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Abstract 

The main objective of this PhD activity is the development of innovative 

astrodynamics techniques to enable advanced functionalities for a wide range of 

applications in the space domain. In this respect, two different research areas have 

been addressed, one related to the development of algorithms to support Space 

Surveillance and Tracking (SST) services, the other related to the space exploration 

domain, and, in particular to investigating the potential of aerocapture maneuvering 

for future Mars missions. As different as these applications could seem, the activity 

has the general purpose to provide tools and algorithms to deal with astrodynamics 

problems. 

 In the SST context, operations involving detection and monitoring of space 

objects as well as avoidance of possible collision between them require the accurate 

knowledge of the objects’ position over time, achievable only by means of numerical 

propagators when frequent enough measurements from ground-/space-based sensors 

are not available. Indeed, a fully configurable numerical orbit propagation tool is 

presented here, which includes the main Earth orbital perturbation and exploits an 

high-order Runge-Kutta scheme to solve the perturbed equations of motion. The 

developed propagator is conceived to be easily coupled to other algorithms to support 

various SST tasks. In this perspective, the main contribution of this thesis is the 

development and performance assessment of an innovative approach to evaluate the 

medium-term collision frequency for space objects in LEO, taking the propagation 

uncertainties into account. At the same time, a novel algorithm is also proposed to 

estimate the position errors coming from environmental and object-related 

uncertainties, based on relative motion equations. Furthermore, the modularity of the 

proposed orbital propagation environment makes it a useful tool to support other SST 

applications. To demonstrate this point, the propagator is integrated within algorithmic 

architectures to perform calibration of ground-based sensors and to carry out coverage 

analysis of satellites over areas of interest to support sensor tasking and Recognized 

Space Picture activities respectively. 
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As regards the Space Exploration context, the research activity focused on the 

investigation of the feasibility of Mars aerocapture for small satellites exploiting the 

adaptable aperture of a particular deployable drag device. The study, which has been 

carried out first for a simplified 2D scenario and then for a complete 3D Mars mission, 

aims at understanding the conditions leading to successful aerocapture and at assessing 

the impact of the main uncertainties on its success. 

Keywords: astrodynamics; orbit propagation; space situational awareness; space 

surveillance and tracking; collision risk assessment; uncertainty estimation; sensor 

calibration; space exploration; aerocapture 
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1.  Introduction 

This PhD activity has the main goal to develop innovative astrodynamics models 

and approaches for a wide range of applications in the space domain. The general 

objective is to provide tools and algorithms to deal with various astrodynamics 

problems. In this respect, two different research areas have been addressed, one related 

to the development of algorithms to support Space Surveillance and Tracking (SST) 

services, the other related to the space exploration domain, and, in particular to 

investigating the potential of aerocapture maneuvering for future Mars missions. 

 

1.1 Space Surveillance and Tracking context 

 

The region of space around the Earth is getting increasingly crowded and is 

becoming a fast-changing environment, with more and more causes for rapid 

increment of the number of orbiting objects, e.g., fragmentation events and launches 

of many large satellite constellations. Up to now, it is estimated that around 36000 

trackable debris objects larger than 10 cm, and over 1 million of debris objects larger 

than 1 cm, are orbiting Earth [1].  

Clearly, this over-population of the circumterrestrial space environment can 

produce a risk not only for space-based assets, which are constantly threatened by 

collisions with other operational spacecraft or debris objects, but also for the safety of 

assets and people on ground, which may be endangered by re-entry of large 

uncontrolled objects. Mitigating these risks means to acquire the capability to survey 

and track such objects and to provide the resulting information to a variety of 

stakeholders, reaching a broad knowledge of the near-space environment, with the 

overall objective of achieving harmonization of space activities on a global level. In 

this light, Space Traffic Management (STM) represents a key concept, consisting in 

the planning, coordination and synchronization of activities to make space operations 

more safe, stable and sustainable. In turn, STM systems rely on the Space Situational 
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Awareness (SSA) of the space operating environment [2]. Several SSA programs arose 

in the last years [3], also following the space debris mitigation guidelines defined by 

the Committee on the Peaceful Uses of Outer Space (COPUOS) [4]. The European 

Space Agency (ESA) lists three segments of knowledge in SSA [5]: 

- Space surveillance and tracking (SST), to monitor objects in Earth orbit 

including active and inactive satellites, spent rocket bodies and other debris 

fragments (either breakup-event related or mission-related); 

- Space weather (SWE) to monitor conditions at the Sun’s surface and in the 

solar wind, and in Earth's magnetosphere, ionosphere and thermosphere, that 

can affect space-borne and ground-based infrastructures or endanger human 

life or health; 

- Near-Earth objects (NEO), to detect natural objects that can potentially impact 

Earth and cause damage. 

In order to prevent collisions between space objects from happening and to 

perform re-entry analysis adequately, special attention is paid to the SST segment. 

Within the SST framework, orbit propagation is crucial in many activities, especially 

those related to collision risk assessment (CRA), in which high accuracy predictions 

of the objects’ orbital states are required. Unfortunately, propagation accuracy is 

affected by several sources of errors, arising from uncertainties depending on object-

related and environmental factors, especially in Low-Earth Orbit (LEO) scenarios. 

First, orbital perturbation modelling represents a major issue, mostly concerning the 

estimation of the Earth’s atmospheric density. Indeed, under the same orbital 

conditions, different atmospheric models output different density values, which can 

undergo additional significant variations due to the solar activity. Another critical 

source of uncertainty is related to the accuracy in the knowledge of the physical 

parameters of space objects, such as the area-to-mass ratio (A/M), typically unknown 

for debris, also due to the limits of ground-based sensors on the minimum detectable 

size. In this context, the uncertainty evaluation process consists in assessing how the 

input uncertainties on the environment and the objects’ characteristics affect the 

propagation error in output as a function of propagation time. 
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Clearly, the good outcome of a collision risk analysis is strongly related to the 

uncertainties involved and, therefore, to the magnitude of the position and velocity 

errors accumulated when propagating the space objects’ trajectories. Collision risk 

assessment is performed by various methods, both covariance and non-covariance 

based. While the former represent the standard approaches to evaluate the probability 

of collisions between two objects in short-term encounter [6], the latter, such as Orbit 

Trace and Cube methods, are mainly used to assess the collision rates of assets of 

interest in long-term propagation scenarios, also considering large populations [7], [8]. 

In particular, the Cube method seems to be the most suitable to deal with close 

approach frequency in medium/long-term scenarios, being easy to couple with 

numerical orbit propagators. Its flexibility and ease of integration, make it a useful 

algorithm also for medium-term collision risk analyses, although it does not consider 

the uncertainties and, thus, the resulting errors in the estimation of objects’ state vector. 

Within this PhD thesis, a numerical orbit propagation environment has been 

developed. The building of an in-house orbit propagator, fully customizable and easy 

to integrate with other algorithms, has represented a starting point and a useful tool to 

address several SST applications. Indeed, since the global purpose lies in the 

implementation of innovative astrodynamics models to be used in various current and 

future activities, one key outcome of this research work is the design, development 

and performance assessment of algorithms for the evaluation of the medium-term 

collision frequency for space objects in LEO, taking the environmental and object-

related propagation uncertainties into account. The new algorithm, called Uncertainty-

aware Cube method, is a modified version of the Cube and it can be seen as an hybrid 

between covariance-based and non-covariance-based methods. This approach aims at 

providing a more realistic picture of the potential conjunctions that the objects could 

experience in the near future, being helpful also in operative context, e.g., to foresee 

in advance which assets can be most endangered in the next month, labelling them at 

different levels of priority or to support sensor tasking focusing the attention on 

potentially dangerous debris objects. Furthermore, for the uncertainty evaluation 

process, an algorithm has been developed and integrated with the Uncertainty-aware 

Cube to estimate the position errors, based on the Hill’s equation expressed in terms 

of differential orbital parameters (DOPs). 
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The development of a configurable and modular propagation environment has 

enabled the possibility to explore other SST applications, thus tailoring the 

propagation and perturbation settings depending on the different operational scenario. 

For instance, algorithms have been developed to perform ground-based sensor 

calibration, implementing an iterative method to compute the sensor time bias. Also 

an application related to the Recognized Space Picture (RSP) service has been 

investigated, developing an algorithm to carry out coverage analysis of a satellite over 

an user-defined Area of Interest (AOI). 

 

1.2 Aerocapture technique for Space Exploration 

 

The growing scientific interest in Mars exploration and the recently renewed plans 

for large-scale unmanned and manned missions to the Red Planet have led to several 

studies on the feasibility of aerocapture for orbit insertion with aerodynamic 

decelerators, such as deployable or inflatable drag devices [9]–[11]. Aerocapture is an 

aero-assisted orbital maneuver that exploits the drag generated during a single 

atmospheric passage to decelerate a probe and transfer it from a hyperbolic trajectory 

to an elliptical orbit. For missions to planet with an appreciable atmosphere, the benefit 

of this technique lies in its intrinsic time and propellant savings [12]. Since the thermal 

shielding weighs less than the propellant needed to perform an orbit insertion 

maneuver, opting for aerocapture leads in general to a larger payload mass and, 

therefore, a potentially higher scientific return [13]. 

The state-of-the-art method for Mars orbit insertion (MOI) consists in adopting a 

large propulsive maneuver to insert the spacecraft into a highly elliptical orbit around 

Mars. The target orbit is then reached by means of additional burns or with 

aerobraking. The first Mars missions (e.g., Mariner9 [14]) reached the science orbits 

with all-propulsive strategies corresponding to a total maneuver cost of about 1.6 km/s. 

In more recent missions, such as Mars Global Surveyor (MGS) in 1996 [15] and Mars 

Reconnaissance Orbiter (MRO) in 2005 [16], a MOI maneuver of 1 km/s was 

supplemented by aerobraking campaigns of several months to circularize the orbit and 
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reduce the orbital period. So, a significant amount of propellant mass must be stored 

on board to employ this strategy, which constitute a challenging constraint from an 

operational point of view. In this respect, the aerocapture approach fits particularly 

well for small satellites, since it allows overcoming the challenges associated to the 

design of an adequate propulsion system. Indeed, not only no chemical propulsion 

system capable to perform the maneuver needed for propulsive MOI currently exists 

for small platforms, but the required propellant mass fraction would result in on-board 

storage issues [17], [18]. 

However, despite all its potential benefits, aerocapture has never been 

implemented to date to perform the MOI, because of the uncertainties in Mars’ 

atmospheric density and its variation, as well as navigation errors [19]. Therefore, the 

purpose of this part of the thesis is to investigate the feasibility of aerocapture at Mars 

for small satellites employing a deployable drag device, whose aperture can be 

modulated in flight, and to assess the effects of the uncertainties on the success of the 

maneuver. The numerical orbital propagator has been modified ad hoc and simplified 

to propagate the trajectory of the spacecraft under Mars gravitational attraction and 

within Mars atmosphere. First, a parametric bidimensional analysis is considered, for 

which a wide range of uncertainty levels in the atmospheric density and ballistic 

coefficient are taken into account. Then, an application to real mission scenario is 

discussed, including navigation errors in form of errors in the targeting maneuver 

performed at the limit of the sphere of influence of Mars.   

 

1.3 Thesis organization 

 

The thesis is organized as follows: 

- Chapter 2 presents an overview of the state of the art of SST applications, with 

a particular focus on the applications of interest for this thesis. A section is 

dedicated to the collision risk assessment, to discuss advantages and 

disadvantages of both covariance and non-covariance-based methods. 
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Furthermore, brief introduction to other SST tasks of interest within this thesis 

are presented, such as the modelling of propagation uncertainties, the sensor 

tasking and sensor calibration problem and the definition of the RSP. 

 

- Chapter 3 introduces the numerical orbit propagation environment. First, a brief 

review of orbit propagation is provided, then the implementation and validation 

of the developed orbit propagator are described, paying special attention to the 

perturbation modelling. Finally, the accuracy-computational cost trade-off is 

discussed, also showing an application to propagation of fragments coming from 

a simulated breakup event. 

 

- Chapter 4 presents the algorithms developed for the SST applications of interest 

and their performance assessment. First, the concept and implementation of the 

Uncertainty-aware Cube method are illustrated and the results of some 

synthetically generated LEO scenarios are shown and discussed. Later, the 

coupled uncertainty evaluation algorithm is presented, together with the 

discussion of some test cases. Then, the Chapter continues with the description 

of the sensor calibration tool and the discussion of some calibration examples. 

Finally, as regards the RSP context, the algorithm developed for the analysis of 

overflight of an AOI is presented and results are shown. 

 

- Chapter 5 is dedicated to the feasibility study of Mars aerocapture. After a brief 

literature review, the aerocapture modelling and implementation are described 

and the applications to Mars scenarios are discussed, starting from general 

considerations (i.e., bi-dimensional analysis) to finally apply the method to a 

simulated mission scenario (i.e., three-dimensional analysis). 

 

- Chapter 6 contains the conclusions, to summarize the results and anticipate 

further developments of the research activity.    
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2.  State of the art of Space Surveillance and 

Tracking applications 

Regarding the space-based situation, the guidelines defined by COPUOS provide 

suggestions on how to limit the probability of accidental collisions and explosions in 

orbit. Within this framework, collisions between space objects are among the most 

dangerous and potentially catastrophic fragmentation events, since they can produce a 

large number of debris, which in turn could pose a risk to other objects, with a 

consequent cascading effect. The phenomenon of collisional cascading, known in the 

literature as “Kessler’s syndrome”, was initially theorized by Kessler in 1978 [20] and 

then widely discussed and demonstrated in the following years [21], [22] also by 

means of many space debris evolutionary models [23]–[26]. It is clear that, in such a 

risky environment, it is necessary not only to protect the space assets of interest, i.e., 

operative satellites, but also to monitor with growing attention the possible 

conjunctions between debris objects, in order to avoid the space around our planet 

becoming inhospitable and many orbital regions becoming unsuitable for human 

activity, especially in LEO [27].  

That’s why, in the last years, growing attention is given to the SST segment, which 

is in charge of monitoring objects in Earth orbit, i.e., active satellites, spent rocket 

bodies and other debris fragments, and the related fragmentation events. In Europe, 

the SST Support Framework was established by the European Union (EU) in 2014, 

entailing the creation of an SST Consortium (EU SST) of EU member states fusing 

their respective SST capabilities. Currently, the Consortium includes 15 EU member 

states: Italy, France, Germany, Poland, Portugal, Romania, Spain, Austria, Czech 

Republic, Denmark, Finland, Greece, Latvia, the Netherlands and Sweden. Three 

types of services are provided to users: 

- Re-Entry Analysis (RE) consists of risk assessment of uncontrolled re-entry of 

dangerous space objects into the Earth’s atmosphere and generation of related 

information, including estimation of timeframe and likely location of possible 

impact. 
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- Fragmentation Analysis (FG) consists of the detection and characterization of 

in-orbit fragmentations due to explosions or collisions. It provides short-term 

information, such as detected number of objects and their size, as well as 

medium-term/long-term information including the fragments cloud evolution. 

- Collision Avoidance (CA) consists of risk assessment of collisions between 

space objects and the generation of collision avoidance alerts, thus playing the 

main role in preventing the Kessler syndrome scenario from happening. 

Within the Italian context, the Italian Space Agency (ASI) serves as National 

Entity, in a group including Italian Ministry of Defense and the Italian National 

Institute for Astrophysics (INAF). Italy is responsible for the re-entry and 

fragmentation services, which are carried out by Italian SST Operation Centre (ISOC). 

It is worth noting that Italy plays a prominent role also in the ESA’s SSA/Space Safety 

program, being the first country to establish an asteroid risk monitoring system, with 

ASI supporting the operations of the NEO Coordination Center established at the 

European Space Research Institute (ESRIN) in Frascati. 

The rest of the chapter provides, first, a description of the existing methods to 

perform collision risk assessment, focusing on their suitability for medium-term 

applications. Then, an overview of the techniques to model propagation uncertainty is 

presented, followed by a description of the problem of sensor tasking to introduce the 

sensor calibration application. Finally, a brief mention to the RSP concept is provided. 

 

2.1 Collision Risk Assessment 

 

In the ambit of the collision risk assessment, two main groups of methods can be 

distinguished: covariance-based and non-covariance-based methods. The first ones 

represent the traditional approach to evaluate the risk: they examine the predicted miss 

distance (MD) between two objects at their closest point of approach (CPA), 

determining if its value is “acceptable” or not. It is clear that, in this context, there is 

not a value that is “acceptable” in absolute terms, but it depends on the magnitude of 
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the uncertainties in the knowledge of the positions of the two objects. If, for instance, 

the MD value is small, but the position uncertainties are sufficiently smaller than the 

MD, one can consider the close approach to be safe from a potential collision. On the 

other hand, if the uncertainties are too large, it could be difficult to exclude a possible 

collision, even in presence of high MD values. For this reason, when computing the 

probability of collision (PC) between two objects, the uncertainties, which can be 

expressed mathematically as covariance matrices, must also be considered. To better 

understand the relationship between the probability of collision, the MD and the 

position covariance, Figure 1 reports the graphical representation proposed by Hejduk, 

Snow and Newman [28]. Here, the PC is plotted against the ratio of covariance size to 

MD and two different regions can be distinguished, i.e., the robust region and the 

dilution region. The plot is useful to visualize the behavior of the PC during a typical 

conjunction’s event scenario, assuming constant MD. Indeed, when a possible 

conjunction event is detected, in general 5-7 days before the time of closest approach 

(TCA), the covariance size is large because of the long propagation time to TCA, so 

the PC value is small and the event is in the dilution region. After some days, more 

accurate information could be available thanks to additional tracking and the 

propagation time to TCA is shorter, thus reducing the size of the covariances. 

Therefore, when the MD remains the same or tends to have small variations, the PC 

increases and reaches a peak. Finally, when approaching TCA, the covariances shrink, 

the event is in the robust region and the PC drops off. This represent the common 

process, but clearly, if a collision is actually detected and no remediation is 

implemented, the PC would grow up to unity. 
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Figure 1 Probability of collision vs the ratio of covariance size to MD [28] 

 

Over the years, several methods to assess the collision probabilities have been 

developed [29]–[34], but they all start from common assumptions made on the objects 

and on their position and velocity uncertainties [6].  

Although these covariance-based methods proved to be rather accurate in the 

evaluation of the collision probabilities between two bodies, they have two main 

drawbacks. They can be quite computationally heavy and they need much information 

to be exploited. In fact, uncertainty estimation and, thus, the calculation of the 

covariance matrices, could be a not straightforward process for some objects, like 

space debris. Moreover, challenges can also arise in the propagation of the covariance 

matrices over a medium/long-term period, on the one hand for the computational 

burden that an accurate propagation could imply, on the other for uncertainty realism 

issues, when trying to linearize the problem [35], [36].   

In this perspective, non-covariance-based methods have been developed, in 

particular the Cube method and the Orbit Trace method. The latter is based on a 

method developed by E.J. Öpik [37], originally implemented to evaluate the collision 

rates between asteroids and other celestial bodies. The method was initially applicable 

only to objects on circular orbits, but then it was generalized by first Wetherill [38]  

and later Kessler [7], introducing the possibility of dealing with non-circular orbits and 

overcoming some singularity problems due to specific close-encounter geometries. 
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Customized versions of this algorithm have been implemented in several space debris 

evolutionary models, such as the Long-term Utility for Collision Analysis model 

(LUCA, and LUCA-2) [39], [40], the Italian Space Debris Mitigation long-term 

analysis program (SDM) [41] as well as the Aerospace Debris Environment Projection 

Tool (ADEPT) by Aerospace Corporation [42], [43]. Basically, in the Orbit Trace, the 

collision probability between two objects is proportional to the time interval that each 

object spends in the region around the orbits’ intersection point. The main assumption 

of this method is that the semimajor axis, a, the eccentricity, e, and the inclination, i, 

of each object are fixed, while the other Keplerian orbital parameters are distributed 

randomly between 0 and 2π. This assumption ceases to be valid when considering 

objects which experience strong non conservative forces, with fast-changing 

semimajor axis and eccentricity.  

In this respect, the Cube method was initially designed to overcome the limitations 

of Orbit Trace, building an algorithm which can be easily coupled to numerical orbital 

propagators, thus considering the updated orbital elements of the objects as they evolve 

in time. While the successive implementations of Orbit Trace have considered this 

aspect, the Cube method still provides significant advantage in dealing with large 

populations, as it requires a lower computational time [8], [44]. The work logic of 

Cube is quite simple: a region of space around the Earth is divided into cubes of fixed 

dimension and, at each time instant of interest, it is checked whether two or more 

objects are in the same cube. If so, the collision probability is computed by means of 

the particle-in-the-box equation [8]. Cube has also been implemented in orbital debris 

evolutionary models, such as LEO-to-GEO Environment Debris model (LEGEND) 

[25] and the Space Objects Long-term Evolution Model (SOLEM) [45] in a modified 

version, as well as for the assessment of close approach frequency for satellites in large 

constellations [46]. Thus, up to now its application has been limited to long-term 

propagation scenarios, the interest being in estimating the collision rates over periods 

of many years. 
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2.1.1 Review of the Cube method 

 

The Cube method is a non-covariance-based conjunction analysis method, initially 

intended to estimate the long-term collision probabilities by means of uniform 

sampling in time of an N-body system [8], [44]. It was included in the National 

Aeronautics and Space Administration (NASA) orbital debris evolutionary model 

LEGEND as a three-dimensional collision probabilities evaluation module. The main 

output of the algorithm is the number of collisions between objects over a long period 

of time. The assumption of the Cube is that two objects could collide only when they 

are within a small volume element. Therefore, the three-dimensional space is divided 

into many cubes, whose dimension can be user-defined. Given a time interval of 

interest and the timestep of the analysis, at each time instant the state vectors of the 

objects are calculated and the cubes in which the objects are placed are uniquely 

identified. The collision rate between objects i and j, Pi,j, can be evaluated, when two 

objects occupy the same cube, as: 

𝑃𝑖,𝑗 = 𝑠𝑖𝑠𝑗𝑉𝑟𝑒𝑙𝜎𝑑𝑈 
(2.1) 

where si and sj are the spatial densities of the objects in the cube, Vrel is the relative 

velocity, σ is the collision cross-sectional area and dU is the cube volume. The spatial 

densities are considered as 1/dU for co-located objects and the collision cross-sectional 

area, σ, can be expressed as 𝜋(𝑟𝑖 + 𝑟𝑗)2, with ri and rj being the hard body radii of the 

objects. By multiplying the collision rate for the time interval between two sampling 

times, dt, the collision probability can be calculated. Thus, within a cube, the collision 

probability is evaluated using the kinetic theory of gas, meaning that the probability 

does not depend on the relative distance of the objects while being mainly determined 

by the cube dimension.  

Since Cube was designed to compute the number of collisions between space 

objects over a period of many years,  this formulation of the collision probability is not 

accurate enough to characterize the risk associated to conjunctions between objects 

subject to close approaches [47]. Therefore, Cube can be used as a filter for 

conjunctions, and, in case of close approach, the collision probability can be computed 
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by means of classical covariance-based methods, taking assumptions on the 

uncertainties into account [46]. 

