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Abstract

Mammalian cells are dynamic systems capable of detecting, adjusting and responding

to time-varying inputs. Transcriptional regulatory networks, which are important for

directing cell homeostasis response to environmental stimuli, acquire information about the

extracellular and intracellular environments via signaling pathways, which are critical in

cell state regulation. The nucleo-cytoplasmic shuttling of transcription factors allows the

cell to control how genes are expressed in response to its environment.

The Transcription Factor EB (TFEB) has recently been discovered as a master regulator

in the transcriptional control of lysosomal biogenesis and autophagy in response to starvation.

The kinase mTOR controls TFEB activity. In nutrient-rich conditions, mTOR sequesters

TFEB in the cytoplasm and phosphorylates it there. Unphosphorylated TFEB translocates

into the nucleus and controls the expression of its target genes when mTOR is suppressed

during starvation.

The purpose of this Thesis is to characterize the dynamics of TFEB nuclear shuttling

on the basis of experimental and computational investigations, in line with the general

framework of Systems Biology.

Specifically, I took advantage of the experimental data to study the nuclear localisation

of TFEB in real time on individual cells growing in two complementary microfluidics-based

platforms. Following starvation, TFEB translocates to the nucleus but later partially

relocalises to the cytoplasm, exhibiting a previously unknown "overshoot" dynamic. These

experimental features were then employed in the subsequent modelling efforts aiming at

discriminating among alternative hypotheses that most likely explain the experimental

results, and thus help determine the mechanism that is responsible for the observed shuttling

dynamics. The results suggest that Calcium-Calcineurin signaling drives TFEB overshoot
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dynamic.

In this Thesis, I will introduce the Systems Biology fundamentals and I will review

TFEB signalling in Chapter 1; I will then describe the technological experimental platform

in Chapter 2. Here, I will also provide details on the methods used to conduct experimental

and computational analyses, including the image analysis algorithms and the modelling

approach. Chapters 3 and 4 will represent the body of the Thesis. Particularly, I will focus

on the experimental data in the former (Chapter 3), starting with the preliminary data

that revealed the overshoot dynamics, and consequently I will explain the experiments that

followed and that were based on the suppression of critical TFEB signaling regulators to

identify the source of this novel mechanism. In Chapter 4, I will investigate and explore

in silico the role of each individual reaction involved in TFEB nuclear shuttling which

has been reported in literature and derive the optimal model based on the preexisting

literature to recapitulate the experimental features. Finally, in Chapter 5, I will provide

some concluding remarks on future studies to empirically verify the computational results I

obtained.

ii



Contents

1 Introduction 1

1.1 Introduction to Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to the transcription factor EB (TFEB) . . . . . . . . . . . . . 6

1.2.1 TFEB functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 TFEB in diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Conditions that promote TFEB nucleo-cytoplasmic shuttling . . . . 11

1.2.4 The mTOR-mediated TFEB signalling pathway . . . . . . . . . . . 11

1.2.5 Other kinases and upstream regulators of TFEB . . . . . . . . . . . 14

2 Methods 16

2.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The VersaLive microfluidic device . . . . . . . . . . . . . . . . . . . 18

2.1.2 Microfluidic Device for Dynamic Stimulation . . . . . . . . . . . . . 20

2.1.3 Actuation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Time-Lapse Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Experimental Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Microfluidic Experiments . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Dynamical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Experimental Investigation of TFEB nuclear shuttling dynamics 30

3.1 Microfluidics experiments to observe TFEB dynamics . . . . . . . . . . . . 31

3.1.1 TFEB translocation dynamics following starvation . . . . . . . . . . 31

iii



3.1.2 TFEB translocation dynamics following Amino Acids starvation . . 34

3.2 Microfluidics experiments following small molecule inhibition of biological

processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 mTOR inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Autophagy inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Exportin 1 inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Proteasome inhibition . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.5 Translation and transcription inhibition . . . . . . . . . . . . . . . . 43

4 Quantitative Modelling of TFEB nuclear shuttling 46

4.1 Static and Dynamic Experimental Features . . . . . . . . . . . . . . . . . . 46

4.2 Classic Model of TFEB nuclear translocation . . . . . . . . . . . . . . . . . 49

4.2.1 Introduction to the Classic Model . . . . . . . . . . . . . . . . . . . 49

4.2.2 Classic Two-States Model . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Numerical Simulations of Classic Model . . . . . . . . . . . . . . . . 53

4.2.4 Classic NFL and IFFL Models . . . . . . . . . . . . . . . . . . . . . 56

4.2.5 Numerical Simulations of Classic NFL and IFFL Models . . . . . . 59

4.3 Optimal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Introduction to the Alternative Models . . . . . . . . . . . . . . . . 62

4.3.2 Static Analysis of the models . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Analysis of Dynamic Features . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusions and Future Work 81

A Supplementary Data 84

B Materials and Methods 96

B.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2.1 Device for dynamic input experiments Fabrication Protocol . . . . . 97

B.2.2 Device for dynamic input experiments Cells Loading Protocol . . . 97

B.2.3 VersaLive Fabrication Protocol . . . . . . . . . . . . . . . . . . . . 98

iv



B.2.4 VersaLive: Wetting and Cell Loading . . . . . . . . . . . . . . . . . 99

B.2.5 VersaLive: Single/Multi-input mode . . . . . . . . . . . . . . . . . . 100

B.2.6 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.3 Starvation Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



List of Figures

1.1 Systems biology approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 TFEB functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 TFEB in disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 TFEB nucleo-cytoplasmic shuttling in relation to the availability of amino

acids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Technological Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Outline of the VersaLive microfluidic platform. . . . . . . . . . . . . . . . . 19

2.3 VersaLive modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Device design and vacuum-assisted cell . . . . . . . . . . . . . . . . . . . . 21

2.5 DAW junction and staggered herringbone mixers . . . . . . . . . . . . . . 22

2.6 Linear actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Nikon Eclipse TI fuorescence microscope . . . . . . . . . . . . . . . . . . . 24

2.8 Model of TFEB-GFP translocation . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Segmentation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Simplified scheme of TFEB-GFP translocation in the HeLa monoclonal

reporter cell line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Preliminary experimental measurements of TFEB translocation in the nucleus. 31

3.2 Experimental measurements of TFEB translocation in the nucleus following

different geometry pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experimental measurements of TFEB translocation in the nucleus following

amino acids (AA) starvation. . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



3.4 Bar Graphs of TFEB translocation in the nucleus following the amino acid

(AA) starvation dose test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Experimental measurements of TFEB translocation in the nucleus following

mTOR inhibition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Experimental measurements of TFEB translocation to the nucleus following

starvation during autophagy inhibition. . . . . . . . . . . . . . . . . . . . . 38

3.7 Experimental measurements of TFEB translocation in the nucleus following

Exportin 1 (XPO1) inhibition in growth medium (complete RPMI). . . . . 40

3.8 Experimental measurements of TFEB translocation in the nucleus following

starvation or mTOR inhibition during Exportin 1 (XPO1) inhibition. . . . 41

3.9 Experimental measurements of TFEB translocation in the nucleus following

starvation during proteasome inhibition. . . . . . . . . . . . . . . . . . . . 42

3.10 Experimental measurements of TFEB translocation in the nucleus following

starvation during translation inhibition. . . . . . . . . . . . . . . . . . . . . 43

3.11 Experimental measurements of TFEB translocation in the nucleus following

starvation during transcription inhibition. . . . . . . . . . . . . . . . . . . 44

4.1 Experimental measurements of TFEB translocation in the nucleus. . . . . 48

4.2 Block scheme of the Classic Model. . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Numerical Simulations of TFEB translocation for the Classic Model. . . . . 54

4.4 Two alternative models of TFEB dynamics. . . . . . . . . . . . . . . . . . 58

4.5 Numerical Simulations of TFEB translocation for the Classic IFFL and NFL

Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 General Block scheme of the Alternative Models proposed. . . . . . . . . . 63

4.7 General Block scheme of the Alternative Models proposed to explain the

experimental Static Features. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 General Block scheme of the Alternative IFFL and NFL Models proposed. 74

4.9 Numerical Simulations of TFEB translocation for the Model 6. . . . . . . . 75

4.10 Numerical Simulations of TFEB translocation for the IFFL on k−1 Model. 77

4.11 Numerical Simulations of TFEB translocation for the IFFL on β1 Model. . 79

vii



5.1 The MCOLN1 agonist SF-51 induces TFEB nuclear translocation. . . . . . 82

A.1 Numerical Simulations of TFEB translocation for the NFL on k−1 Model. . 88

A.2 Numerical Simulations of TFEB translocation for the NFL on β1 Model. . 89

A.3 Numerical Simulations of TFEB translocation for the IFFL on k2 Model. . 90

A.4 Numerical Simulations of TFEB translocation for the NFL on k2 Model. . 91

A.5 Numerical Simulations of TFEB translocation for the IFFL on β−1 and β2,p

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.6 Numerical Simulations of TFEB translocation for the NFL on β−1 and β2,p

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.7 Numerical Simulations of TFEB translocation for the IFFL on β2 Model. . 94

A.8 Numerical Simulations of TFEB translocation for the NFL on β2 Model. . 95

viii



List of Tables

4.1 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

General Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

General Case when β2 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

General Case, when β2 = 0 in the presence of β2,p. . . . . . . . . . . . . . . 69

4.4 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

Case of dependence on k and β in the presence of β2,p. . . . . . . . . . . . 70

4.5 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

Case of dependence on k and β when β2, β2,p = 0. . . . . . . . . . . . . . . 71

4.6 Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in the

Case of dependence on k and β, when β2 = 0 in the presence of β2,p. . . . . 72

4.7 Conditions to satisfy the S2 Feature. . . . . . . . . . . . . . . . . . . . . . 73

A.1 Equilibrium Points evaluated in the General Case. . . . . . . . . . . . . . . 84

A.2 Equilibrium Points evaluated in the General Case when β2 = 0. . . . . . . 85

A.3 Equilibrium Points evaluated in the General Case, when β2 = 0 in the

presence of β2,p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.4 Values of the dividing quantities. . . . . . . . . . . . . . . . . . . . . . . . 86

A.5 Equilibrium Points evaluated in the Case of dependence on k and β in the

presence of β2,p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.6 Equilibrium Points evaluated in the Case of dependence on k and β when

β2, β2,p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



A.7 Equilibrium Points evaluated in the Case of dependence on k and β, when

β2 = 0 in the presence of β2,p. . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



Chapter 1

Introduction

Transcription factor EB (TFEB) has been identified as as a key player in the transcrip-

tional regulation of lysosomal biogenesis and autophagy. It controls different biological

processes, has diverse functions in numerous signaling pathways, and has been connected

to a variety of human disorders.

Several studies revealed how complicated and sophisticated TFEB signaling is. With the

aim to explore and characterize its behaviour following nutrient deprivation stimuli, I chose

to study its translocation dynamics using a novel approach from the field of Systems Biology,

which combines theoretical mathematical modeling with high-throughput experimental

measurements to elucidate biological functions.

In this Chapter, I will first introduce the concept of Systems Biology, describing the

general approach and the rational behind this novel research field. Then, I will introduce

the functions and the signalling of the biological system under investigation.

1.1 Introduction to Systems Biology

Any biological system is composed of a variety of physical components, or parts, that

influence one another through their interaction and are physically and functionally separated

from their surroundings [98].

Within a cell, gene products do not work alone, while cells isolated from their tissue

lose a lot of their structural and functional characteristics.
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Most biological processes are governed by multi-scale dynamic complex systems made of

interacting macromolecules and metabolites. These interactions between macromolecules,

both locally and globally, are able to produce system characteristics and behaviors that are

essential for life [102].

Networks of interactions between proteins, RNA, DNA, and small molecules involved in

signaling and energy transfer can be seen as the building blocks of cell life.

Through the processing of external information and the induction of appropriate cellular

responses and internal activities, such as gene expression, these networks enable the

fundamental operations of cells and complete organisms. Signals that transport data from

the environment are inputs to the networks.

The transcriptional network is a dynamic system because a cell is not an isolated system;

it continuously responds to external stimuli in order to either follow a specific developmental

program or to adapt to changes in the environmental conditions. When an input signal is

received, transcription factor activities change thus modifying the rate at which proteins

are produced [2].

By their very nature, biological systems are resistant to accurate quantitative and

mathematical representation. They are made up of several components that are intri-

cately related through interactions and activities that occur at various organizational

levels (molecular,cellular,in tissue, whole animals and ecological). Due to the presence of

several gradients that are outside of the thermodynamic equilibrium, these processes take

place simultaneously in an open system and ultimately result in very complex non-linear

dynamics between the system’s components. The employment of mathematical models in a

quantitative and dynamic way to comprehend biological systems has been hampered by

this scenario.

However, two technical developments in the last two decades have made it possible to

build and resolve mathematical models for biological systems. The processing capacity

necessary for the administration of information and the calculation of massive systems is

generally accessible and nearly ubiquitous. On the other hand, a lot of dynamic information

on the structure and behavior of biological systems has been produced as a result of the

advancement of high throughput methods to measure level of protein, RNA, and DNA on a
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gene-by-gene basis as well as the post-translational modification and localisation of proteins,

and not the least the development of the "omics" sciences (genomics, transcriptomics,

proteomics, signalomics, and metabolomics).

Progress in molecular biology, particularly in genome sequencing and high-throughput

measurements, enables us to collect comprehensive data sets on system performance and

learn more about the underlying molecules. It is now cheaper and simpler than ever

to gather, process, and store this information. All of the aforementioned factors have

contributed to the emergence of Systems Biology as the multidisciplinary, quantitative

method to studying the complex relationships and collective behavior of a cell, an organism,

or an ecosystem in the twenty-first century. The focus on organization and biological

function is what makes Systems Biology unique [38,39,98].

Research using a Systems Biology perspective is less concerned with the parts as they are

seen individually and more concerned with the connections between the structural elements

of biological systems and their function as well as the characteristics of the interactions

that take place between various sub-systems. Systems Biology focuses on the problem of

reconstructing and integrating the available biological data [98].

Systems Biology is a comprehensive quantitative analysis of the manner in which all

the components of a biological system interact functionally over time [1].

It is the study of how complex biological structures and processes behave in terms of

their underlying molecular elements. It is based on physiology for its special interest in

adaptive states of the cell and organism, on developmental biology for the significance of

defining a succession of physiological states in that process, and on evolutionary biology

and ecology for the understanding that all aspects of the organism are products of selection,

a selection we rarely understand on a molecular level. It is also based on molecular biology

for its special concern for information transfer.

In order to identify and characterize parts and investigate how their interactions with

one another and the environment contribute to the maintenance of the entire system,

Systems Biology is a method of biomedical research that consciously combines reduction

and integration of information across various spatial scales.

Systems Biology provides a window into how evolution has shaped the phenotype by
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relating genomes and phenotypes, which are connected in both directions through intricate

networks of interaction.

All of this is attempted by Systems Biology using numerical measurement, modeling,

reconstruction, and theory. Without the use of advanced computer modeling tools, it

would be difficult to investigate the landscapes made up of highly dynamic and mutually

interacting characteristics [38, 40].

The Systems Biology method relies on mathematical modeling to depict and comprehend

the intricate relationships between various biological entities and components and to analyze

the cellular systems dynamically. The general approach used in Systems Biology is depicted

in Figure 1.1.

Mathematical modeling becomes a means to analyze the structure and dynamics of

cellular and organismal activity in order to comprehend biology at the system level. Because

dynamic analysis can provide helpful predictions of previously undiscovered relationships,

study of dynamics and structure based on network dynamics are really overlapping processes

[39,40].

A model is an abstract or numerical representation of a system used to analyze and

characterize it. Every model is a simplified form of the reference system that the scientist

is trying to comprehend and measure. In the end, it serves as a method of organizing the

information and facts that are currently known and understood about a certain occurrence.

The nature of mathematical models might vary greatly. Dynamical models, which

may be divided into deterministic and stochastic types, take changes in the elements over

time into account. The concentration of the species and the model’s parameters are the

sole factors affecting the dynamics in the deterministic ones. The stochastic ones, on

the other hand, depend on the random noise of the system since there is uncertainty in

systems with statistically uncommon constituents. Static models aim to comprehend the

organization of the connectivity of the elements, which remains constant across time under

particular circumstances. By identifying the key hypotheses and deriving insights into the

complex biological processes they represent, mathematical models not only aid in system

understanding but also enable the study of the effects of modifications to the system’s

components and environmental factors on its behavior [98].
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Figure 1.1: Systems biology approach. Systems biology aims to interpret and analyse
signalling pathways and biological systems relying on experimental and computational
analysis. The primary steps in this process are observation, then mathematical modeling,
simulation, analysis, and optimization, before turning to observation. In this cycle, the
mathematical model is in the center, directly behind the actual system. From [98]].
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The essential steps are observation, mathematical modeling, simulation, analysis, and

optimization, followed by a return to observation. The model is built in stages, with the

first version presenting an initial selection of variables, processes, and interactions that

are thought to be relevant based on the information at hand and a set of well-founded

hypotheses (conceptual model). The model’s first mathematical formulation is drawn from

this suggestion (mathematical model). To get here, it is necessary to exercise the integration

of theories and data, which results in a new, deeper level of understanding of the system

[98].

Complex biological systems constitute a challenge because, based on our current under-

standing, models are still incredibly incomplete. In order to enhance models and calibrate

confidence, there will therefore be a role for both positive and negative validation for some

time to come [40].

Once the model is complete and precise, it is feasible to predict how the system will

behave in the presence of any disturbance [1].

Systems Biology is still in its early stage, but it has immense promise for both scientific

and practical advancement. A shift in biology from the molecular to the system level

promises to transform our understanding of intricate biological regulatory systems and open

up a wealth of new prospects for the application of this knowledge in real-world settings

[39].

1.2 Introduction to the transcription factor EB (TFEB)

Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-

loop-helix leucine zipper transcription factors, is a well-known essential regulator of the

autophagy/lysosomal-to-nucleus signaling pathway. Because of its extensive involvement in

numerous signaling pathways, including the mTORC1, Wnt, calcium, and AKT signaling

pathways, TFEB is now widely recognized as a regulator of various processes, including

energy homeostasis, stress response, metabolism, autophagy and lysosomal biogenesis.

TFEB was first identified as an oncogene. Additionally, TFEB has been linked to a

number of human diseases, including cancer, lysosomal storage disorders, neurodegenerative
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Figure 1.2: TFEB functions. The majority of cellular processes controlled by TFEB
activity are shown in the picture, including lysosome formation and function, autophagy,
mitophagy, lipophagy, lysosomal exocytosis, and endocytosis, as well as a number of
signaling pathways. Adapted from [7,8]].

diseases, and metabolic disorders. Consequently, it has been identified as a potential novel

therapeutic target for clinical and regenerative applications [97].

