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Abstract

The rapid economic growth has led to an increasing number of vehicles
on the road, thus increasing the number of road accidents as well. This
issue is a serious dilemma, laying economic burdens on governments, as
well as, safety problems on people. Advanced Driving Assistance Systems
(ADAS) are software modules assisting the driver, as the name suggests,
in monitoring the environment and controlling the vehicle itself. These
modules have been demonstrated to be effective in reducing the rate of
collisions, and are the main focus of this thesis.
Increasing the level of safety, thus bridging the gap between driving assis-
tance and autonomous driving is a challenging task. While in the former, a
safety driver is always there, and ready to intervene if needed, in the latter
the driver could even not be on board at all. Therefore, the vehicle must
be capable of driving itself, in any scenario, despite the adversity of the en-
vironment (e.g. road asphalt condition, weather, etc.), the uncertainty in
sensor measurements and the complex interactions with other road users.
This thesis tackles this problem from multiple points of view. First, it is
shown how, by properly design state of the art ADAS, e.g. by endowing
these with additional environment information, it is possible to enhance
the overall safety. Moreover, a novel motion planning control architecture
is presented. By properly combining the latest advancements in Machine
Learning and Optimal Control, safe, effective and scalable driving poli-
cies can be learned from data. It will be shown how, by making safety
formally explicit, constraints can be put on Machine Learning techniques,
thus increasing both performances and safety.

Keywords: Autonomous Driving, Advanced Driving Assistance Systems,
Planning, Control



Sintesi in lingua italiana

La rapida crescita economica ha portato all’aumento dei veicoli pre-
senti sulle strade, e conseguentemente, all’aumento degli incidenti stradali.
I sistemi elettronici di assistenza alla guida sono moduli software che, come
il nome suggerisce, assistono il conducente nel monitoraggio dell’ambiente
stradale e nel controllo del veicolo stesso. La loro efficacia nel ridurre il
tasso di incidenti stradali, o la loro severità, è stata largamente dimostrata,
e dunque sono il focus di questa tesi.
Il fine ultimo è l’incremento della sicurezza stradale e l’innalzamento delle
performance dei sistemi di guida assistita in prospettiva di guida au-
tonoma.
Per quanto riguarda la guida assistita, nonostante il conducente sia agevolato
nella guida, deve essere sempre pronto ad intervenire in caso di necessità.
Al contrario, nel caso di guida autonoma, il conducente potrebbe anche
non essere a bordo. Questo implica che un veicolo a guida autonoma deve
essere in grado di arrivare a destinazione in qualsiasi scenario stradale,
nonostante le incertezze di misura e le complesse interazioni con gli altri
utenti della strada. In questa tesi è stato affrontato il problema sopra
menzionato, da più punti di vista. Prima di tutto, la tesi mostra come,
integrando nei sistemi ADAS (Adaptive Cruise Control, Frenata di Emer-
genza), informazioni sullo stato del manto stradale, è possibile aumentare il
livello di sicurezza rispetto a quanto ad oggi fatto allo stato dell’arte. Nella
seconda parte, la tesi affronta il tema più complesso della pianificazione
del moto per la guida autonoma. In particolare, combinando tecniche di
Machine Learning e Controllo Ottimo, è stato progettato un sistema di
pianificazione in grado di generare policy di guida sicure e scalabili.

Parole chiave: Guida Autonoma, Guida Assistita, Pianificazione,
Controllo
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Chapter 1
Introduction

1.1 Context and Scope

The rapid economic growth has lead to a considerable expansion of the
number of circulating vehicles, especially in big cities, therefore leading
to increased traffic congestion and risk of accidents [1]. In the effort of
making the driving experience safer, the first vehicle assistance systems
where developed around the seventies, e.g. the Anti-Lock Braking System
and the Traction Control. Despite their effectiveness has been widely ac-
knowledged, the first systems provide no support if the driver is distracted
or in altered state. On the other hand, the continuous improvement on
embedded hardware platform enabled the development of active assistance
electronics in commercial vehicles, in order to manage both safety and per-
formances. Advanced Driver Assistance System (ADAS) are considered a
valid solution in alleviating transportation problems, effectively support-
ing the driver by giving warnings or actively taking over in some driving
tasks.
Within this technological paradigm, by properly combining or designing
such assistance systems, the vehicles are going to become more and more
automated, towards the fully Autonomous Vehicle (AV), in which the hu-
man driver is taken out of the loop.
However, modern Autonomous Driving (AD) solutions (e.g. Waymo, Cruise)
are built on expensive sensor architectures and are typically developed and
deployed on geo-fenced pre-mapped areas, such as cities or even single
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routes. Instead, ADAS are nowadays installed on many high-end vehicles
and, as production prices decrease, they are promised to low-end vehicles
as well. These systems are built on simpler and cheaper sensors, thus they
are compatible with a wide variety of target cars and are not limited to
specific regions.
In order to bridge the gap between assisted and autonomous driving, it is
required to come up with safe, effective and scalable software solutions, so
that they can be deployed world-wide, in any road scenario and on any
vehicle. Current solutions are tailored to specific driving scenarios and
situations, moreover, they require a great deal of fine tuning and testing in
controlled environments. Nonetheless, by properly designing the control
logic it is possible to increase the overall safety level.
In this work the problem of increasing the vehicles autonomy level is ad-
dressed. It is shown that by embedding road state information into state
of the art longitudinal ADAS, safety can be guaranteed even in adverse
driving scenarios. Moreover, it is shown how co-simulation platforms can
greatly ease the software development and testing, thus reducing the over-
all system cost.
Finally, a novel hierarchical planning architecture is introduced which
leverages recent advancements in Machine Learning (ML) and classical
control theory. The employment of data-based techniques allows for greater
scalability and effectiveness with respect to the state of the art, whereas
the classical control can be leveraged to ensure safety at all times.

1.2 Contributions

The main contributions of this thesis are:

• a camera-based Forward Collision Warning (FCW) system is pro-
posed along with a purposely designed co-simulation platform for
model based testing. By leveraging a camera, the total system cost
is reduced (e.g. with respect to RADAR or LIDAR based systems),
moreover the system is designed in such a way that no accurate cam-
era calibration is needed,

• a set of road-grip aware longitudinal ADAS modules is proposed
along with model-based techniques to estimate the grip online. The
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proposed architecture achieves enhanced safety performances with
respect to the state of the art in adverse road adhesion scenarios,
moreover, by leveraging, model based estimation, no expensive sensor
is required,

• a hierarchical planning architecture is introduced. By formally mod-
elling safety, and appropriately designing the driving policy, enhanced
safety performances are achieved with respect to the Deep Reinforce-
ment Learning (DRL) state of the art, meanwhile achieving scalabil-
ity by leveraging data-driven solutions.

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 presents the technical background and notions related to
the work in this thesis. A brief introduction on the concept of as-
sisted and autonomous driving is given, along with the classification
of autonomous vehicles and the description of the classical software
stack.
Basic concepts related to control theory are given. Specifically, three
models are described in details, since they are used throughout the
rest of thesis. A short introduction on the Model Predictive Con-
troller (MPC) follows the models description and finally basics of
the Responsibility Sensitive Safety (RSS) are sketched.
In the last section of the chapter, basics of Reinforcement Learn-
ing (RL) are given, after the description of the Markov Decision
Process (MDP) model. The description of Deep-Q Learning (DQN)
and Proximal Policy Optimization (PPO) ends the chapter.

• Chapter 3 describes the design and validation of a FCW system for a
class L7E electric vehicle. After a brief review of the related work, the
architectural design is described by highlighting the design choices
that allows for the targeting of low-end vehicles. Finally the system
is validated on both simulated and real experiments.

• Chapter 4 describes the design and validation of a set of longitudinal
road-grip aware ADAS modules, specifically, Adaptive Cruise Con-
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trol (ACC), Autonomous Emergency Brake (AEB) and Anti-Lock
Braking System (ABS). After motivating the research topic and re-
viewing the related work, the road grip estimation technique is intro-
duced, along with the ADAS designs. Finally the overall architecture
is extensively validated in simulation.

• Chapter 5 describes the design and validation of a hierarchical high-
way planner. Similarly to the previous chapter, the motivation and
related works are discussed first. The overall design is later intro-
duced and validated on simulation.

• Chapter 6 summarizes the work presented in this thesis, by high-
lighting the main research issue and how it has been tackled in this
work.



Chapter 2
Technical Background

This is an epigraph, cool

Nicola Albarella

2.1 Autonomous Driving

An Autonomous Vehicle (AV) is a one that can drive itself, from a
starting point to a destination, without inputs from human drivers. Vari-
ous level of autonomy have been defined by the SAE J3016 [2], specifically
six levels of increasing autonomy. By referring to Fig. 2.1, from the first to
third level only partial automation is achieved because the human driver
is still in control, even if the features are engaged. For the aforementioned
reason, SAE refers to these features as ADAS, i.e. systems which aim is
to support the driver in the driving functions, thus increasing safety and
the overall driving experience.
At Level 3, the biggest leap can be found, where the driver is not driving
when the features are engaged. Nonetheless, if the AV requests it, the
human driver must take the control back. This property is fundamental to
understand the difference between levels 2 and 3. Specifically, at Level 3,
the vehicle must be capable of understanding its own flaws, mistakes and
limitations so that it can ask the human driver to intervene.
At the last two levels, Level 4 and Level 5, the human intervention is not
needed anymore, meaning that the AV can classify its own errors and fix
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Figure 2.1. SAE J3016 levels of driving autonomy

them accordingly.
Nowadays, commercially available vehicles can reach up to Level 2. De-
spite the fact that controlling the vehicle dynamics is considered a solved
problem, the AVs are still not smart enough to reliably negotiate the road
with other human drivers, especially in cluttered urban environments.
Nonetheless, Level 4 AVs are available for use, but they are limited to drive
in geo-fenced areas, such as cities or even single routes, moreover they are
built on expensive sensor suites, thus making the employed architecture
hard to scale worldwide. The key technologies enabling AD are combi-
nations of sensors, such as cameras, RADARs, LIDARs, and GNSS, in
combination to complex software stacks, which usually involve techniques
related to artificial intelligence, sensor fusion and control theory.
Historically, the software stack has been split in three components, namely
Sensing, Planning and Control, see Fig. 2.2 for reference. The sensing com-
ponent is responsible for localizing the AV in a reference frame, along with
detecting static and dynamic objects in the environment. The planning
component is responsible to map the sensing state to a reference trajec-



2.2. Control Theory 7

Figure 2.2. Classical architecture of the autonomous driving software stack.

tory in continuous time, whereas the control component is responsible for
actuating it on the pedals and steering wheel.
A great deal of effort has been given to the Sensing module, which can
give super-human results thanks to recent advancements in Deep Learn-
ing (DL). On the other side of the stack, the Control module is typically
solved through classical control theory which also gives exceptional results.
Despite the fact that, in the recent years many works have been focusing
on the Planning module, it is still unclear how one can build a safe, reliable
and efficient planners.
It is worth to point out that an alternative to the classical architecture is
the end-to-end architecture [3], i.e. a single neural network trained from
the raw sensor data to output control commands directly. Nonetheless,
such solution is out of the scope of this work.

2.2 Control Theory

In this section a set of useful mathematical models is introduced. Sev-
eral models have been used in the research literature to describe the state
dynamics of a four-wheeled vehicle. Despite having various level of details,
they all find use in either planning, control or estimation applications. The
choice of a specific model is usually a trade-off between model accuracy
and computational efficiency. Additionally, a highly detailed model usu-
ally need more parameters, which could be hard to measure or estimate in
general.
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Figure 2.3. Vehicle body frame of reference OV .

In the following four reference frames will be used, namely the vehicle
frame attached to its Center of Gravity (CoG) OV = (−→x ,−→y ,−→x ) (see Fig.
2.3), the four frames OW = (

−→
l ,−→c ,−→n ) attached to each wheel and the

fixed inertial frame. With reference to the inertial frame, multiple choices
are available, namely either Cartesian frame OC = (

−→
X,
−→
Y ,
−→
Z ) and the

curvilinear Frenet frame OF = (−→σ ,−→e y) (see Fig. 2.4).
Assuming a two dimensional motion, i.e. ignoring

−→
Z coordinate,the Carte-

sian vehicle pose is described by its position (X,Y ) and yaw angle ψ, which
is defined positive counterclockwise and null when the vehicle is aligned to
the X-axis, i.e.:

Ẋ = vx cosψ − vy sinψ,

Ẏ = vx sinψ + vy cosψ,

ψ̇ = r,

(2.1)

where vx and vy are the vehicle velocity components in the body reference
frame OV and r is the yaw rate. On the other hand the Frenet frame uses
a curvilinear coordinate system to describe the vehicle pose with respect
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Figure 2.4. Inertial reference systems with Cartesian OC and Frenet OF

coordinates.

to a known curve. Thus the vehicle pose is given by the couple (σ, ey) and
the angle eψ, where σ is the longitudinal position along the curve, or arc
length, and ey is the lateral displacement to the curve and eψ is the angle
between the vehicle heading and the tangent to the curve. In this reference
the 2-D motion is described as:

σ̇ =
1

1− ρey
(
vx cos eψ − vy sin eψ

)
,

ėy = vx sin eψ + vy cos eψ,

ėψ = r − ψ̇d,

(2.2)

where ρ and ψd are the reference line curvature and heading, respectively.
The model in Eq. (2.2) is particularly convenient when a local reference
line is known and parameterized in terms of its curvature and heading.
This is usually true in highly structured environments, such as highway or
urban scenarios, where the lane center-lines are taken as references.
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Figure 2.5. Nonlinear four wheel dynamical model showing forces in both
reference frames OV and OW .

2.2.1 Four Wheels Dynamical Model

The four-wheeled dynamical model is a highly detailed ten dimensional
model in which both chassis and tire dynamics are described. It is compu-
tationally expensive to be used in a control application, still it is suitable
for simulation, thus it allows to build realistic simulation platforms to be
leveraged for software testing.
The nonlinear model, depicted in Fig. 2.5, can be summarized as follow:

ξ̇ = f4w(ξ, u), (2.3)

where ξ ∈ RN is the state with N = 10, whereas u ∈ Rm with m = 5 is the
control action. Specifically, the state is the combination of longitudinal
and lateral velocity in the body frame, vx and vy, the yaw ψ and the
yaw rate r, the longitudinal and lateral coordinates in the inertial frame,
X and Y , along with the speed of the four wheels ωfl, ωfr, ωrl, ωrr,
where the first superscript differentiate between front and rear wheels,
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whereas the second differentiate between left and right wheel. Moreover,
the input is the combination of the steering angle δ and the four wheel
torques T fl, T fr, T rl, T rr. A positive torque denotes acceleration and
might be available only for driving wheels, whereas negative torque, i.e.
braking torque, is available for all the wheels, in general. In the following
the general superscript {i, j}, with i ∈ {f, r} and with j ∈ {l, r}, can be
used to generalize wheel’s notation.
The chassis dynamics in Eq. (2.3) can be obtained by considering the
forces about the vehicle CoG, thus obtaining:

mv̇x = mvyr + F frx + F flx + F rrx + F rlx ,

mv̇y = −mvxr + F fry + F fly + F rry + F rly ,

Iz ṙ = lfF
fl
y − lr(F rly + F rry ) + c(F frx − F flx + F rrx − F rlx ),

(2.4)

where m is the vehicle mass, Iz is the vehicle inertia about the z-axis, lf
and lr are the distances from the CoG to the front/rear wheel, whereas c is
the distance from the CoG to the left/right wheels, and finally (F ijx , F

ij
y )

are the tire forces components, in the body frame. Tire forces can be
written as:

F ijx = F ijl cos δij − F ijc sin δij ,

F ijy = F ijl sin δij + F ijc cos δij ,
(2.5)

where F ijl and F ijc are the wheel forces components in the {ij} tire frame.
The wheel dynamics are:

Iwω̇
fl = −F fll Rw + T fl,

Iwω̇
fr = −F frl Rw + T fr,

Iwω̇
rl = −F rll Rw + T rl,

Iwω̇
rr = −F rrl Rw + T rr,

(2.6)

where Iw is the wheel inertia and Rw is the wheel radius. The tire forces
F ijl and F ijc in Eq. (2.5) are given by the non-linear function:

F ijl = fl(λ
ij , µ, F ijn ),

F ijc = fc(α
ij , µ, F ijn ),

(2.7)
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where λij and αij are the longitudinal and lateral slip respectively, µ is the
road grip coefficient and F ijn is the normal force acting on the tire.
The nonlinear function in Eq. (2.7) are modeled by using the well-known
Pacejka magic formula [4]. It is a complicated semi-empirical model able
to describe tire behaviours over its complete state space, both in the linear
and non-linear region. First define the tires’ slips as:

λij =
ωijRw − vijl

max(ωijRw, v
ij
l )
,

αij = arctan

(
vijc

vijl

)
,

(2.8)

where vijl and vijc are the tire speeds components in the {ij} tire frame,
as:

vijl = vijy sin δij + vijx cos δij ,

vijc = vijy cos δij − vijx sin δij ,
(2.9)

where vijx and vijy are the tire speeds coordinates in the body frame, eval-
uated like in the following:

vfjy = vy + lfr,

vrjy = vy − lrr,
vilx = vx − cr,
virx = vx + cr.

