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Abstract  
Boundary layer unsteady blowing is one of the most advanced solution to reduce 

aircraft parasite drag and flow separation at high angles of attack. In this way high 

lift can be achieved along with low-drag and since endurance is one of the most 

important performance parameter for some types of aircraft, such as an UAV, it is 

clear that the ratio CL3/2/CD has to be maximized.  

Main goal of the present investigation is the exploration of the possible ways for 

obtaining efficient turbulent boundary layer control, keeping in mind, at the same 

time, the practical problems connected to the installation of the device in a real 

wing. Furthermore a global balance of needed power is necessary to prove that the 

net power balance is in favour of the case in which the control is applied. The work 

has been mainly addressed to the verification of active control through steady 

suction and pulsed blowing as an effective tool to delay boundary layer separation. 

In the first part preliminary theoretical consideration and numerical simulation are 

presented for steady suction as well as for steady and unsteady blowing. In the 

second part of the work, experimental investigations on a model wing opportunely 

instrumented and set in the wind tunnel are presented followed by the discussion 

of results. 
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Introduction 

1.1 General 

In the recent years active flow control has again become a research area in the 

aerospace community.  Active flow control differs from passive flow control in the 

sense that auxiliary power is required. All these techniques can be applied for the 

improvement of many aircraft performances, depending on the desired result. For 

example delaying of the separation enhancing aerodynamic performance will 

improve the landing characteristics and acoustic noise, and reducing or eliminating 

the required moving surfaces could lead to higher airframe simplicity. The 

endurance of High Altitude & Long Endurance (HALE) UAV can also be greatly 

increased since the aircraft can fly with high lift coefficient in cruise with low drag 

rising in this way the CL
3/2/CD parameter. The suction side of this type of wings is 

dominated by massive separation  that comprises of large and small vortices with a 

wide spectrum of length scales and frequencies. Recent experimental and 

numerical evidence shows that at high angles of attack, it is indeed possible to 

increase lift by controlling the vortex forming the process of separated flows. Many 

researchers have studied the effectiveness of such techniques (Eppler [1] for 

suction, Seifert & Wygnanski [2],[3], Tinapp [4] Kim-Williams [5], Gad-el-Hak [6] 

and Wu [7] for unsteady blowing and synthetic jet), with the current challenge being 

twofold: on one hand to improve the application on a real flying wing and on the 

other hand to acquire more physical understanding. 

The final goal of this research project is to highlight the practical feasibility, 

advantages and limits of some of the active flow control techniques such as 

turbulent steady suction and unsteady blowing. The investigation will also cover 

aspects connected to the practical implementation of these techniques on a real 

flying UAV wing pointing out all technical problems related to its applications. We 
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will show that such technique, already proven to be applicable to multi-component 

airfoil, in particular for post-stall of flap, can be also extended to wing surface with 

single component airfoil. 

 

1.2 Review and General Concepts on Flow Control 

Separation is the detachment of the boundary layer from a surface, often to form a 

free shear layer associated with an adverse pressure gradient. Near wall flow is at 

the same time decelerated by adverse pressure gradient and accelerated by shear 

stress due to faster flow above. Separation point is identified by a stationary point 

within the boundary layer. The principal effects of separation on aerodynamic 

characteristics are following summarized: 

� Increased drag (wide wake) 

� Increased instability (formation of free shear layer) 

� Loss of lift 

Ue 
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inflection point
u
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Observing that in the outer layer the velocity is greater than zero, the necessary 

condition to have separation is that  
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As the second derivative of velocity profile is linked to the pressure gradient, the 

(1.2) can be expressed as: 

0
y
p
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>⎟⎟

⎠

⎞
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⎝

⎛
∂
∂

=
   (necessary condition for separation)                                            (1.3) 

Principal aim of control methods is to modify velocity profile curvature in order to 

delay or eliminate separation. Separation can be weak or strong, and the 

classification depends on the position of separation point. When it is variable (ex: 

flow over wing at low angles of attack) the separation is classified as weak, while if 

the separation point is fixed (ex: bluff bodies or wing at high angles of attack) 

separation is classified as strong. In both cases the dynamics of free shear layer 

that detach from the surface can be influenced by a perturbation introduced into it. 

Possible control strategies are mainly divided in active and passive (see figure 1.2 

from Gad-el-Hak [6]), where active means that flow field is perturbed with an 

injection or a removal of fluid, with zero (synthetic jet) or non-zero net mass flow 

rate (suction and blowing). Main active control techniques are boundary layer 

suction to remove the low momentum fluid, wall heat transfer to control and modify 

the viscosity of the fluid and momentum addition to the boundary layer by steady 

and unsteady blowing. Nowadays, the development of “Synthetic Jet 

Actuators”(SJA) (“zero mass flow rate”) devices has also received a great amount 

of interest, due to the absence of air-supply and distribution system. In steady 

suction or blowing the goal is to remove (suction) or add (blowing) momentum to 

low energy flow field, without produce excitation to the turbulent structure, while 

SJA and unsteady blowing promotes mixing by excitation between the higher 
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momentum fluid above the separated region and the lower momentum fluid near 

the surface.  

Separated and 
Separating  

Flow Control strategy

predetermined

Activepassive

Reactive

Feedforward Feedback 

 
Figure 1.2: Classification of flow control strategies (from Gad-el-Hak [6]) 

 

It is important to distinguish between “separating” and “separated” flow control. The 

predetermined strategy in fact is more suitable for situations which tends to 

optimize one specified flow condition. There are many references in literature 

showing that a partially separated flow can become an almost fully attached flow 

by unsteady forcing, so that the stall can be delayed. In this category, unsteady 

controls are much more effective than steady ones and can be realized at lower 

power-input level (Wu [7],Vakili & Wu [8]; Miranda [9], Seifert & Wygnanski [2]). 

The category of the separated-flow control is related to the flow that has fully 

separated (as angle of attack increases beyond  stall, fully separated flow develops 

and becomes a bluff -body type flow). 

The active control of reactive type is that where a control signal that apply the 

control law is taken from measurements of the flow, whereas in the predetermined 

case, the control is not dependent on the flow condition. Reactive flow itself divides 

in feed forward, where the measured variable and the controlled variable differ 
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(applying a control law) and feedback. The control techniques that will be 

investigated in this work are classified as active and predetermined, the position of 

actuator that apply the control is fixed and the disturbance to the flow field are 

predetermined and do not change with flow conditions.  

(applying a control law) and feedback. The control techniques that will be 

investigated in this work are classified as active and predetermined, the position of 

actuator that apply the control is fixed and the disturbance to the flow field are 

predetermined and do not change with flow conditions.  

Before further proceeding is described shortly the main concepts of flow control 

through steady and unsteady suction or blowing. 

Before further proceeding is described shortly the main concepts of flow control 

through steady and unsteady suction or blowing. 

  

Suction Suction 

Suction changes the velocity profile and this guarantees Suction changes the velocity profile and this guarantees 0yu
0y

22 <∂∂
=

 which is 

a sufficient condition to avoid separation (figure 1.3).  

An alternative, but equivalent argument, is that suction removes the slow (low 

momentum) fluid near the wall and replaces it with faster (high momentum) fluid. 

Hence is similar to steady momentum injection. 

s n

Figure 1.3: Suction

 

the key parameter that identify the suction 

velocity (V0) and free stream velocity (V∞), often

∞
=

V
V

C 0
q  suction coefficient                              

suction can be applied through a porous area (

cut (concentrated suction). 

 

uctio
 
 concept 

is the ratio between transpiration 

 indicated as Cq (1.4) 

                                                  (1.4) 

distributed suction) or through a slot 
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Blowing 
Blowing can be steady or unsteady. For the steady blowing the concept is similar 

to that ones exposed for steady suction, as the aim is to change the velocity 

curvature at wall modifying the boundary layer locally in the point where the control 

is applied (in this case through momentum injection). 

With regards to the unsteady excitation an excellent review on the physics is given 

by [6], [7], [8], [9]. One key mechanism that has been identified in the pulsed 

separation control is the formation of large-scale vortical structures in the 

separated shear layer due to oscillatory forcing, which entrains outer high-

momentum fluid into the boundary layer, delaying separation or reattaching a 

separated flow. The mechanism that takes place in the flow field needs to be 

understood in order to devise an effective method to control the flow. It is 

necessary to investigate how certain modes of the flow field are excited 

(receptivity) and amplified (resonance) by injected flow for different frequencies 

and strengths. 

The key control parameters are the frequency (1.5) and the strength (1.6) of the 

disturbance, usually defined through the following dimensionless coefficient: 

∞

+ =
V
X*f

F act  reduced frequency                                                                     (1.5) 

2

act

2
mean

act V
'V

X
h2

V
V

X
h2'ccC ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+>=<

∞∞
µµµ

   momentum coefficient                          (1.6) 

where Xact is the distance between the injection point and the model trailing edge, h 

is the slot exit extension, and f is frequency of injection. 

As expected, control effectiveness varies with ratio Vmean/V∞ (mean momentum 

added to flow field) (Seifert et al [2],[3]) up to a level where a further increase would 

perhaps disrupt the boundary layer. On the other hand, control effectiveness has a 

highly non-monotonic and non-linear variation with reduced frequency F+ (Seifert 

and Pack  [10]; Greenblatt and Wygnanski [11],[12]) and this not only suggests the 

presence of rich and multiple flow mechanisms but also suggests the possibility of 
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identify an “optimal” combination of this two parameters once the flow condition 

has been fixed. 

The dynamics of a separated flow over an airfoil is dominated by the characteristic 

frequency of the separation region, fsep, but as it has been fully explained in [13], in 

addition to this characteristic frequency, there are other naturally occurring 

frequencies that can play an important role in the dynamics of the flow. To examine 

this further, it is useful to classify the types of separation encountered for classical 

airfoils, and the subsequent discussion is drawn from classical work on stall 

classification by McCullogh and Gault [14], and more recent work on dynamics of 

stalled airfoil flows as Wu et al. [7]. Based on these previous studies, one can 

consider the following three situations with regards to separation control, see figure 

1.4. Case A represents attached flow at low angle-of-attack (AOA) where the 

boundary layer on the suction side develops under an adverse pressure gradient 

but does not separate. Such a flow has one dominant time-scale characterized by 

the inverse of the wake shedding frequency fwake which, according to Roshko [15] 

scales as ~ fwake ∝ V∞ / Wwake where Wwake is the wake thickness at trailing edge. In 

direct contrast to case A is the situation at high AOA, namely the post-stall case C 

where separation occurs near the leading-edge and the flow does not reattach to 

the airfoil surface. This flow behaves like that past a bluff body and is consequently 

subject to two frequency scales, fSL (shear layer) and fwake , where the former is the 

natural vortex rollup frequency of the shear layer and the latter is the frequency 

corresponding to vortex shedding in the wake. The question may be asked as to 

whether such a local, convective instability mechanism is important given the 

global, absolute instability of the wake. The answer to this question confirmed by 

the recent experiment, is affirmative as shown in a number of experimental 

investigations of bluff-body wakes. A survey of the literature in this area reveals 

studies (Wu et al. [7] and Miranda [9] ) where both shear and wake frequencies 

has been considered, or in contrast, other studies of post-stall separation control 

where only wake frequency has been considered (Seifert [2],[3]). Finally, also 

many studies that have examined massively separated flow past airfoils/flaps (for 
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example Tinapp [4]) consider only a single frequency corresponding to the 

separation region, fsep (which is ∝ V∞ / Xsep, with Xsep distance from separation point 

to trailing edge), which is not necessarily the same as fwake or fSL. 

 
Figure 1.4: Separation and associated frequencies (McCullogh [14]) 

 

Finally Case B corresponds to the situation where separation occurs at some 

location downstream of the leading edge, and the separated shear layer may or 

may not reattach before the trailing edge. If the flow reattaches before the trailing 

edge, there are potentially three frequency-scales: fwake , fSL, and fsep , the 

frequency scale corresponding to the separation “bubble.” The resonant interaction 

between these processes is a strong function of the distance between the 

separation location and the trailing edge. In summary, fsep is only one of three 

potentially naturally occurring frequencies in a separated airfoil flow. It is quite 

possible that nonlinear interactions determine the evolution of these disturbances 



Chapter 1                                                                                9

(Wu et al. [7],[8]). Depending on the flow condition, the optimal disturbance 

frequency f and injection strength could be found in order to produce positive 

results. However, the understanding of the dynamics of these processes is limited. 

In the paper of Wu [8] is summarized the fundamental physics of lift enhancement 

with the following chain of events: 

vortex layer instability-receptivity-resonance-streaming 

As Wu explains is his paper two principal typologies of instability play an important 

role in separated shear layers, local instability and global instability. Local instability 

is related to separated shear layers from leading and trailing edge, while global 

instability is responsible for the vortex shedding. The dimensionless parameter that 

identify the shear layer frequency is the Strohual number of shear layer: 

V
f

St SL
sl

θ
=                                                                                                           (1.7) 

where V is the mean of velocities at the shear layer edge, and θ is the momentum 

thickness. Ho&Huerre 1984 [16] remarks that for different values of V  the  most 

unstable mode for unforced shear layer is always close to StSL ≅ 0.04. This 

unstable frequency is referred to the natural frequency f0SL that is a decreasing 

function of streamwise distance from separation point (as the momentum thickness 

is an increasing function of streamwise distance from separation point). 

The vortex shedding instead is the results of global instability, and two frequency 

related to the shear and the shed are present. 

When the shear layer is forced the receptivity plays its role. As mentioned above 

the key parameter in forcing flow is the forcing frequency f, and the response of the 

shear layer frSL may be different from the f0SL. This depend on how the modes of 

shear layer are excited by external disturbance.  If it is properly chosen this 

frequency can favourite the merging process of discrete vortices into larger ones 

that permit to enhance the entrainment. In this resonance condition (lock-in 

phenomena) the flow is more regularized. This condition is also known as 

“collective interaction” (Ho & Nosseir [17]). It is therefore desirable to find an 
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interval in the forcing frequencies that permit to modulate in a single forcing 

modulation the acting vortical structures. 

Although momentum efficiency considerations indicate the superior efficiency of a 

zero- net-mass-flux disturbance, low Reynolds number studies have shown that it 

may be advantageous to add a small amount of steady blowing on the unsteady 

disturbance. This may help in controlling separation which occurs downstream of 

the actuator location. Frequency and strength of the disturbance are the key 

parameters to design an optimal active-predetermined flow control device, but also 

the influence of other variables can be studied in order to design an optimal control 

device, once the flow condition has been established. Figure 1.5 illustrates a global 

view of the parameters variation space. As indicated in the figure also the 

geometry and position of the actuator as well as the jet shape of excitation system 

influences the global control effectiveness.   
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separating flow
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1.3 Summary of Proposed Work 

The investigations performed have been both numerical and experimental, and the 

experimental work has been divided in two part: the first on small scale model and 

the second on a full scale model. The work starts with numerical simulation on 

steady suction and unsteady blowing. To study the effectiveness of steady suction 

the integral methods have been used. This analysis has been performed to 

estimate the minimal (theoretical) amount of flow rate required to operate suction in 

order to estimate power required for the experimental facilities. Then it follows a 

note on integral methods proposing a possible extension of White&Das method 

based on inner variable to flow with transpiration. Then the numerical investigation 

of effectiveness of unsteady blowing on 2d single component airfoil has been 

performed using RANS approach (with FLUENT). The effect of steady and 

unsteady blowing on lift and drag has been evaluated varying frequencies and 

momentum of injected flow.  

