety (see Ref. [130])). Let projective varieties X and
Y be subvarieties of a projective variety and suppose now Y ⊂ X. Let T⋆X,Y,y0
denote the relative tangent star, which is the union of P1

⋆ = limx,y→y0 P
1
xy with

y0 ∈ Y and the x’s taken from X. The variety of relative tangent stars is defined as
follows

T(X,Y) =
⋃
y∈Y

T⋆X,Y,y . (3.81)

If X = Y, we denote the tangential variety as τ(X) = T(X,X).

Remark 3.16. The iterated join of k copies of X is called the k-secant variety
of X . Hence, the secant varieties that we have mentioned above are given by the
algebraic closure of the joining of the Segre variety and the immediately previous
secant variety:

σk(Σ) = J (σk−1(Σ),Σ) . (3.82)

Notice that the first secant variety of the Segre variety coincides with the Segre
variety itself, i.e., σ1(Σ) = Σ6. This means that a generic point of the k-secant is
a combination of k independent points of the Segre variety (the superposition of
k fully separable states). If σk fills the ambient projective space we say that the
generic tensor rank is k. A crucial element of the definitions is that the secants are
closed. This means that in each k-secant (k > 1) family there will be elements

6Actually, this statement is true for any variety.
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whose tensor rank will not be k (it can be greater than k) but the border rank is k.
Thus we will make the distinction between the proper secant and the tangent.

For instance, based on Strassen’s algorithm discussed in Section 3.5.1, the ten-
sor rank of MaMu is seven which means MaMu ∈ σ7(P

3 × P3 × P3) [120].
Moreover, based on the information that the border rank of MaMu is also seven
we can conclude that MaMu /∈ σ6(P

3 ×P3 ×P3) [122].

Remark 3.17. If the projective variety X is non-degenerate, i.e., it is not contained
in a linear subspace of P(Kd), there is a natural sequence of inclusions given by

X ⊂ σ2(X) ⊂ σ3(X) ⊂ · · · ⊂ σr(X) = P(K
d) , (3.83)

where r is the smallest integer such that the r-th secant variety fills the ambient
space.

We can also generalize the definition of tangent line to a curve by introducing
its osculating planes [69]. Hence, one can define varieties of different types of
limiting curves inside the k-secant variety. To simplify the calculations, let xt be
a smooth curve in Σ. Then, we can take higher order derivatives and calculate the
higher dimensional tangential varieties as follows:

τk(Σ) = {x0 + x′0 + · · ·+ x
(k−1)
0 |xt ⊂ Σ is a smooth curve} . (3.84)

Obviously τk(Σ) ⊂ σk(Σ) and T(τk−1(Σ),Σ) ⊂ τk(Σ), the last inclusion is even
an equality.

The expected dimension of k-secant variety of a projective variety X ⊂ Pd−1

arises just from the naive dimension count. That is, if the k-secant variety does not
fill the ambient space, each point in an open set of σk(X) can be decomposed as
a sum of k points from the projective variety X. In the k-secant variety, there are
k points which leads to k × dimX parameters. Concerning k points, there are k
coefficients of the ground field. Moreover, one can divide all the k coefficients by
one of them which leads to k− 1 independent parameters. Furthermore, we expect
that since there is no deductive relation between these parameters, one can define
the expected dimension of the k-secant variety of a projective variety X as follows.

Definition 3.36 (Expected dimension of k-secant variety). For a projective variety
X ⊆ Pd−1, with dim X = s, the expected dimension of σk(X) is

expdimσk(X) = min{ks+ k − 1, d− 1} . (3.85)

If expdimσk(X)−dimσk(X) = a > 0, then σk(X) is called k-defective or simply
defective and a is the defect.
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It worth noting that the expected dimension is also the maximum dimension of
the k-secant variety.

For qudits we take the projective variety X to be the Segre variety and regarding
Eq. (3.79) dimΣnd-1 =

∑n
i=1(di − 1).

Conjecture 3.2 (Ref. [131]). For a general multipartite quantum state in the
Hilbert space H = Cd1 ⊗ · · · ⊗Cdn , the generic tensor rank, denoted by rkgen, is
equal to the expected tensor rank. That is, the smallest k in Eq. (3.85) such that
k-secant variety fills the ambient space, i.e,

rkgen =

⌈ ∏n
i=1 di∑n

i=1(di − 1) + 1

⌉
. (3.86)

In this conjecture, there are exceptional cases: C4×4×3, C(2i+1)×(2i+1)×3, and
C(i+2)×(i+2)×2×2, with i ∈ Z+. In this exceptional cases, the generic tensor rank
is equal to the expected plus one. So, based on this conjecture, it is also possible
to classify entanglement in multipartite systems.

Theorem 3.4 ( Alexander-Hirschowit (see Ref. [132])). The generic tensor rank
of a symmetric tensor in Symn

Cd is equal to the expected symmetric tensor rank
which is

rkgen =

⌈(
n+d−1
n

)
d

⌉
, (3.87)

except for (i) n = 2 where it is equal to d, and (ii) the pairs (n, d) = (3, 5),
(4, 3), (4, 4), (4, 5) where the generic tensor rank is equal to the expected plus
one [132,133]. Furthermore, in these exceptional cases, all tensors of border rank
at most brk = rkgen form a hypersurface in Symn

Cd [134].

To obtain the dimension of the secants and tangents, one can utilize the follow-
ing theorems [130, 135].

Theorem 3.5 (Fulton-Hansen theorem (see Ref. [135])). Let X be a projective
algebraic variety of dimension d. Then, one of the following two properties holds

(i) dimσ2(X) = 2d+ 1 and dim τ(X) = 2d,

(ii) dimσ2(X) ≤ 2d and τ(X) = σ2(X).

Theorem 3.6 (Zak theorem (see Ref. [130])). Let X ⊂ PD be an irreducible non-
degenerate (i.e., not contained in a hyperplane) d1-dimensional projective variety.
For an arbitrary nonempty irreducible d2-dimensional variety Y ⊂ X one of the
following two properties holds
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(i) dim J(X,Y) = d1 + d2 + 1 > dim T(X,Y) = d1 + d2,

(ii) J(X,Y) = T(X,Y).

These two theorems provide us some information if we have the dimension of
the σ2(X) and the dimension of J(X,Y), for the Fulton-Hansen and Zak theorems,
respectively. Since the secant variety is a special case of join variety, we present
the general form of the Terracini’s lemma that tell us if varieties X and Y are of
dimensions d1 and d2, respectively, then the expected dimension of join variety
J(X,Y) is d1 + d2 + 1.

Lemma 3.4 (Terracini’s lemma). Let (x, y) ∈ (X×Y)smooth
7 and [z] = [x+ y] ∈

J(X,Y)smooth. Then
T[z]J(X,Y) = T[x]X+ T[y]Y . (3.88)

Moreover, since the algebraic closure of the ℓ-multirank is known to be the
subspace variety [59], we have the following corollary.

Corollary 3.2. ℓ-multiranks of a given tensor in the k-secant are at most k.

Theorem 3.7. The k-secant variety of Segre variety is invariant under the action
of projective linear group and therefore is an SLOCC invariant.

Proof. If the points of variety X remains invariant under the action of a group
G, then so is any of its auxiliary variety which is built from points of X. ■

That is why the Schmidt rank, which indeed is tensor rank, is a SLOCC invari-
ant. On the other hand, since tangent lines can be seen as the limits of the secant
lines, there exist asymptotic SLOCC equivalence between two different SLOCC
classes and, hence, we can find exceptional states as defined in Ref. [36].

3.5.4 Equations of higher secant varieties

Regarding Eq. (3.79), in order to distinguish the elements of higher secant varieties
with the same ℓ-multiranks, one can think about m copies of the projective Hilbert
space and utilize mth Veronese embedding, i.e.,

Vm
D : P(Hn) → P(Symm[Hn]) , (3.89)

where Symm[Hn] is the mth symmetric power of Hilbert space Hn (Symm[Hn] ∼
Sym[H⊗m

n ]). According to this embedding, one can use minors of catalecticant
matrices [136], to find the elements of higher secants.

7If dimTpX is locally constant near p, we say p is a smooth point of X and Xsmooth denotes the
set of smooth points of X. So, Xsmooth is a complex manifold.
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Although, in principle, the minors of catalecticant matrices from Eq. (3.89)
provide us the invariant homogeneous polynomials8, one can devise a more ef-
fective method. One of these, similar to the spirit of Ref. [137], could be based
on projective invariants via an interpolation of representation theory [138]. As we
know, the vanishing locus of the minors of the catalecticant matrices are deter-
minantal varieties and are invariant under the action of group G = SL(d1,C) ×
· · · × SL(dn,C). Here, we should similarly provide homogeneous polynomials
of degree m which are invariant under the action of group G. Given complex
vector spaces V1 ≡ Cd1 , . . . , Vn ≡ Cdn , the group G acts over the tensor space
Hn = ⊗n

i=1Vi and, hence, on the polynomial ring,

S =
∑
m≥0

Symm [Hn] , (3.90)

where H⊗m
n

∼=
(
V ⊗m
1

)
⊗ · · · ⊗ (V ⊗m

n ). Since G is a reductive group, every sum-
mand of degree m of S in Eq. (3.90) decomposes as the sum of irreducible rep-
resentations of G, which have the form ⊗n

i=1SλiVi for certain Young diagrams
λ1, . . . , λn, each representation occurring with a multiplicity mλ1···λn . When each
λi has a rectangular shape, with exactly dimVi = di rows, all of the same length,
we get that dim⊗n

i=1SλiVi = 1 and a generator of this space is known to be an in-
variant of degree m and, indeed, all invariants occur in this way. In addition, these
one-dimensional subspaces fill altogether the invariant subring SG of S, consisting
of all invariant polynomials. It is known that such an invariant ring is finitely gen-
erated and in principle its generators and relations can be computed [139]. Note
that the ideal of any G-invariant subvariety of the projective space P(Hn), like the
secant varieties, is generated by the generators of a finite number of summands of
the form ⊗n

i=1SλiVi. These subspaces are generally known as covariants, so an
invariant is a covariant of dimension one, generated by a single G-invariant poly-
nomial. A special case is given by codimension one G-invariant subvarieties of
the projective space P(Hn). Their ideal is principal and it is generated by a single
invariant polynomial. Since the equations of any k-secant variety can be found
among the G-covariants, which are invariant sets of polynomials, we give an ex-
plicit definition of a covariant and basic tools for constructing a complete set of
covariants.

The n-partite state |ψ⟩ in Eq. (3.72) can be interpreted as an n-linear form:

f(x1, . . . ,xn) =

n∑
α=1

dα−1∑
iα=0

ci1···inx
1
i1 · · ·x

n
in . (3.91)

8These provide some necessary but typically not all the polynomials that are needed.
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A covariant of f is a multi-homogeneous G-invariant polynomial in the coeffi-
cients ci1···in and the variables xα = {xαiα}

n
α=1. To construct covariants, we

move on from Gour and Wallach [32] who write all possible SL invariant poly-
nomials for the action of G over Hn, following Schur-Weyl duality. Let Pd,m
denote the orthogonal projection of ⊗mCd onto (⊗mCd)SL(d,C). Then, P (v) =
(Pd1,m ⊗ · · · ⊗ Pdn,m(v

T ))T , where T stands for the intertwining map defined in
Ref. [32], is the orthogonal projection from ⊗mHn to (⊗mHn)

G. To compute Pd,m,
first observe that it is zero if m/d /∈ Z, while if m = dr denote by χd,r the charac-
ter of Sm corresponding to the partition m = r + · · · + r, and we get up to scalar
multiples

Pd,m =
dd,r
m!

∑
π∈Sm

χd,r(π)π , (3.92)

where dd,r is the dimension of the irreducible representation corresponding to the
partition m = r + · · · + r that can be calculated by the hook-length formula.
This construction can be generalized to write all covariants of the above action, an
invariant being a covariant of dimension 1 as mentioned before. Every covariant
of degree m corresponds to ⊗n

i=1SλiVi for certain partitions λi of m. Denoted by
χλi the character of Sm corresponding to the partition λi, we get again that up to
scalar multiples,

Pλi =
dλi
m!

∑
π∈Sm

χλi(π)π , (3.93)

is the orthogonal projection from ⊗mVi to the isotypical summand containing
SλiVi, so the orthogonal projection from ⊗mHn to ⊗n

i=1SλiVi is P (v) = (Pλ1 ⊗
· · · ⊗ Pλn(v

T ))T . The drawback of this construction is the difficulty to check in
advance which linear combinations of the Pλi’s appear in a covariant of degree
m, that is when ⊗n

i=1SλiVi comes from the subspace Symm[Hn] ⊂ ⊗mHn, this
problem is known as plethysm. For example, the partition 4 = 2 + 1 + 1 gives the
projection in Eq. (3.93),

v1 ⊗ v2 ⊗ v3 ⊗ v4 7→
1

8

(
3 v1 ⊗ v2 ⊗ v3 ⊗ v4 −

∑
π∈(12)

vπ(1) ⊗ vπ(2) ⊗ vπ(3) ⊗ vπ(4)

+
∑

π∈(1234)

vπ(1) ⊗ vπ(2) ⊗ vπ(3) ⊗ vπ(4) −
∑

π∈(12)(34)

vπ(1) ⊗ vπ(2) ⊗ vπ(3) ⊗ vπ(4)

)
,

where (12) is the conjugacy class containing the six simple swaps and so on for
the other conjugacy classes.

For the “symmetric” systems, there is also another well-known process in
mathematics literature to construct the complete set of covariants. To interpolate
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physics and mathematics literatures, for a symmetric multiqubit system, the set of
covariants is actually the set of joint covariants of binary forms and similarly for
a symmetric multiqudit system, the set of covariants is the set of joint covariants
of d-ary forms. A general method for constructing a complete set of covariants is
known as transvectants, which are based on Cayley’s omega process and are ba-
sic tools for this aim [140]. Here, we give the procedure of creating transvectants
for symmetric multiqudit systems [dα = d for all α in Eq. (3.91)]. Let functions
f1, . . . , fd be forms in variable x = (x1, . . . , xd), and tensor product notation
f1 ⊗ · · · ⊗ fd denotes the polynomial f1(y1) · · · fd(yd) in d independent variables
(note that yγ = (yγ,1, . . . , yγ,d), γ = 1, . . . , d). The d-dimensional Cayley omega
process is the dth-order partial differential operator:

Ωx =

∣∣∣∣∣∣∣∣
∂

∂y1,1
· · · ∂

∂yd,1
...

. . .
...

∂
∂y1,d

· · · ∂
∂yd,d

∣∣∣∣∣∣∣∣ . (3.94)

The rth transvectant of functions f1, . . . , fd is

(f1, . . . , fd)
(r) = tr Ωrx(f1 ⊗ · · · ⊗ fd) , (3.95)

where tr sets all variables equal, i.e., y1 = · · · = yd = x. For instance, the
first and second transvectants are known as the Jacobian determinant and polarized
form of Hessian. Now, if functions f1, . . . , fd are n-tuple forms in n independent
d-ary variables x1, . . . ,xn, one can define a multiple transvectant for any ȷ⃗ =
(j1, . . . , jn) ∈ Nn as follows:

(f1, . . . , fd)
(ȷ⃗) = tr

n∏
i=1

Ωji
xi(f1 ⊗ · · · ⊗ fd) . (3.96)

By building iterative tansvectants in the multigraded setting and starting with the
covariant of degree 1, i.e., Eq. (3.91), one can provide a complete system of co-
variants for multiqudit systems. For instance, in Ref. [141] the complete set of
covariants has been found for four-qubit systems with this method.
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Chapter4
Fine-Structure Classification of
Multiqubit Entanglement

“I like crossing the imaginary
boundaries people set up between
different fields.”

Maryam Mirzakhani

In this chapter, which is based on the Ref. [44], we present a fine-structure
entanglement classification under stochastic local operation and classical commu-
nication (SLOCC) for multiqubit pure states. To this end, we employ specific
algebraic-geometry tools that are SLOCC invariants, namely k-secant varieties,
to show that for n-qubit systems there are ⌈ 2n

n+1⌉ entanglement families. By using
another invariant, ℓ-multilinear ranks, each family can be further split into a finite
number of subfamilies. Not only does this method facilitate the classification of
multipartite entanglement, but it also turns out to be operationally meaningful as it
quantifies entanglement as a resource.

4.1 Classification algorithm

Let us consider an n-qubit state:

|ψ⟩ =
∑

i∈{0,1}n
ci|i⟩ . (4.1)
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4.1. Classification algorithm

The space of states |ψ⟩ that are fully separable has the structure of a Segre variety
[34, 129] which is embedded in the ambient space as follows:

Σn1 : P1 ×P1 × · · · ×P1 ↪→ P
2n−1 , (4.2)

where 1 = (1, . . . , 1) and × is the Cartesian product of sets. A k-secant of the
Segre variety joins its k points, each of which represents a possibly distinct sep-
arable state. Thus, the joining of points corresponds to an entangled state being
a superposition of separable states. The closure of the union of k-secants of the
Segre variety Σn1 gives rise to the k-secant variety σk(Σn1 ). This is as much as
the set of entangled states arising from the superposition of k separable states.
Since k-secant varieties are SLOCC invariants (see Theorem 3.7), SLOCC classes
congregate naturally into entanglement families. Therefore, the dimension of the
highest k-secant, which fills the projective Hilbert space of n qubits, can indicate
the number of entanglement families in a coarse classification by border rank. The
k-secant varieties in P(⊗nC2), have the expected dimension

dim σk(Σ
n
1 ) = min{k(n+ 1)− 1, 2n − 1} , (4.3)

for every k and n, except σ3(Σ4
1) which has dimension 13 [142]. Consequently,

the k-secant fills the ambient space, when

k =

⌈
2n

n+ 1

⌉
. (4.4)

This k indicates the number of entanglement families and remains finite (although
growing exponentially) with the number of qubits.