(2.10)

Finally the normal forces acting on the wheels are:

F fjn =
lrmg

2(lf + lr)
,

F rjn =
lfmg

2(lf + lr)
,

(2.11)

where g = 9.81m/s2 is the acceleration of gravity.

Remark 1 The tire dynamics in Eq. (2.6) are of order of magnitudes
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Figure 2.6. Nonlinear dynamical bicycle model showing forces in both refer-
ence frames OV and OW .

faster than the chassis dynamics in Eq. (2.4), due to the scales of mass
and inertia involved in the models. For the aforementioned reason, the
tire dynamics can be omitted for chassis control purposes, thus obtaining a
simpler model.

In order to complete the set of N = 10 equations the inertial motion model
in Eq. (2.1) must be added to (2.4) and (2.6), or alternatively the model in
Eq. (2.2) can be used with a curvilinear reference system, without affecting
the dynamics equations.
The four wheels dynamical model will be used for simulation purposes in
Ch. 4.

2.2.2 Two Wheels Dynamical Model

In this section a simplification of the four-wheeled vehicle in Sec. 2.2.1
in introduced. This simplification is obtained from the following
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Assumption 1 Assume a lumped wheel model, i.e. the front, left and
right, and rear, left and right, wheels are combined in two wheels centered
in the front and rear axles, respectively.

The nonlinear model, depicted in Fig. 2.6, can be summarized as follow:

ξ̇ = f2w(ξ, u), (2.12)

where ξ ∈ RN is the state with N = 8, whereas u ∈ Rm with m = 3 is the
control action. Specifically, the state is the combination of longitudinal
and lateral velocity in the body frame, vx and vy, the yaw ψ and the
yaw rate r, the longitudinal and lateral coordinates in the inertial frame,
X and Y , along with the speed of the two lumped wheels ωf , ωr, where
the superscript differentiate between front and rear wheels. Moreover,
the input is the combination of the steering angle δ and the two lumped
wheels torques T f , T r. A positive torque denotes acceleration and might
be available only for driving wheels, whereas negative torque, i.e. braking
torque is available for all the wheels, in general. In the following the general
superscript {i}, with i ∈ {f, r}, can be used to generalize wheel’s notation.
With the Assumption 1 in mind, the Eq. (2.4) can be simplified in:

mv̇x = mvyr + 2F fx + 2F rx ,

mv̇y = −mvxr + 2F fy + 2F ry ,

Iz ṙ = 2lfF
f
y − 2lrF

r
y ,

(2.13)

where m is the vehicle mass, Iz is the vehicle inertia about the z-axis, lf
and lr are the distances from the CoG to the front/rear wheel and finally
(F ix, F

i
y) are the tire forces components, in the body frame. Tire forces can

be written as:
F ix = F il cos δi − F ic sin δi,

F iy = F il sin δi + F ic cos δi,
(2.14)

where F il and F ic are the wheel forces components in the i tire frame.
The wheel dynamics are:

Iwω̇
f = −F fl Rw + T f ,

Iwω̇
r = −F rl Rw + T r,

(2.15)
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where Iw is the wheel inertia and Rw is the wheel radius. The tire forces
F il and F ic in Eq. (2.14) are given by the non-linear function:

F il = fl(λ
i, µ, F in),

F ic = fc(α
i, µ, F in),

(2.16)

where λi and αi are the longitudinal and lateral slip respectively, µ is the
road grip coefficient and F in is the normal force acting on the tire.
The nonlinear function in Eq. (2.16) are modeled by using the well-known
Pacejka magic formula [4], similarly to what is done for Eq. (2.7). First
define the tires’ slips as:

λi =
ωiRw − vil

max(ωiRw, vil)
,

αi = arctan

(
vic
vil

)
,

(2.17)

where vil and v
i
c are the tire speeds components in the i tire frame, as:

vil = viy sin δi + vix cos δi,

vic = viy cos δi − vix sin δi,
(2.18)

where vix and viy are the tire speeds coordinates in the body frame, evalu-
ated like in the following:

vfy = vy + lfr,

vry = vy − lrr,
vix = vx.

(2.19)

Finally the normal forces acting on the wheels are:

F fn =
lrmg

2(lf + lr)
,

F rn =
lfmg

2(lf + lr)
,

(2.20)
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where g = 9.81m/s2 is the acceleration of gravity.
The same Remark 1 applies for the two-wheeled model as well.
In order to complete the set of N = 8 equations the inertial motion model
in Eq. (2.1) must be added to (2.13) and (2.15), or alternatively the model
in Eq. (2.2) can be used with a curvilinear reference system, without
affecting the dynamics equations.
The two wheels dynamical model will be used for estimation purposes in
Ch. 4.

2.2.3 Two Wheels Kinematic Model

In this section the kinematic bicycle model is introduced, referred as
kinematic because it ignores masses and forces applied to the body, thus
describing the vehicle motion only from a geometric standpoint.
In order to retrieve the model, consider the following, to be added to
Assumption 1:

Assumption 2

(i) Assume no-slip condition, i.e. there is no longitudinal or lateral wheel
slips, thus the wheel velocity and direction of movement are always
aligned

(ii) Assume the body reference frame centered in the rear axle

(iii) Assume that the only available steering input is on the forward wheel,
i.e. δr = 0.

The aforementioned simplifying assumptions let us ignore the wheel dy-
namics, as well as, simplify the chassis dynamics as [5, 6]:

Ẋ = v cosψ,

Ẏ = v sinψ,

ψ̇ = v
tan δ

lf + lr
.

(2.21)

The inputs to the system, as defined in most of the literature [5, 6], are
the velocity v and the steering angle δ. However, in the following the Eq.
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(2.21) will be augmented with the following:

v̇ = a

ȧ =
acmd − a

τ
,

δ̇ = δcmd,

(2.22)

where a is the vehicle acceleration, acmd is the acceleration command,
δcmd is the steering rate and τ is the power-train time constant, i.e. the
parameter characterizing the response to a step input, when modelling the
power-train as a first order linear system.
The combination of Eq. (2.21) and (2.22) will be referred as kinematic
bicycle model, with abuse of notation. Such model is obtained assuming
that a low-level controller is regulating the actuation system, resulting in
a closed loop linear system.
Additionally, if a curvilinear reference system is taken as inertial frame,
Eq. (2.21) can be rewritten as:

ṡ =
v cos eψ
1− ρey

,

ėy = v sin eψ,

ėψ = v

(
tan δ

lf + lr
−
ρ cos eψ
1− ρey

)
.

(2.23)

The kinematic bicycle model will be used for planning purposes in Ch. 5.

2.2.4 Model Predictive Control

Model Predictive Controller (MPC) is one of the most advanced pro-
cess control methodologies, based on an iterative solution of an optimal
control problem. It allows for regulating the process to a set-point while
taking the state prediction into account over a short time horizon.
When compared to classical controllers, such as Proportional-Integral-
Derivative controllers, MPC offers several advantages, such as optimizing
the state and input, satisfying hard constraints and directly quantify per-
formances into a cost function.
At each sampling time Ts, an optimal control problem is solved, thus ob-
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taining the control sequence over the control horizon, however only the
first element of such sequence is applied to the plant, and the problem is
solved again at the following sampling time.
The most general formulation for the optimization problem is:

min
x1,...,Hp ,u1,...,Hc

J(x1,...,Hp , u1,...,Hc)

∀k subject to xk+1 = f(xk, uk)

xk ≤ g(xk, uk)

uk ≤ h(xk, uk)

(2.24)

where xk is the state, uk is the control signal, Hp and Hc are the prediction
and control horizons respectively, J is the cost function, f is the state pre-
diction function, finally g and h are the constraint functions on the state
and input.
The problem in Eq. (2.24) results in a Linear MPC if the cost function J
have a quadratic form, and f g and h are linear, otherwise it is a NMPC.
Many variants of the MPC have been used in the AD literature at vari-
ous control levels. Specifically the MPC can be used for controlling the
actuators directly, for path or trajectory planning, or even to tackle both
problems by integrating chassis and actuation dynamics in the nominal
model prediction f .
In this work a Linear MPC will be used in Ch. 4 for vehicle following
purposes, instead a NMPC is defined for trajectory planning in Ch. 5.

2.2.5 Responsibility Sensitive Safety

Responsibility Sensitive Safety (RSS) is a human understandable math-
ematical formulation of safety, proposed in [7]. It was developed with three
goals in mind, namely: the model should be compliant with how humans
interpret safety, the model should lead to effective driving policies, the
model should be efficient, i.e. it must be easy to verify if an AV is com-
plying to the model.
The idea behind RSS is to translate common sense driving rules in a set
of mathematical equations, the rules being:

1. do not hit someone from behind,
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2. do not cut-in recklessly,

3. right-of-way is given, not taken,

4. be careful of areas with limited visibility,

5. if you can avoid an accident without causing another one, you must
do it.

By using the above, along a set of reasonable assumptions about the other
vehicles, the AV acts carefully and responsibly.
As an example, consider two vehicles driving in the same direction along
the same lane. According to the first rule, the rear vehicle must keep a
safe distance dmin to the leading vehicle, evaluated as:

dmin =

[
vrρ+

1

2
αmaxρ

2 +
(vr + ραmax)2

2βmin
− 2

v2
f

βmax

]
+

, (2.25)

where vr and vf are the rear and front vehicles speeds, respectively, ρ is the
reaction time of the rear vehicle, αmax and βmin are the maximal acceler-
ation and minimal braking capability of the rear vehicle, βmax is maximal
braking capability of the front vehicle and finally the symbol []+ is used to
saturate a negative result to zero. Equation (2.25) is built upon kinematic
reasoning, starting from the measurable vehicle speeds, and hypothesis on
non-predictable accelerations about road users.
The Eq. (2.25) intuitively means that, as long as the front vehicle breaks
with maximum deceleration βmax, and the rear vehicle reaches a deceler-
ation of βmin in ρ seconds, no collision will happen.
The real challenge of the RSS is to select the set of reasonable assumptions,
which translates in the tuning parameters ρ, αmax, βmin and βmax. If these
parameters are too restrictive, with the extreme case being βmax =∞, nor-
mal traffic flow is impossible. On the other hand, if the assumptions are
not restrictive enough, the risk of accidents increases.
For the complete mathematical formulation and scenarios description, please
refer to [7]. In this work the RSS will be leveraged as safety monitor in
Ch. 5.
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2.3 Machine Learning

2.3.1 Markov Decision Process

A Markov Decision Process (MDP) is a discrete-time stochastic model,
providing a framework for decision making problems. A MDP is formally
described by the tuple:

< S,A, T,R > (2.26)

where

• S is the state space, or the set of possible states sk ∈ S, which can
be either continuous or discrete,

• A is the action space, or the set of actions ak ∈ A, which can be
either continuous or discrete,

• T (sk+1|sk, ak) is the transition model, i.e. a probability function
describing the transition from the previous state sk to the next sk+1,
given an action ak,

• R(sk, ak) is the reward function, which assigns real values to transi-
tions,

where k is the discrete time index. Despite the state transition T (sk+1|sk, ak)
being partially stochastic, the Markov property holds for MDPs, i.e. the
probability distribution of the next state is dependent on the previous
state and action alone. For the aforementioned reason, the MDP has been
a powerful tool for studying control and optimization problems in combi-
nation with dynamic programming [8, 9].
In such problems the goal is to find the optimal policy, either deterministic
ak = π(sk) or stochastic ak ∼ π(ak|sk), i.e. the one that maximizes the
discounted cumulative reward:

Rπ =

∞∑
k=0

γkR(sk, ak), (2.27)

where γ is the discount factor. The policy performances are measured
using the value function:

V π(sk) := E [Rπ|s0 = sk, π] , (2.28)
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which defines the expected return of being in a state, for all the actions.
For small and known MDP models, the exact optimal policy can be found
offline by using dynamic programming. One way of achieving this is the
Value Iteration algorithm [10], in which the Bellman operator is iteratively
applied for all the states to the value function, thus obtaining the recursive
form:

Vi+1(sk) = max
a

R(sk, a) + γ
∑
sk+1

Vi(sk+1)T (sk+1|sk, a)

 , (2.29)

where the subscript i refers to the iteration step. As the iteration number
increases, the Eq. (2.29) reaches the optimal value V ∗(s), and the optimal
policy π∗(sk) can be obtained as:

π∗(sk) = argmax
a

R(sk, a) + γ
∑
sk+1

V ∗(sk+1)T (sk+1|sk, a)

 , (2.30)

However in many problems of interest, and specifically in AD, either the
state and action spaces are too large, or the transition model and reward
function are unknown, thus the Value Iteration easily becomes intractable
or non applicable. For the aforementioned reason, more complex solutions
are needed for the AD problem.

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) is a general framework of machine learn-
ing in which an agent learns online, how to behave in an unknown envi-
ronment, in order to maximise the cumulative reward, as defined in Eq.
(2.27).
The environment is typically modeled as a MDP (see Eq. (2.26)) in which
the transition model is unknown. At each step, the agent chooses an ac-
tion using the current policy, later it observes the new state and immediate
reward. By collecting experiences as sequences of transitions, a new policy
can be built at each learning step.
RL poses additional challenges when compared to standard supervised

learning, in particular the collected data, i.e. the state transitions, depend
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Figure 2.7. Schematic representation of a RL algorithm.

on the same policy which is being learnt.
RL algorithms can be broadly divided in two main classes: model-based
and model-free. Model-based algorithms aim at estimating the transition
model T (sk+1|sk, ak), later to be leveraged in a planning policy. On the
other hand, model-free techniques are completely agnostic of the transition
model, thus the goal is to directly find the optimal policy. Furthermore
model-free algorithms can be divided in three classes: policy-based, value-
based and actor-critic. Policy-based approaches aim to estimate the policy
directly, whereas value-based estimate the value function (see Eq. (2.28))
first. Finally actor-critic leverages both policy and value-based ideas.
An important alternative to the value function, in Eq. (2.28), is the state-
action value function, a.k.a. quality function or Q-function:

Qπ(sk, ak) = E [Rπ|s0 = sk, a0 = ak, π] , (2.31)

which measures the expected return for being in a state sk and choosing
the action ak. The difference between the two is that in the Q-function the
starting action is explicit and given, and from that point on, the policy π
is followed.
If a Deep Neural Network (DNN) is used to perform the estimation, whether
it estimates a policy or a value function, the framework takes the name of
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Deep Reinforcement Learning (DRL).
For a comprehensive introduction on RL refer to [11] and reference therein.
In this work DRL will be leveraged in Ch. 5.

