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1. GLOBAL INTRODUCTION 
 

In the post-genomic era of biology, modeling of biological systems becomes especially 

relevant, because of obtained big data and insights of the regulation of such processes as growth and 

development of organisms. However, we are still far from a comprehensive understanding of how 

specific properties of the genotype and genes influence the phenotype of plants, animals, and 

microorganisms. For instance, it is still not possible to create a digital copy of a living eukaryotic 

cell, due to the high computational complexity and the huge number of configurations that replace 

each other in its development process. Therefore, the biological community needs powerful approach 

for identifying individual subsystems and their key parameters of homeostasis and functioning. One 

of these approaches is modeling. Firstly, the modeling process itself involves testing many 

hypotheses about parameters involved in a particular process (for example, gene regulation and/or 

environmental conditions). Secondly, calibrated models could make a precise prediction of the 

behavior of biological system in different conditions. Also, many ecological processes not possible 

to study directly, for example, processes of evolution of ecological communities on the scale of 

thousands of years, impact of future climate changes on the growth processes of plants, etc. Modeling 

also could be used for better understanding of existing interaction in complex biological systems. 

Therefore, the extensive creation of models of biological systems has enormous potential for the 

development. It allows us to better understand the mechanisms of functioning of living systems, 

predict their behavior and develop more précised experiments (Kohl P. et al., 2010). 

However, the complexity of the biological systems is one of the main limitations for make 

an adequate true-scale models. Starting with thousands of genes tightly interconnected in their 

expression and regulations, millions of cells and ending with complex ecosystems, biological 

systems are truly unique in their properties. In addition, biological processes can be very sensitive 

to initial conditions and parameters, which also complicates the creation of accurate mathematical 

models. Besides, the functions of many genes and the mechanisms of adaptation of organisms and 

their interactions are still unclear. Another limitation is the lack of accurate measurements and data. 

Modelers are always forced to work with a modest dataset when developing and testing their 

hypotheses in silico. These limitations could be the main sources of error and incorrect conclusions. 

Also, mathematical models are subjective and unambiguous interpreting of their results is not a 

trivial task. Finally, it is very difficult to collect and systematize all accumulated biological models, 

and to link them into a holistic picture of the world. 

The hybrid approach of modeling biological systems is one of the most promising for 

overcoming these limitations. In general terms, “hybrid” property of something relates to it mixed 



Aleksandr Bobrovskikh                 Global Introduction

 ______________________________________________________________________________ 

 4 

composition. In the context of modeling, it related to the mixed mathematical formalism used in 

implementation of models, usually includes continuous process coupled with discrete events. There 

are three main types of these models: “independent” or decoupled, “adjacent” or coupled and 

“intricated” (Stephanou and Volpert, 2016). The advantage of using hybrid approach for complex 

biological systems is much less computational cost then classical discrete models, as well as a huge 

potential of hybrid models for reducing the number of experiments, according to the guidance 

received from analysis of its behavior (Anvari S., et al., 2021). Hybrid modeling approach is directly 

connected with systems biology methods since the natural systems are multilevel and always 

characterized by spatio-temporal dynamics. This approach could be combined with a data obtained 

from high-throughput technologies of sequencing (Bardini R. et al., 2017). However, effective 

application of hybrid modeling approach directly to the omics data is very limited, since the large 

complexity of genetic systems involved in processes of onthogenesis. For instance, the integrative 

omics approach could improve our knowledge in the field of developmental biology (Rajasundaram 

D. & Selbig J, 2016), which eventually could help to present the initial big data as set of rules for 

the hybrid models.  

Advantages of using hybrid models over recently discovered machine learning models 

(MLM) is that hybrid models can clearly indicate the key components of the studied systems while 

MLM is a black-box system and do not explain any internal logics inside (J. Li et al., 2021).  Also, 

effective linking and solving of multiscale hybrid models could be a key to further understanding 

biological phenomena on system level (Cilfone N. A. et al., 2015). In recent years, researchers 

developed new frameworks for multiscale agent-based modeling in the field of cellular and tissue 

biology (Letort G. et al 2019; Bergman D. et al., 2022). Also, for modeling of pharmaceutical 

processes, hybrid approach seems to be a most relevant tool (Tsopanoglou, A., & del Val, I. J. 2021).  

The major drawbacks and challenges which prevents the broad usage of hybrid approach in 

biological field relate to emergent behavior of this models (Norton K. A. et al., 2019), and difficulties 

of interpretations of their outputs as well as lacking available data and parameters. There is a lot of 

tools and standardized protocols for cell-based hybrid models, for instance, VirtualLeaf (Merks et 

al., 2011), CellModeller (Dupuy et al., 2010), but it is difficult to make a universal tool for 

implementation of hybrid models. Therefore, there are many unresolved global issues in the field of 

modeling complex biological systems.  

The main purpose of this thesis is to give a general idea of the possibilities of mathematical 

modeling of biological systems using an agent-based and hybrid approach with implementation on 

general-purpose Python language. This goal was set to demonstrate the capabilities of a general 

language for implementing the ecological models. This thesis is consisting of three main chapters.  
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The first chapter (Section №2) is described the state-of-art of tools for cell-based 

computational modeling. Also, this chapter summarizes new opportunities for advanced plant 

morphogenesis models, which become possible thanks to single-cell transcriptome data. Together 

with deeply developed cell-resolution imaging techniques, this achievement opens new horizons for 

studying the complex mechanisms of plant tissue architecture formation. While the opportunities for 

integrating data from transcriptomic to morphogenetic levels in a unified system still present several 

difficulties, plant tissues have some additional peculiarities in structure.  Besides, it was show that 

the microscopy and cell-resolution imaging techniques could solve several spatial problems in 

single-cell transcriptomic data analysis and enhance the hybrid modeling framework opportunities. 

At the end of this chapter was proposed a general framework for modeling plant morphogenetic 

processes based on various biological data. This kind of model should include two main data sources: 

single-cell RNA sequencing and tissue imaging data.  

The second chapter (Section №3) is described the implementation of two-dimensional 

spatial model which describes plant-soil negative feedback (NF) phenomena as well as obtained 

simulation results. NF is a well-established phenomenon that preventing the dominance of a single 

species and allows species coexistence and promotes the maintenance of biodiversity. At community 

scale, localized NF may cause the formation of exclusion zones under adult conspecifics leading to 

Janzen-Connell (JC) distribution. Implemented model described the connection between adult 

density, either conspecifics or heterospecifics, on the probability of occurrence of JC distributions. 

Using an individual-based modelling approach, was simulated the formation of exclusion zones due 

to the build-up of NF in proximity of conspecific adult plants and assessed the frequency of JC 

distribution in relation to conspecifics and heterospecific density ranging from isolated trees to 

closed forest stands. Overall, the model shows that a plant suffering from strong NF in monospecific 

stands can rarely exhibit a recruitment pattern fitting the JC model. These results would provide the 

means to reconcile the well-established NF framework with part the forest ecologists’ community 

that is still skeptical towards the JC model. 

The third chapter (Section №4) is dedicated to describing the created hybrid model of multi-

cellular cambial growth of conifers, which is a direct descendant of the single-cell model of 

xylogenesis developed by Cartenì et al., 2018. It is well-known that the main factors influencing 

processes of cambial growth are climate conditions, such as temperature and precipitation. 

Constructed model able to answer how the combination of environmental conditions affects cambial 

growth processes of conifers. Provided modeling framework could be used to extend other models 

in the field of developmental biology to multicellular level. Our model was tested on data for three 

species of conifers: Larix decidua, Pinus cembra, Picea abies with various characteristics of 

xylogenetic processes. It was clearly shown that new model can reproduce the precised annual 
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cellular dynamic of xylem cells. However, there are some limitations in synchronizing both aspects 

of simulations (cellular dynamics and geometrical properties) at multicellular scales.  

Taken together, obtained results are heterogeneous in structure and cover different areas of 

hybrid modeling of biological systems, as well as agent-based modeling. Python, as a general-

purpose language, was suitable for developing the described models. The author notes the special 

need in specialized libraries suitable for hybrid framework development for effective modeling of 

environmental processes on the time-spatial scale. 
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2. A SIGHT ON SINGLE-CELL TRANSCRIPTOMICS IN PLANTS 

THROUGH THE PRISM OF CELL-BASED COMPUTATIONAL 

MODELING APPROACHES: BENEFITS AND CHALLENGES FOR 

DATA ANALYSIS 
 

2.1 INTRODUCTION 
 

Modern biology is going through the era of big data and omics technologies. Single-cell 

sequencing (SCS) is one of the breakthroughs and rapidly developing technologies. This 

technology's value is difficult to overestimate since it allows one to describe with high accuracy the 

trajectories of cell development and characterize individual cell types (Trapnell, 2015). A targeted 

study of isolated cells is of particular importance in the context of systems biology, as demonstrated 

on root hair cells (Hossain et al., 2015). The main steps of SC analysis include cellular dissociation, 

single-cell RNA sequencing (scRNA-seq), dimensionality reduction, clustering, and reconstruction 

of the developmental trajectories. McFaline-Figueroa et al. (2020) provide currently available 

techniques for such kind of analysis. However, such a data-driven approach provides only a partial 

understanding of the developmental processes for different cell types since it includes only the 

molecular level. 

Thus, a combination of microscopy methods (Li et al., 2014) and imaging techniques (Omari 

et al., 2020) could provide a new level of understanding the developmental processes. In turn, the 

combination of high-precision SCS approaches with high-quality microscopic data can be integrated 

into mathematical models describing morphogenesis. Therefore, we believe that current methods for 

processing SC data should be coupled with morphological data on a tissue level and computational 

frameworks describing tissue development. Such a systemic-biological cycle will allow researchers 

to find out the essential spatiotemporal regulators of morphogenetic processes and provide an in 

silico - in vivo verification of emerging hypotheses. 

The relationship between growth characteristics of individual cells and organogenesis was 

noted in the work of Hong et al. (2018). It was shown that growth rate and growth direction 

significantly affect organ developmental processes, and, therefore, could determine the invariant 

organ formations. Consequently, it is essential to study cells' individual characteristics to create a 

holistic picture of morphogenetic processes at the tissue and organ levels. The main drivers of 

morphogenesis are shown schematically below, in Figure 1. Stem cells can divide, either 

symmetrically or with precise daughter-cell size ratio, the so-called formative divisions, which are 

fundamental determinants in the processes of morphogenesis Smolarkiewicz and Dhonukshe (2013). 
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Also, the emergence of cellular patterns forming tissues significantly depends on the 

anisotropic cell growth biomechanics, which occurs in tip-growing cells (Rounds and Bezanilla, 

2013). 

 

 

Figure 1. A general scheme for systems biological and modeling concepts of plant tissue 

morphogenesis including cell growth and division, and developmental PCD (plant cell death). 

Arrows indicate the relationships between fundamental cell fate and intracellular processes. The cell 

fate processes are indicated in green; the intracellular processes or properties are indicated in yellow. 

The blue box indicates the significant components of the cell-based modeling approach. References 

correspond to theoretical articles briefly explained in the text. 
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2.2 EXISTING APPROACHES TO THE ANALYSIS OF SINGLE-CELL DATA 

AND THEIR POTENTIAL FOR CELL-BASED MODELS 
 

Characterizing the plant cell fate and ontogenesis using SC technologies is a novel and 

promising approach for getting high-resolution genomic data that reveals new facts about various 

cell types. The first SC transcriptomic experiments have been carried out for the model plant A. 

thaliana in 2019. For A. thaliana, most of SC studies were conducted on root cells (Denyer et al., 

2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al., 2019; Turco et al., 2019; Zhang et 

al., 2019; Farmer et al., 2021). Whereas there are only two studies conducted on leaf tissues (Kim 

et al., 2021; Lopez-Anido et al., 2021). Thus, for all the main cell types of roots and leaves, the 

developmental trajectories were revealed. Also, Zea mays, being a representative of C4-

photosynthetic cereals, is a promising object for SC experiments due to the large size its cells, 

which allows to easily isolate specific cells, for example, from the shoot apical meristem. To date, 

there are studies based on the single-cell analysis for corn tissues carried out on a shoot apex 

(Satterlee et al., 2020), phloem (Bezrutczyk et al., 2021), and ears (Xu et al., 2021). The first and 

so far, only scRNA-seq on rice roots (Liu et al., 2021) revealed significant differences in the 

characteristics of individual cell types in comparison to the cell types of A. thaliana, which 

indicates the presence of significant species-specific differences at the cellular level. A summary 

of the currently existing Sc-experiments is given in Table 1. 

There are several fundamental questions about the limitations and capabilities of the SC 

method (Rich-Griffin et al., 2020): How realistic is it to recreate a cell atlas using such data? Can 

we apply the technology to cells of any type? How to identify the main gene regulators and gene 

networks of development? 

The problem of combining SC data from different plant species is of particular interest since 

the successful application of this approach can be used to create a unified developmental atlas. 

However, it is necessary to consider the species-specific features of tissue development and 

organization, which imposes certain restrictions on the joint interpretation of the exact SC data. 
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TABLE 1. Summary of scRNA-seq datasets obtained for plants. 

 

There is an acute lack of SC data of leaf and shoot stem cells except for A. thaliana. The 

small amount of existing SC transcriptome data is partly due to the complexity and length of the 

required experimentation and data analysis. In a recent overview of SC methods for plants 

(Lähnemann et al., 2020; Shaw et al., 2020), the authors highlight the major challenges and 

drawbacks of single-cell approaches: (i) gene expressing bias caused by the protoplasting 

procedure, (ii) unequal efficiency for extraction of different types of cells, (iii) difficulties for the 

reverse reconstruction of the cell atlas based on transcriptomic data, (iv) lack of data. We also want 

to point out that there are fuzzy boundaries between cell populations due to their connectivity and 

the presence of transport processes between them. Therefore, there are still several limitations to 

the biological interpretation of the SC data. 

