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Abstract 
The transition toward electric mobility is influencing the industrial strategies of many 

productors in the automotive field that are now planning to increase the share of electric 

vehicles (EVs) in their offer. Production of a finished battery pack can account for the 40% of 

the added value of a battery EV, therefore, large scale sustainable manufacturing of battery 

packs is emerging as a topic of strategic importance, and players in the automotive industry are 

focussing their efforts on research and development of technologies and methods to achieve 

Near Zero Defects (NZD) production.  

Structure of a battery packs for electric vehicles follows a pack-module-cell layout with 

up to several thousand of joints within a pack. For this reason, manufacturing connections 

between cells and modules is a task of critical importance in the entire production process, and 

repeatability is a strong requirement as, joints with different electrical resistance result in 

inhomogeneous current loads that can lead to detrimental effects on the performances and 

durability of the entire system. 

As it offers relevant technological advantages, such as high production rate, one side 

accessibility, narrow heat affected zone (HAZ), and possibility to reprocess defective seams, 

remote laser welding (RLW) enables good flexibility, automatic manufacturing processing and 

cost-effective mass production. Therefore, it is establishing itself as a key-enabler technology 

for sustainable manufacturing of connections within battery packs. Furthermore, connections 

between battery cells consist of joints between dissimilar metallic thin sheets, and RLW is 

potentially applicable to any cell type configuration and metals combination. 

Uncontrollable variations involved in the process pose significant challenge, as they can 

affect repeatability with detrimental effects on the quality of the weld joint and of the battery 

system. Variations from the manufacturing and clamping tolerances can cause geometric 

variations of the parts and, ultimately, result in lack of connection. Incorrect thermal 

management during welding can lead to damage to battery cells due to overpenetration with the 

unwanted risks of piercing and leaks. Additionally, welding of dissimilar metals with laser 

technology involves significant mixing, resulting in additional challenge in terms of control of 

cracking mechanisms and brittle Inter-Metallic Compounds (IMC). All these challenges 

urgently call for innovative solutions and models to control RLW of dissimilar metallic battery 

tab connectors. 
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Deployment of control systems can have significant impact toward automatization of 

the process and achievement of NZD production target. However, its development and 

implementation consist of intermediate objectives. They are: (i) understanding of complex 

phenomena involved in the process, (ii) in-process monitoring of targeted nuisance factors, (iii) 

classification of the actual status of the RLW process, and (iv) development of an architecture 

for autonomous decision of corrective actions. 

This dissertation aimed to contribute to achievement of objectives (i), (ii), and (iii) and 

focused on variations of part-to-part gap and weld penetration depth during RLW of copper-to-

steel thin sheets, by addressing the following research topics: 

1. Development of a multi-physics CFD model for the simulation of RWL of copper-to-

steel thin sheets with variable part-to-part gap and weld penetration depth, 

2. Characterization of a photodiode-based sensor to variations of part-to-part gap and weld 

penetration depth during RLW of dissimilar metallic battery tab connectors, 

3. Implementation of photodiodes and supervised Machine Learning algorithms for 

automatic isolation and diagnosis of weld defects during welding of copper-to-steel 

thin-sheets.  
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Chapter 1  

1 Thesis overview 

1.1 Context 

As part of their actions against air pollution and climate change, many countries have set 

the target to phase out fossil fuel and to shift to electric mobility by enacting laws that 

progressively ban or restrict the sale of vehicles with internal combustion engine from 2030 [1].  

Transition toward electric mobility is resulting in increasing share of electric vehicles 

sold. Nearly 10% of global car sales were electric in 2021, four times the market share in 2019 

[2] -as shown in Figure 1-, and this is influencing the industrial strategies of many productors 

in the automotive field that are now focussing their efforts to meet the increasing demand of 

electric vehicles (EVs). Five times more new EV models were available in 2021 than in 2015, 

increasing the attractiveness for consumers. Estimates report that the annual 2030 global EV 

sales are projected to be 21-31 million [3]. In this context, large scale sustainable manufacturing 

of battery packs is emerging as a target of strategic importance that can be achieved with Near 

Zero Defects (NZD) production. Estimates report that the battery pack alone is worth about the 

40% of the added value of a battery EV [4], and, therefore, players in the automotive industry 

are focussing their efforts in research and development of technologies and methods for 

sustainable manufacturing of this key component. 

 
Figure 1- Global registration of electric vehicles by region [2]. 
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Battery packs for electric vehicles have a modular structure [5,6] and lithium-ion is the 

preferred technology for rechargeable cell units in typical applications for EVs [7]. The 

structure follows a cell-module-pack layout where the battery pack consists of modules, and 

cells are connected in series or parallel within a module. The design of the layout depends on 

the characteristics of the battery cell type that is employed, and on the requirement of the overall 

battery pack in terms of capacity and power [6]. Up to several thousands of joints are realized 

within a pack, and defective single connection between cells can influence the functionality and 

efficiency of the whole battery system. Indeed, joints with different electrical resistance result 

in inhomogeneous current loads that can lead to detrimental effects on the performances and 

durability of the entire system [5]. Therefore, manufacturing connections between cells and 

modules has critical importance in the entire production process and repeatability of the process 

is a strong requirement.  

Connections between battery cells are realised by joining tab connectors which consist 

of dissimilar metallic thin sheets and repeatability of the process, in terms of electrical 

resistance and mechanical strength, is a strong requirement. 

Remote Laser Welding (RLW) is emerging as a key-enabler technology to manufacture 

the case of battery pack and connections within it [8,9], as it offers technological advantages, 

such as high production rate, one side accessibility, narrow heat affected zone (HAZ), and 

possibility to reprocess defective weld seams. For these reasons, RLW enables highly flexible 

and efficient production, and shows significant superiority in realizing automatic manufacturing 

processing [10]. Estimates report that between 60-80% of the overall production cost of a 

finished battery pack can be addressed by laser material processing [11], and comparative 

studies showed that the joints realized with RLW have lower electrical contact resistance and 

higher joint strength than resistance spot welding and ultrasonic welding; additionally, RLW is 

applicable to any cell type (either cylindrical, prismatic or pouch) with tab connectors consisting 

of dissimilar metallic thin sheets (i.e., steel, aluminium, copper) [4]. 

1.2 Challenges 

RLW involves several complex physic phenomena, such as laser-metal interaction, phase 

change with intense evaporation and keyhole formation. Final quality of the weld joint can be 

affected by several factors, such as thermal conditions during laser–material interaction, 

variations in material properties due to impurities on the workpiece surface, and changes in the 

properties of the laser beam, all of which may result in a product that does not meet the 
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requirements [12]. For this reason, stability, repeatability and automatization of the process can 

be affected by occurrence of disturbance factors that introduce variations [10].  

Automatization and repeatability of RLW of dissimilar metallic thin sheets can be 

affected by several challenges. They include: 

(1) Incontrollable variations in the geometry of the thin sheets due to the low bending 

stiffness, and cumulated manufacturing and clamping tolerances, can result in excessive 

part-to-part gap which prevents sound welding and affect repeatability of the process. 

(2) Temperature management during the joining process to avoid damage to battery cells 

and to minimize the risk of fire and explosion due to over-heating or over-penetration 

welds.  

(3) Control of cracking mechanisms and brittle Inter-Metallic Compounds (IMC). Welding 

of dissimilar metals with laser technology involves significant mixing of two materials 

with different thermal and mechanical properties which can lead to segregation and 

precipitates, poor compatibility and miscibility, and poor joint strength. 

In particular, variations due to Challenge (1) lead to joints with lack of connections that 

are also indicated as false friends in the industrial environment, as they are difficult to detect 

by visual inspections. Figure 2 shows an example of dissimilar metallic thin sheets with sound 

weld and lack of connection. Realisation of uneven or defective connections within the battery 

pack, that lead to anomalous current loads on the battery cells, is not only critical for the 

performances of the battery system but also affects the environmental impact of the production. 

Achievement of NZD production would have significant beneficial impact on:  

i. scrap rate, as early detection of defects and deviations can shorten processing me and 

enable online compensation of process deviations for “first time right” [12]. At the 

present, principal causes that mostly contribute to scrape rate in manufacturing of 

connections within the battery pack, are lack of connection in the joints (false friends), 

and cell piercing, due to over-penetrated joints- scrap rate is currently at 15%; and,  

ii. likelihood of performance degradation after sale - reports indicate that up to 20% 

warranty claims in the first 6 months after sale were due to formation of micro-cracks 

in joints which were not detected until delayed leakages occur.  

Implementation of in-process quality control system can significantly contribute toward 

NZD production by enabling automatization with adaptive adjustment of process parameters, 

and real-time diagnosis and isolation of defective welds.  
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Figure 2 - Top view and cross sections of 300- µm copper-to-steel welds with lack of connection (a), 

sound weld (b) and over-penetration (c). 

1.3 Motivation 

Closed loop in-process (CLIP) control systems enable automatization of the process and 

real-time adaptive adjustment of process parameters. As schematised in Figure 3, generic 

framework of a CLIP control system hinges two main streams: in-process monitoring of 

targeted variations with sensors, which is indicated as feedback process, and autonomous 

adjustment of process parameters (PPs - laser power, focal position) to achieve given 

requirements, which is indicated as forward process [13]. Autonomous adjustment of PPs can 

follow a data-driven, a physics-driven, or an integrated approach.  Data-driven systems adjust 

PPs purely based on the data used to train the system, whereas physics-driven systems calculate 

the process status based on directly measured process features that are inputted in physics-based 

model.  

Though necessary for in-process monitoring, performances of data-driven approaches 

are highly dependent on data used during training and can lack of physical link in defect 

identification during root causes analysis. Therefore, integration of physics-driven CAE models 

with data-gathering would enabled physical interpretability of data, whereas in data-driven 

techniques decision process based on numeric value of model parameters without physical 

meaning, which are therefore so-called “black-box” [10,14]. Development of a physical model 

is the first step toward integration of data collected with sensors and reference values that are 

inferred for simulated scenarios with the digital model. This is a fundamental step toward 
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development of digital twins of the process. Indeed, matching data that are gathered with 

sensors during the real process with data simulated with digital model, a key-concept of digital 

twins. For all these reasons, this research topic is becoming the latest trend and focus of 

intelligent welding field.  

The target of integrating physics-driven and data-driven approach for the development 

of a control system, requires achievement of intermediate objectives, which are:  

I. Physics modelling and understanding of complex phenomena involved in the process,  

II. Capability to in-process monitor target nuisance variations with sensors,  

III. Diagnosis and isolation of weld defects via classification of the actual status of the RLW 

process with data from sensors,  

IV. Development of a model for autonomous adjustment of PPs. 

 

Figure 3- Generic flux-diagram of CLIP quality control system. 

1.4 Ph.D. goals, research questions and methodology 

This Ph.D. aimed to contribute toward development of a CLIP quality control system 

and focusses on objectives I, II, and III. Therefore, the following research questions were 

addressed: 

a) How to model RLW of battery tab connectors, so that complex phaenomena involved 

in the process can be simulated, and then analysed and understood via combined 

numerical and experimental approach? 

b) Is it possible to detect targeted disturbance factors that cannot be controlled by 

processing data gathered with optical sensors during RLW of battery tab connectors? 
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c) How to develop a model that leverages optical sensors and ML algorithms for real time 

diagnosis and isolation of defective welds? 

Combination of experimental and numerical approaches was used to address these 

research questions. The research focussed on variations of the part-to-part gap and weld 

penetration depth during the welding process, as they are the object of great interest in the 

industrial environment due to their strategical implications, as explained in the previous section. 

RLW of battery tab connectors was experimentally studied by welding copper-to-steel thin 

sheets, with thickness ranging between 200-300 µm. 

Objective I was the investigation of the process via physics modelling for the 

understanding of complex phaenomena involved, and it was achieved by addressing question 

(a). A multi-physics CFD model of the process was developed to simulate RLW of 300 µm-

thick copper-to-steel using a commercial software FLOW-3D and its module FLOW-WELD. 

Multi-physics CFD analysis enabled access to subsurface features that are difficult to measure 

with in-situ monitoring. This allowed analysis and understanding of complex phaenomena 

involved during the process, and ultimately discussion on root actions for weld optimization 

via laser beam shaping implementation. 

Objective II was addressed with characterization of a photodiode-based sensor to 

variations of weld penetration depth and part-to-part gap. Photodiodes have relatively simple 

structure and low-cost implementations, and their potential to monitor process variations during 

laser welding of thick part for structural applications was largely investigated. However, 

research about applications to monitor part-to-part gap in dissimilar thin sheets welding was 

scattered. Additionally, as they passively record optical emissions during the process, 

operativity and effectiveness of photodiodes-sensors do not need them to be recalibrated when 

operative conditions change, whereas some other sensing techniques do, such as Optical 

Coherent Tomography OCT [15], that directly observe features of the process. Results of this 

research activity provide an answer to research question (b). 

Once characterisation of photodiodes allowed assessment of their capability to detect 

variations of weld penetration depth and part-to-part gap, objective III, which consisted of 

diagnosis and isolation of defective welds, was addressed by using supervised Machine 

Learning ML for automatic classification of photodiode-signals that were record during the 

weld. Three classes were introduced to label three welding conditions, sound weld, lack of 

connection and over-penetration, that are represented in Figure 2. Best in class ML algorithms 
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and a neural network (NN) that was trained with coefficients calculated with discrete wavelet 

transform (DWT) of the signals were considered. Training of these models and classification 

of welds provided scientific basis to answer research question (c). 

1.5 Contributions of this Ph.D. 

Research addressed in this Ph.D. aimed to provide methods and solutions to cope with 

challenges that welding dissimilar metallic battery tab connectors poses. 

Besides being relevant in the implementation of a digital twin of the welding process, 

the development of a multi-physic model can effectively contribute to right-at-the-first-time 

implementation of the process in the production environment and its improvement. Indeed, as 

in-situ in-process observation of subsurface features, such as surface-tension related 

mechanisms, velocity and temperature fields, still is not viable due to technological challenges, 

multi-physic modelling enables combined experimental-numerical approaches that can boost 

fundamental research about complex phaenomena occurring below the surface of the process 

region. For this reason, modelling enables analysis of root causes and identification of 

corrective actions for improvement of the process without the need of extensive experimental 

campaigns that are expensive and time-consuming. 

In-process monitoring, diagnosis and isolation of weld defects are relevant for 

improvement of efficiency and quality of the production. Estimates report that average rate of 

defective cells and modules produced in Gigafactory is approximately 6% due to faults in the 

joining processes [16]. One of the challenges is the detection of false friends (welds with no 

connection) by visual inspection of the top view of the seam. Additionally, it has been estimated 

that up to 20% warranty claims in the first 6 months after sale were undetected defective welds. 

In this context, in-time diagnosis and isolation of faulty welds has beneficial effects on the 

efficiency and the quality of the overall production, as it prevents that semifinished workpieces 

with undetected flaws undergo to further processing with waste of time and resources, or that 

battery packs with defective connections are placed on the market with performance 

degradation after sale.  

For all these reasons, modelling, monitoring and controlling the process of laser welding 

battery tab connectors has a strategical impact on industrial applications and represents a hot 

spot in the process chain and should be considered. 
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1.6 Thesis structure 

This dissertation follows the following structure:  

• Chapter 2 provides background, concepts, and common terms involved in 

manufacturing of battery packs for electric vehicles with RLW, and in in-process 

monitoring and control.  

• Chapter 3 reports development of a multi-physics CFD model with the details of 

assumptions and modelling approaches, results of simulations with RWL of copper-to-

steel thin sheets with variable part-to-part gap and weld penetration depth, and 

discussion on opportunities for process improvement. 

• Chapter 4 addresses characterization of a photodiode-based sensor for the detection of 

variations in part-to-part gap and weld penetration depth during RLW of dissimilar 

metallic thin sheets. 

• Chapter 5 addresses diagnosis and isolation of defective welds via implementation of 

photodiodes and supervised ML for automatic isolation and diagnosis of weld defects 

during welding of copper-to-steel thin sheets. 

• Chapter 6 lays down final remarks and discusses next steps for further developments. 

Chapters 3 of this dissertation extensively deals with research which is reported in a 

manuscript that is currently under review process, and in the following conference article:  

o Chianese, G, Jabar, S, Franciosa, P, Ceglarek, D, Patalano, S. “A multi-physics CFD 

study on the part-to-part gap during remote laser welding of copper-to-steel battery tab 

connectors with beam wobbling.”  (DOI: 10.1016/j.procir.2022.08.075). 

Chapters 4 and 5 of this dissertation extensively treats contents of the following journal 

articles: 

o Chianese, G., Franciosa, P., Nolte, J., Ceglarek, D., and Patalano, S.. "Characterization 

of Photodiodes for Detection of Variations in Part-to-Part Gap and Weld Penetration 

Depth During Remote Laser Welding of Copper-to-Steel Battery Tab Connectors." 

ASME. J. Manuf. Sci. Eng. July 2022; 144(7): 071004. (DOI: 10.1115/1.4052725), and 

o Giovanni Chianese, Pasquale Franciosa, Tianzhu Sun, Dariusz Ceglarek, and Stanislao 

Patalano, "Using photodiodes and supervised machine learning for automatic 

classification of weld defects in laser welding of thin foils copper-to-steel battery tabs", 

Journal of Laser Applications 34, 042040 (2022) (DOI: 10.2351/7.0000800).  
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Chapter 2  

2 Background 

2.1 Structure of a battery pack for EVs and requirements 

of the connections 

Battery packs for EVs consists of up to thousands of individual rechargeable battery 

cells that are structurally held and electrically connected [17]. Lithium-ions is the preferred 

technology in electromobility as it allows high energy-to-weight ratios, high open-circuit 

voltage, low self-discharge rate, low memory effect, and a slow loss of charge when not in use 

[7]. Battery cells are made up of a cathode, an anode, a separator that is soaked in an electrolyte, 

and a robust housing [7]. They are manufactured in different types and are classified based on 

their geometry in three different categories: small solid cylindrical cells, larger solid prismatic 

cells and larger soft pouch cells, which are represented in Figure 4 [17]. Although the 

dimensions of the three cell types can vary between different manufacturers, standards 

ISO/PAS 16,898:2012 and DIN 91,252:2016–11 define the dimensions [6]. Typically, size of 

battery cells is smaller for the cylindrical than for prismatic and pouch types. This results in 

lower individual capacity of the cylindrical battery cells compared to the prismatic and the 

pouch ones. 

