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Abstract

In cases where entanglement is disrupted, quantum illumination (QI) surpasses classical

illumination significantly in target detection. The superiority of QI was previously mea-

sured using a Bayesian framework, assuming equal likelihood of the target’s presence or

absence, with error probability as the performance metric. However, radar theory favors

the Neyman-Pearson performance criterion over the Bayesian approach. The Neyman-

Pearson criterion sidesteps challenges related to assigning appropriate prior probabili-

ties to target presence and absence, as well as the associated costs of false alarms and

missed detections. This study utilizes findings from our phase conjugate receiver (PC) and

Correlation-To-Displacement (C-D) receiver research to compute the receiver operating

characteristic, which illustrates the trade-off between detection probability and false alarm

probability. This analysis aims to optimize QI target detection under the Neyman-Pearson

criterion. The correlation-To-Displacement (C-D) receiver is studied in this thesis first

part. Entanglement is vulnerable to degradation in a noisy sensing scenario, but surpris-

ingly, the quantum illumination protocol has demonstrated that its advantage can survive.

However, designing a measurement system that realizes this advantage is challenging

since the information is hidden in the weak correlation embedded in the noise at the re-

ceiver side. Recent progress in a correlation-to-displacement conversion module provides

a route towards an optimal protocol for practical microwave quantum illumination. In

this work, we extend the conversion module to accommodate experimental imperfections

that are ubiquitous in microwave systems. To mitigate loss, we propose amplification of
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the return signals. In the case of ideal amplification, the entire six-decibel error-exponent

advantage in target detection error can be maintained. However, in the case of noisy am-

plification, this advantage is reduced to three-decibel. We analyze the quantum advantage

under different scenarios with a Kennedy receiver in the final measurement. In the ideal

case, the performance still achieves the optimal one over a fairly large range with only

on-off detection. Empowered by photon number resolving detectors, the performance is

further improved and also analyzed in terms of receiver operating characteristic curves.

Our findings pave the way for the development of practical microwave quantum illumina-

tion systems.

In the second part of this thesis, we generate the W entangled state through Heisenberg

exchange interaction. The spread of entanglement is a problem of great interest. It is

particularly relevant to quantum state synthesis, where an initial direct-product state is

sought to be converted into a highly entangled target state. In devices based on pairwise

exchange interactions, such a process can be carried out and optimized in various ways.

As a benchmark problem, we consider the task of spreading one excitation among N two-

level atoms or qubits which is the typical feature of a W state. Starting from an initial

state where one qubit is excited, we seek a target state where all qubits have the same

excitation amplitude a generalized-W state. This target is to be reached by suitably chosen

pairwise exchange interactions. For example, we may have a a setup where any pair of

qubits can be brought into proximity for a controllable period of time. We describe three

protocols that accomplish this task, each with N − 1 tightly-constrained steps. In the first,

one atom acts as a flying qubit that sequentially interacts with all others. In the second,

qubits interact pairwise in sequential order. In these two cases, the required interaction

times follow a pattern with an elegant geometric interpretation. They correspond to angles

within the spiral of Theodorus – a construction known for more than two millennia. The

third protocol follows a divide-and-conquer approach – dividing equally between two

qubits at each step. For large N, the flying-qubit protocol yields a total interaction time



that scales as
√

N, while the sequential approach scales linearly with N. For the divide-

and-conquer approach, the time has a lower bound that scales as ln N. With any such

protocol, we show that the phase differences in the final state cannot be independently

controlled. For instance, a W-state (where all phases are equal) cannot be generated by

pairwise exchange.
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Chapter 1

Introduction

In this thesis, I explore two distinct areas of research. The first area delves into quantum

illumination involving target detection, while the second area focuses on the synthesis of

quantum entangled W states through exchange interactions.

The objective of this chapter is to outline the rationale behind these two distinct re-

search topics. Section 1.1 explores the motivation for generating entanglement through

Heisenberg exchange interactions and delves into the concept of quantum illumination

with target detection.

Subsection 1.1 examines the conventional pulse-based classical radar system, which is

proficient in detecting and gauging a target’s range. In classical radar, the signal-to-noise

ratio (SNR) signifies the ratio of the transmitted signal strength to the level of background

noise received by the radar system.

Section 1.3 delves into the early conceptualization of the quantum illumination narra-

tive. Quantum illumination, a type of quantum sensing, has recently captured substantial

attention. Initially presented as quantum radar, it demonstrates the potential to outper-

form classical radar systems, particularly in situations where classical systems encounter

inherent constraints.

Lastly, in Section 1.4, we clarify the concept of microwave quantum illumination and

4



CHAPTER 1

its associated receivers. The presently accessible receivers include an optical parametric

amplifier and a phase-conjugate receiver, both incorporated into an experimental setup.

Section 1.7 talks about the outline of my thesis work.

1.1 Motivation

Quantum technologies leverage quantum-mechanical phenomena to achieve outcomes

that are not possible with classical means. This field offers numerous practical applica-

tions, including quantum computing, quantum cryptography, quantum sensing, and quan-

tum metrology. Before delving into the technological aspects, it is essential to grasp the

fundamental principles of synthesizing quantum entanglement across different quantum

optical setups. Scientific research has deeply delved into bipartite entanglement, result-

ing in a thorough comprehension of the properties, creation, and uses of entangled states

involving two particles. Lately, there has been an increasing emphasis on examining

entanglement in systems with multiple particles. In the realm of multiparticle entangle-

ment [25], researchers have mainly concentrated on two specific categories of states: the

GHz class state and the W class state. The GHz state and the W state are distinct and

cannot be transformed into each other through stochastic local operations and classical

communications (SLOCC) [93, 135]. The GHz state is particularly noteworthy due to

its maximal entanglement properties: it strongly violates Bell inequalities, has maximum

mutual information in measurement outcomes, and can be used to locally create an EPR

state shared by any two of the three parties with certainty. In contrast, even when one of

the three particles is traced out, the remaining two particles in the W state still maintain

a relatively high level of entanglement. Consequently, the W state demonstrates greater

stability in the face of particle losses compared to the GHz state. Each application relies

on the entangled states that are prepared initially [149], to achieve this, systematic meth-

ods are required to transform direct-product states into the desired superposition states.
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These processes must be optimized to minimize operation time and counter the effects of

decoherence. Several studies have focused on time-optimized protocols due to this imper-

ative. Simultaneously, ensuring scalability is paramount. Entanglement protocols must

be efficient as the number of qubits in quantum devices increases. Optimization balanc-

ing operating time and qubit count complexity becomes crucial in this context. Drawing

inspiration from these principles, we explore the fundamental task of distributing entan-

glement, specifically distributing a single excitation uniformly among N qubits [122].

The entanglement of multiple entities, such as qubits within a device, presents intrigu-

ing possibilities. Many experiments have successfully generated the W state, and there

have been numerous suggestions for its synthesis. Therefore, a key goal in quantum in-

formation theory (QIT ) is the preparation of entanglement. Various techniques, such as

single-photon interference, cavity quantum electrodynamics (QED) [47,147], parametric

down-conversion, ion trap methods, and nuclear magnetic resonance (NMR), have been

recently suggested for generating entangled states. Further information on the generation

of the W state will be discussed in more detail later in Chapter 4.

To explore these applications of quantum entanglement, researchers study the inter-

actions of quantum systems with each other and external factors, particularly focusing

on the interactions between different quantum states. These interactions can lead to the

creation of entangled states, which possess quantum correlations that have no classical

equivalent. These correlations are essential for achieving rapid quantum information pro-

cessing and unmatched measurement sensitivity. Leveraging these quantum correlations

enables the development of highly sensitive sensors at the nanoscale, surpassing classical

limits and scaling proportionally with sensor size. Among various implementations of

quantum technologies, practical sensing applications appear to be more attainable in the

near future compared to others that require precise control over multiple quantum states

simultaneously. Recent advancements have demonstrated the potential of exploiting non-

classical states of radiation in both theoretical and experimental quantum technologies.
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One specific example, which is the focus of this thesis, is quantum illumination with a

target detection. By leveraging quantum mechanical phenomena, quantum target detec-

tion offers a theoretical advantage in detection capabilities. This task is closely related to

other quantum sensing protocols such as quantum ranging, quantum metrology, quantum

sensing, and quantum illumination (also known as quantum radar). Quantum illumina-

tion, being the first microwave-based quantum target detection method, shows significant

improvements over classical radar systems and other coherent state protocols. The first

three quantum illumination and its applications in microwave quantum target detection.

In order to avoid misunderstandings, it is necessary to define terms like “quantum

target detection”, “quantum illumination”, and “quantum radar” before using them in this

thesis. Any protocol based on the principles of quantum mechanics that finds a target

or establishes its presence in a designated region of interest is referred to as quantum

target detection. All aspects of the protocol are susceptible to quantumness, such as the

receiver’s decision-making process or the source’s probing of the target region. Within

the domain of quantum target detection, quantum illumination (QI) is a distinct category

that relies on entanglement. In the context of QI, the probing source forms an entangled

connection with the receiver, allowing the receiver to glean insights into the interactions of

the source through entanglement as decisions are made. Quantum radar refers to a specific

application of certain quantum target detection techniques meant for the microwave range.

This application is crucial because QI’s detection efficiency is increased by significant

noise, which is commonly present in the microwave range. Interestingly, QI is not a

prerequisite for using quantum radar exclusively; in fact, QI is frequently used in quantum

radar research.
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1.1.1 Classical Radar

Radar technology has its roots in the early 20th century, stemming from Heinrich Hertz’s

discovery of radio wave reflection by solid objects in 1886 [107, 108]. The initial pulse-

based radar system, capable of detecting and measuring a target’s range, was created

by the US Naval Research Laboratory in 1934. Since then, major military powers have

extensively researched and developed radar technology. Remarkably, the fundamental

principles of classical radar systems have remained unchanged for over 50 years.

A radar system is an electrical setup that sends out radiofrequency (RF) electromag-

netic waves to a designated area and captures the reflected waves when they bounce off

objects in that region. Figure 1.1 shows the key components: transmitting the radar signal,

signal propagation through the atmosphere, signal reflection from the target, and receiv-

ing the reflected signals. Although radar systems may have different setups, they usually

include fundamental parts: a transmitter, an antenna, a receiver, and a signal processor.

The radar system’s receiving antenna gathers reflected electromagnetic waves from

objects, including both the target and unwanted clutter. The portion of the signal that

comes back to the radar antenna is captured and sent to the receiver circuits. Within the re-

ceiver, the received signal is amplified, and the radiofrequency (RF) signal is transformed

into an intermediate frequency (IF). This signal then goes through an analog-to-digital

converter (ADC) and is sent to the signal/data processor. The detector in the receiver is

responsible for extracting the modulated target return signal by removing the carrier wave.

This process allows the target data to be separated and analyzed by the signal processor.

By removing the carrier, the detector enables the extraction and processing of specific

information related to the target.

The range, denoted as R, to a detected target can be calculated by considering the time

it takes for the electromagnetic (EM) waves to travel to the target and back at the speed

of light [79]. Since distance is equal to speed multiplied by time, and the EM waves have

8



CHAPTER 1

This Photo by Unknown Autho

Figure 1.1: Classical Radar

to travel the distance to the target and then back to the radar, which is a total of 2R. The

emitted electromagnetic pulse, after reflection off the target, arrives back at the receiver

after a time, ∆t, which can be used to compute the target range

R =
c∆t
2

(1.1)

where c is the speed of light in a vacuum. In general, a significant amount of the emitted

energy is lost during the radar pulse propagation process. This energy loss occurs due to

various factors, including attenuation in the medium through which the pulse travels and

the reflectivity of the target, which is influenced by its material properties and geometry.

Consequently, the total power density incident on the target can be expressed as follows:

WT =
PtGtF2

4πR2
T

(1.2)

where the form factor F ∈ [0, 1] describes the transmissivity of the area between the

target and the radar, the electromagnetic pulse of power Pt, target located a distance RT

and transmitter gain Gt.

The reflectivity of the target is quantified by a parameter known as the radar cross-

section (RCS), which represents the proportion of incident power that is scattered back
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towards the receiver. The power density that arrives back at the receiver can be expressed

as follows:

Wr =
PtσGtF4

4πR4
T

=
Pr

Ar
(1.3)

where Pr is the power arriving at the receiver and Ar is the receiver’s collecting area. Thus

we arrive at the radar equation

Pr =
PtGtArσF4

4πR4
T

(1.4)

This formulation is used to model the performance of current state-of-the-art classical

radar systems.

1.1.2 Signal-to-noise ratio (SNR)

The signal-to-noise ratio (SNR) in radar is the ratio of the transmitted signal strength

to the amount of background noise received by the radar system [65, 94]. This noise,

known as Johnson-Nyquist noise, is caused by inherent electronic noise in the radar sys-

tem. Thermal noise affects all radar receivers, limiting the detectable strength of target

signals. A higher signal-to-noise ratio (SNR) indicates a stronger signal, which improves

the system’s ability to identify and isolate targets from background noise. The overall

power associated with this noise is as follows:

Pm = kBT BmFm, (1.5)

where T is the system operating temperature, κB is the Boltzmann constant, Fm is a di-

mensionless constant expressing the variation of the true noise with respect to the purely

thermal Johnson noise, and Bn is the receiver bandwidth. The definition of the signal-to-

noise ratio defined as

S NR =
Pr

Pm
=

PGARσF4

(4π)2R4κBT BmFm
. (1.6)
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Further expressing the collecting area of the receiver, Ar, in terms of the receiver gain,

GR = 4πAR/λ
2, we are able to write

S NR =
PtGtGRARσλ

2F4

(4π)2R4κBT BmFm
. (1.7)

There is a minimum detectable signal, SNR, that must be greater than the system noise

[73]. The maximum detection range, for a fixed given minimum S NRmin is given by

Rmax ≈

(︄
PtGtGRARσλ

2F4

(4π)2R4κBT BmFm S NRmin

)︄1/4

, (1.8)

where S NRmin is typically between 10 and 20 dB.

1.1.3 Quantum Radar

Quantum radar, a type of quantum sensing, has gained significant interest in recent years.

Initially introduced as quantum illumination (QI) [82, 105, 134], it holds the potential to

surpass classical radar systems. This advantage stems from the presence of entangle-

ment, a purely quantum mechanical phenomenon, in the quantum radar system. Quantum

radar offers improved performance even in situations where classical radar capabilities

are known to be restricted, such as:

(i) For long-range detection, classical radar systems face limitations imposed by their

intrinsic electronic noise, leading to a minimum achievable signal-to-noise ratio. Quan-

tum radar, however, shows potential in surpassing these limitations by leveraging its

unique properties. It can provide enhanced detection capabilities even at long ranges,

outperforming classical radar systems in terms of performance.

(ii) Quantum radar also holds promise in dealing with challenging environments char-

acterized by losses, noise, and various sources of interference. These environments typ-

ically include thermal background noise, clutter from surrounding objects, and potential
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electronic countermeasure activities. By harnessing the advantages of quantum technolo-

gies, quantum radar can mitigate the effects of these environmental factors, allowing for

improved detection and target identification capabilities compared to classical radar sys-

tems.

1.2 The classical benchmark for quantum radar

In the context of this thesis and the existing literature, the term “classical benchmark”

does not refer to the classical radar system described in the following sections . Instead,

it pertains to the most ideal classical quantum state within quantum optics, known as the

coherent state. Coherent states, which will be extensively discussed in Chapter 2, saturate

the Heisenberg uncertainty principle. They can be viewed as maximizing classical behav-

ior within the quantum realm by minimizing uncertainty. Furthermore, coherent states

are Gaussian, allowing for straightforward study and modeling within frameworks that

resemble those used for true quantum phenomena in quantum optics experiments. This

enables a formal definition and isolation of quantum advantages by comparing them to

the benchmark of coherent states.

1.3 Types of radar

Although it is commonly assumed that quantum radar exclusively relies on entanglement

and quantum information (QI), this is not necessarily the case. The definition of quantum

radar and quantum target detection should be understood more broadly as any detection

system that utilizes non-classical components to enhance its capabilities. These non-

classical components can take the form of a non-classical transmitter, a non-classical

receiver, or both. In essence, there are three main types of quantum sensors [73, 140].

• Type 1: Quantum radars and quantum LIDAR systems can transmit non-classical
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quantum states of light without relying on entanglement between the transmitter and the

receiver. This includes the use of single-photon (Fock state) quantum radars as well as

traditional LIDAR systems.

• Type 2: In this type of system, classical (coherent) states are transmitted, but quan-

tum receivers are employed to enhance the sensitivity of the detection. This category

encompasses any quantum-enhanced LIDAR systems where the use of quantum technol-

ogy in the receiver allows for improved detection capabilities.

• Type 3: Quantum states of light are transmitted, and these states are initially entan-

gled with the receiver.

Type 3 quantum sensors involve the use of entangled sources for applications in quan-

tum radar, sensing, and metrology. In this type, entanglement is created between two

modes, with one mode serving as the signal and the other mode, known as the idler, being

utilized as part of the receiver, in Fig. 1.2.

1.3.1 Lloyd initial single photon quantum illumination proposal

In 2008, Lloyd introduced [83] the concept of quantum information (QI) as a means to

improve the detection of distant objects. He initially argued that quantum bits demon-

strate heightened sensitivity in detection procedures when the signal is entangled with

an anisotropic medium and the measurement of the turning radiation is entangled with

the same medium [111]. In this study, we explore the extent of enhancement in detec-

tion capabilities and inquire whether entanglement contributes to improved sensitivity in

quantum optical processes. Intuitively, if a lone signal photon is dispatched and becomes

entangled with an additional photon, it will either generate or identify the original photon

upon its return. This intuition remains accurate, even though noise and loss completely

disrupt the correlation between signal and noise.

The study compared two protocols: one using N unentangled single-photon states
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Figure 1.2: Quantum illumination

and the other using two entangled beams (signal and idler). Both scenarios involved

illuminating a region of space where a weakly reflecting target could be present or absent,

within a thermal background. In both cases, certain assumptions were made.

• Signal comprising N high time-bandwidth product M = TW ≫ 1, single-photon

pulses. Here, T is the detection time window and W is the bandwidth such that the detector

can distinguish between M modes per detection event.

• Round-trip transmissivity 0 < κ ≪ 1 when the target is present. κ = 0 when the

target is absent.

• Background noise NB ≪ 1.

• For each transmitted signal pulse, at most one photon is detected at the receiver such

that MNB ≪ 1.

These hypotheses led to the identification of two operational regimes “good” and

“bad” for the operation of each single-photon and entangled source based on their quan-

tum Chernoff bounds (QCB). The probability of making an error after N trials was dis-

covered to be, in their good regimes,

PS P
err ≤

1
2

e−κN , κ ≫ NB, (1.9)

and

PQI
err ≤

1
2

e−κN , κ ≫ NB/M. (1.10)
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In their bad regimes, these bounds are given by

PS P
err ≤

1
2

e−κ
2N/8NB , κ ≫ NB, (1.11)

and

PQI
err ≤

1
2

e−κ
2NM/8NB , κ ≫ NB/M, (1.12)

resulting in a further expansion of the QI’s valid range, with the error probability dramat-

ically decreasing for M ≫ 1 in comparison to unentangled single-photon sources.

These findings are based on several assumptions that are often unrealistic. Firstly, it

assumes the availability of a source that can generate entangled photons with a high time-

bandwidth product to probe the target area. Additionally, the receiver is assumed to be

optimal, performing an ideal joint measurement on each returning photon and its corre-

sponding idler. Furthermore, it is assumed that the idler storage system remains lossless

throughout the entire round-trip time of the signal. These limitations have sparked debates

about the feasibility of practical quantum radar systems based on quantum information

(QI), and these issues will be discussed in more detail later in the chapter.

It’s crucial to remember that Lloyd did not directly compare a quantum scheme with

a classical one in his initial comparison. Rather, it contrasted an entanglement-based

scheme with a non-entanglement scheme. Even when single photons are used as a source

for target detection without entanglement, the data must still be processed and decisions

made using quantum photo-detection theory. This method is classified as a Type 1 quan-

tum sensor.

In 2009, Shapiro and Lloyd [121] compared entanglement-based QI to the coherent

state, which is currently the standard, at least in the optical domain. The output of an ideal

laser can produce minimum-uncertainty classical states, which are discussed in detail in
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Chapter 2. The case of a transmitter emitting a coherent state with an average of N

photons is covered by the quantum Chernoff bound [134]. This can be accomplished, for

instance, by sending a coherent state with an average photon number of unity N times. In

this instance, the QCB was found to be

PCS
err ≤

1
2

e−Nκ(√NB+1−
√

NB)2

, NB ≥ 0, (1.13)

for all values of 0 ≤ κ ≤ 1 and NB ≥ 0. In the low background noise NB ≪ 1, this reduces

to

PCS
err ≤

1
2

e−κN , NB ≪ 1. (1.14)

This output is better than Lloyd’s quantum illumination discrete variable transmitter’s

output in its “bad” regime, and coherent state protocol output is comparable to that trans-

mitter’s output in its “good” regime. As of now, no quantum advantage has been identi-

fied over the classical benchmark, despite the superior performance of entangled photons

compared to their single-photon counterparts.

1.3.2 Gaussian source of Quantum illumination

The findings of Shapiro and Lloyd [121], which indicated limitations in the potential of

Quantum Illumination (QI) at the time, did not put an end to research in the field. Tan

et al [134]. presented their version of QI at the same time, utilizing a more practical

model within the Gaussian state framework. This version, along with the mathematical

foundations of Gaussian quantum information and continuous variable theory outlined in

Chapter 2, will be the primary focus of this thesis.

Let us consider a resource state that can be represented as a Gaussian two-mode

squeezed vacuum (TMSV) state, more details in chapter 2. This state consists of two

modes, each containing NS photons: a signal mode that is sent to a target region and an
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idler mode that is kept at the source for a later joint measurement. A few presumptions

underlie the Gaussian Quantum Illumination (QI) theory’s operation:

• Low-brightness signal NS ≪ 1. The signal and idler modes each have an extremely

small number of photons.

• High time-bandwidth product, M = TW ≫ 1.

• Low target reflectivity, 0 ≤ κ ≪ 1 (with κ = 0 when the target is absent).

• The average thermal photon number per mode for background noise is extremely

high, NB ≫ 1.

The Quantum Illumination experimental setup assesses two hypotheses concerning

the outcome, as elaborated in Chapter 2. The first hypothesis, labeled H0, posits the

absence of the target, with the returning signal modeled as a noisy background in the

form of a thermal state. In this situation, the average number of thermal photons per

mode, denoted as NB, is notably higher (NB ≫ 1) than in previous studies, where the

assumptions were NB ≪ 1 and MNB ≪ 1.

The second hypothesis, H1, corresponds to the presence of a weakly reflective target

in the region with a reflectivity parameter κ ≪ 1, indicating a high loss regime.In this

scenario, the background is very strong, and the mean number of photons per mode in the

return is given by NB/(1− κ). In both cases, the returning signal and the retained idler are

no longer entangled.