However, even when Cube is used only as a filter, the results in terms of number 

of conjunctions detected is largely affected by the dimension of the cube and the 

timestep selected for the analysis [47], [48]. In this regard, there can be cases of missed 

detections when two objects that are very close in terms of position occupy two 

different cubes by chance. This problem has been faced and solved by the 

implementation of the Improved Cube (I-Cube) model within SOLEM [45]. Actually, 

in the I-Cube the concept of the cubes is abandoned, as the authors consider as 

conjunction each situation in which two objects are at a distance lower than a given 

threshold (e.g., equal to the diagonal of the original cube). Basically, the algorithm 

considers a sphere centred in one of the objects with a radius equal to the distance 

threshold and, when another object enters the sphere, a conjunction is detected. 

Therefore, in equation (1) the term dU is not the cube volume, but the volume of the 

sphere with radius equal to √3ℎ, where h is the dimension of the cube. 
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2.2 Other tasks 

 

2.2.1 Modelling of propagation uncertainties 

 

In general, uncertainties affecting the accuracy of the propagations may depend 

on many factors. The propagation accuracy can be determined not only by the type 

and modelling of involved orbital perturbations, as well as by the choice of the error 

tolerance within the numerical solver, but also by the lack of knowledge in the physical 

parameters of the space objects, such as the A/M. In LEO, the parameters which mainly 

impact the propagation are the object’s ballistic coefficient and the atmospheric 

density. With regards to the area-to-mass ratio, while it is typically known for active 

satellites, it can either be time-varying, e.g., for large space debris characterized by a 

significant tumbling motion, or be known only statistically for space debris produced 

by fragmentation events (i.e., collisions and explosions) [49]–[51]. This uncertainty in 

the knowledge of fragments A/M distribution is also related to the limits in the 

minimum size that ground-based sensors can actually detect to improve data fitting.  

Concerning the atmospheric density modelling, the space weather (SW) indices, 

namely the solar Extreme Ultraviolet (EUV, e.g., the F10.7 index of solar radio flux) 

and the geomagnetic (e.g., Kp and Ap) indices, represent the main model drivers [52]. 

Indeed, while different models (i.e., Jacchia-Roberts, NRLMSISE-00, Jacchia-

Bowmann) agree to some extent when fed by the same SW indices, the output of a 

model can exhibit significant fluctuations due to variable exposure to Sun and/or solar 

activity. In general, the uncertainty associated to density forecast represents the main 

contributor to drag uncertainty in most of the cases. In fact, errors in the estimation of 

the frontal area are equal to or greater than density-related errors in around 10% of the 

cases, while being much smaller in the 80% of the cases [53], [54]. So, for the vast 

majority of Earth orbiting objects, assuming a constant mass, the average frontal area 

shows very small variations with respect to density modeling error and the global 

uncertainty is dominated by inaccurate predictions of the SW indices. 



  

17 

 

Therefore, uncertainty evaluation is a complex process, but it can be crucial to 

improve the orbit prediction estimation. In the last years, several studies dealt with the 

modelling of the uncertainties, especially those related to atmospheric density, and 

how they may affect the orbit prediction of the space objects. Emmert et al.  [55] 

demonstrated that EUV 10-day forecast errors approximately follow a Brownian 

motion process and they presented approximated analytical expressions linking 

atmospheric density errors to those in mean motion and mean anomaly. Specifically, 

they proved that the error variance of the latter grows as a fifth-order exponential 

function of the time for a Brownian motion density error process. Sagnieres and Scharf 

[56] instead modelled uncertainties related to the intrinsic variability of the density 

model as a stochastic process known as Ornstein-Uhlenbeck process (OUP), adapted 

to this specific application. Schiemenz et al. [57], starting from the formulation 

proposed by Sagnieres and Scharf, demonstrated that the long-term along-track error 

due to the modified OUP grows as a third-order exponential function of the 

propagation time. 

Other works address the subject from a more operational point of view, referring 

to the collision avoidance task. For instance, Hilton et al. [58] proposed a mathematical 

method based on least-square formulation which exploits real-time navigation and 

tracking information to build an uncertainty volume around a Resident Space Object 

(RSO), and analyzed the impact that such uncertainties may have on the development 

of Cognitive human-machine systems required for SSA and Space Traffic 

Management (STM) operations. Bussy-Virat et al. [59] instead described the approach 

to derive the probability density functions (PDFs) associated to the collision risk 

between space objects, starting from the distributions of historical forecast errors in 

the solar and geomagnetic indices. Such approach may assist the operators in 

evaluating the true collision risk. A more analytic approach is proposed by Hao et al. 

[60], which exploited analytical formulations typical of the relative motion to estimate 

the along-track position error due to uncertainties in the atmospheric density and the 

A/M, considering a 2-day time span, commonly used for collision avoidance analysis. 
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In sum, many studies in this field focus on short-term application, mainly aimed 

at assessing the effect of the uncertainties on the PC between space objects [53], [59], 

[61], [62]. 

 

2.2.2 Sensor tasking and sensor calibration 

 

As already said, EU SST contributes to ensure the sustainable access to space for 

all, the primary objective being to provide space-safety services [63], such as assessing 

the risk of on-orbit collisions, monitoring uncontrolled re-entry of space debris into 

Earth’s atmosphere, and detect and characterize in-orbit fragmentation events. 

Therefore, optical, radar and laser sensors are among the most critical components of 

SST infrastructure since they enable the continuous monitoring of man-made objects 

orbiting the Earth [64]. Indeed, EU SST can rely on a robust ground-based sensors 

network, as shown in Figure 2, providing measurements for each service [65].  

 

Figure 2 EU SST Sensors Network (as of July 2022) 

The proper characterization and calibration of the ground sensors is crucial for the 

right functioning of the whole SSA system [66]. A prime example of this is the role 
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the sensors play in the orbit determination, when optical and radar measurements at 

different times are used to reconstruct the orbits of natural objects and satellites [67], 

[68]. Orbit determination is closely linked with the problem of correlation, which can 

be a very difficult and computationally heavy task when the number of unknown 

objects is large [69], [70]. Another useful application is then related to the anomaly 

and maneuver detection task [70]. Finally, sensors are also required to adequately 

monitor the uncontrolled re-entry of massive spacecraft and upper stages, as happened 

for instance with the Italian SST ground sensors network monitoring the re-entry of 

the first Chinese Space Station, Tiangong-1, in 2018 [71].  

Clearly, studying the performance of different sensor configurations is of outmost 

importance to develop a sensor network providing data for SST services. Therefore, a 

number of SST sensor network simulation frameworks have been developed in the last 

years, to better understand actual capacity of the existing sensor networks and to define 

how to evolve and improve them. Currently, three sensor network simulation tools are 

available at European level: the BAS3E (Banc d’Analyse et de Simulation d’un 

Systeme de Surveillance de l’Espace) [72], developed by Centre National d'Etudes 

Spatiales (CNES), the S3TOC (Spanish Space Surveillance and Tracking Operations 

Center) [73], and the SENSIT (Space Surveillance Sensor Network Simulation Tool) 

[74], developed by Politecnico di Milano in collaboration with SpaceDyS company 

and the Italian Space Agency.  

While SENSIT, in its first version, is mainly conceived to perform a statistical 

analysis of the observational and cataloguing capabilities of sensor networks, thus 

assessing their performance in terms of catalogue build-up and maintenance, the 

BAS3E tool implements a sensor scheduling capability, to generate an observation 

plan for a network of tracking sensor, to meet accuracy requirement for the catalogued 

objects. In this respect, it is worth recall that observations of a RSO are usually 

performed using sensors whose field of view (FOV) can be either fixed or steerable. 

Survey sensors typically have fixed FOV, pointed toward specific sky regions to 

maximize the number of observations. Tracking sensors, instead, have to observe and 

follow a specific RSO, thus improving the knowledge of its current and future 

positions. Therefore, optimization of the tasking strategy is required to define the 
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continuously changing pointing direction of the FOV, in order to maximize the 

performance of the whole SST system. The BAS3E scheduler solves this tasking 

problem for a network of tracking sensors, also considering information obtained from 

survey sensors [72]. 

The S3TOC tool has the main objective to maintain the quality of the space objects 

catalogue and to provide collision risk assessment as part of the EU SST consortium, 

by sending planned observation requests each night to the S3T sensor network, i.e., 

the Spanish national SST sensors network. Urdampilleta et al. [73] point out that 35% 

of the 1200 planning requests sent to the nine telescopes of the S3T sensor network 

between 2018 and 2021 have been identified as unsuccessful tracking requests, 

meaning that observation is not performed by the telescope or the measurements are 

not sent back to the operation center. They highlights the need to find an underlying 

pattern for the failed observations using machine learning (ML) techniques, and to 

estimate the probability that a tracking request results to be successful, thus improving 

the observation tasking process and identifying the guidelines for future tasking 

operations.  

Artificial Intelligence (AI) seems to be a promising approach to deal with the 

sensor tasking problem, as many recent works suggest [75], [76]. For instance, Siew 

and Linares [75] observed that improved sensor management algorithms are required 

to allocate the sensing resources efficiently, in particular for long-term sensor tasking 

problem, whose complexity increases exponentially with the number of targets and 

observation windows. They proposed an approach based on deep reinforcement 

learning (DRL) methods to overcome the curse of dimensionality and showed that the 

four DRL agents, trained within an in-house SSA environment, outperformed myopic 

policies, achieving higher number of unique RSOs observed over a 90-min observation 

window. Purpura et al. [76], instead, recently added scheduling capability to the 

SENSIT tool, by exploiting a genetic algorithm to produce optimal observation 

schedules.  

In the last years, the discussion is shifting towards the idea of Space Domain 

Awareness (SDA) [77]. Jah [78] individuates the basis of the SDA in the introduction 

of protocols and procedures to regulate the use of space depending on the availability 
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of quantifiable and timely information regarding the RSOs’ behavior. So, the objective 

of SDA is to surpass the idea of “simple” catalog maintenance, to achieve a 

comprehensive understanding of the motion of RSOs. To do so, a combination of space 

surveillance data with other information to help decision-making processes is required, 

thus increasing the need of data fusion techniques for such application and the need 

for developing a SDA ontology [79]. 

 

2.2.3 Recognized Space Picture 

 

The term Recognized Space Picture (RSP) refers to a continuous representative 

service which provides the presentation of the following [80]: 

• Detection, orbital tracking, classification (space surveillance) of artificial 

space objects 

• Identification of space objects of interest (space reconnaissance) 

• Ground and space threats assessment on space related activities, services 

and operations (threats assessment) 

• Recognition, display and analysis of environmental phenomena (space 

weather), supported by a multi-layered multimedia information 

architecture. 

In the space defense context, RSP designs the requirements of Space Forces for a 

surveillance function needed to carry out space operations, such as defensive/offensive 

counterspace or missile defense. In a way, RSP is the equivalent for the space domain 

of the Recognized Air Picture (RAP) commonly used in North Atlantic Treaty 

Organization (NATO) air control centers [81]. That is why, in this framework, the 

analysis of both friendly and unfriendly satellites’ coverage over particular AOI is of 

outmost importance to identify the time intervals in which it is advisable to perform 

particular military operations. 
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3.  Orbit propagation 

3.1 Literature review 

 

As is well known, orbit propagation is a fundamental aspect of almost all SSA and 

SST applications, representing one of the main “problem” to deal with. To be rigorous, 

orbit propagation can be defined as the determination of position and velocity of a 

space object at future time instants, starting from its initial condition at a given instant. 

Indeed, the capability to accurately propagate the orbit of the objects, being confident 

enough in the prediction of their state vectors, is crucial, especially to allow the 

forecast of possible collisions between them. Clearly, to perform early detection of 

such events, also the computational speed has become an important need, thus pushing 

the scientific community to look for improvements in the orbit propagation methods, 

both in terms of accuracy and efficiency. 

When considering perturbations, the two-body equation is not accurate enough to 

describe the orbit. To remove the error of the Keplerian solution, a perturbing 

acceleration is added to the equation and the problem can be written as 

{

𝒓̈ = −
𝜇

𝑟3
𝒓 + 𝒂𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅

𝒓(𝑡0) = 𝒓𝟎

𝒓̇(𝑡0) = 𝒗𝟎

 
(3.1) 

where 𝒓 is the position vector of the space object, 𝑟 its magnitude, 𝜇 is the Earth 

standard gravitational parameter and 𝒂𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 is the total acceleration produced by 

the perturbing forces acting on the space object, while 𝒓̇ is the velocity vector of the 

space object, 𝑡0 the initial time instant and 𝒓𝟎 and 𝒗𝟎 the initial position and velocity 

vector respectively. 

Three main approaches have been generally considered to deal with the orbit 

propagation problem, differing for the perturbation model considered, the formulation 
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of the equations of motion and the method used to solve them, which can be analytical 

or numerical: 

1) general perturbation techniques, which use analytical methods to solve the 

problem; 

2) special perturbation techniques, which numerically integrate the equations of 

motion including all the required perturbing accelerations; 

3) semi-analytical techniques, that represent a combination of analytical and 

numerical methods. 

General perturbation techniques provide an analytical solution by applying 

perturbation methods ([82]–[84]). They consist in replacing the original equations of 

motion with analytical approximation, relying on series expansions of the perturbing 

accelerations, truncated to simplify the expressions. They produce approximated 

results, valid for a limited time interval, but the results come as explicit functions of 

time and other physical constants, thus implying fast evaluations and better 

understanding of the nature of the orbital motion and the perturbations source. 

Therefore, these approaches speed up the computation, but decrease the accuracy, the 

analytical solutions being low-order approximations obtained considering only the 

most significant forces. 

As regards the effect of the perturbations, they can result in secular and periodic 

variations of the orbital elements (Figure 3). Secular variations vary proportionally to 

a power of time, and errors in secular terms generate a continuous growth of the 

propagation error, thus being the main responsible for the degradation of analytical 

solutions over time. Periodic variations, instead, consist in the repetition of an effect 

and can be either short-periodic, when the effect repeats on the order of the orbital 

period, or long-periodic, when the effect repeats on periods one or two order of 

magnitudes longer than the orbital period. A distinction can be made also between fast 

and slow variables. Slow variables are those experiencing small changes during an 

orbital revolution, i.e., semi-major axis, eccentricity, inclination, right ascension of the 

ascending node and argument of perigee. Fast variables, instead, are those changing a 

lot during an orbital revolutions, such as the true anomaly, or the cartesian coordinates. 
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Furthermore, slow variables change only in presence of perturbations, while fast 

variables obviously change also in their absence. 

 

Figure 3 Effect of perturbations on a generic orbital element, c. [85] 

 

Most of the existing analytical solutions relies on the variation of parameters 

(VOP) form of the equations of motion,. This form was first developed by Euler and 

then improved by Lagrange in 1873, and its basic concept is that, if the constants in 

the solution can be generalized to be time-changing parameters, the solution for the 

unperturbed system, i.e., the Keplerian two-body system, can still be used for the 

perturbed one. So, the VOP equations of motion form a system of first-order 

differential equations describing the rates of change of the time-varying elements. Two 

main VOP formulations exist: Lagrangian VOP, which only considers conservative 

perturbing forces, and Gaussian VOP, which applies to both conservative and 

nonconservative forces. In 1959, Kozai [86] proposed a method to solve Lagrangian 

VOP equations using an ad hoc averaging technique, considering only non-sphericity 

of the Earth (up to J5 only) as perturbation, thus neglecting drag effects. In the same 

year, Brouwer [82] proposed another approach to solve them, based on the method of 

canonical transformation and using Delaunay elements, still neglecting drag (drag was 

then included in successive refinements of the method [87]). For a complete treatment 

of the VOP formulations and of Kozai’s and Brouwer’s methods, the reader can also 

refer to [85] (Chapter 9, pp. 621-637).  
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However, the most common model in operational applications is the Simplified 

General Perturbations (SGP4) model. It is a simplified version of the original SGP 

model [88], whose analytical formulation was based on the works of Brouwer and 

Kozai, developed in the 1960s. Specifically, it included from Brouwer only the short- 

and long-period terms in position not containing eccentricity as a factor, and from 

Kozai the non-Keplerian relation between mean motion and semimajor axis. The main 

SGP4 simplification with respect to the original model consist in considering only the 

main terms modelling the secular effect of drag perturbation. Details of the SGP4 

derivation were documented in 1979 in Lane and Hoots [89], while source code and 

algorithmic considerations can be found in the Spacetrack Report #3 by Hoots and 

Roerich [90] (1980) in its first version, then again in Hoots, Schumacher Jr. and Glover 

[91] (2004) and in Vallado et al. [92] (2006) in updated versions. 

The SGP4 propagator is specially adapted to Two-Line Element (TLE) 

specifications and represents the standard for dealing with TLE sets. A TLE set 

contains information about orbital elements of an Earth-orbiting object at a given 

epoch, in form of mean elements based on the Kozai’s theory [83]. TLEs are generated 

almost continuously by the Joint Space Operations Center (JSPOC) operated by the 

US Air Force Space Command (AFSPC) and, about every 8 hours, the TLEs catalog 

of the unclassified objects is shared with SpaceTrack [93] and Celestrak [94] websites 

for public dissemination. For its ease of accessibility, several SSA applications rely on 

the TLE catalog, deriving useful information, despite  the accuracy issue of both the 

SGP4 propagator and the TLEs themselves [95]–[97], which also do not contain 

covariance information needed in conjunctions operations. A clear and detailed 

example of a TLE is given in [98] and reported in Figure 4. 

 

Figure 4 Example of a TLE set, with description and units of each field. [98] 
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Despite the accuracy issues, analytical theories have represented the standard for 

orbit propagation for many years, because of their speed and their simplicity. 

Numerical methods, instead, are characterized by an higher complexity and required 

computational power, but are the most accurate way to propagate perturbed orbits. 

Therefore, when modern computers became capable to deal efficiently with numerical 

integration, special perturbation techniques arose as the most reliable for many 

applications. 

Special perturbation techniques numerically integrate the equations of motion 

including all necessary perturbing accelerations. Two formulations are mainly used, 

Encke’s and Cowell’s formulations. The former, less employed and popular than the 

other, instead of integrating all the forces acting on the satellite, only integrates the 

difference between the perturbed and the two-body accelerations, thus dealing with 

smaller magnitudes. When the difference becomes too large, the orbit is re-initialized 

at a given point and at a given time. This operation is called “rectification” and proved 

to be quite advantageous in controlling the errors [99] (Chapter 9, pp. 447-450). 

 In Cowell’s formulation, instead, the single second-order vectorial differential 

equation of the system of equation (3.1) is written in form of two first-order differential 

equations, i.e., six scalar equations, thus enabling a wider class of integration methods 

to solve the problem, i.e., single integration methods.  

Indeed, numerical methods can be classified in two groups (see Chapter 8 in [85] 

and Chapter 4 in [100]): 

- single step methods, which start from the single-state value at time 𝑡0 and 

obtain the solution at time 𝑡0 + ∆𝑡, by combining the state at one time with the 

derivatives computed at several other times. Explicit Runge-Kutta methods are 

common examples of single-step and they are often used, because they do not 

need a sequence of back values to start the integration and they meet the 

propagation needs of most orbital scenarios. However, other single-step 

methods are known and discussed in the literature, such as collocation 

integration methods [101] or implicit Runge-Kutta scheme [102], [103], which 
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have been demonstrated to perform better than explicit Runge-Kutta methods, 

but requiring a higher design complexity. 

 

- multi-step methods, also called predictor-corrector methods, since they 

perform an initial estimate (prediction) using previous estimates of the states, 

and then they refine the result using a second series of calculations 

(correction). These methods can be more accurate, but they are more complex, 

requiring information of previous conditions. Typical examples of multi-step 

methods are the Adams-Bashforth-Moulton and the Shampine-Gordon. A 

detailed discussion about multi-step methods can be found in Berry and Healy 

[104]. 

As anticipated before, there is another class of methods to solve the equations of 

motion, known as the semi-analytical techniques, which represent a combination 

between the numerical and the analytical methods. The typical approach of these 

techniques is to separate the short-periodic effects, which are modelled analytically 

using Fourier series, from the secular and long-periodic contributions, which are 

numerically integrated with larger step size, since the short-periodic constraints on the 

step size of the integration is no more present. Then, the contributions are combined 

at the integration times or using an efficient interpolation [85], [105]. 

Several semi-analytical methods have been developed. A prominent example is 

the Draper Semianalytical Satellite Theory (DSST) developed by Cefola and his 

colleagues in the 1970s. A detailed discussion of the theory behind DSST is reported 

in Cefola [106]  and Danielson et al. [107]. DDST includes an extensive treatment of 

the perturbations, using Lagrange’s VOP equations to model conservative forces and 

Gauss’s VOP equations for non-conservative forces, and shows great flexibility, thus 

being configurable depending on the different application. Example of its use in 

SSA/SST applications, especially for orbit determination, are reported in Setty et al. 

[108] and Cazabonne and Cefola [109]. 

Other methods exist in the literature. An interesting approach is the one presented 

by San-Juan et al. [97], which propose an hybrid SGP4 orbit propagator as an 

improvement to the original TLE-SGP4 system, requiring the modeling of the error 
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associated to the SGP4 propagation during an initial control interval by means of the 

Holt-Winters algorithm that also provide the error correction.  

Other approaches are, instead, based on alternative formulations of the integrals 

of motion, such as the DROMO propagator conceived by Peláez, Bombardelli and Baù 

[110]–[112], which implemented a new formulation of the VOP method, or new 

formulations of the orbital parameters, such as methods based on non-averaged 

regularized formulations [113] and generalized equinoctial orbital elements [114], 

[115], that have also been applied in SSA context for collision avoidance [116] and 

uncertainty propagation [117]. 

 

3.2 UNINA numerical propagator 

 

A key part of this research activity has been the development and performance 

assessment of a numerical orbital propagation environment, which represented a useful 

tool to deal with SST applications in general. In this section, first details about the 

theory behind and the implementation of the orbit propagator is presented, and then its 

validation against the propagation environment of the NASA General Mission 

Analysis Tool (GMAT) is shown. Finally, an accuracy-computational cost trade-off 

study is carried out and an application to the propagation of fragments coming from a 

breakup event is reported as an example. 

 

3.2.1 Theory and implementation 

 

The developed numerical propagator integrates and solves the equation of motion 

in Cowell’s formulation by using a Runge-Kutta scheme of the 8th-9th order. As already 

said, in Cowell’s formulation, the perturbing accelerations are added to the two-body 

equation to obtain the following equation of motion [85], 
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𝒓̈ = −
𝜇

𝑟3
𝒓 + 𝒂𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅 

(3.2) 

The numerical propagator solves the equations of motions and outputs the state 

vectors in the Earth’s Mean Equator and Equinox of epoch J2000 reference frame 

(EME2000). The propagator takes as inputs the physical characteristics of the object 

(i.e., A/M, drag coefficient, CD, and reflectivity coefficient, CR), the initial conditions 

(in form of TLE, Keplerian orbital elements or Cartesian vectors of position and 

velocity), the perturbations’ settings and the propagation parameters (i.e., duration and 

desired time step of the propagation). It outputs the position and velocity vectors of 

the object at each time step and the corresponding osculating orbital elements. The 

propagation environment, coded in MATLAB, is easy to integrate with other 

algorithms. Indeed, the main propagation function can be called taking as input a series 

of MATLAB structure arrays containing the input information required. 

It is worth noting that also the backward propagation of the orbits has been 

implemented within the propagation environment, with the same performance of 

forward propagation. This feature can be very useful in many SST applications, in 

particular those involving propagation of fragments coming from break-up events.  

