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Abstract

The innovation in the automotive field due to the Fourth Industrial Revolution pushed towards
the integration in vehicles of mechatronic systems. Indeed, while safety systems, such as
the electronic stability program, have pioneered the automation of cars, recent advances in
the field of electronics have fuelled an increase in this trend. So intelligent transportation
systems, advanced driver assistance systems, vehicle handling stability and active safety have
increasingly been promoted. However, their implementation depends on accurate vehicle
dynamics state information, including those such as the vehicle sideslip angle and the tire
inflation pressure, that cannot be measured directly for technical and economical reasons.
The thesis is dedicated to the development and testing of algorithms for the estimation of
these variables. In particular, research activities have concerned the testing of a tire pressure
estimation scheme in Hardware-In-the-Loop (HIL) environment, and the development, in
Model-In-the-Loop (MIL) environment, of new algorithms for the estimation of vehicle
sideslip angle and tire inflation pressure, respectively. Concerning the tire inflation pressure,
several estimation schemes have been proposed to improve accuracy of the indirect Tire
Pressure Monitoring Systems (iTPMS). The most common iTPMS actually used in many cars
present on the market is based on wheel angular speed signal analysis. There are currently few
studies that focus on investigating the possibility to execute the iTPMS integration tests in HIL
environment. In particular, modelling and parameterization of simulation platform suitable
for testing the iTPMS in HIL environment, especially for wheel speed signal frequency
analysis, is a topic worthy of research, that have been addressed in the Thesis. The thesis
also deals with the development of new estimation schemes for vehicle sideslip angle and
tire inflation pressure. Indeed, even if estimation of these variables has been widely studied,
moving to next-generation vehicle control and future autonomous driving require further
advances in vehicle dynamics state estimation. Specifically, an innovative algorithm for
vehicle sideslip estimation is proposed to deal with critical driving conditions of non-trivial
scenarios. Based on the Interacting Multiple Model (IMM) filters, it not requires tire-road
friction coefficient knowledge to give a reliable estimation of the sideslip angle, also when
vehicle drives under critical road surface conditions. The IMM approach has been also
adopted in a new estimation scheme to deal with the estimation of the tire inflation pressure
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on roads with highly uneven surface. The advantage of the presented algorithms is that they
work only with CAN-BUS data coming from the sensors available on ordinary vehicles.
The algorithms have been tested rigorously under all possible conditions in MIL simulation
environment. To this purpose, a high-fidelity vehicle dynamics simulation platform has been
developed, whose modelling ad validation is described in the Thesis.
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Chapter 1

Introduction

1.1 Motivation

The modern day automobile not only represents a means of transport, but it also forms an
integral part of human society. Since its invention in the early 20th century, it has been
ingrained in our daily lives with the passage of time. Increasing research interest in the field
of automotive relies in the development of solutions to achieving, among others, one of the
main goals of future mobility: safety driving. As can be seen from Figure 1.1, approximately
1.35 million people die each year as a result of road traffic crashes, resulting to be the 8th

leading cause of death for people of all ages [11]. To effectively respond to 50% reduction
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Fig. 1.1 Change in the global number of road deaths as a function of year.

target for road deaths established by the UN General Assembly, vehicle driving automation
systems can be innovative solutions to support addressing of this challenge. Indeed, the
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innovation in the automotive field due to the Fourth Industrial Revolution, enhanced by
technological advances of Artificial Intelligence, automation, Internet of Things and fifth-
generation wireless technology, gives to car manufacturers the opportunity to improve
vehicle’s attributes towards the use of Advanced Driver-Assistance Systems (ADAS) and
Autonomous Driving Systems (ADS) [12]. ADAS and ADS contribute to achieving the goals
of future mobility [13], since they are designed to automate, adapt, and enhance vehicle
technology for safety driving [14, 15]. A literary review allows to clarify the role of these
technologies. Masello et al. in [16], using safety reports from the United Kingdom (UK),
have investigated safety effectiveness of ADAS across several driving contexts and accident
types (results are shown in Figure 1.2), estimating that a full deployment of the six most
common ADAS would reduce the road accident frequency in the UK by 24%. These data

Fig. 1.2 Overall accident reductions using ADAS by accident types. Each bar represents the
conservative estimated accident reductions, and the values are accumulated until reaching the
total accident reduction of 18925. Above each bar, the figure shows the decrease in accidents,
followed by its percentage of the total decline.

made vehicle driving automation systems an attractive option to address the mentioned
challenge. In general, as shown in Figure 1.3, the ADAS and ADS can be summarized in
three parts: perception, planning and control. Perception refers to the ability of automated
driving systems to collect information and extract relevant knowledge from the environment.
Planning refers to the process of making purposeful decisions in order to achieve the vehicle’s
higher order goals. Finally, the control competency, refers to the vehicle’s ability to execute
the planned actions that have been generated by the higher level processes. The perception
part, which is the pioneering component in the whole automated driving systems, through a
variety of on-board sensors (camera, lidar, millimeter wave radar, GPS, inertial sensors, etc.),
recognizes the surrounding environment and status of the controlled vehicle (Ego vehicle).
It provides the initial and boundary conditions for the planning part. Initial and boundary
conditions are usually provided in terms of road geometry, limitations given by regulations,
ego-vehicle and obstacles current positions, and velocities. Concerning the Ego vehicle status,
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Fig. 1.3 Schematic of automated driving system architecture.

knowledge of quantities, such as of vehicle sideslip angle, yaw rate, position and orientation,
as well as tire inflation pressure, is fundamental, especially for vehicle dynamics control
systems. In particular, some of these quantities, such as sideslip angle and tire inflation
pressure, are usually estimated indirectly rather than acquired with a direct measurement,
for both technical and economical reasons. It currently forms a big part of the research and
development effort that goes into creating a modern automated driving car. An overview of
ADAS systems, and in particular on vehicle dynamics control systems, is presented in the
following section, that allows to better understand the key role of vehicle dynamics states
estimation.

An Overview of ADAS and Vehicle Dynamics Control Systems

The importance of vehicle states estimation has increased starting from 90s, when it became
a fundamental task for the incoming active safety systems like Anti-lock Braking System
(ABS) and Electric Stability Program (ESP) [17]. The ABS helps vehicles avoid locking
their wheels when braking, which improves the vehicle’s stopping distance. The system’s
Electronic Control Unit (ECU), processing speed signals of the four wheels measured by
dedicated wheel speed sensors, releases the brake pressure of an individual wheel when
its locking is detected. The ESP generally can be seen as an extension to ABS for further
augmenting vehicle safety [18], which, other than ABS, comprises the functions of the
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traction control system for improving the vehicle lateral stability. Furthermore, the ESP also
monitors the vehicle states and tries to keep their values within desired thresholds, such as
for the sideslip angle: the EPS, acting on brake and engine torque demand, prevents the
sideslip angle from becoming large enough to digress into the tire saturation range, reducing
loss of traction and improving vehicle’s stability. Both ABS and ESP are reactive systems
as they intervene only when the vehicle is operating near to unstable conditions. Active
control systems, instead, work continuously in order to influence the dynamics behaviour of
a vehicle, such as adaptive dampers, active aerodynamics, torque vectoring and rear wheel
steering. The first, by changing the damping in the four suspensions, toggles between the
opposite objectives of comfort and road holding improvement. The active aerodynamics
working principle consists of varying aerodynamic drag and vehicle downforce according
to the actual manoeuvre. The torque vectoring, controlling the yaw moment of a vehicle
through the traction/braking torque across the four wheels, influences the lateral dynamics
response of the vehicle and obtain better vehicle handling performance. The rear wheel
steering system, controlling the steering of the rear wheels of the vehicle, enhances the
vehicle handling performance. Control logic of all these active systems regulates the vehicle
states with respect to some sub-objectives on the basis of measurement and estimation of
the actual vehicle states, such as yaw rate and sideslip angle. Furthermore, the vehicle
sideslip angle is also important to improves the stabilization performances and path tracking
capabilities for ADAS/ADS systems [19], [20], specifically in the vehicle lateral control
stability in critical driving conditions [21], [22]. Vehicle ADAS suite also includes a Tire
Pressure Monitoring System (TPMS). Based on direct measurement of tire inflation pressure,
or on indirect estimation of tire inflation pressure by other sensors measurement, detects
tire pressure losses. Indeed, deflated tires are known to cause increased forward drag, that
lead to the increment of vehicle fuel consumption. On the other hand, it have also effects
on lateral steering behaviour of vehicle, which are commonly the cause of driver loss of
control and subsequent vehicular accidents [23]. As seen, the implementation of ADAS,
as well as vehicle dynamics control systems, depends on accurate vehicle dynamics states
information. Conventionally, these information are measured by available onboard sensors,
which accuracy are relatively low and could do not satisfy the requirements of vehicle control
systems. In addition, considering the cost of mass-production vehicles, many sensors are
too expensive to equip [24]. To obtain more accurate and reliable vehicle dynamics states
information a promising technique is to estimate the vehicle dynamics states by employing
estimation schemes. In this thesis, two estimation schemes are described, for vehicle sideslip
angle and tire inflation pressure, respectively. An overview of the sensor configuration
schemes used for the estimation of these quantities is presented in the following section.
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Sensor Configuration Schemes

In this section is discussed the sensor configurations used to estimate the vehicle sideslip
angle and tire inflation pressure. Generally, the sensor configuration scheme varies with
respect to the vehicle dynamics state to be estimated, which, in turn, influence the choice
of the estimation method and vehicle model. To determine the specific sensor configuration
scheme, precision and the cost of sensor equipment must be defined: low-cost sensors are
usually adopted when estimation accuracy is not influenced. As described above, real-time
information of the sideslip angle is fundamental in many active vehicle safety systems, such
as yaw stability control [25], rollover prevention [26], and lane departure avoidance [27].
Sideslip angle estimation has become a hot topic of research because its measurement requires
a suite of optical and GPS-based sensors, hardly available on-board of ordinary vehicle due
to economical reasons [28]. Sensor configuration schemes for the sideslip angle estimation
are listed in Table 1.1. Some sensor configuration schemes consider only measurements
representative of the lateral dynamics of vehicles, such as in [29], where the wheel steering
angle δSteering and yaw rate r are measured to estimate the sideslip angle. In [30], instead,
the steering wheel angle and lateral acceleration ay are taken as measurements in the moving
horizon estimation scheme (MHE). These estimation scheme reliable estimate the sideslip
angle in manoeuvres where the longitudinal interactions have small effects, and so can be
neglected in the dynamics equations used. Otherwise, measurement that characterize the
longitudinal dynamics should be considered, such as wheels angular speed ωi and longitudinal
acceleration ax. The most widely applied sensor configuration on actual ordinary cars that is
used to estimate the sideslip angle is described in [31], where all the mentioned measurement
are used. In contrast to this popular sensor configuration scheme, the suspension deflection
∆sus and roll rate p are measured in [32]. Also GPS measurements, such as the GPS tracking
angle ϕGPS and GPS ground velocity vGPS are used in [33] to estimate the sideslip angle
for a wide range of maneuvers. For what concern real-time information of the tire inflation

Table 1.1 Sensor configuration, vehicle model, and estimation method for sideslip angle
estimation.

Sensor configuration Model Estimation method Ref.
δSteering, r 2DOF single-track model EKF, NLO, SMO [29]
δSteering, ay 2DOF two-track model MHE [30]

δSteering, r, ay 2DOF single-track model UKF, EKF [34]
δSteering, ωi, r, ay 3DOF two-track model UKF [35]

r, ax, ay kinematic model EKF [36]
δSteering, ωi, r, ax, ay 3DOF single-track model SMO, EKF, NLO [31]

δSteering, ωi, r, ax, ay, ∆sus, p 4DOF two-track model EKF, UKF [32]
δSteering, ωi, r, ax, ay, vGPS, ϕGPS kinematics/2DOF single-track model KEKF, DEKF [33]

δSteering, r, GPS 2DOF single-track model KF [37]
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pressure, as explained in previous section, it is fundamental for the tire pressure monitoring
systems to detects deflated tire, which causes not only changes in vehicle steering behaviour,
and a worsening of ride quality, but also increases vehicle fuel consumption, uneven wear of
tire, and road pavement deterioration. Indeed, for every 0.2 bar under normal inflation levels,
fuel consumption can increase and the tire lifetime can decrease by 20% [38]. Furthermore,
a lower tire pressure significantly affects pavement damage and decreases the fatigue life of
the asphalt surface layers by up to 200% and 300%, respectively [39]. On the basis of sensor
configuration scheme used, two main types of TPMS are known: direct TPMS (dTPMS),
which employs pressure sensor on each wheel to measure tire pressure; and indirect TPMS
(iTPMS), which exploits the measurement of other sensors already present in the vehicle.
The dTPMS is generally highly precise, but it has high costs. Each sensor is equipped with a
battery that has to be replaced or recharged periodically. Winter tires also need their own
sensors. Therefore, a puncture or replacement requires an additional activity for the tire
dealer and additional costs. The iTPMS is a cost-effective alternative which outperforms
the dTPMS in cost, life and maintenance. It does not rely on direct measurement of the air
pressure within the tire, and instead performs an indirect estimation of the pressure using
information from other sensors already present in the ordinary vehicles. Sensor configuration
schemes for the tire inflation pressure estimation are listed in Table 1.2. Most of iTPMS
available on the market are based on measurement of wheels angular velocity ωi, such as the
method proposed by Personn [38], that, by comparing the four angular speeds, identifies the
wheel that losses pressure. Wheels angular velocity are also used in iTPMS which provide
for tire pressure loss detection by frequency analysis wheels speed signals. Indeed, due
to the roughness of the road and the torsional deformation of the tire, an oscillation of the
angular velocity is induced. Tire stiffness is affected by inflation pressure so, as the pressure
value changes, so does the wheel speed oscillation frequency. Others algorithms estimate
estimate tire inflation pressure using the wheel z̈Wheel and sprung vehicle body z̈Body vertical
accelerations, such as in [40], where a frequency analysis on these vertical acceleration has
been performed to detect tire pressure losses. Another class of estimation algorithms exploit
the ESP measurement. In particular, Solmaz [41] starts from the measurements of lateral
acceleration ay, yaw rate r, steering angle δSteering and vehicle speed vx,Vehicle available by
ESP system to estimate lateral vehicle dynamics state, together with the tires cornering
stiffness, from which tire pressure drops have been detected. Reina [42] also starts from
the ESP measurements, but he exploits the vehicle vertical dynamics to build the prediction
model of a Kalman filter estimator for tire stiffness. An overview of the existing estimation
schemes on sideslip angle and tire inflation pressure estimation, together with their research
gaps, is presented in the following section.
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Table 1.2 Sensor configuration, model, and estimation method for tire inflation pressure
estimation.

Sensor configuration Model Estimation method Ref.
ωi speed ratio, diagonal wheel speed [38]

and relative differences comparison

ωi 2DOF torsional wheel wheel speed [43]
oscillation model spectral analysis

z̈Wheel , z̈Body 2DOF quarter car model vertical wheel acceleration [40]
spectral analysis

z̈Wheel , z̈Body 2DOF quarter car model KF, tire vertical [42]
stiffness estimation

ay, r, δSteering, vx,Vehicle 2DOF two-track model quadratic optimization, tire [41]
cornering stiffness estimation

1.2 Literature Review

Most ADAS, and especially vehicle dynamics control systems, include in their architecture
sensors which collect information about the vehicle’s current state. Ordinary vehicles on
the market are equipped with a sensor cluster present in the ESP system which includes
lateral, longitudinal and vertical accelerometers, yaw rate, wheel speed and steering angle
sensors. Other common sensors consist of GPS, and sensors of suspension control system,
such as a vertical wheel accelerometer [44]. These measurement signals can be acquired
from the controller area network (CAN) bus upon which the majority of intra-vehicular
communication takes place [45], [46]. Starting from these and other measurements, using
estimation schemes, quantities for which sensors are unavailable like the vehicle sideslip
angles and the tire inflation pressure need to be estimated [47]. Generally, the development of
estimation schemes is carried out in Model-In-the-Loop (MIL) environment. The validation
of estimation schemes, instead, is performed in Hardware-In-the-Loop (HIL) environment,
with the aim to check the system functions relative to the software requirements. Testing of
iTPMS based on wheel speed spectral analysis in HIL environment presents some critical
issues concerning the development of simulation platform, making this a topic worthy of
research. All these issues listed above are studied and presented in the following subsections
to obtain an idea of the state of the art. Research limitations from the literature review are
then presented at the end of each subsection to clearly project the objective and scope of
work.
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1.2.1 Simulation Platform for Testing iTPMS with Wheel Speed Sensors

The iTPMS based on wheel speed measurement is a cost effective solution adopted in many
models of car bands, including Audi, BMW, Mazda, Toyota, Alfa Romeo, Fiat, Lancia,
Citroen, Peugeot, etc.
It detects tires pressure losses combining two analyses:

• dynamic rolling radius analysis;

• tire oscillation analysis.

The dynamic rolling radius analysis detects tire pressure loss by comparing the relative speeds
of the four wheels. The tire oscillation analysis, on the other hand, estimates frequency
characteristics of the tire included in the wheel speed signal. The iTPMS combines the
advantages of this two different analysis, summarized in Table 1.3, to improve the reliability
of the pressure loss detection. Analyses based on wheel speed differences require low
computational effort compared to the spectral analysis methods. Furthermore, the wheel
speeds relative differences and the wheel speed ratios show a good response to the size of
deflection. Otherwise, the spectral analysis of wheel speed is more sensitive to disturbances
[48]. Dynamic rolling radius analysis is able to detects the deflation of a single tire. A
deflation of all tires therefore cannot be detected. This feature can be, however, achieved
with the tire oscillation analysis. To reduce the experimental effort required by conventional

Table 1.3 Properties of indirect tire pressure monitoring system with wheel speed sensors (+
positive, ++ very positive, − negative).

Estimation Size of Disturbance Relative tire Absolute tire Computational
method deflection sensitivity deflation deflation effort

Wheel speed ++ − + − +
relative difference

Wheel speed + + + − ++
diagonal difference

Wheel speed ++ ++ + − +
ratio

Wheel speed + − + + −
spectral analysis

approaches both in the early phase of the iTPMS development and for the validation of
software functions during the integration of iTPMS with vehicle systems, many simulation
methods can be used to replace the vehicle test on road. In particular, models used must be
able to simulate the tire behavior, both inflated and deflated. When a deflation occurs two
pressure-dependent phenomena are observed by the iTPMS: the change of rolling radius and
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the change of natural frequency contained in the wheel angular speed. The change of rolling
radius can be easily represented in the simulation. Instead, simulation of the tire frequency
behavior at pressure loss is a critical issue. Indeed, the simulation platform should integrates
models capable to simulate the tire vibration effects on wheels speed on any road surfaces,
in order that simulated wheels speed spectrum must be comparable to the one measured in
real-world tests. This is a key requisite for testing the wheel speed spectral analysis in a
simulation environment. These requirements involve modelling at component level, i.e. the
tire, axle level, and full vehicle level [49]. The tire model is the key element of the simulation:
it should be able to represent the typical tire vibration behavior at different inflation pressures,
as a function of tire properties, depending by construction, rubber compound etc.
A tire model implemented in many commercially available vehicle dynamics simulation
platforms is the FTire model. It consider a physical approach to modeling the tire and road
surface interaction. FTire applies a flexible ring approach to the tire’s structure, which allows
it to be unconstrained by single point contact limitations. In particular, a finite number of
belt elements are connected by stiff springs in both in-plane and out-of-plane directions. To
every belt element, a number of mass-less tread blocks are appended, which carry stiffness
and damping in radial, tangential and lateral direction. FTire can be used to calculate modal
response up to 200 Hz on short and large-waved road surface unevenness [50]. Automotive
industry widely adopt also CDTire, a multi-physics tire model that includes mechanical,
thermal, and cavity modeling. The model predicts large deformations and frictional contact
under loaded conditions. In particular, calculates the tire belt angles and uses them as a
parameter to predict influence on force generation and structural integrity. This model also
implements Euler’s ideal gas law theory, coupled with cleat impact response, to model the
internal pressure cavity mode during cleat impacts, generally above 200 Hz [51]. Generally,
the Ftire and CDTire models, integrated into a MIL environment, are suitable for simulation
to investigate pressure-dependent properties of tires as a function of influencing factors (tire
size and structure, drivetrain, etc.), that is important at an early phase of development process
of iTPMS. However, these models are poor adequate to functionally test iTPMS’s software in
HIL environment. Indeed, due to their high complexity a long simulation time is needed, and
therefore result to be inconsistent with real-time simulation required by HIL environment.
To address this issue, Ftire and CDTire version for real-time simulation have been developed,
adopting, however, many simplification assumptions. The rigid ring tire model [52] is the
most common solution to represent the tire vibration behavior at pressure loss, while reducing
the computing time. Assuming the tire belt as a rigid ring, coupled to the rim by springs and
dampers in radial direction and torsional direction, it calculates rigid vertical and longitudinal
tire in-plane vibration modes up to 100 Hz [53]. A key simulation requirements for iTPMS
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virtual development is that models can be able to reproduce tire vibration behaviour on
any road surface. Since the rigid ring is a single point contact model, it can be used only
on surfaces with random unevenness or on road with long wavelength irregularities [52].
To implement the rigid ring model for simulation with short wavelength road unevenness
the enveloping model in needed, that allows to predict the dynamic tire and road surface
interaction [54]. The parameterization process of rigid ring model is often a challenge for a
high-quality simulation. Model’s parameters can be determined by different kinds of rig tests,
especially cleat test. However to virtually test the iTPMS, more complex model are needed,
which include the suspension model, in order to investigate in simulation the influence of
axle kinematics and compliance on tire vibration behavior, since the axle parameters have a
significant influence on the natural frequency of the tire in-phase vibration modes [49]. In
general, full vehicle simulation must be considered to test the iTPMS [55]. It must reliable
emulate the real-world vehicle test in a simulation environment. This allows to evaluate the
effects of vehicle influence factors (see Table 1.4) on frequency characteristics inherent in
the wheel angular speed by vehicle systems. Given the complexity of the vehicle system that
makes parameterization process very hard, the accumulation of the deviation and tolerance
of each parameter is not negligible. This, together with the uncertainties due to he several
influence factors, can undermine the accuracy of the model, and the final simulation result
may well not be perfect. Due to the high requirements on the accuracy of the simulation
model (pressure losses result in change of resonance frequency between 0.5 and 2 Hz), the
parameterization on test rig is not sufficient. Model parameterization through optimization
methods can make the simulation result very close to the test result. However, the physical
meaning of each parameter can not be guaranteed.

