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Introduction

The encrusted fragments of the device known as Antikythera Mechanism (hereafter
AM) were found by a group of sponge-fishers near the coasts of the island of
Antikythera in the summer of 1901. This serendipitous discovery turned out to
be one of the most important events for the history of ancient science of the XX
century.

The shipwreck that saved the AM occurred around 60 BC, but the estimated
date for its construction is around the middle of II cent. BC. In total 82 fragments
of the original device survive, ranging in size from a few millimeters to about ten
centimeters (Fig. 1). First inspections immediately suggested that they belonged
to some mechanical artifact involving gear-work, and the readable text engraved
on them clearly indicated a connection with astronomical matters. After the
intermittent and turbulent early studies following the discovery, strongly limited
by the fragility of the fragments, major steps towards the understanding of the
actual functions of the original device were made in the seventies by the historian
of technology Derek de Solla Price. He was the first to propose a reconstruction
of the internal structure of (the surviving part of) the AM based on radiographs
of the fragments, and his Gears from the Greeks was a mile-stone in the history of
technology.1 Many of the conjectures there exposed about the functions of the AM
were confirmed by later studies, and, in particular, Price was the first to recognize
the AM as a computer. At the end of the century, X-ray tomography was used
in the context of the Antikythera Mechanism Research Project to get images of
unprecedented accuracy of the inscriptions and the internal structure, and these
data form the basis of our current understanding of the AM. Some doubts still
remain, but after more than a century of scholarly effort a good agreement has
been reached about the general features of the original device, which are the
following.2

The AM was a portable astronomical computer (33 cm in height, 18 cm in
breadth and 8 cm in depth), composed by more than thirty bronze gears arranged
in different trains and originally enclosed in a case (today lost). All the gear
trains, hidden to view, were connected the main wheel (well visible in fragment
A, see Fig. 2) and ended on pointers moving along dials. In total there were (at
least) twelve pointers, seven on the front side and five on the back side, all moving
simultaneously and set in motion by the same input rotation (Fig. 5). This was
given by hand through an external knob, connected via a crown gear to the main

1De Solla Price 1974.
2For more details see Jones 2017; Seiradakis and Edmunds 2018; Bruderer 2020 and bibliog-

raphy therein.
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Figure 1: The 82 surviving fragments of the AM. All of them are today exposed in
Athens’ National Archeological Museum.

wheel. Outside the dials there were inscriptions giving additional informations
(including a parapegma, i.e. a calendar of stellar phases) and both sides were
protected by two cover plates. These were engraved in the interior side with a sort
of user manual, explaining the phenomena shown by the device and the meaning
of the different dials.

On the front side, the motion of the seven pointers was intended to simulate
the observable longitudinal motions of Sun, Moon and five planets along the
zodiac, represented by a scale divided in 360 parts (Fig. 3). Outside of it there
was a moveable ring representing a calendar, months being indicated with their
Egyptian names. For a long time this calendar was thought to be a 365-days
solar year composed by 12 months of 30 days, plus 5 intercalary days, but recent
investigations have strongly suggested that it represented a 354-day lunar calendar
composed of 12 months of alternate full and hollow months of 30 or 29 days.3
Either case, this calendar ring had to be adjusted from time to time to account for
the gap between astronomical and civil year. So, on the internal zodiac scale one
could read the angular positions of the seven heavenly bodies, and on the outer
calendar scale the date on which such angular configuration of heavenly bodies
could be observable in the sky. The date was probably indicated by a separate date
pointer, that could also serve the purpose to indicate the time elapsed between
any two configurations. The phases of the Moon were also displayed via a rotating
sphere colored in black and white, and according to recent reconstructions an
additional pointer indicated also the position of the Moon’s orbit nodes, a very
relevant information for eclipse predictions.

On the back side, there were two engraved spiral dials, with two pointers
3Budiselic et al. 2020.
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Figure 2: The main surviving fragments of the AM. In Fragment A (in the middle)
the main wheel is clearly visible (source: Bruderer 2020).

