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The field of surgical procedures has undergone a significant transfor-
mation in the last three decades with the introduction of robotic surgery.
In operating rooms, robotic devices are now integrated into the planning
and execution of surgical treatments with advantages over traditional la-
paroscopy, such as enhanced dexterity, improved ergonomics, motion scal-
ing, and effective tremor filtering. Over the past decade, robotic systems,
particularly the da Vinci robotic system from Intuitive Surgical Inc. in
Sunnyvale, CA, have played a pivotal role in minimally invasive robot-
assisted procedures. Despite these advancements, surgical robotics still
has limitations: surgical procedures success robustly depends on the sur-
geon’s ability and the minimal access to the surgeon field brings a heavy
mental workload to surgeons. At the same time, the surgical environment
is strongly unstructured and prone to complications. For this reason, there
is the need for advanced assistive control features capable of augmenting
surgeon’s skills and facilitating autonomous execution of surgical tasks to
ensure consistently high-quality intervention. As surgical robotics moves
towards increased autonomy, vision-based techniques, haptics and data-
driven algorithms constitute key concepts in robotic scenarios. This thesis
aims to address the limitations of surgical robotics by contributing to dif-
ferent levels of autonomy of surgical robotic procedures. Each chapter of
the thesis examines part of the research work conducted during the Ph.D.
and concerns one or more of the many fields that contribute to robotics
automation.

Keywords: Surgical Robotics; Shared Control; Automation in surgery;
Vision-based Control



Sintesi in lingua italiana

Il campo delle procedure chirurgiche ha subito una trasformazione significa-
tiva negli ultimi tre decenni con l’introduzione della chirurgia robotica. Nelle sale
operatorie, i dispositivi robotici sono ora integrati nella pianficatione e nell’esecuzione
dei trattamenti chirurgici con vari vantaggi rispetto alla laparoscopia tradizionale,
come una maggiore destrezza, una migliore ergonomia, lo scalamento del moto
e un il filtraggio del tremore. Negli ultimi dieci anni, i sistemi robotici, in par-
ticolare il sistema robotico da Vinci di Intuitive Surgical Inc. a Sunnyvale, CA,
hanno svolto un ruolo fondamentale nelle procedure robotizzate mini-invasive.
Nonostante questi progressi, la robotica chirurgica ha ancora dei limiti: il suc-
cesso delle procedure chirurgiche dipende fortemente dalla capacità del chirurgo e
l’accesso minimo al sito chirurgico comporta un pesante carico di lavoro mentale
ai chirurghi. Allo stesso tempo, l’ambiente chirurgico è fortemente destrutturato
e soggetto a complicazioni. Per questo motivo, vi è la necessità di funzioni avan-
zate di controllo assistivo in grado di aumentare le competenze del chirurgo e
facilitare l’esecuzione autonoma delle attività chirurgiche per garantire costanza
nella qualità degli interventi. Mentre la robotica chirurgica avanza verso una
maggiore autonomia, le tecniche basate sulla visione, sensibilità aptica e gli algo-
ritmi basati sui dati costituiscono concetti chiave negli scenari robotici. Questa
tesi si propone di affrontare i limiti della robotica chirurgica contribuendo a di-
versi livelli di autonomia delle procedure robotiche chirurgiche. Ogni capitolo
della tesi esamina parte del lavoro di ricerca condotto durante il Ph.D. e riguarda
uno o più dei molti campi che contribuiscono all’automazione robotica.

Parole chiave: Robotica Chirurgica; Controllo condiviso; Automazione
nella chirurgia; Controllo basato sulla Visione.
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Chapter 1
Introduction

1.1 Minimally Invasive Surgery

The closing decades of the 20th century witnessed a profound trans-
formation in the field of surgical procedures, marking the beginning of a
technological revolution that continues to redesign the practice of medicine,
with a particular focus on reducing invasiveness. This transformative era
has seen the widespread adoption of minimally invasive interventional
treatments across various medical disciplines. Evidences supporting the
benefits of these less invasive procedures, such as diminished complications,
lower mortality and morbidity risks and quicker return to normal activities,
have caused a global reevaluation of conventional surgical and radiological
practices. This focus on less or minimal invasiveness has, therefore, be-
come the subject of intense research in recent years. Minimally Invasive
Surgery (MIS) approaches have been applied to various surgical special-
ties, including general surgery, urology, thoracic surgery, plastic surgery,
and cardiac surgery and dentistry. In all these applications, the pain,
discomfort, disability, or other complications consequential to surgery are
often due to the trauma caused by gaining access to the surgical area of
interest rather than from the procedure itself [1].

As previously mentioned, MIS refers to all surgical procedures that
require reducing the size of the incision in the patient’s body. Thoracic
surgery, traditionally associated with significant morbidity and prolonged
recovery periods, has witnessed a great impact with the introduction of
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minimally invasive approaches. Plastic surgery, primarily known for its
focus on aesthetics, has incorporated MIS to enhance precision and min-
imize scarring in various cosmetic and reconstructive procedures. Mini-
mally invasive dentistry aims to achieve the treatment objective by using
a surgical process that eliminates the minimum amount of healthy tissue.
With the help of an endoscope, a medical instrument equipped with an
illuminating source, the operating surgeon can inspect and visualize the
internal body cavities on a monitor and provide instructions for surgical
maneuvers without any obstacles to observing. Endoscopically assisted
surgery is gaining popularity and becoming a commonly used practice to
simplify complicated procedures that require bigger access to visualize the
interested area [2]. Magnifying the optical operating field is crucial in sev-
eral surgical specialties, including general surgery, gynecological surgery,
orthopedic surgery, neurosurgery, pediatric surgery, ophthalmology, oto-
laryngology, oral and maxillofacial surgery, plastic surgery and podiatric
surgery. Microsurgery is the term used to describe the surgical techniques
that require an operating microscope and the necessary specialized in-
strumentation. The advancements in technology and techniques have led
to the ability to do anastomosis of successively smaller blood vessels and
nerves [3].

General surgery stands at the forefront of this paradigm shift, as min-
imally invasive techniques have been successfully applied to procedures
ranging from appendectomies to complex abdominal surgeries with la-
paroschopic approach. Laparoscopic Surgery (LS) is a minimally invasive
surgical technique that uses a laparoscope, a thin, telescopic rod with a
camera at the end, allowing the surgeon to access the inside of the body
without making large incisions in the skin. Instead of the 6–12 inch cut
necessary for Open Surgery (OS), LS uses two to four small incisions, called
keyhole, of half an inch or less for the surgical instruments and the camera.
During LS, the operation inside can be either identical to the OS approach,
with the only difference being the method of access, either different, with
the same aim and principle. An abundance of case studies, trials and
meta-analyses have demonstrated the advantages of LS. Patients under-
going laparoscopic operations have less postoperative pain, less impairment
of vital functions, shorter hospital stays, and they resume usual activities
more rapidly. LS is most commonly used in gynecology, urology, and gas-
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troenterology, comprehending procedures such as inguinal hernia repair,
cholecystectomy, colorectal surgery, appendectomy, gastric, pancreas, and
liver surgery. The first attempts at laparoscopically repairing inguinal her-
nias were made in the 1980s, and since then, significant advantages have
been found in terms of pain relief. Studies show that there is no higher risk
of severe intra-abdominal injuries, such as intestinal, blood vessels, or blad-
der injuries, compared to open surgery. The first laparoscopic removal of
a gallbladder was made in 1985 and, since then, this procedure has under-
gone rapid development, making Laparoscopic Cholecystectomy (LC) the
gold standard for the surgical treatment of gallbladder stone disease. Most
studies on laparoscopic colorectal procedures have shown several benefits to
patients. These include reduced pain, less damage to lung function, result-
ing in lower rates of pneumonia, and faster recovery of intestinal function.
Patients find this technique particularly attractive due to the minimal ac-
cess with four small incisions. Indeed, the conventional approach results
in larger access trauma compared to the relatively small intra-abdominal
surgical trauma, while in the laparoscopic approach, access trauma and
intra-abdominal surgical trauma coincide. [4].

Although LS is considered the third patient-friendly medical revolu-
tion following the introduction of asepsis and anesthesia, it poses several
challenges to surgeons. LS requires the use of different instruments and
presents reduced tactile sensations. The operating field is displayed on
a monitor, causing changes in the surgeon’s posture. The surgeon must
develop new strategies to compensate for the two-dimensionality and re-
sulting loss of depth perception. The camera is not controlled directly by
the surgeon but by an assistant. Additionally, the long and rigid instru-
ments require considerable agility. In conventional surgery, there are seven
Degree of Freedoms (DOFs), whereas LS provides only four. This loss
of freedom increases the difficulty of suturing and tying knots. Neverthe-
less, critical voices claim technical difficulties in LS, especially in mastering
video-eye-hand coordination, physical and mental workload. Given these,
it is not surprising that LS has a substantial learning curve and thus an
associated longer training for surgeons. Another argument against LS is
the higher cost due to longer operating times and the need for new instru-
ments, which are sometimes only used once. As with all areas of medicine,
the issue of the expense of LSs is increasingly important, especially when it
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is compared with traditional, open operations. However, even though the
direct cost per operation is higher, the indirect cost to society decreases
by allowing patients to return to work more quickly.

1.2 Minimally Invasive Robotic Surgery

Market and research offer various surgical robotic platforms. These
robots come equipped with advanced technology such as high-frequency
ultrasound, microscopes, drills, and endoscopes that have significantly
improved patient outcomes. Many medical and surgical practices that
wouldn’t be possible without robotic technology have been made achiev-
able. Surgical robots have been successfully incorporated in several MIS
domains. For example, surgical robots have been used in orthopedic
surgery for precise bone cutting and in other areas where rigid anatom-
ical parts are mostly present in the surgical environment. Additionally,
surgical robots, accompanied by image-based preoperative plans without
human interruption except in emergency situations, have found application
in procedures like stereotactic radiosurgery and minimally-invasive neuro-
surgery.

Microsurgery is an area in which robotics can have a significant impact
on patient benefits and public health. The precision required in micro-
surgery is extremely high, and the surgical workspace is small. Robots can
deliver sub-millimeter tool motion scaling and physiological tremor attenu-
ation, which are crucial to performing surgical tasks at the limits of human
capabilities. However, the large footprint of some commercial robotic sys-
tems used in MIS makes them unsuitable for direct microsurgical use [5].

The shift from OS to LS has been a significant advancement in reducing
scarring and hospitalization time for patients. However, it can sometimes
limit the surgeon’s dexterity, ergonomics, sensory feedback, and visualiza-
tion compared to OS. The development of surgical robotic systems has ad-
dressed these limitations and improved the overall surgical experience. The
limitation of standard laparoscopic instruments to only 4 DOFs is a con-
siderable disadvantage to surgeons’ dexterity, particularly for beginners.
Though this limitation has minor implications during ablative surgery, such
as organ dissection, vessel clipping, coagulation, and anatomical structure
division, it considerably reduces dexterity during reconstructive surgery,
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shortening the learning curve. Moreover, surgical robotic platforms can
significantly improve surgeons’ ergonomics with respect to laparoscopy. A
study published in 2015 compares the ergonomics of standard laparoscopy
with laparoscopy using an ergonomic commercial chair or using the popu-
lar surgical platform da Vinci® Surgical System (dVSS). It shows signif-
icantly lower muscle pain (including neck pain, shoulder pain, wrist pain,
and back pain) for surgeons who use the dVSS, with respect to the alter-
natives [6], [7]. Surgical robots have also gained widespread acceptance
due to the significantly improved accuracy and precision of surgical tech-
niques. Robot-Assisted Surgery (RAS) offers 3D visualization and limits
the fulcrum effect, which amplifies tremors in LS. Furthermore, the learn-
ing curve for robotic surgery is considerably shorter, and surgeons without
prior laparoscopic experience can successfully transfer their surgical skills
from open surgery to robot-assisted laparoscopic surgery.

Throughout history, technology has played a crucial role in advancing
medical procedures. From the introduction of laparoscopy in 1910 to the
development of RAS in 1983 and the world’s first in vivo miniaturized
robotic surgery in 2016, the use of surgical robotic platforms for MIS has
made significant progress. With advancements in the field, there has been
a shift from OS to MIS such as LS, and robotic laparoscopic systems have
been developed. As technology becomes cheaper, smaller, and faster, these
systems continue to reduce in size and become more procedure-specific [8].
Urology and gynecology were the first medical specialties to adopt robotics
in surgery and, since then, many other specialties have also started uti-
lizing this technology. RAS has dramatically improved the safety and
performance of intracorporeal suturing, which is crucial in urological and
gynecological procedures. It is now becoming increasingly common for
robots to be used in radical prostatectomies. Studies have shown that the
Robot-Assisted Laparoscopic Prostatectomy (RALP) is superior to open
and laparoscopic radical prostatectomy in various aspects since it has lower
estimated blood loss and shorter hospital stays. It results in lower rates
of readmissions, nerve injury, reoperations, deep vein thrombosis, and sep-
sis, as well as better continence rates and return of sexual function. Five
years after its initial approval for use in urology, RAS has been adopted
for radical hysterectomy for endometrial and cervical cancer. Since then,
the robot-assisted procedure has been widely adopted, resulting in a sig-
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nificantly better postoperative quality of life index [9].

There are different surgical robotic platforms commonly used to sub-
stitute laparoscopic instruments in many clinical procedures for Minimally
Invasive Robotic Surgery (MIRS). The dVSS, which was developed by In-
tuitive Surgical® Inc., Sunnyvale, CA, was the first surgical robotics sys-
tem to receive clearance by the US Food and Drug Administration (FDA)
in the year 2000, and it is now the most used robotic surgery system in the
world. It is commonly used for general LS surgeries and has become one
of the most frequently used robotic surgical systems. Over the years, the
FDA has also approved the dVSS for thoracoscopic, urological, and gyne-
cological surgeries, as well as an adjunct to some cardiac procedures [10].
Surgeons have used the dVSS in more than 10 million minimally invasive
procedures through 2001, and there are more than 6700 dVSS installed in
hospitals in 69 countries worldwide [11]. The widespread use of dVSS is
possible due to the advanced wristed instrumentation (EndoWrist®) that
allows 7 DOFs, tremor filtration, a high-resolution three-dimensional vi-
sualization system, and a comfortable user console [12]. The dVSS is a
teleoperated robot composed of a surgical console, a patient-side cart and
a vision cart. The surgical console is located outside the sterile site and is
controlled by the surgeon through two master controllers and pedals. Dur-
ing a surgical procedure, a 3D endoscope captures a visual of the surgical
site. This visual is then processed by the vision cart and transmitted to
the surgeon through a stereo visor. Ultimately, the patient-side is the sys-
tem’s operative part, consisting of four arms holding instruments and an
endoscope. The instrumentation, inspired by the human hand, improves
surgical precision and comprises graspers, needle drivers, clip appliers, and
energy instruments. The da Vinci®platforms on the market are: (i) da
Vinci®Xi that is the most advanced platform from Intuitive Surgical®,
shown in Figure 1.1; (ii) da Vinci®X which has the same arm architecture
of da Vinci®Xi with modular components; (iii) da Vinci®SP that is a sur-
gical platform designed for single-port access with a single-arm delivering
three multijointed instruments.

Despite their benefits, surgical robotics have some limitations. During
surgical procedures, the visibility of the surgical site is often limited, and
the tools used must work very closely with each other. Additionally, expert
surgeons must develop skills to compensate for the lack of haptic feedback,
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Figure 1.1. Da Vinci Xi® Surgical System.

relying on visual perception instead. All of this while performing kinemat-
ically complex and repetitive tasks, whose success is strongly dependent on
the surgeon’s ability. In summary, surgical robotics still lacks advanced as-
sistive control features that could notably support a surgeon’s activity and
perform surgical tasks with autonomy for a high-quality intervention. De-
spite their potential, surgical robotics still lacks advanced assistive control
features that could significantly support a surgeon’s activity and perform
surgical tasks with autonomy for a high-quality intervention. Many sur-
gical procedures could benefit from the application of advanced control
techniques, allowing the surgeon to work under less stressful conditions
and perform the surgical procedures with more accuracy and safety.

1.3 Thesis Overview

The thesis contributes to the field of automation in robot-assisted surgi-
cal procedures by addressing critical aspects essential for the advancement
of surgical robotics:

Vision Perception: Perception is essential in a robotic system. In par-
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ticular, in surgical robotics, vision perception plays a key role as it
is the only feedback to the surgeon in the absence of force feedback
to characterize the surgical site. The thesis explores state-of-the-art
methodologies and frameworks for enhancing vision perception. In
this thesis there is a significant contribution to this topic through
the development of vision-based control frameworks that not only
augment the perceptual capabilities of surgical robots but also lay
the groundwork for more accurate and context-aware surgical inter-
ventions

Modeling: It is crucial to identify the kinematic and dynamic properties
of robotic arms to effectively control the robot in an unstructured en-
vironment such as a surgical site and estimate external forces. This
thesis work contributes to the field thanks to an accurate characteri-
zation of the dynamic model of the da Vinci® Research Kit (dVRK)
surgical robotic systems.

Force Feedback: Most of the currently available robotic surgery systems
do not have haptic feedback capability. In addressing this deficiency,
the thesis contributes to demonstrating the capacity of force feedback
to reduce unintentional damages and accelerate the learning curve
for novice surgeons. Additionally, the thesis explores the broader
implications of force feedback, providing a comprehensive framework
for implementing advanced control algorithms, including impedance
control and virtual fixtures.