1.2.1 TFEB functions

Evolutionarily, TFEB and the other MiT/TFE proteins are conserved. The expression

of the MiT/TFE transcription factors varies greatly depending on the cell types and tissues,

and they are ubiquitously expressed. A palindromic ten base pair motif (GTCACGTGAC),

known as the coordinated lysosomal expression and regulation (CLEAR) element, has been

found to be preferred by MiT/TFE proteins, according to extensive investigation of the

promoters of several autophagy-lysosomal genes [8, 64,76,97].

A number of genes with the CLEAR regulatory motif in their proximal promoters

have been demonstrated to be positively affected by TFEB’s direct binding. The primary

TFEB roles in cellular processes are reported in Figure 1.2. TFEB positively controls the
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expression of lysosomal genes and produces an increase in the number of lysosomes, which

enhances the capacity of cells to digest lysosomal substrates. This is consistent with its

function as a modulator of the CLEAR network genes [86]. Additionally, TFEB controls

the expression of other genes that contribute to an increase in the autophagic flux and

lysosomal exocytosis [58,89].

Therefore, the lysosomal biogenesis, autophagy, and lysosomal exocytosis processes are

all modulated by TFEB, which controls a transcriptional program that can govern the

major cellular degradative pathways and encourage intracellular clearance.

More recently, it has been shown that TFEB also affects lysosomal positioning, causing

them to shift toward the cell’s center in response to nutrient restriction [103], as well as

endocytic gene expression, which increases cellular endocytosis and activates autophagic

processes [67]. Additionally, it was recently shown that TFEB participates in DNA

damage response, enhancing p53-dependent transcription of genes involved in DNA repair,

cell cycle arrest, and apoptosis, as well as ER stress response by promoting apoptosis

[11,53]. TFEB role was also demonstrated in autophagy and lysosome-dependent cell death

(LDCD), lipid catabolic pathways (such as fatty acid oxidation and lipophagy) and in

lysosomal-independent autophagy [76,97].

It is interesting to note that many factors that control TFEB activity, such as RagD,

the lysosomal "platform", and the Ca2+ channel MCOLN1, are also transcriptionally

controlled by TFEB. This suggests that lysosomal adaptation to environmental changes

is a self-sustaining process that is controlled by numerous feedback loops [20,90]. As an

additional feedback loop that helps to maintain lysosomal signaling and function, TFEB

activation also stimulates its own transcription [90].

As nexus for nutritional sensing and resolution of any supply-demand imbalance, TFEB

can also improve the integrated stress response (ISR) in addition to increasing lysosome

formation in response to amino acid restriction. In fact, amino acid deprivation causes

the ISR pathway to be repressed, reducing the cell’s overall rate of protein synthesis.

However, because it is a transcription factor, TFEB needs protein synthesis to control the

autophagic flow, which is in competition with the inhibition of all translation. To do this,

TFEB regulates GADD34 transcriptionally to allow translation of the starvation-induced
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Figure 1.3: TFEB in disease. A number of disorders, such as Lysosomal Storage
Disorders (LSDs), neurodegenerative illnesses, and many cancer types are affected by TFEB
disfunctions, which also has a physiological effect on a number of different organs and
tissues. Adapted from [8,97]].

transcriptional program, which in turn fine-tunes protein synthesis during starvation [27].

Finally, the physiological impact of TFEB protein was observed in a variety of organs

and tissues including brain, heart, bone, lung, muscle, liver, pancreas, kidney, intestine,

embryos and immune system [76,97].

1.2.2 TFEB in diseases

In many clinical disorders linked to autophagy or lysosomal abnormalities, TFEB has

emerged as a significant factor because of its capacity to enhance intracellular clearance

[8, 76,97]. TFEB roles in disease are reported in Figure 1.3.

The pathological phenotype of Lysosomal Storage Disorders (LSDs), a class of diseases

brought on by genetic defects in particular lysosomal proteins that result in the accumulation

of toxic aggregates inside the lysosomal lumen, has been shown to be improved by inducing
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TFEB activity in cellular or mouse models [50, 69,70].

Accordingly, TFEB overexpression enhanced lysosomal function and autophagy in

models of multiple sulfatase deficiency, mucopolysaccharidosis type IIIA, Batten disease,

Pompe disease, Gaucher disease, Tay-Sachs disease, and cystinosis by promoting a significant

decrease in undigested material. [58, 78,94,95].

In addition to LSDs, it has been demonstrated that TFEB activity induction is advanta-

geous in neurodegenerative disorders including Parkinson’s, Huntington’s, and Alzheimer’s

disease. Toxic protein aggregation, which is frequently brought on by or linked to abnor-

malities in autophagy or lysosomal function, is a hallmark of these diseases [60]. Genetic

or pharmacological activation of TFEB in Parkinson’s disease decreases the buildup of

α-synuclein aggregates and restores healthy lysosome activity [17, 18, 36]. At the same

way, TFEB activation reduces protein aggregation and enhances the neurological pheno-

type in Huntington’s disease models [86, 99]. Finally, in cellular and mouse models of

Alzheimer’s disease, overexpression or activation of TFEB prevents aggregate formation

and neurodegeneration [13,73,104,105].

Additionally, it was demonstrated that TFEB overexpression helped various liver diseases,

such as α1-antitrypsin deficiency and obesity, by enhancing autophagy or lipophagy [71,90],

respectively.

New research suggests that cancer cells use TFEB-mediated transcriptional stimulation

of autophagy-lysosomal biogenesis for their oncogenic survival. TFEB was specifically

linked to many cancer forms, including renal carcinoma [4,15,44], alveolar soft part sarcoma

[45], papillary carcinomas with liver metastases [12] pancreatic ductal adenocarcinoma

(PDAC) tumorigenesis and pancreatic cancer cell proliferation [51, 72], besides of Birt-

Hogg-Dubé (BHD) syndrome [63]. Oral squamous cell carcinoma (OSCC) and non-small

cell lung cancer (NSCLC) cell lines with TFEB depletion showed decreased migratory

and invasive behaviors, indicating that it may control cellular migration [28,82]. Finally,

in another study, p53, a tumor suppressor, was found to regulate the TFEB-dependent

autophagy-lysosomal pathway in lung cancer cells [109].
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1.2.3 Conditions that promote TFEB nucleo-cytoplasmic shuttling

By controlling its subcellular location through post-translational modifications, protein-

protein interactions, and spatial organization, TFEB activity is rigorously regulated. When

inactive, TFEB is primarily positioned in the cytosol, but specific stimuli quickly cause

TFEB to go into the nucleus, where it then activates the transcription of its target genes

[8, 76,89].

In cells fed with sucrose, which accumulates in lysosomes and replicates the lysosomal

accumulation seen in lysosomal storage diseases, the first proof of stimulus-induced TFEB

nucleo-cytoplasmic shuttling was discovered [86]. Other pharmacological treatments that

result in lysosomal stress, such as chloroquine, bafilomycin or trehalose, also cause TFEB

nuclear translocation [69,79,91].

TFEB localisation was demonstrated to be extremely sensitive to nutrient levels in

addition to lysosomal stress. As a result, nutrient restriction triggers a quick and powerful

nuclear translocation of TFEB, which peaks about an hour after amino acid and serum

withdrawal. Additionally, refeeding cells with nutrients causes TFEB nucleus-to-cytoplasm

relocalisation [52,79,89]. Many other stimuli have been demonstrated to promote TFEB

translocation in addition to lysosomal stress and starvation, including infection, bacterial

phagocytosis, inflammation, physical exercise, mitochondrial damage and ER stress [76].

Recently, other drug treatment have been reported to promote nuclear translocation of

TFEB as Torin 1, which inhibits mTORC1 kinase activity upstream of TFEB [56,62,76].

In addition, TFEB subcellular localisation is influenced by changes in intracellular calcium

levels. Indeed, calcium chelators (Bapta AM) block starvation-induced TFEB nuclear

translocation, while calcium ionophores (Thapsigargin, Ionomycin and SF-51) promote

TFEB nuclear translocation by promoting Ca2+ ions intake that activate the Calcineurin

phosphatase upstream of TFEB [56,76,97].

1.2.4 The mTOR-mediated TFEB signalling pathway

The most well-studied mechanism for regulating TFEB’s activity and subcellular

localisation is the phosphorylation of particular serine residues in the TFEB protein
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[8, 64,76,97]. In this context, TFEB activity is mainly controlled by the mammalian target

of rapamycin (mTOR) [91]. This signalling pathway is described in Figure 1.4.

mTOR is central for regulation of the autophagic activity and senses the energy status by

integrating signals from, for example, growth factors, amino-acids, and glucose [61]. mTOR

exists as two structurally and functionally distinct complexes, mTORC1 and mTORC2.

In particular, mTORC1 is an evolutionarily conserved kinase that regulates numerous

Figure 1.4: TFEB nucleo-cytoplasmic shuttling in relation to the availability of
amino acids. Under normal growth condition, TFEB is inhibited inside the cytoplasm
through a phosphorylation on S211 by mTORC1 complex. When inhibited, TFEB could
either be targeted (ubiquitination) for proteasome degradation or bound by chaperone 14-
3-3. During amino acids decrease mTORC1 is inhibited, contemporary TFEB is activated
through a dephosphorylation by Calcineurin and translocates inside the nucleus promoting
the activation of its target genes. Following refeeding, TFEB is hierarchically phosphorylated
in the nucleus on S142 and S138 and exposes a nuclear export signal that causes its nuclear
export via the exportin XPO1. Adapted from [26,47,97]].
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cellular processes, including cell growth, proliferation, cell cycle and autophagy. mTORC1

localises to the lysosomal membrane and this distribution is crucial for its ability to sense

and respond to variations of amino acid content in the lysosome.

mTORC1 is recruited to the lysosomal membrane in nutrient-rich contexts, specifically

when amino stimulation is present. The lysosomal membrane allows amino acids to readily

pass and accumulate inside the lysosomes. By means of the v-ATPase-Ragulator complex,

these amino acids are "sensed" by the lysosomal lumen and communicate with the Rag

GTPases [110]. At the lysosomal surface, GTP-bound Ras homolog enriched in the brain

(Rheb) promotes the activation of mTORC1 [84, 85, 110]. Notably, TFEB is also recruited

to the lysosomal surface by active Rag GTPases [54], where it is phosphorylated by the

mTORC1 complex at a number of serine (S) residues.

Particularly, three residues have been discovered to be crucial for TFEB localisation

despite the existence of at least 10 distinct phosphorylation sites [19]: S138, S142 and

S211 [47]. Through the hierarchical phosphorylation of these serine residues, mostly by

mTORC1, nutrient availability controls TFEB nucleo-cytoplasmic shuttling [62]. This

process guarantees that only a TFEB phosphorylated on all three residues is entirely cytosolic

and inactive, demonstrating that nutrient levels precisely regulate TFEB subcellular

localisation through modification of its shuttling kinetics.

Specifically, TFEB cytoplasmic retention is brought on by mTORC1-mediated phospho-

rylation of TFEB at S211. In fact, S211 functions as a recognition site for TFEB binding

to chaperon 14-3-3 and cytosolic retention, most likely by concealing its nuclear localisation

signal (NLS) [52,79,91,101].

When there is a deficiency of amino acids, mTORC1 detaches from the lysosomal

membrane and turns inactive thus blocking the phosphorylation of TFEB. Interestingly,

the nutritional restriction simultaneously causes the release of lysosomal Ca2+ through

the calcium channel mucolipin 1 (MCOLN1). This activates the phosphatase Calcineurin,

which then dephosphorylates TFEB [56]. Detachment from chaperon 14-3-3 and the

conformational shift caused by TFEB dephosphorylation enable the NLS signal to be

exposed, facilitating its nuclear translocation via importin IPO7 or IPO8 through the

Nuclear Pore Complex (NPC) [72, 106]. Nuclear TFEB that has been dephosphorylated is
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in an active state and can control the transcription of its target genes [76,81,97].

Following refeeding, TFEB nuclear export is promoted by hierarchical phosphorylation

of S138 and S142 residues [47]. Due to their proximity to the TFEB nuclear export signal

(NES), serine residues S142 and S138 are thought to have a role in TFEB nuclear export

by controlling how the exportin chromosomal maintenance 1 (CRM1 aka XPO1), identified

as a strong TFEB interactor [37], interacts with its hydrophobic export signal [47,62].

The two primary protein kinases known to phosphorylate TFEB in most cell types

under nutrient-rich contexts are mTORC1 and extracellular signal-regulated kinase 2

(ERK2, also known as MAPK1). Generally, S142 is a site for both ERK- and mTOR-

mediated phosphorylation, whereas S138 has been proposed to be a GSK3β-phosphorylated

site [47]. Neverthless, it has been demonstrated that phosphorylation on both S142

and S138 completely depends on mTOR activity [62], indicating that mTOR-mediated

phosphorylation is the primary mechanism regulating TFEB subcellular localisation. In

fact, the phosphorylation of TFEB is insensitive to Rheb activity brought on by growth

factors and is solely dependent on the amino acid-mediated activation of Rags [20,63].

Recently, chaperone-dependent E3 ubiquitin ligase known as STUB1 was discovered to

control TFEB activity by selecting phosphorylated TFEB (S142 and S211) for ubiquitin-

mediated proteasomal destruction. This implies that TFEB’s phosphorylation state affects

both its intracellular location and stability [92].

1.2.5 Other kinases and upstream regulators of TFEB

Other kinases were discovered that phosphorylate TFEB in addition to mTORC1

[8,76,97].

For example, mitochondrial stress has the ability to activate TFEB independently

of mTOR. PINK1 and Parkin are required for the nuclear localisation of TFEB upon

oligomycin or antimycin-induced mitophagy [65].

In osteoclasts, PKCβ phosphorylates a number of serine residues in the human TFEB

C-terminus. Although TFEB subcellular location is unaffected, TFEB protein stability

depends on these serines being phosphorylated by PKCβ [22].

As discussed in the previous Subsection, ERK2 was identified as responsible for S142
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phosphorylation [47, 89], while GSK3β as responsible for S138 phosphorylation, besides of

S134 [47,48].

AKT phosphorylates TFEB at serine residue S467, according to a recent research, and

treatment of cells with an AKT inhibitor promotes TFEB nuclear translocation [69].

TFEB nuclear translocation is promoted by the curcumin analogue C1 in a manner that

is phosphorylation independent, according to a different recent study. In this instance, C1

binds to TFEB directly, interfering with TFEB’s ability to connect to 14-3-3 proteins [93].

As a new central mechanism upstream of TFEB has been identified Foliculin, a well-

known tumor suppressor gene for Birt-Hogg-Dubé (BHD) syndrome [10, 66]. Indeed,

upon activation by amino acid-stimulation or growth factors, Foliculin activates Rags [85].

Secondly, it is necessary for mTORC1 to localise on the lysosomal membrane and for the

Rheb protein to activate it so that it may phosphorylate and inactivate TFEB.
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Chapter 2

Methods

Based on the principles of Systems Biology, I first conducted a set of experiments to

characterize TFEB shuttling dynamics. Then, I carried out computational analyses in order

to develop a model able to explain the experimental results. Here, I present the methods

for experimental and computational analyses.

In particular, the experiments were conducted with two technological platforms based

on a microfluidic device where the model cell line is loaded and that is connected with a

time-lapse microscope for imaging and an input for treatments.

The platforms support long-term imaging, and once the experiment is finished, the data

are subjected to image analysis to extrapolate the level of nuclear and cytoplasmic TFEB

concentration over time.

A deterministic modeling-based computational analysis was carried out using the

experimental findings as well as knowledge from the literature to yield a baseline.

2.1 Experimental Platform

Figure 2.1 provides a broad overview of the two experimental platforms utilized to

conduct the experiments [25,68,75]. A time-lapse microscopy apparatus [74,75], a specific

microfluidic device, and an input system are the building blocks for the two platforms.

The microfluidic devices used for cell culture are designed to simulate physiological

environments, allowing to investigate individual living cells in finely regulated microenvi-
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Figure 2.1: Technological Platforms. (A) The two platforms consist of a time-lapse
microscopy apparatus, a specific microfluidic device, and an input system [74, 75]. (B)
The first microfluidic device used is designed by Kolink and colleagues [41]. In order to
dynamically administer various inputs to the cells that are loaded within, it is connected
to a system of automated syringes that are controlled by a computer. (C) The second
microfluidic device is called VersaLive and is designed by Nocera and colleagues [68]. In
this instance, the treatment is given using a standard pipette to the cells that are loaded
within.

ronments.

The micro-environment can be precisely controlled in both space and time thanks to

microfluidics, which also optimizes reagent quantity, consumables, and time. Additionally,

microfluidic devices enable for the constant refreshing or changing of cells’ growth medium

in order to prevent nutrient depletion from cell consumption and isolation of the cells from

outside disturbances.

The ability to expose cells to a time-varying inducer signal is of particular significance

since such dynamic stimulation most closely mimics the ever-changing natural environment

in which cells normally reside [24,41].

The development of these devices was initially hampered by the difficulties of mammalian

microfluidic cell culture. Mammalian cells are very sensitive to minute changes in pH,

osmolarity, shear stress, and other environmental conditions. A perfusion flow of media,

which continuously replenishes the culture volume, is frequently employed to address issues

with pH and osmolarity variation. To sequester cells in areas with strong resistance to fluid
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flow and shield them from harmful shear effects, a variety of trapping geometries can be

utilized.

Here, the experiments are carried out with two different microfluidic devices depending

on their specific needs. The VersaLive platform described in Subsection 2.1.1 is used

for multiple conditions experiments (Figure 2.1 C), whereas the platform described in

Subsection 2.1.2 is preferred for dynamic input experiments (Figure 2.1 B).

Particularly, the conditions in the microfluidic device are changed manually for the

VersaLive platform by using a pipette, while are changed automatically in the other device

by using a set of automated syringes all controlled by a computer [25]. Cells are continuously

imaged at a specific sampling time and the images are then processed to obtain the single

cells fluorescence signals.

2.1.1 The VersaLive microfluidic device

VersaLive is a flexible and user-friendly microfluidic device for perfusion cell culture that

can be used for a variety of applications using only standard pipettes [68]. It is utilized in

mammalian cell lines and primary cells for a variety of applications, including time-lapse live

cell imaging, immunostaining, cell recovery, cell lysis, and plasmid transfection. VersaLive

may take the place of common cell culture formats in a range of applications, thus lowering

costs and improving lab-to-lab replicability.

This PDMS microfluidic chip consists of five (or six) chambers that are each 250 microns

wide (Figure 2.2 A). Each chamber has a connection to the main common channel on one

side, and an individual input channel on the other. Through ports that serve as reservoirs

with adjustable inputs, access to channels is ensured.

Active pumps are not required since hydrostatic pressure drives the flow from the ports

to the chambers. Each culture chamber has a cell filter inserted on one side to keep cells

inside the chamber by obstructing passage of objects wider than 5 microns.