 
Figure 4- Cylindric, pouch and prismatic battery cells [17]. 

Structure of a battery pack follows cells-module-pack layout. Cells are clustered within 

a module with series or parallel connections, and modules are connected in series, as shown in 
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Figure 5. The design of the layout depends on the characteristics of the battery cell type that is 

employed, and on the requirement of the overall battery pack in terms of capacity and power. 

Indeed, two approaches can be followed: (i) connection in series of a lower number of large 

battery cells with a high individual cell capacity, or alternatively (ii), larger number of small 

battery cells with low individual cell capacity can be connected in parallel and subsequently 

connected to modules with high capacity [6]. 

Requirements of battery pack manufacturing are highly interdisciplinary [5,6,17], and 

can be summarized as follow: 

• Electro-thermal requirements – Low electrical resistance is required, as joints between 

cells high resistance results in lower efficiency of the entire system; additionally, higher 

electrical resistance result in higher heat generated that contribute to thermos-

mechanical stresses of the joint. 

• Thermo-mechanical requirements – To manufacture the joints with low thermal input 

because high temperatures and heat transmission can have detrimental effect on adjacent 

components, and result in residual stresses mechanical stresses in the joint. 

• Mechanical requirements – As battery pack and modules are subjected to cyclic loads 

and random vibrations, adequate fatigue resistance is required to stand operational 

loads. 

 
Figure 5 – Structure (a) and modular layout of a battery pack with individual cells, modules and pack 

level (b) [6]. 

2.2 Remote Laser Welding for automotive applications 

Laser beam welding is a joining technology widely employed in several industrial fields, 

such as automotive, aerospace, ship-buildings, and electronics, due to its technological 
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advantages and good flexibility [10,18]. Indeed, reduced, controlled, and very localised heat 

input leads to narrow heat affected zone (HAZ), high precision and low distortion of parts. 

Contactless nature of laser light and one-side accessibility ensure good flexibility of the weld 

process. Reduced processing time, with the possibility of making a single weld in fractions of 

a second, and significant superiority in realizing automatic manufacturing processing enable 

high throughput necessary for high production volume. 

Connection between workpieces can be established during laser welding in two different 

operational modes: (i) conduction mode, and (ii) keyhole mode. During laser welding in 

conduction mode, the melt pool is created as the laser heats the metal up to its fusion 

temperature with no significant evaporation, during keyhole welding, higher power density 

determines intense and localised evaporation that results in the formation of a deep and narrow 

capillary in the melt pool, which is called keyhole. Multiple reflections of the laser in the 

keyhole increase efficiency of the process as almost all the laser power is absorbed. 

Another classification of laser welding is based on the distance between the optics and 

the workpiece. Laser welding with conventional fixed optics involves distances between optics 

and workpiece to about 250 mm [19], as they enable short focal length, and, therefore, it is 

known as tactile laser welding. RLW involves medium to long focal length instead, which are 

enabled by the use of optic fibre, and allow longer distances between the optics and the 

workpiece (0.8 – 1.1 m), and the use of 6 axis robot for delivering the lases power [20]. These 

features of RLW enable minimization of the repositioning time between different welds, with 

beneficial effects on the efficiency due to significantly shorter overall cycle time and increase 

of the throughput [13]. 

2.2.1 Applications in the automotive field 

First implementation of laser welding in the automotive field was carried-out by Optical 

Engineering in 1997 in California [20].  

Nowadays, RLW is emerging as a key-enabler technology to enable Industry 4.0, due 

to its technological advantages and opportunity for process automation. Indeed, use of medium 

to long focal length enables customized weld patterns with different shapes, orientation, and 

distribution, and this results in furtherly improved flexibility of the process [4].  

In the context of automotive applications, and in particular of manufacturing of EVs, 

the need for innovative cost efficient solutions that can enable smart manufacturing and mass 

production are driving technological advances achieved by laser manufacturers and system 
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integrating companies [4,9,21]. RLW, with its technological advantages, meets this need for 

cost efficient mass production of electric vehicles and enables manufacturing of battery packs 

enclosure [8], of connections within battery pack [22,23], welding of hairpins in electric power 

train [24] and contacting in power control unit assemblies, beside manufacturing of connections 

between structural part of the body in white [4,25,26]. Figure 6 provide a graphical overview 

of production processes that can be addressed by RLW. 

 
Figure 6- Tasks that can be addressed by RLW in electric vehicles manufacturing [21]. 

2.3 Sensing techniques and real-time monitoring of the 

RLW process  

As the weld quality can be affected by factors coming from the manufacturing 

environment or from variations in the workpiece (in the geometry or in the local material 

properties), real-time solutions for quality monitoring can provide information to detect faults 

and to control the process [27]. During monitoring of RLW, information can be collected from 

observation of the keyhole, molten pool, plasma and spatter, by gathering acoustic, optical and 

thermal signals with different sensing technologies. Charged-coupled devices (CCD), 

complementary metal oxide semiconductors (CMOS), and high-speed cameras enable vision 

of the monitored region by gathering frames and images, which provide spatially resolved 

information. 

Three different types of approaches for real-time monitoring can be distinguished based 

on the position of the region of interest with respect to process zone, as shown in Figure 7 [27]. 
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Pre-process scanning involves seam tracking and valuation of the part-to-part gap mainly; in-

process monitoring consists of direct or indirect measurement of features in the process zone, 

such as optical and acoustic emissions, surface temperature fields, geometry of the molten pool 

at the surface, spatter and plasma plume; post-process diagnosis concerns direct detection of 

weld defects such as pores, cracks, humping and underfill, which are indicators of poor weld 

quality [10,27,28].  

 
Figure 7 - Schematic representation of pre-process, in-process and post-process monitoring [27]. 

Traditional monitoring can be classified with respect to the sensing techniques in 

acoustic, optical and thermal sensors. Acoustical sensors can record pressure fluctuations that 

are caused by ejection events in the keyhole or phase changes in the material [27,28]. Optical 

sensors can be classified in spatially resolved (vision system [24], e.g., CCD [29] and CMOS 

cameras), and spatially integrated (photodiodes [30]), or spectrally resolved (spectrometers 

[31]) techniques [28]. Pyrometers and IR cameras respectively provide spatially integrated and 

resolved measurements of temperature in transient and steady state [32].  

Novel monitoring methods proved to directly measure features of great interest which 

are strong indicators of the weld quality. They include, X-ray videography which can provide 

spatially and time resolved observation of subsurface features such as the keyhole geometry or 
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pore formation [33], OCT that directly measures the keyhole depth in real-time [15] and, 

therefore, can enable closed loop control of the process. 

As single sensors are not able to completely describe the complexity of phaenomena 

involved in laser welding, sensor fusion has been investigated for more comprehensive 

understanding and more detailed monitoring of the process. Indeed, fusion of different sensing 

techniques enables gathering of signals that carry different and non-correlated information [34].  

As data are gathered, real-time monitoring involves features extraction from data, which 

consists of signal processing and imaging processing of spatially integrated and spatially 

resolved data, respectively. Traditional optical imaging processing consists of geometrical 

features extraction via image filtering, thresholding and edge detection [35]. Signal processing 

can involve analysis in the time domain with calculation of statistical descriptors [36], analysis 

of the signal in the frequency domain with Fast Fourier Transform, or analysis in the time-

frequency domain with Discrete Wavelet Transform [37] and Short-Time Fourier Transform 

[10].  

Once features are extracted, they can be used to establish a relation between the gathered 

data and quality of the weld seam. Artificial Intelligence (AI) and supervised ML algorithms 

can be trained with signal features for the detection and classification of weld defects, process 

parameters optimization and welding process control [38]. Traditional ML algorithms include 

support sector machine (SVM), Naïve-Bayes, k-nearest neighbour, decision tree, discriminant 

analysis, and Artificial Neural Networks (ANN). ANN is the basis for more sophisticated 

algorithms, such as Convolutional Neural Networks (CNN) that are classified as Deep Learning 

algorithms and enable direct processing of signals and data, without the need to extract the 

features [10]. These algorithms automatically learn relevant features during training and, 

therefore, they are particularly suitable in image processing and features recognition [39]. 
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Chapter 3  

3 Multi-physics CFD modelling of 

RLW of dissimilar metallic sheets 

3.1 Introduction 

This chapter addressed Objective I, which is the development of a multi-physics CFD 

model of the process as described in §1.4. 

RLW of battery tab connectors is a critical task in the production of battery pack, and 

repeatability of the process is a strong requirement in manufacturing of connections between 

cells and modules. As the occurrence of variations in part-to-part gap and weld penetration 

depth has a great impact on electric and mechanical properties of the joint and on metal mixing, 

it is critical to understand and model physical phenomena during melting, formation of the 

keyhole and solidification, that are involved in RLW of dissimilar metallic thin sheets 

(thickness below 500 μm). Indeed, ex-situ analyses and tests cannot provide comprehensive 

understanding of the governing phaenomena involved in the process and underlying features, 

such as subsurface velocity, temperature and mixing fields [40]. Multi-physics CFD models 

enable simulations of the process that mimic mechanisms which are difficult to observe with 

in-situ investigations due to technical challenges that still exist, instead. Therefore, simulations, 

that are now enabled by high computational capability of workstations, are a useful tool that 

support critical comprehension of phenomena involved, and many researchers are contributing 

to this field.  

This chapter investigated the underlying physics of the welding process to understand 

the influence of the laser beam wobbling, part-to-part gap and weld penetration depth on 

temperature fields and metal mixing. A CFD multi-physics model was implemented and then 

calibrated with experimental data. Scenarios with variable weld penetration depth and part-to-

part gap were considered during lap welding of 300 μm copper to 300 μm nickel-plated steel, 

with circular beam wobbling. After the validation, the model was employed for numerical 

investigation of corrective actions that improve the process via laser beam shaping. 
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3.2 State of the art 

Due to continuous improvement of computational capability, multi-physics numerical 

simulations emerged as viable approach to investigate complex phaenomena, and they have 

gained particular interest in applications where in-situ observation are still technically 

challenging to perform. In the context of laser welding, extensive efforts have been made to 

develop multi-physics models for combined experimental-numeric approach to access 

subsurface features of the process, such as temperature and velocity fields, and to understand 

complex phaenomena, such as mixing mechanisms and keyhole dynamics.  

Artinov et al. developed a 3D transient multi-physics model to study the formation and 

evolution of the bulging effect during laser welding of two unalloyed steels with thickness of 8 

mm and 12 mm [41]. Meng et al. implemented three different ray-tracing algorithms based on 

different free surface reconstruction strategies in a 3D CFD model to evaluate their impact on 

spatial laser energy distribution and the corresponding molten pool dynamics during laser 

welding of 10 mm-thick austenitic steels [42]. Daligault et al. developed combined ray-tracing 

algorithm, VOF method and an Eulerian interface tracking method for the liquid-gas interface 

in an in an axisymmetric FEM model in COMSOL MULTIPHYSICS ® to reproduce the well-

known beam trapping in keyhole laser welding of 1 mm – thick copper [43]. Deng et al. 

employed commercial software FLOW-3D ® and FLOW-WELD to simulate RLW of zinc-

coated steels with thickness of 0.65 mm and 1.2 mm, respectively on top and at the bottom. 

They analysed the dynamic behaviour of the keyhole and instantaneous zinc vapour pressure to 

study the spatter occurrence, and compared the results with  high speed filming [44]. Also Lin 

et al. implemented a model in the FLOW-3D suite to simulate RLW of AA 5182 aluminium 

sheets to study the keyhole dynamics and formation of porosity with variable inclination of the 

laser beam, laser power and weld speed [45].  

Ozkat et al. developed a decoupled multi-physics model for prediction of the weld 

penetration and interface width during laser lap welding of zinc coated steel sheets considering 

part-to-part gap [46].Drobniak et al. [47] and Buttazzoni et al. [48],  implemented 

Computational Fluid Dynamics (CFD) multi-physics simulations of 1 mm-thick stainless-steel 

plates with adaptive mesh refinement to predict the shape of the weld seam in presence of part-

to-part gap. They validated the model and employed it to optimize the weld quality via iterative 

set of simulations by predicting the effect of secondary laser beams with different shapes to 

optimize the weld quality.  
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With respect to dissimilar thin-sheets welding, Huang et al. that developed a CFD model 

in FLOW WELD® to study the metal mixing rate during RLW of 200 μm aluminium to 500 

μm copper sheets and all the phaenomena involved [40]; only welding in ideal condition was 

considered without accounting any disturbance factor. Chianese et al. [49] used the same 

software to investigate the effect of part-to-part gap in RLW of copper-to-steel thin sheets with 

beam wobbling implemented. They showed that the presence of part-to-part gap and mixing 

mechanism between parent metals are linked in part because, beside limiting weld penetration, 

occurrence of part to part-to-gap influences the temperature and velocity fields in the molten 

pool resulting in different mixing of metals. Then, they outlined opportunities for improvement 

of the process by implementation of different welding strategies to be investigated in the future 

with multi-physics modelling.  

3.3 Materials and methods 

3.3.1 Materials and experimental procedure 

3.3.1.1 Materials and equipment 

Materials that were employed in the experimental part of this work are Copper SE-Cu58 2.0070 

and Nickel-plated Steel (commercial name: Hilumin). Weld trials consisted of 30 mm long 

welds in lap joints configuration with 300 µm-thick copper on top and 300 µm-thick nickel-

plated steel at the bottom. Dimensions of the specimens were: 65mm x 30mm.  

The equipment consisted of nLight Compact Fiber Laser 3 kW (n-Light Inc., USA), and 

the Scout-200 system (Laser and Control K-lab, South Korea) that was used to deliver the laser 

power to the specimens via 2D F-theta scanner with telecentric lenses. Specifications of the 

equipments are reported in Table 1 and Table 2. Welding experiments were in continuous mode 

with no power modulation.  

Table 1 - Compact Fiber Laser 3kW, nLight. 

Max. output power 3 kW 

Wavelength range 1070 ± 10 nm 

Beam quality 4 mm⸳rad 

Fibre diameter 50 µm 
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Table 2 - Scout-200, Laser & Control K-lab. 

Working field 70 x 70 mm2 

Collimating length 160 mm 

Focal length 254 mm 

Max. allowed laser power 2 kW 

Spot diameter on focus 80 µm 

Rayleigh length 0.8 mm 

 

3.3.1.2 Experimental procedure 

Laser beam wobbling was implemented to obtain a wider interface between parent 

materials and to cope with high reflectivity of copper. The laser trajectory was the result of a 

linear motion with speed of 120 mm/s and circular oscillations (wobbling frequency of 500 Hz 

and 0.2 mm radius). 

Welding experiments were performed using three different power levels, i.e. 615, 690 

and 765 W. All the experiments were performed without shielding gas nor filler wire. Each 

weld seam was cut and prepared to obtain three cross sections for each experiment. They were 

mounted in resins disks and prepared by grinding and polishing for the analysis at the optical 

microscope Nikon Eclipse LV150N. In each cross section, width of the weld seam at the top 

Wtop, the width at the interface between parent metals Wint, and the weld penetration depth in 

the thin sheet Dpen, were measured to calibrate and validate the numerical model with 

experimental results. These geometrical features are schematically represented in Figure 8. To 

evaluate and characterise metal mixing with parent metals, elemental mappings of cross-

sections were carried out with an FEI Versa 3D dual beam scanning electron microscope using 

Energy Dispersive X-ray Spectroscopy (EDS mapping). 

 
Figure 8-Schematical representation of top width of the weld seam Wtop, the width at the interface 

between parent metals Wint, and weld penetration depth Dpen in the lower thin-sheet. 
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3.3.2 Model development  

A multi-physics model was developed using the commercial CFD code FLOW-3D ® 

and its module FLOW-WELD. To reduce the computational cost of the simulations, the 

computational domain was divided in two zones, a process zone which was interested by phase 

change, and a thermal diffusion zone that models heat transmission in the thin sheets. A finer 

mesh size was used for cells in the process zone, and a mesh size 5 times greater than in the 

process zone was used for cells in the thermal diffusion zone.  

Dimensions of the process zone were 2 mm x 0.8 mm x 0.725 mm. Length of the process 

zone was chosen to enable simulation of 1.9 mm weld length; the width value was selected to 

ensure that the full wobbling pattern and phase change events were restricted in it. Extension 

of the thermal diffusion zone was calculated according to the following formula:  

𝑙𝑑𝑖𝑓𝑓 = 2√2
𝑘(𝑇=𝑇𝑎𝑚𝑏)

𝑐𝑃(𝑇=𝑇𝑎𝑚𝑏)∙𝜌(𝑇=𝑇𝑎𝑚𝑏)
∙ 𝑡𝑒𝑛𝑑       (1) 

Four different values of the mesh size in the process zone were considered during 

sensitivity analysis, namely 40 µm, 20 µm, 15 µm, and 10 µm, that resulted in mesh 

independent solution for mesh size equal to or below 15 µm, which therefore is the selected 

size. This led to total number of cells approximatively equal to 479 thousand. Thin sheets were 

oriented in the computational domain so that in-plane dimensions were parallel to X and Y axis, 

as shown in Figure 9; welding direction was parallel to X axis.  

