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Abstract 
This document describes preliminary results of the research activities carried 
out within the PhD in Information and Communication Technology for Health 
(ICTH) on the topic of Delivery Manager of Cognitive Computing for 
Neuroncology at the Department of Electrical Engineering and Information 
Technologies (DIETI) of the University of Naples “Federico II”. Primary 
endpoint of this research line is the evaluation of an innovative computational 
system based on cognitive computing technologies, namely the open-source 
PyTorch-based deep learning framework for medical data named 
FuseMedML, for the analysis of magnetic resonance imaging derived data in 
patients with brain neoplasm of unknown origin; main goal is to obtain a semi-
supervised binary classification model which allows the timely identification 
of the two most common malignant brain tumours of the adulthood, requiring 
therapeutic strategies and clinical-radiological monitoring different the one 
from the other. Secondary endpoint is to test whether the proposed binary 
classification model can predict brain tumour classification more accurately 
than conventional assessment carried out by trained human readers, in order 
to determine if the prediction model based on cognitive computing 
technologies can be able to supplement information and support 
neuroradiologists in decision-making for daily clinical practice in 
Neuroncology. 
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Chapter 1 
 

Introduction 
 

Machine learning, defined as a subfield of Artificial Intelligence (AI) in which 
computers can learn and iteratively improve a task performance without being 
explicitly programmed but only based on the data collected, is increasingly 
gaining ground in the medical field thanks to its rapid progresses and over-
increasing impact on clinical care, education and research. Most recent 
successes encompass a wide spectrum of medical sub-specialties, ranging 
from very early identification of laboratory alterations associated with high 
morbidity and mortality conditions to automated interpretation of imaging 
findings [1]–[3]. It can therefore be reasonably assumed that AI and machine 
learning can progressively revolutionize image processing pipelines and be 
integrated into routinary clinical workflows; especially in the radiological 
field, as we are moving into the era of computer-aided diagnosis, the 
application of AI tools based on machine learning and cognitive computing in 
imaging pattern recognition may implement diagnostic procedures and 
support physicians in daily clinical practice for what concerns imaging-guided 
procedures or imaging-related decisions. From a practical standpoint, AI 
technologies supplement information for humans to make decisions, by 
resorting to algorithms learning from large data sets to solve problems and 
continuously apprehending from constantly changing data and/or self-
correction mechanisms. These processes mimic the human cognitive functions 
in stratified learning and problem solving, in order to perform higher-order 
complex data synthesis in a shorter time. 
Due to its intrinsic properties, one of the most promising fields of application 
of cognitive computing and AI techniques to medical imaging is represented 
by brain imaging, more specifically in the field of Neuroncology [[4]]. 
Neuroncology is the branch of medicine that focuses on the study of tumours 
arising in or from the central nervous system (CNS). Neuroncology imaging 
consists of diagnostic methods that non-invasively evaluate brain tumours 
before, during and after treatments, with Magnetic Resonance Imaging (MRI) 
representing the most reliable and widespread used technique. Indeed, MRI 
plays a key role in the identification of brain tumours and has become a 
mandatory step during preoperative evaluation to aid determination of tumour 
type, grade and overall prognosis; information provided by MRI examination 
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can also influence surgical choices and radiation treatment planning, help in 
predicting drug efficacy, and monitoring treatment response and efficacy 
[[5]]. Among different brain tumour types, from an epidemiological 
standpoint the two most prevalent entities in western adult population are 
represented by brain metastases and high-grade gliomas [6]. Brain metastases, 
defined as secondary localizations to the CNS of primary neoplastic lesions 
arising in another organ or system, represent the most common malignant 
brain tumour of the adulthood; generally multiple and more frequently 
diagnosed in advanced disease stages in patients with a known cancer history, 
metastases can rarely be single and represent the first clinical manifestation in 
patients with no previous history of systemic cancer. Primary brain tumours, 
defined as neoplastic lesions originating from the cells of the nervous tissue, 
are far less common. Among these lesions, the most frequent subtype in the 
adulthood is represented by glioblastoma (GBM), a primary high-grade 
neoplasm arising from glial cells located within the nervous tissue; this kind 
of lesion is characterized by significant local biological aggressiveness, low 
tendency to dissemination outside the CNS and overall poor prognosis. 
Patients with clinical signs and symptoms suspected of the presence of an 
expansive brain lesion usually undergo brain imaging, largely relying on MRI 
examination; the results of neuroimaging examinations are required to guide 
the most appropriate diagnostic-therapeutic workflow for each patient, in 
order to confirm diagnostic suspicion and optimize treatment planning as well 
as long-term follow-up. However, at MRI examination GBMs and single brain 
metastases (SBMs) may present with similar features on conventional 
imaging, thus raising important issues in terms of early identification and 
differentiation; in these cases, further and more invasive investigations, which 
are both time-consuming and cost-consuming at the same time, are frequently 
required [6]. With this background, in recent years several strategies of 
automated computer image analysis have been explored as a potential support 
for physicians to provide higher diagnostic accuracy both in tumour 
recognition and classification [7]. 
The core of the presented research activity is to evaluate the role for innovative 
computational systems based on visual recognition and cognitive computing 
technologies in enhancing MRI characterization of brain neoplasms, with 
specific reference to the recently introduced open-source PyTorch-based deep 
learning framework for medical data FuseMedML [8]; FuseMedML is a 
comprehensive machine learning library developed by IBM research group on 
Artificial Intelligence on Healthcare and Life Sciences Discovery, that mainly 
focuses on the biomedical domain. It offers several tools for accelerated 
machine learning, with the goal of simplifying and streamlining medical 
research activities, especially in terms of model training and evaluation [9]. 
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Such technology harbours the potential to aid neuroradiologists for diagnostic-
prognostic-therapeutic purposes and limiting inter/intra-observer variability 
either in qualitative or quantitative images interpretation. As ancillary but not 
less important purpose, the paper also explores the difference in diagnostic 
performances between the above-mentioned computational system and human 
visual raters with different expertise in the field of Neuroncology imaging, 
thus analysing whether they could benefit from assistance by pre-trained 
image classification tool.  
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Chapter 2 
 

Background, aims and scopes 
 
 
2.1 Clinical and Radiological Background 
 
Adult intra-axial brain neoplasms are expansive lesions affecting the CNS, 
originating within the brain or the spinal cord (differently from extra-axial 
lesions which instead originate outside the brain from nerves, meninges, etc.). 
Intra-axial tumours can be mainly classified into primary and secondary; 
primary lesions derive from nervous cells within the nervous tissue, with 
variable biological aggressiveness; conversely, secondary lesions are 
malignant intra-axial localizations resulting from the metastatic spread to the 
nervous tissue of a primary neoplasm of a different organ or tissue. 
Regardless of lesion type, the clinical manifestations due to the presence of an 
intra-axial mass are extremely variable and strongly influenced by location 
and size, with no substantial difference in the case of primary or secondary 
CNS tumours. Symptoms and signs largely rely on infiltrative phenomena on 
the nervous tissue in eloquent areas, compression and distortion of the healthy 
nervous tissue, uncontrolled raise in intracranial pressure, obstacle to normal 
cerebrospinal fluid circulation, and infiltration of vascular structures close to 
the tumour. The onset of patient-reported symptoms may be insidious and 
non-specific, ranging from headache to nausea and vomiting, from vertigo to 
unexplained behavioural changes; epilepsy may be another presenting 
symptom, therefore all patients with a first epileptic seizure episode in 
adulthood must be directed to instrumental examinations of second level to 
rule out an unrecognized brain neoplasm. Focal neurological symptoms such 
as speech disturbance, motor or sensitive deficits are less usual and more 
commonly observed in case of lesions located in eloquent cortical areas; 
finally intra-axial lesions can also be asymptomatic, thus represent an 
occasional finding in case of radiological examinations carried out for other 
reasons, as well as during disease staging when brain examinations are 
performed to rule out possible secondary CNS lesions [6]. In case of brain 
lesion suspected for GBM or SBM, contrast-enhanced MRI still represents the 
golden standard first-line examination for both non-invasive characterization 
and pre-surgical planning [10]–[12]. 
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2.1.1 Conventional MRI: basic considerations 
 
Contrast-enhanced MRI is the diagnostic modality of choice in patients 
suspected with brain tumour, as it provides both bidimensional and 
tridimensional imaging of the lesion on the three orthogonal planes, allowing 
for its location, size and extent depiction with optimal tissue characterization 
and nearby structures discrimination; moreover, the use of advanced MRI 
techniques (such as for example perfusion weighted imaging, functional MRI, 
magnetic resonance spectroscopy, or diffusion tensor tractography) can 
provide additional information, crucial for both pre-operative planning and 
response to therapy monitoring. Minimum requirements for conventional MRI 
examination in patients with brain tumour should always include at least one 
volumetric acquisition on T2w and on pre/post-contrast T1w (before and after 
gadolinium-based contrast media administration); the use of T2* acquisitions 
or, even more, susceptibility weighted imaging have completely replaced 
computed tomography for the identification of haemorrhagic foci and inner 
calcifications; diffusion weighted imaging (DWI) with relative apparent 
diffusion coefficient (ADC) maps is essential to define tumour cellularity and 
exclude vascular complications. Despite today perfusion acquisitions should 
always represent an integral part of basic MRI examination for intra-axial 
tumour first diagnosis, it is still not routinely used, regardless of the efforts to 
standardize their acquisition and provide comparable results [13]; conversely, 
advanced techniques are used from time to time by the neuroradiologist in 
accordance with the neurosurgeon, depending on anatomical characteristics 
and on the contribution they can provide for therapeutic planning.  
Brain computed tomography is currently reserved to patients with formal 
counter indication to MRI (i.e., incompatible pacemakers and implantable 
devices), in case of emergencies (i.e., haemorrhagic transformation, ischemia, 
etc), or in case of patient refusal. Finally, radiometabolic techniques and 
nuclear medicine investigations (such as brain scintigraphy or positron 
emission tomography) are used as integration to MRI examination in selected 
or doubtful cases.  Although MRI is crucial for brain tumour diagnostic 
workout, the final diagnosis still largely relies on histopathological 
examination after biopsy or tumour resection, coupled to 
immunohistochemical and molecular biology analysis [14]. 
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2.1.2 Glioblastoma 
 