2.3.3 Deep-Q Learning

Deep-Q Learning (DQN) [12] is model-free and value-based DRL al-
gorithm, which estimates the Q-function in Eq. (2.31) by using a neural
network. The aim is to learn the optimal quality function, Q∗(sk, ak) as:

Q∗(sk, ak) = max
π

E

[ ∞∑
k=0

γkR(sk, ak)|s0 = sk, a0 = ak, π

]
, (2.32)

The core of the algorithm is based on the Bellman equation, which allows
to recursively define the Q-function, as:

Q∗(sk, ak) = max
π

E
[
R(sk, ak) + γmax

ak+1

Q∗(sk+1, ak+1)

]
, (2.33)

which means that ones Q∗ is learned, the optimal policy is the one that
maximizes the Q-function, i.e. the greedy policy.
In DQN the Q-function is estimated by leveraging a DNN of weights θ,
i.e.:

Q∗(sk, ak, θ
∗) ≈ Q∗(sk, ak). (2.34)

The weights θ are optimized at each iteration by minimization of the tem-
poral difference error in the Bellman equation, i.e. the loss is:

L(θ) = E[(R(sk, ak) + γmax
a+1

Q(sk+1, ak+1, θ
−)−Q(sk, ak, θ))

2], (2.35)

where θ− are the weights on the previous iteration. In practical implemen-
tation the weights θ− are kept constant for multiple iterations to stabilize
the training process.
The training process is carried out by saving transitions, at each simula-
tion step, as tuples (sk, ak, rk, sk+1) in a matrix called experience replay.
In order to reduce temporal correlation, at each training step, a set of ran-
dom experiences is sampled from the replay and the loss function in Eq.
(2.35) is built and minimized.
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During recent years a number of improvements have been proposed over
the vanilla DQN [12], aiming at stabilizing the training or improving per-
formances. Examples are Double DQN [13], and Dueling DQN [14]. The
original DQN psudo-code is reported in Alg. 1, for a comprehensive list
of improvements and modifications, refer to [15]. In this work the vanilla
DQN will be employed for designing planning policies in Ch. 5.

Algorithm 1 Deep-Q Learning with Experience Replay, [12]
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do
Initialise sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
for t = 1, T do
With probability ε select a random action ak
Otherwise select ak = maxaQ(sk, a, θ)
Execute action ak in emulator and observe reward rk and state sk+1

Store transition (sk, ak, rk, sk+1) in D
Sample random minibatch of transitions from D

Set yk =

{
rk for terminal sk+1

rk + γmaxaQ(sk+1, a, θ) for non-terminal sk+1

Perform a gradient descent step on loss in Eq. (2.35)
end for

end for

2.3.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [16] is a model-free and policy-
based DRL algorithm, which directly estimates the optimal policy π∗ by
using a DNN with weights θ. The loss function to be minimized is:

LCLIP (θ) = E[min(rk(θ)Âk, clip(rk(θ), 1− ε, 1 + ε)Âk)], (2.36)
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where Âk = Q(sk, ak)−V (sk) is the estimated advantage function, ε is the
clipping hyper-parameter and rk(θ) is the probability ratio:

rk(θ) =
πθ(ak|sk)
πθ−(ak|sk)

. (2.37)

Intuitively, the minimum function in Eq. (2.36) clips the loss so that con-
secutive updates are not too drastic on θ, thus stabilizing the learning
process. Such formulation was proposed in [16] as an alternative to the
TRPO algorithm [17], which solves the same issue through constraints,
thus solving a nonlinear constrained problem at each step, which is com-
putationally expensive. Despite its simpler formulation when compared to
TRPO, PPO achieves similar performances in most benchmark problems
[16].
The advantage function estimation is generally obtained by using the Gen-
eralized Advantage Estimation (GAE) [18], namely an additional DNN is
used. If the GAE weights are shared with θ the losses must be combined
in:

LCLIP+V F+S(θ) = E[LCLIP (θ)− c1L
V F (θ) + c2S[πθ](sk)] (2.38)

where c1 and c2 are coefficients, S is an entropy bonus, LV F (θ) is the value
function error squared loss. The PPO psudo-code is reported in Alg. 2,
refer to [16] for the complete description of the algorithm. In this work the
PPO algorithm will be employed for designing planning policies in Ch. 5.

Algorithm 2 Proximal Policy Optimization, [16]
for iteration = 1,M do
for actor = 1, N do
Run policy π in the environment for T time-steps
Compute Advantage estimates Âk

end for
Optimize loss in Eq. (2.38), with K epochs and minibatch size M ≤
NT

end for





Chapter 3
A Forward-Collision Warning
System for Electric Vehicles:
Experimental Validation in
Virtual and Real Environment

In this chapter the development and testing of a Forward Collision
Warning (FCW) system is presented. The aim is to leverage an affordable
sensing system for ADAS development, so that it can be deployed in class
L7E vehicles. Moreover a model-based integrated co-simulation platform
is used to ease the system design and testing.

3.1 Motivation and Related Works

The FCW is nowadays considered a state-of-the-art system. Its aim is
to promptly warn the driver when a collision is imminent, thus it has been
proven effective in reducing rear-end crashes.
Nonetheless, nowadays only high-end vehicles are provided with such fea-
ture, because of the prohibitive sensor costs, typically RADARs and LI-
DARs. For this reason, a different design is needed to make it more afford-
able. This problem can be tackled from two sides: first of, the expensive
sensors are replaced with much cheaper ones, such as cameras, second, the
development burden can be lowered by appropriately design co-simulation
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platforms, so that testing can be done during the early design stages.
Clearly the use of camera sensors requires computer vision algorithm to be
used. State-of-the-art designs leverage geometric or appearance features
to detect vehicles, e.g. by employing the Sobel edge detector [19, 20], or
Haar-like feature detector [21, 22]. More recent works employ ML tech-
niques, such as Support Vector Machines (SVM) [23], Hough Forest [24].
Nonetheless all of the above requires fine tuning of the features for each
detected class of objects, thus in this work DL techniques [25, 26, 27]
are employed to further improve the performance and reduce the develop-
ment time. The employment of DL architectures allows for automation of
features identification, thus as new labeled data are available, additional
classes can be detected.

3.2 Forward Collision Warning

The FCW aim is to classify possible dangerous situations and promptly
alert the driver through acoustic, visual or tactile warnings. In particu-
lar it is used for possible frontal collision such as rear-end collisions or
vehicle-pedestrian collisions. Common causes for such scenarios are driver
distraction or altered state, tailgating or panic-stop from the leading ve-
hicle. Despite the fact that FCW is a SAE Level-0 system, i.e. it only
provides warnings to the driver and it does not takes control over the ve-
hicle actuation systems, it has been proven effective in completely avoid
collisions or, at least, reducing their severity by warning the driver.
Most of the existing systems leverage RADAR technologies, thus resulting
in high system cost. The aim of this work is to design the system in a
scalable and affordable manner, both in terms of hardware and software,
therefore even low-end vehicles can make use of such architecture.
The main idea is to employ a low-end front facing monocular camera in
order to build the sensing state. Moreover, through the employment of
DNN and an integrated co-simulation platform, software development and
testing can be greatly eased, thus reducing software integration time.
In order to measure the collision risk a widely-adopted index is the Time
To Collision (TTC) [28], as:

T =
d

∆v
, (3.1)
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where d is the distance to the leading obstacle and ∆v is the relative
longitudinal velocity. Despite the fact that such information is not directly
measured in the camera 2D space, it will be shown how to derive the TTC
information by leveraging the scale change of objects projected onto the
image frame.
The main components of the FCW are object detection, object tracking
and risk evaluation. Each of the aforementioned modules design is shown
in the following sections.

3.2.1 Object Detection

Object Detection is a computer vision task which deals with detecting
instances of classes in an image frame. In the following the term obstacle
will refer to four possible classes equivalently, namely vehicle, pedestrian,
bicycle and motorcycle.
The object detection problem can be tackled by using classical image pro-
cessing techniques or, more modern, learning-based techniques. The clas-
sical computer vision solutions requires the engineer to hand-craft a set
of features for each class of detected objects, e.g. through edge-detection,
corner-detection etc. Despite their simple implementation and testing,
those technologies are nowadays considered obsolete, because they suffer
of the scalability problem (imagine a new class needs to be detected or new
features need to be added to existing classes) and their performances are in
general poor when compared to state-of-the-art learning-based solutions.
More recently learning-based solutions have been proven greatly effective
in tackling the scalability problem. DNNs have replaced classical computer
vision methodologies in every image processing task, such as classification,
segmentation and object detection. The power of DNN is relative to the
fact that the features are not hand-crafted, but learnt from data. More-
over DNNs scales better with more data when compared to classical ML.
But from great power comes great computational cost, thus usually more
expensive hardware platforms are required.
In this thesis a state-of-the-art Convolutional Neural Network (CNN) is
employed , namely You Only Look Once (YOLO) [29]. YOLO is a single
stage detector, meaning it predicts objectness, i.e. the probability that
an object exists, and its class in a single stage, by incorporating the two
tasks in a single loss function. It has been chosen in this work because it
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Figure 3.1. YOLOv3 network architecture scheme.

achieves faster computational time when compare to two stage detectors,
such as R-CNN [30] or Faster R-CNN [31], still achieving comparable mean
Average Precision.
The third version YOLOv3 uses Darknet-53 as CNN backbone to extract
features from the input image. A Feature Pyramid Network (FPN) follows
the backbone. The input to FPN are the features coming from different
depths of the backbone, allowing YOLO to address the multiscale prob-
lem, by combining low resolution (semantically strong) features with high
resolution (semantically weak) features using top-down pathways and lat-
eral connections. A simplified scheme of YOLO architecture is given in
Fig. 3.1. The output of detection system is the, so called, bounding-box,
identifying the objects position in the image space as the four dimensional
vector:

b = [bx by bw bh] (3.2)
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where bx and by are the bounding box top-left corner pixel coordinates,
whereas bw and bh are the bounding box width and height, respectively.

3.2.2 Multi-Target-Tracking

In order to build a time history of each detected object, a tracking mod-
ule is needed. Moreover, taking into account that for each frames multiple
detections exist, a Multi Target Tracking (MTT) algorithm is needed.
The aim of this module is to associate each new incoming detection to
existing tracks, or create new ones if no association is found.
Designing such module is challenging due to multiple reasons, namely sen-
sor detection probability, occlusion, unknown number of detections at any
time step. All of the aforementioned problems can lead to both false pos-
itives and negatives. Nonetheless, being the FCW a Level-0 ADAS, false
positives can be tolerated because the actuation control is still responsi-
bility of the driver.
In this work the Global Nearest Neighbour (GNN) algorithm [32] is chosen
as MTT module. The GNN is a single hypothesis tracker, i.e. each detec-
tion is assigned to the global nearest track. Due to the fact that conflicts
can occur in the association step, a cost function must be defined.
The Intersection Over Union (IOU) ones’ complement, between detection
and track pairs, is chosen as cost function:

J(i, j) = 1− IOU(di, tj), (3.3)

where di is the i-th detection and tj is the j -th track, whereas the term
IOU(di, tj) is the IOU between the couple (i, j), i.e. the extent of overlap
between the two corresponding boxes. The ones’ complement is needed so
that a minimization problem can be built (the IOU is always between zero
and one), otherwise a maximization problem must be solved.
At each sample time a tabular optimization problem is solved and the best
(i, j) couples are found, by minimization of the total cost in Eq. (3.3).
The Munkres algorithm [33] is chosen to solve the optimization problem,
which ensures convergence in polynomial time. Moreover, in order to re-
duce the problem complexity, first a gating step is applied, which filters
out unlikely detection-tracks association by setting a threshold cost. Due
to the small number of detection and tracks (typically below twenty) this
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set-up can be solved in real-time on the chosen deployment hardware plat-
form.
Once the association problem is solved, the detection measurements are
used to update the tracks, i.e. a bank of constant-velocity linear Kalman
Filter (KF) [34]. The KF state is the eight-dimensional vector:

x = [bx bxv by byv bw bwv bh bhv ] , (3.4)

where bxv and byv are the bounding box top-left corner velocities, whereas
bwv and bhv are the bounding box width and height velocities, respectively.
It is worth to point out here that the KF state is in the 2D image frame
which greatly simplifies the problem of measuring three dimensional coor-
dinates from a monocular camera. Retrieving 3D coordinate from the 2D
pinhole model is not possible in general. Despite the fact that, by making
a simplifying assumption and knowing the camera calibration with high
accuracy, this limitation could be overcome, it is chosen here to avoid the
problem completely by resorting to scale change in the 2D space, thus
improving the final robustness of the algorithm. In the following section
additional details on this matter are given. Regarding the KF matrices,
the state matrix is easily built by taking into account that the vector in
Eq. (3.4) is made of independent position-speed couples. On the other
hand the noise matrices have been tuned by trial and error, in particu-
lar by fixing the process noise matrix and slowly tuning the measurement
noise matrix.

3.2.3 Collision Risk Evaluation

Once the track are updated, the collision risk can be evaluated for each
one of them. In the following it is shown how to link the TTC in Eq. (3.1)
to the scale change of bounding boxes in consecutive measurements.
The width of an obstacle is projected in the image space by using the
pinhole camera model [5]:

wi =
fW

di
, (3.5)

where wi is the obstacle width in the i-th image frame, W is the obstacle
width in the three dimensional space and f is the camera focal length.By
tracking the objects between two frame i and i + 1, the scale change is
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defined as:
S =

wi
wi+1

=
di+1

di
. (3.6)

Due to the fact that time interval between the two frames ∆t is small
(' 1/30s ), constant relative velocity is assumed here, hence:

di+i = di + ∆v∆t. (3.7)

By substitution of Eq. (3.7) into Eq. (3.6), the following is obtained:

S =
di + ∆v∆t

di
, (3.8)

and hence, from Eq. (3.1), the TTC can be written as:

T̂ =
∆t

S − 1
, (3.9)

where T̂ is the estimation of T in Eq. (3.1), obtained by using image
frames only.
It is pointed out here again, that T̂ in Eq. (3.9) is independent of the
actual distance between the obstacle and the camera, thus it allows to
ignore camera calibration and road properties, such as flatness, banking
and slope angles. The total accuracy of the estimation of Eq. (3.9) is
mainly related to the detection and tracking accuracy and to the choice
of ∆t. In particular, by increasing ∆t, the input noise from the detection
system can be attenuated but less samples are available to update the KF
states which can lead to false negatives. Discussions on the theoretical
bounds of Eq. (3.9) accuracy can be found in [35].
If T̂ , as evaluated in (3.9), is below a chosen threshold (usually between two
and three seconds), a collision might occur. A warning is issued only if the
obstacle is on the ego-vehicle path. In order to check such condition the KF
states can be leveraged again, considering that they contain information
about the velocity of the bounding box. In particular, the future position
of the bounding box can be predicted as:

bxpr = bx + T̂ · bxv , (3.10)
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where bxpr is the predicted abscissa of the top left of the bounding box.
Using the same kind of reasoning, the right corner can be predicted by using
the width of the box. If the predicted box is inside a pre-designed region
of the image frame the warning is issued. The Eq. (3.10) is obtained from
the constant velocity assumption which results in a good approximation
in the scenarios of interest, such as rear-end collisions.