The decision problem is then focused on distinguishing between the two conditional

states, and the ability to do so is quantified by computing various bounds and it will be

explained in chapter.2. The choice of a specific bound depends on how the associated

costs for different types of errors are weighted. This involves considering symmetric or

antisymmetric costing procedures.

Tan et al. adopted the Gaussian state approach with a symmetric cost quantum hypoth-

esis testing (QHT) framework. They determined that the quantum Bhattacharyya bound

(QBB) for the quantum information (QI) source takes an asymptotic form.
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PQI
err ≤

1
2

e−MκNS /NB (1.15)

in the limits 0 < κ ≪ 1,NS ≪ 1 and NB ≫ 1.

The statement implies that the coherent state mentioned earlier, which is associated

with achieving an optimal classical benchmark, has a Quantum Chernoff Bound (QCB)

that can be

PCS
err ≤

1
2

e−MκNS (
√

NB+1−
√

NB)2
(1.16)

In the same limitations0 < κ ≪ 1,NS ≪ 1 and NB ≫ 1, the coherent-state transmitter

QCB is given by

PQI
err ≤

1
2

e−MκNS /4NB (1.17)

In contrast to earlier findings, it is observed that the error exponent of the quantum

information (QI) transmitter in this regime has a 4-fold advantage (equivalent to 6 dB)

over the corresponding coherent-state transmitter. This means that an optimal QI-based

approach provides a 6 dB improvement in the effective signal-to-noise ratio (SNR) com-

pared to coherent light illumination.

Theoretical studies have demonstrated that this 6 dB advantage is maximally achiev-

able when considering optimal collective quantum measurements [29]. However, when

restricting the receiver to local operations and classical communications (LOCCs) only,

the advantage reduces to 3 dB. It has also been established that the two-mode Gaussian

state utilized to achieve these bounds is the optimal quantum state [74].

Additionally, it has been shown that without a quantum memory (the ability to store

an idler), the optimal source is a coherent state. Recent research has further demonstrated

that this well-known benchmark can be strictly surpassed by employing a squeezed-based

protocol where both displacement and squeezing are jointly optimized under a global

energy constraint [128].
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1.4 Microwave Quantum illumination

Lloyd and Tan et al. conducted research on quantum illumination (QI) that focused on

operations in the optical range. They assumed that optical wavelengths would be used, as

this is a well-established domain for QI implementation. In the optical range, there are

readily available tools such as spontaneous parametric down-conversion (SPDC) sources

for generating signals, which naturally produce low-energy modes (NS ≪ 1). Addition-

ally, high fidelity single-photon detectors, which have minimal noise associated with their

operation and are close to quantum-limited, are widely used.

Lloyd’s findings were not affected by this assumption, but Tan et al. discovered a

quantum advantage of 6 dB in effective signal-to-noise ratio (SNR) under the assumption

that there is a high background mean number of photons per mode (NB ≫ 1). However,

this assumption does not hold true in the optical wavelength range. In fact, the background

mean number of photons per mode (NB) is typically on the order of 10−6 or smaller in

optical wavelengths.

To address the issue of the low background photon count in the optical domain, a

possible solution is to expand the theory of quantum illumination (QI) to the microwave

domain [10]. This would take advantage of the naturally occurring thermal microwave

background, which provides a background with a high number of photons (NB ≫ 1) re-

quired for the quantum advantage in QI. Barzanjeh et al. proposes to use an electro-opto-

mechanical (EOM) converter for generating an hybrid entangled source with a microwave

signal and an optical idler. The microwave signal was then transmitted to the desired

target region. Upon its return, another EOM converter was used to reverse the process

and convert the microwave signal back into the optical region. A phase-conjugated (PC)

joint measurement was performed with the retained optical idler. This microwave exten-

sion of QI gained significant attention in the wider scientific community as a potential

quantum-mechanical alternative to classical radar. It has the potential to detect stealth tar-
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gets while concealing a weak signal within the naturally occurring and strong microwave

background.

1.5 Illumination receivers

Creating a receiver for quantum illumination capable of realizing the complete 6 dB en-

hancement in signal-to-noise ratio (SNR) as predicted by the comprehensive theoretical

model presents a significant challenge. In the framework of Gaussian quantum illumina-

tion, the operator describing the useful quantum correlation for detecting the target is

ÔRI(k) := âRk âIk . (1.18)

The k−th return mode âRk is given by

âRk =
√
η âS k +

√︁
1 − η âBk , (1.19)

where âS k is the signal, and âIk idler mode annihilation operator, and âBK is the thermal

background noise. Consider the two hypotheses that target absent is H0 and target present

is H1. The outcome of the cross-correlation is the following: if one sends a two-mode

squeezed state (see chapter 2)

CH0
Q = ⟨ âRk âIk ⟩ = 0, CH1

Q = ⟨ âRk âIk ⟩ =
√︁
ηNS (NS + 1). (1.20)

Instead, in the case of classically correlated signal and idler modes in the limit NS ≪ 1,

the cross-correlation is CH1
C = ⟨ âRk âIk ⟩ =

√
ηNS , the value of the quantum correlation

exceeds the classical correlation CQ > CC. In experiments, it is impossible to measure the

operator ÔRI(k) directly.
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Optical 
Parametric
Amplifier

Small gain

Figure 1.3: Optical parametric amplifier (OPA) with gain G, the measurement of the total number
of photons, N, is counted. If N is less than a certain threshold η, the receiver collapse to H0;

otherwise, H1.

1.5.1 Optical parametric amplifier (OPA)

To address the impossibility to measure the phase-sensitive correlation of Eq. (1.20),

Guha and Erkmen [54] proposed a receiver that converts phase-sensitive cross-correlation

into photon counting shown in Fig. 1.3.

ĉk =
√

Gâ(k)
I +

√
G − 1â†(k)

R , (1.21)

d̂
k
=
√

Gâ(k)
R +

√
G − 1â†(k)

I , (1.22)

where G = 1 + ε2 is the gain of the OPA, Nk = ⟨ĉ
†

(k)ĉ(k)⟩ counts photons in the amplified

idler mode. The mode ĉ(k) is in a thermal state under both the H0 and H1 hypotheses,

ρĉ =
∑︁∞

n=0[Nn
m/(1 + Nm)1+n]|n⟩⟨n|, for m = [0, 1], with mean phothon number.

N0 = GNs + (G − 1)(1 + NB),

N1 = GNs + (G − 1)(1 + NB + κNs)

+ 2
√︁

G(G − 1)
√︁
κNs(Ns + 1).

(1.23)

The best joint quantum measurement for differentiating between the two hypotheses is

to count photons on each output mode c(k) and decide between the two hypotheses based

on the total photon count N over all M detected modes, using a threshold detector [103].
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C.C

Figure 1.4: The input of the balanced difference detector in the PCR are phase-conjugated return
and idler modes. The measured total number of photon counts, N, less than a threshold η, the

receiver decides H0; otherwise, H1.

1.5.2 Phase conjugate receiver (PCR)

Guha and Erkmen’s research also presented the idea of utilizing the stored half of the en-

tangled photon pair to perform dual-balanced difference detection after phase-conjugating

the returned light. When Ns ≪ 1, κ ≪ 1, and NB ≫ 1 are present, this technique yields

the same 3 dB error exponent gain in terms of error probability. It also shows better per-

formance when compared to the OPA (Optical Parametric Amplification) receiver. For

1 ≤ k ≤ M, Fig. 1.4 shows the M modes’ output from the phase-conjugate receiver.

â(k)
C = µâ(k)

v + νâ
†(k)
R , (1.24)

where â(k)
v are the vacuum-state operators that secure the commutator. The phase con-

jugate return and idler modes’ outputs are fed into the 50 − 50 beam splitter, and the

outcome modes are â(k)
X =

(︂
â(k)

C + â†(k)
I

)︂
/
√

2 and â(k)
Y =

(︂
â(k)

C − â†(k)
I

)︂
/
√

2. The result of the

measurement on the unity-gain difference amplifier is,

N̂
(k)
= N̂

(k)
X − N̂

(k)
Y = â†(k)

c â(k)
I + â(k)

c â†(k)
I , (1.25)

Where N̂
(k)
X = â†(k)

X â(k)
X and N̂

(k)
Y = â†(k)

Y â(k)
Y .

22



CHAPTER 1

Under hypothesis H0 [â(k)
C = µâ(k)

v + νâ
†(k)
R ], the mode â(k)

c and â(k)
I are independent

and uncorrelated. The decision is based on the sum of the photon counts N over all

M modes. The final random variable is NT =
∑︁M

k=1 Nk the Nk are independent, iden-

tically distributed (iid) random variables mean and variance given by ⟨N⟩0 = 0 and

σ2
0 = Ns+|ν|

2(NB+1)(2Ns+1). Under hypothesis H1 [â(k)
C = µâ(k)

v +ν
√
κâ†(k)

s +ν
√

1 − κâ†(k)
B ],

âs and âI are in a two-mode squeezed with correlation of the mean and variance are

⟨N⟩0 = 2ν
√
κNs(Ns + 1) and σ2

1 = Ns + ν
2
[︂
(NB + 1)(2Ns + 1) + κ(2Ns + 1)2 − κ(Ns + 1)

]︂
.

Despite the fact that N is not Gaussian in general, we can safely approximate the prob-

ability distribution of N with a Gaussian with mean MN̄ j and variance Mσ2
j for the two

hypotheses, j = 0, 1, by using the central limit theorem in the limit M ≫ 1 that we are

assuming. The Gaussian probability distribution function is

PN|H0/1(n|H0/1) =
e−(n−MN0/1)2/(2Mσ2

0/1)√︂
2πMσ2

0/1

. (1.26)

In the QI case involving PCR detection, the decision is made by differentiating be-

tween two Gaussian distributions, despite the fact that in this instance both the variance

and the mean differ between the two cases.

1.6 Experimental studies

The first Quantum Illumination (QI) experiment was carried out by Lopaeva et al [84].

using a 50:50 beam splitter as a model for the target and a spontaneous parametric down-

conversion (SPDC) source for photon counting. They demonstrated that, in comparison

to a correlated thermal state in a thermal background, an entanglement-breaking channel

could achieve a QI-like advantage in effective signal-to-noise ratio (SNR). But employing

photon counting with SPDC outputs is a less-than-ideal detection scheme, as previously

shown. Furthermore, their choice of the classical benchmark was not the best one ac-
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cording to coherent light [36]. Later on Zhang et al [151]. and afterwards used an OPA

receiver to put Tan et al.’s Gaussian QI protocol into practice. Their experiment showed

a sub-optimal 20% improvement in effective SNR compared to the best classical scheme,

which is equivalent to 0.8 dB versus the 3 dB available with OPA receivers.

S. Barzanjeh [10] implemented a digital version of the phase-conjugate receiver in

a proof-of-concept Quantum Illumination (QI) experiment in the microwave regime. A

Josephson parametric converter (JPC) was used inside a dilution refrigerator to gener-

ate entanglement. This method allows the phase-conjugate receiver to be implemented

without the use of analog photodetection while fully utilizing the correlations of the JPC

output fields. The experiment then compares the signal-to-noise ratio (SNR) with alterna-

tive detection strategies at the JPC output, using the same signal path and photon numbers.

A Josephson parametric converter (JPC) was used in each of these experiments [10,21,86]

to produce entanglement in low-brightness microwave modes. Next, a comparison was

made between the obtained results and a radar with classical correlation. Following the

JPC’s creation of entanglement, the signal was transmitted to the target region and am-

plified in both modes. Concurrently, the idler was quickly heterodyne identified. The

traditional result of this heterodyne detection was digitally saved during post-processing

so that it could subsequently be compared to the result of the returning signal that was

detected using a heterodyne. A Quantum Illumination (QI)-like advantage over their

classical counterparts, which were classically correlated noise radars, was shown in all

experiments.

1.7 Thesis outline

The structure of the thesis follows an incremental development, starting with the introduc-

tion of the mathematical tools and preliminary concepts necessary for the context of the

research. The subsequent chapters are organized based on the publications that present
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the contributions made by the research project upon which this thesis is based. These

contributions focus on the theory of quantum illumination and quantum target detection,

as well as the practical aspects of implementing these concepts, particularly in the mi-

crowave domain. Lastly, I will present the theory of entanglement and the synthesis of

entangled states using Heisenberg exchange interactions. The thesis is divided into the

following chapters:

•Chapter 2: Preliminary Notations: This thesis provides a comprehensive overview

of the mathematical tools and formalism of continuous variables that are necessary for

understanding the subsequent chapters and contributions. The mathematical framework

underpinning continuous variables is explained in detail, enabling readers to grasp the es-

sential concepts and techniques used throughout the thesis. These mathematical tools lay

the foundation for the exploration and analysis of quantum detection and quantum radar,

allowing for a deeper understanding of the research contributions presented in the later

chapters.

• Chapter 3: Publication 1: At the start of my published research project, Entan-

glement faces vulnerability to degradation in a noisy sensing environment. Nevertheless,

the quantum illumination protocol has surprisingly demonstrated resilience against such

conditions, maintaining its advantageous features. However, implementing a measure-

ment system to leverage this advantage proves challenging, given that pertinent infor-

mation is concealed within weak correlations embedded in noise on the receiver side.

Recent progress in correlation-to-displacement conversion modules provides a promising

avenue for an optimal protocol in practical microwave quantum illumination. This study

extends the conversion module to accommodate common experimental imperfections in

microwave systems. To mitigate losses, we propose amplifying the return signals. Under

ideal amplification, the entire six-decibel advantage in target detection error can be pre-

served. However, with noisy amplification, this advantage is reduced to three decibels.

We analyze the quantum advantage under various scenarios using a Kennedy receiver in
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the final measurement. In the ideal case, performance still achieves optimal results over

a significant range with only on-off detection. Photon number-resolving detectors further

enhance performance, and their impact is examined using receiver operating character-

istic curves. These findings open the door for the practical development of microwave

quantum illumination systems.

• Chapter 4: Introduction of the W state:

This thesis offers an extensive exploration of the concepts of entanglement and the

formalism of qubit representation, which are crucial for comprehending the subsequent

chapters and the contributions made. A detailed explanation of the entanglement for-

malism and qubit representation supporting the generation of the W state is provided,

ensuring that readers can comprehend the fundamental principles and methodologies uti-

lized throughout the thesis. These entanglement tools serve as the groundwork for the

investigation and examination of the spin system and the synthesis of the many-body W

state, facilitating a more profound understanding of the research contributions outlined in

the later chapters.

• Chapter 5: Publication 2: At the start of my published research project, the phe-

nomenon of entanglement spread holds significant interest, especially in the context of

quantum state synthesis. This is particularly relevant when the goal is to transform an ini-

tial direct-product state into a highly entangled target state. In devices relying on pairwise

exchange interactions, various methods can be employed to optimize this process. As a

benchmark scenario, we focus on the challenge of distributing one excitation among N

two-level atoms or qubits.

Beginning with an initial state where one qubit is excited, the objective is to achieve a

target state where all qubits exhibit the same excitation amplitude—a generalized W-state.

This transformation is to be accomplished through suitably chosen pairwise exchange in-

teractions. For instance, in a setup where any pair of qubits can be brought into proximity

for a controllable period, we explore three protocols, each with N − 1 tightly-constrained
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steps.

In the first protocol, one atom serves as a flying qubit that sequentially interacts with

all others. The second protocol involves qubits interacting pairwise in sequential order.

The interaction times in these two cases follow a pattern with an elegant geometric inter-

pretation, corresponding to angles within the spiral of Theodorus—a construction known

for over two millennia. The third protocol adopts a divide-and-conquer approach, dis-

tributing equally between two qubits at each step.

For large N, the flying-qubit protocol results in a total interaction time scaling as
√

N,

while the sequential approach scales linearly with N. The divide-and-conquer approach,

on the other hand, has a time lower bound that scales as ln N. Regardless of the protocol,

we demonstrate that the phase differences in the final state cannot be independently con-

trolled. For instance, generating a W-state (where all phases are equal) is not achievable

through pairwise exchange.

• Chapter 6: Summary and Conclusion
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Preliminary Notations

2.1 Introduction

The aim of this chapter is to introduce important definitions and tools that will be used

throughout the thesis work. Specifically, Sec. 2.2 covers Gaussian states, which play a

fundamental role in many aspects of continuous variable quantum information.

Sec. 2.2.1 discusses the generation and properties of bosonic Gaussian states, includ-

ing coherent states, two mode squeezed states, and thermal states, which are used in many

protocols and enter into the description of quantum illumination which we will study in

the following. Sec. 2.3 also introduces quantum hypothesis testing, which is used to eval-

uate the performance of quantum detection schemes.

Finally, Sec. 2.4 explains the Gaussian positive operator value measurement (POVM)

and General-dyne measurement. For readers interested in more details, references and

books on continuous variable quantum systems and quantum optics are provided.
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2.2 Continuous variable systems, harmonic oscillators and

bosonic modes

This section provides an overview of fundamental concepts of continuous variable sys-

tems (CV) and notation that will be used throughout the thesis. It begins by examining

the Cartesian decomposition of mode operators and phase-space variables. The concept of

characteristic function and Wigner function is then introduced. Additionally, the signifi-

cance of symplectic transformations in describing Gaussian operations in the phase-space

is emphasized.

2.2.1 Bosonic modes

The Hamiltonian of a bosonic system corresponding to a single mode of radiation is rep-

resented by a harmonic oscillator, with each mode labeled by k [15, 41, 145].

Ĥk = ℏωk

(︄
â†k âk +

1
2

)︄
. (2.1)

The additional 1/2 term arises from the zero-point energy fluctuations that are associated

with the vacuum state, where the photon number operator n̂k = â†k âk equals zero. Here,

ℏωk represents the quantization energy of a single photon.

The Fock basis |nk⟩
∞
n=0, which is also known as the number state representation, de-

notes the orthonornormal set of eigenstates of the photon number or n̂k. These states

represent the set of all possible number state vectors for the mode k, where nk indicates

the number of field excitations present in mode k. The bosonic annihilation and creation

operators are represented by âk and â†k , respectively, and they are defined by their action

on the Fock basis

âk |0⟩ = 0, âk |n⟩k =
√

n |n − 1⟩k, (for n ≥ 1) , (2.2)
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specifying the vacuum state as well, and

â†k |n⟩k =
√

n + 1 |n + 1⟩k, (for n ≥ 0) . (2.3)

The definitions of annihilation and creation operators for bosonic quantum fields demon-

strate that the former removes a particle, whereas the latter adds one. These definitions

are consistent with the well-known bosonic commutation relation.

[︂
âk, â

†

l

]︂
= δkl. (2.4)

We can easily generalize this formalism to describe a system of N modes, with pairs

of bosonic field operators, denoted by { âk, â
†

k }
N
k=1, and a tensor product of infinite-

dimensional Hilbert spaceH⊗N = ⊗N
k=1Hk.

The free Hamiltonian of the system (non interacting modes) is given by

Ĥk =

N∑︂
k=1

ℏωk

(︄
â†k âk +

1
2

)︄
. (2.5)

Position and momentum-like operators for each mode are defined through the Cartesian

decomposition of the mode operators,

q̂k :=
(︂
âk + â†k

)︂
, p̂k := i

(︂
â†k − âk

)︂
, (2.6)

satisfying the commutation relations.

[︁
q̂l, p̂k

]︁
= 2iδlk. (2.7)
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We can group together the canonical operators in the vector

X̂ =
(︁
q̂1, p̂2, . . . , q̂n, p̂n

)︁T , (2.8)

which allows us to write in compact form the bosonic commutation relationships between

the quadrature phase operators,

[︂
X̂i, X̂l

]︂
= 2iΩi j, (i, j = 1, . . . , 2N) , (2.9)

where Ωi j is the symplectic 2N × 2N matrix, defined as the direct sum of identical 2 × 2

blocks:

Ω :=
N⨁︂

k=1

ω = diag(ω, . . . , ω), ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.10)

2.2.2 Phase-space representation

The density operator ρ̂ represents the quantum state of an N-mode bosonic system and

encodes all of its physical information in its phase-space Wigner distribution which we

can define as follows [99, 144].

Given a state ρ̂, and the Weyl displacement operator

D (ξ) := exp
(︃
iX̂T
Ωξ

)︃
, (2.11)

where ξ ∈ R2N , we can define the Wigner (or symmetrically ordered) characteristic func-

tion χ(ξ) as

χ (ξ) := Tr
[︁
ρ̂D (ξ)

]︁
. (2.12)

Then, the Wigner function W (X), is a quasi-probability distribution defined over a 2N-

dimensional phase space, which can be obtained by taking the Fourier transform of the
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characteristic function associated to the density operator ρ̂,

W (X) =
∫︂

R2N

d2Nξ

(2π)2N exp
(︂
−iXTΩξ

)︂
χ (ξ) , (2.13)

where XT = (q1, p1, . . . , qN , pN) ∈ R2N . The Wigner function is defined on the real

symplectic phase space K :=
(︂
R2N ,Ω

)︂
, where Ω is the symplectic form. The continuous

variables X ∈ R2N span this space.

The vector of first order moments, i.e., the mean values, is represented by the dis-

placement vector.

X̄ := ⟨X̂⟩ = Tr
(︂
ρ̂X̂

)︂
=

∫︂
d2N XW (X) X. (2.14)

The covariance matrix (CM) V is a representation of the second moment or covariance of

the canonical variables. The elements of this matrix are given by:

Vi j :=
1
2

Tr
(︂{︂
∆X̂i,∆X̂ j

}︂
, ρ̂

)︂
, (2.15)

where ∆X̂i := X̂i−⟨X̂i⟩. The diagonal elements of the covariance matrix, denoted by Vii =

V(X̂i) and V
(︂
X̂i

)︂
:= ⟨X̂

2
i ⟩ − ⟨X̂i⟩

2, represent the variances of each individual quadrature

operator. The symbol {. . . } refers to the anti-commutator.

For canonically conjugate variables, the Heisenberg uncertainty relations can be recast

as a constraint on the covariance matrix (CM) V̂ [32, 126],

V + i Ω ≥ 0. (2.16)

This pasitivity condition implies the typical Heisenberg relation for position and momen-

tum,

V(q̂k)V( p̂k) ≥ 1. (2.17)

The inequality of Eq. (2.16) represent a necessary condition for the covariance matrix
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of any quantum state in order to be physically acceptable.

For a specific class of states, the first and second order moments are sufficient for their

complete characterization, i.e., we can write ρ̂ = ρ̂
(︂
X̄,V

)︂
. This is the case of the Gaussian

states. By definition, these are bosonic states with Gaussian Wigner representations (χ or

W), i.e.,

χ (ξ) = exp
[︄
−

1
2
ξT

(︂
ΩVΩT

)︂
ξ − i

(︂
ΩX̄

)︂T
ξ

]︄
, (2.18)

or

W (X) =
1

(2π)N
√

detV
exp

[︄
−

1
2

(︂
X − X̄

)︂T
V−1

(︂
X − X̄

)︂]︄
. (2.19)

It is interesting to note that a pure state is Gaussian if and only if its Wigner function in

non-negative, that is, the only pure states with non-negative Wigner function are Gaussian

states.