Data Collection: Data collection plays a crucial role in the fields of Ar-
tificial Intelligence and robotics. It is essential for training robots to
navigate, interact with the environment, and perform complex tasks,
operating with greater autonomy and precision. The open access de-
sign of the dVRK incentivizes and enables researchers to easily access
and collect data. For these reasons, an important part of the thesis
contributes to the creation of a dataset based on the suturing task
with dVRK that will be used for further research.
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1.4 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 explores the concept of autonomy in surgical robotics and
examines the literature that serves as a foundation of the research
contribution.

Chapter 3 presents a method to identify the complete dynamical model
of the PSM arm of the dVRK robot. The more precise dynamic
model of the dVRK was needed to be able to actuate model-based
control techniques such as impedance control. The proposed model is
tested using a residual-based approach for external force estimation
acting on the PSM end-effector.

Chapter 4 introduces the use of force feedback to improve performances
in robot-assisted surgical procedures. In particular, a control frame-
work has been developed that includes impedance control and Forbidden
Region Virtual Fixture (FRVF) to avoid the collision between the
surgical instruments starting from the endoscopic images. It is demon-
strated through a user study how the use of force feedback facilitates
the use of the surgical robot for inexperienced surgeons.

Chapter 5 explains the development of a control framework for human-
robot interaction in medical applications that are characterized by
an RCM constraint. The method proposes a control strategy that
ensures both the RCM kinematic constraint and repulsive VFs con-
straint in a human-robot interaction framework, in which the doctor
guides the manipulator throughout the surgical application.

Chapter 6 presents a deep learning-based method for the localization and
segmentation of the biliary tract to help the surgeon better visualize
the biliary tract without using Indocyanine Green (ICG). A database
of laparoscopic images has been constructed and annotated to train
the deep learning algorithm.

Chapter 7 proposes a novel dataset from several surgeons with differ-
ent skill levels, who performed the suturing task on the dVRK.
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The dataset includes kinematics, video, interaction force, electromyo-
graphic signal and acceleration, angles, and angular velocity of the
surgeon’s right wrist. The data has been organized by surgical ges-
tures part of the suture procedure.



Chapter 2
State-of-art in Robotic
Surgery

The thesis aimed to propose new control strategies and computer vi-
sion algorithms that allow different levels of robot autonomy to reduce
the surgeon’s workload and improve the quality of surgical procedures.
This chapter presents the concept of autonomy in the context of surgical
robotics. The definition is provided in Section 2.1, accompanied by a sys-
tematic taxonomy designed to classify surgical robots. Subsequently, an
overview of the related works in robotic surgery, starting from Level 0 and
moving toward Level 5, is presented in Section 2.2. In Section 2.3, the
robotic hardware and software used to test the advanced control method
developed in this thesis are discussed. This section provides an overview
of the dVRK setup, its kinematic model, and a general formulation of the
dynamic model. The models serve as a foundation for the subsequent chap-
ters, particularly Chapter 3, where detailed analysis and implementation
of the dynamic model will be discussed.

2.1 Autonomy

Traditionally, autonomy is considered a fundamental component of
robots. Figure 2.1 shows examples of commercially available systems for
different clinical applications. In [13], the authors present a classification
of telerobots based on control architecture and user interaction. Three
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categories are defined depending on the degree of user interaction: direct
or manual control, shared control and supervisory control robotic systems.
In direct control, the surgeon operates the slave robot directly through the
master console, leaving no autonomy to the slave robot. Apparently, this
mode has the most surgeon involvement. At the other end, in supervisory
control, the procedure is executed by the robot, while the surgeon (super-
visor) gives high-level directives. Finally, in shared control, the surgeon
and the controller share the manipulator’s command and work together to
carry out a task. Obviously, shared control combines the intelligence of
the surgeon and the robot thus, the robot presents limited autonomy.

Figure 2.1. Commercially available systems organized by clinical application
[14]: (a) CyberKnife M6, Accuray; (b) Neuromate, Renishaw; (c) ROSA ONE,
Zimmer Biomet; (d) Magellan, Hansen Medical; (e) Monarch, Auris Health;
(f) Niobe, Stereotaxis; (g) Renaissance, Mazor Robotics; (h) Mako, Stryker;
(i) Senhance, TransEnterix; (j) da Vinci Xi, Intuitive Surgical; (k) AquaBeam,
PROCEPT BioRobotics; (l) SPORT, Titan Medical; (m) Flex Robotic Sys-
tem, Medrobotics; (n) da Vinci SP, Intuitive Surgical.
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The most common type of surgical robot is the master–slave telesurgery
device, commonly used for MIRS. In an effort to standardize the au-
tonomous capabilities of surgical robots, the International Organization
for Standardization (ISO) and International Electrotechnical Commission
(IEC) (ISO/IEC) defined Level of Autonomy (LoA) based on the human
versus robotic functions of the system. In [15], the authors present a 6-
stage classification scale for surgical robots:

• LoA 0 — No autonomy: the human surgeon is in charge of all
actions. Teleoperated robots or prosthetic devices with motion scal-
ing are included because the output represents the surgeon’s desired
motion.

• LoA 1 — Robot Assistance: the human surgeon directly and
continuously controls the robotic system while the surgical robot
performs teleoperation and low-level functions like tremor filtering
and minor safety features, mechanical guidance or assistance.

• LoA 2 — Task-level autonomy: the surgeon maintains a discrete,
rather than continuous, control of the system, while the system is
trusted to execute specific tasks and sub-tasks for a short time.

• LoA 3 — Conditional autonomy: the human surgeon is involved
with high situation awareness while the robotic system can conduct
large sections of the surgical procedure and make low-level decisions.

• LoA 4 — High-level autonomy: the human surgeon only ap-
proves and has the ability to emergency stop the procedure, while
the robotic system executes complete procedures.

• LoA 5 — Full autonomy: the robot can complete the treatment
planning and execution without a human fallback option.

The following section will present each level of autonomy along with
its enabling technologies and applications. An overview of related works
that contributed to the research presented in this thesis will be provided.
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2.2 Control in robotic surgery

2.2.1 Level 0

There is a vast amount of literature available on level 0 systems. The
dVSS introduced the paradigm of transparent teleoperation. In this sys-
tem, the surgical instruments on the patient’s side replicate the movements
performed by the surgeon on the control interface. However, the system
also includes some algorithmic autonomy, such as tremor suppression and
redundancy resolution. These features do not interfere with the surgeon’s
actions. The bulk of commercially available platforms for robotic surgery
belong to level 0.

2.2.2 Level 1

Level 1 autonomy aims to support the surgeon in executing the surgical
procedure without ever taking control of the action. In the surgical context,
enabling technologies necessary to achieve level 1 can be identified in tool
tracking, eye tracking, and tissue interaction sensing.

Surgical tool tracking is a core component for developing assistive tech-
nologies, such as augmented reality and haptic feedback. In the literature,
most tracking methods used to correct the surgical tool position error are
realized using the robotic system’s sensors or external sensors integration,
but still obtaining limited accuracy. A significant improvement is intro-
duced by image-based approaches, detecting the tool’s position and orien-
tation in the camera reference frame. In [16], the authors presented a sur-
vey about vision-based and markerless surgical tool tracking. The works
can be classified based on the segmentation and tracking methods [17],
most of them exploiting Random Forest (RF) or Convolutional Neural Net-
work (CNN) techniques. In [18], the authors combine a region-based seg-
mentation technique with point-based pose estimation, using prior knowl-
edge of the instrument shape through classification with a RF, besides tem-
poral motion is incorporated with a Kalman filter. Du et al. [19] proposed a
2D tracker based on a Generalized Hough Transform using Scale-Invariant
Feature Transform (SIFT) features, which can both handle complex en-
vironmental changes and recover from tracking failure. They extended
the work in [20], presenting a 2D pose estimation framework for articu-
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lated endoscopic surgical instruments, which involves a fully convolutional
detection-regression network (FCN) and a multi-instrument parsing com-
ponent. Chapter 4 proposes an Extended Kalman Filter (EKF) for tool
tracking without the use of markers coupling vision and kinematics infor-
mation.

Tissue interaction sensing is an important technology for level 1 robot
autonomy. Monitoring the force between a tool and tissue helps prevent
damage and improves surgical skills training. In surgery, tactile informa-
tion is traditionally used for diagnosis, making haptic perception crucial.
Moreover, without haptic feedback, surgeons performing RAS may damage
healthy tissues due to poor force regulation. Force sensors can measure
instrument tip forces, but their size, cost, and environmental requirements
in MIRS limit their use in operating rooms. In the literature [21, 22],
the external wrench is estimated by combining the dVRK dynamic model
with motor currents. However, this approach may be prone to noise in
the measured data, potentially compromising accurate force detection. In
this thesis, specifically in Chapter 3, 4 and 7, a sensorless force estimation
method has been used. The method directly uses dynamic parameters and
thus needs an accurate dynamic model of the robot to be employed, fur-
ther analyzed in Section 2.3 and Chapter 3.

As previously mentioned, level 1 autonomy systems aim to assist the
surgeon during the surgical procedure. Such systems comprise Passive
Assistance technologies that provide the surgeon with additional informa-
tion, including assisted planning before the surgery and augmented reality
during the procedure; and Active Assistance systems, which perform ac-
tions that affect the surgical procedure, such as applying forces to the user
interface or restricting the motion of surgical instruments based on force
sensors, precomputed forbidden areas, etc.

In the interest of safety and due to the unique conditions of the surgical
environment, there are various situations that may require restriction of
the motion of the robot. For instance, it may be necessary to apply a
RCM constraint to robots that don’t mechanically provide it to use them
in surgical applications.

During OS, surgeons heavily rely on tactile and force feedback. How-
ever, MIS severely hampers such feedback and is completely lost in current
MIRS. Shared control techniques based on VF can be an effective way to
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implement active assistance systems, rendering haptic cues to the surgeon.
There are two types of VFs: Forbidden Region Virtual Fixtures (FRVFs)
and Guidance Virtual Fixtures (GVFs). FRVFs are used to simulate bar-
riers around forbidden regions, while GVFs attract the robot end-effector
towards the desired path. VFs are commonly used in teleoperated robots
to allow haptic feedback or guidance and, therefore, actively assist the user
through force rendering at the master side.

Rosenberg was the first author to introduce VF [23]. Since its in-
troduction, shared control techniques have had great success in surgical
applications and for collision and obstacle avoidance. An extensive review
of VF literature can be found in [24]. Moreover, VFs have found ap-
plication in major branches of robotic surgery research, providing haptic
information to the users [25]. Recently, many authors have considered VFs
use in shared control teleoperation, and multiple works were presented to
introduce active constraints in surgical robotics for task and safety accom-
plishments. Selvaggio et al. propose online VFs generation and adaptation
guiding the surgeon during procedures [26]. A large number of works used
VFs implementations to solve a specific sub-task. Chen et al. presented
active constraints to assist in knot tying in robotic laparoscopy [27]. Moc-
cia et al. proposes a vision-based method for robot-aided polyp dissection
where the VF is adapted to the change in the polyp’s shape and the guid-
ance constraint is enforced through an impedance control [28]. Li et al.
presented an online collision avoidance method for real-time interactive
control of a surgical robot in geometrically complex environments, such
as the sinus cavities [29]. Ren et al. [30] proposed dynamic active con-
straints using medical images. The system builds potential fields to reduce
the contact force between the tooltips. Xia et al. [31] reduced the propor-
tional gain in an admittance control law according to the distance between
the tool tip and the nearest obstacle. This allowed the system to avoid
collisions smoothly. Rydén et al. showed a method to create FRVF to pro-
tect an object from undesired contacts, using point cloud streamed by an
RGB-D camera [32]. This method uses depth information and is generally
applicable only for collision avoidance on the tooltips. Wide literature is
available on dynamic VFs, especially dealing with collision avoidance be-
tween the tooltip and the beating heart [33–35]. In [36] and [37] Marinho
et al. propose a vector-field inequalities method to provide dynamic active-
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constraint for collision avoidance of any number of robots and moving ob-
jects sharing the same workspace. Further research work about dynamic
active constraints to prevent tools’ collision has been proposed by Banach
et al. in [38]. The authors proposed FRVF strategy to avoid surgical tool
clashing and, simultaneously, the collision with patient anatomy using the
elastoplastic frictional force control model. Chapters 5 and 4 contribute
to the topic of applying FRVF in different surgical scenarios.

Many different kinds of mechanically constrained RCM manipulators
have been proposed in the literature ( [39, 40] and [41]) since it is gener-
ally considered a safer solution respect to imposing the RCM vis software
control [40]. Nevertheless, the second paradighm constitute a more flexible
solution to the problem, also allowing the use of the same manipulator both
for OS and for MIRS. Different approaches have been adopted to derive a
formalization of the RCM as a kinematic constraint and to actively enforce
it. In particular, Ortmaier et al. [42] proposed an inverse kinematic control
to enforce the motion constraint preventing any force from being exerted
on the trocar during robotic surgery. However, the adoption of position
control in a surgical operation can result in high contact forces in case of
rigid interaction. For this reason, From et al. [43], while addressing the
RCM constraint in task space, introduced Cartesian impedance control to
perform the tasks safely. A step further in enforcing the RCM constraint
was performed in [44], where it is proposed an improved dynamic control
approach that takes advantage of task redundancy for the RCM constraint.
Similarly, in [45] an adaptive decoupling controller exploiting task redun-
dancy was also proposed. In [46] a formalization of the constraint which
explicitly models the translation motion along the link axis is presented.
This is the distinguishing feature with respect to [47].

2.2.3 Level 2

In order to achieve level 2 task autonomy, a robot must be able to free
surgeons from the physical and cognitive burdens associated with complex
and repetitive tasks such as tissue retraction, suturing, and ablation. A
significant amount of literature is available on the automation of suture
tasks, which can significantly reduce the cognitive burden on surgeons.
Autonomous suturing task is generally divided into two stages: inserting
the needle and tying a knot with a surgical thread. Gesture classification
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can enhance the robot’s ability to activate at the right time and minimize
disruption to the surgical workflow. It also enables the robot to follow the
clinician’s work plan, thus providing dedicated support depending on the
phase of the operation [48]. A crucial aspect of these data-driven algo-
rithms is the collection of large datasets, specifically those that record the
execution of surgical procedures by robotic systems, including the kine-
matics, dynamics, and video information recording the movements of the
surgeon. Chapter 7 presents an overview of a dataset collected during the
execution of the surgical suture with the dVRK.

Another investigated application at this level of autonomy is stiffness
mapping: the ability to autonomously estimate the tissue properties by
mechanical contact, which would substitute manual palpation for identify-
ing and dissecting malignant masses. Haptics technology aims to restore
this ability.

2.2.4 Level 3

Level 3 conditional autonomy comprises systems capable of indepen-
dently extracting the necessary parameters required to plan a specific task
from the information available. This level of autonomy is enabled by en-
abling technologies such as tissue modeling, high-level feature tracking,
and advanced imaging. These technologies can be applied in advanced
suturing procedures, where real-time imaging is used to extract the length
of each suture and suturing points automatically. Additionally, they can
be utilized for the autonomous navigation of flexible endoscopic robots in
unstructured environments and for autonomous anastomosis.

2.2.5 Level 4

Level 4 systems have the capability to make and execute clinical deci-
sions automatically while still being monitored by a surgeon. These sys-
tems rely on enabling technologies, such as organs and tumor segmentation
in preoperative images (MRI, CT, and ultrasound), which find applications
in procedures like debridement and tumor resection. In order to success-
fully perform tumor resection, robotic systems must integrate preoperative
and intraoperative imaging modalities (white-light endoscopy, fluoroscopy,
or near-infrared fluorescence) [14]. In recent years, many advancements
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have been made in object detection, and the results have also been proven
in the medical domain, both in pre-operative and intraoperative imagin-
ing [49–51]. The work [52] applies CNN to video for localizing objects in
real-time. With respect to other imaging algorithms, acyolo is very fast
and thus appealing for real-time applications. Many works in literature
use acyolo to detect and localize anatomical structures lesions, tumors,
and other clinically relevant medical objects. In [53], the authors used
acyolo to detect anomalies like esophagitis and polyps during endoscopy.
Authors in [54] propose a modification of the algorithm that combines
acyolo with a Resnet CNN model for disease classification and detection
during capsule endoscopy. A comprehensive review of the application of
You Only Look Once (YOLO) in the medical domain can be found in [55].

2.3 da Vinci Research Kit

Figure 2.2. Da Vinci Research Kit at Interdepartmental Center for Advances
in Robotic Surgery (ICAROS) center.

Initially, the scope of engineering research on the dVSS was limited to
utilizing the system’s data. To address this limitation and enable research
on advanced control techniques, the dVRK was introduced. The dVRK
research platform is based on the dVSS, developed and distributed by
Intuitive Surgical Inc®. It comprises a set of first-generation da Vinci
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components that can be utilized to construct a telerobotics platform.
The full platform includes the surgeon’s console and the patient-side

console. The surgeon’s console presents a stereo viewer that shows the
surgical scene thanks to an Endoscope Camera Manipulator (ECM) with
4 DOFs at the patient’s side. Furthermore, the surge on’s console includes
two Master Tool Manipulators (MTMs), each with eight DOFs, enabling
natural and dexterous hand manipulation and a foot-pedal tray. On the
patient’s side, the two PSMs and an ECM are controlled by the MTMs
with coordinated foot-pedal movements. In this setup, the dVRK slave
manipulators (PSMs) are integrated into a Setup Joints (SUJ), an articu-
lated structure comprising non-actuated arms, as shown in Figure 2.3. The
feature of the SUJ is that control over the joints is achieved by employing
brakes, allowing precise control over the robot’s movements. Additionally,
the angular position of the joints can be accurately determined by utilizing
potentiometers.