Orbital perturbations 

The main orbital perturbations are included in the propagation environment, i.e., 

perturbations due to non-sphericity of the Earth, atmospheric drag, solar radiation 

pressure and luni-solar third-body gravitational attraction. All the information 

regarding the perturbations are stored in a struct variable taken as input by the 

propagation function, in which a series of on/off flags must be set by the user, defining 

the perturbations to be included. The orbital perturbations available and their 

implementations are discussed in the following. 

Earth gravitational attraction and non-sphericity perturbation 

The perturbation due to the gravity field of the Earth is implemented following the 

procedure described by Vallado [85] (Chapter 8, pp. 538-550), based on Legendre 

polynomials. The main equations are recalled here. 
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The components of the acceleration in the Earth-Centered Earth-Fixed (ECEF) 

reference frame are expressed as 

𝑎𝑔𝑥
= (
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𝑟
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(3.3) 

where 𝑟𝑥, 𝑟𝑦 and 𝑟𝑧 are the components of the position vector in the ECEF reference 

frame, while 
𝜕𝑈

𝜕𝑟
, 

𝜕𝑈

𝜕𝜙𝑔𝑐𝑠𝑎𝑡

 and 
𝜕𝑈

𝜕𝜆𝑠𝑎𝑡
 are the partial derivatives of the Legendre 

potential function 𝑈 with respect to the position vector, the geocentric latitude and the 

longitude respectively, which are known as the spherical coordinates. The partial 

derivatives of the potential function 𝑈 can be written as 
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𝑚𝑃𝑛,𝑚[sin 𝜙𝑔𝑐𝑠𝑎𝑡
]

𝒏

𝒎=𝟎

𝑵

𝒏=𝟎

∙ {𝑆𝑛,𝑚 cos(𝑚𝜆𝑠𝑎𝑡) − 𝐶𝑛,𝑚 sin(𝑚𝜆𝑠𝑎𝑡)} , 

(3.4) 

where 𝑅𝐸  is the mean equatorial radius of the Earth, 𝑛 and 𝑚 are the degree and order 

of the gravity field harmonics,  𝑃𝑛,𝑚 is the associated Legendre function, 𝐶𝑛,𝑚 and 𝑆𝑛,𝑚 
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are coefficients representing the mathematical model of Earth’s shape using spherical 

harmonics. The equations are general and allow to compute the accelerations due to 

Earth gravity field, by including both the central body attraction and the perturbations 

due to non-sphericity. 

The gravity model selected for this numerical propagator is the Earth Gravity Model 

2008 (EGM2008) [118], which is one of the most accurate models and is widely used 

in the literature. The EGM2008 version implemented contains harmonics up to 70 in 

degree and order, but the number of harmonics to consider for a specific propagation 

can be set by the user and depends on the accuracy-speed trade off. It is worth noting 

that a new version of the EGM, i.e., EGM2020, is expected to be released shortly, and 

the version implemented in the developed environment will be updated. 

Atmospheric drag perturbation 

The equation of the acceleration due to the atmospheric drag perturbation is  

𝒂𝑫 = −
1

2
𝜌

𝐶𝐷𝐴𝐷𝑟𝑎𝑔

𝑀
𝑣𝒗, (3.5) 

where 𝐶𝐷 is the drag coefficient, 𝐴𝐷𝑟𝑎𝑔 is the cross-sectional area, i.e., the area exposed 

to drag and normal to the object’s velocity vector, 𝑀 is the object’s mass, 𝜌 the 

atmospheric density, 𝒗 the relative velocity vector between the object and the 

atmosphere and 𝑣 its magnitude. 

The drag coefficient is a dimensionless quantity whose value is usually around 2.2 

for Earth orbiting objects. The group 
𝐶𝐷𝐴𝐷𝑟𝑎𝑔

𝑀
 is usually called the ballistic coefficient 

and it describes how much the object is affected by drag forces. In other applications, 

such as space exploration, the ballistic coefficient is defined as the reciprocal, 

𝑀

𝐶𝐷𝐴𝐷𝑟𝑎𝑔
. 

The relative velocity vector, 𝒗, is expressed in the ECEF reference frame. It is worth 

specifying here that the transformation matrix for positions and velocities between ECI 
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and ECEF reference frames is computed by means of the sxform1 routine of the 

NASA’s SPICE toolkit, whose kernels2 are constantly updated. 

As regards the atmospheric density, 𝜌, it represents the most critical parameter to 

model. Indeed, atmospheric density changes because of complex interactions between 

three aspects: the atmosphere’s molecular structure, the incident solar flux and the 

geomagnetic interactions. A brief description of the main issues related to atmospheric 

density modelling has been reported in Section 2.2.1 and it is out of the scope of this 

section. However, interested readers can find more comprehensive treatments in 

Vallado [85] (Chapter 8, pp. 553-574), Vallado and Finkelman [52] and Emmert [119].  

For what is of interest here, four different density models have been implemented 

within this propagation environment: 

• The Jacchia-Roberts 1971 model (JR71), conceived by Jacchia in 1970 [120] 

and then revised and refined by Jacchia and Roberts in 1971 [121], [122]. This 

model includes analytical expression for exospheric temperature as function of 

position, epoch and solar and geomagnetic indices. The density is then 

computed from empirically determined temperature profiles. 

• The NRLMSISE-00 model [123], an empirical atmospheric model developed 

as major update of the MSISE-90 model. This model is very popular for several 

applications and has shown good results, in particular for re-entry applications. 

In general, it runs slightly slower than Jacchia models [85]. 

• The Jacchia-Roberts 1977 model (JR77), which is an updated version of the 

Jacchia-Roberts proposed by Jacchia in 1977 [124].  

• The Jacchia-Bowman 2008 model (JB2008) [125], an empirical atmospheric 

density model based on Jacchia’s diffusion equation, which uses new solar and 

geomagnetic indices and implements new equations for the exospheric 

temperature and geomagnetic storms. 

 
1 Documentation related to the “sx_form” routine can be found in 

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/sxform_c.html. The transformations are 

performed from “J2000” (ECI) to “ITRF93” (ECEF) reference frames and viceversa. 
2 The updated kernels required by the NASA’s SPICE toolkit can be found in 

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/ . 

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/sxform_c.html
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/
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The user can select not only which model to use for the propagation, but also if 

space weather effects has to be taken into account (except for JB2008, which only runs 

considering SW indices). Indeed, if SW effects are considered, the propagator takes as 

input the “sw19571001” file containing the solar and geomagnetic indices (e.g., 3-hour 

Kp and Ap, F10.7 solar flux index) required for Jacchia-Roberts and NRLMSISE00 

models, from 1st October 1957, constantly updated and downloadable from Celestrak3. 

If SW effects are not considered, standard default values are assumed for the indices, 

i.e., Kp = 3, Ap = 15 and F10.7 = 150 Solar Flux Unit (SFU). The JB2008 model, 

instead, needs two different files (“DTCFILE”4 and “SOLFSMY”5), containing 

information about solar and geomagnetic storms. 

Solar Radiation Pressure perturbation 

SRP is a non-conservative perturbation whose impact increases as the altitude 

increases. Differently from atmospheric drag, which acts only in the direction opposite 

to the along-track direction, the SRP acts in the anti-solar direction, and in general its 

contribution distributes itself over the three position components and not only along-

track. The equation of the acceleration due to SRP perturbation, 𝒂𝑺𝑹𝑷, can be 

expressed as [85]: 

𝒂𝑺𝑹𝑷 = −
𝑃𝑆𝑅𝑃 𝐶𝑅𝐴𝑆𝑅𝑃

𝑀

𝑹𝑺𝒂𝒕⊙

‖𝑹𝑺𝒂𝒕⊙‖
, 

(3.6) 

where 𝑃𝑆𝑅𝑃 is the solar pressure per unit area (equal to 4.57 × 10−6  
𝑁

𝑚2), 𝐶𝑅 is the 

reflectivity coefficient, 𝐴𝑆𝑅𝑃 the area exposed to the Sun and 𝑹𝑺𝒂𝒕⊙ is the relative 

position vector from the satellite to the Sun. The cylindrical model for SRP is 

implemented, in which the expression of the acceleration is pre-multiplied by a factor, 

which acts as an on/off factor, assuming only two values: 0 if the satellite is in eclipse 

with respect to the Sun, 1 otherwise. 

 
3 https://celestrak.org/SpaceData/SW-All.txt  
4 https://sol.spacenvironment.net/jb2008/indices/DTCFILE.TXT  
5 https://sol.spacenvironment.net/jb2008/indices/SOLFSMY.TXT  

https://celestrak.org/SpaceData/SW-All.txt
https://sol.spacenvironment.net/jb2008/indices/DTCFILE.TXT
https://sol.spacenvironment.net/jb2008/indices/SOLFSMY.TXT
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To evaluate if the satellite is in the Sun, the perpendicular distance between the 

centerline of the Sun and the satellite is computed, as 

𝐷𝑖𝑠𝑡 = 𝑟𝐸𝐶𝐸𝐹 cos(90° − 𝜁), 
(3.7) 

where 𝑟𝐸𝐶𝐸𝐹 is the position vector expressed in the ECEF reference frame and 𝜁 is 

the angle between the Sun and the satellite, as defined in [85] (Chapter 5, pp. 281-282 

and Chapter 11, pp. 908-913). If 𝐷𝑖𝑠𝑡 is larger than the Earth radius, the satellite is in 

the Sun. 

Third-body perturbation 

The third-body perturbation consists in the gravitational attraction that bodies 

other than the central one have on satellites orbiting Earth. The perturbing acceleration 

due to third-body effects can be written as: 

𝒂𝑻𝑩 = 𝜇𝑇𝐵 (
𝑹𝑻𝑩 − 𝒓

‖𝑹𝑻𝑩 − 𝒓‖𝟑
−

𝑹𝑻𝑩

‖𝑹𝑻𝑩‖𝟑
). 

(3.8) 

where 𝜇𝑇𝐵 is the standard gravitational parameter of the third-body and 𝑹𝑻𝑩 is the 

position vector of the third-body in ECI reference frame. It is worth recalling here that 

𝒓 is the position vector of the satellite in the ECI reference frame. 

The third-body perturbation has been implemented for both Moon and Sun, which 

clearly represent the most disturbing third-bodies for Earth orbiting objects. 

Numerical solver 

The integrator selected and implemented to solve the Cartesian formulation of the 

equations of motion is the Runge-Kutta 8(9). It uses a 8th order Runge-Kutta scheme 

with a 9th order error control to propagate the object’s orbit. The integrator proceed 

through sixteen intermediate stages, accumulating data from each stage and using them 

to produce a final integration step. The coefficients used in this explicit Runge-Kutta 

scheme are derived from Verner [126].  
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The solver implements a variable step-size technique. At each iteration, two 

different state estimates are performed using both 8th and 9th order formulations and 

the difference between them is computed. If the difference is over a given threshold, 

the time step is corrected and the procedure is repeated. If the difference is lower than 

the threshold, the higher order estimate is accepted as initial condition for the next step. 

 To sum up, the workflow of the propagation environment is shown in Figure 5. 

 

Figure 5 Workflow of the UNINA numerical orbit propagator 

 

3.2.2 Validation 

 

The performance of the developed propagator has been tested against GMAT 

propagator. GMAT is an open source6 space mission analysis software developed by 

NASA and private industry. Its first release was in 2007 and the current stable version 

is the R2020a of July 2020, which is the one adopted to perform the validation. 

GMAT’s numerical propagator allow to define the force model, by selecting which 

 
6 https://sourceforge.net/projects/gmat/files/GMAT/  

https://sourceforge.net/projects/gmat/files/GMAT/
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perturbations to consider, and the type and settings of the integrator. For more details 

about GMAT’s propagator see the dedicated documentation7. 

Three different real test case scenarios have been considered for the validation, 

two in LEO, one at lower altitude (International Space Station, NORAD ID: 25544) 

and the other at higher altitude (Maroc-Tubsat, NORAD ID: 27004), and one in 

Geostationary Earth Orbit (GEO) (Intelsat-22, NORAD ID: 38098). The orbital 

characteristics of the three orbits are extracted from TLE data and are shown in Table 

1. The performance is evaluated in terms of the position errors evolution during a 30-

days propagation, considering both the global error and its components in a classic 

Radial/Along-track/Cross-track (RSW) reference frame. The position error is 

computed as the difference between the position vector of the UNINA propagator and 

the position vector of the GMAT’s propagator. For each scenario, the same object’s 

characteristics have been set and they are reported in Table 2.  

 

Table 1 Characteristics of the orbits selected for validation 

 Low LEO High LEO GEO 

UTC epoch 
29/04/2020 

13:09:32 

07/06/2020 

19:50:50 

03/06/2020 

11:59:53 

Semi-major axis 6803.23 km 7371.05 km 42165.6 km 

Eccentricity 0.0013251 0.0029313 0.000309 

Inclination 51.58° 99.41° 0.108° 

RAAN 228.9° 293.2° 86.47° 

Argument of perigee 136.7° 37.7° 13.11° 

 

 

 
7 https://gmat.sourceforge.net/docs/nightly/html/Propagator.html  

https://gmat.sourceforge.net/docs/nightly/html/Propagator.html
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Table 2 Characteristics of the space object selected for validation 

Parameter Value 

Mass (kg) 100 

𝐴𝐷𝑟𝑎𝑔 (𝑚2) 1 

𝐶𝐷 2.2 

𝐴𝑆𝑅𝑃  (𝑚2) 1 

𝐶𝑅 1 

 

It has been possible to select the same perturbation and propagation settings for 

both the developed numerical propagator and the GMAT’s propagator. All the 

perturbations have been considered, including all the 70 harmonics of the EGM2008, 

both Moon and Sun as third-bodies, and selecting the JR77 as density model. The 

“JacchiaRoberts” model has been chosen in GMAT, since it is the most similar to the 

JR77 implemented in the UNINA propagator, although the implementation is not 

exactly the same because of discrepancies in some internal time variables computation. 

Furthermore, the same integrator has been used, thus selecting the Runge-Kutta 8(9) 

also in GMAT’s propagator. 

The results for the low LEO scenario are shown in Figure 6 and Figure 7. It is clear 

that a significant error is accumulated in the along-track direction, because of the slight 

differences between the atmospheric density models. The impact of the atmospheric 

density model is even more evident when looking at the position errors of the high 

LEO scenario, depicted in Figure 8 and Figure 9.  
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Figure 6 Trend of the position error for a 30 days propagation in the low LEO scenario 

 

 

Figure 7 RSW components of the error for a 30 days propagation in the low LEO scenario 
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Figure 8 Trend of the position error for a 30 days propagation in the high LEO scenario 

 

 

Figure 9 RSW components of the error for a 30 days propagation in the high LEO scenario 
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Indeed, the error after 30 days drops down from around 280 km in the low LEO 

scenario to less than 0.2 km in the high LEO scenario, where the atmospheric density 

is much more rarefied and the atmospheric drag contributes quite little to the 

perturbing acceleration. Therefore, neglecting the differences related to the 

atmospheric modelling, the propagator has shown very good performance in terms of 

accuracy, with errors of few hundreds of meters after 30 days. 

Finally, Figure 10 and Figure 11 illustrate the results of the performance 

assessment for the GEO scenario. Here, the atmospheric drag is negligible and has not 

been considered for the analysis. Again, the UNINA propagator performed well, with 

errors of few hundred of meters reached after 30 days. Differently from the previous 

scenarios, the error is distributed among the three directions, the main perturbation 

being the solar radiation pressure with acts in anti-solar direction. Indeed, the radial 

and along-track error components are of the same order of magnitude. 

 

Figure 10 Trend of the position error for a 30 days propagation in the GEO scenario 
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Figure 11 RSW components of the error for a 30 days propagation in GEO scenario 

 

3.2.3 Accuracy-computational cost trade-off 

 

The development of an in-house numerical propagation environment allowed to 

perform some analyses concerning the trade-off between accuracy and computational 

time. The final goal was to build an adaptive orbital propagation environment 

integrated in a modular architecture, capable to take both the requirements of the 

specific SST task and the involved uncertainties into account. To build such a flexible 

orbital propagator, adaptability criteria need to be identified. To properly select these 

criteria, it is important to identify task-oriented requirements and to separate the effects 

of the sources, studying the relative importance of the errors. So, this preliminary part 

of the work has been faced in the research activity up to now, and, in particular, the 

impact that area-to-mass (A/M) uncertainty has on the propagation accuracy has been 

investigated, by comparing errors deriving from such uncertainty with the ones 

deriving from neglecting some perturbations (i.e., gravitational perturbations due to 

non-sphericity and third bodies, atmospheric drag and solar radiation pressure). 
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To this aim, a set of test cases (mainly differing in terms of altitude and inclination) 

is selected. For each of them, a nominal propagation has been carried out considering 

all the available perturbations, selecting the Jacchia-Bowman 2008 as density model, 

as suggested in [52] for LEO propagations, and gravity field harmonics up to 70 in 

both degree and order, and considering the space object’s characteristics reported in 

Table 3. Both the area-to-mass ratios will be hereinafter referred to as A/M, assuming 

the two values equal for the sake of simplicity. Reference values for A/M are taken 

from literature [127]. 

Table 3 Nominal physical characteristics of the space object 

Parameter Value 

𝐴𝐷𝑟𝑎𝑔 𝑀⁄  (𝑚2 𝑘𝑔⁄ ) 0.01 

𝐶𝐷 2.2 

𝐴𝑆𝑅𝑃 𝑀⁄  (𝑚2 𝑘𝑔⁄ ) 0.01 

𝐶𝑅 1 

 

The results of this nominal propagation are then compared with those obtained by  

• removing some perturbation terms, 

• reducing the gravity field harmonics, 

• introducing the A/M uncertainty, 

• or combining all the above-mentioned actions. 

Clearly, the different perturbations’ settings to select depend on the specific test 

case and are mainly influenced by the altitude of the orbit. The A/M, instead, has been 

varied around the nominal value, ranging from a minimum of 0.001 m2/kg to a 

maximum of 1 m2/kg, depending again on the test case. For all the propagations, the 

time span has been set to 7 days, which is a typical time interval of interest for short-

term collision risk analysis. The time step was set to 60 seconds for LEO and 1200 

seconds for GEO. 
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The propagation accuracy is evaluated by computing the difference between the 

position vectors of objects propagated considering all the perturbations (i.e., nominal 

perturbations’ setting) and those obtained when removing perturbations and/or 

accounting for error in the A/M. Then, to evaluate how the position errors are 

distributed with respect to the nominal trajectory, the error vectors are rotated from 

ECI reference frame to RSW reference frame, expressing its components along the 

radial, along-track and cross-track directions. 

In order to identify the adaptability criteria, three different test cases have been 

analyzed, two in LEO and one in GEO. In all the cases, near-circular orbits have been 

considered and the initial epochs were in the first days of June 2021. The accuracy and 

the computational cost of the propagations have been evaluated. 

First test case 

The initial conditions of the first test case are summarized in Table 4. They represent 

a prograde orbit with an altitude between 477 km and 510 km. 

Table 4 Initial conditions of the first test case 

Parameter Value 

UTC Epoch 3 June 2021 11:31:13 

Semi-major axis (km) 6868.5 

Eccentricity 0.00298 

Inclination (°) 86.18 

Right ascension of the ascending node (°) 145.1 

Argument of perigee (°) 91.45 

True anomaly (°) 268.6 

 

The orbit is in the thermosphere region of the Earth atmosphere, where the atmospheric 

density is still significant. Therefore, three different propagation’s settings have been 

selected and tested to evaluate the impact of the perturbations with respect to the 

nominal case: 

- removal of third-body and SRP perturbations (NO TB/SRP) 
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- reduction of the gravity field harmonics to 20x20 (EGM_20x20) 

- both the actions above, resulting in the fastest propagation setting (FastProp). 

As regards the introduction of the uncertainty in the A/M parameter, only two different 

values have been chosen: twice (i.e., A/M = 0.02 m2/kg) and half (i.e., A/M = 0.005 

m2/kg) the nominal value. For each value of A/M, two propagations have been run: the 

first one considering all the perturbation, as in the nominal scenario, and the second 

removing third-body and SRP perturbations and reducing the gravity field harmonics 

to 20x20. 

Figure 12 shows the 7-days evolution of the position errors considering the 

perturbation settings mentioned above. Figure 13, instead, reports the position errors 

in the along-track direction. The smaller global error characterizing the propagation 

done reducing the number of harmonics and removing the third-body and SRP 

perturbations highlighted in Figure 12, can be explained considering that errors related 

to these two actions are very similar in magnitude, but have opposite signs in the along-

track direction as shown by Figure 13. In this case, the errors due to neglecting 

perturbations are small because the drag perturbation is dominant at this altitude. 

 

Figure 12 Evolution of the position errors with respect to the nominal propagation’s setting 

when removing Third-Body and SRP perturbation (black line), reducing the gravity field 

harmonics to 20x20 (red line) and combining both actions (blue line) for the first test case. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Figure 13 Evolution of the along-track position errors with respect to the nominal 

propagation’s setting when removing Third-Body and SRP perturbation (black line), 

reducing the gravity field harmonics to 20x20 (red line) and combining both actions (blue 

line) for the first test case. 

Figure 14 presents the evolution of the position errors when introducing the A/M 

uncertainties, also in combination with removals of the perturbations and reduction of 

the harmonics. The errors due to the uncertainties in the A/M are way larger than those 

obtained when neglecting perturbations. The position errors after 7 days are of about 

35 km,  when increasing the A/M to 0.02 m2/kg, and 17 km, when decreasing the A/M 

to 0.005 m2/kg. Even when considering the FastProp setting, the errors remain almost 

equal, since it introduces an error of 0.5 km only, as shown in Figure 13. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Figure 14 Evolution of the position errors with respect to the nominal propagation’s setting 

when A/M = 0.02 m2/kg, both in nominal (black line) and FastProp (blue line) settings, and 

A/M = 0.005 m2/kg, both in nominal (red line) and FastProp (green line) settings for the first 

test case. 

The computational times are reported in Table 5. The FastProp setting allows to 

save about 30% of computational time with respect to the propagation with all the 

perturbations included. Thus, since the related errors are much smaller than those due 

to the uncertainty in the A/M, the FastProp setting seems to be a good choice, 

especially when dealing with a large number of objects (e.g., fragments coming from 

a real or simulated fragmentation event). 

Table 5 Computational times of the first test case propagations 

Settings Computational times (s) 

All perturbations 248 

No TB/SRP 227 

20x20 harmonics 176 

FastProp 170 

 

 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Second test case 

The initial conditions of the second test case are reported in Table 6. They 

represent an 800km-altitude retrograde orbit. 

Table 6 Initial conditions of the second test case 

Parameter Value 

UTC Epoch 4 June 2021 22:05:32 

Semi-major axis (km) 7174.5 

Eccentricity 0.00153 

Inclination (°) 99.41 

Right ascension of the ascending node (°) 141.3 

Argument of perigee (°) 101.3 

True anomaly (°) 287 

 

The orbit is just outside of the thermosphere region of the Earth atmosphere. The same 

analyses as in the first test case have been run, both for the study of the perturbations’ 

impact and the uncertainty effect. Since this orbit is placed at higher altitudes, two 

additional propagation’s settings have been tested: firstly, removing the drag 

perturbation only and then combining the drag perturbation removal with the other 

actions. 