Moreover, the Heisenberg inequality Eq. (2.16) becomes a necessary and sufficient

condition for a Gaussian state to be physically acceptable. Williamson’s theorem [118],

is an essential tool for manipulating Gaussian states. According to this theorem, it is pos-

sible to find a symplectic matrix S (that is, such that STΩS = Ω), such that any covariance

matrix V can be transformed into its Williamson form.

V = SWST, (2.20)

where,

W =
N⨁︂

k=1

νkI, I = diag (1, 1) . (2.21)

The collection of symplectic eigenvalues {ν1, . . . , νN} represents the symplectic spectrum

of the matrix V, while the matrix W denotes the Williamson form of V. The uncertainty

principle implies that each symplectic eigenvalue must satisfy the condition νk ≥ 1. More-

over, if all symplectic eigenvalues are equal to 1, then the corresponding Gaussian state is

pure.
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For example: a two-mode Gaussian state’s symplectic spectra can be determined by

using its first and second-order moments. The state’s covariance matrix (CM) can be

represented in a block form to facilitate this calculation.

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A C

CT B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.22)

where A = AT, B = BT and C are 2 × 2 real matrices. Then, the Williamson form is

simply W
⨁︁
= (ν−I)

⨁︁
(ν+I), where the symplectic spectrum {ν−, ν+} is given by

ν± =

√︄
∆ ±

√︁
∆2 − 4 det(V)

2
, (2.23)

where ∆ is defined as ∆ := det(A) + det(B) + 2 det(C). In this two-mode case, the

uncertainty principle can be expressed in terms of the bona-fide conditions.

V > 0, and ∆ ≤ 1 + det(V). (2.24)

The CM of a generic two-mode Gaussian state of Eq. (1.22) can always be put, by means

of a proper symplectic transformation, into its “standard form”,

VS F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
aI C

C bI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1 0

0 c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.25)

When c1 = −c2 = c ≥ 0, the symplectic eigenvalues can be simply obtained as ν± =

1
2

(︂√
y ± (b − a)

)︂
, where y is given by (a + b)2 − 4c2. The symplectic transformation S for
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arriving at the standard form in this special case, that is VS F = SVST, is given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω+I ω−Z

ω−Z ω+I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ω± =

√︄
a + b ±

√
y

2
√

y
. (2.26)

The following text aims to provide the reader with a general understanding of the essen-

tial examples of Gaussian states used in quantum illumination, which will be frequently

mentioned in this thesis.

2.2.3 Coherent State

A coherent state is just obtained as a phase-space-displaced vacuum Fock state,

|α⟩ = D̂ (α) |0⟩, (2.27)

where D̂ (α) is a displacement operator

D̂ (α) = exp
(︂
αâ† − α∗â

)︂
. (2.28)

Coherent states |α⟩ are characterized by a complex amplitude α = (q + ip) /2, as shown

in Fig. 2.1. These states are eigenfunctions of the annihilation operator â with eigenvalue

α. As a consequence of its definition, a coherent state has the same covariance matrix of

the vacuum state (V = I) and mean values X = (q, p)T.

The coherent state represents the classical state of a radiation field which can be gen-

erated by a standard coherent radiation source such as a laser. It represents the state of the

radiation which is sent to a target in order to verify its presence in a classical illumination

scenario.
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Figure 2.1: Depicts the vacuum state and the coherent state.

2.2.4 Photon statistics of coherent states

The coherent states |α⟩ can be expressed as a sum of number states |n⟩ with complex

coefficients given by the Poisson distribution. This expansion allows us to calculate the

expectation value of the photon number n̂ = â†â in a coherent state, which turns out to be

equal to the square of the coherent state amplitude, ⟨n̂⟩ = |α|2,

⟨α|n̂|α⟩ = |α|2 = n̄.

The probability of observing a certain number of photons, n, in a coherent state |α⟩ is

given by

Pn = |⟨n|α⟩|2 = e−|α|
2 |α|2n

n!
= e

−n̄
n̄n

n! , (2.29)

which corresponds to a Poisson-distribution with mean number of photons n̄ = |α|2.

2.2.5 Thermal State

Thermal states define the state in which the mode is at thermal equilibrium T , ρ̂ ∝

exp (−βĤ), where β = 1/KBT ,

ρ̂ (T ) =
∞∑︂

n=1

Nn
T

(NT + 1)n+1 |n⟩⟨n|, (2.30)
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where the average number of photons NT ,

NT =

[︄
exp

(︄
ℏω

KBT

)︄
− 1

]︄−1

≡ Tr
[︂
â†âρ̂

]︂
. (2.31)

Thermal states are Gaussian states with a Wigner function with mean ⟨X⟩ = (0, 0) and a

covariance matrix V = (2NT + 1) I2×2. While at room temperature, NT ≈ 0 for optical

frequencies, it is significantly greater than one for microwave frequencies. In quantum

illumination, thermal states are used to describe the noise background, which is therefore

always very large in microwave radar applications. This explains why in most QI studies

one focuses only onto the case NT ≫ 1.

2.2.6 Single mode Squeezed State

When a bright laser is used to pump a nonlinear crystal, some of the pump photons at

frequency 2ω are split into pairs of photons at frequency ω. When the conditions for a

degenerate optical parametric amplifier (OPA) are met, the output mode ideally consists

of a superposition of even-number states (|2m⟩). To generate photon pairs, the interaction

Hamiltonian must include a term â†
2

to create pairs of photons and a term â2 to ensure

Hermiticity. This interaction is associated with the one-mode squeezing operator, which

is a Gaussian unitary transformation defined as

Ŝ (r) = exp
[︄
1
2

(︂
r∗â2 − râ†

2)︂]︄
, (2.32)

where r = |r|eiθ is called the squeezing parameter. Its action the operators â and â† is the

following linear transformation

â→ S †(r)âS (r) = µâ − νa†,

â† → S †(r)â†S (r) = µâ† − ν∗a,
(2.33)
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Figure 2.2: Single mode: (a) Squeezed vacuum state and (b) displaced squeezed state

where

µ = cosh (|r|), ν = eiθ sinh (|r|). (2.34)

By applying the squeezing operator to the vacuum state we generate a squeezed vacuum

state |r, 0⟩ = S (r)|0⟩, as shown in Fig. 2.2, whose covariance matrix (in the special case

θ = 0) is given by

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e−2r 0

0 e2r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.35)

This covariance matrix exhibits varying quadrature noise-variances, meaning that one

variance is squeezed below the quantum shot-noise level, while the other variance is anti-

squeezed and exceeds the shot-noise level.

2.2.7 Two mode Squeezed State

A two-mode squeezed state is a quantum state that can exist between two electromagnetic

field modes, such as two optical modes in a cavity. This state is achieved through a

process called parametric down-conversion, where a nonlinear crystal is irradiated with a

strong pump beam. In the non-degenerate optical parametric amplifier (OPA) regime, we

generate pairs of photons in two distinct modes, namely the idler and the signal.

The squeezing parameter characterizes the amount by which fluctuations in one mode
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Figure 2.3: Two mode: Squeezed vacuum state

are reduced at the expense of the other mode, as shown in Fig. 2.3. The squeezing param-

eter can be changed by altering the pump beam or the nonlinear crystal. The process can

be described by a bilinear interaction Hamiltonian, and the corresponding Gaussian uni-

tary operator is known as the “two-mode squeezing operator” (TMS). The TMS is defined

as follows:

Q̂ (r) = exp
[︃
râ†b̂

†
− r∗âb̂

]︃
, (2.36)

where again r = |r| exp (iθ) is the squeezing parameter, which now quantifies the degree

of two-mode squeezing in a two-mode squeezed state.

Applying the two-mode squeezing transformation Q(r) to the vacuum state of both

modes results in the two-mode squeezed vacuum state (TMSV),

Q̂ (r) |0, 0⟩ =
√

1 − λ2
∞∑︂

n=0

(︂
eiθλ

)︂n
|n⟩S |n⟩I , (2.37)

where λ = tanh |r| ∈ [0, 1].

It is easy to verify from Eq. (2.37) that the mean number of photons of the idler and

signal modes is the same, and it is given by

⟨a†a⟩ = ⟨b†b⟩ = sinh2
|r| = Ns. (2.38)
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The two mode squeezed vacuum state is a Gaussian states with zero mean ⟨X⟩ = 0

and covariance matrix V

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
νI

√
ν2 − 1Z

√
ν2 − 1Z νI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.39)

where ν = cosh 2r measures the quadrature’s noise variance.

2.3 Quantum Hypothesis testing

Quantum state discrimination mirrors the statistical problem of hypothesis testing in the

quantum realm. The objective is to differentiate between two arbitrary quantum states

after they have undergone a quantum channel [20, 104]. This task involves identifying

which version of a quantum state aligns with a specific hypothesis. Accuracy and a low

error rate in this process are vital for selecting the correct hypothesis.

In the realm of quantum illumination theory, the challenge is to detect the presence

or absence of a target based on measurements from a quantum channel’s output. This

can be tackled using either the asymmetric hypothesis testing approach (Neyman-Pearson

method) or the symmetric hypothesis testing method employing the Bayes criterion. Both

methods aim to enhance the precision of quantum state discrimination.

2.3.1 Bayes Symmetric Hypothesis test

In a Bayes test, two fundamental assumptions are made [60]. Firstly, prior probabilities,

P1(R) and P0(R), are assigned to the hypotheses H1 (target present) and H0 (target absent)

respectively. These probabilities reflect the observer’s knowledge of the source before

conducting the experiment. Secondly, each possible action incurs a specific cost. The

costs associated with the four potential actions are denoted as C00, C10, C01, and C11,

where the first subscript signifies the chosen hypothesis and the second subscript indicates
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Figure 2.4: Hypothesis test

the true hypothesis.

The expected cost, often denoted as the risk R, quantifies the anticipated cost of mak-

ing an incorrect decision depending on the chosen hypothesis. To calculate the risk, one

multiplies the cost of each potential action by its respective probability and then sums up

these values. By comparing the risks associated with different decisions, it is possible to

identify the optimal course of action. Mathematically, the risk is expressed as follows:

R = C00 P0

∫︂
Z0

P (r|H0) dr +C10 P0

∫︂
Z1

P (r|H0) dr

+C01 P1

∫︂
Z0

P (r|H1) dr +C11 P1

∫︂
Z1

P (r|H1) dr,
(2.40)

where r represents a real observable r ∈ Z a set of N observations: r = {r1, r2, . . . rN}.

Each set can be conceptualized as a point in an N-dimensional space, denoted as r :=

[r1, r2, . . . , rN]T.

The decision space Z is a real space, and it is divided into two regions, Z0 and Z1, for

the purpose of choosing between the two hypotheses, H0 and H1, as shown in Fig. 2.4.

If R belongs to Z0, we conclude that H0 is valid. Conversely, if R belongs to Z1, we

conclude that H1 is valid. The way in which the regions Z0 and Z1 are constructed to

minimize the error in determining which hypothesis is correct is known as the decision

strategy.

We can express risk in an equivalent way by saying that
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R = C00 P0 Pr1
(︁
say H0|H0 true

)︁
+C10 P0 Pr2

(︁
say H1|H0 true

)︁
+C11 P1 Pr3

(︁
say H1|H1 true

)︁
+C01 P1 Pr4

(︁
say H0|H1 true

)︁
.

(2.41)

In the context of hypothesis testing, the outcomes can be classified as either correct

decisions or errors. Mistakes or errors include type-I and type-II errors, which are rep-

resented by outcomes 2 and 4 respectively, while outcomes 1 and 3 represent correct

decisions.

In the case of quantum illumination, H0 indicates the absence of a target, and H1

represents the presence of a target. The decision strategy is particularly useful in situations

where false alarms (type-I errors) and miss detection (type-II errors) occur, corresponding

to outcomes 2 and 4 respectively.

PF = P(H1|H0) = Pr2
(︁
say H1|H0 true

)︁
,

PM = P(H0|H1) = Pr4
(︁
say H0|H1 true

)︁
.

(2.42)

Consider a simple experiment with binary outcomes. The positive and negative outcomes

will be represented by the null hypothesis, H0, and the alternative hypothesis, H1. Let

p = {pµ | µ ∈ {0, 1}} be the prior probability of hypothesis H with 0 and 1 such that

H0 : ρ̂ = ρ̂0, p = p0,

H1 : ρ̂ = ρ̂1, p = p1.

(2.43)

The probability of receiving a false positive or false negative result in our determination

is then given by

P
(︁
µ = 1 | ρ̂ = ρ̂0

)︁
= P (H1|H0) ,

P
(︁
µ = 0 | ρ̂ = ρ̂1

)︁
= P (H0|H1) .

(2.44)
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The probability of getting an error, of any kind, in our discrimination process is overall

Perr = p1 P (H0 | H1) + p0 P (H1 | H0) . (2.45)

In the realm of quantum mechanics, where it’s impossible to perfectly distinguish

between non-orthogonal states, various metrics have been devised to measure the distinc-

tions between these states. One of these metrics is minimum error discrimination, which

permits the imperfect differentiation of non-orthogonal states by accounting for the prob-

ability of making errors.

In the context of quantum hypothesis testing, the two hypotheses correspond to two

possible quantum system states, ρ0 and ρ1. Bob performs a dichotomous POVM on this

system withΠµ and µ = 0, 1 as its value. The objective is to minimize the error probability

in quantum state discrimination using Bob’s POVM {Π0,Π1},

Perr = p0Tr
(︁
Π1 ρ̂0

)︁
+ p1Tr

(︁
Π0 ρ̂1

)︁
. (2.46)

2.3.2 Helstrom Bound

The Helstrom bound is a method to determine how well Bob can differentiate between two

states, ρ̂0 and ρ̂1, with probabilities p0 and p1, respectively, while minimizing the proba-

bility of error. In other words, it helps Bob to determine the optimal way to distinguish

between two quantum hypotheses. Let us define the Helstrom matrix γ.

γ := p0 ρ̂0 − p1 ρ̂1, (2.47)

whose spectral decomposition in terms of its eigenvalues and eigenvectors is

γ =
∑︂
µ

γµ|µ⟩⟨µ|. (2.48)
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The optimal POVM for Bob, denoted by {Π0,Π1 = I − Π0}, consists of a projector Π0

onto the positive part of the Helstrom matrix, denoted as γ+. This POVM is referred to as

the “Helstrom POVM.” To construct this optimal detection scheme, we use the spectral

decomposition of the Helstrom matrix and define the POVM {Π0,Π1 = I−Π0}, where Π0

is the projector

P(γ+) =
∑︂
γ+µ

|µ⟩⟨µ|, (2.49)

onto the eigenspace associated to the positive positive eigenvalues γ+ of γ. The minimum

probability of error is,

Pmin
err =

1
2

(1 − ||γ||1) , (2.50)

where

||γ||1 = Tr|γ|, |γ| =
∑︂
µ

|γµ| |µ⟩⟨µ|. (2.51)

From this point forward, we assume that the probabilities of the two states ρ̂0 and ρ̂1

are equal, i.e., p0 = p1 = 1/2. This implies that both quantum hypotheses are equiproba-

ble.

H0 : ρ̂ = ρ̂0, p0 =
1
2
,

H1 : ρ̂ = ρ̂1, p1 =
1
2
.

(2.52)

In this case the Helstrom matrix is given by

γ =
1
2

(︁
ρ̂0 − ρ̂1

)︁
. (2.53)

The minimum error probability takes the form

Pmin
err =

1
2

[︄
1 − ||

1
2

(︁
ρ̂0 − ρ̂1

)︁
||1

]︄
=

1
2

[︁
1 − D(ρ0, ρ1)

]︁
. (2.54)
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The formula for the Helstrom bound can be used to determine the minimum error

probability Pmin
err in distinguishing between two equiprobable pure states (kets) |φ0⟩ and

|φ1⟩. For D = 0, the two states are the same and Pmin
err = 1/2 (random guessing), while for

D = 1, the two states are orthogonal and Pmin
err = 0 (perfect discrimination).

2.3.3 Quantum chernoff Bound (QCB)

The Helstrom bound can sometimes be challenging to calculate [7], but there are alterna-

tive bounds that can give an approximation of the minimum error probability Perr
min. The

most significant of these is the quantum Chernoff (QC) bound, which provides an upper

bound.

Pmin
err ≤ PQC, (2.55)

which is defined as

PQC :=
1
2

inf
s ∈ [0,1]

Cs, (2.56)

where the generalized overlap Cs is given by

Cs := Tr
(︂
ρs

0 ρ
1−s
1

)︂
. (2.57)

Due to the possibility of discontinuities in the generalized overlap Cs at the border

points s = 0, 1 where C0 = C1 = 1, the QC bound is defined using an infimum in [0, 1]

rather than a minimum. When one of the two states is pure, this does indeed occur. For

instance, suppose we

ρ0 = |φ0⟩⟨φ|, (2.58)

then
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inf
s

Cs = lim
s→0+

Cs. (2.59)

Furthermore, in this special case, the QC bound is directly related to the quantum

fidelity by the formula

PQC =
1
2

F (|φ0⟩, ρ0) , (2.60)

where

F (|φ0⟩, ρ0) = ⟨ φ0 | ρ1 | φ0 ⟩. (2.61)

2.3.4 Quantum Battacharyya Bound

The Quantum Battacharyya Bound (QB) bound is obtained by setting s = 1/2 and ignor-

ing the minimization. This simplification makes the bound easier to compute and useful

in discriminating mixed states.

PQC ≤ PQB :=
1
2

C 1
2
=

1
2

Tr
[︁√
ρ0
√
ρ1

]︁
. (2.62)

Fidelity Bounds

Quantum fidelity is a measure of the similarity between two quantum states, given by the

square root of the overlap between them. It is defined as follows:

F =
[︃
Tr

(︃√︂
√
ρ0 ρ1

√
ρ0

)︃]︃2

, (2.63)

where ρ1 and ρ2 are two quantum states. Fidelity satisfies the following properties: 0 ≤

F(ρ1, ρ2) ≤ 1, where F = 0 indicates the states are orthogonal and F = 1 indicates the

states are identical. Fidelity is symmetric: F(ρ1, ρ2) = F(ρ2, ρ1) Fidelity is contractive:

for any quantum operation E, F(E(ρ1), E(ρ2)) ≤ F(ρ1, ρ2). The quantum fidelity can be

used to derive additional bounds on the error probability in state discrimination, such as
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the Chernoff bound. It is possible to prove the two following inequalities for two arbitrary

states ρ0 and ρ1:

PQB ≤ F+ :=
1
2

√
F, (2.64)

and

F− :=
1 −
√

1 − F
2

≤ Pmin
err , (2.65)

so that, we have a chain of inequalities

F− ≤ Pmin
err ≤ PQC ≤ PQB ≤ F+. (2.66)

2.3.5 Formulas for Gaussian states

The generalized overlap between two equiprobable Gaussian states, ρ̂0 and ρ̂1, can be

computed using a closed formula.

PQCB =
1
2

(︃
inf

s∈[0, 1]
Cs

)︃
, Cs := Tr

(︂
ρ̂s

0 ρ̂
1−s
1

)︂
, (2.67)

which is involved in the definitions of the QC bound and QB bound.

Consider the general case of two n-mode Gaussian states ρ̂0

(︂
X̄0,V0

)︂
and ρ̂1

(︂
X̄1,V1

)︂
where their CMs can be decomposed via a sympletic decomposition

V0 = S0

⎛⎜⎜⎜⎜⎜⎝ n⨁︂
k=1

νk0I
⎞⎟⎟⎟⎟⎟⎠ ST

0 ,

V1 = S1

⎛⎜⎜⎜⎜⎜⎝ n⨁︂
k=1

νk1I
⎞⎟⎟⎟⎟⎟⎠ ST

1 ,

(2.68)

where {ν0
k} is the symplectic spectrum of V0, {ν1

k} is the symplectic spectrum of V1, and

S0, S1 are symplectic matrices.

In order to compute the generalized overlap Cs between two equiprobable Gaussian
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states, ρ̂0 and ρ̂1, we can express it in terms of the mean values X̄0 and X̄1 and the sympletic

eigenvalues V0 and V1. To derive this formulation, we introduce the real functions called

Gs(x) =
2s

(x + 1)s
− (x − 1)s ,

Λs(x) =
(x + 1)s + (x − 1)s

(x + 1)s
− (x − 1)s .

(2.69)

which are positive for any x ≥ 1. Then, we also define the “symplectic action” of Λs

over an arbitrary CM

V = S
⎛⎜⎜⎜⎜⎜⎝ n⨁︂

k=1

νkI
⎞⎟⎟⎟⎟⎟⎠ ST, (2.70)

as

Λs(V)∗ = S
⎡⎢⎢⎢⎢⎢⎣ n⨁︂

k=1

Λs(νk)I
⎤⎥⎥⎥⎥⎥⎦ ST (2.71)

Given these preliminaries, we can now write the formula. For any s ∈ [0, 1], the

generalized overlap has the Gaussian expression

Cs =
Πs
√

detΣs
exp

[︄
−

dTΣ−1
s d

2

]︄
, (2.72)

where

d := X̄0 − X̄1, (2.73)

and

Σs := Λs(V0)∗ + Λ1−s(V1)∗, (2.74)

and finally

Πs := 2nΠn
k=1Gs

(︂
ν0

k

)︂
G1−s

(︂
ν1

k

)︂
. (2.75)

A particular case of interest is the discrimination of zero-mean Gaussian states, where

both states have a mean value of zero (X̄0 = X̄1 = 0). In this case, the previous formula
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simplifies to the expression

Cs =
Πs
√

detΣs
. (2.76)

If we consider single-mode states (n = 1), the symplectic spectra consist of a single

eigenvalue. In this case, we can write the symplectic decompositions as

V0 = S0

(︂
ν0I

)︂
ST

0 = ν
0S0ST

0 ,

V1 = S1

(︂
ν1I

)︂
ST

1 = ν
1S1ST

1 .