Figure 2.3. SUJ arm kinematics.

The interface between the two consoles is based on custom hardware
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consisting of motor controllers, coupled with Field Programmable Gate Ar-
rays (FPGAs) and connected to a PC running the control loops [56] and
provides full access to all levels of control through open-source electronics
and software. In Figure 2.2, the dVRK, present at Interdepartmental Cen-
ter for Advances in Robotic Surgery (ICAROS) of the University of Naples
Federico II, is shown. The open controller developed by the Johns Hopkins
University LCSR and Worcester Polytechnic Institute (WPI) AIM Lab [57]
permits complete control of the dVRK robotic arms with Robot Operating
System (ROS) framework. The controller allows position, velocity and cur-
rent control, allowing for advanced techniques such as impedance control,
force control, and bilateral tele-manipulation control to be developed and
tested. Each manipulator arm is powered by one controller box with two
sets of custom electronics boards, where each set consists of an IEEE-1394
(FireWire) FPGA control board and a Quad Linear Amplifier (QLA). All
control boxes are daisy chained on an IEEE-1394 bus and connected to
a Linux control computer. The FPGA board m rely gathers sensor data,
transmits them to the control PC, receives motor torque commands from
the PC and latches them to the hardware. All computation, including
servo-level control, occurs on the control PC. The component-based soft-
ware system is based on the open-source cisst/Surgical Assistant Worksta-
tion (SAW) package. It includes components for low-level I/O, servo-level
control, cartesian mid-level control and teleoperation [58].

In general, the software can be arranged into the following functional
layers: (a) hardware interface (I/O), (b) low-level control (e.g., PID),
(c) high-level control, (d) teleoperation, (e) application. The low-level
control layer consists of a PID joint controller for each manipulator, which
is a general-purpose SAW component configured via an XML file. The
high-level control is provided by two components that are specific for the
da Vinci MTM and PSM. These provide the forward and inverse kinemat-
ics, trajectory generation, and gripper control. The teleoperation layer is
provided by two instances of a general-purpose SAW component, each of
them connecting one MTM to one PSM. Finally, the application layer is
provided by a console application that emulates the master console envi-
ronment of a da Vinci system. Each layer also includes an optional Qt
Widget that can be used to visualize and interact with the corresponding
SAW component.
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2.3.1 dVRK Kinematic and Dynamic Models

The primary goal of the dVRK is to introduce a comprehensive and
inclusive open control architecture. This innovative architecture acts as a
versatile and dynamic platform, poised to facilitate cutting-edge research
in the rapidly evolving context of surgical robotics. By embracing openness
and collaboration, the dVRK not only facilitates researchers but also pro-
motes a vibrant community of experts, engineers, and medical professionals
who are dedicated to advancing the frontiers of surgical technology in en-
abling the development and testing of novel surgical procedures, enhancing
the precision and safety of robotic-assisted surgeries, and ultimately im-
proving patient outcomes [59–61].

The development of an accurate dynamic model is essential for the
advancement of surgical robotics and the creation of innovative control
strategies [62, 63], which can significantly assist surgeons by enabling au-
tonomous or semi-autonomous execution of surgical tasks. A comprehen-
sive understanding of the dynamic parameters of the robot manipulator
is crucial to successfully utilize the dynamic model. Although data-driven
techniques are gaining popularity in robotics research, a dynamic model of
a robotic system remains essential for developing advanced control strate-
gies. Dynamic models provide clear descriptions of a system’s physics and
mechanics, enabling control engineers to understand the system’s behav-
ior and create control algorithms based on fundamental principles. Model-
based control techniques rely on dynamic models to optimize performance,
stability, and safety. By accurately capturing the dynamics of the sys-
tem, control algorithms can account for factors such as friction, inertia,
and external pressures, minimizing potential dangers. Machine learning
approaches can complement model-based control strategies and dynamic
models, improving the theoretical foundation, interpretability, and robust-
ness of robotic control for achieving precise and reliable control of robotic
systems. Several research papers in the literature focused on identifying the
dynamic model of the entire dVRK robotic system. For instance, Fontane
li et al. proposed an extensive method for dynamic identification of the
PSM and MTM arms, utilizing the recursive Newton-Euler approach, as
presented in their work [64]. This approach assesses various factors such
as mass/inertia, centrifugal, Coriolis, and gravity contributions to com-
pute joint torques. However, the method still exhibits a 30% discrepancy
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between those calculated using the identified dynamic model and mea-
sured torques for most joints. In the paper by Sang et al. [21], they used
least-square regression, screw theory, and Lagrange dynamics equations to
describe the dynamics of the PSM. Similarly, Piqué et al. [22] expanded on
Fontanelli’s work [64] by adding driving inertia to the friction model con-
tribution. In contrast, Fischer’s research [65] stands out from other studies
by providing a fully open-source solution for dynamic model identification.
This work goes beyond the limitations of a single robotic platform and can
be applied to a wide range of generic robotic systems to a wide range of
generic robotic systems.

ECM arm kinematics

The ECM is a 4-DOF actuated arm, shown in Figure 2.4, which moves
the endoscopic camera about the RCM through revolute and prismatic
joints, combined in an RRPR sequence, where R and P correspond to
revolute and prismatic joints respectively. The axis J1, J2 J3 and J4 all
intersect in one point, modeling the RCM mechanism.

PSM arm kinematics

Each PSM is a 7-DOFs actuated arm, which moves a surgical instru-
ment about a RCM, a fixed fulcrum point that is invariant to the configu-
ration of the PSM joints. The PSM ’s DOFs are arranged in the sequential
order of RRPRRRR. Axis J2 is a double parallelogram mechanism, and
axis J3 is a prismatic joint that is used for insertion of the surgical in-
strument. During the translation of the J3, a counterweight attached to
link 2 moves in the negative direction of the movements. The counter-
weight moves at a third of the rate of J3. Axes J4, J5, and J6 form the
non-spherical wrist of the PSM, allowing for additional degrees of freedom.
Axis J7 controls the motion of the gripper jaws. Figure 2.5 shows the PSM
and a representation of the axes detailed above with the acdh frames.

PSM arm dynamics

To compute a symbolic dynamic model for the PSM arm, the Euler-
Lagrange method [66] can be employed. The Lagrangian function, denoted
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Figure 2.4. Schematic of the ECM kinematics with the DH frames.
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Figure 2.5. Schematic of the PSM kinematics with the DH frames.
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as L, is defined as the difference between the kinetic energy (T) and poten-
tial energy (V) of the PSM. This approach considers the PSM manipulator
as an n-DOFs manipulator. By utilizing the Eule -Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , (2.1)

the dynamic model of the system can be derived as follows:

τ = B(q)q̈ +C(q, q̇)q̇ +G(q) + τf + τs . (2.2)

In the given context, subscript i represent the joint numbers, the variables
q, q̇, q̈, and τ , all belonging to the vector space Rn, correspondingly de-
note the joint angles, velocities, accelerations, and torque vectors. The
matrices B(q) and C(q, q̇), both belonging to the vector space Rn×n, de-
note the mass/inertia matrix and the matrix accounting for the centrifugal
and Coriolis effects, respectively. Additionally, G(q), an element of Rn,
represents the vector associated with gravitational forces. The elements
τf , τs ∈ Rn represent the joint friction and the stiffness torque vector
respectively and provide additional torques to establish a comprehensive
dynamic model.

In [67], the authors computed the dynamic model of the PSM arm
using the recursive Newton-Euler approach, suitably modified to include
the dynamic effects of the counterweight used to balance the motion of
the instrument along the prismatic joint and the links of the double par-
allelogram mechanism. The dynamic model allows computing the joint
torques τPSM ∈ Rn, taking into account the inertia, Coriolis, centrifugal
and gravity generalized forces. The contributions due to joint friction and
elastic forces acting on some of the joints can be added separately:

τPSM = τ + τf + τs . (2.3)

The torque τf is the friction contribution and it was set to

τf = Fvq̇ + Fssgn(q̇) , (2.4)

where Fs = diag {Fs1, ..Fs6} and Fv = diag {Fv1, ..Fv4,Fvl} represent the
static friction and viscous friction coefficients matrices both belonging to
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the vector space Rn×n, and Fvl ∈ R2×2 models the friction of the last two
joints, that are coupled.
The elastic contribution τs models the elastic forces acting on some joints.
In particular, for joints 1 and 2, the elasticity is created by the power
cables, while an elastic torque produced by a torsional spring is present on
joint 4. These torques tend to bring back the joints to their zero angular
positions and can be modeled as:

τs = Kq , (2.5)

with K = diag {Ke1,Ke2, 0,Ke4, 0, 0}.
Finally, the mass and inertia properties have been neglected for the last
three links, and the corresponding parameters have been set to zero.

MTM arm kinematics

The two MTMs are used to remotely control the two PSMs and the
ECM. Both MTMs are almost identical except for their wrists, which are
mirrored. Each MTM has eight DOF, with the last not being actuated
by a motor and used to control the gripper of the instrument, enabling
the user to open and close it. The overall structure may rotate about the
vertical axis J1. The two actuated join s of the parallelogram are those
about axes J2 and J3. The axes J4, J5 J6 and J7 intersect in the same
point and correspond to revolute joints. Figure 2.6 shows the MTM with
the DH frames.

MTM arm dynamics

The computation of the dynamic model of the MTM arm, as for the
PSM arm, can be performed using the recursive Newton-Euler approach.
The version of the algorithm for closed kinematic chains must be modified
to include the parallelogram mechanism. The algorithm allows calculating
ing the joint torques τMTM ∈ Rn, taking into account the inertia, Coriolis,
centrifugal and gravity torques. The contributions due to joint friction and
elastic torques acting on some of the joints are added separately:

τMTM = τ + τf + τs . (2.6)
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Figure 2.6. Schematic of the MTM kinematics with the DH frames.

The friction contribution τf has been set as the sum of viscous and static
friction, as in (2.4), with Fs and Fv set as diagonal matrices. The torque
τs, set as in (2.5) with diagonal Ke, models the elastic torques acting
on joint 1, due to the power cables, and on joints 4, 5 and 6, caused by
torsional springs.

2.4 Kuka LBR Med

Medical robotics applications in research often use standard commer-
cially available industrial robots for their quality and accuracy. Neverthe-
less, these systems have to meet the requirements of a variety of domains
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and tasks, and thus, they usually provide large workspaces and payloads.
In recent years, KUKA released a new lightweight designed for safe

physical human-robot interaction, such as KUKA LBR. The LBR Med
is a highly efficient and versatile robot that can perform a wide range of
tasks in the healthcare industry, such as diagnostics, treatment, and sur-
gical interventions. Its seven-axis lightweight design makes it flexible and
easy to integrate into various medical products. This robot is known for
its precision and repeatability without requiring additional devices for cal-
ibration. It is equipped with an extensive safety structure that includes
force/torque sensor systems, single fault safety, safety interfaces, and con-
figurable safety events. Additionally, the LBR Med is based on the KUKA
LBR iiwa robot and has redundant integrated torque sensors, making it
sensitive to external influences and capable of safe collision detection.

The KUKA LBR Med R800 robot is provided with seven rotational
joints with torque sensors for each joint. The modified Denavi-Hartenberg
(MDH) link frames are shown in 2.7, where the KUKA Med robot is shown
at zero joint position. The MDH Kinematic parameters are listed in [68].
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(a) (b)

Figure 2.7. Schematic of the Kuka Med kinematics with the MDH frames.



Chapter 3
da Vinci Research Kit Patient
Side Manipulator Dynamic
Model using Augmented
Lagrangian Particle Swarm
Optimization

This chapter addresses the problem of the dynamic model of the PSM,
starting from the works cited in the literature and the general formulation
already presented in Section 2.3. The dynamic model has been modified
to take into account a novel friction model definition and computation.
The ALPSO algorithm has been utilized to identify the dynamic param-
eters with a restricted optimization method with physical consistency. A
model-based sensorless force estimation method was used to test the dy-
namic model. Sections 3.2, 3.3 and 3.4 present the methods used for the
identification of the dynamical parameters. In Section 3.5, the experimen-
tal evaluation is presented.
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3.1 Introduction

The dVSS, developed by Intuitive Surgical Inc. in Sunnyvale, CA, is
recognized as the leading system for MIRS treatments. It offers significant
advantages over traditional surgical equipment, revolutionizing the field of
robotic surgery [61].

In surgical robotics, the accurate characterization of the dynamic model
is a fundamental requirement. This precise understanding of the model is
essential as it lays the foundation for developing and implementing ro-
bust control algorithms, optimizing the overall performance and efficiency
of robotic systems in surgical environments, and effectively handling the
often unpredictable dynamics of the robot. It is crucial in enabling the
precise control of the robot’s movements and ensuring the smooth, effi-
cient, and accurate execution of complex surgical tasks, which are often
characterized by their need for high precision and reliability. Furthermore,
the comprehensive understanding of the dynamic model allows researchers
and engineers to design and implement control strategies that take into
account the robot’s interactions with the dynamic and unstructured surgi-
cal environment, compensating for external forces and disturbances. Such
strategies are vital in maintaining the precision and efficacy of the robot’s
tasks, which directly impacts the success of surgical procedures.

Dynamic parameter identification is crucial in designing control algo-
rithms for surgical robotics. Traditionally, this has been achieved by us-
ing linear regression methods that rely on the linear nature of the robot
model. The model comprises specific equations that relate to a particular
set of dynamic parameters. Accurate estimation and integration of these
parameters result in a robust dynamic model that can be used for design-
ing advanced control algorithms that ensure the safety of surgical robots.
These algorithms consider the dynamic properties of the robot and its in-
teraction with the environment, resulting in more precise and responsive
control. Integrating these algorithms in surgical robotics reduces the risk
of unintended movements and enables smoother and more controlled mo-
tions. [69,70].

Despite significant progress in developing the dynamic model for the
dVRK, there are still challenges to overcome, especially regarding fric-
tion effects. Most studies assume that the dynamic parameters for the
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robot joints are linear, which does not fully capture the complexities of
the dVRK’s cable-driven structure. Nonlinear and undefined elastic ef-
fects caused by the cables can impact the accuracy and reliability of the
dynamic model, which can affect the performance of control algorithms
used in surgical robotics. It is an ongoing research challenge to address
these issues and improve the dynamic modeling of the dVRK to enhance
the overall performance and safety of the system.

To ensure physical consistency in robotic systems, in all of the ap-
proaches cited in Section 2.3, constrained optimization methods such as
Linear Matrix Inequality (LMI) are used. These techniques guarantee
optimal solutions while preserving the necessary physical features of the
system through semidefinite programming [71]. However, using LMI can
lead to conservative solutions, resulting in suboptimal performance due to
overestimating the constraints. Additionally, satisfying LMIs constraints
for physical consistency can be computationally expensive, especially for
high-dimensional models such as surgical platforms, and may not fully
account for all aspects of physical consistency, such as modeling uncer-
tainties or nonlinear effects. Therefore, it is essential to carefully weigh
the trade-offs and consider alternative options when using LMIs for phys-
ical consistency in dynamic robot models.

The ALPSO method can help overcome some of the drawbacks of LMIs
methods to improve physical consistency [72]. It is an approach for solving
optimization issues with constraints, such as physical consistency require-
ments in dynamic robotics models. ALPSO combines the benefits of Aug-
mented Lagrangian techniques and Particle Swarm Optimization (PSO)
to find optimal solutions that fulfill the stated constraints. The perfor-
mance and accuracy of the dynamic model can be improved by defining
the optimization problem with ALPSO to search for solutions that are less
conservative than those provided by LMIs. ALPSO can handle non-linear
constraints, making it suitable for capturing advanced physical consistency
needs.

This work introduces a new and comprehensive dynamic model for
the PSM arm of the dVRK robot. In contrast to previous research, the
proposed model includes a detailed static friction model that covers static,
Coulomb, and viscous friction terms. Moreover, it accounts for the Stribeck
effect, which is most observable at low speeds [73]. A significant innovation
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is the adoption of an arctangent function to ensure the model’s continuity
around zero velocity, which effectively addresses significant issues caused by
friction effects in the cable-driven structure of the dVRK dynamic model.
The study employs ALPSO strategy to address constrained optimization
problems and uses a superposition method to estimate friction, which dif-
fers from conventional optimization methods for parameter identification.
The proposed model’s validity is confirmed through a force estimation ap-
proach, which enables the computation of contact forces between the PSM
and surrounding tissues. This force estimation method directly employs
dynamic parameters and serves as a validation technique.

The primary goal of this proposed dynamic model is to establish a ro-
bust foundation for developing and implementing advanced control tech-
niques on the dVRK robot. By accurately capturing the robot’s dynamic
behavior and characteristics, this model serves as a strong basis for de-
veloping and optimizing control algorithms that can enhance the dVRK
system’s performance, accuracy, and autonomy.

3.2 Friction Model of the PSM

In section 2.3 a comprehensive overview of the dVRK kinematic and
dynamic model in literature is presented. The DH parameters correspond-
ing to the reference frames in Figure 3.1 are provided in Table 3.1. These
parameters describe the kinematic relationships between the PSM’s joints
and reference frames.

