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1. INTRODUCTION 

The effectiveness and volume of surgery has dramatically increased in the last decades, with 

more than 300 million procedures performed in 2012 [1]. However, surgery is still not the 

safe place we would like it to be, as surgical adverse events represent a great part of medical 

mistakes [2]. On this basis, surgical safety can be now considered a research priority. 

When performing an operation, surgeons need to communicate with a team of collaborators, 

interpret multiple signals coming from screens and other devices, project surgical principles 

into the present case, anticipate consequences of decisions and act in a timely manner. The 

success and coordination of all these complex events results in good quality surgery. This 

process demands a high physical and cognitive effort and any minimum mistake can lead to 

consequences for patients.  

In this thesis key elements enabling the vision of data-driven solutions in surgery will be 

shown and a future scenario in which advanced analytics are used to promote safety in 

laparoscopic colorectal surgery will be proposed with a perspective on the future goals we 

expect to achieve.  

The Colorectal 100 project was born in collaboration with the I-Cube group from Strasbourg 

(University of Strasbourg, IHU Strasbourg, France) with the idea of creating a dataset of 50 

videos of Laparoscopic Left Hemicolectomy (LLH) and 50 videos of Laparoscopic Right 

Hemicolectomy (LRH) to be analyzed with a specific AI tool box to obtain automatic phases 

and steps recognition. This “smart library” for colorectal surgery will serve as a basis for 

future research such as automatic anatomical recognition and multicentric studies for external 

validation with other European tertiary center surgical departments. Artificial intelligence 

(AI) can be loosely defined as the study of algorithms that give machines the ability to reason 

and perform cognitive functions such as problem solving, object and word recognition, and 
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decision-making. AI has increasingly become the topic of both popular and academic 

literature as years of research have finally built to thresholds of knowledge that have rapidly 

generated practical applications. However, as with many emerging technologies, the true 

promise of AI can be lost in its hype and lead to useless results for clinical practice. It is, 

therefore, important for surgeons to have a foundation of knowledge of AI to understand how 

it may impact healthcare and to consider ways in which they may interact with this 

technology.  

AI’s roots are found across multiple fields, including robotics, philosophy, psychology, 

linguistics, and statistics. Major advances in computer science, such as improvements in 

processing speed and power, have functioned as a catalyst to allow for the base technologies 

required for the advent of AI. The growing popularity of AI across many different industries 

has attracted venture capital investment up to $5 billion in 2016 alone [3]. Much of the 

current attention on AI has focused on the four core subfields introduced below. 

1.1 Machine Learning  

Machine learning (ML) enables machines to learn and make predictions by recognizing 

patterns. Traditional computer programs are explicitly programmed with a desired behavior. 

ML allows a computer to utilize partial labeling of the data (supervised learning) or the 

structure detected in the data itself (unsupervised learning) to explain or make predictions 

about the data without explicit programming. Supervised learning is useful for training a ML 

algorithm to predict a known result or outcome while unsupervised learning is useful in 

searching for patterns within data. A third category within machine learning is reinforcement 

learning, where a program attempts to accomplish a task (e.g. inferring medical decisions) 

while learning from its own successes and mistakes. ML is particularly useful for identifying 

subtle patterns in large datasets – patterns that may be imperceptible to humans performing 
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manual analyses – by employing techniques that allow for more indirect and complex non-

linear relationships and multivariate effects than conventional statistical analysis. ML has 

outperformed logistic regression for prediction of surgical site infections (SSI) by building 

non-linear models that incorporate multiple data sources, including diagnoses, treatments, and 

laboratory values. Furthermore, multiple algorithms working together (ensemble ML) can be 

used to calculate predictions at accuracy levels thought to be unattainable with conventional 

statistics. For example, by analyzing patterns of diagnostic and therapeutic data (including 

surgical resection) in the Surveillance, Epidemiology and End Results (SEER) cancer registry 

and comparing data to Medicare claims, ensemble ML with random forests, neural networks, 

and lasso regression was able to predict patient lung cancer staging by using International 

Classification of Diseases (ICD)-9 claims data alone with 93% sensitivity, 92% specificity, 

and 93% accuracy, outperforming a decision tree approach based on clinical guidelines alone 

(53% sensitivity, 89% specificity, 72% accuracy)[4]. 