The proper k-secant (the states that belongs to k-secant but not to (k − 1)-
secant), i.e., the set σk(Σn1 ) \ σk−1(Σ

n
1 ), is the union of the k-secant hyperplanes

Sk ⊂ σk(Σ
n
1 ) represented by

Sk =
k∑
i=1

λipi , (4.5)

with {λi}ki=1 ̸= 0 and each pi is an independent point in Σn1 .
It is worth saying that each secant, with regards to its dimension, could have

tangents as its closure (see Theorem 3.6) which discriminate subfamilies with the
same ℓ-multiranks and provide us exceptional states [36]. Let us now consider the
limits of secants to obtain the tangents. Let (i1, i2, . . . , ik) be a rearrangement of
points indices in Eq. (4.5). The first limit type is when one point tends to another
one, i.e., pi2 → pi1 , and let us call the result p′i1 . The second limit type can be
considered as the closure of the first limit type so the third point is approaching
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4.1. Classification algorithm

pi1 +ηp
′
i1

. The third limit type can be considered as the closure of the second limit
type so two points tend to pi1 and pi2 (if the join of pi1 and pi2 is still in Σn1 ) [143].
As we can always redefine Eq. (4.5) to have the desired form and new coefficients
rather than λj , we can formulate these limits as

T
(1)
k = lim

ϵ→0

λi2
ϵ

(
pi2(ϵ)− pi1

)
+

ik∑
j=i3

λjpj , (4.6)

T
(2)
k =µ1p

′
i1 + lim

η→0

µ2
η2
(
pi3(η)− (pi1 + η p′i1)

)
+

ik∑
j=i4

λjpj , (4.7)

T
(3)
k = lim

ϵ→0

ν1
ϵ

(
pi3(ϵ)− pi1

)
+ lim
ϵ→0

ν2
ϵ

(
pi4(ϵ)− pi2

)
+

ik∑
j=i4

λjpj . (4.8)

These processes can be generalized if we consider all extra limit types which may
occur by adding the next points [125]. This will provide us with higher tangential
varieties, although these are not all of the types of limits that one can consider.

On the other hand, using ordered ℓ-tuples I = (i1, i2, . . . , iℓ), where 1 ≤ ℓ ≤
⌊n2 ⌋ (see Section 3.5.2), and (n−ℓ)-tuples Ī such that I∪ Ī = (1, 2, . . . , n), we can
flatten the n-fold tensor product Hilbert space Hn = ⊗n

i=1C
2 to two-fold tensor

product Hilbert spaces with higher dimensions, i.e.,

Hn ≃ HI ⊗HĪ , HI = C2ℓ , HĪ = C2n−ℓ
. (4.9)

Using Dirac notation, the flattening of |ψ⟩ reads

MI [ψ] =
(
⟨e0|ψ⟩, ⟨e2|ψ⟩, . . . , ⟨e2ℓ−1|ψ⟩

)T
, (4.10)

where |ej⟩ ≡ |j⟩, with j ∈ {0, 1}ℓ, are the canonical basis of HI . For the n-
qubit systems, the order of such matrices can be from 2 × 2n−1 to 2⌊

n
2
⌋ × 2⌈

n
2
⌉

and the number of these matrices ranges from
(
n
1

)
to (1/2)n+1 mod 2

(
n

⌊n
2
⌋
)
. The

rank of these matrices give us ℓ-multiranks. Since ℓ-multiranks are also SLOCC
invariants (see Theorem 3.3), the SLOCC classes in each family can be grouped
into subfamilies.

Therefore, we use k-secant varieties and ℓ-multiranks as the SLOCC invariants
to group orbits (classes) into finite number of families and subfamilies. In addition,
one can split k-secant families, according to Theorem 3.6, by identifying their
closure as k-tangent. Hence, the classification algorithm can be summarized as
follows:

(i) find families by identifying Σn1 , σ2(Σn1 ), . . . , σk(Σ
n
1 ),

(ii) split families to secants and tangents by identifying τ2(Σn1 ), . . . , τk(Σ
n
1 ),

(iii) find subfamilies by identifying ℓ-multiranks.
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4.2. Case study

4.2 Case study

4.2.1 Two-qubit entanglement

The classification of two-qubit states is fairly trivial, nonetheless it can be
instructive for working out the developed concepts. For the Segre surface
Σ2

1, we shall use homogeneous coordinates associated with the induced basis
{|00⟩, |01⟩, |10⟩, |11⟩}. That is to say, a point p ∈ P3 is written in homogenous
coordinates [c0 : c1 : c2 : c3] whenever p is the projective class of the equivalent
two-qubit state of Eq. (4.1). Then, the Segre surface Σ2

1 is the projective variety
with points in an open set given by affine coordinates [1 : a : b : ab], where a and b
are complex parameters. This expression must be properly understood, in that the
limits of a and/or b going to infinity, must be included.

Let us now move on to the proper two-secant variety, i.e., the set σ2(Σ2
1) \Σ2

1,
which is the union of the secant planes S2 represented by Eq. (4.5). Hence, the
proper two-secant variety is given by σ2 = [λ1 + λ2 : λa1 + λ2a2 : λ1b1 + λ2b2 :
λ1a1b1 + λ2a2b2]. It is easy to see that

|Φ±⟩ = [1 : 0 : 0 : ±1] ∈ σ2(Σ
2
1) ,

|Ψ±⟩ = [0 : 1 : ±1 : 0] ∈ σ2(Σ
2
1) (4.11)

that are well-known Bell states.
To create the closure of the two-secant, let consider p2(ϵ) = [1 : a1+ϵ : b1+ϵ :

(a1 + ϵ)(b1 + ϵ)]. Using Eq. (4.6) we have the special situation that all points on
the tangent lines T (1)

2 lie also on two-secants. Since

T
(1)
2 = lim

ϵ→0

λ

ϵ

(
p2(ϵ)− p1

)
= [0 : λ : λ : λ(a1 + b1)], (4.12)

and
T
(1)
2 = [1 : a : b : ab]− [1 : c : d : cd], (4.13)

with a = a1 +
λ
2 , b = b1 +

λ
2 , c = a1 − λ

2 , and d = b1 − λ
2 . It means that all

elements of P3 are elements of σ2(Σ2
1).

One can thus conclude that all entangled states of two qubits are linear com-
binations of two independent separable states, which is the same result obtainable
by the Schmidt decomposition. Here, the two entanglement families coincide with
the two SLOCC classes, namely, separable and entangled (see Table 4.1).

Already from this example we can draw a general conclusion. That is, for
n ≥ 2 we have

p{|Bell⟩|q2⟩⊗(n−2)} ∈ σ2(Σ
n
1 ) , (4.14)

where p{·} denotes all possible permutations and |q2⟩ is a general one-qubit state.
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4.2. Case study

Table 4.1: Fine-structure classification of two-qubit entanglement.

Σ3
1 σ2

|Sep⟩ |Bell⟩

4.2.2 Three-qubit entanglement

For three qubits the Segre three-fold Σ3
1 ⊂ P7 consists of general points given by

affine coordinates [1 : a : b : ab : c : ac : bc : abc] with the possibility of a and/or
b and/or c going to infinity.

Moving on to the proper two-secant variety, i.e., σ2(Σ3
1) \Σ3

1, we have generic
elements as [λ1+λ2 : λ1a1+λ2a2 : λ1b1+λ2b2 : λ1a1b1+λ2a2b2 : λ1c1+λ2c2 :
λ1a1c1 + λ2a2c2 : λ1b1c1 + λ2b2c2 : λ1a1b1c1 + λ2a2b2c2]. One can check that

|GHZ3⟩ = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 1] , (4.15)

is an elelemnt of σ2(Σ3
1).

We also need to consider situations in which one or more parameters in the
coordinate of proper two-secant tend to infinity. As an example, let us take a1 =
b1 =

√
λ2 → ∞ with c1 = c2, which gives the biseparable state

|BA−BC⟩ = [1 : a : b : c : d : ad : bd : cd] , (4.16)

is an element of σ2(Σ3
1).

Hence, the state |GHZ3⟩ with one-multirank equal to (222) and all three bisep-
arable states |Bi⟩3i=1 with the same form as Eq. (4.14) and one-multiranks equal to
(122), up to a permutation, are elements of σ2(Σ3

1).
However, the tangent points defined in Eq. (4.6) cannot be expressed as ele-

ments of σ2(Σ3
1), which spans allP7 only if the tangential variety is included as its

closure. If we consider the tangent to p1 = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] (equivalent
to all points on Σ3

1 by an SLOCC), we have T (1)
2 = [1 : λ : λ : 0 : λ : 0 : 0 : 0].

For instance,

|W3⟩ = lim
λ→∞

T
(1)
2 = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0] , (4.17)

with one-multirank equal to (222), is an element of τ2(Σ3
1).

We saw that one-multirank equal to (222) can be discriminated by secant
and/or tangent classification. From now on, we use a prime for the states in tangent
to discriminate secant and tangent families where they have same ℓ-multiranks.

In summary, this classification provides us two secant families (three secant
/ tangent families), and six subfamilies (Table 4.2, see also Ref. [144, Example
14.4.5]) that coincide with the six SLOCC classes of Ref. [19].
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Table 4.2: Fine-structure classification of three-qubit entanglement. Each column
corresponds to a family (τ2 is the closure of σ2). Within a column, each row corre-
sponds to a subfamily.

Σ3
1 σ2 τ2

|Sep⟩ |GHZ3⟩ |W3⟩
|Bi⟩3i=1

Also from this example we can extrapolate general results. That is, for n ≥
r ≥ 3, we have

|GHZn⟩ = |0⟩⊗n + |1⟩⊗n ∈ σ2(Σ
n
1 ) ,

p{|GHZr⟩|q2⟩⊗(n−r)} ∈ σ2(Σ
n
1 ) ,

|Wn⟩ = |D1
n⟩ ∈ τ2(Σ

n
1 ) ,

p{|Wr⟩|q2⟩⊗(n−r)} ∈ τ2(Σ
n
1 ) , (4.18)

where

|Dl
n⟩ =

(
n

l

)−(1/2)∑
i

pi{|0⟩⊗(n−l) ⊗ |1⟩⊗l} , (4.19)

are the so-called Dicke states (with l excitations).

4.2.3 Four-qubit entanglement

Due to Remark 3.14 and Corollary 3.2 in Chapter 3 and classification of two- and
three-qubit states, we have

1. All triseparable states |Ti⟩6i=1 from Eq. (4.14) are elements of σ2(Σ4
1).

2. All biseparable states |BGHZ3
i ⟩4i=1 and |BW3

i ⟩4i=1 from Eq. (4.18) are, re-
spectively, elements of σ2(Σ4

1) and τ2(Σ4
1).

3. The states |GHZ4⟩ and |W4⟩ are elements of σ2(Σ4
1) and τ2(Σ4

1), respec-
tively.

The rest of the subfamilies of four-qubit states can be identified by considering
the elements of three- and four-secants and their closures.

The proper three-secant, i.e., the set σ3(Σ4
1)\σ2(Σ4

1), is the union of the secant
hyperplanes S3 represented by Eq. (4.5). For instance,

|M4⟩ = |0000⟩+ |1111⟩+ p{|0011⟩} , (4.20)
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which comes from joining |GHZ4⟩ and an independent element of Σ4
1 is and ele-

ment of σ3(Σ4
1) with two-multirank equal to a permutation of (233).

Using Eq. (4.19) one can see that four-qubit Dicke state with two excitations

|D2
4⟩ =

1√
6
(|0011⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩+ |1100⟩) , (4.21)

is an element of σ3(Σ4
1) with two-multirank equal to (333). This is because we

can relate the above-mentioned symmetric state to the monomial x2y2and we can
decompose this monomial as follows:

x2y2 =
1

18ω

(
ω4(x+ y)4 + (x+ ω2y)4 + (ω2x+ y)4

)
, (4.22)

where ω is the nonreal cube root of unity. So, using the Dirac notation, we can
rewrite the state |D2

4⟩ in Eq. (4.21) based on the above decomposition as follows:

|D2
4⟩ =

1

3ω

(
ω4(|0⟩+ |1⟩)⊗4 + (|0⟩+ ω2|1⟩)⊗4 + (ω2|0⟩+ |1⟩)⊗4

)
. (4.23)

To construct the closure of σ3, we consider different limit types as in Eqs.
(4.6)-(4.8) at p1 = [1 : 0 : · · · : 0], equivalent to all points on Σ4

1 by an SLOCC.
Then,

1. Regarding the first limit type, i.e., Eq. (4.6), the following states

|W4⟩+ |1111⟩ , (4.24)

and
|W4⟩+ p{|0011⟩} , (4.25)

are elements of τ3(Σ4
1) with two-multirank equal to (333) and a permutation

of (233), respectively.

2. Regarding the second limit type, i.e., Eq. (4.7), the following state

|W4⟩+ |D2
4⟩ , (4.26)

is an element of τ3(Σ4
1) with two-multirank equal to (333).

3. For the third limit type (Eq. (4.8)), one can take p1 = [0 : 1 : 0 : · · · : 0] as
the second point, where λ1p1 + λ2p2 ∈ Σ4

1 and hence

|W4⟩+ α|0011⟩+ β|0101⟩+ γ|1001⟩ , (4.27)

is an element in τ3(Σ4
1) with two-multirank equal to (333).
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We denote the union of these points as the tangential variety τ3(Σ4
1).

An important observation is that, all elements in the three-secant variety are
genuinely entangled. This can be useful for characterizing genuine multilevel en-
tanglement when we look at four qubits as two ququarts [145].

The proper four-secant, i.e., the set σ4(Σ4
1)\σ3(Σ4

1), is the union of the secant
hyperplanes S4 represented by Eq. (4.5). For instance, all biseparable states

|BBi⟩3i=1 = |Bell⟩j |Bell⟩k , (4.28)

which are tensor products of two Bell states of different parts, that is j ∈
{12, 13, 14} and k is the complementary such that j ∪ k = 1234, is an element
in σ4(Σ4

1) with two-multirank equal to (144), up to a permutation.
In the proper three-secant we have other elements with different two-

multiranks. For instance,

|Cl(1)4 ⟩ = 1

2
(|0000⟩+ |0011⟩+ |1100⟩ − |1111⟩) ,

|Cl(2)4 ⟩ = 1

2
(|0000⟩+ |0101⟩+ |1010⟩ − |1111⟩) ,

|Cl(3)4 ⟩ = 1

2
(|0000⟩+ |0110⟩+ |1001⟩ − |1111⟩) , (4.29)

which are known as cluster states [146], and are elements in σ4(Σ4
1) with two-

multirank equal to (244), (424) and (442), respectively. Also, the following states

|Cl(1)4 ⟩+ |0101⟩ ,

|Cl(2)4 ⟩+ |0110⟩ ,

|Cl(3)4 ⟩+ |0011⟩ , (4.30)

are elements in σ4(Σ4
1) with two-multirank equal to (344), (434) and (443), re-

spectively.
Since the highest tensor rank for a four-qubit state is 4 [147], we do not need

to construct the four-tangent. Therefore, any general state of four-qubit system
with two-multirank equal to (444) can be considered as an element of four-secant
family.

To have an exhaustive classification, we have written each subfamily of three-
and four-secant families in terms of their two-multiranks in Table 4.3. Also, we
have used a prime for the states in tangent to discriminate secant and tangent fam-
ilies where they have same one- and two-multiranks.

Briefly, this classification provide us four secant families (six secant/tangent
families), and 35 subfamilies (Table 4.3). The petal-like classification of SLOCC
orbits is presented in Fig. 4.1.
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Table 4.3: Fine-structure classification of four-qubit entanglement.

Σ4
1 σ2 τ2 σ3 τ3 σ4

|Sep⟩ |GHZ4⟩ |W4⟩ |(333)⟩ |(333)′⟩ |(444)⟩
|BGHZ3
i ⟩4i=1 |BW3

i ⟩4i=1 |(332)⟩ |(332)′⟩ |(443)⟩
|Ti⟩6i=1 |(323)⟩ |(323)′⟩ |(434)⟩

|(233)⟩ |(233)′⟩ |(344)⟩
|(442)⟩
|(424)⟩
|(244)⟩
|BBi⟩3i=1

Figure 4.1: Petal-like classification of SLOCC orbits of four-qubit states. Dashed
gray lines in the core show that each |BBi⟩ encompasses two triseparable subfam-
ilies, while each |BW3

i ⟩ encompasses three triseparable subfamilies. The convex
hull of |W4⟩ (dashed green curve) indicates that this family does not encompass
biseparable states |BGHZ3

i ⟩, while both encompass the yellow, orange, and red sub-
sets. From the outer classes, one can go to the inner ones by noninvertible SLOCC
(from σk to τk also in an approximate way), thus generating the entanglement hi-
erarchy. (See Fig. 4.2 in the following subsection for more details.)
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Figure 4.2: Hasse diagram of the central SLOCC classification of four-qubit states
and their corresponding two-multiranks. The arrows denote noninvertible SLOCC
transformations. When the arrow is dashed, the transformation is also approxi-
mated.

Much ado about two-multiranks for four-qubit systems

Carlini and Kleppe have classified all possible one-multiranks for any number of
qudits [148]. The case of two-multiranks is more subtle. The partial result of two-
multiranks of four-qubit states which is related to the Fig. 4.1 can be seen in Hasse
diagram in Fig. 4.2. A partial classification was given classically in Ref. [149],
where the case (442) and its permutations were forgotten. The full classification is
achieved by the following

Theorem 4.1. (i) For any four-qubit system, the maximum among the three two-
multiranks is attained at least twice.
(ii) The constraint in (i) is the only constraint for triples of two-multiranks of four-
qubit systems, with the only exception of the triple (133), which cannot be achieved.