As stated above, the proposed work contributed to innovating the for-
mulation of the friction model for the dVRK PSM with respect to the for-
mulation presented in (2.4). Due to the relatively slow movements of the
PSM in comparison to other robotic manipulators, a comprehensive clas-
sical friction model is used. This model takes into account the Striebeck
effect that occurs at low velocities. An arctangent function is included to
ensure smooth transitions around the zero-velocity region. The final result
is a continuous friction model function that can be expressed using the
following equation:

τf =
2

π
arctan(cq̇)

((
Fc + (Fs − Fc)e

−|q̇|/q̇s
)
+ Fvq̇

)
. (3.1)
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Figure 3.1. Kinematics of the PSM in the dVRK robotic system.

This formulation takes into account predefined linearity and Striebeck
velocity constants represented by c and q̇s respectively. The terms Fs, Fc,
and Fv represent the static friction coefficient, the Coulomb friction coef-
ficient, and the viscous friction coefficient. Incorporating the friction (3.1)
in the model (2.2) allows the PSM arm’s dynamics to more accurately ac-
count for friction, which contributes to improved control and performance.
This results in smoother and more precise motion during surgical proce-
dures.
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Table 3.1. The DH parameters describe the kinematic properties of the
dVRK’s PSM arm.

joint type prev succ ai αi di θi

1 R — 2 0 π/2 0 q1 + π/2

2 R 1 2v,c 0 −π/2 0 q−π/2

2v R 2 21 l2v 0 0 π/2

21 R 2v 22 h21 0 0 −q2 + π/2

22 R 21 3 l22 0 0 q2
3 P 22 4 l3 −π/2 q3 − h3 0

4 R 3 5 0 0 h4 q4
5 R 4 6,7 0 π/2 0 q5 + π/2

6 R 5 — h5 π/2 0 q6
7 R 5 — h5 π/2 0 q7
c P 2 — 0 −π/2 q3/3 0

3.3 PSM Dynamic Parameters Identification

This section outlines the methodology employed for defining the dy-
namic model of the PSM. It describes the approach of formulating a
constrained optimization problem to identify feasible parameters and in-
troduces a proposed technique for estimating friction. The combination of
these methods enables a comprehensive characterization of the PSM’s dy-
namics, ensuring accurate modeling and enhanced performance in surgical
applications.

3.3.1 Dynamic Modeling of the PSM

The dynamic model of a rigid robot exhibits linear behavior with re-
spect to various dynamic parameters such as inertia, mass distribution, and
friction. These parameters play a crucial role in determining the robot’s
response and behavior during operation. The aforementioned parameters
can be suitably combined to create a set of barycentric parameters, which
encapsulate the essential characteristics of the robot’s dynamics. In a more
extensive context, when condensing the equations governing the PSM as
a manipulator with n-DOFs into a compact set of linear equations, the
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dynamic model can be represented as follows:

τ = Y (q, q̇, q̈)β . (3.2)

The matrix Y ∈ Rn×p serves as a regression matrix, dependent on
the joint positions, velocities, and accelerations. Meanwhile, the unknown
vector β ∈ Rp comprises the dynamic parameters, encompassing a total
of p elements. The suitable parameter vector β contains the masses (mi),
center of masses location (li : [lxi , l

y
i , l

z
i ]), inertia parameters of the links

((Ixxi , Ixyi , Ixzi , Iyyi , Iyzi , Izzi), friction coefficients (Fsi , Fci , Fvi) and stiff-
ness coefficients (Ki) of the dynamic parameters of the link i. In total,
each robot link involves 16 parameters that require identification. Within
the set of dynamic parameters, some parameters do not show themselves
in the dynamic model due to the mechanical structure of the manipulator
and therefore unidentifiable [74]. To address this issue, numerical decom-
position methods can be employed to determine an identifiable minimum
subset of dynamic parameters, leading to the following outcome:

τ = Yr(q, q̇, q̈)βr , (3.3)

where Yr ∈ Rn×r is the new reduced regression matrix with and βr is
the identifiable minimum set of dynamic parameter with dimension r < p.
All identified dynamical parameters must be physically feasible values to
define the consistent dynamical behaviour of the robot. In order to obtain
physically consistent parameters, some constraints should be defined. For
the generic link Li, the conditions that guarantee the physical feasibility
of the inertial parameters are possible with the positive mass and inertia
tensor parameters that are 0 < mi, 0 < Ii. The eigenvalues of the inertia
tensors (σx, σy, σz) must adhere to the conditions of the triangle inequality,
namely, σx + σy > σz, σx + σz > σy, and σy + σz > σx, as in [75]. The
notations llbi and lubi denote the lower and upper bounds, respectively, as-
sociated with the variable li. It is crucial to ensure that the center of mass
lies within the feasible convex hull, satisfying the conditions mil

lb
i < li

and mil
ub
i > li, as discussed in [76]. Additionally, the stiffness coefficients

Ki must be positive definite, and the friction model coefficients have both
upper and lower bounds. The PSM is manipulated using excitation tra-
jectories, to be further detailed in Section 3.3.4, for data collection in the
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identification process. During the motion of the PSM, the joint angular
positions, velocities, accelerations, and torque values are recorded at dis-
crete time intervals, denoted as t = t1, t2, . . . , tm. Equation represented by
(3.3) can be expressed in the following form using the recorded samples:

τm =


τ (t1)
τ (t2)

...
τ (tm)

 =


Yr(q(t1), q̇(t1), q̈(t1))
Yr(q(t2), q̇(t2), q̈(t2))

...
Yr(q(tm), q̇(tm), q̈(tm))

β = Ymβr , (3.4)

where τm and Ym indicate torque vector and regressor matrix respectively.
The following constrained optimization problem is defined based on the
squared residual error, (ϵ = τm − τ ) of measured torque vector τm and
predicted torque vector τ to identify the dynamic parameters:

argmin
βr

||τm − Ymβr||2 βr ∈ D ⊆ Rr

subject to

{
g(βr) = 0, g : Rr → Rme

h(βr) ≤ 0, h : Rr → Rmi

(3.5)

where g(βr) and h(βr) represents the me equality and mi inequality con-
straints respectively and D denotes search space.

3.3.2 Augmented Lagrangian Particle Swarm Algorithm
(ALPSO)

PSO, an intelligent technique based on evolutionary algorithms, has
gained popularity in recent years for solving optimization problems. This
approach offers advantages such as computational efficiency, quick results,
and a random search technique that is not reliant on initial states. The
ALPSO approach, which was proposed in the work of [72], offers a vi-
able solution for tackling constrained optimization problems presented in
(3.5). The methodology entails an expansion of the fundamental PSO algo-
rithm to effectively address nonlinear equality and inequality constraints
in problem-solving. By leveraging the augmented Lagrangian multipli-
ers method, the constrained optimization problem undergoes a systematic
transformation into an unconstrained problem, thereby facilitating the op-
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timization process. Considering the following general constrained objec-
tive:

L(x,λ,γ) = f(x) +

me+mi∑
i=1

λiθi(x) +

me+mi∑
i=1

γiθ
2
i (x) , (3.6)

θi(x) =

{
gi(x), i = 1, . . . ,me,

max
(
hi−me(x),

−λi
2γi

)
, i = me + 1, . . . ,me +mi

(3.7)

where, θ(x) : Rr → Rme+mi is a penalty function, g(x) and h(x) define
nonlinear equality and inequality constraints and λ = [λ1, . . . , λme+mi ]
represent Lagrange multipliers. To address the issue of constraint infea-
sibility, penalty factors γ = [γ1, . . . , γme+mi ] are incorporated in (3.6),
thereby ensuring that the solution to the optimization problem (3.5) cor-
responds to both a stationary point and a minimum of L(x,λ,γ), guar-
anteeing the correctness of the identified parameters. The penalty factors
and Lagrange multipliers are updated for the k + 1th sample with the fol-
lowing equations [77]:

γk+1
i =


2γki , if gi(x

k) > gi(x
k−1) ∧ gi(x

k) > εg
1
2γ

k
i , if gi(x

k) ≤ εg

γki , else

(3.8)

λk+1
i = λk

i + 2γki + θi(x
k) , (3.9)

where εg ≈ 0 represents the tolerance factor. Like classical PSO algorithm
ith particle position and velocity are updated with the following equation
set for the kth iteration;

xk+1
i = xk

i + vk+1
i (3.10)

vk+1
i = wvk

i + c1r
k
1(x

best,k
i − xk

i ) + c2r
k
2(x

globalbest
i − xk

i ) (3.11)

where w represents inertia weight, rk1 and rk2 are the random numbers
to sent the swarm between 0 − 1 and c1, c2 indicate scaling parameters.
Consequently, the solution using the ALPSO method is given by:

xbest,k
i = argmin

xp
i

L(xk
i ,λi,γi), 0 ≤ p ≤ k (3.12)
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xglobal best
j = argmin

xk
j

L(xk
j ,λ

v
j ,γ

v
j ) , ∨j (3.13)

where v and k represent the current iteration of the updating laws and j de-
notes the particle number [72]. A flowchart of the ALPSO algorithm steps
is shown in Figure 3.2. The solutions to this problem can be found numer-
ically using the software tools PYOPT package [78]. It’s worth mentioning

Figure 3.2. Flowchart of the ALPSO algorithm.



3.3. PSM Dynamic Parameters Identification 41

that the presented ALPSO solution offers several advantages over the LMI
approach, such as flexibility for non-linear and complex constraints, global
optimization capabilities, no need for convexity assumptions, robustness
in noisy environments, parallelization support, and fewer restrictions on
problem formulation.

3.3.3 Friction Estimation

The high dimensionality resulting from the large number of robot joints
and the corresponding parameters to be identified poses challenges in ob-
taining feasible parameter solutions within the optimization problem pre-
sented in (3.5). Identifying the dynamic model parameters through the
superposition method can reduce the overwhelming computational load of
the optimization problem and make it easier to obtain feasible parameter
sets. As proposed in [79], the friction model can be separated using the
constant velocity movements for a single joint, further facilitating the pa-
rameter identification process. Since only one axis (axis m) of the PSM is
moving at a constant velocity, the first term B(qq̈) in the robot dynamic
model given by (2.2) becomes zero. The Coriolis force becomes zero and the
centrifugal force does not produce any effect on the moving joint torques.
At the same time, the second term C(q, q̇)q̇ also results in zero and the
remaining dynamical model becomes τi = G(q)+τf (q̇), when moving the
robot with constant velocity in positive (q̇+f ) and negative (q̇−f ) direction:

τi(q
+
f ) = G(q+f ) + τf (q̇

+
f ) ,

τi(q
−
f ) = G(q−f ) + τf (q̇

−
f ) ,

(3.14)

where the gravitation torque G(qf ) remains the same for the same joint
position. Subtracting (3.14), the friction torque for this velocity can be
isolated and calculated as:

τf (q̇f ) =
τi(q

+
f )− τi(q

−
f )

2
. (3.15)

Moving one axis of the PSM at different constant velocities, the resulting
torques in (3.15) give a torque-velocity relationship curve with the sym-
metric negative direction effect.
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3.3.4 Optimal Trajectory Generation

An optimal trajectory that is used for experimentally exciting the robot
joints is an important condition of the accurate, reliable, fast, and efficient
identification of the dynamic model parameters. The excitation trajecto-
ries should be sufficiently rich and must excite all the modelled dynamics
of the robot. In this study, finite Fourier series-based optimal excitation
trajectories are employed. Creating an optimal robot excitation trajectory
necessitates nonlinear optimization considering various constraints, includ-
ing motion limitations in joint space angular position, velocity, accelera-
tion, and task space collision avoidance. Notably, the model parameter
vector β is independent of the joint torque and position measurements,
based on the maximum-likelihood criteria [80]. Consequently, the prob-
lem of generating an optimal trajectory can be defined as minimizing the
condition number of the regression matrix YM [81]. The joint angular po-
sition, velocity, and acceleration trajectories for joint i can be expressed
using the following formulations [82].

qi(t) =

N∑
n=1

an,i
wfn

sin(wfnt)−
bn,i
wfn

cos(wfnt) + q0,i ,

q̇i(t) =

N∑
n=1

an,i cos(wfnt) + bn,i sin(wfnt) ,

q̈i(t) =

N∑
n=1

−an,iwfn sin(wfnt) + bn,iwfn cos(wfnt) ,

(3.16)

where wf defines frequency and N is the harmonics number. The sine and
cosine constants of the sinusoidal functions an,i and bn,i and the initial joint
positions q0,i constitute the 2N + 1 parameters that have to be identified
per joint. The constraints imposed on each joint variable, encompassing
position, velocity, and acceleration, as well as task space position bounds,
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can be mathematically expressed as follows:

qmin,i ≤qi ≤ qmax,i ,

q̇min,i ≤q̇i ≤ q̇max,i ,

q̈min,i ≤q̈i ≤ q̈max,i ,

xmin,i ≤xi ≤ xmax,i .

(3.17)

Here, the subscripts min and max denote the minimum and maximum
values of the respective variables:

qmin,i ≤qi ≤ qmax,i , q̇min,i ≤ q̇i ≤ q̇max,i ,

q̈min,i ≤q̈i ≤ q̈max,i , xmin,i ≤ xi ≤ xmax,i .
(3.18)

3.4 External Force Estimation

Sensorless force estimation is vital for validating robot dynamic models
by measuring contact forces without additional force sensors. It ensures
model accuracy in real-world interactions, particularly when external forces
impact the robot’s motion and stability. Cost-effective and less intrusive,
sensorless estimation enhances robot performance and robustness. The
estimated model is validated through sensorless external force estimation
using a nonlinear dynamic observer, as described in [83,84]. This approach
utilizes joint positions and applied torques acquired through a technique
for robot actuator fault detection and isolation. The method relies on the
generalized momentum of the robot to calculate a residual vector, enabling
accurate force estimation without the need for additional sensors. The
identified dynamic model can be expressed as:

B(q)q̈ +C(q, q̇)q̇ +G(q) = τ + τext . (3.19)

Here, τ ∈ Rn denotes the measured torque vector, while τext = JT (q)Fc

represents external torques resulting from contact forces Fc. The residual
vector denoted as r, is described as:

r = KI

(
B(q)q̇ −

∫ t

0

(
τ +CT (q, q̇)q̇ −G(q) + r

)
dσ

)
, (3.20)
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where KI represents a diagonal and positive definite gain matrix. The
dynamic evolution of r is given by ṙ = KI(τext−r). When the gain matrix
is sufficiently large, r ≃ τext, where τext denotes the external torque.
Consequently, the external force can be estimated as F̂c =

(
JT (q)

)∗
r,

where
(
JT (q)

)∗ represents the pseudo-inverse matrix of the transposed
Jacobian matrix of the robot.

3.5 Experimental Evaluation

The experimental setup in this study involves using the dVRK robotic
platform located at the ICAROS Center of Università degli Studi di Napoli
Federico II. This section presents dynamic model parameter identification,
model validation, and evaluation of external force estimation.

3.5.1 Parameter Identification and Model Validation

During the initial phase of the study, optimal excitation trajectory pa-
rameters are identified through the resolution of a constrained nonlinear
optimization problem using the ALPSO algorithm, as detailed in Section
3.3.4. Figure 3.3 visually depicts the generated reference values for the
joint position, velocity, and acceleration of the PSM throughout the iden-
tification process. These carefully designed trajectories play a crucial role
in efficiently collecting data for parameter identification and model vali-
dation, ensuring accurate and reliable results for the subsequent stages of
the study.

In the second phase, the focus shifts to identifying the friction torque
of each PSM joint. To achieve this, the joints are individually moved along
different constant velocity trajectories. The constant velocities are exper-
imentally obtained by implementing the trapezoidal velocity curve. This
approach allows for the isolation and accurate estimation of the friction
torque for each joint, providing valuable insights into the frictional behav-
ior of the robot’s mechanisms. The collected data from these experiments
form an essential part of the dynamic model parameter identification pro-
cess, enabling the accurate representation of friction effects in the proposed
model.

The average joint torque at constant velocity defines one point on the
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Figure 3.3. Excitation trajectories for the training data.

torque-velocity curve. In Figure 3.4, a comparison between the experi-
mental and estimated friction torque-velocity curves of the PSM joints is
depicted. The agreement between the curves validates the accuracy of the
proposed dynamic model in capturing the robot joints’ friction behavior.

In the third phase, all PSM joints are simultaneously moved using
optimal excitation trajectories, and torque and angular motion information
are recorded at each time step. The friction joint torques are subtracted
from the feedback torque to apply the superposition method. By solving
(3.5) using the ALPSO algorithm, a suitable set of dynamic parameters
is identified. The measured and computed torques for the identification
of the PSM are compared in Figure 3.5. The close alignment between
the two demonstrates the effectiveness of the proposed dynamic model in
accurately capturing the robot’s dynamic behavior.



46
Chapter 3. da Vinci Research Kit Patient Side Manipulator Dynamic Model using

Augmented Lagrangian Particle Swarm Optimization

The validity of the estimated parameters is confirmed by comparing
the measured torques with those computed using the identified dynamic
model while following the test trajectory. The test trajectories are gen-
erated using the same methodology as the training trajectories and are
visually represented in Figure 3.6. These test trajectories are also applied
to existing PSM models by Fontanelli [64] and Wang [65] to assess the
model’s performance. The comparison between the measured and com-
puted torques for the PSM is shown in Figure 3.7, demonstrating a close
agreement between the two, thereby validating the accuracy of the pro-
posed dynamic model.

The evaluation of the identification process is assessed by computing
the relative Root Mean Square Error (RMSE) between the predicted joint
torques, denoted as τ , and the corresponding measured torques, denoted
as τm. This evaluation metric is given by:

ϵ =
||τm − τ ||2

||τ ||2
. (3.21)

Table 3.2 shows the comparison between the proposed model and the
existing models for the test trajectory. The proposed model performs an
average of %12 and %13.2 less relative prediction errors from Wang and
Fontanelli’s model, respectively, achieving better results.