Thus, the classification of cell types and reverse spatial reconstruction are critical stages of 

SC transcriptome data analysis. This task is rather complex and requires using the original 

dimension of the expression data. SC data generally represent a filtered and normalized array with 

dimension M × N, where M is the number of cells with enough reads, N is the number of genes 

with a non-zero expression. The first component that can facilitate this problem is certain 

developmental trajectories caused by intracellular factors that limit the space of developmental 

possibilities and cause their partial determinism. Such factors have a different nature: the 
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concentration of substances and energy substrates in the cell, the concentration of hormones and 

morphogens, the mechanical characteristics of cells (e.g., turgor pressure, tension, and thickness 

of the cell wall). Unfortunately, it is currently impossible to estimate the effect of these factors and 

their contribution to genes' expression. However, their presence makes it possible to identify the 

main differentiation genes. In general, this fact allows to carry out the procedure for reducing the 

dimensions of data. Depending on the data set's complexity, it is proposed to select from 1,000 to 

5,000 highly variable genes for clustering and cell classification (Luecken and Theis, 2019). 

A variety of available methods and tips for single-cell data dimensionality reduction and 

clustering are presented in the work of Nguyen and Holmes (2019). In most cases, researchers 

choose t-SNE and UMAP algorithms. The large computational complexity of the t-SNE method 

on big datasets was eliminated by adding fast Fourier transforms 

(https://github.com/KlugerLab/FIt-SNE, Linderman et al., 2019). Comparison of t-SNE and 

UMAP methods revealed that UMAP outperforms even an optimized t-SNE in the computation 

time; also, clustering by UMAP is the most meaningful for distinguishing between cell types 

(Becht et al., 2019). Before the widespread use of t-SNE and UMAP, there was a probabilistic 

modeling method using Bayesian mixture of factor analyzers (MFA) (Campbell and Yau, 2017), 

based on the assumption that changes in gene expression are a linear function of time, which allows 

performing the Gibbs sampling procedure. This method's stability is inversely proportional to the 

number of genes with non-linear transient behavior, and its threshold was estimated in 40% of the 

total sample; if this threshold is exceeded, the authors recommend using the Diffusion Pseudotime 

(DPT) method (Haghverdi et al., 2016). 

Also, machine learning demonstrates its consistency and efficiency in the analysis of SC 

transcriptomic data. For example, single-cell interpretation via multi-kernel learning algorithm 

(SIMLR) can perform dimension reduction, clustering, and visualization; this algorithm is 

characterized by enhanced performance and better visualization and interpretability compared to 

t-SNE, PCA, and zero-inflated factor analysis (ZIFA) methods (Wang et al., 2017). There are 

additional packages and algorithms for analyzing single-cell data, from preprocessing to data 

visualization; for example, on the Bioconductor platform (Amezquita et al., 2020), or the Python-

based scalable toolkit SCANPY (Wolf et al., 2018). 

Modeling the dynamics of gene networks is a promising approach for extracting biological 

facts from single-cell transcriptomics. When reconstructing such networks, it is possible to identify 

both transcriptional regulators and their targets. For example, a high-performance TENET protocol 

is based on the calculation of transfer entropy and can predict large-scale gene regulatory cascades 

and relationships in single-cell data (Kim et al., 2020). Also, there is SCENIC, a fast calculation 

Python algorithm that reconstructs the regulons (Van de Sande et al., 2020). Comparing the 
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accuracy of calculations of gene networks by different algorithms showed that successful methods 

on artificial data sets are characterized by low accuracy on real data (Pratapa et al., 2020). The 

authors have selected three promising methods with high computational accuracy on real data: 

partial information decomposition and context (PIDC) (Chan et al., 2017), gene network inference 

with the ensemble of trees (GENIE3) (Irrthum et al., 2010), and GRNBoost2 (Moerman et al., 

2019). 

Elaboration of specific algorithms for using SC transcriptomic data to reconstruct 

developmental gene networks and identify new regulators remains a challenging issue. Databases 

and genetic interactions can serve as an additional source for expanding genetic networks and their 

verification. For example, STRING database (Szklarczyk et al., 2019) includes information about 

protein-protein interactions and allows to perform network reconstruction, visualization and 

functional enrichment analysis. Cytoscape is a suitable environment for further network 

visualization and addition of meta-information (Shannon et al., 2003). The functionality of this 

application has been significantly expanded due to the many available plugins. For example, the 

GeneMANIA plugin (Warde-Farley et al., 2010) allows to predict additional network elements 

and new connections, whereas the plugin yFiles (Wiese et al., 2004) provides additional tools for 

network layout. 

Another ambitious challenge is the integration of multi-omics SC data. Ma et al. 

(2020) examines the capabilities of 10 SC integration tools and tests the functionality of the four 

most relevant ones (Giotto, MOFA, LIGER, Seurat3). It should be noted that the existing problems 

in the analysis and interpretation of data give rise to the rapid development of various methods 

and approaches to their processing. The available collection of various methods and tools for 

analyzing SC data is presented in this online repository. Also, pipelines and statistical methods 

useful for analyzing SC data are presented in the work by Petegrosso et al. (2020). 

Although obtaining high-quality SC transcriptomic data for plants is a routine, standardized 

procedure, cell extraction processes, meaningful interpretation and verification of data are 

essential and non-trivial stages for the development of this technology. An important step in data 

validation and interpretation is the construction of mathematical cell-based models, which 

combines the data about concentration of morphogens and expression of genetic regulators inside 

the cells and “rules,” which determine intercellular communications, cellular mechanics, transport 

processes as well as the transition between cellular states. However, with current technology, we 

cannot directly use the entire array of transcriptome data to create mathematical models of 

morphogenesis due to the large number of dimensions. Therefore, it is important when comparing 

different cell types to identify the main genetic and metabolic differences and take them into 

account in models. 
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There are a few methods, which can potentially allow researchers to use scRNA-seq data for 

building the cell-based models (see Figure 2): 

1. Identifying crucial genes (main effect genes) and regulators which explain a lot of 

variance/differences between cell types. 

2. Searching for novel regulatory genes, which have a spatial distribution of expression 

between cells of different types. 

3. Reconstructing Boolean gene networks using transcriptomic data. 

4. Estimation of differences in integral characteristics (such as biomass, wall thickness, 

concentration of metabolites). 

 

 
Figure 2. Relevant information from single-cell transcriptomics experiments for cell-based 

models. Three types of information are highlighted in orange blocks, their integration into the cell-

based model is shown in green, and double-headed arrows indicate each block's comparison. The 

central yellow block indicates original processed single-cell RNA sequencing (scRNA-seq) data. 

 

For example, SC transcriptome data could provide some indirect estimations of the cell 

wall's mechanical properties. The main mechanosensing genes are described in Du and Jiao 

(2020): receptor-like kinase FERONIA (FER), Leucine-rich repeat extensins (LRXs), 

DEFECTIVE KERNEL 1 (DEK1), and their targets of cell wall integrity pathways. Therefore, 

assessing these genes' expression levels in different cell types can potentially describe their 

mechanosensitivity and cell wall stiffness. Thus, SC data allows the definition of cell types of 

molecular characteristics, identifies regulatory subnetworks, and assesses their dynamics. These 

data can potentially be considered as parameters in cell-oriented models. 
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2.3 MODERN IMAGING TECHNOLOGIES FOR OBTAINING DATA ON 

PLANT TISSUES WITH A SINGLE-CELL RESOLUTION 
 

Spatial organization plays a significant role in each cell's fate, affects transport, the direction 

of division, apoptosis, and the cells' structural peculiarities. Therefore, this information is the basis 

for a systemic integrative study of the processes of morphogenesis. 

The cells of vascular plants form a shared symplast through the cell walls, which determine 

the fixed position of the cells in the tissue (Vaahtera et al., 2019). In plants, cell migration is almost 

absent, but in some cases, cells can shift their positions relative to each other: part of the plant cell 

remains in its original place, while other parts of the cell grow to the new locations, moving 

significantly relative to other cells (Lev-Yadun, 2015). 

There are various specialized approaches for phenotyping (Figure 3): visible light, 

spectroscopy, infrared, fluorescence, 3D, and tomographic methods for getting plant images (Li et 

al., 2014). The imaging techniques for plant quantification are broadly used due to their 

inexpensive cost, simplicity of operation, and maintenance (Omari et al., 2020). 

 
Figure 3. Types of microscopy techniques, their outputs, and meanings for describing 

morphogenetic processes in cell-based models. There are three blocks in the scheme: (i) methods 

(blue box), (ii) corresponding outputs (yellow box), and (iii) model levels (orange box) from 

structural to organoid resolution. Abbreviations used: LSM (Laser Scanning Microscopy), LS 

(Light-Sheet microscopy), SPM (Scanning probe microscopy), SIM (Structured Illumination 

Microscopy), 3D-SEM (3-Dimensional Scanning Electron Microscopy). 
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Reconstruction of plant architecture in terms of shape, size, and topology of cell connections 

(Figure 3) is an essential component to reach an integrative systemic understanding of aspects of 

the functioning of both individual cells and tissue as a whole (Fricker, 2016; Zubairova et al., 

2019; Kerstens et al., 2020). A variety of optical tissue imaging techniques (Figure 3) currently 

allow access to such cellular characteristics (optical and fluorescent microscopy, laser scanning 

approaches, and structured lighting microscopy). Since higher plants' organs are multilayered and 

volumetric, imaging techniques based on 3D analysis of a fluorescent signal, such as laser scanning 

microscopy, are currently among the most widespread visualization methods of cellular 

architecture. It allows to reconstruct the architecture of tissue and organ fragments consisting of 

thousands of cells (Zubairova et al., 2019) and to analyze in vivo large time-series for 

reconstructing the dynamics of development (Goh, 2019; Seerangan et al., 2020). 

Together with modern image analysis methods, they provide a reliable decomposition of cell 

layers and assessment of cell morphological parameters (Legland et al., 2016; Erguvan et al., 

2019; Zubairova et al., 2019). The number of cells reconstructed by ImageJ-plugins LSM-

W2 (Zubairova et al., 2019), SurfCut (Erguvan et al., 2019), as well as MorphoGraphX instruments 

(Kerstens et al., 2020) is limited by the computer performance and technical capabilities of the 

microscope. They allow working on a local computer with arrays from thousands of cells, which 

is of a comparable order to scRNA-seq methods. The most comprehensive range of methods makes 

it possible to segment cells, measure cell shape parameters, and reveal the topology of cells' 

connection with each other (Jackson et al., 2017). 

Over the past few years, the possibility to study many entire organs through complete 

reconstruction at the cellular level became a significant breakthrough (Wolny et al., 2020). The 

root tip of A. thaliana is the most abundant target for scRNA-seq in plants. At the same time there 

are many reconstructions and 3D atlases for it (Dolan et al., 1993; Bowman, 2012; Mai et al., 

2014) and even specialized software that allows displaying the various cellular characteristics into 

cellular ensembles, for example, the iRoCS Toolbox (Schmidt et al., 2014). In vivolaser scanning 

microscopy techniques coupled with mathematical modeling allowed describing the processes of 

morphogenesis for the arabidopsis root apical meristems (Mironova et al., 2012). The dynamics 

of the development of A. thalianalateral roots are also available for visualization at the cellular 

level from the earliest stages of their establishment (Goh, 2019). Using confocal and multiphoton 

microscopy approaches, apexes and leaf primordia can also be completely reconstructed (Kiss et 

al., 2017; Wolny et al., 2020), as well as adult leaves (Wuyts et al., 2010) and sepals (Tauriello et 

al., 2015). 
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3D reconstruction of A. thaliana ovule coupled with transcriptome sequencing provides 

incredibly detailed data about developmental processes of this organ (Vijayan et al., 2021), which 

can serve as a set of reference points for further integration of future single-cell data on this organ. 

Simultaneously, the methods of visualization and analysis of images also allow working with 

plants with larger organs, for example, with Nicotiana tabacum roots (Pasternak et al., 2017). 

Light-sheet imaging techniques allow to increase the scan depth and improve the quality of 

the reconstruction. These technologies, coupled with mathematical modeling, gave insights into 

the geometrical organization of divisions during the formation of the lateral root of A. 

thaliana (von Wangenheim et al., 2016). In particular, the first division of the cell-founders is 

always asymmetric and determines the formation of a layered structure, while the pattern of further 

cell division forms thanks to a regular change in the orientation of the division plane. Also, the 

technique of optical cleaning of plant tissues allows for getting deep 3D imaging and is compatible 

with fluorescence-based microscopy (Warner et al., 2014). The measurements of morphological 

characteristics of cells and their mutual arrangement allowed researchers to form a structural 

model of the studied organ and identify cell types (Kerstens et al., 2020). 

The current opinion about coordination of growth processes and divisions (Sablowski, 2016) 

stressed the role of individual cell characteristics and intercellular interactions in these processes. 

Optical microscopy is a valuable method for obtaining the structural characteristics on the 

subcellular resolution. For example, this approach allows studying the ultrastructural features of 

the cell wall (Yarbrough et al., 2009), which enables us to assess cellular biomechanics indirectly. 

The combination of large-scale annotated image datasets and deep learning approaches is a 

promising technique for annotating physical, morphological, and tissue grading cellular properties 

(Fricker, 2016; Biswas and Barma, 2020). 

The cell wall's mechanical parameters deserve special attention since they determine features 

of the growth process (Bidhendi and Geitmann, 2016), and therefore is incredibly important for 

modeling plant morphogenetic systems. In addition to assessing the thickness of the cell wall 

(Krzesłowska et al., 2019), modern approaches make it possible to evaluate its composition and 

mechanical parameters. For example, probe microscopy can assess the spatial composition of 

polysaccharide filaments on the surface of living tissues (Zhang et al., 2016), and Raman 

microscopy can produce data on the composition and ultrastructure of the cell wall on sections of 

organs in the usual (Zeise et al., 2018) and confocal modes (Gierlinger et al., 2012). The 

ultrastructure of cell walls as well as tissues and organs can be studied with a 3D electron 

microscope (Kremer et al., 2015). All these methods make it possible to assess biomechanical 

parameters within organs and serve as the basis to improve the simulation modeling of growth 

processes. 