The blowing section continues with the preliminary considerations on pulsed 

blowing system and the design and building of an “ad hoc” rotating valve to 

correctly produce excitation. Then a theoretical model of pulsed blowing system 

has been studied using electro-acoustic analogy, pointing out all the dependences 

of resonance condition with geometrical parameters. 

For the experimental part two tests have been performed (see figure 1.6):  the first 

on a small scale model (21 cm in span and 40 cm in chord) and the second on a 

full span model (1.4 meter).  Small scale model has been used with double aim, on 

one hand to make preliminary testing on the effectiveness of steady suction and 

characterization of pulsed blowing system (rotating valve-tube-actuator), On the 

other hand to understand the main technological problems to be faced and to 

quantify the benefits in order to design and build an ad hoc full span model (1.4 m 

span and 0.6 m in chord) without repeating eventual mistakes done with the small-

scale model. The design and building of small scale model in presented with 

experimental results for steady suction varying angle of attack (extension of 
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separated area) mass flow rate and free stream Reynolds number.  Following 

unsteady blowing has been investigated for small scale model, and experimental 

results are presented with varying angle of attack, frequencies and free stream 

Reynolds number. The second experimental part of the work in concentrated on 

design and testing of full scale model. The design and building of the model in 

presented with the setup of system in the wind tunnel, and primarily tests are 

presented on baseline configuration without control activated for both free and 

fixed transition. Following the results with application of control (steady and 

unsteady blowing) pointing out the dependencies on angle of attack, frequencies 

and Reynolds number on lift, drag and endurance characteristics. 

 
Figure 1.6: Schematic picture of proposed work 
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Steady Suction: 2d Numerical Simulation 

2.1 Numerical Model: TBVOR Code 

The viscous flow filed around an airfoil has been computed using TBVOR code 

illustrated in [18,19] and developed at the Department of Aerospace Engineering of 

Naples; it is based on the integral momentum and energy boundary layer 

equations written in direct and inverse form coupled in a semi-inverse manner to 

the inviscid flow through normal velocity transpiration imposed at wall. The coupled 

method allows the treatment of “strong-interaction” areas such as laminar 

separation bubbles and turbulent separated flow in order to predict airfoils 

characteristics in stall and post-stall regimes. The inviscid flow field is solved with a 

panel method based on a distribution of constant sinks and linear vortices.  The 

global scheme of method is illustrated in figure 2.1.  

Potential flow

Strong Viscous/inviscid interaction Strong Viscous/inviscid interaction methodmethod = potential flow field + boundary layer 
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Figure 2.1: TBVOR panel method code 
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The results presented are evaluated for incompressible flow. The transpiration term 

imposed as wall boundary condition for the Equivalent Inviscid Flow (EIF), has 

been modified to take in account the added velocity V0: ( ) 0e
*

n VUδ
dx
dV += and 

such term has been included in the von Karman’s momentum integral equation.  

 

2.1.1 Notes on Integral Methods with Transpiration 

All the calculations presented in this part have been done without modifying the 

correlation functions between Cf (skin friction coefficient), H12 (shape parameter: 

ratio of displacement δ* to momentum thicknessθ), H32 (ratio of energy thickness θ* 

andθ), Reθ (local Reynolds number based on θ), and CD (dissipation coefficient) as 

indicated in figure 2.1. As proposed by Coles [20], the analytical expressions of 

closure correlations can be derived from integration of turbulent velocity profile as 

indicated in [21] and illustrated in appendix A. The idea is that for the inner 

variables  u+ and y+ (2.1,.2), the velocity profile (2.3) is approximated by a 

logarithmic function of  y+ plus a wake function fw which depends on the choice of 

wake parameter ζ and can be linear or not as showed in (2.4). 
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δ+ is y+ evaluated at y=δ, λ is the square root of inverse of friction velocity while α 

and Π are possible parameters to describe wake behaviour. 

Together with observation that Cf is related implicitly to Reθ and ∏ through u+ 

calculated for y = δ, Coles propose the following curve-fit approximation (see 

appendix A for details)  

( ) 12
H31.074.1

12
H33.1

f
Relog

e3.0C
+

θ

−
≅                                                                                    (2.5) 

This approach is a good approximation when transpiration velocity is zero, in fact 

as Stevenson [22] and Sucec [23] illustrates, when transpiration is present, the 

overlap log-law should be modified as illustrated in (2.6) and following the same 

procedure followed by Coles, it results that H12 is a function not only of skin friction 

and wake parameter, but also of transpiration velocity, while Cf is implicitly related 

to Reθ and ∏ as well as to V0.  
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e

0
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0 −−=Π=+     (see appendix A and [23]) 

In this case, it is more difficult to find a suitable curve-fit approximation, but iteration 

is necessary to compute the boundary layer parameters as the streamwise 

integration proceeds downstream. 

A possible way to follow, in order to rapidly see  how this modification influences 

friction calculation, is to try extending the integral boundary layer method proposed 

by White [21] based on inner variables.  

In summary if is written the momentum equation in terms of inner variables and 

integrate with respect to y+ from y+=0 to y+=δ+, is possible to arrive at the following 

final equation: 
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Where G and H are inner-variable integrals (see [21] for details): 
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(ψ is the incompressible stream function) 

If is considered the wake function as linear, the parameter ζ is equal to α (defined 

below), and the equation (2.7) is simplified as follows: 
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This is an equation that can be integrated with a numerical integration method like 

Runge Kutta, once initial conditions are assumed, without any assumption on 

correlation between integral parameters. 

The same procedure has been followed for transpired flow, with new  calculation 

for integral G and H starting from velocity profile (2.6), and with the modification of 

boundary conditions that add a new term to the equation (2.9). Formally, the 

equation remains unchanged, but in the velocity profile used, the wake function is 

the law of the wake, and this would mean that in the derivative of ζ another 

unknown appears (derivative of Π) and, consequently, another equation should be 

added. The idea is to take into account the modified velocity profile in the boundary 

conditions and in the integrals calculation (G and H), while leaving the derivative of 

wake parameter unchanged, as summarized in (2.10). In this way, is possible to 

continue to integrate one equation once initial condition and transpiration velocity 

have been assigned. The final equation obtained is (2.11).  
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Original equation (2.9) and modified equation (2.11) differ for the term that rises for 

the modified b.c. and from the calculation of integrals G and H. 

In the figure 2.2a is showed the comparison between the solution of equation 

(2.11) in terms of skin friction Cf for assigned pressure gradient with only boundary 

conditions modified and without integrals modification and the solution of same 

equation but with integrals G and H changed. In both cases (zero pressure 

gradient and adverse pressure gradient ∝ x-0.15 for fixed rate of transpiration) it is  

evident how the equation (2.11)  together with approximation (2.10) is more 

suitable to resolve transpired flow, as the comparison with the experimental data 

shows (downloaded from web page of Stanford University, obtained from Andersen 

Kays & Moffat [24] for the case with zero pressure gradient with constant injection, 

and adverse pressure gradient with constant suction). In figure 2.2b the result 

show how different rate of transpiration produce sensible variation in the skin 

friction calculation for different values of suction\injection once pressure gradient is 

fixed. Actually, it has been considering this modification in the strong-interaction 

method for boundary layer calculation. 
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                    Figure 2.2a                                                               Figure 2.2b 
 

2.1.2 Numerical Result: Best Suction Location 

Incompressible aerodynamic studies have been performed to understand the more 

suitable location for the suction area. Three different suction area positions have 

been numerically tested with the same steady and uniform Cq equal to 0.006 (Cq is 

the suction rate defines as V0\V∞). The CIRA airfoil considered has the maximum 

thickness of 20% located at 30% chord (see Figure 2.3) and it is set at an angle of 

attack of 9.6° with transition fixed to 40% chord and free stream Reynolds number 

equal to 8*105. In these conditions the flow separates at about 70% of the chord as 

it can be clearly seen from the pressure coefficient Cp and shape parameter H12 

distributions shown in Figure 2.4a,b,c,d. These pictures show that the best location 

for the suction is when it is applied upstream the separation point (from 40% to 

70% chord) , while it becomes less effective when suction area is partially 

immersed in separated flow (from 60% to 90%) or far upstream separation point 
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(from 20% to 50%). Once the best suction location has been fixed, an investigation 

on the effect of the amount of suction to be applied has been performed and the 

Figure 2.5 shows these results. It can be clearly seen as the minimum rate of 

suction required to attach completely the flow grows as the separation point Xsep 

moves downstream (Xsep\c =1 mean separation point at trailing edge). For each Cq 

the corresponding flow rate for unit span has been evaluated using relation (2.12) 

assuming 28 m/s as free stream velocity leading to Re∞=800000 referred to 0.4 m 

chord.  

[ ] [ ] [ ] 60000*mX*smV*Cminltq suctionq ∆= ∞                                                (2.12) 

From the definition of parameter Cq, the product between free stream velocity and 

Cq gives the transpiration velocity that is considered constant along suction area 

(∆Xsuction). The coefficient 60000 reports the result in lt/min. To obtain the total 

suppression of separated flow from initial condition described below (separation at 

70%), a suction coefficient near 0.003 is necessary (≈ 400 lt/min for 1 m span). 

These results have been used to localize the best position on the airfoil to set the 

porous plate on the surface of the wind tunnel model once the onset of separation 

has been established. 

 

 
Figure 2.3: CIRA airfoil 
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Blowing: 2d Numerical Simulation 

3.1 Introduction and Dimensionless Parameters 

A numerical investigation of active flow control by steady and unsteady blowing, 

which can offer significant aerodynamic improvements to aircraft performance by 

suppressing or limiting detrimental effects of separated flow, is presented.  

Many experimental work (Seifert and  Wygnanski [2], Tinapp [4], WU [7],[8], 

Miranda [9]) and numerical investigation (Thiele [25], Ekaterinas [26], Liu & Sankar 

[27]) has treated the effectiveness of active flow control as tool to delay boundary 

layer separation with particular regards to leading edge separation for the flap in 

multi component airfoil. Most of the time in fact the principal goal applying this 

technique is the enhancement of take off and landing aircraft performance. Our 

scope is to verify numerically the effectiveness of such technique to delay or 

suppressing separation for single component airfoil in pre-stall area, with particular 

regard to cruising condition. As mentioned in the first chapter in fact, also the 

endurance of HALE UAV is the performance that would benefits from application of 

flow control. 

The experimental work of Seifert, Tinapp and Wignanski has pointing out the 

strong dependency of effectiveness of active control from frequency and strength 

of actuation. Oscillatory blowing is about one order of magnitude more efficient 

than steady blowing especially if the process is actuated with frequencies that 

correspond to the most unstable frequency of free shear layer that detach from 

separation point. Reduced Frequency and momentum coefficient are indicated in 

(3.1a) and (3.2a) where Xact is the distance between actuation and trailing edge , h 

is the slot height and f is the frequency of disturb to the flow field.  The reduced 

frequency is also defined as “scaled” Strouhal number (3.1a) where instead of 

airfoil chord as characteristic length is used Xact. In the (3.2b) is indicated 
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alternative definition of momentum coefficient through the Root Mean Square 

(mainly used for the experimental characterization).  
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Momentum coefficient is divided in  mean and fluctuating part. If the mean part is 

higher than fluctuating part the flow injection is always higher than zero and a small 

amount of steady blowing is present (more real case). If mean and fluctuating part 

are equal the pulsating blowing is pure. This case is more “unrealistic” but is the 

ones that we are going to consider in order to isolate better the effect of 

unsteadiness respect the steady effect. 

Seifert et al. has been observed that relatively large quantities of steady blowing 

(cµ= 2-10%) near the point of separation can delay separation or reattach the flow 

and increase lift but the steady blowing may also cause a thickening of the 

boundary layer and the wake behind the airfoil which could leads to increased drag 

and globally detrimental in efficiency. In contrast the pulsed blowing takes 

advantage of inherent local instabilities in the near-wall shear layer that that detach 

from separation point and causes the selective amplification of the input oscillation 

frequency. Convective motion moved these disturbances downstream along the 

surface as coherent large structures that promote mixing between the boundary 

layer flow and gives contribute to delay separation. Pulsed blowing has proven to 

be a reliable technique for separation control with the most effective location for 

unsteady forcing near the point of separation and the optimum reduced frequency 

for the oscillations is about F+ ≈1.  Sensitivity analysis with frequency, momentum 

and jet injection angle is presented. 
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3.2 2d RANS Simulation 

The numerical simulation is based on Reynolds Averaged Navier-Stokes equations 

(RANS), Fluent Version 6.1.22 is a CFD computer code developed and marketed 

by Fluent Inc. The code solves the equations for conservation of mass, 

momentum, energy and other relevant fluid variables using a Finite Volume 

technique. First the fluid domain is divided into an appropriate number of discrete 

control volumes (cells) using a pre-processor code which creates a computational 

mesh on which the equations can be solved. The meshing software used and 

available with Fluent has been Gambit. 

Nevertheless the many advances of Computational Fluid Dynamics in the past 

twenty years, the modeling of turbulence phenomena continues to be an important 

problem. The most common numerical approach used to treat turbulent flows is to 

devise a model able to take into account the global effect of turbulence on the 

mean flow quantities. This is the basic assumption behind the RANS approach. 

The RANS equations are derived from the Navier Stokes equations by using a 

time-average operator. This procedure introduces additional unknowns that have to 

be modeled in order to close the system of equations. The RANS methodology 

attempts to calculate a turbulent flow field without actually resolving the turbulent 

eddies, but using a model which depends to the mean flow only.  

In RANS, we divide the flow variables into one mean (time-averaged) part and one 

turbulent part (see figure 3.1). The latter one is modelled with a turbulence model, 

converting turbulent fluctuations into Reynolds stresses to be modelled 

opportunely, while leaving the large scale, rotational motions to be resolved as 

unsteady phenomena. In summary RANS approach models the turbulence and 

resolves only unsteady, mean flow structures, primarily larger than the turbulent 

eddies. This is the focal point to be checked, in fact for many type of flows it is not 

adequate to use RANS, since the turbulent part can be very large and of the same 

order as the mean. Examples are  wake flows or flows with large separation. More 

sophisticated techniques (but that contemporary requires much more 
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computationally resources) attempt to resolve more in deep the turbulence 

structure modelling only the small eddies (Large Eddy Simulations), or resolving 

the Navier Stokes equation completely in the flow field  from the large structure to 

the Kolmogorov scales (Direct Numerical Simulation). The using of RANS method 

to treat unsteady turbulent flow requires particular attention as indicated in [25]. 