Research Gaps in HIL Testing of iTPMS with Wheel Speed Sensors

A full vehicle simulation can be used to execute virtual test on iTPMS based on the wheel
speed spectral analysis, which involve modelling of tire, suspension, and any other vehicle’s
system influencing the iTPMS. The key element of the simulation is the tire: most of the tire
models present in literature are capable to investigate the tire influencing factors (i.e. tire
construction, rubber compound, etc.) on the tire vibration behaviour, but are time-consuming,
and not adequate for real-time simulation. The most common model with real-time simulation
capability is the rigid ring with enveloping model. However, some issues are related to its
parameterization. The simulation results need to be comparable with the data from vehicle
road test, with a high accuracy. Usually, this requirement can not be achieved only with
conventional parameterization process on test rig. Otherwise, optimization methods can
be used to obtain models parameterized in such a way that simulation result very close
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Table 1.4 Vehicle factors influencing the iTPMS with Wheel Speed Sensors. Rating: 1 -
small; 2 - mid; 3 - big.

Factor Rating
Vehicle weight (LLVW and GVW)

Total vehicle weight 2
Axle weight distribution (front and rear) 3

Difference of weight, weight distribution between LLVW and GVW 3
Geometrical data

Wheel base and track width (front and rear) 2
Position of Centre of Gravity (x/y/z) 1

Drive shaft length (left and right) 2
Engine

Type (petrol, diesel, CNG, LPG, hybrid, . . . ) 2
Power, torque, max speed 2

Number of cylinder 3
Gear box

Type (MT, MTA, automatic, . . . ) 2
Number and ratio of transmissions 2

Drive system
Concept (FWD, RWD, 4WD const./variable torque distribution) 3

Hybrid depends on the system
Suspension/ Damper system

Type (air-sus, steel-sus, hydro-pneumatic, . . . ) 2
Structure (McPherson, multi-link, . . . ) 2

Suspension control 2
Suspension/ damper tuning 1

Spring rate (Front/Rear) 1
Stiffness of whole suspension 2

Chassis System
Active torque distribution on drive axle 3

Active body control 1
Rear wheel steering 2

Power steering (e.g. hydraulic PS, electric PS) 1
Wheel Speed Sensor

Type (e.g. AMR/ GMR, Hall) 3

to the vehicle road test measurement. In general, research related to the development,
parameterization and validation of simulation platform to test iTPMS tire oscillation analysis
in HIL environment is less common in the literature. There is a need to define methodology
to develop models which provide a sufficiently good representation in HIL simulation of
the tire vibration behaviour inherent in wheel speed signal: simulation must generate inputs
for the iTPMS of such quality that any inconsistencies or implausibility can not be detected.
Particular important is the investigation on parameterization process based on optimization
methods, analysing pros and cons of using model with poor physical meaning to test the
functionality of iTPMS software in HIL environment.
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1.2.2 Tire Inflation Pressure Estimation

Tire pressure has a significant influence on the behaviour of vehicles, especially in terms of
safety, consumption and wear. In 2007, the National Highway Traffic Safety Administration
(NHTSA) in the USA had already published a legal regulation (FMVSS 138) requiring the
installation of a tire pressure monitoring system in light vehicles. In 2012, the European
Union also issued a similar regulation. Starting from 2014, the TPMS is mandatory in USA
and in some European countries. An underinflated tire induces: a reduction of tire-road
interaction forces; an undesirable steering behaviour; an increase of fuel consumption; or an
unexpected blowout due to high temperature. An overinflated tire induces an undesirable
steering behaviour and an uneven wear. The NHTSA estimates that about 55% of vehicles
have at least one underinflated tire causing the waste of 2.8 billion gallons of fuel and about
260,000 accidents per year. Moreover, a low inflating pressure in tires reduces tire tread
life by 15% and increases the frequency of tire changes [56]. Respect to direct pressure
measurement system, which have some backwards in terms of cost, life and maintenance, the
indirect TPMS is a cost-effective solution that exploits measurement by sensors available on-
board the vehicle to estimate the tire inflation pressure. The most common estimation scheme
is based on the comparison of the four wheels angular speed [57], [58]. The main limitation
of this estimation scheme is that it can detects low pressure of one to three tires; if all four tires
have the same pressure reduction, it is not possible to detect the tires deflation. In that case,
the resonant frequency of the wheel speed can be used to estimate the tire inflation pressure,
as it correlates with tire pressure [59], [60]: a decrease in a tire pressure reduces stiffness
of tire, which lead to a change in frequency response of tire to road surface unevenness, in
particular to lower torsional resonance frequency. Therefore, tire deflation can be detected
by comparison of estimated resonance frequency with the one in normal pressure [61], [62].
In this kind of analyses the effects of influence factors on resonance frequency, such as
engine noise, undermine the reliability of the estimation, which, can be mitigated through
compensation methods [43]. Frequency analysis is applied to wheel vertical acceleration
in [40] to estimate the inflation pressure. Hybrid solutions that combine at least two of the
mentioned methods are presented in [48], with the aim to take the advantages of different
methods in a single estimation scheme, improving the reliability of deflated tire detection.
Other methods are based on the correlation between tire stiffness and inflation pressure.
For example, in [63] a self-adaptive nonlinear filter with an optimal finite impulse response
derivative was designed to estimate the tire longitudinal stiffness related to the tire pressure.
Solmaz [41], instead, starts from the measurements available by ESP system to estimate tire
cornering stiffness, through which detects tire deflation. Reina [42] also starts from the ESP
measurements, but he exploits the vehicle vertical dynamics to build the prediction model
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of a Kalman Filter (KF) estimator for tire vertical stiffness. Road roughness is a critical
unknown input for the model-based estimator [64], but often it is overlooked in the previously
proposed estimation techniques.
Recently, Lee [65] addressed this problem and proposed an iTPMS based on Adaptive
Extended Kalman Filter (AEKF) that can estimate both the pressure and the roughness of the
road.

Research Gaps in Tire Inflation Pressure Estimation

As described in previous section, theoretical and practical results have been obtained from
iTPMS. However, only a few examples have been turned into commercial products [66],
because there is still room for improvement in terms of accuracy and reliability. In particular,
most promising estimation scheme concerns with the vertical tire stiffness estimation with
model-based approach. However, existing estimators (belonging to the Kalman Filter family)
are based on a single dynamical model that, since the vertical vehicle dynamics is character-
ized by great complexity and can further vary unexpectedly with the road roughness, exhibit
poor closed-loop performances. As a result, it may be subject to significant estimation errors.
Therefore, approaches which exploit multiple models have to be investigated to deal with
abruptly change of vehicle vertical dynamics due to variation of road surface unevenness
level.

1.2.3 Vehicle Sideslip Angle Estimation

A proper vehicle dynamics control system design requires a large amount of information,
e.g. yaw rate, sideslip angle, and longitudinal velocity, just to name a few. A dedicated
full sensor set is not practically attainable, mainly due to high costs. Therefore, state
estimation methods for measurement information based on low-cost sensors have been
widely exploited and applied in the automotive industry. Indeed VSA is not measured
directly for a series production vehicle, since could be measured by means of high-cost
sophisticated laboratory devices (e.g, optical sensors such as the Corrsys-Datron [67]) - that
present issues in terms of compatibility with vehicle packaging, cost, reliability, accuracy,
and robustness to environmental conditions - rather than a production vehicles sensor [68].
It follows that the estimation of VSA has been often investigated in the literature due to
its high potential in improving the performance of vehicle motion control systems, such
as stabilization and path tracking capabilities or vehicle lateral control stability in critical
driving conditions[69, 70]. Among the different proposed approaches, kinematics-based
estimators have raised large interest since they do not require tire parameters. However, they
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are reliable only for transient maneuvers due to the progressive integral drifting caused by
sensor errors [71]. Conversely, data-driven approaches are model-free [72] and independent
of sensor errors [71] since they exploit deep neural networks and their capability of serving
as universal function approximator [73], but their main drawback is the low reliability of
the estimate when conditions are not sufficiently close to the ones of the training set [67].
Some techniques involve GPS signals, such as in [74] and [75] where GPS information
have been combined with Inertial Measurement Unit (IMU) using Kalman filters for the
estimation of the sideslip angle, further evaluating estimation errors due to signal latency
of the GPS module, which operates at 5 Hz or 10 Hz. In [76] the sideslip angle has been
estimated using measurement of a carrier based differential GPS [76]. The main issue
for GPS based estimation techniques relies in the need to have satellite signals constantly,
while in urban environments loss of communication are frequent Moreover, GPS systems
are expensive [77]. These issues still make the model-based estimation methods the most
attractive solution adopted nowadays. These use low-cost sensors measurement such as
gyroscopes and accelerometers to estimate the sideslip angle. In [78] and Extended Kalman
Filter (EKF) based on a 4DOF vehicle dynamics model and magic tire formula has been used
to estimaate the sideslip angle. Instead, in [79] the EKF is based on a 3DOF vehicle model
and Dugoff tire model. Also the use of unscented Kalman Filter has been investigated in [32],
that based on a 4DOF vehicle model and a Dugoff tire model, has been used to estimate the
sideslip angle for manoeuvres with constant speed. The accuracy of mode-based approaches
rely heavily on a reliable modelling of the vehicle. The most crucial part of modelling the
vehicle is to successfully represent the tire cornering stiffness as incorrect modelling tends to
generate steady state errors. In particular, the challenging task in the tire modelling is that the
cornering stiffness is influenced by time varying parameters, which act as unknown inputs of
the system’s model. Indeed, despite VSA estimation has been greatly promoted in recent
years, its estimation with unknown inputs is still an interesting issue that requires further
research study [80]. A critical unknown input that should be obtained first to predict the
VSA is the tire-road friction coefficient [81]: unmodeled effects of road surface conditions
can worsen the reliability of the estimation, since it can be only carried out if the tire model
truly reflects the actual conditions. Many researcher have addressed this issue using adaptive
Kalman filters to estimate, together with the sideslip angle, also the cornering stiffness, both
for linear [82] and non-linear [83] tire models. In this case, the tire stiffness can be modelled
as the state variable for random walk model, that varies the parameters at every sample
time according to a random Gaussian noise [84]. In [31] tire lateral and longitudinal forces
have been estimated with an EKF with a sliding mode observer and variable covariance
matrices depending upon tire actual operating conditions. As seen model-based model based
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estimator based on Kalman Filter ared widely used to estimate the sideslip angle. However,
when the vehicle dynamics are characterized by great complexity and vary unexpectedly,
an estimator based on a single dynamical model can exhibit poor closed-loop performance.
To deal with this aspect, Multiple Model (MM) approaches designed according to different
vehicle behaviors, each characterizing specific driving conditions, can achieve more accurate
estimation performance than a solution based on a single model.
Out of the various proposed solutions based on the MM paradigm, the Interacting Multiple
Model (IMM) algorithm is the most popular due to its high accuracy, low computational
burden, and best cost-effectiveness [85]. Note that, due to its features, it has become
the mainstream solution for the state estimation problem of hybrid systems and it found
application in maneuvering target tracking, fault detection and diagnosis, and navigation.
The usual IMM structure is composed of a bank of multiple filters, each set on a specific
dynamical model, that operates in parallel to obtain a better state estimate of targets. A model
management algorithm, governed by an underlying Markov transition matrix, is in charge
of the switching behavior among the multiple models. The estimation state-of-art proposes
different versions of the IMM, ranging from the use of linear KF to its nonlinear extensions,
e.g., Extended Kalman Filter, Unscented Kalman Filter, and so on.
An IMMUKF was used in [86] to estimate lateral tire–road forces and VSA, considering the
changing of driving conditions in which a vehicle can be operated. In particular, this integrate
the estimates from a four-wheel nonlinear vehicle dynamics model with two kinds of tire
models: a linear tire model and a nonlinear Dugoff tire model. Another IMMUKF for VSA
estimation is also proposed in [87], consisting of 3 UKFs based on a 7DOF nonlinear vehicle
dynamic model combined with Magic Formula tire model, differing for noise covariance
matrices. VSA estimation is carried out on the basis of previous step road condition estimation
by a Strong Tracking Unscented Kalman filter (STUKF). Furthermore, a Self-Correction
Data Fusion (SCDF) algorithm is developed to integrate results of IMM estimator and direct
integral method. [88] uses an adaptive parameter Interacting Multiple Model unscented
Kalman filter algorithm (IMMAUKF) for vehicle state estimation purpose. It consists of
two UKF algorithms based on vehicle kinematics model: one is established according to
Constant Turn Rate and Acceleration (CTRA) theory, while the other use a simplified version
of the CTRA model to overcome the problem of estimator failure when the yaw rate is close
to zero. In addition, AUKF algorithm is implemented by combining the UKF and Sage-Husa
filtering algorithms to reduce noise.
Beyond the aforementioned approaches that leverage the UKF theory, other extensions of the
classical KF method can be deployed to realize an IMM solution. Specifically, in the VSA
estimation problem, can be found different interesting algorithms. For example, in [89] an
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IMM based on three Square-root Cubature Kalman filter (SCKF) is used to estimate the yaw
rate, sideslip angle, and the longitudinal and lateral vehicle speeds from a 3DOF nonlinear
vehicle dynamic model, combining with the brush tire model. Instead, the same approach
is investigated in [71], where a receding horizon paradigm is introduced to obtain a new
algorithm referred to as the Square-root Cubature Receding Horizon Kalman filter (SCRHKF),
improving the robustness w.r.t. the model uncertainties losing, however, in convergence
speed performances. Particularly interesting are also the approaches that exploit the Cubature
Kalman Filter (CKF) to develop a specific version of IMM. In the automotive context, among
the most relevant works, we cited the strategy proposed in [90] where two filters are used in
parallel: one with linear tire model for normal driving conditions and the other with nonlinear
Dugoff tire model for extreme driving conditions. The corrections of lateral acceleration,
road adhesion coefficient and cornering stiffness are taken in history to mitigate the effects of
gravity on the banked road on the accelerometer in the y direction. According to preliminary
investigations, the IMM seems a promising solution to address unknown inputs for sideslip
angle estimators, such as the unknown tire-road friction coefficient [91]. In general, the
state transitions between the models are described through a Markov matrix with constants
elements, although the use of variable matrices has been recently proposed [92].

Research Gaps in Vehicle Sideslip Angle Estimation

Most of reviewed work based on model-based estimator involve techniques that estimate
the vehicle sideslip angle with all inputs known. Several issues arise that have not been
addressed yet. These include the estimation of the sideslip angle while dealing with the
unknown tire-road friction coefficient according to the actual road surface condition (dry,
damp, wet and snowy asphalt). Some articles have addressed the problem estimating the tire
cornering stiffness. Another estimation approach to deal with unknown inputs is to use the
multiple model algorithm designed specifically to deal with systems whose model can change
abruptly according to actual road surface condition. However, few works have investigated
this kind of approach. Furthermore, IMM algorithms that consider Markov matrix with
variable coefficients should be analysed to improve sideslip angle estimation accuracy in
scenarios where the friction coefficient randomly changes. Indeed, the Transition Probability
Matrix (TPM) has a crucial role in the definition and operation of the IMM algorithm, and its
tuning remains a difficult task to be accomplished by leveraging a priori information and/or
dedicated analysis. Therefore, the usual solution adopted in the current literature considers
the probabilities of the state transitioning among models as constant values. However, this
setting method tends to be quite conservative and degrades the estimation accuracy of the
IMM system, since it relies on two strong hypotheses, namely: i) the assumption that time-
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varying probability of the TPM transitioning among models can be well represented by a
constant value; ii) constant probability value is well a priori known. Indeed, if the transition
probabilities could be adapted online according to the current system model information, the
performance of the IMM algorithm can be improved. In this perspective, examples can be
found in the aeronautic field, where target tracking of the kinematic variables of a ballistic
missile is improved by exploiting different TPM with time-varying probabilities of the state
transitioning that relies on physical considerations on the phases of flight [93], [92].

1.3 Objectives and Scope

The primary objective of the work presented in this thesis is to develop and validate algorithms
to indirectly estimate the vehicle sideslip angle and tire inflation pressure.
Concerning the tire inflation pressure estimation, most of algorithms use wheel speed signal
in two parallel analyses: tire rolling radius analysis, and tire oscillation analysis. This
estimation scheme is implemented in current commercially available indirect tire pressure
monitoring systems. During the development of this system a lot of parameters must be
tuned. It is a very challenge task due to many factors that influence the two analyses
on wheel speed signal, which inevitably cause a degradation of algorithm sensitivity to
tire deflation. Therefore, many versions of iTPMS software are released for subsequent
parameters adjustment, and functionality of each of them need to be validate with integration
test. A well-known cost-effective alternative to vehicle road tests for validating embedded
software on ECU is the HIL testing. However, few researches have investigated HIL testing
of iTPMS, especially for the tire oscillation analysis. In particular, there is a need to define a
methodology to develop and parameterize simulation platform suitable for testing the iTPMS
in HIL environment. The most promising approach to improve estimation accuracy of tire
inflation pressure consist of using a model-based estimator, based on vertical dynamics of
vehicle. It estimates the vertical tire stiffness, that can be used to evaluate the tire inflation
pressure through an experimental relationship. However, critical issue of this estimation
scheme is that road surface roughness acts as an unknown input to the vehicle vertical
dynamics model, undermining the reliability of the estimation. Similarly, one of most
important issue of model-based algorithms for sideslip angle estimation are unknown inputs,
in particular the time-varying tire road friction coefficient, that, under critical road surface
condition, makes the modelling of tire cornering stiffness incorrect, worsening the accuracy
of estimation. The specific objectives are enumerated below.

1. HIL Testing of iTPMS with wheel speed sensors
Main objective is to define a methodology for developing simulation platforms to
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be used in HIL environment for executing functional tests on iTPMS software. In
particular, two goals:

• enabling virtual check of iTPMS during learning phase, dedicated to calculate
compensation coefficients and he resonance frequencies of each tire at normal
pressure;

• enabling virtual check of iTPMS during detection of tire deflation.

2. Estimation of Vehicle Sideslip Angle and Tire Inflation Pressure

• Developing estimation algorithms able to estimate vehicle sideslip angle under
critical driving conditions, considering scenario with randomly time-varying and
unknown tire-road friction coefficient.