Among primary lesions of the CNS, the most frequent are those arising from 
the glial cell-line, with GBM representing the most common histologic type 
in adults (as well as the one associated with the worst prognosis); despite its 
relatively low incidence compared to other tumour types (between 5-20 cases 
per 100,000), due to its biological aggressiveness GBM is responsible for 
about 2% of all cancer mortality, a trend that has been increasing over the past 
three decades.  GBM can be further divided in two sub-categories depending 
on the absence or presence of a mutation in the two isocitrate dehydrogenase 
enzymes involved in cytoplasmic (IDH1) and mitochondrial (IDH2) 
conversion of alpha-ketoglutarate to D-2-hydroxyglutarate. In most cases, 
GBM adult-variant is represented by IDH wild-type lesions (i.e., de novo 
putative mutations, with brain tumour probably resulting from the rapid 
malignant transformation of an astrocytic precursor). In a minority of GBM 
patients, a mutation in IDH genes can be detected at pathological examination, 
thus suggesting GBM arising from malignant transformation of a lower grade 
astrocytoma (of which GBM represents the pathological continuum). 
On MRI IDH-mutated and wild-type GBMs are indistinguishable, with 
evidence of diffusely infiltrating lesion with irregular margins and large 
necrotic-haemorrhagic core; solid components usually show weak DWI 
restriction and intense post-contrast enhancement, with a variable raise in 
perfusion parameters due to increased angiogenesis; calcification on T2* 
imaging is sporadic. Intense peri-lesional infiltrative oedema is also present, 
with variable invasion of the adjacent structures. An example of wild-type 
GBM MRI appearance is shown in Figure 1.  
Depending on the number of observed lesions, GBM can also be divided into 
monofocal (single enhancing lesion with variable infiltrative oedema halo), 
multifocal (multiple enhancing lesions with a single halo of infiltrative 
oedema) and multicentric (multiple enhancing lesions, each one with its own 
halo of infiltrative oedema). The most important differential diagnoses should 
include brain metastases (specially SBM, typically large and hypervascular), 
as well as the far uncommon gliosarcoma. 
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Figure 1. Conventional MRI imaging in a 59 years-old patient newly diagnosed with 
suspected right frontal-parietal high-grade glioma. (A) Axial post-contrast T1w 3D 

imaging with orthogonal reconstruction. (B) Multiparametric 2D imaging at the 
same level of the lesion: upper row (left to right), FLAIR, DWI (b=1000) and 

relative ADC map; bottom row (left to right), T2*, T1w GRE and contrast-enhanced 
T1w GRE. Final histopathological analysis after partial tumour resection confirmed 

the diagnosis of glioblastoma, wild-type. 
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2.1.3 Solitary brain metastasis 
 
 
Metastases account for over a half of all brain neoplasms, far more common 
in case of primary lung, breast and skin tumours. Their incidence increased in 
recent years (prevalence ranging between 20-40% depending on the primary 
lesion type); such an increase is to be attributed both to the overall longer 
survival rate of cancer patients due to new therapeutic discoveries, as well as 
to technical progresses in the field of prevention and diagnostic technologies. 
Although the most common, intra-axial spread is only one of the possible 
patterns of secondary diffusion of primary neoplasm to the CNS, along with 
leptomeningeal-subarachnoid, dural, intra-ventricular, peri-neural and peri-
vascular spreading (however these variants go far beyond the purposes of this 
dissertation). About 80% cases have supratentorial localization to the brain, 
mainly at the cortico-subcortical junction level due to hemodynamic factors 
related to hematogenous dissemination. Generally multiple and associated 
with further metastatic localizations to other organs and systems, CNS 
metastases can also be isolated; in case of SBM and in case of silent patient’s 
previous medical history, differential diagnosis between SBM and GBM may 
be very challenging. 
Indeed, imaging features of SBM may often resemble to the one observed in 
primary lesion (i.e., intra-lesional calcifications, cystic-necrotic components, 
micro-haemorrhagic foci, and so on); involvement and distortion of 
ventricular system resulting in hydrocephalus, dislocation of nervous or 
vascular structures with subsequent mass effect in an inextensible closed space 
and vascular complications are common to both SBM and GBM. One of the 
most distinctive features of brain metastases compared to GBM is the large 
vasogenic oedema peritumoral halo, usually disproportionate to the actual size 
of the lesion. On MRI, SBM appears as a focal hypointense area on T1w 
(except for melanin-rich and haemorrhagic metastases) and T2w sequences 
(except for cystic and mucinous tumours, which often show intralesional 
hyperintense components); peri-tumoral vasogenic oedema is usually 
disproportionate to the actual size of the lesion, while post-contrast 
enhancement of the solid components is typically intense. On DWI signal 
restriction depends on tumour cellularity (lower for adenocarcinomas, higher 
in sarcomas and neuroendocrine tumours); on PWI, an overall increase in 
perfusion parameters is generally observed, the greater the more the tumour is 
provided with anarchical blood vessel supply. An example of SBM from lung 
microcitoma MRI appearance is shown in Figure 2.  
The main differential diagnosis is represented by GBM, both in terms of 
frequency and MRI appearance; rarely, SBMs can be confused with 
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infectious-abscess lesions, demyelinating tumefactive lesions or vascular 
alterations simulating haemorrhagic metastases. 
 
 

 
 

Figure 2. Conventional MRI imaging in a 67 years-old patient diagnosed with 
suspected single right frontal metastasis from unknown primary malignancy. (A) 

Axial post-contrast T1w 3D imaging with orthogonal reconstruction. (B) 
Multiparametric 2D imaging at the same level of the lesion: upper row (left to 

right), FLAIR, DWI (b=1000) and relative ADC map; bottom row (left to right), 
T2*, T1w SE and contrast-enhanced T1w SE. Multiphase total-body CT scan 

revealed the presence of a primary lung malignancy with multiple nodal metastases; 
primary tumour biopsy confirmed the diagnosis of pulmonary microcitoma. 
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2.2 Rationale 
 
As previously stated, at MRI examination GBM and SBM may present with 
similar features on multiparametric conventional imaging, thus raising 
important issues in terms of early identification and differentiation; in these 
cases, further and more invasive investigations, which are both time-
consuming and cost-consuming at the same time, are frequently required.  
With this background, as primary endpoint we aim to test the application of 
visual recognition and cognitive computing for transfer-learning-based pre-
trained models’ application in MRI pattern recognition of these two different 
brain tumour types, highlighting possible decision-support implications in 
clinical practice. Visual recognition, defined as a subcategory of cognitive 
computing and AI technologies, represents a set of methods for detecting and 
analysing images in order to identify objects and other elements within a pool 
of provided images, and then performing higher-order complex data synthesis 
to solve a given problem. As we previously stated, medical innovations 
focusing on precision medicine for cancer diagnosis and treatment are 
considered one of the most challenging domains to be revolutionized by AI 
and, in addition to many academic efforts, companies are getting increasingly 
involved in the process. In our experimental setting we tested the ability of 
such deep learning method, based on transfer learning and pre-trained 
convolutional neural networks (CNN), to increase the probability of correct 
brain neoplasms allocation and identification starting from multiparametric 
conventional MRI, in order to ensure prompt diagnostic workout and optimize 
treatment planning. Among possible available tools we decided to concentrate 
our attention on the recent IBM developed open-source product named 
FuseMedML, a Python framework designed for machine learning applications 
to medical domain, specifically projected with the goal of promoting 
flexibility, code reusability and easy collaboration. The use of FuseMedML 
library gives the chance to study the benefits of this new library over the direct 
use of the mainstream frameworks it is based on. Currently publicly available, 
FuseMedML was preliminarily proved successful in different medical 
scenarios before open-sourcing it [9], [15]–[20] and at present offers a range 
of tools covering the entire development process, from data organisation to 
model training and evaluation.  
Coupled to this first experimental pilot project to test usefulness and feasibility 
of FuseMedML application to classify brain tumour types based on MRI 
images, we also aim to compare the neural network performances in 
classifying these tumours to human-level classification performances. Indeed, 
comparison between machine learning versus human reader performances still 
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represents a heretofore unexplored sector, with few evidence collected in 
different medical fields [21]. To date, thanks to the overall lower variability 
and increased interpretation consistency reached by AI tools, the use of 
automated classifications seems promising in improving diagnostic accuracy 
and the predicting outcomes; however only few studies tested direct head-to-
head comparisons between AI and conventional human interpretation of MRI 
images, especially in the field of Neuroncology [22]. Therefore, as a 
secondary endpoint, we tested whether the proposed binary classification 
model based on FuseMedML can predict brain tumour diagnostic category 
more accurately than conventional analysis by human readers. To this 
purpose, radiologists with different expertise in brain MRI interpretation were 
involved in the rating, in order to reproduce real-world clinical practice 
framework and expected variability among human observers; with the same 
aim, we also included in the analysis extreme cases such as MRI images 
degradation or distortion, speculating on diagnostic confidence levels 
importance when making clinical decisions. 
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2.3 Project evolution over time 
 
