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Abstract

Abstract

The aim of the present Ph.D. thesis is the development of model-based estimators for
monitoring mechanical systems. Complex systems have mechanical ones as components, and
those latter are intrinsically complex. Indeed, the growth in technology allowed the
transformation from purely mechanical systems to mechatronics ones with many advantages in
terms of interfacing with other systems, the external environment, and humans. Unfortunately,
higher maintenance of components integrated into new mechanical systems, typically subjected
to degradation, is required. The possibility of introducing the condition-based approach to
maintenance activities is crucial for avoiding early replacements of components in good
functioning or late intervention on them in faulty conditions. Different techniques for
monitoring mechanical systems in real-time can be employed for realizing the condition-based

maintenance.

In this work, model-based estimators constituted of Kalman Filters are employed for monitoring
three types of mechanical systems: the railway vehicle, the road vehicle, and Curved Surfaces
Sliding Isolators. The monitoring through a model-based approach for each class of previously
mentioned mechanical systems is described. Anti-yaw suspension components, which
constitute a part of the railway secondary suspension, are monitored to identify possible faults
that cause stability and safety reduction in railway vehicles. Two different modelling
approaches are employed for monitoring the tire-road conditions of road vehicles and for
managing their performances by estimating the sideslip angle. The frictional behaviour related
to both surfaces of Curved Surfaces Sliding Isolators is characterized through the proposed
model-based approach, which is also suitable for monitoring the wear conditions of isolators

during their operations.

An overview of different possible approaches to the diagnostic and monitoring of mechanical
and mechatronic systems, functional for condition-based maintenance, is provided. In
particular, a detailed description of Kalman Filters, employed as a model-based monitoring
technique in this work, is included. By starting from the linear Kalman Filter, nonlinear
formulations of this latter, such as the Extended Kalman Filter and the Constrained Unscented
Kalman Filter, are explained. Kalman Filters make estimations based on the mathematical
modelling of the system to be monitored. For each mechanical system studied in this work, an

estimator design model is developed to include it in a Kalman Filter for activating the estimation

11



Abstract

process and, therefore, the model-based monitoring. The correct design of the previously
mentioned model is crucial for obtaining reliable estimations by Kalman Filters. Formulations
of estimator design models able to capture desired dynamical behaviours of mechanical systems

to be monitored are provided.

Finally, results concerning estimations provided by the proposed monitoring approach for each
mechanical system analysed are provided. The estimated quantities are compared with detailed
simulation models and with experimental data. The obtained results confirm the suitability of
the model-based monitoring approach for mechanical systems, allowing for deepening future
research on their applicability in hardware equipment integrated onboard the explored

mechanical systems for making real-time condition monitoring.
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1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

1. MODEL-BASED MONITORING OF MECHANICAL
SYSTEMS: CONTEXT OF APPLICATIONS

Nowadays, the possibility of employing condition-based maintenance strategies instead of
predictive or calendarized ones is crucial for promptly taking action on mechanical systems
subjected to faults. Furthermore, two different enhancements are obtainable at the same time

through condition-based maintenance:

» increasing in the economic efficiency — the maintenance becomes more cost-efficient
because the components are only maintained when necessary. Thereby, the replacement
of system components which are still in a good state is avoided allowing money saving
and introducing benefits in terms of conservation and protection of the environment;

» increasing in the operational safety — the possibility of detecting faults in system
components in time allows making their maintenance or replacement before a failure

with catastrophic consequences happens.

The condition-based maintenance allows the substitution and the repair of devices within a time
horizon in which faults or abnormal behaviours are detected through condition monitoring
systems. Typically, the two previously mentioned enhancements obtainable by employing
condition-based maintenance conflict with each other considering that, in many cases, a
reduction of the operational costs comes at the price of diminished safety.

Therefore, monitoring systems are required to detect anomalies in mechanical systems, at each
time instant, for condition-based maintenance purposes and for harmonizing the two conflicting
aspects related to the condition-based maintenance approach.

The main aim of condition monitoring is to ensure the reliability of mechanical systems and
safety for users of monitored systems. Different approaches, such as Sensor-based and Data-
driven ones, are employed to implement monitoring systems and tools in electronic control

units.