• Similarly to sideslip angle, developing an estimation algorithm to estimate tire
inflation pressure considering scenario with randomly time-varying and unknown
road surface roughness level.

• To facilitate onboard integration, the estimation algorithms should not be com-
putationally intensive. Furthermore, the algorithms should only use low cost
sensors generally available on ordinary vehicles whose signals are present on the
vehicle CAN network.

1.4 Thesis Contributions

This thesis provides with several contributions in the field of vehicle state estimation. Most
of the results have been validated with a vehicle dynamics high-fidelity simulation platform
developed during the research activity. The contributions of the thesis are listed as follows:

1. HIL Testing of iTPMS with wheel speed sensors

• A methodology to develop models for real-time simulation has been defined,
which provide a reliable representation of wheel dynamics effect on wheel speed
signal respect to real-word test, while minimizing the effort for model parameter-
ization.

• A parameterization process based on optimization methods has been investigated.

• The model has been validated verifying successfully testing of a real iTPMS ECU
in HIL environment, concerning learning and tire deflation detection phases.

2. Estimation of Tire Inflation Pressure
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• Exploiting the 2-DOF quarter car model with a road surface profile synthesis
model, an IMM filter for tire inflation pressure estimation was developed, which
is able to deal with unknown and time-varying road surface unevenness level.

• The quarter car model parameter identification for four different road roughness
level according to ISO 8608 classification is considered.

• A constant transition probability matrix is proposed, which assigns to each filter
mode the same probability.

• Am IMM filter solutions based on the unscented Kalman estimation technique is
presented.

• The IMM is tested on a high-fidelity co-simulation platform. First a Monte Carlo
simulation was carried out to compare tire inflation pressure estimation accuracy
by the IMM with respect to a single UKF. Then, the capability of the IMMUKF to
deal with abruptly change of road surface profile class and tire inflation pressure
was verified.

3. Estimation of Vehicle Sideslip Angle

• Exploiting the 2-DOF single-track vehicle model with a Dugoff tire model, an
IMM filter-based vehicle state estimation algorithm was developed, which is able
to cope with different vehicle driving conditions, unlike a single model filter.

• The Dugoff tire model parameter identification for four different tire-road friction
scenarios is considered. The benefit of this approach is that it avoids online
estimation of tire-road contact models parameters [87, 83].

• A time-varying TPM is proposed, which is able to realize on-line self-learning
via a novel model switching algorithm, without any a priori information. TPMs
are generally assumed constant and their values are chosen based on a priori
information and/or dedicated analysis, posing a challeng on the IMM setup.

• Two IMM filter solutions based on the nonlinear Kalman estimation technique
are presented. The first is based on the EKF and the second is based on the UKF.
Their performance is assessed and compared in non-trivial driving scenarios,
along with a single model filter and an IMM with constant TPM, to validate the
time-varying Multiple Model solution proposed.

• The IMM with the most accurate performance is tested on a high-fidelity co-
simulation platform based on the MATLAB/Simulink, in order to assess the
estimation capability in realistic driving environments.
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1.5 Dissertation Outline

The thesis is organised into two sections. The first section deals with the development of a
high-fidelity simulation platform. The second section elaborates on the design and validation
of algorithms for vehicle state estimation. Chapters 2 and 3 are part of the first section,
whereas Chapters 4 and 5 form the second section. The brief description of all the chapters
are presented below. The y-axis of some plots reported in the Thesis are normalized respect
to the maximum value and other sensitive data are hidden to respect the confidentiality of
data of the industrial partner.

Chapter 2: Road Vehicle Modelling and Validation

This chapter presents the high-fidelity vehicle dynamics simulation platform used in Chapter
3 to simulate the vehicle in HIL environment, and to test the estimation algorithms described
in Chapter 4 and 5. A description of simulation requirements and modelling approaches
adopted are provided, such as a validation process with respect to a high-order model with
several degrees of freedom, about 102, and validated with experimental data by the industrial
partner of the PhD program.

Chapter 3: Vehicle Dynamics Modelling for Testing iTPM with Wheel Speed Sensors in
HIL Environment

This chapter presents the modelling approach adopted to simulate the two pressure-dependent
phenomena analysed by iTPMS based on wheel speed sensors: reduction of wheel rolling
radius; changes of natural frequencies inherent in the angular speed due to tire vibration. A
model to simulate effects on wheels dynamics by tire vibration due to its interaction with road
roughness has been described. A vector optimization problem was solved to parameterize
the model, in order to obtain reliable real-time simulation of wheels angular speed, whose
spectrum comply with vehicle road test. Then, a real iTPMS ECU has been tested in HIL
environment to verify the functionality of the software release.

Chapter 4: Tire Inflation Pressure Estimation

This chapter presents a novel Interacting Multiple Model Unscented Kalman Filter to estimate
VSA without tire-road friction coefficient information. It, integrating four Nonlinear Kalman
Filters, each of them with a different set of parameters for vehicle dynamics tire model, is
capable to deal with VSA estimation when vehicle driving on different road conditions (dry,
wet, damp and snowy asphalt). The efficiency of the proposed estimating scheme in realistic
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driving scenarios is tested via the high-fidelity co-simulation platform presented in Chapter
2.

Chapter 5: Vehicle Sideslip Angle Estimation

This chapter presents an innovative approach to estimate tire pressure indirectly, without
actual road surface roughness information. A quarter car model is used to build four unscented
Kalman filters, parameterised to represent vertical vehicle dynamics when driving on a certain
level of road surface roughness. These estimators are combined following the Interacting
Multiple Model approach, which gives an acceptable estimation of tire stiffness through a
weighted average obtained from a probabilistic model. A known linear static relationship
between the tire stiffness and inflation pressure is utilized to indirectly estimate the tire
inflation pressure. The efficiency of the approach is tested via the high-fidelity co-simulation
platform presented in Chapter 2.

Chapter 6: Conclusions

The conclusions of PhD thesis work are presented, and possible future research are proposed.





Chapter 2

Road Vehicle Modelling and Validation

2.1 Simulation platform

Today, computer simulations have become an essential tool to develop and test new and
enhanced existing systems for autonomous driving of road vehicles. Usually they are devel-
oped in Model-In-the-Loop (MIL) and tested in Hardware-In-the-Loop (HIL) environments.
Both environments require a complex simulation platform, whose characteristics can vary
considerably from application to application. Basically, it consists of:

• full vehicle model, so that every physical component accurately represents and mimics
their real behaviors;

• maneuver and driver model, for providing driving instructions for accelerating, braking,
and steering the vehicle model;

• road model, that provides information on the road the vehicle moves on;

• fellow vehicles model, needed for simulation of various traffic situations and complex
scenarios;

• models for moving objects, like pedestrians, and static objects, like variable traffic
signs, traffic lights, parked vehicles, houses;

• sensors models, to simulate perception of surrounding environment;

• models for radio interference, as well as shadowing by static and moving obstacles,
needed for network simulation.

Research purpose is to develop and test algorithms for estimating dynamics state of the ego-
vehicle. Simulation requirements correspond to those on which are based vehicle dynamics
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simulation platforms, typically used for testing vehicle dynamics ECUs. Therefore, it must
involve full vehicle, road, maneuver and driver models. Indeed, these are strictly need to
predict the movements of the simulated vehicle on a particular road in response to both
control and disturbance inputs, generating so inputs and measurements suitable for vehicle
dynamics state estimation purpose. Models for road traffic and network simulation, as
well as sensors models for surrounding environment perception are not considered to avoid
unnecessary complexity. The simulation platform, developed with the tool suite of dSPACE
software Automotive Simulation Model (ASM), is schematized in Figure 2.1. It is composed
of three layers, i.e. the driver layer, vehicle layer and road layer.

SimulationEnvironment Level
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Fig. 2.1 Schemtic of simulation platform.

2.1.1 Driver Model

The first consists of models essential to perform maneuvers, i.e. predefined sequences of
driving instructions for simulating a variety of driving situations with the vehicle model. It
controls accelerator pedal, brake pedal and steering wheel in such a way that the vehicle
follows a given reference velocity while driving on an arbitrary road. The task of controlling
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the vehicle is split into sub-tasks for longitudinal control, lateral control, and reference
velocity calculation for driving on roads.

Longitudinal Controller

The longitudinal controller controls accelerator pedal, brake pedal and selector lever. The
controller strategy, proposed in [94], comprises feed forward and feedback control. The
feed forward controller calculates the accelerator and brake pedal positions according to the
required driving situation using a simplified inverse dynamics model of the vehicle. The
feedback controller decreases the velocity error by closing the control loop. A conditionally
driven state machine, schematized in Figure 2.2, is implemented to continuously check the
driving situation and set selector lever to the right position.

Fig. 2.2 Conditionally driven transition from one state to another for the selector lever.

Reference Velocity Calculation

Model are also implemented for the calculation of the reference velocity for the longitudinal
controller [94]. The vehicle must be prevented from cornering too fast while following a
road. Suitable vehicle speeds in road curves and suitable accelerations are needed. Velocity
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profile generation starts by determining the velocity limits for road turns (horizontal road
profile) and slopes (vertical road profile) ahead. For simplification purposes, the road friction
and bank angle are neglected, which leads to the following equation:

vx,lim =

√
ay,max

rroad,y
(2.1)

where, vx,lim is the tangential component of the driving velocity limit, ay,max is the maximum
lateral driver acceleration, and rroad,y is the road horizontal curvature. The generated reference
speed is also adapted according to the vertical road profile according to the following
equation:

vx,lim =

√
az,max/mincos(βroad)

rroad,z
(2.2)

where, az,max/min is the maximum driver deflection and rebound vertical acceleration, βroad

is the road pitch angle, and rroad,z is the vertical road curvature. The reference speed vx,re f

is then found by integrating the following differential equation, obtained by combining the
above equations:

dvx,re f (sVehicle) =±
ax,max/min

vx,re f (sVehicle)
nGG

√√√√1−

(
vx,re f (sVehicle)

2 rroad,y (sVehicle)

ay,max

)nGG

dsVehicle

(2.3)
where, sVehicle is the distance driven by vehicle on road, ax,max/min is the maximum longitudi-
nal driver acceleration as well as deceleration, and nGG is the g-g diagram exponent used to
form different driving patterns. The driving style depends on the driver parameters and takes
effect when the vehicle is approaching a stop or a turn, during cornering, after leaving a turn,
and when accelerating from lower to higher vehicle speeds. At this point, a g-g diagram is
used in an idealized form to characterize the driver. This adapted form of the g-g diagram is
written as follows: (

ax

ax,max/min

)nGG

+

(
ay

ay,max/min

)nGG

≤ 1 (2.4)

where, ax is the longitudinal acceleration, and ay is the lateral acceleration generated by the
curved path. Adapting ax,max/min, ay,max, and nGG produces different driver characters [1], as
shown in Figure 2.3. To find the maximum velocity to cover a road distance according to
the driver parameters, the road horizontal curvature rroad,y of the upcoming road is collected
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Fig. 2.3 Conditionally driven transition from one state to another for the selector lever [1].

from the Road model according to a preview distance

sPreviev,LongCtrl =
v2

x,Vehicle

2|ax,min|
(2.5)

where, vx,Vehicle is the longitudinal vehicle velocity, and ax,min is the maximum longitudinal
driver deceleration.

Lateral Controller

The implemented lateral controller was proposed in [95] and [2]: based on linear optimal
control theory, controller algorithm keeps the vehicle on the road by controlling the steering
wheel. Figure 2.4 is a schematic of the control concept. It uses preview information and
and is based on a linear single-track model. Defined vx,Vehicle and vy,Vehicle the components
of vehicle velocity vVehicle, Posx,Vehicle and Posy,Vehicle the vehicle position, ϕVehicle the yaw
angle, and treating vx,Vehicle as fixed, the linear single-track model in state space form
becomes:

ẋ = Ax+Bu

y =Cx,
(2.6)
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The following illustration shows the main signal flow inside the subsystem and

the interconnection to the road and vehicle models.
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The controller uses preview information for the control law. The following

illustration is a schematic of the preview concept.
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Fig. 2.4 Scheme of the lateral control concept [2].

where, x =
[
Posy,Vehicle,vy,Vehicle, ϕ̇Vehicle,ϕVehicle

]T is the state vector, while y = Posy,Vehicle

is the output signal. The linearized model equations are [96]:

ẋ =


0 1 0 vx,Vehicle

0 −2(cF+cR)
mVehiclevx,Vehicle

2(a2cR−a1cF )
mVehiclevx,Vehicle

− vx,Vehicle 0

0 2(a2cR−a1cF )
JVehiclevx,Vehicle

−2(a2
1cF+a2

2cR)
JVehiclevx,Vehicle

0

0 0 1 0

x+


0

2cF
mVehicle
2a1cF
JVehicle

0

δSteering (2.7)

where, cF and cR are the cornering stiffness for front and rear wheels, a1 and a2 are the front
and rear semi-wheelbases, mVehicle is the vehicle mass, JVehicle is the inertia moment of the
vehicle about the z-axis, and δSteering is the wheel steering angle. Given a sample time T and
a number of nLatCtrl preview points, at discrete time points iLatCtrlT is known to be

y(iLatCtrlT ) =CΦ(iLatCtrlT )x(0)+CΓ(iLatCtrlT )Bu(0) (2.8)

where, Φ(kT ) = eAiLatCtrlT , and Γ(iLatCtrlT ) =
∫ iLatCtrlT

0 Φ(t) dt. The controller minimizes
the following objective function, defined as the sum at a number of nLatCtrl preview points of
the weighted difference between output signal and reference signal, yRe f , [95]:

J =
nLatCtrl

∑
iLatCtrl=1

(
yRe f (iLatCtrlT )− y(iLatCtrlT )

)2Wk (2.9)
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The controller uses as reference signal the y-component of the reference positions in vehicle
coordinates, yRe f = Posy,Road,Re f ,i, calculated as:

Posy,Road,Re f ,i =
(
Posy,Preview,Road,i −Posy,Vehicle

)
cosϕVehicle

−
(
Posx,Preview,Road,i −Posx,Vehicle

)
sinϕVehicle

(2.10)

where, Posx,Preview,Road,i and Posy,Preview,Road,i are x and y coordinates for the preview points
in earth coordinates, evaluated from the road model[

Posx,Preview,Road,i

Posy,Preview,Road,i

]
= Road

(
sVehicle + sPreview,LatCtrl,i

)
(2.11)

according to the preview distance sPreview,LatCtrl,i, calculated as the distance the vehicle moves
in the preview time tPreview

sPreview,LatCtrl,i = iLatCtrlT vVehicletPreview (2.12)

After derivation of J with respect to u(0), dJ
du(0) , the control law can be calculated in closed

form, assuming that the control input is kept constant over the whole preview interval. In
the implemented controller, a number of n = 10 preview points are used, with a preview
time tPreview = 1 s, resulting in a sample time T = 1/10 s = 0.1 s. With u(0) = δSteering the
control law is

u(0) =
∑

10
iLatCtrl=1

(
Posy,Road,Re f ,i −CΦ(iLatCtrlT )x(0)

)
(CΓ(iLatCtrlT )BWk)

∑
10
iLatCtrl=1

(
(CΓ(iLatCtrlT )B)2Wk

) (2.13)

2.1.2 Road Model

The Road model provides information about the road the vehicle moves on. This information
is forwarded to both the vehicle and driver models. Roads are described in terms of horizontal
profile, vertical profile, lanes and road surface conditions, modelled as junctions and road
elements. On junction elements, the road properties are described as a function of the local x
and y coordinates on the junction plate. The following properties can be defined for junction
elements: shape of the junction border line; lane properties of connection points; height of
the junction plate; special surface properties such as low friction areas or bumps; position
markers. On road elements, the position of any point near the road is described by the
distance traveled along the reference line, measured from the start point of the road, and the
distance perpendicular to the reference line, as shown in Figure 2.5. All properties of road
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elements are defined as a function of this distance along the reference line, independently of
the particular segments that define the horizontal profile. The following properties can be

Trajectories Roads and junctions can contain multiple trajectory shapes for

the definition of a vehicle path, which does not match the course of the

reference line.

Routes The movement of vehicles on the road network is defined with

routes, that are part of the road network. A route is an ordered list of road and

junction elements that describes the path a vehicle takes through the road

network. If roads or junction elements contain trajectory shapes, the

corresponding route contains the information whether to take the default path

or the path defined by a trajectory shape. The routes are selected in the Road

Generator in ModelDesk.

Open/closed road Roads can be either open or closed. In the latter case the

end point is connected to the start point and the vehicle can drive many laps

around the road.

Driving direction As long as all road elements in a route can be driven in

both directions, the route can also be driven in both directions. A road can be

driven in both directions if it has driving lanes in both directions.

Junction elements On junction elements, the road properties are described

as a function of the local x and y coordinates on the junction plate.

The following properties can be defined for junction elements:

Shape of the junction border line

Lane properties of connection points

Height of the junction plate

Special surface properties such as low friction areas or bumps

Position markers

Road elements On road elements, the position of any point near the road is

described by the distance s traveled along the reference line, measured from the

start point of the road, and the distance d perpendicular to the reference line.

All properties of road elements are defined as a function of this distance s along

the reference line, independently of the particular segments that define the

horizontal profile.

The following properties can be defined for each road element:

Height profile

Lateral slope profile

Environment
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Fig. 2.5 Points position on road elements.

defined for each road element: height profile; lateral slope profile; lane sections; road scenery
sections; special surface properties such as low friction areas or bumps. The road model
computes preview points to forward to driver controllers information on upcoming road.
It also supplies tire-road contact point information. On junction elements, the properties
are calculated in the local coordinate system of the junction plate. Since for road elements
the properties are defined as a function of the distance along the road, the road model first
calculates the distance along the road sCP and the lateral offset perpendicular to the road
reference line dCP that corresponds to the x- and y-position of the tire contact point on the
horizontal plane, PosxCP and PosyCP , respectively, i.e.

[sCP,dCP] = f (PosxCP,PosyCP) (2.14)

The following variables at the tire-road contact point are then calculated:

• road height zCP = f (sCP,dCP);

• unit vector in the direction of road normal ezCP = f (sCP,dCP);

• road friction coefficient µCP = f (sCP,dCP);

• surface condition SCCP = f (sCP,dCP).

2.1.3 Full Vehicle Model

The full vehicle model plays a key role for the simulation platform. It must provides a good
representation of the vehicle system to be controlled, in order that any inconsistencies or
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implausibility can not be detected. For this purpose, model of each component the whole
vehicle system must be developed, including engine, drivetrain, vehicle body and four wheels,
which all come together with component-level control models (Soft ECUs) to create the full
vehicle model. The developed full vehicle model concerns conventional vehicle with internal
combustion engine and automatic transmission. It consists of:

• Engine model, the power source of the drivetrain, that computes the torque resulting
from both the combustion and the engine speed;

• Drivetrain, that transfers the torque from the engine to the wheels. The drivetrain
model simulates several components, i.e.

– Torque converter, that transfers the engine torque to the transmission system;

– Gearbox, that converts the engine speed and engine torque with different gear
ratios to the rest of the drivetrain;

– Differentials, that transmits the power from the transmission to the wheels.

• Vehicle dynamics, that manages the following systems:

– Aerodynamics, represented by aerodynamics forces and torques acting on the
vehicle sprung mass;

– Axle dynamics/kinematics, result of suspension kinematics and suspension forces
in the spring, shock absorber, and stabilizer;

– Tire, that generates tractive and/or cornering forces;

– Steering, that transfers the steering wheel angle defined by the driver to a move-
ment of the steering rod.

– Brake, that generates brake torque at each wheel.

– Wheel dynamics, represented by the rotational wheel movement, which is func-
tion of torques applied to the wheel axle;

– Vehicle body dynamics, represented by the motion of the vehicle and the vertical
wheel movements, which are functions of tires, aerodynamics, suspension, and
mass forces and torques.

To run properly the vehicle components models, four Soft ECUs models are needed, which
simulate the performance of ECUs. In detail:

• Soft ECU engine, that controls the engine torque to a desired value by the driver, as a
function of actual engine speed and accelerator pedal position;
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• Soft ECU transmission, that manages the gearshift process of an automatic transmission.
It controls the lockup clutch engagement, the gear according to a predefined shift
strategy, and a torque reduction while shifting gears;

• Soft ECU body, that controls the engine start button to start and shut down the engine;

• Soft ECU brake, that controls the brake pressure to a desired value by the driver, as a
function of brake pedal position.