There is a fluidic resistor between the culture chamber and the input to lower the

flow velocity and, as a result, the shear stress on the cells. For a uniform and constant

distribution, the flow deflectors assist in distributing the chemical input throughout the

whole chamber area.
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Figure 2.2: Outline of the VersaLive microfluidic platform. (A) The primary channel
that runs from port A to port B connects all chambers. Each chamber has a separate
connection (ports 1 to 5 on the schematics) that may independently supply fluids to each
chamber. When using the device, shear stress to the cells is prevented by the serpentine,
a flow resistor. Flow deflectors guarantee a uniform distribution of the fluid over the
chamber’s whole surface area. Objects bigger than 5 microns cannot pass through the cell
filter. (B) VersaLive outline for five ports. (C) VersaLive outline for six ports. Adapted
from [68].

The five ports version of the chip layout is shown in Figure 2.2 B, and the six ports

version used in the experiments conducted in this study is shown in Figure 2.2 C.

VersaLive can run in two distinct ways: in single-input mode (Figure 2.3 A), where the

same input is supplied to every cell chamber, or in multi-input mode, where a separate

input can be delivered to each of the five or six chambers.

In this scenario, the input reservoirs are left empty while all chamber reservoirs are

filled (Figure 2.3 B). With this set up, each chamber has an active flow that is sufficient to

both reduce shear stress on the cells and prevent backflow into the main channel.
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Figure 2.3: VersaLive modes of operation. (A) The main channel is utilized to
simultaneously provide the same medium to all chambers in the "perfusion" Single-Input
Mode. (B) The Multi-Input Mode prevents cross contamination by delivering a distinct
medium to the cell chamber through each dedicated input reservoir. Adapted from [68].

Further details about the protocols for microchips fabrication and cells loading are

discussed in the Appendix B.

2.1.2 Microfluidic Device for Dynamic Stimulation

The microfluidic device created by Kolink and colleagues [41] for automated dynamic

stimulation is a PDMS chip where fluid dynamics at the microliter scale are exploited. It

consists of thirty-three individual cuboid culture chambers (each has a 230 by 230 microns

footprint, 40 microns height) adjoined to a main perfusion channel of identical height

via a 50 microns wide opening on one side of each chamber (Figure 2.4 A). A separate

channel for application of a temporary vacuum runs parallel to the column of culture

chambers at a distance of 160 microns between the wall of this channel and the closest wall

of each cuboid chamber (Figure 2.4 A). It allows to rapidly load a high density of cells into

individual trapping regions that are extremely isolated from the shear stress effects of the

main perfusion channel. Once captured in the traps, the cells remain undisturbed even at

high flow rates.

A fluidic mixer network named the Dial-a-Wave (DAW) is used to deliver any desired
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Figure 2.4: Device design and vacuum-assisted cell. (A) Each of the thirty-three
cuboid culture chambers is connected via a narrow opening to a main perfusion channel
that runs between ports 1 and 2. A separate air channel between ports 3 and 4 allows the
application of a temporary vacuum at the PDMS interface to draw fluid from the main
perfusion channel into the culture chambers. Ports 5–7 are connected to the DAW dynamic
stimulation generator. (B) Upon application of a vacuum in the air channel at time zero,
fluid containing cells is rapidly drawn into the culture chambers and fills the traps. HeLa
cells attach and begin to spread out within 1–2 h after loading during continuous perfusion
culture. (C) After initial vacuum loading into the culture chambers, HeLa cells rapidly
colonize the glass growth area of the device during continuous media perfusion. Adapted
from [41].

waveform of biochemical inducer for dynamic stimulation of cells inside the culture chambers

[23,41].

The working principle of the DAW mixer is to precisely combine two incoming fluid

streams (inducer and control media) in any desired ratio by adjusting the hydrostatic

pressure of the corresponding inputs (ports 6 and 7) in a manner that increases the pressure

at one input while decreasing the pressure at the other input by exactly the same amount

(Figures 2.5 B and C). Thus, the ratio of the inputs from port 6 and 7 leaving the junction

to the cell chamber is determined by modulating the difference in hydrostatic pressures at
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Figure 2.5: DAW junction and staggered herringbone mixers. (A) Outline of the
microfluidic device for dynamic input experiments geometry. (B, C) The flow from the
inlets (6 and 7) converges in a ratio dependent on the inlet pressures of each trough the
DAW junction. (D) The SHM immediately follows the DAW junction. It enhances diffusive
mixing of the combined laminar flow streams before the fluid reaches the main perfusion
channel and the adjoining culture chambers. Adapted from [23,41].

the two inlets. Excess fluid is diverted through a shunt network to port 5, which is a waste

port [24].

The DAW output signal is directed to the cells via a channel which contains staggered

herringbone mixers (SHM) to enhance diffusive mixing of the combined laminar flow streams

before the fluid reaches the main perfusion channel and the adjoining culture chambers

(Figure 2.5 D) [96]. In this way, the fluid leaving the central fork of the junction for the

cell chamber is mixed into a uniform concentration by the SHM.

Further details about the protocols for microchips fabrication and cells loading are

discussed in the Appendix B.

2.1.3 Actuation System

As previously mentioned, the platform described in Section 2.1.2 is chosen for dynamic

input experiments because it automatically changes conditions by means of a set of

automated syringes that are all operating under the control of a computer [25]. Here is a

description of the actuation system for the automated syringes.

In order to modulate the concentration of compounds within a cell trap, in the microflu-
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Figure 2.6: Linear actuators. The two designed linear rails are presented in this 2D
model. The external frame sustains the holder for the stepper motor and the two pulleys
on which the timing belt is meant to slide. The sliding element is mechanically secured to
the belt in order to allow coherent movements [24,59].

idic device, a pressure source is needed. For this reason, the DAW junction was designed.

The DAW junction (Figure 2.5 B) works by changing the relative pressures at DAW ports,

while keeping the total pressure the same; thus the input ratio to cells is the result of the

pressure difference at ports 6 and 7. The actuation aim is to establish this difference in

order to appropriately modulate the inputs concentration in the fluid reaching the cell trap

[24,59].

Physically, this can be achieved by changing the relative height of the syringes connected

to the two inlet ports. Indeed, each syringe will exert a hydrostatic force over the fluids in

the channel that is simply proportional to its height. Hence, when the two syringes are set

at different heights, a differential pressure will be generated at the level of the junction.

To accomplish this task, two vertically mounted linear actuators were designed (Figure

2.6) [24,59]) to be controlled by a computer algorithm to allow fast and precise operations.

In particular, the actuation system is formed by two linear guides; each one of these is

designed to move independently from the other; the motion is realized through two stepper

motors, while the transmission by using a timing belt and two pulleys. The transmission gear
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Figure 2.7: Nikon Eclipse TI fuorescence microscope. (A) The inverted fluorescence
microscope (Nikon Eclipse TI) used in this study was equipped with a EMCCD high
sensitivity camera and an incubator to control gasses and temperature of cell environment.
(B) In this configuration the objectives are assembled on a motorised nosepiece. The optical
train conveys light to either eyepieces of a CCD camera that digitises the image and sends
it to the computer controlling the acquisition. Adapted from [24,59].

adopted is an ideal solution, with no need of high torques, to guarantee good performance

in terms of actuation speed.

The simplest and least expensive way to achieve this result is by using a stepper motor.

This motor is controlled by using a proper excitation sequence of the stator circuit (using

particular electronic drivers), and because each rotor position corresponds to a step (specific

excitation status of the stator circuit), it is known as a stepper motor.

2.1.4 Time-Lapse Microscopy

The platforms described above, employs an inverted fluorescence Nikon-TI Eclipse

microscope (Figure 2.7) [24, 59]. The microscope is equipped with an automated and

programmable stage, an incubator to guarantee fixed temperature and gasses to cell

environment and a high sensitivity Electron Multiplying CCD (EMCCD) Camera (Andor

iXON Ultra897). The microscope and the camera can be programmed to acquire, at regular

time intervals, images from a fixed area of the cell trap as well as from different points

of the microfluidic device. In this configuration, images are taken by objectives that are

mounted on the base of the microscope instead of on the tower.
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Figure 2.8: Model of TFEB-GFP translocation. (A) Scheme of the translocation
process in the HeLa TFEB-GFP monoclonal cell line. In fed conditions, the fusion protein
TFEB-GFP is phosphorylated by mTOR and trapped in the cytoplasm. In starvation
condition, mTOR is inhibited, TFEB-GFP is no longer phosphorylated, and it is able to
translocate into the nucleus. HeLa monoclonal cell line images taken in phase contrast
and fluorescence (TFEB-GFP and nuclear mCherry) under growth (B) and starvation
(C) conditions. Here, TFEB-GFP is cytoplasmic during growth (B), and nuclear during
starvation (C).

2.2 Experimental Analysis Methods

2.2.1 Microfluidic Experiments

The studies were conducted with a human HeLa cell line overexpressing the fusion protein

TFEB-GFP in order to explore the dynamics of TFEB nuclear shuttling. Additionally, a

nuclear mCherry protein is expressed by this cell line to facilitate image processing [75]

(Figure 2.8).

When cells are in nutrient-rich conditions, TFEB-GFP is phosphorylated by mTORC1

and subsequently sequestered in the cytoplasm, as shown in Figures 2.8 A and B. In the

absence of amino acids (starvation), mTORC1 is inhibited thus TFEB-GFP is no longer

phosphorylated and translocates to the nucleus, as shown in Figures 2.8 A and C.

Using the technological platforms mentioned in Section 2.3, I performed a set of

experiments. Specifically, the cells were loaded in one of the microfluidic devices (described

in Subsections 2.1.1 and 2.1.2) and allowed to grow up over night in a cell culture incubator

(for more details see Appendix B). Then, the device was put under the time-lapse microscope
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and the images acquisition and the experiment were started.

The microscope is programmed to acquire two types of images: phase contrast images

and fluorescence images (one for the green spectrum for GFP and one for the red spectrum

for the nuclear mCherry). As shown in the following Subsection, image analysis techniques

can be used after cells have been imaged to estimate their fluorescence. Fluorescence

microscopy and image processing allowed for the quantitative assessment of TFEB nuclear

and cytoplasmic localisation in individual cells.

2.2.2 Image Analysis

The fluorescence and phase-contrast images acquired by the microscopy apparatus need

to be processed in order to obtain the percentage level of nuclear TFEB. I utilized the

algorithm described in [64] to accomplish this task.

The algorithm uses a machine-learning approach (FastER) together with a MATLAB

script to selectively segment, track, and measure the HeLa TFEB-GFP monoclonal cell

line (Figure 2.9).

FastER, a machine-learning method [30], processes the raw phase-contrast pictures

acquired during the image acquisition phase and generates a binary mask of the cells that

is entered into the MATLAB script, which also processes the green and red fluorescence

images.

The MATLAB script uses the nuclear fluorescent protein H2b-mCherry to locate the cells’

nuclei in the red spectrum images and eliminates the background pixels from fluorescence

images.

To prevent contacting nuclei from being mislabelled, these images are then binarized and

further modifications are made. To create a mask for monitoring the cytosolic fluorescence,

the acquired nuclei mask and whole cell FastER mask are logically combined as shown in

Figure 2.9. The pixel intensity is used to estimate the green fluorescence of the entire cell

as well as of the various compartments (cytoplasm and nucleus).

Finally, a customized offline cell tracking algorithm is used to monitor single-cell traces.

This algorithm minimizes a cost function to find the correlation between the nucleus

centroids in two subsequent red fluorescence images. Lastly, a visual inspection of the
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Figure 2.9: Segmentation pipeline. Upon processing the acquired images, a total cell
mask, a nuclei mask, and a cytosol mask are obtained. Using a machine-learning based
algorithm (FastER), the raw phase-contrast images are processed [30]. Red spectrum
images are processed using a custom MATLAB program. The final masks are created by
applying logic operations. From [64].

fluorescence signal is done by the human operator to exclude non-fluorescent cells and cut

the signals during cell division and death as these processes might impair the performance

of the tracking module. Further details are provided in [64]. The nuclei fluorescence was

normalized with respect to the cells fluorescence and the percentage of nuclear TFEB was

then measured.

2.3 Computational Methods

2.3.1 Dynamical Modelling

Once the experiments were completed, I designed and optimised a mathematical model

in order to account for the experimental results and comprehend the dynamics of TFEB

translocation. I took advantage of the literature described in Chapter 1 to construct the

model’s overall framework.
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Figure 2.10: Simplified scheme of TFEB-GFP translocation in the HeLa mono-
clonal reporter cell line. Under fed conditions, mTOR phosphorylates the fusion protein
TFEB-GFP at a rate k1 and traps it in the cytoplasm. At the same time, nuclear TFEB-
GFP is phosphorylated at rate k2 and is exported by XPO1 at a rate β2. In starvation
condition mTOR is inhibited, TFEB-GFP is dephosphorylated by Calcinceurin at a rate
k−1, and it is able to translocate into the nucleus at rate β1. Adapted from [81].

A simplified scheme of the translocation process under investigation is reported in Figure

2.10, which summarizes the known TFEB regulatory mechanisms that were previously

described in details in Figure 1.4. Figure 2.10 also takes into account that the biological

model being studied is the monoclonal Hela reporter cell line, which stably expresses

mCherry in the nucleus and overexpresses the fusion protein TFEB-GFP [81].

Figure 2.10 is a simplified scheme that highlights the reaction rates of interest and the

critical phases of TFEB shuttling between the two compartments, nucleus and cytoplasm.

In order to maintain generality and reliability, stochastic dynamic modeling is typically

adopted since cellular processes depend on unpredictable biological events. The experiments

I performed revealed that TFEB translocation dynamics are highly preserved in each single

cell signal, and every cell exhibits the same behavior, indicating that the phenomenon

under study transcends beyond the context’s inherent stochasticity. More details about the
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experimental results will be discussed in Chapter 3.

Hence, I operated in a deterministic environment despite the fact that the general

approach is single-cell based. Consequently, all the proposed models in Chapter 4 are based

on ordinary differential equations (ODEs) and have the general form ẋ = f(x, u), where

x ∈ Rn is the state vector and u ∈ Rm is the input vector. Models and simulations were

developed, analyzed and simulated in Mathworks Matlab R2019a.
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Chapter 3

Experimental Investigation of TFEB

nuclear shuttling dynamics

As previously mentioned, the literature shows how TFEB activity is significantly

influenced by its cellular localisation and its shuttling activity in response to nutrients

availability. In this Chapter, I describe a cutting-edge method to track translocation

dynamics with the aim of analyzing the transcription factor behavior at the single cell

level. I specifically performed a series of experiments in real time that tracked the nuclear

localisation of TFEB in separate cells growing in a microfluidics device.

In preliminary tests, stimulation alternated between nutrient-rich and starvation media.

The results of the experiments revealed complex dynamics exhibiting an "overshoot" in

which, in response to starvation, TFEB translocated to the nucleus but subsequently

partially relocalised to the cytoplasm. These findings revealed the existence of a novel

adaptation mechanism never described before and raised curiosity regarding its origin.

Consequently, I conducted novel tests in order to identify the key players in this behavior.

Specifically, I repeated the previous experiments where blocking specific pathways related

to TFEB shuttling by using small molecules.

Through the identification of their function and involvement, this investigation enabled

a full characterisation of this novel mechanism. Not less significant, the findings presented

here serve as the basis for the quantitative modelling as described in the next Chapter.
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Figure 3.1: Preliminary experimental measurements of TFEB translocation in
the nucleus. TFEB translocation following a pulse (A) and step (B) of starvation medium
(HBSS). The figures in the top panel of (A) and in (B) show the single-cell traces of nuclear
TFEB fluorescence.The figure in the bottom panel of (A) shows the single-cell traces of
cytoplasmic TFEB fluorescence. The average of the single-cell traces is highlighted with a
solid line.

3.1 Microfluidics experiments to observe TFEB dynam-

ics

The preliminary experiments that I performed were aimed at analyzing the translocation

dynamics of TFEB following starvation and growth stimuli. In particular, the starvation

condition was induced using HBSS, a saline solution, or RPMI deprived of amino acids

to promote cytoplasm to nucleus translocation. Feeding condition was induced using

complete RPMI to promote nucleus to cytoplasm translocation. The details are discussed

in Appendix B.

3.1.1 TFEB translocation dynamics following starvation

The first two experiments were realized alternating starvation and growth media following

a pulse (Figure 3.1 A) or a step input (Figure 3.1 B), respectively [80, 81]. The input was

dynamically changed by modifying the relative heights of two syringes connected to the

microfluidics device, as previously described [25].

In the pulse experiment (Figure 3.1 A), cells were treated for three hours with complete
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RPMI, followed by three hours with HBSS, and then again three hours with complete

RPMI. At fifteen minutes intervals, cells were imaged in the microfluidics device for a total

of nine hours.

In the step response experiment (Figure 3.1 B), cells were supplied with growth medium

(complete RPMI) for one hour and then the starvation medium (HBSS) was provided to the

cells for nineteen hours. Cells were imaged for a total of twenty hours in the microfluidics

device at fifteen minutes intervals.

Figures 3.1 A top panel and B show the TFEB nuclear level as a percentage of the

whole cell fluorescence, whereas Figure 3.1 A bottom panel shows the TFEB cytoplasmic

percentage. The single-cell signals are depicted with thin green lines and their average

with a bold green line. The two experiments exhibit similar features. With particular

attention to the experiment shown in Figure 3.1 A, TFEB is mostly cytoplasmic at the

start of the experiment when the growth medium is supplied, with around 30 percent of it

being nuclear. Then, after changing from a nutrient-rich medium to a starvation medium,

TFEB accumulates in the nucleus and reaches a high of around 80 percent in about thirty

minutes. Then, during the starving phase, TFEB nuclear level gradually drops with a

distinct overshoot, leading to a cytoplasmic relocalisation. When refeeding cells, TFEB

nuclear level quickly drops but then slightly increases, generating a dynamics that I named

"undershoot".

The same translocation dynamics were observed in the step response starvation experi-

ment (Figure 3.1 B).

The observed overshoot dynamics are an example of adaptation, which is a unique

regulatory mechanism that develops as a physical system reacts to environmental changes

[100].

In order to determine whether the observed adaptation phenomenon depends on the

stimulus duration, I then carried out two more tests by changing the input (Figure 3.2).

I performed a first experiment by treating cells with a starvation double pulses train

(Figure 3.2 A). Here, the cells received complete RPMI treatment for one hour before the

starving double pulses train, which consists of a variable-duration first pulse (one, two, or

three hours), fifteen minutes of complete RPMI treatment, and a three hours HBSS pulse,
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Figure 3.2: Experimental measurements of TFEB translocation in the nucleus
following pulses of different geometry. TFEB translocation following starvation
(HBSS) double pulses train (A) and starvation pulse train of different temporal duration
(B). The figures show the single-cell traces of nuclear TFEB fluorescence. The average of
the single-cell traces is highlighted with a solid line.

followed by three hours of complete RPMI treatment. Cells were imaged for a total of

twenty-five hours in the microfluidics device at fifteen minutes sampling interval.

In a second experiment, cells were subjected to a train of starvation pulses with varying

temporal durations (Figure 3.2 B). In this instance, cells were treated with complete RPMI

for one hour prior to the starvation pulse train, which alternated complete RPMI pulses

lasting three hours with HBSS pulses of varying duration (half, one, two, and three hours).