The using of “average approach” implicitly imposes the assumption of using time-

averaging (3.3a) instead of ensemble-averaging (3.3b). As the RANS method does 

not consider the back-scatter mechanism for the transfer energy from small scale 

turbulence to large scale turbulence, the applicability of this method requires the 

existence of spectral gap of one or two orders of magnitude between time resolved 

and time modelled scales.  
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=〉φ〈=〉φ〈   time averaging                                                   (3.3a) 
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φ is the generic variable (for example velocity or pressure) 

Problems occur if some of the resolved scales are modelled and “vice-versa”. To 

check in advance the applicability of RANS Rung [28] suggest to evaluate the 

spectral gap evaluating the ratio between resolved and modelled time scale as 

indicated in (3.4), where St is the Strouhal number of the flow that depend on 

shedding frequencies and the coefficient β is included in the range [1,10] for the 

boundary layer flow and [0.1-1] for free shear layer. 
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Figure 3.1: RANS approach 
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The pulsating disturbance to the flow field is imposed as indicated in (3.5), where 

the fluctuating part as sinusoidal wave form is superimposed to the mean value of 

injection Vmean. The maximum fluctuation is equal to the mean value, the minimum 

velocity is zero. By changing frequency f it is possible to perform sensitivity 

analysis with frequency, and the steady blowing is obtained through the same 

formula by considering frequency equal to zero. Momentum coefficient effects can 

be studied by changing the amount of mean velocity Vmean. 

( ) )ft2sin(*VVVVtV meanmean
'

mean π+=+=                                                      (3.5) 

 

3.2.1 Computational Grid and Numerical Settings  

The airfoil investigated is the same used for suction analysis (CIRA airfoil) but 

differently from the case treated for suction, in this case in order to simulate 

realistic “construction” situation a slot cut slightly modifies the geometry of the 

airfoil locally, in order to permit inlet for pulsating flow (see figure 3.2). The slot exit 

has dimension of 0.8 mm and can be modelled as wall boundary condition (no 

control applied) or inlet boundary condition (steady and unsteady blowing). As 

remarks it is possible to vary the inlet velocity orientation simple modifying the 

angle between the velocity and  the normal to the slot without modify the geometry. 

The computational C-TYPE grid is illustrated in figure 3.3. It has been obtained 

with 2 blocks for a total of 31500 cells. First one with 340 points on airfoil 

(opportunely clustered in order to provide definition at leading edge, slot and 

trailing edge) and 60 normal to the wall. The second surrounding the first one with 

transition zone from 360 point to 120 and 35 points in the normal direction. Also 

others 2 grid with 22000 and 75000 cells has been tested without substantial 

modification in the results. 
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Slot height: 0.8 mm 
At x\c=0.6 

 
Figure 3.2: Airfoil and particular of slot 

 

In the wake 60 points have been used and the grid is extended from 15 chord 

upstream the leading edge to 20 chord downstream the trailing edge. The number 

of points along streamwise airfoil direction is kept high for the reason that this airfoil 

has been designed using the “Stratford” philosophy, so the expectation suggests 

that it should be characterized by strong upside pressure recovery and skin friction 

close to zero for a big extension of airfoil. To correctly capture this behaviour the 

maximum aspect ratio of cells near the surface has been kept less than 100, and 

the first cell height has been fixed at 3*10-5 m (Y+≈1), as for this analysis the wall 

function approach has not been used.   

 

Slot grid 

periodic 

periodic 

V_inlet 
P_outlet 

 
Figure 3.3: Computational grid and particulars 
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The solver settings are implicit and segregated (the equation set is solved 

sequentially) with second order in space and time. The pressure correction 

algorithm is SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations-

Consistent). Boundary condition are velocity inlet far upstream of airfoil (with 

velocity module of 18.7 m\s equivalent to Re∞ of 8*105) , periodic on the top and 

bottom of domain and pressure outlet far downstream. The surface of the profile is 

considered no slip walls except for slot that can be considered both wall (when 

actuation is not activated) and also velocity inlet when actuation is activated 

(through definition of User defined Function). Inlet turbulence is kept low with 

intensity less than 0.1% (DPA wind tunnel turbulence level). 

The aerodynamic performance of this kind of airfoil (Stratford recovery) strongly 

depends on transition location, the pressure distribution change drastically when 

the position of transition moves a bit downstream or upstream. As we are 

interested to avoid effects non directly dependent on control in order to isolate 

evaluation of effectiveness of blowing (deleting others effects), transition point has 

been fixed to 4% in chord on the upside and 50% on the lower side. In this 

configuration the flow condition are close to the fully turbulent.  As we will see in 

the future chapters this has been the same approach that we have used in the 

experimental part with full scale model. 

Many turbulence model that are available in FLUENT, from which the three more 

used for airfoil aerodynamics are Spalart-Allmaras (SA), k-ε with option to model 

near wall region without wall function (case of our interest) and k-ω with correction 

for Shear Stress Transport (k-ω SST) that use damping function to change 

gradually from k-ω in the near wall region (where it works better than k-ε) to k-ε in 

far field region (where the k-ω falls). As Thiele [25] suggests the SA model is more 

robust respect k-ω or k-ε, but this model present a very low level of unsteadiness 

captured for oscillating flow respect experimental evidence. To correctly capture 

unsteadiness the two equation model are more indicated (they take into account 

the “story” of the upstream flow through the lag equation).  
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The standard k-ω model in FLUENT is based on the Wilcox k-ω model, which 

incorporates modifications for low-Reynolds-number effects, compressibility, and 

shear flow spreading. A variation of the standard k-ω model called the k-ω SST 

model was developed by Menter  to effectively blend the robust and accurate 

formulation of the k-ω model in the near-wall region with the free-stream 

independence of the k-ε model in the far field. To achieve this aim, the standard k-

ω model and the k-ε model are combined together by a blending function. The 

blending function is designed to be one in the near-wall region, which activates the 

standard k-ω model, and zero away from the surface, which activates the k-ε 

model. 

These characteristics make the k-ω SST model more accurate and reliable for a 

wider class of flows, with particular regards for airfoils flows in comparison with the 

standard k-ε model. For the computation presented the k-ω SST model has been 

used. 

For unsteady calculation an appropriate time stepping should be used. For 

situation where no control is applied, even though the simulation can be done in 

steady condition, at high angle of attach high separation occur, and the flow 

becomes intrinsically unsteady. For this reason also when control if “off” the 

unsteady simulation is performed and a non dimensional time stepping equal to 

0.01 is used as indicated in (3.6). This is equivalent to choice a sampling rate of 3 

kHz (more than enough to capture unsteadiness with frequency up to 100 Hz).  

c
U*tt1 ∞+ ∆

=∆  non dimensional time stepping (c is the airfoil chord)                 (3.6)   

When actuation is applied the constraint for the time stepping is changed, is has 

been kept equal to the minimum value between the time stepping defined above in 

the (3.6) and the time stepping  obtained from the consideration to have al least 

100 time stepping to describe one pulsating cycle for oscillating injection, see 

following (3.7). 
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f*100
1t2 =∆ +                   [ ]+++ ∆∆=∆                                                 (3.7) 21 t;tmint

 

3.3 Results 

3.3.1 Control OFF 

The baseline results (control not activated) are presented. Aerodynamic 

characteristics have been evaluated for CIRA airfoil with fixed transition and Re∞  

equal to 8*105. 

Due to the high level of separation that this profile has showed also at angle of 

attack much lower than the stall angle, the steady simulation has been performed 

as initial condition for the unsteady simulation, and once the oscillation reach 

convergence the mean values of variable has been evaluated (see figure 3.4 as 

example of convergence history for lift). In the figures 3.5 and 3.6 the lift and polar 

curves. From unsteady simulations have also been estimated the Strouhal number 

and reduced frequencies of the detached shear layer as function of angle of attack, 

and the correspondent lift oscillation as percentage of the mean value (see figure 

3.7). As is possible to see the frequencies of lift oscillation reach a peak at angle of 

attack equal to 12° where the Strouhal number is equal to 1.8. In this condition the 

ratio between modelled and resolved time scales is higher than 10 (following the 

3.4) and the validity of RANS can be assumed.  

As it is possible to observe from lift and polar curves, while the airfoil stalls at very 

high angle of attack, with a maximum lift coefficient of 1.75 at α=25°, the maximum 

efficiency is obtained at lower angle of attack, α=4°. Figure 3.8 shows three 

examples of pressure distribution for three different flow condition: completely 

attached flow (6° black line), partially separated flow (12° red line) and pre-stall 

condition (25° blue line).  From the figure 3.8 it is also possible to see the typical 

“Stratford” pressure recovery with a suction peak followed by long “platoe” ( 

condition of attached flow 6 and, 12°). Another observation is relative to 12°, when 

even if the airfoil is sufficiently far from stall, it present an extension of separated 
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area near 40%. As the angle of attack increase, the separation moves in upward 

direction, but also the leading edge suction peak side continues to rise, and the 

global balance remain in favour of an increment of lift. Only when the flow detaches 

completely from the leading edge the stall occurs. In the pre-stall condition 

approximately the 70% of the airfoil flow is separated.  

 
Figure 3.4: Example of convergence history for unsteady simulation (control OFF) 
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Figure 3.5 Lift coefficient curve                  Figure 3.6: Polar curve  

 

 
Figure 3.7: Strouhal number and reduced frequency variation with angle of attack. 

Frequency determined from the lift coefficient spectra. Labels show the lift 

coefficient oscillation in % of the mean value 
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Figure 3.8: Pressure distribution for 3 angles of at
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3.3.2 Control ON: Frequency Effect 

In this section the control is activated with stea

different frequencies, and the results are compared

the previous section.  Primarily the frequency effe

only pulsation of the injected flow,  with the momen

the second part the effect of momentum coefficient

velocity and keeping the frequency constant.   
 

=25° 
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tack with control OFF  velocity 
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 with baseline data obtained in 

ct has been analyzed varying 

tum coefficient kept constant. In 

 is presented varying the mean 
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The control law has the wave form as indicated in (3.5) with mean value of velocity 

equal to 15 m/s. This value of velocity correspond to the momentum coefficient 

Cµ=4*10-3 (0.4% percentage of added momentum respect to the free stream 

momentum).   

In a range of angle of attack that goes from 4° to 25° five different actuation 

frequencies have been numerically tested,  0-30-50-80-120 Hz. The value of 0 Hz 

means that only steady part is activated (steady blowing). The aim is to recognize 

at each angle of attack  the frequencies  (either one or more than one) that best 

“lock” with the flow structure, and eventually individuate a general rule to predict 

system behaviour. It is also important monitoring both lift and drag, in fact it is not 

predetermined in advance that an optimal condition  for lift would coincide with the 

condition that also maximizes the drag reduction. 

The numerical simulation has been performed starting from steady solution and 

applying sequentially first steady blowing and then pulsating control with f=30Hz-

50Hz-80Hz-120Hz. The duration in time for each frequency is not predetermined in 

advance, as the transient time could vary when the actuation frequencies are 

changed. 

Some examples of a complete simulation is reported in the figures 3.9,.10,.11,.12 

case (a) and (b) for four angles of attack, 4°,9°,12°,18°. Lift responses with 

frequencies (blue line) is compared to the uncontrolled case (black line) and the 

steady blowing case (red line). For the case of α=4° when the control changes 

from steady to pulsating flow with frequency of 30Hz, the lift starts to oscillate and 

reaches a steady mean value of 0.93 with oscillation around the mean value of 

0.03. If the frequency increase to 50 Hz or 80 Hz the mean value of lift remains 

almost unchanged but the oscillations are lower (from the design point of view this 

situation ideally is preferable as less oscillations mean less structural fatigue). 

When the frequency is switched to 120 Hz the control is less effective with the lift 

reaching 0.9. The results globally not present a lift  enhancement, in fact the value 

of baseline solution with control off (black line) is 0.92. As anticipated the 

correspondent results for drag (figure 3.9b) do not respect exactly the behaviour of 
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those related to lift; in fact the mean value produced with pulsating injection 

remains close to the value of uncontrolled case, and change a little with frequency 

but globally it does not produce appreciable positive results. The worst condition is 

when the steady blowing is applied. Its application produces drag increase instead 

of reduction. The control in this case produces disturbs to the flow field and it has 

negative effect on lift and weak negative effect on drag. The situation obtained with 

angle of attack equal to 9° present very different behaviour for lift but at the same 

time there is also a sensible reduction in drag at different frequencies. This is due 

to the fact that at this angle of attack the flow is partially separated and the shear 

layer exists, differently from the situation with angle of attack equal to 4° where the 

flow is completely attached. When the flow field around the airfoil presents partially 

separation the interaction mechanism between pulsating injection and shear layer 

starts to produce results and the control starts to be effective. The effectiveness, as 

mentioned in the introduction, catches the maximum when the control “locks” with 

the most unstable wave in the shear layer. In this situation the energy of the 

pulsating jet is convected downstream and the enhancing of mixing is obtained. In 

the figure 3.10 it is possible to observe how  the lift enhancement produced by 

steady blowing is much more less effective than the ones obtained with pulsating 

control.  

Considering the results for angle of attack 12° (see figure 3.11)  the curves respect 

the overall behaviour obtained for 9°. Lift is increased and drag is reduced, and 

also the fluctuations respect the mean values continue to be present. The situation 

changes distinctly for the angle of attack equal to 18° (see figure 3.12). The 

application of pulsating control produce a considerable lift increase when the 

frequency is equal to 50 Hz respect to others values, and this value can be 

identified as the optimum for the lift coefficient. The situation change if the drag 

reduction is considered. The frequency of 50 Hz is contemporary the best for lift 

improvement and the worst for the drag reduction (respect to the others). This 

suggest that the best control law changes depending on the variable that would be 

optimized. Figure 3.13 illustrates the comparison between pressure distributions for 
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an angle of attack equal to 12° and 3 different levels of excitation: steady blowing 

(red line), 30Hz (blue line) and 120 Hz (green line). It is also illustrated the contour 

of velocity in the rear part of airfoil for the three excitation level. It is clearly visible 

as the excitation at frequency 30 Hz is more effective than instead of steady 

blowing and pulsation with frequency of 120 Hz. When the pulsation is applied with 

f=30Hz the mixing in the boundary layer is favourite and as results the separation 

point moved upstream.  