Developing the component models that best represent the vehicle systems involved several
topics, including:

• Defining the needs for each subsystem’s modeling and simulation. The model should
rigorously adhere to these constraints, both functional and non-functional, in order to
achieve desired behavior and accuracy without adding needless complexity.

• Defining the interfaces the model will use to send and receive information from other
models and controllers.

• Determining how and what physical effects should be modeled. This is essential for
making the model function correctly and for deciding the kind of model that will be
developed.

• Identifying what assumptions and restrictions will be taken into account and applied
to the model. These will enable models to be appropriately adjusted using reasonable
techniques.

All of the component models address each of the bulleted points. These lay the groundwork
for a complete vehicle model that can satisfy all of its requirements. Throughout next
Chapter the vehicle system components are explored in regards to their requirements and the
development of their model.

2.2 Road Vehicle Modelling

The model components are outlined in this chapter. Implementation variants, the importance
of components models for the testing purposes, and modeling tools are described in individual
cases. In particular, the individual requirements for vehicle component model, interfaces,
physical effects to be modeled, and assumptions and limitations were derived from a variety
of sources including an estimation on the level of fidelity needed, and available data on the
real-world subsystem. The modelled road vehicle is a segment-D compact crossover SUV
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produced by the industrial partner of the Ph.D. course, equipped with a 2.2 L I4 Multijet II
210 CV AT8 Q4 engine, a 8-speed automatic transmission with torque converter, a double
wishbones suspension in the front axle, and a multi-link suspension in the rear axle.

2.2.1 Engine Model

Engine Simulation Requirements

The engine model was made to mimic a real-world internal combustion engine. To create
such a model, requirements relating to both the functionality and the constraints of the
system were defined. For vehicle dynamics investigations, as well as for energy consumption
analyses, only fuel, torque, and speed needed to be obtained from an engine model. Indeed,
the model of the combustion process is not needed to simulate the amount of energy used
and torque produced and transferred to the drivetrain. Specifically, the engine model must
be able to receive a torque request and a speed as inputs. These would be used along
with static maps to find outputs such as, torque, fuel rate used and engine efficiency. Real
system constraints, such as the maximum and the minimum speed, the maximum torque
output, and the maximum fuel rate possible, must be taken into account for engine modeling.
Setting these restrictions, utilizing suitable performance maps, and putting in place suitable
Input/Output interfaces led to the creation of an engine model that could replicate actual
expected behavior.

Engine Model Development

During the research activity, the Diesel engine 2.2 L I4 Multijet II 210 CV AT8 Q4 has been
modelled, whose main characteristics are reported in Table 2.1, and full-load torque and
power data are shown in Figure 2.6. To test vehicle dynamics control systems, a simple

Table 2.1 Datasheet of Diesel engine 2.2 L I4 Multijet II 210 CV AT8 Q4.

Type Characteristic Type Characteristic
Configuration Inline-4 Stroke/Bore 99×83.8 mm
Displacement 2143 cm3 Compression Ratio 15.5:1

Valvetrain DOHC No. valves per cylinder 4
Turbocharger Variable-geometry Fuel system Common Rail

Max. power @ rpm 154 kW @ 3750 rpm Max. torque @ rpm 470 Nm @ 1750 rpm

look-up table based combustion engine is needed, and was created to be low fidelity. The
model only contains signals and information pertinent to the engine, while no actuator or
sensor logic are included. In particular, a first order engine map-based model was developed,
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Fig. 2.6 Engine full-load torque and power.

consisting of only one state ωICE , engine angular velocity, ignoring the intake manifold
filling dynamics. The dynamics of ωICE is given by

JICEω̇ICE = TrqICE −Trqload (2.15)

where, JICE is the engine crankshaft equivalent inertia, TrqICE is the effective internal
combustion engine torque exerted on the crankshaft, and Trqload is the load torque from the
torque converter. The transient values of TrqICE as manifold pressure in the intake manifold
varies and reaches steady state are ignored. To obtain an estimation of fuel rate, the energy
flows within the powertrain and the vehicle are reproduced. In particular, a forward modeling
approach is used, which reproduces the physical causality of the system, and so computes
the evolution of vehicle speed as the result of the dynamic simulation, and not prescribed
a-priori, as shown in Figure 2.7. Each powertrain component is modeled using an efficiency
map, a power loss map, or a brake-specific fuel consumption map: these give a relation
between the losses in the component and the actual operating conditions (averaged during
the desired time interval). The fuel mass flow rate ṁ f uel is then computed by multiplying the
brake-specific fuel consumption be with the engine power:

ṁ f uel = TrqICEωICEbe (2.16)

Then, by integrating this value (divided by fuel density) over time, it is possible to obtain
the total fuel consumption. Regarding the specific fuel consumption be, an analytical model
is used [97], rather then a brake-specific fuel consumption map. In particular, the engine
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Fig. 2.7 Information flow with the forward approach.

efficiency is computed as a function of engine load and speed through two coefficients, µP

and µn respectively. Defined the maximum engine efficiency as ηmax, the instantaneous
engine efficiency ηICE is given by:

ηICE = ηmaxµPµn (2.17)

where µP = f (PICE/PICEmax) expresses the influence of the degree of power utilization on the
engine efficiency, while µn = f (ωICE/ωICEmax) expresses the influence of the engine speed
on the efficiency. To evaluate these two coefficients, the dependency of engine efficiency
by instantaneous engine power PICEi and speed ωICE j must be determined. To this purpose,
experimental data of several diesel engines at full and partial loads, with max. power and
displacement comparable with the engine to be modelled, were used. Specifically, in this
analysis experimental data-set of five Diesel engines have been used, listed in Table 2.2.
For each of them, the efficiency map has been determined. Figure 2.8 shows efficiency

Table 2.2 Experimental data-set of Diesel engines.

Engine Max. power Ref.
3.0 L TDI 255 hp [3]
2.5 L TDI 174 hp [98]
1.6 L TDI 110 hp [99]
2.5 L TDI 140 hp [100]
3.0 L TDI 249 hp [101]

map of the 3.0 L TDI 255 hp engine, for example purpose. The three-dimensional surface
of the form ηICE = f (PICE ,ωICE) has been split into two two-dimensional vectors of the
form ηICEP = f (PICE) and ηICEω

= f (ωICE). To determine the dependency of efficiency by
instantaneous engine power the two-dimensional vector ηICEP has been used. Specifically,
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Fig. 2.8 3.0 L TDI 255 hp efficiency map [3]

fixed the engine speed to a specific value ωICE j , defined PICEmax, j the maximum engine power
achievable at ωICE j , and defined ηICEP,max, j the maximum engine efficiency achievable at
ωICE j , it is possible to evaluate the trend of the engine efficiency normalized with respect
to the maximum value ηICEP/ηICEP,max, j as a function of the engine power normalized with
respect to the maximum value PICE j/PICEmax, j , as shown in Figure 2.9a. Repeating the
procedure for all other engine speeds, an average ηICEP/ηICEP,max trend can be computed over
the entire engine operating range, as shown in Figure 2.9b. Figure 2.10 shows the range that
includes the average trends ηICEP/ηICEP,max as a function of PICE/PICEmax for the five engine
considered. In turn, their average (dashed black line), that well approximates the whole range
of values and, therefore, considered suitable also for the engine to be simulated, can be used
to compute the coefficient µP. Specifically, µP has been numerically reconstruct though third
order polynomial:

µP = aP +bP

(
PICE

PICEmax

)
+ cP

(
PICE

PICEmax

)2

+dP

(
PICE

PICEmax

)3

(2.18)

where, the coefficients aP, bP, cP and dP have been tuned to reproduce the average trend,
as shown in Figure 2.11a. The same calculation scheme has been applied to determine the
dependency of efficiency by instantaneous engine speed, this time using the two-dimensional
vector ηICEω

. So the trend ηICEω
/ηICEω,max as a function of ωICE/ωICEmax , averaged over the
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Fig. 2.9 Efficiency of 3.0 L TDI 255 hp engine as function of load.

0 0.2 0.4 0.6 0.8 1
P / Pmax [-]

0

0.2

0.4

0.6

0.8

1

m
ax

 [-
]

Average of experimental
trends for Diesel engines
Range of experimental
trends for Diesel engines

Fig. 2.10 Experimental data of five Diesel engines at full and partial loads: efficiency as
function of load.

five diesel engines, have been determined, and used to numerically reconstruct µn, as:

µn = an +bn

(
ωICE

ωICEmax

)
+ cn

(
ωICE

ωICEmax

)2

+dn

(
ωICE

ωICEmax

)3

(2.19)
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Fig. 2.11 Reconstruction of the average normalized efficiency trends.

where, the coefficients an, bn, cn and dn have been tuned to reproduce the average trend, as
shown in Figure 2.11b. The analytical model for the computation of engine efficiency allows
to determine the efficiency over the entire operating range of the engine starting from the
only knowledge of maximum efficiency ηmax, as shown in Figure 2.12.

Fig. 2.12 Analytical modelling of the engine efficiency map.
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2.2.2 Drivetrain Model

Drivetrain Simulation Requirements

The simulation of drivetrain, based on torque converter, gearbox, and differential models,
have to mimic the real-world systems at low fidelity. It only must converts the engine speed
and engine torque with different gear ratios to the wheels. The torque converter has the
functional requirement to transfer the engine torque to the gearbox. It must allows the car
come to a complete stop without stalling the engine, and must gives the car more torque when
it accelerates out of a stop. In particular, as the speed increases, the transmission catches up
to the engine with, however, difference in speeds, which result in wasted power. Therefore,
when the two halves of the torque converter get up to speed, a lockup clutch must rigidly
connects the engine crankshaft to the input shaft of gearbox, avoiding constant slipping at
high speed. The automatic transmission model need to use the gear command that is set
by the Soft ECU of transmission to select the proper gear ratio. The model is required to
have the proper gear ratios for each gear selection and it also needed to apply the gear ratio
multiplication to the torque being transferred through the model. An efficiency to the torque
was also required to take into account the transmission losses. The drivetrain configuration
is Rear Wheel Drive (RWD), where the torque is transferred from the gearbox output shaft
to the rear wheels throughout a differential. In particular, the differential has three tasks: to
transfer the engine power to the rear wheels; to act as the final gear reduction in the vehicle,
e.g. by slowing the rotational speed of the transmission before it reaches the wheels; to
transmit the power to the wheels while allowing them to rotate at different speeds; this is
mainly needed for driving in a curve with the outer wheels having to run faster than the
inner wheels. The non-functional requirements for each model were directly related to the
functional requirements. Having the correct gear ratios and the correct efficiency ensured
that the model was constrained within the real-world limitations on the transmission.

Drivetrain Model Development

This section contains a description of models used to reproduce the behaviour of the principal
drivetrain components. Figure 2.13 shows the scheme of the modelled system, composed
of an 8-speed automatic transmission ZF 8HP75 750 Nm, whose main characteristics are
reported in Table 2.3, and a final drive in RWD configuration, where a differential gives a
final drive ratio of fratio = 3.27 [-]. The automatic transmission is composed of a model
of the torque converter to compute the torque transferred from the engine to the gearbox,
and a gearbox model that changes the gear ratio from the engine to the rest of the drivetrain.
The final drive is composed of a differential model, that computes the torque transferred



40 Road Vehicle Modelling and Validation

Diesel engine 2.2 L I4 
Multijet II 210 CV

8-speed automatic
transmission system

Final drive RWD

Fig. 2.13 Drivetrain scheme [4].

Table 2.3 Main characteristics of the ZF 8HP75 750 Nm.

Gear Ratio Planetary gear-set:
1 5.0000 Teeth
2 3.2000 Sun 1:48 Ring 1:963 2.1429
4 1.7200 Sun 2:54 Ring 2:965 1.3139
6 1.0000 Sun 3:60 Ring 3:967 0.8221
8 0.6400 Sun 4:24 Ring 4:96R -3.4560

from the transmission system to the rear wheels. Modelling approach adopted for all these
elements is suitable for energy flow analysis, as shown in Figure 2.14, neglecting component
dynamics. Detailed behavioral models accurately accounting for dynamic effect are beyond
the objectives of the simulation. The torque converter, through a fluid coupling mechanism,
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Fig. 2.14 Information flow in vehicle drivetrain.

is utilized to transfer motion from the engine to the input shaft of the gearbox. Since engine
torque is transferred by fluid-dynamic forces rather than friction or pressure, it can multiply
engine torque and has extremely high dampening capabilities. A pump, a turbine, and a
stator in between make up the torque converter. The coupling between the turbine and the
pump is through a transmission fluid. The pump is mounted on the engine crankshaft and
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accelerates the oil flowing to the turbine inside the converter. From the turbine, the oil
flows through the stator back to the pump. If the pump speed is greater than turbine speed,
the torque converter increases the turbine torque. If the pump speed is nearly equal to the
turbine speed, the converter works as a hydraulic clutch and transmits the pump torque to
the turbine shaft. The engine’s flywheel is attached to the pump’s fins; therefore, the pump
rotates with a speed ωTCp equal to the engine one, ωTCp = ωICE , and, similarly, the pump
torque TrqTCp is equal to the engine torque, TrqTCp = TrqICE . The gearbox is coupled to
the turbine, so, as the same manner of the pump, the turbine speed ωTCt is equal to the input
shaft speed of gearbox ωgearin , ωTCt = ωgearin , as well as the turbine torque TrqTCt is equal
to the input shaft torque of gearbox Trqgearin , TrqTCt = Trqgearin . The torque at the turbine
is multiplied with respect to the pump torque, thanks to the presence of the stator which
modifies the flow characteristics inside the converter. The torque multiplication increases
with the speed difference between the pump and the turbine. However, this difference in
speed wastes power, therefore a lockup clutch model is opportunely controlled to reduce the
slippage and improve the efficiency. The torsional damper assembly of the torque converter
is here neglected. Figure 2.15 shows a schematic of a torque converter. A torque converterThe following illustration shows a schematic of a torque converter

The pump is mounted on the engine crankshaft and accelerates the oil flowing

to the turbine inside the converter. From the turbine, the oil flows through the

stator back to the pump. If the pump speed is greater than turbine speed, the

torque converter increases the turbine torque. If the pump speed is nearly equal

to the turbine speed, the converter works as a hydraulic clutch and transmits the

pump torque to the turbine shaft.

The pump torque is modeled with the following equation, where the function f

is a look-up table (Map_Eta_Slip):

The turbine torque is calculated with the next equation, where the function g is a

look-up table (Map_Rel_Trq_PumpTurb):

The following table shows the inports:Inports

Name Unit Description

omega_Pump [rad/s] Pump shaft speed

omega_Turbine [rad/s] Turbine shaft speed

Drivetrain - Transmission System

May 2020 ASM Drivetrain Basic Reference  57

Fig. 2.15 Schematic of a torque converter [5].

static model is used [102] because of its simplicity, and since it has a reasonable agreement
with the real system behaviour for a fairly wide range of operating conditions. It is based on
tabulated characteristics of torque ratio TrqTCt/TrqTCp and capacity factor KTC versus speed
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Fig. 2.16 Torque converter characteristic curves.

ratio ωTCt/ωTCp . The capacity factor, defined as

KTC =
ωTCp√
TrqTCp

(2.20)

is a measure of how much torque the torque converter can transmit, which can be determined
by its characteristic curve reported in look-up table of Figure 2.16a. Then, the pump torque
cab be calculated as:

TrqTCp =

(
1

K2
TC

)
ω

2
TCp

= f
(

ωTCt

ωTCp

)
ω

2
TCp

(2.21)

Using the characteristic curve of the torque ratio reported in look-up table of Figure 2.16b, it
is possible to compute the turbine torque as:

TrqTCt = g
(

ωTCt

ωTCp

)
TrqTCp (2.22)

A model of lockup clutch is used to mechanically connect and disconnect the engine to and
from the rest of the drivetrain. It is modeled as two plates, and the torque is transferred via
friction between them. In this model, no torsion spring is used. The bristle friction model
[103] is used to model the friction torque which arises between the plates. The model is
based on the assumption that the contact between the two surfaces acts like elastic bristles.
As a result of the exerted torque, each bristle can deflect and the deflection torque can be
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Fig. 2.17 Gearbox model look-up tables.

described by a damper and a spring. The friction torque TrqFric can be formulated as follows:

TrqFric = kFric∆θClutch + cFric∆ωClutch (2.23)

where, kFric is the equivalent stiffness coefficient of the friction model, cFric is the equivalent
damping coefficient of the friction model, ∆θClutch is the twist angle difference between the
input and output side of the lockup clutch, and ∆ωClutch is the relative velocity between the
input and output side of the lockup clutch. The resulting friction torque is limited by the
lockup clutch torque capacity TrqFricLim , which is a function of the maximum clutch torque
TrqFricMax and the clutch pedal position PClutch:

TrqFricLim =
100−PClutch[%]

100
TrqFricMax (2.24)

The engagement and disengagement of the lockup clutch is controlled by the transmission
soft ECU: when it is engaged the friction torque is summed to both turbine and pump torques.
The turbine torque TrqTCt , output of the torque converter model, is the input of the gearbox
model. A simple map-based gearing model is used, which involve two look-up tables for
the evaluation of the gear ratio of current gear gratio, in Figure 2.17a, and gear efficiency
ηgear to take into account of power losses due to friction, in Figure 2.17b, respectively. This
efficiency is only considered for the torque calculation, i.e., speed-dependent efficiency is
neglected. At steady state operation under a specific gear of the transmission, the torque of
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the gearbox Trqgearout is calculated as:

Trqgearout =

ηgeargratioTrqgearin, if gratioTrqgearin ≥ 0
gratioTrqgearin

ηgear
, if gratioTrqgearin < 0

(2.25)

while, the relation between the gear ratio and gearbox speed ωgearout is:

ωgearin = gratioωgearout (2.26)

To describe the dynamics during a gear change, the gear ratio in eq. 2.25 and 2.26 is replaced
according to the following 1st order equation during a gear change:

τsyncġratio +gratio = gratiounsync (2.27)

where, τsync is the synchronization time constant, and gratiounsync is the unsynchronized gearbox
transmission ratio. A rule-based gear shift strategy is used to control the vehicle transmission.
In particular, strategy’s rules are derived solving a multi-objective optimization. Figure 2.18
shows the results of the optimization task, reporting the gearshift logic used for the automatic
transmission gearbox. The final drive is modelled in RWD configuration, in Figure 2.19a,
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Fig. 2.18 Automatic transmission gearshift logic.

and consists of a model of the differential with a constant torque distribution ratio to transfers
torque from a transmission to the wheels, in Figure 2.19b. The following simple model is
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RWD (rigid drivetrain)

The power source is attached to the front axle, and thereby the front axle is

directly driven. The rear axle is dragged.

FF (Flexible Drivetrain)

FF (rigid drivetrain)

Front wheel front engine
drive (FF)

Final Drive Assembly
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(a) Drivetrain configuration.

fratio

(b) Schematic of the differential.

Fig. 2.19 Schematic of the final drive [6].

used to simulate and analyze system performance:

TrqWheelRL = TrqWheelRR =
1
2

Trqgearout fratio (2.28)

ωgearout =
1
2
(ωRL +ωRR) fratio (2.29)

where, fratio is the final drive ratio, TrqWheelRL and TrqWheelRR are the torques transferred at
shafts of left and right rear wheels, respectively, ωWheelRL and ωWheelRR are the speeds of left
and right rear wheels, respectively.