Proof. If the minimum of the three two-multiranks is ≥ 3, the result follows
from the fact that the three 4× 4 determinants of the three flattenings sum to zero,
as proved a century ago by Segre [149]. Then, we assume that the minimum is
≤ 2, attained by Mxy and we have three distinct cases as follows up to SLOCC
[referring to Eq. (3.91)]; here, multi-homogeneous coordinates for the four-qubit
system are xiyjzktl for i, j, k, l = {0, 1}).

(1) Secant:
f = x0y0(

∑
aijzitj) + x1y1(

∑
bijzitj) .
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Here, the two-flattenings are 4× 4 matrices with the block form

Mxz =

(
A 0

0 B

)
, Mxt =

(
AT 0

0 BT

)
,

which have the same rank. If this rank is one, then A = 0 or B = 0 and f is
a decomposable tensor.

(2) Tangent:

f = x0y0(
∑

aijzitj) + (x0y1 + x1y0)(
∑

bijzitj) .

The two-flattenings have the block form

Mxz =

(
A B

B 0

)
, Mxt =

(
AT BT

BT 0

)
,

which again have the same rank. If this rank is one then B = 0 and f is a
decomposable tensor.

(3) Isotropic:
f = x0y0(

∑
aijzitj) + x0y1(

∑
bijzitj) .

Here Mxy has rank 1 iff a and b are proportional. The two-flattenings have
the block form

Mxz =

(
A B

0 0

)
, Mxt =

(
AT BT

0 0

)
,

which have both rank ≤ 2. If they have both rank one, then A and B are
proportional, moreover rk(A) = rk(B) = 1. This concludes the proof of
(i). (ii) follows by exhibiting a representative for each case, as in Table 4.3.
The nonexistence of case (133) follows since when one two-multirank is 1,
then we may assume f = (

∑
aijxiyj)(

∑
bijzitj) and depending on the pair

(rk(A), rk(B)) = (1, 1), (1, 2), (2, 2) we have, correspondingly, the triples
(111), (122), (144), so (133) is not achieved.

■

Remark 4.1. States living in the higher secant and/or tangent can produce all states
in the lower secants and/or tangents by means of degenerations, that is performing
some limits.
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4.2. Case study

As for what concerns the possibility of producing states in the lower secants
and/or tangents from states in the higher secant and/or tangent by degeneration
(Remark 4.1), from Fig. 4.2, it follows that we can asymptotically produce |W4⟩
from |GHZ4⟩ with a noninvertible SLOCC transformation, i.e., we cannot produce
|GHZ4⟩ from |W4⟩. As a matter of fact, employing the singular (for ϵ → 0)
SLOCC transformation

Aϵ = ϵ−1/4

(
4
√
−1 1
ϵ 0

)
, (4.31)

we get
lim
ϵ→0

A⊗4
ϵ |GHZ4⟩ = |W4⟩ . (4.32)

Let |X4⟩ = d1(|0001⟩ + |0010⟩ + |0100⟩ + |1000⟩) + d4|1111⟩ = d1|W4⟩ +
d4|1111⟩. It is a symmetric state in τ3(Σ4

1). It is obvious that if d4 tends to zero
we can approximately produce |W4⟩ from |X4⟩. As a matter of fact, employing the
singular (for ϵ→ 0) SLOCC transformation

Bϵ = ϵ−
1
4

(
4
√
−1 (−1)7/1222/3

ϵ 0

)
, (4.33)

we can get
lim
ϵ→0

B⊗4
ϵ |X4⟩ = |W4⟩ . (4.34)

As another example, employing the singular (for ϵ→ 0) SLOCC transformation

Cϵ = ϵ−
1
4

(
4
√
−1 ±

√
1
2

(
−
√
3− i

)
ϵ 0

)
, (4.35)

we can asymptotically produce |W4⟩ from |M4⟩ = α|0000⟩+ β|0011⟩+ γ|1111⟩
belonging to σ3(Σ4

1), i.e.,

lim
ϵ→0

C⊗4
ϵ |M4⟩ = |W4⟩ . (4.36)

It is also obvious that we can approximately produce |GHZ4⟩ from |M4⟩ by letting
β go to zero.
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4.2. Case study

(n ≥ 4)-qubit entanglement

We can draw the following conclusions for n ≥ 4:

|Mr
n⟩ := |GHZn⟩+ p{|0⟩⊗r|1⟩⊗(n−r)} ∈ σ3(Σ

n
1 ) ,

|0⟩i|GHZn−1⟩+ |1⟩i p{|1⟩⊗s|0⟩⊗(n−s−1)} ∈ σ3(Σ
n
1 ) ,

|Ntn⟩ := |Wn⟩+ p{|1⟩⊗t|0⟩⊗(n−t)} ∈ τ3(Σ
n
1 ) ,

|0⟩i|Wn−1⟩+ |1⟩i p{|1⟩⊗(t−1)|0⟩⊗(n−t)} ∈ τ3(Σ
n
1 ) ,

|Gr
n⟩ := p{α|0⟩⊗n + β|0⟩⊗r|1⟩⊗(n−r)

+ γ|1⟩⊗r|0⟩⊗(n−r) + δ|1⟩⊗n} ∈ σ4(Σ
n
1 ) , (4.37)

where 2 ≤ r ≤ n− 2, 1 ≤ s ≤ n− 2, 2 ≤ t ≤ n, and i ∈ {1, . . . , n}. It is worth
noting that the state |Gr

n⟩ is a generalization of bipartite state α|00⟩ + β|01⟩ +
γ|10⟩ + δ|11⟩ and its minor is 2|αδ − βγ|, which coincides with the definition of
concurrence [100]. Therefore, if αδ ̸= βγ, the state |Gr

n⟩ is genuinely entangled,
otherwise it is biseparable (a tensor product of two r- and (n− r)-partite entangled
states).

Proposition 4.1. For n ≥ 4 qubits, there is no symmetric entangled state in the
proper locus of the k-secant variety of the Segre variety, with k > ⌈n+1

2 ⌉.

The superposition of n-qubit Dicke states with all possible excitations

|ψSym
n ⟩ =

n∑
l=0

dl|Dl
n⟩ , (4.38)

is the most general symmetric entangled state. The symmetric n-qubit separable
states have the structure of the Veronese variety (Vn1 ) and its k-secant varieties are
SLOCC families [33, 36, 39]. The highest k-secant variety fills the ambient space
for k = ⌈n+1

2 ⌉. Comparing with the highest k-secant variety in the Segre embed-
ding (k = ⌈ 2n

n+1⌉), it proves the proposition. Moreover, we will show below that
each Dicke state with 1 ≤ l ≤ ⌊n2 ⌋ (the same for the spin-flipped version, i.e.,
|Dn−l

n ⟩) is in a k-secant family of Veronese embedding, and hence, Segre embed-
ding for 2 ≤ k ≤ ⌊n2 ⌋+1, respectively. Thus, this method can be useful to classify
entanglement of symmetric states and the corresponding number of families grows
slower than Ref. [27].

Consider the following n-qubit separable state:

|Sn(ε)⟩ = (|0⟩+ ε|1⟩)⊗n =
n∑
l=0

εl|Dl
n⟩ . (4.39)
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4.2. Case study

Thanks to the definition of tangent star and Eqs. (3.82) and (3.84) in Chapter 3, we
can write

lim
ε→0

1

εm+1

(
|Sn(ε)⟩ −

m∑
i=0

εi|Di
n⟩
)
= |Dm+1

n ⟩ ∈ τm+2(Σ
n
1 ) , (4.40)

where 0 ≤ m ≤ ⌊n2 ⌋ − 1. Furthermore, ⌊n2 ⌋-multiranks of the Dicke states with
1 ≤ l ≤ ⌊n2 ⌋ (and similarly |Dn−l

n ⟩) are l + 1 = k (ℓ-multiranks with ℓ < ⌊n2 ⌋
have the same value or maximum rank). We guess that this is a general behavior
which holds true for symmetric multiqudit systems as well. In a similar way, one
can check that the states |Nrn⟩ are on the limiting lines of the states |Mr

n⟩ in Eq.
(4.37), and therefore, are exceptional states.

Consider now |ψSym
4 ⟩ from Eq. (4.38) which belongs to τ3(Σ4

1). It can asymp-
totically produce lower tangent elements, like |W4⟩.

4.2.4 Five-qubit entanglement

For five-qubit states, due to Remark 3.14, Corollary 3.2, and classification of two-,
three-, and four-qubit states, we have

1. All quadriseparable states |Qi⟩10i=1 from Eq. (4.14) are elements of σ2(Σ5
1).

2. All triseparable states |TGHZ3
i ⟩10i=1 and |TW3

i ⟩10i=1 from Eq. (4.18) are, re-
spectively, elements of σ2(Σ5

1) and τ2(Σ5
1).

3. All biseparable states |BGHZ4
i ⟩5i=1 and |BW4

i ⟩5i=1 from Eq. (4.18) are, re-
spectively, elements of σ2(Σ5

1) and τ2(Σ5
1).

Considering Eq. (4.18), we can also find that states |GHZ5⟩ and |W5⟩ are elements
of σ2(Σ5

1) and τ2(Σ5
1), respectively. These results are given in Table 4.4.

In a similar way to Eq. (4.37), all biseparable states of the form |σ3(Σ4
1)⟩|q2⟩

and |τ3(Σ4
1)⟩|q2⟩ are elements of σ3(Σ5

1) and τ3(Σ5
1), respectively. Note that the

number of distinct subfamilies that these biseparable states create in each σ3(Σ5
1)

and τ3(Σ5
1), according to the permutations of the one-qubit state, is, respectively,

four times the number of subfamiles in σ3(Σ4
1) and τ3(Σ4

1), i.e., 16 subfamilies.
Other elements of three-secant can be written in a similar way to Eq. (4.37) with
a two-multirank including at least one 3 and no 4 (see Corollary 3.2). We denote
these elements as |(3 · · · )⟩ ∈ σ3(Σ

5
1) and |(3 · · · )′⟩ ∈ τ3(Σ

5
1) (see Table 4.5).

The remaining families of five-qubit states have different two-multiranks, in-
cluding at least one 4.

Considering classification of four-qubit as the core structure of five-qubit clas-
sification, all biseparable state of the form |σ4(Σ4

1)⟩|q2⟩ are elements of σ4(Σ5
1)
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4.2. Case study

Table 4.4: Fine-structure classification of five-qubit entanglement (Segre & two-
secant).

Σ5
1 σ2 τ2

|Sep⟩ |GHZ5⟩ |W5⟩
|BGHZ4
i ⟩5i=1 |BW4

i ⟩5i=1

|TGHZ3
i ⟩10i=1 |TW3

i ⟩10i=1

|Qi⟩10i=1

Table 4.5: Fine-structure classification of five-qubit entanglement (three- & four-
secant).

σ3 τ3 σ4 τ4

|(3333333333)⟩ |(3333333333)′⟩ |(4444444444)4⟩ |(4444444444)′4⟩
...

...
...

...
|(3 · · · )⟩ |(3 · · · )′⟩ |(4 · · · )4⟩ |(4 · · · )′4⟩

pi{|σ3(Σ4
1)⟩|q2⟩}16i=1 pi{|σ4(Σ4

1)⟩|q2⟩}40i=1

Table 4.6: Fine-structure classification of five-qubit entanglement (five & six-
secant).

σ5 τ5 σ6 τ6

|(4444444444)5⟩ |(4444444444)′5⟩ |(4444444444)6⟩ |(4444444444)′6⟩
...

...
...

...
|(4 · · · )5⟩ |(4 · · · )′5⟩ |(4 · · · )6⟩ |(4 · · · )′6⟩

(40 subfamilies). Here, we have a new type of biseparable state in our five-qubit
classification, i.e., p{|Bell⟩|GHZ3⟩}, which creates 10 subfamilies in σ4(Σ5

1) (see
Table 4.5). Note that one can generate genuine entangled states from them which
would be of the form |G2

5⟩ (∼ |G3
5⟩) in Eq. (4.37). On the limiting lines of these

states, one can find the biseparable states p{|Bell⟩|W3⟩} and the genuine entangled
versions as the elements of τ4(Σ5

1). As another example, using reasoning similar
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4.2. Case study

to Eq. (4.40), we can draw the following results for n ≥ 5:

|Wn⟩+ |1⟩⊗n + p{|0⟩⊗r|1⟩⊗(n−r)} ∈ τ4(Σ
n
1 ) ,

|D2
n⟩+ p{|1⟩⊗s|0⟩⊗(n−s)} ∈ τ4(Σ

n
1 ) , (4.41)

where 2 ≤ r ≤ n− 2 and 3 ≤ s ≤ n− 1.
It is worth noting that since in the five-qubit states (⊗5C2), we just have flat-

tenings of sizes 2×16 and 4×8 with maximum ranks of 2 and 4, respectively, they
do not provide nontrivial equations to find the elements of five-secant. Hence, with
the method of Chapter 3, one can find, as in Ref. [137], homogeneous polynomials
of degrees 6 and 16 where the rank of the Jacobian of these two equations gives the
desired information (if the point is not singular for the five-secant then it cannot
stay in the four-secant, i.e., it is an element of the proper five-secant family).

To have an exhaustive classification, we denote the other elements of four-,
five-, and six-secants as |(4 · · · )i⟩ ∈ σi(Σ

5
1) and |(4 · · · )′i⟩ ∈ τi(Σ

5
1) where i ∈

{4, 5, 6} (see Tables 4.5 and 4.6). It is worth noting that in the classification of
five-qubit states, all the elements in five- and six-secant families are genuinely
entangled.

4.2.5 n-qubit Dicke states

Regarding Theorem 3.2 and Conjecture 3.1, we have the following result for the
n-qubit Dicke states |Dl

n⟩ (with l excitations). If 1 ≤ l < ⌊n2 ⌋, the tensor rank and
border rank of |Dl

n⟩ are equal to n− l+1 and l+1, respectively. For l = ⌊n2 ⌋, we
have two situations; (1) if n = even, the tensor rank and border rank are both equal
to n

2 + 1, and (2) if n = odd, the tensor rank and border rank are equal to ⌈n2 ⌉+ 1
and ⌊n2 ⌋+1, respectively. Hence, the relation between tensor rank and border rank
of n-qubit Dicke states is as follows:

rk
(
|Dl

n⟩
)
+ brk

(
|Dl

n⟩
)
= n+ 2 . (4.42)

Based on this fact, we draw the following result

|D⌊n
2
⌋

n ⟩ ∈

{
σn

2
+1(Σ

n
1 ) if n = even ,

τ⌊n
2
⌋+1(Σ

n
1 ) if n = odd .

(4.43)

Therefore, for an even number of qubits, regarding the rank and border rank in-
formation the Dicke state |D

n
2
n ⟩ is in the proper (n2 + 1)-secant family while based

on the higher derivative information it is in the osculating hyperplane that we take
it in the tangent family. Geometrically, it means that this special state is in the
intersection of the proper (n2 + 1)-secant family and the (n2 + 1)-tangent family.
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Chapter5
Fine-Structure Classification of
Tripartite Entanglement

“All happy families are alike, but
every unhappy family is unhappy in
its own way”

Lew Tolstoy

In this chapter of the dissertation, which is based on the Ref. [56], we charac-
terize entanglement of tripartite Cd ⊗Cd ⊗Cd systems. To this aim, we employ
algebraic-geometric tools that are invariants under Stochastic Local Operation and
Classical Communication (SLOCC), namely k-secant varieties and one-multilinear
ranks. Indeed, by means of them, we present a classification of pure tripartite states
in terms of a finite number of families and subfamilies. At the core of it stands out
a fine-structure grouping of three-qutrit entanglement.

5.1 Classification method

At the core of Ref. [44] was the identification of determinantal and secant varieties
of the Segre variety as those that classify multiqubit entanglement. Here, we shall
extend this approach to classify three-qudit pure states

|ψ⟩ =
∑

i∈{0,...,d−1}3
ci|i⟩ . (5.1)
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5.1. Classification method

To this end, we shall be examining maps M that are produced by tensor flattening
[59] from the quantum states in Eq. (5.1). Consider the tensor Hilbert space H =
H1⊗H2⊗H3, where Hi ≃ Cd. We shall define ℓ-partitions as ordered ℓ-tuples I =
(i1, . . . , iℓ), where 1 ≤ ℓ ≤ 2, and 1 ≤ i1 < · · · < iℓ ≤ 3. Given an ℓ-partition I ,
we define the complementary partition Ī as the (3− ℓ)-partition such that I ∪ Ī =
{1, 2, 3}. Therefore, H ≃ HI⊗HĪ , where HI = ⊗ℓCd and HĪ is the Hilbert space
with complementary indices. For any state ψ with vector representation |ψ⟩ ∈ H,
the ℓ-partition I leads to a linear operator MI [ψ] (see Eq. (3.73)). Given a state
ψ and a number 1 ≤ ℓ ≤ 2, we call the sequence of ranks rI [ψ] = rank (MI [ψ])
for all ℓ-partitions I , the ℓ-multilinear rank (hereafter ℓ-multirank) of the state ψ.
Although there are six partitions, with three complementary pairs (1) ↔ (23),
(2) ↔ (13), (3) ↔ (12), it is enough to check ℓ-multiranks for partition I with
ℓ = 1. Note that for the complementary partition Ī the matrices MĪ [ψ] are just the
transpose of MI [ψ] and transposition does not change the rank of the matrix.

An important observation is that ℓ-multirank is an invariant under SLOCC (see
Theorem 3.3).