Aleksandr Bobrovskikh   Cell-based modeling in application to single cell data of plants 

______________________________________________________________________________ 

 18 

Therefore, the next important step is integrating the structure model with the cell parameters 

that mark the individual and group characteristics of cells (Figure 3). Many characteristics of the 

nucleus, organelles, and cell walls can be identified at the scale of an entire organ using approaches 

of protein immunolocalization, expression of reporter constructs that mark certain cellular 

features, as well as using methods to increase the resolution of microscopy (Figure 3). 

The data on the frequency of mitoses along the root (Pasternak et al., 2017; Lavrekha et al., 

2020) provides insight into the dynamics of replenishment of cell files and the size zones, where 

cell divisions occur. Also, cells in S-phase can be identified by incorporating labeled nucleotide 

analogs (Pasternak et al., 2017). The passage of the cell cycle phases is closely associated with the 

cell fate specification (Roeder et al., 2012). The state of chromatin in cells of various types can be 

identified using immunolocalization (She et al., 2018) and shed light on cell activity. Visualization 

of the cytoskeleton can be done both by immunolocalization, staining with phalloidin, and, in vivo, 

using reporter genetic constructs (Zhang et al., 2020). These cells' characteristics can be related to 

changes in gene groups' expression in cells and are suitable for improving the integration of the 

structural model with single-cell transcriptomic data. 

The distribution of various proteins in plant organ cells can also be determined (Sauer and 

Friml, 2010) and used for integration into a model. Proteins can be transporters that determine the 

fluxes of substances that deserve special attention; for example, the auxin membrane transporter 

PIN1 has a significantly uneven distribution over root cells and a polar arrangement on the cell 

surface (Omelyanchuk et al., 2016). It has also been shown that RNA molecules capable of being 

transported from tissue to tissue play an essential role in the regulation of biological processes in 

a plant, and their visualization within an organ is also possible (Luo et al., 2018). 

Also, plasmodesmata play a unique role in the processes of intercellular symplastic transport 

and signaling in plant tissues (for comprehensive review, see Heinlein and Epel, 2004). 

Plasmodesmata are intercellular channels characterized by various states from open to closed 

(Crawford and Zambryski, 2001). Plasmodesmata behavior underlies the isolation of groups of 

cells in the tissue, called symplastic domains (Pfluger and Zambryski, 2001; Lucas and Lee, 

2004; Yadav et al., 2014). Stress factors affect the formation of plasmodesmata (Fitzgibbon et al., 

2013). The transport of mRNA and metabolites through the plasmodesmata affects the 

concentration of substances and gene expression levels inside particular cells (Lucas and Lee, 

2004). Many non-cell-autonomous transcription factors and small RNAs are known to move 

through plasmodesmata between cells and regulate their interaction during development (Kragler, 

2013; Yadav et al., 2014; Sevilem et al., 2015). 

Transmission electron microscopy is the classical method for studying the morphology of 

plasmodesmata. Combined with light-based microscopy, it allows one to study the structure and 
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distribution of plasmodesmata between cells of specific cell types (Nicolas et al., 2017). Also, the 

topology of plasmodesmata of contacting cells at organ scale can be studied using confocal and 

super-resolution microscopy (Fitzgibbon et al., 2010; Fitzgibbon et al., 2013). In this sense, 

microscopy allows us to assess the location and topology of plasmodesmata and, therefore, identify 

the potential of local transport of substances through these transport channels, symplastic domains, 

and to assess the order of cell division. Thus, the organization and localization of transport 

channels inside the plant tissues relate to the intracellular characteristics. 

On the other hand, intracellular sensing processes contribute to intercellular signaling. For 

instance, there are special sensory plastids in epidermal and vascular parenchyma cells, which can 

cause a global systemic stress response in a plant (Beltrán et al., 2018). 

The redox state of organelles is also an additional factor associated with developmental 

processes, ROS signaling, and antioxidant systemic plant cells (Bobrovskikh et al., 2020). In 

particular, the CellROX fluorescent reagent visualizes the oxidative potential of cells in a tissue 

(Kováčik and Babula, 2017). 

Besides, mass spectrometry imaging and live single–cell mass spectrometry practically 

corresponds to single-cell metabolomics and makes it possible, for example, to mark the 

concentrations of secondary metabolites on the whole adult organ (Yamamoto et al., 2019). Such 

approaches can be combined with SC analysis of the expression of these metabolites' biosynthetic 

enzymes and transporters. As a result, they provide a basis for modeling the distributed regulation 

of these processes at the tissue level (Figure 3). The most important polynucleotides, such as RNA, 

can also be detected at the level of single molecules (Huang et al., 2020), which allows direct 

integration into the structural model of the organ. 

Modern imaging techniques allow access to the structural and physiological characteristics 

of cells in a whole organ manner. It provides ample opportunities to create, enrich, and verify 

structural models of plant organs and tissues. An important aspect is that many assessments can 

be carried out over time. Comparison of temporal dynamics in zones with active morphogenetic 

events will make it possible to track changes in cellular topology, and thus, to trace the nature of 

division (symmetric and asymmetric) and growth (isotropic and anisotropic), as well as to detect 

several mechanical features of the developing tissue (for example, the relative stiffness of different 

cell zones). 

Thus, a large arsenal of available microscopic and imaging techniques allows obtaining 

high-quality multilevel data integrated into plant morphogenesis models. For example, there is a 

computational morphodynamics approach that allows formalizing quantitative data from 

morphometry measurements into a set of rules (Formosa-Jordan et al., 2018): 
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1. To set ODE, which describes the growth rate of individual cells using data from regulatory 

networks. 

2. To set various rules for the geometry of division (periclinal/tangential divisions with 

different angles) according to mechanical constraints of intercellular vertex interactions. 

3. To use the first two steps to calculate effective growth and final rate equation. 
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2.4 CELL-BASED MODELING APPROACHES REPRODUCING PLANT 

TISSUE MORPHOGENETIC PROCESSES 
 

2.4.1. Existing Models and Modeling Approaches 

 

This section will discuss existing mathematical models describing the tissue organization 

and/or properties of individual cell types. While considering plant growth and developmental 

processes, researchers often highlight a unique role for the hormone auxin. For instance, in plant 

roots, auxin triggers cascades of events during development and morphogenesis, while other 

hormones (cytokinins, brassinosteroids, abscisic acid, gibberellins, and others) interact with auxin 

(Saini et al., 2013). Auxin is also an important regulator in developing shoot apical meristems in 

combination with cytokinins, gibberellic acid, and some transcriptional factors: WUSCHEL, 

ARR7/ARR15, ARF5 (Durbak et al., 2012). Mironova et al. (2012) demonstrated the effectiveness 

of the reverse fountain and the reflected flow mechanisms of PIN-associated transport in the root 

apical meristem. Comparison of different complexity models showed that a model that only 

describes auxin transport processes is insufficient for the reproduction of realistic patterns of 

morphogenesis but adding an additional layer-specific regulation or layer-driven growth could 

help solve this problem (De Vos et al., 2014). 

Simultaneously, the mechanical characteristics of tissues, which are determined through a 

complex interplay of genetic and physiological systems, are an essential component for describing 

the processes of morphogenesis. The feedback effects of mechanical interactions and stresses, 

which affect the regulation of proliferation patterns, are highlighted in Nelson et al. (2005). The 

experimental evidence of the mechanical stress approach's consistency for plant tissue 

development is shown in the work of Uyttewaal et al. (2012). The transition from the linear models 

of hormonal transport to hybrid multicellular and multiscale models has excellent potential for 

predicting the emergent properties of the system (Voß et al., 2014). The basis for mechanical 

models of cell growth is the representation of multicellular tissues in vertex-based graphs with the 

calculation of the interaction forces between these elements. The equations binding the growth of 

plant cells with the rate of water absorption and the cell wall's growth were first published in 

Lockhart's work for the case of constant turgor pressure (Lockhart, 1965). To model growth in a 

more general case, Lockhart's equations were extended, taking into account the change in turgor 

pressure as a result of reversible elastic deformation and transpiration processes in the Ortega 

model (Ortega, 2010). Within the framework of this approach, a linear leaf growth model was 

proposed (Zubairova et al., 2016). In addition, Newton's First Law and Hooke's Law can be used 

to describe cell growth and expansion, as was done in the recent work by Retta et al. (2020). 
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Unfortunately, most available auxin-related models are focused only on the transport 

processes in the root tissue and poorly explain the overall processes of growth and development 

(Morales-Tapia and Cruz-Raḿırez, 2016). However, several models combine both a mechanical 

approach and auxin transport processes. For example, there is a dynamic model that describes 

molecular mechanisms in conjunction with physical tension fields and auxin dynamics (Barrio et 

al., 2013). This model reproduces emergent patterns of morphogenesis from proliferative to 

transition and elongation zones. The study combining experimental data on the organization of the 

extracellular matrix and numerical simulations demonstrated that auxin plays an essential role in 

altering cells' mechanical properties; this process involves the ABP1 and KATANIN 1 proteins 

(Sassi et al., 2014). Also, the advanced cell-based mathematical model describes the relationship 

between the concentration of morphogens and the cellular mechanistic properties in the developing 

apical shoot meristems (Banwarth-Kuhn et al., 2019). 

Thus, the models of plant tissue morphogenesis put at the forefront three biological facts: (i) 

the dependence on intercellular hormonal signaling, (ii) the importance of the intracellular state 

and individual cellular characteristics, (iii) the relevance of mechanical stresses in intercellular 

interactions. Therefore, scRNA-seq technologies, microscopy, imaging techniques, and a range of 

complementary approaches to measuring cell mechanical properties (Banwarth-Kuhn et al., 

2019; Bidhendi and Geitmann, 2019) can provide a complete picture of morphogenetic processes 

at the cellular level. 

 

2.4.2. Available Software and Tools for Cell-Based Modeling 

 

In general, elaborating mathematical models of morphogenetic processes could base on 

specialized software, which we discuss in this section. Researchers may also develop and 

implement their frameworks and algorithms using mathematical packages and general-purpose 

programming languages (Python, Mathematica, MATLAB). Three formalisms are most often used 

to build cell-based models: vertex-based, center-based (also called spring-based), and Cellular 

Potts models. Vertex-based models are often used to simulate plant tissue and make it possible to 

conveniently describe the dynamics of cell movements in cell ensembles considering mechanical 

constraints (for example, during morphogenesis). This formalism is implemented in the Cellzilla 

(Shapiro et al., 2013), VirtualLeaf (Merks et al., 2011) packages. In center-based models, cells are 

represented as dots with mass, connected by mechanical elements (springs). Banwarth-Kuhn et al. 

(2019) give an example of this formalism's application to the description of growth processes in 

the shoot apical meristem. Cellular Potts models are often used to describe the processes occurring 

in animal tissues and tumor formation processes; this formalism is implemented in CompuCell3D 
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(Swat et al., 2012). It is also possible to use the Voronoi tessellation formalism for modeling 

morphogenetic processes, e.g., see Romero-Arias et al. (2017). 

Below we discuss available software, while a summary is presented in Table 2. 

 

Table 2. The most popular tools for cell-based plant tissue morphogenesis modeling. 

 
Virtual Cell (Cowan et al., 2012; vcell.org) is an environment for modeling, analysis, and 

simulation of cellular processes, and it includes tools for gene network and for the integration of 

biological images. This package consists of distinct functional modules: rule-based networks, 

ODE, PDE and kinematics, stochastic simulations, parameter estimation and has the ability to 

integrate it into hybrid models. Users can define the model structure and the system automatically 

builds the code and compiles it. A detailed overview of this tool is given in Moraru et al. (2008). 

Also, there is a VCell extension for compartmental and spatial rule-based modeling (Blinov et al., 

2017). The implemented models using VCell can have a different scale, for example, the model of 

potassium transport in plant vascular tissues (Gajdanowicz et al., 2011), and model of the 

paracrine-juxtacrine loop for breast cancer cells and macrophages (Onal et al., 2020). 

VirtualLeaf package (code.google.com/archive/p/virtualleaf/, Merks et al., 2011) using a 

vertex-based approach (Nagai and Honda, 2001); the algorithm includes vertex motions at each 

step that minimize the Hamiltonian energy by the Monte Carlo algorithm. For each cell, an 

unstressed area is specified, corresponding to the cell's state when the turgor pressure is balanced 
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with the external pressure. For each cell wall element, the unstressed length is specified, 

corresponding to the length of the cell wall segment in the absence of turgor pressure. The balance 

between turgor pressure and the cell wall's resistance can be described in terms of the generalized 

potential energy (Hamiltonian) calculated as the sum of all cells and cell wall elements, which is 

then minimized by the algorithm. The growth models of root were implemented using this 

framework (De Vos et al., 2014). 

Cellzilla uses a vertex dynamics model for describing morphodynamics processes and 

considers morphogenetic regulation (http://cellzilla.info/, Shapiro et al., 2013). The cellular 

structure is represented by a list of three elements: a list of vertex coordinates, a list of edges 

consisting of pairs of vertex numbers, and a list of cells consisting of lists of edge numbers 

belonging to a cell. The interaction between morphogens and the transport flows in each cell is 

described in terms of chemical kinetics using the arrow notation of the Cellerator package (Shapiro 

et al., 2003). This software automatically constructs and solves a system of differential equations 

describing the dynamics of morphogens' concentration in all tissue cells. Methods for constructing 

models of plant cell growth in CellZilla are described by Shapiro et al. (2013). Using this 

system, Nikolaev et al. (2013) constructed a model for A. thaliana shoot apical meristem structure 

maintenance. 

CellModeller (https://github.com/cellmodeller/CellModeller; Dupuy et al., 2010) is a 

software with modular structure for 2-dimensional simulations. It can reproduce the intracellular 

dynamics of metabolites, intercellular transport processes, as well as cell mechanics using physical 

laws. This software can be used for modeling plant morphogenetic processes. For example, a 

simple morphogenetic system for the Coleochaete alga has been developed (Dupuy et al., 2010). 