 
Figure 9 - Schematic representation of the computational domain and modelling approach with nested 

meshes. 
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3.3.2.1 Assumptions and boundary conditions 

The following model assumptions were made: (i) the liquid flow was considered 

Newtonian and incompressible; (ii) volumetric thermal expansion of the liquid metal due to 

temperature dependent mass density was accounted; (iii) the air and vaporized metal were 

modelled as “void” type, with room temperature and pressure assigned to model the heat 

exchange with the metal as a natural convective flux (irradiance is neglected); (iv) the laser 

beam waste was assumed cylindrical as the stacked thickness of the processed foils including 

eventual gap between the parts, was within one Rayleigh length. 

The following boundary condition were assigned: wall in the X and Y direction (with 

constant ambient temperature); assigned pressure and temperature at the boundaries of the 

computational domain in the Z directions, with natural convective heat flux between the 

metallic sheets and the air. 

3.3.2.2 Governing equations 

The following physics were accounted to model the welding process: continuity, fluid 

flow via Navier-Stokes equations, energy conservation, metal melting and evaporation, keyhole 

formation and evolution, solidification, species conservation and tracking, surface tension with 

Marangoni and Laplace forces, and multiple reflections.  

Incremental fusion in the cells occurred as latent heat was absorbed by the metal once 

the fusion temperature was reached. Information about whether fusion occurred or not in a cell 

was provided by the output variable melt region, whose value ranges between 0 and 1 to indicate 

the cases in which melting did not involve or involved all the metal of the cell, respectively.  

Equation 2 governs evaporation phenomena which were modelled as mass transfer 

between the liquid phase and the void type and as proportional to the difference between the 

saturation pressure Psat and the partial pressure Pvap. In this equation, α is the accommodation 

coefficient, R is the gas constant, and T is the temperature.  The saturation pressure was 

calculated as a function of the temperature according to the Clapeyron equation (equation 3), 

in which the couple of values (Pv , Tv) represents a point on the saturation curve; γ, cv, and ΔHv, 

are the specific heats ratio, the specific heat at constant volume, the latent heat of vaporization.  

During remote laser welding, intense vaporization results in the recoil pressure that 

drives the formation of a capillary, the keyhole, and keeps it open by acting on its surface. The 

recoil pressure was modelled as proportional to the saturation pressure according to equation 4, 

where a (and therefore Ar) is a constant to be calibrated. 
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𝑄𝑚𝑎𝑠𝑠 =
𝛼

√2𝜋𝑅𝑇
⋅ (𝑃𝑠𝑎𝑡 − 𝑃𝑣𝑎𝑝)        (2) 

 𝑃𝑠𝑎𝑡 = 𝑃𝑣 ⋅ exp (
𝛥𝐻𝑣

(𝛾−1)⋅𝑐𝑣𝑇𝑣
⋅ (1 −

𝑇𝑣

𝑇
))       (3) 

𝑃𝑟𝑒𝑐𝑜𝑖𝑙 = 𝑎 ⋅ 𝑃𝑠𝑎𝑡 = 𝑎 ⋅ 𝑃𝑣 ⋅ exp (
𝛥𝐻𝑣

(𝛾−1)⋅𝑐𝑣𝑇𝑣
⋅ (1 −

𝑇𝑣

𝑇
)) = 𝐴𝑟 ⋅ exp (𝐵 ⋅ (1 −

𝑇𝑣

𝑇
))  (4) 

The surface of the keyhole was tracked by the VOF method, which enabled calculation 

of the interface between the liquid metal and the void type, according to equation 5. The 

interface between of the cell was tracked using a scalar value f that indicates the fraction of 

fluid. A value of 𝑓 = 1 indicates that the cell has only void, conversely, 𝑓 = 0 corresponds to 

the case of a cell full of liquid, whereas the case of  0 < 𝑓 < 1 indicates that the cell has both 

the liquid and the void type, and therefore the interface between the two is falls in it. 

Similarly, metals involved in the welding process with fluid flow and mixing were 

tracked in each cell by means of a scalar value f2, which indicates the fraction of second material 

within the cells. Values of the generic material property φ̅ in each cell was evaluated as 

weighted sum of the properties φ1 and φ2 of parent metals based on their mixing, according to 

the equation 6. 

𝜕𝑓

𝜕𝑡
+ 𝛻(𝑉⃗⃗𝑓) = 0          (5) 

φ̅ = (1 − 𝑓2) · φ1 + 𝑓2 · φ2         (6) 

Tracking of multiple reflections was implemented using a discrete grid cell system ray 

tracing technique. The laser beam was divided into a finite number of rays, which moved in the 

laser beam irradiation direction. When the ray encountered the surface of the material, it was 

reflected according to vector equation 7, in which 𝑅⃗⃗ is the direction of the reflected vector, 𝐼 

the direction of the incoming ray, and 𝑛̂ the normal direction of the material surface. 

𝑅⃗⃗ = 𝐼 − 2(𝐼 · 𝑛̂)𝑛̂          (7) 

Due to its high reflectivity especially at room temperature, the laser absorption of copper 

was evaluated as temperature dependent.  

Beside recoil pressure, that drives the formation of the capillary and contributes to the 

velocity field in the fluid, surface tension related phenomena, such as the Laplace pressure LP 

and the Marangoni force SM, also have great influence on the process. They were modelled 
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according to equations 8 and 9, in which, σ is the surface tension, RI and RII are the principal 

curvature radii, and operator ∇t indicates the gradient along the tangent direction at the interface. 

Equation 9 explicitly indicates the dependence of the Marangoni effect on the gradient of the 

surface tension, which in this work is entirely associated to temperature dependence of the 

surface tension. 

𝐿𝑃 = σ · (
1

RI
 +

1

RII
)           (8) 

𝑆𝑀 = ∇tσ           (9) 

3.3.2.3 Material properties 

Material properties were assumed temperature-dependent and were in part imported 

from the JMATPRO® material database, in part integrated with research in literature. They 

were then calibrated to fit the experimental cross sections of all simulated scenarios (part-to-

part gap equal to 0 and 100 μm, PL= (615W, 690 W, 765 W ). Although copper and steel are 

different metals, they were treated with the same evaporation model in the CFD code, therefore, 

calibrated value of A in equation (4) was unique.  

 
Figure 10 - Temperature-dependent material properties of copper (red solid line) and steel (blue dashed 

line). 
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Table 3 - Material properties of copper and steel. 

Property Copper Steel 

Solidus temperature (K) 1357 1770 

Liquidus temperature (K) 1358 1813 

Latent heat of fusion (kJ/kg) 206.3 290 

Vaporization temperature (K) 2835 3134 

Latent heat of vaporization (MJ/kg) 4.727 6.080 

Vapor specific heat (J/kg·K) 384.6 449 

 

3.3.3 Plan of the simulations 

Two sets of simulations were performed:  Set #1, to simulate weld experiments to 

perform combined experimental-numerical analysis of the process, and Set #2, to investigate 

corrective actions for improvement of the process.  

Set #1 consisted of four simulations. Three of them simulated welding with different 

weld penetration depth and one to investigate the effect of part-to-part gap on the welding 

process. They were indicated as S1, S2, S3 and S4 and reproduced welding experiments with 

values of laser power PL and part-to-part gap that are specified in Table 4, with welding speed 

of 120 mm/s and circular beam wobbling implemented (wobbling frequency f= 500 Hz, and 

radius r= 0.2 mm). To validate the model, their results were matched with values of Wtop, Wint 

and Dpen that were measured in the cross sections prepared after experiments. Thermal field, 

velocity field and mixing mechanisms predicted with simulations were then correlated with 

experimental observations and analysed for more comprehensive understanding of the process.  

Set #2 consisted of simulations that investigate opportunities of process improvement 

via laser beam shaping. Two welding strategies were investigated by employing secondary laser 

beam. First, the effects of ring-shaped secondary laser beam were investigated considering three 

configurations: (i) with only primary laser beam (circular spot), (ii) with combined ring-shaped 

secondary beam and inner primary beam, and (iii) with combined wider ring-shaped secondary 

beam and inner primary beam; simulations of welding with these configurations were indicated 

as LBS#1, LBS#2, and LBS#3, respectively. The reason of this choice is that LBS#1 is the 

baseline with single beam; LBS#2 and LBS#3 enabled evaluation of the effects of a secondary 
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ring-shaped beam and of its size via comparison with other simulations. Second, the effects of 

pre-heating laser beam by means of a wider circular spot were investigated with simulations 

indicated as LBS#4. The reason why this welding strategy was investigated stems in challenges 

that are posed by high reflectivity at room temperature of metals that are widely employed in 

these applications, such as copper and aluminium. Indeed, laser power absorption of these 

metals significantly increases when the temperature reaches the fusion point. Schematic 

representation of the considered welding configurations and corresponding power density 

distribution are reported in Figure 11.  

Simulations LBS1, LBS2, LBS3, and LBS4, dealed with welding without laser beam 

wobbling implemented, and the velocity was set equal to 350 mm/s, which is a value in line 

with experimental works available in literature [50]. Details of process parameters and beam 

arrangement in these simulations is reported in Table 5. For each weld configurations, values 

of the laser power PL for the primary and secondary laser beams were optimised via iterative 

process to ensure weld penetration depth equal or greater than 90 µm, which corresponds to 

30% of the thickness of the lower thin sheet. As selection of optimal values of PL was carried 

out with iterative process, a number of simulations was performed, whose details are reported 

in Table 5. 

 

Figure 11- Schematic representation of welding configurations and power density distributions in:  

LBS1 (a), LBS2  (b),  LBS3 (c), and LBS4 (d). 
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Table 4  - Values of laser power PL and part-to-part gap for Set #1. 

Simulation Part-to-part gap , µm Laser power, W 

S1 0 615 

S2 0 690 

S3 0 765 

S4 100 690 

Constant for all 3 cases 

Speed, mm/s 120  

Focal offset Laser on focus on the upper surface of Cu 

Wobbling radius, mm / frequency, Hz 0.2 / 500  

Laser beam shape Circular spot , 40 µm radius 
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Table 5 - Process parameters set in simulations of Set #2. 

Simulation 

Laser beam shape  

Primary beam Secondary beam 
Process parameters 

Radius Shape Radius Shape 

LBS1 40 µm Circular - - 

Laser power, W 

Iteration 

ID 
Primary Secondary 

1 

2 

3 

4 

5 

350 

700 

500 

600 

650 

 

- 

LBS2 40 µm Circular 

Inner: 

40 µm 

Outer: 

100 µm 

Ring 

Laser power, W 

Iteration 

ID 
Primary Secondary 

1 

2 

3 

4 

5 

6 

7 

8 

300 

450 

375 

300 

300 

250 

350 

350 

350 

450 

375 

600 

450 

500 

900 

700 

LBS3 40 µm Circular 

Inner: 

100 µm 

Outer: 

200 µm 

Ring 

Laser power, W 

Iteration 

ID 
Primary Secondary 

1 

2 

3 

4 

5 

6 

400 

500 

400 

350 

400 

350 

1200 

1500 

1500 

1700 

1350 

1500 

LBS4 40 µm Circular 140 µm Circular 

Iteration 

ID 
Tandem distance, mm 

1 

2 

3 

0.3 

0.45 

0.6 

Constant for all 4 cases 

Speed, mm/s 120 

Focal offset Laser focus on the upper surface of Cu 

Wobbling radius, mm / frequency, Hz 0.2 / 500 

Laser beam shape Circular spot , 40 µm radius 
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3.4 Results 

In this paragraph, experiments and numerical results of Set #1 and Set #2, were analysed 

and discussed. Profile of welds in the cross sections and geometry of simulated weld of Set #1 

were matched after calibration of the model, and quantitative metrics were used to support 

validation of the model in section 3.4.1.1. Then, in section 3.4.1.2, temperature fields, velocity 

fields and metal mixing were analysed to understand complex mechanisms involved in the 

process and their contribution on the metal mixing and quality of the weld seam. The effects of 

part-to-part gap on the temperature and velocity field were analysed and discussed in section 

3.4.1.3 to understand their contribution on phaenomena involved. Once the model was 

calibrated, in section 3.4.2, prediction of simulations of Set #2 were analysed to discuss 

opportunities for process improvement via beam shaping. 

3.4.1 Simulations of weld experiments  

3.4.1.1 Model calibration and validation 

Calibration of the model was performed via optimization of the coefficient Ar in 

equation 4, to simulate the welding process so that cross sections reproduce those observed at 

the optical microscope. In the evaporation model, the recoil pressure was assumed proportional 

to the saturation pressure by the constant Ar. The evaporation model is unique with just one 

entry for Ar, whereas welding involves two metals with different material properties. The value 

resulting from the optimisation process is Ar = 60780 Pa. 

Analysis at the optical microscope revealed that profiles of the cross sections can be 

distinguished in two types, which are indicated as V-shaped and M-shaped profiles in this work 

and are shown in Figure 12. This variability seemed to reflect the wobbling pattern of the laser 

spot (which is schematised in Figure 13). It was explained considering the position of the cross-

sections along the weld seam with respect to the path of the laser spot. As the laser moved 

forward, due to the circular oscillations, the laser spot first processed new material (from 

position A to position C in Figure 14) and then came back to it (from position C to position A’). 

Periodic succession of V and M-shaped profiles of the weld seam, that explained variability in 

the profiles observed with the optical microscope, was well reproduced in the simulations as 

shown in Figure 12. 

Circular oscillation of the laser beam led also to periodic trend of the velocity of the 

laser spot. Indeed, forward and oscillating components of the motion had periodically equal 

(position A in Figure 13) and opposite directions (position C) respectively, resulting in 
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minimum and maximum laser-material interaction time. Figure 12 (b, d, f) shows cross sections 

with M-shaped profiles, which are characterized by two weld roots, that were indicated as “right 

and left dent” in this work. In both experimental and simulated cross sections shown in Figure 

12 (b, d, f), weld penetration of the left dent was deeper of those in the right one as the laser-

material interaction times were maximum and minimum, respectively. Figure 12 (a, c, e) shows 

cross sections with V-shaped profile, which have just one dent in the centreline of the weld as 

the connection between the thin-sheets was established when the laser processed them in two 

consecutive wobbling periods as shown in Figure 13 (a).  
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Figure 12 - Comparison of metal mixing and weld profile in experimental and simulated cross sections 

with part-to-part gap= 0 µm, and PL= 615 W (a) and (b), PL= 690 W (c) and (d), and PL= 765 W (e) 

and (f). 

 

Figure 13 - Definition of positions A, B, C and D with respect to the pattern of the laser spot (a); velocity 

of the laser spot (b). 
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Periodic trend in the laser-metal interaction time, was reflected also in the mixing 

mechanisms. Indeed, when the interaction time was longer, more intense evaporation led to 

greater recoil pressure which enhanced mixing, as shown in Figure 12 (b, d, f), in which the left 

dent was deeper with steel being pushed upward in the copper side; additionally, the higher the 

laser-metal interaction time, the greater the amount of metal that was melted and involved in 

the mixing. Also, the mass density of copper is greater than the density of steel and this seemed 

to enhance the mixing with buoyancy forces contributing to the convective flows, in both the 

simulations and the experiments. Figure 12 (b, d, f) show copper sinking in the steel side and 

steel flowing to the top of the molten pool.  

In Figure 12 (a, c, e), more chaotic patterns in the mixing with parent metal seemed to 

be the result of two factors: (i) melting occurs twice, and (ii) in the same region. Indeed, in these 

cross-sections, mixing between parent metals occurred in one fusion zone, whereas in cross 

sections with M-shaped profile, it occurred in two distinguished and smaller melt regions, 

involving less metal melting. Additionally, two melting events at different times and in the 

same region result in enhanced mixing with more complex patterns.  

Validation of the model was based on the comparison between geometrical features 

measured during metallographic analysis and the results of the simulated weld seam. To account 

variability, 95% confidence intervals were calculated for each of the geometric features 

considered for all the experimental configurations and are reported in Table 6. 

Geometric features of the cross sections were predicted with an error lower than 17% 

with the only exception of width at interface between parent metals Wint when PL= 615 , 690 

W. This was explained looking at the cross-sections of the experiments. Indeed, analysis of 

cross-sections seemed to indicate that due to uncontrollable experimental variations, such as 

residual surface contamination or local curvature in the thin sheets, during part of the wobbling 

period, only part of the laser power was absorbed due to decoupling and reflection of the laser 

beam, and this occurred when the velocity of the laser spot was maximum (laser spot in position 

A). This interpretation is in good agreement with very low spread in values of Wint when PL=765 

W, as the thermal input was greater enough to ensure that the connection is soundly established 

throughout the entire wobbling period, regardless of the abovementioned local nuisance factors.  
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Table 6 - Comparison of measured geometric features in experimental and simulated weld profiles. 

 

3.4.1.2 Simulations of weld experiments with variable weld penetration depth 

and without part-to-part gap 

After calibration and validation of the model, subsurface features of the process that are 

difficult to directly measure, such as temperature and velocity fields, and mixing mechanisms, 

were analysed and correlated with results of ex-post analysis of the cross-sections to better 

understand phenomena involved in the welding process.  

Laser power PL= 615 W, resulted in poor weld penetration depth, whereas PL=765 W 

led to over-penetration of the thin sheets with the risk of piercing adjacent components in 

industrial applications. Simulations reproduced this trend in weld penetration depth with good 

approximation as shown in Figure 12 and Figure 14, and as reported in Table 6. Simulations 

with laser power PL= 690 W led to sound weld without over-penetration. Therefore, detailed 

analysis of thermal and velocity fields predicted with simulation focused on S2. 