Since ℓ-multiranks only depend on the state vector and, furthermore, because
statements about rank can be rephrased as statements about minors which are deter-
minants, it follows that a given ℓ-multirank configuration determines a determinan-
tal variety in the projective Hilbert space and pure multipartite states which have
ℓ-multiranks bounded by a given integer sequence make a subvariety of P(Hn).
Indeed, these determinantal varieties are subvarieties of secant varieties of the pro-
jective variety of fully separable states. For a tripartite quantum state, the space of
fully separable states is the Segre variety [34, 129]: with embedding

Σ3
d-1 : Pd−1 ×Pd−1 ×Pd−1 ↪→ P

d3−1 , (5.2)

where d-1 = (d− 1, d− 1, d− 1) and × is the Cartesian product of sets. One can
easily check that Σ is the projective variety of fully separable states. Indeed, if all
partial traces give pure states, the corresponding ranks are all one. Conversely, if
all ℓ-multiranks are one, the state is fully separable.

Since k-secant varieties of the Segre variety are invariant under the action of
the projective linear group therefore they are SLOCC invariants (see Theorem 3.7).
This means that SLOCC classes can be grouped naturally into entanglement fam-
ilies. For this reason, the dimension of the highest k-secant variety, that fills the
projective Hilbert space of three qudits, can indicate the number of entanglement
families. The higher k-secant variety fills the ambient space P(Cd ⊗ Cd ⊗ Cd)
when

k =

⌈
d3

3d− 2

⌉
, (5.3)
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5.2. Fine-structure classification of two-qutrit entanglement

except for d = 3 where the generic rank is five [150, 151]. This k indicates the
number of entanglement families which remains finite with the dimension of par-
ties.

Since σk−1 ⊂ σk we need to distinguish the elements of each k-secant family
by defining the proper secant. If it exists, the proper k-secant [the states that be-
longs to k-secant but not to (k − 1)-secant], i.e., the set σk(Σ3

d-1) \ σk−1(Σ
3
d-1), is

the union of the k-secant hyperplanes Sk ⊂ σk(Σ
3
d-1) represented by

Sk =
k∑
i=1

λipi , (5.4)

with {λi}ki=1 ̸= 0 and each pi is an independent point in Segre variety.
It is worth noting that in addition to the standard flattenings, as the standard

tensor contraction shown in Eq. (3.73), for tripartite systems C2m+1 ⊗C2m+1 ⊗
C2m+1, we have another flattening map (it often called a Koszul flattening, or more
generally one of the Young flattenings) as follows:

ΛmH1 ⊗H∨
2 → Λm+1H1 ⊗H3 , (5.5)

where Λm denotes the mth exterior power. Hence, the size (k + 1)
(
2m
m

)
minors of

Eq. (5.5) provides equations for k-secant varieties up to k = (2m+ 1)2/(m+ 1)
(see Refs. [59, 136]).

Therefore, similar to the spirit of Ref. [44], we use k-secant varieties and one-
multiranks as the SLOCC invariants to bunch entanglement orbits (classes) of tri-
partite ⊗3Cd systems into a finite number of families and subfamilies. Hence, the
classification algorithm can be summarized as:

(i) find families by identifying k-secant varieties Σ3
d-1, σ2(Σ

3
d-1), . . . , σk(Σ

3
d-1);

(ii) split families to secants and tangents by identifying τ2(Σ3
d-1), . . . , τk(Σ

3
d-1);

(iii) find subfamilies by identifying one-multiranks.

5.2 Fine-structure classification of two-qutrit entangle-
ment

Although two-qutrit states do not belong to tripartite systems we provide a full
entanglement classification for two-qutrit states which can be used as the core for
the entanglement classification of three-qutrit states.

For two-qutrit states, the Segre four-fold Σ2
2 ⊂ P8, i.e., the set of fully sep-

arable states of two qutrits, consists of general points given by affine coordinates

89



5.2. Fine-structure classification of two-qutrit entanglement

p = [1 : a : b : c : ac : bc : d : ad : bd] where a, b, c, and d are complex parameters
and one or more parameters can tend to infinity.

Moving on to the proper two-secant variety, i.e., the union of the secant planes
S2 = λ1p1 + λ2p2, we have generic elements given by the following coordinates:

[λ1 + λ2 : λ1a1 + λ2a2 : λ1b1 + λ2b2 : λ1c1 + λ2c2 :

λ1a1c1 + λ2a2c2 : λ1b1c1 + λ2b2c2 : λ1d1 + λ2d2 :

λ1a1d1 + λ2a2d2 : λ1b1d1 + λ2b2d2] . (5.6)

It is easy to see that [1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0] is an elements of σ2(Σ2
2).

Actually, the following general state:

|GHZ
(1)
2 ⟩ = |αα⟩+ |ββ⟩ , (5.7)

where α ̸= β ∈ {0, 1, 2}, can represent all elements of proper two-secant family
with one-multiranks equal to (22).

Obviously, one can rewrite the secant planes as S2 = p1 + µ(p2 − p1) where
λ1 = 1− µ and λ2 = µ. Now, we consider the situation where second point tends
to the first one, i.e., p2 → p1, by taking p2(ϵ) = [1 : a1 + ϵ : b1 + ϵ : c1 + ϵ :
(a1 + ϵ)(c1 + ϵ) : (b1 + ϵ)(c1 + ϵ) : d1 + ϵ : (a1 + ϵ)(d1 + ϵ) : (b1 + ϵ)(d1 + ϵ)].
This will give us the coordinates of the elements in the proper two-tangent variety.
However, for two-qutrit states, we have the special situation that all points on the
tangent, i.e.,

p′ = lim
ϵ→0

(
p1 +

µ

ϵ

(
p2(ϵ)− p1

))
= [1 : a1 + µ : b1 + µ :

c1 + µ : a1c1 + µ(a1 + c1) : b1c1 + µ(b1 + c1) :

d1 + µ : a1d1 + µ(a1 + d1) : b1d1 + µ(b1 + d1)] , (5.8)

lie also on the proper two-secant since

p′ = [1 : a1 + µ : b1 + µ : c1 + µ : (a1 + µ)(c1 + µ) :

(b1 + µ)(c1 + µ) : d1 + µ : (a1 + µ)(d1 + µ) :

(b1 + µ)(d1 + µ)]− µ2[0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 1] , (5.9)

which explicitly comes from joining of two independent points in the Segre va-
riety, i.e., superposition of two fully separable states. It means that the proper
two-tangent is equal to the proper two-secant.

The proper three-secant, i.e., the set σ3(Σ2
2)/σ2(Σ

2
2), is the union of the secant

hyperplanes S3 represented by Eq. (5.4). Indeed, joining of three independent
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5.3. Fine-structure classification of three-qutrit entanglement

Table 5.1: Fine-structure classification of two-qutrit entanglement.

Σ2
2 σ2 σ3

|Sep⟩ |GHZ
(1)
2 ⟩ |GHZ

(2)
2 ⟩

points in the Segre variety gives rise to elements of three-secant family. For in-
stance,

|GHZ
(2)
2 ⟩ = |00⟩+ |11⟩+ |22⟩ , (5.10)

is an element of σ3(Σ2
2) with one-multirank equals to (33). In a similar way to

two-secant variety, one can see that the proper three-tangent is equal to the proper
three-secant.

Briefly, this classification provide us three secant families that coincide with the
three SLOCC classes, namely, separable and two inequivalently entangled states
that come from superposition of two and three fully separable states (Table 5.1).

Already from this classification we can draw a general conclusion. That is, for
n ≥ 2 qutrits we have

p{|GHZ
(1)
2 ⟩|q3⟩⊗(n−2)} ∈ σ2(Σ

n
2 ) , (5.11)

p{|GHZ
(2)
2 ⟩|q3⟩⊗(n−2)} ∈ σ3(Σ

n
2 ) , (5.12)

where p{·} denotes all possible permutations of subsystems and |q3⟩ is a general
one-qutrit state.

5.3 Fine-structure classification of three-qutrit entangle-
ment

For the Segre variety Σ3
2 ⊂ P26, we shall use homogeneous coordinates associated

with the induced basis {|000⟩, |001⟩, . . . , |222⟩}. That is to say, a point p ∈ P26

is written in homogeneous coordinates [c0 : c1 : · · · : c26] whenever p is the projec-
tive class of the three-qutrit state of Eq. (5.1). Then, the Segre surface Σ3

2 is the
projective variety with points given by affine coordinates [1 : a : b : c : ac : bc :
d : ad : bd : e : ae : be : ce : ace : bce : de : ade : bde : f : af : bf : cf :
acf : bcf : df : adf : bdf ], where a, b, c, d, e, and f are complex parameters. This
expression must be properly understood, in that the limits of a and/or b and/or c
and/or d and/or e and/or f going to infinity, must be included. For instance, also
points of the form [0 : 1 : 0 : 0 : c : 0 : 0 : d : 0 : 0 : e : 0 : 0 : ce : 0 : 0 : de : 0 :
0 : f : 0 : 0 : cf : 0 : 0 : df : 0], which corresponds to a→ ∞, are part of Σ3

2.

91



5.3. Fine-structure classification of three-qutrit entanglement

Thanks to Ref. [148], all one-multiranks can be found for states of any number
of qudits. For three-qutrit states we have

ri ≤
∏
j ̸=i

rj ∀ i, j ∈ {1, 2, 3} , (5.13)

where 0 ≤ ri ≤ 3 stands for the rank of the corresponding flattening. Therefore,
all the one-multiranks of three-qutrit states are: (111) which indicates a fully sep-
arable states; (122) and (133) and their permutations, which indicate biseparable
states; (222), all permutations of (223), all permutations of (233), and (333), which
indicate genuinely entangled states.

Standard flattenings are not enough to construct higher secant families in P26.
So based on Eq. (5.5) we have the following flattening:

F : H1 ⊗H∨
2 → Λ2H1 ⊗H3 , (5.14)

that can be considered as the composition of

H1 ⊗H∨
2

IdH1
⊗M2−−−−−−→ H1 ⊗H1 ⊗H3 ,

and
H1 ⊗H1 ⊗H3

P∧⊗IdH3−−−−−−→ Λ2H1 ⊗H3 ,

where M2 : H∨
2 → H1⊗H3 is the standard flattening and P∧ : H1⊗H1 → Λ2H1

is the projection onto the skew-symmetric component [152]. Based on the map in
Eq. (5.14), we have the following 9 × 9 matrix (known as the Ottaviani-Strassen
matrix) for the general three-qutrit state of Eq. (5.1),

F =



0 0 0 c0 c1 c2 −c9 −c10 −c11
0 0 0 c3 c4 c5 −c12 −c13 −c14
0 0 0 c6 c7 c8 −c15 −c16 −c17

−c0 −c1 −c2 0 0 0 c18 c19 c20
−c3 −c4 −c5 0 0 0 c21 c22 c23
−c6 −c7 −c8 0 0 0 c24 c25 c26
c9 c10 c11 −c18 −c19 −c20 0 0 0
c12 c13 c14 −c21 −c22 −c23 0 0 0
c15 c16 c17 −c24 −c25 −c26 0 0 0


. (5.15)

Actually, the determinant of matrix F , which is an SL(3,C)×3-invariant of degree
nine, indicates the four-secant hyperplane. It means that if F is full rank for a given
state, i.e., rank of the matrix F is nine, that state is in five-secant family. Indeed
the quantity

k =

⌈
rankF

2

⌉
, (5.16)
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indicates the k-secant family to which the state belongs.
Let us now move on to the proper two-secant variety, i.e., the set σ2(Σ3

2) \ Σ3
2,

which is the union of the secant planes S2 represented by Eq. (5.4). The generic
element in the proper two-secant comes from joining two independent points (su-
perposition of two fully separable states), i.e., λ1p1 + λ2p2 with λ1, λ2 ̸= 0. For
instance, it is easy to see that

|GHZ
(1)
3 ⟩ = |ααα⟩+ |βββ⟩ , (5.17)

where α ̸= β ∈ {0, 1, 2} is an element of σ2(Σ3
2) with one-multirank equal to

(222).
Also, the classification of two-qutrit states provides us the following bisepara-

ble states with one-multirank equal to (122), up to a permutation, as other elements
of σ2(Σ3

2):
|B(1)
i ⟩3i=1 = p{|GHZ

(1)
2 ⟩|q3⟩} , (5.18)

where p{·} denotes all possible permutations of subsystems, |q3⟩ is a generic one-
qutrit state, and similarly to Eq. (5.17) |GHZ

(1)
2 ⟩ = |αα⟩ + |ββ⟩. Note that this

is the situation in which one or more parameters on the proper two-secant variety
tend to infinity.

Now, considering the tangent to the point p1 = [1 : 0 : · · · : 0] (equivalent to
all points on Σ3

2 by an SLOCC), we have the affine coordinate [1 : µ : µ : µ : 0 :
0 : µ : 0 : 0 : µ : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : µ : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0]. Letting
µ → ∞, we have the state |00υ⟩ + |0υ0⟩ + |υ00⟩ with |υ⟩ = |1⟩ + |2⟩ which is
obviously a three-qutrit W-type state. Bearing in mind this result, we can derive
the following state as an element of τ2(Σ3

2) with one-multirank equal to (222):

|W3⟩ = |Dp(2,1,0)
3 ⟩ =

∑
i

pi{|ααβ⟩} , (5.19)

where α ̸= β ∈ {0, 1, 2} and

|Dȷ
3⟩ =

√∏
i ji!

3!

∑
π∈S3

π{|0⟩⊗j1 ⊗ · · · ⊗ |d− 1⟩⊗jd} , (5.20)

are the so-called 3-qudit Dicke states (with excitations shown as ȷ = (j1, . . . , jd)
where j1+ · · ·+ jd = 3). Also, we can explicitly see that |W3⟩ can asymptotically
be obtained from |GHZ

(1)
3 ⟩ as follows:

|W3⟩ = lim
ε→0

1

ε

(
(|α⟩+ ε|β⟩)⊗3 − |ααα⟩

)
. (5.21)
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The proper three-secant, i.e., the set σ3(Σ3
2)\σ2(Σ3

2), is the union of the secant
hyperplanes S3 represented by Eq. (5.4). So, joining three independent points in
the Segre variety (superposition of three fully separable states) that satisfies Eq.
(5.4), gives rise to elements of proper three-secant family. For instance,

|GHZ
(2)
3 ⟩ = |000⟩+ |111⟩+ |222⟩ , (5.22)

is an element of σ3(Σ3
2) with one-multirank equal to (333). In the proper three-

secant we have other elements with different one-multiranks. For instance,

|GHZ
(1)
3 ⟩+ p{|αγγ⟩} , (5.23)

and
|GHZ

(1)
3 ⟩+ p{|αβγ⟩} , (5.24)

where α ̸= β ̸= γ ∈ {0, 1, 2} are all elements of σ3(Σ3
2) with one-multirank

equal to (233) and (223), up to a permutation, respectively. The states in Eqs.
(5.23) and (5.24) are the joining of a |GHZ

(1)
3 ⟩ state and an independent point in

the Segre variety. One can write these elements of proper three-secant in terms
of joining biseparable states |B(1)⟩ and an independent point of Segre variety as
|α⟩(|αα⟩+ |βγ⟩) + |βββ⟩ and |α⟩(|αα⟩+ |γγ⟩) + |βββ⟩, respectively.

From the classification of two-qutrit states, we have biseparable states with
one-multirank equal to (133), up to a permutation, as other elements of σ3(Σ3

2):

|B(2)
i ⟩3i=1 = p{|GHZ

(2)
2 ⟩|q3⟩} . (5.25)

To construct the closure of the three-secant variety, i.e., the three-tangent, one
can use different limit types at p1 = [1 : 0 : · · · : 0]. For instance, we can consider
the first limit type which is the addition of Eq. (5.19) with an extra point from the
Segre variety (see Ref. [44]). Then, we get

|X3⟩ = |W3⟩+ |γγγ⟩ , (5.26)

where α ̸= β ̸= γ ∈ {0, 1, 2} as an element of τ3(Σ3
2) with one-multirank equal

to (333). Indeed, based on the inclusion τ3 ⊂ σ3, we can conclude that |X3⟩ can
asymptotically be produced by |GHZ

(2)
3 ⟩. This can be shown by considering the

following points:

p(ε) =
1

ε

(
(|0⟩+ ε|1⟩+ ε|2⟩)⊗3 + ε|222⟩ − |000⟩

)
. (5.27)

For all ε ̸= 0 they correspond to GHZ(2)-type states and indicate a smooth curve
in σ3(Σ3

2). When ε→ 0 we have

lim
ε→0

p(ε) = |00υ⟩+ |0υ0⟩+ |υ00⟩+ |222⟩ , (5.28)
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5.3. Fine-structure classification of three-qutrit entanglement

that is equivalent to the state in Eq. (5.26).
In a similar way, we can also derive as limit process the following states from

Eq. (5.23), in order to get other elements of τ3(Σ3
2) with one-multiranks equal to a

permutation of (233)
|W3⟩+ p{|αγγ⟩} , (5.29)

where α ̸= β ̸= γ ∈ {0, 1, 2}. Additionally, the states

|α⟩i|GHZ
(2)
2 ⟩jk + |β⟩i|q3⟩⊗2

jk , (5.30)

where {i, j, k} = {1, 2, 3}, ⟨GHZ
(2)
2 |q3⟩⊗2 = 0, and ⟨α|β⟩ = 0, have tensor

rank and border rank equal to three and four, respectively. So they can be as well
considered as elements of τ3(Σ3

2) with one-multiranks equal to a permutation of
(233).