Among several tools developed for image classification and allocation by 
companies involved in AI medical industry, different computer vision 
applications released over time by IBM have been thoroughly and 
progressively tested for image recognition, analysis and classification in the 
field of Neuroncology. We first started from IBM Watson™ Visual 
Recognition system, a tool developed for several health applications that had 
been already used as a prototype for pattern recognition in precision oncology 
[23]; IBM Watson™ Visual Recognition could be defined as a service (subject 
to charges) previously available on IBM Cloud, which enabled images’ 
tagging, classification, and inspection by means of machine learning 
algorithms. IBM Watson™ initially received considerable attention for its 
focus on precision medicine, with specific reference to cancer diagnosis and 
treatment. However, early enthusiasm for this application has given way to a 
certain scepticism due to some difficulties in training and integrating 
Watson™ into actual diagnostic processes, clearly indicating cancer diagnosis 
support as an overly ambitious objective for this tool [24]. Therefore, in a 
preliminary approach we tested the application of Watson™ for MRI pattern 
recognition of GBMs versus SBM, with promising results despite a relatively 
low number of instances collected at the very beginning of this preliminary 
analysis. However, due to the costs related to the use of a cloud repository, the 
over-increasing amount of input imaging data due to progressive data pool 
enrichment and the imminent discontinuation of the above-mentioned IBM 
product, we then moved to IBM Maximo® Visual Inspection (that however 
shared some of the weaknesses of its predecessor, including technology usage 
costs, and was not specifically designed for medical imaging). Similarly to 
Watson™, also Maximo® Visual Inspection was rapidly discontinued; it is 
reasonable to think that, besides implementation issues and difficulties in 
adapting these technologies to medical knowledge, both products also 
suffered from competition with other similar open-source programs provided 
by different vendors [7]. 
Consequently, we finally moved to FuseMedML, a fully open-source platform 
for machine learning mainly relying on PyTorch syntax and on 
TensorFlow+Keras frameworks, in order to deploy a cognitive computing-
based support for brain tumours MRI differential diagnosis [8]. FuseMedML 
was specifically developed by IBM research group on Artificial Intelligence 
on Healthcare and Life Sciences Discovery with the purpose of simplifying 
and streamlining medical research projects; built on top of popular machine 
learning frameworks such as PyTorch, it also includes domain-specific 
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capabilities to complement these frameworks [9]. This choice has been guided 
by the will of experimenting this recently released framework on new data (no 
evidence collected since now in the Neuroncology field) and to exploit 
reproducibility and reusability for medical research purposes. Additional 
details on FuseMedML are provided in the project description below. 
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Chapter 3 
 

Materials and Methods 
 

This section illustrates the characteristics of the dataset used for the analysis 
and its pre-processing, as well as the technologies adopted for developing the 
proposed neural network architecture. Procedures adopted for human readers 
comparison analysis are described in the remainder of the section.  
  
3.1 Dataset selection 
 
We retrospectively identified patients who had undergone brain MRI as 
suspected of brain neoplasm, who had been subsequently confirmed to arbor 
monofocal GBM or SBM. MRI examinations were acquired between 2015 
and 2021 in different centres with 6 different MRI scanners for clinical, 
diagnostic and pre-surgical purposes, in accordance with the 1964 Helsinki 
Declaration and its subsequent amendments; MRI scans characteristics are 
listed in Table 1. 
 
 

 
 

Table 1. main features of the 6 scanners used for MRI examinations. 
 
 

Vendor System Field Head coil
Philips Ingenia 1.5T 8 channels

GE Signa Voyager 1.5T 8 channels
Siemens Magnetom Trio 3T 16 channels
Philips Achieva 1.5T 8 channels

GE Explorer 1.5T 8 channels
Philips Ingenia 3T 16 channels



 
Information and Communication Technology for Health (ICTH) – XXXV cycle 

The dataset was then enriched by using two publicly available MRI images 
repository, namely the BraTS (BRAin Tumour Segmentation) dataset that 
includes scans from 19 institutions [25], and the TCIA (The Cancer Imaging 
Archive) dataset that includes scans from 8 institutions [26]— consisting of 
two main sources, namely the Ivy Glioblastoma Altas Project, and The Cancer 
Genome Atlas Glioblastoma Multiforme collection. We eventually collected 
an overall number of 947 unique patients (mean age 59,7±14,1; M:F 1,3:1), 
of which 59% received histopathological diagnosis of GBM (after biopsy or 
partial/total tumour resection) and 41% of SBM from an unknown primary 
tumour (as confirmed by further instrumental investigations and subsequent 
direct histopathological assessment); despite the final ratio of number of 
subjects shows a minimum imbalance (1,4:1), such distribution between the 
two groups can be considered representative of the actual distribution of the 
two disorders in the general population. 
Images’ preliminary evaluation and patients’ inclusion/exclusion was 
performed by a 10-years experienced neuroradiologist. Patients with multiple 
brain lesions (N≥2), as well as patients with imaging evidence of significant 
brain comorbidities (i.e., previous major ischemic stroke, leptomeningeal 
diseases, venous thrombosis with brain infarction, etc.) were excluded from 
the analysis. Similarly, MRI images severely vitiated by motion- or device-
related artifacts were also excluded; conversely MRI images only partly 
vitiated by motion artifacts even though still usable for clinical diagnosis (a 
common scenario faced by neuroradiologist in daily clinical practice) were 
included in the analysis. Subjects with incomplete examination and absence 
of post-contrast T1w imaging were also excluded. Flow-chart for patients’ 
selection and exclusion criteria is shown in Figure 3. 
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Figure 3. Flow chart of patients’ selection; data extraction was performed between 

2021 and 2022. 
 
 
For each patient, the most representative MRI slice of the brain neoplasm was 
selected by the same 10 years-experienced neuroradiologist, then exported 
from DICOM (Digital Imaging and Communications in Medicine) format to 
compressed JPEG (Joint Photographic Experts Group) format; to avoid 
possible oversampling, lesions with maximum diameter <5cm were sampled 
once at the most representative level, while larger lesions with maximum 
diameter >5cm were sampled twice at the level of the two most representative 
slices (minimum between-slices distance 3cm). An overall number of 878 
patients was used to populate a group of subjects with available post-contrast 
volumetric T1W MRI imaging obtained for pre-operative neuronavigation 
purposes (named MRI_VOL), and 282 patients were used to populate a 
subgroup of subjects from the same studies with complete multiparametric 
MRI obtained for diagnostic purposes (named MRI_MULTI). From these two 
groups, we finally acquired and stored 1412 anonymized post-contrast 
volumetric T1W MRI images (MRI_VOL group), and 1692 anonymized 
multimodal MRI images further subdivided according to the different 
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acquisition sequence (MRI_MULTI group – based on the sequence type, 
respectively divided into "ADC", "DWI", "FLAIR", "T2*", "T1W", 
"T1W+CE") and grouped in the above-mentioned 282 actual samples. 
Minimum sequences’ requirements both for MRI_VOL and MRI_MULTI 
images inclusion are listed in Table 2.  
 
 

 
 

Table 2. Details of the MRI acquisition parameters for the structural weighted 
images (T1w, DWI+ADC; T2*, FLAIR, and a T1w+contrast enhancement, CE) used 
for clinical-diagnostic purposes: echo time (TE), repetition time (TR), and inversion 

time (TI). 
 
 
In both datasets the samples (single in the case of MRI_VOL and multiple in 
the case of MRI_MULTI) have been divided into two classes, according to 
the underlying tumour type (i.e., GBM and SBM).  
 

3.2 Data pre-processing 
 
MRI data have been anonymized, extracted, uploaded and stored in a private 
repository; images of the most representative MRI slice or slices (depending 
on tumour size) of the brain neoplasm, preliminarily selected as described 
before and originally acquired in DICOM format, were converted to supported 
JPEG format. This phase was based on a manual process at present (still need 
for supervised ETL – extract, transform, and load – automatization and weakly 
supervised target lesions’ segmentation). All selected MRI slices in our 
datasets contained undesired uninformative spaces around the salient and 
informative portion of the image, whose presence could potentially affect 
classification performances. Hence, it was necessary to remove unwanted 
areas before further proceeding in the analysis. A pre-processing including 
resizing and cropping based on extreme point calculation was carried out on 
these images to eliminate uninformative areas around the region of interest 

T1w DWI T2* FLAIR T1w+CE
TE 2-19ms variable variable 120-155ms 2-20ms
TR 300-3600ms variable 1-30ms 6000-11000ms 5-3300ms
TI - - - 2000-2200ms -
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and ensure homogeneous figures’ dimension, by means of OpenCV and 
Python. First, each image is resized using the PyTorch function: 
 

torchvision.transforms.Resize(size)(image) 
# transform for square resize 

transform = T.Resize(224 x 224 pixels) 
 

This function does not modify the used image, but instead returns another 
squared image with newly defined dimensions (homogeneous compared to the 
remaining collected items). Edge point calculation for object detection process 
(Canny edges detection) was then performed to separate desirable foreground 
image objects from the background based on the difference in pixel intensities 
of each region [27], [28]. We loaded the resized images, then we used the 
function for object segmentation from extreme points in contours with 
OpenCV: 

extreme_points.py 
 
We first imported the required packages: 
 

import imutils 
import cv2 

 
then loaded the image, convert it to grayscale to enhance contour detection, 
and blur it slightly in order to ease subsequent thresholding: 
 

image = cv2.imread(“MRI_001.png") 
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

gray = cv2.GaussianBlur(gray,(5,5),0) 
 
We then applied thresholding to convert them into binary images, performing 
dilations and erosions operations to remove the noise of images, by using the 
following Python methods: 
 

cv2.threshold() 
cv2.erode() 
cv2.dilate() 

 
After that, we used the: 

findContours() 
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method of OpenCV library to find all boundary points of the threshold area of 
interest in the image and select the largest contour by calculating the four 
extreme points (extreme top, extreme bottom, extreme right, and extreme left): 
 

extLeft = tuple(c[c[:, :, 0].argmin()][0]) 
extRight = tuple(c[c[:, :, 0].argmax()][0]) 
extTop = tuple(c[c[:, :, 1].argmin()][0]) 
extBot = tuple(c[c[:, :, 1].argmax()][0]) 

 
to then draw the outline of the object and each of the extreme points (where 
the left-most is red, right-most is green, top-most is blue, and bottom-most is 
light blue): 
 

cv2.drawContours() function 
cv2.circle(image, extLeft, radius, color, thickness, lineType, shift)  
cv2.circle(image, extRight, radius, color, thickness, lineType, shift)  
cv2.circle(image, extTop, radius, color, thickness, lineType, shift)  
cv2.circle(image, extBot, radius, color, thickness, lineType, shift)  

 
As final step, we crop the image based on the information on contours and 
extreme points, using the following PyTorch function: 

 
torchvision.transforms.functional.crop() 

 
An example of the result of Canny edges detection is shown in Figure 4.  