The employability of the model-based approach on the condition monitoring of mechanical

systems is explored in this work.

13



1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

Model-based approaches for condition monitoring are suitable for real-time implementations
and allow the estimation of operative parameters and state variables for the health condition

monitoring of a mechanical system.

Through the model-based monitoring approach, the following features are obtainable:
» information on the presence of a fault or the excessive wear of the overall system or its
particular element at each time instant;
» reduce the number of expensive sensors mounted on the mechanical system to be

monitored, substituting the measurement signals with their estimations.

One of the most employed algorithms in model-based monitoring of mechanical systems is the
Kalman Filter in its various forms. The model-based concept is the heart of Kalman Filters. The
physical-mathematical model of the mechanical system to be monitored is required by Kalman

Filters for obtaining desired estimations.

The main contribution of this work is the development of new Estimator Design Models to be
included in Kalman Filters for monitoring purposes of mechanical systems. Therefore,

methodologies to build Estimator Design Models are described.

Specific parameters and state variables are selected for obtaining variables observable over time
for recognizing abnormal behaviours of considered mechanical systems. The estimation of the
previously mentioned variables of interest is allowed by including Estimator Design Models in

Kalman Filters.

Different methodologies based on model-based and data-driven approaches for monitoring
mechanical systems have been developed over the years, as described by publications cited in

the following.
The considered mechanical systems are monitored through nonlinear Kalman Filters integrated

with the newly developed Estimator Design Models in this work. In particular, for each

application field, the monitoring is made through a single model-based estimator.

14



1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

Three different application fields concerning the condition monitoring of mechanical systems

are explored:

1)

2)

3)

railway field — a Constrained Unscented Kalman Filter has been employed to monitor
the secondary suspension, in particular the anti-yaw dampers, for taking action on a fault
of anti-yaw dampers identified through the anti-yaw damping parameter estimation.
Furthermore, the proposed monitoring tool has been extended for monitoring the
conditions of anti-yaw suspension components constituted of dampers and springs [1,2];
automotive field — two Extended Kalman Filters have been employed to monitor the
tire-road interaction conditions and improve the active safety systems of road vehicles
through the sideslip angle estimation. Two different Estimator Design Models are
presented for designing Extended Kalman Filters. The tire-road condition monitoring is
made by estimating the lateral tire-road friction coefficient for obtaining information
related to roadbed and tire conditions [3,4];

seismic engineering field — a Constrained Unscented Kalman Filter has been employed
to monitor the conditions of surfaces of Curved Surfaces Sliding Isolators by estimating
friction coefficients on both surfaces. The estimation of friction coefficients allows
checking the degradation of sliding surfaces due to ageing and severe working

conditions [5].
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1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

1.1. Railway vehicles: monitoring of anti-yaw suspension
components

The reliability of the railway system is a fundamental task in order to improve safety and vehicle
timing. In this context, the anti-yaw dampers play a particular role since they have a strong

impact on the hunting motion of railway vehicles.

The hunting phenomenon itself is essential for the guidance of a railway vehicle. The desired
behaviour of a railway vehicle consists of the wheelset returns from an initial displacement
caused, e.g., by track irregularities to its equilibrium position involving a decaying hunting
motion. Excessive hunting causes high lateral wheel-rail forces, which can seriously damage
the track, increasing the risk of the derailment of railway vehicles.

The improvement of railway vehicles running stability is possible by equipping them with
springs and dampers, as a part of the railway secondary suspension system, for reducing
undesired hunting oscillations.

The previously mentioned springs and dampers, called anti-yaw suspension components, are
subjected to deterioration. As consequence, their maintenance becomes strongly crucial.

In particular, hydraulic dampers, typically used in railway vehicles, need seals. Since in the
seals a sliding contact between two solids occurs, the seals are inevitably prone to wear and
thereby to degradation, even if the oil of the damper provides lubrication. In contrast to this, no
sliding contact occurs springs. Therefore, the dampers are the more critical components
regarding degradation than the springs. Furthermore, a degradation of the anti-yaw dampers
can lead to excessive hunting at lower speeds and, thereby, to higher lateral wheel-rail forces.
Therefore, the anti-yaw dampers and their proper functioning are essential for the safe operation

of a railway vehicle.