Figure 15 shows the 7-days evolution of the position errors due to neglecting some 

perturbations. Figure 16 plots the position errors in the along-track direction.  The 

position errors when varying perturbations’ settings are smaller with respect to the first 

test case, because the reduction of the gravity field harmonics impacts less than before 

due to the higher altitude. Thus, it is advisable to reduce the number of harmonics for 

higher altitudes LEO orbits, without removing other perturbations. 
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Figure 15 Evolution of the position errors with respect to the nominal propagation’s setting 

when removing Third-Body and SRP perturbation (black line), reducing the gravity field 

harmonics to 20x20 (red line) and combining both actions (blue line) for the second test 

case. 

 

Figure 16 Evolution of the along-track position errors with respect to the nominal 

propagation’s setting when removing Third-Body and SRP perturbation (black line), 

reducing the gravity field harmonics to 20x20 (red line) and combining both actions (blue 

line) for the second test case 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Figure 17 presents the evolution of the position errors when introducing the A/M 

uncertainties. In this case, the errors coming from the two sources are of the same order 

of magnitude. It is interesting to note that considering the FastProp setting can be 

convenient also in terms of accuracy when the A/M is higher than the nominal value. 

The reason is that overestimating the A/M has an opposite effect than using the 

FastProp setting in the along-track error (see also Figure 16 and Figure 18). 

Figure 19 shows the effects of the drag perturbation removal. Removing the drag 

perturbation seems to have no critical impact on the accuracy for a 7-days propagation 

but leads to a great advantage in terms of computational cost (Table 7), in particular 

when dealing with a large number of objects. 

  

 

Figure 17 Evolution of the position errors with respect to the nominal propagation’s setting 

when A/M = 0.02 m2/kg, both in nominal (black line) and FastProp (blue line) settings, and 

A/M = 0.005 m2/kg, both in nominal (red line) and FastProp (green line) settings for the 

second test case. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Figure 18 Evolution of the along-track position errors with respect to the nominal 

propagation’s setting when A/M = 0.02 m2/kg, both in nominal (black line) and FastProp 

(blue line) settings, and A/M = 0.005 m2/kg, both in nominal (red line) and FastProp (green 

line) settings for the second test case. 

 

Figure 19 Evolution of the position errors with respect to the nominal propagation’s setting 

when removing drag perturbation (black line), considering FastProp settings (blue line) and 

combining both actions (red line) for the second test case. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Table 7 Computational times of the second test case propagations 

Settings Computational times (s) 

All perturbations 241 

No TB/SRP 230 

20x20 harmonics 180 

FastProp 171 

No Drag 156 

FastProp + No Drag 88 

 

Third test case 

The initial conditions of the third test case are shown in Table 8. They represent a 

GEO orbit, with inclination close to 0°. 

Table 8 Initial conditions of the third test case 

Parameter Value 

UTC Epoch 4 June 2021 22:05:32 

Semi-major axis (km) 7174.5 

Eccentricity 0.00153 

Inclination (°) 99.41 

Right ascension of the ascending node (°) 141.3 

Argument of perigee (°) 101.3 

True anomaly (°) 287 

 

In this scenario, analyses different with respect to the previous test cases have been 

carried out. To investigate the effect of the perturbations, first of all the drag 

perturbation was removed and the gravity field harmonics were reduced to 20x20. 

Then, these actions have been combined separately with the removal of the third-body 

perturbation and the SRP perturbation. The A/M values chosen to simulate the 
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uncertainty in the physical parameter are: 0.001 m2/kg, 0.02 m2/kg, 0.1 m2/kg and 1 

m2/kg. 

Figure 20 presents the evolution of the position errors when varying perturbations for 

the GEO test case. Figure 21 shows the distribution of the position errors in the RSW 

reference frame. For GEO orbits, the third-body perturbation is dominant, while the 

errors due to the removal of the drag perturbation and the reduction of the gravity field 

harmonics are negligible. Therefore, the position error vector has components also 

along the radial and cross-track direction, differently to the previous test cases. 

 

Figure 20 Evolution of the position errors with respect to the nominal propagation’s setting 

when removing the drag perturbation only (black line), removing drag perturbation and 

reducing the gravity field harmonics to 20x20 (red line), and combining these actions with 

TB removal (blue line) and SRP removal (green line) for the third test case. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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Figure 21 Evolution of the position errors in radial (top), along-track (mid) and cross-track 

(bottom) directions with respect to the nominal propagation’s setting when removing the 

drag perturbation only (black line), removing drag perturbation and reducing the gravity field 

harmonics to 20x20 (red line), and combining these actions with TB removal (blue line) and 

SRP removal (green line) for the third test case. 

 

Figure 22 shows the effects of the A/M uncertainties on the propagations. While the 

A/M is small, the Third-body perturbation is much more significant than the others. 

When increasing the A/M of at least one order of magnitude with respect to the nominal 

value, the effects of the SRP and TB perturbations start to be comparable. The SRP 

perturbation becomes dominant when the A/M is equal to 1 m2/kg. 
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Figure 22 Evolution of the position errors with respect to the nominal propagation’s setting 

when A/M = 0.02 m2/kg (black line), A/M = 0.1 m2/kg (red line), A/M = 1 m2/kg (blue line) 

and A/M = 0.001 m2/kg (green line) for the third test case. 

The computational times of the third test case are presented in Table 9. In general, 

GEO propagations are much less demanding than LEO propagations in terms of 

computational cost. However, neglecting some perturbation terms allows to save more 

than 50% of calculation time with respect to nominal settings. 

Table 9 Computational times of the third test case 

Settings Computational times (s) 

All perturbations 14 

No Drag 8 

20x20 + No Drag 6 

20x20 + No Drag/TB 6 

20x20 + No Drag/SRP 6 

 

To conclude this analysis, an application to fragments’ propagation is shown in the 

following. An explosion event has been simulated using NASA EVOLVE 4.0 [51], 

[128]. The same parameters as the first test case, reported in Table 4, have been 

assumed as initial conditions of the parent object and epoch of the fragmentation event. 

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg
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The event generated 216 fragments with a characteristic length over 10 cm, which have 

been propagated in two different ways: first, considering all the perturbations, and then 

considering the FastProp settings. Figure 23 and Figure 24 show the Gabbard diagram 

of the generated fragments and the distribution of their A/M respectively. 

 

Figure 23 Gabbard diagram of the fragments generated by the simulated explosion event. 

 

 

Figure 24 A/M distribution of the fragments generated by the simulated explosion event 
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Figure 25 shows the boxplots corresponding to the distributions of semi-major axis 

a, eccentricity e, inclination, i, and right ascension of the ascending node Ω of the 

fragments after the 7-days propagations carried out with the two different 

perturbation’s settings. On each box, the central mark (i.e., the red line) indicates the 

median of the statistics parameter, the bottom and top edges of the box indicate the 

25th and 75th percentiles, respectively. The difference between the 75th and 25th 

percentiles is called interquartile range (IQR). The whiskers extend to a value equal to 

1.5*IQR above the 75th percentile and below the 25th percentile. The values beyond 

the whiskers are outliers and are plotted using the ‘+’ symbol.  

 

Figure 25 Distributions of semi-major axis (top-left), eccentricity (top-right), inclination 

(bottom-left) and right ascension of the ascending node (bottom-right) of the fragments after 

7 days. 

The distributions are evaluated on 189 fragments, since 27 of the 216 initial fragments 

re-entered during the 7 days and have been removed from the analyses. It can be noted 

that the two fragments’ clouds evolve almost equally for one week, since there is no 

visible difference in the distributions of the orbital elements. The values of mean, µ, 

and standard deviation, σ, of the distributions of the two clouds are presented in Table 
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10 for the sake of completeness. The results support the theory that neglecting some 

perturbations (i.e., removing Third-Body and SRP perturbations and reducing the 

gravity field harmonics to 20x20) does not affect critically the accuracy of a 7-days 

LEO propagation. 

Table 10 Means and standard deviations of the orbital elements’ distributions for the two 

fragments’ clouds 

Orbital 

elements 

All perturb. FastProp 

µ σ µ σ 

a (km) 6928.15 183.51 6928.21 183.38 

e 0.0165 0.0215 0.0166 0.0216 

i (°) 86.1712 0.5753 86.1709 0.5751 

Ω (°) 141.5889 0.5728 141.5886 0.5725 

 

The mean (i.e., per fragment) and total computational times for the two propagations 

are reported in Table 11. In this example, the FastProp settings allow reducing the 

computational cost of about 35% (i.e., from 7.85 hours to 5.13 hours), resulting in a 

great advantage when the number of objects to propagate is large. Therefore, in 

summary, using FastProp settings seems to be a viable solution to propagate hundreds 

of fragments coming from a fragmentation event when interested in short-term 

collision hazard for threatened assets. 

Table 11 Computational times comparison 

Settings Mean computational time (s) Total computational time (s) 

All perturbations 149.5 28268 

FastProp 97.7 18471 
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4. Space Surveillance and Tracking 

applications 

In this section, the algorithms developed for SST applications are presented and 

their performance assessment is discussed. In the first part, the basic idea and the 

implementation of the Uncertainty-aware Cube method are illustrated and the results 

of its application in synthetically generated medium-term LEO scenarios are shown. 

Then, the uncertainty evaluation algorithm, developed to be coupled with the 

Uncertainty-aware Cube, is presented, also discussing the results of some test cases. 

Then, the description of the sensor calibration tool is provided, together with examples 

of sensor calibration for both ground-based radar sensors and telescopes. Finally, in 

the RSP framework, the Chapter presents the algorithm developed to analyze satellite’s 

overflights over selected AOI, thus showing the results of some examples. 

 

4.1 Medium-term collision frequency analysis 

 

One of the critical aspects of the Cube for its use in operative context is that the 

uncertainties related to the orbit propagation are not considered in the method. It is 

clear that, when one is interested in the long-term evolution of space debris and the 

estimation of the number of collisions over time period of many years, considering the 

uncertainties is not necessary. But for medium-term collision risk analysis, the role of 

the uncertainties involved in the orbit propagation becomes prominent and cannot be 

ignored. Since the objects are assumed to be uniformly distributed within a cube, the 

volume of the cube itself may somehow resemble a positional uncertainty. However, 

the scale of the accumulated along-track position uncertainty rapidly exceeds the size 

of the cube, which then is not enough to represent the uncertainties involved. Hence 

the idea to suggest a modification of the original Cube with the purpose of building an 

Uncertainty-aware Cube algorithm, able to take the possible error in the space objects’ 

position into account for the detection of the conjunctions. 
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4.1.1 Uncertainty-aware Cube method  

 

Differently from its classic application, the Cube algorithm has been modified to 

be used for medium-term conjunction analysis in LEO, e.g., considering a time span 

of 30 days. In this context, the reliability of the Cube method’s results can be highly 

affected by the large uncertainties which characterize the orbit propagation. In LEO, 

parameters which heavily impact the propagation are the ballistic coefficient of the 

objects and the atmospheric density model, including the solar activity which 

contributes to the atmospheric density variation [52]. These parameters enter directly 

in the computation of the acceleration due to the atmospheric drag, that in turn 

influences the prediction of the object’s position along its own orbit. So, the 

uncertainty in these parameters results in a lack of knowledge of the true position of 

the objects, mainly in the along-track direction and, thus, in terms of argument of 

latitude. It is worth noting that uncertainties in the A/M also determine errors in the 

evaluation of the acceleration due to the SRP perturbation. While the SRP contribution 

to the position error is not significant for lower LEO orbits, it starts to be comparable 

to atmospheric drag contribution, or even bigger, for higher LEO orbits, i.e., at  

altitudes above 700 km. Since SRP acts in the anti-solar direction, in general its 

contribution distributes itself over the three position components and not only in the 

along-track direction. Thus, for the applications of this approach to LEO scenarios, the 

along-track contribution of the SRP error is not significant enough to require explicit 

modelling. For all these reasons, at this time, the algorithm includes the uncertainties 

accounting for the along-track position error due to atmospheric drag perturbation 

only. 

The basic idea is that, as the propagation goes ahead, the uncertainties grow more 

and more, and each object could potentially be in a cube different from the one 

associated to the position computed by numerical propagation, as if it occupied more 

than one cube at the same time. The workflow of the algorithm, which is applicable to 

any set of resident space object of interest, is presented in Figure 26. 
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Figure 26 Workflow of the uncertainty-aware Cube algorithm 

 

The reference frame used for all the analyses is the EME2000 reference frame, 

which is an ECI reference frame. The algorithm takes as input the orbital state of the 

objects in form of TLE or state vectors, which can be expressed both as Keplerian 

orbital elements or Cartesian position and velocity vectors. The ephemerides of the 

objects are then generated by means of numerical propagations, carried out using the 

developed orbit propagation environment, and interpolated over the timespan of 

interest for the risk analysis. At this point, a grid is built by dividing the region of space 

around the Earth in cubes of equal size. The dimension of the cube can be user-defined, 

or set to a default value of around 1% of the objects’ minimum semimajor axis [8], 

meaning that the cube dimension is slightly bigger than 80 km for LEO scenarios. This 

value differs from the cube size of 10 km conventionally used in Cube applications, 

but it is advantageous as it allows reducing the computational time, also considering 

the significant along-track uncertainty which arise in the considered LEO orbital 

regimes. Each cube is univocally identified by three coordinates, i.e., (Cx, Cy, Cz) called 

cube coordinates in the following, which represent the cube identification number 

along each of the ECI direction axes. 
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A coarse filtering of all the possible close approaches is now carried out. To this 

aim, at each time instant, the algorithm evaluates the position uncertainty associated 

to each object as a function of elapsed time and altitude (see Section 4.2 for details 

about implementation and testing of the uncertainty evaluation algorithm), thus being 

able to identify the cubes associated to each object. The uncertainty associated to the 

propagation is modelled as an error on the object’s position in the along-track 

direction. Specifically, it is assumed that the object’s true anomaly (ν) can lie in the 

interval [𝜈 −
∆𝜈

2
, 𝜈 +

∆𝜈

2
], where ∆𝜈 is computed from the corresponding along-track 

error (ΔR). Consequently, the object can potentially occupy all the cubes covered by 

the true anomaly interval. It is worth clarifying that the Cube approach has been 

implemented here using instantaneous orbital elements, considering its application to 

time scales relatively short with respect to those considered within long term 

evolutionary models, in which mean orbital elements are typically used. 

Given this information, only the close approaches involving objects separated by 

a distance below a threshold (defined in terms of number of cubes) along each ECI 

direction, are filtered through. Specifically, for each couple of objects, e.g., 1 and 2 for 

clarity, if ΔCi,1 and ΔCi,2 represent the distance potentially covered along direction i by 

object 1 and 2 respectively due to the propagation uncertainty (and measured as 

number of cubes), the close approach is selected if the following condition is met 

|𝐶𝑖,1 − 𝐶𝑖,2| ≤ ∆𝐶𝑖,1 + ∆𝐶𝑖,2 , ∀𝑖 = 𝑥, 𝑦, 𝑧 
(4.1) 

At this point, every selected close approach is analyzed. Specifically, a 

conjunction is declared if the two objects have at least one cube in common.  

Finally, for each conjunction, an estimation of the degree of confidence in that 

result is provided. It is assumed that, at each time instant, the true anomaly has a 

discrete uniform distribution in the previously-defined interval [𝜈 −
∆𝜈

2
, 𝜈 +

∆𝜈

2
], 

meaning that the object can be found at any position along its orbit in that interval with 

the same probability. Clearly more positions can lie in the same cube. Therefore, 

probability that the object is in a particular cube C of coordinates (Cx, Cy, Cz) at a given 

time instant, i.e., PC, is the ratio between the number of times the cube C is associated 
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to positions in that interval and the total number of positions. Thus, 𝑃𝐶 can be 

expressed as follows: 

𝑃𝐶 = 𝑃𝐶𝑋
∙ 𝑃𝐶𝑌|𝐶𝑋

∙ 𝑃𝐶𝑍|(𝐶𝑋∩𝐶𝑌) (4.2) 

where 𝑃𝐶𝑋
 is the probability that the object is in a cube with first cube coordinate 

equal to Cx, 𝑃𝐶𝑌|𝐶𝑋
 the conditional probability that the second cube coordinate is equal 

to Cy given that the first cube coordinate is Cx and 𝑃𝐶𝑍|(𝐶𝑋∩𝐶𝑌) the conditional 

probability that the third cube coordinate is equal to Cz given that the first cube 

coordinate is Cx and the second is Cy. Calculating the probabilities for two objects 

through Eq. (4.2) and multiplying them, the joint probability is obtained and associated 

to the possible conjunction. This joint probability measures the confidence with which 

the objects could share a cube at a given time instant. 

 

4.1.2 Application to medium-term propagation scenarios 

 

In this section, a description of the analyses carried out to assess the performance 

of the Uncertainty-aware Cube method is presented, and the results of the simulations 

for the different test cases are shown, also compared to those of the Cube method. A 

test case consists of a synthetically generated conjunction, i.e., two objects in orbit 

characterized by a miss distance (MD) lower than 2 km. Starting from this conjunction 

event, the objects’ states are backpropagated for many days, i.e., more than 15 days to 

simulate a medium-term scenario to get the initial condition characterizing the test 

case. These initial states are then propagated forward for 30 days to obtain the input 

ephemerides required by the proposed method. The backward and forward 

propagations are run in nominal conditions, considering A/M = 0.01 m2/kg, CD = 2.2, 

CR = 1 and SISE00 as density model. Then, both the versions of the Cube method have 

been applied to the nominal scenario, to verify the conjunction detection.  

The analyses performed to test the method consisted in evaluating the impact of 

the A/M uncertainty on their performance. In particular, six levels of percentage 
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variation with respect to the nominal A/M, i.e., -90%, -50%, -20%, +20%, +50% e 

+90%, have been considered. The values of percentage variation are consistent with 

the results of the analysis on the performance of the uncertainty evaluation tool, shown 

in Section 4.2.1. New propagations have been run with the altered A/M values for both 

objects. All the possible combinations of the uncertainties, including the cases in which 

one of the objects has nominal A/M, have been tested using both the Cube and 

Uncertainty-aware Cube methods, with a total number of 48 different combinations. 

The results are then compared in terms of how many times the methods are still capable 

to detect the conjunction, i.e., success rate (SR), and in which conditions. The 

conjunction detected in the nominal case (i.e., both objects having nominal A/M) has 

been excluded from the computation of the SR. A sensitivity analysis has been realized 

for Test case 1 to assess the impact of the cube dimension on the performance of the 

method. 

Test case 1 

The first test case is the lowest altitude scenario, i.e., altitude lower than 500 km, 

where the effect of the atmospheric drag perturbation is more significant. The objects’ 

initial conditions are shown in terms of Keplerian orbital parameters in Table 12, 

where ν is the object’s true anomaly. As the minimum semi-major axis of the two 

objects is equal to 6841 km, the dimension of the cube, i.e., the side length, is 82 km. 

The initial UTC epoch is on 14th November 2021 at 10:50:50. The synthetic 

conjunction without any uncertainty is exactly 20 days later, on 4th December 2021 at 

10:50:50 UTC, with a MD of 1.43 km and a relative velocity of 10.582 km/s between 

the two objects. 

Table 12 Initial conditions of the objects of Test case 1 in terms of Keplerian orbital 

parameters 

Object a e i Ω ω ν 

Object 1 6855.58 km 0.000896 97.35° 24.66° 43.1° 316.8° 

Object 2 6841.08 km 0.001828 103.13° 98.76° 306.2° 199.8° 
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When introducing the A/M uncertainties, the results of the two methods are totally 

different. The Cube method is not capable of detecting the conjunction, regardless of 

the magnitude of the percentage errors (SR = 0%), as reported in Table 13. The 

Uncertainty-aware Cube, instead, always finds the conjunction (SR = 100%), thus its 

results in table form are not shown. However, different combinations of objects’ A/M 

percentage errors correspond to different minimum distances and confidence values, 

as shown in Figure 27-Figure 28. Figure 27 depicts the distances between the two 

objects when the conjunction is detected as function of the A/M uncertainties. The 

distances grow as the A/M values move farther from the nominal value and with respect 

to each other and they remain quite small when the uncertainties are low or similar 

(i.e., same amplitude and sign). For the confidence values the opposite is true, as the 

confidence is higher when the A/M uncertainties are low or similar and it reduces if 

the uncertainties are bigger and of opposite sign (Figure 28). 

 

Table 13 Results of the Cube method when considering the A/M uncertainties for Test case 1 

   Object 2 

 
A/M 

uncertainty 
+90% +50% +20% 0 -20% -50% -90% 

O
b

je
ct

 1
 

+90% X X X X X X X 

+50% X X X X X X X 

+20% X X X X X X X 

0 X X X ✓ X X X 

-20% X X X X X X X 

-50% X X X X X X X 

-90% X X X X X X X 
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Figure 27 3D histogram of the minimum distance between the two objects as function of the 

A/M percentage errors for Test case 1 

 

Figure 28 3D histogram of the confidence values associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 1 
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In Table 14, the characteristics of the conjunctions with maximum and minimum 

distances are reported, in terms of confidence value, A/M uncertainties of the objects 

and coordinates of the cube occupied by the two objects when the conjunction is 

detected, as well as cube coordinates of the ideal conjunction. The maximum distance 

conjunction corresponds to the case with A/M uncertainties of -90% for Object 1 and 

+90% for Object 2, and the cubes occupied by the two objects differ mainly along the 

y-axis direction. The minimum distance conjunction, instead, occurs when the A/M 

uncertainties are -20% for both the objects, and the cubes occupied are very close to 

each other and to the cube of the ideal conjunction. The confidence values in the two 

cases differ of one order of magnitude. This is related to the fact that, at a certain time 

instant, the objects could share more than one cube, thus more than one possible 

conjunction is detected by the algorithm and a confidence is computed for each one. 

In these cases, the algorithm considers a single conjunction with a confidence equal to 

the sum of all the confidence values associated to the many conjunctions detected at 

that time instant. Therefore, when the objects are closer, it is more likely that they 

share several cubes, thus the confidence of the conjunction is higher. The confidence 

ratio is defined as the ratio between the confidence values of the maximum and 

minimum distance conjunctions, and it is equal to 0.107 in this case. 

Table 14 Characteristics of the maximum and minimum distance conjunctions detected for 

Test case 1 

 Distance 
A/M 

uncertainties 

Cube 

coordinates 

Object 1 

Cube 

coordinates 

Object 2 

Cube coordinates 

Ideal conjunction 
Confidence 

Max 

distance 
5463 km [-90%,+90%] [134,122,143] [134,56,147] [106,91,166] 7.73e-4 

Min 

distance 
191 km [-20%,-20%] [105,90,166] [105,92,166] [106,91,166] 7.24e-3 

 

 



  

67 

 

A sensitivity analysis has been carried out by varying the dimension of the cube, 

considering 50 km, 100 km and 150 km as side lengths. The results are shown in Figure 

29 and Figure 30 for the 50 km case in terms of minimum distances and confidence 

values respectively, and in Table 15 for all the three cases in terms of characteristics 

of maximum and minimum distance conjunctions. In this table, the cube coordinates 

are not reported, because they are different from case to case, as the number of cubes 

the region of space is divided into is different. While the distances are almost the same, 

depending only on the objects’ propagation, the confidence values change, especially 

when considering a cube size of 50 km. The reason is that having smaller cubes means 

that many different cubes are associated to each object, thus strongly reducing the 

probability associated to them. When considering bigger cubes as well, the confidence 

values slightly reduce. In this case, although the probabilities associated to each cube 

are higher, the objects share few cubes, thus the total confidence obtained by summing 

all the confidence values is lower. However, despite the changes in the absolute values 

of the confidence, the resulting confidence ratios are very similar, being always around 

0.1. This suggests that the confidence values shall not be considered in an absolute 

sense, but as a reference to measure the relative importance of different conjunctions. 