 

 

Figure 4. MRI images pre-processing: example of figure smoothing, thresholding 
and cropping by using extreme points calculation with zero-parameter automatic 

Canny edge detection (Finding Extreme Points in Contours with OpenCV. In 
PyImageSearch; see references in the main text). 

 

	
1. load the 

original image
2. apply

smoothing and 
thresholding

3. find the outer
contour

4. find the edge
points

5. crop the image
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The decision to adopt Canny edge detection relates to the fact that in brain 
tumour the most representative slice generally contains several useful clues 
not only within the lesion itself, but also in the area around the lesion (i.e., 
peritumoral oedema, ventricular system distortion, sulci effacement, and so 
on); these additional features may differ across different tumour types. 
Therefore, a cropping approach preserving the brain 
parenchyma/cerebrospinal fluid spaces around the main lesion allows for 
background removal (uninformative areas around the skull) but foreground 
with possible ancillary imaging features preservation, that could be useful at 
the time of model training and evaluation (brain parenchyma/cerebrospinal 
fluid spaces inside the skull, within and around the monofocal brain lesion).  
Although the corpus of collected evidence could already be considered 
relatively large compared to what previously reported in scientific literature, 
nonetheless we performed image augmentation on the dataset. Image 
augmentation is a technique that artificially modify the dataset, creating 
multiple copies of the original images composing the dataset itself, with 
different orientation, brightness, rotation, and so on; this approach is intended 
to improve the classification accuracy of the selected predictive model by 
augmenting the existing data rather than collecting new ones. To the purpose, 
we adopted three augmentation strategies and preliminary performed data 
augmentation generating image translations, brightness adjustment and 
horizontal flipping, by using the module FuseAugmentorBase within 
FuseMedML (see below). 
 

3.3 Model definition and design 
 
Our method analysed MRI data by using the deep learning framework for 
medical data FuseMedML [8], [29]. As anticipated in introduction section, 
FuseMedML is an open-source python-based framework designed to improve 
code reuse and accelerate discoveries in in the biomedical field through 
advanced technologies of machine learning; its initial release supports Python 
3.6 and PyTorch 1.5. The best way to install FuseMedML is to clone the 
Github repository and install it in an editable mode using pip: 
 

!git clone https://github.com/IBM/fuse-med-ml.git 
%cd fuse-med-ml 
!pip install -e . 
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This mode installs all the currently publicly available domain extensions. As 
an alternative, it is possible to install FuseMedML from PyPI by using the 
command: 
 

$ pip install fuse-med-ml[all] 
 
Import of Python and Fuse Libraries from Project home page 
(https://github.com/libfuse/python-fuse) was then performed, and 
the metric definition and calculation were then carried on by using the module 
FuseMetricBase within FuseMedML. The MetricBase basic class defines 
the interface for a metric implementation, and it consists of collect, set, reset 
and eval methods. 
 
import os 
from typing import OrderedDict 
import torch 
import torch.nn.functional as F 
import torch.optim as optim 
import torchvision 
from torch.utils.data.dataloader import DataLoader 
from torchvision import transforms, datasets 
from fuse.eval.evaluator import EvaluatorDefault 
from fuse.data.dataset.dataset_wrapper import 
FuseDatasetWrapper 
from fuse.data.sampler.sampler_balanced_batch import 
FuseSamplerBalancedBatch 
from fuse.losses.loss_default import FuseLossDefault 
from fuse.managers.callbacks.callback_tensorboard import 
FuseTensorboardCallback 
from fuse.managers.manager_default import FuseManagerDefault 
from 
fuse.eval.metrics.classification.metrics_classification_commo
n import␣ 
,!MetricAccuracy, MetricAUCROC, MetricROCCurve, MetricAUCPR,␣ 
,!MetricConfusionMatrix 
from 
fuse.eval.metrics.classification.metrics_thresholding_common 
import␣ 
,!MetricApplyThresholds 
from fuse.models.model_wrapper import FuseModelWrapper 
from fuse_examples.tutorials.hello_world.hello_world_utils 
import LeNet,␣ 
,!perform_softmax 
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from fuse.data.augmentor.augmentor_toolbox import 
aug_image_default_pipeline 
 
Among implemented metrics for classification problems that can be used we 
mainly referred to: 

o MetricROCCurve à it can be used to calculate the receiver operating 
characteristic (ROC) curve, and not just the area under the curve 
(AUC) underneath it. 

o MetricAUC à it can be used to calculate AUC from ROC curve. 
o MetricAUCPR à it calculates the area under the Precision-Recall 

curve. 
o MetricAccuracy à it computes the accuracy 
o MetricConfusion à it computes the following of the possible 

metrics: sensitivity, recall, true positive ratio, specificity, precision, 
and F1 score. 

o MetricConfusionMatrix à it computes a multi-class confusion 
matrix. 

Some of the advantages of the software design of FuseMedML framework we 
can list encompass: 

o good modularity; 
o rapid, flexible and scalable development; 
o encouragement to share and collaborate; 
o standard ratings; 
o expertise in medical imaging; 
o interoperability between different frameworks. 

CNNs are perhaps the most used Deep Learning algorithm in computer vision 
for object recognition and identification. For our purpose, we decided to adopt 
a pre-trained CNN model (created and trained to solve a problem that share 
structural similarities with our problem) based on very conspicuous datasets 
(in this specific case, ImageNet) to create a large neural network for image 
classification (namely, VGG16). CNNs have the advantage of extracting 
meaningful information directly from data, eliminating the need to extract 
features manually. The use of CNN is widespread due to three important 
factors: 

o features are learned directly from CNN; 
o CNN produces highly accurate results; 
o CNN can be retrained for new visual recognition activities on 

increasingly growing amount of image data. 
From an architectural standpoint, a CNN consists of an input layer, an output 
layer and many intermediate “hidden” layers, which perform operations that 
connect and interpolate the data in order to infer their specific features; 
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intermediate layers of nodes between the input and output layers are also 
named “hidden” because they are not directly observable from the systems 
inputs and outputs. Some of the most important layers in this architecture 
include N number of convolution and pooling, used for ordering layers within 
the CNN and iteratively repeated over many layers. The CNN has neurons 
with weights and biases, used to learn during training and constantly updated 
after each iteration. After learning the features, the architecture of a CNN 
moves on to classification: the penultimate layer is represented one or more 
fully connected layers that emits a vector of dimensions equal to the number 
of classes that the network will be able to predict. That vector expresses the 
probability associated to each image classification.  
Among the considered pre-trained CNNs, the best candidate for this type of 
analysis is the VGG16 network. VGG16 is one of the most widely used pre-
trained CNN for image classification, developed by the Visual Graphics 
Group of the Oxford University [30]. This model achieves 92.7% accuracy in 
ImageNet's 5 top-tests and consists of 13 convolutional levels, 5 pooling 
layers, and 3 dense layers. The version of VGG16 that has been used for our 
purposes is the one provided by the Keras submodule of TensorFlow [31]: 
 

tf.keras.applications.vgg16.VGG16 
 
The default input size for this model was 224x224. VGG block diagram is 
shown hereafter in Figure 5. 
 

 
 

Figure 5. Structural details of a VGG16 network (source:neurohive.io). 
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A diagrammatic illustration of the transfer learning for the proposed CNN-
based architecture is shown in Figure 6. 
 
 

 
 

Figure 6. Stepwise illustration of the transfer learning for CNN-based architectures: 
CNN models are pre-trained on images from ImageNet (VGG16) and used as 

feature extractors; pre-processed MRI images underwent data augmentation to 
increase the number of the data sample. 

 
 
Hereafter, we finally describe the models that have been used and their 
specific architecture. For the MRI_VOL group, in which the samples to be 
classified are represented by a single image, the proposed architecture is 
shown in Figure 7. 
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Figure 7. Model design and proposed architecture for MRI_VOL group. 
 
For the MRI_MULTI group, the six above-mentioned images categories 
(namely, "ADC", "DWI", "FLAIR", "T2*", "T1W", "T1W+CE") are provided 
as input to a single instance of the CNN, which in turn provides the relevant 
features for each, which are then concatenated to perform a single prediction 
model based on the information obtained on the whole dataset; the proposed 
architecture is shown in Figure 8. 
 