Table 3.2. Relative joint torque errors comparison (N)(ϵ) on the test trajec-
tory with the Wang’s model (W), Fontanelli’s model (F).

joint 1 2 3 4 5 6 7

W 0.124 0.246 0.329 0.421 0.658 0.426 0.852

F 0.142 0.259 0.327 0.481 0.716 0.382 0.828

N 0.089 0.241 0.295 0.299 0.542 0.316 0.434

The examination of Figures 3.4 and 3.7 reveals that the proportion
of friction torques impacting the first three joints relative to the overall
joint torque is lower compared to the remaining joints. Compared to other
models, the reduction of the torque errors for joints 1, 2 and 3 is less
than that for the other joints because friction torque is not dominant at
these joints. These findings underscore the significance of investigating the
friction model independently within the overall model.
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Figure 3.4. Measured and predicted friction torque/velocity curve.
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Figure 3.5. Measured and predicted torques on the training trajectory.

3.5.2 External Force Estimation Evaluation

The evaluation phase encompasses two distinct sessions, each compris-
ing three tests to assess the performance of the proposed force estimation
method. In the first session (Autonomous tests), the PSM operates au-
tonomously, following predefined operational space trajectories designed
to interact with a reference force sensor (ATI NANO 17 F/T Sensor) uti-
lized as the ground truth for force measurements. These trajectories guide
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Figure 3.6. Excitation trajectories for the test data.

the PSM along the Cartesian axes (x, y, z) toward the reference force
sensor, enabling force estimation comparisons. The robot’s end-effector
aligns with the corresponding axis of the reference force sensor during the
tests, ensuring accurate force readings. In the second session (Teleopera-
tion tests), a human operator takes control of the PSM in teleoperation
mode. The operator manually commands the robot’s motion along the
three Cartesian axes (x, y, z) while monitoring the force estimations. This
session evaluates the force estimation method’s performance in real-time
teleoperation scenarios, where the human operator’s input influences the
force measurements. The experiments in both sessions aim to validate the
effectiveness and accuracy of the PSM dynamic model in different opera-
tional scenarios.

Figure 3.9 demonstrates the comparison between the estimated force
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Figure 3.7. Measured and predicted torques on the test trajectory, compared
to Wang’s model (W) and Fontanelli’s model (F).

components (x, y, z), obtained using the proposed residual method, and
the corresponding components of the ATI Sensor during the Autonomous
tests. In each test, the PSM reaches the ATI Sensor and exerts a force
upon it. The estimated forces are compared to the measured ground truth
forces, yielding Mean Absolute Errors of 0.0841 N along the x-axis and
0.0709 N and 0.0350 N along the z-axis.

Additionally, Figure 3.10 illustrates the comparison between the esti-



3.5. Experimental Evaluation 51

(a) x-axis. (b) y-axis. (c) z-axis.

Figure 3.8. PSM end-effector interacts with the ATI NANO 17 F/T Sensor
along the each axis.

mated force components (x, y, z) derived from the residual method and
the corresponding components of the ATI Sensor during the teleoperation
movements test. In each test, the human operator touches the ATI Sensor
four times while manipulating the PSM. Similar to the previous session,
the estimated force components are compared to the measured values, re-
sulting in Mean Absolute Errors of 0.7087 N along the x-axis and 0.6501
N and 0.05 N along the z-axis.

In both experimental sessions, improved force estimation is observed
along the z-axis, which corresponds to the insertion axis of the PSM during
interaction with the surrounding environment. This phenomenon can be
attributed to the prismatic joint movement, which exerts a more significant
influence on the insertion force. Conversely, the other two force compo-
nents exhibit less accurate reconstruction due to factors such as friction and
tendon elasticity of the surgical tools, which are challenging to model and
identify, as discussed earlier in this chapter. The improved force estimation
results, particularly along the z-axis, can be attributed to the accuracy of
the dynamic model and the successful identification of dynamic param-
eters. The comprehensive model, incorporating the novel friction model
and other key parameters, captures the robot’s dynamics more accurately.
This enables more reliable force estimation during interactions with the
environment. Although challenges remain in reconstructing the x and y
force components, the overall success underscores the importance of a well-
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Figure 3.9. Measured and estimated force in the autonomous tests: the red
lines represent the estimated residual forces, while the blue lines define the
measured ATI forces.

defined dynamic model and advanced parameter identification techniques
in enhancing force-sensing capabilities in robotic surgical systems.

3.6 Conclusion

This chapter presents a novel and comprehensive dynamic model for
the PSM arm of the dVRK robot. One of the key objectives is to ensure
feasible parameter identification, which is critical for achieving accurate
and reliable control of the robot. In addition, the study aims to improve
friction model usage in the dynamic modeling process, as friction plays a
crucial role in the performance and behavior of the robot. To achieve this,
the dynamic parameters of the PSM are identified in two stages using the
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Figure 3.10. Measured and estimated force in the teleoperation tests: the
red lines represent the estimated residual forces, while the blue lines define the
measured ATI forces.

superposition method. The first stage focuses on determining the friction
model parameters, which are vital for accurate torque prediction and con-
trol. The second stage deals with the identification of the remaining model
parameters, such as inertia and mass distribution, which collectively form
the barycentric parameters of the manipulator. Validation tests are con-
ducted to assess the performance of the proposed dynamic model. The
tests involve comparing the predicted torques obtained from the proposed
model with the actual measured torques during the execution of a prede-
fined test trajectory. The results demonstrate a significant improvement,
with a reduction of approximately ∼ %12 in the RMSE relative error for
all joints when compared to the existing model in the literature.

Furthermore, the proposed dynamic model is tested using an external
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force estimation method. Two different evaluation sessions are considered:
autonomous mode, where the robot operates independently, and teleop-
eration mode, where the robot is controlled by a human operator. The
experimental results show promising outcomes in dynamic model valida-
tion. The precise dynamic model enhances the reliability of force esti-
mation during interactions with the environment. Notably, the model’s
capability to account for the prismatic joint movement significantly im-
proves force estimation along the z-axis during insertion. While challenges
persist in accurately reconstructing the x and y force components due to
friction and tendon elasticity of surgical tools, the overall success of the
force estimation results is largely attributed to the robust dynamic model
and successful identification of dynamic parameters.



Chapter 4
Vision-based Dynamic Virtual
Fixtures for Tools Collision
Avoidance

In RAS, during the execution of typical bimanual procedures such as
dissection, surgical tools can collide and create serious damage to the robot
or tissues. The dVSS is one of the most advanced and certainly the most
widespread robotic platforms dedicated to MIS. Although the procedures
performed by da Vinci-like surgical robots are teleoperated, potential col-
lisions between surgical tools are a very sensitive issue declared by sur-
geons. Shared control techniques based on VF can effectively help the
surgeon prevent tool collision. This chapter presents a surgical tools col-
lision avoidance method that uses FRVF. Tool clashing is avoided by
rendering a repulsive force to the surgeon. To ensure the correct definition
of the VF, a marker-less tool tracking method using deep neural network
architecture for tool segmentation is adopted. The use of direct kinematics
for tool collision avoidance is affected by tool position error introduced by
robot component elasticity during tool interaction with the environment.
On the other hand, kinematics information can help in case of camera
obstructions. Therefore, this work proposes an EKF for pose estimation
which ensures a more robust application of VF on the tool, coupling vision
and kinematics information. The method is completely detailed in Section
4.2. The entire pipeline is tested in different tasks using the dVRK system,
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as explained in 4.3.

4.1 Introduction

MIRS has completely changed surgical procedures. Enhanced dexter-
ity, ergonomics, motion scaling, and tremor filtering are well-known ad-
vantages introduced with respect to classical laparoscopy. With the dVSS
the surgeon performs tasks in teleoperation mode using only visual infor-
mation of the surgical scene provided by a 3D stereo viewer. During the
execution of a surgical procedure, two or more tools can come dangerously
close to each other. The surgeon has a very limited vision on the sur-
gical site, which reduces dexterity and increases the cognitive workload,
making the task most difficult to perform. The surgeon’s view may be
insufficient to avoid collisions, which could result in damage to the tools
or surrounding tissue. Experienced surgeons develop strong capabilities to
compensate for the lack of haptic information, recreating the perception of
haptic feedback from visual cues of the surgical scene [85]. However, recent
studies demonstrate different performances in MIRS procedures between
experienced and novice surgeons, suggesting that haptic feedback affects
performances differently based on the operator’s level of experience with
the robot [86]. Actually, haptic feedback could significantly affect the per-
formances of novice surgeons, reducing training duration and improving
the effectiveness of the procedures. A large number of surgical tasks can
benefit from the introduction of collision avoidance techniques. During
robotic polypectomy, one surgical tool has to cut around the polyp while
another tool keeps raising the surface of the polyp [28]. In this procedure,
the surgeon performs a first cutting operation, then lifts the surface of the
polyp and executes another cutting task. Automatic robotic assistance
to avoid collision between the surgical tools can alleviate the surgeon’s
workload during the execution of this task and can allow the surgeon to
focus on following the polyp margins. In procedures requiring tissue re-
moval with the use of electrocautery, the direct coupling that occurs with a
conductor, such as another tool, could burn non-targeted tissue [87]. Colli-
sion between surgical tools in MIRS can be avoided by applying advanced
shared control techniques. In particular, VF can impose collision avoid-
ance by rendering haptic cues to the surgeon. FRVF restrict the motion
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of the robot’s tool tip through a repulsive force rendered to the surgeon.
The dVRK is an open-source mechatronic system, constituted by the first
generation of the dVSS equipped with electronics, firmware, and software
developed on purpose to create an open control architecture. The dVRK
allows testing new control methods, and it is already used to test VF-based
methods [28] [26]. Since dVRK robot joints are driven through cables that
introduce elasticity, backlash and non-linear friction [88], tools position
information obtained through direct kinematics is affected by errors and
thus requires correction. Therefore, to ensure a correct application of the
VF, a method for surgical tool tracking is strictly needed.

4.1.1 Contribution

This work proposes a surgical tool collision-avoidance method in MIRS.
The goal is to improve safety in surgical procedures, enhancing especially
novice surgeon’s abilities. The method is tested on the dVRK. FRVF
are used to avoid surgical tool clashing, by rendering a repulsive force to
the surgeon which is inversely proportional to the distance between tools.
The method includes a marker-less surgical tool tracking technique using
an EKF that couples vision and kinematics information to enhance the
robustness of VF application. Visual information allows to overcome the
large position error that occurs on the dVRK kinematics, especially when
the surgical tools interact with the environment. In contrast, kinematics
data reinforce the method in the presence of visual occlusions. To validate
the method, an extensive study involving human subjects is conducted on
two groups of six surgeons, namely experts and novice surgeons. The goal
is to demonstrate significant improvement in performances caused by the
introduction of force cues. The pipeline of the method is articulated as
follows:

1. Pre-operative calibration and stereo endoscopic image acquisition;

2. Tool segmentation and tooltip pose estimation from vision algorithm;

3. Kinematic and vision data fusion with EKF;

4. VF generation and force rendering.
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4.2 System Description

4.2.1 dVRK Robot

The dVRK robot is composed of two PSMs and an ECM commanded
by two MTMs. Full control of the dVRK robotic arms is possible thanks
to an open controller developed by [89]. To generate force cues, as in [28]
the MTMs are controlled through an impedance controller. The surgical
scene can be seen by the surgeon thanks to an endoscope, including a
stereo camera with a 5 mm baseline. In Figure 4.1, the reference frames
definition is shown. The base frame, Fb1 : (Ob1 − xb1yb1zb1), is positioned
at the PSM1 RCM. Likewise, Fb2 : (Ob2 − xb2yb2zb2) is the base frame
centered in the PSM2 RCM. All the measurements in this work will be
expressed referring to the base frame Fb2 of the PSM2. The frames Fg1 :
(Og1−xg1yg1zg1) and Fg2 : (Og2−xg2yg2zg2) are the grippers frames. The
direct kinematics of the dVRK allows computing the current position of
the tools in the Cartesian space, providing the coordinates of Og1 and Og2

in Fb1 and Fb2 respectively. The reference frames Ft1 : (Ot1 − xt1yt1zt1)
and Ft2 : (Ot2 − xt2yt2zt2) have their origins in the PSM1 and PSM2
tooltips, respectively. The gripper frames Fg1 and Fg2 have the same
orientation as the respective tip frames Ft1 and Ft2 and the origin of the
tip frames are translated of 1 cm along the z-axis of the gripper frames. As
in [28], Zhang stereo camera calibration is performed to define the camera
reference frame Fc : (Oc−xcyczc) and a hand-eye calibration is performed
to find the transformation T b2

c between Fb2 and Fc. During the calibration
process, the tool is placed in ten fixed positions, and the transformation is
computed adopting an absolute orientation formulation [90]. A hand-eye
calibration is performed to find the transformation T b2

b1 between the fixed
frames of each robotic arm.

4.2.2 Tool Segmentation and 3D Reconstruction

The method directly uses laparoscopic images to track the surgical in-
strument. A deep learning solution for instrument semantic segmentation
is employed. It is based on U-Net architecture, which is a fully convolu-
tional neural network composed of a contracting path to capture context
and an expanding path that enables precise localization [91]. The sys-
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Figure 4.1. Experimental setup and frames definition.

tem adopts the U-Net modification proposed in [92], called TernausNet,
which uses pre-trained VGG16 networks as an encoder. The network is
trained using the dataset provided for MICCAI 2017 Endoscopic Vision
Sub-Challenge: Robotic Instrument Segmentation consisting of 8×225-
frame sequences of high-resolution stereo camera images acquired from a
da Vinci Xi surgical system during several different porcine procedures,
with 2 Hz frame rate. The model’s output is an image in which each
pixel is the probability value of belonging to the instrument or background
area. Then, the binary segmentation is obtained, in which all the instru-
ment pixel values are set as 255, and all the background pixel values are
set as 0. The homographic transformation H between the original left
and right images is computed, using SIFT for features detection and Fast
Library for Approximate Nearest Neighbors (FLANN) for matching, as
in [28]. To detect the tooltip on the image plane, the search area range
is reduced by re-projecting the tip kinematic position on the image plane
and by constructing a rectangle centered on the projected point. Then,
the 3D position of the PSM2 tip, expressed in the camera frame Fc, is re-
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constructed by using a triangulation method with direct linear transform.
The tool orientation is computed by solving PnP problem, which allows
computing the orientation of the object from a set of n correspondences
between 3D points and their 2D projections [93]. In this case, the line
of symmetry of the tool is computed, allowing the identification of four
specific points on the line in the image plane and their corresponding 3D
coordinates, thanks to the knowledge of the tool’s geometry. Finally, using
transformation T b2

c , the tooltip position and orientation of PSM2 is found,
expressed in the base frame Fb2. Figure 4.2 shows the results of the tool
pose estimation method.

4.2.3 Surgical Tool Tracking

For the estimation and tracking of the instrument pose, the EKF is
used. Kalman filtering allows combining visual information from the en-
doscope with the robot kinematics [94]. The entire formulation is referred
to PSM2 and the subscript 2 is omitted in this subsection.

The filter provides an estimate of the tool tip pose ζ = [pt, qt]
T , be-

ing pt the true tool position, and qt = [ηt, ϵt]
T its quaternion-based true

orientation in the base frame Fb. The prediction step provides a prelim-
inary estimation of the instrument pose through the linear and angular
velocities of the gripper provided by the manipulator kinematics. Then,
the vision-based estimated pose is used in the filter correction step. The
process dynamics for the state vector ζ is given by:ṗt = vg + S (ωg) rgt + np ,

q̇t =
1

2
Ω (ωg) qt + nq ,

(4.1)

where [vg,ωg]
T are the linear and angular velocity of the gripper in Fb,

S(·) is the skew-symmetric operator, rgt is the position vector of the tooltip
respect to the gripper, n = [np,nq]

T ∼ N (0,N) is the process noise and

Ω (ω) =

[
0 −ωT

ω S (ω)

]
. (4.2)

The error state vector is defined as ζ̃ = [p̃, δθ̃]T . The orientation error δθ̃
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(a) Original frame. (b) Binary mask.

(c) Point identification in the image
plane.

(d) Reference frame definition.

Figure 4.2. Tooltip localization method.

is the 3×1 small-angle approximation vector of the quaternion orientation
error. The vision algorithm computes the 3D pose of the tooltip, so the
measurement model is given by:

y = ζ +m , (4.3)

where m ∼ N (0,M) is the measurement noise. Then:

F =

[
S (ωg) O3

O3 S (ωg)

]
, H =

[
I3 O3

O3 I3

]
, (4.4)
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where F and H are respectively the control and measurement matrix used
in the EKF implementation. The output of the EKF consists in the current
pose of frame of PSM2 with respect to the base frame Fb.

4.2.4 Virtual Fixtures Generation

The collision avoidance between the two tools is ensured by the appli-
cation of a FRVF. To this purpose, the VF is defined as the swept surface
along the tool axis, the forbidden region is around the PSM2. The VF has
a cylindrical shape with a radius that is double the tool radius.