2.2.3 Vehicle Dynamics Model

Vehicle Dynamics Simulation Requirements

The vehicle dynamics simulation plays a key role to develop and test algorithms for estimating
dynamics state of the vehicle. It must reliable predicts the movements of the simulated vehicle
on a particular road in response to both control and disturbance inputs, in order that any
inconsistencies or implausibility can not be detected. The output of the simulation, i.e. the
predicted vehicle dynamics states, set the stage for testing estimation algorithms, since can
be used for generating variables of input needed by the algorithms to operate, as well as
reference generation for evaluation of estimation accuracy. The main components in vehicle
dynamics simulation are complex systems and demanded more in-depth models than did the
other systems in the vehicle. In particular, the model simulates a passenger car composed of
5 bodies, vehicle body and four wheels, characterized by 15 Degrees of Freedom (DOF): 6
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DoF for vehicle body motion; 4 DOF for wheel vertical relative motion; 1 DOF for steering;
4 DOF for wheel rotation. In detail, the vehicle dynamics is recreated by seven models:

• vehicle movement model, where the multibody system (MBS) technique is used to
write the equation of motion, in order to calculate the motion of the vehicle and the
vertical wheel movements as functions of tires, aerodynamics, suspension, and mass
forces and torques;

• aerodynamics model, that computes equivalent aerodynamic forces and torques as a
function of vehicle velocity, air density, velocity and incidence angle of wind;

• suspension model, represented by multidimensional look-up tables, computes sus-
pension kinematics, i.e. the relative position of the wheel center, the orientation of
the wheel, the spring-damper-stabilizer movements of two generalized coordinates
(vertical wheel movements of left and right sides) and steering rod displacement for
both front and rear suspension. The movements of the spring, damper, and stabilizer
are calculated to determine the forces that they exert through a map-based approach;

• tire model, where, starting from wheel states (i.e., velocity and orientation), the contact
point states are calculated and passed on to a semi-empirical model to calculate the
tire forces and moments. According to the orientation of the contact point coordinate
system, these forces and moments are then oriented in the vehicle reference system;

• wheel speed model, that computes the wheel speed from a 1st order equation describing
its dynamics;

• steering model, composed of a steering column, steering transmission, and steering
rod, computes a steering torque at the steering column from the relative angle coming
from the driver and the steering gear that is calculated from the steering rod dynamics.
A simple one degree of freedom steering model is considered, where the generalized
degree of freedom is the displacement of the steering rod, since detailed behavioral,
models which include electronic power steering model, are beyond the objectives of
the simulation;

• brake model, that consists of a simple model that computes an additional torque that
reduces the net torque acting on the tire as a function of the brake input signal. Detailed
model of the brake hydraulics are beyond the objectives of the simulation.

To ensure the proper representation of real-world behavior in all the models, the use of real
performance data is necessary. The limitations that vehicle dynamics systems would see in
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use in the vehicle needed to be included in the models as well. Figure 2.20 shows a schematic
of the main components in vehicle dynamics simulation. During the research activities a
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Fig. 2.20 Schematic of the main components in vehicle dynamics simulation.

segment-D compact crossover SUV has been modelled, based on Giorgio platform, with
double wishbones suspension in the front, and multi-link suspension in the rear, whose main
characteristics are listed in Table 2.4. Following Sections describe the main components in

Table 2.4 Segment-D SUV vehicle characteristics.

Quantity Value Quantity Value
Mass mVehicle 1788 kg Height of the center of mass hg 0.6 m

Front semi-wheelbase a1 1.347 m Rear semi-wheelbase a2 1.471 m
Front track width t1 1.606 m Rear track width t2 1.6364 m

Yaw moment of inertia JVehicle 3230 kgm2 Weight distribution 50/50 [-]
Drag coefficient Cx 0.32 [-] Frontal area Ax 2.75 m2

Front suspension double wishbones Rear suspension multi-link
Tires 235 65 R17 104W Michelin Steering ratio 5625 deg/m

vehicle dynamics simulation.

Vehicle Movement Model Development

The model simulates the motion of the vehicle body and the vertical wheel movements. To
this purpose, the vehicle is modelled by multibody system. The vehicle body is modeled
by one rigid body with 6 DOF, as well as each of the wheels is modelled by one rigid body
with 1 DOF in vertical direction. Figure 2.21 shows the four coordinate systems, all rotating
clockwise, used to describe the kinematics of vehicle dynamics:

• earth coordinate system, index E represents the fixed reference system;
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• vehicle reference coordinate system, index V is fixed to the vehicle body. Its origin
is at zero position at mid-point between the front wheel centers. The x-axis is in the
longitudinal direction of the vehicle and points forwards, the y-axis points towards
the vehicle’s left side, and the z-axis direction follows the right-hand rule and points
upwards;

• wheel coordinate system, index W is at the wheel center. Its orientation is determined
by the wheel orientation, which depends on the suspension kinematics;

• contact point coordinate system, index CP its origin is at the contact point. The x-y
plane is parallel to the road local plane.

To be note that, in symbols used the superscript of a variable indicates the coordinate system
in which the variable is described, while, the subscript indicates the relevant body of the
variable. The generalized degrees of freedom are listed in detail below. The translatory

In the following explanations, the superscript of a variable indicates the
coordinate system in which the variable is described. The subscript indicates the

relevant body of the variable. For example, �� � is the position vector of the

vehicle (subscript V) described in the earth coordinate system (superscript E).

As shown in the illustration, the following coordinates are used:

§ Earth coordinate system, index E

represents the fixed reference system.

§ Vehicle reference coordinate system, index V

is fixed to the vehicle body. Its origin is at zero position – configuration
position – at mid-point between the front wheel centers. The x-axis is in the
longitudinal direction of the vehicle and points forwards, the y-axis points to
the vehicle's left, and the z‑axis direction follows the right-hand rule and
points upwards.

§ Wheel coordinate system, index W

is at the wheel center. Its orientation is determined by the wheel orientation,
which depends on the suspension kinematics.

§ Contact point coordinate system, index CP

has its origin in the contact point. The x-y plane is parallel to the road local
plane. For details on calculating the contact point coordinate system, refer to
Contact Point Calculation (  ASM Vehicle Dynamics Addendum).

All variables are described in the vehicle coordinate system. To describe these
variables in the earth coordinate system, index E, coordinate transformation must
be performed.

Vehicle Dynamics
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Fig. 2.21 Schematic of the main components in vehicle dynamics simulation [6].

vehicle velocities of the origin of coordinate system V in x, y, and z directions described in
vehicle reference coordinate system Vq̇1

q̇2

q̇3

=

vx

vy

vz


V

V

(2.30)
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The angular vehicle velocities about the x, y, and z-axes of vehicle reference coordinate
system V q̇4

q̇5

q̇6

=

ωx

ωy

ωz


V

V

(2.31)

The vertical speed of the wheel represented in vehicle reference coordinate system V


q̇7

q̇8

q̇9

q̇10

=


żw1

żw2

żw3

żw4


V

V

(2.32)

The position of the vehicle-fixed axis system V with respect to the earth-fixed axis system E
is described by the components x, y, z of the position vector EPosV , calculated by integrating
the vehicle velocity in the vehicle reference coordinate system, VvV , transformed in the earth
coordinate system, as:

EPosV = EPosV,0 +
∫

(ETV VvV ) dt (2.33)

Its orientation is defined by the rotation matrix ETV , given by the product

ETV = TϕTβ Tα (2.34)

that can be expressed as

ETV =

 cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


 cos(β ) 0 sin(β )

0 1 0
−sin(β ) 0 cos(β )


 1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)


(2.35)

where, varphi denotes the yaw angle and β and α characterize the pitch and roll motion.
Each wheel is supposed to be fully balanced. Then, its center is located on the rotation axis.
As a consequence, the position of each wheel is defined by the vector EPosWi in the earth
coordinate system as follows:

EPosWi = EPosV +ETV VPosWi (2.36)

with i ∈ {1, . . . ,4}, and where EPosV is the vehicle position in the earth coordinate system. If
the rotation matrices VTWi , with i ∈ {1, . . . ,4}, describe the orientation of each wheel-fixed
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axis system relative to the vehicle-fixed axis system, then the rotation matrices

ETWi = ETV +ETV VTWi (2.37)

define their orientation with respect to the earth-fixed axis system. The suspension model
describes the position and orientation of each wheel. In particular, the vertical motion zwi

of each wheel i ∈ {1, . . . ,4} relative to the chassis is used to characterize wheel motion. A
rack-and-pinion steering system is used at the front axle, so the rack movement qSt at the
front axle fully describe the steering motion. Then, the position and orientation of each wheel
center relative to the vehicle-fixed axis system is defined at the front (i ∈ {1,2}) by

VPosWi =VPosWi (zwi,qSt) (2.38)

VTWi =VTWi (zwi,qSt) (2.39)

Instead, the position and orientation of each wheel center relative to the vehicle-fixed axis
system is defined at the rear (i ∈ {3,4}) as a function of zwi and wheel vertical displacement
at the opposite side zwi,Opposite:

VPosWi =VPosWi

(
zwi,zwi,Opposite

)
(2.40)

VTWi =VTWi

(
zwi,zwi,Opposite

)
(2.41)

Expressing the absolute velocity and the absolute angular velocity of the vehicle-fixed axis
system in this axis system results in

VvV = (ETV )
T EvV (2.42)

VωV =

α̇

0
0

+(Tα)
T


0

β̇

0

+ (Tβ

)T

0
0
ϕ̇


=

1 0 −sin(β )
0 cos(α) sin(α)cos(β )
0 −sin(α) cos(α)cos(β )


α̇

β̇

ϕ̇


(2.43)

where, EVV is the velocity of the vehicle-fixed axis system V with respect to the earth-fixed
axis system E, and VωV is the angular vehicle velocities about the axes of vehicle reference
coordinate system V . Now, the absolute velocity and the angular velocity of the vehicle
center of gravity (CoG), VVCoG and VωCoG , are defined as follows:

VvCoG =VvV +VωV ×VPosCoG (2.44)



2.2 Road Vehicle Modelling 51

VωCoG =VωV (2.45)

where, VPosCoG is the position of (CoG) in the vehicle reference coordinate system V . And
for the wheel center, at first, the time derivative of eq. 2.36 results in the absolute velocities
of the wheels centre in the earth-fixed axis system E

EvWi = EvV +EωV ×ETV VPosWi +ETV V ˙PosWi
(2.46)

with i ∈ {1, . . . ,4}, where, EωV absolute angular velocity of the vehicle-fixed axis system in
the earth-fixed axis system E, and V ˙PosWi

is the velocity of each wheel center relative to the
vehicle-fixed axis system. Next, the transformation into the vehicle-fixed axis system yields
to the :

VvWi =VvV +VωV ×VPosWi +V ˙PosWi
(2.47)

Similarly, the absolute angular velocities of the wheels centre in the vehicle-fixed axis system,
VωWi , are written as

VωWi =VωV +VωV ×VPosWi +VωWi,rel (2.48)

where, VωWi,rel is the angular velocity of each wheel center relative to the vehicle-fixed axis
system. The equation of motion can be generated via Jordain’s principle of virtual power
[104], and is provided by the following first-order differential equation:

Mq̈ = QL (2.49)

where, q̈ is the [10×1] degrees of freedom vector. QL is the [10×1] generalized forces and
torques in the direction of the relevant degrees of freedom. Indeed, the forces and torques
applied to each body can be transformed via the partial velocities and the partial angular
velocities to the corresponding generalized forces and torques. Defined EVi the velocity vector
with which a body i is moving relative to the earth-fixed axis system E in this reference
system, and Eωi vector of the angular velocities relative to the earth-fixed axis system E in
this reference system, the contribution of the 5 bodies to the vector of generalized forces and
torques is given by:

QL =
5

∑
i=1

[
∂ET

Vi

∂ q̇

(
Fa

i −miER
ai

)
+

∂ET
ωi

∂ q̇

(
Trqa

i −ΘiER
αi
−Eωi ×ΘiEωi

)]
(2.50)

combines the inertia and gyroscopic forces and torques with Fa
i and Trqa

i , which represent
the external forces and torques (tire, aerodynamics, mass forces, and torques and suspension
forces and torques) applied to body i. In the equation, mi is the mass of the body i, Θi
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denotes the inertia tensor of body i, ER
ai

and ER
αi

the remaining terms in the linear and angular
accelerations. M is the [10×10] generalized mass matrix, which is calculated at every
simulation step as a function of the wheel position and kinematic suspension relations, as
follows:

M =
5

∑
i=1

[
∂ET

Vi

∂ q̇
mi

∂EVi

∂ q̇
+

∂ET
ωi

∂ q̇
Θi

∂Eωi

∂ q̇

]
(2.51)

Aerodynamics Model Development

The effects of aerodynamics are represented by aerodynamics forces and torques acting on the
vehicle sprung mass. The aerodynamics forces and torques are applied in the aerodynamics
coordinate system, located in the ground plane (x-y plane) at the middle of the wheelbase
and track width. The forces and torques are calculated as follows:

FAero,x =−1
2ρAir∆v2Cx (τWind)Ax

FAero,y =−1
2ρAir∆v2Cy (τWind)Ax

FAero,z =
1
2ρAir∆v2Cz (τWind)Ax

TrqAero,x =
1
2ρAir∆v2CMx (τWind)Axlwheelbase

TrqAero,y =−1
2ρAir∆v2CMy (τWind)Axlwheelbase

TrqAero,z =−1
2ρAir∆v2CMz (τWind)Axlwheelbase

(2.52)

where, ∆v is the difference between the velocity of vehicle and wind ∆v = (vVehicle − vWind),
ρAir is the density of air, Ax is the longitudinal shadow area of the vehicle, lwheelbase is the
vehicle wheelbase, Cx, Cy, Cz, CMx, CMy, CMz are the the aerodynamics coefficients, and τWind

is the angle of incidence of wind. As can be seen from above equations, the aerodynamics
coefficients are dependent on the angle of incidence. This dependency is calculated in the
model through look-up tables.

Suspension Model Development

Suspension orientation is described with three rotation angles which are defined with respect
to wheel coordinate system: αWheel (rotation about x-axis), βWheel (rotation about y-axis)
and γWheel (rotation about z-axis). They are defined with certain relation to camber, caster
and toe angles, which is a conventional way to define wheel orientations on a vehicle:

• camber angle is an angle between the vertical axis of wheel and vertical axis of vehicle
when viewed from front or rear. Positive camber is when the distance from upper part
of the wheel to the vehicle is greater than the lower part. For the left side of vehicle,
positive camber angle nearly equals to the negative αWheel angle about x axis;
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• caster is an angle to which the steering pivot axis is tilted forward or rearward from
vertical, as viewed from left or right side of vehicle. Positive caster angle is when
the upper pivot line is leaned backward father than bottom pivot. The positive caster
angle nearly equals to the negative βWheel about y axis when viewed from each side of
vehicle;

• toe angle identifies the exact direction the tires are pointed comparing to the longitudi-
nal axis of the vehicle when viewed from top. Positive toe, or toe in, which means the
front of the wheel pointing in towards the centerline of the vehicle, is nearly equal to a
negative γWheel for left side of the vehicle. The definition of toe out is the other way
round.

Because a right-handed coordinate system is used, the left wheel positive toe angle is a
negative rotation about the z-axis, the positive camber angle is a negative rotation about
the x-axis, and the positive caster angle is a negative rotation about the y-axis. Therefore,
the positive camber, caster and toe angle are in accordance with the negative αWheel , βWheel

and γWheel . The suspension model reproduce the kinematics of vehicle suspension system.
For front suspension system, it calculates the relation of wheel position with respect to the
displacement of steering rack and vertical wheel displacement of wheel, the relation of wheel
angular velocity with respect to the velocity of steering rack vertical wheel speeds of wheel
and the displacements of the spring, damper and stabilizer, according to the steering rack
displacement and vertical displacement of wheel. The suspension kinematics is divided into
three parts, Wheel Position, Wheel Orientation, Spring, Damper and Stabilizer Displacements.
Each of these three uses 2-D look-up tables to obtain related kinematics information with
two inputs: displacement of steering rack qSt and vertical displacement of left and right front
wheel zwi . Wheel position qi is calculated as the sum of the initial position qi,0 and relative
change of the position ∆qi,0 (zwi,qSt) computed from a 2-D look-up tables with the given two
inputs:

qi = qi,0 +∆qi,0 (zwi,qSt) (2.53)

Similarly, the wheel orientation in terms of α , β and γ is obtained from 2-D look-up tables
with the same inputs, as follows:

[αWheel,βWheel,γWheel]
T
i = θWheel,i (zwi,qSt) (2.54)

The vertical displacement of the spring joint points zsp, damper joint points of front left and
front right wheel zd , and vertical displacement of the stabilizer left joint point relative to the
right joint point zstab also rely on steering rack displacement and wheel vertical movement,
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as expressed in following equations:

zspi = zspi (zwi,qSt)

zdi = zdi (zwi,qSt)

zstabi = zstabi (zwi,qSt)

(2.55)

To calculate the wheel velocity relative to vehicle body and establish the equation of motion
described in Chapter 2.2.3, some partial derivatives must be evaluated, including changes in
wheel position and orientation with respect to vertical wheel movement and steering rack
displacement, represented as ∂qi

∂ zwi
, ∂qi

∂qSt
, ∂θi

∂ zwi
, ∂θi

∂qSt
. To evaluate the forces acting between

the wheel and vehicle body (suspension equivalent force in the direction of wheel center
motion), partial derivatives of vertical displacement of spring, damper and stabilizer with
respect to vertical wheel movement and steering rack displacement are calculated, repre-
sented as

∂ zspi
∂ zwi

,
∂ zdi
∂ zwi

,
∂ zstabi
∂ zwi

. Suspension compliance kinematics describes additional elastic
wheel displacements caused by the forces and torques acting on the wheel. The additional
displacements are considered in x and y directions and αWheel and γWheel angles. In particular,
∆xWheel , ∆yWheel , ∆αsus and ∆γsus are calculated from 2D look-up tables as functions of the
longitudinal force, lateral force, longitudinal torque and self-aligning torque , represented
by ∆qCompl,Fx, ∆qCompl,Fy, ∆qCompl,Trqx and ∆qCompl,Trqz respectively. The total additional
displacements and angles due to compliance are are computed as the sum of the additional
movements of the tire caused by four different forces or torques:

∆qCompl,Fx +∆qCompl,Fx +∆qCompl,Fx +∆qCompl,Fx =


∆xWheel[le f t;right]
∆yWheel[le f t;right]
∆αWheel[le f t;right]
∆γWheel[le f t;right]

 (2.56)

Forces acting between the wheel and vehicle body, are generated by spring, damper, and
stabilizer. These forces are functions of spring, damper and stabilizer displacements which
are represented by 2-D look-up tables. The equations and corresponding look-up tables with
respect to spring, damper and stabilizer forces are described as follows:

Fspi = Fspi (zspi)

Fdi = Fdi (zdi)

Fstabi = Fstabi (zstabi)

(2.57)

The description of suspension model made for the front axle is similar for the rear axle.
However, for rear suspension system, it calculates the wheel position, wheel angular velocity
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and the displacements of the spring, damper and stabilizer with respect to the vertical wheel
displacement of wheel and the vertical wheel displacement of the opposite side wheel, rather
than steering rack.

Tire Model Development

The tire model utilizes the Pacejka’s Magic Formula (MF) [7], it is a semi-empirical tire-road
interaction model which describes longitudinal and lateral tire force characteristics and the
self-aligning torque as functions of longitudinal and/or lateral slip, wheel loads and camber.
The basic form of the Magic Formula is:

Y (x) = Dsin [C arctan{Bx−E (Bx−arctan Bx)}]+Sv (2.58)

with x = X + Sh, where Y (x) is the possible output Fx,Fy or Mz, X is the input (slip ratio
or slip angle), B is the stiffness factor, C is the shape factor, D is the peak value, E is the
curvature factor, Sv is the vertical shift, and Sh is the horizontal shift. The result of the model
are shown in Figure 2.22. The six coefficients listed above are called macro-parameters of
Pacejka and govern the trend of the curve:

• D defines, except for the vertex shift, the maximum value drawn from the function;

• BCD product corresponds to the slope of the curve in the origin;

• C controls the shape of the curve and governs the abscissa of the maximum and the
curvature in its surroundings.

The shifts allow to translate the curve and to contemplate the contribution of camber, hys-
teresis, asymmetry and taper of the tire. It is important to note that for C ≤ 1 the maximum
value of the curve coincides with the asymptote and that for E > 1 the curve degenerates.
The expression just described allows to represent the characteristics of pure interaction. If
these conditions are broken, we will talk about a combined interaction. At the same load,
camber and slip (ratio or angle) the combined interaction is more modest than pure since part
of the available adherence is engaged by the complementary interaction. This observation
led to the development and implementation of the "cosine version" of the Pacejka formula.
The first expression elaborated was:

G = Dcos [C arctan(Bx)]+Sh (2.59)

With B, C, D and Sh distinct from the previously defined macro parameters. As shown in
Figure 2.23, parameter:
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y ' D sin[C arctan{B x&E (B x& arctanBx)}]

H
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arctan(BCD)
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Dsinβ

β
Carctan(Bx ...)

=

Cλ /2

Fig. 4.9. Curve produced by the original sine version of the Magic Formula, Eq.(4.49).  The
meaning of curve parameters have been indicated.