In the figure  3.14 the summary of results with control activated are illustrated for lift 

and polar curves compared with uncontrolled case.  To examine better the results, 

it is also interesting to study the percentage variation of lift and endurance with 

respect to the uncontrolled case. This is illustrated in figure  3.15a,b, where it is 

possible to observe the gain in lift (3.15a) changes with angle of attack and 

frequency, differently from the gain in endurance.  For example if the attention is 

concentrated on the angle of attack of 12° the best lift enhancement is obtained 

with frequency of 30 Hz (blue line) and is equal to 23%, but considering the 

endurance the best frequency becomes 50 Hz (pink line). This non monotonic 

behaviour is repeated also at 15° and 18°. Another consideration is that even if the 

attention is fixed on one characteristic, for example on lift, it does not exist single 

optimal frequency for all angles of attack. In the lift curves is possible to observe 

that the frequency of 30 Hz (blue line) is the best one until the angle of attack is 

less than 15°. For the values of α equal to 18° the curve related to frequency of 30 

Hz falls down and the lift increase related to pulsation with frequency of 50Hz 

becomes higher. In summary it is possible to consider that with regards to lift at low 

angles of attack the low frequencies produce better results than high frequencies, 

while the opposite happens at high angles. If the endurance is the principal aim to 

be maximized also the drag has to be considered and the frequencies 50 Hz and 

80 Hz globally produce better results.  In particular the frequencies of 30 Hz is the 

ones that shows best results at lower angles compared to the others and it is the 

best one at high angles, while the frequency of 50 Hz is the best  one if the 

characteristic of endurance is considered both at high and low angles of attack. 
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This alternation between the optimal frequency for lift is probably due to the fact 

that the most unstable frequency in the shear layer that detaches from the airfoil 

surface, changes with angles of attack and the actuation that best “lock” with it 

change consequently. But if the wake is also considered in the interaction 

mechanism (and consequently the main objective is the endurance) it is possible to 

individuate a more regular behaviour as indicated in figure 3.15b where the 

frequency of 50 Hz (F+=0.64) seems to give the best results.  The same results are 

showed in the figure 3.16a,b where efficiency and endurance are reported for 

different actuation frequencies and angles of attack. It is more evident how the 

optimal condition changes depending the objective to be optimized. If is 

considered, for example,  the green line (related to angle of attack of 15°) the 

optimal frequency for efficiency is individuate in 120 Hz while clearly for the 

endurance the optimal frequency is 50 Hz. the same behaviour also for 18° and 

12°, while for 9° and 6° the optimum for efficiency coincide with the optimum for 

endurance. One possible explanation is that when the separation becomes strong 

also the non linear interaction between vortex structures becomes stronger and 

non intuitive phenomena occurs.   
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Figure 3.9: Lift (a) and drag (b) coefficients history with frequencies variation 

compared with uncontrolled case and steady blowing case, α=4° 
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Figure 3.10: Lift (a) and drag (b) coefficients history with frequencies variation 

compared with uncontrolled case and steady blowing case, α=9° 
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Figure 3.11: Lift (a) and drag (b) coefficients history with frequencies variation 

compared with uncontrolled case and steady blowing case, α=12° 
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Figure 3.12: Lift (a) and drag (b) coefficients history with frequencies variation 

compared with uncontrolled case and steady blowing case, α=18° 
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Figure 3.13: Comparison of pressure distributions and velocity contour for α=12° 

 
Figure 3.14: Lift coefficient and polar curves; comparison control OFF-ON 
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Figure 3.15a-b: Lift coefficient and endurance variation (%) with reference to the 

baseline (referred to control OFF) 

 

(a) (b) 

(a) (b) 

Figure 3.16a-b: Efficiency (a) and Endurance (b) improvement with frequency 

variation at various angles of attack 
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3.3.3 Control ON: Momentum Effect 

The momentum coefficient has been defined in (3.2) and in this section it will be 

studied how the aerodynamics performance changes with varying its intensity. The 

analysis have been done fixing the angle of attack and the actuation frequency and 

varying the value of mean velocity (see (3.5)) in order to modify the momentum 

coefficient. Four level of mean velocity have been tested (5-10-15-25 m\s), and the 

lift and drag coefficient history is illustrated in figure 3.17. Also the endurance has 

been calculated and showed in figure 3.18 (in the table 2 the mean values of the 

results are summarized).  The angle of attack is equal to 12° and the actuation 

frequency is equal to 50 Hz for all the four level of momentum coefficient. 

It is possible to observe that the actuation produces lift benefit also at low intensity 

(Cµ=0.001) and the trend is in the direction of higher lift as the momentum 

coefficient rises. It is important to point out that the marginal gain decreases 

respect to an increase in momentum. In fact, as it is showed in figure 3.18 and in 

the table 2, if the momentum coefficient increases from 0.004 to 0.008 (two times) 

the endurance increase from 29 to 36 (+24%) and if the momentum increases from 

0.004 to 0.02 (five times) the endurances increase from 29 to 51 (+75%). In the 

figure 3.19 the lift history is showed for α =18° and for the actuation frequency 

equal to 50 Hz. It is interesting to point out that the lift enhancement for the first two 

levels of momentum (that correspond to Vmean respectively equal to 5 and 10 m\s) 

is clearly lower than the others two levels (Vmean respectively equal to 15 and 25 

m\s), indicating that for this angle of attack a sort of minimum ideal optimal ratio 

between injection velocity and free stream velocity exist and it is equal to 0.8.  
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Figure 3.17: Lift and drag coefficients response with varying Cµ at α=12° and 

f=50Hz 

 

 

Cmu
Vmean 
(m\s) Cl Cd End

0.000 0 1.320 0.062 24.46
0.001 5 1.375 0.066 24.62
0.004 10 1.495 0.063 29.01
0.008 15 1.600 0.055 36.80
0.020 25 1.755 0.045 51.67

 
                           Table 2                              Figure 3.18: Endurance at different Cµ 
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Figure 3.19: Lift coefficient response with varying Cµ at α=18° and f=50Hz 

 

3.3.4 Control ON: Jet Angle Effect 

In this section the effect of injection angle is analyzed. The injection angle is 

defined as the angle between the velocity and the normal to the surface boundary 

of slot, as indicated in figure 3.20. This analysis is important in order to understand 

if a small amount of injection in the direction tangential to the body surface can be 

useful or not in terms of lift enhancement or drag reduction. Is important to point 

out that also in the case treated in the previous cases the injection is not perfectly 

tangential to the surface since this reflects the real impossibility to create tangential 

blowing without modifying completely the upper surface of the airfoil. Remain to 

understand if this not perfectly alignment with the flow can create advantage or 

disadvantage in order to optimize the design of wind tunnel test. 

In order to examine the influence of injection angle, the strategy followed has been 

to fix the configuration (angle of attack=12°) and starting from this condition five 

different injection angles have been tested and the momentum coefficient and 

reduced frequency have been fixed (f=30Hz). The results are reported in figure 

3.21 where the lift and drag are illustrated in the five cases. 
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� θinj = 0°-5°-10°-20°-40 

� angle of attack : 12° 

� actuation frequency : 30 Hz  
re 3.20: jet angle definition and test settings 

 
ct of injection angles on lift and drag coefficients with fixed 

reduced frequency and angle of attack  
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Figure 3.22: Efficiency and Endurance variation with jet angle. The values of 

coefficients are obtained using the mean values of lift and drag coefficients from 

figure 3.21  

 

As it is possible to observe from figure 3.21 an increase of injection angle produces 

a progressive decreasing in lift followed by an increase in drag. In the figure 3.22  

the mean values for lift and drag extrapolated from oscillating curves in figure 3.20, 

are used to plot efficiency and endurance with varying jet angle. As is possible to 

observe both the coefficient decrease as the jet angle increase, but is also 

important to point out that the general rate of decreasing is not constant, in 

particular it increases as the injection angle becomes higher than 10° (the trend is 

not linear). This indicates that the more suitable situation occur when injection is 

tangential to the airfoil surface both for lift and drag.  

The information acquired in these numerical analysis have been used as general 

criteria to design and built the experimental model to test in the DPA wind tunnel, 
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as the location of slot exit for suction and blowing, the power required to operate 

suction, the optimal frequency for the rotating valve design and not last the 

orientation of slot exit for pulsed blowing. In the next chapters the experimental part 

will be illustrated with the small scale model design and testing and further the 

design and testing of full scale model. 
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Pulsed Blowing System: Modelling and 
Simulation 
 
4.1 Introduction on Oscillatory Actuators 

The oscillatory actuators fall into two general classifications, zero-net-mass 

(synthetic jets) and pulsed blowing. Synthetic jets are self contained, with zero net 

mass addition to the flow, while pulsed-blowing actuators require a source of 

pressurized fluid, resulting in a non-zero average flow across the actuator interface 

(see figure 4.1). 

For the unsteady blowing case, the rotating valve-tube-actuator resonant system 

has been considered and investigated. Particular attention has been devoted to the 

numerical evaluation of the influences of each element in the complete system 

chain to find the optimal values for the output velocity reduced frequency (14) as 

well as for the unsteady and steady part of momentum coefficient (15) needed to 

improve the aerodynamic performances. At this regard some experimental work 

[2],[4] has already been done for different model set-up indicating that the 

oscillatory flow component should promote mixing between the higher and lower 

momentum fluid, causing the reattachment of the flow. For flight Reynolds number 

of our interest and considering the separation close to 70% of the airfoil chord, the 

goal is to obtain output fluctuation velocity u' between 10-15 m/s with frequency f in 

the range 50-150 Hz. This goal can be obtained with an ad hoc designed rotating 

valve and with an optimal choice of tubing length, chamber volume (that in this 

case will be considered fixed and equal to those of suction case) and slot exit 

width, as fully explained in [5].   
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useful to design the electromechanical system in order to obtain the optimal 

performance close to the frequency that lead to reduced frequency approximately 

one, once the separation point and free stream velocity have been fixed. 

 

4.2 Pulsed Blowing: Modelling with Electro-Acoustic Analogy 

Practically the pulsed blowing system can be obtained through a steady air supply 

modulated by rotating valve to produce unsteady excitation that is transmitted to 

the actuator (cavity) by transmission line (tube). The scheme is illustrated in figure 

4.2. 

 
Figure 4.2: Configuration for a pulsed blowing system 

 

The Input voltage for rotating valve (RPM) control the rotation frequency, and 

single valve can be designed to supply more than one actuator located inside 

profile. 

In fact one aim is to connect a large number of internal vanes to only a few (in this 

case one) rotating valves. This constraint leads to a variety of different tubing 

lengths between the oscillating valve and internal actuators, which will produce a 

number of different resonant frequencies in the system. In addition, the vanes have 

small cut, which tend to damp oscillations. Since the main scope is to maximize the 

velocity fluctuation amplitude at the exit of the slot over a wide range of forcing 

frequencies, it is often desirable to operate the actuator at resonant conditions. The 

task of predicting the velocity fluctuation amplitude that will occur at the exit of an 

actuator for a given pressure input and oscillating valve frequency and system 

configuration becomes difficult. The system described can be modelled using the 
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approach of electro-acoustic analogy, as suggested by Mc Cormick [29], where 

mechanical system is substituted by equivalent electrical circuit (see figure 4.3), 

and the overall transfer function is studied in order to evaluate the influence of 

each component on exit velocity. In this analogy the motion of the fluid is 

equivalent to the electrical current, and the pressure difference across mechanical 

elements is electrically correspondent to the voltage across the corresponding part 

of the electric circuit. In summary, it is possible to define an overall relation 

between input pressure P and output flow rate Q. It can be expressed as,  

P = ZQ                                                                                                       (4.3) 

where pressure and flow rate have to be understanding as mean part plus 

fluctuating part and Z is the system impedance that can be obtained once the 

modelling of the system parameters has been done. 

The idea is to design a system to have resonant condition near the frequency of 

our interest (100 Hz). Mainly two kind of models are used to obtain the overall 

system impedance, lumped and distributed models.  

 
Mass
 

Dissipation 
 

Stiffness 

Impedance 
 

Resistance 
 

Compliance 

 

mechanical system 

Figure 4.3: Electro acoustic analogy (from McCormick [26]) 

 

4.2.1 Lumped Element Model for Actuator 

In general in the electro-acoustic analogy the parameters of the system are  

dependent by geometrical characteristics of the devices and by the frequency of 

pulsation, resulting into a set of governing partial differential equations. 

In the Lumped modelling, the various energy domains of original mechanical 

system (inertance, dissipation and stiffness) are thought as simplified device 

connected to form an equivalent electrical circuit, where the single circuit elements 

are defined by lumping the distributed energy associated to single domains.  
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The requirements to use lumped model is that the characteristic length scale of the 

device must be small compared to the acoustic wavelength of the oscillations. With 

this assumption the acoustic variables are considered spatially constant so that the 

coordinates can be ignored in the equation of motion. As result the system of 

partial differential equations can be substituted into a set of coupled ordinary 

differential equations, and the fluctuating part of pressure and velocity are defined 

as follow: 
tje'p2)t('p ω=  and tje'u2)t('u ω=                                                                  (4.4) 

The impedance parameters for LEM (Lumped Element Model) are constituted by 

acoustic mass (inertance) that is the element that store kinetic energy, compliance 

(cavity of the actuator) that store potential energy and acoustic resistance, 

associated with dissipative losses in the orifice or slot cut.  The complete derivation 

of the following results are fully explained in the work of Kim and Williams [5]. 

 

Acoustic mass L 
Acoustic mass is defined as a mass of air accelerated by a net force, which acts to 

displace the gas without appreciably compressing it. This element represents 

stored kinetic energy. Using the assumption of fully developed laminar flow in pipe,  

the acoustic mass can be expressed as following: 

A
lL ρ

=                                                                                                                   (4.5) 

where l is the effective thickness of closing plate that is calculated as sum of real 

thickness (ln) of closing plate and mass end correction thickness that depend on 

geometrical shape of cut. A is the area of slot exit and ρ is the gas density. If the 

assumption of plate area sufficiently bigger that slot area the final form of acoustic 

inertance is: 

( ) ( A48.0l )
AA

ll
L n

nc +
ρ

=
+ρ

=                                                                             (4.6) 
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Acoustic Cavity Compliance C 
The cavity is a chamber with volume Vc that contains a gas that can stores 

potential energy and is modelled as an acoustic compliance.  With the assumption 

of fluid as isentropic ideal gas and assuming the process of compression as 

adiabatic in frictionless flow, the acoustic compliance depend by chamber volume 

(Vc), gas density (ρ) and speed of sound (c) as indicated in (4.7): 

2
c

c

V
C

ρ
=                                                                                                               (4.7) 

Acoustic resistance R 
The acoustic resistance is associated to the losses due to the slot exit. Rigorously 

the acoustic resistances follow the nonlinear behaviour of the flow through an 

orifice or slot due to the vortex formation for oscillating flows. This should be 

considered for the evaluation of actuator resistance, but if the linear approximation 

is used and the assumption of fully developed flow in laminar pipe is assumed 

(Hagen-Poiseuille equations), the solution gives the acoustic resistance indicated 

in (4.8): 

4r
l8

Q
PR

π

µ
=

∆
=                                                                                                      (4.8) 

where Q is the volume flow rate produced by pressure jump ∆P, µ is the viscosity 

and r is the radius of the orifice. The first part of previous formula suggests also an 

experimental way to measure the acoustic resistance as the ratio of the mean flow 

rate through the slot produced by a mean pressure jump between external ambient 

and internal chamber. 