 
 

 
Figure 8. Model design and proposed architecture for MRI_MULTI group. 
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3.4 Model training, testing and validation 
 
Once the architecture of the models was established, we proceeded to the 
learning phase. For neural networks, learning mainly consists of two different 
steps: feed-forward and error back-propagation. These steps have been 
repeated iteratively until a configuration of the weights able to offer 
satisfactory performances. Using the tools provided by the Keras framework, 
this process can be summarized in establishing a pipeline for entering the 
network and configuring the hyperparameters for training (the definition of 
which was made using the Keras Tuner library). In particular, it was necessary 
to define the optimization algorithm, the loss (i.e., the function that estimates 
the distance between expected and real values), the number of epochs (or 
iterations) of the training cycle on the entire training set, the batch size (i.e., 
the number of inputs processed in parallel by the calculator), and the 
additional metrics required to evaluate and compare the performance of the 
models. 
For the correct validation of the proposed models, each dataset (MRI_VOL 
and MRI_MULTI) was initially divided into three subsets: a training set (80% 
of the sample) used for neural network learning and weights update, a test set 
(10% of the sample) for validating and evaluating the proposed model, and a 
validation set (10% of the sample) for testing the ability of the neural network 
in replicating/generalizing the performances on new data/images never 
encountered during training process. This partition was preliminarily 
performed by using different sources for training, validation and test sets in a 
manual step, in order to balance lesion types (GBM and SBM) across the three 
groups; this choice comes from the unbalanced distribution between privately 
stored images (including both GBMs and SBMs) and public repositories 
(including almost exclusively GBMs). Therefore, before proceeding to data 
augmentation, from the whole MRI data pool we casually extracted the desired 
number of MRI images for each subgroup, balancing the proportion of GBMs 
and SBMs according to lesions’ epidemiology, preferring for the validation 
group external data from public repositories when available. Risk of 
oversampling has been averted by the decision taken at the moment of 
significant slices selection (lesions with maximum diameter <5cm were 
sampled once; lesions with maximum diameter >5cm were sampled twice at 
the level of the two most representative slices, with a minimum between-slices 
distance 3cm; see Materials and Methods section – Dataset Selection 
subsection). A schematic representation of MRI_VOL and MRI_MULTI 
samples’ distribution among training, testing and validation group is shown in 
Table 3.  
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Table 3. Detailed distribution of selected GBM and SBM cases among training set 
(80% of the sample), test set (10% of the sample) and validation set (10% of the 

sample), both in MRI_VOL group and MRI_MULTI group. 
 
 
Training process was stopped when the loss on the validation set got larger 
than or was equal to the previous lowest loss for 10 times; the MRI_VOL 
model training took 5'5'', whereas the MRI_MULTI model training took 2'20''. 
Model training and evaluation in FuseMedML framework were carried on 
between May-July 2022 (referral period for FuseMedML library updating). 
For each sub-dataset several metrics were extracted, and the following ones 
specifically analysed for the evaluation of the prediction model: 

o Accuracy, defined as the percentage of correct predictions 
o Precision, defined as the ratio between true positive and the 

sum of true positive and false positive instances 
o Recall, defined as the ratio of positive instances correctly 

identified by the model 
o F1, defined as the harmonic mean of precision and recall that 

assume high values only if accuracy and recovery are both 
high. 

 
  

Training set 
(80%)

Test set        
(10%)

Validation set 
(10%)

Total         
(100%)

GBM 638 98 98 834
SBM 474 52 52 578
ALL 1112 150 150 1412

GBM 130 18 18 166
SBM 92 12 12 116
ALL 222 30 30 282

MRI_VOL

MRI_MULTI
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3.5 Comparison with human diagnostic 
performances 

 
The same above-mentioned anonymized MRI images converted to JPEG 
format, distributed in the same three groups used for neural network model 
training and evaluation as previously described (see Table 3), have also been 
used for training and subsequent evaluation of human classification 
performances. For this purpose, three observers with different experience in 
the field of Neuroncology imaging were involved, in order to reproduce real-
world clinical practice framework and expected variability among human 
observers. The characteristics of each observer in terms of experience in the 
field of oncological neuroimaging are briefly listed below: 

o one neuroradiologist with 10 years of experience in neuroimaging and 
oncological neuroimaging (arbitrarily named observer #1); 

o one general radiologist with 3 years of neuroimaging experience and 
with rudiments of conventional/advanced oncological neuroimaging 
(arbitrarily named observer #2); 

o one general radiologist, with few/no experience in the field of 
oncological neuroimaging (arbitrarily named observer #3). 

The three observers were asked to classify the MRI images in the two 
previously described categories, respectively GBM and SBM. Like what was 
done for the training of the neural network, all the observers independently 
gained experience on the training set (80% of the sample), freely disposing of 
MRI images for about one month; after this suitable period of time to elapse 
for formation, each rater was asked to perform a first phase of testing on the 
test set (10% of the sample), to refine the skills acquired on the training set 
and eventually deepen their knowledge on most complex radiological 
presentations. After two months, a final phase of evaluation of the blinded 
data was independently performed on the validation set (10% of the sample) 
by each observer under the supervision of the principal medical investigator. 
The same evaluation was performed both for the MRI_VOL sample and 
MRI_MULTI sample at two different time-points; for each item of the 
validation sub-set and for both samples (MRI_VOL and MRI_MULTI), the 
three observers were also asked to express their diagnostic confidence level 
by using a 3-point rating scale: 

o 1=low confidence level;  
o 2=intermediate confidence level;  
o 3=high confidence level.  

These results were analysed in terms of sensitivity, specificity, diagnostic 
accuracy and AUC, and graphically represented with ROC curves. Agreement 
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between observers and neural network results in each subgroup was assessed 
by using Kappa statistics, with the following result stratification according to 
the strength of agreement: 

o 0.00-0.20 = poor agreement 
o 0.21-0.40 = fair agreement 
o 0.41-0.60 = moderate agreement 
o 0.61-0.80 = substantial agreement 
o 0.81-1.00 = almost perfect agreement 

The significance of the difference between the areas that lie under the curves 
between observers and neural network results in each subgroup was tested by 
using non-parametric Mann-Whitney U test. For this statistical analysis, the 
additional statistical software XLSTAT available in Excel (Xlstat package, 
2019.7) was used. 
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Chapter 4 
 

Results 
 
 
Regarding FuseMedML-based predictive model, we evaluated separately the 
two model designs and proposed architectures; as part of our evaluation, we 
report AUC with a 95% confidence interval, as well as diagnostic accuracy, 
sensitivity, specificity, precision and F1 score. The MRI_VOL model 
performed better than the MRI_MULTI model in all metrics, with results 
obtained on volumetric post-contrast images acquired for neuronavigational 
purposes more robust by virtue of a larger sample size (N=1412, see Table 3). 
However, it should be emphasized that the robustness of the results from the 
analysis of multimodal imaging, somehow influenced by the smaller sample 
size available (N=282 samples, see Table 3), is balanced by the amount of 
information contained within the sample itself (higher informative value of 
multiparametric MRI acquisition technique compared to single sequence 3D 
T1w acquired for surgical neuronavigation purposes). Results concerning 
prediction model of the trained neural network on MRI_VOL and 
MRI_MULTI images within the validation sub-group are summarized in 
Table 4. 
 
 

  ACCURACY PRECISION RECALL F1 SCORE 
MRI_VOL 0.96 0.96 0.97 0.97 

MRI_MULTI 0.94 0.96 0.92 0.94 
 
Table 4: Schematic representation of final neural network results both in MRI_VOL 
and MRI_MULTI subgroups, expressed in terms of accuracy, precision, recall and 

F1 score. 
 
 
Concerning the comparison with human diagnostic performances, we 
analysed both individual data from each reader assessment and cumulative 
data obtained by merging the three readers classification performances. In this 
ancillary analysis, we report AUC with a 95% confidence interval, diagnostic 
accuracy, sensitivity and specificity in each sub-group (MRI_VOL and 
MRI_MULTI), compared with analogous metrics resulting from neural 
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network predictive model. As expected, it should be noted that the three 
independent observers’ assessment was considerably affected by readers 
expertise, with higher performances obtained for the more experienced 
observer #1 and lower performances for the less experienced observer #3. 
Results concerning human performances on MRI_VOL and MRI_MULTI 
images within the validation sub-group are summarized in Table 5. 
 
 

 
 

Table 5: Schematic representation of human readers results (individual and 
cumulative) both in MRI_VOL and MRI_MULTI subgroups, expressed in terms of 

accuracy, sensitivity, specificity and area under the curve (compared to neural 
network results - last column). 

 
 
Measurement of the extent to which the three observers independently 
assigned the same diagnosis to the same MRI image/set of MRI images in the 
two groups (MRI_VOL and MRI_MULTI, respectively) was performed by 
using Kappa statistics; interrater agreement was also measured between 
observers and FuseMedML-based prediction model. Results concerning 
interrater reliability are summarized hereafter in Table 6. When comparing 
agreement between observers and FuseMedML-based prediction model, what 
is immediately clear is that the strength of agreement is remarkably affected 
by readers expertise, with very good results when comparing the performances 
of more experienced observers (i.e., observer #1) and lower percentage of 
agreement for less experienced ones (i.e., observer #3). The same trend applies 
both to MRI_VOL sub-group and MRI_MULTI sub-group, although with 
higher percentage of agreement in this latter probably due to the lower sample 
size and the higher informative value of multiparametric MRI acquisition 
technique compared to post-contrast neuronavigation MRI images alone. 

Observer #1 Observer #2 Observer #3
Observers 

(cumulative)
Prediction 

model
MRI_VOL 0.87 0.77 0.67 0.77 0.96

MRI_MULTI 0.93 0.83 0.77 0.84 0.94
MRI_VOL 0.87 0.78 0.69 0.78 0.97

MRI_MULTI 1 0.89 0.89 0.92 0.92
MRI_VOL 0.86 0.75 0.61 0.74 0.94

MRI_MULTI 0.83 0.75 0.58 0.72 0.92
MRI_VOL 0.94 0.89 0.84 0.89 0.99

MRI_MULTI 0.98 0.90 0.89 0.94 0.99

Accuracy

Sensitivity

Specificity

ROC curve 
AUC
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Table 6: Interrater reliability both for MRI_VOL and MRI_MULTI subgroups. 
 