In Figure 15, temperature and mixing between parent metals were plotted for four 

timeframes within a wobbling cycle, which correspond to positions A, B, C and D of the laser 

spot that are defined in Figure 13. In these timeframes the laser spot had respectively maximum, 

average, minimum and average velocity. Therefore, the effects of the wobbling on the process 

were explicitly captured in the plots, which show longitudinal sections of the process zones 

with the section-planes being tangent to the laser trajectory. In Figure 15 (b) projected in-plane 

   Wtop , µm Wint , µm Dpen , µm 

Part-to-part-

gap = 0 µm 

PL= 615 W 

Experimental [525 , 567] [113 , 171] [68 . 115] 

Simulations [469 , 486] [150 , 210] [72 , 84] 

Error, % -13 +26.7 -14.9 

PL= 690 W 

Experimental [535 , 563] [232 , 378] [147 , 235] 

Simulations [475 , 490] [373 , 407] [190,  204] 

Error, % -  12.4 + 27.6 - 9.0 

PL= 765 W 

Experimental [536 , 562] [362 , 426] 300 

Simulations [478 , 493] [432 , 437] [293 , 300] 

Error, % - 11.7 + 10.3 - 1.67 

Part-to-part-

gap =  

100 µm 

PL= 690 W 

Experimental [530 , 552] [154 , 263] [92 , 180] 

Simulations [529 , 534] [216 , 270] [107 , 119] 

Error, % -1.7 16.3 - 16.8 
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components of the velocity field in the molten pool were reported with black arrows along with 

the mixing between parent metal, to highlight mixing mechanisms.  

From Figure 15 (a) it is clear that the regions where the laser interacts with the metal on 

the keyhole walls, had the highest temperatures. Power absorption occurred due to direct 

exposition and due to multiple reflections, as shown in time-frame t= 0.009 s, leading to the 

formation of the bulge in the back-walls (timeframe t= 0.0095 s) of the keyhole that can 

eventually collapse (timeframe t=0.010 s). 

 
Figure 14 - Longitudinal and cross sections of simulations of the experiments with PL= {615 . 690, 765} 

W, in (a), (b), and (c) respectively. 
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As exposition time to the laser of the process zone varied during the wobbling period, 

different weld penetration depth was achieved. Indeed, when the laser was in positions A and 

C, the exposition times were respectively minimum and maximum, with respectively lower and 

greater thermal power absorbed and resulting in different weld penetration depth. However, 

another effect of the periodic trend in the thermal fields of the process zone was determined by 

the circular wobbling and should be taken in account in this analysis. During a wobbling period, 

the laser spot first melted new metal warming-up the material around when it was in position 

B, then came back to metal that was melted in the previous wobbling cycle, and finally 

processed it again when it was in position D. In this position, weld penetration depth of the 

keyhole is maximum and fusion zone had the greatest extension with maximum material 

mixing. All these periodic variabilities in the thermal input of the welding resulted in periodic 

trend in the size of the keyhole and of the fusion zone, with consequences on the size of the 

melt pool and on the mixing. Longer laser-metal interaction times and local re-melting led ton 

longer time in which metals stayed in liquid phase with extended mixing-time.  

Metal mixing was driven by velocity fields in the molten pool, with several factors 

contributing, such as the recoil pressure, the Marangoni effect and the laser pattern [40]. Longer 

black arrows in the vicinity of the highest temperature spots where the laser power was absorbed 

by the metals, showed that the fluid had higher velocities due to the action of the recoil pressure, 

which was enhanced due to more intense evaporation. A general trend can be distinguished in 

fluid flow and was explained accounting the action of the recoil pressure. Indeed, it pushed the 

molten metal at the bottom of the keyhole which flowed upward toward the free surface where 

it was deflected by the solid metal that hold the melt pool (grey dashed arrow), and from the 

keyhole walls toward the outer region of the melt pool. Deflection of upward flow led to vortices 

(timeframes t= 0.0090 s and t= 0.0095 s) which enhanced mixing between parent metals. 

Collapse event in the keyhole enhance mixing between parent metals and results in flow moving 

toward the centre and the bottom of the keyhole with less defined patterns in the velocity field, 

as shown in timeframe with t=0.010 s. 

Marangoni forces, in this model were generated by gradients in the surface tensions due 

to thermal gradients only. Metal on the surface of the molten pool is driven from the high-

temperature to the low-temperature areas. However, in this welding configuration with circular 

wobbling, liquid metal flow due to the Marangoni forces were not clearly distinguishable as 

effects of the recoil pressure seemed to prevail.  
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Figure 15 - Plot of the temperature (a) and of the material mixing with projected velocity field in the 

section plane (b). Part-to-part gap = 0 µm and PL= 690 W. 

3.4.1.3 Simulation of weld experiment with part-to-part gap 

Calibrated coefficient Ar in equation (4) was sensitive to the occurrence of part-to-part 

gap. Indeed, when there is no gap, the keyhole extends throughout the metallic thin sheets and 

the melt pool is entirely enclosed in the solid metal substrate, whereas, when it extends 

throughout the part-to-part, it is not. Pressure, acting on the internal walls of the keyhole pushes 

the metal with different equilibrium scheme that is different in the cases of welds with and 

without part-to-part gap. In the cases of welds with part-to-part gap, pressure acting on the 

keyhole walls ultimately results in a “curtain effect” that was observed also in other researches 

[48]. Calibration of Ar for scenario S4 led to a value of 15195 Pa.  
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Figure 16 - Longitudinal (-0.2mm offset from centreline) and cross sections of simulations of weld 

experiment with PL=  690 W and part-to-part gap = 100 µm. 

Comparison between the results in Figure 14 (b) and Figure 16 shows that the part-to-

part gap delayed the bonding between the sheets and influenced the dynamics involved in the 

process. When the laser process started, in simulations with zero gap (Figure 14 (b)), the copper 

sheet melted and transmitted part of the heat to the adjacent steel sheet, which behaved as heat 

sink; conversely, in case of part-to-part gap, the heat transfer from copper to steel was delayed 

due the presence of the gap, which acted as thermal barrier. Additionally, as the laser moves 

forward, the molten region on the copper side increased in size and was subject to three actions: 

(i) the gravity force that caused motion of the molten copper towards the bottom determining 

contact with the steel foil; (ii) the internal friction due to viscosity forces that contrasted any 

motion and relative slips; and (iii) the surface tension with cohesive forces applied to the surface 

layer of the molten region. Only when the amount of molten copper increased, gravity prevailed 

on viscous stresses and surface tension, and connection of the thin sheets occurred, thus 

enabling gap bridging. Once the connection was established, the weld profile developed, and it 

was characterized by a double dent/M-shaped. 

The effects of part-to-part gap are discussed below with respect to joining mechanism, 

temperature field and mixing mechanisms. 

3.4.1.3.1 Connection between parts 

Figure 14 (b) and Figure 16, show that the weld penetration depth was significantly 

lower in case of part-to-part gap. In simulations with zero gap (Figure 15), the keyhole was 

established and extended to both the upper and lower sheets, and, therefore, a sound connection 

was created. In case of part-to-part gap (Figure 17), the results showed that each cycle of the 

wobbling pattern was divided in two phases: first, the laser warmed up and melts unprocessed 
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metal, which eventually flowed on the lower sheet, and then, while the laser processed again 

the metal a connection between the two sheets was soundly established. Periodical connection 

between sheets in the case of part-to-part gap matched well experimental results, as cross-

sections with both sound weld and lack of connection were observed within the same seam. 

 
Figure 17 - Plot of the temperature (a) and of the material mixing with projected velocity field in the 

section plane (b). Part-to-part gap = 100 µm and PL= 690 W. 

3.4.1.3.2 Temperature field 

Figure 15 (a) and Figure 17 (a) show that the presence of part-to-part gap resulted in 

different thermal fields. The highest temperature was achieved on the keyhole walls, due to 

interaction with laser and multiple reflections, and the heat was transmitted to the surrounding 

metal. However, in simulation with no gap, direct contact between the two sheets enhanced heat 

transfer (Figure 15 (a)). In case of part-to-part gap, there was no direct contact between the two 
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sheets and the heat transfer was only ensured by the weld seam that bridged the gap; this resulted 

in lower temperatures in the steel foil (Figure 17 (a)). 

3.4.1.3.3 Metal mixing 

Figure 15 (b) and Figure 17 (b) show that different thermal fields resulted in different 

metal mixing mechanisms. Projected velocity fields were represented with black arrows and 

both recoil pressure and temperature distribution seemed to drive fluid flow. Arrows in the 

vicinity of the keyhole walls indicated that the recoil pressure drove the fluid from the bottom 

of the keyhole to the top and towards the outer region of the melt pool. The thermal gradient 

due to the rotation of the keyhole (consequence of the circular wobbling) determined a flow 

that was represented with the projected velocity field. Figure 15 (b) (no gap) showed that the 

metal flow involved both copper and steel and enhanced mixing throughout all the wobbling 

cycle in case of no gap. Figure 17 (b) (gap=100 μm) shows that the metal flow involved steel 

in a limited part of the wobbling cycle. This resulted in uncontrolled metal mixing and 

periodical discontinuity in the properties of the weld seam. 

 
Figure 18 - Comparison of metal mixing and weld profile in experimental and simulated cross sections 

with PL= 690 W and part-to-part gap =100 µm. 
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3.4.1.4 Summary of key findings on simulation of weld experiments 

In this sub-sections, main findings of experimental-numerical study on Set #1, are 

summarised in bullet form to ease a more comprehensive and structured view of the results: 

• Circular oscillation of the laser beam wobbling resulted in periodical variability in the 

weld seam with V and M-shaped profiles. 

• Periodically variable velocity of the laser spot during the wobbling period caused 

variable laser-material interaction time and thermal input in the process zone, which led 

to variable weld penetration depth and size of the melt pool.  

• Experimental and numerical results confirmed that the higher the laser power the more 

intense the evaporation, leading to greater recoil pressure that resulted in enhanced 

mixing due to higher velocity of flows in the melt pool. 

• Upward flow and buoyancy forces were the main mechanisms that cause migration of 

the steel in the copper side of the melt pool. 

• Part-to-part gap delayed the first connection between thin sheets which is governed by 

surface tension, viscosity stress, and gravity force.  

• Part-to-part gap limited heat transfer from the copper to the steel sheets, resulting in 

lower temperatures in the steel and heat localization in the copper.  

• When gap is zero, connection between sheets was established throughout the whole 

wobbling cycle; whereas, in case of part-to-part gap, the connection was established 

periodically, since the laser penetrates only the upper sheet during part of the wobbling 

cycle. This led to uncontrolled metal mixing.  

• The wobbling pattern and the sub-consequent periodic variation of laser beam velocity 

determined inhomogeneity in the metal mixing due to variation in the penetration depth, 

temperature fields and amount of molten metal.  

  



Chapter 3  Multi-physics CFD modelling of RLW of dissimilar metallic sheets   

39 

 

3.4.2 Simulations of welding with selected laser beam shapes 

List of the simulations in Table 5, reports the iterative process for selection of the values 

of laser power PL for each of the considered welding configurations. The following discussion 

focused on the results of those configurations which achieved the requirement of Dpen ≥ 90 µm, 

which are: LBS1-ID5, LBS2-ID8, LBS3-ID6, and LBS4-ID1. They were analysed separately 

in dedicated subsections, with key findings summarised in conclusive subsection. 

3.4.2.1 Discussion on combined ring-shaped secondary beam and primary beam 

Longitudinal and cross sections of LBS1-ID5, LBS2-ID8, and LBS3-ID6 reported in 

Figure 19 (a, b, c) show the following trend: use of a ring-shaped secondary laser beam resulted 

in wider interface between parent metals and lower weld penetration depth; this trend was 

exalted when the size of the ring-shaped spot of the secondary laser beam increased. 

Figure 19 (a) showed fluctuations in the weld penetration depth and the presence of 

pores in the weld simulated with LBS1-ID5. These features indicated that the dynamics of the 

keyhole was affected by collapse events with gas entrapments that led to the formation of pores.  

 
Figure 19 – Longitudinal, cross sections of simulations, and plot of the concentration of Fe (steel) in 

the Cu-rich side of the molten pool along line A-A for LBS1-ID5 (a), LBS2-ID8 (b), and LBS3-ID6 (c). 
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Figure 20 - Metal mixing, fusion zone and velocity fields in consecutive timeframes of LBS1-ID5 (a), 

LBS2-ID8 (b), and LBS3-ID6 (c). Black arrows represent the projected velocity fields in the section 

plane. 

Figure 20 (a) shows 4 consecutive timeframes of LBS1-ID5, with projected velocity 

fields represented with black arrows and contour plot of concentration of parent metals. It 

reports the mechanism of entrapment of gases in the keyhole. Intense recoil pressure pushed 

molten metal from the bottom of the keyhole, which was deflected by the solid metal substrate, 
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resulting in upward flow which eventually collapsed toward the centre of the keyhole 

(timeframes t= 2.625e-3 , 2.75 e-3). Furthermore, due to these collapse events, the irradiated 

surface on the keyhole walls changed with different exposure to the laser power and multiple 

reflections. Ultimately, these changes resulted in different thermal field and evaporations that 

caused fluctuations in the weld penetration depth that are shown in Figure 19 (a).  

Use of a ring-shaped secondary beam combined with the primary one allows to spread 

the thermal input on a wider surface, which led to larger melt pool, and ultimately width at 

interface between parent metals, as mentioned above and shown in Figure 19 (b).  

Less localised thermal input in LBS2-ID8 resulted in wider shape of the of the melt pool 

and also in less intense evaporation, which were both reflected in lower deflection of the upward 

flows, that ultimately resulted in lower occurrence of collapse events of the keyhole which, 

therefore, had a more stable dynamics with reduced oscillations, as shown in Figure 20 (b). 

Predicted stabilisation of the keyhole dynamics resulted in no entrapment of gases and pores 

formation. In particular, projected velocities in time frames in Figure 20 (b), show that liquid 

metal involved in upward flow migrated toward the tail of the melt pool, and then was deflected 

toward the centre, leading to forward flow. Forward and upward flows, collaboratively 

generated vortices that contributed to metal mixing, as upward flow carried liquid steel in the 

upper side of the melt pool. However, comparison showed that upward flow in LBS1-ID5 led 

to formation of Fe-rich clusters in the Cu-rich side of the weld seam, which were not predicted 

in LBS2-ID8, indicating less sever mixing with potential formation of IMCs. 

Use of a wider ring-shaped secondary laser beam led to even less localised thermal input 

with significant impact on the process as visible by comparing Figure 19 (c) to Figure 19 (b). 

Larger melt pool resulted in larger width of the weld seam at interface between parent metals 

(approximatively equal to 250 µm) and smaller weld penetration depth in the lower sheets. This 

was explained considering that the distance between the regions of the keyhole walls that are 

irradiated by the primary and the secondary laser are such that the evaporation and the keyhole 

were not localised anymore. 

Larger size of the molten pool also impacted the mixing mechanisms, as the metal stayed 

in the liquid phase for longer, with more time available for mixing. Beside vortices 

collaboratively created by upward and forward flows, cross section in Figure 19 (c) and in time 

frames of  Figure 20 (c) shows that recoil pressure pushed the liquid metal at the bottom of the 
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keyhole also toward the side of the melt pool, leading to vortices in the y-z plane that 

contributed to mixing. 

 
Figure 21 - Metal mixing, fusion zone and temperature fields from simulations for LBS4-ID1 at DT= 0.3 

(a), LBS4-ID2 at DT= 0.45 (b) and LBS4-ID3 at DT= 0.6 mm (c). 

3.4.2.2 Discussion on dual laser beam in tandem configuration 

LBS4 simulated a tandem beam arrangement with the primary laser establishing 

connection between the parts by processing a region after that the secondary beam pre-heats it. 

Three different values were considered for the distance between the two laser beam, with 

significantly different thermal fields between the two lasers: (a) T ≥ 1000 K for DT = 0.3 mm, 

(b) T ≥ 850 K for DT =  0.45 mm, and (c) T ≥ 650 K for DT =  0.6 mm, as shown in Figure 21. 
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These variations resulted in marginal differences in the weld profile simulated in the three cases. 

Additionally, results of LBS4-1,2, and 3 were not significantly different from LBS1-5 

indicating that this weld strategy did not contribute much to process improvement.  

3.4.2.3 Summary of key findings on simulations with shaped laser beams  

Figure 22 reports and compare quantitative data that were discussed in previous 

subsection and were used to support main findings. These data are: (a) weld penetration in the 

bottom thin sheet, (b) width of the seam at interface, (c) average concentration of Fe in the 

copper side of the weld at the centreline (f), and in the entire copper side of the fusion zone, 

average cooling rate (d), and average temperature of the molten pool. Main findings are 

discussed as follow: 

• Simulations LBS1-ID5 and LBS4-ID1 resulted in weld seams that have very similar 

geometric features and properties. LBS4-ID1 predicted weld penetration depth equal to 

196 µm, width at interface equal to 100 µm, and concentration of Fe in the copper side 

of the weld at the centreline equal to 17.20%, which are values very close to those 

predicted with LBS1-ID5. 

• Different welding strategies seemed to not impact the average temperature in the melt 

pool much, however, the use of secondary laser beam seemed to significantly reduce 

the cooling rate, as they resulted in melt pool with greater size. 

• In welds with combined ring-shaped secondary and primary laser beams, concentration 

of Fe at the centreline in the Cu side was significantly lower (approximatively 10.5% 

and 4.1% in LBS#2-ID8 and LBS#3-ID6, respectively). However, to account different 

extensions of the fusion zones, also average concentration of Fe in the Cu side of the 

entire fusion zone was estimated (Figure 22 (f)). In LBS#1-ID4 and in LBS#4-ID1, the 

concentration of Fe at the side of the weld seam were respectively equal to 7.7% and 

7.9%; whereas, LBS#2-ID8 and LBS#3-ID6 achieved 7.2% and 6.3%, respectively. 