 

Figure 29 3D histogram of the minimum distances associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 1 with Cube 

dimension equal to 50 km 



  

68 

 

 

Figure 30 3D histogram of the confidence values associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 1 with Cube 

dimension equal to 50 km 

Table 15 Characteristics of the maximum and minimum distance conjunctions detected 

for Test case 1 for varying cube size 

  Distance 
A/M 

uncertainties 
Confidence 

Confidence 

ratio 

Cube size = 

50 km 

Max distance 5465 km [-90%,+90%] 1.19e-4 
0.107 

Min distance 191 km [-20%,-20%] 1.11e-3 

Cube size = 

100 km 

Max distance 5463 km [-90%,+90%] 6.54e-4 
0.103 

Min distance 191 km [-20%,-20%] 6.33e-3 

Cube size = 

150 km 

Max distance 5463 km [-90%,+90%] 6.73e-4 
0.097 

Min distance 191 km [-20%,-20%] 6.89e-3 

 

Test case 2 

In the second test case, two objects at altitudes between 500 and 600 km have been 

considered, the initial conditions being summarized in Table 16. The dimension of the 

cube is around 83 km, since the minimum semi-major axis is slightly less than 6913 
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km. The initial epoch is on 14th November 2021 at 14:42:38 UTC and the conjunction 

in the nominal scenario is exactly 15 days later, on 29th November 2021 at 14:42:38 

UTC, with a MD of 0.58 km and a relative velocity of 12.965 km/s between the two 

objects. 

Table 16 Initial conditions of the objects of Test case 2 in terms of  orbital parameters 

Object a e i Ω ω ν 

Object 1 6931.74 km 0.00135 53.11° 161.5° 50.7° 309.5° 

Object 2 6912.88 km 0.00183 72.46° 341.2° 295° 178.5° 

 

Again, the Uncertainty-aware Cube is always capable to detect the conjunction 

(SR = 100%). However, in contrast to Test case 1, Cube detects the conjunction 8 out 

of 48 times (SR = 17%), when the A/M uncertainty is the same for the two objects and 

two cases in which one of the objects has nominal A/M and the other has A/M 

uncertainty of 20% (Table 17). Figure 31-Figure 32 show the minimum distances and 

confidence values as a function of the A/M percentage errors. As the altitude grows, 

the same A/M uncertainties have a less significant effect on the objects’ propagation, 

causing smaller position errors. Therefore, the minimum distances are smaller and the 

confidence values higher than those of Test case 1. The trends of distances and 

confidences are the same of Test case 1, with the former growing and the latter 

reducing when moving away from nominal A/M or same A/M uncertainty cases. 

Table 17 Results of the Cube method when considering the A/M uncertainties for Test case 2 

   Object 2 

 
A/M 

uncertainty 
+90% +50% +20% 0 -20% -50% -90% 

O
b

je
ct

 1
 

+90% ✓ X X X X X X 

+50% X ✓ X X X X X 

+20% X X ✓ X X X X 

0 X X ✓ ✓ X X X 

-20% X X X ✓ ✓ X X 

-50% X X X X X ✓ X 

-90% X X X X X X ✓ 
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Figure 31 3D histogram of the minimum distances between the two objects as function of the 

A/M percentage errors for Test case 2 

 

Figure 32 3D histogram of the confidence values associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 2 
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Table 18 reports the characteristics of the conjunctions with maximum and 

minimum distances. The maximum distance conjunction corresponds to the case with 

A/M uncertainties of -90% for Object 1 and +90% for Object. The minimum distance 

conjunction, instead, occurs when the A/M uncertainties are -20% for both the objects, 

which occupy the same cube in this case. The distance values are an order of magnitude 

smaller than those of Test case 1 (Table 14), while the confidence values are an order 

of magnitude larger. This is due to the lower number of cubes associated to the objects, 

thus making higher the probability of each cube. 

Table 18 Characteristics of the maximum and minimum distance conjunctions detected for 

Test case 2 

 Distance 
A/M 

uncertainties 

Cube 

coordinates 

Object 1 

Cube 

coordinates 

Object 2 

Cube coordinates 

Ideal conjunction 
Confidence 

Max 

distance 
664 km [-90%,+90%] [55,155,120] [47,152,118] [51,151,124] 6.96e-3 

Min 

distance 
6 km [+20%,+20%] [51,151,124] [51,151,124] [51,151,124] 2.09e-2 

  

Test case 3 

In the third test case, the altitude range is between 600 and 700 km. The initial 

orbital parameters of the two objects are shown in Table 19. The minimum semi-major 

axis is equal to 7015 km and so the dimension of the cube used is 84 km. The initial 

epoch is on 15th November 2021 at 09:56:44 and the conjunction on 5th December 

2021 at 09:56:44, so 20 days later with a MD of 0.67 km. The relative velocity between 

the objects is 15.059 km/s. 
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Table 19 Initial conditions of the objects of Test case 3 in terms of Keplerian orbital 

parameters 

Object a e i Ω ω ν 

Object 1 7015.34 km 0.00129 97.86° 4.82° 72.6° 287.3° 

Object 2 7023.27 km 0.00264 81.94° 225.1° 38.4° 6.65° 

 

In this scenario the objects are at altitudes over 600 km and the position errors due 

to uncertainties in the physical parameters affecting the atmospheric drag perturbation 

are much smaller than those in previous test cases. When considering the A/M 

uncertainties, the performance of the two methods starts to be comparable (Table 20), 

with the Cube being capable to detect the conjunctions 44 out of 48 times (SR = 

91.6%), while the SR of Uncertainty-aware Cube is still 100%. To explain this 

phenomenon, it can be useful to look at Figure 33, which depicts the minimum 

distances as function of the objects’ A/M uncertainties. It is clear that there is no more 

the trend observed at lower altitudes. In particular, the minimum distances are always 

smaller than 10 km, meaning that the objects are quite close even in the cases in which 

the Cube is not able to detect the conjunctions. This happens because of one of the 

limitations of the Cube method: although the objects are close in terms of relative 

distance, they occupy different cubes by chance, as shown in Table 21, which reports 

the characteristics of the four conjunctions detected only by the Uncertainty-aware 

Cube. 

Table 20 Results of the Cube method when considering the A/M uncertainties for Test case 3 

   Object 2 

 
A/M 

uncertainty 
+90% +50% +20% 0 -20% -50% -90% 

O
b

je
ct

 1
 

+90% ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

+50% ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

+20% ✓ ✓ ✓ ✓ X ✓ ✓ 

0 ✓ ✓ ✓ ✓ ✓ ✓ X 

-20% ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

-50% ✓ ✓ X ✓ X ✓ ✓ 

-90% ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Figure 33 3D histogram of the minimum distances between the two objects as function 

of the A/M percentage errors for Test case 3 

 

Table 21 Characteristics of the four conjunctions detected only by the Uncertainty-aware 

Cube for Test case 3 

 Distance 
A/M 

uncertainties 

Cube 

coordinates 

Object 1 

Cube 

coordinates 

Object 2 

Cube 

coordinates 

Ideal 

conjunction 

Confidence 

1 3.02 km [-50%,-20%] [72,92,4] [71,91,4] [70,91,4] 7.37e-2 

2 6.38 km [-50%,+20%] [70,91,4] [71,91,4] [70,91,4] 6.32e-2 

3 7.58 km [0%,-90%] [73,93,3] [73,92,3] [69,90,4] 2.39e-1 

4 6.61 km [+20%,-20%] [73,92,3] [72,92,3] [71,92,4] 7.37e-2 

 

Finally, the 3D histogram of the confidence values as function of the A/M 

uncertainties is presented in Figure 34. Here, the cases characterized by nominal A/M 
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value of one of the objects or same A/M uncertainties show very high values of 

confidence, more than double of the others, since the objects share a lot of cubes in 

those scenarios. In general, the confidence values are higher than those in previous test 

cases, because the number of cubes the objects may potentially occupy is reduced, thus 

increasing the probability assigned to each cube. 

 

Figure 34 3D histogram of the confidence values associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 3 

 

Test case 4 

Two objects at altitudes between 700 and 800 km have been chosen for the fourth 

test case and their initial conditions are reported in Table 22. The cube dimension is 

around 86 km. The initial epoch is on 14th November 2021 at 14:35:46, while the 

conjunction event is 25 days later, on 9th December 2021 at 14:35:46 with a MD equal 

to 0.52 km and a relative velocity of 7.574 km/s. 
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Table 22 Initial conditions of the objects of Test case 4 in terms of Keplerian orbital 

parameters 

Object a e i Ω ω ν 

Object 1 7139.56 km 0.00128 98.59° 18.05° 102.5° 257.4° 

Object 2 7125.21 km 0.00398 154.9° 281.4° 6.61° 23.1° 

 

When introducing the A/M uncertainties, while the Uncertainty-aware Cube 

continues to perform well in every condition (SR = 100%), the Cube shows a lower 

success rate (i.e., SR = 42%), as shown in Table 23. This happens despite the higher 

altitude, thus resulting in a worse performance with respect to Test case 3, which was 

characterized by altitudes around 640 km. The results could seem counterintuitive, but 

the reason is related to the geometry of the orbits. Indeed, the orbital planes are quite 

distant in terms of inclination angle. Therefore, when considering an uncertainty in the 

A/M value, which causes the objects to be ahead or behind the nominal intersection 

point along their own orbits, the objects move away quickly from each other. Figure 

35 confirms this phenomenon, showing the minimum distances as function of the A/M 

uncertainties. It can be noted that the minimum distances are much larger than those 

of Test case 3 (Figure 33) and of the maximum admissible distance to be in the same 

cube, i.e., cube diagonal, explaining the miss detections of the Cube. The confidences, 

plotted in Figure 36 as function of the A/M uncertainties, show very high values in 

correspondence of the cases characterized by small minimum distances and very low 

values as the minimum distance grows. 

Table 23 Results of the Cube method when considering the A/M uncertainties for Test case 4 

   Object 2 

 
A/M 

uncertainty 
+90% +50% +20% 

0 
-20% -50% -90% 

O
b

je
ct

 1
 

+90% ✓ ✓ ✓ X X X X 

+50% X ✓ ✓ ✓ X X X 

+20% X ✓ ✓ ✓ ✓ X X 

0 X X ✓ ✓ ✓ X X 

-20% X X ✓ ✓ ✓ X X 

-50% X X X ✓ ✓ ✓ X 

-90% X X X X ✓ ✓ X 
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Figure 35 3D histogram of the minimum distances between the two objects as function of the 

A/M percentage errors for Test case 4 

 

Figure 36 3D histogram of the confidence values associated to the detected conjunctions 

between the two objects as function of the A/M percentage errors for Test case 4 
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To further investigate the role of the inclination in the performance of the Cube, 

another simulation has been run considering a different orbit for Object 2 in the same 

altitude range, characterized by an inclination angle of 81.4°. In this case the relative 

velocity between the two objects is 14.955 km/s. The analysis shows that the minimum 

distances reduce substantially (Figure 37), the Cube being able to detect the 

conjunction 47 out of 48 times (SR = 98%). This result suggests that the Cube can still 

be considered suitable to perform medium-term analysis at altitudes higher than 600 

km, as long as the orbital planes of the objects are close. When the orbits have very 

different inclinations, the Cube exhibits a significantly lower success rate. The 

Uncertainty-aware Cube, instead, is always capable to detect the conjunctions 

regardless of the uncertainties in the A/M value, while these are consistent with the 

position errors established through the uncertainty evaluation process. 

 

Figure 37 3D histogram of the minimum distances between the two objects as function of the 

A/M percentage errors for the second version of Test case 4 

The results have shown the capability of the proposed method to reduce the missed 

detection rate by accounting for propagation uncertainties. Clearly, this is achieved at 

the cost of an increase in the false alarm rate. For the sake of completeness, quantitative 

information about this issue is provided in the following. In general, the number of 

potential close approaches detected by the method strongly depends on the orbit 
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altitude, because of the different magnitude of the along-track uncertainties at different 

altitude ranges. While the method could find hundreds of possible close approaches at 

low altitudes (i.e., under 600 km), where along-track uncertainties of thousands of kms 

are accounted for, their number reduces to few instances at higher altitudes. Therefore, 

the false alarm rate also reduces for increasing orbit altitude, varying from dozens to 

2-3 times the false alarm rate of original Cube method. However, it should be said that 

these false alarms rate are not to be considered as “critical” from an operational point 

of view, since the Uncertainty-aware method is intended as a medium-term screening 

and not as a collision avoidance tool. Indeed, with reference to an operative context in 

which the method could be used to foresee the most endangered assets in the next few 

weeks and to focus the attention on specific active or debris objects, it is important not 

to lose information about potential risk, providing early warnings which are consistent 

with the orbital propagation uncertainty within the considered time horizon. These 

warnings can then support optimized procedures such as ad hoc sensor tasking to 

reduce uncertainties. 

To summarize the results of the performance assessment, the Uncertainty-aware 

Cube method resulted to be capable to detect the conjunctions in all the cases and 

regardless of the A/M uncertainties, provided that these are consistent with the position 

errors computed through the uncertainty evaluation tool. Clearly, the original Cube 

method is not suitable to perform successfully medium-term risk analysis, being not 

intended for this purpose. In particular, it exhibits low success rate for low-altitude 

LEO scenarios, i.e., below 600 km, or when the objects’ orbits are quite different in 

terms of inclination angle. Furthermore, it should be noted that, with respect to 

standard Cube implementation, the Uncertainty-aware approach requires a larger 

computational effort, which depends on the cube size and the magnitude of the 

uncertainties involved. Specifically, the computational time increases when reducing 

the cube size and when considering lower altitudes, as the uncertainty magnitude 

increases. 
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4.2 Uncertainty evaluation algorithm 

 

Here, an analytical algorithm for the evaluation of the uncertainty in medium-term 

scenarios is presented, as a tool to be integrated with the Uncertainty-aware Cube 

discussed above.  

The basic concept of the proposed approach is that, given the propagated orbit of 

a nominal space object, the motion of a “clone” object with modified physical 

characteristics can be treated as a relative motion problem between a real and a 

fictitious object. In particular, the approach is based on the idea that the uncertainties 

in the input parameters on which the atmospheric drag acceleration depends, cause a 

sort of differential drag between the two objects. 

Recalling the drag equation, 

𝒂𝑫 = −
1

2
𝜌𝐶𝐷

𝐴

𝑀
𝑣𝒗, (4.3) 

it is possible to see how the drag acceleration, 𝒂𝑫, is directly related to both the 

A/M and the atmospheric density, 𝜌. Clearly, errors in the estimation of the ballistic 

coefficient (i.e., 𝐶𝐷 𝐴 𝑀⁄ ) and atmospheric density have the same importance (i.e., 

linear dependence) in determining the atmospheric drag acceleration. Consequently, 

the two different sources of error can be considered together, meaning that their overall 

contribution can be modelled by considering an error on a single parameter. Denoting 

𝐾 =  𝜌𝐶𝐷 𝐴 𝑀⁄ , defining the uncertainty as 𝛥𝐾, and substituting it in Eq. (4.3), the 

differential drag equation is obtained as 

𝛿𝒂𝑫 = −
1

2
∆𝐾𝑣𝒗, (4.4) 

which represents the atmospheric drag acceleration error vector at a given time 

instant due to the uncertainty in the input physical and environmental parameters. 
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At this point, the accumulated error in semi-major axis, ∆𝑎, and eccentricity, ∆𝑒, 

at a given time instant T can be computed as 

∆𝑎 =
2

𝑛

𝑎

𝑟
√1 − 𝑒2 ∫ 𝛿𝑎𝐷𝑑𝑡

𝑇

0

, 
(4.5) 

∆𝑒 =
√1 − 𝑒2

𝑎2𝑒 𝑛
(

𝑎2√1 − 𝑒2

𝑟
− 𝑟) ∫ 𝛿𝑎𝐷𝑑𝑡

𝑇

0

, (4.6) 

where 𝑎, 𝑒 and 𝑛 are respectively the semi-major axis, the eccentricity and the 

mean motion of the nominal orbit, 𝑟 is the norm of the position vector of the object, 

and 𝛿𝑎𝐷 is the magnitude of the differential drag acceleration vector. 

The semi-major axis error can be integrated itself to obtain the accumulated error 

in argument of latitude, ∆𝑢, as 

∆𝑢 = −
3

2

𝑛

𝑎
∫ ∆𝑎 𝑑𝑡

𝑇

0

. 
(4.7) 

The Hill’s equations expressed in terms of DOPs  [129], [130] are then used to 

compute the along-track separation due to the accumulated error in the orbital 

parameters. Since the method is conceived to be applied to LEO orbits, atmospheric 

drag is the dominant perturbation. Clearly, it is a planar perturbation, thus causing 

variations in the semi-major axis, eccentricity and argument of latitude only, as a first 

approximation. Therefore, in the formulation used for this purpose, only terms 

depending on variations in these parameters have been considered, while terms 

depending on inclination or right ascension of the ascending node variations have been 

neglected. Furthermore, since the real and fictitious objects have the same initial 

conditions, also terms presenting initial separation errors have been neglected. So, the 

along-track position error, ∆𝑦, can be expressed as 

∆𝑦 = 𝑎(∆𝑢 + 2∆𝑒 sin 𝑀 − ∆𝑒∆𝑢 cos 𝑀), 
(4.8) 

where 𝑀 is the mean anomaly of the nominal orbit. 
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It can be noted that the errors in eccentricity and argument of latitude enter directly 

in the computation of the along-track separation. The semi-major axis error computed 

as in Eq. (4.5) can be regarded as a sort of radial error and represents the shrinking of 

the orbit, which causes the along-track drift, as shown by Eq. (4.7). The proposed 

approach takes as input only the time evolution of the space object’s state vector (in 

form of ephemerides, orbital parameters or positions and velocities coming from 

orbital propagation) and a percentage of uncertainty, representing both uncertainties 

in A/M and atmospheric density. The output are the time evolutions of the along-track 

position error and the semi-major axis error, i.e., radial error, accumulated during the 

time interval of interest. 

 

4.2.1 Uncertainty-evaluation algorithm performance assessment 

To assess the performance of the method, the analyses focused on four different 

test cases in LEO at different altitudes. The initial UTC epochs and the initial 

Keplerian orbital parameters characterizing the orbits of the four space objects are 

reported in Table 24 with i, Ω, and ω being respectively the inclination, right ascension 

of the ascending node and argument of perigee of the orbits. The nominal physical 

characteristics of the objects for the four test cases are reported in Table 25. 

Table 24 Initial UTC epochs and orbital elements of the objects of the four test cases 

Object UTC epoch a (km) e i (°) Ω (°) ω (°) 

Object 1 
14 November 2021 

10:50:50 
6855.58 0.000896 97.35 24.66 43.1 

Object 2 
14 November 2021 

14:42:38 
6931.74 0.00135 53.11 161.5 50.7 

Object 3 
15 November 2021 

09:56:44 
7015.34 0.00129 97.86 4.82 72.6 

Object 4 
14 November 2021 

14:35:46 
7139.56 0.00128 98.59 18.05 102.5 
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Table 25 Nominal physical characteristics of the space objects 

Parameter Value 

𝐴 𝑀⁄  (𝑚2 𝑘𝑔⁄ ) 0.01 

𝐶𝐷 2.2 

𝐶𝑅 1 

 

For each test case, four different values of K uncertainty have been considered, 

i.e., +20%, +50%, +100% and +200%. The uncertainty is global and takes into account 

the combination of the two main sources of error, but these levels of uncertainty can 

be considered representative of specific scenarios that could occur. For instance, 

uncertainties from 20% to 100% can represent situations in which the objects are 

characterized by a stable history of the ballistic coefficient, so the uncertainty is only 

expression of the misprediction of solar and geomagnetic indices which determine the 

atmospheric density estimation, with a growing degree of error. The 200% uncertainty, 

instead, can represent a scenario in which, in addition to the atmospheric density 

prediction uncertainty, there is also a significant A/M mismodeling that can be related 

to estimation error during the orbit determination process.  

It should be noted that, as already said, most of the Earth orbiting space objects 

shows quite stable trends of the ballistic coefficient, with small A/M variations, so the 

first three uncertainty levels could depict the most frequent scenarios. This is true 

especially for the 100% uncertainty case, that well emulates a typical degree of 

uncertainty due to EUV indices forecasting error. The 200% uncertainty case, instead, 

can be regarded as a “worst” case, that may still apply to the reminder of Earth orbiting 

objects. Sometimes, the uncertainty on density and/or ballistic coefficient can be 

treated as noise in the numerical propagation, but in this application it is kept constant 

during the propagation. Such assumption has been made to carry out a worst-case 

scenario analysis. 
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The workflow of the analyses carried out is presented in the following and shown 

in Figure 38. The orbit of the object is propagated for 30 days using the numerical 

propagator, firstly with the nominal K, and then considering the K percentage variation 

representing the uncertainties involved. In this application, all the available 

perturbations have been considered, limiting the harmonics of the EGM2008 gravity 

field to 20 in degree and order and selecting the NRLMSISE00 (SISE00) as density 

model, with a constant medium solar activity modelled using F10.7 index of 150 Solar 

Flux Unit (SFU) and an Ap index equal to 15.  

The difference between the position vectors of the object propagated in nominal 

condition and those obtained when accounting for error in K is computed and 

expressed in a classic RSW reference frame [85] centered in the nominal object, to 

obtain the along-track component of the position error. The time evolutions of the 

along-track separation and the semi-major axis error represent the benchmark for the 

analysis. At this point, the state vectors of the nominal propagation and the percentage 

value of the uncertainty are given as input to the algorithm. It outputs the 30-day time 

evolutions of the errors in along-track position and semi-major axis, that are compared 

to the benchmark. 

 

Figure 38 Workflow of the analyses carried out to test the algorithm 
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The performance of the algorithm is evaluated based on accuracy, i.e., its 

capability to provide values of the errors comparable to those of the benchmark and 

trustworthy trends of the error curves, and computational cost. In particular, the 

performance parameter selected is the relative error between the errors evaluated 

through the analytical method and those obtained by propagation, i.e., the benchmark.  

The relative error, ε, is computed as 

𝜀 =
𝑋𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝑋𝑝𝑟𝑜𝑝

𝑋𝑝𝑟𝑜𝑝
, 

(4.9) 

where 𝑋𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 is the along-track position error (or the semi-major axis error) 

estimated through the analytical method and 𝑋𝑝𝑟𝑜𝑝 the same quantity obtained using 

propagation. The relative error is than multiplied by 100 to obtain the percentage error. 

 

Test case 1 

The test case 1 (TC1) is about the Object 1 of Table 24. It features the object 

orbiting at the lowest altitude, i.e., at around 450 km, in which the impact of the 

atmospheric drag perturbation is greater, and also the effects of the differential drag 

caused by a ballistic coefficient uncertainty are more evident. The along-track position 

errors of the analytic method and the benchmark are reported in Figure 39 for the four 

levels of K uncertainty. 
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Figure 39 Time evolutions of the along-track position errors evaluated using the analytical 

method (red) and the propagation (black) in the 20% (a), 50% (b), 100% (c) and 200% (d) 

uncertainty cases for TC1. 