LBIBCell (https://tanakas.bitbucket.io/lbibcell/, Tanaka et al., 2015) was developed 

specifically to simulate morphogenetic processes in tissues. This tool uses the immersed-boundary 

concept (which describes cells as viscous fluid with elastic walls), coupled with the Lattice 

Boltzmann method. The model of biased epithelial lung growth was implemented using this tool 

(Stopka et al., 2019). 

OpenAlea (Pradal et al., 2008) is an integrative platform that combines various 

computational frameworks. This platform's main goal is the integration and mutual enrichment of 

experience in different sections of plant process modeling. This system is based on Python 

language and has a visual programming interface. For example, the OpenAlea package VPlants 

(https://team.inria.fr/virtualplants/) allows building models of tissue morphogenesis. This package 

was used in modeling vascular development in A. thaliana (Muraro et al., 2014). 

CompuCell3D (Swat et al., 2012) is a C++ software for 3D modeling, which includes both 

graphical user and command-line interfaces. This system uses classical mechanics for describing 
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cellular behavior according to mechanical constraints. Multicellular systems are described using 

the Cellular Potts model. The input data include the grid's size, number of cells, cellular 

interactions, energy functions, and activator concentrations. The protocol for using this program 

to study cellular morphogenesis parameters is presented in Palm and Merks (2015). Most of the 

models elaborated with this software describe the development of animal tissues (Hester et al., 

2011) and the processes of tumorigenesis (Swat et al., 2015). 

Thus, the available software and methods are pretty diverse, and the choice of a particular 

tool depends on the specifics of the task at hand. Among these tools, it is necessary to highlight 

Cellzilla and VirtualLeaf as the most specific for describing plant morphogenesis processes. On 

the other hand, the development of new frameworks and algorithms, which depend on researchers' 

ability to program, is a promising approach since it significantly expands the functionality and 

removes several restrictions on applying one or another formalism implemented in existing 

software. 

 

2.4.3. Our Framework and Model Flowchart 

 

In this section, we propose a general framework for modeling plant morphogenetic processes 

based on various biological data. This kind of model should include two main data sources: 

scRNA-seq and tissue imaging data; besides, SC metabolomics and cell wall stiffness studies can 

serve as additional data sources. For plant organ growth modeling, the accurate description of 

processes on the cellular level is essential since this level combines molecular regulation with 

hormonal regulation, cell division, and reproduction processes (De Vos et al., 2012). 

Mathematically, events occurring in plant tissues and cells can be classified into continuous 

and discrete ones. The first ones include the processes of metabolism, growth, transport and 

development of cells. Discrete events, on the other hand, include processes such as birth (or 

emergence), division, death, and change of cellular state. Individual cells' metabolic characteristics 

are influenced by their genotype and developmental stage, which would be described by single-

cell transcriptomics approaches. The nature of the proposed framework is hybrid since it combines 

different mathematical formalisms and modules: (i) ODE/PDE equations for describing the 

dynamics of substances and morphogens inside the cell and the processes of intercellular transport, 

(ii) discrete events occurring during the onset of threshold conditions (for example, cell division 

when a specific cell area is reached, or cell differentiation at a hormone concentration above the 

threshold), (iii) the biophysical laws of mechanical interactions between cells (such as Ortega's 

approach Ortega, 2010 or Newton's and Hooke's laws Retta et al., 2020). In this sense, scRNA-

seq data helps measure individual characteristics of cell populations (which characterize system 

dynamics), while microscopy should help to define geometrical patterns and “rules” (e.g., division 
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geometry or dividing plane orientation). These steps will help to create hybrid models with 

tissue/cellular resolutions. 

The usefulness of such a hybrid approach in describing ecological systems was described in 

the work of Vincenot et al. (2011). In particular, the combination of discrete and continuous 

phenomena is a natural property of multicellular systems, and such hybrid frameworks allow 

researchers to make more realistic simulations in silico. Van Liedekerke et al. (2015) described 

the advantages and disadvantages for different types of agent-based models of tissue mechanics 

and noted that hybrid models could reproduce spatial resolution, physical aspects of interactions, 

cell shapes diversity. Osborne et al. (2017) compared different approaches to cell-based modeling 

using typical cases of the described processes; the authors noted that the vertex-based approach, 

in contrast to others, allows one to simulate boundary conditions in proliferation processes 

effectively. This feature allows us to consider this method as the most promising for modeling the 

root apical meristems, which has more severe mechanical restrictions for growth than leaf and 

shoot tissues. For modeling leaf and shoot tissues, for example, it is possible to use the Voronoi 

tessellation or overlapping spheres modeling approach described in Osborne et al. (2017). 

Thereby, we assume the use of such a hybrid approach complementary to modern research 

due to its multilevel nature; it combines SC transcriptomic and microscopy data into a cell-based 

modeling framework. Below in the text and in Figure 4, we outline the main stages of our 

framework that must be considered. 
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1. The posed biological problem determines the structure of the model. A modeler should 

define a biological system's properties, its elementary subsystems, and connections between these 

elements, which are significant to reproduce them in the model. Based on these decisions, it is 

necessary to determine the main properties of the simulated object: genotype, organ, tissue zone, 

stage of development. Since a cell is a crucial element for describing the processes of plant 

morphogenesis, the next step is to find out which cellular structures will be reproduced in the 

model to determine the formalism used to describe them and the equations for growth and the rules 

of division. Then, it is necessary to decide on the objects at the molecular level to be considered, 

the genetic systems of interest, to find out whether it is required to consider transport processes 

for morphogens (for example, hormones), and to decide whether it is necessary to take into account 

the biomechanics of cells for the modeled system. 

2. Designing experiments to obtain imaging (2.1) and scRNA-seq (2.2) data based on the 

given aim. For imaging (2.1), it is essential to choose a suitable plant portion and microscopy 

technology and determine whether it is necessary to track the dynamics of development of a given 

fragment of tissue and for which interval of time. For scRNA-seq (2.2), it is important to make 

sure that the process of isolation of protoplasts and their analysis will not be limited due to the 

structure of the tissue and/or organ of the plant, imperfections, and shortcomings of the available 

methods, otherwise, this technique will have to be worked out and improved to an acceptable level. 

3. Perform the experiments and produce data. (3.1) It is necessary to prepare (for example, 

fix and stain) a target tissue fragment, get images, process, and analyze them (manually or using 

plugins), and digitize the resulting patterns to build a structural model of the tissue/organ and 

identify morphogenetic rules for incorporation into a computational model. (3.2) While obtaining 

and analyzing scRNA-seq data, special care should be taken to ensure that the research aim is as 

close as possible to the intended modeling goals. Care should be taken to avoid contamination with 

cells of those classes that are not needed and so that for most of the required cells, it would be 

possible to analyze the molecular systems required for the model. Besides, scRNA-seq-based 

approaches for the reconstruction of gene networks of the corresponding processes have high 

potential. 

4. Analyze experimental data. Experimental results at cell and tissue level have to be 

analyzed in order to derive key parameters to be used in the model formulation in terms of cellular 

characteristics (4.1) and molecular processes (4.2) for all the considered cell types. 

5. Systematic assembly of the hypotheses, available data and mathematical formalization 

into a single hybrid model, which consists of the following blocks: (1) ODE / PDE equations for 

describing the dynamics of substances and morphogens inside the cell and the processes of 

intercellular transport, (2) discrete events occurring at the onset of threshold conditions (for 
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example, cell division when a specific cell area is reached, or cell differentiation at a hormone 

concentration above the threshold), (3) biomechanics interactions between cells (4) agent-based 

rules describing patterns of divisions and mechanical features of the tissue. 

6. Validation and verification of models is based on their success in reproducing the behavior 

of real biological phenomena that can be evaluated experimentally. In this sense, it can be useful 

to return to the stage of morphometry and compare the dynamics of tissue development with 

simulations and study in detail the molecular organization of the subsystems described in the 

model. 

In general, the proposed approach is universal for describing any morphogenetic system; 

however, the pipeline described above may differ in some steps for each specific case, while some 

of them could be eliminated. Plant tissue morphodynamics is context-dependent due to mechanical 

interactions inside cell ensembles and the transport of morphogens through plasmodesmata, which 

is confirmed by numerous studies (Crawford and Zambryski, 2001; Heinlein and Epel, 

2004; Lucas and Lee, 2004; Kragler, 2013; Yadav et al., 2014; Sevilem et al., 2015; Luo et al., 

2018). At the same time, models for morphodynamics of animal tissues with strong neighborhood 

structures could include analogous mechanisms modified to consider cell adhesion processes. For 

example, this approach is applicable to model the processes of animal epithelial or tumor growth 

(Interian et al., 2017). 
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2.5. CONCLUSIONS 
 

Post-genomic technologies made it possible to obtain detailed information about processes 

at genomic and transcriptomic levels using SC and whole tissue RNA sequencing technologies. 

Besides, the existing abundance of microscopy methods allows high-quality characterization of 

morphology and physiology at the level of extended fragments of tissues and organs. However, 

microscopy approaches do not allow to perform quantitative assessments of important intracellular 

characteristics, such as concentrations of substances and metabolites. SC metabolomics 

approaches for plants, which are beyond this review's scope, remain overshadowed, although 

significant developments have been made in mass spectrometry approaches for such kind of 

analyses (de Souza et al., 2020). Gilmore et al. (2019) discuss the latest advances in mass 

spectrometry imaging: matrix laser desorption ionization (MALDI) and secondary ion mass 

spectrometry (SIMS), which have a high potential for assessment of metabolism at subcellular 

spatial resolution. The development of these methods will allow metabolomics to achieve the same 

spatial resolution level as SC transcriptomic. The review of Bidhendi and Geitmann 

(2019) presents the main features and possibilities of measuring the cell wall's mechanical 

properties: indentation technique, tensile test, acoustic microscopy, fracture measurements, and 

microfluidics. The authors emphasize that multiscale in silico mechanical modeling has excellent 

potential for the field and could help obtain a unified understanding of mechanical behavior across 

different scales. 

To date, the methods, and technologies necessary to obtain various experimental data for 

plant morphogenesis models have reached a balance and are mostly consistent with each other in 

terms of power, productivity, and spatial resolution. The community of mathematical biologists 

and programmers faces crucial theoretical challenges and is creating efficient computational 

frameworks capable of large-scale numerical simulations involving cellular ensembles of several 

thousands of cells. Such models will provide more accurate resolution and realism in the 

description of morphogenetic processes. Examples of optimization works are the algorithm 

of Jeannin-Girardon et al. (2015), and graphics processing units (GPU) accelerated framework for 

3D cellular growth and division models (Madhikar et al., 2018). Moreover, declarative modeling 

perspectives concerning morphogenetic processes are considered (Mjolsness, 2019), which 

potentially will help formalize mathematical calculations at higher levels compared to general-

purpose programming languages. 

The widespread development of SC technologies in the future could serve as a driver for 

other areas of cellular and developmental biology of plants (Libault et al., 2017). However, we 

have an urgent need for data integration to successfully apply the technology, at tissue level with 
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its organization's peculiarities as an emerging system. Besides, an increased availability of SC data 

can stimulate the development of methods and modeling concepts at cellular and tissue levels, 

which will open the way for the binding of multi-omics characteristics for individual cell types 

and the observed phenotype. 

On the other hand, it is necessary to verify the emerging issues related to the interpretation 

and analysis of SC data using advanced microscopy and in silico biology. In this sense, one of the 

most urgent problems of SC sequencing is the reverse reconstruction of the spatial position of cells 

based on corresponding transcriptome expression. Searching for major regulatory genes that 

characterize certain cell lines will be a critical step to solve this problem. Also, cell-based models 

of morphogenesis could help interpret and integrate SC and imaging data, making the reasoning 

more transparent and establishing an understanding of essential parameters and mechanisms for 

the described systems. 

Summarizing all the above, we have found the following key features related to SC-

technologies that need to be addressed: 

1. Some limitations are still present in the phases of integration, analysis, and interpretation 

of data. 

2. Only a limited set of plant species and organs is suitable for obtaining transcriptome and 

structural data with cellular resolution. 

3. There is a need for a more precise reconstruction of scRNA plant atlases. 

The task of elaborating and analyzing in silico models of morphogenesis, due to the 

complexity of the studied systems and computational limitations, are non-trivial. Thus, cell-based 

models, which use a hybrid formalism, could effectively combine our knowledge on different 

levels and help tackle the complexity of the system. However, the current problem of the large 

number of dimensions of the initial SC data should be solved by applying preprocessing and 

filtering algorithms, as well as for the reconstruction of related gene networks. Thereby, model 

formulation and numerical experiments in silico could be applied using only the essential part of 

the initial high-dimensional SC data. Such reduction should aim to contain data on gene expression 

changes and metabolites concentrations, which determine the different cellular states. 
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3. ADULT CONSPECIFIC DENSITY AFFECTS JANZEN-CONNELL 

PATTERNS BY MODULATING THE RECRUITMENT EXCLUSION 

ZONES 
 

3.1. INTRODUCTION 
 

More than 50 years ago two ecologists, Janzen (1970) and Connell (1971) in Central 

America and in Australia respectively, independently proposed the hypothesis that seeds and 

seedlings suffered a distance- and density-dependent mortality. Empirical observations reported 

that seed-fall obviously concentrated under the parent fruiting trees, whereas seedlings and 

saplings recruitment didn’t match the seed-fall kernel, unexpectedly peaking at a certain distance 

from the source tree. Their descriptive model consisted of two curves: the first showing seeds 

dispersal around a mother tree and the second reporting the survival probability of the seedlings 

as a function of distance from the same tree. Accordingly, a species was found unable to recruit 

under adult conspecifics because of the formation of an “exclusion area” where the mortality was 

disproportionately higher and not matching with the large seed availability (Janzen 1970). Such 

phenomenon, preventing the dominance of a single species, was also recognized to allow species 

coexistence and to promote the maintenance of biodiversity in the ecosystems (Levi et al. 2019). 

In other words, field observations showed that a mortality agent operated in a distance, density-

dependent, and species-specific way, impairing only the recruitment of the focal tree, with no 

effects on seeds and seedlings of other species.  