4.3.1.  Model Description

The general form of the formula that holds for given values of vertical load and
camber angle reads:

(4.49)
with

(4.50)Y(X) ' y(x)%SV
(4.51)x ' X%SH

where
Y: output variable Fx , Fy or possibly Mz

X: input variable tanα or κ
and 

B stiffness factor
C shape factor
D peak value
E curvature factor
SH horizontal shift
SV vertical shift

The Magic Formula y(x) typically produces a curve that passes through the
origin x = y = 0, reaches a maximum and subsequently tends to a horizontal
asymptote. For given values of the coefficients B, C, D and E the curve shows
an anti-symmetric shape with respect to the origin. To allow the curve to have
an offset with respect to the origin, two shifts SH  and SV have been introduced.
A new set of coordinates Y(X) arises as shown in Fig.4.9. The formula is capable

Fig. 2.22 Curve produced by the original sine version of the Magic Formula [7].

• D represents the maximum value (slightly less than 1 in the presence of offset);

• C determines the position of the horizontal asymptote placed at the base of the curve;

• B governs the shape and intercepts with the axis of the abscissas.178 SEMI-EMPIRICAL TYRE MODELS
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Fig. 4.14. Curve produced by the cosine version of the Magic Formula, Eq.(4.58). The

meaning of curve parameters have been indicated.

The residual torque showing a similar decay:

(4.60)Mzr(αr) ' Dr cos[ arctan(Brαr )]

with
αr ' tanα% SHf (4.61)

It is seen that both parts of the moment are modelled using the Magic Formula,
but instead of the sine function, the cosine function is employed. In that way a
hill-shaped curve is produced. The peaks are shifted sideways.

The  residual torque is assumed to attain its maximum Dr at the slip angle
where the side force becomes equal to zero. This is accomplished through the
horizontal shift SHf. The peak of the pneumatic trail occurs at tanα = !SHt. This
formulation has proven to give very good agreement with measured curves. The
advantage with respect to the earlier versions, where formula (4.49) is used for
the aligning torque as well, is that we have now directly assessed the function for
the pneumatic trail which is needed to handle the combined slip situation. 

In Fig.4.14 the basic properties of  the cosine based curve have been indicated
(subscripts of factors have been deleted again). Again, D is the peak value, C is
a shape factor determining the level ya of the horizontal asymptote and now B
influences the curvature at the peak (illustrated with the inserted parabola).
Factor E modifies the shape at larger values of slip and governs the location xo

of the point where the curve intersects the x axis. The following formulae hold:

(4.62)C '

2
π

arccos
ya

D

(4.63)E '

B xo & tan{π/(2C)}

Bxo & arctan(Bxo)
( if C>1)

Fig. 2.23 Curve produced by the cosine version of the Magic Formula [7].

In this expression, parameter G, multiplied by pure interaction, returns the combined interac-
tion. This is evidently a weight function, a reduction factor that has a physical sense only
if it is within the range [0,1]. The interaction characteristic varies according to the vertical
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load, the camber angle, the inflation pressure, the spin. It also depends on the construction
characteristics, the thermo-mechanical and tribological properties of the tire, as well as on
the road surface conditions. Further complications are given by the non-linear behaviour of
the system. To introduce dependence on all these factors into the economy of the equation,
the macro parameters have been expressed as a combination of micro-parameters:

• parameters for defining the force curves at pure slip condition;

• parameters for defining the torque curves at pure slip condition;

• parameters for defining the force curves at combined slip condition;

• parameters for defining the torque curves at combined slip condition.

Sometimes the interaction characteristics dictated by the MF are significantly far from the
experimental points detected by the telemetry. This is due to the impossibility of faithfully
reproducing in the laboratory the conditions of humidity, temperature, inflation pressure,
adhesion, wear, taper which the tire is subjected once mounted on a real vehicle. To solve
this problem, scaling factors have been introduced that allow modulating macro-parameters
and modifying the shape of the curve. They are indicated with the letter λ . In this work, the
tire model utilizes the formulation 6.1 of MF, described in [9], that allows to contemplate
extreme camber conditions and the contribution of tire inflation pressure.

Wheel Speed Model Development

The wheel speed model considers only the rotational degree of freedom of the wheel move-
ment. Therefore, the generalized degrees of freedom of wheels in vehicle reference coordinate
system V , are 

q̇11

q̇12

q̇13

q̇14

=


ω1

ω2

ω3

ω4

 (2.60)

where, ω1, ω2, ω3 and ω4 are the angular velocities of front left, front right, rear left and rear
right wheel, respectively. A 1st order equation describes the wheel dynamics, derived from a
torque balance around the wheel axis of rotation:

Jwheeliω̇i = TrqWheeli +TrqTirei −TrqBrakei (2.61)
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with i ∈ {1, . . . ,4}, where Jwheel is the inertia about the wheel rotational axis, TrqWheel is the
driving torque, transferred through the drivetrain, TrqTire is the tire torque, and TrqBrake is
the braking torque.

Steering Model Development

The steering model computes the movement of the steering rod starting from the steering
wheel angle defined by the driver. The steering rod movement is passed on to the suspension
kinematics so that the wheel position and orientation can be calculated. The steering model
is composed of a steering column, steering transmission, and steering rod, as shown in Figure
2.24. The generalized degree of freedom is the displacement of the steering rod:[

q̇15

]
=
[
q̇St

]
(2.62)

Neglecting the coupling between the steering degree of freedom and the other vehicle

Fig. 2.24 Schematic of steering model [6].

degrees of freedom, the equation of motion for the steering rod movement can be written as
follows:

MSt q̈St = QLSt,1 +QLSt,2 +QLSt,Gear +QLSt,Fric (2.63)

where, MSt is the generalized mass in the direction of qSt which depends on the wheel
inertias and masses, QLSt,1 and QLSt,2 are the generalized forces due to front left and right tires
forces and torques, respectively, and depend on the suspension kinematics, QLSt,Gear is the
generalized force at the steering gear from the steering column, QLSt,Fric is the generalized
force due to friction in the steering rod. The friction in the steering gear resists the movement
of the steering rod. The friction force is composed of two components. Static force FStFric,Stat

balances the other steering forces. The transition behaviour is computed by a dynamic term,
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which depends on the speed of the steering rod:

QLSt,Fric = FStFric,Stat −µStFric q̇St (2.64)

where, µStFric is the transient friction coefficient.

Brake Model Development

The brake model consists of a simple model that computes an additional torque that reduces
the net torque acting on the tire as a function of the brake input signal. A brake torque is
calculated at each wheel according to the brake pressure pBrake as:

TrqBrakei = 2µBrakeirBrakei (pBrakeiABrakei) (2.65)

with i ∈ {1, . . . ,4}, where µBrake is the brake friction coefficient, rBrake is the radius of the
brake disc, and ABrake is the brake friction area. The brake pressure is calculated from a
look-up table as a function of the driver pedal position. The calculated torque is the maximum
brake torque, which corresponds to a certain brake pressure. The effective braking torque
is modeled as a friction torque with sticking capability. The friction torque consists of two
components, the static and the dynamic torque. The static torque, TrqBrakeStat , is used to
balance the shaft and tire torques acting on the wheel, TrqBrakeStat = TrqSha f t +TrqTire. The
dynamic torque is added to allow the transition from the wheel rotation to standstill. The
static torque and the sum of static and dynamic torques are limited by the maximum braking
torque, which is calculated in the brake model. The effective braking torque TrqBrake,e f fi is
calculated as follows:

TrqBrake,e f fi = TrqBrakeStat,i + cDynBrake,iωi ≤ TrqBrakei (2.66)

where, cDynBrake,i is a coefficient that describes the change of braking torque with wheel speed.

2.3 Road Vehicle Model Validation

This Chapter presents a process for validating the developed road vehicle model, called ASM.
As described in previous Sections, the developed ASM model includes the dynamics that
are relevant for studying vehicle handling and braking, but it is still simple enough to run in
real-time, while reduces the effort for parameterization. Its validation was conducted against
high-order Multibody Simulation (MBS) embedded in ADAMS/Car by MSC. Respect to the
developed ASM few bodies vehicle dynamics model, which has only 15 degrees of freedom,
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the high-order model is much more complicated, with about 102 degrees of freedom, and,
therefore, a significant experimental activity is required to assess its parameters. In particular,
it requires detailed information about suspension design. Furthermore, it is time-consuming
and, therefore, not adequate for the real-time simulation of HIL environment. The high-order
MBS have a general applicability and can provide excellent results, while, on the other hand,
the ASM model may be inaccurate for studies that consider wide-ranging and/or severe
inputs, since it is based on many assumptions. Therefore, it is necessary to verify that
ASM model reliable simulates the vehicle handling and braking. The validation process
has consisted of three main phases: experimental field data collection, vehicle parameter
measurement, and comparison of simulation predictions with the high-order model data
using the same driver control inputs. The phases concerning the experimental field data
collection, and vehicle parameter measurement have been carried out by the industrial partner
of the Ph.D. program. In particular, a target vehicle have been selected: a Segment-D SUV
passenger car, equipped with a Diesel engine 2.2 L I4 Multijet II 210 CV AT8 Q4, whose
main parameters are reported in Tables 2.1, 2.3 and 2.4. In the research work, only the third
phase has been carried out, comparing simulation results of the ASM model respect to the
high-order multibody model. Specifically, the validation has two main objectives:

• to evaluate uncertainty of the ASM model with respect to the high-order multibody
model in reproducing handling and braking behaviour of the vehicle;

• to verify the reliability of the model in reproducing the energy flows within the power-
train and the vehicle, in order to obtain an accurate evaluation of fuel consumption,
based on the control inputs and the road load.

2.3.1 Vehicle Dynamics Validation

Validation process consists of comparing the vehicle dynamics response to control inputs
(steering rod displacement, brake and drive torques) simulated with the ASM model with
respect to the results of the high-order MBS obtained considering the same inputs. There are
standardized maneuvers that can be performed that cover a broad range of vehicle operations.
In order to validate the model, test manoeuvres relevant to vehicle handling and braking were
selected. The tests used include the following:

• straight-line braking manoeuvres;

• slow ramp steer manoeuvre;

• step steer manoeuvres;
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• braking-in-turn manoeuvre.

Some of these maneuvers are conducted under several different conditions. For purposes of
validation, aerodynamic effects were neglected in both high-order model and ASM simulation
environments, according to validation methodology proposed in [105]. The results for the
vehiicle dynamics rensponse analysis are summarized in Figures 2.25-2.49, where the relevant
quantities of lateral and longitudinal dynamics have been carefully post-processed to clearly
represent the uncertainty of the ASM simulation in terms of:

• direct comparison between AMS and high-order MBS results, to verify that ASM
uncertainty remain within 95% of confidence range;

• relative deviation between AMS and high-order MBS results, calculated as:

Relative deviation =

∣∣∣∣ΓASM −Γhigh−order

Γhigh−order

∣∣∣∣ 100% (2.67)

and the mean value over the simulation samples, where, ΓASM and Γhigh−order are
results of ASM simulation and high-order MBS, respectively, for a generic quantity.

Vehicle Longitudinal Dynamics: Straight-Line Braking Manoeuvres

To verify the capability of the few bodies ASM simulation to reproduce the vehicle longitudi-
nal dynamics, straight line braking maneuvers are used. Driving the vehicle straight ahead at
a speed of 100 km/h, after 2 s a step input in brake pedal is applied to achieve a desired level
of deceleration. Two straight-line braking maneuvers have been executed, for two different
levels of deceleration of 4.9 m/s2 and 7.4 m/s2, called straight-line braking 1 and 2, whose
inputs in terms of torques at wheels are shown in Figures 2.25a and 2.25b, respectively. The
results for the longitudinal deceleration are used to assess ASM performance for reproducing
the vehicle longitudinal dynamics. Figures 2.26a and 2.28a show the comparison between
ASM and high-order MBS results for straight-line braking 1 and 2, respectively, while Fig-
ures 2.26b and 2.28b report the time history of their relative deviation after 2 s of simulation,
calculated as:

Relative deviation =

∣∣∣∣ax,ASM −ax,high−order

ax,high−order

∣∣∣∣ 100% (2.68)

as well as the mean value over the simulation samples, where, ax,ASM and ax,high−order are
the longitudinal accelerations of ASM simulation and high-order MBS, respectively. It can
be noted that, both ASM and high-order MBS have approximately the same steady state
deceleration level, assessed after 6 s. In particular, considering the straight-line braking
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Fig. 2.25 high-order MBS control inputs for straight line braking maneuvers.

1, ASM have a relative deviation of 0.1% with respect of −4.9 m/s2 computed by high-
order simulation. Similarly, for straight-line braking 2, a deviation of 0.2% from −7.4
m/s2 have been assessed with ASM. The longitudinal dynamics of the vehicle is, therefore,
well predicted by ASM simulation, as highlighted by Figures 2.27 and 2.29, which show
the comparison for vehicle speeds computed in straight-line braking 1 and 2, respectively.
Generally, there are not significant differences, how confirmed by the Root Mean Square
Errors (RMSE) reported in Table 2.5. This is an important fact that should be checked since

Table 2.5 RMSE for straight-line braking manoeuvres.

Manoeuvre Quantity RMSE
Straight-line braking 1 ax 0.06 m/s2

Straight-line braking 1 vx,Vehicle 0.02 km/h
Straight-line braking 2 ax 0.06 m/s2

Straight-line braking 2 vx,Vehicle 0.07 km/h

braking is indispensable for vehicle safety.

Vehicle Lateral Dynamics: Slow Ramp Steer Manoeuvre

The slow ramp steering test is used to evaluate the simulation’s ability to predict the steady-
state lateral acceleration of the vehicle from the linear operation region of the tires to end in
the saturation region of the same. As the name implies, vehicle speed is held constant while
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Fig. 2.26 Comparison of ASM and high-order MBS longitudinal acceleration for straight-line
braking 1

(
ax =−4.9 m/s2).

0 1 2 3 4 5 6
Time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

V
eh
ic
le
sp
ee
d

=
V
eh
ic
le
sp
ee
d
m
ax
.
[-
]

Straight-line braking for ax = !4:9 m=s2:
Vehicle speed comparison

High-order MBS
+95% Conf
!95% Conf
ASM

(a) Comparison of longitudinal speed.

0 1 2 3 4 5 6
Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
el
at
iv
e
d
ev
ia
ti
on
of
ve
h
ic
le
sp
ee
d
[%
]

Straight-line braking for ax = !4:9 m=s2:
Vehicle speed comparison

Time history
Mean value

(b) Longitudinal speed deviation.

Fig. 2.27 Comparison of ASM and high-order MBS longitudinal speed for straight-line
braking 1
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Fig. 2.28 Comparison of ASM and high-order MBS longitudinal acceleration for straight-line
braking 2

(
ax =−7.4 m/s2).
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the steering wheel angle is slowly increased, as shown in Figure 2.30. Figure 2.31 shows
comparison of lateral acceleration as a function of steering angle for vehicle speed of 100
km/h. For moderate acceleration levels, the results confirm the frequency response, which
shows good correlation between the two simulations. For high accelerations, instead, it can
be noted that the ay achieved by the high-order MBS is slightly greater than that achieved
by the ASM model. The main cause of these behaviors are certainly the tire and suspension
parameterizations. Figures 2.32 and 2.32 show the lateral force normalized to the vertical
load as a function of slip angle normalized to the maximum value, for front and rear tires,
respectively. The tire slip angles, other than speed, depends by the steering angle and lateral
acceleration. In particular, the trends reported in the Figures depend mainly by wheels set-up,
such as camber. Indeed, during the steering phase, the presence of a negative camber causes
the inner tires to deform less and thus move away from the slipping condition, while the
outer ones deform more. In this case, camber is different because is modeled through simple
map. This causes the slip angles to diverge. However, these forces depend not only on the
slip angle but also on the vertical load. Due to the centrifugal force, the vertical load does
not remain constant during the maneuver but there is a load transfer from the wheel inside
the curve to the external one. The effects of slip angle variations and vertical load influence
the trend of tire-road interaction forces: the inner tires generate smaller forces because they
see a lower load Fz, while the outer ones generate greater forces due to the Fz increasing. In
addition to the load transfer, the left and right slip angles are different. However, having
a larger slip angle on the outside wheels is not a problem as there is also a higher vertical
load. The differences between these parameters in ASM and high-order MBS determine this
forces trend, expressed in terms of RMSE in Table 2.6. In general, the model predictions are
comparable to the high-order model data up to the limit of adhesion, with a relative deviation
with respect to the maximum lateral acceleration of 4.5 % (computed with eq. 2.67).

Table 2.6 RMSE for slow ramp steer manoeuvre.

Quantity RMSE
Lateral acceleration ay 0.3 m/s2

Front left tire Fy 313 N
Front right tire Fy 111 N
Rear left tire Fy 413 N

Rear right tire Fy 90 N

Vehicle Lateral Dynamics: Step Steer Manoeuvres

The step steer test is used to evaluate vehicle transient and steady-state behaviours up to the
limit of adhesion. Specifically, vehicle speed is held constant at 100 km/h and then a step
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Fig. 2.30 high-order MBS control inputs for slow ramp steering manoeuvre.

input is given at the steering wheel in order to achieve a desired level of lateral acceleration.
Two step steer manoeuvres have been executed, for 4.9 m/s2 and 6.9 m/s2 of maximum
lateral acceleration, called step steer 1 and 2, whose control inputs are shown in Figure 2.34.
Results of the first step steer test are reported in Figures 2.35, 2.36, 2.37 and 2.38. While,
Figures 2.39, 2.40, 2.41 and 2.42 show the lateral and roll responses for the step steer 2(
ay =−6.9 m/s2). It can be noted that ASM simulation predicts the vehicle lateral response

with a reasonable deviation respect to the high-order model, especially for the low steer angle.
Indeed, for high steer angle the mean value of the relative deviation of lateral acceleration rise
from 1% to 3.8% Concerning the roll response, again, the average value of relative deviation
is about 5%, highlighting how the simulations do a reasonable job of predicting the vehicle
dynamics, comparable with high-order MBS. Table 2.7 report the RMSE for the two step
steer manoeuvres, to quantify performance of lateral and roll responses.

Table 2.7 RMSE for step steer manoeuvres.

Manoeuvre Quantity RMSE
Step steer 1 Lateral acceleration ay 0.07 m/s2

Step steer 1 Sideslip angle 0.03 deg
Step steer 1 Yaw rate 0.13 deg/s
Step steer 1 Roll angle 0.08 deg
Step steer 2 Lateral acceleration ay 0.2 m/s2

Step steer 2 Sideslip angle 0.04 deg
Step steer 2 Yaw rate 0.37 deg/s
Step steer 2 Roll angle 0.15 deg
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Fig. 2.31 Comparison of lateral acceleration as a function of steering angle for 100 km/h.
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Fig. 2.32 Normalized front tires lateral force as a function of slip angle.
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Fig. 2.33 Normalized front tires lateral force as a function of slip angle.
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Fig. 2.34 high-order MBS control inputs for step steer maneuvers.
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Fig. 2.35 Comparison of ASM and high-order MBS lateral acceleration for step steer ma-
noeuvre at step steer 1

(
ay =−4.9 m/s2).
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(a) Comparison of Sideslip angle.
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Fig. 2.36 Comparison of ASM and high-order MBS sideslip angle for step steer manoeuvre
at step steer 1

(
ay =−4.9 m/s2).
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Fig. 2.37 Comparison of ASM and high-order MBS yaw rate for step steer manoeuvre at
step steer 1

(
ay =−4.9 m/s2).
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Fig. 2.38 Comparison of ASM and high-order MBS roll angle for step steer manoeuvre at
step steer 1

(
ay =−4.9 m/s2).
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(a) Comparison of lateral acceleration.
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Fig. 2.39 Comparison of ASM and high-order MBS lateral acceleration for step steer ma-
noeuvre at step steer 2

(
ay =−6.9 m/s2).
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(a) Comparison of Sideslip angle.
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Fig. 2.40 Comparison of ASM and high-order MBS sideslip angle for step steer manoeuvre
at step steer 2

(
ay =−6.9 m/s2).
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(a) Comparison of yaw rate.
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Fig. 2.41 Comparison of ASM and high-order MBS yaw rate for step steer manoeuvre at
step steer 2

(
ay =−6.9 m/s2).
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(a) Comparison of roll angle.