All these parameters depend only by the geometrical characteristics of the device 

and they do not depend on the frequency of disturbance. 

Once the parameters of the system have been defined the lumped element model 

for the actuator can be illustrated.  The reference figure is 4.4a-b. 
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tube 

(a) 

(b) 

Figure 4.4a-b: Lumped model for the actuator (from Kim [5] and Karam [30]) 

 

The actuator (4.4-a) is modelled as a resistance and an impedance in parallel with 

a conductance (the subscript c stands for “chamber”), while, as anticipated, the 

flow rate is “equivalent” to the current that circulate in the circuit. The rest of the 

circuit in the figure 4.4-b with impedance and resistance Lt and Rt are the 

equivalent concentrated parameter for the connection tube (the subscript t stands 

for “tube”) that link the actuator chamber to the rotating valve producing pulsating 

pressure (here presented as voltage). 

In spite of the simplicity of the system illustrated in figure 4.4-b the lumped element 

model used for the actuator cannot be used also for the connection tube. In fact 

with reference to the approximation representing the basic assumptions for the use 

of LEM, the characteristic length of the connection tube, in this case, might not 

meet this condition. For situations in which the characteristic length and 

wavelength of sound are comparable (l ~ λ), as for tubing length of 2 m and 
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frequency near 100 Hz (order of magnitude of our interest), it is necessary to use a 

distributed model. 

 

4.2.2 Distributed Model for Connection Tube 

Contrarily to the Lumped Model in the distributed model the system’s parameters 

are dependent both on geometrical characteristics and frequency of perturbation. 

The infinitesimal segments of a transmission line can be modelled with lumped 

elements such as L, R, C and G (conductance), and the transmission line contains 

infinite numbers of these lumped elements (see figure 4.5). The lumped elements 

are determined per unit of length and following multiple of the entire length of tube. 

The single parameters are evaluated solving the equations of oscillating flow in 

circular channel (as discussed in White 1974) in condition of incompressible and 

isentropic flow.  

 

 
Figure  4.5: Distributed model for a tube (Kim [5] and Karam [30]) 

 

The fluctuating velocity profiles obtained for LEM (see 4.4), are substituted by the 

following: 

tje)x('p)t,x('p ω=  and tje)x('u)t,x('u ω=                                                              (4.9) 
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and the solution of momentum and energy equations leads to (considering only the 

first order terms, neglecting the variation of temperature, u velocity in x direction, 

symmetry and imagining uniform pressure in the cross section): 
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where Stν is the viscous Stokes number (
ν

ω 2d ), δν is the viscous boundary depth 

J0 is the Bessel function of zero order and d is the diameter of circular channel. 

The velocity profile is also determined by the Stokes number Stν. As it increases 

the thickness of Stokes zone decreases and at limit of high Stokes number, it 

becomes little respect to the inviscid region. An ideal division in this case exists 

between inviscid and viscous annular region. For the high Stokes number 

approximation for the velocity profile the equation for pressure and flow rate 

fluctuation becomes as follows (derived from momentum and energy equation after 

substitution of velocity profile): 
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where the coefficient are the following: 
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Where Pabs is the absolute pressure, A is the area of tube section, ω is the 

pulsation (2πf), ων is the characteristic frequency (8πν\A), γ is the ratio of specific 

heats. 
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The parameter in (4.11) are the resistance, inductance, conductance and 

compliance of distributed model (see 4.12), for an infinitesimal piece of tube. Some 

of them, as anticipated, are also frequency dependent (conductance and 

resistance). 

 

4.2.3 Combined Model 

The combined model is the results of using together the Lumped Element Model 

for modelling the dynamics of actuator and Distributed model for modelling the 

dynamics of connection tube. The overall scheme of the system is illustrated in 

figure 4.6. 

 
Figure  4.6: Scheme for combined model (from Kim) 

 

The summary of the results are reported in the following formulas: 
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            Distributed Model

Once the coefficients are estimated (the tube is considered distributed and the 

correspondent coefficients have to be understanding for unit length, while the 

actuator is considered lumped and the relative coefficients have to be 
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understanding as related for the entire device), the overall transfer function of the 

system can be obtained. The procedure consists in the determination and 

assembling of impedance for each single subsystem to form the total impedance 

(see right part of  figure 4.5) : 

� Zact (4.14b) is the impedance of actuator that is obtained in parallel between 

impedance Zs (that is equal to the series between resistance and impedance) 

and impedance of compliance Zcc (4.13). 

� Ztt (4.14a) is the impedance of transmission tube that is dependent by acoustic 

conductance Gt connected in parallel to the compliance Ct (resulting in the 

admittance Yt) and in series with resistance and inductance of tube. 

The overall impedance is illustrated in (4.15). Once it has been determined, the 

parametric analysis can be done to understand the influence of tubing length, slot 

width and chamber volume on exit velocity, in terms of transfer function module 

ie 'p'u  (Slot exit velocity fluctuation\input pressure fluctuation). 
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(as is the slot area). 

 

Figure 4.7a illustrates the result for the combined model (lumped + distributed) in 

the frequency range 0-1400 Hz for tubing length of 0.8 m and slot width of 1 mm 

and chamber volume equal to 0.00084 m3. 
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Starting from this condition a parametric analysis has been done varying 

alternatively slot exit, chamber volume and tubing length and the results are 

illustrated in Figure 4.7b in the frequency range 0-500 Hz (range of our interests). 

As it can see from figure 4.7b, for this range of frequency the tubing length is the 

parameter more influencing the resonance frequencies, while slot width and cavity 

volume influence only excitation amplitude but not the frequencies response. For 

frequencies close to 100 Hz, the solution with longer tube is preferable respect to 

the other, as the first system resonance falls exactly very close to 100 Hz, while for 

the solution with shorter tube, the first peak occurs near 210 Hz. 

 
Figure 4.7a: Performance of pulsed blowing system in the range 0-1400 Hz 
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Figure 4.7b: Performance of pulsed blowing system in the range 0-500Hz 

 

The physics of this behavior stands in the observation that lumped element 

modeling predicts only one resonant peak, while the distributed model predicts a 

number of resonant condition increasing with tubing length. The resonance of a 

pulsed blowing system is characterized with open-end resonance and closed-end 

resonance as well explained in [5]. The first peak frequency of about 200 Hz could 

be predicted by using a simple rule that a tube, terminating with an open end 

resonates when the tube length is equal to the half wavelength (or multiple) of the 

sound. But the prediction of the resonance characteristics for the same tubing with 

an actuator at the end is not predicted with the simple rule of open-end resonance, 

because the actuator is not completely open and the impedance of the actuator, 

which is the boundary condition of the transmission tubing, determines the 

resonance mechanism for the pulsed blowing system. It is possible to observe from 

figure 4.7a a little shift in resonant frequencies when the frequency rise at high 

values  (near 800 Hz). For frequencies of our interest this shift is little and, in 

summary, it is possible to conclude that the resonance frequencies of the 
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transmission line strongly depend on the tubing length, while the geometry of 

actuator (slot exit, chamber volume and plate thickness) strongly affects the peak, 

and not the resonant frequencies. 
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Small Scale Model: Experimental Tests 

 
5.1 Experimental Setup 

5.1.1 DPA Wind Tunnel 

The Wind tunnel at the Department of Aeronautical Engineering-University of 

Naples Federico II, is a closed loop wind tunnel with closed test chamber Figure 

5.1. 

 
Figure 5.1: Low Speed Wind Tunnel at DPA  

Test section has the following dimensions: 1.4 m height and 2 m wide. Turbulence 

level is about 0.1%. Maximum velocity is 45 m\s 

 

5.1.2 Data Acquisition System 

In this section a rapid survey on the instrumentation used at DPA (Dept. of 

Aerospace Engineering of Naples) is presented. Some of this instrumentation has 

been used for experiments on steady suction, while other only for unsteady 

blowing experiment. 
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For Pressure acquisition it has been used pressure data scanning model Zoc 

33TCU by Scanivalve corporation. This is an electronic pressure scanner with 64 

channel sensor with following characteristics:  

   - scan rate: from 0.01 Hz to 2000 Hz 

   - pressure max.: ±20 inch H2O 

   - accuracy: 0.15% FS  

- required hardware: CPU PII, LAN with TCP\IP protocol 

Also a multimanometer with 100 sensors has also been used (only for full span 

model experiment), see figure 5.2, to capture wake pressures for drag 

measurement and evaluation. 

 

            
Figure 5.2: Zoc and multimanometer for pressure acquisition 

 

For velocity measurement at slot exit (also in this case only for blowing case) a 

single component hot wire anemometer distributed by Dantec Dynamics has been 

used, calibrated in the range 0-40 m/s in the open test section wind tunnel (DPA). 

For data acquisition and processing Spartan device with 12 channels and sampling 

rate up to 10kHz has been used. 

 
5.2 Small Scale Model: Design, Building and Wind Tunnel Arrangement 

Based on the numerical tests on the best suction location, previously illustrated, 

the model has been set at an angle of attack such that the separation is present on 
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the upper surface with an extension of 30% of the chord and the suction area has 

been placed just upward the separation onset point. Active control on separating 

flow with predetermined control will be presented, and the variables that should be 

taken into account have been summarized in chapter 1. As it has been illustrated 

many aspects should be investigated, but some of them would requires more than 

one airfoil construction to perform this analysis, like the effect of slot exit position, 

or geometry of actuators. In this first work it has been decided to study the 

influence only of some of total number of variables: flight condition, slot shape, 

suction ratio and for unsteady blowing case, also frequency and momentum. The 

number of pressure taps on the airfoil are 41 and they have been drilled on the 

upper surface of the model while some pressure taps have also been placed in one 

of the three internal chambers, each sized 4 cm in chord, 7 cm in span and 3 cm in 

height. Different typologies of closing plates have been built: a porous plate with 

even distribution of suction points (porosity AHoles/APlate equal to 0.25 with 1 mm 

hole diameter) and plates with a 1 mm slit cut in the middle with different angle of 

the flow injection direction. The plate has been installed from x/c= 0.6 to x/c=0.7. 

The connection air input tube (one for each chamber) has internal diameter of 10 

mm. The CAD scheme and the real airfoil model are illustrated in Figure 5.3a-b 

(design) and 5.4a-b-c (building). 

the upper surface with an extension of 30% of the chord and the suction area has 

been placed just upward the separation onset point. Active control on separating 

flow with predetermined control will be presented, and the variables that should be 

taken into account have been summarized in chapter 1. As it has been illustrated 

many aspects should be investigated, but some of them would requires more than 

one airfoil construction to perform this analysis, like the effect of slot exit position, 

or geometry of actuators. In this first work it has been decided to study the 

influence only of some of total number of variables: flight condition, slot shape, 

suction ratio and for unsteady blowing case, also frequency and momentum. The 

number of pressure taps on the airfoil are 41 and they have been drilled on the 

upper surface of the model while some pressure taps have also been placed in one 

of the three internal chambers, each sized 4 cm in chord, 7 cm in span and 3 cm in 

height. Different typologies of closing plates have been built: a porous plate with 

even distribution of suction points (porosity AHoles/APlate equal to 0.25 with 1 mm 

hole diameter) and plates with a 1 mm slit cut in the middle with different angle of 

the flow injection direction. The plate has been installed from x/c= 0.6 to x/c=0.7. 

The connection air input tube (one for each chamber) has internal diameter of 10 

mm. The CAD scheme and the real airfoil model are illustrated in Figure 5.3a-b 

(design) and 5.4a-b-c (building). 

 

Chord: 0.4 m 
Span: 0.21 m 
Pressure taps: 41 (on upside) 

Suction area: from 0.6 to 0.7  

in chord 

Figure 5.3a: Sm
a)
all scale model design 
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m 

Figure 5.3b: Small scale

 

Pressures have been acquired with Scanivalve

shelf blowing pump has been used as air supp

to flow meter losses (too high for the pump

pressure probes have been inserted in one 

maximum velocity evaluation. Flow rate ha

formulas for fully developed flows in pipes. 
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Building of the model 

Figure 5.4a,b,c: Small scale model b

 

 

 

Arrangement in the wind 
tunnel (lateral walls to 

limiting the 3D effect)
 

Closing plate typologies 
Slot cut: 1 mm 

Porous surface with porosity

equal to 0.25 (A \A ) 
a)
b)
holes plate
c)
uilding and closing plates 
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5.3 Small Scale Model Wind Tunnel Tests: Steady Suction 

Figures 5.5a-b-c illustrate the results for three different angles of attack (3°, 6°, 9°), 

corresponding to increasing area of separation. For each of these cases the power 

of the pump has been varied to obtain different levels of suction intensity 

(measured by flow rate q from central chamber). As it can be seen in Figure 5.5a-

b, suction is effective starting from 30 lt/min and the final effect is the same as for 

130 lt/min. This is in agreement with numerical predictions that suggest applying 

suction just before separation. In fact as the angle of attack raises to 9°, the 

separation moves upward and suction becomes less effective, with the result that 

minimum value of the flow rate necessary to reattach the flow becomes much 

higher (90 lt/min). It is worth to point out that the Cp distribution in the separated 

area is not constant because in the set-up arrangement of this first small model, 

the airfoil is working in proximity of the tunnel floor (ground effect) thus slightly 

modifying the upper pressure on the rear part of the airfoil. It has not been taken 

particularly care about this effect as well as about the small aspect ratio of the 

model since the goals, for this first set of experiments, were not those of 

reproducing the exact two-dimensional flow in free stream air: this is left for the full 

span 2D model. The estimation of separation point when suction is not applied has 

been made using film oil and wool tufts techniques. In Figure 5.6, the comparison 

between distributed suction applied for the porous plate and for slot (the exit flow is 

normal to the surface) has been reported. Even though the effect on Cp distribution 

seems to be the same both for the slot and for the porous plate (with fixed flow 

rate), in the first case the jump in pressure between the chamber equipped with 

slot plate and the external flow is double respect to the porous surface: this will 

lead to higher required power to operate the suction. The suction is then more 

effective when it is distributed. 