Note that in the three-tangent family, we do not have any element with one-
multirank equals to (223) and its permutations. In fact, if the one-multirank of a
given sate is equal to (223), then the state lives in a smaller tensor product space,
here isC2⊗C2⊗C3, and its border rank is bounded by three, and it is a balanced
case [131, 153]. Let us consider two cases which have one-multiranks equal to
a permutations of (223): (1) Concerning Eq. (5.24), one can consider the states
|W3⟩+ |αβγ⟩. It is obvious that we can write these states as |ααβ⟩+ |αβ⟩(|α⟩+
|γ⟩) + |βαα⟩ which clearly have tensor rank and border rank equal to three. (2)
With a better choice of basis one can also consider the sates |W3⟩+ |ββγ⟩. These
states can be easily written as |αα⟩(−|α⟩ + |β⟩) + (|α⟩ + |β⟩)(|α⟩ + |β⟩)|α⟩ +
|ββ⟩(−|α⟩+ |γ⟩) which clearly have tensor rank and border rank equal to three.

The proper four-secant, i.e., the set σ4(Σ3
2)\σ3(Σ3

2), is the union of the secant
hyperplanes S4 represented by Eq. (5.4). For instance, the following states which
explicitly come from joining of four independent points in the Segre variety are
elements of σ4(Σ3

2) with one-multirank equal to (333)

|000⟩+ |011⟩+ |122⟩+ |221⟩ ,
|000⟩+ |111⟩+ |122⟩+ |221⟩ , (5.31)

which can be considered as adding two different types of biseparable states |B(1)⟩,
or adding two different types of |GHZ

(1)
3 ⟩ states, or adding a biseparable state

|B(1)⟩ and a |GHZ
(1)
3 ⟩ state. Other examples of the proper four-secant family with

one-multirank equals to (333) can be considered as joining an independent point
to the state in Eq. (5.22) as follows:

|GHZ
(2)
3 ⟩+ p{|012⟩} , (5.32)

95



5.3. Fine-structure classification of three-qutrit entanglement

and
|G3⟩ = |GHZ

(2)
3 ⟩+ |ω1ω1ω1⟩ , (5.33)

where |ω1⟩ = |0⟩+ |1⟩+ |2⟩.
Using Eq. (5.20) one can see that the higher symmetric entangled state

|D(1,1,1)
3 ⟩ = |012⟩+ |021⟩+ |102⟩+ |120⟩+ |201⟩+ |210⟩ , (5.34)

is also an element of σ4(Σ3
2) with one-multirank equal to (333). This is because

we can relate the above-mentioned symmetric state to the monomial xyz (actually
all symmetric states can be related to some homogeneous polynomials since the
variables in polynomials are invariant under permutation and each variable can be
related to a basis) and we can decompose this monomial as follows

xyz =
1

24

(
(x+y+z)3+(−x−y+z)3+(−x+y−z)3+(x−y−z)3

)
. (5.35)

So, using the Dirac notation, we can rewrite the state |D(1,1,1)
3 ⟩ in Eq. (5.34) based

on the above decomposition as follows:

|D(1,1,1)
3 ⟩ = 1

4

(
|ω1⟩⊗3 + |ω2⟩⊗3 + |ω3⟩⊗3 + |ω4⟩⊗3

)
, (5.36)

where |ω2⟩ = −|0⟩−|1⟩+ |2⟩, |ω3⟩ = −|0⟩+ |1⟩−|2⟩, and |ω4⟩ = |0⟩−|1⟩−|2⟩.
So the tensor rank and border rank of this state are at most 4. Moreover, using the
Eq. (5.15), one can see that the rank and border rank of this state are at least 4.
Hence, both the tensor rank and the border rank of |D(1,1,1)

3 ⟩ are four.
In the four-secant family, we do not have any element with one-multirank

equals to (233) and its permutations. Indeed, if one-multirank of a given sate is
equal to (233) then the state lives inC2⊗C3⊗C3, and its border rank is bounded
by three, but tensor rank can be three or four [153].

Concerning the closure of the four-secant variety, i.e., the four-tangent, we use
the results of Ref. [154]. The following state which has tensor rank and border
rank equal to five and four, respectively,

|010⟩+ |100⟩+ |112⟩+ |201⟩+ |222⟩ , (5.37)

is an element of τ4(Σ3
2) with one-multirank equal to (333).

Although any general state of three-qutrit system that has a non-zero determi-
nant of matrix F in Eq. (5.15) can be considered as an element of proper five-secant
family, the following state which explicitly comes from joining of five independent
points in the Segre variety and obeys Eq. (5.4), is an element of σ5(Σ3

2) with one-
multirak equal to (333)

|G3⟩+ t (|1⟩+ |2⟩)⊗ (|0⟩+ |2⟩)⊗ (|0⟩+ |1⟩) , (5.38)
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Table 5.2: Fine-structure classification of three-qutrit entanglement. Each column
corresponds to a family (τk is the closure of σk family that is split based on tensor
rank). Within a column, each row corresponds to a subfamily. A subscript k is
used to indicate members appearing in different k-secant families while having the
same one-multirank. A prime symbol is used for states in the k-tangent variety that
appear (with the same one-multirank) in the boundary of the k-secant variety.

Σ3
2 σ2 τ2 σ3 τ3 σ4 τ4 σ5

|Sep⟩ |GHZ
(1)
3 ⟩ |W3⟩ |GHZ

(2)
3 ⟩ |(333)′3⟩ |(333)4⟩ |(333)′4⟩ |(333)5⟩

|B(1)
i ⟩3i=1 |(332)⟩ |(332)′⟩

|(323)⟩ |(323)′⟩
|(233)⟩ |(233)′⟩
|(322)⟩
|(232)⟩
|(223)⟩
|B(2)
i ⟩3i=1

where t ∈ C \ {0, 1}. The determinant of the matrix F for this state is 2t(1 − t).
Note that for t = 1 the border rank is four and the tensor rank is also four, so the
state belongs to the four-secant family in this case.

Since the highest tensor rank for a three-qutrit state is five [155], we do not
need to construct the Zariski closure of the five-secant family.

It is worth noting that in the classification of three-qutrit states, all the elements
in the proper four- and five-secant families are genuinely entangled.

To have an exhaustive classification, we have written each subfamily of three-,
four-, and five-secant families in terms of their one-multiranks in Table 5.2. Also,
we have used a prime for the states in tangent to discriminate secant and tangent
families where they have same one-multiranks. In addition, we have put a subscript
k to indicate members appearing in different k-secant families with the same one-
multirank.

In summary, this classification provides us five secant families (eight secant /
tangent families), and 23 subfamilies (Table 5.2). These classes are pictorially rep-
resented in Fig. 5.1. Obviously, a finer classification can be obtained by utilizing
an extra SLOCC invariant (see Section 5.3.1).
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Figure 5.1: Petal-like classification of SLOCC orbits of three-qutrit states. By
noninvertible SLOCC one can go from the outer classes to the inner ones (from
σk to τk also in an approximate way), thus generating the entanglement hierarchy.
Note that states |B(1)

i ⟩ appear with a double petal because to emphasize that they
can be obtained starting from either |W3⟩ states or |B(2)

i ⟩ states. In contrast, |B(2)
i ⟩

states cannot be obtained from |W3⟩ states.

5.3.1 Finer classification of three-qutrit entanglement

Since the Schmidt measure can be defined as the logarithm of the tensor rank of
a quantum state, one can conclude that tensor rank is itself an SLOCC invariant.
Therefore, we can employ it to improve the classification algorithm by eventually
splitting subfamilies into sub-subfamilies with the same tensor rank. Although
determining the tensor rank of a given quantum state is NP hard [156], it could also
results a useful tool for studying SLOCC interconversions among specific quantum
states.

In Ref. [157], a classification of three-qutrit entanglement is presented in five
families according to the description of fundamental invariants provided in Refs.
[53, 54]. It is also determined which fundamental invariants of SL(3,C)×3 vanish
on tensors for each possible tensor rank. Here, we utilize tensor rank as an ex-
tra SLOCC invariant to present a finer classification of three-qutrit entanglement
with respect to the classification presented in Table 5.2, such that it contains the
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Figure 5.2: Pictorial representation of the fact that using tensor rank as the third
SLOCC invariant, the subfamily |(333)′3⟩ of Table 5.2 can be split into two sub-
subfamilies |X3⟩ and |Y3⟩ with tensor ranks equal to four and five, respectively.

information of Ref. [157].
To this end, consider the following state:

|Y3⟩ = |002⟩+ |020⟩+ |200⟩+ |011⟩+ |101⟩+ |110⟩ , (5.39)

and the following points:

q(ε) =
1

ε2
(
(|0⟩+ ε√

2
|1⟩+ ε2|2⟩)⊗3 + (|0⟩ − ε√

2
|1⟩)⊗3 − 2|000⟩

)
, (5.40)

that for all ε ̸= 0 correspond to GHZ(2)-type states. When ε→ 0 we have

lim
ε→0

q(ε) = |002⟩+ |020⟩+ |200⟩+ 2(|011⟩+ |101⟩+ |110⟩) , (5.41)

that is equivalent to the state in Eq. (5.39). So |Y3⟩ can be considered as another
element of τ3(Σ3

2) with one-multirank equal to (333). Moreover, it can asymptot-
ically be obtained from |GHZ

(2)
3 ⟩. It is worth noting that the states in Eqs. (5.26)

and (5.39) are not equivalent since the tensor rank of the former is four, while of
the later is five. In fact, we can rewrite Eq. (5.39) as follows:

|Y3⟩ =
1

3

[
(2|0⟩+ |2⟩)⊗3 − 2(|0⟩+ |2⟩)⊗3 + |222⟩

]
+

1

2
√
3i

[
(2ξ + 1)|0⟩ − |1⟩)⊗3 − ((2ξ2 + 1)|0⟩ − |1⟩)⊗3

]
, (5.42)

with ξ = exp(2πi/3). Hence, using the tensor rank as the third SLOCC invariant,
we can split the subfamily |(333)′3⟩ ∈ τ3(Σ

3
2) into two sub-subfamilies with tensor

ranks equal to four and five, respectively (see Fig. 5.2).
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5.4 Generalization

We generalize here some of the results found in the previous section to tripartite
Cd ⊗Cd ⊗Cd systems as well to n-qudit systems.

As one can see, going beyond the qubit setting, there are several types of GHZ
states (see for instance, Eqs. (5.17) and (5.22)). This is because we have differ-
ent types of excitations rather than qubit systems. So we can draw the following
conclusions for d, n ≥ 3:

|GHZ(ζ)
n ⟩ = |α1⟩⊗n + · · ·+ |αζ+1⟩⊗n ∈ σζ+1(Σ

n
d-1) , (5.43)

where 1 ≤ ζ ≤ d− 1 and αi ̸= αj ∈ {0, 1, . . . , d−1}. Then, based on Eq. (5.43),
we can create (n−m+ 1)-separable states as follows:

p{|GHZ(ζ)
m ⟩|qd⟩⊗n−m} ∈ σζ+1(Σ

n
d-1) , (5.44)

where 2 ≤ m ≤ n− 1 and |qd⟩ is a general one-qudit state.
From Eq. (5.19), we can draw the following conclusion for d, n ≥ 3:

|Wn⟩ = |Dp(n−1,1,0,··· ,0)
n ⟩ =

∑
i

pi{|α⟩⊗n−1 ⊗ |β⟩} ∈ τ2(Σ
n
d-1) , (5.45)

where α ̸= β ∈ {0, 1, . . . , d− 1} and

|Dȷ
n⟩ =

√∏
i ji!

n!

∑
π∈Sn

π{|0⟩⊗j1 ⊗ · · · ⊗ |d− 1⟩⊗jd} , (5.46)

are the so-called n-qudit Dicke states, with excitations shown as ȷ = (j1, . . . , jd)
where j1 + · · ·+ jd = n.

Furthermore, from Eq. (5.26) we can conclude, for d, n ≥ 3:

|Xn⟩ = |Wn⟩+ |γγγ⟩ ∈ τ3(Σ
n
d-1) , (5.47)

where γ ∈ {0, 1, . . . , d− 1} is different from α and β in Eq. (5.45).
For d-qudit states we have the following results, which respectively comes from

Eqs. (5.32) and (5.33),

|GHZ
(d−1)
d ⟩+ p{|01 · · · (d− 1)⟩} ∈ σd+1(Σ

d
d-1) , (5.48)

|Gd⟩ = |GHZ
(d−1)
d ⟩+ |Ω⟩⊗d ∈ σd+1(Σ

d
d-1) , (5.49)

where |Ω⟩ = |0⟩+ · · ·+ |d− 1⟩.
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Let us now discuss Dicke states. Since they correspond to monomials, up to
scaling the variables, they are symmetric, i.e., they are invariant under any per-
mutation of the parties. Thus, their symmetric tensor rank can be computed as the
Waring rank of the corresponding monomials. We might expect that for monomials
the symmetric rank and the tensor rank agree, especially since the smallest known
counterexample to Comon’s conjecture (rank and symmetric rank of symmetric
tensors are equal [124]) by Shitov [127] is of size 800 × 800 × 800. It is widely
expected that Comon’s conjecture should be true for tensors of small size.

Proposition 5.1. For d ≥ 3, there is no symmetric entangled state in the proper

locus of the k-secant variety of the Segre variety ofPd×Pd×Pd with k > ⌈(
d+2
3 )
d ⌉.

Proof. Comparing Eq. (3.87) with n = 3 to Eq. (5.3) provides the proof of the
proposition. ■

Proposition 5.2. For n ≥ 4 qutrits, Dicke states are not in the highest secant
variety of P(Symn

C3).

Proof. Based on Theorem 3.2 and Conjecture 3.1, for an n-qutrit Dicke state,
the maximum border rank achieved when ȷ = (⌈n3 ⌉, ⌊

n
3 ⌋, n − ⌈n3 ⌉ − ⌊n3 ⌋) in Eq.

(5.46). So,

|D(⌈n
3
⌉,⌊n

3
⌋,n−⌈n

3
⌉−⌊n

3
⌋)

n ⟩ ∈

{
σ(⌊n

3
⌋+1)(n−⌈n

3
⌉−⌊n

3
⌋+1)(Σ

n
2 ) if n = 3i (i ∈ N) ,

τ(⌊n
3
⌋+1)(n−⌈n

3
⌉−⌊n

3
⌋+1)(Σ

n
2 ) otherwise .

(5.50)
On the other hand, the generic symmetric rank of a tensor in Symn

C3 is equal
to
⌈
(n+1)(n+2)

6

⌉
, except for n = 4 where it is six. Hence, in contrast to multi-

qubit Dicke states, multiqutrit Dicke states are not in the highest secant variety in
P(Symn

C3). ■
Moreover, since there is no symmetric entangled state in the higher secant fam-

ily of 3-qutrit systems, it turns out that for n ≥ 3 qutrits, there is no symmetric
entangled state in the higher secant variety.
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Chapter6
Persistent Tensors

“Beauty will save the world.”

Fyodor Dostoevsky

Within this chapter, which is based on the Ref. [57], we construct a lower bound
of the tensor rank for a new class of tensors, which we call persistent tensors. We
present three specific families of persistent tensors, of which the lower bound is
tight. We show that there is a chain of degenerations between these three fami-
lies of minimal-rank persistent tensors that can be used to study the entanglement
transformation between them. In addition, we show that these three families of
persistent tensors are indeed different generalizations of multiqubit W state within
multiqudit systems and are geometrically in the orbit closure of multiqudit GHZ
states. Consequently, we show that one can obtain every one of the generalizations
of the W state from a multiqudit GHZ state via asymptotic Stochastic Local Opera-
tions and Classical Communication (SLOCC) with rate one. Finally, we extend the
obtained lower bound of the tensor rank to direct sums with persistent summands
and to even more general combinations of tensors, which we call block pyrami-
dal tensors. As a result, we show that the tensor rank is multiplicative under the
Kronecker and tensor products of minimal-rank persistent tensors with the GHZ
tensor.
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6.1 Preliminaries

6.1.1 Multipartite quantum states as multipartite tensors

A state of a multipartite quantum system can be considered as a multipartite tensor
in the tensor product of Hilbert spaces of each individual subsystem. Let Hd

n =
⊗n
i=1C

di be the Hilbert space representing the state space of an n-partite quantum
system where d = (d1, . . . , dn) indicates the dimensions of the Hilbert spaces of
each individual subsystem.

Here, we are dealing with two different notions of product for tensors. Suppose
that we have two tensors T1 ∈ Hd

n1
= ⊗n1

i=1C
di and T2 ∈ Hd′

n2
= ⊗n2

i=1C
d′i

corresponding to two multipartite quantum systems, the first with n1 parties and
the second with n2 parties, respectively. Assume n1 ≤ n2 (without any loss of
generality). The first product is the tensor product that corresponds to an (n1+n2)-
partite system, and we denote it by T1 ⊗ T2 ∈ Hd

n1
⊗Hd′

n2
. The second product is

the Kronecker product, which corresponds to an n2-partite system, and we denote
it by T1 ⊠ T2 ∈ Hd

n1
⊠Hd′

n2
. In fact, Hd

n1
⊗Hd′

n2
= (⊗n1

i=1C
di)⊗ (⊗n2

j=1C
d′j ) and

Hd
n1

⊠Hd′
n2

= (⊗n1
i=1C

di+d
′
i)⊗ (⊗n2

j=n1+1C
d′j ).

In this chapter, we take {|j⟩ | j ∈ Zd} as the canonical basis ofCd. We do not
distinguish multipartite quantum states from the tensors that represent them. We
denote specific tensors by calligraphic capital letters. It should be noted that we do
not consider the normalization of the quantum states, since all properties that we
work with can be defined for tensors in general and are invariant under scaling.

The state of a composite system is always expressible as a superposition of
tensor products of the states of individual subsystems. A quantum state is called
fully separable (or unentangled) if it can be written as a tensor product of individ-
ual subsystem states, i.e., |ψ⟩ = |φ1⟩ ⊗ · · · ⊗ |φn⟩. Therefore, it is desirable to
characterize the entanglement in a composite system. The tensor rank is a good
tool for this purpose.