1.2 Natural Language Processing  

Natural language processing (NLP) is a subfield that emphasizes building a computer’s ability 

to understand human language and is crucial for large scale analyses of content such as 

electronic medical record (EMR) data, especially physicians’ narrative documentation. To 

achieve human-level understanding of language, successful NLP systems must expand 

beyond simple word recognition to incorporate semantics and syntax into their analyses. NLP 

allows clinicians to write more naturally rather than having to input specific text sequences or 

select from menus to allow a computer to recognize the data. In surgical patients, NLP has 

been used to automatically comb through EMRs to identify words and phrases in operative 

reports and progress notes that predicted anastomotic leak after colorectal resections. Many of 

its predictions reflected simple clinical knowledge that a surgeon would have (e.g. operation 

type and difficulty), but the algorithm was also able to adjust predictive weights of phrases 
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describing patients (e.g. irritated, tired) relative to the postoperative day to achieve predictions 

of leak with a sensitivity of 100% and specificity of 72%. [5]. The ability of algorithms to 

self-correct can increase the utility of their predictions as datasets grow to become more 

representative of a patient population. 

1.3 Computer Vision 

Computer Vision (CV) describes machine understanding of images and videos, and 

significant advances have resulted in machines achieving human-level capabilities in areas 

such as object and scene recognition. Important healthcare-related work in computer vision 

includes image acquisition and interpretation in axial imaging with applications including 

computer-aided diagnosis, image-guided surgery, and virtual colonoscopy. Initially 

influenced by statistical signal processing, the field has recently shifted significantly towards 

more data-intensive ML approaches, such as neural networks, with adaptation into new 

applications. For example, real-time analysis of laparoscopic video has yielded 92.8% 

accuracy in automated identification of the steps of a sleeve gastrectomy and noted missing or 

unexpected steps. While predictive video analysis is in its infancy, such work provides proof- 

of-concept that AI can be leveraged to process massive amounts of surgical data to identify or 

predict adverse events in real-time for intraoperative clinical decision support (Figure 1).  

 

 
 

 
Figure 1. Computer vision utilizes mathematical techniques to analyze visual images or video streams 

as quantifiable features such as color, texture, and position that can then be used within dataset to 

identify statistically meaningful events such as bleeding. 
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1.4 Artificial Neural Networks 

Artificial neural networks, a subfield of ML, are inspired by biological nervous systems and 

have become of paramount importance in many AI applications. Neural networks process 

signals in layers of simple computational units (neurons); connections between neurons are 

then parameterized via weights that change as the network learns different input-output maps 

corresponding to tasks such as pattern/image recognition and data classification (Figure 1). 

Deep learning networks are neural networks composed of many layers and are able to learn 

more complex and subtle patterns than simple one or two-layer neural networks. Clinically, 

ANNs have significantly outperformed more traditional risk prediction approaches. For 

example, an ANN’s sensitivity (89%) and specificity (96%) outperformed APACHE II 

sensitivity (80%) and specificity (85%) for prediction of pancreatitis severity six hours after 

admission. [6]. By using clinical variables such as patient history, medications, blood 

pressure, and length of stay, ANNs, in combination with other ML approaches, have yielded 

predictions of in-hospital mortality after open abdominal aortic aneurysm repair with 

sensitivity of 87%, specificity of 96.1%, and accuracy of 95.4% [7]. 

 

1.5 Clinical applications 

Clinical applications of such work include being used to support surgical practice. The 

successful utilization of deep learning to create a computer vision algorithm for the 

classification of benign and malignant skin lesions at an accuracy level equivalent to 

dermatologists [8]. 

 NLP and ML analyses of postoperative colorectal patients demonstrated that prediction of 

anastomotic leaks improved to 92% accuracy when different data types were analyzed in 

concert instead of individually (accuracy of vital signs – 65%; lab values – 74%; text data – 

83%) [9]. 
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 For AI, much of its clinical potential is in its ability to analyze combinations of structured 

and unstructured data (e.g. EMR notes, vitals, laboratory values, video, and other aspects of 

“big data”) to generate clinical decision support. Each type of data could be analyzed 

independently or in concert with different types of algorithms to yield innovations.  

The true potential of AI remains to be seen and could be difficult to predict at this time. 