(2.77)

Then, we have

Σs = Λs

(︂
ν0I

)︂
S0ST

0 + Λ1−s

(︂
ν1I

)︂
S1ST

1 ,

Πs = 2sGs

(︂
ν0

)︂
G1−s

(︂
ν1

)︂
,

(2.78)

and

F
(︁
ρ̂0, ρ̂1

)︁
=

2
√
∆ + δ −

√
δ

exp
[︄
−

1
2

dT (V0 + V1)−1 d
]︄
, (2.79)

where

∆ := det (V0 + V1) , δ := det (V0 − 1) det (V1 − 1) . (2.80)

2.4 Measurement Detectors

The class of non-deterministic maps includes well-known detection methods in quantum

optics such as homodyne and heterodyne detection. In Fig. 2.5 the two types of detection

techniques make use of a balanced beam splitter. Consider a 50 : 50 beam splitter with

the reflection R and transmission T coefficients equal to 1/
√

2. The two input modes are
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Figure 2.5: Schematic setup at the basics of balanced homodyne and heterodyne detection

â1 and â2. The two output modes â3 and â4 given by

â3 =
â1 + â2
√

2
, â4 =

â2 − â1
√

2
. (2.81)

The signal is determined by the disparity in photon number counts and is calculated

as the difference N̂ in signals recorded by photodetectors n̂3 = â†3â3 and n̂4 = â†4â4.

N̂ = n̂3 − n̂4 = â†1â2 + â†2â1. (2.82)

Mode 2 is the “local oscillator”, that is, it corresponds to an intense and stabilized

coherent source (laser or mode), well described by a coherent state |βLO⟩, with βLO =

|βLO| eiθ e−iωLOt where ωLO is the frequency of the local oscillator. Since |βLO| ≫ 1

we can neglect its quantum fluctuations and treat â2 as a complex function of time,

â→ |βLO|eiθ−iωLOt, where ωLO is the frequency of the local oscillator field.

As a consequence, the output of the detection of Fig. 2.5. is a photocurrent propor-

tional to the operator.

â†1eiθ−iωLOt + â1e−iθ+iωLOt. (2.83)

The operator â1 is the annihilation operator of a photon of a field rapidly oscillating at

frequency close to the “carrier” frequency ω1, so that it is convenient to rewrite it in term
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of a slowly varying operator ˆ̃a, that is, â→ ˜̂a1e−iω1t, so that Eq. (2.83) becomes

Î∆, θ (t) = ˜̂a1 e−iθ ei∆t + ˜̂a
†

1eiθ e−i∆t, (2.84)

where ∆ = ωLO − ω1.

The photocurrent operator Î∆, θ (t) is then filtered, that is, it is modulated by an oscil-

lating current at frequency ωmod, and integrated over a time τ,

Ĵ
τ

∆, θ (ωmod, t) =
1
τ

∫︂ t

t−τ
ds cos (ωmod s) Î∆, θ (s)

= e−iθāτ(∆ + ωmod, t) + eiθā†τ(−∆ − ωmod, t)

+ e−iθāτ(∆ − ωmod, t) + eiθā†τ(−∆ + ωmod, t)

, (2.85)

where we have defined the filtered field operator

āτ(ω, t) =
1
2τ

∫︂ t

t−τ
ds â1(s) eiωs. (2.86)

We first consider homodyne detection, i.e, when ω1 = ωLO ⇐⇒ ∆ = 0. In this case

the integrated photocurrenct is

Ĵ
τ

∆, θ (ωmod, t) = e−iθāτ(ωmod, t) + eiθā†τ(−ωmod, t)

+ e−iθāτ(−ωmod, t) + eiθā†τ(ωmod, t)

= X̂θ,τ (ωmod, t) + X̂θ,τ (−ωmod, t),

(2.87)

that is, the two quadratures at the two spectral components ±ωmod around the reference

frequency ωLO.

Therefore, when ∆ = 0, the detection system performs a measurement of a field

quadrature; in the limit τ→ ∞ and in the case of perfect detection, one gets a real number

Xθ, and this corresponds to a projection onto the corresponding quadrature eigenstate |Xθ⟩.
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We then consider heterodyne detection, i.e, when ∆ ≠ 0 and |∆| ≫ Ωsig= typical

frequency of the field signal. In this case we take ωmod = ∆ −Ωsig

Ĵ
τ

∆, θ (∆ −Ωsig, t) = e−iθāτ(2∆ −Ωs, t) + eiθā†τ(−2∆ + Ωs, t)

+ e−iθāτ(Ωsig, t) + eiθā†τ(−Ωsig, t)

≈ X̂θ,τ (ωsig, t),

(2.88)

the first two terms are negligible because they oscillate at a frequency where there is

no signal, but only added vacuum noise. So in this case only the quadrature of a given

frequency Ωsig is measured, differently from the homodyne case. Moreover the second

term, eiθā†τ (−Ωsig, t) is more relevant than the first one, and this is why we can think of

heterodyne as measurement of the first operator, e−iθā†τ (Ωsig, t) and a given measurement

provides in the ideal case, a projection onto the corresponding coherent state |α⟩⟨α|.

2.4.1 General-dyne measurement

Coherent states, which are called the “most classical” quantum states in the quantum

optical domain, belong to a particular class of Gaussian states [118]. These states are

the eigenvectors of the annihilation operators â and their covariance matrix is given by

the 2 × 2 identity matrix. In Eq. (2.27), in a system with n modes, the coherent states

represent a resolution of the identity operator.

1
(2π)n

∫︂
R2n

d2nXD̂−X |0⟩⟨0| D̂X = I. (2.89)

This equation implies that the collection of projections on coherent states D̂−X |0⟩⟨0| D̂X

is related to a positive operator-valued measure (POVM). In practice, this corresponds to

a physical measurement setup; one well-known example of such a measurement is the

heterodyne detection scheme, described in the previous paragraph. We now consider a
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unitary transformation S which is a purely quadratic operation that corresponds to the

symplectic transformation S ,

1
(2π)n

∫︂
R2n

d2nXŜ D̂−X |0⟩⟨0| D̂XŜ
†
=

1
(2π)n

∫︂
R2n

d2nXD̂−X̄Ŝ |0⟩⟨0| Ŝ
†
D̂X̄ = I, (2.90)

where Ŝ D̂XŜ
†
= D̂X̄ is still a displacement operator with displacement X̄ which is the

displacement transformed by the symplectic transformation S .

Upon observation of the measurement result, the measurement processes outlined in

these identity resolutions map onto projections onto a fully generic pure Gaussian state

D̂XŜ |0⟩ generalizing the previous examples of heterodyne and homodyne detection,

|ΨG⟩ = D̂X̄Ŝ
†
|0⟩. (2.91)

They are called “general-dyne” measurement, which, can also approximate the ho-

modyne detection scheme which is a projection onto eigenstates of quadrature opera-

tors when the symplectic transformation S becomes a squeezing operator with an infinite

squeezing parameter S = diag(z, 1/z) for z → ∞. The uncertainty associated with one of

the quadrature operators approaches zero, while the uncertainty associated with its conju-

gate counterpart approaches infinity. It is easy to understand that the state onto which the

system is projected is an eigenstate of the quadrature operator in this case.

2.4.2 Conditional general-dyne measurement

A conditional general-dyne measurement [88, 124], which involve projections onto pure

Gaussian states |ΨG⟩, would imply that the measurement procedure is contingent on cer-

tain observed outcomes or predetermined conditions. For instance, in quantum commu-

nication protocols or quantum information processing, a conditional general-dyne mea-

surement can entail modifying the measurement plan in response to past measurement
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outcomes or the quantum system’s state at a particular stage of the procedure. This “con-

ditional” part suggests a customized measurement strategy that considers particular infor-

mation gathered during the experiment.

Consider a bipartite system, A with n modes and B with m modes, with the system’s

initial Gaussian state divided into subsystems A and B, each with covariance matrix and

mean

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
VA VAB

VT
AB VB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
X̄A

X̄B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.92)

A projective measurement involving a collection of pure Gaussian states |Ψ⟩G as

shown in Eq. (2.91), each characterized by mean X̄m and covariance Vm measurements,

can effectively represent a general-dyne measurement on subsystem B. It’s important to

note that the outcome of the measurement, denoted by Xm, is just a label. In such a mea-

surement, the other subsystem yields a Gaussian state conditioned on the measurement

outcome, conforming to a Gaussian distribution. We now provide a concise derivation of

the measurement outcomes distribution and the resultant Gaussian state.

Any quantum state ρ̂ can be written in the basis of displacement operator as shown in

Eq. (2.11) using the Fourier-Weyl relation as

ρ̂ =
1

(2π)n+m

∫︂
R2(n+m)

d2nX χ (X) D̂(−X), (2.93)

where the displacement operator D (ξ) := exp
(︃
iX̂T
Ωξ

)︃
and satisfies orthogonal relation

Tr
[︁
D (ξ) D (ξ′)

]︁
= πn+mδ (ξ + ξ′). For Gaussian states with covariance matrix V and mean

X̄ , the Wigner characteristic function has the Gaussian form

χ (X) := Tr
[︁
ρ̂ D (X)

]︁
= exp

[︄
−

1
2

XT
(︂
ΩV ΩT

)︂
X − i

(︂
ΩX̄

)︂T
X
]︄
. (2.94)

54



CHAPTER 2

We now perform the general-dyne measurement which projects subsystem B onto the

Gausssian state |ΨG⟩B. As a consequence, the state of subsystem A conditioned to the

measurement result X̄m becomes

TrB
[︁
ρ̂G ρ̂

]︁
= B⟨ΨG| ρ̂ |ΨG ⟩B =

1
(2π)n+m

∫︂
R2(n+m)

dXB exp
(︄
−

1
4

iXTΩTVΩX + iXTΩTX ′

)︄
B⟨ΨG|D̂ (−X) |ΨG⟩B,

(2.95)

where we have used TrB

[︂
ρ̂G D̂−XB

]︂
= B⟨ΨG|D̂ (−X) |ΨG⟩B. By explicitly calculating the

multivariate Gaussian integral,

B⟨ ΨG |ρ̂|ΨG⟩B =
e

1
2 (X̄m−X̄B)T 1

(VB+Vm) (X̄m−X̄B)

(2π)n
√

(VB + Vm)∫︂
dXAeX

T
A

(︃
VA−VAB

1
(VB+Vm)V

T
AB

)︃
XAe−X

T
A

(︃
XA−VAB

1
(VB+Vm) (X̄m−X̄B)

)︃
D̂

(︂
ΩTXA

)︂
.

(2.96)

We get the final characteristics function subsystem A, yielding the mean and covari-

ance matrix of the subsystem A, as well as the probability distribution of measurement

outcomes.

V ′A = VA − VAB
1

(VB + Vm)
VT

AB,

X̄
′

A = X̄
′

A + VAB
1

(VB + Vm)

(︂
X̄m − X̄B

)︂
,

p
(︂
X̄m

)︂
=

e
1
2 (X̄m−X̄B)T 1

(VB+Vm) (X̄m−X̄B)

(2π)m √det (VB + Vm)
.

(2.97)

Notice that the measurement outcome affects only the mean values of the state, while

the covariance matrix does not depend upon it and it is the same for any measurement

outcome.
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Microwave quantum illumination with

correlation-to-displacement conversion

This chapter incorporates material from the following publications: ([1] Microwave quan-

tum illumination with correlation-to-displacement conversion, Jacopo Angeletti, Haowei

Shi, Theerthagiri Lakshmanan, David Vitali, Quntao Zhuang, Phys. Rev. Applied 20,

024030 – Published 11 August 2023.)

3.1 Introduction

Quantum illumination (QI) is an entanglement-assisted sensing scheme that enhances

the precision and sensitivity of target detection [83, 120, 134], via entangling the sig-

nal probes with locally stored idlers. Originally developed to simply detect the presence

or absence of a target, QI offers a 6-decibel improvement in error exponent due to entan-

glement [134]. In recent years, QI has been extended to improve target range and angle

detection [152,153], demonstrating an even greater advantage over classical counterparts

in the intermediate signal-to-noise-ratio (SNR) region, thanks to the threshold phenomena

of nonlinear parameter estimation [153].
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Despite these theoretical advancements in QI, its experimental realization in the mi-

crowave domain, which is the natural scenario for its application, has faced several lim-

itations. One of the practical challenges is the need for extensive cooling for microwave

quantum-limited detection, due to the high natural noise background, and the lack of de-

veloped photon-counting detection technology [6,31]. To address these issues, a solution

for QI based on optical-microwave transduction has been proposed [9]. This approach uti-

lizes an optical idler mode for noiseless storage at room temperature, and up-converts the

microwave return mode to the optical domain for quantum-limited joint detection of op-

tical photons. However, the current state-of-the-art efficiency in optical-microwave trans-

duction [8, 16, 39, 56, 80, 112] falls short of what is required to sustain this transduction-

based scheme in the near future.

In addition to the practical challenges, a fundamental limitation of QI is the receiver

design problem. Currently, practical receivers such as the optical parametric amplifier

receiver (OPAR) and the phase-conjugate receiver (PCR) can only attain half of the er-

ror exponent advantage [54]. The optimal receiver would require unit-efficiency sum-

frequency-generation at the single photon level [154], which is highly challenging to real-

ize experimentally. The problem of optimal receiver design seems to necessitate nonlinear

processes and joint operations on the idler and return modes, making it difficult to imple-

ment in practice.

Previous in-principle demonstrations of QI target detection have been hindered by

the aforementioned limitations. One example is an optical domain simulation, which

injected noise to mimic a microwave scenario and utilized a sub-optimal OPAR [151].

This approach achieved approximately 20% of the error exponent advantage. Another

demonstration in the microwave domain used a digitally reconstructed PCR [10], but was

unable to surpass the performance of the classical benchmark represented by an ideal

coherent state source with the same mean number of photons and homodyne detection.

More recently, the OPAR scheme was adapted to the microwave domain, overcoming
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Figure 3.1: Schematic of the quantum illumination, with a practical receiver based on
correlation-to-displacement conversion, in presence of noise and loss. ‘het’: heterodyne

detection. ‘PD’: photo-detection.

several challenges in microwave photon processing [6] and again yielding roughly 20%

of the error exponent advantage.

A recent development in the field of optimal receiver design is the correlation-to-

displacement (‘C˃D’) conversion proposal, which suggests that the optimal receiver de-

sign can be achieved by heterodyne-detecting the return mode separately and process-

ing the associated conditional idler field [123]. Upon heterodyne detection of the return

modes, the idler modes collapse to coherent states embedded in weak thermal noise. With

the help of well-established coherent state discrimination protocols, the C˃D receiver de-

sign can attain the optimal error probability of QI [96]. This receiver design requires only

programmable linear optics [75, 87] and photon detection, making it more feasible for

experimental realization. Additionally, it eliminates the need for mode-matching between

the noisy return fields at room temperature and the cooled idler fields, avoiding technical

difficulties.

In this study, we evaluate the feasibility of the C˃D receiver design in the microwave

domain. We account the lossy antenna coupling to the detection in real radar systems,

by introducing loss 1 − ηS ≤ 1 in the return mode prior to heterodyne detection. To

mitigate this loss, we suggest using parametric amplification with gain G ≥ 1. Our results

show that the full optimal six-decibel error-exponent advantage can be retained when
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GηS ≫ 1 if the amplifier is quantum limited. Even if the amplifier introduces noise at

room temperature, the C˃D receiver still provides a three-decibel advantage over the ideal

classical system. Furthermore, we consider the case of limited detection capability in the

idler modes. Instead of the complex Dolinar receiver, we consider the simpler Kennedy

receiver and still observe the optimal error exponent advantage. Finally, we compare the

practical C˃D receiver design with both the classical coherent-state homodyne detection

and the PCR (which is more effective than the OPAR [125]).

In this chapter is organized as follows. Sec. 3.2 describes the protocol, while Sec. 3.3

recalls the basic properties and tools of QI. Sec. 3.4 provides a brief review of the C˃D

receiver and its performance under ideal conditions. Sec. 3.5 discusses relevant experi-

mental limitations in the case of microwave QI, and Sec. 3.6 shows the performance of

the C˃D module in the presence of such realistic scenarios. Sec. 3.7 compares the per-

formance of the C˃D module with that of classical QI based on coherent state and homo-

dyne detection and that of the PCR. In Sec. 3.8, we consider performance enhancement

if we further allow number-resolving detection. Finally, Sec. 3.8.2 presents the Neyman-

Pearson framework and receiver operating characteristic (ROC) curves.

3.2 Overall protocol

As shown in Fig. 3.1, in a target detection scenario, the transmitter sends signals to the

target, and then the receiver collects return signals and performs measurement to infer

about target’s presence or absence. To benefit from entanglement, a source generates

pairs of idler-signal entangled pulses. The idlers are stored locally and used to assist joint

measurements with the return signals. In QI, such signal-idler entanglement provides a

six-decibel error exponent advantage, despite being destroyed by extremely lossy trans-

mission and high noise background.

Our proposed receiver system adapts the C˃D conversion approach to practical re-
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ceiver operating conditions. While the idlers are cooled to TI ∼ 10 mK to enable quantum

advantage, the returned signal part is cooled to a much higher temperature TS for experi-

mental convenience. Such a layout is possible as the C˃D conversion module only feeds

the classical heterodyne measurement results on the ‘warm’ and noisy returned signals,

to perform conditional linear optical transforms on the ‘cool’ idler alone (indicated by the

dashed line), avoiding idler contamination. Finally, photo-detection is performed on the

transformed idler, and a decision on the target’s presence or absence is made according to

the measurement result. To compensate for additional loss 1 − ηS at the receiver antenna,

amplification of gain G is performed. However, the loss 1 − ηI on the idler needs to be

minimized and cannot be compensated. The photo-detection can be realized via coupling

the microwave idler modes to transmon qubits, as demonstrated in Refs. [6, 31].

3.3 Quantum illumination for target detection

QI is a quantum-based remote sensing technique that leverages the entanglement between

signal (aS ) and idler (aI) modes. The signal mode probes a target region, while the idler

one is kept at the emission station.

|Ψ⟩S I =

∞∑︂
n=0

√︄
Nn

(N + 1)n+1 |n⟩S |n⟩I . (3.1)

By performing a joint measurement on the signal and idler modes, the quantum cor-

relations of the transmitted state are exploited at the receiving station. The problem is

framed as a binary decision-making task, where the two hypotheses are: ‘target absent’

(H0) and ‘target present’ (H1). The asymptotic optimal input state is a two-mode squeezed

vacuum (TMSV) state, a bipartite Gaussian state characterized by its covariance matrix
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(CM) [96, 100]

VS I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(2NS + 1) I 2

√
NS (NS + 1)Z

2
√

NS (NS + 1)Z 2 (NS + 1) I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.2)

where Z = diag{1, −1}, I = diag{1, 1}, and
⟨︂
a†S aS

⟩︂
= NS is the signal brightness.

While the idler is stored for later detection, the signal is transmitted through a phase-

shift thermal-loss channel Φκ, θ, whose action on its mode when the target is present is

described by

aR = eiθ √κaS +
√

1 − κaB, (3.3)

while the absence of a target corresponds to the case κ = 0, i.e., where the channel is Φ0, 0.

Upon the channel Φκ, θ, the CM Eq. (3.2) becomes

VRI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[2 (κNS + NB) + 1] I 2

√
κNS (NS + 1)RZ

2
√
κNS (NS + 1)ZRT (2NS + 1) I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.4)

where RZ = ℜ
[︂
eiθ (Z + iX)

]︂
(withℜ indicating the real part and X the Pauli-X matrix),

such that R denotes a phase rotation of −θ,

and
⟨︂
a†BaB

⟩︂
= NB/ (1 − k) is the mean number of thermal background photons. Tab. 3.1

shows the mean thermal photon number for a typical microwave field at ω = 2π × 5 GHz

at temperatures of interest. The signal and return modes propagate at room tempera-

ture, while—depending upon the chosen device—detectors and amplifiers can be oper-

ated at temperature TS equaling either the room temperature, a few Kelvins, or ideally

close to the Josephson parametric amplifier generating the TMSV state at microwave fre-

quency [3,43], which is typically placed in the cold plate of a dilution refrigerator at about
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ω/2π [GHz] T [K] N ∼

5 3 × 102 1.25 × 103

102 4.15 × 102

10 40

4 15

1 4

10−1 10−1

10−2 4 × 10−11

4 × 10−3 9 × 10−27

Table 3.1: Values of mean thermal photon numbers for a microwave mode at ω = 2π × 5 GHz at
temperature values of interest.

10 mK [6, 10, 21]. The idler is always stored in the dilution refrigerator at about TI ∼ 10

mK [6, 10, 21], to enable quantum advantages.

3.4 Correlation-to-displacement conversion in the ideal

case

Ref. [123] proposes a conversion module for capturing and transforming quantum cor-

relation into coherent quadrature displacement, to enable the optimal receiver design for

various entanglement-enhanced protocols. The module is based on heterodyne and pro-

grammable passive linear optics, see Fig. 3.2, where the explicit implementation of the

array is shown, and maps the multi-mode quantum detection problem to the semi-classical

detection problem of a single-mode noisy coherent state, allowing for explicit measure-

ments to achieve the optimal performance. The input modes of the array are the idler

modes conditioned to the result of the corresponding heterodyne meausurement. Each

idler pulse is stored in a quantum memory and properly delayed so that they are sent pro-
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Figure 3.2: Beamsplitter array with proper weights with each âI,m

gressively to each beam splitter of the array (see Fig. 3.2). The result of the heterodyne

measurement determines the trasmissivity of each beam splitter in order to accumulate

the coherent amplitute of the conditioned idler modes onto a single collective idler mode.

The other M − 1 output modes of the array are instead in an effective thermal state of no

interest. The module provides a paradigm for processing noisy quantum correlations for

near-term implementation and can be applied to a wide range of entanglement-enhanced

protocols, including quantum illumination, phase estimation, classical communication,

target ranging, and thermal-loss channel pattern classification.

3.4.1 Heterodyne measurement

Now, we possess a module specifically created to convert the phase-sensitive cross-correlation

among M signal-idler pairs into the complex displacement amplitude of a single-mode co-

herent state. This module effectively transforms the semi-classical challenge of coherent

state processing into the quantum realm of receiver design.
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Chapter 2 provides a detailed explanation of the return-idler mode pairs {âRm , âIm}

in Fig. 3.1, each âRm undergoes an individual heterodyne measurement, producing the

complex measurement result Mm. In this case, we can assume that the covariance matrix

Vm = (NB+κNS +1)/2, the first moments X̄m = (qm, pm) are specified as a two-dimensional

vector consisting of the position qm and momentum pm, and the first moments of subsys-

tem return mode (R) and Idler (I) mode are both equal to zero, i.e., X̄R = XI¯ = 0.

In this scenario, the conditional evolution of second moments does not depend on

the measurement outcome, and we can use this fact to determine various properties of

the T MS V system, such as its entanglement and squeezing properties. This property

of Gaussian states is useful in practical applications of quantum information processing,

such as quantum communication, quantum illumination, and quantum cryptography.