Early reports of the Janzen-Connell (JC) recruitment distribution suggested that insects were 

killing all seeds falling under the canopy of the studied trees (Janzen 1971). However, most later 

studies assessed only the occurrence of some indirect insect damages, missing the identification 

of a particular causative pest species (Basset et al. 2019). Other studies blamed the activity of 

vertebrates and mammals, but in most cases the activity of such animals cannot be related to the 

distance-dependent effects, considering their mobility over the forest floor (Song et al. 2021). In 

any case, predation is still considered as the main causal mechanism of the JC effect also in 

theoretical studies (Smith, 2022). 

The role of soilborne and airborne pathogens has been also considered based on the 

assumption that pathogens propagules, including spores and sclerotia, may accumulate under the 

focal tree. For instance, Packer and Clay (2000) reported that the oomycete Pythium spp. 

disproportionately killed the seedlings rooted under the canopy of conspecific trees. Then, plant 

pathogens have been considered as main key factors in maintaining coexistence by causing local 

plant-soil Negative Feedback (NF), especially in wet ecosystems where oomycetes and fungi 
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thrive (Agrios 2005). However, most of the available experimental and field studies only reported 

pathogens damage, e.g., seeds covered by mould, seedlings wilting, leaf discoloration and spots, 

often missing the identification of the causal pathogenic agent and always without any assessment 

of consistency between the spatial distribution of the NF occurrence and the pathogens dispersal 

behaviour.  

Less popular is the hypothesis of the “exclusion zone” being generated by the accumulation 

of autotoxic chemical compounds. The study by Webb et al. (1967) was one of the first reporting 

that some unidentified autotoxic compound, killing seedlings of Grevillea robusta, could be the 

cause of the JC patterns reported in Australian forests. Autotoxicity has been reported for hundreds 

of plant species, mostly crops, and associated with the release of phytotoxic compounds during 

the decay of leaf and root litter, including a range of different compounds such as aromatic phenols, 

saponins, coumarins, and organic acids, among others (Singh et al., 1999). However, the 

autotoxicity hypothesis has suffered from a relevant objective weakness because all the above-

mentioned compounds produce a generic phytotoxicity, thus unable to explain the species-

specificity of the JC distributions. Moreover, no studies were able to identify and quantify the 

accumulation of any specific toxin under and around the focal tree. Despite these major problems, 

the autotoxicity hypothesis has continued to be inconsistently associated to generic allelopathic 

phytotoxic effects (Inderjit et al., 2021). Differently, autotoxicity found a logical explanation in 

the discovery that accumulation of fragmented extracellular DNA from decomposing leaf litter did 

cause extensive seed germination impairment and root damages to a broad range of higher plants, 

with toxic effects specifically limited to conspecifics (Mazzoleni et al. 2015). The evidence of 

such inhibitory effect by extracellular self-DNA was then recently confirmed and further 

investigated by means of whole-plant transcriptome profiling on the model plant Arabidopsis 

thaliana (Chiusano et al. 2021). 

 Irrespectively of the underlying mechanisms, several studies explored the consequences of 

the JC hypothesis using simulation models. Hubbell (1980) argued that disproportionately high 

seed densities under the parent tree would overcome the lower survival, thus resulting in 

monotonic recruitment patterns independent of distance from the focal plant. Later, Nathan and 

Casagrandi (2004) made a first systematic modelling exploration of the JC hypothesis. By using a 

mathematical model of distance and density-dependent seed mortality, the authors demonstrated 

that the net balance between seed dispersal and recruitment survival could generate all observed 

recruitment patterns, including both the hump-shaped typical JC distribution and monotonically 

decreasing (Hubbell) patterns (Figure 1). Later, Vincenot et al. (2017) presented an individual 

based model, at the scale of one focal plant, reporting that strong NF under a conspecific tree may 

overtake the seed dispersal kernel, thus creating an “exclusion area”. Moreover, the study also 
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demonstrated that NF could produce a shift outward of the recruitment peak from seedlings to 

saplings, during a longer assessment of the recruitment process. More recently, Levi et al. (2019) 

changed the perspective from a single focal plant to ecosystem scale and, using high-performance 

computing and analytical models, demonstrated that distance-responsive natural enemies can 

maintain tropical forest diversity nearly indefinitely by favouring rare species. Moreover, the 

effect of NF at ecosystem level has been modelled, clearly explaining species coexistence 

(Bonanomi et al. 2005) and its consistent relationship with biodiversity levels in different 

ecosystems in association with the rates of litter decomposition producing autotoxicity (Mazzoleni 

et al. 2010). 

 

Figure 1. Common types of recruitment patters (adapted from Nathan and Casagrandi, 

2004). Each plot shows the seed dispersal (dotted lines), survivorship (dashed lines) and 

establishment (solid lines) curves for the three most common recruitment patterns: monotonically 

decreasing (or Hubbell); uniform (or exact compensation); Janzen-Connell. 

 

Besides these robust modelling studies, the importance of the JC recruitment pattern is 

largely supported by many publications of empirical data from a broad range of ecosystems, 

including tropical (Mangan et al. 2010; Comita et al. 2014) and temperate forests (Fox 1977; 

Packer and Clay 2000), as well as shrublands (Bonanomi et al. 2008, Teste et al. 2017) and 

grasslands (Petermann et al. 2008). However, despite such strong base, scepticism still persists 

especially in the community of forest ecology (Terborgh 2020). The main doubts about the actual 

relevance of the JC hypothesis are caused by the variable results observed in multispecies studies 

reporting JC distributions for some species but Hubbell patterns for others, also named as reverse 
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JC, and interpreted as a positive distance-dependent process due to accumulation of symbiotic 

microbiota (Zahra et al. 2021). Although it cannot be denied that JC patterns do exist in many 

species, their absence in other coexisting species raised a strong debate on the effective generality 

and magnitude of JC effects (Song et al. 2021). Explaining the reasons of such variability of 

occurrence of JC distributions would shed light on the relevance of this ecological phenomenon 

and on its effect on species coexistence and diversity maintenance. 

In this regard, a relevant issue is whether the distance-dependent mortality factors, 

preventing the recruitment near the parent tree, are affected by the surrounding density of 

neighbouring conspecific adults. This point has been mostly neglected by previous studies that 

focused only on the focal tree concept, overlooking the possible role of the surrounding landscape 

of both conspecific and heterospecific trees. Only the recently published work by Smith et al. 

(2022) recognized that conspecific density may affect JC effects on species coexistence relating 

this to putative changes of predation levels. Theoretically, the density of conspecific adults may 

affect the behaviour of invertebrate and vertebrate predators (Janzen 1971), the spread of airborne 

and soilborne pathogens (Sapoukhina et al. 2010), as well as leaf and root litter distribution and 

the associated self-inhibitory factors produced during decomposition (Bonanomi et al. 2017). For 

example, an isolated tree accumulates litter under its canopy, thus creating a pattern associated 

with the concept of “island of fertility” when interpreted in terms of positive soil conditions for 

plant growth (Facelli and Brock 2000), but also generating a round shaped exclusion zone around 

its trunk and within its own crown projection by NF. However, as the surrounding density of adult 

trees of the same species increases, the spatial distribution of litter progressively overlaps among 

individuals, generating a complex patchiness in terms of exclusion zones created by the 

compenetrating conspecific “litter islands”.  

The aim of this work is to explore the connection between adult density, either conspecifics 

or heterospecifics, on the probability of occurrence of JC distributions. In detail, using an 

Individual-Based Modeling (IBM) approach (DeAngelis and Grimm, 2014), we simulated the 

formation of exclusion zones due to the build-up of NF in proximity of conspecific adult plants. 

The specific hypotheses of our study were: 

(i) The frequency of JC distribution is high in the case of isolated trees;  

(ii) the occurrence of JC distributions decreases as adult conspecific density increases due to 

the progressive overlap of exclusion zones; 

(iii) the JC distributions are rare in the case of isolated individuals of a species when immersed 

in a matrix of heterospecific trees because of a dilution effect on NF conditions. 
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3.2 MODELING PIPELINE AND MODEL DESCRIPTION 
 

3.2.1 Model rationale  

 

The model presented here was developed to investigate the role of forest stand density and 

species diversity on the occurrence of exclusion zones produced by localized NF. The model is 

developed to represent the effect of NF on seed germination and seedling establishment. In this 

study, the term NF stands for the ecological conditions negatively affecting the establishment of 

seedlings.  

The model is based on three assumptions: i) NF is species-specific i.e., it affects only plants 

of the same species; ii) NF intensity is proportional to the aboveground tree biomass, and; iii) the 

presence of heterospecific individuals in the same area decreases the intensity of the NF. The first 

assumption is based on a very large number of studies demonstrating the species-specificity of this 

phenomenon (review in Kulmatiski et al. 2008; Van der Putten et al. 2013; Cesarano et al. 2017). 

The second assumption is reasonable considering the autotoxicity hypothesis (Mazzoleni et al. 

2007), with a release of autotoxic factors proportional to the amount of standing litter and its decay 

rate. Moreover, also the amount of soilborne pathogens inoculum is often proportional to the 

amount of plant residues left over and incorporated into the soil (Agrios 2005; Bonanomi et al. 

2007). The third assumption is based on the hypothesis of a physical dilution of conspecific 

autotoxic litter in mixed multispecies stands (Mazzoleni et al. 2007, Mazzoleni et al. 2010). 

Moreover, rare species are indirectly protected by non-host, neighbouring heterospecifics, as 

predicted by the herd-immunity hypothesis, reducing the probability of contact with propagules of 

virulent plant enemies (Wills et al. 1997),  

In the following sections, the model implementation and the simulation design are described. 

 

3.2.2 Model description and simulation setup 

 

Each simulated experiment is initialized with an area of 140 x 140 m (1.96 ha) and a 

predefined number of individual adult trees, randomly placed in the domain. The first individual 

is always placed in the centre of the domain and represents the target (focal tree) of each simulated 

experiment. For simplicity, every tree is assumed to have a canopy radius of 5.5 m and its biomass 

distribution is represented by a paraboloid function, with its maximum value at the centre of the 

tree crown. After this initialization step, a map of biomass distribution for each tree species is 

calculated as sum of the biomass occurring in every pixel. Following the assumptions defined in 

the model rationale, i.e., that the NF is proportional to the aboveground tree biomass, a map of NF 

for each species is calculated using the biomass map multiplied by a coefficient (iNF) representing 
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the intensity of the NF. Seeds and seedlings are assumed to have no direct contribution to NF 

because of their negligible biomass compared to the litter produced by the adult trees. 

In the case of co-occurrence of two or more tree species, in the case of biomasses of different 

tree species overlapping, a dilution effect was considered due to the presence of heterospecific 

litter. In detail, the NF for each species in each point in space is calculated as follows: 𝑁𝐹𝑖 = 𝑖𝑁𝐹 ∙

𝐵𝑖 ∙
𝐵𝑖

∑ 𝐵𝑗
𝑛
𝑗=1

 (eq.1), where Bi is the biomass of the i-th tree species, Bj are the values of biomass of 

other species and n is the number of coexisting tree species. It has to be noted that in the case of 

monospecific stands (n=1), the last equation becomes: 𝑁𝐹𝑖 = 𝑖𝑁𝐹 ∙ 𝐵𝑖  (eq.2) 

A visual representation of the calculation of the trees’ biomass and related NF is shown on 

Figure 2. Examples for an isolated tree (Figure 2A), overlapping trees of the same species (Figure 

2B) and overlapping trees of different species (Figure 2C) are provided. 
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Figure 2. Graphical representation of calculation of tree biomass and NF in monospecific 

and bi-specific stands: A) single tree; B) two overlapping trees of the same species; C) two 

overlapping trees of different species. Bi and Bj represent the biomass curves, while NFi and NFj 

represent the calculated negative feedback for two generic species i and j, respectively. 

 

Using the procedure described above, we performed two sets of simulations, in either mono- 

or bi-specific stands, to study the effects of NF on the resulting seedlings recruitment distributions. 

In the case of monospecific forests, we carried out numerical experiments using six different levels 

of adult tree densities (1, 10, 25, 50, 100, and 200 trees in the simulated plots) factorially combined 

with three levels of NF intensities (iNF = 0.1, 0.5 and 1.0). Overall, 18 different scenarios of 

monospecific stands were produced. 

In the case of bi-specific stands, we carried out the simulations with stands represented at 

four different adult trees densities (25, 50, 100, and 200 individuals in the simulated plots). For 

each density level, the concept of species replacement series (Jolliffe et al. 1984) was applied as 

follows: i) only one individual of species A; ii) 25% of species A and 75% of species B, iii) 50% 

of both species A and B, iv) 75% of species A and 25% of species B. All simulations were run 

with three levels of NF (iNF = 0.1, 0.5 and 1.0). Overall, 48 scenarios representing bispecific stands 

were produced. Examples of the biomass, NF, and seedlings distribution maps in the simulated 

scenarios as described above are presented in Figure 3. 
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Figure 3. Examples of the biomass, NF, and seedlings maps in the simulated scenarios. A) 

monospecific stand simulations at increasing tree density; B) examples of bi-specific stand 

simulations in the case of 200 adult trees at different % of the two different species. All NF maps 

are represented using iNF=0.5. 

 

Due to the stochastic nature of some of the modelled processes (initial tree distribution, seeds 

distribution and seedlings establishment), each simulated scenario was run 1000 times by a 

Montecarlo approach. The presented model was implemented in the Python3 programming 

language with standard Python libraries: math, numpy, matplotlib, random. 
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3.2.3 Data analysis 

 

The aim of the analysis of simulation results was to quantify and classify the distribution of 

established seedlings of a focal tree species. Starting from the centre of the target tree located at 

the plot centre, the map was divided into concentric circular annuli, i.e., rings, with a 1 m width. 