This confirmed that use of secondary ring-shaped beam tends to reduce the mixing 

effect, but also indicated that in the case of welding with single beam (LBS#1) and 

tandem configuration (LBS#4), metal mixing occurs with Fe-rich clusters and 

structures, all located at the centreline of the weld seam. Notably, the concentration of 

Fe obtained with a ring-shaped beam was comparable to the one achieved with an inner-

only beam in conjunction with beam wobbling (E1-E3). 
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Figure 22 - Key features of simulated welds. 

3.5 Conclusions and opportunities for future research 

This chapter addressed the development of a multi-physics CFD model of RLW of 300 

μm copper to 300 μm nickel-plated steel to investigate the complex phaenomena involved 

during the process by analysing simulated subsurface features, such as temperature fields, 

velocity fields and mixing between parent metals, which are all difficult to directly measure via 

in-situ observations due to technological difficulties.  

Two sets of simulations were carried out to evaluate the impact of uncontrollable 

variations of the part-to-part gap and opportunities for process improvement by implementation 

of different welding strategies. 

Experimental-numerical approach allowed to validate the model with geometric features 

of the weld profiles and EDS elemental maps, that were prepared from experiments of Set #1, 

which included four scenarios with variable weld penetration depth and part-to-part gap. 

Comparison of simulations with variable laser power, with and without part to-part gap (0 and 

100 μm) was presented to investigate its impact and the impact of laser beam wobbling on 

temperature and velocity fields, melt pool dynamics, mixing and connection mechanisms. Then, 

the validated model was employed to investigate opportunities for improvement of the process 



Chapter 3  Multi-physics CFD modelling of RLW of dissimilar metallic sheets   

45 

 

via laser beam shaping by simulating linear welds with combined primary and secondary laser 

beams in ring/core and tandem configurations. Key concepts are summarised as follow:  

• Circular oscillations of the laser beam wobbling resulted in periodical variability in the 

geometrical shape of the weld seam, due to the pattern of the laser beam and to the 

periodically variable velocity of the laser spot. 

• Mixing between parent metals was enhanced by flows that were driven by recoil 

pressure, which changes with variable laser-material interaction time, and buoyancy 

forces. 

• Part-to-part gap delayed the first connection, limited heat transfer from the copper to 

the steel sheet and caused periodically discontinuous penetration of the laser in the lower 

thin sheet, which also resulted in uncontrolled metal mixing. 

• Simulations of a ring-shaped secondary laser beam predicted more distributed thermal 

input which led to larger melt pool, stabilisation of the dynamics of the keyhole, and 

reduction of the cooling rate, if compared to the case of welds with only primary beam 

used. Also, different velocity fields resulted in reduced mixing between parent metals. 

• Simulations of welds with tandem configuration were implemented which led to 

predicted results very similar, in terms of geometry of the weld seam and metal mixing, 

to the case of welds with primary beam only. For this reason, use of a secondary laser 

beam that pre-heats the metal before the primary one establishes connection did not 

seem to contribute much to process improvement. 

Next step of this research stream is the development of models and methods that enable 

fusion of data inferred from simulations and data gathered from sensors for full development 

of a digital twin of the process. This would contribute much to the full developments of a control 

system with significant impact on manufacturing applications.  

Further development of this research is planned and includes a dedicated experimental-

numerical study on the mechanical behaviour of these weld joints. This study aims to 

investigate the effects of incontrollable variations of part-to-part gap on the static and the fatigue 

strength. It could contribute also to the research field of the digital certification of mechanical 

properties to meet requirements by integrating FEM models and geometry of the weld seam 

that was predicted with the present approach. 
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Chapter 4 

4 Characterization of photodiodes to 

variations of part-to-part gap and 

weld penetration depth  

4.1 Introduction 

This chapter addressed characterisation of a photodiode-based sensor to assess its 

capability to detect variations of weld penetration depth and part-to-part gap so that in-process 

monitoring system for RLW of battery tab connectors can be implemented. Interest in 

monitoring these incontrollable variations, that can affect the process during laser welding of 

dissimilar metallic thin sheets, stems in the following challenges:  

1. To limit mixing mechanisms and prevent formation of Intermetallic Compounds (IMC).  

Mixing of parent metals occurs during laser welding with dissimilar metals which can 

have different physical properties resulting in segregation and precipitates, poor 

compatibility and miscibility, and poor joint strength.  

2. Clamping and manufacturing tolerances can lead to a cumulated part-to-part gap, such 

that it is greater than the thickness of the sheets, and therefore, can result in lack of 

connection between the parts.  

3. Management of the thermal input during the weld process to prevent over-heating or 

over-penetration, that, ultimately, can cause damage to adjacent components with the 

risk of explosion and fire. 

Challenge 1 was addressed in the previous chapter, that contributed toward investigation 

of mixing between parent metals and formation of IMCs, and therefore it was not discussed in 

detail this chapter. Challenges 2 and 3 are interrelated with each other because variations in 

weld penetration depth and part-to-part gap can affect the weld joint from both a mechanical 

and electrical point of view, as schematised in Figure 23, with detrimental effects on the safety 
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of the process. Lack of connection and excessive seam concavity can be caused by variations 

of the part-to-part gap, which may be determined by the combined effect of geometrical 

variations and small thickness of the sheets. The urgent need to detect variations in the weld 

penetration depth stems in two reasons: first, excessive weld penetration depth (Figure 23 (c)) 

brings the risk of piercing adjacent components (electrodes, etc.), with subsequent leakages of 

harmful gases and fire; second, lack of penetration (Figure 23 (b)) is associated to drop in 

electrical connection with subsequent reduction in electrical conductivity. The variation in weld 

penetration depth is the cumulative effect of variations in laser power, focal point shift, material 

reflection, etc. [51]. 

Photodiodes have relatively simple structure, low cost and they are suitable for 

applications in industrial environment. Indeed, they have been largely employed to monitor 

RLW of metallic sheets with thickness greater than 1 mm [52].  

In this chapter, characterisation of a photodiode-based sensor to variations of part-to-

part gap and weld penetration depth was reported to demonstrate capability of the sensor to 

isolate and diagnose weld defects. The investigation focussed on RLW of copper-to-steel thin 

sheets lap joint (copper 300 μm to Ni-plated steel 300 μm), as those materials are widely used 

for manufacturing of battery cells and tab connectors.  

 
Figure 23 - Typical design of a cylindrical cell and tab connector. (a) ideal welding condition, actual 

welding condition with lack of connection due to part-to-part gap (b), and over-penetration (c). 

4.2 State of the art 

Although RLW, has significant superiority in automatization, an important challenge to 

overcome is the limited or insufficient capability for in-process quality monitoring and control 

[27].  The quality of RLW weldments is generally assessed by measuring multiple features 

classified as: (1) surface features (surface spatter, blowout, melt pool width, upper and bottom 
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concavity, seam discontinuity); and, (2) sub-surface features (weld penetration depth, weld 

connection, porosity, crack) [53]. State-of-the-art approaches for in-process monitoring involve 

the fusion of multiple sensors to detect multiple weld features [54]. For instance, CMOS/CCD 

camera-based or laser-based sensors are employed for direct measurement of surface features, 

and thus, they contribute to in-process monitoring by direct observation of the surface features, 

which is a well-established area [27]. Direct measurement of the sub-surface features still 

remains outside the reach of sensing techniques, instead. In this context, Sokolov et al. [15] 

employed Adjustable Ring Mode laser beam to weld 450 µm thick aluminium to 300 µm thick 

copper and Optical Coherence Tomography (OCT) for direct measurement of weld penetration 

depth. Authors reported that the OCT sensor can enable direct measurement of weld penetration 

depth with accuracy of 100 µm, when compared to off-line/off-process metallographic analysis. 

However, evidence indicated that the accuracy of the OCT measurement was highly sensitive 

to the selection of the welding process parameters. For this reason, the sensor needed to be re-

calibrated every time changes in the process parameters were introduced. Additionally, welding 

in conduction mode with no keyhole would is a scenario in which the OCT sensor would be 

completely unsuitable for measuring the weld penetration depth. 

To cope with sensitivity to process parameters, sensor that passively observe process 

emissions could be used. They gather indirect signals, via photodiodes, acoustic detectors 

and/or spectrometers. Signals are then correlated to the weld features via tailored extraction of 

features from gathered data and statistical and machine learning techniques. Tomcic et al. used 

Gaussian process regressions on acoustic signals to determine the weld depth during bead-on-

plate weld on oxygen free copper plates with a thickness of 1mm [55]. With respect to 

applications with dissimilar metals, Simonds et al. demonstrated increased sensitivity of laser 

induced fluorescence (LIF) over previous spectroscopy-based in-situ monitoring. They 

implemented LIF the during laser spot welding of aluminium to copper thin sheets (200 µm- 

thick) to gather data with information on IMCs formation based on detected copper atoms [31]. 

Photodiodes can detect the radiation from the metal vapor and plasma plume (SP signal), 

the thermal condition of the processed zone (ST signal) and the reflected laser light (SR signal) 

[56]. Typical structure of a photodiode-based sensor is schematically reported in Figure 24. The 

three sensors record the radiation in three distinguished bandwidths. For example, for 

applications where the laser source emits in the NIR, the typical bandwidths are: SP sensor – 

300-700 nm; SR sensor – 1020-1090 nm; ST sensor – 1200-2000 nm. It is worth noting that the 

ST sensor observes the temperature of both molten pool and plasma plume [56]. 
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Figure 24 - Standard concept of photodiode-based setup for in-process monitoring of RLW process. 

Sanders et al. showed that changes in the weld penetration depth could be monitored 

with a photodiode that is sensitive to IR emissions [57]. Eriksson et al. demonstrated that 

information carried by signals SP and ST can be interdependent as metallic vapour and the 

plasma plume emit in both the VIS-UV and NIR, and therefore, their emissions are recorded in 

both the signals. For this reason, they proposed to subtract the two signals SP to ST instead of 

using the raw signal ST, in order to access the fluctuations in infrared radiation from the melt 

pool [56]. Park et al. used two UV sensors and one IR sensor in order to detect plasma and 

spatter generated during the laser welding of steel specimens with different thicknesses [58]. 

Then, they developed a system to perform real time evaluations of the weld quality using a data-

driven model based on fuzzy multi-feature pattern recognition. Rodil et al. used IR and 

UV/visible photodiodes to gather data during laser welding of galvanised steels (1 mm thick), 

and employed them to develop two different approaches for real time process monitoring [26]. 

Sibillano et al. recorded optical emission (300-1,000 nm) during CO2 laser welding of 2 mm -

thick steel in butt-joint configuration and performed analysis of the signals in time-frequency 

domain via DWT to investigate if changes in the frequency oscillations of the signals reflected 

changes in the weld condition [37]. De Bono et al. assessed capability of photodiodes 

(monitoring wavelength between 600 - 800 nm) to detect variations in the gap, in the surface 

contaminations and laser power during laser welding of 2 mm thick -nickel in butt configuration 

[52].  
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Analysis of literature revealed that photodiode-based monitoring has been mostly 

implemented for structural welds (i.e., door closures, seat frames and side frames in automotive 

body construction) with thick parts generally above 1 mm [59]. However, contributions on the 

application of photodiode-based monitoring  in the RLW of dissimilar metallic thin sheets for 

battery cell manufacturing remain scattered and fragmentated, and characterisation of 

photodiodes to variation of part-to-part gap and weld penetration depth during RLW of 

dissimilar metallic thin sheets remains an unexplored area of research [27,28] and will be 

addressed in this chapter.  

4.3 Materials and methods 

The experimental campaign consisted of RLW of 300 µm-thick metal sheets (oxygen 

free C103 copper R240; steel plate cold deep, draw extra, nickel-plated) with a weld length of 

40 mm and lap joint configuration. The laser beam pattern was the result of simultaneous linear 

motion, with a speed of 120 mm/s, and circular wobbling with frequency of 500 Hz and a radius 

of 0.2 mm. The laser power (PL) was delivered in CW mode (no power modulation). The laser 

beam was perpendicular to the specimen (70 mm long and 30 mm wide).  No filler wire and 

shielding gas were employed during the entire experimental campaign. Before the welding 

trials. samples were wiped with acetone to remove any surface contamination. 

The employed laser unit was an nLight Compact Fiber Laser 3kW (nLight Inc., USA) 

and the laser beam was delivered by a 2D scanner (Scout-200, Laser & Control K-lab, South 

Korea). 

 
Figure 25- (a) Experimental setup for collecting photodiode-based signals and (b) schematic view of 

the fixture setup. 
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The photodiode-based sensor used was the LWM 4.0 (Laser Welding Monitoring, 

Precitec GmbH, Germany) and it was installed just below the collimator of the scanner, close 

to the camera port (see Figure 25 (a)). Three signals were collected, namely SP, SR and ST, with 

a maximum sampling rate of 50 kHz. The sensor was set so that the region of interest for 

measurement of optical emissions was the centre of the molten pool/keyhole. Full specifications 

of the equipment employed during weld experiments are reported in Table 1 and Table 2. 

Table 7 - Specifications used for sample preparation with head speed of 60 rpm and applied force of 

22 N. 

Operation 
Grit size 

[--] 

Base speed 

[rpm] 

Time 

[sec] 

Grinding P400 220 till plane 

Grinding P1200 220 60 

Grinding P2500 220 40 

Grinding P2500 220 40 

Polishing 9µm 150 350 

Polishing 3µm 150 180 

Polishing 1µm 150 120 

Polishing 0.6µm 150 90 

 

The focal position of the was controlled by manually adjusting the vertical position of 

the entire Scout-200 scanner with respect to the mounting frame. In this way, the setting was 

adjusted to place the focal point at 600 μm above the bottom surface of the steel sheet (see 

Figure 25 (b)).  

A stereo microscope Nikon SMZ18 was used to take pictures of the front and back views 

for all the weld seams. Then, they were cut to obtain four cross-sections each, that were prepared 

for metallographic analysis via grinding and polishing (no etching was carried out) - details of 

the sample preparation are reported in Table 7. Pictures of the cross-sections were taken with 

Nikon Eclipse LV150N.  

Tensile shear tests were carried out using Instron 5985 and following ISO 6892-1:2016 

tensile test standard, to assess the mechanical requirements. Tensile load was applied at a 

constant extension rate of 1 mm/min and the maximum load was then extracted from the load-

extension curve. 
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4.3.1 Requirements and design of experiments 

The experimental campaign was articulated in three phases: phase (1) – definition of 

weld requirements and selection of welding parameters; phase (2) – characterization of the 

photodiode-based signals to variations of weld penetration depth; and, phase (3) – 

characterization of the photodiode-based signals to variations of part-to-part gap. To avoid bias 

effects, weld experiments were carried out with random order. 

To define welding parameters that allow to meet the requirements, metallographic 

analysis was performed. For each cross-section, two descriptors of the profile of the weld seam 

(see Figure 26) were measured: (1) effective weld width (WE) measured as the shortest distance 

from the root to the face of the weld; and, (2) bottom weld width (WB) measured as the width 

of the weld at the back. Geometric feature WB was selected to avoid false positive/negative 

scenarios as reference to the weld penetration only would have been inadequate. Indeed, Figure 

26 (a-b) shows two cases of fully penetrated weld (fusion zone fully extended throughout the 2 

foils). However, weld represented in Figure 26 (b) has a blind keyhole, with no propagation of 

the laser beam throughout the lower thin sheet. Therefore, the laser radiation (represented with 

red arrows in Figure 26 (a-b)) eventually is absorbed by the keyhole walls only (or back-

reflected towards the top), and without piercing through the lower surface of the steel sheet. For 

this reason, cases (a) and (b) schematise two scenarios with different levels of risk of damage 

to the adjacent components (electrodes, etc.), and this risk in case (b) is neglectable.  

 
Figure 26 - Definition of the weld features. (a) Keyhole fully open throughout the bottom foil; (b) blind 

keyhole. 

Three classes of welds were introduced to account mechanical integrity, electrical 

resistance and safety requirement: 

Class (1) - Sound weld: WE ≥ 220 μm; WB ≤ 0.6·WE 

Class (2) - Lack of connection: WE ≤ 220 μm 

Class (3) - Over-penetration: WB ≥ 0.6·WE 

Tensile shear test results conducted during phase (1) confirmed that WE above 220 μm 

was sufficient to give 70 N/mm joint strength, and minimum electrical resistance below 8 μΩ 
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[50]. Occurrence of over-penetration is indicated by WB. We made the assumption that the case 

of weld where the laser beam propagates throughout the bottom sheet (Figure 26 (a)) was the 

most critical for safety of the process, as it involve full opening of the keyhole. For each 

experiment, we checked whether a mark was left over by the laser on a surface, thus indicating 

the occurrence of piercing, as shown in Figure 25 (b). Results of pre-screening tests during 

phase (1) confirmed that in the cases when the laser beam imprinted the “check-surface” 

measured values of WB were greater than 60% of WE. For this reason, welds with WB ≥ 0.6·WE 

were labelled as over-penetration.  

Phase (2) consisted of 54 experiments with part-to-part gap equal to zero, in which 

different levels of weld penetration depth were achieved by using different values of PL in the 

range [600, 1500] W to reproduce weld conditions spanning from lack of connection to over-

penetration. For each power level, 6 replications were performed. In phase (3), for precise 

control of the part-to-part gap, shim packs (Meusburger, Germany) of 12.5 mm width were used 

to perform a set of 16 experiments with the following values of gap: 0.0, 100, 200, 300 μm; 

each scenario was replicated 4 times.  