VR = (2κNS + 2NB + 1) I2×2,

VI = (2NS + 1) I2×2,

VRI =
(︂
2
√︁

NS (NS + 1)
)︂

I2×2RZ,RZ

(3.5)

where RZ = ℜ
[︂
eiθ (Z − iX)

]︂
(withℜ indicating the real part and X the Pauli-X matrix),

such that R denotes a phase rotation of −θ,

RZ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθ sinθ

sinθ −cosθpΠ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.6)

By applying the general-dyne formulas of the previous chapter 2 in the special case of

heterodyne meausrement and therefore a projection onto a coherent state on subsystem I

of the T MS V system R and I, we can obtain the mean and covariance matrix for the con-

ditional Gaussian measurement outcomes. The mean value is given by X̄m = Tr
[︂
ρ̂mX̂I

]︂
,

where X̂I is the vector of quadrature operators for subsystem I. The covariance matrix
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is given by Vm = Tr
[︃
ρ̂m

(︂
X̂I − X̄m

)︂ (︂
X̂I − X̄m

)︂T
]︃
. Note that these values depend on the

specific choice of the general-dyne detection Vm and first moments X̄m.

V ′I =
(︄
2

(1 − κ + NB) NS

κNS + NB + 1
+ 1

)︄
I2×2,

XI =

√
κNS (NS + 1)

κNS + NB + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθqΠ + sinθpΠ

sinθqΠ − cosθpΠ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

p
(︂
Xm

)︂
=

exp
⎛⎜⎜⎜⎜⎝ −|Xm|

2

4 (κNS + NB + 1)

⎞⎟⎟⎟⎟⎠
4 (κNS + NB + 1)

.

(3.7)

These formulas imply that the state of the idler conditioned to the heterodyne mea-

surement on the return mode is a displaced thermal state, with a mean value of X̄I and

a thermal photon number of E = (1 − κ + NB)NS /(κNS + NB + 1). We can represent

this state using the density operator ρ̂X̄I ,E, which is a sum over all photon number states

n = 0, 1, 2, ... weighted by a displacement operator D̂(X̄I) and a thermal distribution.

Specifically, we have

ρ̂X̄I ,E ≡

∞∑︂
n=0

D̂(X̄I)
En

(1 + En)n+1 |n⟩⟨n|D̂
†
(X̄I), (3.8)

where X̄I represents the displacement parameter, and E is the thermal photon number.

The mean thermal photon number E can be expressed in terms of the system and bath

parameters, where NS and NB are the average photon numbers of the system and the bath,

respectively.

Each âIm , given the output Mm, is in a displaced thermal state ρ̂dm,E, with an average

thermal photon number E ≤ NS and a mean dm = (Cp/2Vm) eiθM∗m. As shown in Fig. 3.2,

there are different approaches to measure the idler modes in this context in order to extract

information. For a given state ρ̂dT ,E, a passive linear optical transformation (beamsplitter
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array with weights appropriately chosen) can combine all outputs into a single mode with

a mean dT = |dT |eiθ and thermal noise E. The amplitude square has 2M degrees of

freedom and is expressed as |dT |
2 =

∑︁M
m=1 |dm|

2. It follows a χ2 distribution.

QI for target detection considers the discrimination between two channels, Φ(0, 0) and

Φ(κ, 0). In the ideal case, the conversion module produces the displaced thermal states

ρ0,NS (target absent, H0) and ρ√x, E (target present, H1), where x ∼ P(M) ( · ; ξIdeal) obeys

a (generalized) χ2 distribution with ξIdeal ≡ κNS (NS + 1)/2(κNS + NB + 1). Here the

probability density function for the χ2 distribution parameterized by ξ is given by

P(M) (x; ξ) =
xM−1e−x/(2ξ)

(2ξ)M Γ (M)
, (3.9)

where Γ (M) = (M − 1)! is the gamma function. This leads to the error probability per-

formance limit

PC˃D =

∫︂ +∞

0
dx P(M) (x; ξ) PH

(︂
ρ0,NS , ρ

√
x, E

)︂
, (3.10)

where PH is the Helstrom limit [58–60]

PH (ρ1, ρ2) =
1
2

(︄
1 −

1
2

Tr
[︁
|ρ1 − ρ2|

]︁)︄
, (3.11)

in the case of equal prior probability. As shown in Ref. [123], even though the exact

solution of Eq. (3.10) is challenging, we can obtain lower (LB) and upper bounds (UB)

for the error exponent rC˃D = − limM→∞ ln (PC˃D) /M. The upper bound can be achieved

by approximating ρ√x, E as a coherent state and ρ0,NS as vacuum. In the respect of the

asymptotic analysis, the Helstrom limit approaches PH

(︂
ρ0,NS , ρ

√
x, E

)︂
∼ e−x/4, which—

combined with Eq. (3.10)—gives the upper bound r(UB)
C˃D = 2ξ. On the other hand, a lower

bound of the conversion module performance can also be obtained as [123]

r(LB)
C˃D = 2ξ

(︂ √︁
NS + 1 −

√︁
NS

)︂2
. (3.12)
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Figure 3.3: Behavior of r(LB)
C˃D /rCS as a function of log10 [NV (1 − 1/G)] with amplification and

ideal signal and idler detection, for different values of log10 NS , given NB = 1250 and κ = 0.01.
NS =

{︂
101, 100, 10−1, 10−2, 10−3, 10−6

}︂
from bottom to top, as indicated by the labels on top of

the curves. The plot indicates that the amplification stage provides a factor of advantage greater
than 2 (as indicated by the horizontal dashed line) for a range of relevant parameters. This is due

to the robust compensation of noise effects achieved by amplifying, as demonstrated by the
vertical dashed line at NV (1 − 1/G) = NB.

In comparison, the optimal classical case, achieved when a coherent-state with mean pho-

ton number NS is sent to the target, has the error exponent

rCS = κNS

(︂ √︁
NB + 1 −

√︁
NB

)︂2
. (3.13)

In the NS ≪ 1 and NB ≫ 1 limit, one finds that r(UB)
C˃D ≃ r(LB)

C˃D ≃ 4rCS, which achieves the

optimal advantage.

3.5 Practical microwave detection scenario

Regardless of the technology or setup employed, non-idealities or imperfections will al-

ways exist in practical systems, affecting their performance. To mitigate this, we propose

the use of a pre-detection amplifier, which can compensate for additional coupling loss.

Our results demonstrate that this approach can effectively improve the performance of

binary hypothesis testing and enhance the accuracy of state discrimination.
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Before detection, the returned mode is amplified using a quantum amplifier, leading

to the amplified mode

aA =
√

GaR +
√

G − 1a†V , (3.14)

where
⟨︂
a†VaV

⟩︂
= NV is the mean photon number of the amplifier noise mode. The ampli-

fied aA and the idler aI modes share the CM

VAI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(2NA + 1) I V12RZ

V12ZRT (2NS + 1) I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.15)

where

NA =
⟨︂
a†AaA

⟩︂
=G [κNS + NB + (1 − 1/G) (NV + 1)] ,

V12 = 2
√︁

GκNS (NS + 1).

(3.16)

Microwave amplifiers with gain G ∼ 100 and excess noise of NV ∼ 10 photons have been

successfully utilized in various microwave QI experiments [10]. Additionally, supercon-

ducting quantum computers employ microwave quantum-limited amplifiers that exhibit

added noise levels of about half a photon [1]. The behavior of such experimental systems

can be accurately described by the phase-insensitive linear amplifier model presented in

Eq. (3.14).

It should be noted how, comparing Eq. (3.15) with the one without any amplifica-

tion Eq. (3.4), the performance lower bound Eq. (3.12) applies also to the case with the

amplifier, as long as one replaces the parameters κ → Gκ and NB → NA −GκNS . Further-

more, we see that if (1 − 1/G) (NV + 1) ≪ NB, the performance of the conversion module

does not change asymptotically. This is verified in Fig. 3.3 via calculating r(LB)
C˃D /rCS vs

log10 [NV (1 − 1/G)], where the factor of four (6 dB) advantage is seen at the NS ≪ 1
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limit.

The same analysis can also be applied to the non-ideal scenario of imperfect hetero-

dyne detection of the amplified mode and imperfect idler detection. Heterodyne detection

efficiency in the microwave regime typically ranges from 40% to 70% depending on the

input power. However, in the scope of our analysis, ηS represents the overall channel

efficiency, which is dependent on the specific experiment and may be much lower, with

realistic values around 10% or even less (down to 1%).

For simplicity, we assume the non-ideal heterodyne detection to be symmetric in the

quadratures, resulting in the input-output relation

a′A =
√
ηS aA +

√︁
1 − ηS aE1 , (3.17)

where we set
⟨︂
a†E1

aE1

⟩︂
= NE1 . By performing the analysis through channel composition

[see Eqs. (3.3), (3.14), and (3.17)], one can obtain

a′A = eiθ
√︁
ηS GκaS +

√︁
1 − ηS Gκã,

ã =

√︁
ηS G (1 − κ)aB +

√︁
ηS (G − 1)a†V +

√︁
1 − ηS aE1√︁

1 − ηS Gκ
,

(3.18)

with
[︂
ã, ã†

]︂
= 1, and

⟨︂
ã†ã

⟩︂
=
ηS GNB + ηS (G − 1) (NV + 1) + (1 − ηS ) NE1

1 − ηS Gκ
. (3.19)

With this composition, the channel is now characterised by the parameters

κ → ηS Gκ,

NB → ηS G
[︄
NB + (1 − 1/G) (NV + 1) +

1 − ηS

ηS G
NE1

]︄
.

(3.20)
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If we combine this reparameterization with an imperfect idler detection

a′I =
√
ηIaI +

√︁
1 − ηIaE2 , (3.21)

with
⟨︂
a†E2

aE2

⟩︂
= NE2 , the CM of these two non-ideal modes a′A and a′I can be expressed as

V′AI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(︂
2N′A + 1

)︂
I V ′12RZ

V ′12ZRT
(︂
2N′I + 1

)︂
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.22)

where we call

N′A = ηS G
[︄
κNS + NB + (1 − 1/G) (NV + 1) +

1 − ηS

ηS G
NE1

]︄
,

V ′12 = 2
√︁
ηSηIGκNS (NS + 1),

N′I = ηI

(︄
NS +

1 − ηI

ηI
NE2

)︄
.

(3.23)

It is worth noting how the dominance of N′A by NB in Eq. (3.23) suggests that excess noise

from the electronics may not play a significant role.

3.6 Correlation-to-displacement conversion in practice

Since the procedure has been extensively discussed in Ref. [123], we will not delve into

it in this paper. By heterodyning mode a′A, one obtains

V′(Het)
I|A =

(︁
2E′ + 1

)︁
I,

E′ =N′I −
ηSηIGκNS (NS + 1)

N′A + 1
.

(3.24)
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Correspondingly, with measurement result xΠ = (qΠ, pΠ)T , the mean of the non-ideal

idler becomes

x′I =
√︁
ηSηIGκNS (NS + 1)

N′A + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
qΠ cos θ + pΠ sin θ

qΠ sin θ − pΠ cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.25)

With the imperfections in consideration, the distribution of the measurement outcomes is

given by

p
(︁
xΠ

)︁
=

exp
(︃
−
|xΠ|

2

4(N′A+1)

)︃
4π

(︂
N′A + 1

)︂ , (3.26)

from which the distribution ofMm =
(︁
qΠm + ipΠm

)︁
/2

p (Mm) =
exp

(︃
−
|Mm |

2

N′A+1

)︃
π
(︂
N′A + 1

)︂ . (3.27)

Finally, by utlizing the displacement conditional on the heterodyne measurement result in

the idler complex plane

dm =

√︁
ηSηIGκNS (NS + 1)eiθM⋆

m

N′A + 1
, (3.28)

we can express the total displacement of the collective idler mode at the output of the

programmable beam splitter array, through a change of variables, as

|dT |
2 =

M∑︂
m=1

|dm|
2 = ξ

M∑︂
m=1

z2
i , zi ∼ N (0, 1) ,

ξ =
ηSηIGκNS (NS + 1)

2
(︂
N′A + 1

)︂ ,

(3.29)
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Figure 3.4: Black lines represent the ratio r(LB)
C˃D /rCS as a function of log10 NS , purple ones

r(UB)
C˃D /rCS, dashed gray for the QCB (see chapter 2), and blue ones r(NI)

CS /rCS, where rNI
CS is

obtained by applying the substitution Eq. (3.20). (a) Ideal return detection, no additional signal
loss ηS = 1 and therefore no amplification needed, G = 1. (b) Lossy return detection ηS = 0.1,
assuming pure loss NE1 = 0. We apply quantum-limited amplification of G = 100, NV = 0. (c)
Ideal return detection ηS = 1, and noisy amplification G = 100, NV = NB at room temperature.
(d) Lossy return detection ηS = 0.1 with noise NE1 = NB at room temperature. We apply noisy

amplification G = 100, NV = NB at room temperature. The lower bound of the C˃D module
consistently aligns with the QCB.

where N (0, 1) denotes a Gaussian distribution with zero mean and unit variance. In

the following sections, we will make extensive use of the parameter ξ, which plays a

critical role in our analysis. We note that |dT |
2 satisfies the χ2 distribution Eq. (3.9), with

mean 2Mξ and variance 4Mξ2. Furthermore, Eq. (3.24) can be conveniently rephrased as

E′ = N′I − 2ξ.

3.6.1 Performance limits of the conversion module in practice

The comparison between the error exponent of the C˃D module [see Eq. (3.12) and that

for the upper bound, which is within the text] and the one obtained from the Quantum

Chernoff Bound (QCB) (see chapter 2 for further details) can be seen in Fig. 3.4, showing

that even in the worst case scenario of lossy amplification and imperfect detection, there

is a factor of 2 improvement compared to the classical case Eq. (3.13). Furthermore, it is

72



CHAPTER 3

Figure 3.5: The impact of losses and gain on two scenarios: (a) a cool case with NV = NE1 = 0.1
(corresponding to TS = 100 mK) and (b) a warm one with NV = NE1 = NB (corresponding to

TS = 300 K). The other parameters are fixed at NB = 1250, κ = 0.01, NS = 10−3, and ηI = 1 (i.e.,
we assume the idler is ideally stored). Solid lines represent the ratio r(LB)

C˃D /rCS as a function of the
gain log10 G, for different values of ηS (visible in the legend); dashed lines r(NI)

CS /rCS, where rNI
CS is

obtained by applying the substitution Eq. (3.20). Amplification is not necessary in a cool
environment (a), but it is crucial in practical cases characterized by warm environments (b) where

ηS < 1/2: only through amplification can a factor of 2 advantage be achieved.

worth noting that the lower bound of the conversion module consistently exhibits a close

alignment with the QCB.

The plots in Fig. 3.5 provide evidence for the importance of an amplification stage

in the microwave domain, where losses from detection may be challenging to overcome.

It compares the ratio r(LB)
C˃D /rCS with r(NI)

CS /rCS versus log10 G, in two different temperature

conditions (cool and warm). It can be seen that amplification is not necessary in a cool

environment, but it is crucial in practical cases characterized by warm environments where

ηS < 1/2: only through amplification can a factor of 2 advantage be achieved, with

the emergence of an optimal value of G. In the later part of the paper, we will refer to

the parameter setting above as either the ‘cool case’ or the ‘warm case’, referring to the
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processing temperature of the returned signal.

3.6.2 Kennedy receiver

Let us now study the performance of the C˃D module in the case of a specific detection

scheme of the conditional idler state. A simple idler’s detection scheme is the classical

Kennedy receiver, described by the set of POVMsΠ0 = |0⟩⟨0| andΠ1 = 1−Π0, where 1 is

the identity operator and |0⟩⟨0| represents the absence of a photon. The receiver operates

in the on/off mode and distinguishes between the presence or absence of a photon.

A practical approach to implement such a receiver is described in Ref. [6], where

the authors introduce a method based on a photo-current and photo-counting discrimina-

tor. While the calibration and measurement of every parameter in their system are rather

complex, the basic idea is to use a dispersive qubit to read out single photons in a regime

where the probability of having more than one photon is low.

We present a simple approach that provides useful insights and motivates the adoption

of a Kennedy receiver, but we will not employ it for our analysis. In the limit where the

number of signal photons NS ≪ 1 is low, the receiver (neglecting experimental limita-

tions) accurately selects |0⟩ as the measurement outcome. However, the uncertainty in the

decision arises from the fluctuations in the coherent state |α⟩. When the least probable

classical situation p0 = p1 = 1/2 is considered, the error probability can be calculated

as [123]

pe =
1
2
⟨α|Π1 |α⟩ =

1
2

e−|α|
2
∼ 2PH ⇒ PK ∼ 2PC˃D, (3.30)

when |α| ≫ 1 [see Eq. (3.10)] .

Nevertheless, the idler photon counting formula Eq. (3.30) only considers the ideal

case of vacuum versus coherent state. To account for deviations from this ideal scenario,

we introduce a Kennedy receiver that attempts to discriminate between two differently

displaced thermal states at finite NS . In the P-representation, the two density operators to
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be distinguished are described by [50]

ρth (δ) =
∫︂

C

d2β

πNT
exp

[︄
−
|β − δ|2

NT

]︄
|β⟩⟨β| , (3.31)

where δ =
{︂
0,
√

x
}︂

is the phase-space displacement, and NT = N′I − {0, 2ξ} represents

the average number of photons produced by thermal noise, with N′I and ξ defined in

Eqs. (3.23) and (3.29), respectively. The error probability can then be calculated using

the two POVMs as

pe = p0Tr
[︁
Π1ρth (0)

]︁
+ p1Tr

[︁
Π0ρth (α)

]︁
= p0

{︁
1 − Tr

[︁
Π0ρth (0)

]︁}︁
+ p1Tr

[︁
Π0ρth (α)

]︁
,

(3.32)

where Tr
[︁
Π0ρth (δ)

]︁
= exp

(︂
−
|δ|2

NT+1

)︂
/ (NT + 1) [see Eq. (E1) of Ref. [125]]. Applied to our

case, the least classical probability situation p0 = p1 = 1/2 yields

pe =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +
exp

(︃
− x

N′I+1−2ξ

)︃
N′I + 1 − 2ξ

−
1

N′I + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.33)

Finally, the error probability of the Kennedy receiver is given by

PK =

∫︂ +∞

0
dx P(M) (x; ξ) pe, (3.34)

with P(M) (x; ξ) given in Eq. (3.9). In other words

PK =
1

2
(︂
N′I + 1

)︂ ⎡⎢⎢⎢⎢⎣(︄1 + 2ξ
N′I + 1 − 2ξ

)︄1−M

+ N′I

⎤⎥⎥⎥⎥⎦ . (3.35)

While we have adopted the Kennedy receiver in this work, it is worth noting that further

performance improvements can be achieved by optimizing the displacement amplitude

and consider the improved Kennedy receiver [132].
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Figure 3.6: Comparison of the error exponent ratio r/rCS between the C˃D module and the PCR
[see Eqs. (3.12), (3.37), and (3.13), respectively] as a function of log10 NS and log10 NB. The

other parameters correspond to the ‘cool’ case and are set to: NV = NE1 = NVPCR = 0.1
(corresponding to TS = 100 mK), NE2 = 4 × 10−11 (corresponding to TI = 10 mK), G = 100,

GPCR = 2, ηS = 0.1, and ηI = 0.9. The red circle represents the parameters used in Fig. 3.7. The
C˃D module possesses clear better performance, as stated by the wide yellowish areas.

3.7 Performance benchmarks

In order to assess the performance of the C˃D module, we compare it with a classical

benchmark based on coherent states and homodyne detection. The error probability of

homodyne detection is given by [134]

PE, homo =
1
2

erfc
⎡⎢⎢⎢⎢⎣√︃ κMNS

2 (2NB + 1)

⎤⎥⎥⎥⎥⎦ , (3.36)

where erfc[z] =
(︂
2/
√
π
)︂ ∫︁ +∞

z
dt e−t2 is the complementary error function.

Besides the classical scheme, we also benchmark with known practical receivers for

QI such as the PCR scheme [54,123], whose error probability in the QI scenario is simply

given by
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PE,PCR =
1
2

erfc
(︂ √︁

RPCRM
)︂
,

RPCR =
µ2

1

4

[︂
2N′I + (GPCR − 1)

(︁
2N′I + 1

)︁ (︂
N′A + N′A, κ=0 + 2

)︂
+µ2

1/2 + 2GPCRNVPCR

]︂−1
,

(3.37)

where µ1 is given by Eqs. ((3.53)), and GPCR and NVPCR correspond to the gain and mean

number of added photons of the phase conjugator, respectively. Fig. 3.6 shows a com-

parison between the performance limits of the C˃D module and PCR in terms of error

exponents [see Eqs. (3.12) and (3.37), respectively]. Although we only present the per-

formance analysis for the cool case of return signal processing, it is noteworthy that the

C˃D module exhibits superior performance compared to the PCR, as evidenced by a sig-

nificantly larger region of parameter space with better performance, as indicated by the

yellow coloration.

The scaling of major error probabilities with the number of copies M is shown in

Fig. 3.7, for both the warm and cool cases. Note that the parameter setting of Fig. 3.7

corresponds to the red dot in Fig. 3.6. Specifically, we focus on the performance of the

C˃D module with Kennedy receiver (red lines), which is almost comparable to that of

the QCB (blue) and outperforms any other practical scheme considered. The saturation

of the C˃D performance is due to the on-off detection of Kennedy receiver, as we will

resolve in Sec. 3.8. We also present the comparison to the Nair-Gu lower bound [96]

(light gray), which shows similar scaling of the QCB. In Fig. 3.6, the dashed curves are

the performance curves of the receivers assuming all equipment become ideal, instead the

solid curves where imperfections are considered (the same color coding of the curves are

adopted for both dashed and solid, as indicated by the legend). To provide a comparison

between the C˃D module equipped with an on/off Kennedy receiver and the PCR, Fig. 3.8

presents the error probability ratio log10
(︁
PE/PE, homo

)︁
for the cool case, where M is chosen
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Figure 3.7: Error probability as a function of the number of copies M in both the non-ideal (solid)
and ideal (dashed) case. The non-ideal case is characterised by: NS = 10−3, NB = 1250,

NE2 = 4 × 10−11 (corresponding to TI = 10 mK), κ = 0.01, G = 100, ηS = 0.1, ηI = 0.9, and
GPCR = 2. (a) Cool case with NV = NE1 = NVPCR = 10−1 (corresponding to TS = 100 mK), (b)

warm one NV = NE1 = NVPCR = 1250 (corresponding to TS = 300 K). Dashed lines are the
performance for each solid colored curve in the ideal scenario (ηS = ηI = 1 and no amplification

G = 1). The horizontal dashed line marks PE, homo = 0.05.

such that the homodyne error probability is fixed at PE, homo = 0.05. As shown by the wide

dark area, the C˃D module clearly outperforms the PCR in the NB ≫ 1, NS ≪ 1 parameter

regime.

3.8 Enhanced performance with number-resolving detec-

tion

So far we have adopted the Kennedy receiver with on-off detection, which leads to the

saturation of error probability (red lines) in Fig. 3.7 at large M. To obtain better perfor-
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mance, in this section we generalize the Kennedy receiver to a photon number resolving

detector (PNRD) on the idler.