The problems connected with low aspect ratio of small scale model has suggested 

to pass directly on full scale model for testing the pulsed blowing control. This is 

due also to the presence of lateral walls in the small scale model that could create 
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too much disturb to the interaction process between shedding, wake and oscillatory 

blowing, as mentioned in the introduction. In fact, even if the lateral walls helps to 

create pseudo bidimensional flow, contemporary they produce the growth of 

boundary layer starting from upstream of model, and if the alignment with the flow 

is not “perfect” a shear layer detach from its surface and interact with injected flow 

control, yielding difficult the analysis of results. 

too much disturb to the interaction process between shedding, wake and oscillatory 

blowing, as mentioned in the introduction. In fact, even if the lateral walls helps to 

create pseudo bidimensional flow, contemporary they produce the growth of 

boundary layer starting from upstream of model, and if the alignment with the flow 

is not “perfect” a shear layer detach from its surface and interact with injected flow 

control, yielding difficult the analysis of results. 
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Figure 5.6: Steady suction comparison for slot and porous surface, α=6° 

 

5.4 Rotating Valve Design & Setup Arrangement 

The rotating valve has been designed and built (see Figure 5.7 and 5.8). It is 

characterized by 12 output holes with internal diameter of 10 mm distributed on 

three rings and 4 input holes with internal diameter of 14 mm. The valve has been 

designed to guarantee continuous flow rate and it should rotate at about 1500 rpm 

leading to a frequency of the output velocity fluctuation of 100 Hz. For small scale 

model with only 3 chambers, 3 outputs have been used, leaving the other outputs 

for the full scale model test. 

The pulsed blowing scheme is illustrated in figure 5.9, where an intermediate tank 

between compressor and rotating valve has been added to kill any eventual 

fluctuating air component ensuring steady air supply (0-4 bar). The aims are 

twofold: to reduce fluctuations due to compressed air and to measure pressure 

directly inside the tank through pressure taps.  

Velocity measurements have been done through a Mini CTA single component hot 

wire anemometer model 55P16 produced by Dantec Dynamics,  while data 

acquisition and processing have been performed using the Spartan device with 12 

channels at 16 bits and sampling rate up to 10 kHz. The pressure has been 

measured utilizing DPA Multi Manometer and unsteady pressure scanner with 64 

channels by Scanivalve Corporation.  
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Input hole 14 mm 

output hole 10 mm 

� 4 input with diameter of 14
mm 

� 12 output distributed on 3 
section with diameter of 10 
mm 

Section  
Figure 5.7: Rotating valve design 

 

L  

Figure 5.8: Rotating valve realiz

 

enght 190 mm
 
ation 
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Figure 5.9: Pulsed blowing scheme and particular of valve-tube-actuator system 

 

5.4.1 Experimental Characterization of Pulsed Blowing Actuator 

Preliminary tests on open valve with no connection tube are illustrated in figure 

5.10. The valve exit velocity for RPM equal to 750 and 1500 correspond 

respectively to 50 and 100 Hz as the theory predicts for only one opening. In the 

second figure, other two curves are added, for the condition of two and 3 openings. 

The results obtained, reflect the expectations: in fact considering more than one 

output opened, the peak is lower but the frequency is conserved. 
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Figure 5.10: Open valve tests 

 

In the figure 5.11 the valve-tube-actuator characterization for closing plate type 2 is 

illustrated, where the actuator output velocity has been reported together with 

mean value in the frequency range 30-133 Hz for two different values of tubing 

length and pressure. As it can be observed, the response depends strongly on 

excitation frequency, and the resonance condition changes with tubing length, 

while it remains substantially unchanged with pressure, and even if in certain areas 

mean value is unchanged, the fluctuating velocity is different. As showed by 

numerical calculations the system performance with tubing length of 1.6 m is better 

than the one with tubing length less then 1.6 m when the frequency is near 100 Hz.  
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type2

70 Hz 100 Hz 120 Hz 140 Hz

m/s

type1

Slot 0.5 mm

Slot 1.5 mm

SR=5kHz; ∆PTANK = 11 cm H2O; Ltube = 1.0 m  
Figure 5.12: Exit slot velocity with two different plate 

 Standard deviation of velocity

Time [s] 

Type 2 

Type 1 

 
Figure 5.13: Standard deviation of velocity signal 

 

Despite of the fact that the exit slot velocity profile for closing plate type 2 (sine 

function) is more suitable than that obtained with closing plate type 1 (Dirac 

function), for the first test in the wind tunnel it has been decided to use closing 
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plate type 1, as the response in terms of exit velocity profile seems to be more 

stable in the frequency range of our interest. 

 

 
Figure 5.14: Exit velocity at 70 Hz     Figure 5.15: Exit velocity at 100 Hz 
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Figure 5.16: Exit velocity at 120 Hz       Figure 5.17: Exit velocity at 140 Hz 

 

5.4.2 Small Scale Model Wind Tunnel Tests: Blowing 

In figure 5.18 pressure distribution on the upside of the model is reported for three 

different free stream Reynolds numbers (370000-530000-700000) and for two 

conditions: no actuation (black line) and valve frequency rotation equal to 75 Hz 

(red line). In all cases, the pressure in the tank is equal to 20 cm H2O, and the tube 

length is equal to 1.6 m. As it can be observed the actuation becomes less 

effective when Reynolds number becomes too high (700000). In this condition, in 

fact, the ratio Vinj\U∞ is too low to produce positive effect, suggesting that the 

strength of the injected flow is also important as well as the frequencies of injected 

flow.  The influence of the valve rotation and frequency of rotation are reported in 

figure 5.19 and 5.20. Figure 5.19 illustrates how starting from condition of no 

control (black line) correspondent to not blowing case, it is possible to improve 
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performances adding a steady blowing (blue line, 0 Hz and Ptank=15 cm H2O) or 

pulsed blowing with frequency equal to 75 Hz. The pressure in the tank between 

compressor and valve has been kept the same for both cases. 

- Plate type 1 
- Lt= 1.6 m 
- ∆Ptank= 20 cm H2O 

 
Figure 5.18: Upside pressure distribution for three different Re∞ 

 

The two curves seem to collapse, suggesting that steady and pulsed blowing 

produce similar effects, but in the case of pulsed blowing the exit velocity is 

approximately 30 m\s, while with steady blowing the mean velocity is » 5 m\s. This 

means that the injected mass flow could be reduced by using unsteady injection 

rather than steady injection. In fact, keeping the same pressure in the compressor 
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for the case with 75 Hz of rotation and the case with steady blowing, the results is 

clearly better for the case with rotation (red line with “plus” symbols) than that with 

steady blowing. This comparison between steady and unsteady cases suggests 

that the power consumption is lower when unsteady actuation is applied. Figure 

5.20 shows the results for different frequencies once the tank pressure has been 

fixed. The results seem to be similar to those with no control (no blowing), and the 

effect of the frequency is not evident. In fact, the other curves (blue-red-green) 

produce the same pressure distributions, in contrast to the expectations. One of 

the possible reasons of these discrepancies is that the flow field is strongly affected 

by the three-dimensional effects (low span and lateral plates) that can slightly 

modify the physical behaviour of the system. 

 

 

 
Figure 5.19: Influence of valve rotation      

 



Small Scale Model: Experimental Tests 80

 
    Figure 5.20: Influence of frequency 

 

The aerodynamic effects produced by excitation control may interact strongly with 

the effects due to the reduced span. Another argument to be taken into account is 

that the exit velocity profile produced by tested closing plate is similar to a Dirac 

function and not to a sine function. For this reason, for the next future experiment 

on the full-scale model it will be designed an ad hoc actuation system in order to 

obtain sine function in the overall range of our interest (50-150 Hz). 

This preliminary wind tunnel experiments performed on a small scale model, has 

showed that the excitation reduces the power spent to re-attach the flow, but the 

frequency resonance affect actually seems to be not clearly evident, due to some 

aerodynamic interferences and to the closing plate chosen for the experiments. 

The information acquired with these preliminary tests on small scale model will be 

used in the final phase of this work in order to optimize the design and tests of 

unsteady blowing on full scale model. 
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Full Scale Model: Experimental Tests 

6.1 Introduction 

As for the experimental tests on small scale model many aspects should be 

investigated, but some of them would requires more than one airfoil construction to 

perform this analysis, so also for the full scale model it has been decided to study 

the influence only of some of total number of variables (Reynolds number and 

injected flow frequencies and momentum), remanding to one of future work the 

studies on influence of different actuator geometry and position. 

 

6.2 Full Scale Model Design, Building and Setup Arrangement 

For the 3D full scale model tests, it has been used the airfoil profile illustrated in 

figure 6.1,  designed by CIRA researchers. The airfoil has 0.60 m in chord and a 

maximum thickness about 20% located at 40% in chord and is 1.40 m in span. On 

this baseline profile an interchangeable part with blowing actuator has been 

designed, see figure 6.2 and 6.3. This part has been thought interchangeable in 

order to  be able in the next future to try different actuators geometries on the same 

model. The actuators has 3 main components, internal chamber, closing plate and 

slot. The entire span is divided in 12 internal cylindrical chambers each one of 

0.115 m (in span) with radius of 13 mm (see figure 6.4). The exit slot is located 

approximately at 60% in chord, with cut width of 0.8 mm. The closing plate with slot 

cut has thickness about 3.5 mm (yellow part in figure 6.2-4). Each chamber is 

connected with rotating valve through input “tube” with internal diameter of 10 mm 

(figure 6.4) and distribution line (connection tube) 2.0 m long that connect 

chambers with rotary valve. The building of the model is illustrated in figure 6.5, 

6.6a-b, with some details (main part of model and interchangeable part with 
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actuators) in figure 6.7. Mounted model with connection tube is illustrated in figure 

6.6b where is possible to see the red plate that separate internal chamber from 

each other, and in figure 6.7 particulars of closing plate and slot exit profile are 

illustrated. 

 
Figure 6.1: CIRA airfoil profile 

 

 
Figure 6.2: Cad model for the chambers (measures in mm) 
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Figure 6.3: Full scale model design (measures in mm) 

 

 
Figure 6.4: Cad particular of actuator 
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Figure 6.5: Building of the model, main part and movable part with chambers 

 
(a) 

Figure 6.6a: Interchangeable part with tubing 
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Figure 6.6b: Complete model with tubing 

(b) 

 

 

Slot 
widht: 0.8 mm 

position: 60% from leading edge 

Jet  angle: ≈ 20° (respect airfoil 

upside) 

Chamber  
shape: cylindrical 

dimension: section diameter 26mm

 volume: 6.1 x 10-5 m2

 
    Figure 6.7: Particular on actuator 
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The model has been set in the wind tunnel as showed in figure 6.8a, and in figure 

6.8b the particular of the actuation system is illustrated, along with rotating valve 

driven by DC motor and connection tube between valve and internal chambers. 

Model dimensions are 1.40 m in span and 0.60 m in chord, and 54 pressure taps 

has been distributed along the mid section at 0.70 m in span (2d condition) as 

illustrated in figure 6.9. Some other pressure taps have been positioned inside 

central chamber in order to monitoring the mean pressure distribution when 

actuation is applied (figure 6.10). 

The drag has been measured through the wake rake with 89 pressure taps 

connected with DPA multimanometer, and the pressure on the model has been 

acquired with an electronic unsteady pressure scanner produced by Scanivalve 

Corporation with 64 channel also used for small scale model tests.  The accuracy 

of multimanometer is about 1.5 Pascals, while the electronic transducers have an 

accuracy of about 2 Pascals. 
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      Figure 6.8a: Model setup in the wind tunnel        Figure 6.8b: Rotary valve 

 

 

 
Figure 6.9: Pressure taps on the airfoil 
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Figure 6.10: Particular on pressure taps in the chamber 

 

6.3 Experimental Characterization of Pulsed Blowing Actuator 

Preliminary tests have been made to investigate exit slot velocity for different valve 

rotation frequencies (input voltage of the motor that driven the valve). The 

necessary inlet pressure jump is obtained with a blower and the valve is driven by 

standard DC motor in the range 0-12 volt that correspond to 0-120 Hz of rotation 

rate. The exit velocity is acquired by single component hot wire anemometer 

connected wit Spartan device for data sampling and processing (sampling rate of 

5000Hz). The exit slot velocities are referred to the chamber near the mid span of 

the airfoil (0.70 m), where also the pressure taps for pressure measurement are 

located (figure 6.11) 

   

Hot wire measurement 

Figure 6.11: Exit slot and hot wire position 
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An example of exit slot velocity in the range 3-9 volt (equal to 40-120Hz) is 

reported in figure 6.12. As in the preliminary analysis on small scale model, also 

with full scale model the effect of distributed system is to produce different 

excitation varying the frequencies. The figure 6.12 shows exit velocities without any 

post processing (black line) and mean value (red line) and standard deviation (blue 

line). Standard deviation gives an idea on behaviour of fluctuating part. From the 

analysis of results it is possible to point out how the system works better for low 

and high frequencies, while in  correspondence of input voltage of 7 volt (equal to 

90 Hz) the system shows less amplitude in mean value and fluctuation together 

with worse velocity shape than the other two. In terms of reduced frequency F+ the 

range considered is equal to 0-1.5, where for the computation of reduced 

frequency the reference length is the distance between exit slot and trailing edge 

(0.23 m) and the reference for velocity is the free stream velocity (Re∞ = 8x105 

means V∞=18.6 m/s). In the figure 6.13a-b-c the velocity and Fourier analysis for 

input voltage 5, 7 and 9 volt are reported. 

 

 
Figure 6.12: Exit slot instantaneous velocity, mean and standard deviation  
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Figure 6.13a: Exit slot veloc

m/s 

m/s 

C r

D 

PSD 

Figure 6.13b: Exit slot veloc
Cµ =0.0016
 
ity and FFT at input voltage 5 volt 

rms
µ =0.001
PS
 

ms

ity and FFT at input voltage 7 volt 
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m/s Cµrms=0.002

PSD 

Figure 6.13c: Exit slot velocity and FFT at input voltage 9 volt 
 
6.4 Full Scale Model Wind Tunnel Testing 

6.4.1 Control OFF 

In this section the results for the uncontrolled case  is presented. The aerodynamic 

characteristics that will be presented are relative to lift, drag, polar and endurance 

curves with and without controlling. All wind tunnel data are acquired through a 

program (Easy Wind Tunnel 2d) developed at DPA for experimental data 

management. In figure 6.14 an example of typical user interface output with profile 

and pressure taps location, pressure distribution and wake form with indication of 

integral calculations of lift and drag. 

Drag is calculated from measured data using different techniques. The best 

approximation is obtained with interpolated Betz drag that is also the value that will 

be reported in the characteristics curves. Lift is obtained through integral of 

measured pressure on the airfoil. 
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Figure 6.14: Example of user interface of DPA wind tunnel program 

 

Two configurations has been tested: the clean configuration without imposed 

transition and stripped configuration with transition imposed at 4% in chord. 