For example, consider the n-qubit W and GHZ states. An n-qubit W state,
i.e.,

Wn =
∑
p∈Sn

p
{
|0⟩⊗(n−1)|1⟩

}
=

n−1∑
i=0

|0⟩⊗(n−i−1)|1⟩|0⟩⊗i , (6.1)

where p denotes non-redundant elements of the symmetric group Sn, corresponds
to a symmetric tensor in ⊗nC2 and its tensor rank and border rank are known to be
rk(Wn) = n (but a concrete proof is missing in the literature1) and brk(Wn) = 2,

1Although in Ref. [46, Theorem 3] the tensor rank of multiqubit Dicke states is presented but
since the proof is based on induction and the base case is cited to an irrelevant reference, that is,
Ref. [19], it is incomplete. Actually, in Ref. [19] there is nothing about the tensor rank of the n-qubit
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respectively. We will prove this fact that the tensor rank of a n-qubit W state is
indeed n. A generalized n-qudit GHZ state, i.e.,

G(d, n) =
d−1∑
j=0

|j⟩⊗n , (6.2)

corresponds to a symmetric tensor in ⊗nCd and its tensor rank and border rank are
rk(G(d, n)) = brk(G(d, n)) = d.

It is known that a multiqudit GHZ-equivalent state can be transformed into a
quantum state |ψ⟩ iff d ≥ rk(|ψ⟩) [45]. Therefore, the tensor rank of a quantum
state can be characterized as follows

rk(T ) = min
{
d
∣∣ G(d, n) SLOCC−−−−→ T

}
. (6.3)

Similarly, the border rank of a quantum state is the smallest d such that a multiqudit
GHZ-equivalent state degenerates into it.

brk(T ) = min
{
d
∣∣ G(d, n) SLOCC−−→ T

}
. (6.4)

Now, assume that |S⟩ and |T⟩ are two quantum states in Hilbert spaces H and
H′ whose tensor ranks are rk(S) and rk(T ), respectively. Then T ⊠ S ∈ H⊠H′,
T ⊗ S ∈ H ⊗H′, and we have the following inequalities

rk(S ⊠ T ) ≤ rk(S ⊗ T ) ≤ rk(S) rk(T ) . (6.5)

These operations (the Kronecker product and the tensor product) can be applied
to the study of the (asymptotic) SLOCC interconversion between multipartite en-
tangled states [44–46, 60–64]. It is known that the tensor rank is not multiplica-
tive under the Kronecker product. This is the reason why multicopy entanglement
transformation by SLOCC is quite challenging. In Refs. [45, 46], the tensor rank
of two copies of the three-qubit W state is shown to be rk(W3 ⊠ W3) = 7, and
in general the tensor rank of two copies of the n-qubit W state is shown to be
rk(Wn⊠Wn) = 3n−2. The tensor rank has also been shown to not be multiplica-
tive under the tensor product [158]. In Ref. [74] it is shown that rk(W3⊗W3) = 8
but the tensor rank of the tensor product of two n-qubit W states is still unknown.

In the following, we present the definitions of the SLOCC and asymptotic
SLOCC transformations that are, respectively, known as restriction and degener-
ation in algebraic geometry and algebraic complexity theory. Although we have
already given a definition for SLOCC transformation in Chapter 2, the following
definition is more general.

W state.
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Definition 6.1 (SLOCC transformation). Let |ψ⟩ ∈ U1 ⊗ · · · ⊗ Un and |φ⟩ ∈
V1 ⊗ · · · ⊗ Vn be two n-partite quantum states, where Ui and Vi are the Hilbert
spaces of individual subsystems. We say that |ψ⟩ can be transformed into |φ⟩ via
SLOCC (denoted by |ψ⟩ SLOCC−−−−→ |φ⟩) if there exist linear maps Ai : Ui → Vi such
that

(⊗n
i=1Ai)|ψ⟩ = |φ⟩ . (6.6)

A generalization of the concept of SLOCC conversion is that of asymptotic
SLOCC conversion. Here, instead of an exact transformation according to Eq.
(6.6), we consider asymptotic transformations between quantum states by local
operations.

Definition 6.2 (Degeneration). Let |ψ⟩ ∈ U1⊗· · ·⊗Un and |φ⟩ ∈ V1⊗· · ·⊗Vn be
two n-partite quantum states, where Ui and Vi are the Hilbert spaces of individual
subsystems. We say that |ψ⟩ degenerates into |φ⟩ with error degree e via SLOCC
(denoted by |ψ⟩ SLOCC−−→ |φ⟩) if there exist linear maps Ai(ε) : Ui → Vi depending
polynomially on ε such that

(⊗n
i=1Ai(ε))|ψ⟩ = εd|φ⟩+

e∑
l=1

εd+l|φ̃l⟩ , (6.7)

for some state |φ̃l⟩ and d ∈ N which is called the approximation degree.

Indeed, if the quantum state |ψ⟩ degenerates into the quantum state |φ⟩, then
|φ⟩ can be approximated to arbitrary precision by restrictions of |ψ⟩, i.e.,

lim
ε→0

1

εd
(⊗n

i=1Ai(ε))|ψ⟩ = |φ⟩ . (6.8)

In a similar spirit to the LOCC-based entanglement dilution [66], we can use
a quantity that indicates the minimum number of copies of a source quantum state
|ψ⟩ that can be used to obtain a single copy of the target quantum state |φ⟩ by
SLOCC transformation, in an asymptotic setting. This quantity is the rate of
asymptotic SLOCC transformation from |ψ⟩ into |φ⟩ and is defined as follows

ω(ψ,φ) = lim
n→∞

1

n
inf
{
m ∈ N

∣∣ |ψ⟩⊠m SLOCC−−−−→ |φ⟩⊠n
}
. (6.9)

6.1.2 Concise tensors

Informally, a tensor is concise if it cannot be written as a tensor in a smaller ambient
space. For example, a tensor T ∈ Ca ⊗Cb ⊗Cc is concise if its multilinear rank
is (a, b, c), which means that the tensor T uses all dimensions of the local spaces.
In the following, we define concise tensors for multipartite systems.
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Definition 6.3 (Concise tensor). A tensor T ∈ V1 ⊗ · · · ⊗ Vn is called concise in
the first factor, or 1-concise, if T /∈ V ′

1⊗V2⊗· · ·⊗Vn with V ′
1 ⊊ V1. Conciseness

in other factors is defined analogously. A tensor is called concise if it is i-concise
for all i ∈ {1, . . . , n}.

The following lemma gives several equivalent characterizations of 1-concise
tensors.

Lemma 6.1. Let T ∈ V1 ⊗ · · · ⊗ Vn be a tensor and dimVi = di. The following
statements are equivalent:

1. T is 1-concise;

2. For every non-zero covector ⟨f | ∈ V ∨
1 the contraction ⟨f |T is non-zero;

3. For every basis {|ej⟩ | j ∈ Zd1} of V1 the decomposition T =
∑d1−1

j=0 |ej⟩⊗
Tj has all Tj non-zero.

Proof. (1) ⇔ (2): Note that ⟨f |T = 0 iff T is in (ker⟨f |)⊗ V2 ⊗ · · · ⊗ Vn. If T
is 1-concise, then ⟨f |T = 0 iff ker⟨f | = V1, that is, ⟨f | = 0. Conversely, assume
that T is not 1-concise, that is, T ∈ V ′

1 ⊗V2⊗· · ·⊗Vn with V ′
1 ⊊ V1. There exists

a non-zero covector ⟨f | vanishing on V ′
1 , and for this covector we have ⟨f |T = 0.

(2) ⇒ (3): Let {⟨fj | | j ∈ Zd1} be the dual basis. Tj = ⟨fj |T is non-zero.
(3) ⇒ (2): For every non-zero ⟨f | there exists a basis {|ej⟩ | j ∈ Zd1} such

that ⟨f |ej⟩ = 0 for j > 0 and ⟨f |e0⟩ = 1. We have ⟨f |T = T0 ̸= 0. ■

Corollary 6.1. A tensor T ∈ V1 ⊗ V2 is 1-concise iff rk(T ) = dimV1.

We will need the following property of rank decompositions for i-concise ten-
sors.

Lemma 6.2. Let T ∈ V1 ⊗ · · · ⊗ Vn be an i-concise tensor. If

T =
r∑
p=1

v
(p)
1 ⊗ · · · ⊗ v(p)n , (6.10)

is a tensor rank decomposition of T , then the vectors {v(1)i , . . . , v
(r)
i } span Vi.

Proof. We prove the statement for 1-concise tensors. Let the set of vectors
{v(1)1 , . . . , v

(r)
1 } span a vector space U . Note that all summands of rank decompo-

sition are contained in U ⊗ V2 ⊗ · · · ⊗ Vn. It follows that T also lies in this space.
Since T is a 1-concise tensor, we then have U = V1.

The proof for i-concise tensors is analogous. ■
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6.2 Persistent Tensors

The substitution method is a method to obtain lower bounds for the tensor rank by
zeroing the summands in a rank decomposition by applying appropriate projection
maps to the tensor factors (see [58, Ch.17] or [159, Appx. B]). A lower bound is
obtained by keeping track of the number of summands zeroed. In this section, we
introduce a class of tensors for which we can prove the tensor rank lower bounds
by repeated application of the substitution method. We call these tensors persistent.
For persistent tensors in ⊗nCd we get a lower bound of (n− 1)(d− 1) + 1.

Definition 6.4 (Persistent tensor). We define persistent tensors inductively.

(i) A tensor P ∈ V1 ⊗ V2 is persistent if it is 1-concise.

(ii) A tensor P ∈ V1⊗· · ·⊗Vn with n > 2 is persistent if it is 1-concise and there
exists a subspace S ⊊ V ∨

1 such that the contraction ⟨f |P ∈ V2 ⊗ · · · ⊗ Vn is
persistent whenever ⟨f | /∈ S.

The following lemma gives different characterizations of the class of persistent
tensors which are useful for checking persistence.

Lemma 6.3. Let P ∈ V1⊗· · ·⊗Vn (n > 2) be a persistent tensor with dimVi = di.
The following statements are equivalent:

1. P is persistent.

2. P is 1-concise and there exists a non-zero vector |e⟩ ∈ V1 such that the
following implication holds:

⟨f |e⟩ ≠ 0 ⇒ ⟨f |P is persistent.

3. P is 1-concise and there exists a non-zero vector |e⟩ ∈ V1 such that the
following implication holds:

⟨f |e⟩ = 1 ⇒ ⟨f |P is persistent.

4. For every basis {|ej⟩ | j ∈ Zd1} of V1 the decomposition

P =

d1−1∑
j=0

|ej⟩ ⊗ Pj , (6.11)

has all Pj non-zero and at least one of them is persistent.
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Proof. (1) ⇒ (2): Let S ⊊ V ∨
1 be the subspace in the definition of persistence.

Choose any non-zero |e⟩ ∈ S⊥.
(2) ⇒ (1): Take S = |e⟩⊥.
(2) ⇒ (3): Trivial
(1) ⇒ (4): Because P is 1-concise, all Pi are non-zero. Let {⟨fj | | j ∈ Zd1}

be the dual basis to {|ej⟩ | j ∈ Zd1}. At least one ⟨fj | does not lie in the subspace
S ⊊ V ∨

1 from the definition of persistence. It follows that Pj = ⟨fj |P is persistent.
(4) ⇒ (3): Let {|ej⟩ | j ∈ Zd1} be a basis such that the decomposition (6.11)

has the minimum possible number of persistent tensors Pj . Assume without loss
of generality that P0 is persistent.

For every α1, . . . , αd1−1 we can rewrite the decomposition (6.11) to get

P = |e0⟩ ⊗
(
P0 +

d1−1∑
j=1

αjPj
)
+

d1−1∑
j=1

(|ej⟩ − αj |e0⟩)⊗ Pj . (6.12)

This is a decomposition corresponding to a different basis |e′0⟩ = 1
α0
|e0⟩, |e′j⟩ =

|ej⟩ − αj

α0
|e0⟩. Since the number of persistent slices in this decomposition cannot

be less than that in the original, the tensor P0 +
∑d1−1

j=1 αjPj is persistent.
Let ⟨f | ∈ V ∨

1 be a covector such that ⟨f |e0⟩ = 1. Note that ⟨f |P = P0 +∑d1−1
j=1 ⟨f |ej⟩Pj is persistent by the previous discussion. We have proven (3) with

|e⟩ = |e0⟩. ■

In the following, we present some examples of persistent and non-persistent
tensors.

(i). Non-persistent tensors:

1. The diagonal tensor G(d, n) (correspondingly, n-qudit GHZ state) is
not a persistent tensor for n > 2 and d ≥ 2. This can be understood
using Lemma 6.3(4). We have

G(d, n) =
d−1∑
j=0

|j⟩ ⊗ Tj and Tj = |j⟩⊗(n−1) , (6.13)

where all Tj are not 1-concise and therefore not persistent.

2. The Dicke state D2
4 = |0011⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩+

|1100⟩ is not a persistent tensor. This can be seen from the decomposi-
tion (6.11) corresponding to the basis |±⟩ = |0⟩ ± |1⟩ and the fact that
W3 ±W3 ≡ G(2, 3), where W3 = |011⟩+ |101⟩+ |110⟩.
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3. All unnormalized multiqubit Dicke states

Dl
n =

∑
p∈Sn

p
{
|0⟩⊗(n−l) ⊗ |1⟩⊗l

}
, (6.14)

with l excitations are not persistent tensors except when l = 1. This
can be understood from the previous example.

(ii). Persistent tensors:

1. Wn is a persistent tensor because for every ⟨f | such that ⟨f |0⟩ = 1 we
have

⟨f |Wn = Wn−1 + ⟨f |1⟩|0⟩⊗(n−1) , (6.15)

which is equivalent to Wn−1. Repeating this construction, we arrive at
the base case W2 = |01⟩+|10⟩ which is a persistent tensor. Indeed, the
n-qubit W state is the only symmetric persistent tensor in multiqubit
systems.

2. An example of a nonsymmetric persistent tensor is the four-qubit state
T = α2|0011⟩+β2|0101⟩+(α±β)2|0110⟩+|1001⟩+|1010⟩+|1100⟩.
For every ⟨f | such that ⟨f |1⟩ = 1 the contraction ⟨f |T is equivalent to
W3. This can be checked by computing the tangle [160].

3. As another example, 3-qutrit Y3 = |002⟩ + |020⟩ + |200⟩ + |011⟩ +
|101⟩+ |110⟩ is a persistent tensor. In the following, we will show that
the n-qutrit Y state given by

Yn =
∑
p∈Sn

p{|0⟩⊗(n−2)(|02⟩+ |11⟩)} , (6.16)

which corresponds to a symmetric tensor in ⊗nC3, is a persistent ten-
sor.

Theorem 6.1. If P ∈ V1 ⊗ · · · ⊗ Vn is a persistent tensor and dimVk = dk, then

rk(P) ≥
n−1∑
k=1

(dk − 1) + 1 . (6.17)

Moreover, in every rank decomposition

P =

r∑
p=1

u
(p)
1 ⊗ · · · ⊗ u(p)n , (6.18)
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one can permute the summands in such a way that the rearranged decomposition

P =

r∑
p=1

v
(p)
1 ⊗ · · · ⊗ v(p)n , (6.19)

has the following property: for every j < n the vectors {v(Dj+1)
j , . . . , v

(Dj+dj)
j }

form a basis of Vj , where Dj =
∑j−1

k=1(dk − 1) (for j = 1 we take D1 = 0).

Proof. We prove the statement by induction.
Base case: n = 2. If n = 2, then P is persistent iff it is 1-concise. By

Corollary 6.1 we have rk(P) = d1, so the required lower bound is maintained.
Moreover, in any decomposition

P =

r∑
p=1

u
(p)
1 ⊗ u

(p)
2 , (6.20)

Regarding Lemma 6.2, Span{u(1)1 , . . . , u
(r)
1 } = V1. Therefore, we can permute

the summands to get a decomposition

P =
r∑
p=1

v
(p)
1 ⊗ v

(p)
2 , (6.21)

where {v(1)1 , . . . , v
(d1)
1 } form a basis of V1.

Consider now the case n > 2. Let P be a persistent tensor in V1 ⊗ · · · ⊗ Vn
and let Eq. (6.18) be a rank decomposition of P . We rearrange the summands of
this decomposition in several steps.

First, since P is 1-concise, based on Lemma 6.2, V1 = Span{u(1)1 , . . . , u
(r)
1 }.

So, we can permute the summands to obtain a rearranged decomposition in Eq.
(6.19) such that {v(1)1 , . . . , v

(d1)
1 } form a basis of V1. We choose the order of this

basis in such a way that in the decomposition

P =

d1∑
k=1

v
(k)
1 ⊗ Pk , (6.22)

the tensor Pd1 is persistent.
Let V ′

1 = Span{v(1)1 , . . . , v
(d1−1)
1 }. As a second step, we separate the sum-

mands with v(p)1 /∈ V ′
1 from those with v(p)1 ∈ V ′

1 . We rearrange the summands
with indices from d1 + 1 to r to get a second rearranged decomposition

P =
r∑
p=1

w
(p)
1 ⊗ · · · ⊗ w(p)

n , (6.23)
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such that w(p)
1 /∈ V ′

1 if d1 ≤ p ≤ s and w(p)
1 ∈ V ′

1 if p > s for an appropriate s ≤ r.
Let ⟨f | be a covector such that ⟨f |v(k)1 ⟩ = 0 if k < d1 and ⟨f |v(d1)1 ⟩ = 1. We

have

Pd1 = ⟨f |P =
s∑

p=d1

⟨f |w(p)
1 ⟩w(p)

2 ⊗ · · · ⊗ w(p)
n , (6.24)

which is a rank decomposition for Pd1 .
By the induction hypothesis, the number of summands in this decomposition,

s−d1+1, is at least
∑n−1

k=2(dk−1)+1, from which we obtain r ≥ s ≥
∑n−1

k=1(dk−
1)+ 1 as required. Moreover, we can rearrange the summands to get the following

Pd1 = ⟨f |P =

s∑
p=d1

⟨f |y(p)1 ⟩y(p)2 ⊗ · · · ⊗ y(p)n , (6.25)

with {y(Dj+1)
j , . . . , y

(Dj+dj)
j } being a basis of Vj . Applying the same permutation

to the summands with indices from d1 to s in Eq. (6.18), we get

P =
r∑
p=1

y
(p)
1 ⊗ · · · ⊗ y(p)n . (6.26)

Note that {y(1)1 , . . . , y
(d1−1)
1 , y

(d1)
1 } is still a basis of V1 since y

(d1)
1 /∈ V ′

1 and
V ′
1 = Span{y(1)1 , . . . , y

(d1−1)
1 }. ■

Due to the following lemma, which is the essence of the substitution method
(see also Ref. [159, Appx. B]) we have the following alternative proof of Theo-
rem 6.1.