 
Figure 27 - Example of photodiode-based signal. (a) Raw data and low-pass filtered data, and (b) cross 

sections of the corresponding seam. 
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4.3.2 Signal processing 

A typical photodiode-based signal that was recorded by the LWM sensor is reported in 

Figure 27. It was recorded in Volt and both software and hardware gains were adjusted to keep 

the signals in the range [0, 10] V.  

It is worth noting that the signal follows a behaviour akin to a parabola (Figure 27 (a)). 

This is explained considering that the motion of the laser spot from the start to the end of the 

weld seam was the result of the rotation of the galvo-mirror. For this reason, the incidence angle 

varied with the position of the laser spot, and it seemed that this results in variation of the 

amount of process emission collected by the LWM sensor. This behaviour only affected the 

signals with negligible effect on the weld quality, as shown by the cross sections in Figure 27 

(b).  

A filtered signal, Ff, was derived by application of a low-pass filter to remove high-

frequency disturbances (above 100 Hz).  

For each signal, two descriptors were calculated: 

1. Mean value, µ, of the filtered signal (see Figure 27 (a)) from the seam start, xstart, to the 

seam end, xend. 

𝜇 = 𝑚𝑒𝑎𝑛 (𝐹𝑓(𝑥))         (10) 

2. Scatter level, σ, which is the result of variations that cannot be controlled and cumulate 

randomly, such as accidental laser material decoupling, deviations from nominal 

geometry of the thin sheets, and complex phaenomena involved in molten pool 

dynamics. The source of noise related to signal-conditioning electronics is neglected as 

we assumed that it is invariant to the welding process itself. The scatter level was 

calculated as the averaged value of the local signal scatters, which are evaluated as the 

standard deviations, σi, (see Eq. (11)) of raw data points within a moving window. Local 

scatters in different sections of the signals are calculated by shifting the moving window. 

Optimization of the width (Mw) and the number of scans (Ns) via sensitivity and 

convergence study with data from preliminary trials of phase (1), led to selection of the 

following values: Mw=5 mm and Ns=8. 

𝜎 =  
∑ 𝜎𝑖

𝑁𝑠
𝑖=1

𝑁𝑠
          (11) 

Calculation of signals descriptors enabled representation of the sensor signals SP, ST and 

SR are with the six-tuple {μP, μT, μR, σP, σT, σR}, for each welding experiment. 
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The correlation between signals and values of PL and part-to-part gap was quantified by 

calculation of the Pearson’s correlation coefficient, which varies between −100% to 100%, 

where 0 indicates no correlation. 

Experiments were grouped in three classes, based on the label assigned to the weld with 

respect to the measured values of WB and WE, as articulated in Section 4.3.1. This allowed to 

perform Wilcoxon rank sum tests in paired analysis to verify the null hypotheses that the values 

of signal features from different classes are sampled from distributions with equal medians at 

significance level of 5%. The non-parametric Wilcoxon rank sum test was selected to account 

data non-normality and heteroscedasticity between classes.  

4.4 Results and discussion 

4.4.1 Variations of weld penetration depth 

Different levels of weld penetration depth were obtained by varying PL in the range 

[600, 1500] W to achieve weld conditions spanning from lack of connection to over-

penetration.  

 
Figure 28 -(a) Results of the metallographic analysis for phase (2) - all welds with gap = 0 mm. (b) 

Lack of connection; (c) sound weld; (d) over-penetration. 
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Figure 28 reports result of metallographic analysis. Values of the WE were plotted 

against the variation in laser power PL in Figure 28 (a) showing a good linear correlation 

(Pearson’s correlation coefficient: 89%). No connection at all (lack of connection) was 

established between the two sheets for values of up to 800 W. Adequate extension of WE with 

no sign of over-penetration (sound weld) was achieved for values of PL ranging between 900 

and 1100 W. For values of PL greater than 1100 W, the molten pool fully extends throughout 

the two sheets (over-penetration). Piercing of the bottom thin sheet was indicated by transition 

from conical to cylindrical shape in the profile of the weld seam (as confirmed by the extend of 

the molten pool in Figure 28 (d)), with the keyhole now fully open.  

Plots of the six signal features against the laser power PL are reported in Figure 29 - the 

boxplots indicate the spread across the 6 replications for each power level, and their height is a 

measure of it. Figure 30 shows three representatives signals of the 3 classes - only the SP signals 

have been reported for the sake of the discussion. A trend is clearly visible, with the increase 

of the laser power, which determines deeper penetration of the weld, the signals show mean 

value and higher signal scatter. The findings are discussed as follows: 

Plasma and temperature signals (SP and ST) - positive strong correlation between the mean 

values of SP and ST, and the laser power ( Figure 29 (a) and (c)) – calculated values of the 

Pearson’s correlation coefficients are equal to 95% and 87%, respectively. Also, these two 

signals showed strong correlation as value of the Pearson’s coefficients for correlation between 

features of signals SP and ST was greater than 94%. This evidence indicated that emissions of 

the plasma plume contributes to both  the UV/visible spectrum and the thermal radiation in the 

IR, which is confirmed by research by Eriksson et al. [56].  

Trend of the scatter levels of SP and ST is very similar to the trend of their mean values, as 

shown in Figure 29 (b) and (d)) and confirmed by Pearson’s correlation coefficients, which are 

equal to 89% and 85%, respectively. It is worth to observe that when lower laser power was 

below 800 W, metal melting was limited to the mainly copper with insufficient or even no 

penetration depth through the steel sheet. This suggests that the welding regime was conduction 

mode, which is indicated by the mean value of the plasma signal significantly low (below 1 V). 

Back-reflection signal (SR) – correlation between the mean value of the SR signal and the laser 

power is weak, as indicated by the Pearson’s coefficient equal to 5%, and shown in Figure 29 

(e). The plot of the scatter level indicated a strong positive correlation (Figure 29 (f)), instead, 

which was confirmed by Pearson’s correlation coefficient equal to 90%. This can be explained 
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considering that the local oscillations indicated sudden changes in the dynamics of the keyhole 

and of the molten pool, with consequences on the multiple reflections occurring in the keyhole. 

As the laser power increased, the spread in mean value and the scatter level increased as well. 

For instance, box plots in Figure 29 (a), showed that the spread of the mean of the SP signal 

(µP) increased from 0.05 V to 0.34 V when transitioning from 1050 W (sound weld) to 1500 W 

(over-penetration). This trend is in good agreement with the interpretation that the transition to 

the over-penetration condition resulted in a more instable dynamics of the keyhole with greater 

oscillations. Conversely, lower spread in the signal features during weld experiments with laser 

power below 800 W confirmed that the process was more stable because it was in conduction 

mode, which ultimately resulted in no or limited weld connection. 

 
Figure 29 - Summary of the signal features extracted for phase (2) - Characterization of photodiode-

based signals to variations of the laser weld (all welds at gap = 0 mm). 
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Paired analysis via hypothesis tests confirmed that, with the only exception of μR, 

differences between the values of the signal features corresponding to the three classes of welds 

were statistically different at 5% significance level. Therefore, signal features {μP, μT, σP, σT, 

σR} corresponding to different classes were statistically different, and were good indicators for 

in-process monitoring and diagnosis of weld features. 

 
Figure 30 - Representative SP signals of phase (2) - all welds at gap = 0 mm. (a) lack of connection; (b) 

sound weld; (c) over-penetration. 

 
Figure 31 - (a) Results of metallographic analysis for phase (3) - al welds at PL= 1050 W. (b, c) Sound 

weld; (d, e) lack of connection, 
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4.4.2 Variations of part-to-part gap 

Characterisation of the sensor to part-to-part gap involved 4 levels of this factor: 0.0, 

100, 200, 300 μm. The laser power was set constant at 1050 W. Analysis of the cross sections 

performed with metallographic analysis led to results reported in Figure 31. In the diagram of 

Figure 31 (a), measured values of the WE are plotted against the measured values of the part-to-

part gap. The trend exhibits a sudden drop in values of WE for part-to-part gap greater than 200 

μm. This indicates the transition from sound weld to lack of connection. 

Representative plots of the SP signals that were recorded during weld experiments with 

the 4 gap values considered are shown in Figure 32. They show a tendency towards lower mean 

values and scatter levels of the signals when the part-to-part gap increases, which is also shown 

by the plots in Figure 33, that report the values signal features against the part-to-part gap. 

 
Figure 32 - Summary of the signal features extracted for phase (3) - Characterisation of photodiode-

based signals to variations of part-to-part gap (all welds at PL= 1050 W). (a, b) sound weld; (c, d) lack 

of connection.   

Main findings are discussed as follows: 

Back-reflection signal (SR) – Plots of both the mean value and the scatter level, that are reported 

in Figure 33 (e) and (f), indicate a weak sensitivity of this signal to variations of gap, which 

was also confirmed by values of the Pearson’s coefficient below 60% for both the features. 
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Figure 33- Summary of the signal features extracted for phase (3) - Characterisation of the photodiode-

based signals to variations of part-to-part gap (all welds at PL= 1050 W). 

Plasma and temperature signals (SP and ST) – Plots of the mean value of SP and ST against the 

part-to-part gap (Figure 33 (a) and (c)) follow a descending trend, and calculated correlation 

coefficients are equal to -91% and -92%, respectively. Diagrams of the scatter level follow a 

similar trend (Figure 33 (b) and (d)). This descending trend was explained considering that 

increasing part-to-part gap caused entrapment of higher amount of plasma plume and the metal 

vapor between the two sheets. Therefore, the amount of radiation emitted by the plume that was 

collected was by the sensor was lower and this caused a drop in the signals. Strong correlation 

between {μP, μT, σP, σT} and gap was confirmed by Pearson’s coefficients all above 98%. 

Temperature signal (ST) - a drop in the signal features was observed when part-to-part gap 

determined transition from the condition of sound weld to lack of connection, whereas from a 
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thermal point of view, increase of the temperature on the surface of the copper sheet was 

expected due to different heat exchange mechanisms that were observed in section 3.4.1.3.2. 

This discrepancy was explained considering that the collected thermal radiation consisted of 

the combined contribution of both plasma plume and surface. 

The step-changes in the plots of signal features {μP, μT, σP, σT} are strong indicators to 

diagnose the transition from sound weld to lack of connection.  Their plots showed that data can 

be clustered in 2 groups: gap = [0,100] μm and gap = [200,300] μm, thus indicating the 

transition to lack of connection that occured between 100 and 200 μm. This finding was 

validated via Wilcoxon rank sum tests which confirmed that features {μP, μT, σP, σT} of signals 

recorded during experiments with sound weld and lack of connection had significantly different 

medians (at 5% significance level). 

4.5 Further developments of this research  

Research reported in this chapter investigated whether photodiode-based monitoring is a 

viable approach to detect variations of both part-to-part gap and weld penetration depth.  

The approach for signal processing consisted on calculation and analysis of two features: 

the mean value and the signal scatter, which was evaluated as the standard deviation of signals 

in moving windows and depends on accumulated and un-controlled variations. Other statistical 

features, such as the skewness and the Kurtosis, which are the third and the fourth moments 

respectively, and were not investigated at this stage of the research. They could be included in 

future studies, as they might carry exploitable information. However, results indicated that the 

first two statistical features enable detection of weld defects generated by variations of both 

part-to-part gap and weld penetration depth. 

These outcomes enabled full development of an in-process monitoring system for 

isolation and diagnosis of weld defects, that were addressed in the next chapter, and ultimately 

autonomous closed-loop control of weld quality with integrated photodiode-based sensors, 

powered-up by machine learning. As an example, in Figure 34, features of signal SP are plotted 

in a “feature plane” and are clustered in distinct groups based on their classes. This 2-

dimensional representation schematises a methodology that could be extended to the 6 signal 

features that were investigated in the present research and could be implemented to train a 

classification model to develop an autonomous system for automatic control of the quality 

during laser welding of dissimilar metallic thin sheets. 
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Despite capability of the photodiode-based sensor to detect individual variations of part-

to-part gap and weld penetration depth was demonstrated, their simultaneous variations, which 

are very likely to occur and, therefore, have great practical importance in industrial 

environment, were not accounted. Therefore, this topic was addressed in the next chapter too. 

Research focused on definition of boundaries between clusters of experiments in the “feature 

space” with different labels to enable classification, especially in those regions were different 

classes overlap triggering false-negative (Type-I error) and false-positive (Type-II error).  

Furthermore, the correlation between the signal spread and the welding regime (either 

conduction or keyhole mode) could be validated via high-speed camera in future works. Indeed, 

high speed cameras can provide complementary information about surface features of the 

process, which is spatially integrated, whereas photodiode-based signals carry spatially 

integrated information on the process zone, with even different dimensionality. For this reason, 

fusion of photodiodes and cameras for in-process monitoring is a topic of great interest that 

could disclose valuable opportunities. Acoustic sensors can also be involved in sensor fusion 

with photodiodes as they provide different information about the process, however, their 

performances can be affected by acoustic nuisance coming from the production environment, 

which is an additional challenge that needs to be overcome. 

 
Figure 34- Representation of the "feature space" for automatic diagnosis of weld defects. (a) variations 

of laser power; (b) variations of the part-to-part gap. 
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4.6 Conclusions 

In this chapter, characterisation of photodiode-based signals was performed to asses 

whether deviations in the weld quality due to uncontrollable variations of the part-to-part gap 

and weld penetration depth could be detected during RLW of copper-to-steel thin sheets lap 

joint. Main results are summarised as follows: 

• Pearson’s correlation coefficient above 94% between signal features of SP and ST 

indicates that optical emissions of the plasma plume were not limited to the UV/visible 

spectrum only, but also encompasses thermal radiation in the IR; 

• Significant increase in the mean value and in the scatter level of signals SP and ST was 

an indicator of deeper weld penetration in the lower thin sheet. 

• Signal SR carried different information than signals SP and ST, however, it offered a 

weaker contribution to in-process monitoring of weld defects due to part-to-part gap, as 

validated via Wilcoxon rank sum test and calculation of the correlation coefficient 

(below 60%). 

• Abrupt drops in the mean value and scatter level of signals SP and ST were good 

indicators of deviations in the weld quality due to variations of the part-to-part gap. 

Indeed, plots of these signal features exhibited a drop when part-to-part gap increases 

above 100 µm which results in a transition from sound weld to lack or incomplete 

connection.  
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Chapter 5  

5 Diagnosis and isolation of weld 

defects with supervised ML 

5.1 Introduction 

Previous chapter addressed the characterization of photodiodes to variations in the part-

to-part gap and weld depth penetration during RLW of dissimilar metallic thin sheets. Findings 

demonstrated that these variations can be detected based on signal features such as the mean 

value and the scatter level. Definition, calculation and characterisation of signal features is the 

first step toward fault detection, as graphically represented by plots of experiments in feature 

space of Figure 34. Experiments resulting in similar weld quality are clustered in the same 

regions of the feature space. This concept is the underlying principle for automatic detection of 

weld defects via classification of gathered signals. However, automatic in-process quality 

monitoring requires a model for systematic processing of gathered data and for definition of 

boundaries in the “feature space” between observations belonging to different classes. 

 
Figure 35 - Concept of feature classification - different decision boundaries as result of different 

partitions of the feature space. 

As current advancements in digital technologies enhanced computational capabilities, 

ML and AI provide powerful tools that enable implementation of intelligent systems for 

automatic detection and diagnosis of process faults. The logic behind the automatic detection 

of defective welds via supervised ML algorithms is to collect a dataset by recording signals 
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during both in-control and faulty welding process. In this way, a training dataset is generated 

with observations belonging to the different classes considered. Raw data are processed to 

calculate features that enable their representation (see Figure 35) and, ultimately, are used to 

train classification algorithms to define “decision boundaries” between the different classes.  

Then, when a new observation, that was not involved in the training process, is classified, or- 

in other words- the algorithm automatically assigns a label to it based on the most similar class 

that was learnt during the training. The way “similarity” is evaluated by different algorithms 

leads to different results, making the selection of the algorithm an important step in the 

development of a system based on classification. Scenarios in which similarity between 

observations with the same label is poor result in misclassifications – i.e., multiple decision 

boundaries can be drawn in the feature space as consequence of the fact that the same set of 

features describe multiple classes. The target is to achieve the lower misclassification rate 

possible as possible to avoid false negative (type-I error) and/or false positive (type-II error) 

that can affect the scrap rate and the final quality of the production. 

This chapter investigates whether implementation of supervised ML algorithms and 

photodiodes can enable automatic diagnosis and isolation of weld defects, caused by 

simultaneous variation of part-to-part gap and laser power during RLW of thin sheets, with 

applications in battery tabs manufacturing. Photodiode-based signals were recorded in real-time 

during RLW of 200 µm-thick nickel-plated copper to 200 µm-thick nickel-plated steel thin 

sheets, and were processed to train 7 algorithms (namely, k-nearest neighbours, decision tree, 

random forest, Naïve-Bayes, support vector machine, discriminant analysis and discrete 

wavelet transform combined with neural network). Their performances were evaluated in terms 

of classification accuracy by introducing three classes: lack of connection, sound weld and over-

penetration weld, and values of accuracy were compared to evaluate their capability to 

automatic classify weld defects. Main causes of misclassification were analysed and identified, 

along with arising opportunities for further development based on sensor fusion, integration 

with real-time multi-physical simulation and semi-supervised ML. 

5.2 State of the Art 

Although several innovative technological solutions have been developed in laser 

welding to improve stabilization of the molten pool and, therefore, widen the process window, 

still the weld quality does not meet the expected targets. This calls for implementation of 

systems for in-process monitoring of the quality. In this context, application of supervised ML 
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algorithms is a hot research topic, as it can enable automatic detection of defective welds via 

classification. 