Synergistic reactions between different technologies can lead to revolutionary technology; for 

example, recent synergistic combinations of advanced robotics, computer vision, and neural 

networks led to the advent of autonomous cars. Similarly, independent components within AI 

and other fields could combine to create changes to healthcare delivery. Surgeons should be 

engaged in assessing the applicability of AI advances to ensure appropriate translation to 

clinical practice. 

1.6 Big data and artificial intelligence for Surgical Data Science 

The growing uptake of image-guided interventions, such as minimally invasive surgery, 

interventional radiology and surgical endoscopy, is changing the way we interpret surgery. 

Indeed, the images guiding these procedures, whether radiological or endoscopic, are a 

natural source of direct, unbiased and rich information on intraoperative events. These digital 

images are much more informative and reliable than operator dictated post-operative reports. 

The analysis of videos of surgical procedures and OR activities could offer strategies to 

improve surgical care. This is especially true for procedures performed with a minimally 

invasive approach. In fact, in laparoscopic surgery the partial loss of haptic feedback is 

compensated by magnified, high-definition videos acquired by endoscopic cameras. 

Endoscopic videos guiding surgical procedures represent a direct and readily available source 

of digital data on the intraoperative phase of surgical care. In recent years, the analysis of 

endoscopic videos of minimally invasive surgical procedures has enabled the study of the 
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impact of OR activities on patient outcomes [10] and the assessment of quality improvement 

initiatives. In addition, video-based assessment is being increasingly investigated for 

operative performance assessment, formative feedback, and surgical credentialing. However, 

it has mostly remained confined to the research domain given the burden of manually 

reviewing and consistently assessing surgical videos [11]. In the RightHemicol50 dataset we 

examined videos of laparoscopic right hemicolectomy and we discussed the application of 

automated video analysis in laparoscopic colorectal surgery tracing the way to possible paths 

towards the clinical value of computer vision in this specific field of surgery.  We also discuss 

the challenges and obstacles that remain to be overcome for broader implementation and 

adoption of CV in surgery. 

2. MATERIALS AND METHODS  

While evidence on the clinical value of AI-based solutions for the screening and staging of 

colorectal cancer (CRC) is mounting, Computer Vision and Artificial Intelligence 

applications to enhance the surgical treatment of CRC are still in their early stage. This study 

introduces key AI concepts to a surgical audience and illustrates fundamental steps to develop 

CV for surgical applications. Notably, studies show that AI can be trained to automatically 

recognize surgical phases and actions with high accuracy even in complex colorectal 

procedures such as transanal total mesorectal excision (TaTME), suggesting computer vision 

as a potentially valuable tool for intraoperative decision-making and guidance. 

In the Colorectal100 study the annotation process of the 100 colorectal laparoscopic videos is 

ongoing using the 2.8.2 version of MOSaiC annotation platform, a cloud-based collaborative 

video annotation platform from I-Cube, Strasbourg, according to a specific annotation 

protocol. The datasets are divided in RightHemicol50 dataset, including 50 videos of 

standardized laparoscopic right hemicolectomy (LRH), and LeftHemicol50, including 50 
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videos of standardized laparoscopic left hemicolectomy (LLH). All procedures were 

performed by an expert surgeon following a standardized technique used for all cases in the 

surgical school of Monaldi Hospital, Naples, Italy.  

An example of annotation and recognition image is shown in Figure 2. 

 
 
Figure 2. Example of annotation and recognition phase. 

 

 

An entire surgical video can be classified into phases, broad stages of surgical procedures, 

which can be further broken down into more specific steps that are performed to achieve 

meaningful surgical goals such as exposing specific anatomic structures or performing 

anastomosis. In this series, adverse events according EAES classification [12-13] have been 

annotated too. 

 

 
 

 
Figure 3. Visual representation of the division of a surgical procedure into phases and steps 
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2.1 Data collection and annotation  

Fifty videos of elective of LRH procedures, for oncological purposes, performed from 

January 2017 to 0ctober 2023, in one Italian tertiary care center, were retrospectively 

analyzed. This contributing center was Monaldi Hospital, Naples. Of these, 40 videos have 

been uploaded on Mosaic platform and annotated in phases, steps and adverse events by a 

single surgeon from Monaldi Hospital. 