3.3 Validation and Discussion

In this section the testing results are shown. The effectiveness of the ap-
proach is first numerically evaluated in a co-simulation platform, through
Model In the Loop (MIL) testing. A well design platform can assist the
software development from the first design phase to the final coding and
testing, hence easing the whole process. Next, Vehicle In the Loop (VIL)
testing results are shown. The FCW has been deployed on the embedded
platform and tested on an experimental L7E class electric vehicle.

3.3.1 Model-in-the-Loop Testing

In order to validate driving assistance systems, it is required to drive
in potentially dangerous scenarios, such as near-miss collisions. For this
reason it is advisable to first test functionalities in a purposely designed co-
simulation platform, in which the environment can be controlled in terms
of road network, road users behaviour, environment conditions etc. This
first round of testing allows practitioners to tune controllers and remove
bugs by isolating software defects.
In this work the co-simulation platform has been built by leveraging two
main components:

• Matlab/Simulink has been used to ease the algorithm coding by first
using a high level programming language which can be later auto-
matically translated in Embedded C through the Embedded Coder
toolbox

• the open-source AV simulator CAR Learning to Act (CARLA) [36]
has been used to design traffic scenarios and simulate synthetic sensor
measurements, i.e. monocular camera image frames.
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Figure 3.2. Screenshot of the co-simulation platform during a use case.
On the left the Simulink window, in which the core FCW is implemented
along with the APIs calling the simulator server. On the right, the Carla
server window running the road environment and creating synthetic sensor
measurements.

CARLA is developed as an open-source layer on top of Unreal Engine, thus
providing state of the art render quality. It works in client-server fashion,
where the server runs the scenarios and create the simulated measurements,
whereas the client is a set of Python API which can be used to retrieve
the generated data.
On the other end, Matlab can be used to call Python scripts as well, thus
enabling us to link the two main components, by using is as a client for
CARLA. Additionally the FCW has been implemented in Matlab, which
can be leveraged to generate embedded C code at a later stage. Figures 3.2
and 3.3 show screenshots of the proposed co-simulation platform during a
use case. Scenarios prescribed by EuroNCAP [37] have been designed in
the simulation platform, namely:

• Car to Car Rear Stationary (CCRS): the ego vehicle moves towards
a stationary leading vehicle,

• Car to Car Rear Moving (CCRM): the ego vehicle moves towards a
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Figure 3.3. Detail of the co-simulation platform. From the left, the CARLA
module to interact with the server, the detection module, tracking module,
the inputs module, which emulates possible user configurations, and finally
the collision risk evaluator module.

slower constant velocity moving vehicle,

• Car to Car Rear Braking (CCRB): the ego vehicle moves towards a
braking vehicle.

All the aforementioned scenarios are repeated by varying vehicles velocities
and lateral overlap ranging from −50% to +50%, as prescribed from the
safety protocol.
Results are shown for two exemplary scenarios, namely:

• scenario 1: CCRS with starting distance d ' 67m and the ego vehicle
traveling at constant speed v = 13.9m/s ' 50km/h,

• scenario 2: CCRM with starting distance d ' 30m, ego vehicle and
leading vehicle traveling at constant speeds v = 13.9m/s ' 50km/h
and v = 5.55m/s ' 20km/h, respectively.
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(a)

(b)

Figure 3.4. Simulation results, through MIL testing, for Scenario 1. (a)
Time-history of the estimated TTC, T̂ , and the real TTC, T . The warning
threshold is shown as constant black horizontal line. (b) Time-history of the
FCW activation.

Scenario 1: Results are shown in Figs. 3.4a and 3.4b. The estimated TTC
is compared to the real one in Fig. 3.4a in order to assess the accuracy
of the algorithm. In the proposed scenario, the relative velocity ∆v is
constant, thus the TTC decreases linearly with time. Despite the lack of
accuracy at high distances, the estimated TTC is accurate enough in the
range of interest, i.e. below 4s, which results in both zero false positives and
negatives. Moreover, from Fig. 3.4a, a small constant positive percentage
bias can be appreciated in the estimation. This is due to the constant
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distance between the monocular camera mounting position and the front
bumper of the ego-vehicle, where the actual TTC should be taken. Note
that, in order to compensate for this bias, the distance to the front obstacle
should be measured [38], but this is not possible in the two dimensional
image frame.
In Figure 3.4b the activation of the warning is shown, which happens when
TTC ≤ 2.2s for at least two out of three consecutive steps.

(a)

(b)

Figure 3.5. Simulation results, through MIL testing, for Scenario 2. (a)
Time-history of the estimated TTC, T̂ , and the real TTC, T . The warning
threshold is shown as constant black horizontal line. (b) Time-history of the
FCW activation.
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Scenario 2: Results are shown in Figs. 3.5a and 3.5b. Similarly to
Scenario 1, the estimated TTC is compared to the real one in Fig. 3.5a.
Results disclose that the lack of accuracy at high distances does not lead
to false positives, and the estimation is accurate enough below 4s so that
no false negatives are reported. The same results were obtained by varying
lateral overlap and longitudinal velocities. Figure 3.5b shows the activation
of the actual warning. The outcome of CCRM scenarios leads to similar
conclusion taken from CCRS scenarios.

3.3.2 Vehicle-in-the-Loop Testing

Despite the practical convenience of simulation-based testing, it is hard
to simulate the complexity of real scenarios. For this reason in-vehicle test-
ing has been carried out in order to validate the entire set-up with respect
to the embedded hardware platform and real challenges that may arise,
such as low visibility, road roughness etc.
The camera-based algorithm has been deployed on a NVIDIA Jetson AGX
Xavier Developer board equipped with 8 CPU cores, 512 GPU cores and
32GB of RAM. The chose platform is capable of achieve 30fps, thus com-
plying to real-time constraints. The object detection module is publicly
available1 implementation of YOLOv3. The open-source repository lever-
ages CUDA and cuDNN libraries for the fastest possible CNN inference
on GPU cores. The rest of the modules, i.e. MTT and risk assessment,
have been coded in Matlab/Simulink for rapid prototyping and, at later
stage, C code has been automatically generated by leveraging the toolbox
Embedded Coder. The chosen camera sensor is a High Dynamic Range
(HDR) 2MP Starlight Camera. The HDR technology, combined to the
Ultra Low Light, allows us to capture images in harsh light conditions,
hence enabling FCW also at night or inside tunnels.

1YOLOv3 code: https://github.com/AlexeyAB/darknet

https://github.com/AlexeyAB/darknet
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Figure 3.6. In vehicle experimental hardware platform employed during VIL
testing.

During MIL testing one can use the simulated data to assess the al-
gorithm performances, similarly to what has been done in Figs. 3.4a and
3.5a. However, this is not possible for VIL testing. For the aforementioned
reason, a second highly reliable source of information is needed. The au-
tomotive RADAR ARS 404-21 from Continental has been used. RADARs
allows us to measure directly distances and relative velocities to obstacles,
hence Eq. (3.1) can be reliably used to measure TTC, in place of its esti-
mation in Eq. (3.9).
The camera has been connected to the NVIDIA board directly through
USB, whereas the RADAR has been connected to the vehicle Control Area
Network (CAN)-bus. Finally by using a PCAN-USB from Peak System
and a standard laptop, all the needed data can be collected. The schemat-
ics of the experimental hardware platform is shown in Fig. 3.6.
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Figure 3.7. Exemplary image frame captured from the in-vehicle validation
CCRS scenario. The yellow bounding box is the output of YOLOv3, whereas
the red box is the filtered measure obtained from the KF.

Once again, CCRS scenarios have been carried out during experimental
validation. The ego vehicle starts from standstill, then it accelerates up to
v ' 8.3m/s ' 30km/h (see Fig. 3.8b) towards a stationary obstacle, i.e.
a vehicle in this case study. The FCW issues a warning when the TTC
goes below a threshold, which was set to 2.45s. The test is considered
successful if the algorithm generates the alert soon enough to brake and
avoid impact with the forward obstacle. Figure 3.7 shows an exemplary
image frame captured during the experiments.
Figure 3.8a shows that the performance achieved by using a low-cost
monocular camera are comparable to the one achieved with a RADAR.
Despite the lower accuracy of the detection system when compared to the
RADAR, it is still accurate enough for the FCW algorithm, i.e. neither
false positives nor negatives are reported during the experiments, as shown
in Fig. 3.8c. It is pointed out here that, Fig. 3.8b shows a deceleration
before t = 10s, i.e. before the warning activation, this is only due to extra
care taken by the safety driver to avoid potentially dangerous situations.
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(a)

(b)

(c)

Figure 3.8. Experimental validation results in a CCRS scenario. (a) Time-
history of the estimated Time-To-Collision, T̂ , compared to the estimated
through the RADAR sensor, T . The warning threshold is shown as a constant
horizontal line. (b) Time-history of the ego-vehicle speed v. (c) Time-history
of the FCW activation.
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In conclusion, both MIL and VIL testing, disclose that a monocular
camera based FCW achieves performances comparable to a RADAR based
one. Moreover, by resorting to a camera space estimation of T̂ , no cali-
bration is needed, thus the system can be mounted and used effortlessly
on any vehicle. These results are really promising because they enable
low-end L7E vehicles with ADAS modules.





Chapter 4
On-Board Road Friction
Estimation Technique for
Autonomous Driving
Vehicle-Following Maneuvers

In this chapter a control architecture responsible for vehicle longitu-
dinal dynamics regulation, is shown. It includes the ACC and AEB, in
addition to ABS. The aim is to improve state of the art longitudinal
ADAS by embedding road-tire grip information in the control laws. This
information can be retrieved on-board by using commonly available sen-
sors in combination to model-based estimation methodologies. First the
road-grip estimation technique is presented, followed by the integration of
control designs and finally numerical validation results are shown.

4.1 Motivation and Related Works

Longitudinal ADAS modules such as ACC, AEB and ABS are nowa-
days considered state-of-the-art on most high end vehicles. All of the above
are used as modular components leveraged to build a SAE Level 2 vehicle,
i.e. partial control is achieved, hence the human driver must keep an eye
on the road, in order to promptly intervene in potentially dangerous situ-
ations.
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This limitation is due to the assumption under which these systems are
designed, namely ideal road and environment conditions, such as a per-
fectly dry flat road, without local imperfections.
Nonetheless, these assumptions are rarely true, thus the nominal safety
cannot be guaranteed. In order to increase the autonomy level, environ-
ment conditions must be explicitly taken into account since the design
phase, so that the vehicle adapt its behavior to the real-time road state.
In this context the main contributor to the overall safety is the road-tire
interaction, in terms of maximum available friction, which is the main fac-
tor for the maximum achievable deceleration in case of danger. On the
emergence of dangerous situations, where extreme braking is required, the
tire dynamics can be pushed to the unstable region, thus negating stability
and safety.
However, directly measuring road-tire interaction requires expensive sen-
sors, so in order to make the solution scalable to low-end vehicles as well,
on-board estimation techniques are required.
For the aforementioned reasons, a combination of estimation methods and
novel longitudinal ADAS designs are proposed here.
As specified in [39], friction estimation can be divided in two main groups,
namely expertiment-based and model-based. The experiment based typi-
cally use expensive sensors, usually optical or acoustical, to directly mea-
sure road roughness [40]. Nonetheless common vehicles are not provided
with such sensors, which makes the solution hard to scale. On the other
hand, model-based solutions estimate the road state by using mathemat-
ical models and commonly available chassis sensors. In [41], the authors
evaluate a set of parameters through experiments, for different conditions,
to be later saved in the Electronic Control Unit (ECU) memory. At run-
time, a switching logic selects the appropriate set of parameters, however
the accuracy of such system is limited by the number of parameters stored
in the memory. In [42] the friction estimation is carried online by imple-
menting different control strategies on the front and rear tire, so that the
total chassis speed is not affected. However, this cannot be achieved on
most common vehicles and such control laws can damage the tires in the
long run. Finally, in [43] the slip-slope methodology has been leveraged,
which assumes a linear tire behaviour to estimate friction, however this
model is not accurate in the non-linear region which is the most important
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one when dealing with extreme acceleration and steering commands.
Regarding the ADAS modules design, the MPC has been successfully em-
ployed for the ACC [44, 45, 46, 47, 48], whereas event-based controllers are
typically leveraged for the AEB [49, 50, 51]. However, none of the above
explicitly take into account the road-tire interaction and maximum avail-
able braking, which is of utmost importance when dealing with dangerous
scenarios.
With the aim in mind of increasing the SAE autonomy level, it will be
shown how the estimated road-tire grip can be leveraged by longitudinal
ADAS, so that safety can be guaranteed in adverse road state scenarios.

4.2 Control Architecture

Let us consider a front-driven vehicle equipped with proprioceptive
sensors for the measurement of ego-state variable, e.g. speed, acceleration,
yaw-rate etc., as well as exteroceptive sensors for environment sensing, e.g.
camera, RADAR, LIDAR (details on AV sensor architectures can be found
in [52]). The aim is to design a control architecture capable of performing
vehicle-following maneuvers in a safe and comfortable fashion, despite any
adverse road conditions, such as the presence of water, snow or ice on the
road asphalt. In order to achieve that, the tyre-asphalt friction coefficient
must be estimated on-line, in a computationally fast and reliable way.
To achieve the aforementioned capabilities the ACC has to adjust the
distance to the leading vehicle by taking into account the road friction, in
addition to the leading vehicle speed, as:

d→ ddes(µ̂max),

∆v = vlead − v → 0,
(4.1)

where d is the distance to the leading vehicle, ddes(µ̂max) is the desired
distance, µ̂max is the estimated road friction coefficient, ∆v is the relative
speed,and finally vlead and v are the leading and ego-vehicle speed respec-
tively.
In Eq. (4.1) the desired gap ddes(µ̂max) can be set according to the well-
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known headway time rule [53], as:

ddes(µ̂max) = d0 + τH(µ̂max)v, (4.2)

where d0 is the constant standing-still spacing and τH(µ̂max) is the heading
time. This value is tuned to trade off efficiency and safety in most practical
applications and papers, usually by assuming a µ̂max ' 1, but in this work
it is adapted relatively to the estimated road-grip coefficient µ̂max, as:

τH(µ̂max) =


τ̃H/0.2 µ̂max ≤ 0.2,

τ̃H/µ̂max 0.2 < µ̂max ≤ 1,

τ̃H µ̂max > 1,

(4.3)

where τ̃H is the constant headway for an ideal dry road [48]. The design in
Eq. (4.3) results in increasing desired distance as the maximum available
grip decreases, additionally saturating minimum and maximum range to
avoid infeasibility.
In order to further enhance safety, ACC works jointly with AEB to avoid
or mitigate longitudinal accidents. The AEB constantly monitors the area
right in front of the vehicle by sharing the same sensing state used by the
ACC. In case a possible or unavoidable collision is detected, the AEB
issues a braking command (usually to the ABS), thus decelerating or stop-
ping the vehicle. It follows that, in contrast to the ACC, the AEB is an
asynchronous module, i.e. activated only on specific events. In this work
the well-known TTC index [28] is leveraged, as:

T =
d

∆v
< Tth(µ̂max), when ∆v < 0, (4.4)

where Tth(µ̂max) is the positive threshold at which AEB is activated. Sim-
ilarly to the headway time in Eq. (4.2), the AEB threshold is adapted
relatively to the estimated road condition so that road asphalt condition
is taken into account.
If an emergency braking is issued, the maximum available torque is applied
to the wheels by the ABS module. The longitudinal slip ratio is decreased
fast, resulting in a braking force on the vehicle chassis. However, if the
slip goes below the optimal value, the wheel dynamics will transition to
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Figure 4.1. On-board ADAS control architecture

the unstable region, which will lead to wheel-locking, thus reducing the ef-
fectiveness of the braking system. This phenomenon is typically prevented
by the ABS by periodically reducing the braking torque on the wheel if a
locking condition is detected or predicted. Nevertheless, the optimal slip
value is road-grip dependent, therefore its online estimation can greatly
enhance safety and performance.
The road-grip aware ADAS functionalities are integrated in the control

architecture in Fig. 4.1. The on-board road estimation module is capable
of returning the estimation µ̂max online which is then exploited down-
stream by the ADAS modules, in order to enhance comfort and safety
performances.
Note that the role of the rule-based scheduler module in Fig. 4.1 is to clas-
sify scenarios and behaviours and select the ADAS function accordingly
[54].
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4.3 In-Vehicle Road-Grip Estimation

4.3.1 From Vehicle Sensors to Tire’s State

The number of sensor installed in the commercial vehicles has increase
drastically in recent year. The presence of such low-cost sensor suite has
transformed the vehicle in small mobile laboratories. Starting from phys-
ical measurements it is possible to build smart estimators on-board and
in real-time, by leveraging ECU, which in turns, are becoming more af-
fordable with time. Moreover, starting from global information about the
chassis, it is possible to estimate the state of its sub-components, such as
the tires.
Starting from the signals commonly available on the CAN-bus, the tire
kinematics and dynamics can be estimated in real-time by employing ex-
isting computational platforms or small dedicated ones.
An example of such estimation process is given by the TRICK algorithm
[55], which by leveraging CAN-bus signals and a quadricycle model, esti-
mates tire dynamics in its complete state space.
Due to the fact that in this work vehicle following and emergency braking
scenarios, i.e. only longitudinal movements, are under investigation, the
quadricycle model can be simplified into the bicycle model, such as defined
in Sec. 2.2.2. This simplified assumption allows us to greatly reduce the
computational burden per step, as well as reducing the number of param-
eters needed to reproduce the state physical dynamics under estimation.
The obtained estimation algorithm, to be presented later, feeds the ADAS
modules with the estimation of the current and potential road friction co-
efficients in real-time.
The following assumptions are made on the environment and on the model:

Assumption 3

(i) the road is modeled as flat without local imperfections, such as pot-
holes or roughness, but potentially affected by the presence of water,
ice or snow,

(ii) the tires are modeled by using the dynamic-kinematic functions, i.e.
ignoring the transient. Moreover, multi-physical dynamics are ne-
glected, such as thermal wear or degradation,
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(iii) the steering command δ is assumed to be constant and null, due to
the fact that only longitudinal dynamics are under investigation,

(iv) the vehicle is considered in terms of its global mass-inertia parameter.
The longitudinal dynamics are described with reference of its CoG,

(v) the vertical load on each axle is evaluated in terms of the static load,
load transfer and aerodynamic drag,

(vi) the suspension and steering system kinematics are taken into account
as static curves acquired by means of a multi-body physical simulator.

The input to the simplified TRICK estimation methodology are the
following signals to be acquired on-board using sensors or CAN-bus signals:

• wheel angular speed ωi[rad/s],

• vehicle longitudinal speed v[m/s],

• vehicle longitudinal acceleration a[m/s2],

• throttle pedal position, as a percentage,

• brake pedal position, as a percentage.

The estimation module outputs are:

• axle slip ratios λi,

• axle vertical load F in[N ],

• axle longitudinal interaction force F il [N ],

• axle current friction coefficient µ̂i,

• axle potential friction coefficient µ̂imax,

where slips and forces are related to axles, instead of wheels, because of
the bicycle model simplified assumptions, namely slip and forces on left
and right tires are considered equal. The schematic model simplification
employed by the estimator module is given in Fig. 4.2.
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Figure 4.2. Friction estimator: Model simplification, from four wheels
quadricycle to two wheels bicycle model.

The vertical static load acting on the axles is evaluated as in Eq. (2.20),
restated here for completeness:

F fn =
lrmg

2(lf + lr)
,

F rn =
lfmg

2(lf + lr)
.

(4.5)

In order to obtain a more accurate final prediction, in real applications the
longitudinal transfer ∆Fn and the downforce FDz are added to the model
in Sec. 2.2.2. In particular, the longitudinal load transfer is evaluated as:

∆Fn =
mhv̇x
lf + lr

, (4.6)
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with h being the CoG height, whereas the vertical aerodynamic downforce
is estimated as follow:

FDz =
1

2
ρAv2CL, (4.7)

where ρ[kg/m3] is the air density coefficient, A[m2] is the vehicle cross
sectional area, CL is the lift coefficient. The total axle load is given by:

F iz = −(F in −∆Fn + FDz ). (4.8)

Moreover, the inertia effect on the axle is:

F iinertia =
Iwω̇

i

Rw
, (4.9)

where Iw and Rw are the wheel inertia and radius, respectively. The
forces estimated in Eqs. (4.6)-(4.9) can be estimated by a combination of
constant parameters and time-varying information commonly available on
the vehicle CAN-bus network.
The longitudinal interaction force between the tire and the asphalt is a
complicated function of vehicle speed, normal loads, wheel speed:

F il = fl(λ
i, µ, F in). (4.10)

where the slip ratio λi is:

λi =
ωiRw − vil

max(ωiRw, vil)
. (4.11)

4.3.2 On-Board Friction Coefficients Estimation

It is widely known that tire behavior can vary drastically relatively to
environmental global conditions, e.g. rain, snow or ice, or relatively to
local road irregularities, e.g. oil, puddles or potholes. In order to enhance
safety performances of ADAS modules in presence of adverse environmen-
tal conditions, it is of utmost importance to provide them the current
road friction coefficient µ̂, i.e. the instantaneous tire-asphalt friction, and
potential road friction µ̂max, i.e. the maximum available grip achievable
when forces are applied to the wheels, either accelerating or braking.



54
Chapter 4. On-Board Road Friction Estimation Technique for Autonomous Driving

Vehicle-Following Maneuvers

The first step is to evaluate the tire characteristic, i.e. Eq. (4.10), through
real experimentation, on various types and states or the road asphalt.
Starting from the pre-calibrated set of parameters and the on-line current
road grip coefficient, it is possible to estimate the potential friction in a
later step. It is assumed here, that the potential friction can be obtained
by varying the longitudinal wheel slip alone, and keeping the other in-
formation constant, such as vehicle speed, normal loads, wheel alignment
among others. The typical tire characteristic is given in Fig. 4.3, where

Figure 4.3. Exemplary typical tire characteristic curve and maximum po-
tential friction.

the stable and unstable regions are shown, which are separated by the op-
timal slip λ∗ and relative potential friction µmax. The characteristic shows
that, starting from λ = 0, increasing the braking torque leads to increasing
grip (in absolute value) until the optimal value. From that point on, an
increasing braking torque does not lead to any additional grip, nonetheless
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the slip increases, which leads to wheel locking and eventually complete
sliding of the vehicle.
The ratio between the longitudinal force and normal load gives the cur-
rent friction, i.e. the instantaneous real time friction between tire and road
asphalt, namely:

µ̂i =
F il
F iz
. (4.12)

The friction in Eq. (4.12) is related to both changes of the road state and
asphalt condition, nonetheless, as previously stated, it is assumed that
only the longitudinal slip leads to friction changes, therefor a slip value
can be associated to each value of the current friction. On the other hand,
changes in the friction are associated to the road asphalt only, because the
wheel model is pre-calibrated through experiments.
Starting from the current friction, pre-calibrated models and model as-

Figure 4.4. Procedure to evaluate potential friction coefficient.
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sumptions, the potential friction can be estimated using the following steps:

1. once the current friction has been evaluated as in Eq. (4.12) (point
1 in Fig. 4.4) the equivalent grip for the pre-calibrated road model
(point 2 in Fig. 4.4) is evaluated as:

µ̂iref =
F ilref
F iz

, (4.13)

where F ilref is the pre-calibrated model longitudinal force associated
to the the current slip.

2. using the same pre-calibrated model, a maximum available longitu-
dinal force F ilref,max

is retrieved from the tire characteristic, which is
associated to the optimal slip ratio λ∗ (point 3 Fig. 4.4)

µ̂iref,max =
F ilref,max

F iz
, (4.14)

3. the final potential friction (point 4 Fig. 4.4) is evaluated using the
proportionality law already employed between in step 1, assuming
linearity in the tire behaviour under the vehicle working conditions.

µ̂imax =

F i
l

Fzi

F i
lref

Fzi

µ̂iref,max. (4.15)

The final estimated potential friction µ̂max is obtained by averaging the
front and rear estimations µ̂fmax and µ̂rmax. This information is returned to
the longitudinal ADAS modules to be presented in the following sections.



4.4. Road-Grip Aware Advanced Driving Assistance Systems 57

4.4 Road-Grip Aware Advanced Driving Assistance
Systems

4.4.1 Predictive Adaptive Cruise Control

The Adaptive Cruise Control (ACC) is responsible of performing vehi-
cle following maneuvers by continuously tracking the speed of the preceding
vehicle, often named leading vehicle in the technical literature. The ACC
is usually made of two independent layers, namely upper and lower layer.
The upper layer is a reference governor selecting the appropriate acceler-
ation in order to solve the problem stated in Eq. (4.1), rewritten here for
completeness.

d→ ddes(µ̂max),

∆v = vlead − v → 0.
(4.16)

The role of the lower layer is to map the acceleration command to longi-
tudinal actuators commands, i.e. throttle and brakes, thus tracking the
reference signal. This last controller is strongly linked to the vehicle power-
train architecture so it is out of the scope of this work, therefore the upper
layer is the focus of this chapter.
In the state-of-the-art technical practice, the ACC is designed by using PID
controllers, usually empirically tuned based on the expertise of practition-
ers. A more advanced and recent approach is to design optimal controllers
by embedding predictions of the leading and ego-vehicle dynamics, e.g. by
using LQR. Despite their effectiveness, both the approaches cannot take
into account state and input constraints, potentially resulting in uncon-
trolled constraints violations.
For the aforementioned facts, this thesis proposes a Predictive ACC de-
signed following the MPC approach, allowing for the continuous constrained
optimization of the vehicle following maneuvers. At each sample time the
MPC solves a finite horizon constrained optimization problem by selecting
the best control input sequence, nevertheless, according to the receding
horizon principle, only the first element of this sequence is applied to the
system under control, and, at the following sampling step, the process is
repeated again.
Let us first design the continuous time state-space control oriented model,
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according to the vehicle-following paradigm [6]:

ḋ = ∆v,

∆̇v = alead − a,
v̇ = a,

ȧ =
1

τ
(−a+ u),

(4.17)

where alead is the acceleration of the leading vehicle, a is the acceleration of
the ego vehicle, τ is the power-train time constant and finally u is control
command.
Equation (4.17) must be discretised, e.g. using forward Euler method, in
order to implement the controller, thus resulting in:

dk+1 = dk + Ts∆vk,

∆vk+1 = ∆vk + Ts(aleadk − ak),
vk+1 = vk + Tsak,

ak+1 = ak +
Ts
τ

(−ak + uk),

(4.18)

where Ts is the discretisation time step and k is the discrete time index.
In order to rewrite Eq. (4.18) in a more compact matrix notation, let us
define the state vector xk = [dk ∆vk vk ak]

T ∈ R4, the output vector as
yk = [dk − ddes ∆vk ak]

T ∈ R3 and wk ∈ R as the leader acceleration, i.e.
wk = aleadk . Therefore, rewrite Eq. (4.18) as:

xk+1 = Axk +Buk +Gwk,

yk = Cxk + Z,
(4.19)
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where

A =


1 Ts 0 0
0 1 0 −Ts
0 0 1 Ts
0 0 0 1− Ts

τ

 , B =


0
0
0
Ts
τ

 , G =


0
Ts
0
0



C =

1 0 −τ(µ̂) 0
0 1 0 0
0 0 0 1

 , Z =


−d0

0
0
0

 .
(4.20)

Note that the leading vehicle acceleration is treated as a constant distur-
bance because it depends on the future chosen command of the respective
vehicle user, which is unknown and non-observable in general.
Moreover, by augmenting the state vector as [xk uk], and the output vector
as [yk uk], it is possible to resort to the delta-input offset free formulation
[56], where the input command is moved into the state vector and the new
input signal is:

uk = uk−1 + δuk. (4.21)

This formulation is particularly convenient where biases or drift exist in
the actuators, e.g. the gain or model is uncertain. Therefore the matrices
in Eq. (4.19) can be rewritten as:

A =

[
A B
0 1

]
, B =

[
B
1

]
, G =

[
G
0

]
, C =

[
C 0
0 1

]
, Z =

[
Z
0

]
, (4.22)

where the matrix symbols have been reused for simplified notation.
This formulation is additionally beneficial for the ACC problem because
the delta-input is the discrete time difference of an acceleration command,
thus making it the jerk command. Therefore, by integrating delta-input
constraints, the comfort can be greatly improved.
The control goal stated in Eq. (4.16) is achieved by regulating the output
vector to the origin. The MPC allows to balance multiple objectives by
appropriately designing a cost function to be minimized, namely, at the
k-th time instant:

Jk(yk, δuk−1) =

tracking︷ ︸︸ ︷
yTkQyk +

comfort︷ ︸︸ ︷
δuTk−1Rδuk−1, (4.23)
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where yk is the prediction at k, which can be obtained by integrating Eq.
(4.18), given the (k − 1)-th value and the chosen control command. Ad-
ditionally, in Eq. (4.23), Q = diag(q1, q2, q3, q4) ∈ R4 is a positive definite
diagonal matrix and R = r ∈ R+ is a positive scalar. By appropriately
selecting the two aforementioned matrices, a trade-off between tracking
performance and control effort, i.e. acceleration and jerk, can be achieved.
The cumulative cost function is obtained by summing up Eq. (4.23) across
consecutive Hp prediction steps, thus obtaining :

J(y1,...,Hp , δu0,...,Hc−1) =

Hp−1∑
i=0

[
yTi+1Qyi+1 + δuTi Rδui

]
, (4.24)

whereHp andHc are the prediction and control horizons, respectively. The
chosen value for Hc should be obviously bounded by Hp, i.e. Hc ≤ Hp,
and the bigger it is, the higher the computational cost. In the following
the horizons will be set as Hc = Hp because, by using efficient solvers,
modern embedded systems are perfectly capable of solving linear MPCs
even under strict real-time requirements.
With respect to safety, road-grip constraints are introduced for the desired
and actual acceleration, as:

amin(µ̂max) ≤ ak ≤ amax(µ̂max), ∀k,
umin(µ̂max) ≤ uk ≤ umax(µ̂max), ∀k,

(4.25)

with amax(µ̂max) = umax(µ̂max) = min(2, µ̂maxg) and amin(µ̂max) = umin(µ̂max) =
max(−4,−µ̂maxg), being µ̂max the estimated maximum available grip and
g the acceleration of gravity. The saturation values ( i.e, 2m/s2 and
−4m/s2) are chosen as upper and lower limit, related to the ideal value
for the grip, set as µmax = 1.
The constraints on the spacing and the maximum velocity are given as:

dmin ≤ dk, ∀k,
vk ≤ vmax, ∀k,

(4.26)

where dmin is set to the standstill value d0 (see Eq. (4.2)) and vmax
is the maximum admissible speed depending on the legal requirements
on the specific traveled road (urban, extra-urban, etc.). Note that this



4.4. Road-Grip Aware Advanced Driving Assistance Systems 61

information can be easily acquired from a combination of map and GNSS
or from cameras. Finally, additional constraints on the control input are
defined for further improving the driving comfort as:

δumin ≤ δuk ≤ δumax, ∀k. (4.27)

Finally by combining the aforementioned cost, equality and inequality con-
straints, the complete constrained optimization problem can be written as:

min
y1,...,Hp ,δu0,...,Hp−1

J(y1,...,Hp , δu0,...,Hp−1)

∀k subject to xk+1 = Axk +Bδuk +Gwk

yk = Cxk + Z

dmin ≤ dk
vk ≤ vmax
amin ≤ ak ≤ amax
umin ≤ uk ≤ umax
δumin ≤ δuk ≤ δumax

(4.28)

The aforementioned MPC problem can be recast as a quadratic program-
ming problem [57]. In the following, the needed steps to obtain such for-
mulation are shown.
Let us first define the auxiliary vector obtained by stacking future state
and output predictions, and delta-input control commands, namely:

X ,

 xk+1
...

xk+Hp

 , Y ,

 yk+1
...

yk+Hp

 ,∆U ,

 δuk
...