Whan et al. developed a fuzzy multi-feature pattern recognition system to classify the 

weld quality via processing of UV and IR photodiode-based signals with respect to five classes, 

namely optimal heat input, slightly low heat input, low heat input, partial joining due to gap 

mismatch, and nozzle deviation [58]. Sumesh et al. trained decision tree and random forest 

algorithms with statistical features that were extracted by processing signals, which were 

collected using microphones, to estimate weld penetration depth during metal-arc welding with 

respect to three classes [60]. Rodil et al. implemented and discussed two different methods for 

in-process monitoring that involved time-frequency analysis of photodiode-based signals (in 

the IR and UV/VIS ranges) and correlation with plasma electronic temperature, respectively, to 

detect defective welds during  laser welding of galvanized steel (1 mm thick)  [26]. Lee et al. 

implemented in-situ monitoring of CO2 laser welding of 0.83 mm-thick galvanized steel by 

training k-NN and SVM models with the ranked features based on the spectroscopic and 

temporal information of the spectra [61]. Wang et al. processed features extracted from pictures 

obtained with high speed photography and used them to train SVM algorithm to evaluate  

quality of welded steel plates via classification [62]. Lei et al. developed a novel method which 

leverages deep convolutional NN for detection and location of weld bead. They also proposed 

a deep semantic segmentation network for data augmentation to cope with the lack of open 

datasets in real industrial applications for effective training [35]. 

Ozkat et al. discussed integration of  information extrapolated with photodiodes and 

inferred via physics-based modelling to predict geometric features of the weld seam during 

RLW of zinc-coated steel with a thickness ranging between 1 and 1.2 mm [53]. They also 

outlined opportunities for development of a CLIP control system. 

As reported so far, most of the contributions in literature about implementation of 

classification algorithms to monitor the weld quality were applied mainly to laser welding of 

sheets with thickness above 1 mm, which is a process more robust to variations than assembly 

with thin sheets (below 500 µm) [10]. However, research about application of algorithms to 

predict the quality during laser welding of thin sheets needs further developments as results are 

still scattered and not completely exhaustive [10,27]. Lee et al. processed data collected with 

photodiodes to train and compare 3 classification algorithms, namely SVM, fully connected 

NN and CNN,  to predict the weld penetration mode (penetration limited to the upper foils, 

penetration of the weld in the lower foil and transition mode) [63]. Also Kang et al. investigated 
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the use of CNN to predict the weld penetration depth during RLW of 0.4mm- thick aluminium 

to 1mm- thick copper thin sheets processing data collected with CCD images and spectrometer 

to perform regression of the weld penetration depth that was ultimately validated with 

measurements with OCT [29].  

Research reported in this chapter aimed to contribute to this field by implementing ML 

algorithms and photodiodes for in-process monitoring of simultaneous variations of part-to-part 

gap and weld penetration depth during RLW of dissimilar metallic thin sheets. 

5.3 Materials and methods 

5.3.1 Materials and equipment 

As in Chapter 4, the laser source, the 2D scanner and the photodiode-based sensor that 

were used during the weld trials are an nLight Compact Fiber Laser 3kW (nLight Inc., USA), 

a Scout-200 (Laser & Control K-lab, South Korea), and LWM 4.0 (Laser Welding Monitoring, 

Precitec GmbH, Germany), respectively. Also in this research activity, we considered the 3 

photodiode-based signals indicated as SP (plasma), ST (temperature), and SR (back reflection), 

that were recorded by collecting optical emission the following three ranges: 300-700 nm, 1200-

2000 nm, and 1020-1090 nm, respectively with a sampling rate of 50 kHz.  

The experimental setup was the same as described in Chapter 4, with the sensor coupled 

to the scanner just below the collimator, and its position aligned to the centre of the process 

zone (see Figure 25 (a)). The weld trials were carried out implementing laser beam wobbling 

with a welding speed of 120 mm/s and circular oscillations with 0.2 mm radius and a frequency 

of 500 Hz. The laser power (PL) was delivered in continuous mode and the direction of the laser 

beam was perpendicular to the specimens (this was enabled via the F-theta optics). The system 

was regulated so that focal point of the laser beam was positioned 500 µm above the lower 

surface of the bottom sheets. No filler wire and shielding gas were used. Occurrence of 

overpenetration with piercing of the thin sheets was indicated based on whether a print was left 

by the laser on a “check-surface” that was placed underneath the steel sheet, as shown in Figure 

25 (b)). 

5.3.2 Design of experiments and generation of datasets 

The experimental campaign was designed to reproduce scenarios with simultaneous 

variations of the laser power and of the part-to-part gap, which, therefore, are the factors of the 

design of experiments. 5 levels of the laser power were considered to reproduce scenarios with 
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variable weld penetration depth and corresponding changes in the thermal-dependent laser 

absorption, whereas 4 levels of part-to-part gap were considered and controlled in the 

experimental setup by means of shim packs. Each experimental point was reproduced with three 

replications that were executed with randomized order to avoid unknown bias effects. Before 

the welding trials, the surfaces of the specimens, that were 70 mm long and 30 mm wide, were 

cleaned with acetone to remove any surface contamination. Weld configuration for all the trials 

was lap joint with and 30 mm long. All the welds were prepared to obtain a cross section in the 

middle for metallographic analysis – the material preparation process consisted of mounting in 

resin disks, grinding and polishing steps with no etching before analysis at the optical 

microscope Nikon Eclipse LV150N. 

During analysis at the optical microscope of the cross sections, three measures in the 

weld profile were taken (see Figure 36). They are: (1) the weld penetration depth, Dpen; (2) 

throat thickness, TS; (3) and, the actual part-to-part gap. Ts was measured at the shortest distance 

of the weld profile from the bottom corner of the upper material. Then, experiments were 

labelled based on these measures with respect to three classes, whose definition derived from 

the need to ensure safety of the process (no laser piercing through the bottom sheet) and to meet 

electrical and mechanical requirements (via control of TS and Dpen). These classes are: 

Class (1) - Over penetration (OP): laser mark left on the check surface. 

Class (2) - Lack of connection (LoC): Dpen < 0.35·TL and TS < 0.75·TU; 

Class (3) - Sound weld (SW): Dpen ≥ 0.35·TL, Dpen < TL, TS≥ 0.75·TU.  

The purposes that led to definition of these labelling criteria are articulated as follows: 

(1) due to piercing of the thin sheets, over-penetration involves the risks of damaging adjacent 

components and thermal-runway; (2) minimum level (35% of TL) of weld penetration depth to 

ensure mechanical resistance; (3) minimum level (75% of TU) of throat thickness to ensure both 

electrical conductivity and mechanical resistance.  

 
Figure 36 - Geometric features of the cross sections that were measured: the effective gap, the 

penetration depth (Dpen) and the throat thickness (TS). 
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Collection of photodiode-based signals during this experimental campaign allowed 

generation of a dataset with simultaneous variations of laser power and part-to-part gap (dataset 

C). Datasets generated with experiments described in Chapter 4, that were obtained varying 

individually the laser power (dataset A), and only the part-to-part gap (dataset B), were included 

in this investigation to test the capability of the algorithms to generalise. Indeed, the copper thin 

sheet used in experiments of datasets A and B have different coating and thickness, as reported 

in Table 8. 

Table 8 - Definition of datasets with related process parameters and materials. 

Process & materials 

Dataset 

A B C 

Laser power [W] 600 to 1500 1050 390 to 990 

Part-to-part gap [µm] 0 0 to 300 0 to 200 

No. of data points 46 14 86 

Upper material, TU 

C103 copper R240  

(un-coated), 300 μm 

C103 copper R240,  

Ni-plated, 200 μm 

Lower material, TL Hilumin (steel cold deep, Ni-plated) 300 μm 

 

5.3.3 Signal processing and definition of signal features 

The three signals, SP, ST and SR, that were recorded during weld trials with LWM 4.0 

varied between 0 and 10 V, due to settings that were chosen for hardware and software gains. 

As labelling of the weld trial was based on analysis of one cross section in the middle 

of the seam, the signals were cropped to select the corresponding portion. Therefore, a portion 

at the middle of each signal corresponding to 6 mm (equivalent to a duration of 0.05 seconds 

and approximate 2,500 readings) was extracted. To ensure correct correspondence between the 

selected portion of the signals and the results of metallographic analysis, length for the cropping 

window had to be defined carefully to account that the material preparation process was manual. 

This led to definition of ±3 mm tolerance, which resulted in 6 mm as total length of the cropped 

signal.  

Then, similarly to Chapter 4, two statistical features were calculated from the selected 

parts of the signals: the mean value, µ, and the scatter level, σ. In this chapter, the scatter level, 
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σ, was estimated as the standard deviation of the zero-meaned oscillations with frequencies 

above 100 Hz (oscillating component of the signal was calculated by subtracting a low-pass 

filtered signal to the raw signal). In this way, each observation of the dataset was represented 

with a six-tuple of signal features, {µP, σP, µT, σT, µR, σR}.  

 
Figure 37 - Representation of the three analysed datasets for the SP signals. Red triangle indicates laser 

mark left on the check surface. 

Figure 37 shows three plots of the weld trials in a plane based on the values of µP  σP. , 

one for each of the three analysed datasets. In Figure 37 (a), weld trials of dataset A are plotted, 

which were obtained by varying the laser power to achieve gradual variations in the weld 
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penetration depths spanning from lack of connection to over-penetration. This gradual 

transition was reflected by gradual variations in the values of the signal features that resulted in 

overlap between different classes with a negative effect on the capability of the detection of 

weld defects by using classification algorithms – this point is covered more in detail in the 

"Results” section. Conversely, in Figure 37 (b), plot of weld trials of dataset B led to two distinct 

clusters as lack of connection due to excessive part-to-part gap resulted in abrupt changes of µP  

σP. Plot in Figure 37 (c) represented experiments of Dataset C with simultaneous variations of 

weld penetration depth and part-to-part gap, which also resulted in overlapped regions with 

gradual transition. 

As the size of dataset B was limited to 14 observations and it could not be used alone to 

train ML algorithms, it was combined with dataset A and C (A∪B∪C) to test the capability of 

the algorithms to generalise even when thickness and coating of the copper thin sheets change. 

5.3.4 ML models for classification of weld defects  

Part of the research activity reported in this chapter consisted of benchmarking 7 ML 

classification models [10,38,60–62] for diagnosis and isolation of weld defects. They are:  

k-NN - a data point is classified based on its position and the label of its “k” nearest neighbours, 

with “k” being an integer indicating the number of nearest neighbours that are considered; the 

most common class among the considered nearest neighbours is assigned as result of the 

classification. 

decision tree - classification is determined by binary decisions at different nodal levels, with an 

observation being assigned to one of the two branches based on attribute values. Final decision 

results in assignation to a class at the last level, which is also called “leaf”. 

random forest – they consist of an ensemble of decision trees, and are employed to cope with 

the tendency to overfit of individual decision trees. 

Naïve-Bayes – it is a probabilistic classifier with boundaries between classes that are defined in 

the space of the observed attributes by leveraging Bayes theorem and assuming that the features 

are conditionally independent; coupling with kernel density estimation, it enables achievement 

of higher accuracy. 

SVM - it based on definition of an hyperplane, which is a boundary, between two classes in the 

feature space by maximising the distance margins between observations belonging to the 

classes; therefore, it is suitable for binary classifications only. 
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discriminant analysis - boundaries between different classes are set in the space of the observed 

variables assuming that different classes generate data based on different Gaussian 

distributions. 

DWT&NN - DWT is used for time-frequency analysis and returns a set of coefficients that 

allows representation of the signal. In this work, calculated DWT’s coefficients are used as 

input to train a single-layer perceptron NN. 

Since SVM uses a binary classifier and in this research three classes were introduced, 

we considered the error-correcting output codes (ECOC) model instead. It is worth noting that 

these methods are optimized to work with low number of features (below 100). Parameters and 

kernels for each of the considered ML models were summarised in Table 9.  

Additionally, in this research, DWT is implemented too because it can provide features 

that can be useful to train classification algorithms and are different from the statistical ones 

which were introduced above. Indeed, DWT of signals is used for time-frequency analysis and 

outputs a set of coefficients that enables representation in the time-frequency bands domain 

[10]. Moreover, DWT is efficient in deailng with non-stationary signals, whereas other 

transform, such as the Fast Fourier transform can provide effective representation in the 

frequency domain of stationary signals only. For this reason, DWT can effectively represent 

also local spikes, discontinuities, and fluctuations, accounting their local frequency content.  

In the context of this application, main reason to include the DWT was that it provides 

features that account oscillations of the photodiode-based signals which can reflect changes in 

the dynamics of the keyhole and molten pool. Indeed, changes in the process status can affect 

the recoil pressure acting on the keyhole walls and the pressure equilibrium, and therefore result 

in different dynamics of the keyhole and molten pool. [37]. 

 

Figure 38 -Application of DWT for signal approximation. (a) Original signal with Ns=12560 and (b) 

approximated signal reconstructed with Ns=3140. 
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Table 9 - Kernels and parameters of ML models. 

ML model Parameters and kernels 

(1) k-NN 

Similarity metrics: Euclidean distance 

Number of neighbours: tested both 2 and 3. With k>3 accuracy 

degraded.  

Standardization of values of the predictors 

(2) Decision tree 

Algorithm: classification and decision tree (CART) with Gini 

diversity index split criterion. 

Minimum leaf size: 1 

Minimum sample split: 2 

Model depth: 

3 for dataset A 

5 for dataset C 

6 for dataset A ∪ B ∪ C 

(3) Random forest 

Algorithm: classification and decision tree (CART) with Gini 

diversity index split criterion. 

Minimum leaf size: 1 

Minimum sample split: 2 

Number predictor considered at each node: 3 (randomly 

selected) 

Number of trees: 20 

Model depth: 

4 for dataset A 

6 for dataset C 

8 for dataset A ∪ B ∪ C 
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(4) Naïve-Bayes 
Kernel smoothing density estimate with normal kernel 

smoother 

(5) ECOC-SVM 

3 binary SVM models with: 

- Coding design: “one-vs-one” 

- Kernel: linear 

- Solver: Iterative Single Data Algorithm 

- Standardization: off 

- Box-constraint = 1  

(6) Discriminant analysis Quadratic kernel 

(7) DWT&NN Single-layer perceptron without hidden layers 

 

Given a signal with NS reads, its DWT is an iterative process, and it is performed by 

passing it through digital low pass filters with impulse response, called scaling function, and 

through high pass filters, the wavelet function. The outputs of these two convolutions at a given 

iteration- or equivalently at a given level- are two sets of NS/2 ordered coefficients each, which 

are indicated as approximation and detail and store information about the global trend of the 

signal and the local oscillations, respectively. The approximation set at a given level can be the 

input for the following iteration, which returns another couple of approximation and detail sets 

of coefficients. Iterations corresponding to different levels store information about the 

frequency content of the signals at different frequency bands. The sets of coefficients 

(cumulated total number of coefficients equal to NS) returned by the transform as output of 

consecutive iterations can be arranged in a sparse matrix and allow non redundant 

representation of the signal with perfect reconstruction upon inversion.  

In many applications, numeric values of the high frequency-bands coefficients are close 

to zero and, therefore, their contribution to the reconstruction of the original signal can be 

negligible  [10,37]. Therefore, use of Ns/2, Ns/4 and Ns/8 coefficients calculated with the DWT 

allows representation of the original signal with progressively lower dimensionality, however 

the resolution is lower as information about local details is carried by lower number of 

coefficients. This is shown in Figure 38, where the original signal had Ns=12560 and the number 

of coefficients used for reconstruction was Ns/4=3140.  
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In this study, coefficients calculated with DWT were used as signal features to train NN 

as they allow different representation of the signal than the statistical descriptors (µ and σ). 

Indeed, NNs are suitable to process data with high dimensionality [15]. Many papers in 

literature report studies about applications of NNs that were trained to detect weld defects via 

classification, especially, deep neural networks (DNN) and CNN, whose potential is gaining 

increasing interest ([9], [14], [16]). In this study, we trained a NN which consisted of a fully 

connected input layer (whose nodes are the DWT coefficients) to the output layer (whose nodes 

are the 3 classes), with a bias vector and without hidden layers. The softmax function was then 

used for normalization. To avoid any randomness during the training, the weights of the fully 

connected layer were initialized to zero. 

ML models (1) to (6) in Table 9 were trained with the 6 statistical features, {µP, σP, µT, 

σT, µR, σR}, whereas the NN was trained with a subset of 1250 coefficients that were calculated 

by means of DWT with Haar wavelet. Accuracy of the ML models was evaluated using leave-

one-out cross-validation; implementation was carried out in Matlab ©. Each algorithm was 

trained N times, with N being the number of observations in the dataset and also the number of 

folds. In this way, all the observations were individually used to test the algorithm that was 

trained with the remaining N-1 observations in N iterations. 

Table 10 - Percentage composition (and absolute number specified) of dataset C before and after 

class balancing. 

Class Before  After  

Lack of connection 64.4 % (55) 35.9 % (59) 

Sound weld 10.5 % (9) 32.6 % (53) 

Over-penetration 24.0 % (22) 31.5 % (51) 

 

Use of a training dataset with imbalanced composition can negatively impact the 

accuracy of classification models. The terms balanced and imbalanced are used to describe 

whether classes are equally represented by the observations or not in dataset. Typically, in 

classification problems, different approaches are employed to cope with imbalance of the 

training datasets. They include under-sampling of the majority class, oversampling of the 

minority class, applying cost functions or synthetic data generation/augmentation [64]. In this 

study, dataset C was generated during experimental campaign which is described in Table 8. 