As already analyzed, the decision between the presence or absence of the target is

equivalent to discriminating between two states of the final idler mode after the beam-

splitter array: the thermal state ρ0,N′I when the target is absent, and the displaced thermal

state ρ√x, E′ when it is present. Recall that N′I is defined by Eq. (3.23), E′ by Eq. (3.24),

and x is a random variable associated with the results of M heterodyne measurements on

the return modes, distributed according to Eq. (3.9), with ξ given by Eq. (3.29). With a

PNRD detection, we can now compare the photon number probability distributions for

the two hypotheses: p(0)
n = ⟨n| ρ0,N′I |n⟩ and p(1)

n (x) = ⟨n| ρ√x, E′ |n⟩. The presence of the

target is declared when the outcome of the photon number measurement is greater than a

predetermined threshold value, n ≥ nD ≥ 1.

To prepare our analyses for the ROC curve, we consider the false alarm probability

PF and the detection probability PD for a fixed decision threshold nD as

PF =

+∞∑︂
n=nD

⟨n| ρ0,N′I |n⟩ , (3.38)

PD =

+∞∑︂
n=nD

∫︂ +∞

0
dx P(M) (x; ξ) ⟨n| ρ√x, E′ |n⟩ , (3.39)

where we average over the random variable x.

The evaluation of PF is simple and one has

PF (nD) =
(︄

N′I
N′I + 1

)︄nD

, (3.40)

while that of PD is more involved. We start by using the following result for the photon
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Figure 3.8: Comparison based on the error probability ratio log10
(︁
PE/PE, homo

)︁
between (a) the

C˃D module (equipped with an on/off Kennedy receiver) and (b) the PCR [see Eqs. (3.35), (3.37),
and (3.36), respectively] vs. log10 NS and log10 NB. The value of M is selected to set

PE, homo = 0.05. The other parameters correspond to the ‘cool’ case and are:
NV = NE1 = NVPCR = 0.1, NE2 = 4 × 10−11, G = 100, GPCR = 2, ηS = 0.1, and ηI = 0.9. The red

circle indicates the parameters used in Fig. 3.7. As shown by the wide dark area, the C˃D module
outperforms the PCR.

statistics of a displaced thermal state for a given x [77, 89]

p(1)
n (x) =

exp
(︂
− x

E′+1

)︂
E′ + 1

(︄
E′

E′ + 1

)︄n

Ln

[︄
−

x
E′(E′ + 1)

]︄
, (3.41)

where Ln [·] is the n-th Laguerre polynomial. Next, one can perform the average over

the probability distribution Eq. (3.9) to obtain the average photon number probability

distribution when the target is present

p̄(1)
n (M; ξ) =

(E′ + 1)M−n−1E′n

(E′ + 1 + 2ξ)M

× 2F1

[︄
M, −n, 1, −

2ξ
E′(E′ + 1 + 2ξ)

]︄
,

(3.42)

where 2F1 (a, b, c, z) is the Gaussian hypergeometric function. Consequently, the detec-

80



CHAPTER 3

tion probability PD (nD) can be exactly determined as

PD (nD) = 1 −
nD−1∑︂
n=0

p̄(1)
n (M; ξ) . (3.43)

3.8.1 Bayesian error probability

To begin with, we consider the symmetric error PE = (PF + 1 − PD)/2 and evaluate the

performance. Here the results are similar to that of Ref. [22]. This is because, given

the choice of photon counting, random phase does not change the performance anymore.

From Eqs. (3.42) and (3.40), we have the error probability PE as a function of the thresh-

old nD. We compare this optimal decision strategy with a variable threshold nD, and

quantify the error of probability using

P(nD)
C˃D =

1
2

⎡⎢⎢⎢⎢⎢⎣1 − nD−1∑︂
n=0

γn (2M; ξ)

⎤⎥⎥⎥⎥⎥⎦ , (3.44)

where the function

γn (M; ξ) =
N′nI(︂

N′I + 1
)︂n+1

−
(E′ + 1)M−n−1E′n

(E′ + 1 + 2ξ)M 2F1

[︄
M, −n, 1, −

2ξ
E′(E′ + 1 + 2ξ)

]︄
.

(3.45)

Although the above equation is exact, to enable efficient numerical evaluation in all pa-

rameter region of interest, we further make an approximation at the M ≫ 1 limit and

obtain

γn (M; ξ) ≃
N′nI(︂

N′I + 1
)︂n+1

−
E′n

(E′ + 1)n+1 e−2Mξ/E′
1F1

[︄
n + 1, 1,

2Mξ

E′ (E′ + 1)

]︄
.

(3.46)
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The precision of such an approximation is sufficient for our evaluation, as verified in

Ref. [22]. The optimal performance is then given by a minimization of the error proba-

bility over the threshold nD,

P(opt)
C˃D = min

nD≥1
P(nD)

C˃D. (3.47)

Note that P(1)
C˃D ≡ PK [see Eq. (3.35)], as expected.

Fig. 3.9 shows the results of our analysis, using the same parameter values as in

Fig. 3.7. We observe that the optimized approach (orange) produces results that are com-

parable to those of the non-ideal QCB (blue). Specifically, the irregular trend in the data

is well described by a variable threshold decision strategy approach, which is represented

by the dashed lines in the figure. Our findings suggest that the optimized approach can

effectively discriminate between the two states of interest, even in the presence of noise

and other imperfections.

3.8.2 Receiver operating characteristic

Conversion module and photon-number resolving detector

Let us now analyse the performance of the C˃D module within the Neyman-Pearson

framework, using ROC curves. In this approach, a chosen false alarm probability PF

is fixed, and the goal is to maximize the detection probability PD. By gradually reduc-

ing the threshold value nD from a high (ideally infinite) value to zero, a concave ROC

curve can be obtained, plotting PD versus PF , starting from PF = PD = 0 and ending at

PF = PD = 1.

To gain a clearer understanding of the behavior of the ROC curve, we derive an an-

alytical expression based on a Gaussian approximation. When x ≫ 1, the probability

distribution p(1)
n (x) Eq. (3.41) can be represented by a Gaussian distribution with mean

⟨n(x)⟩ = E′ + x, and variance σ2
n(x) =

⟨︂
n2(x)

⟩︂
− ⟨n(x)⟩2 = E′2 + E′ + x (2E′ + 1). As a re-

82



CHAPTER 3

Figure 3.9: The saturation of the red line in Fig. 3.7 suggests an improvement, following the lines
of Ref. [22], where a variable threshold decision strategy approach has been used for asymptotic

analysis. The red curve reproduces the usual Kennedy receiver corresponding to the fixed
threshold nD = 1. The dashed grey lines corresponds to the case of fixed, increasing values of nD.
The orange line gives the optimized result in which nD is adjusted according to M, and therefore
to the two states to be discriminated. This latter approach yields results comparable to those of

the non-ideal QCB (blue). Parameter values are the same as those of Fig. 3.7.

sult, in this limit, the average probability distribution Eq. (3.42) can also be approximated

by a Gaussian distribution with properly averaged mean and variance, and we have

p̄(1)
n (M; ξ) ∼

1√︁
2πσ2

n

exp
[︄
−

(n − n̄)2

2σ2
n

]︄
, (3.48)
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with

n̄ = E′ + x̄

= E′ + 2Mξ, (3.49)

σ2
n = E′2 + E′ + x̄

(︁
2E′ + 1

)︁
+ σ2

x

= E′2 + E′ + 2Mξ
(︁
2ξ + 2E′ + 1

)︁
, (3.50)

taking into account that the distribution Eq. (3.9) has mean x̄ = 2Mξ, and variance σ2
x =

4Mξ2. A necessary condition for the validity of such a Gaussian treatment is that x̄ =

2Mξ ≫ 1. By using the Gaussian approximation Eq. (3.48), and eliminating the threshold

nD with the aid of Eq. (3.40), one gets the following approximate expression for the ROC

curve of the C˃D module

PD (PF) ∼
1
2

erfc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1

σn
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ log PF

log
(︃

N′I
N′I+1

)︃ − n̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.51)

This approximation provides a satisfactory description of the ROC curves for moderate

values of PD and PF as long as 2Mξ > 1. Although the average probability distribu-

tion p̄(1)
n (M; ξ) resembles a Gaussian distribution around the peak centered at its average

value, it decays exponentially, not Gaussianly, for PF → 0 ⇒ PD → 0, i.e., nD → ∞. As

a result, Eq. (3.51) tends to underestimate the value of PD for high threshold values nD.

The ROC curve in the case of the PCR

As discussed in chapter 2 (see also Ref. [127]), when M ≫ 1, the photo-count difference

of the PCR, N = N+ − N−, according to the central limit theorem, follows a Gaussian
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Figure 3.10: Comparison of ROC curves. The red line shows the performance of the C˃D module
with a PNRD; the black one that of the PCR given by Eq. (3.57); the dashed light gray line

depicts the performance of the Gaussian approximation of Eq. (3.51); the full dark grey line gives
the non-ideal classical benchmark [using Eq. (3.57) with dPCR → dCS plus Eq. (3.20)]. The
parameters used are the same as in Fig. 3.6 and 3.8 (indicated by the red dots there), with

M = 69 × 107.

distribution with a probability density for the two hypotheses

PN|H0/1

(︁
n|H0/1

)︁
=

exp
[︃
−

(n−Mµ0/1)2

2Mσ2
0/1

]︃
√︂

2πMσ2
0/1

, (3.52)

where the two mean values µ0/1 and the two variances σ2
0/1.

The discrimination between two Gaussian distributions with different means and vari-

ances can be obtained by using the extended van Trees approximation [119], and it can be

85



CHAPTER 3

expressed in terms of the auxiliary function

µ(s) = ln

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ σ1−s
1 σs

0√︂
sσ2

0 + (1 − s)σ2
1

× exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−M (µ0 − µ1)2 s (1 − s)

2
[︂
sσ2

0 + (1 − s)σ2
1

]︂
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(3.53)

where s is a threshold parameter. The false alarm and detection probabilities are then

respectively given by

PF =
1
2

erfc

⎡⎢⎢⎢⎢⎢⎣s

√︃
µ̈(s)

2

⎤⎥⎥⎥⎥⎥⎦ ,
PD = 1 −

1
2

erfc

⎡⎢⎢⎢⎢⎢⎣(1 − s)

√︃
µ̈(s)

2

⎤⎥⎥⎥⎥⎥⎦ ,
(3.54)

where µ̈(s) ≡ d2µ/ds2.

However, one can get a simpler and clearer expression by taking into consideration

that the variances for the two hypothesis, σ2
0 and σ2

1, are nearly identical for the typical

parameter values in a microwave QI experiment, that is, when κ ≪ 1, NS ≪ 1, and

NB ≫ 1.

σ2
1 − σ

2
0

σ2
0

= ηS G (GPCR − 1) κNS
[︁
2N′I + 1 + 2ηI (NS + 1)

]︁
×

[︂
N′I + (GPCR − 1)

(︁
2N′I + 1

)︁ (︂
N′A, κ=0 + 1

)︂
+GPCRNVPCR

]︂−1
,

(3.55)

which scales as κNS /NB ≪ 1 when NB ≫ NS . As a result, one has µ̈(s) = Mµ2
1/σ

2
1 ≡ d2

PCR
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in Eqs. (3.54), which can be rewritten as

PF =
1
2

erfc
[︄

1
√

2

(︄
ln η
dPCR

+
dPCR

2

)︄]︄
,

PD =
1
2

erfc
[︄

1
√

2

(︄
ln η
dPCR

−
dPCR

2

)︄]︄
,

(3.56)

where we introduce the new threshold parametrization as ln η = (s − 1/2) d2
PCR. By elim-

inating this threshold parameter, the analytical expression of the ROC curve for the PCR

can be obtained as

PD =
1
2

erfc
[︄
erfc−1 (2PF) −

dPCR
√

2

]︄
, (3.57)

where erfc−1(z) is the inverse of the complementary error function. We notice that the

ROC curve for the PCR is analytically identical to that of the optimal classical bench-

mark of using coherent states and homodyne detection. Both have the same form as in

Eq. (3.57), but the replacement dPCR → dCS = 2
√

MκNS / (2NB + 1) [127].

Fig. 3.10 presents the behavior of the ROC curve for the C˃D module in both warm and

cool cases, considering losses and amplification in the detection scheme. The results are

compared to the corresponding Gaussian approximation Eq. (3.51), the PCR Eq. (3.57),

and the non-ideal classical benchmark [using Eq. (3.57) with dPCR → dCS and Eq. (3.20)],

all obtained under the same experimental conditions.

When the Neyman-Pearson decision strategy is considered, it can be observed that the

C˃D module exhibits excellent performance in both the cool and warm cases. In particular,

its ROC curve is significantly larger than those obtained with the PCR and the classical

approach for the same experimental conditions.
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Synthesis of Entanglement

The aim of this chapter is to introduce the spin system and important definitions that will

be used throughout the thesis work. Specifically, Sec. 4.1 covers quantum entanglement ,

which plays a fundamental role in many aspects of the rest of the chapter.

Sec. 4.7 discusses the generation and properties of photon states, mainly qubit repre-

sentation, which are used in many protocols and enter into the description of quantum W

state which we will study in the following. Mainly focusing on the W state generation

circuit QED setup.

Sec. 4.5 also introduces the spin system, which is used to represent the qubit and used

in many body system particularly generation of W state. Finally, Sec. 4.6 explains the

generation of W state atom-photon interaction in the Dicke model cavity QED setup. For

readers interested in more details, references and books on Dicke model, synthesis of

W state in quantum computer and quantum information theory and quantum optics are

provided.

The rest of the chapter discusses the W state that has been generated successfully and

the various proposals that have been made for its synthesis. The preparation of entan-

glement is therefore a central objective of quantum information theory (QIT ). Recently,

several methods for producing entangled states have been proposed, including nuclear
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magnetic resonance (NMR), parametric down-conversion, cavity quantum electrodynam-

ics (QED), single-photon interference, and ion trap techniques. This chapter focuses on

two different W state generation setups, specifically circuit QED setup [61,143] and Dicke

model cavity QED setup [48, 66].

4.1 Quantum Entanglement

In quantum mechanics, quantum entanglement arises when two or more particles become

interconnected to the extent that the state of one particle immediately influences the state

of the others, regardless of their spatial separation. Entangled particles, like photons,

electrons, or atoms, exhibit interdependent properties, making it impossible to describe

one particle’s state in isolation from the others. This phenomenon has garnered significant

interest due to its profound implications and practical applications in quantum computing,

quantum communication, and quantum cryptography. It challenges traditional notions

of particle independence. Many studies are still being conducted on the existence of

entangled, inseparable states, especially in relation to quantum information theory and

the EPR paradox [35,63]. This phenomenon can be seen in correlation experiments, such

as those involving the Bell theorem, which states that classical correlations cannot account

for the probabilities of outcomes obtained from specific quantum states when measured

properly.

In Chapter 2, we explored the continuous variable theory and its applications in vari-

ous areas involving entanglement. Now, in this chapter, our focus shifts to discrete vari-

able entanglement theory. The fundamental challenge in quantum entanglement theory

is identifying which states are entangled and which are not. Few situations provide a

straightforward answer to this question. Pure bipartite states represent one of the few

cases where the scenario is relatively simple. In the case of a bipartite pure state, a state

is considered entangled if and only if it cannot be expressed as the product of two vectors
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corresponding to the Hilbert spaces of the individual subsystems. That is, as the smaller

of |Ψ⟩AB ∈ HAB = HA ⊗ HB:

|Ψ⟩AB = |ϕ⟩A ⊗ |ψ⟩B. (4.1)

The vector |Ψ⟩AB is written in any set of orthonormal product basis { |e⟩mA ⊗ |e⟩
n
B },

|Ψ⟩AB =

dA−1∑︂
m=0

dB−1∑︂
n=0

AΨmn|e⟩
m
A ⊗ |e⟩

n
B, (4.2)

It becomes a product state if and only if the coefficient matrix can be factorized AΨ =

{ AΨmn } is of rank 1. In general, the rank r(|Ψ⟩) ≤ k = min[dA, dB] of this matrix is called

the Schmidt rank of vector Ψ and it is equal to either of the ranks of the reduced density

matrices ρΨA = TrA [|Ψ⟩AB⟨Ψ|] and ρΨB = TrB [|Ψ⟩AB⟨Ψ|]. The vector takes the Schmidt

decomposition,

|Ψ⟩AB =

r(|Ψ⟩)∑︂
j=0

C j |ẽ⟩
j
A ⊗ |ẽ⟩

j
B (4.3)

In this case, the nonzero singular eigenvalues of matrix Amn are represented by the positive

numbers C j =
√p j, where p j are the nonzero elements obtained from the reduced den-

sity matrix’s spectrum. Quantum entanglement remains unchanged regardless of product

unitary operations UA ⊗ UB. In a pure bipartite state represented by a projector |Ψ⟩AB⟨Ψ|,

the coefficients C j are the only parameters unaffected by these operations and determine

the entanglement of a bipartite pure state.

4.2 Density Operator

In the case of a mixed state, i.e., with purity less than one, one has to use the density

operator formalism. The density operator representing a set of states and probabilities
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{Ψi, pi} is

ρ =

n∑︂
i=1

pi|Ψi⟩⟨Ψi|. (4.4)

If the state of a system is known exactly, we say it is pure state. This is a state where a

single pi = 1, and all others are zero. This means that the density operator for a pure state

|ψ⟩ can be written as

ρ = |ψ⟩⟨ψ|. (4.5)

This is a projection operator, so in the case of a pure state, the density operator satisfies

ρ2 = ρ. A mixed state is a collection of different pure states, each occurring with given

probability.

4.3 Entanglement Entropy

In Eqn, (4.3), the Schmidt decomposition theorem is an extremely helpful tool to find

the entanglement entropy for the subsystem. Assuming we have a system AB in a pure

state |Ψ⟩, given by the Schmidt decomposition of Eq. (4.3) we can evaluate the so-called

entanglement entroy S A, coinciding with the von Neumann entropy of the reduced density

matrix of system A and B

S A = −
∑︂

j

C2
j log C2

j , (4.6)

The entanglement entropy iszero for unentangled states and maximal when all the C j

are equal, it is convex: S A1∪A2 ≤ S A1 + S A2 .

4.4 Qubit representation

In Chapter 2, we explored number states in coherent states and two-mode squeezed states

derived from harmonic oscillators photon number state |n⟩. Similar to classical bits (0 and
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Figure 4.1: Beam Splitter

1), qubits are fundamental units in quantum computing and quantum information theory.

Qubits, also known as quantum bits, can exist in states analogous to |0⟩ and |1⟩ photon

path or polarization states and two level spin system | ↑⟩ and | ↓⟩, akin to their classical

counterparts [98]. The representation of qubits are:

|1⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , |0⟩ ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.7)

Qubits, in contrast to classical bits, are capable of existing in superpositions |ψ⟩ =

α|0⟩ + β|1⟩, where |α|2 + |β|2 = 1 and simultaneously representing 0 and 1. In Fig. 4.1,

superposition states can be created by a beam splitter, a fundamental optical device in

quantum optics. When quantum particles, such as photons, collide with a beam splitter,

a probabilistic process determines whether they are transmitted or reflected. This proba-

bilistic nature allows superposition states to form. Take a single photon incident upon a

balanced beam splitter, for instance. The quantum superposition principle allows a photon

in the state of |0⟩, which is the absence of the photon, to simultaneously be transmitted

(|0⟩) and reflected (|1⟩) when it comes into contact with the beam splitter. In terms of
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Bloch sphere representation in Fig. 4.1, this is represented as:

|±photon⟩ =
1
√

2
(|0⟩ ± |1⟩). (4.8)

This illustrates how a photon can create a superposition state in which it is simultane-

ously in two different “path encoded” states.

4.4.1 Two-level system

The simplest system that can exist for a single atom is the isolation of two states, which

turns the atom into a pseudo spin-1/2. Then, there are only two states that make up the

basis: |0⟩ and |1⟩. The atomic wavefunction then exists in a superposition.

|ψ⟩ = α|0⟩ + β|1⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α

β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.9)

where α and β are complex numbers that satisfies the |α|2 + |β|2 = 1. More generally, it

exists in some density matrix which is hermitian, positive and with trace equal to one.

ρ̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
C00 C01

C10 C11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.10)

where for the pure state

ρ̂ = |ψ⟩⟨ψ| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
|α|2 αβ∗

α∗β |β|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.11)

Any non trivial hermitian operator acting on the state for a spin-1/2 particle can be
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described by a combination of the Pauli operators,

σ̂x = |0⟩⟨1| + |1⟩⟨0| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
σ̂y = i (|0⟩⟨1| − |1⟩⟨0|) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 i

−i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
σ̂z = |1⟩⟨1| − |0⟩⟨0| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(4.12)

These matrices each have two eigenvectors and eigenvalues ±1.

|x±⟩ =
1
√

2
(|0⟩ ± |1⟩)

|y±⟩ =
1
√

2
(|0⟩ ∓ |i1⟩)

|z−⟩ = |0⟩, |z+⟩ = |1⟩.

(4.13)

The way each pair of eigenvectors spans the operator space is similar to how the Pauli

operators span the state space. An alternative method involves connecting these three

sets to a unit-radius sphere’s axes, thereby projecting the state onto it. There is explicit

mention of the sphere’s condition, as shown in Fig. 4.1

|ψ⟩ = sin
(︃
θ

2

)︃
|0⟩ + eiϕ cos

(︃
θ

2

)︃
|1⟩, (4.14)

where the spherical coordinate variables ϕ and θ are defined. The state represented in this

manner is the Bloch vector, and this is the Bloch sphere.
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Figure 4.2: Bell state preparation

4.4.2 Bell state

Quantum gates are utilized to manipulate various physical systems, such as superconduct-

ing circuits and atoms, in order to perform quantum computations [98, 155]. Leveraging

superconducting circuits enables the creation of maximally entangled states [69, 92]. In

the two-bit context is shown in Fig. 4.2, this entangled state is referred to as a Bell state.

|Φ±⟩ =
1
√

2
(|00⟩ ± |11⟩)

|Ψ±⟩ =
1
√

2
(|10⟩ ± |01⟩) .