Only complete videos of standard oncologic Right Hemicolectomy procedures performed in 

patients > 18 years old were included in the study. Videos not showing the beginning of the 

ileocolic vessel's identification and preparation or showing bailout procedures (mesocolon 

section first, abnormal anatomy or an intraoperative colonoscopy) were excluded from the 

analysis. Included LRH videos were manually annotated with an assessment of the phases and 

steps as reported in the annotation protocol.  

Since clinical data were not collected, the local medical research and ethical committee 

cleared the present study from the Research Involving Human Subjects Act. 
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Annotation protocol  

Colorectal100 phase definition was designed to maximize consistency on selected 

procedures. The following phases and steps definition was designed to better reflect surgical 

semantics and to be generalizable to more complex procedures. 

 

RIGHT HEMICOLECTOMY “RightHemicol50 dataset” 

 

Phase Cues Comments 

Abdominal 

cavity 

exploration and 

preparation 

- Starts when the surgeon is done 

placing all the trocars and the camera is 

steady and the surgeon starts exposing 

the last ileal loop 

 

Ileocolic vessels 

identification 

and preparation 

- Starts when the dissecting tool is 

inserted, the assistant instrument 

(grasper) grasps the last ileal loop neck 

and the operator right instrument 

(Thunderbeat) incise the  

mesocolon and starts preparation of 

both the ileocolic vein and artery  

- the dissector may be 

inserted for adhesiolysis 

before approaching the 

ileocolic vessels 

Ileocolic vessels 

clipping and 

cutting 

- Starts when the clipper is inserted and 

ends when the ileocolic vessels are 

dissected 

 

Steps (s) ileocolic artery clipping 

(s) ileocolic vein clipping 

 

Toldt-Gerota 

window 

- Starts when the dissecting tool is re-

inserted after the artery and vein are 

clipped and cut and the Toldt’s fascia 

(up) is detached from the Gerota’s 

fascia (down) 

- Ends when the duodenum is visualized 

on the right of the screen and the 

transverse colon on the top. The right 

urether must be visualized as well 

(down) 

 

 

Mesocolon 

division  

- Starts with reinsertion of the dissector 

and mesocolon division. 

The right colic vessels, if present, are 

exposed, clipped and sectioned 

 

- Ends when the transverse colon is 

- Right colic vessels 

might not be present and 

therefore no clipping 

and cutting will happen 
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reached and its wall is visible  

Last jejunal loop 

section 

- Starts with mesentery section 

- Ends with insertion of the stapler and 

jejunal loop stapling 

We use 1 white 

cartridge 

Mesocolon 

division from 

above 

- Starts with the dissection of hepatic 

flexure from above (we can see the liver 

and gallbladder on our right now) 

-Ends with the complete mobilization of 

the right parietocolic gutter 

 

 

Transverse colon 

stapling 

 

- Starts with the insertion of the stapler 

from the left side of the screen  

- Ends when the transverse colon is 

sectioned 

We use 1 blue cartridge. 

Sometimes 2 cartridges 

are needed. 

 

A bleeding from the 

suture line might occur 

and coagulation might 

be necessary 

Ileo-transverse 

colon 

anastomosis 

- Starts with last jejunal loop 

approximation to the stapled transverse 

colon.  

The stapler is inserted and fired. 

A single stitch is placed at the inferior 

corner of the defect first. 

Then the defect is closed with a double 

running suture (V-lock+PDS) from up 

to down. 

- Ends with the knot of the PDS suture 

After firing, the stapler is 

retracted out of the field.  

 

Steps  (s) firing stapler 

(s) angle point 

(s) first layer  

(s) second layer 

The defect is closed in a 

double layer fashion: 1) 

V-lock running suture 

from up to down 

2) PDS oversew suture 
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Closure of the 

mesenteric defect 

- Starts with mesenteric defect exposure 

and closing with a running Vicryl suture 

- Ends with the knot of the suture  

The length of the 

mesenteric defect may 

be variable 

Right 

hemicolectomy 

packaging 

- Starts when the endobag is inserted 

form the left of the screen 

- Ends when the bag is closed with the 

colon inside 

 

Cleaning and 

coagulation 

Possible starting points: 

After the colon is placed in the 

endobag and placed on top of the liver, 

the camera takes a look around for final 

checking. The first frame that shows 

the abdominal cavity is the beginning 

of this phase. 