0 1 2 3 4 5 6
Time [s]

0

1

2

3

4

5

6

7

8

9

10

R
el
at

iv
e

d
ev

ia
ti
on

of
ro

ll
an

gl
e

[%
]

Step steer for ay = 6:9 m=s2:
Roll angle comparison

Time history
Mean value

(b) Roll angle deviation.

Fig. 2.42 Comparison of ASM and high-order MBS roll angle for step steer manoeuvre at
step steer 2

(
ay =−6.9 m/s2).
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Vehicle Lateral Dynamics: Braking-in-Turn Manoeuvre

The braking-in-turn test is an attempt to recreate in a test environment a real world crash-
avoidance maneuver. Vehicle speed is held constant at 80 km/h and then a step input is
given at the steering wheel to achieve a lateral acceleration of 4.9 m/s2. So, a braking for a
deceleration of 4.9 m/s2 is executed to determine its effect on course holding and directional
behaviour of the vehicle. Manoeuvre inputs are shown in Figure 2.43. Figures 2.44, 2.45,
2.46 and 2.47 show the lateral response. Instead, Figures 2.48 and 2.49 report the result
in terms of longitudinal response of the vehicle. As can be seen from these Figures, the
prediction of sideslip angle with ASM simulation during transient of step inputs, which occur
at 2 s and 6 s, do not follow exactly the high-order model data, mainly due to the uncertainty
in the evaluation of the camber angles through the map based approach. However, it is
very close to high-order MBS results, with a relative deviation lower than 5% during the
steady-state. Generally, the ASM model do a very good job of predicting vehicle responses,
since the simulation follow the high-order model data very closely. Table 2.8 reports the
RMSE of the relevant quantities for braking-in-turn manoeuvre.
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Fig. 2.43 high-order MBS braking-in-turn steer manoeuvre input.

2.3.2 Validation of Energy Flow Simulation

Energy losses in powertrain components are modeled using efficiency maps that contain
poertrain’s elements efficiency data as a function of the stationary operating conditions This
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(a) Comparison of lateral acceleration.
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Fig. 2.44 Comparison of ASM and high-order MBS lateral acceleration for braking-in-turn
manoeuvre.
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(a) Comparison of Sideslip angle.
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Fig. 2.45 Comparison of ASM and high-order MBS Sideslip angle for braking-in-turn
manoeuvre.
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(a) Comparison of yaw rate.
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Fig. 2.46 Comparison of ASM and high-order MBS yaw rate for braking-in-turn manoeuvre.
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(a) Comparison of roll angle.
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Fig. 2.47 Comparison of ASM and high-order MBS roll angle for braking-in-turn manoeuvre.
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(a) Comparison of longitudinal acceleration.

0 2 4 6 8 10
Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
el
at

iv
e

d
ev

ia
ti
on

of
lo

n
gi

tu
d
in

al
ac

c.
[%

]

Braking-in-turn:
Longitudinal acceleration comparison

Time history
Mean value

(b) Longitudinal acceleration deviation.

Fig. 2.48 Comparison of ASM and high-order MBS longitudinal acceleration for braking-in-
turn manoeuvre.
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(a) Comparison of longitudinal speed.
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Fig. 2.49 Comparison of ASM and high-order MBS longitudinal speed for braking-in-turn
manoeuvre.
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Table 2.8 RMSE for braking-in-turn manoeuvre.

Quantity RMSE
Lateral acceleration ay 0.05 m/s2

Sideslip angle 0.08 deg
Yaw rate 0.15 deg/s

Roll angle 0.09 deg
Roll rate 0.23 deg/s

Longitudinal acceleration ax 0.06 m/s2

vx,Vehicle 0.45 km/h

modelling approach may not be accurate during transients. Furthermore, the methodology
used to reconstruct the engine efficiency map, though some assumptions and approximations,
reduces the experimental data of the engine under examination to the maximum efficiency
only. Therefore, should be validated to verify that the accuracy of the simulation can reliable
estimates fuel consumption. Two tests were considered, WLTP and NEDC, both driving cycle
designed to assess the emission levels of car engines and fuel economy in passenger cars.
Figure 2.50 and Figure 2.51 show simulation results. In the first, an average consumption
of 7.4 dm3/100km was obtained, while in the second it was equal to 6.6 dm3/100km. It is
possible to note a deviation respect to reference ranges published by vehicle manufacturer
[106], corresponding to 5.9-7 dm3/100km and to 5-6.1 dm3/100km for WLTP and NEDC
respectively. However, the deviation is less than 10%, therefore considered acceptable.

2.4 Conclusions

The simulation platform presented can be used for testing vehicle dynamics state estimation
schemes. It involves full vehicle, road, maneuver and driver models. The few bodies vehicle
dynamics model, despite the low degrees-of-freedom that have been included, well predicts
the handling and braking behaviours of the simulated vehicle in response to control inputs.
Indeed, in most cases it matches with the high-order model, which supports the simplifications
of the 15DOF vehicle model. The most significant differences between the two models were
found in the brake-in-turn test, where a combination of steering and braking is considered,
and slow ramp steer test. The first allows to investigate the ASM model response to severe
inputs, while the second to examine it under wide-ranging steer input. These differences are
mainly due to map based approach used to model the steer and suspension systems, whose
approximations undermine the quality of the simulation. Finally, the model has an acceptable
agreement with the high-order MBS, for both handling and braking responses. So, it can be
used for the development and testing of estimation schemes discloses in next Chapters. Note
that the interest in high-fidelity real-time environment platforms is getting higher and higher
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Fig. 2.50 Fuel consumption and vehicle speed for WLTP driving cycle.

in automotive. Of course, ”modeling” plays a central role in the development of embedded
control systems. where some simplifications are crucial to perform the control design phase
(e.g., neglecting disturbances or nonlinear dynamics hard to handle, ignoring delays and
latencies in communication buses, etc. ). Such simplifications clearly introduce mismatches
between the model and the real plant and it follows that is critical to validate any system via
high-fidelity simulation platforms reproducing realistic driving conditions, allowing not only
to reduce the number of test drives but also to reproduce any scenario, especially including
emerging dangerous situations which are impossible to be safely assessed in the real world
[107]. To this aim, the realistic and high-fidelity simulation platform here described is
exploited to emulate the ego-vehicle and the nearby environment, so as to deeply evaluate
the efficiency of the proposed estimating strategies in different driving conditions.
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Fig. 2.51 Fuel consumption and vehicle speed for NEDC driving cycle.





Chapter 4

Tire Inflation Pressure Estimation

4.1 Introduction

Proper inflated tires reduce fuel consumption, improve braking performance, improve han-
dling, and extend tires life, while deflated tires create overheating and can lead to accidents.
The main causes of tire deflation are leakage, temperature changes, and road potholes [122].
To keep tires inflated a monitoring system is required. An interesting solution are the indirect
tire pressure monitoring systems, which outperform the direct measurement systems for
cost, life and maintenance. However, estimation obtained through the wheel speed signal
frequency analysis may be undermined by high road surface unevenness levels, that make
the spectrum of speed signal unclear. Recently, estimation schemes, based on a quarter car
model, have been proven to be a successfully approach to estimate the tire inflation pressure
[42]. This approach, can be used to estimate tire inflation pressure on any road, but need the
knowledge of road surface roughness, which acts as an unknown input for the quarter car
model. To address this issue an innovative estimation algorithm is proposed. Specifically,
the proposed estimation methodology is based on a interactive multiple model approach
which give a reliable estimation of the inflation pressure also when the vertical dynamics
of the vehicle change abruptly due to a change of road surface roughness. This algorithm
is composed of a bank of four UKFs, each of them tailored to predict vertical dynamics
behaviour when the vehicle is on a specific road characterized by a well-defined degree of
roughness. Each filter gives a proper estimation of the vehicle state and covariance. All these
estimations are combined through a weighted average obtained from a probabilistic model.
Therefore, the IMM obtains the tire pressure estimation without an a-priori knowledge of the
road surface. Compared to the dPTMS, the proposed system has the advantage of having
the accelerometers on the vehicle. This is the reason why they do not need to be replaced
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Fig. 4.1 Quarter car model.

together with the tires, they can be easily powered, and they do not require a wireless data
transmission to communicate the measurements.

4.2 Quarter Car Model

The inflation pressure of the tire was estimated based on a 2DOF Quarter Car (QC) non-linear
model for passive suspensions, widely used to study, in ride comfort analyses, the vertical
motion of vehicles caused by roads’ surface unevenness [123]. It assumes the coupling of
pitch, roll and heave motions of the vehicle are negligible, since it has poor significance for
typical passenger-cars [124]. The model, in Figure 4.1, consists of basic elements of the
suspension system such as sprung mass ms (representing sprung mass of a vehicle quarter)
connected via a spring and a damper (representing the suspension system) to the unsprung
mass mus (representing the wheel assembly). The fundamental assumption of the model is
to neglect the effects of suspension systems’ complex linkages [125]. Suspension systems
generally exhibit non-linear behaviour [126], which can be taken into account considering
a cubic stiffness ksnl in parallel with a linear stiffness ks [127], and a quadratic damping
non-linearity modelled with linear cs and non-linear damping coefficients csnl [123]. The
vertical behaviour of the unsprung mass is modelled with a “single point contact model”
approach [128], composed of a spring with a linear stiffness kt (representing tire), while
damping contribution is neglected [129]. It considers that the entire part of the tire in
contact with the road is reduced to a single point contact A, which receives from the road
a displacement according to its surface profile zr (t). This approach for modelling vehicle
dynamics reduces the complexity of the system, while being highly effective [130]. For
a 2DOF QC non-linear model representing 1/4th of a vehicle passive suspension system,
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according to d’Alembert’s principle, the governing equations of motion are:

msz̈s =−ks (zs − zus)− ksnl (zs − zus)
3 − cs (żs − żus)− csnl (żs − żus)

2

musz̈us =−ks (zus − zs)− ksnl (zus − zs)
3 − cs (żus − żs)− csnl (żus − żs)

2 − kt,z (zus − zr)
(4.1)

with the sprung mass of a vehicle quarter ms, calculated as [129]:

ms =
1
2

ms,vehicle
a2

a1 +a2
(4.2)

where, zs is the vertical displacement of the sprung mass, zus the is the vertical displacement
(hop) of the unsprung mass, a1 and a2 are the semi-wheelbases. The total sprung mass of
the vehicle ms,vehicle is calculated as the sum of vehicle chassis mass mchassis (vehicle body)
and loading mass mload , ms,vehicle = mchassis +mload . The proposed methodology indirectly
estimates the tire pressure using its explicit relationship with the tire vertical stiffness.
According to preliminary investigations, drawing an indirect estimation of tire inflation
pressure by direct estimation of tire stiffness, during vehicle driving, seems to be a promising
solution [42]. The relationship between the rolling dynamic vertical stiffness and the inflation
pressure can be reasonably assumed as linear [131], neglecting viscoelastic properties of
the tire, since the 2DOF QC non-linear model operates under transient inputs [132]. This
assumption can be successfully used to indirectly monitor the tire inflation pressure [65]. A
linear relationship between vertical stiffness and inflation pressure of the tire is used [9]:

kt,z = kt,z0 (1+ pFz1d pi) (4.3)

with,
d pi =

pe f f − p0

p0
(4.4)

where, p0 is the nominal pressure of the inflated tire, pe f f is the effective inflation pressure
of the tire, kt0 is the vertical stiffness at the nominal inflation pressure p0, and pFz1 is the
coefficient representing the pressure effect on vertical stiffness. The 2DOF QC non-linear
model reliable simulates vertical dynamics of vehicles if its input, road surface profile, is
known. We have adopted a methodology to reproduce tire excitation by road-roughness
numerically. Considering a single specific degree of road roughness, according to one of A–H
classes of ISO (International Organization for Standardization) 8608 classification [114],
the Power Spectral Density (PSD) of the road-velocity profile żr can be assumed to be
essentially flat [133]. The tire excitation by road-roughness zr is generated in time domain,
non-linear vehicle models requirement, filtering a white-noise with a first-order linear shape
filter [112], described in Chapter 3.3.3.
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4.3 Interacting Multiple Model Filter

The road surface profile acts as a disturbance input to the suspension system, which is a
critical issue in simulating car vertical dynamics, since it is not known a-priori. The prediction
model adopted partially mitigates this problem, generating tire excitation by road roughness
numerically. However, reliable simulation of the effective car vertical dynamics can be only
carried out if the modelled tire-road interaction truly reflects the actual conditions. The
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Fig. 4.2 Scheme of the interacting multiple model unscented filter.

implemented methodology numerically generates tire excitation conforming to a specific ISO
8608 road roughness class, according to the parameter a of the Equation (3.26). The road
class that the vehicle is driving in is not known a− priori, and can abruptly change during
driving. We address this issue through the Interacting Multiple Model (IMM) approach
composed of a bank of nonlinear Unscented Kalman Filters (UKF).

4.3.1 Interacting Multiple Model Algorithm

In this work an IMM based on the Unscented Kalman Filters are adopted as estimators for
the tire inflation pressure so as to deal with changing of road surface roughness. The IMM
system is governed by two relationships:

xτ+1 = fs (xτ ,uτ)+ντ

yτ = hs (xτ)+ρτ

(4.5)

where fs(·) is the process function, hs(·) is the measurement function, s ∈ {0,1, . . . ,S} is the
state mode. The IMM system is composed of a bank of multiple KFs, identified by value
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of s, each of them tailored to represent ride dynamics behaviour of the vehicle for one of
road classes that the vehicle could driving in. Here, nonlinear fs and hs are considered; thus
nonlinear filters, such as UKFs, must be used. The interacting multiple model unscented
filter is given by an algorithm composed of steps reported below.

1. Mixing probabilities υi| j(·|·) evaluation,

υi| j(τ −1|τ −1) =
1
c̄ j

Πi jυi(τ −1)

being c̄ j = ∑
S
i=1 υMarkov,i jυi(τ −1), where, υi(τ −1) is the mode probability at time

(τ −1), Π is the transition probability matrix, and υMarkov,i j is the Markov transition
probability from mode i to mode j, while Πi j denotes the state transfer probability from
model i to model j. The mixed initial state condition x̂0 j(τ −1|τ −1) and covariance
P0 j(τ −1|τ −1) for mode-matched filter j at time τ −1 are

x̂0 j(τ −1|τ −1) =
S

∑
i=1

x̂i(τ −1|τ −1)υi| j(τ −1|τ −1),

P0 j(τ −1|τ −1) =
S

∑
i=1

υi| j(τ −1|τ −1)(Pi(τ −1|τ −1)

+ [x̂i(τ −1|τ −1)− x̂0 j(τ −1|τ −1)]·
· [x̂i(τ −1|τ −1)− x̂0 j(τ −1|τ −1)]⊤)

where, x̂i(τ −1|τ −1) denotes the state estimate for mode-matched filter i at time τ −1
and Pi(τ −1|τ −1) its covariance matrix.

2. Estimation via nonlinear Kalman filter is used to obtain the posterior state estimation
x̂ j(τ|τ), the state covariance matrix Pj(τ|τ), the measurement output ŷ j(τ|τ −1) and
the corresponding covariance matrix P j,τ|τ−1

yy for the j−th model.

3. Model probability update. Under the Gaussian assumption, the likelihood function Λ j

can be evaluated as a function of the residual N j with respect to measurement y(τ)

Λ j(τ) =
exp{−1

2(N j(τ)
⊤(P j,τ|τ−1

yy )−1N j(τ))}√
2πP j,τ|τ−1

yy

,

N j(τ) = y(τ)− ŷ j(τ|τ −1)
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Then, the model probability is calculated as

υ j(τ) =
1

∑
S
j=1 Λ j(τ)c̄ j

Λ j(τ)c̄ j

4. Output interacting is obtained combining the previous results from each filter, obtaining
the state estimation x̂(τ|τ) at time τ and its covariance P(τ|τ) according to

x̂(τ|τ) =
S

∑
i=1

x̂ j(τ|τ)µ j(τ),

P(τ|τ) =
S

∑
i=1

µ j(τ)(Pj(τ|τ)+ [x̂ j(τ|τ)− x̂(τ|τ)] · [x̂ j(τ|τ)− x̂(τ|τ)]⊤)

4.3.2 Unscented Kalman Filter Algorithm

The Unscented Kalman Filter is a suboptimal solution for the stochastic filtering problem of
a discrete-time, dynamical system described either in the additive form

xτ+1 = f (xτ ,uτ)+ντ

yτ = h(xτ)+ρτ

(4.6)

where f (·) is the process function, h(·) is the measurement function, x∈Rnx is the state vector,
τ is the time instant, and y ∈ Rny is the measurement vector. The process ντ and measurement
ρτ noises are both assumed as zero-mean uncorrelated processes with covariances Qτ and
Rτ , respectively. The UKF keep the structure of the linear Kalman filter of one prediction
(or a priori estimation) and one correction (or update) step. Consider eq. 4.6 and suppose
that, at time step τ , x̂τ−1|τ−1 and P̂τ−1|τ−1

xx are given. Choose a real κ >−nx and define, for
1 ≤ i ≤ nx, the weights and points

w0 := κ

nx+κ
,wi=wi+nx := 1

2(nx+κ) ,χ
τ−1|τ−1
0 := x̂τ−1|τ−1

χ
τ−1|τ−1
i := x̂τ−1|τ−1 +

(√
(nx +κ)P̂τ−1|τ−1

xx

)
∗i

χ
τ−1|τ−1
i+nx

:= x̂τ−1|τ−1 −
(√

(nx +κ)P̂τ−1|τ−1
xx

)
∗i

(4.7)

For 0 ≤ i ≤ 2nx, define the transformed sigma points

χ
τ|τ−1
i := f

(
χ

τ−1|τ−1
i ,τ

)
, γ

τ|τ−1
i := h

(
χ

τ|τ−1
i ,τ

)
(4.8)
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and their associated statistics ((A)(⋄)T stands for (A)(A)T )

x̂τ|τ−1 := ∑
2nx
i=0 wiχ

τ|τ−1
i , ŷτ|τ−1 := ∑

2nx
i=0 wiγ

τ|τ−1
i

P̂τ|τ−1
xx := ∑

2nx
i=0 wi

(
χ

τ|τ−1
i − x̂τ|τ−1

)
(⋄)T +Qτ

P̂τ|τ−1
xy := ∑

2nx
i=0 wi

(
χ

τ|τ−1
i − x̂τ|τ−1

)(
γ

τ|τ−1
i − ŷτ|τ−1

)T
(4.9)

along with the innovation’s covariance

P̂τ|τ−1
yy := ∑

2nx

i=0 wi

(
γ

τ|τ−1
i − ŷτ|τ−1

)
(⋄)T +Rτ (4.10)

Finally, instantiate the KF’s correction equations

Gτ := P̂τ|τ−1
xy

(
P̂τ|τ−1

yy

)−1
, x̂τ|τ := x̂τ|τ−1+Gτ(yτ−ŷτ|τ−1)

P̂τ|τ
xx := P̂τ|τ−1

xx −Gτ P̂τ|τ−1
yy GT

τ

(4.11)

4.4 Tire Inflation Pressure Estimation via IMM

The proposed IMMUKF for estimation of the tire inflation pressure is schematized in
Figure 4.2. It consists of a bank of UKF, each of them with a prediction model able to
represent ride dynamics behaviour of the vehicle when driving on a road belonging to a
specific ISO class. Usually, road profiles hardly belong to classes worse than D (repair
interventions should be performed to restore optimal conditions), so, only the classes A (very
good), B (good), C (average) and D (poor) are considered; therefore, the proposed multiple
model, to be able to estimate the inflation pressure when vehicle driving on roads whose
roughness level can significantly change, a bank of four UKF is considered. The state vector
considered is x = [zs,zus, żs, żus,kt,z]

T ∈R5×1. Since measurements available to the IMMUKF
are the sprung and unsprung vertical acceleration, z̈s and z̈us, the measurement vector is
y = [z̈s, z̈us]

T ∈ R2×1. To indirectly estimate the tire inflation pressure, the tire vertical
stiffness kt,z is modelled as a random walk process [134] that artificially varies the parameters
at every sampling instant. Discretizing 2DOF QC nonlinear model equations through the
forward Euler method, the particular nonlinear function fs (.) of the state equations is given
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by:

zsτ+1 = zsτ
+[żsτ

]∆t

zusτ+1 = zusτ
+[żusτ

]∆t

żsτ+1 = żsτ
+

[
−ks(zsτ −zusτ )−ksnl (zsτ −zusτ )

3−cs(żsτ −żusτ )−csnl (żsτ −żusτ )
2

ms

]
∆t

żusτ+1 = żusτ
+

[
−ks(zusτ −zsτ )−ksnl (zusτ −zsτ )

3−cs(żusτ −żsτ )−csnl (żusτ −żsτ )
2−ktτ (zusτ −zr)

mus

]
∆t

ktτ+1 = ktτ +wtτ
(4.12)

where, wtτ is assumed to be zero mean Gaussian white noise process with variance σt . The
measurement function hs (.) is as follows:z̈sτ

=
−ks(zsτ −zusτ )−ksnl (zsτ −zusτ )

3−cs(żsτ −żusτ )−csnl (żsτ −żusτ )
2

ms

z̈usτ
=

−ks(zusτ −zsτ )−ksnl (zusτ −zsτ )
3−cs(żusτ −żsτ )−csnl (żusτ −żsτ )

2−ktτ (zusτ −zr)

mus

(4.13)

The transition probability matrix Π, to assign the same probability to each mode, is
defined as:

Π =


0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97

 (4.14)

The process noise covariance matrix Q is defined as:

Qτ =


q1∆t3 0 0 0 0

0 q2∆t3 0 0 0
0 0 q3∆t3 0 0
0 0 0 q4∆t3 0
0 0 0 0 q5∆t3

 (4.15)

where q0–q5 are five tuning parameters of the IMMUKF, and ∆t is the sampling time of the
filter. While the covariance matrix of measurement noise Rτ is defined as:

Rτ =

(
σazs 0

0 σazus

)
(4.16)

being σazs and σazus the respective standard deviations.
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4.5 Algorithm Validation

In this section, the effectiveness of the approach is assessed through a numerical campaign,
based on simulation platform described in Chapter 2. First Monte Carlo simulation was car-
ried out to compare tire inflation pressure estimation accuracy by the proposed methodology
with respect to a single unscented filter. Then, the capability of the IMMUKF to deal with
abruptly change of road surface profile class and tire inflation pressure was verified.