Lemma 6.4. Let T ∈ V1 ⊗ · · · ⊗ Vn be an i-concise tensor. For every subspace
V ′
i ⊊ Vi there exists a projection πi : Vi → V ′

i such that

rk(T )− rk(πiT ) ≥ dimVi − dimV ′
i , (6.27)

where πiT denotes the application of πi to the i-th factor of the tensor T , i.e.,
(1⊗(i−1) ⊗ πi ⊗ 1⊗(n−i))T .

Proof. Suppose Eq. (6.10) is a tensor rank decomposition of T , i.e., rk(T ) = r.
By Lemma 6.2 the vectors {v(1)i , . . . , v

(r)
i } span Vi. Thus, there exists a subset

Si ⊂ {v(1)i , . . . , v
(r)
i } consisting of ci = dimVi − dimV ′

i vectors such that Wi =
Span{Si} is complementary to V ′

i . Consider the projection πi onto V ′
i along Wi.

Applying it to the i-th factor of each summand of the tensor rank decomposition
in Eq. (6.10) we obtain a decomposition of πiT with at most r − ci summands,
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because the summands containing vectors from Si are sent to 0. It follows that
rk(πiT ) ≤ rk(T ) − (dimVi − dimV ′

i ), and we obtain the required statement by
rearranging the terms. ■

Therefore, the prroof of Theorem 6.1 can be given as follows:
Proof. We prove the statement by induction.
If n = 2, then P is persistent iff it is 1-concise. By Corollary 6.1 we have

rk(P) = d1, so the required lower bound is maintained.
Consider now the case n > 2. Since P is a persistent tensor, by Lemma 6.3

there exists a vector |e⟩ ∈ V1 such that for every covector ⟨f | in the dual space of
V1, ⟨f |P is a persistent tensor whenever ⟨f |e⟩ ̸= 0. Let V ′

1 = Span{|e⟩} be a 1-
dimensional subspace of V1. Apply Lemma 6.4 to find the projection π1 : V1 → V ′

1

such that rk(P) − rk(π1P) ≥ d1 − 1. Since V ′
1 is a 1-dimensional subspace,

π1P = |e⟩ ⊗ P ′ for some P ′ ∈ V2 ⊗ · · · ⊗ Vn. It follows that rk(P ′) = rk(π1P)
and thus rk(P) ≥ d1 − 1 + rk(P ′). Note that P ′ = ⟨f |P where ⟨f | ∈ V ∨

1 is
the composition of π1 with the linear map V ′

1 → C that sends |e⟩ to 1. So, we
have ⟨f |e⟩ = 1 and P ′ is a persistent tensor. By the induction hypothesis, we
have rk(P ′) ≥

∑n−1
k=2(dk − 1) + 1, and therefore rk(P) ≥ d1 − 1 + rk(P ′) ≥∑n−1

k=1(dk − 1) + 1. ■

Corollary 6.2. The tensor rank of the n-qubit W state is n.

Proof. The upper bound is obvious from the definition of Wn, which has n
summands. According to Theorem 6.1, the lower bound of the tensor rank of Wn

is n as it is a persistent tensor. ■

6.3 Multiqudit generalization of W state

We now introduce several families of multipartite tensors in ⊗nCd (corresponding
to n-qudit states) which can be thought as different generalizations of multiqubit
W state within multiqudit systems. In the tripartite case, these tensors have been
studied before in the context of matrix multiplication complexity in connection
with the Coppersmith-Winograd algorithm [161].

The first family we present we call n-qudit L states

L(d, n) =
∑

j1+···+jn=d−1

|j1 · · · jn⟩ . (6.28)

These states are a special case of the weight states considered by Christandl et al.
in Ref. [162]. For n = d = 3 this tensor appeared as the Y state in Ref. [56]. In
algebraic complexity theory, a tensor equivalent to L(d, 3) appeared as the structure
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6.3. Multiqudit generalization of W state

tensor of truncated polynomial multiplication or as a “lower triangular” version of
the cyclic group tensor [163].

The second family we introduce is the family of n-qudit M states, which
generalizes the Coppersmith-Winograd tensors used in matrix multiplication al-
gorithms [161] to the multipartite case. We give two versions of these tensors,
which are SLOCC equivalent. The first version is

M(d, n) =
∑
p∈Sn

p
{ ⌊ d−1

2
⌋∑

j=0

|0⟩⊗(n−2)|j⟩|d− j − 1⟩
}

=

n−1∑
i=0

|0⟩⊗(n−i−1)|d− 1⟩|0⟩⊗i +
∑

i+k+l=n−2

d−2∑
j=1

|0⟩⊗i|j⟩|0⟩⊗k|d− j − 1⟩|0⟩⊗l .

(6.29)

The second version is (for d ≥ 3)

M′(d, n) =
∑
p∈Sn

p
{
|0⟩⊗(n−1)|d− 1⟩+

d−2∑
j=1

|0⟩⊗(n−2)|jj⟩
}

=
n−1∑
i=0

|0⟩⊗(n−i−1)|d− 1⟩|0⟩⊗i +
∑

i+k+l=n−2

d−2∑
j=1

|0⟩⊗i|j⟩|0⟩⊗k|j⟩|0⟩⊗l .

(6.30)

For d = 3, the two versions are equal. For d ≥ 4, the two versions are SLOCC
equivalent, because M is transformed into M′ by applying to each factor the fol-
lowing change of basis{

|j⟩ 7→ 1√
2
(|j⟩+ i|d− j − 1⟩)

|d− j − 1⟩ 7→ 1√
2
(|j⟩ − i|d− j − 1⟩)

for 1 ≤ j ≤
⌊
d− 2

2

⌋
, (6.31)

where i =
√
−1. In fact, it is a direct consequence of the Schmidt decomposition

that |j⟩|d−j−1⟩+ |d−j−1⟩|j⟩ is equivalent to |j⟩|j⟩+ |d−j−1⟩|d−j−1⟩ [83].
The last family we present is the family of n-qudit N states defined as

N (d, n) = |0⟩⊗(n−1)|d− 1⟩+
n−2∑
i=0

d−1∑
j=1

|0⟩⊗(n−i−2)|j⟩|0⟩⊗i|d− j − 1⟩ . (6.32)

by applying the map |j⟩ 7→ |d−j−1⟩ to the last tensor factor, we get an equivalent
tensor as follows

N ′(d, n) = |0⟩⊗n +
n−2∑
i=0

d−1∑
j=1

|0⟩⊗(n−i−2)|j⟩|0⟩⊗i|j⟩ . (6.33)
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6.3. Multiqudit generalization of W state

This form of n-qudit N state generalizes the tripartite tensor considered by
Copersmith-Winograd as the asymmetric version of its construction [161].

All three families of tensors generalize the n-qubit W state in the sense that
Wn = L(2, n) = M(2, n) = N (2, n). Moreover, it is easy to see that W⊠2

n is
equivalent to M(4, n) under the identification |00⟩ 7→ |0⟩, |01⟩ 7→ |1⟩, |10⟩ 7→
|2⟩, |11⟩ 7→ |3⟩.

All these families consist of persistent tensors, which follows from a more
general statement below.

Theorem 6.2. Let T ∈ ⊗nCd be a tensor of the form

T =
∑

j1+···+jn<d
tj1···jn |j1 · · · jn⟩ . (6.34)

If the coefficients before |0⟩⊗(n−i−2)|j⟩|0⟩⊗i|d−j−1⟩ are non-zero for all i ≤ n−2
and j ≤ d− 1 then T is a persistent tensor.

Proof. We prove the statement by induction on n.
If n = 2, then

T =

d−1∑
j=0

tj,d−j−1|j⟩ ⊗
(
|d− j − 1⟩+

d−j−2∑
k=0

tjk
tj,d−j−1

|k⟩
)
, (6.35)

has matrix rank d and therefore is 1-concise.
For n > 2, note that for ⟨f | =

∑d−1
j=0 fj⟨j| we have

⟨f |T =
∑

j2+···+jn<d
sj2···jn |j2 · · · jn⟩ where sj2···jn =

d−(j2+···+jn)−1∑
j1=0

fj1tj1···jn ,

(6.36)
If ⟨f | ̸= 0 and j is the minimum index such that fj ̸= 0, then s0···0,d−j−1 =

fjtj0···0,d−j−1 ̸= 0, so ⟨f |T ≠ 0. By Lemma 6.1 T is 1-concise. Additionally,
if ⟨f |0⟩ = 1 and j2 + · · · + jn = d − 1, then sj2···jn = t0j2···jn . In particu-
lar, the coefficients before |0⟩⊗(n−i−3)|j⟩|0⟩⊗i|d − j − 1⟩ in ⟨f |T are non-zero,
so by the induction hypothesis ⟨f |T is persistent. Therefore, T is persistent by
Lemma 6.3(3) with |e⟩ = |0⟩. ■

Corollary 6.3. The tensors L(d, n), M(d, n) and N (d, n) are persistent.

The persistence allows us to use the lower bound of Theorem 6.1 to find the
ranks of L(d, n), M(d, n) and N (d, n).
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6.3. Multiqudit generalization of W state

Theorem 6.3. The tensor rank of the n-qudit L state is rk(L(d, n)) = (n−1)(d−
1) + 1.

Proof. The lower bound follows from Theorem 6.1. For the upper bound, we give
an explicit decomposition.

Let r = (n − 1)(d − 1) + 1 and let ζ = exp(2πir ) be a primitive r-th root of
unity. Using the property of roots of unity

r−1∑
p=0

ζpq =

{
r if r | q
0 otherwise,

(6.37)

we see that

L(d, n) =
∑

j1+···+jn=d−1

|j1 · · · jn⟩

=
1

r

n(d−1)∑
s=0

∑
j1+···+jn=s

( r−1∑
p=0

ζp(s−d+1)
)
|j1 · · · jn⟩

=
1

r

∑
j1+···+jn=s

( r−1∑
p=0

ζp(
∑n

i=1 ji−d+1)
)
|j1 · · · jn⟩

=
1

r

r−1∑
p=0

ζp(−d+1)
( d−1∑
j=0

ζpj |j⟩
)⊗n

(6.38)

■

Corollary 6.4. The tensor rank of the n-qutrit Y state (Yn = L(3, n)) is 2n− 1.

Theorem 6.4. The tensor rank of the n-qudit M state is rk(M(d, n)) = (n −
1)(d− 1) + 1.

Proof. For the lower bound, we again use Theorem 6.1.
We prove the upper bound for the SLOCC equivalent tensor M′(d, n). Note

that M′(d, n) is the sum of d − 2 tensors of the form
∑

p∈Sn
p{|0⟩⊗(n−2)|jj⟩},

which are equivalent to the Dicke state D2
n, and the tensor

∑
p∈Sn

p{|0⟩⊗(n−1)|d−
1⟩}, which is equivalent to Wn. The rank of D2

n is n− 1 [61] and the rank of Wn

is n. We obtain the required upper bound by summing these ranks. ■

Corollary 6.5. rk(Wn ⊠Wn) = rk(M(4, n)) = 3n− 2 which already has been
obtained in Ref. [46].
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6.3. Multiqudit generalization of W state

Theorem 6.5. The tensor rank of the n-qudit N state is rk(N (d, n)) = (n−1)(d−
1) + 1.

Proof. The lower bound again follows from Theorem 6.1, and the upper bound is
obvious from the definition of N , which has (n− 1)(d− 1) + 1 summands. ■

Thus, the three families of persistent tensors we introduced have rank (n −
1)(d−1)+1, which is the minimum possible rank for a persistent tensor in ⊗nCd.
We can show that their border rank also has the minimum possible value d.

Theorem 6.6. For n ≥ 3 we have a chain of degenerations

L(d, n) SLOCC−−→ M(d, n)
SLOCC−−→ N (d, n) . (6.39)

Proof. To degenerate from L(d, n) to M(d, n), apply the family of linear maps
A(ε) = diag(ε−2, εn−2, . . . , εn−2, ε2(n−1)) to each tensor factor and let ε→ 0.

To degenerate from M(d, n) to N (d, n), apply A(ε) = diag(1, ε, . . . , ε, 1) to
the first n− 1 factors and A(ε)−1 to the last factor, and let ε→ 0. ■

Theorem 6.7. brk(L(d, n)) = brk(M(d, n)) = brk(N (d, n)) = d.

Proof. The lower bound follows from the 1-conciseness of the tensors.
We give an explicit approximation for L(d, n). Let ξ = exp(2πid ) be the prim-

itive d-th root of unity. Using the property of roots of unity as follows

d−1∑
p=0

ξpq =

{
d if d | q
0 otherwise,

(6.40)

we can give an approximation of the n-qudit L state as follows

L(d, n) = lim
ε→0

1

d εd−1

d−1∑
p=0

ξp
( d−1∑
j=0

εjξpj |j⟩
)⊗n

. (6.41)

The upper bound for M(d, n) and N (d, n) can be transferred from L(d, n) using
degenerations from Theorem 6.6. ■

Alternatively, we can give approximate decompositions for M′(d, n) and
N ′(d, n) as follows

M′(d, n) = lim
ε→0

1

ε2

( d−2∑
j=1

(|0⟩+ ε|j⟩+ ε2

d− 2
|d− 1⟩)⊗n

− 1

ε

(
|0⟩+ ε2

d−2∑
j=1

|j⟩
)⊗n − (d− 2− 1

ε
)|0⟩⊗n

)
, (6.42)
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6.4. Multiqudit entanglement transformation

N ′(d, n) = lim
ε→0

1

ε

( d−1∑
j=1

(|0⟩+ ε|j⟩)⊗(n−1) ⊗ |j⟩+ |0⟩⊗(n−1) ⊗ (ε|0⟩ −
d−1∑
j=1

|j⟩)
)
.

(6.43)
An immediate result of Theorem 6.7 is that the multiqudit L, M, and N states

are geometrically in the orbit closure of the multiqudit GHZ states, similarly to
how the W state lie in the orbit closure of the GHZ state. Again, we see that our
families of minimal-rank persistent tensors can be considered as generalizations of
multiqubit W state within multiqudit systems.

6.4 Multiqudit entanglement transformation

Here, we study the SLOCC interconversion between the n-qudit GHZ state and
each generalization of the W state, that is, the n-qudit L, M, and N states. Con-
cerning the chain of degenerations between L(d, n), M(d, n), and N (d, n) in Eq.
(6.49), we are able to study the asymptotic SLOCC transformation between them.

The following proposition relates the Schmidt rank to the asymptotic SLOCC
transformation [63].

Proposition 6.1 (Ref. [63]). Let |ψ⟩ ∈ V1⊗· · ·⊗Vn be an n-partite quantum state
and let rkS(ψ) denotes the Schmidt rank of |ψ⟩ for any bipartite cut (bipartition)
S|S where S ⊆ [n] and S = [n] \ S. For any bipartitions, we have

ω(ψ,φ) ≥ max
S⊆[n]

log rkS(φ)

log rkS(ψ)
, (6.44)

where ω(ψ, ϕ) is the rate of asymptotic SLOCC transformation from |ψ⟩ into |ϕ⟩
(see Eq. (6.9)).

The following theorem relates degeneration to the asymptotic SLOCC trans-
formation (see Ref. [63] for a proof).

Theorem 6.8 (Ref. [63]). Let |ψ⟩ and |φ⟩ be two n-partite quantum states. If |ψ⟩
degenerates into |φ⟩ via SLOCC, then ω(ψ,φ) ≤ 1.

Theorem 6.9. An n-qudit L state can be transformed into an n-qudit M state by
asymptotic SLOCC with rate one. An n-qudit M state can be transformed into an
n-qudit N state by asymptotic SLOCC with rate one. Formally,

ω(L(d, n),M(d, n)) = 1 , (6.45)

ω(M(d, n),N (d, n)) = 1 . (6.46)
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Proof. The Schmidt rank of the n-qudit L, M, and N states across any biparti-
tion is d. Therefore, with respect to Proposition 6.1, the rates the aforementioned
asymptotic SLOCC transformations is greater than one. Regarding Theorem 6.6,
the upper bounds of the both rates are one. This concludes the proof. ■

Corollary 6.6. Based on Theorem 6.9, we can conclude

ω(L(d, n),N (d, n)) = 1 . (6.47)

Theorem 6.10. An n-qudit GHZ state can be transformed into an n-qudit L state
by asymptotic SLOCC with rate one, i.e.,

ω(G(d, n),L(d, n)) = 1 . (6.48)

Proof. The Schmidt rank of the n-qudit GHZ states across any bipartition
is d. Therefore, with respect to Proposition 6.1, the rate of the aforementioned
asymptotic SLOCC transformation is greater than one. Regarding Theorem 6.6
and Theorem 6.7, we have the following chain of degenerations

G(d, n) SLOCC−−→ L(d, n) SLOCC−−→ M(d, n)
SLOCC−−→ N (d, n) . (6.49)

Therefore, the upper bound of the rate is one. This concludes the proof. ■

Corollary 6.7. Concerning Theorem 6.9 and Theorem 6.10, one can conclude the
following results

ω(G(d, n),M(d, n)) = 1 , (6.50)

ω(G(d, n),N (d, n)) = 1 . (6.51)

6.5 Direct sums of persistent tensors

The lower bound obtained in Theorem 6.1 can be extended to direct sums with
persistent summands and to even more general combinations of tensors, which we
call block pyramidal tensors. Our lower bound techniques for direct sums and
pyramidal tensors generalize some of the constructions of Alder and Strassen in
Ref. [164] to multipartite tensors. Recent work of Buczyński et al. in Ref. [165]
uses similar ideas to prove the rank additivity for some tripartite tensors using the
substitution method.