δuk+Hp−1

 ,W ,

 wk
...

wk+Hp−1

 .
(4.29)

Starting from the previous vectors, the complete state-output prediction
along the horizon Hp can be written in matrix form as:

X = Āxk + B̄∆U + ḠW,

Y = F̄ xk + D̄∆U + ĒW + Z̄,
(4.30)
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where the matrices

Ā =


A
A2

...
AHp


(nxHp×nx)

C̄ =


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C


(nyHp×nxHp)

B̄ =


B 0 . . . 0
AB B . . . 0
...

...
. . .

...
AHp−1B AHp−2B . . . B


(nxHp×Hp)

(4.31)

Ḡ =


G 0 . . . 0
AG G . . . 0
...

...
. . .

...
AHp−1G AHp−2G . . . G


(nxHp×Hp)

Z̄ =


Z
Z
...
Z


(nyHp×1)

F̄ = C̄Ā, D̄ = C̄B̄, Ē = C̄Ḡ,

(4.32)

where nx = 5 and ny = 4 are the sizes of state xk and output yk vector,
respectively. Additionally the cost in Eq. (4.24) can be recast in matrix
form as:

J(Y,∆U) = Y T Q̄Y + ∆UT R̄∆U, (4.33)

where

Q̄ =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q


(nyHp×nyHp)

R̄ =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R


(Hp×Hp)

(4.34)
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By substitution of the output prediction from Eq. (4.29) in Eq. (4.33) and
usage of standard linear algebra manipulations:

J(xk,∆U) = (F̄ xk + D̄∆U + ĒW + Z̄)T Q̄(F̄ xk + D̄∆U + ĒW + Z̄)+

+ ∆UT R̄∆U =

= ∆UT (R̄+ D̄T Q̄D̄)∆U + 2(F̄ xk + ĒW + Z̄)T Q̄D̄∆U

= ∆UTH∆U + F∆U,
(4.35)

where H , R̄ + D̄T Q̄D̄ and F , 2(F̄ xk + ĒW + Z̄)T . In Eq. (4.33)
the delta-input independent term have been removed because they do not
contribute to the final cost.
Similarly, the constraints in Eq. (4.25), (4.26) and (4.27) can be recast in
matrix form, ∀k, as:

LMxk ≤ xmax,
Lmxk ≤ xmin,
δuk ≤ δumax,
−δuk ≤ −δumin,

(4.36)

where xmax = [vmax amax umax], xmin = [−dmin − amin − umin] and:

Lmax =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Lmin =

−1 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (4.37)

Again, by stacking the complete state X and control ∆U , as defined in
Eq. (4.29) the complete set of box constraints is:

L̄X ≤ M̄,

∆U ≤ N̄ ,
(4.38)
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where

L̄ =

L...
L

 , L = [Lmax Lmin]T ,

M̄ =

M...
M

 , M = [xmax xmin]T ,

N̄ =

N...
N

 , N = [δumax − δumin]T .

(4.39)

Finally by substitution of the state prediction from Eq. (4.30) in Eq. (4.38)
the following is obtained:

L̄B̄∆U ≤ M̄ − L̄Āxk − L̄ḠW,
∆U ≤ N̄ ,

(4.40)

in which every constraints is now only relative to the optimal control de-
cision variables, i.e. ∆U .
In conclusion the dense quadratic programming problem is:

min
∆U

∆UTH∆U + F∆U

subject to L̄B̄∆U ≤ M̄ − L̄Āx0 − L̄ḠW
∆U ≤ N̄

(4.41)

which is particularly convenient because many efficient embedded solvers
are available today, both commercial (e.g. ForcesPRO) and open source
(e.g. ACADO), to solve such formulation in real-time. The aforementioned
solvers are able to solve quadratic programming problems in milliseconds,
depending on the matrices size and CPU performances.

About stability and feasibility

In practice additional effort is necessary to ensure feasibility of the op-
timization problem.
The optimization problem may be momentary unfeasible because of vio-
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lation of constraints, which will in turn make the solver fail. This might
happen especially when the leading vehicle has high deceleration, or when
the estimated road friction coefficient µ̂max changes abruptly, and there-
fore the reference distance changes as well. For the aforementioned reasons
state constraints are formulate as soft-constraints [58] and a slack variable
is added to the cost function. When constraints are not active, the slack
variable is null and the original problem is obtained.
The stability of Linear MPC is a complicated function of its hyper-parameters.
The most common approach to ensure convergence, is to set a terminal
cost, i.e. the last term of the diagonal matrix Q̄, so that it is a solution
of the Riccati equation for the corresponding unconstrained LQR problem
[57]. This empirically means that in the neighborhood of the origin, i.e for
a sufficiently small α, constraints are not active and the MPC controller is
identical to the LQR unconstrained counterpart.

4.4.2 Autonomous Emergency Brake

Road accidents and fatalities statistics are reported annually, [59, 60],
showing the relation between accidents and drivers behaviour. Moreover,
[61] showed that the collision risk increases with the degradation of road
conditions. The AEB is one of the most effective driving functionalities for
collision prevention and social cost lowering linked to accidents. Nonethe-
less, EuroNCAP tests are being carried on roads with friction peaks of at
least 0.9, even if in real situations a lower value reduces the safety and the
robustness of the whole system.
In this perspective, the aim of the grip-aware AEB system proposed by the
authors is to identify the collision risk depending on the actual road condi-
tions and, hence, to take control of the brakes to avoid possible accidents
or at least to reduce their severity. Here, the decision-making of AEB is
make according to the TTC in Eq. (4.4), where the detection threshold
depends on the estimated road-grip as:

Tth(µ̂max) =
v

µ̂maxabrk
, (4.42)

being abrk the deceleration value commanded to the ABS in case of emer-
gency, i.e. 9.8m/s2.
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4.4.3 Anti-Lock Braking System

Once an emergency braking is commanded from the AEB, the ABS has
to drive the brake system, preventing wheels from locking during the hard
braking maneuver. Here a Sliding Mode Controller (SMC) ABS controller
is proposed, which leverages the on-line estimation of the road-grip in or-
der to provide a safe braking automatic maneuver for a vehicle-following
process, also in the presence of hard rainy or icy pavement. This choice
is due to SMC’s enhanced stability performances with respect to classical
control architectures [62] (e.g. proportional action). In particular, it can
be shown that matched disturbances (uncertainties entering the system
through the same channel as the control) are rejected, at least below the
actuation limits, moreover due to the controller nonlinear nature, larger
stability margins can be achieved.
First, let us define a control-oriented model in which the weight transfer,
lateral motion and yaw motion are neglected, thus obtaining a model deal-
ing with the wheel rotational dynamics and longitudinal vehicle dynamics.
The model is the same for each wheel, i.e. the apex i, referring to a specific
wheel, will be ignored. The rotational dynamics of the wheel is described
by

Iwω̇ = −Tb −RrFl, (4.43)

where Iw is the moment of inertia about the wheel axis of rotation, ω is the
angular velocity, Tb is the braking torque, Rw is the wheel rolling radius
and Fl is the force produced by the friction reaction. The longitudinal
vehicle dynamics are simply modeled as

mv̇ = −Fl, (4.44)

where m is the vehicle mass.
The control goal is to yield λ (see Eq. (4.11)) to a reference value λ∗ during
braking [63]. To this aim the following sliding surface is defined as:

σ = λ− λ?, (4.45)

where λ? is the optimal slip obtained from the friction estimator and λ is
the longitudinal slip. By taking the derivative of Eq. (4.11), the following
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slip dynamics are obtained:

λ̇ = −1

v

(
1− λ
m

+
R2
w

Iw

)
Fl +

Rw
vIw

Tb. (4.46)

Due to the inertia differences between wheel and vehicle, the velocity v is
taken as slowly varying parameter, thus reducing Eq. (4.46) to a single-
input single-output system, where the control law can be defined as:

u = Tb = uc + usw, (4.47)

being uc the continuous term, or equivalent control [62], and usw the dis-
continuous term. The equivalent control input is is responsible for keeping
the trajectories on σ, i.e.

σ̇ = 0⇒ uc =

(
(1− λ)Iw
mRw

+Rw

)
Fnµ̂, (4.48)

where the force Fl = Fnµ̂, being Fn the tire vertical load, and µ̂ the current
friction value provided by the estimation module. Closed-loop stability can
be easily proven by considering the following Lyapunov function V (λ) =
1
2σ

2 and its derivative V̇ (λ) = σσ̇.
By substitution of Eqs. (4.47)-(4.48) into the expression of V̇ , the following
is obtained:

V̇ (λ) = σσ̇ = σ

(
Rw
vIw

usw

)
. (4.49)

Hence, selecting usw = −vIw
Rw

ηsgn(σ) it follows that

V̇ (λ) = −ησsgn(σ) = −η|σ| < 0, (4.50)

being η > 0. In so doing, the surface σ is attractive and the closed-loop is
asymptotically stable.
Note that, in order to avoid the well-known chattering problem of the slid-
ing mode controllers, for its practical implementation the sign function in
Eq. (4.50) has been substituted by the hyperbolic tangent function. Fur-
thermore, since controllability is lost when the vehicle speed is approaching
zero (see Eq. (4.46)), following a common practice for implementing the
ABS, the controller is disabled at the very low velocities, i.e. v < 1m/s.
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4.5 Validation and Discussion

Numerical validation has been carried out by using a purposely de-
signed co-simulation platform. Model In the Loop (MIL) testing is a pow-
erful tool for validating software prior to embedding it into hardware plat-
form, thus saving development time.
The proposed platform has been developed by leveraging two main com-
ponents, namely:

• Matlab/Simulink has been used to both simulate ego-vehicle dynam-
ics and design controllers.

• Simulation of Urban MObility (SUMO) [64], an open-source road
traffic simulation package, enabling engineers to model road network,
traffic lights rules, vehicle routing and behaviours. Each entity is
simulated microscopically built upon realistic driving models [65, 66].

Despite the realistic behaviours implemented in SUMO, the vehicles are
still simulated following kinematic update rules, thus Simulink has been
used to describe a highly detailed ego-vehicle dynamic behaviours in terms
of chassis and actuation dynamics (see Sec. 2.2.1). On the other hand,
SUMO has been used to design the road network and the driving scenarios,
as well as the road asphalt conditions by defining different grip coefficients
along the road.
The platform works following the client-server paradigm, where SUMO,
acting as a server, waits for command requests from Simulink, i.e. the
client. The communication is possible thanks to TRACI4Matlab, a Mat-
lab implementation of the original TRACI, a set of communication API
provided by SUMO itself. The simulation and control parameters are
summed up in Tab. 4.2 and 4.3, towards the end of this chapter.
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(a)

(b)

Figure 4.5. Simulation results of Scenario 1: vehicle-following with constant
road grip. (a) Time-history comparison of vehicle distance, d, and desired
distance, ddes(µ̂max). (b) Time-history comparison of the ego velocity v and
leader velocity vlead.

In order to assess the performances of the proposed ADAS solution,
numerical results will be shown for the following scenarios:

• scenario 1: vehicle-following scenario on a typical motorway. Ego-
vehicle travels with starting speed v(0) = 30m/s, while having a
starting gap of d(0) = 90m to its predecessor, which travels with a
starting speed of vlead(0) = 20m/s. The leading vehicle is a human-
driven vehicle simulated by SUMO using its internal behavior mod-
els. The simulated realistic driving profile takes into account for road



70
Chapter 4. On-Board Road Friction Estimation Technique for Autonomous Driving

Vehicle-Following Maneuvers

Figure 4.6. Simulation results of Scenario 1: vehicle-following with constant
road grip. Time-history comparison of the real potential road-grip µmax and
its on-board estimate µ̂max.

limits and human driving imperfections. Due, to the presence of an
obstacle, the leading vehicle performs an emergency braking induc-
ing the maximum negative acceleration allowed by the road grip,
i.e. gµmaxm/s

2. In this scenario the actual road grip in constant
µmax = 0.5, which is representative of heavy rain.

• scenario 2: vehicle-following scenario with starting vehicle dynamics
conditions analogous to scenario 1, however in presence of varying
road grip conditions. Specifically, the road grip starts from ideal dry
road conditions, i.e. µmax(0) = 1, and decreases in two steps, namely
µmax = 0.75 and µmax = 0.5.

• scenario 3: Stop&Go scenario at urban speed and gaps, with constant
road grip coefficient µmax = 0.5.

Scenario 1: Results are depicted in Figs. 4.5a-4.5b and 4.6. The ego ve-
hicle is able to track the leading vehicle speed, as shown in Fig. 4.5b,
meanwhile preserving the desired road-grip dependent desired distance
ddes(µ̂max), Fig. 4.5a. Moreover, the road grip estimate µ̂max, starting
from the value 0.5, is shown in Fig. 4.6. The aforementioned figures show
that the vehicle is capable of safely avoid the collision, when the leading
vehicle perform harsh braking, at t = 150s, by combining the three pro-
posed ADAS modules.



4.5. Validation and Discussion 71

Specifically, the Predictive ACC design ensures tracking capability while
enforcing comfort constraints during vehicle-following, i.e. until t = 150s.
Indeed, at this time instant, the ACC tries to handle the hazardous sce-
nario, but the high necessity of high accelerations lead to the activation of
the AEB, which command the emergency braking. This command ignores
the ACC constraints, which have lower priority w.r.t. safety.

(a)

(b)

Figure 4.7. Simulation results of Scenario 1: vehicle-following with constant
road grip. (a) Time-history of the ego-vehicle acceleration a. (b) Time-history
of the ego-vehicle jerk j.
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(a)

(b)

Figure 4.8. Simulation results of Scenario 1: vehicle-following with constant
road grip. (a) Time-history of the ego-vehicle front tire longitudinal slip ratio
λf . (b) Time-history of the ego-vehicle front tire longitudinal slip ratio λr.