Both results show that TFEB shuttles between the nucleus and cytoplasm in a manner

that exhibits an overshoot dynamic as media are changed. The translocation dynamics, in

particular, remain the same regardless of the duration of the stimulus demonstrating that

the adaptation mechanism is a feature of the biological system under study.

In summary, a prolonged starvation treatment of at least three hours highlighted

the presence of a novel TFEB translocation dynamic: the transcription factor reaches

equilibrium with an overshoot dynamic that reveals a previously unreported adaptive

mechanism. A similar phenomenon was recently observed in [108]. The authors suggested

that the rapid rheostatic response, mediated by mTOR, allows the cell to quickly adapt to

metabolic changes, while the long-term, mTOR-independent homeostatic response controls

the magnitude and duration of TFEB activation, and presumably limits excessive autophagy.

However, no mechanism was put forward to explain the origin of this dynamic behaviour.
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Figure 3.3: Experimental measurements of TFEB translocation in the nucleus
following amino acids (AA) starvation. TFEB translocation following a pulse of
growth medium supplemented (A) and depleted (B) with amino acids. The two treatments
are both compared with the two controls: i) pulse of complete growth medium (complete
RPMI), ii) pulse of starvation medium (HBSS). The figures show the median foldchange of
the single-cell traces of nuclear TFEB fluorescence.

3.1.2 TFEB translocation dynamics following Amino Acids starva-

tion

Since HBSS is a saline solution devoid of any nutrients, cells in HBSS medium undergo

full starvation. However, it has been documented in the literature that amino acids (AA)

are important for TFEB localisation. Indeed, it has been observed that TFEB translocates

to the nucleus under amino acids deprivation [31, 62,91]. As a result, I was also curious to

know how amino acids affected overshoot dynamics and adaptability mechanisms.

Consequently, I decided to perform some tests in VersaLive [68]. Here, I used the

platform in multi input mode, testing different amino acids concentrations. In each test,

cells were treated with complete growth medium overnight, then the treatment was supplied

and cells were imaged for three hours. More information is available in Appendix B.

In a preliminary experiment, I treated cells with RPMI that was either completely

deprived of amino acids (Figure 3.3 B) or completely supplemented with amino acids

(Figure 3.3 A), using HBSS and complete RPMI as controls. The median foldchange of the

data, where cells were normalized with respect to the initial time point, is shown in Figure

3.3.

While cells treated with amino acid deprivation exhibit the overshoot dynamic, cells

treated with supplemented RPMI behave similarly to those treated with complete RPMI.

Additionally, the overshoot peak is far smaller than the one attained by the HBSS treatment,
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Figure 3.4: Bar Graphs of TFEB translocation in the nucleus following the amino
acid (AA) starvation dose test. Bar Graphs of TFEB translocation at the end of each
treatment (A) and at the maximum of the overshoot peak following each treatment (B).
The black line represents the sigmoidal curve used to fit the nonlinear trend upon amino
acids starvation dose test. The figures show the median foldchange of the single-cell traces
of nuclear TFEB fluorescence. The amino acids starvation conditions are reported on a
log10 scale. Each bar represents the median of the replicates for each condition and is
reported with their standard deviation. In addition, the values of the replicates for each
condition are reported as red circles on each bar.

and when compared to HBSS starvation, the response of cells to amino acid starvation was

more heterogeneous (data not showed).

These findings show that amino acids starvation is sufficient to activate the adaptation

process. It is noteworthy that less TFEB translocates into the nucleus following amino

acid deprivation than it does under total starvation. This implies a lower overshoot peak.

This observation suggests that, as a result of the rising TFEB nuclear concentration, the

overshoot dynamic is dependent on the level of starvation.

To investigate this latter aspect, I supplemented incomplete RPMI with various dosages

of amino acids (from 1:5 to 1:10000). I treated cells for three hours in a total of six dilution

tests, taking images every fifteen minutes. Then, for each condition, I calculated the median

foldchange and gathered the maximum peak value (Figure 3.4 B) and the value at the

end of three hours (Figure 3.4 A) in bar charts. After three hours of treatment, it is clear

from the bar charts of the final time point (Figure 3.4 A) that the signal is nearly constant,

indicating the same level of TFEB in the nucleus for each condition.

Instead, by examining the bar chart of the peak (Figure 3.4 B), it is possible to appreciate

a nonlinear sigmoidal trend of the overshoot peak. There is a linear trend between 1:10

and 1:200 amino acid doses, followed by a saturation for higher or lower starvation values,
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showing that the maximum of the overshoot depends on the levels of amino acid starvation.

I fitted the median of the peak of each condition with a sigmoidal function to verify

that the trend was indeed sigmoidal. The sigmoidal function used is here reported:

S(x) = 1 +
αkh50

kh50+xh

where: x refers to the amino acids starvation levels (in log10 scale) and α, k50 and h are

the function’s parameters. I fitted the function’s parameters by using the Matlab function

"nlinfit". The parameters resulted from the fitting were: α = 0.625, k50 = 3.32 and h = 6.30.

According to this equation, the k50 of the sigmoidal function corresponds to the "1:50"

amino acid dilution.

In conclusion, the experimental analysis and computational fitting both support the

finding that the treatments at various levels of amino acid starvation showed a sigmoidal

trend of the peak of TFEB overshoot dynamic, indicating that the overshoot is proportional

to starvation.

3.2 Microfluidics experiments following small molecule

inhibition of biological processes

The discovery of a novel adaptation mechanism was as surprising as unexpected. This

finding opened the door to several questions regarding its origin and its role. In this context,

to comprehend this mechanism better, I decided to conduct new experiments to examine

the function of each reaction that takes place along TFEB shuttling. Indeed, there are

several participants in TFEB translocation, as discussed in Chapter 1.

Consequently, I decided to repeat the experiments by inhibiting the key pathways

involved in TFEB translocation in order to observe how TFEB shuttling dynamics change.

More specifically, by using small molecules, I primarily focused the analysis on the inhibi-

tion of: TFEB phosphorylation via mTOR, autophagy, TFEB export via XPO1, TFEB

degradation via the proteasome, translation and transcription. In the Subsections that

follow, I will show how blocking each of these routes separately affected the dynamics of

TFEB shuttling and then the results will be discussed. Refer to Appendix B for details on
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Figure 3.5: Experimental measurements of TFEB translocation in the nucleus
following mTOR inhibition. TFEB translocation following a pulse (A) and a step (B)
of mTOR inhibitor Torin 1 (Tor1) (300 nM). The figures show the single-cell traces of
nuclear TFEB fluorescence. The average of the single-cell traces is highlighted with a solid
line.

the small molecules used.

3.2.1 mTOR inhibition

The major complex responsible for TFEB phosphorylation and retention in the cy-

toplasm, thus keeping it inactive, is the mTORC1 complex, as explained in Chapter 1.

The literature describes how TFEB is dephosphorylated and translocates into the nucleus

following mTOR inhibition after amino acids depletion or full fasting, or by means of small

molecules [47, 62, 76, 101]. I was curious to learn more about mTOR’s function in the

adaptation process as it is one of the key actors in TFEB shuttling. As a result, I ran two

tests in which I used the chemical inhibitor Torin 1 to block mTOR kinase activity. Torin

1 is a potent and selective ATP-competitive inhibitor of mTOR [87].

Complete RPMI with or without Torin 1 was supplied to cells in two experiments, a

pulse (Figure 3.5 A) and a step response (Figure 3.5 B).

As predicted from literature, the experimental results shown in Figure 3.5 demonstrate

that TFEB translocates into the nucleus following Torin 1 administration. The most

intriguing finding is that the overshoot dynamic still dominates TFEB nuclear shuttling

even when mTOR is pharmacologically inhibited. As it was previously mentioned, both

fasting and Torin 1 treatment induce TFEB nuclear import by blocking mTOR. Therefore,

all of the experiments that have been discussed up to this point imply that, in general, the

adaptation mechanism is activated after mTOR inhibition.
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Figure 3.6: Experimental measurements of TFEB translocation to the nucleus
following starvation during autophagy inhibition. TFEB translocation following a
pulse of starvation medium (HBSS) supplied with the autophagy inhibitor Bafilomycin A1
(BA1) (100 nM) without (A) and with (B) pretreatment. The figures show the single-cell
traces of nuclear TFEB fluorescence. The average of the single-cell traces is highlighted
with a solid line.

In addition, these findings refute a prior hypothesis I formulated about the origin of the

TFEB adaptation mechanism based on a partial reactivation of mTOR following starvation

[80], as detailed in Chapter 4.

3.2.2 Autophagy inhibition

Autophagy is a fundamental catabolic process that relies on the cooperation of au-

tophagosome and lysosomes. TFEB is a master regulator of starvation-induced autophagy

and lysosomal biogenesis. By binding to CLEAR target sites in the promoters of lysosomal

genes, TFEB positively regulates their expression [89]. I performed two experiments

with Bafilomycin A1 to inhibit autophagy during starvation in an effort to determine if

autophagy may affect TFEB nuclear location. Bafilomycin A1 disrupts autophagic flux

by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent

autophagosome-lysosome fusion [55].

The experiments were carried out by treating cells for three hours with a pulse of HBSS

as starvation medium supplemented with Bafilomycin A1 without pretreatemnt (Figure 3.6

A) or with a pretreatment of one hour (Figure 3.6 B). The input was dynamically changed

as described in Subsection 3.1.1.

The experimental results show that TFEB translocates to the nucleus after starvation

under autophagy suppression, exhibiting the overshoot dynamic even in the presence of
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Bafilomycin A1. This finding implies that autophagy activation does not affect TFEB

nuclear shuttling kinetics.

3.2.3 Exportin 1 inhibition

Undoubtedly, one of the most significant pathways influencing TFEB localisation is its

export, which is one of the most likely hypotheses that might account for the adaptation

process. Exportin 1 (XPO1), of which TFEB has been identified as a strong binding

partner, is the primary chaperone driving TFEB export [37,62].

XPO1 is a nuclear export receptor involved in the transport a plethora of proteins and

RNA species. XPO1 functions together with RAN GTPase, which supplies the energy

for transportation and guarantees the directionality of nuclear export. In the nucleus,

XPO1 binds to RAN in its active GTP-bound form (RAN-GTP) as well as the nuclear

export signal (NES) on the proteins it is targeting. After docking to Nuclear Pore Complex

(NPC), the complex enters the cytoplasm by crossing the nuclear membrane. The complex

disassembles and cargoes are released into the cytoplasm as a result of the hydrolysis of

RAN-GTP to RAN-GDP. The gradient in RAN-GTP concentration, which is primarily

restricted to the nucleus, determines the directionality of XPO1-mediated export [6].

According to a recent study, silencing of XPO1 resulted in significantly reduced nuclear

export of TFEB in HeLa cells after nutrient refeeding [62]. These findings suggested the

hypothesis that the XPO1-dependent export is responsible for the overshoot kinetics of

TFEB shuttling. I thus conducted a set of experiments by blocking Exportin 1 using the

inhibitor Leptomycin B to explore its effect on the adaption process.

Leptomycin B is a metabolite of the Streptomyces bacteria that has anti-fungal, anti-

tumor, and cytotoxic properties. It also inhibits nuclear export. Leptomycin B is the first

known selective inhibitor of XPO1: it binds covalently to cysteine 528 in the region of

XPO1 that binds nuclear export signals, preventing protein nuclear export. By binding to

XPO1, Leptomycin B prevents its nuclear import, which causes XPO1 to be redistributed

to the cytoplasm [42,43].

As a first preliminary experiment, I treated cells with complete RPMI for three hours

and then I switched cells to complete RPMI this time supplied with Leptomycin B for
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Figure 3.7: Experimental measurements of TFEB translocation in the nucleus
following Exportin 1 (XPO1) inhibition in growth medium (complete RPMI).
TFEB translocation following a pulse of Exportin 1 (XPO1) inhibitor Leptomycin B (LMB)
(500 nM). The figure shows the single-cell traces of nuclear TFEB fluorescence. The average
of the single-cell traces is highlighted with a solid line.

three hours (Figure 3.7). Here, it is possible to observe that TFEB nuclear concentration

increases as the drug is administered, and then it reaches an equilibrium concentration

after about half an hour without showing adaptation. These findings are in line with earlier

research, which suggested that Leptomycin B treatment in fed cells, where TFEB is mostly

localised in the cytoplasm, was sufficient to cause increasing accumulation of TFEB in the

nuclear compartment [47,62].

Consequently, I performed two further experiments by treating cells with a pulse of HBSS

(Figure 3.8 A) or a pulse of Torin 1 (Figure 3.8 B) both supplemented with Leptomycin B.

In both cases the overshoot in TFEB nuclear translocation dynamics is still present thus

excluding XPO1 as a mechanism.

As shown in Figure 3.8 A, it is noteworthy to notice the differences with the starvation

experiment performed in Figure 3.1 A. The import and export rates in each experiment

were examined and compared: the export rate is twice as rapid as the import rate in the

starvation experiment (Figure 3.1 A), whereas in the presence of Leptomycin B the export

rate is slowed down to half of the import rate (Figure 3.8 A).

The nuclear concentration of TFEB also changes: its equilibrium nuclear concentration
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Figure 3.8: Experimental measurements of TFEB translocation in the nucleus
following starvation or mTOR inhibition during Exportin 1 (XPO1) inhibition.
(A) TFEB translocation following a pulse of starvation medium (HBSS) supplied with the
Exportin 1 (XPO1) inhibitor Leptomycin B (LMB) (500 nM). (B) TFEB translocation
following a pulse of mTOR inhibitor Torin 1 (Tor1) (1µM) supplied with the Exportin 1
(XPO1) inhibitor Leptomycin B (LMB) (500 nM). The figures show the single-cell traces of
nuclear TFEB fluorescence. The average of the single-cell traces is highlighted with a solid
line.

is equal to about 30 percent during growth and 60 percent during starvation in the control

experiment (Figure 3.1 A); instead when blocking Exportin 1 with Leptomycin B, the

equilibrium nuclear concentration rises to about 50 percent during growth and 80 percent

during starvation (Figure 3.8 A).

Similar conclusions may be drawn by comparing the outcomes of experiments where

cells were given a pulse of Torin 1 that was either depleted (Figure 3.5 A) or supplemented

(Figure 3.8 B) with Leptomycin B.

In summary, the experimental findings support the function of Exportin 1 in TFEB

nuclear export by demonstrating how it affects equilibrium nuclear concentration and TFEB

export dynamics. Nevertheless, these data imply that this is not a factor influencing the

overshoot dynamics.

3.2.4 Proteasome inhibition

Cellular protein steady state levels are determined by protein-specific rate of synthesis

and degradation. [29]. Accordingly, the dynamics of TFEB’s synthesis and degradation

might have an impact on its nuclear concentration in time.

The proteasome is primarily responsible for TFEB degradation [92]. In mammalian cells,

the ubiquitin-proteasome system is the main mechanism for the degradation of unneeded
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Figure 3.9: Experimental measurements of TFEB translocation in the nucleus
following starvation during proteasome inhibition. TFEB translocation following
a pulse (A) and a step (B) of starvation medium (HBSS) supplied with the proteasome
inhibitor Bortezomib (Bort) (100 nM). The figures show the single-cell traces of nuclear
TFEB fluorescence. The average of the single-cell traces is highlighted with a solid line.

or improperly folded proteins [29,46]. The ATP-dependent ubiquitin-activating enzyme

E1, ubiquitin-conjugating enzyme E2, and ubiquitin-protein ligase E3 successively catalyze

the ubiquitination of target proteins gaining access to proteasomes. Proteasome consists of

a 20S central catalytic complex and two 19S regulatory complexes. The target proteins are

deubiquitinate and unfolded by the 19S complexes, allowing the proteins to reach the 20S

proteasome and be quickly broken down by different proteases. Both the cytoplasm and

the nucleus include proteasomes, which aid in the breakdown of nuclear and cytoplasmic

proteins [46].

Recently, it has been reported that proteasome impairment not only promotes TFEB

accumulation but also facilitates its dephosphorylation and nuclear translocation [46].

Accordingly, I performed two new experiments by inhibiting the proteasome by means of

either one of the two small molecules MG132 (data not showed) and Bortezomib. Specifically,

Bortezomib is a modified dipeptidyl boronic acid analogue that binds selectively and

reversibly to the 20S proteasome. Inhibition of the proteasome prevents the degradation of

key proteins and affects multiple signalling cascades within the cell, ultimately leading to

cell death [16].

Cells were treated with HBSS as starvation medium supplemented with Bortezomib,

with a pretreatment of one hour following a pulse (Figure 3.9 A) and a step response

(Figure 3.9 B).

The purpose of these experiments was to assess the effects of TFEB degradation
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Figure 3.10: Experimental measurements of TFEB translocation in the nucleus
following starvation during translation inhibition. TFEB translocation following
a pulse (A) and a step (B) of starvation medium (HBSS) supplied with the translation
inhibitor Cycloheximide (Chx) (50µg/ml). The figures show the single-cell traces of nuclear
TFEB fluorescence. The average of the single-cell traces is highlighted with a solid line.

impairment following mTOR inhibition. The experimental findings demonstrate that,

irrespective of Bortezomib treatment, TFEB still translocates into the nucleus with an

overshoot dynamic, thus excluding a role of TFEB degradation in this mechanism.

3.2.5 Translation and transcription inhibition

Here, I will examine the influence of TFEB synthesis to conclude the analysis that was

begun in the previous Subsection.

The "central dogma" of life and molecular biology is mainly based on protein synthesis

as primary process. The information required for protein synthesis, which entails the two

processes of transcription and translation, is encoded by the nucleic acid sequences known

as genes. An enzyme known as RNA polymerase copies the gene into an mRNA molecule

during transcription. The information contained in the mRNA is converted by ribosomes

during translation into a sequence of amino acids, which results in the production of a

protein [3].

I performed experiments either by limiting general protein translation or gene transcrip-

tion to see how this would affect TFEB nuclear localisation dynamics. Specifically, the

small molecule Cycloheximide was used to block translation. Cycloheximide is a protein

synthesis inhibitor in eukaryotes and an anti-fungal antibiotic. Although its exact mode

of action is still unknown, it has been demonstrated to prevent translation elongation by

attaching to the 60S ribosomal unit’s E-site and interfering with deacetylated tRNA [88].
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Figure 3.11: Experimental measurements of TFEB translocation in the nucleus
following starvation during transcription inhibition. TFEB translocation following a
starvation medium (HBSS) pulse train supplied with the transcription inhibitor Actinomycin
D (Act) (50 ng/ml). The figure shows the single-cell traces of nuclear TFEB fluorescence.
The average of the single-cell traces is highlighted with a solid line.

Actinomycin D was instead used to block transcription. By attaching to DNA at the

transcription initiation complex and blocking RNA polymerase from extending the RNA

chain, Actinomycin D suppresses transcription [9].