 

From Figure 39, it can be noted how the trends of the along-track error evaluated 

using the analytical method are quite consistent with those of the benchmark for the 

20% and 50% uncertainty cases. When the uncertainty is 100% (Figure 39c), the curve 

starts to diverge from the benchmark after about 20 days. Indeed, the curve of the 

benchmark presents an inflection point and change from concave downward to 

concave upward around the 25th day, while the curve of the analytical method does not 

show this behavior.  The phenomenon is emphasized in the 200% uncertainty case 

(Figure 39d). Here, significant differences between the analytical method and the 

numerical propagation can be noticed after about 15 days, and, in particular, the 

derivative of the numerical along-track error changes its sign after about 23 days. This 

phenomenon can be explained considering the position that the fictitious object 

occupies in the local RSW reference frame centered in the real object, i.e., the nominal 

object. Indeed, it is intuitive that as the angular separation between the objects grows, 

the along-track component of the fictious object’s position oscillates around zero. 
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While this behavior remains “hidden” in the other cases, it is evident in the highest 

uncertainty case because the angular separation becomes very high (higher than 90°). 

For the sake of clarity, the trends of the along-track angular separation, i.e., the error 

in the argument of latitude, computed using the analytical method is shown in Figure 

40. While the angular separation is never higher than 70° in the first three uncertainty 

cases, it reaches around 140° in the last case. In particular, around the 24th day, the 

angular separation is around 90° and it corresponds to the highest value of the along-

track error magnitude (Figure 39d). 

 

Figure 40 Time evolutions of the along-track angular separation computed using the 

analytical method in the 20% (red), 50% (blue), 100% (green) and 200% (black) uncertainty 

cases for TC1. 

In Figure 41, instead, the percentage relative error between the along-track 

separation evaluated with the analytical method and the benchmark is shown, for the 

first three uncertainty cases. At this altitude, there is an evident degradation of the 

method performance over time. However, the method estimates reasonably well, i.e., 

percentage error less than 5%, the along-track error trend for at least 20 days, as long 

as the uncertainty in the K parameter is within 100%. 
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Figure 41 Time evolution of the percentage error in the along-track separation in the 

20% (red), 50% (blue) and 100% (green) uncertainty cases for TC1. 

As for the radial error, i.e., the accumulated error in the semi-major axis, its trend 

for the different uncertainty cases is plotted in Figure 42 and compared to that obtained 

using numerical propagations. In this case the trends of the errors are linear, and it can 

be noted that the analytical method always tends to slightly underestimate the 

magnitude of the error. The percentage errors related to the semi-major axis error are 

shown in Figure 43 for all the uncertainty cases. They are always lower than 10%, 

which represents an acceptable value for the semi-major axis error, thus proving the 

good performance of the analytical method in estimating the radial error also at low 

altitude and even in the 200% uncertainty case. 
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Figure 42 Time evolutions of the semi-major axis errors evaluated using the analytical 

method (red) and the propagation (black) in the 20% (a), 50% (b), 100% (c) and 200% (d) 

uncertainty cases for TC1. 

 

Figure 43 Time evolutions of the percentage error in the semi-major axis variation in the 

20% (red), 50% (blue) and 100% (green) uncertainty cases for TC1. 
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Test case 2 

In the test case 2 (TC2), the Object 2 of Table 24 is considered for the analysis, 

with an altitude between 500 and 600 km. The results of the analytic method in terms 

of time evolutions of the along-track separation and semi-major axis error are reported 

respectively in Figure 44 and Figure 45, also compared to those of the benchmark. 

Figure 44 shows that the curves are very similar for uncertainties up to 100% and 

almost overlapped in the 20% and 50% uncertainty cases. Only for the 200% 

uncertainty case, the analytic along-track error diverges over 5% after around 26 days. 

However, the magnitude of the along-track error estimated using the analytical method 

is always larger with respect to the benchmark, thus resulting in an overestimation of 

the error. 

 

Figure 44 Time evolutions of the along-track position errors evaluated using the analytical 

method (red) and the propagation (black) in the 20% (a), 50% (b), 100% (c) and 200% (d) 

uncertainty cases for TC2. 
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Figure 45 Time evolutions of the semi-major axis errors evaluated using the analytical 

method (red) and the propagation (black) in the 20% (a), 50% (b), 100% (c) and 200% (d) 

uncertainty cases for TC2. 

 

Although this conservative nature of the method may imply computational issues 

in some applications, it can be useful when applied to operative context in which a 

medium-term collision frequency screening is needed, and it is important not to lose 

information about potential risk. On the contrary, the trends of the semi-major axis 

error shown in Figure 45 exhibit a small underestimation with respect to the 

benchmark, which grows for increasing uncertainty in the K parameter. These small 

misestimations are easily deduced from the time evolution of the percentage errors of 

both the along-track separation (Figure 46) and the semi-major axis error (Figure 47). 

For the former, the percentage error is around zero for the 20% and 50% uncertainty 

cases, less than 2% in the 100% uncertainty case and reaches a maximum of 10% in 

the most extreme uncertainty case. Regarding the latter, instead, trends similar to each 

other can be observed for varying percentages of uncertainty, with a maximum value 

of 3% in the 200% case. 
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Figure 46 Time evolutions of the percentage errors in the along-track separation in the 20% 

(red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC2. 

 

Figure 47 Time evolutions of the percentage errors in the semi-major axis variation in 

the 20% (red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC2. 

Test case 3 

The test case 3 (TC3) deals with the Object 3 of Table 24, at an altitude around 

640 km. The results in terms of along-track position error trends are shown in Figure 

48 only for the 200% uncertainty case, since there are no appreciable differences 

between the analytical method and the benchmark in the other conditions. 
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Figure 48 Time evolution of the along-track position error evaluated using the analytical 

method (red) and the propagation (black) in the 200% uncertainty case for TC3. 

Also in the 200% uncertainty case, the difference between the two curves is small 

and the maximum value of the percentage error is around 0.7% after 30 days, as shown 

in Figure 49. A very slight overestimation of the error is still present, as for the 

previous test cases, but its magnitude reduces as the altitude grows. 

 

Figure 49 Time evolutions of the percentage errors in the along-track separation in the 

20% (red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC3. 
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The same applies to the semi-major axis error, whose time evolution is plotted in 

Figure 50 only for the 200% uncertainty scenario. As in the previous test cases, there 

is a small underestimation of the final radial error, as shown also by Figure 51, which 

depicts the trends of the percentage error of the semi-major axis variation. The 

percentage error is always lower than 1% and reduces as the K uncertainty decreases. 

 

Figure 50 Time evolution of the semi-major axis error evaluated using the analytical method 

(red) and the propagation (black) in the 200% uncertainty case for TC3. 

 

Figure 51 Time evolutions of the percentage errors in the semi-major axis variation in the 

20% (red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC3. 
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Test case 4 

Object 4 of Table 24 is considered for the test case 4 (TC4). The altitude is 

around 760 km, which is in the most crowded region of the LEO environment. At this 

altitude, the more rarefied atmospheric density causes the drag perturbation to be 

comparable to other perturbations, i.e., Solar Radiation Pressure (SRP), so the impact 

of a ballistic coefficient uncertainty is less significant and, consequently, less 

appreciable. However, the analytical method confirms its good performance also in 

this orbital regime. Since there are no noticeable differences between the along-track 

separation trends and semi-major axis trends of the two adopted methods, only the 

evolution of their percentage errors is reported for this test case in Figure 52 and Figure 

53. The along-track separation percentage errors follow the same trend in all the 

uncertainty scenarios, with final errors of less than 0.1%. Small differences between 

the uncertainty cases are probably due to the effect of the SRP perturbation. Since SRP 

acts in the anti-solar direction, its contribution distributes itself over the three position 

components and not only in the along-track direction. Therefore, in some 

circumstances, uncertainties in the K value could cause a differential SRP, which may 

have “positive” effects on the along-track position error, thus slightly reducing the 

error accumulated due to differential drag. Figure 53, instead, shows again a small 

underestimation of the semi-major axis error, but its magnitude drops down of almost 

one order, with final errors ranging from -0.1 to -0.2%. 
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Figure 52 Time evolutions of the percentage errors in the along-track separation in the 20% 

(red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC4. 

 

Figure 53 Time evolutions of the percentage errors in the semi-major axis variation in the 

20% (red), 50% (blue), 100% (green) and 200% (black) uncertainty cases for TC4. 

 

To sum up, the results suggest that the prediction performance of the method 

clearly improves for increasing orbit altitude, being also less significant the effect of 

the differential drag perturbation. Therefore, while the method always shows very 

good accuracy for altitudes higher than 600 km, at lower altitudes its usage should be 

limited to less than 30 days when the involved uncertainty is equal or higher than 
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100%, In these cases, around the 25th day, the estimated error starts to diverge too 

much with respect to the benchmark error, i.e., the error evaluated comparing 

propagations run with nominal and modified K values. However, it should be noted 

that, in such situation, the method always overestimates the error due to the input 

uncertainty. This behavior could be convenient if the tool is applied in an operative 

context in which the collision frequency of assets of interest must be foreseen. Indeed, 

in such application, the tool can provide propagation error boundaries based on the 

uncertainties involved and give them as input to algorithms performing medium-term 

collision risk assessment. A conservative estimation of the errors can be useful in such 

context not to lose information about potential risk, even if it could imply an increase 

of the computational time. 
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4.3 Sensor Calibration 

 

In this section, a calibration tool able to carry out the metrological characterization 

of ground-based sensors is presented. After setting up information about the sensor, 

such as position, type of sensor (i.e., telescope, radar or laser) and coordinate system 

in which the observations are represented, the tool acquires data from available 

Tracking Data Messages (TDMs) and Orbit Ephemeris Messages (OEMs) relevant to 

reference satellites and the residuals for the metric observations are computed. 

 

4.3.1 Reference frames and notation 

 

Before going into the details of the calibration tool, the adopted reference frames 

and notation shall be specified. The position of the sensor, initially expressed in 

geodetic coordinates, i.e., longitude λ, latitude φ and altitude h, is transformed into the 

ECEF reference frame and then in the ECI reference frame using routines of the 

NASA’s SPICE toolkit. Depending on the type of sensor, the observations can be 

expressed in two different coordinate systems, i.e., topocentric equatorial (TE) or 

topocentric horizontal (TH) reference frames. The TE coordinate system has the origin 

at a point on the surface of the Earth (e.g., the sensor’s location) and its nonrotating 

set of axes is parallel to the XYZ axes of the ECI reference frame. In the TH coordinate 

system, the origin is at a point on the surface of the Earth, the y-axis points towards 

East, the z-axis is parallel to the local vertical and the x-axis completes the right-

handed set and points South. The positions and velocities of the ephemerides are 

expressed in the ECI reference frame. Therefore, the latter must be transformed in 

topocentric coordinates and the strategy changes according to the coordinate system: 

• If the sensor is a telescope, the reference frame of the observations is the 

topocentric equatorial and the measurements are the right ascension and 

declination angles; in this case, only a translation of the origin from the 
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Earth center to the sensor’s location is needed to express the state vectors 

of the ephemerides in the same reference frame as the observations. 

 

• If the sensor is a radar (or a laser), the reference frame of the observations 

is the topocentric horizontal and the measurements are the azimuth and 

elevation angles, range, and range rate; in this case, the state vector from 

OEM is firstly expressed in the topocentric frame by translating the origin 

from the Earth center to the sensor’s location. Then, a transformation is 

needed from topocentric equatorial to topocentric horizontal, obtained by 

means of a 321 sequence of Euler angles: the first angle equal to λ, the 

second angle of (90° - φ) and the third angle equal to 0. 

Furthermore, also the position error in the RSW reference frame is evaluated. The 

position error vector is calculated as the difference between the measured vector and 

the actual vector computed from the ephemerides and then it is rotated from ECI to 

RSW, expressing its components along the radial, along-track and cross-track 

directions, to determine how the error is distributed. 

As for the definition of the angles, the azimuth β is the angle between the North 

of the topocentric horizontal reference frame and the projection of the position vector 

in the xy plane, while the right ascension  is the angle between the x-axis of the 

topocentric equatorial reference frame and the projection of the position vector in the 

xy plane. As for the elevation ε, it is the angle between the xy plane of the topocentric 

horizontal/equatorial and the position vector, while the declination δ is the angle 

between the xy plane of the topocentric equatorial and the position vector. The range 

R is the distance between the sensor’s site and the observed target, and the range rate 

𝑅̇ is the rate at which R is changing with respect to time. The residuals are referred to 

as ΔX, where X can be any of the measured parameters, and they are to be intended as 

∆𝑋 = 𝑋𝑜𝑏𝑠 − 𝑋𝑐𝑎𝑙𝑐, 
(4.10) 

where Xobs is the measurement of the sensor and Xcalc is the corresponding 

parameter computed from the ephemerides. The latter represents the theoretical value 

that an ideal sensor located at the real sensor position should measure. 
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4.3.2 Description of the tool 

 

As reported in [66], a simple method to characterize a measurement is to assume 

it has a Gaussian distribution with a time-constant non-zero mean. Clearly, the mean, 

µ, standard deviation, σ, and root mean square (RMS) represent main parameters of 

the distribution and are computed for the residuals of the parameters of interest. The 

parameters considered for the calibration are range, range rate and azimuth and 

elevation angles, if the sensor is a radar or a laser. Instead, right ascension and 

declination angles are used if the sensor is a telescope. The general scheme of the 

sensor calibration tool is summarized by the flow chart in Figure 54.  

 

Figure 54 Workflow of the sensor calibration tool for a telescope. In case of radar/laser 

sensor, the time bias computation is not performed and the data are directly associated after 

the acquisition phase. 

The tool receives the following inputs: 

• Sensor information: type (radar, optical or laser), WGS84 coordinates (latitude, 

longitude and altitude) and coordinate system in which the observation 

parameters are represented (topocentric equatorial or topocentric horizon); 

• TDMs generated by the sensor; 
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• Reference OEMs associated to the TDMs; 

• Outliers percentage threshold; 

• A priori sensor error statistics from previous calibrations (optional); 

After the data acquisition, if the sensor is a telescope, the first step is the computation 

of the time bias (TB) of the sensor using an iterative process based on the minimization 

of the mean of the along-track error, 𝜇𝐴𝑇_𝑒𝑟𝑟, which is an index of how much the 

observation epoch is ahead or delayed with respect to the actual epoch of the object’s 

passage. A description of this process is presented later in this section. 

Then, for each observation in the TDMs, the corresponding ephemerides in the OEMs 

are identified, based on the object designator, i.e., NORAD ID. To correctly associate 

the available ephemerides to the TDM observables, the state vector at the time instant 

closest to the observation epoch is extracted from the OEMs and it is propagated from 

ephemeris epoch to observation epoch. The propagations are carried out using the 

numerical propagator presented in Chapter 3. Being accurate ephemerides needed for 

the calibration process, all the perturbations are considered for this application, but 

limiting to 20 the harmonics of the Earth’s gravity field in order to speed up the 

propagations. 

However, before starting the propagation step, it is necessary to check if the 

observations in the TDMs are suitable for association with the available ephemeris 

data. Specifically, all the measurements within a TDM whose epoch is outside the time 

span [T0 – τ, T1 + τ], where T0 and T1 are the epochs of the first and last available 

ephemeris, respectively, must be discarded. τ is a tolerance parameter whose value 

must be set considering the frequency of the ephemerides and the accuracy and 

reliability of the selected propagator. 

After associations between observations in the TDMs and ephemerides in the OEMs 

are determined, the state vector information are converted into angles and, eventually, 

range and range rate information as explained before, depending on the type of sensor. 

Finally, correction of diurnal and annual aberration is performed if needed, and the 

residuals are evaluated as shown by equation (4.10).  



  

101 

 

Then, the presence of any anomalous measurements is checked, and the possible 

outliers are removed. To do so, a region of acceptance is defined and any residual 

falling outside of this region is considered anomalous and removed. There are two 

possible procedures: 

1. If a priori information from previous calibrations is available, an acceptance 

region is formulated as [µ - 3σ, µ + 3σ], where µ is the aprioristic bias and σ 

is the aprioristic standard deviation 

2. If a priori information is not available, an iterative method is used: the 

acceptance region is formulated as [µ - kσ, µ + kσ], where µ is the mean of 

the set of residuals, σ its standard deviation, and k is a user-defined width 

parameter. At each iteration, the mean and standard deviation are re-

calculated and possible outliers are discarded. The iteration stops when no 

element is removed from the set. 

The number of outliers is computed and the percentage of outliers with respect to the 

number of observations used is evaluated. A warning is generated if the percentage 

exceeds the user-selected threshold. 

Iterative method for time bias computation 

As regards the iterative process for the TB computation, the minimization of the 

along-track error is performed with a simple bisection method: it starts by computing 

𝜇𝐴𝑇_𝑒𝑟𝑟 considering a null TB, and then considering two extreme guess values, 𝑇𝐵 =

 −1 𝑠 and 𝑇𝐵 =  1 𝑠. Depending on the signs of the 𝜇𝐴𝑇_𝑒𝑟𝑟 values, the bisection is 

applied in the [-1 s, 0 s] or the [0 s, 1 s] interval. Then, the bisection method goes on 

until the difference between the along-track errors means evaluated at the updated 

interval extremes is below a user-defined threshold. The flowchart of the bisection 

method is shown in Figure 55. Once the optimum TB has been identified, the TB 

correction is applied to the observation epochs to correctly associate the TDMs and 

OEMs data, thus finally computing the residuals of the calibration parameters. Clearly, 

at each iteration of the bisection method, and so for each guess value of the time bias, 
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association of TDM and OEM data should be performed and residuals should be 

evaluated to compute the mean of the along-track error, as depicted in Figure 56. 

 

Figure 55 Flowchart of the iterative bisection method for time bias computation 

 

Figure 56 Flowchart of logic process of an iteration of the bisection method 
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4.3.3 Performance assessment of the sensor calibration tool 

In this section the performance assessment of the sensor calibration tool is carried 

out, by showing the results of two different test cases using real data, one for a radar 

sensor calibration and the other for a telescope calibration. For both test cases, no a 

priori information for biases and noises of the measurements was available, so the 

second method for the removal of the outliers is implemented. With regards to the 

numerical propagation, all the available perturbations have been included, considering 

harmonics up to 20x20 for the gravity model, the Jacchia-Roberts as density model, 

being less demanding from a computational point of view, and both Sun and Moon as 

third bodies. 

Test case 1 (radar)  

The number of available tracks, i.e., TDMs, is 9, of which 4 are referred to the 

METOP-2 satellite and 5 to METOP-1, for a total of 182 available observations. The 

available OEMs instead are 8, four for each satellite. However, the epochs of two 

TDMs associated to METOP-2 and three TDMs of METOP-1 are outside the time 

span of the respective OEMs. Thus, these TDMs are discarded by and only 4 TDMs, 

i.e., two for each satellite containing 69 observations, and the corresponding OEMs 

are considered for the calibration process. Each TDM reports observations over a time 

span slightly longer than one minute. However, for the sake of simplicity and clarity 

in the subsequent plots, a number from 1 to 4 is assigned to each TDM chronologically 

and the related observations are grouped at the same epoch, which is the first epoch of 

the corresponding TDM. The relative UTC epochs are listed in Table 26. 

Table 26 Reference epochs and satellites of the TDMs of the first test case 

TDM Satellite UTC Epoch 

1 METOP-2 04/08/2020 20:34:50.910 

2 METOP-2 05/08/2020 20:13:52.766 

3 METOP-1 04/09/2020 09:49:32.707 

4 METOP-1 04/09/2020 21:07:44.445 
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A comparison between the azimuth and elevation observations from TDMs and the 

same parameters computed from the OEMs is presented in Figure 57. The data are 

well separated, and it is not difficult to distinguish observations from different TDMs, 

except for the central cloud, where some measurements coming from two different 

TDMs tend to overlap. 

 

Figure 57 Comparison between measurements and ephemerides in terms of azimuth (β) and 

elevation (ε) 

 

The distribution of the residuals of azimuth, elevation, range, and range rate for the 

different TDMs are shown in Figure 58. The means (µ) and the standard deviations (σ) 

of the residuals for each TDM are instead reported in Table 27. 
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Figure 58 Distributions of the azimuth (a), elevation (b), range (c), and range rate (d) 

residuals for each TDM 

Table 27 Statistics of the residuals for each TDM for the first test case 

TDM 

Δ β (°) Δ ε (°) Δ R (m) Δ 𝑹̇ (m/s) 

µ σ µ σ µ σ µ σ 

1 0.11 0.17 0 0.15 0.11 7.78 0.06 0.37 

2 -0.09 0.25 -0.01 0.15 -1.47 8.47 -0.03 0.27 

3 0.01 0.22 0.04 0.14 -2.24 8.31 0.11 0.10 

4 -0.12 0.29 -0.03 0.17 -6.07 8.81 -0.03 0.14 

 

It can be noted that the sensor performance is very similar for all the TDMs in 

terms of azimuth, elevation, and range rate, but there seems to be a degradation of the 

performance in the range measurements. In particular, there is an increase of the mean 

of the range residuals for the fourth TDM, although the value of the standard deviation 

is comparable to the others. The outputs of the calibration are summarized in Table 28. 
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The results are consistent with the values expected for a calibration of a SST radar and 

they are in the same order of magnitude of the residuals admissible to accept tracklets 

during a correlation process [131]. 

Table 28 Outputs of the radar calibration 

Parameter Constant bias White noise sigma RMS 

β (°) -0.028 0.251 0.251 

ε (°) -0.001 0.153 0.152 

R (m) -2.35 8.48 8.74 

𝑅̇ (m/s) 0.021 0.256 0.255 

 

The distribution of the error in the radial, along-track and cross-track direction of 

the RSW is shown in Figure 59, which also illustrates the distribution of the time 

residuals. Since the time residual is evaluated as the along-track error divided by the 

velocity, its distribution is identical to the along-track error distribution. The total time 

bias computed as the mean of the time residuals is 0.0757 s. 

 

Figure 59 Distributions of the position error in the radial (a), cross-track (b) and along-

track (c) directions and of the time residuals (d). 
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Test case 2 (telescope)  

For this test case, 3 TDMs were available for a total of 197 observations. The 

sensor used for this calibration test is the PdM-Mite telescope, while the objects 

involved are two satellites of the GALILEO constellation, in particular two TDMs are 

referred to the GALILEO220 satellite (ID 43567) and only one TDM to GALILEO222 

(ID 43565). Two OEMs were available, one for each object, both completely covering 

the epochs of the TDMs. The initial UTC epochs and the reference satellites of the 

TDMs are reported in Table 29. 

Table 29 Reference epochs and satellites of the TDMs of the second test case 

TDM Satellite UTC epoch 

1 GALILEO220 03/05/2021 19:04:44.091 

2 GALILEO220 04/05/2021 23:45:02.094 

3 GALILEO222 10/05/2021 23:04:10.105 

 

The calibration time interval lasts from 03/05/2021 at 19:04:44.091 to 11/05/2021 

at 00:23:02.080, for a total of about 7.22 days. After the data acquisition, the iterative 

method to compute the sensor time bias is applied, resulting in a time bias of 0.00188 

s (1.88 ms) after 21 iterations. The time bias correction is implemented before 

proceeding with the data association. Once the data are associated, the residuals are 

evaluated and the outliers are removed using the second method presented in the 

previous Section, being a priori information not available. Of the 197 initial 

observations, only 3 outliers have been identified and removed, representing the 1.5%. 