Theorem 6.11. Let T ∈ U1 ⊗ · · · ⊗ Un be an arbitrary tensor of rank rk(T ). If
P ∈ V1 ⊗ · · · ⊗ Vn is a persistent tensor and dimVk = dk, then

rk(T ⊕ P) ≥ rk(T ) +
n−1∑
k=1

(dk − 1) + 1 . (6.52)
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Proof. Consider a tensor rank decomposition

T ⊕ P =
r∑
p=1

w
(p)
1 ⊗ · · · ⊗ w(p)

n , (6.53)

where w(p)
j = u

(p)
j + v

(p)
j with u(p)j ∈ Uj and v(p)j ∈ Vj .

Let πVj : Uj ⊕ Vj → Vj be the canonical projection onto Vj and let πV =
πV1 ⊗ · · · ⊗ πVn Applying πV to the both sides of the decomposition, we get

P =
r∑
p=1

v
(p)
1 ⊗ · · · ⊗ v(p)n . (6.54)

By Theorem 6.1 we can assume that for j < n, {v(Dj+1)
j , . . . , v

(Dj+dj)
j } forms

a basis of Vj , where Dj =
∑j−1

k=1(dk − 1).
Let πUn : Un ⊕ Vn → Un be the canonical projection onto Un. Define the new

projections Πj : Uj ⊕ Vj → Uj for j < n as{
Πjv

(Dj+k)
j = −u(Dj+k)

j , 1 ≤ k ≤ dj ,

Πju = u , u ∈ Uj ,
(6.55)

so that we have Πjw
(Dj+1)
j = · · · = Πjw

(Dj+dj)
j = 0. Let Π = Π1⊗· · ·⊗Πn−1⊗

πUn .
Note that Π sends the first s =

∑n−1
k=1(dk − 1) + 1 summands of the decom-

position in Eq. (6.53) to zero. Furthermore, Π(T ⊕ P) = T . Therefore, applying
Π to both sides of the decomposition in Eq. (6.53), one gets a rank decomposition
for T with r − s summands, so r ≥ rk(T ) + s. ■

As a corollary, we find that the rank is additive for direct sums with per-
sistent tensors of minimum rank. Similar rank additivity statements are known
for tripartite tensors, the rank of which can be determined using the substitution
method [165, 166].

Corollary 6.8. Let V1, . . . , Vn be vector spaces with dimVk = dk. If P ∈ V1 ⊗
· · · ⊗ Vn is a persistent tensor of the minimum possible rank rk(P) =

∑n−1
k=1(dk −

1) + 1, then for any arbitrary n-partite tensor T we have

rk(T ⊕ P) = rk(T ) + rk(P) . (6.56)

Furthermore, the tensor rank is multiplicative under the Kronecker and tensor
products of the persistent tensor of the minimum rank with GHZ tensors.
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Lemma 6.5. Let V1, . . . , Vn be vector spaces with dimVk = dk. If P ∈ V1⊗· · ·⊗
Vn is a persistent tensor of the minimum possible rank rk(P) =

∑n−1
k=1(dk−1)+1,

then
rk(G(d, n)⊠ P) = rk(G(d, n)⊗ P) = d · rk(P) . (6.57)

Proof. Regarding Eq. (6.5), we have

rk(G(d, n)⊠ P) ≤ rk(G(d, n)⊗ P) ≤ d · rk(P) .

To get a lower bound, note that the tensors G(d, n)⊠P and P⊕d are (isometri-
cally) equivalent. More specifically, P⊕d is transformed into G(d, n)⊠P by apply-
ing to each tensor factor the isomorphism V ⊕d

j
∼−→ Cd⊗Vj sending (v0, . . . , vd−1)

to
∑d−1

k=0 ek ⊗ vk.
We then apply the previous corollary repeatedly to the direct sum P⊕d to obtain

the lower bound of the rank d · rk(P). ■

Corollary 6.9. From Lemma 6.5 we have the following corollaries:

1. rk
(
G(d, n)⊠Wn

)
= rk

(
G(d, n)⊗Wn

)
= nd.

2. rk
(
G(d, n)⊠W⊠2

n

)
= rk

(
G(d, n)⊗W⊠2

n

)
= (3n− 2)d.

3. rk
(
G(d1, n)⊠ L(d2, n)

)
= rk

(
G(d1, n)⊗ L(d2, n)

)
= d1

(
(n− 1)d2 − n+ 2

)
.

4. rk
(
G(d1, n)⊠M(d2, n)

)
= rk

(
G(d1, n)⊗M(d2, n)

)
= d1

(
(n− 1)d2 − n+ 2

)
.

5. rk
(
G(d1, n)⊠N (d2, n)

)
= rk

(
G(d1, n)⊗N (d2, n)

)
= d1

(
(n− 1)d2 − n+ 2

)
.

In particular, for G(d, n)⊠Wn we answer an open question posed in Ref. [74].
The same lower bound method can be applied not only to direct sums but also

to a more general class of block tensors.

Definition 6.5 (Block pyramidal tensor). A tensor Q ∈ (U1⊕V1)⊗· · ·⊗(Un⊕Vn)
is a block pyramidal tensor if Q ∈ U1 ⊗ · · · ⊗ Un ⊕ (U1 ⊕ V1) ⊗ · · · ⊗ (Un−1 ⊕
Vn−1)⊗ Vn. Denote by πUk

and πVk , the canonical projections associated with the
summands of Uk ⊕ Vk. The tensor (πU1 ⊗ · · · ⊗ πUn)Q is called the head block of
Q, and (πV1 ⊗ · · · ⊗ πVn)Q is called the step block of Q.
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Theorem 6.12. Let Q ∈ (U1⊕V1)⊗· · ·⊗ (Un⊕Vn) be a block pyramidal tensor
with the head block T ∈ U1 ⊗ · · · ⊗ Un and the step block P ∈ V1 ⊗ · · · ⊗ Vn. If
P is a persistent tensor and dimVk = dk, then

rk(Q) ≥ rk(T ) +
n−1∑
k=1

(dk − 1) + 1 . (6.58)

Proof. The proof is the same as for Theorem 6.11, with T ⊕P replaced by Q. ■
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Chapter7
Summary and Outlook

“pauca sed matura”

Carl Friedrich Gauß

7.1 Conclusions

This dissertation links algebraic geometry to entanglement theory to answer two
central problems, that is, classification of multipartite entanglement and SLOCC
interconversion between different resources.

In Chapter 2, mathematical formulation and the fundamental concepts of quan-
tum information theory are introduced. Mainly, we have introduced the description
of entangled states and the mathematical tools and concepts needed for entangle-
ment classification in bipartite and multipartite quantum systems.

Chapter 3 is devoted to introduce the algebro-geometric tools we have used
for addressing the above mentioned problems in entanglement theory. Namely, we
have introduced k-secant varieties of Segre embedding, ℓ-multilinear ranks, and
tensor rank and border rank that are SLOCC invariants.

In Chapter 4, we focused on the central problem of quantum information the-
ory which concerns the classification of multipartite entanglement. To this end, we
presented a fine-structure entanglement classification that can be interpreted as a
Mendeleev table, where the structure of an element can be used as a core structure
of another. As a matter of fact, for n-qubit classification we are fixing the elements
in k-secant families [see Eqs. (4.14)-(4.37)], and, indeed, one can always use n-
qubit classification as a partial classification of (n + 1)-qubit case. Then, we just
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need to find the elements of new k-secants for the classification of (n + 1)-qubit
states. As we have already illustrated in our examples, new k-secants’ elements
can be identified by joining points of previous k-secant families, and consider-
ing all tangential varieties. More interesting is that joining randomly chosen ele-
ments from both σi and σj would land in σi+j \ σi+j−1, with probability one [59].
Therefore, one can always create a general element in a desired secant family. In
addition, all the genuine entangled states in higher secants and tangents can be,
respectively, considered as the generalizations of GHZ and W states in two-secant
and two-tangent [one can also see a footprint of GHZ and W states in the higher
secants and tangents from Eq. (4.37)].

To clearly show the potential of our approach, we have elaborated the classifi-
cation for n = 5 qubits in Section 4.2.4. We believe the method can be extended
to find a classification of multipartite entanglement for higher dimensional sys-
tems as we have already provided a conjecture for the classification of symmetric
multiqudit states.

Within Chapter 5 we follow the problem of multipartite entanglement classi-
fication in higher dimensional systems. Indeed, using algebraic-geometric tools,
we studied entanglement characterization of three-qudit Cd ⊗ Cd ⊗ Cd systems.
Specifically, we used secant varieties and one-multiranks that are SLOCC invari-
ants, to present entanglement classification of three-qudit entanglement as a gen-
eralization to our previous work in Chapter 4. As a prominent example we have
provided a fine-structure classification for three-qutrit pure states. This can be
considered as the core classification of tripartite Cd ⊗ Cd ⊗ Cd states as well
as (n ≥ 4)-qutrit states. Indeed, with this method, one can always use n-qudit
classification as a partial classification of (n+ 1)-qudit systems. Outside this core
classification, the results for larger systems (d > 3 and/or n > 3) have been derived
by also relying on conjectures of tensor theory.

Not only is our classification operationally meaningful as it quantifies entan-
glement as a resource but also this classification can be seen in terms of the order
of entanglement strength from Segre variety that contains no entanglement, to the
higher secant family. Indeed, the tools we have used for entanglement character-
ization, i.e., tensor rank and border rank, can be seen as the generalized Schmidt
rank and its counterpart. More precisely, the Schmidt measure that quantify en-
tanglement of a multipartite state |ψ⟩ can be defined as the logarithm of the rank
of the tensor ψ. On the other hand, generic tensor rank can be considered as a
discrete measure of entanglement. Based on this fact, one can conclude that sym-
metric states are much less entangled than general states. Although we have shown
this fact for multiqubit systems in Chapter 4, and for three-qudit and multiqutrit
systems in Sec. 5.4, this is a general fact since generic symmetric tensor rank has
a polynomial growth while generic tensor rank has an exponential growth.
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In Chapter 6, we focused on a central problem in quantum information the-
ory which concerns the interconversion between different resources by SLOCC
and asymptotic SLOCC. The tensor rank, known as the generalized Schmidt rank,
plays an important role in the study of the classification and transformation of mul-
tipartite entanglement. Furthermore, the tensor border rank is a powerful tool for
studying degeneration and asymptotic SLOCC transformation.

In this chapter, we have introduced a new class of tensors in ⊗n
i=1C

di that we
call persistent tensors and have constructed a lower bound of the tensor rank for
this class. We also have introduced several families of persistent tensors in ⊗nCd

where the lower bound is tight. Moreover, we have studied the asymptotic SLOCC
transformation of these families of minimal-rank persistent tensors to each other.
Showing that the border rank of these families of minimal-rank persistent tensors
is d, we have concluded that geometrically they are in orbit closure of the n-qudit
GHZ states, and we can consider them as generalizations of the n-qubit W state
within multiqudit systems. Consequently, we have shown that these generalizations
of the W state can be approximated with arbitrary precision by states in the GHZ
orbit via asymptotic SLOCC. Actually, we have shown that the rate of asymptotic
SLOCC transformation from an n-qudit GHZ state into each generalization of the
W state is one. Furthermore, we have proved that the achieved lower bound can
be extended to direct sums with persistent summands and to even more general
combinations of tensors, which we call block pyramidal tensors. we show that the
tensor rank is multiplicative under the Kronecker product and the tensor product of
minimal-rank persistent tensors with the GHZ tensor.

7.2 Potential applications and open problems

Here, not only do we provide potential applications and open problems that orig-
inates from our research works in Refs. [44, 56, 57], but we also outline develop-
ments in slightly different directions.

A. We emphasize the operational meaning of the proposed classification in
Chapter 4 and Chapter 5 as it somehow measures the amount of entangle-
ment in multipartite systems, where a well-established entanglement mono-
tone is still lacking. Furthermore, the tools we proposed for entanglement
characterization can also be useful as states complexity measures, since they
share analogies with the tree size method presented in Refs. [167, 168]. In-
deed, the notion of tree size can be understood as the length of the shortest
bracket representation of a state, which in turn is the tensor rank. Addition-
ally, they offer a perspective for evaluating the computational complexity
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of quantum algorithms, by analyzing how the classes change while running
them (see also Refs. [169, 170]).

B. Still along the applicative side, since in a system with a growing number
of particles, most of the states cannot be realistically prepared and will thus
never occur neither in natural nor in engineered quantum systems [172], our
coarse-grain classification in Chapter 4 and Chapter 5 could provide a tool to
singling out states that we do effectively need (e.g., a representative of each
family and/or subfamily). For instance, W states that are living in a lower
secant, although useful for many processes like the realization of quantum
memories [171], are known to be more robust but not very entangled. Hence,
for other tasks, like quantum teleportation, the usage of GHZ states that are
more entangled has been suggested [173], i.e., move up from the tangent
to the proper secant of the lower secant family. Indeed GHZ states provide
some degree of precision in frequency measurements [174], but in Ref. [175]
this is increased (even in the presence of decoherence), using a state lying
in higher secant. Hence, it seems that higher secant families offer better
estimation accuracy in quantum metrology (see also Refs. [176,177]). Also,
our results about the cluster state |Cl4⟩, supports the idea that states living
in higher secants are more suitable as a resource for measurement-based
quantum computation [178]. Actually, going to higher secants makes states
more entangled and at the same time also more robust (at least with respect
to losses) because even losing one qubit there would always be some residual
entanglement left.

C. Based on our classification in Chapter 4 and Chapter 5, one can construct
new entanglement witnesses to be used for detecting entanglement in mul-
tipartite mixed states (where state tomography is not efficient). Already,
in Ref. [179] it has been shown that one can find, following a geometric
approach, device-independent entanglement witnesses that allow us to dis-
criminate between various types of multiqubit entanglement. We believe that
this could also pave the way to extend this classification to mixed states, and
to study the entanglement depth [180, 181] of each class.

D. Along the potential applications mentioned in the conclusion of Chapter 4
that can also be considered for the higher dimensional systems, it is capti-
vating that this kind of classification can also be considered as a reference
to study SLOCC and asymptotic SLOCC interconversions among different
resources based on tensor rank [45, 46, 60] and border rank [62, 63], respec-
tively.
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E. It would be also desirable to extend the proposed classification method in
Chapter 4 and Chapter 5, to mixed states. This goal will be pursued start-
ing from possible connections with the Schmidt number vector classifica-
tion of Refs. [182, 183]. Indeed, the idea is utilizing the generalization of
Schmidt rank for pure states to Schmidt number for mixed states [184]. So,
the Schmidt rank vector is nothing but the multirank we have used in our
method and the Schmidt number vector is a tuple of digits obtained from a
particular ensemble decomposition of a given mixed state [182].

F. Concerning persistent tensors as a new class of tensors with a lower bound of
the tensor rank, it would be interesting not only to study this class of tensors
more deeply from the complexity theory point of view, but also to study their
properties concerning their application in quantum technology. We believe
that any application of multiqubit W state can be studied for its general-
izations within multiqudit systems. Indeed, qudit provides several advan-
tages over qubit. For instance, using qudits as building blocks of a quantum
circuit can provide a reduction in circuit complexity, since they provide a
larger Hilbert space and hence a larger capacity to store and process infor-
mation [185]. In addition, several benefits of qudits have been proposed, in-
cluding better noise resistance, higher information coding capacity, stronger
nonlocality, and enhanced security, have been proposed [47, 48, 186–188].

G. Although we have checked many examples that the Kronecker product of
two persistent tensors is a persistent tensor, we leave the proof as an open
problem.

Conjecture 7.1. If P1 ∈ U1 ⊗ · · · ⊗ Un and P2 ∈ V1 ⊗ · · · ⊗ Vn are two
persistent tensors, where U1, . . . , Un and V1, . . . , Vn are vector spaces with
dimUk = dk and dimVk = d′k, respectively, then their Kronecker product
is also a persistent tensor and therefore,

rk(P1 ⊠ P2) ≥
n∑
k=1

(dk + d′k − 1) + 1 .

H. Let consider n-partite quantum state |ψ⟩ in the Hilbert space Hn =
⊗n
i=1C

di . A proper subspace C ⊂ Hn is called a Completely Entangled
Subspace (CES) if it contains no fully separable state. A set of pairwise or-
thogonal fully product vectors {|ψl⟩ ≡ ⊗n

s=1|φls⟩As}ul=1 that spans a proper
subspace of Hn (i.e., u < dimHn) is called Unextendible Product Basis
(UPB) if its orthogoanl complement subspace is a CES [189]. We can provie
a nonorthogonal UPB (nUPB) for n-qubit systems by using Veronese map
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such that the CES is of maximum dimension. We also can generalize this
method to multipartite systems. We are working on this problem to find a
minimum-dimension nUPB or UPB which by construction would give rise
to a genuinely entangled subspace (a subspace that only contains genuinely
entangled states) as the orthocomplementary subspace [190].
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