The maintenance of railway vehicles is usually carried out following a calendar-based
approach. In order to ensure safety, the maintenance intervals are often set relatively low. In
some cases, such fixed maintenance intervals may lead to unnecessary maintenance actions.
Here, a condition-based maintenance appears as a feasible alternative to reduce the maintenance
effort and the related costs.

To this aim, the real-time condition monitoring represents a valid tool to operate the vehicle in

a more efficient and smarter way.
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1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

The condition monitoring of railway vehicles is typically based on signal processing,
knowledge-based and data-driven methods [6,7] based on the development of artificial Neural
Networks or on the knowledge of empirical systems. In contrast to these last approaches, the
model-based methods are characterized by the advantage to directly obtain the information
required for monitoring. Indeed, mechanical models of railway vehicles can be employed in
order to develop, for example, estimators designed to identify the wheel-rail contact forces or

the wheel profile [§ — 11].

Moreover, the model-based approaches can be adopted to estimate suspension parameters such
as secondary lateral damping and anti-yaw damping [12 — 17].

These techniques can be carried out thanks to the nature of the railway vehicle dynamics that is
taken into account in the mathematical model: indeed, the derived model contains the key

physical parameters, directly linked to the wheel-rail contact and to the suspension damping.

anti-yaw damper

secondary
lateral
damper

Figure 1.1. Positioning of anti-yaw dampers on the railway secondary suspension [18,19].

Model-based suspension condition monitoring relies typically on a modelling approach that
don’t consider the wheelset dynamics [20] or use the Kalker linear theory for the determination

of the wheel-rail contact forces [16,21,22].

From a theoretical point of view, critical issues of the hunting behaviour occur at high creepages
due to the nonlinear relation between the creepages and the contact forces [23]; as a
consequence, the modelling of the wheel-rail contact constitutes an important step for the

estimator design model.
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1. MODEL-BASED MONITORING OF MECHANICAL SYSTEMS: CONTEXT OF APPLICATIONS

In this context, however, it has to be pointed out that the characteristics of the wheel-rail contact
depends on several parameters, which can be uncertain and can vary considerably.

For instance, the geometry of the profiles of wheel and rail can vary due to the progress of wear,
and the friction coefficient in the wheel-rail contact depends on temperature and humidity.
Furthermore, variation of speed and irregularities, which also are uncertain, have an impact on
the relative kinematics of wheel and rail and thereby also influence the wheel-rail forces.
Therefore, the design of a specific reference model for the estimation could represent a

challenging aspect.

A constrained model-based estimator is presented for monitoring anti-yaw dampers by
estimating the anti-yaw damping. A random walk model for the estimation of contact forces
and moments is included in the previously mentioned estimator.

The random approach is designed to estimate the wheel-rail contact interactions considering
the scenario of running at a constant speed. Therefore, the longitudinal dynamics is neglected.
At the same time, the random walk model approach is characterized by important advantages
in terms of a priori no knowledge of both wheel-rail contact forces model and track

irregularities.

The double target of the design is to obtain an estimator model able to reproduce the relevant
physical phenomena but simple enough to limit the computational effort of the model-based
observers [24 — 26].

The random variability of the interaction has been handled through a nonlinear constrained
approach based on the Unscented Kalman Filter (UKF) [27,28], able to limit the variability of

the estimated states compatibly with the constraints.

The UKF outperforms the extended Kalman filter (EKF) [27 — 31], but some issues still remain.
More specifically, constraints on state variables cannot be taken into account and, consequently,
the filter could fail in case of inaccurate system modelling or in presence of random variable
model. Many approaches have been developed for UKF with constrained problems, also called
constrained UKF (CUKF) [26,31 — 35].

Furthermore, the proposed methodology has been extended for monitoring anti-yaw suspension
components, constituted of springs and dampers [2]. Therefore, the stiffness of springs included
in the anti-yaw suspension components is estimated through the CUKF for condition

monitoring purposes.
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1.2. Road vehicles: monitoring of sideslip angle and tire-road
interaction conditions

Over the past decades, driver assistance systems have become a standard in the automotive
industry [36]. Nevertheless, the number of deaths caused each year in the world by road
accidents exceeds one million.