Preliminary visualization tests has been done to identify the minimum numbers of 

strip layer to be used in order to produce transition in the range 0-10°. In figure 

6.15 the visualization on the profile (upside) with and without strip for angle of 

attack equal to 4°. 
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Figure 6.15: Flow visualization 

 

Figure 6.16,.17,.18 show the comparison of results between clean and strip 

configurations for lift curve, polar and endurance with free stream Reynolds 

number equal to 8x105 for the uncontrolled case.  As it can be seen the airfoil 

shows a strong dependence on surface roughness and laminar-turbulent condition. 

The airfoil, without imposed transition, seems to reach stall at α=9°, but as 

illustrated in figure 6.16 the real stall occurs near α=30°. The phenomenon 

occurring at α equal to 9° is only the changing of flow field from attached to 

separate condition (t.e. separation); after this angle the peak continues to grow, 

until the gain balances the loss due to higher separated area, and at α=32° the 

pressure peak falls down. As an example, figure 6.19 is illustrates some pressure 

distributions, where it is possible to see the “apparent stall” that occurs between 

α=8° and 9°and the real pre-stall condition at α=30°. Finally in the figure 6.20 is 

reported the lift curve for the configuration with imposed transition for two different 

free stream Reynolds numbers, 8x105 and 1.2x106. The results seem to show not 

significant difference between the two tests, suggesting that in this velocity range 

the behaviour of uncontrolled airfoil does not change drastically. 
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Figure 6.16:  Comparison of strip-clean lift coefficient curves 

 
Figure 6.17: Comparison of strip-clean polar curves 
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Figure 6.20: Lift coefficient curve, Reynolds number effect for uncontrolled case 

 
6.4.2 Control ON 

In this section the results relative to the application of control are presented. 

Different configurations have been tested, with and without imposed transition, 

both of them with steady and unsteady blowing for different reduced frequencies 

and momentum coefficient. 
Figure 6.21a,b shows the lift coefficient and polar curve for the configuration 

without imposed transition for four conditions: no control applied (baseline), steady  

blowing with mean value of velocity equal to 18 m/s (green line), excitation 

frequency equal to 50Hz (blue line) and excitation frequency equal to 120 Hz (red 

line). In all cases the root mean square of momentum coefficient is approximately 

0.2%. The same results are reported for the configuration with imposed transition, 

in figure 6.22a,b. Lift curves show that for all configurations the application of 

unsteady blowing produces better improvements than steady control, in particular 
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with frequency equal to 50 Hz. If only the polar curves is considered, this 

improvement remains only on configuration with imposed transition. In fact, when 

actuation is applied on clean configuration this shows an enhanced performance in 

terms of lift, but a worse behaviour in terms of drag (see polar curve), while on 

configuration with strip the application of steady\unsteady blowing produces 

improvement on both lift and drag characteristics (and obviously endurance and 

efficiency). This could be due to the fact that with clean configuration the laminar 

bubble, extending from leading edge to proximity (maybe including) the slot exit, 

and this inhibits the application of control, producing slightly positive effect on lift 

(increasing the pressure peak) but substantially increasing also the drag. A 

possible phenomenon could be that the weak blowing inside or near bubble 

produces an higher boundary layer thickness at bubble reattachment after 

transition, and this produces higher drag measurement. This phenomenon can be 

also observed in the figures 6.23a,b and 6.24a,b  that shows the pressure 

distribution on the body surface and the wake survey for two cases: the first on is 

relative to clean configuration (α= 10°) and the second to strip configuration (α= 

8°). For the clean configuration even if the effect in term of pressure distribution is 

slightly positive, the wake profile is larger (higher losses). There is an opposite 

behaviour for strip configuration where, at the same time the improvements on 

pressure is accomplished by slimmer wake profile respect to the uncontrolled  

case, improving the aerodynamic performances.  
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Clean 

Figure 6.21a: Blowing effects on lift coefficient (free transition) 

  

Clean 

Figure 6.21b: Blowing effects on polar curves (free transition) 
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Strip

Figure 6.22a: Blowing effects on lift coefficient (strip on 4% in chord) 

 

Strip

Figure 6.22b: Blowing effects on polar (strip on 4% in chord) 
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Figure 6.23a: Example of control effect on pressure distribution (free transition) 

 

  
Figure 6.23b: Example of control effect on wake (free transition) 
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Figure 6.24a: Example of control effect on pressure distribution (strip on) 

 

  
Figure 6.24b: Example of control effect on wake (strip on) 
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6.4.2.1 Frequency Effect 

On the configuration with transition imposed, the effect of frequency variation on 

aerodynamic performances at some angles of attack has been studied deeply. The 

angles of attack chosen allow us to analyse the effect from the condition of weak 

separation (close to trailing edge) corresponding to α=4°, to the condition of strong 

separation (upstream of slot exit) corresponding to α=12°. At each angle of attack 

different values of actuation frequency has been tested in the range 0Hz-120Hz (0-

1.5 in terms of reduced frequency), starting from the case with closed valve (0 Hz, 

no control applied). The results are presented in figure 6.25a,b in terms of 

percentage variation of lift and endurance respect to the condition of no control 

applied. It is possible to see how the positions of maximum improvement change 

with varying angles of attack, moving from 30 Hz (for the curve relative to α=12°) to 

120 Hz (for the curve relative to α=4°), while for the curve relative to α=6 and 8°, 

the maximum remains at 80 Hz. This is due to the fact that higher angles of attack 

produce more extended separated area, and because the main shedding 

frequency of separated flow depends also from distance between separation point 

and trailing edge, the optimal actuation frequency changes with angle of attack. In 

particular higher is the angle of attack and the separated area, lower is the optimal 

actuation frequency. Another interesting result is that even if the endurance 

improvement is also appreciable for α=4 and 12°, the effect is stronger when the 

angle of attack is 6 or 8° where the improvement is higher than 60%. This is due to 

the fact that the exit slot position is fixed, and when the angle of attack is 4° the 

separation point is near trailing edge, far downstream from slot exit, and in the 

case of α=12° the separation point occur upstream the exit slot, while for angle of 

attack equal to 6 and 8° the separation point is close to exit slot location. This 

suggests that also the position of slot exit is strongly important for controlling the 

flow, and that, in principle, a movable slot exit position is desirable to obtain an 

optimal control system for all flight conditions.  
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Figure 6.25a: Lift coefficient, detailed investigation on frequency effect (strip on) 
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Figure 6.25b: Endurance, detailed investigation on frequency effect (strip on) 
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6.4.2.2 Reynolds Number Effect 

The effect of free stream Reynolds number has been considered and the results 

are reported in the figure 6.26. The angle of attack has been fixed at α=8° as well 

as the exit slot mean velocity has been fixed. For this conditions, and for four 

different free stream Reynolds numbers (from 8x105 to 12x105) the maximum lift 

increment obtainable for the actuation frequency range 0-120Hz has been 

reported. The values in table 1 and the figure 6.26 summarize the results obtained. 

It is possible to see that increasing free stream Reynolds number the maximum lift 

coefficient increment decreases. The more significant jump in the lift coefficient 

increment is when the ratio between injection velocity and free stream velocity 

rises from 0.45 to 0.53. In fact increasing of 17% for this ration produces   100% 

increasing in lift coefficient increment, while when velocity ratio jumps from 0.53 to 

0.81 (increase of 52%) the lift increment increases only about 36%. Higher velocity 

mean higher improvement, but also higher power input, so from this analysis and 

for this case, it is possible to identify, for the velocity ratio close to 0.5-0.6, a good 

compromise in terms of cost/benefits analysis. 

Vj_mean Vjet/Vinf Vinf f_opt d_Clmax
A 15 m/s 0.81 18.5 80 Hz 0.3
B 15 m/s 0.53 28.3 120 Hz 0.22
C 15 m/s 0.48 31.2 120 Hz 0.19
D 15 m/s 0.45 33.3 80 Hz 0.11  

Table 1 
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Figure 6.26: Strip configuration, maximum lift coefficient increment with varying 

free stream Reynolds number 

 

6.4.2.3 Comparisons with the Numerical Simulations 

In this section the comparison of experimental results with the numerical 

simulations both for controlled and uncontrolled case (with strip ON) is presented in 

the figures 6.27,.28,.29,.30. In all figures the full line is related to the numerical 

simulation and marker line to experimental results. 

In the first two figures 6.27 and 6.28 the results are related to the case with control 

not activated. In the figure 6.27 are reported the lift curves (figure 6.27a) and the 

pressure distribution (figures 6.27b,c,d) for three different angles of attack that 

correspond to three increasing levels of separated area. In the figure 6.28a,b the 

curves of efficiency and endurance are reported in the range 0-15°. In fact although 

the  numerical simulation have been performed also for higher angles of attack, the 

drag  can be accurately measured up to 15° (for higher angles the wake becomes 

too large to be correctly captured). The figures show an overall good agreement 

with experimental data for this configuration, the high lift behaviour and the lift 

slope are well captured from the numerical simulation. Some problems come out 
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when also the drag prediction is considered; in fact the figure (6.28a) shows how 

the efficiency is over predicted by numerical simulation respect the experimental 

tests, even though the general behaviour is well captured. These differences are 

mainly due to the turbulence model, airfoil shape and model building. It is important 

to point out in fact that if one hand the numerical simulation is intrinsically 

characterized by errors due to the use of turbulence model developed for boundary 

layers but also used for massive separation (small errors in the prediction of 

velocity fields could lead to sensible errors in drag prediction), it is also true that the 

tested airfoil is very sensible to the experimental condition, and very fine 

differences between theoretical shape and “built” shape (actuator section, surface 

roughness and airfoil curvature) may influence the results. 

In the figures 6.29 and 6.30 and 6.31 the comparison of results with control 

activated are reported. In the figure 6.29 the lift curves are reported with the control 

activated with frequency equal to 50 Hz (red lines) and 120 Hz (blue lines) together 

with the baseline (control off, black lines). The figure shows as the numerical 

simulation predicts a more effectiveness of control respect to the experimental 

data.  

For both excitations (red and blue continues lines) the lift enhancement in positive 

also near the stall angle, while in the experimental tests the control is effective until 

the angle of attack of 15°. The same behaviour showed in the figure 6.30 and 6.31, 

where the numerical simulation over predict the efficiency gain and endurance gain 

when the control is applied. In spite of this discrepancy the general behaviour is 

well captured, in fact all the lift coefficient curves, efficiency and endurance curves 

suggest that the solution of 50 Hz is more effective respect the ones at 120 Hz, 

and also the ineffective of control at low angles of attack is captured from 

numerical simulation. Globally the numerical tests has respect its main role of 

identify a qualitative behaviour of the system, in order to identify the best suitable 

configurations to test in the wind tunnel. It remains the disagreement with 

experimental results for a quantitative analysis. An important observation is that in 

the numerical control law a sinusoidal wave without distortions has been 
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considered, while in the real flow condition the wave form is slightly different. 

Future improvements could be to consider an inlet injection that exactly match the 

experimental injection jet measured in the wind tunnel (at the slot exit) and 

comparing the results. Some others improvements could be adopted with using of 

more sophisticated techniques that actually are being very popular to treat this 

argument, like LES (Large Eddy Simulation) or the less expensive (in the sense of 

computational cost) DES (Detached Eddy Simulation).  This will be object of future 

studies. 

considered, while in the real flow condition the wave form is slightly different. 

Future improvements could be to consider an inlet injection that exactly match the 

experimental injection jet measured in the wind tunnel (at the slot exit) and 

comparing the results. Some others improvements could be adopted with using of 

more sophisticated techniques that actually are being very popular to treat this 

argument, like LES (Large Eddy Simulation) or the less expensive (in the sense of 

computational cost) DES (Detached Eddy Simulation).  This will be object of future 

studies. 

  

 

Re∞=8*105

Figure 6.27a: Comparison of numerical and experimental results for lift coefficient 

 

 

(b) 

(c)
(d) 

Figure 6.27b,c,d: Comparison of numerical and experimental results for pressure 

distribution for α=0°-12°-22° (b,c,d) 
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Re∞=8*105

Figure 6.28a: Comparison of numerical and experimental results for effciency 

 

 
Figure 6.28b: Comparison of numerical and experimental results for drag 

coefficient 
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Figure 6.29: Lift coefficient curves, numerical and experimental comparison. 

Control ON 

 

 

Figure 6.30: Efficiency curves, numerical and experimental comparison. Control 

ON 
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Figure 6.31: Endurance curves, numerical and experimental comparison. Control 

ON
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Conclusions and Future Works 

7.1 Conclusions 

Detailed 
� Steady suction is an effective tool to delay separation but its performances are 

strongly dependent on the position of slot cut. 

� Turbulent boundary layer velocity profile is strongly affected by wall transpiration, 

and an “ad hoc” modification is desirable for closure formulas used in the 

viscous-inviscid interaction method. 

� In the pulsed blowing system the tubing length seems to produce the most 

significant effect on resonant frequencies, while slot exit and cavity volume 

influence mainly the resonant peak’s amplitude. 

� Numerical computations and experimental tests have pointed out that unsteady 

blowing is more effective than steady blowing, and that an optimal range of 

actuation frequencies exists once the flow conditions have been fixed. In the 

same way the excitation can also have detrimental effects on the boundary layer 

structure if the jet angle is too high or the position of slot cut is far upstream 

respect separation point. 

� The endurance improvement can be close to 70% if the reduced frequency and 

momentum of injected flow are properly chosen. 

� The optimum frequency depends on the aerodynamic objective to be maximized.    