4.5.1 2DOF QC Parameters Identification

As mentioned above, the IMMUKF consists of a bank of four UKF, each with different
parameterisations for the prediction model. Specifically, the approach provides one model
properly parametrised to represent the ride dynamics behaviour of the vehicle for each of A -
D road classes that the vehicle could driving in. Herein, for each of these four classes, we
have tailored a prediction model to the ASM high-fidelity vehicle simulation by levering the
results obtained from several numerical simulations [135]. By doing so, we have obtained
prediction models that reliable reproduce the ride dynamics behaviour of the vehicle under
several roads, belonging to A - D classes, such that they can be exploited for the estimation
methodology. Four system identification problems have been solved, one for each of the A - D
road classes, any of them formulated as an optimization task where the objective was to find a
set of parameters that minimizes the prediction error between outputs of the ASM simulation,
and the 2DOF QC model [136]. Two outputs have been considered, the vertical accelerations
of sprung z̈s and unsprung z̈us masses, here computed considering the tire inflation pressure
(parameter to be estimated) and the road surface profile (that acts as unknown input during
estimation) as known inputs. More specifically, the outputs have been computed in nine
simulation scenarios, by combining three vehicle speeds (40, 60 and 80 km/h) and three tire
inflation pressures (130, 180 and 230 kPa), in a straight-line manoeuvre, considering the road
model of ASM environment subsystem set to provide properties of road according to one of
the classes. The exploited identification procedure has been performed four times, changing
the road from class A to D, which, leveraging a Genetic Algorithm (GA), found four sets of
parameters for the 2DOF QC model, respectively. Each prediction model is characterized
by 12 parameters, four of which, listed in the Table 4.1, were unknown and needed to be
identified; therefore we have considered these four parameters as decision variables of the
optimization task. The Root Mean Square Error (RMSE) between the ASM simulation and
the 2DOF QC model outputs, z̈s and z̈us, in the nine simulation scenarios, have been defined
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Table 4.1 2DOF QC model unknown parameters.

Parameter Description
cs Linear damping coefficient

csnl Non-linear square damping coefficient
ks Linear spring stiffness coefficient

ksnl Non-linear cube spring stiffness coefficient

as objective functions to be minimized, as:√√√√ 1
N

N

∑
k=1

(
z̈s (τ)− ˆ̈zs (τ)

)2 (4.17)

√√√√ 1
N

N

∑
k=1

(
z̈us (τ)− ˆ̈zus (τ)

)2 (4.18)

where, N is the number of samples.
The population size was set according to the technical literature [137], while, the one-

point crossover method and the bit-string mutation were used for the crossover and the
mutation, respectively [138]. The number of generation was set to 1000, enough for identify-
ing solutions belonging to the 18-dimensional hypersurface of the Pareto frontier. Among the
dominant solutions, the one situated at the minimum distance from the origin of the 18-
dimensional hyperspace was considered. Solutions of the four system identification problems
are reported in Table 4.2, where each of its columns contains parameter values for the 2DOF
QC model exploitable to simulate ride dynamics behaviour of the vehicle under test on
roads belonging to one of the four A - D classes. The results of the identification problems,

Table 4.2 Optimal solutions of the four system identification problems.

Parameter Road class A Road class B Road class C Road class D
cs [Ns/m] 6576 4585 14819 14708

csnl

[
Ns/m2

]
4319 6016 5839 4555

ks [N/m] 113086 173415 94544 118114
ksnl

[
N/m3

]
130098 151886 62836 121723

therefore, have a poor physical meaning, since they not are the real stiffness and damping
coefficients of the vehicle suspension system, but are values identified by the optimization
methodology to reproduce the input/output behaviour of the vehicle system. To verify the
effectiveness of the identification procedure, a test has been executed: simulation scenario
consists of a straight-line manoeuvre with a constant speed of 60 km/h, on a class B road.
Results in terms of unsprung mass vertical acceleration are reported in Figures 4.3a and 4.3b
for tire inflation pressures of 230 kPa and 130 kPa, respectively. In particular, these Figures
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Fig. 4.3 Unsprung mass acceleration; (a) tire inflation pressure 230 kPa; and (b) tire inflation
pressure 130 kPa. Vehicle speed 60 km/h, road class B.

show a comparison between the vertical acceleration of unsprung mass computed with ASM
(dashed red line) and the one calculated with the QC model (blue line). Discrepancies can
be noted due to several assumptions on which the simplified QC model is based on. Indeed,
as mentioned above, the QC model assumes negligible the pitch, roll and heave motions of
the vehicle [124]. Moreover, it neglects the effects of suspension kinematics and compliance
[125], which undermine the QC’s predictive capability [130]. However, the identification
procedure have mitigated the un-modelled dynamics of the QC successfully, as demonstrated
by RMSE on z̈us, equal to 0.03 m/s2 and 0.025 m/s2 for tire inflation pressures of 230 kPa
and 130 kPa, respectively.

4.5.2 Monte Carlo Analysis

To assess the tire inflation pressure estimation accuracy by the proposed methodology, a
Monte Carlo numerical campaign has been carried out. The Monte Carlo method is generally
used to evaluate the uncertainty of estimations [139], since it leads to more advantages then
conventional methods, which require the evaluation of the separate effect of each input
quantity on the result through a parametric analysis [140]. When, in a complex system,
multiple input variables are correlated, uncertainty analysis become a not trivial task and
sometimes even unreliable. Monte Carlo simulation [141, 142] is a probabilistic method to
solve deterministic problems thanks to the use of electronic calculators, which can simulate a
lot of experimental trials that have random outcomes. When applied to uncertainty evaluation,
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random numbers are generated to randomly sample parameters’ uncertainty space. Such an
analysis is closer with the probabilistic nature of the actual processes. Both the IMMUKF
and the single UKF solutions have been tested executing a set of 100 simulations. The initial
conditions x̂0|0 were varied as a normal distribution with mean value equal to true value of
the initial vehicle state x0, i.e., x̂0|0 ∈ N (x0,

√
P0|0). The initial covariance error matrix P0|0

is selected in accordance with the variances of the initial conditions, as:

P0|0 = diag[σ2
z,s, σ

2
z,us, σ

2
vz,s

, σ
2
vz,us

, σ
2
k,t ]. (4.19)

The driving simulation scenario is characterized by Straight-line: starting from initial vehicle
state x0 = [0,0,0,0,kt,z0]

T , the vehicle drives straight ahead at constant speed vx,Vehicle on a
road whit a profile belonging to a specific ISO class (constant value of the parameter aRoad

of the Eq. 3.26), keeping constant the value of tire inflation pressure pe f f for all 20 s of
simulation. The scenario’ parameters (i.e. pe f f , vx,Vehicle and aRoad) have been made to vary
following the Monte Carlo approach as random variables with uniform distribution within the
ranges reported in the Table 4.3. The measurements employed in the IMMUKF are acquired

Table 4.3 Scenario parameters range.

Parameter Range
pe f f (130-230) [kPa]

vx,Vehicle 40-80 [km/h]
aRoad 0-3 [-]

with the high-fidelity vehicle simulation model and corrupted by zero-mean, Gaussian noises:z̈s = z̈strue +νazs, νazs ∈ N (0,σazs)

z̈us = z̈ustrue +νazus, νazus ∈ N (0,σazus)
(4.20)

where, σazs and σazus are the values of the noise covariances. In this numerical campaign,
they were both set equal to 0.5 m/s2, as reported in the sensors datasheets. The single UKF
used to compare the results is based on the same model parametrised for the road class A.
The results of the Monte Carlo simulation require a post-processing to clearly represent the
uncertainty of the estimation algorithm. Three indexes have been considered:

• mean estimation error ēτ obtained on N Monte Carlo samples (red line). For each τ-th
time step, the following performance index is evaluated:

ēτ =
1
N

N

∑
χ=1

(xτ,χ − x̂τ,χ); (4.21)
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• standard deviation of the estimation errors obtained on N Monte Carlo samples (dashed
blue line), evaluated for each τ-th time step as:

στ =

√√√√ 1
N −1

N

∑
χ=1

|(xτ,χ − x̂τ,χ)− ēτ |2; (4.22)

• estimation error of a single Monte Carlo sample (green line).

Fig. 4.4 (a) IMMUKF and (b) classic UKF estimation error on kt,z.

The results show how the IMMUKF outperforms the single filter solution. Indeed, the
mean error is around zero; the standard deviation converges to the true value, lower than
the single UKF solution; and the sample estimation error remains within bounds defined
by the standard deviation of the errors for all the simulation time. Instead, the single UKF
exhibits a divergence in the estimation of tire stiffness. More specifically, the green line in the
Figg. is the estimation error of a single Monte Carlo sample, selected among the N samples
to highlight the maximum estimation error. Specifically, it refers to a simulation scenario
that consider an ISO class D for the road profile. The estimation error of the single UKF
converges to −5.3 N/m, which exhibits, therefore, poor estimation properties with respect
to high uneven road surface, leading to a relative error of 270%. These results confirm the
possibility to use a Multiple Model algorithm to deal with more realistic and non-trivial
scenarios.
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Fig. 4.5 Estimation of tire pressure on an ISO class A road.
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Fig. 4.6 Estimation of tire pressure on an ISO class D road.

4.5.3 Tire Inflation Pressure Estimation

To assess the capability of IMMUKF to deal with abrupt changes of road surface profile class
and tire inflation pressure, several numerical simulations have been executed. Figure 4.5
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Fig. 4.7 Estimation of tire pressure with abrupt change of class for road surface profile.
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Fig. 4.8 (a) Estimation of tire pressure with abrupt change of tire inflation pressure and (b)
estimation error.

shows the results of a simulation scenario where a road profile according to ISO class A
was considered. In the top, it can be noted that after 2 of 10 s of simulation, the IMMUKF
converges to an acceptable estimation of tire inflation pressure. In the bottom of Figure 4.5 are
reported the moving average of each single mode estimation: as shown, mode 1, exploitable
for estimation on roads of class A, fast converges to a real value of tire inflation pressure,
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Fig. 4.9 (a) Estimation of tire pressure with respect to different total sprung mass of the
vehicle ms,vehicle and (b) estimation errors.

Fig. 4.10 (a) Power spectral density of (b) experimental road profile.

while the other modes diverge to much lower values. Similarly, Figure 4.6 shows the results
of a simulation executed on a road with a ISO class D profile, confirming the capability of the
IMMUKF to estimate tire inflation pressure on different road, without a-priori information
on surface profile.
To verify the capability of the IMMUKF to deal with abrupt changes of road surface profile
class, a scenario with two different road surface profiles has been considered. For 5 s of
simulation, the vehicle drives on a class A road, and then, with a sudden change of road
profile, drives on a class D road. The results, shown in Figure 4.7, highlight how the MM
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Fig. 4.11 Estimation of tire pressure with experimental road.

approach is able to deal with changes of road pavement conditions, as usually happens in
real-world driving. Comparing the measurements to every single prediction, claims are
made as to which filter most likely represents the true vehicle dynamics. According to it,
the algorithm steps provide for evaluation of the likelihood function of each filter, and their
probability is so updated, in order to place more trust in that filter. In particular, for the first 5
s of simulation (class A road), mode 1 has been the most representative, while in the last 5 s
(class D road), more trust has been placed in mode 4, as highlighted by the moving averages
of modes probability showed in the bottom of Figure 4.7. Instead, to verify the capability
of the IMMUKF to estimate tire deflection, a simulation on a class B road was executed,
with a sudden reduction of tire inflation pressure from 230 kPa to 180 kPa in about 1.5 s
(Figure 4.8). The estimation converges to a real tire inflation pressure value in about 2 s,
and then accurately follows the transient behaviour without significant delay in response
to the pressure drop, with a low estimation error. A sensitivity analysis has been carried
out to investigate the reliability of the proposed algorithm with respect to the variability
of the sprung mass of the vehicle, because the vehicle sprung mass depends on loading,
which is one of the significant model uncertainties leading to mismatched process noise.
Considered constant, the sprung mass of the quarter car model, the nominal sprung mass of
the vehicle in the high-fidelity simulation (empty vehicle, 1788 kg) was perturbed by +8%
(1928 kg) and +24% (2218 kg), respectively, as shown in Figure 4.9. The estimated and
actual inflation pressure show good agreement in the three scenarios. The results highlight
the reliability of the estimation algorithm against the uncertainty on vehicle unsprung mass
because the mean estimation error is lower than 5%. This behaviour confirms the well-
known robustness of the Kalman filter against mismatched process noise covariance due
to parameter uncertainty [143]. To be note that, as vehicle mass perturbation increases
as the convergence to the true pressure value is slower. This behaviour can be seen in
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the first 2 s of simulation, since the algorithm corrected the initial estimation error, and
after 5 s, when tire deflation has been simulated. Increasing the vehicle mass perturbation
(and, therefore, parameter uncertainty), the mismatched process noise covariance increases,
causing tire inflation pressure harder to reconstruct. Finally, capability of the proposed
algorithm to accurately estimate the tire inflation pressure without information on road
surface roughness, on any type of road pavement whose surface roughness belongs to A−D
ISO 8608 classification, was proven. To this purpose, an experimental measure of road
roughness measured with a mobile LIDAR system, and reported in [144], has been used. In
Figure 4.10 is plotted the road displacement Power Spectral Density (PSD) versus angular
spatial frequency in a bi-logarithmic plan. In particular, a simulation scenario was considered,
that consists of the Segment-D SUV vehicle driving in a road, whose roughness profile is
reproduced according to the road roughness measure. Simulation results, in Figure 4.11,
show how the algorithm successfully estimates the tire inflation pressure, confirming, in a
real-word scenario, the capability of the multiple model approach to work on any type of
road pavement, dealing with unknown road surface roughness.

4.6 Conclusions

In this Chapter, an innovative algorithm for the estimation of tire inflation pressure was
presented. The estimation is based on an Interacting Multiple Model Unscented Filter
scheme that considers a bank of four UKF, each of them exploitable for estimation of ride
dynamics behaviour of a car on different road surface profiles, belonging to A - D ISO classes.
The validation of the algorithm was carried out with an extensive numerical campaign, using
a simulation platform representative of a real SUV vehicle, developed with dSPACE software
ASM. Numerical simulations have confirmed the validity of the approach and have disclosed
how the estimation of tire inflation pressure could be successfully carried to detect tire
deflation, also when the road profile changes.





Chapter 6

Conclusions

Advanced driver-assistance systems, and in particular active safety control systems, are
widely used in modern cars to improve vehicle safety and performance. In these systems,
the knowledge of vehicle dynamics state and parameters plays a crucial role. Some vehicle
states, such as sideslip angle and tire inflation pressure, need to be estimated because of
the lack of onboard sensors that can measure them, for technical and economical reasons.
Indeed, algorithms used for estimation purposes, to be cost-effectively implemented on-board
a vehicle, should work just with CAN-BUS data and low-cost onboard sensors only. The
thesis have described research activities carried out to develop and test algorithms for the
estimation of these variables. First, the possibility to test iTPMS base on wheel speed signal
in HIL environment has been investigated. To this purpose, a simulation platform able to
reproduce the two pressure-dependent characteristics of tires inherent in the wheel angular
speed, and analysed by the iTPMS to detect pressure losses, has been developed. Although
the wheel rolling radius dependency by inflation pressure have been easily modelled using
the Magic Formula with micro-parameters dependent by the pressure (MF version 6.1),
the simulation of the wheel angular speed whose frequency content considers the effects
of tire dynamics response to road excitation is not a trivial task. A new methodology for
the development of the wheel speed model has been proposed. In particular, the wheel
speed frequency content due to road excitation has been reproduced through a simplified
reduced order model. Its parameterization has been carried out with the use of experimental
measurement of wheel angular speeds: parameters evaluation has been formulated as an
optimization task, where the objective is the minimization of errors between the reduced
order model outputs and experimental data. To verify its effectiveness, the methodology has
been used to test functionality of a real iTPMS in HIL environment. The results confirm the
possibility to check in a virtual environment the two phases of iTPMS algorithm: learning
phase, and detection phase. Second half part of the Thesis discloses of the development of
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new estimation algorithms for tire inflation pressure and vehicle sideslip angle. An IMM
model-based algorithm has been proposed to estimate the tire pressure indirectly, dealing with
high uneven road surface conditions. Specifically, the IMM is composed of a bank of four
UKF, based on a 2DOF quarter car model, each of them able to estimate the tire pressure for
a well defined degree of road surface roughness. Then, the IMM, through a weighted average
obtained from a probabilistic model, gives an acceptable estimation of the tire pressure, also
on highly uneven road surface, without an a-priori knowledge of road roughness. Similarly,
for the vehicle sideslip angle a novel estimation strategy has been developed, which not
requires tire-road friction coefficient knowledge, based on the IMM filters. By integrating
available onboard sensor data, the IMM estimates relevant vehicle information in different
driving conditions, emulated through a 2DOF single-track vehicle model and a Dugoff tire
model. Specifically, exploiting the nonlinear estimation Kalman theory, two IMM algorithms
based on the EKF and UKF are developed. While usually the transition probabilities among
models for classical IMMs are fixed and set on prior information and/or dedicated analysis (as
in the tire inflation pressure), for the sideslip angle estimation these conservative hypotheses
are relaxed introducing a time-varying Markov transition matrix based on a novel model
switching algorithm. The effectiveness of these new estimation methods, for both tire
inflation pressure and sideslip angle, has been confirmed through extensive realistic driving
scenarios, using a high-fidelity vehicle dynamics simulation platform, whose modelling ad
validation is described in the Thesis.

6.1 Future Work

This Thesis shows that accurate estimation of sideslip angle under critical driving conditions
is possible using low-cost sensors available on ordinary vehicle. A possible direction for this
work is to use sideslip angle estimation to enhance the performance of the vehicle motion
control systems and to improve the stabilization performances and path tracking capabilities
for ADAS systems, specifically in the vehicle lateral control stability in critical driving
conditions. In addition, improvement in its estimation can be investigated by considering
for state and covariance propagation more detailed vehicle models than the bicycle model.
Indeed, the bicycle model does not include the complete dynamics of the vehicle and tires,
especially roll steer and chamber changes, which may improve the estimation accuracy
across a wide range of manoeuvres. For all estimation algorithm proposed in this Thesis
further future works will concern the evaluation of multiple model approach computational
effort, which will be useful to verify if the proposed estimation schemes can be successfully
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implemented for providing vehicle dynamics state information in real-time. This will enable
experimental validation of the algorithms through vehicle test on proving grounds.
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