(4.15)

In quantum technology, the use of maximally entangled Bell states has significant advan-

tages [146]. These states, for example, are critical in understanding quantum teleporta-

tion, demonstrating the advantages of entanglement over classical bits. In Fig. 4.2, two

initially independent |0⟩ states are prepared in the direct product state, with the first qubit

undergoing a Hadamard gate operation and the second qubit undergoing a CNOT gate

operation. As a result, the final state becomes maximally entangled. In the case where

Alice measures the first qubit and Bob measures the second, both measurements have a

50% chance of being detected. Even when these qubits are separated by great distances,

such as Alice on Earth and Bob on the Moon, the results of their measurements remain
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Entangled 
state

Unknown
state

Figure 4.3: Bell state Teleportation

the same, Alice strings: 0010110001101011 and Bob strings: 0010110001101011 in the

measurement outcome. In the second scenario, as shown in Fig. 4.3, the unknown state

|V⟩ is provided along with an entangled Bell state. These states undergo quantum gate

operations, leading to a final state. Measurement outcomes are determined based on this

process. The initial direct product state |ψ1⟩,

|ψ1⟩ =

{︄
|0⟩|0⟩ + |1⟩|1⟩

√
2

}︄
⊗

1
√

2
(α|0⟩ + β|1⟩)

=
1
√

2
{α|0⟩|0⟩|0⟩ + β|0⟩|0⟩|1⟩ + α|1⟩|1⟩|0⟩ + β|1⟩|1⟩|1⟩}

(4.16)

Action of CNOT gate,

|ψ2⟩ =
1
√

2
{α|0⟩|0⟩|0⟩ + β|0⟩|0⟩|1⟩ + α|1⟩|1⟩|0⟩ + β|1⟩|1⟩|1⟩}

= |0⟩(α|0⟩|0⟩ + β|0⟩|1⟩) + |1⟩(α|1⟩|1⟩ + β|1⟩|0⟩)

|ψ3⟩ =
1
2
{(α|0⟩|00⟩ + β|1⟩) + (α|1⟩ + β|0⟩)|01⟩

+ (α|0⟩ + β|0⟩)|10⟩ + (α|1⟩ + β|0⟩)|11⟩}.

(4.17)

The Bob’s measurement outcome of |00⟩ occurs with a 25% probability. In Alice’s

case, if the outcome is |00⟩, the unknown qubit is represented as (α|0⟩ + β|1⟩), and if the

outcome is |01⟩, the unknown qubit is (α|1⟩ + β|0⟩). Likewise, the outcomes |00⟩ and |00⟩
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Figure 4.4: A circuit to create a perfect W-state involves using the Pauli X-gate and the general
unitary gate U3(θ,Φ, λ).

each occur with a 25% probability.

Similarly, we can generate the W state in the three-qubit system’s circuit QED setup.

We will study in the following how to generate W states for spin systems.

4.4.3 W state synthesis

The W-state is a type of multipartite entangled state that is well-known for its ability to

withstand particle loss. The following is the usual expression for the W-state:

|W⟩ =
∑︂

pl |1l, {0}⟩,
∑︂
|pl|

2 = 1. (4.18)

If pl =
1
√

N
(N is the number of qubits) is chosen, the resulting state is known as the

maximally entangled W state, which is denoted as,

|W⟩ =
1
√

N
(|100 . . . 0⟩ + |010 . . . 0⟩ + . . . · · · + |0 . . . 001⟩) . (4.19)

The maximally entangled W-state has been successfully created in experimental set-

tings [72, 81, 150] and numerous theoretical proposals [4, 33, 130]. The three-qubit en-

tangled perfect W-state given in Eq. (4.19) has been successfully produced in a variety

of experimental setups as shown in Fig. 4.19, using IBM’s five-qubit quantum comput-

ers [38, 51, 67, 90, 148].
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Figure 4.5: Silver atoms are heated in an oven with a small opening, allowing some atoms to
escape. The emitted atoms pass through a non-homogeneous magnetic field created by pole

pieces.

4.5 Spin system

We discussed photon entangled states and the implications they carry in the qubit repre-

sentation. These entangled states are similar to maximally entangled spin-related qubit

states. The fundamental concept underlying the Stern-Gerlach experiment’s observation

of spin behavior. In Fig. 4.5, a well-known physics experiment used to show how particle

spin is quantized is the Stern-Gerlach experiment. In this experiment, an inhomogeneous

magnetic field produced by a set of magnetic poles is passed through by a beam of par-

ticles, typically silver atoms or other particles with magnetic moments [113]. The beam

is deflected into discrete, distinct lines as a result of the experiment, suggesting that the

magnetic moments of the particles are quantized and can only have particular orientations.

Important support for the quantized character of intrinsic angular momentum, or spin, in

quantum mechanics was given by this observation.

An atom’s initial wavefunction can be used to write a superposition state,

|ψspin⟩ =
1
√

2
(| ↑⟩ + | ↓⟩). (4.20)

The Sequential Stern-Gerlach experiment poses intriguing questions. In Fig. 4.6.(a)

setup, the remaining particles with S z+ spin component pass through a second S Gz ap-
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Figure 4.6: Collapse wavefunction measurement

paratus, while those with S z- spin component are blocked after the first apparatus. As

anticipated, only the S z+ component emerges from the second apparatus. This outcome

is unsurprising, given that without external influences, the spins of atoms are expected to

remain unchanged between the first and second S Gz apparatuses.

The setup depicted in the Fig. 4.6.(b) adds an intriguing twist to the experiment. In

this configuration, the first apparatus (S Gz) remains the same, but the second one (S GX :)

features an inhomogeneous magnetic field in the x-direction. When the S z+ beam enters

the second apparatus (S GX :), it splits into two components: an S x+ component and an

S x- component, each with equal intensities. One might wonder if this implies that 50%

of the atoms in the S z+ beam from the first apparatus (S Gz) possess both S z+ and S x+,

while the remaining 50% have both S z+ and S x-. However, this interpretation encoun-

ters challenges, as we will explore below. Moving forward, we delve into a third step,

as illustrated in the subsequent Fig. 4.6, which vividly highlights the peculiar nature of

quantum-mechanical systems.

In this scenario, a third apparatus of the S Gz type is added to the setup depicted in the

Fig. 4.6.(c). Surprisingly, the experiment reveals that two components emerge from this

third apparatus: one with an S z+ component and another with an S z- component. This

outcome is unexpected because efforts were made to block the S z-component after the

atoms passed through the first apparatus. The reappearance of the S z-component raises the

question of how it could persist despite our previous attempts to eliminate it. The existing
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model, which assumes that atoms entering the third apparatus have both S z+ and S x+

components, is clearly inadequate to explain this phenomenon. This example is frequently

cited to demonstrate the principle in quantum mechanics that we cannot simultaneously

determine both S z and S x. Specifically, when the second apparatus (S Gx) selects the S x+

beam, it erases any prior information about the S z property of the particles and it is called

the wavefunction collapses. In Eqn. 4.7 is similarly to the two spin-1/2 particles (say two

electrons) representation | ↑⟩ = |s = 1/2,m = 1/2⟩ and | ↓⟩ = |s = 1/2,m = −1/2⟩ are,

| ↑⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , | ↓⟩ ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.21)

4.5.1 Collective spin operators

Quantum optics [24] and condensed matter theory are extensively studied, particularly in

the context of angular momentum. For a comprehensive understanding of these topics, I

have included references that delve into these subjects [2, 28].

For two spin-1/2 particles (say, two electrons), the total spin operators is usually writ-

ten as

S = S 1 + S 2 (4.22)

but again it is to be understood as

S = S 1 ⊗ 1 + 1 ⊗ S 2 (4.23)

Where 1 is the identity operator in the spin space of electron.
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The usual commutation relations are,

[S 1x, S 1y] = iℏS 1z, [S 2x, S 2y] = iℏS 2z, [S x, S y] = iℏS z.

The eigenvalues of the various spin operators are denoted as follows

S 2|s,mz⟩ = s(s + 1)ℏ2|s,mz⟩, S z|s,mz⟩ = mzℏ|s,mz⟩, (4.24)

Again, we can expand the ket corresponding to an arbitrary spin state of the two elec-

trons in terms of either the eigenkets of S 2 and S z or the eigenkets of S 1z and S 2z. The

two possibilities are as follows,

1) The {m1,m2} representation based on the eigenkets of S 1z and S 2z

| + +⟩, | + −⟩, | − +⟩, | − −⟩, or | ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩

where | + −⟩ stands for m1 = ±
1
2

.

2) The {s,m} representation (or the triplet-singlet representation) based on the eigen-

kets of S 2 and S z. where S = 1 (S = 0) is referred to as spin triplet. S = 0 is singlet.

|s = 1,m = 1⟩ = | ↑↑⟩ tell us that we have both electrons with spin up. This situation

can correspond only to s = 1, m = 1 and apply ladder operator to both side of below

equation.

S − ≡ S 1− + S 2−, (4.25)

and

S −|s = 1,m = 1⟩ = (S 1− + S 2−)| ↑↑⟩ (4.26)

In doing so, we must remember that operators like S 1− affects just the first spin-1/2 and
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S 2− affects just the second spin-1/2 of particles | ↑↑⟩ and so on. using the C±jm coefficients

of ladder operators and S +|−⟩ = ℏ|+⟩, S −|+⟩ = ℏ|−⟩ and acting S +|+⟩ = 0, S −|−⟩ = 0 and

so on.

S ±|s,m⟩ =
√︁

s(s + 1) − m(m ± 1)ℏ|s,m ± 1⟩. (4.27)

The N-qubit system can be described using a wavefunction for N-spin-1/2 moments,

which are expressed in terms of total angularmomentum states |S tot,mtot⟩. The total spin

operators are determined by the sum of the individual qubit operators.

Ŝ Z =

N∑︂
l=0

σl
z, S v

tot = S v
1 + · · · + S v

N , with v = x, y, z. (4.28)

The ladder operators have the greatest effect on states with m close to zero and coef-

ficients ∼ S , and the least effect on states that are almost fully polarized and have coeffi-

cients ∼
√

S . Therefore, bigger spins—or, in the case of an ensemble, more spins—have

a more noticeable effect.

In Chapter 2, we delved into topics such as the second quantized number operator

n̂ = â†â, the qubit representation of photons, and in this chapter add the spin quantization.

The primary focus of this thesis is to generate W states and Bell states within the spin

system. To understand the generation of W states within the cavity setup, it is crucial to

grasp the interaction between atoms and photons in a two-level system. This interaction

occurs within the context of Dicke model in the cavity quantum electrodynamics (QED)

setups.

4.6 Dicke model

In the field of quantum optics [44,117,129], the examination of N two-level atoms (qubits)

interacting with an oscillator holds significant importance. Excitation of the atoms occurs

when the frequency of the oscillator is resonant with the energy difference between the
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two atomic energy levels. The subsequent transition of the excited state to the ground

state leads to the spontaneous emission of light [116]. When atoms (or molecules) are

in proximity, the collective emission of photons is naturally accelerated and more intense

compared to the emission from isolated atoms. The direction of emission is distinct and

depends on the geometry of the sample [19].

The emission of light in each direction is random, resulting in the incoherent cyclic

process of radiation emission. In this context, the radiation field’s intensity, represented

by I, is observed to be proportional to N, demonstrating a linear relationship between

them. However, Dicke introduced the concept of coherent radiation emission when the

frequency of the oscillator significantly exceeds the qubit frequency [30]. This condition

leads to the collective interaction of the ensemble of atoms with the incident radiation

field. The atoms jointly undergo de-excitation to the ground states, resulting in the coher-

ent emission of more powerful radiation, recognized as superradiance.

Within the rotating wave approximation [?,137], this system is described by the Dicke

Hamiltonian,

H = λŜ
z
tot + ωca†a + g{Ŝ

−

tota
† + Ŝ

+

tota}, (4.29)

where a (a†) represents photon annihilation (creation), ωc is a cavity mode and Ŝ tot col-

lective spin operator as shown in Eqn. (4.28).

For a qualitative grasp of the phenomenon of superradiance, envisioning N atoms

collectively emitting radiation in phase is crucial. This cooperative emission results in

superradiance, where the coherent emissions reveal a dependence of I on the number of

atoms as N2. Consequently, the emission rate is amplified by a factor of N in superra-

diance, a characteristic not observed in the typical incoherent spontaneous emission of

radiation.
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Figure 4.7: Cavity QED setup and Spin representation of Bloch sphere

4.7 Two Spin-1/2 particles

For the two qubit system containing one atom in the excited state | ↑⟩ and the other in the

ground state | ↓⟩, the initial state is taken to be | ↓↑⟩ as shown in Fig. 4.7. Consider a pair

of electron 1 and 0.The total spin of pair of electron is 1 and 0. The three states of total

spin 1 is called triplet, the state of spin 0 is called singlet.

S Z = S 1z + S 2z =
1
2
±

1
2
= 1, 0. (4.30)

Now |s = 1,m = −1, 0,+1⟩ → three states are triplet |t−1,0,+1⟩:

|t1⟩ = |s = 1,m = 1⟩ = | ↑↑⟩

|t0⟩ = |s = 1,m = 0⟩ =
[| ↑↓⟩ + | ↓↑⟩]

√
2

|t−1⟩ = |s = 1,m = −1⟩ = | ↓↓⟩,

(4.31)

and |s = 0,m = 0⟩ → |S 0⟩ one states is singlet:

|s0⟩ = |s = 1,m = 0⟩ =
[| ↑↓⟩ − | ↓↑⟩]

√
2

. (4.32)

Normally four states are available but in our aims to generate the Bell state and W
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state since mz = 0, we can write initial state as superposition of two states,

|ΨI⟩ = | ↓↑⟩ = α1|s = 1,mz = 0⟩ + α2|s = 0,mz = 0⟩ (4.33)

It is prepared in such a way that atoms have non overlapping spatial wave functions.

This initial state is in the superposition of the singlet state |s0⟩ and triplet state |t0⟩. It is

then allowed to interact with the radiation field where the triplet part participates in the

radiation process and jumps to the lower energy triplet state. The singlet state does not

couple with the triplet states during the process. It is observed that after a long period

of time there is still a probability of one-half that a photon has not been emitted. When

there is no emission of photons even after a sufficient period of time two atoms resides in

a singlet state and it is impossible to say which atom is in the excited one.

Suppose if we consider the initial state as the triplet state |t0⟩, a state with single

excited atom and the transition probability of this state upon emission of radiation would

be double that for a lone excited atom. Thus the presence of the unexcited atom in this

case doubles the radiation rate. In the event that a photon is detected, this measurement

will cause the spinwave function to collapse into the |t1⟩ state. On the other hand, when

photon emission is not observed, the system collapses into a singlet state |s0⟩, leaving both

spins entangled. Eq. (4.15) indicates that the singlet and triplet states are Bell states.

4.7.1 Three Spin-1/2 particles

Initially three spin-1/2 particles are

S = S 1 + S 2 + S 3 = | ↓↓↑⟩, S =
3
2
,

1
2
,

1
2

; mz = −
1
2
. (4.34)

Given that mz = −1/2 out of the eight states, only three states are accessible. We can

represent the initial states as a superposition of these three states for a system of three
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spin-1/2 particles.

|ΨI⟩ = | ↓↓↑⟩ = α1|
3
2
,−

1
2
⟩ + α2|

1
2
,−

1
2
, A⟩ + α3|

1
2
,−

1
2
, B⟩. (4.35)

Starting |
3
2
,−

3
2
⟩ = | ↓↓↓⟩, with the given state we aim to identify another state using

ladder operators. These two states are both normalized and orthogonalized. Applying

ladder operators will allow us to find additional states. The lowering operator is connected

to the concept of “collective emission” of a photon, wherein a single atom undergoes a

transition from the excited to the ground state by emitting a photon. However, the specific

atom responsible for the emission remains uncertain.

Now, consider three atoms situated in close proximity (though not close enough to

directly interact with each other), all initially in the ground state collectively absorb a

photon.

|s = 3/2,mz = −3/2⟩ = | ↓↓↓⟩. (4.36)

When a photon is absorbed collectively, the atoms transition to the subsequent state.

|s = 3/2,mz = 3/2⟩ = | ↑↑↑⟩. (4.37)

The state |
3
2
,−

1
2
⟩ undergoes photon emission, while the states |

1
2
,−

1
2
, A⟩ and |

1
2
,−

1
2
, B⟩

do not emit photons. However, the two not emitted photon states can absorb photons

through interaction with the cavity mode. This is because the reduction of mz values

is not possible, defining them as dark states. This distinction highlights the difference

between a singlet state and a dark state.

In scenarios where the atoms are not freely floating in space but instead interacting

with their surroundings, the state would rapidly decohere, and the uncertainty would be

resolved. If one of the atoms absorbs the photon, the uncertainty arises regarding which

specific atom is involved. In such cases, a single atom, chosen randomly, would be identi-

106



CHAPTER 4

fied as the one that absorbed the photon, aligning with everyday intuitive expectations.

However, for the current discussion, we assume the absence of decoherence. In this

context, it is implied that the distance between the atoms is significantly smaller than

a wavelength; otherwise, the expression would be modified.

|s = 3/2,mz = 1/2⟩ =
1
√

3

[︂
expik.r1 | ↓↑↑⟩ + expik.r2 | ↑↓↑⟩ + expik.r3 | ↑↑↓⟩

]︂
(4.38)

where k is the wavevector of that absorbed photon and r1,r2, and r3 are the atom positions.

It represents a generalized W state. Let’s assume that the atoms are either extremely

close together (much smaller than a wavelength) or precisely spaced at one wavelength

intervals, allowing us to disregard the influence of exponential factors for simplicity.

Under the Dicke condition, this process leads to the formation of the W state with

equal amplitude and phase.

|s = 3/2,mz = −1/2⟩ =
1
√

3

[︂
| ↓↓↑⟩ + | ↓↑↓⟩ + | ↑↓↓⟩

]︂
, (4.39)

when N = 3, this state represents the three spin W state that resembles the Eq. (4.19).

Dicke’s original thought experiment was recently reproduced in a lab setting with two

superconducting qubits inside a microwave cavity [12, 95] . They showed that the spins

together create a mixed state with both dark and bright components by measuring the

density matrix of the released photon. The following succinctly sums up their findings:

Interaction with a shared photon field causes two spins that would otherwise be isolated

to become entangled. An innovative method for creating entangled quantum states in a

lab is presented in this experiment. Increasing the number of spins in parallel to create

highly entangled states with superradiance and subradiance (Dark state) is an extension

of this experiment. From a technological standpoint, it is more advantageous to store

information in the subradiant state and share information in the superradiant state.
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4.8 Many-body Entangled state

We first take the simplest non-trivial initial state [37,137], | ↑↓↓ · · · ↓⟩. This can have only

two S tot components:

|Ψinitial⟩ = |↑↓ · · · ↓⟩ = αS=N/2|ψN/2⟩ + αS=N/2−1|ψN/2−1⟩, (4.40)

where |ψN/2⟩ ∼ P̂S=N/2|↑↓ · · · ↓⟩ and |ψN/2−1⟩ ∼ P̂S=N/2−1|↑↓ · · · ↓⟩.

Different numbers of photons will be emitted by each component of this state, which is

indexed by S tot [45,46]. Perform a Stern-Gerlach-type measurement, which collapses the

wavefunction, by counting the number of photons emitted. Specifically, the wavefunction

collapses onto the W state observation.

|ΨW−state⟩ ∼ P̂S=N/2|Ψinitial⟩. (4.41)

This is because any permutation of spins in the projection operator itself results in

symmetry. This is evident in construction,

P̂S=Σ =
∏︂
S ′≠Σ

Ŝ
2
tot − S ′(S ′ + 1)

Σ(Σ + 1) − S ′(S ′ + 1)
. (4.42)

It is symmetric under any permutation of the constituent spins because it only contains

Ŝ tot.

We use P̂S=Σ to denote the projector onto states with total spin S tot = Σ. In analogy

with the two-spin problem, |ψN/2⟩ is a bright state which will emit a photon and decay to

|S tot = N/2,mtot = −N/2⟩. On the other hand, |ψN/2−1⟩ is a dark state as it cannot reduce

its mtot quantum number further.
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The generalized W-state as

|ψW−state⟩ =
1
√

N

N∑︂
k=1

eiϕk | ↓1 . . . ↓k−1↑k↓k+1 . . . ↓N⟩. (4.43)

Every component within the system shares the same probability amplitude, although

the phases ϕk may not necessarily be identical. If all ϕk values are equal, this configuration

corresponds to the familiar W state [34]. However, it’s important to note that there are no

constraints imposed on the values of ϕk in this context. In fact, as we will explore later,

the ϕk values cannot be independently adjusted in many situations.

In the context of the Dicke condition, the projection of the initial state, representing

the equal amplitude and phase ψN/2 state, can be expressed as follows:

|ΨW−state⟩ =
1
√

N
(| ↑↓↓ · · · ↓⟩ + | ↓↑↓ · · · ↓⟩ + · · · + | ↓↓ . . . ↓↑⟩) . (4.44)

This |ΨW−state⟩ represents the W maximally many-body entangled state.
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Spreading entanglement through

pairwise exchange interactions

This chapter includes content from the following journals: (Theerthagiri, L., Ganesh, R.

Spreading entanglement through pairwise exchange interactions. Quantum Inf Process

22, 355 (2023). https://doi.org/10.1007/s11128-023-04104-z)

5.1 Introduction

The synthesis of entangled states is an enduring problem in quantum science.This Thi

requires systematic protocols for transforming a direct-product state into certain superpo-

sitions. To mitigate decoherence effects, any such process must be optimized to min-

imize operation time. This has inspired several studies on time-optimized protocols

[13, 17, 18, 27, 49, 136, 141]. At the same time, it is important to ensure scalability. As

quantum devices grow in qubit-number, entangling protocols must be able to operate

within reasonable timeframes. This requires optimization with respect to qubit-number-

complexity (operating time vs. number of qubits). Motivated by these ideas, we consider

the simplest entanglement-spreading task – that of spreading a single excitation equally
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among N participating qubits. We impose a constraint informed by the design of multiple

quantum architectures: this task is to be achieved solely by pairwise exchange interac-

tions. We present three solutions and discuss their scaling with qubit number.

The interest in entanglement spreading can be gauged from the large number of studies

on the W state – a prototypical entangled state where an excitation is equally spread

over N qubits [34] as explained in chapter 4. Many proposals have been put forward

to synthesize the W-state [11, 101] and many experiments have succeeded in creating

it [52,55,68,97] . The challenge in these protocols can be stated as follows: starting from

an unentangled initial state with only one qubit excited, how can the excitation be spread

equally among all qubits? In this article, we take an approach that is inspired by mancala

games – a family of games with a long history and wide geographical spread [109]. They

are played on a board with pits that contain pieces. In a typical game, a player picks

pieces from one pit and distributes them over the other pits. Here, we have N qubits

that are analogous to N pits. An excitation (an ↑ state or a 1-state) is initially stored

in one qubit, analogous to pieces stored in a pit. The goal of the game is to spread the

pieces evenly among N pits. Below, we describe three protocols to achieve this goal and

characterize their scaling with N.

We assume an architecture where qubits can undergo pairwise exchange interactions.

Exchange interactions have been proposed as a mechanism for designing logic gates [85]

and it is explained in chapter 4. They can be achieved in many settings. For example, with

ultracold atoms in an optical lattice, a lattice-modulation can be used to induce an XXZ-

exchange interaction [5]. The time period and the strength of the interaction can both be

controlled by tuning the modulation. In semiconductor qubits, exchange interactions can

be induced in a similar fashion by tuning tunnelling barriers [71, 91, 102]. Alternatively,

they can be mediated by a cavity-mode [142] explained in chapter 4, where the strength

and duration can be controlled by varying the detuning.
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5.2 Entanglement by exchange

To set the stage, we begin by considering two two-level atoms (qubits), labelled A and B.