 

General 
Numerical and experimental investigation in the wind tunnel has been performed 

for the steady suction and unsteady blowing. Steady suction has been investigated 

theoretically through the analysis of velocity profile in turbulent boundary layer, 

numerically through 2d panel methods and experimentally through tests on small 
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scale model in the wind tunnel. Unsteady blowing has been investigated 

theoretically, through the modelling of the whole system behaviour, numerically 

through RANS computations and experimentally through tests on a 2D wing in the 

wind tunnel. The unsteady blowing has been realized through a rotating valve, and 

the theoretical performance of the whole unsteady-blowing system has been 

examined using electro-acoustic analogy to model the system from the oscillating 

valve to the exit of the actuator. A combination of a lumped-element model for the 

actuator and a distributed model for the tubing, has been used to obtain a transfer 

function for the overall pulsed-blowing system. This has allowed the analysis of the 

functional dependence of the whole system on geometrical parameters (tubing 

length, cavity volume and slot exit) and has shown that the ratio between injection 

slot velocity and input pressure could be maximized once the system operates in 

proximity of resonant condition. Tubing length seems to produce the most 

significant effect on resonant frequencies, while slot exit and cavity volume affect 

mainly the resonant peak’s amplitude. Theoretical considerations suggest that the 

effectiveness of pulsed blowing depends mainly on the extension of the separated 

area, free stream Reynolds number, excitation frequency and strength of injected 

flow. This can be summarized through two dimensionless parameters: reduced 

frequency and momentum coefficient. Numerical and experimental tests have been 

performed in order to point out the behavior of the system varying these two 

parameters through the variation of the compressed air pressure, valve 

frequencies rotation and angle of attack. The result is that, depending on the 

aerodynamic performance to be optimized (efficiency, lift or endurance), the best 

actuation frequency changes. During this study many interesting new aspects has 

been pointed out through experimental results, but some other aspects have not 

been investigated, due to the high complexity of the problems. The influence of slot 

cut shape and position or the influence of chamber volume and tubing length, for 

example, are part of this group.  
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7.2 Future Works 

In the next future the idea is, on one hand, to continue the investigation on 

configurations used for the present work, for example, analyzing the behaviour of 

the system varying the slot shape and tubing lengths, and, on the other hand, 

considering a new approach for the problem of controlling the separation on the 

rear part of airfoil though an “ad hoc” system, hopefully more robust respect to the 

variation of flow field condition and without using a distributed system between 

rotary valve and actuators. In fact, it is our opinion that, even if an optimally use of 

the distributed system produces maybe better performances in terms of slot exit 

velocity than system without tubing, it is also true that a solution without tubing, 

from practically point of view, is more technologically viable. An idea on the valve 

shape and insertion is currently being considered that could strongly simplify the 

entire system.  The valve should be directly inserted into the airfoil and connected 

to the internal chambers, avoiding the use of distribution system. Together with 

experimental investigation, also numerical analysis are planned in order to achieve 

more understanding about some results that apparently were not expected, like the 

worse behaviour of the system with clean configuration, probably due to the 

interaction with the laminar separation bubble. 

 



Appendix A 114

Appendix A 

In this appendix the problem of transpired flows is faced examining the effects of 

wall transpiration on integral boundary layer equations. In the first part the 

derivation of skin friction formula for not transpired flows following the approach 

used by Coles is presented, and in the second part the same approach will be 

applied with the attempt to derive similar formula when wall transpiration is 

imposed. 

 

� Turbulent boundary layer when transpiration is zero 

The integration of the momentum equation of boundary layer gives the well known 

von-Karman  integral relation (see White [21]).  

dx
du

u
)H2(Cf

2
1

dx
d e

e
12

θ
+−=

θ                                                                               (A1) 

where θ is the momentum thickness, H12 is the shape parameter (ratio of 

displacement and momentum thickness), ue is the velocity at the outer edge of 

boundary layer, and Cf is the skin friction. 

Note that this equation has the same form as that for laminar flow since has been 

neglected  normal stresses and the Reynolds stress term vanishes at the wall and 

at the edge of the boundary layer (the integral parameters θ and δ* are defined in 

terms of the mean velocity  components).  

In the case of laminar flows is possible to obtain a solution to the boundary-layer  

problem by assuming an appropriate velocity profile shape. This is obtainable by 

considering that for laminar flows:  
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                                                                                                         (A2) 



Appendix A                                                                                                                       115 

Unfortunately, due to the more complex nature of turbulent flows, no similar 

solution of this type produce results of adequate precision. The one exception to 

this is Prandtl’s  power law profile for zero pressure gradient flows.  

Since equation (A1) contains three unknown variables θ, H12 and Cf, others two 

additional independent relations to provide closure are necessary. Unfortunately, 

the two new relations, if they are reliable over a wide range of conditions, will 

contain other  variables for which more relations must be found without simplify the 

problem. To construct an accurate model for turbulent boundary-layer calculation is 

necessary to start with a consideration on its velocity profiles.  

 

Turbulent velocity profile (see Pope[30] and White[21]) 

The turbulent boundary-layer velocity  profile looks like different from laminar  

profile and generally is much fuller with higher velocity gradients near the wall. To 

describe this profile more in deep, it is convenient to divide it into its principal 

layers: 

� INNER LAYER : VISCOUS SHEAR DOMINATES - 
y
u
∂
∂

µ  

� OUTER LAYER : TURBULENT SHEAR DOMINATES - 'v'uρ  

� OVERLAP LAYER : BOTH TYPES OF SHEAR ARE IMPORTANT 

Considering the physical laws that govern each of these regions suggested by 

Prandtl and von Karman: 

INNER LAW      

( y,,,fu w µρτ= )               Prandtl 

The mean velocity in the inner region depends on the wall shear,  fluid properties 

and the distance from the wall.  

OUTER LAW   

( δρτ=− ,y,,fuu we )       von Karman 

For the outer layer, von Karman deduced that the wall tends to act as a source of  

retardation, reducing the local velocity u below the free stream value ue in a  
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manner which is dependent upon the wall shear stress  and the distance y from the 

wall and not from viscosity.  

OVERLAP LAW  

outerinner uu =  

This law says that in the overlap region both outer and inner laws must be valid.   

Both the inner and outer equations contain 5 variables and 3 fundamental 

dimensions (mass, length and time), so from Buckingham theory there are 5-3=2 

dimensionless groups that are involved in each case.  

From this consideration is possible to see that the two laws are the following:  

for the INNER LAW )yu(f
u

u *

* ν
=                                                                          (A3) 

where 
ρ
τ

= w*u    is the friction velocity 

and for the OUTER LAW: 

)y(g
u
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−                                                                                                        (A4) 

In the overlap layer both laws are valid, so: 
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It is possible to demonstrate that it is only satisfied if the functions involved are 

both logarithmic. Thus the results is:  
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Where κ, A and B are dimensionless constants. Thus in the overlap region:  
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The values of the dimensionless constants come from experiment and as proposed 

by Nikuradse (1930) or Coles (1955) they can be considered equal to:  

κ ≅ 0.4  and B ≅ 5.5 (Nikuradse) or κ ≅ 0.41  and B ≅ 5.0  (Coles) 

The parameter A in the outer region as been considered constant. It has, however, 

been found that this value is not the same for different types of flow and that it  is 

influenced by pressure gradient. It should also be noted that, from equation (A7) 

the value of A must change outside the overlap region reducing towards zero at the 

boundary layer edge.  

When separation occurs the outer layer becomes important. 

In the region very close to the wall, as has been already indicated, the laminar 

viscous shear term dominates and the following expression is valid: 

y
u

w ∂
∂

µ=τ   (viscous sub-layer) 

close to the wall is also true that:  

y
u

0y
0u

y
u

y
u
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−
−

=
∆
∆

=
∂
∂ , so 

++ =⇒µ=τ yu
y
u

w                                             (A8) 

ν
== ++

*

*
uyyand

u
uuwhere     (inner variables) 

At some point in the boundary layer the viscous-sub-layer must merges smoothly 

into the inner layer as indicated by the equations (A6a,b).  

Various schemes have been developed, from physical considerations of the flow, 

to  provide a smooth change from equation (A8) to one which satisfies the inner 

law. The resulting profile is usually plotted as y+ versus u+ and the profile shape 

resulting  from the equations is shown in the figure A1 (taken from White[21]).  
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Figure A1: Typical velocity profile in turbulent boundary layer (White[21]) 

 

Considering with more attention that the outer region of the turbulent boundary-

layer is more  sensitive to the effects of pressure gradient than the inner layer, is 

important to modify opportunely the outer formulation in order to take into account 

the pressure gradient. So for the outer law the correct functional dependencies are:   

⎟
⎠
⎞

⎜
⎝
⎛ δρτ=−

dx
dp,,y,,fuu we   where now it is present the external pressure gradient. 

This becomes after dimensionless procedure:  

)
dx
dp,,y(g

u
uU

w* τ
δ

δ
=

−   

The new parameter involving pressure gradient is characteristic of flow in the outer 

layer.  It is convenient, however, to replace the boundary-layer thickness δ with the 

displacement thickness δ* 
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0 e
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u
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 The parameter then becomes  

β=
τ
δ

dx
dp

w

*
 Clauser parameter                                                                           (A10) 

An approach to the outer layer was proposed by Coles for zero pressure gradient 

flow, and assumed that the deviations from logarithmic law of the velocity above 

the overlap layer, once normalised by the maximum deviation ( at y=δ ), was 

dependent from a single parameter named wake function fw.  

If this correction is not considered a considerable error occurs in the boundary 

layer calculation, in fact in the overlap region the law is (using inner variables):  

B)yln(1u +
κ

= ++                                                                                                 (A11) 

where κ = 0.4 B = 5.5  (Nikuradse values) 

and after substitution:  

5.5)yln(5.2u += ++                                                                                           (A12) 

If this behaviour is compared with experimental measurements significantly 

differences are present as indicated in figure A2. This is particularly true when 

adverse pressure gradients is present. 
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Figure A2: Formula A12 and comparison with experimental data (from White [21]) 

 

The deviation between this equation and the data was partially resolved by Coles 

who proposed the following correction after an experimental curves fitting:  
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                                                        (A13) 

where 
ν
δ

=δ+
*u                                                                                                

In this equation the velocity deficit between the measured velocities u+ and ue
+ and 

those predicted by (A12) are linked to some function of y/δ. 

The function fw is called the wake function and is normalised to be zero at the wall 

and has the value fw = 2 at y =δ . This satisfies the condition that u/ue must be 1 at 

at y/δ=1. 
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This expression is known as the  law of the wake and can be combined with the 

overlap equation or law of the wall to provide a composite function that covers both 

overlap and outer layers with more accuracy also when pressure gradient is 

present.  

It is important to point out that when equations (A6a,b) for the outer layer are used, 

the parameter A will  vary outside the overlap region. Coles wake function, 

however, allows to fix A as a  constant through both the overlap and outer layers. 

This is achieved with the following procedure: 

Coles developed (A13) function by first reconsidering equation (A7) that when 

rearranged gives: 

5.5)ln(5.2uA e −δ−= ++                                                                                   (A14) 

Observing that: 

ue
+ = ue

+ (log law) + [ue
+ (actual value) – ue

+ (log law)]  

and considering that in the overlap region the actual value will be the same as the 

log law value, the above expression becomes  

u+ = 2.5 ln y+ + 5.5 +[u+  -(2.5 ln y+ + 5.5)]  

or  
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The term (a) is equivalent to Coles wake function and term (b) is equivalent to the  

constant A. Finally the equation becomes:  

)y(fB)yln(1u w δκ
Π

++
κ

= ++                                                                               (A15) 

For equilibrium turbulent boundary layers Π has been found to be a function of  

Clauser parameter β as given by equation (A10), and one possible form of this  

function has been given by White [21] as:  

Π ~ 0.8*(β + 0.5)0.75                                                                                            (A16)  
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Thus, through this relation a pressure gradient dependence is considered in the 

velocity profile  shape. It is of particular importance since it is applied to most of the 

boundary layer. From the consideration that If the boundary layer is divided into its 

constituent  parts, expressing each region as a percentage of the total Boundary-

layer  thickness, the results is (from Pope [30]): 

� Viscous sub-layer:  ≈ 1% 

� Logarithmic Region:  ≈ 20% 

� Outer Region:   ≈ 90% 

It is interesting that equation (A15) which is applied only to the logarithmic overlap 

region  and outer region may be valid over 99% of the boundary layer. 

It is possible, therefore, by using equation (A15) to derive simple expressions for 

the boundary-layer thickness parameters. These expressions should provide an 

acceptable approximation to reality. The procedure is to consider the integral 

boundary layers parameters (A17) and proceeds to integrate through boundary 

layer thickness using (A15). 
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substituting the (A15) and the expression for fw: 
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and observing that: 
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using the (A20) with following positions: 

yvanduylnu
*

=
ν

=                                                                                     (A21) 

the entire integral becomes  
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λκ
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=
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δ 1*

                                                                                                         (A22) 

following the same process for the momentum thickness equation the results is: 
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and consequently the parameter H12 is given by (after some omitted 

manipulations): 
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As it is expected the mathematical model for turbulent boundary layer is more 

complicated than the laminar model.  

 

Skin friction formula derivation 

For this method the Coles velocity profile representation is used to derive a skin 

friction correlation formula. It has been already illustrated that, starting from Coles 

profile representation for velocity in the boundary layer is possible to obtain the 

shape parameter H12 from equation (A24). Considering again the Coles law of the 

wake  (A15): 
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= ++   Coles law of the  wake  

and considering that the skin friction ( 4/λ2 ) is related to Reδ and Reθ by solving 

following equation at the edge of the boundary layer:  
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using equation (A23) δ can be eliminated from the above equation, and an 

expression for λ such that λ=λ(Reθ, Π) can be derived. 

In conclusion two functional equations can be obtained: 

H12=H12(λ,Π)  and λ=λ(Reθ, Π)                                              

explicating Reθ from the second of above equations: 
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From the parametric studies of the above equations Coles obtained an empirical 

correlation between skin friction, Reynolds number (based on momentum 

thickness) and shape parameter H12 following reported: 
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� Turbulent boundary layer with transpiration 

The skin friction formula obtained above (A28) has been obtained with the 

assumption of absence of transpiration to the wall. If this assumption is removed 

the von-Karman integral equation from which all the computation has been 

deducted, changes as follow (passages are omitted): 

e

0e

e
12 U

V
dx

du
u

)H2(Cf
2
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+−=
θ    von Karman equation with transpiration  (A29) 

where the additional term V0 is the wall transpiration. Another consideration is that 

as suggested by Stevenson [22] and Sucec [23], when transpiration is present, the 

overlap log-law should be modified as illustrated in (A30) 

)y
2

(sin
V

2Byln1
4

V
Byln1u 20

2
0

t +

++
+

+
++

δ

π
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

κ

Π+Π
+⎥⎦

⎤
⎢⎣
⎡ +
κ

++
κ

≅                        (A30) 

where 1.3)
U
V

ln(95.1,
u

V
V

e

0
*
0

0 −−=Π=+  and the subscript “t” for u is for transpiration 

without repeating all the process that has guided to obtain the equation (A28) is 

possible to arrive to a similar formulation of the problem with the following 

assumption: 
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notes that equation (A31) gives back (A15) if transpiration is null. 

In general:  
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It is possible, even though the major complexity of the problem, to arrive to similar 

formulation for integral parameters as obtained in the previous section: 
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The main difference with the previous case is that for this set of equations is not 

possible to extrapolate one parameter as dependent of the others two, because the 

variables are inextricably related each others. In this case, it is more difficult to find 

a suitable curve-fit approximation, but iteration is necessary to compute the 

boundary layer parameters as the streamwise integration proceeds downstream. 

In summary the two sets of equations are: 

“classic” set of equations with Coles velocity profile:  
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set of equations with Stevenson velocity profile: 
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                   H12=H12(λ,f)  

                                                              

               λ=λ (Reθ,H12,f) 

This process has to be iterated as the integration of the viscous solution proceeds 

downstrem.  
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