 
Variation between AUCs measuring the accuracy of the two classification 
systems (human observers versus FuseMedML-based prediction model) was 
reported in terms of area difference (areaprediction model – areaobserver(s)), standard 
error of the difference, z-values and p-values. Results concerning the 
difference between AUCs among observers and neural network performances 
in each subgroup are summarized in Table 7. Significance of the difference 
between AUCs showed meaningful results when comparing the performances 
obtained on the MRI_VOL validation group (p<0.01), with more striking 
differences and smaller p-values the lower the readers’ experience is. 
Conversely, no significant results were obtained on the MRI_MULTI 
validation group (p>0.1) regardless of readers’ experience, although with a 
trend showing lower differences for the more experienced observer (i.e., 
observer #1) compared to the less experienced one (i.e., observer #3).  
 
 

% agreement kappa strength of 
agreement

MRI_VOL 0.80 0.58 moderate

MRI_MULTI 0.83 0.61 substantial

MRI_VOL 0.80 0.57 moderate

MRI_MULTI 0.88 0.76 substantial

MRI_VOL 0.90 0.78 substantial

MRI_MULTI 0.93 0.86 almost perfect

MRI_VOL 0.80 0.58 moderate

MRI_MULTI 0.90 0.79 substantial

MRI_VOL 0.71 0.35 fair

MRI_MULTI 0.83 0.64 substantial

Observers 
(cumulative) 
vs Prediction 

model

Observer #1 vs 
Prediction 

model

Interrater 
agreement

Observer #2 vs 
Prediction 

model

Observer #3 vs 
Prediction 

model
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Table 7: Significance of the difference between the areas under ROC Curves, both 
for MRI_VOL and MRI_MULTI subgroups. 

 
 
The probability ROC curves obtained for the MRI_VOL and MRI_MULTI 
cohorts respectively, graphically reporting the performance of the human 
readers (both individual and cumulative) and of the proposed binary 
classification model, are shown in Figure 9 (for MRI_VOL group) and Figure 
10 (for MRI_MULTI group). 
 

 
 

Figure 9. Receiver-operating characteristic (ROC) curves and corresponding area 
under the curve (AUC) statistics for the classification performance in the validation 

cohort of MRI_VOL subset, both in human observers (on the left: observers, 
cumulative – red line; observer #1, high experience – green line; observer #2, 

intermediate experience – light blue line; observer #3, low experience – yellow line) 
and FudeMedML (on the right; dark blue line). The X-axis represents the false 

positive rate and the Y-axis the true positive rate. 
 

MRI_VOL 0.1 0.05 0.1 0.15

MRI_MULTI 0.05 0.01 0.09 0.1
MRI_VOL 0.027 0.020 0.027 0.032
MRI_MULTI 0.056 0.036 0.068 0.071
MRI_VOL  -3.7  -2.5  -3.7  -4.6
MRI_MULTI  -0.9  -0.2  -1.3  -1.4
MRI_VOL 0.0001 0.01 0.0001 0.000004
MRI_MULTI 0.36 0.78 0.18 0.16

P

Observer #2 vs 
Prediction model

Observer #3 vs 
Prediction model

Observers (cumulative) 
vs Prediction model

Observer #1 vs 
Prediction model

difference                         
area(prediction model) - area(obs)

standard error of the 
difference 

Z

ROC CURVES – MRI_VOL validation cohort
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Figure 10. Receiver-operating characteristic (ROC) curves and corresponding area 
under the curve (AUC) statistics for the classification performance in the validation 

cohort of MRI_MULTI subset, both in human observers (on the left: observers, 
cumulative – red line; observer #1, high experience – green line; observer #2, 

intermediate experience – light blue line; observer #3, low experience – yellow line) 
and FudeMedML (on the right; dark blue line). The X-axis represents the false 

positive rate and the Y-axis the true positive rate. 
 

ROC CURVES – MRI_MULTI validation cohort
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Chapter 5 
 

Discussion 
 

According to the World Health Organization's most recent 2021 classification 
[14], brain tumours are one of the most common causes of cancer-related 
morbidity and mortality worldwide. MRI is the diagnostic tool most 
extensively used for the initial differential diagnosis of tumour type; based on 
MRI imaging, tumour location and identification typically depends on the 
radiologist's expertise. Final diagnosis is confirmed on histopathological 
analysis; however, it must be noticed that biopsy, that is carried out to 
determine the tissue's benignity or malignancy as well as the hystotype, is a 
highly invasive procedure which is not performed prior to end-of-the-brain 
surgery (in contrast to tumours discovered elsewhere in the body). In this light, 
it is critical to develop a viable alternative diagnostic tool for tumour 
classification and segmentation from MRI images in order to obtain accurate 
diagnosis and minimize the resort to invasive medical procedures prone to 
procedural difficulties and interpretative subjectivity [32], [33]. The ability for 
physicians to quickly and accurately classify CNS tumours based on brain 
images is gathering an over increasing importance [32], [33]. Traditional 
diagnostic approaches are unable to effectively manage the substantial growth 
in data volume in the medical sector, with the problem of storage and 
interpretation of big medical data still representing a challenge in the field of 
medical image analysis. To the purpose the emergence of new technologies, 
particularly machine learning and CNN, had probably the most significant 
impact on the medical sector since their introduction, especially in the field of 
medical imaging and even more of neuroimaging. At present, to implement 
interpretation of MRI images and to support radiologist's choice, a variety of 
machine learning algorithms have been used both for segmentation and 
classification purposes. However, these techniques require specialized 
knowledge on how to extract the best features and still need more extensive 
experimentations for ensuring results generalization and reproducibility.  
In this light, deep learning-based models with semi-supervised and 
unsupervised approaches have attracted researchers' attention due to both their 
high performance and the chance to automatically generate features 
extraction. The described research activity is part of this over-increasing 
number of studies that have tested the use of AI methods for the identification 
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or classification of brain tumours [34]–[37], mainly focusing in the proposed 
setting on a binary classification of the two most common brain neoplasms of 
the adulthood, which are actually similar with each other at imaging, and 
which raise the bar in terms of differential diagnosis difficulty. Indeed, the 
issue of differential diagnosis between these two selected entities based on 
MRI has been faced by resorting to both conventional and advanced MRI 
sequences [38]–[42], as well as to the analysis of quantitative information 
about internal tumours’ structure by mean of radiomics [37], [43]–[45] and 
texture analysis tools [28], [46], [47]; these studies, despite confirming the 
existence of qualitative features and quantitative/semi-quantitative findings to 
distinguish between GBM and SBM, were carried on very small populations 
and were significantly affected by readers interpretation (also in terms of 
manual steps for perfusion/spectroscopy acquisition/processing) or by 
individual variability in images segmentation (for radiomics/texture 
extrapolation).  
In recent times the application of machine learning pattern recognition 
techniques has been proposed as a possible tool to overcome some of these 
barriers, and has been tested on neurooncological imaging with promising 
results in the differentiation of common intra-axial brain tumours (also 
encompassing GBM and SBM) from MRI images obtained for advanced 
diagnostic purposes (i.e., perfusion or spectroscopy). First experimental 
studies proved machine learning to have a substantial incremental diagnostic 
value for brain tumour differentiation, provided that the MRI acquisition 
technique is highly standardized and dedicated to the purpose [48]. Similarly, 
features derived from the peri-enhancing oedema region surrounding the intra-
axial lesion also showed moderate value in differentiating supratentorial 
SBMs from GBMs; the peri-enhancing oedema’s distinct tumour signatures, 
identified using deep learning-based algorithms, have been proved to 
distinguish the peritumoral microenvironment of GBM from SBM with an 
accuracy ranging from 0.56 to 0.85 depending on the case study [49], [50], 
but also in these cases results are always obtained by applying CNN on 
advanced and highly standardized MRI sequences obtained for research 
purposes and by performing time consuming semi-automated segmentation. 
In 2020, Amin et al. [51] proposed a model based on the fusion of different 
MRI sequences (T1w+CE, T1w, FLAIR and T2w) using CNN to differentiate 
tumour from non-tumour areas in glioma patients and applying this model on 
publicly available datasets; the results showed that fused MRI images 
provided better results than single sequences, thus supporting the higher 
informative value of multiparametric MRI compared to individual MRI 
acquisitions. However, the proposed methodology was limited to the 
distinction between neoplastic vs non-neoplastic tissue, with no further 
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classificative ambition. Afterwards, several papers explored the potential for 
machine learning and CNN to enhance the distinction among different tumour 
types, however always with results affected by sample selection and size [52]–
[54]. Similarly, Badža et al. moved a little bit forward by proposing a CNN 
architecture with 10-fold cross-validation methods for brain tumour 
classification using different and dissimilar neoplasm, but with the main 
strength of amplifying the role of a large and representative sample size; the 
study was based on a very large amount of T1w post-contrast imaging and 
reached an overall accuracy of 0.96 [55], thus pointing out the pivotal 
importance of large datasets for machine learning performance tuning. Similar 
approaches have been used for different classification purposes such as 
distinction into low- vs high-grade glioma [56], IDH mutated vs IDH non-
mutated glioblastoma [57], intra- vs extra-axial neoplasm [33] or benign vs 
malignant brain tumor [58]; in particular in this latter study, the research 
project was carried out on more than 7000 images from different sources, and 
deep learning feature extraction by mean of transfer learning was performed 
using the pre-trained CNN model VGG16 on public data (as per our study), 
reaching an overall accuracy of 0.97 in determining the presence and the 
extent of the lesion. 
In our study, we moved forward compared to this previous experience 
obtained by using the VGG16 pre-trained CNN model for brain tumour 
classification; here we proposed a binary classification by introducing the two 
most common brain tumour types of the adulthood; we operated on a large 
dataset (also considering the lower sample heterogeneity due to the inclusion 
only of GBM and SBM), obtained by merging private repositories (mainly 
used for training and testing) with public repositories (mainly used for 
validation purposes). We also proposed two different architectures, one for the 
analysis limited to volumetric post-contrast imaging and one for multimodal 
MRI acquisitions, in order to test the weight of more informative 
multiparametric MRI compared to individual MRI acquisitions as well as their 
ability in mitigating numerical difference in terms of sample size for final 
classification purposes. The observed overall accuracy in the two cases 
(respectively 0.96 for MRI_VOL subset and 0.94 from MRI_MULTI subset) 
complies with what expected and at least in part confirms previous literature 
evidences. Analysing the results in detail, the performances obtained on 
volumetric post-contrast images acquired for neuronavigational purposes are 
particularly robust by virtue of the large sample size and the representative 
number of input data; however, despite a significantly smaller training data 
set, results derived from multiparametric MRI are more than satisfactory and 
perfectly in line with the ones observed for neuronavigational volumetric post-
contrast MRI. It should therefore be emphasized that the robustness of the 
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results from the analysis of multimodal imaging, somehow influenced by the 
lower sample size available, is balanced by the amount of information 
contained within the sample itself (since the neural network takes advantage 
of the higher informative value of multimodal MRI acquisition technique). To 
the best of our knowledge, an approach similar to the one described in our 
paper has previously only been adopted by Shin et al. in 2021 by using a 2D 
convolutional neural network (namely the ResNet-50 model) on internal and 
external test sets, with the aim to distinguish GBM from SBM and with the 
secondary goal to compare its results to two expert neuroradiologists’ 
performances [59], although limiting the analysis to pre-operative contrast-
enhanced T1W/T2W images; compared to the results of the VGG16 
architecture and the proposed FuseMedML-based model (that showed 
excellent generalization capabilities on unseen testing data), lower diagnostic 
performances were observed, probably due to the smaller sample size and to 
the lower number of collected MRI sequences. However, to be confirmed, 
these results would benefit of a larger dataset and of a direct comparison with 
the most widely used CNN architectures; such comparison of different 
architectures on the same data would be worthy of attention to determine 
reproducibility and reliability of these networks when applied to medical 
imaging. Neither must be forgotten, when interpreting CNN performances, 
that real-world problems are often more complex than the one simulated in 
experimental designs and involve massive amounts of data other than imaging 
ones. Consequently, it can be assumed that a single machine learning tool 
cannot address all diagnostic dilemmas, whereas is more likely that a group of 
tools appropriately integrated with one another can provide better prospective 
solutions [60]. 
Another consideration applying to the proposed research activity is that we 
analysed imaging data through the open source FuseMedML, that has never 
been used in neuro-oncological imaging since our very first experience [29], 
but that has been used for similar clinical purposes in few preliminary studies 
on breast tumours, liver and kidney masses [9], [15]–[20], [61]. FuseMedML 
was designed to simplify and streamline medical research projects; it is a 
Python framework designed to accelerate Machine Learning based discovery 
in the medical domain. Flexible and designed for easy collaboration, it 
encourages code reuse, and allows to efficiently process and fuse information 
from multiple modalities (for example, different MRI modalities, but also 
different imaging techniques or imaging techniques with biochemistry, 
clinical data, and so on) [9]. Therefore, in the light of recent literature 
evidence, the described models could be a promising innovation and an 
effective support for the differential diagnosis of single brain neoplasms, 
especially in case of classification uncertainty on conventional MR imaging. 