Two experiments were conducted treating cells with HBSS supplemented with Cyclohex-

imide following a pulse (Figure 3.10 A) and a step response (Figure 3.9 B), both pretreated

for one hour.

When starving medium is administered to the cells, TFEB translocates to the nucleus

but the overshoot fully vanishes, while the rise dynamics of nuclear TFEB translocation

are slowed down. These data are consistent with the hypothesis that protein synthesis is

involved in the dynamics of shuttling since the overshoot disappears following its inhibition.

In a third experiment, I treated cells with a starvation pulse train supplied with

Actinomycin D (Figure 3.11) for a total of twenty-one hours to further demonstrate the

significance of protein synthesis. Here, cells underwent an hour-long pretreatment. The two

media, RPMI and HBSS, which were both provided with Actinomycin D, were switched

with a period of six hours and a duty cycle of fifty percent for twelve hours. Finally, the

cells were starved until the conclusion of the experiment.
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When starvation medium is administered in the first pulse, as shown in Figure 3.11,

TFEB translocates in the nucleus with an overshoot dynamics. The translocation dynamics

then shifts in the next two pulses in a manner similar to that seen following treatment with

Cycloheximide. This behavior suggests that Actinomycin D requires more than one hour of

pretreatment to be active since part of the mRNA to be degraded is probably still present

at the beginning of the experiment.

These results imply that protein synthesis may play a part in the adaptive process

that TFEB exhibits after mTOR inhibition. Nevertheless, it is vital to keep in mind that

transcription, translation, and proteasome degradation are such crucial mechanisms that

when they are blocked, they may have unanticipated consequences on myriads of pathways,

which might affect the outcomes. As a result, it is difficult to interpret these data and they

cannot serve as proof of their involvement in such a mechanism.
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Chapter 4

Quantitative Modelling of TFEB nuclear

shuttling

Having ascertained the complexity and singularity of the biological system under

investigation, I propose in this Chapter a computational approach based on quantitative

modelling of TFEB nuclear shuttling dynamics.

At first, I describe a preliminary analysis based on models, that I named "classics",

which enable to draw attention to some preliminary results. The classic models serve as the

basis for a second, more rigorous analysis, in order to select the optimal model, that is the

model capable of accurately reproduce all the experimental data discussed in Chapter 3.

The findings made at the end of this computational characterisation will provide a

specific hypothesis that is most likely to explain the overshoot dynamics observed in TFEB

nuclear shuttling.

4.1 Static and Dynamic Experimental Features

The experimental data detailed in Chapter 3 show that the biological system under study

exhibits dynamics that are far more complicated than what would be predicted based solely

on the existing literature. TFEB nuclear accumulation changes in response to a variety

of stimuli, appearing coherent in the majority of experiments but acting unexpectedly in

some relevant cases, such as when Leptomycin B is administered (Figure 3.8).
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In this Chapter, I describe a computational approach based on mathematical modelling

to reveal the key players driving TFEB nuclear shuttling dynamics. The main goal is to

develop a mathematical model that is consistent with the evidences in the TFEB literature

and the chemical reactions that governs its activity in order to reproduce the dynamics of

the system in silico. In the paragraphs that follow, I will propose different models based on

assumptions that are supported by the literature. I will next evaluate the performances of

each model in order to choose the one that can most accurately reproduce the experiments

that I discussed in Chapter 3.

In particular, it is possible to extrapolate significant features able to help and improve

the rigor of the analysis. Figure 4.1 reports the experimental data that will be used to

assess the models.

Generally, it is possible to distinguish between two types of features: "Static" and

"Dynamic". Static features account for how the dynamics of a biological system behave at

equilibrium, when the system stabilizes following an initial transient behavior. The studies

shown in Figure 4.1 demonstrate that two distinct static properties can be distinguished:

S1 For all the treatments shown in Figure 4.1, the TFEB nuclear concentration is never

100 percent nuclear nor 100 percent cytoplasmic.

S2 Leptomycin B treatment increases the nuclear concentration of TFEB both during

growth or following Torin 1 treatment (or starvation) (Figures 4.1 A-D).

Dynamic features account for how a biological system behaves during its initial transient

dynamic before achieving equilibrium. According to the experiments shown in Figure 4.1,

three distinct dynamic features can be identified:

D1 The TFEB nuclear concentration exhibits an overshoot dynamic during the initial

transient dynamic (Figures 4.1 A-D).

D2 The TFEB nuclear concentration exhibits a first order dynamic with no overshoot

following Leptomycin B treatment in growth medium (Figure 4.1 E).

D3 TFEB nuclear level during refeeding in the presence of Leptomycin B (Figures 4.1 B
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Figure 4.1: Experimental measurements of TFEB translocation in the nucleus. (A)
TFEB translocation following a starvation medium (HBSS) pulse. (B) TFEB translocation
following a starvation medium (HBSS) pulse supplied with the Exportin 1 (XPO1) inhibitor
Leptomycin B (LMB). (C) TFEB translocation following a pulse of mTOR inhibitor
Torin 1 (Tor1). (D) TFEB translocation following a pulse of mTOR inhibitor Torin 1
(Tor1) supplied with the Exportin 1 (XPO1) inhibitor Leptomycin B (LMB). (E) TFEB
translocation following a pulse of Exportin 1 (XPO1) inhibitor Leptomycin B (LMB).
The figures show the single-cell traces of nuclear TFEB fluorescence. The average of the
single-cell traces is highlighted with a solid line.

and D) decreases at a slower rate than when Leptomycin B is absent (Figures 4.1 A

and C).

As expected, the models must also contemplate the following in order to be consistent

with the data from the literature:

• TFEB is inhibited through a phosphorylation in the cytoplasm by its kinase mTOR
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in an input-dependent fashion [91]: under growth conditions the mTOR complex is

active and phosphorylates TFEB; under starvation, or Torin 1 treatment, the mTOR

complex is inhibited and TFEB is not phosphorylated anymore.

• The phosphatase Calcineurin dephosphorylates TFEB in the cytoplasm, activating it

[56].

• The importin IPO7 or IPO8 imports TFEB into the nucleus [72,106].

• Different kinases, including mTOR, ERK2, and GSK3β, phosphorylate TFEB in the

nucleus [47,62].

• TFEB is exported from the nucleus through the exportin XPO1 [37,62].

The features and guidelines mentioned above will serve as benchmarks for creating the

most reliable model.

4.2 Classic Model of TFEB nuclear translocation

I previously developed a preliminary model to describe the nuclear shuttling dynamics

of TFEB, as reported in Figure 4.2 [80, 81]. In this Section, I will describe the model,

which I will refer to as "Classic Model".

4.2.1 Introduction to the Classic Model

The model considers the presence of two compartments ( [5]), the nucleus and the cyto-

plasm, through which TFEB shuttles ( [62]). Within each compartment, de/phosphorylation

reactions occur, in addition to two transport reactions to model TFEB transport. Remark-

ably, even though there is no evidence in the literature, the nuclear dephosphorylation

is also taken into account in this model for symmetry. The possibility to reduce the

model to only two states, as will be discussed in the next Subsection, justifies this deci-

sion. Then, I distinguished TFEB in four different species: (i) nuclear dephosphorylated

(TFEBnuc), (ii) nuclear phosphorylated (TFEB∗
nuc), (iii) cytoplasmic dephosphorylated

(TFEBcyt), (iv) cytoplasmic phosphorylated (TFEB∗
cyt). I assumed first order kinetics
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Figure 4.2: Block scheme of the Classic Model. TFEBcyt represents cytoplasmic
TFEB; TFEBnuc the nuclear one; TFEB∗

cyt and TFEB∗
nuc are the respective phospho-

rylated species; ki are the phosphorylation rates; k−i the dephosphorylation ones; βi the
transport rates. The input u to the system represents the level of starvation and affects
the de/phosphorylation rates. The input represents the growth condition for u = 0.2,
and the starvation condition for u = 0.8. The output of the system y represents the
nuclear concentration of TFEB, given by the sum of the two nuclear species TFEBnuc and
TFEB∗

nuc.

for the de/phosphorylation and transport reactions ( [83]). Furthermore, I considered the

dependence of de/phosphorylation on the nutrients (amino acids) concentration by assuming

a linear dependence of the reaction rates on the input u. Let u ∈ [0, 1] be the external

input to the system, where u = 1 corresponds to total starvation and u = 0 to total growth.

More details about the values assumed by the input will be discussed in the Subsection

4.2.1. Let also xC and xN be respectively cytoplasmic and nuclear TFEB concentrations

and x∗
C and x∗

N their phosphorylated counterparts. I further assumed that the total amount

of TFEB protein is constant adding a conservation rule: xC + xN + x∗
C + x∗

N = 1. Moreover,

I considered symmetric both the transport rates and the reaction rates, thus reducing the

system parameters to two: (i) k that is the de/phosphorylation rate and (ii) β that is the

transport rate. The two parameters were inferred from literature: k = 1
70

= 1.5 · 10−2,
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β = 1
216

= 5 · 10−3 ( [62]). The equations of the model are:

ẋ∗
C = k(1− u)(1− x∗

C − xN − x∗
N)− kux∗

C + βx∗
N

ẋN = kux∗
N − k(1− u)xN + β(1− x∗

C − xN − x∗
N)

ẋ∗
N = k(1− u)xN − kux∗

N − βx∗
N

In order to perform the system analysis, it is convenient to rewrite the system in matrix

format [80]. Let x =

[
x∗
C xN x∗

N

]T
be the state vector.

ẋ =


−k k(u− 1) β + k(u− 1)

−β k(u− 1)− β ku− β

0 −k(u− 1) −ku− β

x+


k(1− u)

β

0


The equilibrium point of the system for a constant input u is:

x̄ =


1− u− k

β+k
u(1− u)

u− k
β+k

u(1− u)

k
β+k

u(1− u)


Using Matlab Symbolic Toolbox, I computed also the Jacobian matrix and its eigenvalues

(depending on a generic constant u that can assume as values only 0 and 1):

λ =


−k

−β

−k − β

 .

In this case, the eigenvalues are strictly negative and independent on input u, meaning that

the equilibrium points are always stable nodes.

4.2.2 Classic Two-States Model

The ability to convert the Classic Model to a straightforward two-state model is one

of its advantages. I will list every step and variable modification needed to get from a
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three-state model to a two-state model in this Subsection.

Taking into account all the assumptions I mentioned before, but without taking the

conservation rule into account, consider again the equations for the Classic Model:

ẋC = kux∗
C − k(1− u)xC − βxC

ẋ∗
C = k(1− u)xC − kux∗

C + βx∗
N

ẋN = kux∗
N − k(1− u)xN + βxC

ẋ∗
N = k(1− u)xN − kux∗

N − βx∗
N

Then, let introduce the change of variables:

[
tcyt tnuc t t∗

]T
=

[
xC + x∗

C xN + x∗
N xC + xN x∗

C + x∗
N

]T

This change of variables implies that:

ṫcyt = ẋC + ẋ∗
C

ṫnuc = ẋN + ẋ∗
N

ṫ = ẋC + ẋN

ṫ∗ = ẋ∗
C + ẋ∗

N

Consequently, by replacing the expressions of ẋC , ẋN , ẋ∗
C , ẋ∗

N and by simplifying:

ṫcyt = β(x∗
N − xC)

ṫnuc = β(xC − x∗
N)

ṫ = ku(x∗
C + x∗

N)− k(1− u)(xC + xN)

ṫ∗ = k(1− u)(xC + xN)− ku(x∗
C + x∗

N)
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Finally, by replacing the expressions of tcyt, tnuc, t and t∗:

ṫcyt = β(t∗ − tcyt)

ṫnuc = β(tcyt − t∗)

ṫ = kut∗ − k(1− u)t

ṫ∗ = k(1− u)t− kut∗

Let assume the two conservation rules: t + t∗ = c and tcyt + tnuc = c where c is a

generic constant value. These two conservation rules derives directly from the previous one:

xC + xN + x∗
C + x∗

N = 1. Accordingly, the final model become:

ṫnuc = β(t− tnuc)

ṫ = k(uc− t)

Finally, the equilibrium point of the model is:

[
t̄nuc t̄

]T
=

[
uc uc

]T

where k, β ̸= 0.

The possibility to reduce the Classic Model to a two-state model is strictly related to

the symmetry of its structure in terms of de/phosphorylation and transport rates. The

two-state model allows to simplify the study of the biological system and represents one

advantage of the Classic Model.

4.2.3 Numerical Simulations of Classic Model

In this Subsection, I performed numerical simulations, reported in Figure 4.3, to check

whether the model could recapitulate the experimental data reported in Figure 4.1 and

whether it is able to respect the static and dynamic features introduced in Section 4.1. I

applied the same inputs to the model in any simulation. Each input has been simulated

as a pulses train: it lasts a total of twenty hours, where the growth and the starvation
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Figure 4.3: Numerical Simulations of TFEB translocation for the Classic Model.
Simulations of TFEB translocation following a pulse train of Torin 1 (A,D), Torin 1 supplied
with Leptomycin B (B,E), Leptomycin B (C,F). The input u used for panels (A,B,C) is
u = 0 for the growth condition, and u = 1 for the starvation condition. The input u used
for panels (D,E,F) is u = 0.2 for the growth condition, and u = 0.8 for the starvation
condition.

(or other treatments) are switched with a period of six hours and a duty cycle of the fifty

percent for twelve hours. Finally, the input is set to the treatment until the conclusion of

the experiment.

Firstly, to recapitulate the Torin 1 (or starvation) pulse experiment (Figures 4.1 A and C),

I switched the value of the input u between 0 and 1 to distinguish between growth and Torin

1 (or starvation) treatments. Here, it is possible to comment the first drawback of the model.

Let evaluate the equilibrium points x̄ =

[
x̄∗
C x̄N x̄∗

N

]T
in the two cases of u = 0 and u = 1.

During Torin 1 (or starvation) (u = 1), TFEB is completely nuclear and dephosphorylated:

x̄ =

[
0 1 0

]T
. Instead, during re-feeding, TFEB is completely cytoplasmatic and

phosphorylated: x̄ =

[
1 0 0

]T
. By rewriting these results in therms of total cytoplasmic

and nuclear concentrations at equilibrium x̄tot =

[
x̄C,tot x̄N,tot

]T
=

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T
,

I obtained that these values are: x̄tot =

[
1 0

]T
when u = 0 and x̄tot

[
0 1

]T
when u = 1.

According to these results, the Classic Model is not able to satisfy the static feature S1 for

the pulse of Torin 1 (or starvation) experiments.

Figure 4.3 A reports the numerical simulation. The simulation confirms that TFEB is

entirely nuclear during Torin 1 (or starvation) treatment, while is entirely cytoplasmic during
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growth treatment. In addition, it is possible to appreciate that the model can reproduce

the fast dynamics observed in the experiments during medium switches. Conversely, it is

unable to reproduce the slower overshoot dynamic. Consequently, the Classic Model is not

compatible with the dynamic feature D1 for the Torin 1 (or starvation) experiment.

As a result, the Classic Model presents some limitations in its ability to reproduce

the experimental results, at least for the selected input values. The model simulations of

the experiments with Torin 1 (or starvation) with Leptomycin B or Leptomycin B alone

(Figures 4.3 B and C ) provide further evidences of the model limitations. Here, I simulated

the Leptomycin B treatment by setting the parameter β2 equal to zero, since it promotes

the inhibition of the nuclear export. Let evaluate again the equilibrium points in the two

cases of u = 0 and u = 1 when β2 = 0. Here, x̄ =

[
1 0 0

]T
(x̄tot =

[
1 0

]T
) when u = 0

and x̄ =

[
0 1 0

]T
(x̄tot =

[
0 1

]T
) when u = 1. As depicted in Figures 4.3 B and C,

the model completely fails to recapitulate the experimental data following Leptomycin B

treatment.

In summary, The Classic Model is unable to reproduce the experimental data and is

unable to recapitulate static and dynamic features, at least for the chosen input values.

Consequently, I decided to change the input values to enhance the model’s performance.

In particular, I switched the value of the input u between 0.2 and 0.8 to distinguish between

growth and Torin 1 (or starvation) treatments; then, I repeated the model simulations, as

reported in Figures 4.3 D-E. Referring to the model simulation of the Torin 1 (or starvation)

pulse experiment reported in Figure 4.3 D, the model now is able to satisfy the static feature

S1. Conversely, the model fails to satisfy the dynamic feature D1 again. This finding

implies that the Classic Model is not capable of recapitulating the overshoot dynamic in

general and places the emphasis on the structure of the model rather than the selection of

parameter values.

Finally, in reference to the model simulations of Leptomycin B treatments reported

in Figures 4.3 E and F, the model fails completely to recapitulate the experimental data.

In particular, as β2 is switched to zero to simulate the Leptomycin B treatment, TFEB

accumulates completely in the nucleus regardless of the value of the input u. This result

suggests that the model fails to recapitulate the experimental evidence since it predicts
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total accumulation of TFEB in the nucleus when assuming a complete inhibition of nuclear

export under Leptomycin B treatment.

In Conclusion, the Classic Model presents several limitations in recapitulating the

experimental data and fails to satisfy static and dynamic features. The primary issues are

outlined below:

• The structure of the model is not suitable for an input value that switches between 0

and 1; consequently I forced the input to switch between 0.2 and 0.8 that corresponds

to two intermediate conditions of growth and starvation.

• The structure of the model is inadequate to simulate the overshoot dynamics. This

finding shows that the model itself is not sufficient to fully capture the dynamics that

were observed empirically.

• Numerical simulations do not support the hypothesis that Leptomycin B treatment

entirely suppresses the TFEB nuclear export. Indeed, regardless of the value of the

input u, TFEB accumulates entirely in the nucleus as β2 is set to zero to simulate the

Leptomycin B treatment. This finding raises the possibility of an export independent

of XPO1 and, hence, independent of Leptomycin B. As a matter of fact, its existence

would explain why TFEB partially accumulates in the nucleus when XPO1 is inhibited.

The structure of the model and the consequent dependency of the de/phosphorylation

rates on the input itself significantly restrict the range of values that the input can adopt.

Therefore, this obstacle can only be removed by changing the structure of the model and

the dependence of the rates on the input. This point will be addressed in Section 4.3.

4.2.4 Classic NFL and IFFL Models

Subsection 4.2.3 focuses the attention on the Classic Model limitations. In this Subsec-

tion, I will present hypotheses based on the theory and on the literature with the purpose

to improve the performances of the model and its reliability.

The starting point relates to understanding how to ensure that the model can recapitulate

the overshoot dynamics. From Figures 4.1 A and C, it is possible to observe that the
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overshoot dynamic is much slower than the initial TFEB response to starvation (or Torin

1). In particular, TFEB enters the nucleus in about half hour, while the overshoot takes

more than two hours to occur. Consequently, I hypothesized that another slower biological

mechanism could be responsible for this behavior.