In so doing the collision is safely avoided, at the cost of lower comfort
during the emergency braking, i.e. higher absolute values of acceleration
and jerk (see Figs. 4.7a and 4.7b). Moreover, when the emergency braking
is commanded, the ABS is responsible for regulating longitudinal wheel
slip to the estimated optimal value λ∗. Results in Figs. 4.8a and 4.8b
shows the performances of the ABS during the emergency maneuver, i.e.
t ≥ 150s. Both the longitudinal wheel slips are regulated to the optimal
value during the braking maneuver, nonetheless, the last portion of the
plots shows divergence, because the ABS is disabled when the vehicle speed
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is low, namely v ≤ 1m/s in this work.
The scenario simulation is repeated by disabling the road grip adaptation,
i.e. by assuming µ̂max = 1, and the results are shown in Fig. 4.9a and
4.9b. In particular the figures show that, the ego vehicle is not capable of
avoiding the collision during the emergency brake maneuver because the
AEB is activate too late. Note that the distance d in Fig. 4.9a goes to
zero, meanwhile the velocity v is positive in Fig. 4.9b.

(a)

(b)

Figure 4.9. Simulation results of Scenario 1 without grip adaptation: vehicle-
following with constant road grip. (a) Time-history comparison of vehicle
distance, d, and desired distance, ddes. (b) Time-history comparison of the
ego velocity v and leader velocity vlead.
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(a)

(b)

Figure 4.10. Simulation results of Scenario 2: vehicle-following with variable
road grip. (a) Time-history comparison of vehicle distance, d, and desired
distance, ddes(µ̂max). (b) Time-history comparison of the ego velocity v and
leader velocity vlead.

Scenario 2: Results are depicted in Figs. 4.10a-4.11. Similarly to
Scenario 1, the ego vehicle is capable of tracking the leading vehicle speed
(see Fig. 4.10b), despite the step-like variation of the tire-asphalt grip.
The on-line road grip estimation results are shown in Fig. 4.11. Results
disclose that the estimation is performed with good enough accuracy, in
fact the relative error is always below 1% at steady state. Additionally, as
the road grip decreases the desired distance increase accordingly, thus the
ACC tracks the new reference without constraint violations. Similarly to



4.5. Validation and Discussion 75

Figure 4.11. Simulation results of Scenario 2: vehicle-following with variable
road grip. Time-history comparison of the real potential road-grip µmax and
its on-board estimate µ̂max.

Scenario 1, at t = 150s, the leading vehicle perform hard braking and the
combination of grip estimation and grip-aware ADAS allow the ego vehicle
to safely avoid the potential collision.
Scenario 3: Stop&Go scenario results are shown in Fig. 4.12a-4.13c, both
by activating and disabling the estimation module. In order to numerically
assess safety performances, the following non-dimensional collision index
γ [67] is defined as:

γ =
d− dbr
dw − dbr

, (4.51)

where d is the actual distance between the vehicles, dbr is the breaking
critical distance and dw is the warning critical distance.
The aforementioned index is commonly used to asses dangerous driving
situation and classify possible incoming collisions. Specifically, in case of
safe situation it take values greater than the unity, i.e. γ ≥ 1, instead in
case of dangerous situation it is positive and smaller than the unity, i.e.
0 ≤ γ ≤ 1.
Figure 4.12c shows that γ never goes below the unity threshold with the
estimation module. On the other hand, if the on-board module is disabled,
despite no collision occurs, the safety index goes below the threshold mean-
ing that the driving style is dangerous (see Fig. 4.13c for reference).
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(a)

(b)

(c)

Figure 4.12. Simulation results of Scenario 3 with road grip adaptation.
(a) Time-history comparison of vehicle distance, d, and desired distance,
ddes(µ̂max). (b) Time-history comparison of the ego velocity v and leader
velocity vlead. (c) Time-history of the safety index, γ.
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(a)

(b)

(c)

Figure 4.13. Simulation results of Scenario 3 without road grip adapta-
tion. (a) Time-history comparison of vehicle distance, d, and desired distance,
ddes(µ̂max). (b) Time-history comparison of the ego velocity v and leader ve-
locity vlead. (c) Time-history of the safety index, γ.
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Table 4.1. Summary of the numerical validation. The proposed driving
scenarios are compared by using three safety indexes.

Scenario min |T| min γ min d
Vehicle following with estimation 2.02 - 10.30
Vehicle following w/o estimation 0 - 0

Stop&Go with estimation 2.73 1.22 3.20
Stop&Go w/o estimation 2.13 0.48 2.70

The effectiveness of the proposed approach is finally summarized in
Tab. 4.1. Here, numerical evaluation is carried out with respect to three
safety indexes, namely the minimal TTC, minimal collision index and min-
imal vehicle distance. The table shows that, by leveraging the on-board
estimation module, no collision occur and safety can be enhanced in gen-
eral, being the safety indexes comparable to the one obtained in ideal dry
road scenarios [67], i.e. µ = 1.
In conclusion it is shown how, by embedding road-tire grip data into state
of the art longitudinal ADAS it is possible to enhance the overall safety,
even in dangerous scenarios, such as wet or snowy road asphalt. Formally
addressing safety in such scenarios is a needed step to move towards au-
tonomous driving.

Table 4.2. Ego vehicle parameters.

Parameter Description Value
m vehicle mass 1521 [kg]
lf distance CoG - front axle 1.2 [m]
lr distance CoG - rear axle 1.6 [m]
CL lift coefficient 0.28 [-]
A cross sectional area 2.7 [m2]
Iw wheel moment of inertia 1 [kg m2]
Rw wheel radius 0.315 [m]
h CoG height 0.54 [m]
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Table 4.3. Control tuning parameters.

Parameter Description Value
τ driveline constant 5 [s]
τ̃H headway time 1.1 [s]
d0 minimum spacing 2 [m]
Ts ACC sampling time 0.1 [s]
Hp ACC prediction horizon 15 [-]
Hc ACC control horizon 15 [-]

δumin ACC minimum control -0.1 [m/s2]
δumax ACC maximum control 0.1 [m/s2]
q1 ACC spacing tracking weight 2 [-]
q2 ACC velocity tracking weight 5 [-]
q3 ACC acceleration weight 20 [-]
q4 ACC control effort weight 20 [-]
r ACC incremental control effort weight 20 [-]





Chapter 5
Hierarchical Highway
Planning via Deep
Reinforcement Learning and
Optimal Control

In this chapter a novel solution for autonomous driving planning is pre-
sented. The control architecture is built upon a combination of classical
control and machine learning techniques, in order to obtain the advantages
of both. First the problem statement is given along with the proposed solu-
tion, and later its performances are evaluated on highway driving scenarios.

5.1 Motivation and Related Works

Planning for autonomous driving can be divided broadly in two com-
ponents, namely behavioural planner and motion planner. In particular
the behavioral planner maps the sensing state to behaviours, such as de-
sired speed or desired lane, whereas the motion planner maps those into
continuous time trajectories. Clearly a strong coupling between the two
exists, by taking into account that the top layer can affect the vehicle state
through the lower level (see Sec. 2.1 for an introduction on the AD soft-
ware stack). Despite the recent advancements on this matter, AD planning
is still considered an open problem (refer to [68] for a comprehensive state
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of the art review), moreover it is the last piece needed in order to close the
gap between assisted driving and autonomous driving. Indeed in a SAE
Level 2 vehicle, the human driver is the one acting as a behaviour planner,
and even motion planner in complex situations, therefore a methodological
improvement on planning technologies is needed, in order to substitute the
human driver.
Designing a planning module is formally equivalent to designing a driving
policy:

ak = π(sk) ∨ ak ∼ π(ak|sk) (5.1)

where sk is the state, ak is the action, the first policy is deterministic,
whereas the second is stochastic. The state sk is a combination of the
ego vehicle state and outside world state, whereas the action ak could be
either a behavior, or a control signal, if the planning module is designed
in end-to-end fashion.
Whatever the design choice, the planning module should strive for three
fundamental properties:

• safety: the autonomous vehicle must not cause any accidents while
following the policy in Eq. (5.1),

• effectiveness: the autonomous vehicle must be able to reach its
goal,

• scalability: the autonomous vehicle should be able to drive in any
scenario encountered worldwide.

Despite sounding obvious, the property of effectiveness must be taken into
account in order to make the problem non trivial. In fact, guaranteeing
safety alone is as simple as not letting the AV to move at all. Additionally,
the property of scalability [7, 69] is needed for practical and economical
reasons, indeed designing and validate a policy for each driving scenario is
not a viable solution in the long term.
From an historical point of view, the planning problem has been tackled
through classical robotics techniques, e.g. the authors in [70] used Finite
State Machines to select driving behaviours, whereas Petri Nets were used
in [71] to tackle the same issue. Moreover, Fuzzy Logic was proposed in
[72, 73] to issue lane change commands. Regarding motion planning, the
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authors in [74] proposed Rapidly-Expanding Random Trees to plan trajec-
tories in urban scenarios, whereas in [75] Artificial Potential Fields were
used for collision avoidance. All of the aforementioned techniques, along
with many variation of them, are not scalable enough for the AD problem.
Specifically they usually require some enumeration of available behaviours
or motion primitives, later to be evaluated with respect to a cost func-
tion. Manually enumerating each possible solution poses a great burden
on development teams, and, by taking into account the unpredictability of
everyday driving, it is clear how, pursuing such solutions, leads to unscal-
able driving policies.
In order to tackle the scalability problem, more recently, some alterna-
tives have been proposed, mainly relying on optimization or game theory.
Specifically MPC have been used on various level of the planning stack,
such as obstacle avoidance [76, 77] or trajectory planning [78, 79]. On the
other hand, game theory is typically used for behaviour planning, such as
proposed by the authors in [80, 81]. The aforementioned techniques result
in improved scalability, since the optimal solution is evaluated online by
optimizing some cost function. Nonetheless, these solutions require some
prediction model about the dynamic obstacles in the environment. Pre-
dicting the action of other road users is still an open problem in itself,
usually tackled through ML (see [82] for a review on this matter), and it
is not the scope of this work. Nonetheless, it is argued here that, building
driving policies on non verified prediction models, might lead to unsafe
behaviors, thus it will be shown how, in the proposed architecture, no pre-
diction model is needed.
The scalability issue naturally suggests the use of ML solutions, which have
been proposed in recent years. Specifically, Behaviour Cloning, a form of
supervised learning, has been used to clone the behaviour of human drivers
[83]. Despite being very effective, this solution requires a great amount of
data, and it is not clear if a small sample of locally acquired data can be
used to train policies, later to be deployed world-wide. A powerful alter-
native is model-free DRL, which allows scientists to build policies without
any manual data-labeling and prediction model (see Sec. 2.3.2 for an in-
troduction on RL). In model-free DRL, the future outcome for the chosen
action ak, is summarized in a single value, e.g. a value function or a Q-
function, without the need for predicting the behaviour of the other agents
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in the environment. It is effectively been proposed in many works, e.g. the
authors in [84, 85] proposed DQN for selecting behaviours during highway
driving, whereas in [86, 87] Dueling DQN has been investigated. Similarly
the authors in [88] solved highway driving by using PPO, whereas authors
in [89] proposed Soft Actor-Critic. Nonetheless, all of the aforementioned
works do not take safety explicitly into account, yet the authors resort to
posterior statistical analysis in order to assess safety performances. How-
ever, resorting to such designs is not advisable for practical AD, as argued
in [90], because as soon as a single line of code is changed, the analysis
becomes invalid. Substantially, the naive application of DRL would shift
the scalability problem on to the non-scalable posterior safety analysis.
In the following a novel planning architecture is presented. It is obtained
by leveraging machine learning and classical control in order to get the ad-
vantages of both. The concept of safety is completely decoupled from the
learning part so that it can be formally verified since the design phase. It is
claimed here that, in comparison to the state of the art, such hierarchical
solution achieves safety, effectiveness and scalability while being formally
sound, i.e. not requiring any specific behaviour prediction on dynamic
obstacles.

5.2 Safe Hierarchical Planning for Autonomous
Driving

The crucial part for the AV development is the ability of taking com-
plex decisions in highly varying and unknown scenarios. The aim is to
obtain a driving policy which is safe, effective, and scalable. Moreover,
the policy should result in human-like behaviour to make sure that the AV
can negotiate the right of way within mixed autonomous-human scenarios,
in a socially acceptable way. The driving policy can be defined as in Eq.
(5.1).
These challenges naturally suggest the use of DRL to solve this problem.
On the other hand it is widely known that DRL comes with issues itself,
related to:

• safety: the naive application of DRL algorithms of any kind, cannot
give guarantees about safety,



5.2. Safe Hierarchical Planning for Autonomous Driving 85

Figure 5.1. Overall hierarchical planning architecture.

• explainability: the choices of a DRL based planner cannot be ex-
plained in a human-like form, i.e. in a way that makes sense for
social acceptance,

• dimensionality: because of the search spaces involved, a huge amount
of data is need at training time, especially if we take into consider-
ation, edge cases, i.e. exceptionally rare situations, namely the ones
that affect safety the most.

In order to solve the aforementioned limitations the planning problem is
tackled here, by first splitting the driving policy as the composition of a
discrete and a continuous part, namely:

π = πD ◦ πC . (5.2)

The discrete policy πD is a mapping from the sensing state to behaviours,
thus in practice implemented as a behaviour planner, whereas πC is the
mapping from behaviours to continuous commands, i.e. the motion plan-
ner. The learning algorithms will be restricted to πD in order to reduce the
search space, thus improving the signal to noise ratio and partially reduc-
ing the dimensionality issue. This kind of reasoning has been successfully
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applied by authors in [91], nonetheless safety is not explicitly taken into
account there, moreover alternative designs are proposed here for both πD
and πC .
In order to model safety, the discrete policy πD is further split into the
composition of a learnable and a non-learnable part, namely:

πD = πL ◦ πN . (5.3)

In particular the non-learnable part πN is responsible for safety and acts
as a monitor, or constraints, on πL. The schematics of the overall planning
architecture are given in Fig. 5.1.
It is worth to point out here that, attempt on modeling the safety directly
into the DRL algorithms have been proposed in the literature, e.g. risk-
aware DQN has been proposed in [92, 93] or constrained DQN in [94].
In the aforementioned techniques the safety is still learnt, either in the
form of risk, i.e. an additional term to the Q-function, or in the form of
constraints, therefore posterior analysis is still needed.
Despite the fact that πN will act as a constraint on πL, it is not learnt in
Eq. (5.3), thus safety can be validated using formal methods, i.e. without
being limited to posterior statistical analysis. Moreover, because of the
complete decoupling of the learnable and non-learnable part, any DRL
algorithm can be used for πL.
In the next sections the design of each policy components is shown.

5.2.1 Trajectory Planner via Optimal Control

The trajectory planner module is responsible for defining the policy πC ,
i.e. a non-learnable mapping from behaviours to continuous time control
commands u(t) = [acmd(t), δcmd(t)] ∈ R2. For this purpose a NMPC has
been employed.
At each sample time the NMPC receives inputs in the form of behaviours
from πD, and maps them into accelerations and steerings, by evaluating
an optimal trajectory.
The prediction model is the non-linear kinematic bicycle model in the
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Frenet frame, as defined in Sec. 2.2.3, rewritten here for completeness:

σ̇(t) =
v(t) cos eψ(t)

1− ρey(t)
,

ėy(t) = v(t) sin eψ(t),

ėψ(t) = v(t)

(
tan δ(t)

lf + lr
−
ρ cos eψ(t)

1− ρey(t)

)
,

v̇(t) = a(t),

ȧ(t) =
acmd(t)− a(t)

τ
,

δ̇(t) = δcmd(t).