Any of the following clues triggers the 

start of this phase, anytime: 

- presence of the suction tool 

- presence of the drainage 

- presence of the gauze 

 

 

Table 1. Laparoscopic Right Hemicolectomy annotation protocol, including phases and steps. 

 

2.2 Laparoscopic Right Hemicolectomy Workflow Analysis 

Dataset 

Within the Colorectal100 study, RightHemicol50 is a dataset composed of 50 surgical videos 

of right hemicolectomy performed in the Laparoscopic and Robotic General Surgery 

Department of Monaldi Hospital, Naples, Italy. Fourty videos were uploaded on Mosaic 

platform. All the surgeries were performed by an expert surgeon and fully annotated by another 

expert surgeon with two types of surgical activities: phases and steps. Out of these fully 

annotated videos,  20 videos were selected for computational analysis. 

Adverse events, according to the EAES classification were annotated too. The annotation 
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ontology of the right hemicolectomy procedure consists of 12 phases and 6 finer-grained steps.  

 

2.3 Experiments 

Preprocessing 

According to video duration, the 20 video dataset was split into training, validation, and test 

sets consisting of 12, 3, and 5 videos, respectively. Data characteristics of the dataset are 

presented in Table 2. On average, the surgery lasts 1 hour 47 minutes ± 31 minutes and the 

dataset is composed of a total number of frames at 1 fps amounts to 128,991. The images are 

resized to ResNet-50 input dimension of 224 x 224, and the training dataset is augmented by 

applying horizontal flip, saturation, and rotation. 

 

Table 2. Dataset statistics across the 3 data splits. 

 

 

Methodology 

A state-of-the-art deep learning model, MTMS-TCN, proposed in [14] for surgical activity 

recognition is utilized in this work. MTMS-TCN is a two-stage network composed of a 

Convolutional Neural Network (CNN) (ResNet-50) model for visual feature extraction 

followed by a multi-stage causal Temporal Convolutional Network (TCN) to refine the features 

Dataset Videos 

(n) 

Min. duration 

(minutes) 

Max. duration 

(minutes) 

Mean +- STD 

duration (minutes) 

Total  

(n) 

Training 12 52 144 101 +- 28 73308 

Validation 3 81 156 123 +- 31 22165 

Test 5 72 171 111 +- 34 33518 
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and extracting temporal information for recognizing surgical activities. 

Spatial Model: ResNet-50 [15] is one of the popular CNN architectures that has been heavily 

utilized in the computer vision community for activity recognition. Due to its success, ResNet-

50 is utilized as a visual feature extractor and trained on images extracted from the surgical 

videos.  

Temporal model: MTMS-TCN, is a two-stage TCN model that was trained in a multi-task 

learning setup on video features extracted from the CNN model. Furthermore, each stage of the 

TCN model consists of causal convolution that utilizes only information from past frames. 

Furthermore, dilated convolutions are utilized in each layer with exponentially increasing 

dilation factor that facilitates capturing long temporal dependencies.  

 Training Setup 

The backbone ResNet-50 model is initialized with pre-trained ImageNet weights and trained 

for 30 epochs with a learning rate of 1e-05 and batch size of 64. Then subsequently, image 

features are extracted from the backbone and grouped into respective videos. The temporal 

model, LSTM or MTMS-TCN [16-17] is trained for the task of phase recognition on the 

extracted features for 200 epochs with a learning rate of 3e-04. All the models were 

implemented in Pytorch and trained on NVIDIA GeForce RTX 2080 Ti GPUs.  

 

 2.4 Critical view of safety definition and visualization (V-View) 

As described for laparoscopic cholecystectomy [18], a critical view of safety can also be applied 

to the phase of identification and ligation of the ileocolic vessels, at the very beginning of the 

LRH procedure. In the following images a V-View of the ileocolic artery and vein is shown, to 

define its correct visualization. The V-View, as described by C. Strey et al [19] is shown in 

Figures 4-6. 



18 

1. Ileocolic artery and vein clearly prepared and isolated at their origin in a V-shaped 

manner (45°) (Figure 7.) 