As for the first test case, a comparison between the right ascension and declination 

observations from the TDMs and the same parameters computed starting from the 

OEMs is shown in Figure 60. Differences between ephemerides and observations are 

not appreciable and the tracks seem to be overlapping. 
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Figure 60 Comparison between measurements and ephemerides in terms of right ascension 

() and declination (δ) 

The means, standard deviation and root mean square (RMS) error of the right 

ascension and declination residuals are reported in Table 30 for each TDM. For a 

clearer analysis of the right ascension residuals, the same are scaled for the cosine of 

the declination, thus analyzing the parameter (𝛼 cos 𝛿) to evaluate the statistics. The 

results are also shown in Figure 61. The three TDMs have shown similar results in 

terms of residuals, although they contained quite different numbers of observations, 

the third TDM being the most numerous including 136 observations. The final results 

of the calibration in terms of RMS of the residuals are summarized in Table 31. The 

residuals are quite low and in agreement with the EU SST requirements for MEO 

telescopes, which require the telescopes of the EU sensors networks to have residuals 

lower than 2 arcsec.  

Table 30 Statistics of the residuals for each TDM for the second test case 

TDM 

Δ (𝜶 𝐜𝐨𝐬 𝜹) (°) Δ δ (°) 

µ σ RMS µ σ RMS 

1 1.63e-04 3.43e-04 3.77e-04 4.11e-05 5.68e-04 5.63e-04 

2 -1.95e-04 2.89e-04 3.40e-04 4.37e-05 4.42e-04 4.27e-04 

3 -3.85e-05 4.32e-04 4.32e-04 -4.89e-05 4.51e-04 4.52e-04 
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Figure 61 Distributions of the residuals of right ascension scaled for the cosine of the 

declination (red circle) and declination (black cross) for each TDM of the second test case 

Table 31 Outputs of the telescope calibration 

Parameter 

RMS 

(°) (arcsec) 

∆(𝛼 cos 𝛿) (°) 4.138e-04 1.489 

∆𝛿 (°) 4.787e-04 1.723 
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4.4 Analysis of AOI overflights 

 

This section presents the description of an algorithm developed for RSP 

applications, as part of an integrated RSP architecture, to evaluate whether a satellite 

overflights and/or observes an Area of Interest (AOI) in a given timespan, thus 

eventually identifying the entry and exit epochs and latitude and longitude coordinates. 

The workflow of the algorithm is reported in Figure 62. 

 

Figure 62 Workflow of the AOI overflight algorithm 

The algorithm takes as input: 

• Ephemerides of a satellite of interest for the analysis; 

• Initial and final epochs of the analysis; 

• Satellite’s payload information (if available); 

• Latitude and longitude coordinates of the AOI vertices. 

The outputs are: 

• Epochs in which the satellites enters in and exits from the AOI; 

• Latitude and longitude coordinates of the entry and exit points; 
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• Information about satellite operativity (passing/overflight) 

• Information about AOI observability (for optical payloads)  

Depending on the availability of satellite’s payload information, the algorithm follows 

two different procedures: if payload information are not available, the analysis 

concerns the subsatellite point (SSP) and its AOI crossings within the timespan of 

interest (satellite passing over the AOI); if payload information are available, the 

analysis focuses on the intersections between the sensor’s footprints and the AOI 

(satellite observing the AOI). 

In both cases, the first step of the algorithm consists in building a “safe area”, starting 

from the AOI received as input. This “safe area” is used as an initial filter, to focus the 

analysis on the timespans in which an AOI passing/observation is possible, thus 

reducing the computational cost. The “safe area” is always a rectangle containing the 

AOI in the longitude-latitude coordinate system. The “safe area” generation is realized 

as follows: 

1. The rectangle that includes the initial AOI is built, considering the maximum 

and minimum values of longitude and latitude; 

2. The rectangle dimensions are increased by values equal to the maximum 

variations of longitude and latitude between two consecutive time instants in 

the reference ephemerides. 

Case A – Payload information not available 

In this case, the work logic of the algorithm is the following: 

1. The algorithm checks whether the SSPs obtained from the ephemerides fall 

within the safe area and, when a passing in the safe area is identified, the initial 

and final epochs of the passing are stored. This preliminary analysis is 

performed by means of a function, which takes as input the points to be 

checked and the vertices of the polygon representing the safe area and provides 

as output a vector of Boolean values (1 if the point is inside the polygon, 0 

otherwise). This filter allows to identify rapidly the time intervals in which the 

AOI passing is possible, if any. 
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2. For each time interval, the timespan is discretized with a user defined time step, 

which is used to interpolate the position and velocity vectors of the 

ephemerides. 

3. Latitude and longitude coordinates of the SSPs at each time step are computed 

and the check with the previously described function is performed again, but 

using the real AOI. 

4. If one or more AOI overflights are identified, the algorithms outputs the initial 

and final epochs and the entry and exit latitude and longitude coordinates of 

each passing, thus setting the operativity flag to “passing”. 

It is worth noting that, if the AOI is represented by a concave polygon, the SSP could 

exit the AOI and then re-enter shortly thereafter. In such situation, the algorithm 

considers two (or more) overflights and provides information for each one. 

Case B – Payload information available 

If the payload information are available, the algorithm performs the following steps: 

1. First of all, the sensor’s footprint is evaluated for each time instant of the 

ephemerides, by using a function providing as output a matrix containing the 

latitude and longitude coordinates of the vertices of the footprint. The filter is 

realized by using the same function used for Case A, considering the footprint’s 

vertices as points and the safe area as polygon. It should be noted that, if the 

satellite’s payload is a radar or optical sensor, the footprint has 4 vertices. If 

the satellite is a telecom satellite or GNSS, the footprint would be a 

circumference, but it is discretized in 30 or 60 vertices respectively for the sake 

of coherence with the other types of payload. Also in this case, this step is 

required to filter out all the time intervals in which the AOI observation is not 

possible. 

2. For each time interval, the timespan is discretized with a user defined time step, 

which is used to interpolate the position and velocity vectors of the 

ephemerides. 

3. At each time step of the identified time intervals, the sensor’s footprint is 

evaluated. The strategy is the same regardless of the payload type: 
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a. First, it is checked whether at least one of the vertices of the footprint 

falls within the AOI. If so, the information is stored and the analysis 

goes on to the next time instant. 

b. If the first check is not successful, the possible intersection between the 

sides of the footprint’s polygon and the sides of the AOI polygon is 

checked. If there is intersection, the related information are stored and 

the analysis goes on to the next time instant. 

4. If one or more AOI observations are identified, the algorithms outputs the 

initial and final epochs and the entry and exit latitude and longitude coordinates 

of each passing, thus setting the operativity flag to “observation”. Furthermore, 

if the payload type is optical, the AOI observability conditions are checked and 

the observability flag is activated. 

As in the previous case, the algorithm counts two (or more) observations if the 

footprint exits and then re-enters the AOI during the same overflight. 

 

4.4.1 Performance assessment of the algorithm 

 

In this sub-section, an example of application of the algorithm is shown for both 

passing and observation cases. The analysis is about a one-day time interval, from 

midnight of 22nd May 2021 to midnight of 23rd May 2021. The AOI has the following 

latitude and longitude coordinates: 

(-50.5°,100.5°), (-50.5°,155.5°), (-32°,120°), (-15.5°,155.5°), (-15.5°,100.5°). 

To generate the ephemerides required by the algorithm, the UNINA propagator has 

been used. All the available perturbations have been included, selecting the 

NRLMSISE00 as density model, but limiting to 20x20 the harmonics of the gravity 

model. The initial orbital parameters of the selected satellite are reported in Table 32. 
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Table 32 Initial orbital parameters of the satellite considered for the test case 

Parameter Value 

Semi-major axis (km) 7169.17 

Eccentricity 0.0028 

Inclination (°) 98.57 

Right ascension of the ascending node (°) 209.7 

Argument of perigee (°) 95.92 

True anomaly (°) 179.9 

 

First, assuming not available payload information, the algorithm checked whether 

the satellite passes over the AOI in the timespan of interest, following the procedure 

described in Case A. The analysis showed the presence of 8 overflights, with 2 couples 

of multiple overflights. The results are summarized in Table 33, and a graphical 

representation of an overflight is shown in Figure 63, for a double overflight scenario. 

Table 33 Results of the analysis for the selected test case, considering payload information 

not available 

Entry epoch Entry point Exit epoch Exit point 

2021-05-22 

01:18:29.000 
(-15.55°,128.1°) 

2021-05-22 

01:22:33.000 
(-29.91°,124.5°) 

2021-05-22 

01:23:39.000 
(-33.77°,123.4°) 

2021-05-22 

01:28:26.000 
(-50.45°,117.4°) 

2021-05-22 

02:59:28.000 
(-15.54°,102.8°) 

2021-05-22 

03:02:09.000 
(-25.02°,100.5°) 

2021-05-22 

12:05:40.000 
(-17.41°,151.4°) 

2021-05-22 

12:06:12.000 
(-15.52°,150.9°) 

2021-05-22 

13:37:13.000 
(-50.48°,136.3°) 

2021-05-22 

13:40:46.000 
(-38.13°,131.7°) 

2021-05-22 

13:43:41.000 
(-27.89°,128.7°) 

2021-05-22 

13:47:11.000 
(-15.53°,125.7°) 

2021-05-22 

15:18:13.000 
(-50.44°,111.1°) 

2021-05-22 

15:28:05.000 
(-15.84°,100.5°) 

2021-05-22 

23:20:31.000 
(-47.86°,150.3°) 

2021-05-22 

23:21:16.000 
(-50.45°,149.2°) 
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Figure 63 Example of satellite passing over the AOI of interest, when payload information is 

not available. The red points are those inside the AOI, the blue points are outside. 

In the second part of the analysis, payload is considered. In particular, the satellite 

is assumed to be equipped with a radar sensor, with off-nadir angles of 20° and 50° for 

near-range and far-range respectively. The results of the analysis are reported in Table 

34, and graphical representations of the first observation of Table 34 are shown from 

Figure 64 to Figure 66, including zooms on entry and exit points. 

In general, the results are reasonable in terms of expected revisit time for the 

considered class of satellites. Thus, the tool can be useful to carry out the coverage 

analysis of space missions or to support civilian and military SST operations. 
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Table 34 Results of the analysis for the selected test case, considering payload information 

available 

Entry epoch Entry point Exit epoch Exit point 

2021-05-22 

01:18:32.000 
(-15.54°,125.2°) 

2021-05-22 

01:29:42.000 
(-50.49°,100.7°) 

2021-05-22 

12:05:50.000 
(-16.17°,153.9°) 

2021-05-22 

12:06:09.000 
(-15.51°,153.7°) 

2021-05-22 

13:35:58.000 
(-50.47°,153.1°) 

2021-05-22 

13:40:02.000 
(-40.36°,136.1°) 

2021-05-22 

13:43:51.000 
(-26.61°,131.5°) 

2021-05-22 

13:47:08.000 
(-15.52°,128.5°) 

2021-05-22 

15:16:57.000 
(-50.49°,127.8°) 

2021-05-22 

15:28:07.000 
(-15.53°,103.2°) 

2021-05-22 

16:57:57.000 
(-50.45°,102.5°) 

2021-05-22 

16:59:10.000 
(-48.16°,100.5°) 

2021-05-22 

23:11:24.000 
(-15.51°,155.5°) 

2021-05-22 

23:12:58.000 
(-18.72°,148.5°) 

2021-05-22 

23:19:20.000 
(-41.81°,138.8°) 

2021-05-22 

23:22:31.000 
(-50.45°,132.5°) 

 

 

Figure 64 Example of satellite equipped with radar observing the AOI of interest for the 

first observation of Table 34. The red footprints are those inside the AOI, the blue footprints 

are outside. 
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Figure 65 Zoom on the entry point of the first observation of Table 34. The red footprint 

is inside the AOI, the blue footprint is outside. 

 

Figure 66 Zoom on the exit point of the first observation of Table 34. The red footprint 

is inside the AOI, the blue footprint is outside. 
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5.  Feasibility study of Mars aerocapture 

Aerobraking and aerocapture are the main aeroassisted maneuvers for planetary 

capture. While the former has been performed several times in previous Mars missions, 

the latter has never been employed to date. This chapter presents the research activity 

carried out to investigate the feasibility of aerocapture at Mars for small satellites using 

a deployable heat shield. First, a brief literature review regarding demonstrations 

relevant to aerocapture and aerocapture studies is reported, together with the 

description of the Small Mission to MarS (SMS) project, which has been considered 

as case study. Then, the modelling and implementation of the aerocapture maneuver 

is presented, also discussing the Mars atmospheric density modelling. Finally, the 

description of the general parametric bi-dimensional analysis and the specific three-

dimensional Mars mission analysis is provided and results are shown and discussed. 

 

5.1 Literature review 

 

According to a recent NASA study [132], aerocapture is ready to be employed for 

science missions at Venus, Mars, and Titan, and it may enable missions to Uranus and 

Neptune after further studies and developments. In the case of Mars, a high 

technological readiness has been reached through many missions performing 

atmospheric entry. However, despite all its potential benefits, aerocapture has never 

been implemented because of the uncertainties in Mars’ atmospheric density and its 

variations, as well as navigation errors [19]. Nevertheless, demonstrations relevant to 

aerocapture have already been accomplished. For instance, in the 1960s, the 

hypersonic guidance and control necessary for a skip entry into Earth’s atmosphere 

was demonstrated by the Apollo 6 vehicle, and the Soviet Zond spacecraft performed 

a successful skip entry from lunar return in the same years. In 2014, the Chang’e 5-T1 

mission by the Chinese space agency performed a similar aeroassisted manoeuvre. In 

August 2012, NASA’s Mars Science Laboratory (MSL) demonstrated the capability 

of accurate soft-landing on the Martian surface by using autonomous hypersonic 
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guidance in the atmosphere. Subsequent studies about the relative difficulty of skip 

entry, hypersonic manoeuvring and aerocapture have led to conclude that both skip 

entry and hypersonic manoeuvring to precision landing are more challenging than 

aerocapture because of the tighter tolerances on the vehicle’s state [132]. 

Aerocapture was adopted in the early phases of the design of 2001’s Mars Odyssey 

mission [133], but then replaced with an aerobraking strategy when issues related to 

the packaging of the aeroshell and the mass budget arose. Since then, the possibility to 

employ aerocapture for small satellites has been investigated thoroughly. A recent 

study has demonstrated that aerocapture for SmallSats, i.e., satellites with a mass lower 

than 180 kg, could increase the delivered mass to Mars, Venus and other destinations 

[18]. In particular, drag-modulation aerocapture turned out to be an interesting option 

for SmallSat missions at Mars, since the associated low heat rates allow to use large 

and lightweight inflatable drag devices [134]. Falcone et al. [17] have shown that 

single-event drag-modulation aerocapture could be a good way to improve mission 

flexibility for SmallSat missions at Mars by decreasing the orbit insertion system mass 

fraction by 30% or more with respect to propulsive options. 

 

5.1.1 Review of the SMS mission 

 

SMS was initially conceived as a landing mission. Its development started within 

ESA’s General Support Technology Programme (GSTP). The main objective of SMS 

was a technology demonstration mission to Mars characterized by small size and low 

cost. Designed to fit inside a VEGA rocket, it featured an innovative Deployable Heat 

Shield (DHS) for system deceleration and thermal protection during entry, descent and 

landing (EDL). Most of the information in this section is extracted from [135], [136]. 

The SMS spacecraft presents a modular architecture consisting of the capsule, 

containing the lander module, stowed inside the DHS during launch and interplanetary 

cruise, the cruise stage (CS) providing power, communications and propulsion support 

during interplanetary journey, and a kick stage for orbit raising and interplanetary 
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injection (Figure 67, left). The DHS is deployed by an umbrella-like mechanism just 

before AI (Figure 67, center and right). In this way, the mass/volume ratio at launch 

increases, widening the choice of possible launchers and, in particular, leading to the 

possibility of using a small launcher, such as VEGA. The wet system mass is 300 kg, 

whereas the mass left after jettisoning the CS at Mars approach is 150 kg. In the early 

SMS design, launch and arrival options were determined in a Sun-spacecraft two-body 

model following a direct transfer from Earth to Mars. The chosen solution was the 

minimum-cost option within the 2024 launch window. It is a type II transfer, i.e., the 

transfer angle is larger than 180°, and corresponds to departing on October 2nd 2024 

and arriving on September 1st 2025. This solution has an Earth C3 (launch energy) of 

11.316 km2/s2 and a Mars v∞ of 2.455 km/s. The only deterministic manoeuvre along 

the trajectory was the targeting manoeuvre at the Mars’ Sphere of Influence (SOI) 

characterized by a magnitude between 33 and 50 m/s. 

 

Figure 67 Left: SMS capsule (Lander + DHS), CS and kick stage after assembly and packing 

in the payload fairing of VEGA. Center and right: the lander inside the DHS in folded and 

unfolded configuration, respectively. 

 

In the successive phases of the mission development, several innovations have 

been introduced, including the possibility of using the DHS for Mars orbit insertion 

through an aerocapture manoeuvre, eventually followed by an aerobraking campaign 

to lower the eccentricity of the elliptical orbit around Mars. The significant propellant 

savings resulting from this new development would increase the payload mass fraction 
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and allow to transfer to Mars additional scientific payloads, including CubeSats to be 

released before atmospheric entry. 

The DHS, whose characteristics are described in [135], provides both thermal 

protection and deceleration through the atmosphere and has been designed on the basis 

of the Italian ReEntry NacellE (IRENE) capsule concept [137]. IRENE, which can be 

seen as a first version of the DHS, was conceived for terrestrial applications in the 

context of research and industrial projects in the field of suborbital re-entry technology 

[138]. Its demonstrator, Mini-IRENE [139], [140], has been successfully launched on 

23rd November 2022. 

In all past Mars missions, the design of the entry capsule always included a fixed 

forebody heat shield, which protected it from the high aerodynamic heating of 

atmospheric entry. The advantage of using a deployable umbrella-like device is the 

small attainable ballistic coefficient. The ballistic coefficient achievable by SMS with 

the DHS can be as small as 20 kg/m2, i.e., less than one third the value for any previous 

Mars mission [141] (Figure 68 and Table 35), allowing higher decelerations even in 

the upper region of Mars atmosphere and a substantial reduction of the aerodynamic 

and aero-thermo-dynamic loads during the hypersonic entry flight path. The umbrella-

like concept in the DHS is similar to the ADEPT technology developed by NASA 

[142], [143]. 

 

Figure 68 Comparison of the shape of DHS of SMS with previous Mars entry systems. 
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Table 35 Comparison of the characteristics of DHS of SMS with previous Mars entry 

systems. 

Parameter SMS Viking Pathfinder Phoenix 

Relative entry velocity, km/s 5.5 4.5 7.6 5.9 

Relative entry flight path angle, ° -13 -17.6 -13.8 -13.2 

Ballistic coefficient, kg/m2 21 64 62 65 

Entry altitude, km 125 82 125 125 

 

5.2 Aerocapture modelling and implementation 

 

The analysis focuses on the final phase of an interplanetary trajectory from Earth 

to Mars modelled with patched conics (Figure 69). For this reason, the simulations 

here presented start at the surface of Mars’ SOI. 

 

Figure 69 Patched conics approximation for an Earth-to-Mars direct interplanetary transfer 

[144] 

In the patched conics approximation, after entering Mars’ SOI, the spacecraft is 

assumed to be only subject to the gravitational attraction of Mars, i.e., its trajectory is 

modelled as a gravitational two-body orbit and the solution is a Mars-centric 
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hyperbola. In this work, the arrival hyperbola is propagated up to the atmospheric 

interface (AI), for which an altitude of 125 km above Mars’ surface is assumed (a 

value of common use in the literature) (Figure 70). Below this limit, the physical model 

is the drag-perturbed two-body problem, 

𝒓̈ −
𝜇

𝑟3
𝒓 = 𝒂𝑫 

(5.1) 

where r is the position vector of the spacecraft with respect to the center of Mars, µ is 

the standard gravitational parameter of Mars and aD is the acceleration caused by 

atmospheric drag. The drag perturbation is expressed as follows 

𝒂𝑫 = −
1

2

𝜌

𝛽
𝑣𝒗 

(5.2) 

ρ being the atmospheric density, a function of altitude, β the ballistic coefficient of the 

probe, v the relative velocity of the spacecraft with respect to the atmosphere and v its 

magnitude. The ballistic coefficient β in classic space exploration applications is 

defined as 

𝛽 =
𝑚

𝐶𝐷𝐴
 

(5.3) 

where CD is the drag coefficient, m is the mass and A is the cross section of the 

spacecraft. The last term can be expressed as A = Amax cos θ, with Amax the maximum 

drag cross-section representing the nominal configuration and θ the angle of 

misalignment with respect to such configuration. 
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Figure 70 Schematic illustration of the aerocapture maneuver. 

 

Other perturbations act on the trajectory of the spacecraft, such as the 

inhomogeneous mass distribution within the planet and the gravitational attraction of 

other bodies in the Solar System. Regarding the former, this study considers the 

acceleration aJ2 caused by the second-degree term J2 of the mass distribution of Mars, 

whereas the third-body perturbation is limited to the contribution aSun due to the Sun. 

The expressions for the respective additions to (5.1) are [85] 

𝒂𝑱𝟐
= −

1

2

𝜇𝐽2𝑅2

𝑟5
[1 − 3 sin2 𝜑]𝒓, (5.4) 

and 

𝒂𝑺𝒖𝒏 = 𝜇𝑆𝑢𝑛 (
𝑹𝑺𝒖𝒏 − 𝒓

‖𝑹𝑺𝒖𝒏 − 𝒓‖𝟑
−

𝑹𝑺𝒖𝒏

‖𝑹𝑺𝒖𝒏‖𝟑
). 

(5.5) 

Here R is the Mars’ radius, Φ is the geocentric latitude of the spacecraft with respect 

to Mars, µSun is the standard gravitational parameter of the Sun and RSun is the position 

vector of the Sun with respect to Mars’ center. 

The solutions of (5.1) and those obtained with the addition of the terms given by 

(5.4) and (5.5) are evaluated numerically by using the explicit Runge-Kutta scheme of 

4th-5th order of the ode45 solver8 embedded in MATLAB environment. The use of a 

 
8 https://it.mathworks.com/help/matlab/ref/ode45.html  

https://it.mathworks.com/help/matlab/ref/ode45.html
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higher order scheme, such as the 8th-9th order Runge-Kutta solver presented in Chapter 

3, was not required for this application, being its impact on propagation accuracy not 

significant for typical time intervals of the aerocapture maneuver. The model described 

by Eq. (5.1) is adopted in the 2D analysis. The extended model, i.e., that including J2 

and third-body effects, is used to assess the outcome of the additional perturbations on 

the trajectories corresponding to the specific mission scenario considered in the 3D 

study. At atmospheric exit (AE), the orbital parameters are computed to verify if the 

capture has been achieved, i.e., if the resulting orbit is elliptical. 