Assuming that the last two joints are kept still, the cylinder axis direc-
tion corresponds to zt2 axis of Ft2 tracked by the EKF. The current pose
of PSM1 is tracked in Fb1 using the dVRK kinematics and then mapped
in Fb2 through the transformation matrix T b2

b1 . The minimum distance be-
tween the PSM1 tooltip position x and the cylindrical FRVF corresponds
to the length of the line segment which joins perpendicularly the point
to the axis minus the radius of the cylinder. A constraint enforcement
method is defined, consisting of the application of a spring-damper-like
force:

fvf (x̃, ˙̃x) = −Kvf x̃−Dvf
˙̃x , (4.5)

where x̃ = xd − x is the displacement between the point xd, belonging to
the constraint geometry having minimum distance from x. The matrices
Kvf and Dvf are properly designed diagonal and positive definite. The
external force is not directly measurable. It is estimated by resorting to a
non-linear dynamic observer [26], [83], and [84]. Finally, the force imposed
by the VF is mapped on the MTM so that it exhibits a repulsive behavior,
and it pulls the robot end-effector away from the forbidden region. The
MTM impedance controller exhibits a closed-loop behavior that can be
described by

M ¨̃x+ D̂ ˙̃x+Kvf x̃ = fh , (4.6)

where D̂ = D+Dvf contains the damping assigned both by the impedance
control and the constraint enforcement method.
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4.3 Experimental Evaluation

The experimental validation is performed on dVRK robot, which is
controlled at the MTM by an impedance controller as described in Section
II-A, with mii = 1.5 and dii = 0, being the (i, i) entries of the matrices
M and D, respectively. The Dvf has been adapted according to the stiff-
ness variation such that dvf,ii = 2

√
miikvf,ii where dvf,ii and kvf,ii are the

diagonal values of the matrices Dvf and Kvf , respectively and kvf = 8
N/m, as in [26]. The dVRK dynamic parameters are identified in [88].
During the experiments, two Endowrist®da Vinci tools are used: curved
scissors and PrograspTM forceps. The kinematics data from the dVRK
are acquired at 200 Hz, while the vision-based system estimated the tool
position at the camera frame rate of 25 Hz. The EKF approach allows
overcoming this limitation, providing tool pose at 200 Hz. The tool seg-
mentation is performed using GPU implementation on an NVIDIA®GTX
1080 Ti to speed up computation.

4.3.1 Tracking Method Evaluation

The proposed tracking method is preliminarily evaluated on a simple
task executed with dVRK robot. The task is planned ad hoc to reduce
the variability introduced by the telemanipulation and, thus, to obtain
a reference target to measure the error. Two specific points, placed on a
phantom tissue at a distance of 15 mm, are recorded offline from kinematic
data by holding the tool steady in the given positions. In this condition,
the position error introduced by the kinematics in the two selected points is
minimized since the tool is fixed and the interaction force with the phan-
tom goes toward zero. After that, a linear path is defined analytically
between the two points to serve as ground truth for the evaluation. The
experiment, conducted to evaluate our tracking method, consists of mov-
ing the tool in teleoperation mode along the defined linear path drawn on
the phantom. The task is performed slowly, with a duration of 12 seconds,
to minimize the error along the linear path introduced by telemanipula-
tion. During the task execution, the surgical tool is tracked using the EKF
method. Then, the estimated pose is compared to the target linear path,
obtaining mean absolute errors of 0.126 ± 0.08mm along the x-axis and
0.02 ± 0.01mm along the y-axis. The results demonstrate the goodness
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of our tracking method. Furthermore, the error obtained just using kine-
matics information has been computed, obtaining mean absolute errors of
0.135± 0.08mm along the x-axis and 0.02± 0.01mm along the y-axis. As
expected, the pose error is similar to the one obtained with our tracking
method because of the absence of interaction with the environment.

4.3.2 Collision Avoidance Evaluation

The collision avoidance strategy is evaluated in two different tasks.
During the first evaluation test, the PSM1 tool is fixed, and the PSM2
is moved by the user in teleoperation mode towards PSM1. The collision
avoidance strategy is applied during the entire duration of the test. Figure
4.3 shows the distance between the two surgical tools, computed consid-
ering the proposed tracking method, and the related haptic force norm
rendered to the user through the master side MTM during the task. The
maximum reached force is 3.2 N.

The second evaluation test consists of a human subject study to show
significant differences in performance caused by the introduction of force
feedback. The study involves 12 subjects divided into two groups, 6 expe-
rienced and 6 novice surgeons, based on self-evaluation about their expe-
rience using dVSS for minimally invasive surgical procedures. The study
is articulated in two experiments using the dVRK robot in teleoperation
mode. Taking inspiration from [87], the test simulates burning tissue with
an electrocautery device. During each test, the subject keeps the PSM1
centered in the middle of a circle with a diameter of 20 mm. Meanwhile,
the PSM2 has to follow the circular path for 270◦ from a definite starting
point, as shown in Figure 4.4. In the first experiment, the subjects perform
the test 5 times moving the surgical tool in free motion. In the second ex-
periment referred to as VF constraint tasks, they perform the same task
5 times with the proposed collision avoidance constraint applied. Each
task has an average execution time of 10 seconds. Each subject is asked
to try the test in advance to become familiar with the task and the dVRK
platform. The minimum distance between the tools is considered a per-
formance parameter and computed using the proposed tracking method.
In the VF constraint test the maximum force felt during the task is also
computed.

Figure 4.5 and Figure 4.6 show the mean values of the minimum dis-
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(a) Distance between surgical tools.

(b) Related estimated force norm.

Figure 4.3. First VF evaluation experiment. Duration: 20 seconds.

tance between tools for novice and expert subjects during free motion and
VF constraint tasks. The error bars represent the standard error of the
means. To demonstrate the statistical relevance of the results, a compar-
ison is made between the mean values of minimum distance through a
statistical unpaired t-test, with a significance level α = 0.05. As presented
in Table 4.1, the test shows statistically significant differences between the
means for all subjects in the novice group. Moreover, it presents an increase
in the minimum distance values of ∼ 10% in collision tests with respect to
free-hand tests. The estimated force norm, rendered to the novice users
through the master side (MTM), during the collision avoidance tasks, has
a mean value of 3.1822 ± 0.5368N . The expert group presents a mean
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Figure 4.4. Two frames of the second VF evaluation experiment: PSM1 tool
holds the center of the circle; PSM2 moves following the circle.

Table 4.1. Maximum force and t-test results on minimum distance for novice
and expert users.

Novice test p FM [N] Expert test p FM [N]
1 1 0.0044 2.4416 1 0 0.1352 3.4527
2 1 0.0127 3.0749 2 0 0.0856 2.8175
3 1 0.0030 3.3411 3 0 0.8286 3.5239
4 1 0.0219 2.8188 4 0 0.8757 2.6180
5 1 0.0206 3.9998 5 0 0.1140 3.0035
6 1 0.0012 3.4170 6 0 1 2.8800

force norm of 3.0493± 0.3629N .
Figure 4.4 shows the repulsive force felt at the MTM when the distance

between PSMs decreases. The method to generate the force is designed to
have small force values so that the surgeon can perceive it slightly. This
is because the purpose is not to interfere with the surgeon’s actions but
to serve as an alarm to remind the presence of the other instrument in
the proximity. Indeed, during the experiments, the maximum value of the
force norm is 3.2 N.

The human subject study results in 4.5 and 4.6 has shown a statistically
significant difference regarding the mean of the minimum distance between
the tools for the novice subjects. The VF test outperformed the free-hand
test of 75%. This result suggests that feeling a haptic force during the task
allows for maintaining a safe distance between the surgical tools. On the
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Figure 4.5. Novice subjects: Mean values of minimum distance between tools
with standard error bars.

Figure 4.6. Expert subjects: Mean values of minimum distance between
tools with standard error bars.

contrary, in the free-hand test, the subject has no force feedback during
the task and could dangerously reduce the distance between the tools. The
maximum reached force is lower than 4N , and it does not create variation
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Figure 4.7. Radar graph of the TLX results on expert users.

in the task performance.

As concerns the expert subjects, the test does not show a statistically
significant difference in the VF constraint task with respect to the free
motion task. Nevertheless, they were asked to compile the NASA-TLX
questionnaire [95] to assess the perceived workload. The results of the
questionnaires shown in Figure 4.7 assess that the VF constrained task is
not mentally, physically and temporally demanding, and the force feed-
back does not negatively affect the performances. On the contrary, it
represents a comfortable reminder of the collision risk that diminishes the
user’s mental workload. The execution of the main task is not affected
by the presence of the VF force since it reaches significant values only
at dangerous distances between the tools. Moreover, the flexibility of the
method allows us to easily tune the VF based on the level of expertise
and confidence of the surgeon. Similar results were obtained for novice
surgeons.



4.4. Conclusion 69

4.4 Conclusion

This chapter introduces a method based on VFs that allows avoiding
surgical tools collision in MIRS. A marker-less algorithm allows estimating
the PSM position and orientation using kinematic and visual information.
The PSM estimated pose is used to generate a FRVF that aims to avoid
collision between the two instruments through a repulsive force felt at the
MTM during the surgical task execution. The proposed strategies are
evaluated through multiple experiments on dVRK, showing good results
in improving novice surgeon’s performance. Furthermore, the use of VF
allows an expert surgeon to better focus on the task, as far as the haptic
force is small enough to suggest that the tools are dangerously close with-
out affecting the performance. Therefore, the method can be considered
effective both in the training stage of novice surgeons and when the level
of expertise increases.





Chapter 5
Remote Center of Motion and
Virtual Fixture Framework for
Human-Robot Interaction

MIRS is characterized by restricted motions of the robotic arm that
moves the tool through the entry point into the patient’s body. To prevent
harm to the patient, the manipulator motion is constrained with respect to
a point known as RCM. The presence of a small incision on the patient’s
body, through which the whole operation is performed, permits less trauma
and faster recovery of the patient. However, the drawbacks arising in
this context are limited vision of the surgical site, reduced dexterity and
increased cognitive workload. VFs have been proven to be an effective way
to enhance safety, preventing damages to tissues by constraining the tool
into a safe region. This chapter presents a control framework for human-
robot interaction in medical application that is characterized by a RCM
constraint, enforced in a manual guidance control framework, in which VFs
enhance safety of the procedure.

5.1 Introduction

MIRS is a growing field of robotics that aims to enhance precision and
dexterity, while reducing invasiveness and overall operation time, resulting
in a faster patient recovery time. During MIRS, surgical tools enter the
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patient’s body through a small incision, creating the kinematic constraint
of the RCM. The RCM constraint can be active or passive. The pas-
sive constraint is maintained mechanically, while the active constraint is
achieved with a software controller, as described in [44]. However, actively
enforcing the constraint represents a cheaper and more flexible solution,
and it allows the employment of a commercial arm in medical applications.

Passive compliant motion control typically involves utilizing either spher-
ical mechanisms or dual-parallelogram structures to implement the RCM
that coincide with the desired pivot point. The AESOP system and the
dVRK are two examples of systems designed specifically for passive motion
control. In [42], Ortmaier et al. implemented a Cartesian control algo-
rithm for the AESOP robot, which incorporates passive joints to prevent
any force from being applied to the trocar. However, actively enforcing
the constraint provides a more flexible solution and enables the use of a
commercial arm in medical applications.

In traditional laparoscopic surgeries, surgical tools are inserted into
the patient’s body through a trocar point. However, there is no control
over the stress caused to the tissues by the movement of the tool during
the operation. Enforcing an RCM on the shaft will reduce the stress on
the tissue, assuring more safety and less post-operative pain. The RCM
constraint is not required only in minimally invasive systems but can also
be used in various surgical and non-surgical applications. One of the ex-
amples is dental implant surgery, where the RCM point can be identified
as the entry point of the osteotomy. Another example is mammography,
where the scanner needs to move along a spiral on a woman’s breast, and
the vertex of the spiral can represent an RCM point.

Moreover, during surgical procedures, it may be necessary for the sur-
gical tool to operate in a limited workspace to avoid touching sensitive or
dangerous areas. In such cases, VFs can be used to restrict the movement
of the robotic arm to specific regions or guide it along a predetermined
path. This can help the operator to perform the procedure more accu-
rately and with less mental effort, ultimately reducing task completion
time.

In light of the two scenarios mentioned earlier, namely the dental im-
plant surgery and the mammography, it is important to consider different
attractive VFs. In the case of oral surgery, a point-like active constraint
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can be used to align the manipulator with the surgical site. On the other
hand, during mammography, the VF needs to be modeled with a spiral
shape, which corresponds to the desired path for the procedure on women.
In order to address both scenarios, a shared control framework will be in-
vestigated.

In this work, a control strategy that ensures both the RCM kine-
matic constraint and repulsive VFs constraint in a human-robot inter-
action framework is implemented, in which the doctor guides the manip-
ulator throughout the surgical application. A compliant behavior is ob-
tained thanks to an impedance control. The theory and implementation
of impedance control of robotics manipulators have been described in de-
tail in Hogan’s work [96] and [97]. The basic idea underlying this control
algorithm is to manage the relationship between the robot’s motion and
external forces, hence reshaping the impedance of the manipulator. There
have been different approaches according to the task to be performed and
the knowledge about the robot’s dynamic model. The control framework
has been validated by considering a minimally invasive surgical scenario.

Sections 5.2.1 and 5.2.2 present the implementation of the RCM and the
proposed approach for manual guidance and VF enforcement respectively.

5.2 Methods

The proposed control framework allows the surgeon to manually guide
the robot while ensuring that the RCM point pRCM ∈ R3 is enforced on
the trocar point, which is a fixed point in the world frame.

5.2.1 RCM Constraint

The kinematic constraint at the RCM has been implemented following
the approach proposed by [46] as it allows direct control over the pene-
tration of the instruments into the patient’s body and requires minimal
knowledge of the trocar geometry.

The RCM is assumed to lie on a shaft attached to the manipulator’s
end effector. The position of the RCM over time is given by:

pRCM = pi + λ(pi+1 − pi) , 0 ≤ λ ≤ 1 (5.1)
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where pi and pi+1 denote the boundaries of the shaft. The dependencies of
the points coordinate from joint variables and time are omitted for brevity.
Differentiating (5.1) and exploiting the differential mapping between the
joint space and the operational space, it is obtained:

ṗRCM = JRCM (q, λ)

[
q̇

λ̇

]
, (5.2)

where JRCM is the Jacobian of the RCM, given by:

JRCM =
[
Ji + λ(Ji+1 − Ji) pi+1 − pi

]
. (5.3)

To satisfy the RCM constraint, it has to be pRCM ≡ PT , where PT is
the trocar point. Therefore ṗRCM = 0.

Indicating with t = f(q) a generic desired task, and considering the
differential kinematics between task and joints velocities, it is possible to
derive the differential kinematics of the extended task which includes the
above mentioned RCM constraint:

ṫEXT =

[
ṫ

03×1

]
=

[
Jt 0nt×1

JRCM

] [
q̇

λ̇

]
= JEXT

[
q̇

λ̇

]
, (5.4)

where nt is the dimension of the task space.
To guarantee exponential decoupled convergence of the extended task

to a desired value, the following kinematic control has been employed:[
q̇

λ̇

]
= J†

EXT

[
Kt 0nt×3

03×nt KRCM

]
et , (5.5)

where et =
[
td − t pT − pRCM

]T is the vector containing the task and
RCM errors.

The chosen formulation considers the fact that the RCM is a three-
dimensional constraint but the modeling of the variation of penetration,
λ̇ in (5.2), adds an extra DOF, which effectively reduces the constraint’s
dimension to 2. Anyhow, the variation of penetration is necessary in many
surgical tasks and must be modeled. In addition, in [47], the equation
of the plane tangent to the body is necessary to compute the jacobian of
the RCM. This assumption is critical in practical applications since this
equation should be determined through a registration procedure prone to
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(a) Kuka LBR Med 7 robot, ATI
Force/Torque sensor and a shaft mounted
mounted on it.

(b) Conical VF.

Figure 5.1. Experimental Setup.

approximations. With the formulation proposed by [46], the computation
of this plane is not required. In (5.5), additional tasks could be considered
and projected into the null-space of the extended jacobian JEXT , thus
determining a hierarchical control structure.

5.2.2 Manual Guidance and Repulsive Virtual Fixture

The manual guidance of the manipulator is obtained by implementing
an admittance control law following the equation:

Mp̈+Dṗ+Kp = f , (5.6)

where f ∈ R3 is the external force, M , D, K ∈ R3×3 are positive definite
matrix, suitably tuned in order to obtain the desired behavior, and p ∈ R3
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is the desired Cartesian position, which corresponds to the desired position
t as in (5.4).

The reference acceleration p̈, velocity ṗ and position p are computed
from the force f by integrating the following expression:

p̈ = M−1 (f −Dṗ−Kp) . (5.7)

In other words, the quantities p̈, ṗ and p represent the desired compli-
ant motion of a virtual body located at tip of the sensor force with mass
M , damping D and stiffness K under the action of the force f [98]. In the
specific application, the parameters are chosen as follows: M = 8 I3 kg,
D = 90 I3 kg/s, K = 03 kg/s2. The above parameters are chosen in such
a way as to guarantee a desired behavior empirically experimented. The
robot should promptly respond to input impulse-like forces by moving in
the desired direction, ensuring smoothness without any oscillations and
with a damping effect. Nevertheless, the parameters can be easily changed
and adapted to modify the behavior depending on the application and the
confidence of the operator.