In each annulus, the number of established seedlings after every simulation run, has been counted 

and normalized by the total area of the corresponding annulus. The distance-dependent recruitment 

patterns were classified using the average density of seedlings of three specific annuli with the 

following radiuses from the centre of the focal tree: 1) between 1 and 4 m, 2) between 6 and 9 m 

and 3) between 47 and 50 m. These three areas were selected to represent the seedling density 

below the crown of the mother focal tree, the area right outside its crown, and an area 

corresponding to the maximal seed dispersal distance. In particular, plotting the specific seedling 

density of the three abovementioned areas, we construct the two straight segments connecting each 

pair of consecutive points. We then calculate the slope (σ) of the two segments and associate each 

couple of possible values (σ1 and σ2) to a seedlings recruitment distribution as follows (Figure 4): 

- σ1<0 and σ2≤0 = Decreasing distribution; 

- σ1≥0 and σ2<0 = Janzen-Connell distribution; 

- σ1=0 and σ2=0 = Uniform distribution; 

- σ1>0 and σ2≥0 = Saturation distribution. 

The case σ1≤0 and σ2>0 was never observed in any simulation. Finally, the occurrences of each 

recruitment pattern within each simulated scenario were counted and expressed as relative 

abundance over the 1000 independent replicates. 
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Figure 4. Seedling distribution calculation scheme and types of resulting recruitments 

patterns. Green areas indicate the three sampling areas where established seedlings were counted. 

After calculation of the slopes of the segments (dashed lines) between each pair of consecutive 

points (number of established seedlings), four recruitment patterns were defined: Decreasing, 

Janzen-Connell, Uniform and Saturation. 

 

3.3 RESULTS OF NUMERICAL SIMULATIONS 

 

3.3.1 Monospecific Forest stand 

 

In monospecific simulations with isolated trees (Figure 5), the JC distribution is frequent 

only with strong NF (iNF=1), whereas with reduced self-inhibition decreasing distributions 

increase their frequency becoming dominant at low levels of NF (iNF= 0.1). Noteworthy, in 

monospecific communities, the occurrence of different recruitment distribution patterns is greatly 
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affected by tree density. In detail, the probability of observing a decreasing distribution decline 

with increasing tree density, especially at medium and strong NF levels (iNF= 0.5 and 1). We 

observed a smooth and gradual reduction in the occurrence of the decreasing distribution at low 

levels of NF (iNF= 0.1), which was replaced by the JC recruitment pattern. At high NF intensity 

(iNF= 1), we observed a similar trend, but with the replacement of the decreasing distribution by 

a saturation distribution proportional to tree density. At high tree density (200 trees), representing 

a forest with continuous and dense cover (see Figure 3A, last column), the occurrence of the JC 

distribution decreases with increasing NF, reaching only 19.4% of cases at the highest NF 

intensity. A uniform distribution was found in very few cases (less than 5% of the simulations) 

and only in the condition of isolated trees with medium and strong NF levels (Figure 5). 

 

Figure 5. Relative distribution of seedlings recruitment pattern in monospecific stands at 

different levels of NF (iNF = 0,1, 0.5, and 1) and density of adult tree (1, 10, 25, 50, 100 and 200 

individuals per simulated plot). 

 

When all the 1000 permutations were averaged, the results confirmed what was observed in 

terms of frequencies of establishment patterns. Considering the case of low NF intensity, the 

average distributions of seedlings assume the shape of a decreasing pattern even when more than 

50% of the cases were classified as JC at high tree density (100 and 200 trees in Figure 5). For 

higher values of NF intensity (iNF= 0.5 and 1), almost all average curves are classified as JC 

distributions with the only exception of the highest density (200 trees) where the resulting patterns 

are saturation (i.e., increasing number of established seedlings with distance from the mother tree). 

In terms of absolute numbers of established seedlings, a clear pattern emerges, i.e., the 

establishment decreases strongly with the increase of the NF intensity. In all simulations, even at 

the highest tree density (200 trees), there is presence of bare soil among tree crowns in the plot 

(Figure 3A). Differently, in the case of simulations performed imposing a full coverage of the plot, 

the constant accumulation of NF all over the domain, produces the disappearance of any spatial 

pattern of seedlings establishment and, in particular, the absence of observable JC distribution. 
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3.3.2 Mixed forest stand 

 
In the case of mixed two-species stands, rare species immersed in a matrix of heterospecifics 

rarely shows JC distributions with decreasing recruitment pattern predominating, especially at low 

and medium NF intensity (iNF=0.1 and 0.5), (first column of each bar plot in Figure 6). In the case 

of a co-dominated community with a forest stand composed by 50% species A and 50% species 

B, both tree density and NF affect the probability of observing a JC distribution. At low tree density 

(representing a Savannah ecosystem), with 25 and 50 total trees, the low NF simulation (iNF=0.1) 

showed that the decreasing distribution is the most frequent and only few cases of occurrence of 

the saturation pattern. However, as NF intensity increases (iNF=0.5 and 1.0), the JC distribution 

replaces the decreasing distribution, becoming the most frequent with over 80% of the cases. In 

co-dominated stands with high cover (either 100 or 200 trees per plot), JC and decreasing 

distributions are almost equally likely to occur at low NF level (iNF=0.1). Instead, on one hand, 

when NF is medium or high (iNF=0.5 and 1.0), JC distribution is observed in more than 80% of 

simulations with few cases with either decreasing or uniform recruitment patterns. On the other 

hand, in stands with high density (200 trees) and dominated by the target species (75% of cover), 

the probability of observing JC recruitment is more than 50% regardless of NF intensity, reaching 

the highest value (71.1%) at medium NF intensity level (Figure 6).  

The presented results are confirmed when the average of the 1000 permutations are 

considered. The most abundant establishment pattern is a decreasing distribution at low NF 

intensity (iNF=0.1), while the JC pattern gradually appears with increasing NF levels (iNF=0.5 

and 1.0). Also in this case, as was observed for the monospecific stands, the absolute density of 

seedlings decreases strongly with increasing NF intensity. 
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Figure 6. Relative distribution of seedlings recruitment patterns in bi-specific stands at 

different levels of NF (iNF = 0,1, 0.5, and 1) and density of adult tree (25, 50, 100 and 200). The 

x-axis shows the species replacement series starting with only one individual (first column) 

followed by 25%, 50% and 75% of individuals of the target species 
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3.4 DISCUSSION AND CONCLUSION 
 

Assuming that NF is species-specific, localized under an individual tree, and with limited 

horizontal diffusion, our simulations show that tree density is critical to understand the observed 

variability of tree recruitment patterns. Our model highlights the complex interconnection between 

NF intensity, stand density, and recruitment patterns explaining where and why the JC distribution 

occurs, and clarifying the relevance of this ecological phenomenon in different plant community 

frameworks. 

Our initial hypothesis that JC distribution is very common in the case of an isolated tree was 

partially supported by the model simulations. Indeed, we found that JC distribution was very 

frequent for isolated trees when NF was strong and capable to form an exclusion zone under the 

parent tree. However, with decreasing NF intensity, both JC and decreasing patterns cooccurred 

and were recorded with similar frequencies. A prevalence of the decreasing pattern was also 

observed at very low NF, because under such conditions the inhibitory effect due to NF was unable 

to overcome the clustering effect of the seed dispersal kernel, with resulting concentrated 

recruitment under the parent trees. JC distribution in isolated individuals has been previously 

reported for both shrubs and trees, but in far less cases compared to tropical and temperate forests 

(reviewed in Bonanomi et al., 2010; Comita et al., 2014; Song et al., 2021). A notable example is 

the study of Clark & Clark (1981), reporting a clear distance-dependent recruitment limitation for 

isolated trees of Bursera graveolens in arid ecosystems with discontinuous vegetation. Moreover, 

a recruitment distribution consistent with the JC model has been reported for woody plants 

belonging to Fabaceae, a plant family forming fertility islands under individual canopies, 

associated to the accumulation of organic matter, nitrogen and phosphorus (Facelli & Brock, 

2000). Under this scenario, in order to observe a distancedependent inhibition, the generating 

factors of NF, attributed either to soilborne pathogens or soil autotoxicity, must overwhelm the 

positive effects of both nutrients and beneficial microbes of the fertility islands under the canopy 

of woody plants. In this context, it is well established that plants belonging to Fabaceae suffer 

greatly from NF in both agroecosystems and natural plant communities (Cesarano et al., 2017). 

Accordingly, several studies reported the presence of intense NF and JC recruitment distributions 

in woody perennial plants, including Medicago marina in Mediterranean sand dunes (Bonanomi 

et al., 2008), Medicago sativa in US old field (Jennings & Nelson, 2002), Genista aetnensis over 

volcanic lavas (Stinca et al., 2015), and several Acacia species in South Africa (Ben-Shahar, 1991). 

Regarding the second hypothesis, i.e., the decreasing occurrence probability of JC 

distribution with high density of conspecifics, our model demonstrated a complex scenario 

dependent on the intensity of the NF. Indeed, when the NF intensity is low, the JC frequency 
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increases linearly with the density of adult conspecifics. However, if NF is strong, the peaks in JC 

frequency are still observed at intermediate stand densities while suddenly decrease in stands with 

a continuous conspecific cover of 200 trees in the plot. So, counterintuitively, our model shows 

that a plant suffering from strong NF in monospecific stands can rarely exhibit a recruitment 

pattern fitting the JC model. This seemingly paradoxical result is due to the progressive expansion 

of the exclusion zone surrounding all trees in the forest stand. In other words, as individual trees 

become more clustered and denser, their exclusion zones progressively overlap, leaving no safe 

place for an effective recruitment in the stand. This is consistent with the lack of JC evidence in 

many monospecific stands in temperate and boreal forests, including Fagus sylvatica in 

Mediterranean forests (Rita et al., 2021), as well as monodominant tropical forests (Hart et al., 

1989; Richards, 1996). In general terms, our model demonstrates the association between strong 

NF and lack of distance-dependent inhibition in dense, monospecific stands. This result reconciles 

NF with forest composition and should reduce the scepticism of many forest ecologists towards 

the JC model (Terborgh, 2020). 

Our third hypothesis supposed that the JC distribution should not be frequent in the case of 

rare species immersed in a matrix of heterospecific adults. This was largely confirmed by our 

numerical simulations demonstrating that a species with only 25% stand cover showed lower 

frequency of JC distribution compared to stands in which the species occurrence was at 50% and 

75% cover. This effect was observed in both low and strong NF conditions, and reflected the fact 

that the abundant presence of heterospecific adult neighbors provides a suitable place for 

recruitment overlapping with the exclusion zones by conspecifics and thus reducing the NF effect. 

Rare species are indirectly protected by non-host, neighboring heterospecifics, as predicted by the 

herd-immunity hypothesis, which reduces the probability of contact with propagules of the virulent 

plant enemies (Wills et al., 1997). In the case of the autotoxicity theory, the presence of leaf litter 

and root debris from heterospecifics likely results in the dilution of conspecific plant residues, thus 

providing soil patches free of NF even near conspecific mother plants. 

With respect to forest dynamics, our model simulations are consistent with robust field data 

on alternative species replacement reported in temperate and boreal forests around the globe, in 

stands co-dominated by two tree species (Fox, 1977). Notable examples include Fagus grandifolia 

with Acer saccharum, Picea rubens with Abies fraseri, Fagus grandifolia with Tsuga canadensis, 

and Picea engelmannii with Abies lasiocarpa (Whittaker & Levin, 1977; Woods, 1979; Runkle, 

1981; Waters & Savill, 1992). In all these studies, the recruitment of tree species was found to be 

significantly more abundant and healthier under heterospecific adults. In this context, on one hand 

our model shows that localized NF is able to explain species replacement in forest ecosystems. On 
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the other hand, the observation of decreasing JC recruitment patterns in codominated mixed forests 

reflects a reduced NF effect related to departure from monospecificity. 

Future model simulations can focus on multispecies systems to test the effect of adult density 

on distance-dependent inhibition also in forest stands with high tree diversity and also assess the 

fate of rare species having different levels of sensitivity to NF compared to the most abundant 

plant in the community (Van der Putten et al., 2013). Spatial comparison of numerical simulations 

with real data obtained from long-term forest censuses for tropical forests such as Barro Colorado 

(Condit, 1998), other tropical forests (Lewis et al., 2004), and temperate forests (Král et al., 2018) 

could be particularly useful to this goal. 

From a modelling point of view, future work could address the following points: (i) explicit 

representation of the germination and establishment processes separately to help disentangle the 

effect of different causal mechanisms due to either chemical autotoxicity or action of soil-borne 

pathogens. Specifically, the effect of chemical autotoxicity is reported to affect both germination 

and early seedlings’ growth, whereas soil-borne pathogens mostly affect the establishment phase. 

(ii) In order to provide a more general description of plant-soil interactions, the inclusion of 

facilitation by heterospecific biomass can be also explicitly considered to evaluate its relevance in 

the emergence of seedlings’ JC patterns. (iii) To test the effect species-specific characteristics like 

crown shape and seed dispersal strategies on the emergence of seedlings’ establishment patterns, 

different formulations of the biomass distribution and seed dispersal kernels could be 

implemented. (iv) Moreover, future studies could investigate the impact of the priority effect by 

simulating different colonization timings, as occurs in ecological succession, and the consequent 

effect on the recruitment of conspecifics. 

Finally, a challenge for future studies will be a spatially explicit definition of the exclusion 

zone in forests with different tree density and diversity. New-generation sequencing techniques 

may enable the production of fine-scale metagenomic maps coupled with an assessment of the 

conspecific extracellular DNA accumulated in the soil where the NF effects are observed. Such 

in-depth investigations on spatial information associated to tree recruitment distribution will be 

relevant to support the discussion on the putative mechanisms of the JC effect and to disentangle 

between the hypotheses of soilborne pathogens and self-DNA inhibitory effects, thus providing a 

better understanding of the spatial and temporal patterns of this important phenomenon. 
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4. PREDICTIONS OF ANNUAL XYLOGENESIS OF CONIFERS 

USING THE HYBRID MODELING APPROACH 
 

4.1 INTRODUCTION 
 

Phenological studies, which focus on the life cycle events of plants, have been a critical area 

of research in understanding the impacts of climate change. One group of plants that has received 

considerable attention in phenological studies are conifers. These trees, which are characterized 

by their needle-like leaves and cones, have significant ecological and economic importance 

worldwide. As global temperatures continue to rise, it is important to understand how the timing 

of key events in the wood growth could be affected. Phenological studies in conifers are vital to 

predicting the cambial growth characteristics and survival of these trees, providing insight into 

how they may respond to the changing climate. This introduction will explore the current state of 

knowledge on phenological studies in conifers, highlighting recent advancements and identifying 

key areas for future research. 