 
Information and Communication Technology for Health (ICTH) – XXXV cycle 

Of note, the proposed approach also harbours the potential to provide the basis 
for including in the predictive model data other than imaging, once available. 
However, it should always be considered that FuseMedML is still an evolving 
tool (given the rapid transformations and updates provided for this open-
source library) and some content, steps, functions and commands are changing 
over time; this is both a challenge and a strength of FuseMedML, as this 
flexible framework is continuously adapting to researchers’ and AI 
specialists’ needs and requirements, in order to guarantee the best service 
possible and increase the performance reliability over time.  
As a secondary endpoint we compared the neural network performances in 
classifying monofocal GBM vs SBM brain lesions to human-level image 
interpretation, showing how under controlled conditions (such as those 
created for our research purpose) FuseMedML-based predictive model may 
equal and somehow even exceed radiologists’ performances. Indeed, 
oncology healthcare providers first and foremost rely on accurate imaging 
interpretation for shared decision-making, and sometimes critical imaging 
interpretation can make the difference between invasive, minimally invasive 
or non-invasive medical approaches. This imaging interpretation is largely 
entrusted to radiologists. However it is well known that, depending on readers’ 
experience and case-specific difficulty coefficient, a certain variability among 
readers may be observed; attended discrepancy could be further amplified by 
image acquisition differences, image quality degradation (i.e., motion, device-
related artifacts, etc.), reader fatigue or inconsistent reporting (i.e., not 
modulated on the specific diagnostic issue) [62], [63]. Such assumptions are 
the bases for the need to further optimize image interpretation for cancer 
detection; potentially attesting machine learning methods superiority 
compared to human readers’ performances would indeed open the way for 
further systematic studies to improve clinical decision-making and implement 
computer vision image analysis in clinical practice, not only in Neuroncology 
but also in other medical fields.  
At today state-of-the-art, this comparison between machine learning versus 
human reader performances still represents a very little explored sector, with 
few evidence collected in different fields and with a relatively low number of 
published papers (with sometimes controversial results) [21], [64]; this lack 
of information in this field is also due to the absence/difficulty in finding 
satisfactory or reliable historical key performance indicators to use for direct 
comparison, largely not available at present. Some preliminary experiences 
have been newly collected regarding electrocardiograms [2] and 
echocardiography [65] interpretation, whose automated reading by mean of 
machine learning-based algorithms demonstrated stronger correlation with 
different biomarkers of acute disease compared to manual reads. For 
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neurological applications, machine learning and deep learning have mainly 
been compared to human experts’ interpretation in the domain of 
electroencephalography analysis, where automated technologies seemed to 
allow for better generalization capabilities and more flexible applications, 
reaching competitive performance on selected target tasks [66]–[68]; 
however, more realistic approaches concerning the same issue (on larger 
amounts of data and with fewer restrictions on data input) suggested that 
hybrid approaches, where human raters applied international consensus 
diagnostic criteria to automated detections of AI-based algorithms, was far 
more accurate and suitable for clinical implementation compared to AI alone 
[69]. Concerning radiological imaging, analogous testimonies have been 
collected in emergency radiology, breast imaging and nuclear medicine [70]–
[72], where machine learning methods performances were proved comparable 
to the one obtained by radiologists, with relatively small datasets used for 
machine learning training. Also in these cases, such reports represented 
isolated non-systematic attempts of comparing the two scenarios (human vs 
machine) and are probably strongly influenced by low samples sizes used for 
training, testing and validating purposes. To date, more systematic and 
comprehensive data to compare the accuracy of human readers versus 
machine-learning algorithms have only been collected for skin lesions 
classification based on dermatoscopic images; coherently to what expected in 
the light of the above-mentioned literature elements, dermatology experts 
were mostly outperformed by machine-learning algorithms in the assessment 
of benign vs malignant pigmented skin lesions, confirming how human 
readers would benefit from automated image classification assistance [73]–
[76]. 
Our findings on neurooncological imaging tie in with the corpus of research 
projects aiming to document interpretation consistency reached by AI tools 
and provide head-to-head comparisons between AI vs conventional human 
image interpretation. To the best of our knowledge, only few direct 
comparisons between machine learning approaches and diagnostic human 
performances have been applied to MRI imaging in Neuroncology; to date, 
despite a cautious optimism for machine learning-enhanced image 
interpretation, human visual classification performances still seem to be more 
robust in complex situations, such as image manipulation, weaker MRI signal 
and contrast reduction, or additive noise and image distortions/artifacts [77]. 
In 2019 Molina-García et al. compared machine-learning predictive models 
for GBM prognosis based on clinical information and most meaningful 
morphological MRI data (according to literature: age, enhancing lesion 
volume, enhancement rim width and surface regularity) to prognostic models 
based on human performances, documenting similar discriminatory capability 
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[22]; however, tested MRI images belonged to the same diagnostic category 
(histologically proved GBM), human interpretation was also based on simple 
(but not exhaustive) clinical data, prognostic implications were inevitably 
influenced by external factors (i.e., extent of resection, treatment choice, 
treatment discontinuation due to patients’ related factors, etc.) that are not 
fully explored in the paper, and preliminary semi-automatic MRI image 
segmentation was required (manually performed, then reviewed by 
experienced radiologists). Apart from the different diagnostic purpose 
(differential diagnosis instead of prognostic stratification), in our experimental 
setting we aimed to overcome some of these possible sources of bias that 
affected previous comparisons: we have voluntarily waived any clinical data 
on patients (as not exhaustive, especially for public repositories’ ones) and 
limited the analysis on first-diagnosed patients, and we have opted for 
machine learning approaches not requiring complex and time-consuming pre-
processing (such as the semi-automated segmentation described by Molina-
Garcia et al.). Moreover, we have not limited the morphological MRI data that 
can be selected by the tested machine learning prediction model (as key 
biomarkers for the specific purpose have not been formally defined); although 
FuseMedML-based approach may be seen as a black box model, we tried to 
limit potential spurious associations by resorting to independent datasets for 
validation and by comparing the results to human-level performances. 
Because of the lack of gold-standard benchmarks, human performances have 
been newly collected by resorting to three different raters with variable 
experience in neuroimaging and oncological neuroimaging. This choice is 
motivated by the will to reproduce real-world clinical practice framework and 
expected variability among human observers, and by the attempt to compare 
FuseMedML-based prediction model to human readers with different 
experience in neurooncological imaging. In our experience, human diagnostic 
accuracy was considerably affected by readers expertise, with higher 
performances obtained for the most experienced observer and lower 
performances for the less experienced one. Similarly, when moving to 
compare the agreement between observers with FuseMedML-based 
prediction model, the strength of agreement is remarkably affected by readers 
expertise; indeed cumulative observers agreement with prediction model is 
moderate, but when we individually analyse the results from each rather it 
becomes evident a substantial difference among observers depending on their 
specific background (with the highest agreement for the most experienced 
observer and the lowest agreement for less experienced one). The same trend 
in diagnostic performances and interrater agreement applies both to 
MRI_VOL sub-group and MRI_MULTI sub-group, although with less 
significant differences in the latter group regardless of human readers 
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experience; this is probably attributable to the higher informative value of 
multiparametric MRI acquisition technique compared to post-contrast 
neuronavigation MRI images alone, however this point requires further in-
depth exploration on larger data sets to be elucidated. 
Despite machine learning models should be conceptually based on datasets as 
wide as possible (ideally, on millions different images), this study confirm that 
robust performances may be achieved with a relatively limited but 
heterogeneous dataset (i.e., few hundred images), provided that image 
distribution among diagnostic classes is balanced and not redundant [71]. 
Nevertheless, it must not be forgotten that (as in the proposed research 
activity) machine learning models are usually tested in artificial preselected 
settings (in this specific case, concerning binary differential diagnosis 
between two given tumour types), thus not reflecting the complexity of real 
diagnostic workflows and not taking into account any further patient’s 
information. Automatic classification strategies based on AI or CNN should 
more faithfully replicate the high complex human decision processes, rather 
than solely and simplistically provide binary decisions between few options 
(i.e., benignant vs malignant; high-grade vs low-grade; good prognosis vs 
poor prognosis; and so on), which is futile in most circumstances. Moreover, 
real-life radiologists are aware of the whole clinical picture, of patient’s 
personal or familiar anamnesis, of laboratory findings and of previous imaging 
data when available; therefore, their final diagnosis depends on much more 
than imaging itself. Therefore, to date such information multiplicity and 
clinical complexity are not reflected in this study setting, and imperatively 
require to be explored before integrating deep learning into the existing 
clinical workflows. FuseMedML framework gathers its momentum and has 
the perspective to combine such information, however its exploitation is still 
at an embryonal phase and the knowledge on its potentialities is yet 
incomplete. Therefore at present, although the promising results obtained with 
AI, its routine application for oncology assessment within cancer trials is still 
an aspiration and needs to be more extensively explored before considering 
hybrid approaches to be implemented into real-life clinical practice; final 
decisions on image interpretation should still be left to experienced 
radiologists, aware of the complete and complex patient’s information [7], 
[64], [78]. 
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Chapter 6 
 