To limit the movement of the tool so as to remain within a safe vol-
ume of work, a method based on the application of a FRVF has been
proposed. In the following, two geometrically different FRVFs have been
explored: conical and linear. Both geometries can be helpful in multi-
ple scenarios. The former can guide the surgeon during a dissection task,
preventing extra tissue removal. The latter VF, instead, can be helpful
for organ/tissue retraction. In this case, it is more helpful for the doctor
to have an attractive VF that reduces the workload to drag the tissue to
the desired position. The constraint enforcement method is defined as a
spring-damper-like force:

fV F = KV Fd+DV F ḋ , (5.8)

where d = pt − pV F , pt is tool end position (pi+1 in (5.2)), pV F is the
position on the VF with respect to which the distance is computed, KV F

and DV F are constant positive definite diagonal matrices suitably tuned.
The force fV F is summed to the input force f of (5.6), so the second order
control law will be:
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Mp̈+Dṗ+Kp = f − fV F . (5.9)

Conical VF

To confine the tool movement in a small workspace, the VF has been
defined as a circular conical surface of opening angle 2α, with the apex
in the trocar point pT , and suitably oriented axis. For convenience, the
following measures have been considered to be referred with respect to a
trocar frame FT : (OT − xT yT zT ), centered in the trocar point pT , and
with the axis zT correspondent to the axis of the cone, coincident with the
shaft. Figure 5.1b shows the VF definition.

The conical surface is parametrically described respect to frame FT as:

S(v, h) =

h tan(α) cos(v)
h tan(α) sin(v)

−h

 , (5.10)

with v ∈ [0, 2π) and h ∈ [0, H]. Given the end tool position pt, the point
on the VF is computed following the (5.10), where

h = −zt ,

v = θ ,

θ = arctan
yt
xt

.

(5.11)

Differentiating the resulting expression, the following expression is ob-
tained:

ṗV F =


tan(α)

(
zt sin θθ̇ − żt cos(θ)

)
tan(α)

(
zt cos θθ̇ + żt sin(θ)

)
żt

 . (5.12)

Linear VF

If the environment is not too complex, it can be useful to constrain the
surgical tool so that it can only move in a certain safe region, where no
VF force is applied, divided from the forbidden region by a plane. A frame
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FΠ : (OΠ − xΠyΠzΠ) has been associated to the plane Π, with the axis zΠ
orthogonal to the VF plane.

The coordinate of the tool end can be expressed in FΠ as:

Πpt =
ΠTb

bpt . (5.13)

Given the end tool position Πpt, the projected point on the plane is com-
puted as:

ΠpV F =

Πxt
Πyt
0

 , (5.14)

obtaining:

Πp̃V F =Π pt −Π pV F =

 0
0

Πzt

 . (5.15)

5.3 Experiments

The proposed control framework has been validated with a 7-DOFs
Kuka LBR Med 7 robot, dedicated to collaborative applications in medi-
cal scenarios. An ATI Force and Torque sensor has been mounted on the
flange between the end-effector of the robot and the shaft. The weight of
the shaft has been compensated to avoid influencing the robot’s motion.
The experimental setup is shown in Figure 5.1. The performed experi-
ments aim to show the benefits related to the proposed framework. As the
manipulator is hand-guided, the trajectory of the end effector, thus of the
tool, is not the same between different experiments. All the considerations
made are related to the execution of a specific task.

Section 5.3.1 shows the reduction of the stress on tissues at the trocar
point resulting from imposing the RCM constraint in a dissection task.
In Section 5.3.2 two experiments are presented to evaluate the effective-
ness of the VF enforcement: (i) simulation of a dissection task with and
without the constraint enforcement; (ii) evaluation of the magnitude of the
VF force when violating the safe workspace determined by the constraint
surface. In each experiment, only the quantities in the x − y plane have
been considered, as the penetration of the instrument inside the patient’s
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body is allowed as mentioned in Section 5.2.

5.3.1 Stress on the tissue

0 5 10 15 20 25 30 35 40

8 · 10−2

0.1

time [s]

∆
x

[m
]

(a) Without the RCM.

0 10 20 30 40
0

0.5

1

·10−2

time [s]

∆
x

[m
]

(b) With the RCM.

Figure 5.2. Displacement of trocar point when performing a circular path.

Under the assumption of small displacement and linearity, it can be
considered that the stress on tissue at the incision point is proportional to
the displacement of the tool at the trocar point, according to Hooke’s law.
An experiment articulated in two tests is performed to show the stress
reduction on tissues at the trocar point imposing the RCM constraint.
During each test, the user manually guides the end effector along a circular
path with a radius of 3.5 cm. During the first test, the task was performed
by simulating a laparoscopic intervention through an incision point without
any mechanical or software RCM imposition. On the other hand, the
second test is performed while imposing the RCM constraint, following
the proposed method.
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Figure 5.2a shows the displacement of the trocar point when no con-
straint is imposed to enforce an RCM to the manipulator kinematics. This
can be compared to Figure 5.2b, in which the displacement of the same
point is shown when the proposed RCM constraint is imposed. From the
data obtained during these two experiments, the mean value of the dis-
tance is µ = 0.083m when there is no constraint enforcement. This value
is reduced by one order of magnitude to µ = 0.0071m, with the RCM con-
straint enforcement. Moreover, in Figure 5.2a the maximum displacement
is of ∆x = 0.0961m, which falls to ∆x = 0.0128m imposing the RCM
constraint.

5.3.2 Manual Guidance and Virtual Fixture evaluation

To evaluate the effects of the VF constraint in maintaining the tool in
a safe region, two experiments have been performed while still enforcing
the RCM.

In the first experiment, the same task examined in Section 5.3.1 of the
trocar point is considered. The opening angle α of the conical VF, shown
in Figure 5.1b, is chosen to have:

tan(α) =
h

r
, (5.16)

where h and r are shown in Fig 5.1b. Figure 5.3a shows the comparison
between the performed path with and without the VF enforcement. It
can be seen that when the VF is enforced, the tool hardly overcomes the
prescribed safe space. To prove that, the length of the paths taken during
the tests has been computed. When the VF is not applied the average
length of the path computed on four lapses is 0, 2354m, which is reduced
to 0, 2128m when the VF is enforced. However, based on the control
structure, the VF does not affect the satisfaction of the RCM constraint,
as can be seen in Figure 5.3b and from Table 5.1 where the mean and the
standard deviation of the RCM error are reported.

A second experiment has been considered to highlight the effect of the
VF force on the performed movements. The task consists of manually
moving the tool back and forward, exiting the safe region. The results of
this experiment are shown in Figure 5.4. Figure 5.4a shows the applied
force during the manual guidance. In Figure 5.4b the VFs force applied
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Figure 5.3. Manual guidance along a circular path with and without the VF.

on the end effector is shown while the manipulator is moved to obtain the
distance as in Figure 5.4c. Finally, Figure 5.4d shows the movement of the
end-effector during the experiment.
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Table 5.1. Mean and standard deviation of RCM error.

µx µy σx σy

WO VF 6 · 10−4 7 · 10−4 7.4 · 10−3 7.8 · 10−3

With VF −3 · 10−4 7 · 10−4 7 · 10−3 7.2 · 10−3

5.4 Conclusions

In this work, a human-robot interactive framework with a RCM con-
straint has been proposed. A constrained kinematic controller has been
used to guarantee the exponential convergence of the manual guidance
task, with stable satisfaction of the RCM constraint. This approach also
has the advantage of requiring minimal knowledge of the trocar geometry
and allowing direct control of the penetration of the instruments inside the
patient’s body. Also, VF are used to restrict the workspace to a safe region
and help the surgeon perform a desired path. Application to a dissection
task has been proposed to validate the approach.

The results show the effectiveness of constraining the motion at the
RCM, as this reduces the stress on the entry point in the patient’s body
as can be seen in Figure 5.2. The VF enforcement effectively eases the
surgeon in following more precisely the path, as shown in Figure 5.3a, and
constrains the movement into the safe workspace by applying a force that
completely counteracts the one applied by the operator the more the end
effector penetrates in the forbidden region as shown in Figure 5.4.
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(d) Position of the end-effector in the cartesian space.

Figure 5.4. Analysis of forces when the end-effector crosses the VF.





Chapter 6
Localization of the biliary
tract in laparoscopic images

LC is a minimally invasive procedure whereby the gallbladder is re-
moved using laparoscopic techniques. With more than 500,000 cholecys-
tectomies performed per year, great interest has developed in LC. The
significant advantages of LC with respect to traditional cholecystectomies
are the short hospital stay and early return to regular activity. Morbidity
is low, but there is a concern about bile duct injuries. The following chap-
ter introduces and discusses a possible approach to the biliary tract injury
clinical problem during LS, explained in Section 6.2. The goal is to detect
the biliary tract in white-light images acquired during standard surgical
practice. The results are shown in Section 6.3.

6.1 Introduction

One of the most commonly performed surgical procedures in the gas-
trointestinal field is cholecystectomy. It is mostly performed now using LS
when treating cholecystolithiasis, chronic and acute cholecystitis. Since the
introduction of the laparoscopic approach, surgeons have focused on pre-
venting complications. The LC approach shows faster recovery and better
cosmetic results compared to the traditional approach. However, it carries
a higher risk of bile duct injury, which can severely affect the patient’s qual-
ity of life. To mitigate this risk, some measures have been implemented.
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(a) White-light image. (b) Infra-red light with indocyanine
green.

Figure 6.1. Images acquired during cholecystectomy.

One of them implicates the use of near-infrared light for visualization after
injecting a fluorescent dye called Indocyanine Green (ICG) to emphasize
the bile duct visualization during surgery. This technique enables intraop-
erative visualization of the bile duct and helps prevent bile duct injury.

The problem in using ICG is that, while enhancing the bile duct, it
makes it challenging to see all the other anatomical structures, as can be
seen in Figure 6.1 This work aims to address this problem, helping the
surgeon better visualize the biliary tract without the use of ICG. To this
end, a deep-learning algorithm for the localization of the biliary tract from
white-light images acquired during standard surgical practice has been
implemented. This work also includes the construction and annotation of
an image database to train the deep learning algorithm.

This work proposes a deep learning-based algorithm for localization of
the biliary tract during laparoscopic surgical procedures, based on YOLO
localization algorithm. A dataset consisting of videos of standard surgical
practice has been collected and used to train the deep learning algorithm.

6.2 Methods

While image classification is the process of detecting an object in an
image, localization consists of both detecting the presence of the object
and its location in the image. This means that the algorithm outputs
four more parameters to define the bounding box of the detected object,
representing its midpoint coordinates, height and width.
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6.2.1 YOLO

The proposed method directly uses laparoscopic images to localize the
biliary duct. To this end, YOLO, a state-of-the-art convolutional neural
network, has been used [99]. YOLO is a regression-based object detector
that looks at the whole image once to perform the detection. It consists of
a single CNN that simultaneously predicts bounding boxes and their class
probabilities.

YOLO, treats object detection as a regression task, where the detec-
tor directly obtains the coordinates of the bounding boxes and the class
probabilities from the image pixels. Unlike Recurrent Convolutional Neu-
ral Network (R-CNN) or its variants, YOLO examines the image once to
predict object presence and location. It learns only global object represen-
tations, allowing it to detect objects regardless of their position or whether
they are fully or partially visible. Moreover, YOLO can encode contextual
information by processing the entire image during training, leading to fewer
background errors compared to R-CNN or Fast R-CNN. For enhanced ef-
ficiency, YOLO is combined with CNN, exploiting the convolution layer
to predict multiple bounding boxes and their class probabilities simultane-
ously. In addition, YOLO looks at the entire image to encode contextual
information during prediction, and thus, it is extremely fast and found
suitable to detect or localize objects in real time.

However, YOLO has some limitations. It imposes strict constraints on
the bounding box predictions; in fact, each box can only detect one class
of objects. Additionally, the algorithm struggles to detect small objects in
an image. To address these drawbacks, a new version called YOLOv3 has
been introduced.

In this work, the upgraded version of the algorithm, YOLOv3, has
been used. It incorporates several improvements to enhance training effi-
ciency and overall performance. These improvements include multi-scale
predictions, an improved backbone classifier, and additional features. The
backbone network, Darknet-53, is a key enhancement that utilizes residual
connections and brings refinements to the bounding box prediction pro-
cess. It also employs three distinct scales for feature extraction to improve
accuracy. YOLOv3 optimizes bounding box predictions by employing di-
mension clusters as anchor boxes. The model predicts four coordinates
for each box and computes an objectivity score for each using logistic
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regression. In addition, YOLOv3 maintains full image training without
negative mining and incorporates multi-scale training, extensive data aug-
mentation, batch normalization, and other standard methodologies. For
training and testing, it utilizes the Darknet neural network framework.
Historically, YOLO struggled with detecting small objects, but YOLOv3
shows marked improvement in this area, particularly with its multi-scale
predictions. Its performance on medium and large objects is compara-
tively weaker. When comparing accuracy versus speed using the AP50
metric, YOLOv3 demonstrates significant advantages over other detection
systems, notably in terms of speed and effectiveness.

For the training phase, the following parameters were used:

• Batch size: 64,

• Learning rate: 0.001,

• Epochs number: 1748,

• Average loss: 0.18.

The Intersection over Union (IoU) was used as evaluation metrics: IoU
compares the annotated bounding boxes with the bounding boxes pre-
dicted by the network. IoU is an evaluation metric utilized to measure
the accuracy of object detectors on specific datasets. Commonly applied
to assess the performance of object detection algorithms like HOG + Lin-
ear SVM, as well as various convolutional neural network-based detectors
(e.g., R-CNN, Faster R-CNN, YOLO), IoU measures the precision of pre-
dicted bounding boxes against ground truth data. To effectively use IoU
for evaluating any given object detector, two key elements are required:

• Ground truth bounding boxes: These are the manually annotated
bounding boxes in the test set that precisely indicate the object’s
location in an image.

• The bounding boxes provided by our model

With these two sets of bounding boxes at hand, IoU can be implemented.
Considering the model-predicted bounding box and the ground truth bound-
ing box, the IoU metric is calculated as the ratio between the area of
overlap and the union area of the two. This obtained score serves as a
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quantitative measure of the model’s accuracy in predicting the location
and size of objects within an image, with higher scores indicating greater
accuracy.

IoU =
Area of Overlap

Area of Union
(6.1)

Table 6.1. Dataset composition.

Total Frames Training Test
Patient 1 142 15 15
Patient 2 171 34 14
Patient 3 219 - 39
Patient 4 152 74 20
Patient 5 48 5 5
Patient 6 144 - 29
Patient 7 168 14 10
Patient 8 89 18 10
Patient 9 153 14 10
Patient 10 73 20 10
Patient 11 27 14 10
Patient 12 135 - 19

6.2.2 Dataset

An image dataset has been collected from 12 video clips of 12 different
patients who underwent LC during 2020. The videos collected from pa-
tients who presented complications that did not fall within the scope of this
study were rejected. The videos were acquired through a high-definition
endoscopic camera system with a 25 Hz frame rate during surgical endo-
scopic procedures. The frames extracted from the videos were sampled
once every ten frames, obtaining a total of 399 frames. The frames were
then manually annotated by drawing a bounding box on the bile duct.
The video frames were split into 208 frames for the training set and 191
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frames for the test set, as illustrated in Table 6.1. The training set was
used to train the neural network, while the test set was used for evaluation
purposes only. To avoid overfitting, the frames of three patients out of
twelve (Patients 3, 6 and 12) have been used only in the test set.

6.3 Results

The performance of the proposed method was evaluated on the test
set. Table 6.2 shows the results of the bile duct detection on each patient.
Based on the experimental results, the overall IoU is 0.67.

Table 6.2. Detection Results.

IoU STD
Patient 1 0.65 0.04
Patient 2 0.70 0.07
Patient 3 0.53 0.02
Patient 4 0.63 0.11
Patient 5 0.73 0.02
Patient 6 0.65 0.04
Patient 7 0.80 0.01
Patient 8 0.63 0.08
Patient 9 0.76 0.02
Patient 10 0.84 0.02
Patient 11 0.65 0.02
Patient 12 0.58 0.04

Regarding the videos that have frames in the training set, the worst-
case scenario happened for Patient 4, where the lowest values of the IoU
are found. This is probably due to the fact that the ground truth bounding
boxes have been annotated manually, and therefore, in some cases, they
may be less precise than others, and also because in the video, the biliary
tract is not easily distinguishable from the background. However, as can
be seen from Figure 6.2, the localization of the surgical site of interest is
accurate enough for the aim of the work.
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(a) Patient 3. (b) Patient 4.

(c) Patient 6. (d) Patient 12.

Figure 6.2. Results of the localization algorithm: Patient 3 in (a), Patient 6
in (c) and Patient 12 in (d) belong only on the test set.

The frames of patients 3, 6 and 12 were used only in the test set. The
algorithm recognized the area of interest in 26 of 29 images in video 6 and
in 14 of 19 images in video 12. The worst-case scenario happened in video
3, where only 6 of the 39 images were correctly recognized.

6.4 Conclusion

This work addresses the problem of biliary tract injury during LC, using
an innovative approach in relation to the work suggested by the literature.
The method proposes the application of YOLO for the localization of the
biliary tract, creating a dataset of annotated frames of the surgical scene.
The average IoU is equal to 67%, despite the small size of the dataset.
The future goal is to use the localization of the biliary tract in real-time
and implement an augmented reality system in order to help the surgeon
correctly and more easily recognize the area of interest in the crucial phases.





Chapter 7
Prisma Dataset

The following chapter presents the Prisma Dataset (MATA), a surgical
suture robotics dataset, collected using the dVRK. The chapter is orga-
nized as follows: Section 7.2 provides a detailed description of the materials
and methods used for data collection and their organization.