Annual cambial growth of conifers is highly dependent on climate conditions, and to 

accurately study and understand the cambial growth process, it is essential to take into 

consideration characteristics. Key climate characteristics that should be taken into consideration 

for annual cambial growth studies include temperature, precipitation, daylight longevity and soil 

conditions.  

It was shown on temperature changes during the growing season could explain up to 30% of 

the earlywood and latewood formation (Buttò V. et al., 2021). Also, precipitation could greatly 

effect on annual density fluctuations (Gao J. et al., 2020). Drought conditions caused delays in 

xylogenesis processes for Juniperus przewalskii, and precipitation could be a trigger for start of 

xylem formation (Ren P. et al., 2015).  Frost events are causing vulnerability to cavitation in 

spring, therefore, changing the transport processes (Dai, Y. et al., 2020). Either soil conditions 

(pH, nutrients) could change growth and geometrical properties of wood (Buras A. et al. 2020). 

The changes in plant hormones concentrations during season is one of the major drivers for cellular 

division and differentiation (Nieminen K. et al., 2008). Also, it was shown that growth season of 

Pinus massoniana with lower auxin concentration characterized by reduced amounts of xylem 

cells (Guo X. et al., 2021).  

Our model is extension of previous process-based model of one-cell system (Cartenì F. et 

al., 2018) on the multicellular cambial layer formation through the annual dynamics. This model 

is constructed to answer how the combination of environmental conditions (water regime, 
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temperature) affects growth processes and the formation of cambial patterns and formation of 

intra-annual density fluctuations. Also, our modeling framework could be used to extend other 

models in the field of developmental biology to multicellular level. 

Our model was tested on data for three species of conifers: Larix decidua, Pinus cembra, 

Picea abies with various characteristics of xylogenetic processes. 

Larix decidua, commonly known as European larch, is one of deciduous conifers, which 

plays an important ecological role, especially in mountainous regions of Europe. It serves as a 

pioneer species, often colonizing disturbed or barren areas (Da Ronch F. et al., 2016.). Its 

xylogenetic processes enable it to adapt and thrive in harsh environmental conditions, contributing 

to ecological succession and biodiversity in these regions. The annual shedding of needles of this 

specie is closely linked to the xylogenetic process. The xylogenetic process in Larix decidua is 

characterized by distinct seasonal growth patterns (Rossi S. et al., 2006). It experiences primary 

growth during the spring and early summer, exhibiting the formation of larger, thin-walled cells. 

This period is associated with the development of earlywood and is influenced by temperature and 

availability of moisture. Unlike many other conifers, Larix decidua has a prominent latewood 

formation. Latewood contains smaller cells with thicker cell walls, providing strength and 

structural stability to the wood.  

Pinus cembra (Swiss stone pine or Arolla pine) is evergreen conifer which had high frost 

hardiness. The xylogenetic process adapts to low temperatures by slowing down during winter 

dormancy (Gruber A. et al., 2009). This adaptation helps protect the tree from freezing and ensures 

its survival in harsh climates. Also, Pinus cembra exhibits a relatively low sensitivity to 

environmental factors such as temperature and precipitation variations. It can tolerate a wide range 

of conditions, including nutrient-poor soils and high-altitude habitats. The xylogenetic process in 

Pinus cembra shows a remarkable ability to withstand and adapt to changing environmental 

conditions. 

Picea abies (Norway spruce) is evergreen conifer which is sensitive to environmental 

changes, particularly regarding temperature and moisture availability. Environmental factors 

strongly influence its xylogenetic processes, affecting the timing, duration, and rate of growth 

(Horacek, P. et al., 1999). Consequently, Picea abies growth rings can serve as indicators of past 

climate variations and provide valuable information for climate reconstructions.  
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4.2 METHODS 
 

4.2.1 Model assumptions 

 

Our process-based model describes the earlywood-to-latewood transition of cambial cells 

for conifers. The model describes three types of cells: cambial, protoxylem, and xylem; and their 

individual characteristics: cell area, wall area, lignified area, wall thickness. Our model is hybrid 

and use ODE for describing continuous intracellular processes (growth, enlargement, wall 

deposition, lignification) coupled with discrete events: cellular division, cellular death. Model is 

implemented used Python3 and libraries (pandas, numpy, math, scipy, matplotlib, random). 

Following assumptions were made: 

1. Daily temperature (Buttò V. et al., 2021) and precipitation (Krepkowski, J. et al., 2011) are 

two major factors affecting cambial growth and differentiation. 

2. The effect of hormonal regulation through the season was not considered since lack of 

high-resolution data of auxin fluxes throught the annual season of conifers. 

3. Wall deposition gradually slows down cell enlargement (Cartenì F. et al., 2018). 

4. The deposition of cellulose and lignin is regulated by the availability of soluble sugars 

(Cartenì F. et al., 2018); 

5. The availability of soluble sugars for xylem growth is depended on temperature and 

precipitation (Huang J. G. et al., 2020) and calculated as difference between all synthesized 

sugar and primary growth.  

6. For simplicity of model analysis results, we keep constant number of cambial cells (equal 

to 7) through the whole season as well as their potential activity for divisions, however, 

usually cambial cells number is varied from 5 to 8 cells on various species (S. Rossi et al., 

2008).  

7. Hardness of cells is linearly proportional to its wall thickness (Rao R. V. et al., 1997) 
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4.2.2 Modeling pipeline  

 

Overall, our xylem model combines three main parts: 

- Water potential model, which used daily data of precipitation to calculate available water 

for xylogenesis (water potential parameter). Water potential (WP) parameter vary from 0 to 1 

(which depends on precipitation.  

- Sugar model, which calculates available sugar concentration according water potential and 

temperature. 

- Xylem growth model, which use hybrid implementation: agent-based formalism for 

description of cellular divisions and xylem formation, and PDE formalism for describing processes 

of growth, enlargement, wall deposition and lignification. As input, our model uses daily water 

potential and sugar concentration obtained from models I, II and other parameters described in 

4.2.3-4.2.4 sections. As output, model produce cell stripe consisting of cambial, protoxylem/xylem 

cells.  

 

 

Figure 1. Overall modeling scheme. As inputs, our model is requires daily temperature and 

precipitation data. Based on precipitation our model estimate water potential and use it with 

temperature data to calculate available sugars for secondary growth. As a result, sugar and water 

potential coupled with model parameters used for input to main model of xylem growth. Main 

model starts with 7 cambial cells which growth and divide according available sugar and water; 

as a result, the model produce stripe of cambial/protoxylem/xylem cells and generate output. 

Parameters of xylem growth model were calibrated manually and by using function Minimizer 

from package lmfit (https://lmfit.github.io/lmfit-py/, Newville M. et al., 2016).  
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Results of our model can be directly compared with the phenological data (number of 

protoxylem/xylem cells and their geometrical properties (cell area, wall thickness/wall area). We 

estimate coefficient of correlation between observed and calculated data. Initial calibration of 

model was performed manually, but the final calibration is performed using function Minimizer 

from package lmfit v. 1.0.3 (Newville M. et al., 2021, lmfit.github.io/lmfit-py/).  

 

4.2.3 Model equations 

 

Water potential model 

Water potential is calculated according daily precipitation. Soil thickness (soilt) and soil 

porosity (soilp) are calibration parameters for this equation.  

𝑑(𝑊𝑃)

𝑑𝑡
=

min(𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛; 𝑠𝑜𝑖𝑙𝑡∗𝑠𝑜𝑖𝑙𝑝)−𝑊𝑃

𝑠𝑜𝑖𝑙𝑡∗𝑠𝑜𝑖𝑙𝑝
;  

Therefore, daily water potential is dependent on precipitation as well as soil thickness and soil 

porosity. 

Sugar model 

Available sugar for primary and secondary growth (sugarg) function is calculated according 

following ODE: 

𝑑(𝑠𝑢𝑔𝑎𝑟𝑔)

𝑑𝑡
= 𝐿𝑠 ∗ (1 − 𝑠𝑢𝑔𝑎𝑟𝑔) ∗ min (𝑅𝑠𝑢𝑔(𝑇);  𝑅𝑠𝑢𝑔(𝑊𝑆)); where WS is a index of water 

stress: WS = 1 – WP; Ls - sugar linear parameter used for calibration; 𝑅𝑠𝑢𝑔(𝑇) and 𝑅𝑠𝑢𝑔(𝑊𝑆) are 

response functions to temperature and water stress. 

Response function of temperature calculated as follows: 

if daily temperature is not lower than minimal temperature for growth and not higher than maximal 

temperature for growth (𝑡𝑚𝑖𝑛𝑔𝑟 <  𝑡𝑒𝑚𝑝 < 𝑡𝑚𝑎𝑥𝑔𝑟), than: 

𝑅𝑠𝑢𝑔(𝑇) =  
2∗(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑔𝑟)𝑎𝑙𝑝ℎ𝑎)∗((𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟)𝑎𝑙𝑝ℎ𝑎)−(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑔𝑟)(2∗𝑎𝑙𝑝ℎ𝑎))

(𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟)(2∗𝑎𝑙𝑝ℎ𝑎) ,  

where alpha = 
ln (2)

ln (
𝑡𝑚𝑎𝑥_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟

𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟
)
; else Rsug(T) = 0. 

Response function of water potential calculated as follows: 

𝑅𝑠𝑢𝑔(𝑊𝑆) =  
1

1+(
𝑊𝑆

𝑊𝑆𝑐𝑜𝑒𝑓𝑓
)

5 ; where WS – water stress parameter, WScoeff – water stress coefficient. 

Available energy of photosystem is limited by temperature and water: 

PS =  min (𝑅𝑝ℎ𝑠(T); 𝑅𝑝ℎ𝑠(WS)) 

𝑅𝑝ℎ𝑠(𝑇) =  
2∗(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑤𝑑)𝑎𝑙𝑝ℎ𝑎)∗((𝑡𝑜𝑝𝑡_𝑤𝑑−𝑡𝑚𝑖𝑛_𝑤𝑑)𝑎𝑙𝑝ℎ𝑎)−(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑤𝑑)(2∗𝑎𝑙𝑝ℎ𝑎))

(𝑡𝑜𝑝𝑡_𝑤𝑑−𝑡𝑚𝑖𝑛_𝑤𝑑)(2∗𝑎𝑙𝑝ℎ𝑎)
, alpha = 

ln (2)

ln (
𝑡𝑚𝑎𝑥_𝑤𝑑−𝑡𝑚𝑖𝑛_𝑤𝑑

𝑡𝑜𝑝𝑡_𝑤𝑑−𝑡𝑚𝑖𝑛_𝑤𝑑
)
; else Rphs(T) = 0; 
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𝑅𝑝ℎ𝑠(𝑊𝑆) =  
1

1+(
𝑊𝑆𝑖𝑛𝑑𝑒𝑥

𝑊𝑆𝑤𝑑_𝑠𝑒𝑛𝑠_𝑐𝑜𝑒𝑓𝑓
)

5 ; 

Primary growth of plant is limited by available sugars and photosystems energy.  

G1 = min (𝑠𝑢𝑔_𝑐𝑜𝑒𝑓𝑓 ∗ 𝑠𝑢𝑔𝑎𝑟𝑔𝑟𝑜𝑤𝑡ℎ; 𝑃𝑆𝑐𝑜𝑒𝑓𝑓 ∗ 𝑃𝑆) 

Finally, available sugar concentration is calculated as difference between photosystem energy (PS) 

and primary growth (G1): 

[S] = PS – G1 

Xylem growth model 

From original model (Cartenì F. et al., 2018) we used the formulas for cell geometry descriptions 

and modified versions of ODE equations for growth, enlargement, wall deposition and 

lignifications. 

In total, we have three distinct types of cells: cambial, protoxylem and xylem cells. 

Cambial cells have ability to growth and divide.  

Growth of cambial cells is increasing of cell area and its proportional to the available sugars [S] 

as well as depends on temperature and water potential according following fuction: 

𝑑𝐶𝐴

𝑑𝑡
= 𝑉𝑔 ∗

[𝑆]

[𝑆]+𝐾𝑠𝑢𝑔
∗ 𝑅𝑔(𝑊) ∗ 𝑅𝑔(𝑇);  

CA – cell area,  

Vg – growth constant (specie-specific), 

[S] – sugar concentration, 

𝑅𝑔(𝑊) =
1

1+𝑒(𝑠𝑙𝑜𝑝𝑒∗(𝑊𝑃−𝑊𝑃𝑚𝑝_𝑔𝑟)) WP – water potential, WPmp_gr – middle point of water 

potential.  

𝑖𝑓 𝑡𝑚𝑖𝑛𝑔𝑟 <  𝑡𝑒𝑚𝑝 < 𝑡𝑚𝑎𝑥𝑔𝑟: 

𝑅𝑔(𝑇) =  
2∗(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑔𝑟)𝑎𝑙𝑝ℎ𝑎)∗((𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟)𝑎𝑙𝑝ℎ𝑎)−(𝑡𝑒𝑚𝑝−𝑡𝑚𝑖𝑛_𝑔𝑟)(2∗𝑎𝑙𝑝ℎ𝑎))

(𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟)(2∗𝑎𝑙𝑝ℎ𝑎)
, alpha = 

ln (2)

ln (
𝑡𝑚𝑎𝑥_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟

𝑡𝑜𝑝𝑡_𝑔𝑟−𝑡𝑚𝑖𝑛_𝑔𝑟
)
; else Rg(T) = 0 

Abbreviations: tmin_gr – minimal temperature for growth, topt_gr – optimal temperature for 

growth, tmax_gr – maximal temperature for growth, temp – daily temperature. Evidence of 

existence of threshold temperatures for xylogenetic processes is provided by S. Rossi et al. (2007).  