2. Superior mesenteric artery and/or vein visible (not always) 

3. Duodenum visible below and behind (not always) along with the Toldt and Gerota fascia 

 

 

Figure 4. Ileocolic vessels cord tractioned on the left by the assistant. 

 

 

Figure 5. Preparation and isolation of the ileocolic artery and vein. 
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Figure 6. Preparation of the ileocolic vessels configuring a V-View. 

 

 

3. RESULTS  

 

Phases and steps were divided in 12 phases and 6 finer-grained steps according to the following 

scheme: 

P1 - abdominal cavity exploration and preparation 

P2 - ileocolic vessels identification and preparation 

P3 - ileocolic vessels clipping and cutting 

S4 - ileocolic vein clipping 

S3 - ileocolic artery clipping 

P4 – Toldt-Gerota window 

P5 - mesocolon division 

P6 - mesocolon division from above 

P7 - last jejunal loop section 

P8 - transverse colon stapling 

P9 - ileo transverse colon anastomosis 
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S0 - firing stapler 

S1 - angle point 

S2 - first layer 

S3 - second layer 

P10 - closure of the mesenteric defect 

P11 - right hemicolectomy packaging 

P12 - cleaning and coagulation 

 

3.1 Phase transition 

Phase to phase transition was identified as shown in Figure 7. 

  

 

Figure 7. Phase-phase transition is shown in the figure above. 
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3.2 Data distribution 

Phase occurrences, mean time phase duration and phase frequency are represented in Figure 8 

 

 
 

 
  

Figure 8. Phase occurrences, mean time phase duration and phase frequency. 
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3.3 Phase Recognition 

Three models of algorithms have been trained to perform automatic phase recognition with the 

TCN model best performing with an accuracy of 68.25 土 5.82 (Table 3). 

Table 3. Performance in terms of accuracy and precision of the CNN, the LSTM and TCN models.  

TCN class wise 

  

No 

Phase Precision Recall F1-score 

1 P0 0.0 0.0 0.0 

2 P1 78.56 75.46 76.84 

3 P2 71.0 79.63 66.92 

4 P3 30.58 61.86 33.45 

5 P4 31.7 60.96 30.39 

6 P5 35.69 17.99 18.55 

No Model Accuracy Precision Recall F1-score 

1 CNN 62.44 土 6.05 45.47 土 9.03 51.13 土 8.09 43.84 土 7.4  

2 LSTM 66.74 土 5.79 50.77 土 9.78 61.34 土 8.26  49.17 土 8.6 

3 TCN 68.25 土 5.82 51.02 土11.45 65.21 土 9.18 50.59 土10.49 
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7 P6 54.23 80.23 57.05 

8 P7 35.61 42.56 33.72 

9 P8 27.11 63.98 34.46 

10 P9 94.34 82.76 87.66 

11 P10 79.45 76.89 74.29 

12 P11 66.09 96.52 77.65 

13 P12 34.3 54.81 38.22 

 
Table 4. TCN model phase-specific results. 

 

 

3.4 Phase Prediction 

 

For a better visualization of the results in terms of accuracy in phase prediction, we used a 12  

categorical color map. It can be intuitively seen that the TCN performed better than CNN in  

the 2 best and 2 worst videos (accuracy of 68%). 

 

Figure 9. This figure visualizes a video set of 2 best and 2 worst performances of TCN-LSTM-for 

phase recognition. 
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4. DISCUSSION 

Computer vision, the application of algorithms to analyze and interpret visual data, has 

become a critical technology through which to study the intraoperative phase of care with the 

goals of augmenting surgeons’ decision-making processes, supporting safer surgery, and 

expanding access to surgical care. While much work has been performed on potential use 

cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in 

surgery. Automated, online, laparoscopic video analysis could allow us to monitor cases in 

real-time, predict complications, and intervene to prevent adverse events in various fields of 

surgery [20]. 

Effective and safe surgery results from a complex sociotechnical process prone to human 

error. Acquiring large amounts of data on surgical care and modeling the process of surgery 

with artificial intelligence's computational methods could shed light on system strengths and 

limitations and enable computer-based smart assistance. These pioneering efforts in sensing 

and analyzing surgical activities, brings surgery on the verge of a fourth revolution 

characterized by smart assistance in perceptual, cognitive and physical tasks.   