7.1 Introduction

The shift from OS to MIRS has resulted in significant improvements in
the quality of operations, execution times, and patient rehabilitation times.
As discussed in Section 2.1, autonomy is a crucial aspect of robotics in gen-
eral, as well as surgical robotics, to gain precision, consistency and quality.
Although achieving full autonomy for entire surgical procedures is cur-
rently unfeasible from a technological viewpoint, it is feasible to automate
a smaller portion of surgical procedures by breaking them into smaller
tasks [100]. A large part of ongoing research in this field aims to auto-
mate tedious and complex tasks, relieving surgeons of their burden [101].
Among the most common surgical procedures, the suturing technique de-
serves special attention since it is critical, strongly relies on the surgeon’s
abilities, and remains a tedious, complex, and time-consuming task for
surgeons. The importance of the suturing results has been demonstrated
through the correlation between the risk of post-surgical complications,
including death, and poor surgical technical skill [102]. In fact, surgical
technical errors are the primary cause of many post-surgical adverse events,
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such as re-operation and re-admission [103]. Hence, improving the surgi-
cal training method can significantly enhance the safety and effectiveness
of surgical patient care. Correctly identifying entry and exit points for
the needle is fundamental for the success of the suture and the patient’s
outcomes. During the suturing procedure, the surgeon has to frequently
adjust the orientation of the needle to ensure that it is in the correct pose
for needle insertion. The reorientation phase is done through a sequence
of grasping, releasing, positioning, and re-grasping operations performed
using both robotic arms [104]. Moreover, with the teleoperation of the
dVRK, the surgeons do not have the benefit of haptic feedback during the
needle insertion and extraction phase of the suturing process. As a result,
they have to rely solely on visual cues to compensate for this lack of feed-
back, which requires a significant amount of training to master. Lastly,
viewing the operating field through endoscope images results in a loss of
depth perception and adds to the surgeon’s workload by presenting addi-
tional challenges.

Automation of suturing tasks offers the opportunity to achieve more
advanced safety and quality standards through cutting-edge control for
specific surgical procedures. This involves various robotics disciplines such
as robot control, imaging/sensing, and real-time signal processing, which
is linked to Artificial Intelligence (AI) and Machine Learning (ML). On-
going research uses ML strategies to enable robots to assist surgeons by
automating certain time-consuming and elementary tasks and have as a
main requirement the access to large datasets to train the ML algorithm.
Such datasets allow the robot to learn and replicate complex surgical pro-
cedures with unprecedented accuracy. Furthermore, analyzing this data
can lead to identifying patterns and techniques that may otherwise be im-
perceptible to the human eye. Researchers have also been using surgical
datasets for skill assessment to evaluate trainee surgeons and improve their
training [105].

Teleoperated robots like the dVRK facilitate motor learning by provid-
ing access to the operator’s hand motion data. This information can be
used to analyze gestures, rate technical proficiency, and enhance learning
through training augmentation.

Only a few datasets are available in surgical robotics, and JHU-ISI
Gesture and Skill Assessment Working Set (JIGSAWS) [106] is one of the
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best-known and widely used for surgical gesture recognition as it provides
a complete kinematic and video dataset labeled. It is also used for study-
ing surgical motion to improve the surgeon’s skills. Data in the JIGSAWS
are collected with the dVRK from eight surgeons with different expertise
levels while they are performing three elementary surgical tasks: Sutur-
ing, Needle-Passing, and Knot-Tying, which are very popular and part of
surgical training courses. Nevertheless, it is too limited and fragmented:
the identified gestures are comparable and do not appear in all of the tri-
als. The performance of the dataset is decreased by the low frequency at
which these gestures occur. Other datasets have been subsequently pro-
posed. the UCL dVRK dataset [107] contains 14 videos using the dVRK
on five different kinds of animal tissue. For each video frame, an asso-
ciated image of the virtual tools is produced using a dVRK simulator.
Furthermore, the Robotic Surgical Maneuvers (ROSMA) dataset has been
collected using the dVRK containing 36 kinematic variables, divided into
154-dimensional data, recorded at 50 Hz for 206 trials of three common
training surgical tasks [108].

Nevertheless, each surgical gesture is defined not only from kinematic
values but also from specific muscular activation. Electromyography plays
a crucial role in the Human-Machine Interface field [109], and it brings
many features that can be extracted to improve the current state-of-art
of robotic surgery. In fact, during laparoscopic suturing maneuvers, sur-
geons with varying levels of technical expertise reveal differences in limb
positions. By placing sensors directly on the surgeon, human motion and
intention can be assessed from the surgeon’s perspective. Analyzing in
which part of the task there is greater muscle effort or what the optimal
angle of the grip of the needle to perform a good suture operation can
provide new information on the efficient acquisition of technical skills and
the reduction of physical stress during laparoscopic surgery [110].

For these reasons, this work presents the design and evaluation of a
novel suturing gesture dataset, the MATA. The dataset is made by the
data collected from seven surgeons with different skill levels who performed
the suturing task on the dVRK. In particular, the dataset encompasses a
comprehensive set of data, including kinematics, video footage, interaction
force, electromyographic signals, acceleration metrics, angles, and angular
velocity related to the surgeon’s right wrist. Additionally, it provides an-
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notations for surgical gestures and the results of a post-trial questionnaire
administered to assess surgeons’ quality and the required levels of physical
and mental effort during the task.

(G3)(G4)

(G5) (G2)

(G1)

Figure 7.1. Suturing Task Gesture: (G1) Needle Grasping; (G2) Gripper
Reconfiguration; (G3) Needle Insertion; (G4) Needle Extraction; (G5) Knot–
Tying.

7.2 The MATA dataset

7.2.1 Suture Taxonomy

When creating a surgical dataset, one of the main challenges is using a
language that accurately describes the surgeon’s activities. Surgical pro-
cedures can be described at varying levels of detail, similar to how natural
language can be used at different levels of granularity, namely the level of
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abstraction for describing the surgical process. The granularity determines
at which level of detail the surgical procedure is modeled. However, there
is no universal taxonomy or vocabulary to define the differences between
granularity levels. Following the definition given in [111,112], the surgical
workflow can be modelled at different levels: (i) dexemes, (ii) surgemes,
(iii) activities, (iv) steps, (v) phases, (vi) procedure, (vii) state.

The most detailed level for observing the surgical workflow is through
dexemes. These are short gestures without any medical relevance made by
the surgeon using one hand. A sequence of dexemes is called a surgeme,
which represents a specific surgical gesture performed for a particular pur-
pose, for example, knot-tying. An activity refers to the physical action
described by the surgical tool, the anatomical structure it is used on, and
the action performed. A step is a set of activities done towards a surgical
objective. A phase is a longer period that includes several steps and may
involve interactions with other members of the surgical team. Finally, a
procedure refers to the entire surgery, starting from the first incision and
ending with the last stitch that closes the patient.

Segmentation at different levels highlights distinct aspects of the sur-
gical procedure, leading to a range of applications. On one side, Maktabi
et al. [113] demonstrate that a high-level situation awareness is better
for workflow optimization, scheduling and resource management. On the
other side, low-level analysis better describes atomic actions or motion
patterns [114].

The MATA divides the suturing task into five surgemes shown in Figure
7.1:

(G1) Needle Grasping: The subject picks up the needle;

(G2) Grasping Reconfiguration: The subject adjusts the needle grasping
pose, passing the needle between the two instruments;

(G3) Needle Insertion: The subject inserts the needle into the tissue, en-
tering at the dot marked on one side of the incision and exiting at
the corresponding dot marked on the other side of the incision;

(G4) Needle Extraction: The subject extracts the needle out of the tissue;

(G5) Knot-Tying: The subject ties the knot securing the single point of
the suture.
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Gesture Index Gesture Description
G1 Needle Grasping
G2 Gripper Reconfiguration
G3 Needle Insertion
G4 Needle Extraction
G5 Knot-Tying

Table 7.1. Gesture vocabulary.

(a) Wireless Electromyography (EMG) sen-
sors.

(b) Inertial Measurement Unit
(IMU) sensor.

Figure 7.2. External sensors.

From here and in the following of this chapter, the terms surgemes and
gestures will be used to identify the same set reported in Table 7.1. Ges-
ture recognition through surgemes classification allows working with short
motion segments that are less complex and easier to generalize and can
be treated singularly or composed modularly to define long-term goals or
in surgical automation [115]. In addition, this makes segmentation and
gesture classification easier in real time.

7.2.2 Data Collection

The MATA focuses on single-point suture: the needle passes through
one side of the wound, penetrating the outer and underlying layers, and
exits on the opposite side. Each stitch in the broken suture is secured
individually by tying and cutting.
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The setup is composed as follows:

dVRK allows direct recording video, kinematic, dynamic, and foot pedal
information from both the surgeon and patient side;

External Camera is used to capture video from a different point-of-view
and in higher quality;

Wireless Electromyography (EMG) Sensors , Freeemg 1000 from BTS
Bioengineering, positioned on the flexor and extensor Carpi Radialis
Longus of the left and right arm, allow the computation of the elec-
trical activities of the aforementioned muscles,

Inertial Measurement Unit (IMU) Sensor , placed on the wrist of
the main surgeon’s skilled arm, measures the acceleration, rotation
speed and angles of the wrist with respect to a reference system;

Questionaires : compiled by the surgeons at the end of the trial to gauge
the physical and mental effort.

During the data collection procedure, each subject followed the steps
listed below:

1. the EMG sensors are placed on the surgeon and the Maximum Vol-
untary Contraction (MVC) of the flexor and extensor Carpi Radialis
Longus are registered to normalize the muscular activity;

2. Place the IMU Sensor;

3. The surgeon starts the task and all the data are recorded and syn-
chronized with a global time. Each surgeon repeats the task twice;

4. At the end, the surgeon completes the questionnaire to register the
mental and physical stress.

The task consists of a single-point suture performed on a medical phantom
using the dVRK. During each trial, the subject performed the task twice.
The surgeon is asked to announce the beginning of each gesture during the
execution of the suture to automatically label the data, following Table
7.1.
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Col. Indices N. of Variables Description of Variables
1-24 24 ECM Body Jacobian
25-48 24 ECM Space Jacobian
49-54 6 ECM Body Wrench
55-60 6 ECM Spacial Wrench
61-66 6 ECM Cartesian Pose
67-108 42 Left MTM Body Jacobian
109-114 6 Left MTM Body Wrench
115-120 6 Left MTM Local Cartesian Pose
121-126 6 Left MTM Cartesian Pose
127-132 6 Left MTM Velocity
133-174 42 Left MTM Space Jacobian
175-180 6 Left MTM Spacial Wrench
181-294 114 Right MTM Kinematics
295-330 36 PSM1 Body Jacobian
331-336 6 PSM1 Body Wrench
337-342 6 PSM1 Local Cartesian Pose
343-348 6 PSM1 Cartesian Pose
349-354 6 PSM1 Velocity
355-390 36 PSM1 Space Jacobian
391-396 6 PSM1 Spatial Wrench
397-498 102 PSM2 Kinematics
498-503 6 Interaction Force

504 1 Footpedal Camera
505 1 Footpedal Clutch
506 1 Footpedal Coag
507 1 Teleoperation Scale

508-513 6 MTMR\PSM1 alignment
514-519 6 MTMR\PSM1 following
520-525 6 MTML\PSM2 alignment
526-531 6 MTML\PSM2 following
532-535 4 EMG
536-542 7 User Data

- - Video ECM Right
- - Video ECM Left
- - Video External Camera

Table 7.2. MATA Data Variables.
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7.2.3 Data Description

The MATA includes data from seven subjects, indexed from A to G.
The hour-of-practice on the robot classifies them into three levels of robotic
surgical expertise: Expert (E ), more than 100 hours of practice; Interme-
diate (I ), between 100 hours and 10 hours of practice; Novice (N ), less
than 10 hours of practice. In detail, subjects from A to E are classified as
Expert, while subjects F and G are Novice. From each of them, the data
collected are listed in Table 7.2 and organized in folders as follows:

• Kinematics: includes data captured at 100 Hz from MTMs, PSMs,
ECM. The motion was described using 33 kinematic variables to
describe the kinematics for all five manipulators listed above. For
each manipulator, the variables include Cartesian pose, linear and
angular velocities and Body and Space Jacobian;

• dVRK Data : encompasses pedal and console variables, along with
SUJ variables, where the pedalboard includes Coag and Clutch ped-
als, with boolean variables indicating their status;

• Videos: includes the three video files captured from endoscopic and
external cameras;

• Force : comprises six variables of interaction force calculated with
the residue theory [116] and already tested on the dVRK [62, 117]
and presented in Chapters 3 and 4;

• EMG Signals: contains electromyographic signal values captured
at 1000 Hz during the trial, including EMG values of maximum con-
traction;

• IMU Sensor: includes xyz components of acceleration, angular ve-
locity, and angles of the right wrist, captured at 100Hz with the IMU
sensor;

• Transcriptions: contains gesture annotations with the gesture name
and corresponding start and end frames, synchronized using a com-
mon global time;
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• User Suturing : contains a text file detailing the competence level
(E, I, N) of each surgeon and questionnaire results, providing scores
on mental demand, physical demand, temporal demand, effort, frus-
tration level, and performance rated from 1 to 10.

In Table 7.2, the Column Indices and the Number of Variables related
to the Video are omitted due to potential changes in this information
during post-processing. A unique identifier has been assigned to each test
in the form of ”SuturingSidRep”, where Sid is the letter identifying the
surgeon and Rep is the repetition number.

7.3 Conclusions

Nowadays, research can benefit a lot from creating new datasets, which
can improve those currently present in the literature. The work presented
in this chapter is intertwined in this perspective. Thanks to the collab-
oration of surgeons with different levels of experience, a set of suturing
data has been collected and organized to form a dataset that is a valid
alternative to the one most used today, the JIGSAWS. The suturing task
has been divided by identifying five different gestures: the needle grasp-
ing, the reconfiguration of the needle aimed at getting the right angle with
respect to the wound, the needle in the tissue, the extraction of the nee-
dle from the opposite point of the wound and finally the knot. The data
collected in the dataset are labeled from 1 to 5 to identify each gesture.
The dataset comprises 14 single-point suture trials and a large number of
parameters with respect to the JIGSAWS dataset. Moreover, the dataset
comprises EMG sensors and IMU sensors data collected from the surgeon’s
wrist that can be significant in future works aimed at identifying gestures
and considering the effort of the surgeon. The dataset can also be used
to improve the skills of surgeons or train new recruits. At the end of the
tests, a questionnaire has been administered to the surgeon to evaluate his
physical and mental effort as well as their performance.
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Conclusions

This thesis had the objective to address the limitations of current surgi-
cal robotics procedures. Commercially available teleoperated robots have
improved classical surgical practice by reducing the invasiveness, tremors
and hospital stay enhancing precision, accuracy, and the whole surgeon
experience. Still, there are some limitations that can be overcome by in-
crementing the autonomy capabilies of surgical robots. This theme encom-
passes different fields connected to robotics comprising modeling, control,
vision, haptics and AI.

After an introduction to surgical robotics, the contribution of the thesis
has been presented. A review of the state-of-the-art methods for the topic
discussed in the thesis is given in Chapter 2, relating the various topics with
the autonomy levels they allow in surgical robotics. Advanced model-based
control algorithms need accurate knowledge of the robot’s kinematics and
dynamics to obtain robust behavior in such an unpredictable environment
as the surgical context. Chapter 3 proposes a novel dynamic model of
the PSM of the dVRK. The tests performed, and the confrontations with
other models present in the literature demonstrate the model’s validity.

Scientific contributions present in Chapter 5 and 4 concern assistive
methods based on haptic-guided shared control applications surgical proce-
dures. The first work is presented in Chapter 5 and presents a human-robot
interface that enables robots like the Kuka Med to respect the RCM con-
straint required for MIRS. Moreover, a shared control technique, namely
the application of VF, in an impedance control framework has been consid-



ered to constrain the robot in a certain safe region. In particular, a conical
safe region is considered tested in a manually guided modality where the
operator moves the robot along a circular trajectory. The tests prove that
the application of the VF helps the surgeon avoid the dangerous area while
still maintaining the RCM constraint.

The second work presented in Chapter 4 uses haptic cues and FRVF
to avoid collisions between tools. This is an influential topic in surgical
robotics research, particularly in MIRS, since surgeons do not have a com-
plete vision of the surgical site and instruments work very close to each
other. Haptic cues have been demonstrated to be a valid tool to release
part of the surgeon’s mental workload and help in the execution of some
tasks. In this work, the tool position is estimated through vision with-
out the use of markers and the already available kinematical data have
been integrated with the vision-based positions in order to avoid errors
by adopting an EKF. The whole framework has been tested on an exten-
sive user study with surgeons that showed the effectiveness of the control
method on novice surgeons.

An important factor of 4 is the utilization of the vision as a fundamental
perception source. Vision perception is indeed critical in surgical robotics
since the surgeon only relies on that information. Chapter 6 focuses on an
application of an advanced image localization technique that is YOLO and
implemented it for the localization of the bile duct in LC. Raw images have
been collected and manually annotated in collaboration with clinicians to
localize the biliary tract in white-light images with the aim of avoiding the
use of infra-red visualization and ICG.

Lastly, Chapter 7 presents a novel dataset that collects robotics and
electromyographic data from surgeons performing a single-point suture
procedure. The dataset is of paramount importance since it opens the
way for the training AI-based algorithm that can help in different ways
the surgeon experience: from training assistance to task recognition to en-
hance the surgical workflow, to the automation of specific subtasks, to the
surgeon’s performance assessing.
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