The negative feedback loops (NFLs) and incoherent feed-forward loops (IFFLs) are the

only two gene network motifs that can give rise to adaptation ( [77]). This observation led

me to conjecture the presence of an unknown species that could regulate the nuclear amount

of TFEB through either a NFL or an IFFL network motif. Considering the biological

process represented in Figure 2.10 and the block scheme proposed in Figure 4.2, I reasoned

that if present, such a species could influence either the phosphorylation state of TFEB, or

alternatively its nuclear transport.

I first investigated the hypothesis that the overshoot is caused by a negative feedback

acting on TFEB phosphorylation as a result of a partial reactivation of the mTOR kinase,

as inferred from the recent findings in the literature ( [47,52,62]). Under starvation TFEB is

dephosphorylated and enters the nucleus activating autophagic genes. Autophagy promotes

the generation of a pool of amino acids used by the cell to survive in this situation of

stress. The hypothesis is that the cellular nutrient sensing machinery detects the presence

of these extra-nutrients and partially reactivates mTOR, which in turn phosphorylates

TFEB causing its partial nuclear export.

I experimentally tested in vitro the reliability of this mTOR reactivation hypothesis.

To this end, I performed an experiment treating cells with a step response of starvation

medium (HBSS) supplied with the mTOR inhibitor Torin 1. As shown in Figure 4.4 A, the

overshoot dynamic is still present despite mTOR being fully inhibited, and it is comparable

with the dynamics already observed in Figure 4.1 A. In addition, the adaptation mechanism

is also activated with the sole administration of Torin 1 in the growth medium, as depicted

in Figure 4.1 C. These observations suggest that this hypothesis is not supported by

experimental evidence.

I thus hypothesized that the unknown species may affect TFEB nuclear export rates

through either a negative feedback loop, or an incoherent feedforward loop [81], as

schematically depicted in Figures 4.4 B and C. In order to test the new hypotheses, I
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Figure 4.4: Two alternative models of TFEB dynamics. (A) Experimental mea-
surements of TFEB translocation following a step response of starvation medium (HBSS)
supplied with the mTOR inhibitor Torin 1 (T1) (1µM). The figure shows the single-cell
traces of nuclear TFEB fluorescence. The average of the single-cell traces is highlighted
with a solid line. (B) Biological hypothesis: an unknown species z is produced or activated
following the nuclear translocation of TFEB (NFL, in red) or following starvation (IFFL, in
blue), influencing TFEB cellular localisation through a negative feedback or a feedforward
action. (C) Block scheme of the negative feedback regulation hypothesised for the overshoot
dynamics is represented in red. The production of the new species z depends on the
total amount of nuclear TFEB y. Block scheme of the incoherent feedforward regulation
hypothesised for the overshoot dynamics is represented in blue. The production of the new
species z depends on the input u. In both cases, the z species acts as a transporter able to
export nuclear TFEB.

developed two alternative models by adding a species z, able to increase TFEB export from

the nucleus to the cytoplasm with a rate γ, independently of its phosphorylation state. The

NFL model can be formalised as follows:

ẋ∗
C = k(1− u)(1− x∗

C − xN − x∗
N)− kux∗

C + βx∗
N + γzx∗

N

ẋN = kux∗
N − k(1− u)xN + β(1− x∗

C − xN − x∗
N)− γzxN

ẋ∗
N = k(1− u)xN − kux∗

N − βx∗
N − γzx∗

N

ż = −az + b(xN + x∗
N)

Here, a and b are respectively the degradation and the production rates of z. Parameter
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a was set according to the experimental slow overshoot dynamics (in the order of three

hours). Parameter b was set according to the experimental equilibrium reached by the

system (60 percent of nuclear TFEB, as shown in Figure 3.1 B). Therefore, the parameters

were set equal to: a = 1.5 · 10−4, b = 8.8 · 10−5. The transport rate γ was assumed to be

slower than the preferential XPO1-dependent export and was set equal to β
5
.

As previously discussed, the NFL architecture is not the only plausible architecture

able to biologically explain this phenomenon. Consequently, I hypothesized an alternative

model acting via an incoherent feedforward loop (IFFL) model, as shown in Figures 4.4 B

and C (in blue). In the IFFL model, the production of the z species directly depends on

the input and not on the nuclear concentration of TFEB as in the NFL. The IFFL model

equations are:

ẋ∗
C = k(1− u)(1− x∗

C − xN − x∗
N)− kux∗

C + βx∗
N + γzx∗

N

ẋN = kux∗
N − k(1− u)xN + β(1− x∗

C − xN − x∗
N)− γzxN

ẋ∗
N = k(1− u)xN − kux∗

N − βx∗
N − γzx∗

N

ż = −az + bu

In order to test how well these models recapitulated the experimental results, I characterized

them in silico by performing new simulations, as described in the next Subsection.

4.2.5 Numerical Simulations of Classic NFL and IFFL Models

In this Subsection, I performed numerical simulations, reported in Figure 4.5, to check

whether the two new models are able to improve the performances of the Classic Model.

The conditions used to perform the computational analysis are the same as in Subsection

4.2.3.

According to the observations discussed in the Subsection 4.2.3, I repeated the simula-

tions considering that the input u is equal to 0.2 under growth treatment and to 0.8 under

Torin 1 (or starvation) treatment. In addition, I simulated the Leptomycin B treatment

by setting the parameter β2 equal to zero. Indeed, the novel species z functions as an

extra nuclear exporter independently from XPO1 and therefore insensitive to Leptomycin
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Figure 4.5: Numerical Simulations of TFEB translocation for the Classic IFFL
and NFL Models. Panels (A,B,C) report IFFL model numerical simulations; panels
(D,E,F) report NFL model numerical simulations. Simulations of TFEB translocation
following a Torin 1 pulse train (A,D), a Torin 1 pulse train supplied with Leptomycin B
(B,E) and a Leptomycin B pulse train (C,F). The input u used is u = 0.2 for the growth
condition, and u = 0.8 for the starvation condition.

B treatment. The numerical simulations of the Torin 1 pulse experiment of the IFFL and

NFL Models are reported in Figures 4.5 A and D, respectively. Here, it is possible to

observe that the models are able to qualitatively recapitulate the experimentally observed

overshoot dynamics. Both the simulations clearly show the fast rise, the overshoot, the new

equilibrium, and the fast decrease. The equilibrium values under growth and Torin 1 (or

starvation) treatment are above 0 percent and below 100 percent respectively, indicating

that both models satisfy the static feature S1. In addition, the models recapitulate the

overshoot dynamics, indicating that both models satisfy the dynamic feature D1.

The numerical simulations of Torin 1 (or starvation) pulse supplied with Leptomycin B

experiment of the IFFL and NFL models are reported in Figures 4.5 B and E, respectively.

Again, the models are able to recapitualte qualitatively the entire dynamics observed

experimentally. Here, the equilibrium values under growth and Torin 1 (or starvation)

treatment supplied with Leptomycin B are above 0 percent and below 100 percent respec-

tively, indicating that both models satisfy the static feature S1. In addition, the nuclear

concentration of TFEB at equilibrium is also higher than the one in the simulation of the

Torin 1 (or starvation) pulse experiment, indicating that both models satisfy the static

feature S2. Moreover, the overshoot dynamics are well recapitulated, indicating that the
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models satisfy the dynamic feature D1. Finally, the Fall rates in both simulations slowed

down as compared to those of the Torin 1 pulse experiment, indicating that the models

satisfy the dynamic feature D3. In summary, both the models are able to qualitatively

replicate all of the experimental observed dynamics and are able to satisfy the relative

static and dynamic experimental features.

The numerical simulations of the Leptomycin B pulse experiment of the IFFL and NFL

models are reported in Figures 4.5 C and F, respectively. These numerical simulations

represent the best in silico test to distinguish between the two models [81]. Indeed, the main

difference between the two models lies in the adaptation mechanism. In the IFFL model,

the adaptation is directly driven by starvation, while in the NFL model, the adaptation

is caused by TFEB accumulating in the nucleus (Figures 4.4 B and C). Experimental

discrimination between the two models is not trivial because of the correlation between the

nutrients concentration in the cellular environment and the TFEB amount in the nucleus.

Nevertheless, the inhibition of nuclear export in cells grown in nutrient-rich medium can

be used to decouple TFEB nuclear accumulation from starvation, and thus distinguish

between the two models. Indeed, by impairing the balance between the nuclear input flux

and nuclear export flux, there should be an increase of the nuclear TFEB concentration.

This increase of TFEB nuclear concentration will result in a different outcome according to

the model considered: in the IFFL, the overshoot should not be present, since the nutrients

concentration remains unaltered; on the other hand, in the NFL model, TFEB nuclear

accumulation will lead to the activation of the new transporter and consequently to the

appearance of the overshoot. As expected, the simulations reported in Figures 4.5 C and F

show that the NFL shows adaptation while IFFL does not, indicating that only the IFFL

model is able to satisfy the dynamic feature D2. In addition, both models satisfy the static

feature S1 since the equilibrium values under growth and Leptomycin B treatments are

above 0 percent and below 100 percent, respectively.

In conclusion, I demonstrated in silico that both the NFL and IFFL Models improve

the performances of the Classic Model. The IFFL model was able to recapitulate all

the experimental data and to satisfy all the static and dynamic experimental features.

Conversely, the NFL model failed to recapitulate the Leptomycin B pulse experiment and
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does not satisfy the dynamic feature D2. This limit is intrinsic in the model structure

and allowed to distinguish the nature of NFL and IFFL as two different network motifs.

According to these results, the IFFL mechanism better recapitulates the observed dynamics,

suggesting that this topology is more reliable than the NFL to describe the biological

system.

4.3 Optimal Model

The modelling approach proposed in the previous Section highlighted important features

and suggested a plausible hypothesis to explain the biological mechanism behind the complex

TFEB dynamics. Specifically an IFFL network motif may explain the observed TFEB

nuclear shuttling dynamics assuming an extra species that drive an XPO1 independent

nuclear export. Despite the relevance of this preliminary analysis, a limitation of the model

is that I had to assume that the input u had to be greater than 0 and less than 1 in order

to prevent TFEB to become 100 percent nuclear following Torin 1 (or starvation) treatment

and 100 percent cytoplasmic in nutrient rich condition. From a biological point of view

this modelling assumption is equivalent to state that Torin 1 (or starvation) treatment do

not fully block mTOR kinase activity, which is not supported by the literature and by the

scientific consensus.

In this Section I propose a study based on a rigorous analysis to overcome this limitation

and to select the best model, namely the optimal minimal model.

4.3.1 Introduction to the Alternative Models

In this Subsection, I will describe how I derived the Alternative Models where the input

u is forced to strictly switch between u = 1 (full mTOR inhibition in starvation) and u = 0

(full mTOR activation in growth). Overall, I generated twelve different models, as reported

in Figure 4.6.

The general structure of the Alternative Model follows the usual two-compartments

(nucleus and cytoplasm) model. Within each compartment, de/phosphorylation reactions

occur, and any possible transport reaction was assumed to model TFEB transport. I as-
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Figure 4.6: General Block scheme of the Alternative Models proposed. In the
scheme TFEBcyt represents cytoplasmic TFEB; TFEBnuc the nuclear one; TFEB∗

cyt and
TFEB∗

nuc are the respective phosphorylated species; ki are the phosphorylation rates; k−i

the dephosphorylation ones; βi the transport rates. The input u to the system represents the
level of starvation and affects the cytoplasmic phosphorylation rate. The input represents
the growth condition for u = 0, and the starvation condition for u = 1. The output of
the system y represents the nuclear concentration of TFEB, given by the sum of the two
nuclear species TFEBnuc and TFEB∗

nuc. The arrows represented with a solid line describe
the chemical reactions reported in literature. The arrows represented with a dashed line
describe the chemical reactions not reported in literature: their existence is not confirmed.
The legend on the bottom describes the choice of the parameters for each model. In
particular: the colored circles indicate the reactions belonging to each model; then, it is
also reported which parameter is set to zero.

sumed first order kinetics for all the reactions. Again, I distinguished TFEB in four different

species: (i) nuclear dephosphorylated (TFEBnuc), (ii) nuclear phosphorylated (TFEB∗
nuc),

(iii) cytoplasmic dephosphorylated (TFEBcyt), (iv) cytoplasmic phosphorylated (TFEB∗
cyt).

In this case, I only considered the cytoplasmic phosphorylation as dependent on the nutri-

ents (amino acids) concentration by assuming a linear dependence on the input u. Let xC

and xN be respectively cytoplasmic and nuclear TFEB concentrations and x∗
C and x∗

N their

phosphorylated counterparts. Considering the conservation rule: xC + xN + x∗
C + x∗

N = 1,
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the equations of the general Alternative Model are:

ẋ∗
C = k1(1− u)(1− x∗

C − xN − x∗
N)− k−1x

∗
C + β2x

∗
N − β−2x

∗
C

ẋN = k−2x
∗
N − k2xN + β1(1− x∗

C − xN − x∗
N)− β−1xN

ẋ∗
N = k2xN − k−2x

∗
N + β−2x

∗
C − β2x

∗
N

All of the de/phosphorylation and transport rates are considered in the general model

equations. Clearly, the twelve different models are characterized by different combinations of

the reactions, as described in the legend in Figure 4.6. The main features of the Alternative

Models structures are as follows:

• Models from 1 to 4 are all characterized by the absence of nuclear de/phosphorylation

reactions.

• Models from 5 to 8 are all characterized by the presence of the nuclear phosphorylation

reaction.

• Models from 9 to 12 are all characterized by the presence of the nuclear dephosphory-

lation reaction.

Within each set of models, there are different combinations of transport rates between

compartments. The aim is to understand which model is able to reproduce the experimental

dynamics.

Of note, some of the models include also the nuclear dephosphorylation of TFEB (yellow

arrow in Figure 4.6) and the cytoplasmic phosphorylated TFEB import (blue arrow in

Figure 4.6) all of which have never been reported in literature. This study will make it

possible to question their usefulness and the possibility of their existence.

In order to test the models according their ability to satisfy the static and the dynamic

features described in Section 4.1, the models will be specifically tested by dividing the

analysis into two parts: firstly, the static properties of any model will be evaluated; then,

the dynamics of the models that satisfy all the static features will be studied.
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4.3.2 Static Analysis of the models

In the following Subsection, I will evaluate whether the models are able to satisfy the

static features S1 and S2. For this purpose, the equilibrium point of each model will

be evaluated in the main cases of interest. Generally, the static and dynamic features

were defined with respect to the experimental data reported in Figure 4.1. Accordingly,

the equilibrium points must be evaluated in the specific cases when growth and Torin 1

(or starvation) treatments are administered in the presence or absence of Leptomycin B.

As previously commented, the growth condition is simulated by setting the input u to

0, while the Torin 1 (or starvation) condition by setting u to 1. Finally, I simulated the

Leptomycin B treatment by setting the parameter β2 equal to zero, since it promotes the

inhibition of the nuclear export as previously discussed. The study will be conducted by

evaluating the equilibrium points in the form
[
x̄∗
C x̄N x̄∗

N

]T
(the Appendix A reports

the pertinent tables) and the cytoplasmic and nuclear concentrations at equilibrium in the

form
[
x̄C + x̄∗

C x̄N + x̄∗
N

]T
for the values of the input u = 0 and u = 1 when β2 ̸= 0 or

β2 = 0. In order to be considered dependable, models must:

• Satisfy the static feature S1 for all conditions: u = 0 and u = 1 when β2 ̸= 0 or

β2 = 0. Namely, x̄C + x̄∗
C > 0 and x̄N + x̄∗

N < 1.

• Satisfy the static feature S2. Namely: (x̄N + x̄∗
N)u=0,1;β2=0 > (x̄N + x̄∗

N)u=0,1;β2 ̸=0.

In order to preserve the generality of the analysis, no specific hypotheses will be made

on the values of the parameters. In this way the results will be solely dependent on the

structure of the models and unaffected by the specific values assumed by the parameters

(such as symmetry effects derived by setting the reaction rates to the same value).

The first results are reported in the Tables A.1 and 4.1. Here, I evaluated the equilibrium

values and the cytoplasmic and nuclear concentrations at equilibrium for the cases when

u = 0 and u = 1 when β2 ̸= 0. This case corresponds to the general case of growth and

Torin 1 (or starvation) treatments in the absence of Leptomycin B administration. In the

tables it is possible to observe that Models 1, 3, 9 and 11 (represented in red in Tables A.1

and 4.1) are not able to satisfy the static feature S1, according to the condition I defined

above. Consequently, these models were excluded from the analysis. In addition, I also
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Table 4.1: Cytoplasmic and Nuclear concentrations at Equilibrium. The cytoplasmic
and nuclear concentrations at equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each model have been
evaluated for u = 0 and u = 1. The parameters are independent of each other.

reported the analysis of the Classic Model as proof of concept confirming that is not able

to meet the static feature when u is set to 0 or 1.

Then, I evaluated the equilibrium values and the cytoplasmic and nuclear concentrations

at equilibrium for the cases when u = 0 and u = 1 when β2 = 0. The results are reported

in the Tables A.2 and 4.2. This case corresponds to the growth and Torin 1 (or starvation)

treatments under Leptomycin B administration. In the tables it is possible to observe that

Models 5, 6, 7 and 8 are not able to satisfy the static feature S1 ; while the models 2, 4, 10

and 12 satisfy the feature S1, but they are not able to satisfy the static feature S2.

These results confirm once more that the hypothesis that the Leptomycin B treatment

completely inhibits the nuclear export of TFEB is not supported by numerical simulations.

Indeed, none of the twelve models can meet the static features under this assumption.

At this point, I took advantage of the experimental evidence presented in [62]. Here,

they assessed the nuclear export kinetics of TFEB in response to nutrient availability,

observing the presence of two different nuclear pools of TFEB that are exported from the

nucleus at different rates. In particular, the rates did not change during starvation and

refeeding conditions, and they suggest that the two different TFEB pools being exported

at different rates may correspond to the phosphorylated and dephosphorylated forms.
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Table 4.2: Cytoplasmic and Nuclear concentrations at Equilibrium evaluated
in the General Case when β2 = 0. The cytoplasmic and nuclear concentrations at
equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each model have been evaluated for u = 0 and u = 1
when β2 = 0. The parameters are independent of each other.

Accordingly, I modified the models by considering two additional export rates: one for

dephosphorylated nuclear TFEB (TFEBnuc), and the other for phosphorylated nuclear

TFEB (TFEB∗
nuc). The two extra reactions can be considered as "passive" in the sense

that they always occur during both growth and starvation treatments, and are independent

on XPO1, and thus on Leptomycin B administration. In particular, the export rate β−1

is already present in the general model and it can be considered as a "passive" export.