In 2020 Kitaguchi et al. first presented a large annotated dataset of laparoscopic colorectal 

videos with phase, action, and tool recognition with an accuracy as high as 83.2% using AI 

CNN model [21]. In the present study, three models of algorithms that have been trained to 

perform automatic phase recognition (CNN, TCN, LSTM) in LRH with the best being the 

TCN performing with an accuracy of 68.25 土 5.82. This preliminary result suggests that 

research should focus on this procedure and continue adding and analyzing larger video 

datasets in order to improve consistency and reliability of the results. Further steps will be to 

extend the same process and workflow analysis to 50 videos of laparoscopic left 

hemicolectomy (LLH) procedure, according to a dedicated protocol. 
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4.1 Surgical applications 

Quality improvement 

Postoperatively, models for procedure and surgical phase recognition could be used to 

automatically generate structured and segmented databases to assist with quality improvement 

initiatives. Such databases would represent an invaluable resource for surgical documentation. 

Automated video analysis could be used to digest these large collections of surgical videos, 

retrieve meaningful video sequences, and extract significant information. For example, full-

length surgical videos can be analyzed with phase and tool detection models to identify 

intraoperative events and effectively produce short videos selectively documenting the 

division of the ileocolic vessels. Very recently, cutting-edge methods have enabled 

overcoming such barriers by allowing video-to-video retrieval, the task of using a video to 

search for videos with similar events [22].  In addition, models for phase recognition can also 

be used directly to automatically generate standardized surgical reports of LRH. In 

laparoscopic cholecystectomy cases, it has been demonstrated that incorrectly recognized 

video frames, i.e. model failures, could indicate complications such as bleeding or problems 

with gallbladder retrieval [23] CV models can be trained to extract more information from 

videos such as operative difficulty. Ward et al. trained a CNN to classify gallbladder 

inflammation according to the Parkland grading scale, a 5-tiered system based on anatomical 

changes. This classification then contributed to predictions of events such as bile leakage 

from the gallbladder during surgery and provided insights on how increases in inflammation 

correlate to prolonged operative times [24]. 
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 Operative assessment and intraoperative decision support 

CV models for tool detection have been used to assess the technical skills of surgeons. 

In the future such models could be able to provide the surgeon with alerts in case of detected 

anomalies which could lead to surgical complications. 

We envision the uptake of AI to assist during minimally invasive procedures. In this setting, 

real-time predictions from CV models could be used to guide trainees and enhance surgeon 

performance. 

 

4.2 Limitations  

Barriers to implement this vision exist and despite the considerable number of methods for 

automated analysis of LC videos presented in the last few years, no CV application is 

currently widely used in surgery. 

The limiting factor for most clinical applications is the availability of well-annotated datasets.  

To develop effective clinical solutions, AI models are often trained to replicate expert 

performance from large quantities of well-annotated data. While leading to unprecedented 

results in medical image analysis, this learning paradigm is highly dependent on the 

availability of large annotated datasets [25]. Its applicability is severely limited by regulatory 

constraints on data-sharing and the availability of surgeons to annotate the data. These issues 

are further compounded by the need to well-represent and account for variations between 

patients, operative technique, and OR data acquisition systems. 

5. CONCLUSIONS 

While promising, these proofs of concept require further development, validation in multi-

institutional data, and clinical studies to confirm AI as a valuable tool to add clinical value to 

CRC treatment, by eventually predicting and avoiding adverse events. 



27 

In our study the best CV algorithm was able to identify surgical phases of LRH with an 

accuracy of 68%.  In other surgical procedures it has been demonstrated that CV could 

identify operative phases with accuracy similar to surgeons. Research still needs to be done to 

improve and develop more performing algorithms, as the computational methodologies are 

constantly evolving.  The main challenge remains the training of such computational models 

which requires a relatively large number of surgeon-annotated images and high-powered 

computing, which are not readily available in many operating rooms globally. Subsequently, 

the translation of such technology to clinical setups will require an indefinite time. Ethical and 

legal issues should be taken into account too. Future research will consist of surgical phase, 

steps and adverse events, automatic recognition using larger video datasets and improved 

algorithm models, which will lead to potential uses in real life clinical applications such as 

automatic video indexing, surgical skill assessments and adverse event prediction. 
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