Division of cambial cells is occurring when cell area reach two-times initial cell area (CA0). Old 

cell is dividing into two cells with variation of CA between cells up to 22% (from 45% to 55%).  

Protoxylem cells have ability to enlarge and synthesize of cell wall and lignification. Protoxylem 

cell become xylem cell when their wall area is completely lignified (LWA ≥ WA) or when lumen 

area/cell area 
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Enlargement of protoxylem cell is corresponding with its hardness, which had linearly 

dependence of wall thickness 

𝑑𝐶𝐴

𝑑𝑡
= 𝑉𝑒 ∗ (1 − 𝑚𝑖𝑛(1,

ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠

ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠_𝑡𝑟
) ∗ (1 −

𝐶𝐴

𝐶𝐴𝑚𝑎𝑥
), where CA – cell area, CAmax – maximal cell 

area, hardness = hardness0 + WT*hardnesscoeff, hardness_tr – hardness threshold,  

Wall deposition (
𝑑𝑊𝐴

𝑑𝑡
) and lignification is proportional to available sugars [S] and limited by 

maximum wall area (WAmax) and proportion of cell area to wall area. Calibration parameters are 

mw and sw for wall deposition and ml, sl for lignification. 

 

𝑑𝑊𝐴

𝑑𝑡
= 𝑉𝑤 ∗

[𝑆]

[𝑆] + 𝑘𝑠𝑢𝑔
∗ (1 −

𝑊𝐴

𝑊𝐴𝑚𝑎𝑥
) ∗ (1 +

1

(1 +
𝐶𝐴 − 𝑊𝐴

𝑚𝑤
)𝑆𝑤

) 

Lignification process 

𝑑𝐿𝑊𝐴𝑑𝑡 = 𝑉𝑙 ∗
[𝑆]

[𝑆] + 𝑘𝑠𝑢𝑔
∗ (1 +

1

(1 +
𝐶𝐴 − 𝑊𝐴

𝑚𝑙
)𝑆𝑙

) 
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4.2.4 Model parameters  

 

In this section presented parameters used for calibration of the model. 

Temperature parameters. We used for calibration following temperature parameters: minimal 

temperature (Tmin), started from which cells can growth (GR)/expand (EXP)/deposit a cell wall 

(WD); optimal temperature for these processes (Topt) when the value function of temperature 

response = 1, and maximal temperature (Tmax). Below maximal temperature and above minimal 

temperature processes of growth, enlargement and wall deposition is completely stopped. 

Geometrical parameters of cells are defined by their geometrical parameters: starting cell area 

(CA0), cell tangential diameter (CTD), maximal wall area (WAMAX), maximal cell area (CAMAX), 

hardnessTR – threshold value for hardness, hardness0 – initial value of hardness.  

Velocity parameters of growth (Vg), enlargement (Ve), lignification (Vl), wall deposition (Vw).  

Additional parameters used for calibration of wall deposition are Mw, Sw and for lignification 

processes Sl.  

Parameters used for calibration of water response functions: middle points (MP) of enlargement 

(MPENL), growth (MPGR), wall deposition (MPWD), lignification (MPLF), slope of water function 

(SLP). 
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Table 1. List of parameters used in the simulation’s setup 

Parameter 

Larix decidua 

Picea abies 

Pinus 

cembra 

Ksug 0.31 0.08 0.12 

Vg 147.0 123.0 155.0 

Ve 57.3 54.7 188.6 

Vl 49.3 20.1 58.4 

Vw 134.6 133.9 95.8 

Mw 662.8 798.8 768.9 

Sw 8.19 8.12 8.81 

Ml 991.6 926.7 457.4 

Sl 7.43 5.81 8.89 

hardnessTR 0.68 0.63 0.64 

hardness0 0.05 0.07 0.08 

CA0 260.6 393.6 391.1 

TminGR -9.80 5.92 -3.10 

ToptGR 14.19 12.17 15.71 

TmaxGR 33.06 26.85 18.93 

TminEXP 2.42 -7.53 -10.48 

ToptEXP 12.87 14.63 12.19 

TmaxEXP 30.58 37.03 36.28 

TminWD 4.54 4.35 0.43 

ToptWD 13.56 11.03 13.45 

TmaxWD 21.10 23.77 18.46 

TminLG - 0.12 - 8.18 0.0 

ToptLG 13.7 13.5 11.0 

TmaxLG 20.7 27.1 27.8 

CTD 20.2 37.3 34.8 

WAMAX 720 321 564 

CAMAX 4137 1548 1698 

MPENL 0.10 0.10 0.04 

MPGR 0.04 0.09 0.06 

MPWD 0.12 0.07 0.12 

MPLF 0.04 0.11 0.16 

SLP -21.40 -25.28 -24.34 
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4.3 RESULTS  
 

Studying cellular characteristics (wall thickness, cell area), and the number of cells during 

annual xylogenesis is crucial for understanding the process of wood formation in conifers. 

Therefore, the main goal of our simulations was to estimate the ability of our model to predict this 

characteristic based on available data for Larix decidua, Pinus cembra and Picea abies from 

Cartenì et al. (2018). We used the available data for cellular dynamics during the annual season 

regarding type of cells (cambial, protoxylem, xylem cells) to compare these measurements with 

model in the same points of time (130 – 280 days of the calendar year). These results are presented 

at subfigures A on Figures 2 – 4. On the subfigures B – C are presented comparisons of lumen 

area and wall thickness in the end of the season (at 330 day of the calendar year). 

For correct comparison of geometrical properties of cells between observed data and 

obtained numerical simulations, we used interpolation with size of array equal to 100. 

Results obtained for Pinus cembra are presented at Figure 2. Our model produced similar 

results for cellular geometry (Fig. 2 B, Fig. 2 C) as well as cellular dynamics (Fig. 2 A). Correlation 

coefficients are: R2 = 0.92 for protoxylem cells dynamics and R2 = 0.75 for xylem cells. Percentage 

of errors between observed data and numerical simulations for lumen area is equal to 30%, and 

for wall thickness is equal to 9%.  

Results obtained for Picea abies are presented at Figure 3. Our model produced similar 

results for cellular geometry (Fig. 3 B, Fig. 3 C) as well as cellular dynamics (Fig. 3 A). Correlation 

coefficients are: R2 = 0.95 for protoxylem cells dynamics and R2 = 0.73 for xylem cells. Percentage 

of errors between observed data and numerical simulations for lumen area is equal to 25%, and 

for wall thickness is equal to 15%. 

Results obtained for Larix decidua are presented at Figure 4. Our model produced similar 

cellular dynamics (Fig. 4 A) but differs in results for cellular geometry (Fig. 4 B, Fig. 4 C). 

Correlation coefficients are: R2 = 0.79 for protoxylem cells dynamics and R2 = 0.78 for xylem 

cells. Percentage of errors between observed data and numerical simulations for lumen area is 

equal to 65%, and for wall thickness is equal to 61%. 
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Figure 2. Results obtained for Pinus cembra. On section A is presented annual dynamics of 

cellular numbers for each day of the growth season. Observations are presented by points and the 

computational results are presented by continuous line. On section B is presented lumen areas of 

cells in the end of the season: black line is presents observed data; gray line is presenting 

computational results. On section C is presented wall thickness of cells in the end of the season: 

black line is presents observed data; gray line is presenting computational results. 
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Figure 3. Results obtained for Picea abies. On section A is presented annual dynamics of 

cellular numbers for each day of the growth season. Observations are presented by points and the 

computational results are presented by continuous line. On section B is presented lumen areas of 

cells in the end of the season: black line is presents observed data; gray line is presenting 

computational results. On section C is presented wall thickness of cells in the end of the season: 

black line is presents observed data; gray line is presenting computational results. 
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Figure 4 Results obtained for Larix decidua. On section A is presented annual dynamics of 

cellular numbers for each day of the growth season. Observations are presented by points and the 

computational results are presented by continuous line. On section B is presented lumen areas of 

cells in the end of the season: black line is presents observed data; gray line is presenting 

computational results. On section C is presented wall thickness of cells in the end of the season: 

black line is presents observed data; gray line is presenting computational results. 
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Our model is pretty accurate in describing dynamics of multicellular xylogenetic processes, 

however, in terms of describing cellular geometry, our model predictions fit better for typical 

conifers with large cells with thin walls (Picea abies, Pinus cembra). However, the modeling 

results clearly shown that environmental factors alone, even with some mechanistical assumptions, 

are not able to completely describe both the spatial and temporal resolution of conifers growth. 

For instance, the inclusion in the model additional components, such as turgor limitations, could 

improve the modeling results (Peters R. L. et al., 2021). In addition, the increase of availability 

and use of non-destructive methods for wood quality assessment in standing trees in recent years 

could greatly help to achieve more consistent predictions of models (Drew D. M. et al., 2022). The 

obtained results speaks in favor of different contribution of temperature and soil moisture in 

conifers growth, which is demonstrated even after selecting species-specific parameters in the 

model.  
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4.4 DISCUSSION 
 

Modeling the xylogenesis processes of conifers is very promising approach in plant science 

research, which offers new horizons for understanding the complex mechanisms underlying wood 

formation. By developing accurate and comprehensive models, scientists can gain insights into the 

physiological, environmental, and other factors that influence xylogenesis. This knowledge has 

far-reaching implications for various fields, including plant biology, forestry, climate change 

research, and sustainable resource management. Described model is extends previous process-

based modeling approach of Cartenì, F. et al. (2018) and confirns its predicting power for multi-

cellular systems. However, adding of seasonal dynamics into described multicellular model of 

xylogenesis resulted in  more complex output and adds the additional steps for calibration of model 

results and require comparisons of cellular seasonal dynamics.  

In the future, accurate models of xylogenesis enable us to predict and assess the impacts of 

climate change on forest ecosystems, since conifers serve as vital agents in carbon sequestration 

and play a role in regulating global climate patterns. By incorporating climatic factors into 

xylogenesis models, researchers can simulate how changing temperature and precipitation regimes 

might affect wood formation. Such predictions allow for proactive management strategies to 

mitigate the potential negative consequences of climate change on forest health and productivity. 

However, it is important to acknowledge that current models of xylogenesis still have certain 

limitations and challenges. One major limitation is the complexity and variability of both the 

internal and external factors influencing wood formation. Environmental conditions, such as 

temperature, moisture, and light availability, interact with genetic factors, hormonal signaling 

pathways, and developmental programming. Capturing these complex interactions accurately in 

models remains a significant challenge. Another limitation is the scarcity of long-term and high-

resolution datasets required to develop and validate these models. Obtaining comprehensive data 

on xylogenesis processes across different species, environments, and spatial scales is essential for 

robust model development. The lack of such data, especially for long-lived conifers, hinders the 

accuracy and precision of predictions made by these models. 
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5. GLOBAL CONCLUSIONS 
 

Systems biologists face many challenges when modeling biological processes from available 

data. It is still not possible to directly use big data, such as transcriptomic datasets, for developing 

the precise multi-cellular models. One of the open opportunities is to use hybrid models, which 

vastly reduce the computational costs and able to describe the key components of the processes. 

The hybrid models approach in biology offers a powerful and promising method to study complex 

biological systems. By combining different modeling techniques and experimental data, hybrid 

models enable a more comprehensive understanding of biological processes. The importance of 

hybrid models lies in their ability to capture the multifaceted nature of biological systems, where 

interactions between various components can be nonlinear and exhibit emergent properties. 

Hybrid models provide a means to integrate different levels of organization, such as molecular, 

cellular, and organismal scales, and bridge the gap between theoretical predictions and 

experimental observations. Such models allow scientists to generate testable hypotheses, make 

predictions, and gain deeper insights into the underlying mechanisms driving biological 

phenomena. 

Despite its potential benefits, the development and application of hybrid models in biology 

pose significant challenges. One major hurdle is the integration of disparate data types and model 

frameworks. Different types of data, such as genetic, physiological, and ecological measurements, 

often come with their own complexities and limitations. Harmonizing and reconciling these data 

sources to create a cohesive and accurate hybrid model can be a technically demanding 

task.Furthermore, hybrid models require robust computational infrastructure and advanced 

analytical methods to handle the large volumes of data and complex mathematical algorithms 

involved. Model parameterization, validation, and calibration become intricate processes due to 

the increased complexity and heterogeneity of hybrid models. Additionally, model interpretation 

and analysis can be challenging, as hybrid models introduce new layers of complexity that 

necessitate scrutiny to differentiate noise from meaningful patterns. 

Despite these challenges, the development and application of hybrid models in biology hold 

immense potential for advancing our understanding of complex biological systems. As 

computational power and data availability continue to improve, the hybrid models approach offers 

an increasingly valuable tool for addressing fundamental questions, making predictions, and 

guiding experimental design in biology. By overcoming the technical difficulties and refining 
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modeling techniques, hybrid models have the capacity to unlock new insights and contribute to 

breakthroughs in the field of biology. 

Based on this work, the author can confidently conclude that the general-purpose Python 

language is suitable for the development of new hybrid models in biology. Standard libraries such 

as pandas, numpy, math, scipy, odeint can become the basis for the development of object-oriented 

models in biology as well as for discrete-continuous calculations, and matplotlib and other 

packages are able to visualize the results in both one-dimensional and two-dimensional scales.  

However, to move to three-dimensional hybrid modeling of biological processes, standard 

libraries alone are not enough. There is an urgent need to develop new open libraries for non-

commercial use by scientists for popular general-purpose languages which will provide three main 

components: 

1. Standardization of laws and objects, relationships between them. In three-dimensional 

space, such objects may include cell lattices, transport channels between them, flows of water and 

metabolites, as well as the mechanistic properties of cells. 

2. Standardized visualization of results allowing comparison between experimental and in 

silico data 

3. Possibility of flexible calibration of parameters according to available data. 

In addition, it is necessary to provide users with detailed documentation and the ability to 

add/edit functions. It is difficult to overestimate the technical component for the construction and 

development of models for non-professional biological programmers; for example, the author 

spent about a year of PhD work just to correctly implement the two ecological models presented 

in this work. 
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