Indeed, models 2, 4, 6 and 8 are characterized by the presence of β−1. On the other hand,

β2 does not present these features. Consequently, I introduced a new "passive" export β2,p

that is present in all of the models and that is different from 0 even when Leptomycin B is

administered. The new block scheme of the Alternative Models under analysis is proposed

in Figure 4.7.
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Figure 4.7: General Block scheme of the Alternative Models proposed to explain
the experimental Static Features. The presence of an export independent of XPO1
is considered to explain the experimental Static Features. Here, the new reaction rate is
introduced as the "passive" transport rate β2,p. The legend on the bottom describes the
choice of the parameters for each model. In particular: the colored circles indicate the
reactions of each model; then, it is also reported which parameter is set to zero. Other
details about the block scheme are reported in Figure 4.6.

Consequentially, the general model equations became:

ẋ∗
C = k1(1− u)(1− x∗

C − xN − x∗
N)− k−1x

∗
C + (β2 + β2,p)x

∗
N − β−2x

∗
C

ẋN = k−2x
∗
N − k2xN + β1(1− x∗

C − xN − x∗
N)− β−1xN

ẋ∗
N = k2xN − k−2x

∗
N + β−2x

∗
C − (β2 + β2,p)x

∗
N

Subsequently, I decided to repeat the evaluation of the equilibrium points and the cytoplas-

mic and nuclear concentrations at equilibrium for the cases when u = 0 and u = 1 when

β2 = 0. The results are reported in the Tables A.3 and 4.3. In this case, I decided to exclude

from the analysis the models 10 and 12 (represented in red in Tables A.2 and 4.2). Indeed,

as previously commented, they are mainly characterized by a nuclear dephosphorylation.

This type of reaction was never observed experimentally nor reported in literature. In

addition, all models characterized by nuclear dephosphorylation (models 9 to 12) showed
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Table 4.3: Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in
the General Case, when β2 = 0 in the presence of β2,p. The cytoplasmic and nuclear
concentrations at equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each model have been evaluated
for u = 0 and u = 1 when β2 = 0 in the presence of β2,p. The parameters are independent
of each other.

limits in the proposed equilibrium analysis, suggesting that the potential existence of such

a reaction in the biological network under study is not relevant. Therefore, the following

analysis will investigate the impact of nuclear phosphorylation on the properties of the

models at the equilibrium.

Looking at the results reported in the Tables A.3 and 4.3, it is possible to observe

that, again, models 2 and 4 satisfy the feature S1 ; conversely, they are not able to satisfy

the static feature S2 (they are represented in red in Tables A.3 and 4.3). Indeed, the

equilibrium points of these models for u = 0 and u = 1 are the same for β2 ̸= 0 and β2 = 0,

i.e. they are insensitive to Leptomycin B treatment suggesting an intrinsic limitation of

the models structure. Consequently, the two models were excluded from the subsequent

analysis. For completeness, it is necessary to know that models 10 and 12 behave as the

modes 2 and 4 (not showed), confirming that the action of the nuclear dephosphorylation

is not relevant in this analysis.

Models 5, 6, 7 and 8 now satisfy the static feature S1 as a consequence of the new

export reaction assumption. In addition, they turn out to be able to satisfy also the static

feature S2. In order to confirm this numerically, I decided to evaluate the equilibrium

points of these models for specific values of the parameters, that will be also useful for the

following analysis in dynamic, described in the next Subsection.

I assumed the de/phosphorylation rates all equal to the parameter k. The transport
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Table 4.4: Cytoplasmic and Nuclear concentrations at Equilibrium evaluated
in the Case of dependence on k and β in the presence of β2,p. The cytoplasmic
and nuclear concentrations at equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each model have been
evaluated for u = 0 and u = 1. The parameters are all dependent on k or β.

rates β1 and β2 were set equal to β and 9β
10

, respectively. The two "passive" exports

β−1 and β2,p and the transport rate β−2 were set equal to β
10

, since they were considered

slower as compared to the two "preferential" transports, β1 and β2. In particular, the two

rates β2 and β2,p were chosen so that the total export of nuclear phosphorylated TFEB

is β2,tot = β2 + β2,p = β. Overall, the system parameters were reduced to two. The value

of two parameters is: k = 1
70

= 1.5 · 10−2, β = 1
216

= 5 · 10−3, as described in Subsection

4.2.1. Clearly, the models are distinguished by various structural features, and the legend

in Figure 4.7 specifies the parameters set to zero for each.

Once a value has been assigned to each parameter, I repeated the calculation for the

models from 5 to 8 in this specific case. In particular, I evaluated the equilibrium values

and the cytoplasmic and nuclear concentrations at equilibrium for the cases when u = 0

and u = 1 when β2 ̸= 0. The results are reported in Tables A.5 and 4.4. Here, I confirmed

that all the models satisfy the static feature S1 for this specific choice of the parameters.

Then, I evaluated the equilibrium values and the cytoplasmic and nuclear concentrations

at equilibrium for the cases when u = 0 and u = 1 when β2, β2,p = 0 as a proof of concept.

The results are reported in Tables A.6 and 4.5. As expected, I confirmed that the models
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Table 4.5: Cytoplasmic and Nuclear concentrations at Equilibrium evaluated in
the Case of dependence on k and β when β2, β2,p = 0. The cytoplasmic and nuclear
concentrations at equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each model have been evaluated
for u = 0 and u = 1 when β2, β2,p = 0. The parameters are all dependent on k or β.

are not able to satisfy the static feature S1 when the "passive" export on the nuclear

phosphorylated TFEB is set to zero.

Consequently, I evaluated the equilibrium values and the cytoplasmic and nuclear

concentrations at equilibrium for the cases when u = 0 and u = 1 when β2 = 0 and

β2,p =
β
10

, as assigned above. The results are reported in Tables A.7 and 4.6. They confirm

that by introducing the "passive" export β2,p, the models satisfy the static feature S1.

At this point, to verify if the models were also able to satisfy the static feature S2,

I applied the criterion defined at the start of the Subsection: (x̄N + x̄∗
N)u=0,1;β2=0 >

(x̄N + x̄∗
N)u=0,1;β2 ̸=0. As results, I obtained two inequalities for each model to satisfy, as

reported in Table 4.7 on the top. The results of the inequalities are reported on the bottom

of the same Table. The outcomes confirm that all the models are able to satisfy S2.

In summary, models from 5 to 8 are able to satisfy the experimental static features

previously introduced, under the assumption of the existence of "passive" transports [62].

Notably, the presence of the nuclear phosphorylation reaction characterizes all models able

to satisfy the analysis at equilibrium. The findings of this analysis therefore imply that

nuclear phosphorylation is a relevant reaction and that it is essential in explaining the

experimental data.
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Table 4.6: Cytoplasmic and Nuclear concentrations at Equilibrium evaluated
in the Case of dependence on k and β, when β2 = 0 in the presence of β2,p.
The cytoplasmic and nuclear concentrations at equilibrium

[
x̄C + x̄∗

C x̄N + x̄∗
N

]T for each
model have been evaluated for u = 0 and u = 1 when β2 = 0 in the presence of β2,p. The
parameters are all dependent on k or β.

In the following, the models able to satisfy the static features will be further analysed to

probe their dynamics. In particular, I will focus on the model 6, which can be considered the

best minimal model since it is also consistent with all the literature. Indeed, differently from

the other models (5, 7 and 8), it only considers the presence of both "passive" transports

β−1 and β2,p, without considering the existence of the import reaction β−2, which has never

been reported in literature. In addition, it is able to satisfy S2 for any value of k and β.

4.3.3 Analysis of Dynamic Features

A block scheme of model 6 is reported in Figure 4.8. In this Subsection, the dynamics

of the model will be analysed to test its compliance with respect to the experimental data.

The model will be examined by assessing numerical simulations of the cases of interest,

namely by simulating experimental stimuli shown in Figure 4.1. To maintain consistency

with the analyses in the previous Subsection, the growth condition is simulated by setting

the input u = 0; the Torin 1 (or starvation) condition by setting u = 1; the Leptomycin B

treatment by setting the parameter β2 = 0. Each input will be simulated as a pulse train

of twenty hours, with a period of six hours and a duty cycle of the fifty percent as shown

in Figure 4.9.

In addition, in order to verify that the model satisfies all the dynamics features, two
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Table 4.7: Conditions to satisfy the S2 Feature. Above are the conditions to satisfy
the S2 feature. Below, their results.

features of interest will be evaluated for each simulation:

• the Overshoot%: 100
max(signal)−endpulse(signal)

max(signal)
, which is the percentage evaluated as

the difference between the signal peak max(signal) and the signal value at the end

of treatment endpulse(signal) before switching to growth, and then normalized on the

peak itself.

• the ratio (in absolute value) between the Fall and the Rise rates of TFEB nuclear

signal upon switching treatment during the pulse: | Fallrate
Riserate

|.

The values of these two quantities will be evaluated on the second pulse of each simulation

in a wide range of conditions, where changing the two parameters k and β between −90%

and +90% around their nominal values k = 1
70

and β = 1
216

.

The results of the simulations of the Model 6 reported in Figures 4.9 A, B and C confirm

that the model satisfies the two static features S1 and S2. Figure 4.9 C also shows that

the Model 6 satisfies the dynamic feature D2. In addition, Figures 4.9 G and H prove that
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Figure 4.8: General Block scheme of the Alternative IFFL and NFL Models
proposed. The block scheme of Model 6 is reported in black. The block scheme of the
negative feedback regulation hypothesised for the overshoot dynamics is represented in
red. The production of the new species z depends on the total amount of nuclear TFEB
y. Block scheme of the incoherent feedforward regulation hypothesised for the overshoot
dynamics is represented in blue. The production of the new species z depends on the input
u. The legend on the bottom describes the choice of the parameters for each model. In
particular, the colored circles indicate the reactions rates of each model.

the model is also able to satisfy the dynamic feature D3. Conversely, it is clearly evident

from panels A, B, D and E that the model is not able to satisfy the dynamic feature D1.

Indeed, despite the model can replicate the fast dynamics observed in the experiments

during medium switches, it is not able to recapitulate the overshoot.

According to the results discussed in the Section 4.2, this result was expected. So, I now

propose a similar hypothesis to enhance model performance and to explain the biological

outcomes.

In particular, just as it was done for the Classic Model, it is also plausible to infer for

Model 6 the existence of an unidentified species that may regulate TFEB nuclear amount
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Figure 4.9: Numerical Simulations of TFEB translocation for the Model 6.
Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1 supplied
with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10 scale following
a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E), Leptomycin B (F).
Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse train of Torin 1
(G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The input is u = 0
for the growth condition, and u = 1 for the starvation condition. In each heatmap, the
de/phosphorylation rate k and the transport rate β are varied between −90% and +90%
of their nominal values k = 1

70
and β = 1

216
.

by either an IFFL or an NFL regulatory motif. Model 6 equations can thus be modified in

accordance with the preceding example. Specifically, the first three model equations are

the same as the ones reported in the Subsection 4.3.2, where k−2, β−2 = 0 for Model 6. In

addition, there is a fourth equation which describes the dynamics of the new species z. For

the NFL model, the equation is:

ż = −az + b(xN + x∗
N)
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Instead, for the IFFL model, the equation is:

ż = −az + bu

In both cases, a and b are respectively the degradation and the production rates of z. The

choice of their value was explained in Subsection 4.2.4. Accordingly, the parameters were

set again to: a = 1.5 · 10−4, b = 8.8 · 10−5.

Of interest, it remains to be understood where the new species acts. In the Subsection

4.2.4, I assumed that the species could influence TFEB nuclear transport. Nevertheless, to

maintain the generality and the robustness of the analysis, this time I decided to consider

any possible case. This implies that the unknown species z could either act on cytoplasmic

dephosphorylation rate k−1, cytoplasmic dephosphorylated TFEB import rate β1, nuclear

phosphorylation k2 or "passive" exports β−1 and β2,p. It is also clear that z cannot act on

the cytoplasmic phosphorylation k1, given the experimental evidence reported in Figure 4.4

A as already discussed in Subsection 4.2.4. Moreover, z cannot act on the XPO1-dependent

nuclear export β2, since the overshoot dynamic is still present when cells are treated with

Torin 1 (or starvation) under XPO1 inhibition via Leptomycin B, as reported in Figures 4.1

B and D. Even so, this last case will be also considered in the study as a negative control.

The influence of z on each rate is assumed to be linear and will be evaluated separately

in different models. Overall, considering that z can act either through an NFL or an IFFL

mechanism on each rate, I generated ten different models. Their block schemes are reported

in Figure 4.8.

The semi-quantitative analysis consisting of time-course simulations and heatmaps

performed for the original Model 6 will be repeated for each new model to assess its

performance and ability in satisfying the dynamic features. Since all the models derive

from Model 6, the static features will be satisfied for each of them, as verified in Figures

4.10, 4.11 and A.1 - A.8.

The IFFL on the cytoplasmic dephosphorylation rate k−1 and on the cytoplasmic

dephosphorylated TFEB import rate β1 Models are reported in Figures 4.10 and 4.11.

These models behave in a similar way. The models satisfy the dynamic feature D1, as
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Figure 4.10: Numerical Simulations of TFEB translocation for the IFFL on k−1

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.

observed in panels A, B, D and E. Even though, the Overshoot% is much lower in the

Torin 1 pulse supplied with Leptomycin B experiment simulation than in the Torin 1

pulse experiment simulation for both. The models also satisfy the dynamic feature D2, as

described in panels C and F. In addition, by comparing the results presented in panels G

and H, the models are also able to satisfy the dynamic feature D3. However, in the IFFL

on β1 Model, the Fall over Rise rates ratio in panels G and H are almost similar in the

two experimental simulations and their difference is minimal. Overall, both the models

are able to satisfy all the static and the dynamic features and are two good candidates

to explain the biological mechanism underlying the experimental dynamics. Interestingly,

these are the only two models able to satisfy all the experimentally derived static and
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dynamic features.

The NFL on the cytoplasmic dephosphorylation rate k−1, on the cytoplasmic dephos-

phorylated TFEB import rate β1 and on the "passive" exports β−1 and β2,p Models are

reported in Figures A.1, A.2 and A.6, respectively. These models behave in similar way

and will be commented together. The models are not able to satisfy the dynamic feature

D1, as observed in panels A, B, D and E. Indeed, the Overshoot% is really low for all the

cases considered. In addition, the models also fail to satisfy the dynamic feature D2, as

described in panels C and F, as the overshoot dynamic is still present. This outcome was

expect according to the results of the Classic NFL Model discussed in Subsection 4.2.5. By

comparing the results presented in panels G and H of each model, they satisfy the dynamic

feature D3.

The IFFL on the nuclear phosphorylation k2 Model is reported in Figure A.3. The

model barely satisfies the dynamic feature D1, as observed in panels A, B, D and E, even

though, the Overshoot% is almost zero in the Torin 1 pulse supplied with Leptomycin

B experiment simulation (B and E) and is lower than in the Torin 1 pulse experiment

simulation (A and D). Another limitation is observed in the Torin 1 pulse experiment

simulation evaluated for k = 1
70

and β = 1
216

, in panel A. Here, the equilibrium point

in growth condition is higher than the one under Torin 1 (or starvation) treatment. In

addition, the model fails to recapitulate the dynamics of the Leptomycin B pulse experiment

simulation. Consequently, it is not able to satisfy the dynamic feature D2, as described in

panels C and F. By comparing the results presented in panels G and H, the model satisfies

the dynamic feature D3.

The NFL on the nuclear phosphorylation k2 Model is reported in Figure A.4. The

model is not barely able to satisfy the dynamic feature D1, as observed in panels A, B,

D and E. Indeed, the Overshoot% is really low for the cases considered, especially in the

Torin 1 pulse supplied with Leptomycin B experiment simulation (B and E), where it is

almost zero. The model satisfies the dynamic feature D2, as described in panels C and F.

Here, the overshoot dynamic is not present anymore; however, the translocation dynamic

during the growth phase is not first-order, as observed in panel C. By comparing the results

presented in panels G and H, the model satisfies the dynamic feature D3.
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Figure 4.11: Numerical Simulations of TFEB translocation for the IFFL on β1

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.

The IFFL on the "passive" exports β−1 and β2,p Model is reported in Figure A.5. The

model is not barely able to satisfy the dynamic feature D1, as observed in panels A, B, D

and E. Indeed, the Overshoot% is really low for the cases considered. Another problem is

present in the Torin 1 pulse supplied with Leptomycin B experiment simulation evaluated

for k = 1
70

and β = 1
216

, in panel A. Here, the equilibrium point under growth is higher

than the one under Torin 1 (or starvation) treatment. The Model satisfies the dynamic

feature D2, as described in panels C and F. On the contrary, by comparing the results

presented in panels G and H, the model does not satisfy the dynamic feature D3.

The IFFL and the NFL Models on the nuclear export β2 are reported in Figures A.7

and A.8, respectively. As previously commented, the models are implausible. As expected,
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the models fail to satisfy the dynamic feature D1 under the Torin 1 pulse supplied with

Leptomycin B experiment simulation, as the overshoot is almost zero (panels B and D

of the Figures). In addition, the IFFL Model fails to recapitulate the dynamics in the

Leptomycin B pulse experiment simulation. Consequently, it is not able to satisfy the

dynamic feature D2, as described in panels C and F in Figure A.7.

In conclusion, in this Chapter, I proposed a computational analysis to explain the

dynamics observed experimentally with the purpose of uncovering the underlying biological

mechanism. Although the Classic Models yielded important hints to guide the analysis,

they were limited in the choice of the input and lacked generality. Consequently, I proposed

a rigorous analysis where I selected the best model able to satisfy all the static and dynamic

features directly derived from the experimental data. The main conclusions are listed

below:

• By hypothesizing the total inhibition of the nuclear export in the Torin 1 (or starvation)

in the presence of Leptomycin B, the models failed to recapitulate the experimental

results. Only by assuming the existence of "passive" nuclear export reactions, the

models were able to qualitatively recover the real dynamics.

• The models able to satisfy all the static features are characterized by the presence of

a nuclear phosphorylation reaction, emphasizing its relevance in this study and in

the general mechanism under investigation.

• Only by assuming the existence of a species that can regulate TFEB nuclear levels

through an IFFL regulatory motif, it is possible to satisfy all the dynamic features.

Additionally, the semi-quantitative study presented shows that this unidentified

species should either influence TFEB cytoplasmic dephosphorylation rate or the rate

of import of cytoplasmic dephosphorylated TFEB.
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Chapter 5

Conclusions and Future Work

The possibility of an IFFL acting on TFEB cytoplasmic dephosphorylation or on the

import of cytoplasmically dephosphorylated TFEB was supported by the results I described

in the previous Chapter.

Hence, I searched the literature for studies supporting these two hypotheses. Because of

the limited experimental characterization of TFEB nuclear import, I was unable to discover

any references that may support this hypothesis. On the other hand, TFEB cytoplasmic

dephosphorylation has been extensively studied in vitro, and I was able to uncover several

publications that may back up my findings.

As mentioned in Chapter 1, Calcineurin has been identified as the primary phosphatase

involved in TFEB cytoplasmic dephosphorylation and its activation during refeeding is

mediated by Ca2+ release from lysosomes via the Mucolipin 1 channel (MCOLN1) [56, 57].