In the bi-dimensional case, a parametric study is carried out by changing the 

magnitude v∞ of the hyperbolic excess velocity v∞ at Mars arrival and the periapsis 

altitude hπ. In this way, a wide range of trajectories can be examined, and general 

conclusions can be drawn. All the parameters are expressed in the Perifocal Reference 

Frame centered at Mars (Figure 71): the 𝑝̂ unit vector points to pericenter, 𝑤̂ is aligned 

with the orbital angular momentum and  𝑞̂ completes the right-handed triad.    

 

Figure 71 The Perifocal Reference Frame. 

 

The three-dimensional analysis, instead, is carried out for a specific SMS mission 

scenario. The state vector at Mars’ SOI corresponding to an arrival option in 

September 2025 (and Earth departure 11 months earlier) is used as the initial condition. 

Since the initial hyperbolic trajectory targets the centre of Mars, an impulsive 

retargeting manoeuvre is applied at the surface of the SOI. The spacecraft is made to 

pass through the atmosphere at altitudes that could be suitable for aerocapture while 

avoiding impact with the surface. All the computations are performed in the Mars 
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Mean Equator of Date frame based on IAU 2000 Mars Constants (MMEIAU2000) 

(Figure 72) [145], [146]. The origin of this frame is the centre of Mars and its xy-plane 

is the Mars mean equatorial plane. The z-axis is in the direction of the Mars’ rotation 

axis, whose orientation is given as equatorial coordinates in the International Celestial 

Reference Frame, whereas the x-axis is defined by the intersection between Mars’ 

equator and Earth’s mean equator of epoch J2000. The y-axis completes the right-

handed system. 

 

Figure 72 Reference system used to define the orientation of Mars' rotation axis and the 

MMEIAU2000 frame [146]. 

 

5.2.1 Mars atmospheric density modelling 

 

Regarding the atmospheric modeling, the density profile chosen for this study is 

the Mars Global Reference Atmospheric Model (Mars-GRAM) [147], [148], which 

provides the density for any location (altitude, latitude and longitude) and time (down 

to daily variations). It is an engineering-oriented empirical model of the Mars 

atmosphere and it was built with the parametrization of the data collected by Mariner 

and Viking and the results of NASA Ames Mars General Circulation Model (MGCM) 

for altitudes between 0 and 80 km, and the University of Arizona Mars Thermospheric 

General Circulation Model (MTGCM) above 80 km [149], [150]. Mars-GRAM 

computes atmospheric parameters (temperature, pressure, density), surface physical 

data, electromagnetic fluxes, atmospheric heating rates, as well as thermodynamic 

properties of CO2. The 2001 version of Mars-GRAM is the core component of the 
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Mars Environment Multi-Model (MEMM) [151], an engineering tool developed at the 

Polytechnic University of Catalonia, which merges existing models of the Mars 

environment. MEMM outputs the several atmospheric parameters in a unified way. 

The adoption of Mars-GRAM follows a detailed comparison with other state-of-

the-art density models based on atmospheric data obtained from previous Mars 

missions. In order to compare the various models and evaluate the capability of Mars-

GRAM to simulate all the possible atmospheric conditions, two density profiles have 

been extracted from MEMM, respectively representing a very high density and a very 

low density case and corresponding to one hot and one cold case scenario under clear 

sky conditions, i.e., away of dust storms. The hot case is a summer (Solar Longitude 

Ls = 270°) midday profile under high solar activity (Solar F10.7 Flux = 300 SFU). The 

cold case, instead, is a winter (Ls = 90°) nighttime profile at low solar activity (Solar 

F10.7 Flux = 60 SFU). 

A brief review of the models considered in the comparison (Figure 73 Figure 74) 

is given below. First of all, we have considered the atmospheric density data collected 

in 1976 by the Viking 1 lander during its atmospheric descent and the profile based on 

the relevant observations collected continuously between 150 and 10 km of altitude by 

the Mars Pathfinder lander in 1997 [152]. Then, the density profile provided by 

COSPAR Mars Reference Atmosphere, as reported in [153], has been considered. 

ESA’s 2003 Mars Express orbiter observed 616 stellar occultations, deducing the 

amount of CO2, the main constituent of the Martian atmosphere, between the 

instrument and the star, with its ultraviolet spectrometer SPICAM from January 14, 

2004 (Mars Solar Longitude, Ls = 332.8°) to April 11, 2006 (Ls = 37.6°) [154].  In 

[154], Forget et al. report three density profiles corresponding to different epochs and 

positions, but only the most extreme profile has been used for the comparison. 
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Figure 73 Comparison between Mars atmospheric density profiles as predicted by various 

models for the altitude range 0 to 70 km. The dashed black line at 125 km indicates the 

assumed upper limit of the atmosphere. 

 

Figure 74 Comparison between Mars atmospheric density profiles as predicted by various 

models for the altitude range 70 to 150 km. The dashed black line at 125 km indicates the 

assumed upper limit of the atmosphere 

 

The densities predicted by the several models allow to define a range of values at 

each altitude. According to Figure 73 and Figure 74, the cold case Mars-GRAM 

density is always the lowest and for this reason here it has been adopted as the lower 
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bound of the density ranges for all the altitudes of interest. The hot case Mars-GRAM 

density is not always the highest, instead. First of all, there are altitudes at which the 

Viking density is higher than the Mars-GRAM hot case, but the differences are small, 

and Mars-GRAM includes Viking observations as well. There is also a window of 

altitudes, between 75 and 110 km, in which the SPICAM density profile overtakes the 

hot case Mars-GRAM profile. A possible explanation for this phenomenon is the 

variation of the dust content of the lower atmosphere, which causes most of the density 

seasonal variations. Indeed, other profiles from SPICAM obtained for different Solar 

Longitudes show lower density values and never exceed Mars-GRAM’s hot case 

[154]. For these reasons and for the sake of simplicity, Mars-GRAM has been adopted 

also to represent the upper bound of the density range. 

 

5.3 Application to Mars scenarios 

 

5.3.1 Parametric 2D analysis 

 

The parametric analysis is realized by varying the magnitude v∞ of the hyperbolic 

excess velocity v∞ and the periapsis altitude hπ. These two quantities uniquely define 

the shape of the arrival hyperbola. Due to the symmetry of the problem, the study is 

limited to zero-inclination Mars arrival hyperbolic orbits (i.e., in Mars equatorial 

plane). The parameters used in these simulations are those of the SMS capsule. In 

particular the ballistic coefficient β is set at 21.23 kg/m2 and CD = 1 [155]. The 

parametric analysis is performed for the v∞ and hπ ranges of Table 36 and using the 

nominal Mars-GRAM atmospheric density profile extracted from MEMM. Then, the 

uncertainties in the atmospheric density and ballistic coefficient are shown (Table 37). 

We simulate the density uncertainty by increasing and decreasing the density values 

by a percentage amount. The Mars-GRAM density profile extracted from MEMM and 

the density profiles obtained considering uncertainties up to 70% of the nominal value 

are shown in Figure 75. The uncertainty of 6.38 kg/m2 in the ballistic coefficient 
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reported in Table 37 is representative of variations of about 30% in the aerodynamic 

drag coefficient and about 10° in θ, including attitude control errors and errors in the 

shield opening mechanism. 

Table 36 v∞ and hπ ranges and resolutions used in the 2D parametric analysis 

Parameter Range Increment 

Hyperbolic excess velocity, v∞, km/s 2 to 4 0.1 

Periapsis altitude, hπ , km 50 to 110 0.1 

 

Table 37 Uncertainties in the atmospheric density and ballistic coefficient 

Parameter Uncertainty 

Atmospheric density 
±35%, ±50% and ±70% with respect to 

the nominal density profile 

Ballistic coefficient, kg/m2 ±6.38 

 

 

Figure 75 Atmospheric density profiles for the range of altitudes of interest in this study 
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Each v∞-hπ pair in the selected ranges corresponds to a different hyperbolic arrival 

trajectory. A first simulation was carried out for nominal atmospheric conditions, i.e., 

without any uncertainty, and the results show a range of periapsis altitudes producing 

aerocapture for each arrival velocity in the given interval (Figure 76). It can be noted 

that as v∞ increases, the intervals of useful hπ shrink and the centers of the intervals 

move towards lower altitudes. The periapsis altitudes reported in Figure 76 are those 

of the ideal Keplerian trajectories, whereas the actual periapsis altitudes are slightly 

lower. The gap between the Keplerian and the real hπ varies from more than 0.6 km 

for altitudes around 75 km to a few tens of meters for altitudes around 95 km. 

 

Figure 76 Map of v∞-hπ pairs leading to aerocapture in the nominal scenario. 

 

Figure 77 illustrates the results obtained by considering different levels of 

atmospheric density uncertainty and keeping the ballistic coefficient at its nominal 

value. For each uncertainty range, only the two extreme density conditions (vertex 

analysis) are simulated and only the common solutions are included. The number of 

successful pairs decreases with increasing level of uncertainty. For uncertainty values 

higher than 35% there are arrival velocity intervals which do not lead to capture. 

However, we note that even with 70% atmospheric density uncertainty it is still 

possible to find viable solutions for aerocapture when the arrival velocity is between 

2 and 2.5 km/s and the periapsis is above 80 km altitude. 
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Figure 77 Map of v∞-hπ pairs leading to aerocapture for the nominal scenario and its 

modification with increasing atmospheric density uncertainty. 

 

Figure 78 shows the effect of the ballistic coefficient uncertainty on the solutions 

computed with the nominal atmospheric density profile. Also here only common 

solutions are considered. It can be noticed that, in general, the periapsis altitude range 

leading to aerocapture is reduced, but an interval for this parameter can still be found 

for each arrival velocity. 

 

Figure 78 Map of v∞-hπ pairs leading to aerocapture for the nominal scenario and its 

modification when the uncertainty in the ballistic coefficient is introduced. 
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Finally, we analyse the simultaneous effect of ballistic coefficient and atmospheric 

density uncertainties. In this case, aerocapture is achieved only for atmospheric 

uncertainties within ±35% (Figure 79), but they are limited to Mars arrival velocities 

up to 2.8 km/s and periapsis altitudes higher than 80 km. It can be noticed the 

significant narrowing of the altitude ranges producing aerocapture. 

In summary, we have found combinations of parameters which guarantee the 

success of the aerocapture manoeuvre regardless of the uncertainties, when these are 

within particular ranges, and this represents a general result for the bi-dimensional 

analysis. 

 

Figure 79 Map of v∞-hπ pairs that lead to captured orbits when both the ballistic coefficient 

uncertainty and a 35% uncertainty in the atmospheric density are included. 

 

5.3.2 Three-dimensional analysis 

 

The initial conditions for the study are the orbital parameters of the spacecraft 

when it enters the SOI according to the nominal SMS mission [135] (Table 38). They 

correspond to a v∞ of 2.455 km/s. 
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Table 38 Orbital parameters of the hyperbolic trajectory at Mars’ SOI 

Parameter Value 

UTC Epoch 29/8/2025   06:42:11 

Semi-major axis (km) -7287.768 

Eccentricity 1.0000274 

Inclination (°) 98.8 

Right ascension of the ascending node (°) 122.5 

Argument of perigee (°) 263.7 

True anomaly (°) 180.4 

 

The analysis consists in applying a velocity variation at the SOI of Mars targeting 

an atmospheric passage at altitudes suitable for aerocapture, in agreement with the 2D 

parametric analysis. A loop is considered on the three parameters characterizing the 

manoeuvre, i.e., its magnitude ΔV and its orientation as expressed by two angles, λ 

and δ (Table 39), respectively representing longitude and latitude in a reference frame 

with origin at the spacecraft centre of mass and parallel to MMEIAU2000. The range 

of variation of ΔV is consistent with the magnitude of the nominal targeting manoeuvre 

of SMS and with the propulsive limitations of a platform of its category. 

Table 39 Parameters of the targeting manoeuvre 

Parameter Range Increment 

Magnitude, ΔV, m/s 30 to 40 0.1 

Longitude, λ, (°) 0 to 360 1 

Latitude, δ, (°) -90 to 90 1 
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The values reported in Table 39 are intended for a first-look analysis. In a second 

phase, ΔV is kept constant and equal to the value that provides continuity in the two 

angles when these are varied over ranges of interest at increments of 0.1°. Since this 

value is representative of the angular accuracy attainable in the execution of the 

manoeuvre, checking the continuity against these smaller angular increments is crucial 

to ensure the success of the aerocapture even in presence of manoeuvring errors.  

The analysis starts from the same nominal atmospheric density profile and ballistic 

coefficient and the same uncertainties as in Table 37. Applying the manoeuvres of 

Table 39 to the nominal conditions yields the 3D map of successful captures displayed 

in Figure 80. It can be noted that aerocapture is successful only when the magnitude 

of the impulse is 33.4 m/s or larger. Solutions become more and more scattered as ΔV 

increases. Thus, the manoeuvres with ΔV of 33.4 m/s are the most interesting because 

they give rise to successful captures over continuous ranges of the two angles. The 2D 

map of the successful manoeuvres for the selected ΔV is shown in Figure 81.  

 

Figure 80 3D map of the manoeuvres leading to aerocapture when considering the ranges 

and the increments of the maneuver’s parameters reported in Table 39. 
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Figure 81 2D map of the successful orientations of the targeting manoeuvre when the 

impulse has a magnitude ΔV of 33.4 m/s. 

The solutions are scattered everywhere except in the region corresponding to the 

range 20° to 180° in λ and -15° to 0° in δ. In this subset, the continuity is checked 

against smaller variations in both angles by applying a discretization of 0.1°, 

representative of the angular accuracy of the manoeuvre. Figure 82 shows that the 

continuity of the successful manoeuvre orientations persists at this higher angular 

resolution.  

 

Figure 82 2D map of the successful orientations of the targeting manoeuvre when the 

impulse has a magnitude ΔV of 33.4 m/s and the angular resolution is 0.1°. 



  

137 

 

Figure 83 illustrates the periapsis altitudes hπ, i.e., the minimum altitudes reached 

in atmosphere, of the hyperbolic trajectories obtained after application of the velocity 

variation at Mars’ SOI for the ranges of the parameters that ensure continuity in the 

higher angular resolution exploration. The outcome is in good agreement with the 

results obtained in the 2D analysis for the same nominal scenario (Figure 76).  

 

Figure 83 Map of periapsis altitudes hπ of the hyperbolic trajectories suitable for aerocapture 

after the application of the manoeuvre at Mars’ SOI. 

Then, keeping fixed the ballistic coefficient at the nominal value, the influence of 

the different levels of atmospheric density uncertainty on the distribution of solutions 

in the λ-δ map of Figure 82 has been investigated. Like for the parametric analysis, for 

each uncertainty level, we accept only the solutions in common to the two vertex 

density conditions. The results are shown in Figure 84. The ±70% uncertainty case 

gives no solutions. The reason is that at -70% uncertainty, the atmosphere is very thin 

and does not cause a sufficient deceleration. Also, in the 2D analysis the number of 

solutions obtained for this level of uncertainty is small (see Figure 77). Figure 84 has 

been obtained with increasing atmospheric density uncertainty (nominal, 35% and 

50%): the number of successful combinations of parameters decreases as indicated by 

the shrinking of the corresponding areas in the map. The initial continuity is lost. 



  

138 

 

 

Figure 84 2D map of the successful orientations of the targeting manoeuvre with increasing 

atmospheric density uncertainty (nominal, 35% and 50%). 

Since at uncertainties of -50% and -70% the number of successful parameter 

combinations is very low, we have limited the analysis to uncertainties between -35% 

and +70%. The corresponding map is displayed in Figure 85. The simulations carried 

out for the two extreme density cases in this uncertainty interval lead to very different 

elliptical orbits in terms of eccentricity e and apocenter altitudes h , as shown in 

Figure 86Figure 87. When assuming +70% of density uncertainty, the resulting orbits 

have e lower than 0.3 and h limited to 2500 km, while, for the -35% density 

uncertainty case, the eccentricities are higher than 0.9. 
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Figure 85 2D map of the successful orientations of the targeting manoeuvre for atmospheric 

density uncertainties between -35% and +70%. 

 

Figure 86 Eccentricities of the captured orbits at -35% (black crosses) and +70% (red 

squares) density uncertainty, respectively, versus the minimum heights reached in the 

atmosphere. 



  

140 

 

 

Figure 87 Apocenter altitudes of the captured orbits at -35% and +70% density uncertainty, 

respectively in the top and bottom plots, versus the minimum heights reached in the 

atmosphere. 

Finally, Figure 88 illustrates the effect of the uncertainty in the ballistic coefficient. 

When the ballistic coefficient is lower or higher than the nominal value, the areas of 

successful parameter combinations become wider and tend to shift slightly. This is 

very interesting since a changing ballistic coefficient can be achieved by increasing or 

reducing the drag cross section through in-flight modulation of the aperture of the 

DHS. 
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Figure 88 Effect of the ballistic coefficient uncertainty on the combinations of angles that 

correspond to captured orbits for density uncertainties between -35% and +70%. 

For the sake of completeness, an example of circularization manoeuvre is 

presented in the following to derive the order of magnitude of the ΔV budget of the 

entire mission for a case of possible scientific interest. Considering the nominal 

scenario, applying for instance the manoeuvre characterized by λ = 100° and δ = -

10.2°, the spacecraft exits the atmosphere in an orbit with h of 692.8 km and e of 

0.0871. The periapsis raising manoeuvre needed to circularize this orbit has a size of 

144.2 m/s, which brings the total ΔV budget to 177.6 m/s.  
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6.  Conclusions and future developments 

This thesis presented the research activity aimed at the development and the 

performance assessments of advanced astrodynamics techniques and tools to be 

applied in Space Surveillance and Tracking and Space Exploration contexts.  

Space Surveillance and Tracking applications 

In the context of SST and SSA, a numerical orbit propagation environment has 

been developed, as a useful tool to deal with SST applications in general, and its 

implementation has been discussed. An accuracy-computational cost trade-off study 

has been carried out, to identify adaptability criteria as a first step towards the 

integration of such propagation environment in a modular architecture, capable to take 

both the requirements of specific SST tasks and the involved propagation uncertainties 

into account. The study has supported the definition of adaptability criteria, suggesting 

that, for low LEO propagations, it is advisable to consider a reduced number of gravity 

field harmonics and to remove third-body and SRP perturbations, as long as position 

errors up to 1 km for a 7-days propagation can be accepted. Indeed, this configuration 

allows to save around 30% of computational time and it is particularly convenient 

when dealing with a large number of objects, i.e., propagation of fragments coming 

from a fragmentation event. 

Exploiting the modularity of the propagation environment, various applications 

have been addressed, tailoring the propagation settings on the different requirements 

of the specific SST task. The main contribution has concerned the development of a 

method, called Uncertainty-aware Cube method, for the evaluation of the medium-

term collision frequency for space objects in LEO. It is a new version of the non-

covariance-based Cube method, modified to take the objects’ position errors generated 

by propagation-related uncertainties in the conjunction detection process into account, 

thus representing a hybrid between the covariance-based and non-covariance-based 

methods. The global aim was to provide realistic pictures of the potential conjunctions 

occurring in the near future, to support sensor tasking operations and to identify the 

most endangered assets in medium-term scenarios. The Uncertainty-aware Cube 
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method resulted to be capable to detect the conjunctions even in presence of significant 

A/M uncertainties, provided that these are consistent with the position errors computed 

through the uncertainty evaluation process. The proposed method proved to be suitable 

for the medium-term screening task, being capable to reduce the missed detection rate 

by accounting for propagation uncertainties. Clearly, this approach usually causes an 

increase in the false alarm rate, which would represent a problem for collision 

avoidance application, but results to be less critical for screening operations. From a 

computational point of view, with respect to standard Cube implementation, the 

Uncertainty-aware approach requires a larger computational effort, which depends on 

the cube size and the magnitude of the uncertainties involved and increases when 

reducing the cube size and when considering lower altitudes, as the uncertainty 

magnitude increases. 

With regards to the uncertainty evaluation process required by the Uncertainty-

aware Cube, an analytical method has been developed to estimate the position errors 

coming from uncertainties in medium-term LEO propagations. The proposed method 

is based on the DOPs formulation of the Hill’s equations. Since the drag perturbation 

is dominant in LEO, the uncertainty in its input parameters is modeled as a sort of 

differential drag, which causes an accumulation of both the semi-major axis error and 

the along-track position error. The proposed method, taking as input the state vectors 

coming from propagation with a standard value of the K parameter and a percentage 

of K uncertainty, provides in output the time evolutions of the predicted along-track 

and semi-major axis errors. The results suggest that the prediction performance of the 

method clearly improves for increasing orbit altitude, being also less significant the 

effect of the differential drag perturbation. Therefore, while the method always shows 

very good accuracy for altitudes higher than 600 km, at lower altitudes its usage should 

be limited to less than 30 days when the involved uncertainty is equal or higher than 

100%. However, in these cases, the method always overestimates the error due to the 

input uncertainty. This behavior is convenient if the tool is applied together with the 

Uncertainty-aware Cube or, in general, in an operative context in which the collision 

frequency of assets of interest must be foreseen. A conservative estimation of the errors 

can be useful in such context not to lose information about potential risk, even if it 

could imply an increase of the computational time. Future developments of this 
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method could include a more specific modelling of the uncertainties, in particular those 

related to the bad forecast of the EUV and geomagnetic indices, as well as accounting 

for the effects of differential SRP at higher LEO altitudes, to improve the global 

performance of the method and its range of applicability. 

The thesis also presented a sensor calibration tool to perform the metrological 

characterization of ground-based sensors to support SST applications and sensor 

tasking services. The tool implemented an iterative method for the computation of the 

sensor time bias, based on the minimization of the along-track error and it is capable 

to evaluate the residuals for all the metric observations. The performance assessment 

has shown results that are consistent with the values expected for a calibration of a 

SST radar and in the same order of magnitude of the residuals admissible to accept 

tracklets during a correlation process. 

Finally, an algorithm for the evaluation of satellite coverage over area of interest 

has been developed and tested generating the required ephemerides using the 

developed propagator, to support RSP applications. 

Feasibility study of Mars aerocapture 

A modified and simplified version of the numerical propagator has been developed 

for Mars environment and, in particular, to deal with the aerocapture problem. In this 

context, a simulation environment has been developed to assess the feasibility of 

aerocapture at Mars for small satellites using a deployable drag device, whose aperture 

can be modulated in flight. The study focused on the impact that atmospheric density 

and ballistic coefficient uncertainties have on the success of the aerocapture maneuver 

and it has involved two type of analysis: first a parametric bi-dimensional study, useful 

to draw general considerations about aerocapture feasibility and to design possible 

aerocapture “corridors”, in terms of hyperbolic arrival velocity and pericenter altitude; 

then, a three-dimensional analysis for a specific Mars mission scenario, aimed at 

identifying the most suitable targeting maneuvers leading to successful aerocapture. 

The analyses show the strong influence of the uncertainties related to atmospheric 

density and ballistic coefficient, which significantly narrow the solution space. 
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However, viable solutions for aerocapture were identified even in the worst uncertainty 

scenarios, thus proving the deployable drag device to be suitable to perform 

aerocapture successfully. 

Improvements to the current model can include the possibility to implement drag-

modulation strategies, by modulating the aperture of the shield during the atmospheric 

pass, in order to widen the aerocapture “corridors” and increase the number of 

successful maneuver leading to aerocapture. 
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