(5.4)

Despite its simplifying assumptions 2, the kinematic bicycle model has
been proven effective for planning [95], at least far from handling limits,
i.e. low enough longitudinal and lateral accelerations. In any case a dy-
namical model, such as the ones in Sec. 2.2.1 or 2.2.2, can be used if
the additional computational burden can be handled and the additional
needed parameters are known.
The Frenet frame has been chosen, in place of the Cartesian reference, be-
cause it allows for standardization of the road structure. Specifically the
road is modeled in terms of its curvature ρ(σ) and left and right bounds,
which naturally become constraints for the NMPC.
In order to implement the controller, Eq. (5.4) must be discretised in

ξk+1 = f2wk(ξk, uk) (5.5)

The non-linear optimal control problem, to be solved at each sample time
Ts, is:

min
ξ1,...,Hp ,u0,...,Hp−1

J(ξ1,...,Hp , u0,...,Hp−1)

∀k subject to ξk+1 = f2wk(ξk, uk)

ξk ∈X

uk ∈ U

(5.6)

where ξk is the ego vehicle state, uk = [acmdk , δcmdk ] is discrete time con-
trol, J is the cost function, Hp is the prediction horizon, X and U are
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the sets of allowed states and inputs. The function J is a quadratic cost
defined as:

J(ξ1,...,Hp , u0,...,Hp−1) =

Hp−1∑
i=0

[
(ξi+1 − ξref )TQ(ξi+1 − ξref ) + uTi Rui

]
(5.7)

where Q = diag(0, q1, q1, q1, q2, q2), R = diag(r, r) and ξref ∈ R6 is the ref-
erence signal obtained from the behaviour planner policy πD. Specifically
the reference ξref is the vector:

ξref = [0 eyref 0 vref 0 0] (5.8)

where vref and eyref are the reference velocity and lateral offset, respec-
tively, to be obtained from πD. It is clear that the error values ey and eψ
will instantly change when a different curve, i.e. a different lane, is chosen
as reference.
The constraints in Eq. (5.6) are relative to minimum and maximum lat-
eral and heading angle, in addition to ego vehicle dynamics, i.e. speed,
acceleration, steering, and command uk. Namely

eymin ≤eyk ≤ eymax

eψmin
≤eψk

≤ eψmax

vk ≤ vmax
amin ≤ak ≤ amax
δmin ≤δk ≤ δmax

acmdmin
≤acmdk ≤ acmdmax

δcmdmin
≤δcmdk ≤ δcmdmax

(5.9)

It is worth to note that in the optimal control problem in Eq. (5.6) there is
no reference to vehicles other than ego, thus safety is considered here only
in terms of road boundaries, by appropriately selecting constraints on eyk .
This choice is due to the fact that, in order to integrate safety in πC ,
assumptions on future vehicle trajectories and behaviours must be taken.
Nonetheless, trajectory prediction is still an open problem, moreover it is
usually tackled through DL which would contradict our initial design in
Eq. (5.2), where the policy πC is declared as non-learnable. The solution
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to the safety problem will be given in the following sections.

5.2.2 Behavioural Planner via Safe Deep Reinforcement
Learning

The behavioural planner is responsible for defining the policy πD in
Eq. (5.2), i.e. a mapping from the sensing state to discrete behaviours.
An AV need to take decision in an unpredictable environment, for that
reason the policy component πL in Eq. (5.3) is designed using model-free
DRL because it allows for the extraction of the policy from data, without
strict modelling assumptions.
The AD problem, as typically done in the recent literature, e.g. [84, 88, 89],
can be modeled as an MDP (see Eq. (2.26)) where the state evolution
stochasticity relies in the behaviour of other road users.
In this thesis the action space A is the collection of seven high-level actions
or behaviours ai with i ∈ [0, 6], summed up in Tab. 5.1. The high-level
decisions comprise of change lane to the left, change half lane to the left,
change half lane to the right, change lane to the right, faster, slower and
finally idle. The faster action increases the velocity reference vref , whereas
the slower action reduces it. Finally the idle action keeps the velocity vref
and lane reference constant.

Table 5.1. Description of high-level actions ai available in the action space
A.

Action Description
a0 change lane to the left, keep same speed
a1 change half lane to the left, keep same speed
a2 keep same lane, keep same speed
a3 change half lane to the right, keep same speed
a4 change lane to the right, keep same speed
a5 keep same lane, increase speed
a6 keep same lane, decrease speed

The following step is to design the state space S. A common choice for
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S is to use a collection of features regarding the ego vehicle and other N
closest traffic participants, i.e.:

s =

 0 Y 0 v0
X v0

Y ψ0

...
...

...
...

...
XN −X0 Y N vNX vNY ψN

 ∈ S , R(N+1)×5, (5.10)

where X and Y are the position coordinates in the Cartesian frame, vX
and vY are the velocities in the same frame, ψ is the angle and, finally, the
superscript refers to the i-th vehicle, where i = 0 is the ego vehicle. The
longitudinal coordinates X are expressed relatively to the ego vehicle so
that they can be bounded by the maximum sensing range.
The third, and last, step is to define the reward function R(sk, ak) for the
MDP. The assignment of a suitable reward is fundamental to steer the
driving policy toward the desired behaviour.
The most common design for the reward function is the combination of
a positive reward r+, typically driving speed proportional, and a sparse
negative reward r− issued only when a collision happens. Thus the reward
at each time-step is:

rk = r+ + αr−, (5.11)

where α is a tuning parameter, the positive reward is the normalized driv-
ing speed, namely:

r+ =
vX
vmax

, (5.12)

whereas the negative reward is:

r− =

{
0 if no collision happened,
1 if collision happened,

(5.13)

The main idea of the proposed MDP setup is that the agent can choose to
accelerate in order to increase the speed vX , thus obtaining higher rewards,
and, simultaneously, changing lane if a slower vehicle is ahead of the ego
vehicle (by checking the state in Eq. (5.10)). Clearly the two reward
components in Eq. (5.11) are traded off, namely increasing the positive
reward will lead to increasing risks of collisions.
For the aforementioned reason, if any DRL approach is naively applied,
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the policy πD aggressiveness and safety is highly related to the reward
function (5.11) shaping.
It is argued here that thanks to the policy design as in Eq. (5.3), i.e.
safety and effectiveness are completely decoupled, the negative reward is
not actually needed, thus α = 0. This design is effective in improving
safety, as well as simplifying the learning process, because by eliminating
the sparse reward r− the reward variance is greatly reduced.
On the other hand the policy component πN in Eq. (5.3) is not learnt and
it is responsible for safety, thus effectively acting as a monitor on πL, by
masking behaviours. Specifically, the policy πN is a collection of boolean
action masks aim :

aim =

{
0 if ai is not safe
1 if ai is safe

, (5.14)

where the safety classification of ai is obtained from the RSS (see Sec.
2.2.5). At each policy πD sample time, the masks in Eq. (5.14) are used
to disable corresponding actions, thus the agent can only choose between
safe behaviours, even during the exploration phase. This guarantees safety
during the whole learning phase, thus reducing variance on the reward and
increasing sample efficiency.
The proposed action masking design is independent of the DRL algorithm,
thus any can be chosen for learning πL, whether it is value-based or policy
based. In order to demonstrate this, both DQN [12] and PPO [16] agents
have been trained using the same MDP formulation (see Sec. 2.3.3 and
Sec. 2.3.4 for a brief introduction on such algorithms).

5.3 Validation and Discussion

In this section the simulation environment is described, along with the
training numerical results.
The environment scenario is a straight endless four lane highway with fifty
vehicles randomly generated in terms of positions and speeds. The ego ve-
hicle is spawned in one random lane at the beginning of each episode. In
the highway environment, the vehicles other than the ego, are modeled and
simulated by leveraging the Intelligent Driver Model (IDM) [65] and Min-
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Table 5.2. NMPC constant parameters

Parameter Value Parameter Value
Ts 0.1 [s] Hp 50 [-]
lf 1.25 [m] lr 1.25 [m]
τ 5 [s] r 0.5 [-]
q1 5 [-] q2 0.5 [-]

eψmin
-0.6 [rad] eψmax 0.6 [rad]

amin -5 [m/s2] amax 2 [m/s2]
δmin -0.6 [rad] δmax 0.6 [rad]

acmdmin
-5 [m/s2] acmdmax 2 [m/s2]

δcmdmin
-0.06 [rad] δcmdmax 0.06 [rad]

vmax 35 [m/s]

imizing Overall Braking Induced by Lane changes (MOBIL) [66]. These
models are used for simulation purposes only, therefore they are not known
by the controlled ego vehicle.
The simulation environment, behaviour and trajectory planners have been
implemented using Python. In particular the scenarios are built on top
of the publicly available highway_env1. This allows for code reuse and
results comparison to state-of-the-art DRL implementations, on the same
environments.
The RSS C implementation2 is publicly available as well, along with APIs
for usage in Python.
The non-linear optimization problem in Eq. (5.6) is implemented by lever-
aging ForcesPRO [96], a commercial toolbox for fast and efficient solution
of optimal control problems. It allows for fast controller design and tuning,
as well as automatic generation of highly efficient C code, later to be inter-
faces with Python. The set of parameters and constraints for the NMPC
is given in Table 5.2.
Finally the DRL algorithms, both DQN and PPO, have been trained by
using stable baselines 33. Stable Baselines 3 is a set of stable and reliable

1highway_env code: https://github.com/eleurent/highway-env
2RSS code: https://github.com/intel/ad-rss-lib
3SB3 code: https://github.com/DLR-RM/stable-baselines3

https://github.com/eleurent/highway-env
https://github.com/intel/ad-rss-lib
https://github.com/DLR-RM/stable-baselines3
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implementation of DRL algorithms in Pytorch.
The reuse of public state-of-the-art code has been maximized in this work,
thus allowing for code reproducibility, with the aim of pushing this line of
research.
A total of five agents have been trained and then numerically compared,
namely:

• safe PPO: PPO agent trained for πL, and masked by πN

• safe DQN: DQN agent trained for πL, and masked by πN

• PPO: state of the art PPO agent [16] trained for πD

• DQN: state of the art DQN agent [12] trained for πD

• Naive: simple naive policy, the ego vehicle goes as fast as possible by
keeping a safe distance to the leading vehicle and without changing
lane

The learnt policies leverage a Multi-Layer Perceptron (MLP) with two
hidden layers of 256 neurons. The learning process have been carried
out by extensive Monte Carlo simulations across two million steps and
multiple random seeds. Each episode lasts maximum ns = 400 steps and
the reward is normalized at each step, thus the maximum total cumulative
reward across the episode is Rmax = 400. The simulation and algorithms
hyper parameters are given in Table 5.3.
All of the implemented policies will be compared quantitatively on two

performance indexes, namely normalized return and collision rate. The
cumulative return is an important index related to the effectiveness of the
policies, specifically the higher the index the better. It is formally defined
here as:

R =
1

Rmax

ns∑
k=1

rkn , (5.15)

where rkn is the normalized step reward. On the other hand the collision
rate is the main index related to the safety of the policies, specifically the
lower the better. It is formally define here as:

cr =
nc
ne
, (5.16)
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Table 5.3. DRL algorithm training parameters

Agent Parameter Value
Number of training steps 2M
Policy Scheduling Time 0.1s

Input neurons 55
Hidden layers 2

Hidden layers neurons 256
Output neurons 5
Discount factor 0.8
Learning rate 5e-4

DQN Replay Memory size 15k
Initial exploration constant 1
Final exploration constant 0.1

Target Network update frequency 50
Batch size 32

PPO number of steps 10
Batch size 64
GAE λ 0.95

clipping coefficient 0.2
value-function coefficient 0.5

where nc is the number of episodes in which a collision happened, whereas
ne is the total number of episodes.
Figure 5.2a shows the training result for the safe PPO agent, whereas Fig.
5.2b shows training result for the safe DQN agent, both trained on three
different seeds and compared to the Naive agent. The two figures show
that both the agents are capable to achieve higher return when compared
to the Naive agent, i.e. by changing the reference lane, the autonomous ve-
hicle can achieve higher longitudinal speed. Moreover, the results on show
that changing the seed, i.e. changing the simulated scenarios and random
exploration, does not affect the results, therefore the learning process is
stable. On the other hand, Figure 5.2c shows that the best results in terms
of normalized return, i.e. the effectiveness, are achieved by the safe PPO.
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(a)

(b)

(c)

Figure 5.2. Safe Reinforcement Learning results. (a) Safe PPO agent train-
ing result. Normalized total return comparison between the naive policy and
the agent trained on three different seeds. (b) Safe DQN agent training result.
Normalized total return comparison between the naive policy and the agent
trained on three different seeds. (c) Safe policies comparison. Normalized
total return comparison between the naive policy, safe PPO policy and safe
DQN policy.
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The last agent obtained after two million steps is saved and evaluated
on 100 episodes in order to assess the final performances, against the state
of the art PPO and DQN, i.e. without the safety mask. The results are
summed up in Tab. 5.4. The table shows that the best performances in
terms of effectiveness are achieved by the safe PPO, nonetheless perfect
safety, i.e. 0% collision rate, is achieved by both safe PPO and safe DQN,
which is expected because of the decoupling between in Eq. (5.3).
In conclusion, it is shown how by properly decoupling the driving policy
as in Eq. (5.3), it is possible to design a framework in which the policies
can be safely learnt. When compared to the state of the art, the pro-
posed approach results in formally guaranteed safety, meanwhile reaching
a competitive level of effectiveness. Moreover, the policy decomposition
in Eq. (5.2), results in a faster and more stable learning process when
compared to end-to-end solutions, thus improving scalability and allowing
for its automation.

Table 5.4. Performances of the implemented agents in terms of averaged
normalized return and collision rate. The best achieved performance indexes
are highlighted in boldface.

Agent Averaged Normalized Return Collision Rate
safe PPO 0.881 ± 0.050 0%
safe DQN 0.835 ± 0.037 0%

PPO 0.810 ± 0.172 9%
DQN 0.824 ± 0.175 13%
Naive 0.809 ± 0.003 0%



Chapter 6
Conclusions

This thesis tackles the issue of scaling and increasing the overall safety
level of ADAS functionalities, in perspective of autonomous driving.
Chapter 3 shows that by leveraging a monocular front-facing camera, a
low-cost FCW system can be designed. The overall system leverages 2D
camera frame information only, thus no accurate calibration is needed.
Moreover, a co-simulation platform is introduced which greatly ease the
software development and testing. Results disclose that, the proposed sys-
tem performances are comparable to the one obtained by using a RADAR
sensor, but for a much cheaper cost, therefore the FCW can be scaled to
low-end commercial vehicles.
In Chapter 4 a road-grip aware set of longitudinal ADAS, namely ACC,
AEB and ABS is proposed. By implementing model-based estimation
techniques, expensive adhesion sensors can be avoided, thus reducing the
overall system cost. The potential grip estimation is then leveraged down-
stream by the ADAS modules, so that safety can be guaranteed with re-
spect to adverse road-grip scenarios, e.g. presence of water, ice or snow on
the road asphalt. The proposed system is then validated on a co-simulation
platform, on both common highway and urban scenarios. Results disclose
that the estimation is very accurate and the system can guarantee safety
for any maximum road grip, therefore increasing the safety with respect
to the state of the art.
Finally, in Chapter 5 a novel hierarchical planning architecture for AD
is proposed. In order to increase effectiveness and scalability, with re-
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spect to the state of the art, DRL algorithms are leveraged. Nonetheless,
by splitting the policy in a learnable and non-learnable part, it is shown
how, safety can be guaranteed formally at all times by employing classical
control techniques. When compared to the DRL state of the art, results
disclose that safety can be achieved and formally verified, thus avoiding
the common posterior statistical analysis.
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