Indeed, the authors investigated the interaction between TFEB and Calcineurin by means

of calcium chelators and ionophores (Thapsigargin, Ionomycin, ML-SA1, SF-51, Bapta

AM) during growth, starvation, and Torin 1 treatments. Relevant among the others is the

MCOLN1 agonist SF-51 treatment in growth conditions as shown in Figure 5.1, that is

able on its own to promote TFEB nuclear translocation. Surprisingly, it is possible to see

that following MCOLN1 activation in Hela cells that are overexpressing the fusion protein

TFEB-GFP, TFEB translocates into the nucleus with an overshoot dynamics comparable to

what I found in my experiments. This experimental characterisation supports the proposed

hypothesis and provides the basis for additional research.
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Figure 5.1: The MCOLN1 agonist SF-51 induces TFEB nuclear translocation. A
high content assay was used to determine, during the time points shown in the figure, how
SF-51 administration affected HeLa TFEB-GFP cells. In comparison to DMSO control
cells, the graph displays the percentage of treated cells with nuclear TFEB. The graph
displays the mean and standard deviation for n=3 separate experiments. Adapted from
[56].

Not less crucial, by identifying TFEB as a Calcineurin substrate, the authors in [56]

related TFEB with another well characterized substrate, NFAT [32,49]. Indeed, they found

that starvation induces Calcineurin-mediated dephosphorylation of both TFEB and NFAT,

suggesting a coordinated regulation of the two different transcriptional networks [56].

NFAT transcription factors control gene expression in a number of developmental

processes as well as cytokine expression in T cells. The principal NFAT members, NFAT1-

4, are phosphorylated and reside in the cytoplasm. They are dephosphorylated by the

Calcium-Calmodulin-dependent phosphatase Calcineurin and transported into the nucleus.

NFATs are believed to be important antigen signal decoders in T lymphocytes. A careful

investigation of the phosphorylation states of NFAT1 revealed that nuclear import and

transcriptional activity depend on the dephosphorylation of several serine residues in the
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regulatory domain of the inactive protein. Dephosphorylation enhances the exposure of

a nuclear localization signal (NLS) and presumably also the masking of a nuclear export

signal (NES). Nuclear import through the nuclear pore complex is mediated by the binding

of the NLS to the transport machinery, whereas nuclear export is prevented by masking

the NES [83].

The surprising similarity between NFAT and TFEB encouraged me to further explore

the literature on the former, whose translocation dynamics are well described, in order to

provide insights on how to proceed forward with my research. Numerous are the studies

that have investigated at the kinetics of NFAT nucleo-cytoplasmic shuttling.

Intriguingly, NFAT1 nuclear translocation dynamics under prolonged antigen stim-

ulation resembled TFEB overshoot dynamics [107]. According to a previous research,

antigen stimulation causes a biphasic calcium rise that activates the NFAT pathway [21],

supporting the idea that antigen stimulation causes Calcineurin activation to drive NFAT

nucleo-cytoplasmic shuttling. An in silico study deriving from these findings also con-

firmed that NFAT was deferentially activated according to duration and amplitude of the

Calcium/Calcineurin stimulus (single spike, spike followed by plateau and low-amplitude

plateau) [83].

Finally, several other studies investigated the selective activation of NFAT isoforms 1

and 4 by calcium microdomains near CRAC Channels and by nuclear Ca2+ [33–35]. Here,

authors assessed NFAT calcium-driven translocation by culturing HEK293 cells transfected

with NFAT-GFP in a calcium-rich culture medium and treating cells with the SERCA

inhibitor Thapsigargin to promote nuclear translocation and subsequently switching to

a treatment with the Calcineurin inhibitor Cyclosporin A in a calcium-free medium to

promote nuclear export [33–35].

Taken together, these studies highlighted the similarity between the two transcription

factors TFEB and NFAT emphasizing the relevance of the calcium-driven Calcineurin

signalling in their shuttling dynamics. This research on NFAT translocation dynamics serves

as a useful reference for TFEB and provides insightful guidelines for further investigations.
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Appendix A

Supplementary Data

Table A.1: Equilibrium Points evaluated in the General Case. The equilibrium
points

[
x̄∗
C x̄N x̄∗

N

]T for each model have been evaluated for u = 0 and u = 1. The
parameters are independent of each other.
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Table A.2: Equilibrium Points evaluated in the General Case when β2 = 0. The
equilibrium points

[
x̄∗
C x̄N x̄∗

N

]T for each model have been evaluated for u = 0 and u = 1
when β2 = 0. The parameters are independent of each other.

Table A.3: Equilibrium Points evaluated in the General Case, when β2 = 0 in
the presence of β2,p. The equilibrium points

[
x̄∗
C x̄N x̄∗

N

]T for each model have been
evaluated for u = 0 and u = 1 when β2 = 0 in the presence of β2,p. The parameters are
independent of each other.
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Table A.4: Values of the dividing quantities.
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Table A.5: Equilibrium Points evaluated in the Case of dependence on k and β

in the presence of β2,p. The equilibrium points
[
x̄∗
C x̄N x̄∗

N

]T for each model have
been evaluated for u = 0 and u = 1. The parameters are all dependent on k or β.

Table A.6: Equilibrium Points evaluated in the Case of dependence on k and
β when β2, β2,p = 0. The equilibrium points

[
x̄∗
C x̄N x̄∗

N

]T for each model have been
evaluated for u = 0 and u = 1 when β2, β2,p = 0. The parameters are all dependent on k or
β.
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Table A.7: Equilibrium Points evaluated in the Case of dependence on k and β,
when β2 = 0 in the presence of β2,p. The equilibrium points

[
x̄∗
C x̄N x̄∗

N

]T for each
model have been evaluated for u = 0 and u = 1 when β2 = 0 in the presence of β2,p. The
parameters are all dependent on k or β.

Figure A.1: Numerical Simulations of TFEB translocation for the NFL on k−1

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.2: Numerical Simulations of TFEB translocation for the NFL on β1

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.3: Numerical Simulations of TFEB translocation for the IFFL on k2
Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.4: Numerical Simulations of TFEB translocation for the NFL on k2
Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.5: Numerical Simulations of TFEB translocation for the IFFL on β−1

and β2,p Model. Simulations of TFEB translocation following a pulse train of Torin 1
(A), Torin 1 supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot%
in log10 scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B
(E), Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a
pulse train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I).
The input is u = 0 for the growth condition, and u = 1 for the starvation condition. In
each heatmap, the de/phosphorylation rate k and the transport rate β are varied between
−90% and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.6: Numerical Simulations of TFEB translocation for the NFL on β−1

and β2,p Model. Simulations of TFEB translocation following a pulse train of Torin 1
(A), Torin 1 supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot%
in log10 scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B
(E), Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a
pulse train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I).
The input is u = 0 for the growth condition, and u = 1 for the starvation condition. In
each heatmap, the de/phosphorylation rate k and the transport rate β are varied between
−90% and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.7: Numerical Simulations of TFEB translocation for the IFFL on β2

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Figure A.8: Numerical Simulations of TFEB translocation for the NFL on β2

Model. Simulations of TFEB translocation following a pulse train of Torin 1 (A), Torin 1
supplied with Leptomycin B (B), Leptomycin B (C). Heatmaps of Overshoot% in log10
scale following a pulse train of Torin 1 (D), Torin 1 supplied with Leptomycin B (E),
Leptomycin B (F). Heatmaps of Fall over Rise rates ratio in log10 scale following a pulse
train of Torin 1 (G), Torin 1 supplied with Leptomycin B (H), Leptomycin B (I). The
input is u = 0 for the growth condition, and u = 1 for the starvation condition. In each
heatmap, the de/phosphorylation rate k and the transport rate β are varied between −90%
and +90% of their nominal values k = 1

70
and β = 1

216
.
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Appendix B

Materials and Methods

B.1 Cell Culture

HeLa cells stably expressing TFEB tagged with a GFP (TFEB-GFP) are used in the

experiments. HeLa cells are cultured in RPMI 1640 (EuroClone) supplemented with 10%

FBS (EuroClone), 1% Penicillin/Streptomycin (EuroClone), 2 mM Glutamine (EuroClone)

and 1mg/ml G418 (Sigma-Aldrich Co.) and are kept in a standard tissue culture incubator

at 37◦C, 5% CO2, 98% of humidity. Cells are splitted twice per week using PBS (Gibco)

and trypsin (Gibco) and seeded on average at 15000cells/cm2 in a T25 flask. The day

before the loading of the microfluidic device cells were splitted 1:3 and placed back into the

incubator.

B.2 Microfluidics

All the experiments presented in this work were performed using the microfluidic

devices described in Section 2.3. In particular, the amino acid starvation experiments were

conducted by using the VersaLive platform; the other experiments were performed by using

the device for dynamic stimulation. Here, the fabrication and the loading protocols of the

chips will be described.
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B.2.1 Device for dynamic input experiments Fabrication Protocol

The fabrication protocol is adapted from [41]. A replica molding technique is used to

obtain polydimethylsiloxane (PDMS) replicas of the microfluidic device by using a master

mold. The master mold has been produced using a 4" (10.16cm) silicon wafer as substrate

(Silicon Valley Microelectronics, US) by a way of layer-by-layer photolithography. Negative

photoresists (Microchem Corporation) were used to create the master mold. Specifically,

SU-8 2015 was spun at 3300 and 1000 rpm to generate the 15 microns DAW and 40 microns

main channels, respectively, and SU-8 2005 was spun at 3000 rpm to generate the 5 microns

layer of chaotic mixers which serve to ensure uniform mixing of the DAW inputs.

Before the fabrication of the microfluidic devices the master is exposed to chlorotrimethyl-

silane (Sigma-Aldrich Co.) vapours for 10 minutes in order to create an anti-sticking silane

layer for PDMS. PDMS is prepared by mixing Sylgard 184 Elastomer curing agent and

base (DOW corning) in a 1 : 10 ratio. PDMS is poured onto the master mold, degassed for

30 minutes, cured for 1 hour at 80◦, allowed to cool to room temperature and then peeled

from the wafer. PDMS was then autoclaved for 30 minutes at 121◦ to ensure long-term

viability of cells in the devices [14]. Holes for the 7 ports were punched using a 24-gauge

blunt needle in order to create fluidic ports for the access of cells and liquid substances. The

PDMS devices obtained are rinsed in isopropyl alcohol and distilled water to remove debris.

For each PDMS piece containing microchannels a thin glass slide (150 microns) is cleaned

in methanol and 70% ethyl alcohol. Finally the PDMS layers and glass slides are exposed

to air plasma in Plasma Cleaner machine (ZEPTO version B, Diener electronic GmbH) for

30 seconds and brought into contact forms a strong irreversible bond between two surfaces.

As last step all devices were checked for faults inside and outside the channels.

B.2.2 Device for dynamic input experiments Cells Loading Proto-

col

The cells loading protocol is adapted from [41]. For device loading, cells are washed

with sterile Phosphate-Buffered Saline (PBS, Gibco), detached from the culture dishes by

exposing to 0.25% Trypsin EDTA for 1 minute and centrifuged to form a pellet. Then, in
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order to obtain a seeding density of 5 - 7 cells per chamber, the cells pellet is re-suspended

in complete media at a density of 0.064 cells per mm2.

The channel of the device are then completely filled with fluid (except for the culture

chambers) by applying complete media first through port 5 and then through port 2 once

it is filled with fluid. The cell suspension is loaded into the main channel of the device from

port 2 and a vacuum is applied in the channel adjacent to the culture chambers (ports 3 and

4) to evacuate air and replace the chamber volume with fluid containing cells. Remaining

untrapped cells in the main channel are washed away at a high flow rate without disturbing

cells inside the traps. Fluidic connections from the ports of the device to syringes containing

growth medium are then established using 24 gauge PTFE tubing (Cole-Parmer Inc.).

Once cells are loaded in the microfluidic device, they are allowed in a cell culture

incubator for 24 hours in perfusion conditions providing that the cells in chambers receive

fresh medium from syringe connected to port 5 and the waste medium is washed through

port 1, while all the other ports (2, 6 and 7) are plugged: port 2 is plugged with a node;

ports 6 and 7 are connected through a bridge to balance the pressure.

The robust growth and colonization of the device culture chambers by this cell line

indicates that application of a temporary on-chip vacuum during loading is not detrimental

to cell viability or proliferation and is a novel useful method for delivering cells in suspension

into isolated chambers within a microfluidic device [41].

B.2.3 VersaLive Fabrication Protocol

The protocol is adapted from [68]. Microfluidic chips have been fabricated by using

a combination of standard photolithography and soft lithography procedures [23]. The

geometry of the device is shown in The master mold has been microfabricated via mask

photolithography of SU-8 negative photoresist (SU-8 3035, Kayaku Advanced Materials

Inc.) on silicon wafer substrate. The photoresist was spin coated to reach a final thickness

of 25 microns and processed following the guidelines of the manufacturer Before the first

utilization of the master, the passivation of its surface is required to facilitate the release

step during soft lithography.

The master was passivated by vapor deposition of perfluorosilane (1H,1H,2H,2H-
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perfluorooctyl-trichlorosilane, Merck kGaA). Specifically, the master was placed in a

desiccator with a small vial containing 20 µL of perfluorosilane. Vacuum was then applied

overnight to allow the perfluorosilane to evaporate and to react with the surface of the

silicon wafer, forming a covalently bound super-hydrophobic coating.

The passivated master is then used as a mold for the soft lithography part of the

fabrication process of the microfluidic device. The elastomer base of the PDMS is thoroughly

mixed with the curing agent in a 10:1 ratio as reported by the datasheet of the manufacturer

(Sylgard 184, Dow Corning). Air bubbles are removed from the uncured polymer applying

vacuum to the mix for 2 hours or until no bubbles are visible. The mix is then poured onto

the master mold for a final thickness of about 5 mm. If required, vacuum can be applied a

second time to remove the bubbles formed during the pouring step. The mold with the

uncured PDMS is then placed in oven at 80°C for a minimum of 2 hours to accelerate

the crosslink of the polymer mix. Once cured, the PDMS is peeled off the master mold.

The PDMS slab is then placed with the pattern features facing up to cut out the single

chips. Similarly, access ports are opened using a 3-mm biopsy punch (ref. 504649, World

Precision Instruments).

The channels of the PDMS chips are sealed by plasma bonding the chips to round glass

cover slides (30 mm in diameter, thickness no. 1, Marienfeld). Glass slides and PDMS

chips were first cleaned from dust particles using adhesive tape. For the surface activation

of glass slides and PDMS chips, 85W air plasma at 0.4 mbar or lower (ZEPTO version B,

Diener electronic GmbH & Co. KG) was used. For the permanent bond 30 seconds of air

plasma are used respectively. As last step all devices were checked for faults inside and

outside the channels.

B.2.4 VersaLive: Wetting and Cell Loading

The protocol is adapted from [68]. To ease the wetting process, the temporary

hydrophilicity of the PDMS surface after the plasma activation is exploited. Consequently,

the wetting of the channels is carried out within minutes after the bonding procedure. The

wetting and the cell loading operations are carried out upon visual check using an inverted

stereomicroscope (Leica Microsystems). For the wetting of the microfluidic channels, 10 µL
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of PBS are added in port B of the chip until all channels are filled. If required, all ports

are filled with 10 µL of PBS and the chip is placed in a desiccator, vacuum is applied for

15 minutes or until all air bubbles disappeared. Successively, the PBS is removed from

all reservoirs and 10 µL of cell suspension (1–5∗106cell/mL) are added to port B of the

device. Cells start to flow through the main channel and to enter into the chambers. When

a given chamber is filled with the suited number of cells, 10 µL of cell medium are added

to the respective port to decrease the flow rate across that chamber. When all chambers

are filled, 20 µL of cell media is added to port A and port B is emptied to wash the main

channel from undesired cells. Port B is then rinsed and filled with 20 µL of cell media.

Next, all input ports from #1 to #5 are filled up to a final volume of 20 µL of fresh cell

media. An equal volume of cell media in all ports prevents the formation of pressure drops

across the chip and enables the static cell culture. Ultimately, 2.5 µL of mineral oil for cell

culture (M8410, Merck kGaA) are added to each reservoir to prevent the evaporation of its

content when the chip is placed into the cell incubator. The chips stayed in the incubator

overnight at 37◦ 100% humidity and 5% of CO2 atmosphere prior to the beginning of the

experiments.

B.2.5 VersaLive: Single/Multi-input mode

The protocol is adapted from [68]. After the steps described in Subsection B.2.4 is

possible to operate in the perfusion cell culture regime. In order to generate a pressure drop

the ports content must be removed according to specific mode used. In the Single-Input

mode all the ports are rapidly emptied and ports A is filled with 20 µL of the desired input.

Conversely, in the Multi-Input case ports A and B are emptied and the content in ports 1

to 6 is rapidly substituted with 20 µL of the desired input.

B.2.6 Experimental protocol

The protocol is adapted from [64]. The microfluidics experimental platform was

initialised as previously described [75]. The microfluidic device is secured on the microscope

stage within an environmental chamber maintained at 37 ◦C with humidified 5% CO2. The
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treatments were provided for the VersaLive platform in a multi-input mode by replacing

the growing medium with the treatment using a standard pipette. on the other hand, in

the case of the device for dynamic input, 60mL syringes are connected to its ports and

hanged at different heights, in order to regulate the flow from the inlets (ports 6 and 7) to

the outlets (ports 5, 1 and 2) according to hydrostatic pressure. The syringes connected

to the outlets port contain 10mL of standard complete culture medium and they serve as

a waste tanks. The syringes connected to the inlets port are filled as indicated in each

experiment, and secured on the linear actuator.

B.3 Starvation Treatments

For experiments involving complete starvation I utilized HBSS (Gibco) as starvation

medium and complete RPMI (supplemented as indicated in Section B.1) as growth medium.

For experiments involving amino acid starvation I utilized the procedure described in

[62]. Cells loaded in Versalive microfluidic chips [68] were treated for three hours with

growth medium supplemented or depleted with amino acids. The growth medium depleted

with amino acids is composed by amino acid-free RPMI (USBiological) supplemented with

10% dialyzed FBS. The growth medium supplemented with amino acids is composed by

amino acid-free RPMI (USBiological) supplemented with 10% dialyzed FBS, 1× water-

solubilized mix of essential (Thermo Fisher Scientific) and non-essential (Thermo Fisher

Scientific) amino acids.

In the amino acid starvation dose test I supplemented RPMI depleted with amino acids

with varying doses of RPMI resupplied with amino acids (from 1:5 to 1:10000) to treat

cells at various levels of amino acid deprivation.

B.4 Materials

Chemicals used in the studies detailed in Section 3.2 were obtained from the following

sources: Torin 1 (Selleck Chemicals); Bafilomycin A1 (Selleck Chemicals); Leptomycin B

(Sigma); Bortezomib (Selleck Chemicals); Cycloheximide (Sigma); Actinomycin D (Sigma).
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Drug concentrations were indicated in Section 3.2. The pretreatment was performed only

where indicated in Section 3.2.
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