The design of experiments resulted in generation of an imbalanced dataset as higher number of 
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weld trials were carried out with higher part-to-part gaps to account process instability at higher 

power. Therefore, balancing of dataset C was necessary and it was addressed by augmentation 

of the minority class via linear combination of original signals. Synthetic signals were generated 

by averaging original signals elementwise. Percentage class composition of dataset C before 

and after class balancing is reported in Table 10.  

 

Figure 39 - Results of the metallographic analysis for dataset C, calculated over 3 replications. Red 

triangle indicates bottom foil piercing (a). Radial Basis Function used for regressions (R2=90%) in (b) 

and (c). 

5.4 Results and discussion 

5.4.1 Metallographic analysis 

Metallographic analysis of welds and characterization of signals of datasets A and B 

was already addressed in the previous chapter. Hence, in this section only the results of dataset 

C were reviewed.  
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86 weld trials were carried out achieving weld conditions spanning from lack of 

connection to over-penetration, as shown with cross sections in Figure 39 (a). It is interesting 

to observe that, when part-to-part gap is zero, the transition from a condition of sound weld to 

over-penetration was indicated by the change of the geometric shape of the weld seam from 

conical to cylindrical, reflecting that the laser pierces the steel sheet and marks the check 

surface. 

In Figure 39 (b-c), weld penetration depth and its variability are contour plotted against 

the part-to-part gap and weld penetration depth. They were evaluated as the mean and the 

standard deviation of the values that were measured in the cross sections, respectively. 

Predictably, increasing laser power resulted in greater weld penetration depth, as shown in 

Figure 39 (b), whereas increasing part-to-part gap caused reduction of the weld penetration 

depth. Indeed, Figure 39 (d) graphically showed that the conditions of lack of connection and 

over-penetration were achieved for ranges of the laser power PL respectively equal to [390, 540] 

W and [840, 990] W.  

Figure 39 (c) shows that when gap ≥ 150 µm the process variability significantly 

increased, especially for PL=[840 , 990] W. This can be explained considering that these 

combined values of PL and gap made the molten pool unstable since the liquid copper flowed 

in the part-to-part gap as gravity prevailed on viscous stresses and surface tension [49]. As 

result, significant variability in the weld penetration depth indicated low process repeatability 

(when gap ≥ 150 µm the standard deviation is approx. 125 µm, which is more than half of the 

copper thickness), and consequently the coexistence of the 2 classes (lack of connection and 

over-penetration) for the same experimental point of the DoE, as shown by cross sections 

reported in Figure 40 that were obtained from two replicas of the same experiment. 

 
Figure 40 - Two replicas of the same experiment with gap=150 µm; PL=840 W (dataset C). (a) Lack of 

connection; (b) over-penetration. Red triangle indicates laser mark left on the check surface.  
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5.4.2 Characterization of signals 

Characterization of signals SP, ST and SR to simultaneous variations of laser power and 

part-to-part gap was addressed in this section by analysing their mean value and scatter level.  

To test the statistical significance of the laser power and of part-to-part gap on the 

process status, a 2-way ANOVA was performed - significance level set at 5%.  With the 

ANOVA, the null hypothesis that the process parameter had no impact on the signal feature 

was tested, against the alternative hypothesis that its variation had significant impact and was 

reflected by the variation in the signal itself. Table 11 reports the results of the 2-way ANOVAs 

in terms of p-values. A p-value lower than 5% implied that the alternative hypothesis is 

accepted. Additionally, for each of the 6 statistical features, a quadratic polynomial fitting of 

the data led to a regression model that was contour-plotted against the two considered factors. 

(Figure 41).  

Table 11- Results of the ANOVA test (p-values) for each of the statistical feature (dataset C). 

Feature Variable p-value Significance 

µP 

PL 1.745e-10 

Strong 

 

gap 1.461e-07 

σP 

PL 2.689e-09 

gap 2.638e-05 

µT 

PL 1.943e-12 

gap 5.474e-08 

σT 

PL 6.625e-16 

gap 1.213e-12 

µR 

PL 0.078 Weak 

gap 1 Poor 

σR 

PL 0.078 Weak 

gap 1 Poor 
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Main findings are discussed as follows: 

Plasma and temperature signals (SP and ST) – p-values smaller than 0.05 confirmed the 

statistical significance of laser power and part-to-part gap on the values of {µP, σP, µT, σT} and 

indicated that variations of both these factors were reflected by signal features of SP and ST. 

Additionally, contour plots of the regressions in Figure 41 (a-d) show a positive correlation 

with the laser power and a negative correlation with the part-to part gap. As observed in Chapter 

4, this can be explained considering that the increasing values of PL resulted in more intense 

evaporation, and thermal radiation emitted by both the process zone and the plasma plume. 

Moreover, greater part-to-part gap caused increasing dispersion of the process radiation 

between the two sheets. 

Back-reflection signal (SR) – variations of laser power (p-value=7.8%) and part-to-part gap (p-

value=100%) did not statistically describe the variations observed in the back-reflection. 

 
Figure 41- Contour plot of the regression models (quadratic polynomial fitting with R2 = 90%) 

calculated for each statistical feature (dataset C). 
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5.4.3 Classification of weld defects 

The performances of the ML algorithms that were considered in this study were 

estimated as accuracy of classification in Table 12. Values of accuracy are reported in 

percentage and were evaluated as the ratio between the number of correct predictions and the 

total number of data points in the dataset; the higher the number of misclassification the lower 

the accuracy. To verify the capability of the models to generalise even when experimental 

conditions changed (thickness and coating of the copper thin sheet - see Table 8), they were 

also trained with dataset A ∪ B ∪ C.  

Table 12- Accuracy in percentage of all the selected ML models for automatic classification of weld 

defects. 

Algorithm A C A ∪ B ∪ C 

2-NN 80.4 95.1 89.5 

3-NN 82.6 95.7 88.5 

Decision tree 71.7 95.1 81.6 

Random forest  87 94.5 88 

Naïve-Bayes 65.2 96.9 73.8 

ECOC-SVM 54.3 96.3 87.4 

Discriminant 

analysis 
71.7 96.3 84.4 

DWT&NN 84.8 97.5 92.7 

 

Discussion of main findings is articulated in the following subsections to address 

different aspect investigated.  

5.4.3.1 Discussion about the accuracy 

Smaller size and overlap of data corresponding to weld trials with different labels (see 

Figure 37 (a)) negatively impacted the accuracies of ML algorithms trained with dataset A. 

Indeed, incremental variation of signal features reflected progressive increase in the weld 

penetration depth, which determined overlap regions between clusters with different classes. 
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The random forest and the DWT&NN models scored the two highest classification accuracies 

respectively equal to 87% and 84.8%.  

Detrimental effect of limited size of the dataset was overcome with data augmentation 

which was carried out to cope with imbalance of Dataset C. However, interaction between 

opposing effects of simultaneous variations of part-to-part gap and weld penetration depth 

resulted in overlap of data corresponding to different classes. Among models trained with 

dataset C, the highest performance was achieved by DWT&NN with 97.5% accuracy, which 

was explained considering that the DWT coefficients allowed a more detailed representation 

than the statistical features, as they carried additional information about the frequency content 

of the signals, thus, enabling better performances.  

5.4.3.2 Discussion about the generalization 

Results indicated that use of data with different experimental conditions in the training 

dataset induced confusion in the classification algorithms. Indeed, thickness and coating of the 

copper sheets changed from dataset A/B and C, resulting in degraded performances of all the 

algorithms when they were trained with mixed dataset (A∪B∪C) compared to when they were 

trained with dataset C only (which includes more observations than A and B). The algorithms 

were unable to generalise different experimental conditions as they were unable to find reliable 

patterns for classification in numeric data that reflected both changes in the process status and 

the experimental conditions. Once again, the algorithm that best generalised was the DWT&NN 

with 92.7% accuracy.  

5.4.3.3 Discussion about the misclassification 

Two main sources of confusion were identified with analysis of the misclassifications. 

They were: (1) high variability of the welding process itself due to physical properties of the 

metals welded (i.e., high reflective materials such as copper) or resulting from the part-to-part 

gaps - as articulated in 5.4.1 with Figure 39 (c); these variability was eventually not reflected 

in the signal features; (2) the interaction between opposing effects of the two process parameters 

that resulted in comparable welds but different values of the signal feature, or the existence of 

both over-penetration and lack of connection at the same time- this evidence is included in 

Figure 39 (d) with overlapped regions and it is illustrated with Figure 42.  

Findings articulated so far documented that passive observation of the weld emissions 

with photodiodes provided useful information for the classification but did not enable complete 

real-time indication about the weld quality. This is because photodiodes do not directly measure 
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weld features, but only optical radiations emitted during the process. As an example, formation 

of shrinkages in the upper thin sheet due to the part-to-part gap did not seems to impact the 

process radiation and, therefore, they were not signalled by the signal features.  

 
Figure 42 - Representative examples of misclassified observations for dataset C. Red triangle indicates 

laser mark left on the check surface. 

5.5 Opportunities for further development 

Discussion in the previous paragraph about generalisation, data-augmentation, and 

analysis of misclassifications revealed that data-drive approach is sensitive to size of dataset 

and to exhaustiveness of information gathered by the sensor. As the final target is to achieve 

the highest classification accuracy as possible, future research is needed to overcome discussed 

limitations. Opportunities for further developments are discussed as follows. 

5.5.1 Sensor fusion  

As discussed in Chapter 4, sensor fusion can enable more comprehensive indication on 

the weld quality and reduce causes of misclassification. Options than could be considered for 

integration with photodiodes are those sensors that record complementary information from 

observation of different features of the process, with even different dimensionality of gathered 

data. They include vision systems/laser scanners (for the direct measurement the seam top 

surface and throat thickness), microphones, or spectrometers. For this reason, research in this 

field can disclose opportunities to improve performance of an in-process monitoring system. 
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5.5.2 Integration with multi-physical simulation 

Improved computational resources and the multi-physical modelling [65], are now 

enabling the  development of digital-twin models that combine both data-driven and physics-

driven approaches. As an example, sub-surface features of the process (i.e., weld pores) that 

cannot be directly observed due to technological challenges and limitations, could be predicted 

via multi-physics modelling.  

5.5.3 Further developments in machine learning 

As discussed along with analysis of the results, ML algorithms are data-hungry which 

means that their classification accuracies tend to improve with increasing size of the training 

dataset. Therefore, generation of a large dataset and labelling big number of experiments are at 

the same time a fundamental step for implementation of supervised ML. However, it is also a 

expensive and time-consuming processes. Additionally, data labelling is a manual process and 

prone to errors. To cope with this conflicting needs, semi-supervised ML approaches, which 

would rely on a mixed-dataset of both “labelled” and “un-labelled” data, could be an interesting 

solution to investigated, in which un-supervised algorithms, such as k-means or hierarchical 

clustering, could be implemented. 

5.6 Conclusions 

The research activity reported in this chapter focused on the combined implementation 

of photodiodes and ML classification algorithms to automatically diagnose and isolate weld 

defects due to simultaneous variations of over-penetration and lack of connection in RLW of 

dissimilar metallic thin sheets. To account safety, electrical and mechanical requirements of 

this application, three categories were defined (lack of connection, sound weld and over-

penetration). Seven classification algorithms were trained and their performances in terms of 

accuracy were compared. Main results were articulated as follows: 

• Characterization of the sensor to variations of part-to-part gap and laser power, revealed 

that SP and ST signals provided were significantly correlated to both the considered 

factors, whereas, correlation of back-reflection signal SR resulted to be weak. 

• Interaction between opposing effects of variations of part-to-part gap and weld 

penetration depth, resulted in high variability when gap ≥ 150 µm, due to the process 

instability caused by the limited thickness of the specimens. These variabilities were 

eventually not captured by the signals being a source of misclassifications.  
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• The NN trained with DWT coefficients of the signals enabled detection of defective 

weld due to simultaneous variations of weld penetration depth with classification 

accuracy equal to 97.5 %. 

• Photodiode-based signals carried significantly correlated information to process 

variations for training of supervised ML models, however, recorded optical emissions 

did not provide exhaustive indication on the process’s status, as they did not detect 

shrinkages in the upper sheet, for instance.  
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Chapter 6 

6 Conclusions and future works 

This chapter briefly summarises the present research, points out the main contributions, 

and outlines opportunities for future research. 

6.1 Conclusions and key findings 

This dissertation aimed to contribute toward the development of a control system for in-

process control of RLW of dissimilar metallic thin sheets for manufacturing of connections 

within battery packs. However, development of such a system involves long term research with 

intermediate objectives, that include:  

i. understanding of complex phenomena involved in the process,  

ii. in-process monitoring of targeted nuisance factors, and  

iii. classification of the actual status of the RLW process. 

Therefore, this PhD focused on these research topics and addressed the following 

objectives: 

1. Development of a multi-physics CFD model for the simulation of RWL of copper-to-

steel thin sheets with variable part-to-part gap and weld penetration depth, 

2. Characterization of a photodiode-based sensor to variations of part-to-part gap and weld 

penetration depth during RLW of dissimilar metallic battery tab connectors, 

3. Implementation of photodiodes and supervised Machine Learning algorithms for 

automatic isolation and diagnosis of weld defects during welding of copper-to-steel thin 

sheets. 

A multi-physics CFD model was developed, calibrated and validated with respect to the 

analysis at the optical microscope of weld cross-sections. This combined experimental-numeric 

approach enabled investigation of complex features involved in the process such phase changes, 

keyhole dynamics in the molten metal, and mixing mechanism. Scenarios with variable weld 

penetration depth and part-to-part gap enabled analysis of the effects of these disturbance 

factors on thermal and velocity fields. Although the variation of part-to-part gap cannot be 
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zeroed owing to manufacturing and clamping tolerances, its detrimental effect can be reduced 

by the optimisation, which can be achieved via laser beam shaping, power modulation and/or 

beam wobbling at higher frequency. For this reason, improvement of the process via laser beam 

shaping was numerically investigated and discussed.  Simulations with ring-shaped secondary 

laser beam predicted more stable dynamics of the keyhole, wider size of the melt pool, and 

reduced mixing between parent metals due to the more distributed input power, if compared to 

the case of welds with only primary beam. Results of simulations with tandem configuration 

were very similar, in terms of geometry of the weld seam and metal mixing, to the case of welds 

with primary beam only, instead.  

Characterization of a photodiode-based sensor was carried out by collecting optical 

radiations of three distinguished bandwidths that were recorded in three signals, SP, ST and SR. 

They were processed to extract signal features, namely the mean value and the scatter level. 

Statistical signal features were employed to characterize the sensor to variations of the part-to-

part gap and weld penetration. Capability to detect these variations was quantitatively 

demonstrated via hypothesis test and estimation of the correlation with Pearson coefficients. 

Results showed that lack of connection in the welds due to part-to-part gap was indicated by 

abrupt changes in the energy intensity and in the scatter level of SP and ST. Variations in the 

weld penetration depth were indicated by gradual changes in the mean value and in the scatter 

level of signals SP and ST. Signal features of SR carry complementary information to  SP and ST 

signals, however, they showed lower correlations to the considered variations. Raw data, script 

of the signal processing, and results were shared on the open access Zenodo platform. 

Six supervised ML algorithms, namely, k-nearest neighbours, decision tree, random 

forest, Naïve–Bayes, support vector machine, and discriminant analysis were trained with mean 

value and scatter level of photodiode-based signals SP, ST and SR during weld of copper to steel 

thin sheets. Additionally, a NN was trained with coefficients calculated with DWT of these 

signals. Three classes were introduced to diagnose and isolate of defective welds, namely lack 

of connection, sound weld, and overpenetration. Copper sheets with different coating and 

thickness were used to test the capability of the models to generalise. The DWT+NN achieved 

best performances with accuracy of classification equal to 97% in the case of simultaneous 

variations of the part-to-part gap and weld penetration depth. Analysis of the misclassifications 

revealed that balancing of data via minority class augmentation had improved accuracy, 

whereas mixing of data from experiments with different copper sheets remarked that purely 

data-driven approach did not associate physical meaning to numeric values of signal features. 
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6.2 Opportunities for further developments 

Opportunities for further developments were discussed along with critical analysis of 

results and are articulated in two sub-paragraphs that deal with research in process modelling 

and research in in-process monitoring. 

6.2.1 Future research streams for multi-physics modelling 

Development of a physical model for simulation of RLW of dissimilar metallic thin 

sheets is the first step toward development of a digital twin of this process. Future research 

could be devoted to study solutions for the integration of data gathered with sensors and results 

from simulations, which is a key-concept of digital twins and one the latest trend and focus of 

intelligent welding field. 

Additionally, dedicated research with experimental-numerical approach to study the 

mechanical behaviour of laser welded joints with thin sheets is planned. The effects of 

incontrollable variations of part-to-part gap on the static and the fatigue strength is the focus of 

this research. It could contribute also to the research field of the digital certification of 

mechanical properties to meet requirements by integrating FEM models and geometry of the 

weld seam that was predicted with the present CFD approach. 

6.2.2  Future research streams for in-process monitoring  

Current performances achieved by the proposed methodology for in-process monitoring 

can be improved with different strategies. One of them is fusion of photodiodes with sensors 

that record different features of the process zone and, therefore, carry different information. For 

instance, coupling with imaging systems could provide more comprehensive understanding of 

the phaenomena as spatially resolved surface features would be complementary with specially 

integrated sub-surface information provided by photodiodes.  

Availability of a large dataset for the training process has beneficial impact on the 

accuracy performances of data-driven models. However, data generation with experiments and 

material processing for labelling are time and resource consuming. An approach to cope with 

these opposed needs, is the development of a hybrid supervised/unsupervised learning with 

progressive storage of new data recorded during operation of the monitored process in the 

original training dataset by leveraging unsupervised ML algorithms such as hierarchical and k-

means clustering.
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