This number is unacceptable related to technological advances. This very high value can be
reduced by improving the performance of driver assistance systems if more state variables and

parameters of road vehicles become available for onboard control and monitoring systems.

However, many of these variables, such as the sideslip angle, cannot be measured directly in
road vehicles because the sensors are very expensive. Reliable vehicle control systems are
developed typically around the vehicle sideslip angle determination [37 — 40].

Therefore, the knowledge of this kinematic variable is fundamental in this field, but its direct
measurement is too expensive. Many studies aimed to provide reliable tools for the sideslip
estimation based on the coupling between vehicle modelling and sensors. In [41,42], black-box
and model-based approaches as Neural Networks and Extended Kalman Filter (EKF) [29] have
been employed to make the sideslip angle estimation. Furthermore, the estimation of the tire-
road friction coefficient is fundamental for improving the control and the safety of road
vehicles. In autonomous vehicles, the tire-road friction coefficient can be estimated through

environmental perception sensors installed on vehicles coupled with state observers [43].

Model-based estimation techniques can take into account inaccuracies of sensors. These
approaches are based on vehicle models functional for the sideslip angle estimation and tire

models to estimate, typically, the tire-road forces.

In literature, it is possible to distinguish mainly two approaches for developing vehicle state
observers, employing readily available sensors to correct the estimation of variables which
require the employment of expensive sensors.

The first approach uses a kinematic vehicle model, independent of tire parameters and road
conditions, in combination with measurements obtainable from standard vehicle sensors. This
estimation technique is sensitive to sensor errors (noise and bias). These errors generated by the
GPS measurement can be reduced [44], but the required accuracy is not achievable by

consumer-grade GPS, and reception may be lost.
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The second approach is based on mechanical models of vehicles in combination with the
measurements available from standard vehicle sensors. With this approach, the model can
correct inaccuracies of sensors and unwanted measurements, but information on tire parameters

and road conditions is needed for the tire model.

Different tire models have been chosen in [45 — 53] to design stochastic observers for the

purposes previously described.
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Figure 1.2. Lateral tire-road force VS slip angle under different road friction [54].

Issues referred to the required accurate parametrization of typically employed tire models are
solved in [26,55,56] by integrating a Random Walk Model (RWM) approach with different

types of Kalman Filters for tire-road forces estimation.

Two different model-based estimators based on the Extended Kalman Filter are proposed to
monitor tire-road interaction conditions and to estimate the sideslip angle.

The first one has been designed around a double-track vehicle model coupled with a simple
Magic formula characterized by four parameters obtained from extensive offline testing [57,58]
for the tire modelling.

The lateral tire-road friction coefficient can be estimated on both left and right sides of the
vehicle through this estimator for capturing information on different interaction conditions
between tires and the roadbed. Therefore, it constitutes a monitoring tool able to differentiate
the possible wear condition of tires on both sides of the vehicle and the presence of various

types of roadbeds.
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The second model-based estimator is able to identify the overall lateral tire-road friction
coefficient. The estimator design model is based on a single-track vehicle model. A parametric
estimation strategy has been employed to estimate the tire-road features with a priori no
knowledge of specific tire models avoiding expensive experimental tests for their
characterization. The estimation of the sideslip angle is provided by both the developed
estimators.

The low computational load characterizing the proposed technique makes its implementation

suitable for electronic control units onboard car vehicles.

Furthermore, the proposed model-based monitoring methodology is suitable for improving

safety systems and driving aid tools in the automotive field.

1.3. Sliding seismic isolators: monitoring of instantaneous friction
coefficients for the management of wear conditions

Base isolation is a recognized effective strategy to mitigate structural damages during strong
earthquakes. A base isolation system consists of a flexible layer that separates the superstructure
from its foundation and lengthens its fundamental period, with the final aim of reducing harmful
vibrations induced by seismic ground shaking [59].

Among the different types of seismic isolators, Curved Surface Sliders (CSS) are widely used
for the passive protection of buildings and bridges, thanks to the