Limitations and strengths 
 

Possible limitations to this study include:  
(1) the relative lack of direct comparison with previous FuseMedML 
applications, due to its relative novelty and to the limited corpus of published 
papers on this library (especially when considering the neuroradiological 
field, as stated before);  
(2) the absence of direct comparative study on the benefits of adopting 
FuseMedML instead of other mainstream frameworks (representing the basis 
for reflection on future research solutions);  
(3) the still relatively limited sample size, mainly for multimodal analysis 
(which more closely represents the actual clinical practice, and is expected to 
become more performing than the volumetric one as the sample size grows);  
(4) the choice of not limiting data inclusion to standardized MRI protocols for 
scan acquisition, with consequent high variability of image resolution, voxel 
size and image contrast dynamics, resulting in an extensive variety within the 
datasets (which could be viewed both as a limitation and a strength at the same 
time, see below); 
(5) the lack of non-radiological information on tumour’s characteristics 
(laboratory examinations, pathological features or molecular-genetical data), 
thus limiting the possibility to integrate different structured and unstructured 
information to improve the quality of the classifier;  
(6) the choice to focus the analysis only on the two most common monofocal 
brain tumours of the adulthood, GBM and SBM respectively (while other 
more uncommon histopathological diagnoses, as well as possible brain 
tumour mimics are not included in this preliminary model). This latter 
procedural decision, also related to contingent data availability, could be 
viewed both as a limitation and a strength at the same time; indeed limiting 
the research sample to these two tumour types allows to be more rigorous in 
the MRI data selection, only including brain lesions that are actually similar 
with each other in terms of localization (intra-axial only), age of onset 
(adulthood: >25y and <75y), clinical presentation (neurological signs and 
symptoms), MRI acquisition protocol (similar MRI sequences available), 
MRI signal changes (infiltrative behaviour, enhancement, perilesional 
oedema, possible presence of necrosis/haemorrhage, etc), number of lesions 
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(monofocal only), and so on; other papers in scientific literature generally 
included a larger amount of different lesion types that usually have more clues 
guiding the neuroradiologist (and thus also the machine learning model) to the 
correct diagnosis. In our case, we aimed to focus on a relevant differential 
diagnostic issue in daily clinical practice, thus pointing out possible future 
implications in difficult and uncertain classificative grey areas at MRI 
imaging; therefore, we aimed to reproduce a setting in which 
neuroradiologists could took interest in receiving an external support to 
diagnosis, with neither detracting from the importance of overall clinical 
information on the patients nor diminishing the real-life experience factor; 
(7) the choice to train human observers before the validation phase, as to 
reproduce the learning capabilities of humans’ vs artificial agents. During the 
experiment, training and testing images are submitted to human experts in 
advance to prepare the validation phase. It would also be interesting to 
compare the performance of naive human observers with the performance of 
the same operator after specific training with pre-labelled images, to further 
clarify the impact of the ground truth. 
Alongside possible limitations, major strengths of this research activity 
include:  
(1) the representative number of collected evidence compared to the vast 
majority of previously published papers;  
(2) the choice to select only newly diagnosed single brain lesions, limiting the 
effects of possible confounders on the classification model (such as 
chemo/radiotherapy-related brain changes, post-surgical changes, 
relapsing/residual diseases differences, etc.);  
(3) the inclusion of somehow heterogeneous MRI images (acquired on 
different scanners by different vendors, with different coils and sequences, 
sometimes vitiated by minor artifacts, and so on), which represents an 
important novelty element that reflects the everyday reality and the actual 
variability in diagnostic imaging, thus reproducing a real-life work setting 
(and not only an “ideal” experimental setting in which MRI images that do 
not strictly respond to the experimental inclusion/criteria are generally 
dropped out);  
(4) the choice to limit the analysis to the most significant slice/the two most 
significant slices per patient and to use JPEG rather than most complex file 
formats (thus preferring raster image file formats with lossy compression, 
more suitable for data storage or sharing), that probably is a core difference 
from previous machine learning/radiomics studies based on standardized MRI 
acquisitions performed on patients with brain neoplasm also encompassing 
GBM and metastases [43], [44], [53];  
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(5) the availability of a representative and largely independent external 
validation group, to further increase the confidence in generalisation across 
different sources;  
(6) the comparison with human performances, to reinforce knowledge on 
possible real-life advantages of these network models’ implementation in 
daily clinical practice. 
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Chapter 7 
 

Conclusions 
 

In conclusion, this type of semi-supervised FuseMedML-based approach has 
the potential to gain physicians’ and researchers’ interest thanks to the 
relatively low computational costs and the efficiency in extracting/inferring 
imaging-related features. The experimental results demonstrate that brain 
tumour classification based on conventional MRI by using the proposed 
model could achieve high diagnostic accuracy and low error rate in classifying 
tumour types, consistently with the final histopathological diagnoses. 
Moreover, in daily practice oncologists and surgeons largely rely on the 
interpretation provided by neuroradiologists when making clinical decisions, 
and variability among readers in imaging interpretation (inherently subjective) 
represents a potentially significant source of bias. The two most important 
sources of variability, namely case difficulty and single reader’s skills, are 
accompanied by other minor causes of discrepancy in image assessment 
(different image acquisition techniques, specific training in a given sub-
specialty, and so on); proposed experimental results from ancillary analysis 
on human diagnostic performances highlight a possible role for AI 
technologies as emerging solution to this problem, providing higher 
standardization level, more consistent or predictable behaviour in image 
allocation, and lower susceptibility to human biasing factors.  
It should be also noted that these classification performances have been 
obtained adopting MRI images acquired for daily clinical purposes in different 
centres and with different MRI tools (a major strength of this work, thus not 
strongly influenced by the specific clinical setting and hypothetically 
reproducible on a wider scale). All these elements taken together map out an 
interesting route to overcome diagnostic challenges in imaging interpretation 
and human fatigue barriers (in our specific case referred to Neuroncology, but 
potentially extendable to other imaging fields), not only without 
compromising but also improving the quality of care for patients. 
Future goal of the research activity is to replicate and upgrade the proposed 
models on a larger population by acquiring and storing new MRI studies, in 
order to re-test their goodness and robustness; moreover, further validation 
using larger public and free repository datasets is still ongoing and will 
provide new external evidence concerning the reproducibility of the described 
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results. An additional goal is to develop a more sophisticated and 
comprehensive models for providing classifications other than binary (i.e., 
including different tumour types other than GBM versus SBM, not presently 
considered in the proposed prototype); it is also possible to assume that these 
models could also be used for other-than-oncological classes of pathology, as 
well as for other applications within the field of Neuroncology (i.e., genetic-
molecular analyses, nuclear imaging, histological preparations, and so on).  
As a final remark, considering the promising performances achieved by the 
algorithm and the ensemble of scientific evidences on similar topics, this 
embryonal research activity may represent a foundation stone to in-depth 
exploring the potential of FuseMedML to start a line of research both for 
academic purposes, as well as for real-world clinical practice through possible 
industrial implications for the development of automated diagnostic-support 
systems based on deep learning.
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