They undergo an exchange interaction which entangles them. The degree of entanglement

can be tuned by varying the interaction time, t.

We first discuss Heisenberg exchange as it leads to a simple form for the time-evolution

operator. We then generalize to anisotropic exchange of the XXZ type. The results dis-

cussed in subsequent sections hold for the any value of the XXZ anisotropy, including the

Heisenberg limit. A Heisenberg exchange interaction between two qubits is described by

the Hamiltonian ĤAB = J
[︂
σA

xσ
B
x + σ

A
yσ

B
y + σ

A
z σ

B
z

]︂
, where σ’s are single-qubit operators

encoded by Pauli matrices. With the two qubits interacting for time t, the wavefunction

undergoes unitary evolution. The time-evolution operator can be written in various forms.

For our purposes, it is best written as

ÛAB(t) = eit/2
{︂

cos(t) 1̂AB − i sin(t) Π̂AB

}︂
, (5.1)

where time t is measured in units of 2ℏ/J. The identity operator, 1̂AB, leaves both

qubits unchanged. In contrast, Π̂AB is the permutation operator that switches the states of

A and B. In the S z basis ({↑↑, ↑↓, ↓↑, ↓↓}), it is given by

Π̂AB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.2)

If one qubit is initially excited and the other is in the ground state, the permutation
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operator transfers the excitation from the former to the latter. As seen from Eq. 5.1, the

amplitude for excitation transfer is sin(t), while that for retaining the excitation at the same

qubit is cos(t). By tuning the interaction time t, the ‘transferred weight’ can be tuned. For

a generic value of t, the final state is entangled with the excitation spread over two qubits.

We next consider a more general interaction Hamiltonian of the XXZ form,

Ĥ
λ

AB = J
[︂
σA

xσ
B
x + σ

A
yσ

B
y + λσ

A
z σ

B
z

]︂
, (5.3)

where λ is an anisotropy parameter. This Hamiltonian leads to the unitary time-evolution

operator,

Û
λ

AB(t) = e−iλt/2P̂σA≠σB

{︂
cos(t) 1̂AB − i sin(t) Π̂AB

}︂
+ eiλt/2P̂σA=σB , (5.4)

Here, P̂σA=σB is a projection operator onto the σA = σB sector, where both qubits

are in the same state. In this case, Û
λ

AB(t) leaves the state unchanged (up to a global

phase). In contrast, P̂σA≠σB selects states where the qubits are in opposite states. Acting

on such states, Û
λ

AB(t) exchanges their states with probability amplitude sin(t). If the initial

state had one qubit excited and one in the ground state, the final state will generically be

entangled. The interaction time, t, controls the spread of the excitation across the two

qubits.

Before stating the problem of interest, we note that the amplitudes in Eqs. 5.1 and 5.4

are periodic in time with period 2π. In the following discussion, we always choose the

shortest time that can effect a desired operation.
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5.3 Problem statement

In chapter 4, we explained the N two-level atoms (qubits) in the cavity QED setup. We

consider N two-level atoms and we assume a setup where pairs of atoms can be selected

and made to interact for a specified period of time. For instance, this may involve bringing

two atoms close to one another—at a certain fixed distance and for a chosen time interval.

Initially, the N qubits are in a direct-product state represented as

ψinitial = | ↑1↓2↓3 . . . ↓N⟩. (5.5)

The first qubit is in the excited state, while the others are in the ground state. This can be

viewed as one quantum of information stored in qubit-1.

The target state is a generalized W-state as seen in chapter 4 given by

ψtarget =
1
√

N

N∑︂
j=1

eiϕ j | ↓1 . . . ↓ j−1↑ j↓ j+1 . . . ↓N⟩. (5.6)

This is a sum of N components, each having the excitation positioned at a different qubit.

Each component has the same probability amplitude, but not necessarily the same phase.

If all ϕ j’s are equal, this would be the well-known W state [34]. We do not place any

restriction on ϕ j’s here. In fact, we will see below that ϕ j’s cannot be independently

tuned.

In the following sections, we propose three protocols that take the initial state of

Eq. 5.5 to the target state of Eq. 5.6. Our arguments hold for interactions of the XXZ

type with any value for the anisotropy parameter, λ.
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Figure 5.1: Three protocols illustrated for a system with N = 4 qubits. (a) The initial direct
product state with one qubit excited and N − 1 qubits in the ground state. (b) A flying-qubit

protocol where qubit-1 interacts with each of the other qubits in order. (c) A sequential protocol
where pairs of neighbouring qubits interact in succession. (d) A divide-and-conquer protocol

where the system is arranged hierarchically in units of two qubits. At each stage, interactions act
at one level of the hierarchy.

5.4 Protocol with a single flying qubit

We assume that one of the qubits can move freely and interact with each of the others. The

qubit could be a photon or a vibration mode that can selectively couple to static qubits.

In fact, the protocol discussed below was successfully used to generate a generalized W

state with trapped ions in 2005 [55]. In this study, the role of the flying qubit was played

by a vibration mode of a trapped-ion-chain. In the following discussion, we assume that

this flying qubit is labelled as j = 1. We further assume that this qubit is initially in the

excited state while all other qubits ( j = 2, 3, . . . ,N) are in the ground state.

We propose a protocol where qubit-pairs interact in the following order: qubits 1 and

2 interact for time t1,2, qubits 1 and 3 interact for time t1,3, . . ., qubits 1 and N interact for

time t1,N . Initially, qubits 1 and 2 begin in the state | ↑1↓2⟩. As they interact for time t1,2,

their state is acted upon by the time-evolution operator of Eq. 5.1 or 5.4. The resulting

state is (up to a global phase)

cos(t1,2)| ↑1↓2↓3 . . . ↓N⟩ − i sin(t1,2)| ↓1↑2↓3 . . . ↓N⟩.
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After time t1,2, qubit 2 does not interact with any of the other qubits. The component

that is proportional to sin(t1,2) remains unchanged in amplitude, although it may accrue a

phase. Therefore, in the final state, the probability amplitude for qubit 2 to be excited is

sin(t1,2). Upon comparing with the target state of Eq. 5.6, we must have

sin(t1,2) =
1
√

N
. (5.7)

This fixes t1,2. Subsequently, qubit 1 interacts with qubit 3 for time t1,3. At the start of

this process, the amplitude for qubit 1 to be excited is cos(t1,2) =
√︂

N−1
N . The probability

amplitude for the excitation to be transferred to qubit 3 is given by a product of two

amplitudes: (i) that for qubit 1 to be initially excited and (ii) that for the excitation to be

transferred during the interaction. This is given by

√︃
N − 1

N
× sin(t1,3) =

1
√

N
. (5.8)

We have set the amplitude to 1/
√

N in order to match the target state of Eq. 5.6. As qubit

3 does not interact after this step, it will always retain its amplitude through to the end.

We obtain

sin(t1,3) =
1

√
N − 1

. (5.9)

At this point, the amplitude for qubit-1 to be excited is

√︃
N − 1

N
× cos(t1,3) =

√︃
N − 1

N
×

√︃
N − 2
N − 1

=

√︃
N − 2

N
. (5.10)

At the next step, qubits 1 and 4 interact. The amplitude for an excitation to be transferred

to qubit 4 is given by √︃
N − 2

N
× sin(t1,4) =

1
√

N
. (5.11)
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Figure 5.2: Top: The spiral of Theodorus, constructed as a sequence of right-angled triangles.
Bottom: The nth triangle in the spiral, with sides 1,

√
n and

√
n + 1.

This fixes sin(t1,4) = 1
√

N−2
. Proceeding in this manner, we find

sin(t1,5) =
1

√
N − 3

, . . . , sin(t1,N) =
1
√

2
. (5.12)

These relations can be gather into a general expression for the jth time interval,

t1, j+1 = sin−1
{1/

√︁
N − j + 1}. (5.13)

Remarkably, these time periods have an elegant geometric interpretation. These are angles

within the spiral of Theodorus, a geometric construction known since the 5th century

BCE [26, 53]. The spiral is constructed as a series of right-angled triangles. At each

step, a unit line segment is drawn perpendicular to the hypotenuse of the previous step.

This forms a new right-angled triangle with a longer hypotenuse. This procedure leads

to a sequence of points spiralling outwards. The nth point is given as (rn, θn) in polar

coordinates. Here, rn =
√

n and θn is a monotonically increasing function of n. For large

n, it is known [26, 62] that θn ∼ 2
√

n, with corrections that are subleading in powers of n.

Fig. 5.2 shows the angles as they appear in the spiral. The ‘interior angles’, denoted
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as αn’s, are precisely the time intervals given in Eq. 5.13,

α1 = t1,N; α2 = t1,N−1; . . . ; αN−1 = t1,2. (5.14)

From the figure, it is clear that the interior angles decrease progressively, i.e., αn mono-

tonically decreases with n. We deduce that the time intervals increase progressively, with

t1,2 < t1,3 < . . . < t1,N . The total process time, excluding overheads such as rearranging

qubits, is given by

t f lying = t1,2 + t1,3 + . . . + t1,N =

N−1∑︂
j=1

α j = θN ≈ 2
√

N. (5.15)

where α j’s are angles as shown in Fig. 5.2. The sum over α j’s yields θN , the angular

coordinate of the N th point of the Theodorus spiral. In the last step, we have used the

approximate form for θN when N is large. We arrive at the following result: this protocol

yields a generalized W-state with the operation time scaling as
√

N for large N. This time

scale applies to the setup discussed in Chapter 4.

5.5 Protocol with sequential pairwise interactions

We next consider a protocol where qubit-pairs interact in the following order: qubits 1

and 2 interact for time t1,2, qubits 2 and 3 interact for time t2,3, . . ., qubits N − 1 and N

interact for time tN−1,N . Initially, qubit 1 is taken to be excited while all others are in the

ground state. As qubits 1 and 2 interact, their state is acted upon by the time-evolution

operator of Eq. 5.1 or Eq. 5.4. A portion of the excitation can be transferred from qubit 1

to 2. At the next step, a portion of the excitation in qubit 2 is transferred to 3 and so on.

Qubit 1 is only modified during the first step. As a result, its final excitation-amplitude

is determined at the first step alone. From Eq. 5.1 or 5.4, this is given by cos(t1,2) – the
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amplitude for no excitation transfer occurring during the first step. In the final target state,

the amplitude for qubit-1 to be excited must be 1/
√

N, so that

cos(t1,2) =
1
√

N
. (5.16)

This fixes time t1,2. After the first step, the amplitude for qubit-2 to be excited is given

by sin(t1,2) =
√︂

N−1
N . During the second step, this excitation may be passed onto qubit-3.

Beyond the second step, qubit-2 remains unchanged. As a result, the final amplitude for

qubit-2 to be excited is given by sin(t1,2)× cos(t2,3). In the final target state, the amplitude

for qubit-2 to be excited must be 1/
√

N, so that

√︃
N − 1

N
cos(t2,3) =

1
√

N
=⇒ cos(t2,3) =

1
√

N − 1
. (5.17)

This fixes t2,3. Considering each following step in the same fashion, we arrive at

cos(t3,4) =
1

√
N − 2

, . . . , cos(tN−1,N) =
1
√

2
. (5.18)

These relations determine all time intervals in the problem, with t j, j+1 = cos−1(1/
√︁

N − j + 1).

These times are, once again, angles that appear in the spiral of Theodorus. As shown in

Fig. 5.2, they are ‘exterior angles’ denoted as βn’s. We have β1 = tN−1,N , β2 = tN−2,N−1, . . .,

βN−1 = t1,2.

From Fig. 5.2, we see that β’s increase monotonically with n. We conclude that the

time intervals in this protocol are arranged in descending order: t1,2 > t2,3 > . . . > tN−1,N .

As seen from Fig. 5.2, β j and α j form a pair of complementary angles for any j. In

Sec. 5.4, the total operation time was written as a sum over α-angles. Here, the total
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operating time is

tsequential = t1,2 + t2,3 + . . . + tN−1,N =

N−1∑︂
j=1

β j

= (N − 1)
π

2
−

N−1∑︂
j=1

α j ≈ (N − 1)
π

2
− 2
√

N.

We have used the result quoted in Eq. 5.15 for the sum over α j. We conclude that the

total operating time scales linearly with N in this protocol. This time scale applies to the

configuration described in Chapter 4.

5.6 Divide-and-conquer protocol

The previous two sections present two protocols. In both, an initial excitation in one qubit

is spread over N qubits in serial fashion – through a sequence of exchange interactions that

must be executed in serial order. We now consider a third protocol that allows for parallel

operations. At each step, we consider two qubits. One has a certain probability of being in

the excited state, while the other is entirely in the ground state. An exchange interaction

is carried out to equally spread the excitation-amplitude between the two qubits.

This protocol is particularly suited for N’s that are powers of 2, i.e., N = 2M where

M is an integer. The protocol proceeds through M stages where each stage may involve

multiple pairwise interactions. For illustration, we take the example of 4 qubits (M = 2).

Initially, qubit-1 is excited while all others are in the ground state. During the first stage,

qubit-1 and qubit-3 are made to interact. The interaction time is chosen such that the

qubit-1 and 3 both acquire the same excitation-amplitude. That is, cos(t1,3) = sin(t1,3) =

1/
√

2.

During the second stage, qubit-1 interacts with qubit-2 while qubit-3 interacts with

qubit-4. These two interactions may take place at the same time, in parallel. For each
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Figure 5.3: The total interaction time t vs. the number of qubits, N for the three protocols
discussed here. The lines show the approximate scaling form for large N.

interaction, the time period is fixed such that the likelihood of excitation-transfer is equal

to that of excitation-retention, i.e., cos(t1,2) = sin(t1,2) = cos(t3,4) = sin(t3,4) = 1/
√

2. This

yields the target state, with each qubit having the same amplitude (1/2) for carrying an

excitation.

For any larger value of M, we have M stages. It can be easily seen that the total number

of pairwise interactions is still N−1, the same as for the previous two protocols. However,

all interactions within a stage may take place in parallel. Each of these interactions takes

place over a time period given by cos(t) = 1/
√

2, i.e., t = π/4.

If the setup is such that only one pairwise interaction can take place at a time, the

total operating time would be (N − 1)π/4, scaling linearly with N. If parallel pairwise

interactions are possible, they significantly reduce operating time. We have M distinct

stages in the problem, each involving pairwise interactions over a time period of π/4. The

lowest time is achieved if all interactions of a stage are performed simultaneously. This

yields a lower bound for the operating time, tlower bound = Mπ/4. This quantity scales as

M ∼ ln2 N. For the setup covered in Chapter 4, this timeline is relevant.
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5.7 Phase differences in the target state

The target state, as defined in Eq. 5.6, has N phases denoted as ϕ j’s. These phases cannot

be independently controlled. With the Heisenberg exchange of Eq. 5.1, every action of the

permutation operator carries a phase of 3π/2 (a factor of −i). With an XXZ interaction,

we get additional phases as seen from Eq. 5.4. As a result, in any of the three protocols,

the final state corresponds to Eq. 5.6 with disparate values of ϕ j’s. To illustrate this,

we formally show that a W state (with all ϕ j’s being equal) cannot be synthesized using

pairwise exchange interactions.

Our argument is based on two observations: (i) pairwise interactions, as described by

the operator in Eq. 5.1 are unitary and therefore, reversible. (ii) The W state is invariant

under any permutation. As a result, it is unchanged (up to a global phase) by operators

of the form Eq. 5.1 or Eq. 5.4. Suppose the W state could be synthesized starting from a

direct product state via pairwise interactions. It must be possible to reverse the process –

to start from a W state and to arrive at a direct product state with only pairwise interac-

tions. However, this is not possible, as any operation of the form of Eqs. 5.1 or 5.4 does

not change the W state. We conclude that the W state cannot be produced within this

approach.
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Conclusion

The developments in quantum mechanics, especially with regard to non-classical phe-

nomena, have had a revolutionary effect on a number of contemporary technologies, such

as computation, communication, metrology, and sensing. The idea behind quantum illu-

mination (QI) is to use the existence of quantum correlations in a system to enhance its

performance and make them a useful tool for obtaining a quantum advantage. This idea

is used in ”quantum target detection,” a subset of problems related to quantum sensing.

Throughout this dissertation, we have methodically investigated a number of signif-

icant open problems and limitations related to quantum illumination (QI). We started

Chapter 1 by going over the Gaussian QI that Tan et al. had proposed, but recasting it

in terms of symmetric and asymmetric Quantum Hypothesis Testing (QHT) and adding

arbitrary quantum correlations. According to this analysis, maximal entanglement is not

strictly necessary to achieve a quantum advantage. Additionally, the study provided a

concrete interpretation of parameters by drawing parallels between quantum and classical

radar theories. This analogy showed that, akin to QI, the target range affects the effec-

tive limit of entanglement-based quantum target detection, particularly when taking into

account the feasibility of carrying out experiments to produce a significant number of

entangled states in a practical amount of time.
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Continuing the exploration of practical considerations in experimental settings, Chap-

ter 1 delves into the implications of a conventional microwave Quantum Illumination

(QI) technique. The concept involves using the stored half of an entangled photon pair

for dual-balanced difference detection following the phase conjugation of the reflected

light. In scenarios where Ns ≪ 1, κ ≪ 1, and NB ≫ 1, this method provides an identi-

cal 3 dB error exponent gain in error probability. Additionally, it demonstrates superior

performance compared to the Optical Parametric Amplification (OPA) receiver.

Chapter.2 focused on examining the mathematical foundations essential for the quan-

tum illumination (QI) setup. The target detection in QI involves employing hypothesis

testing and continuous variable theory. The continuous variable theory discussed in Chap-

ter 3 specifically applied to the microwave correlation-to-displacement conversion-based

receivers quantum illumination setup. In conclusion, this study looked into methods based

on correlation-to-displacement conversion that could be used to handle experimental im-

perfections in receivers. The findings showed that extra loss in heterodyne detection can

be effectively compensated for by boosting the return signals. In addition, we developed

a Kennedy receiver and proved that under optimal conditions, its error exponent is opti-

mal. This receiver outperforms other known practical receivers for quantum illumination

and still shows quantum advantages over classical optimal schemes in realistic scenarios.

All things considered, our research demonstrates the feasibility of realistic microwave

quantum illumination systems that can overcome experimental flaws and provide quan-

tum advantages for target detection in noisy environments. These discoveries advance

quantum sensing technologies and have implications for the design of upcoming quantum

illumination systems.

Chapter 4 delves into the realm of entanglement within systems composed of multiple

particles. The GHZ class state and the W class state are the predominant categories of

states that have garnered significant focus in the study of multiparticle entanglement. It’s

noteworthy that the combination of GHZ and W states is not achievable through stochastic
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local operations and classical communications (SLOCC); these two types of states are

distinct and cannot be transformed into each other through such operations. Chapter 4

discusses two separate experimental configurations—namely, the Dicke model and the

circuit QED—employed for generating the W state.

Chapter 5: We have discussed procedures that initiate from a direct product state and

create highly entangled generalized W states. The entanglement is generated through

pairwise interactions, where two qubits are brought together and allowed a specific du-

ration for interaction at each step. This configuration imposes significant constraints on

both the protocol and the resulting state. Despite enabling equal-weight superposition,

it lacks the flexibility to adjust the phase difference between components. Nevertheless,

these limitations lead to highly structured solutions. Geometrically, the time intervals

involved can be interpreted as angles along Theodorus’ spiral.

Our initial protocol is rooted in the flying-qubit model, and a practical implementa-

tion involves a cavity-photon mode that can be tuned into resonance through a set of static

qubits, as demonstrated in studies such as [14,78]. The protocol described in [55] utilized

this approach to generate a generalized-W state with trapped ions, where inter-qubit in-

teractions are sequential.

In the second protocol, inter-qubit interactions take place sequentially. A similar pro-

tocol has been realized with semiconductor spin-qubits, as documented in [70], although

the primary objective in that case was to transfer a qubit-state between the ends of a chain.

Our sequential protocol can be applied within the same setup to produce a generalized W

state. Notably, prior research has explored qubit chains where all interactions occur si-

multaneously, investigating the transfer of a qubit state from one end of the chain to the

other, as discussed in [42].

We have evaluated three protocols and compared them based on the required time,

noting that the time for each protocol scales with the number of qubits, as illustrated in

Fig. 5.3. Our analysis has focused solely on the overall interaction time, without account-
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ing for potential overheads associated with moving qubits, adjusting interaction circuits,

and other tasks inherent in experimental implementations. Future studies dedicated to

practical realizations may consider these additional times.

Furthermore, our analysis has not addressed adiabaticity concerns, assuming that ex-

change interactions precisely drive the system’s evolution. However, variations in interac-

tions over time can introduce errors in practice, as discussed in, for instance, Ref. [131].

Despite these limitations, our research provides valuable approximations that can aid in

protocol development. It is worth acknowledging that not all the protocols discussed here

may be feasible on a given quantum computing platform. For example, in systems where

qubits are arranged in a linear configuration, like ultracold atoms in optical lattices, the

divide-and-conquer algorithm may not be well-suited due to the requirement for extensive

qubit movement. Nevertheless, our results provide a rough estimation of the time duration

for such scenarios.

6.1 Future Direction

My upcoming research direction involves investigating the benefits of the simplest ex-

perimental models to extract advantages and exploring the utilization of non-Gaussian

entangled multi-mode states in Quantum Illumination C-D model setups.

In the future direction of the cavity QED setup bridge with condensed matter system,

various physical systems, including Bose-Einstein condensates [64], nuclear spins [110],

magnons [106], and excitons in quantum dots [139], have been utilized to realize and

experimentally test the concept of superradiance. Presently, researchers are actively ex-

ploring spin-spin interactions within quantum dot spin systems, leveraging optical con-

nections to interface with condensed matter systems [57, 138]. Two intriguing areas of

investigation include the cyclic activation and deactivation of an isotopically enriched

”nuclear-spin island” by electrons and the examination of superradiant-like dynamics in
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the nuclear-spin bath within a single-electron quantum dot [40, 76]. The study assumes

a uniform hyperfine interaction and meticulously analyzes the evolution of nuclear spin

during shuttling, exploring its connection to superradiance. Additionally, the study calcu-

lates the shortest time required to exit spin evolution while maintaining adiabaticity.

The existence of long-lived dark states [23, 133], where an experimentally accessible

qubit remains out of thermal equilibrium with the surrounding spin bath, is a common

phenomenon in solid-state systems [114, 115]. These dark states, situated near integrable

lines that share the same dark eigenstates, are prevalent in various inhomogeneous cen-

tral spin models. Over extended periods, the qubit retains its initial polarization, and

these dark states persist as eigenstates even under significant departures from integrabil-

ity, within the range accessible to numerical simulations.
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