Figure 3: Reconstruction of the front dial of the AM (source: Freeth, Higgon, et al.
2021).
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Figure 4: Reconstruction of the back dials of the AM (source: Freeth, Jones, et al.
2008).
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moving along them in the outward direction with a mechanism similar to that of
modern vinyl players (Fig. 4).

The upper scale was divided in 235 cells representing lunar synodic months and
composing one Metonic Cycle, approximately corresponding to 19 tropical years.
The whole spiral was essentially a lunisolar calendar, not too far in its conception
from our own, with the position of the pointer indicating the current month. A
fairly sophisticated system indicated if the month was full or hollow, and at the
end of a full cycle the pointer had to be reset by hand at the beginning of the
spiral. Two smaller dials were placed inside the Meton spiral. One represented the
Callippic Cycle, a longer 76-years cycle whose purpose was to prescribe a one-day
correction to the spiral calendar every four Metonic Cycles ; the other displayed a
four-years cycle of some selected panhellenic games, events of great cultural and
religious importance for the Greeks.

The lower spiral was divided in 223 cells representing lunar synodic months
and composing one Saros Cycle, a lunisolar cycle regulating the occurrence of
eclipses, one Saros corresponding approximately to the time necessary for the Sun
and the Moon to return to the same relative position and in the same points of
the ecliptic. On some cells of the spiral there were engraved glyphs indicating if
in that month a lunar and/or solar eclipse possibility occurred, with referenced
informations also about its duration and peak hour. A smaller auxiliary dial inside
the Saros spiral represented the Exeligmos Cycle, a 54-years cycle that served
to correct the indicated hour by 8 or 16 hours, due to the 8-hours gap between
a full Saros cycle and the 223 synodic months represented on the dial. It has
been suggested that some marks of doubtful interpretation indicated if the eclipse
occurred at maximum and minimum distances, two parameters connected to the
duration of the event and to the character of the eclipse (total or anular).

The surviving fragments of the AM contain only the gear trains relative to
the motions of Sun and Moon (including the calendar and the eclipse-calculator
on the back side), whereas all the planetary gears are lost. The surviving pin-slot
device used to alter the mean motion of the Moon makes quite likely that also
in the case of planets variations of velocity were shown. Apart from this clue
and a few numbers representing planetary cycles readable in the inscriptions (of
unprecedented accuracy and not found in other sources), the reconstruction of
the planetary gearings remains for the most part conjectural (Fig. 6).

Another matter of conjecture is that of the authorship. Who designed the
AM? It is generally accepted that it was the ripe fruit of the Greek tradition of
sphere-making (in Greek sphairopoiia), of which the most famous exponent was
Archimedes (III cent. BC), who devoted a full treatise to this art. Indeed, in
Cicero there are descriptions of some physical models that Archimedes would have
constructed that are quite consistent with the features of the AM, namely the
fact that by a single conversio it represented the simultaneous motions of Sun,
Moon and Planets.4 It is generally thought that Archimedes’ device must have
been even more complex than the AM, being tridimensional rather than plane.
For chronological reasons the AM cannot have been built by Archimedes himself,
but it is commonly regarded as part of his scientific legacy, probably the result of

4The relevant passages of Cicero are quoted in De Solla Price 1974.
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Figure 5: Expanded view of Freeth’s reconstruction of the AM (Freeth, Higgon, et al.
2021) (source: Bruderer 2020).

a further refinement of his work.
Many contextual elements suggest that Hipparchus (II cent. BC), the last

and maximum astronomer of the Hellenistic age, could have been involved in the
design of the AM. Among these, the connections of the device with the island of
Rhodes, an important center for mechanical studies where Hipparchus was active
in the last part of his life, i.e. right at the estimated time of construction of the
AM.5

Most scholars agree on the idea that the AM was intended for teaching purposes
and not as an instrument for professional astronomers. This of course says nothing
about its accuracy (provided, of course, that teaching is regarded as a serious
activity), which in fact is limited in principle only by technical reasons, e.g. the
small size of the components and of the scale-divisions. In this regard, it is
worth noting that the AM is, by construction, scalable at pleasure, since only the
proportions between the sizes of moving parts are relevant for its proper working.
This kind of symmetria, as we’ll see, was indeed regarded by Philo (III cent. BC)
as a general principle of machine-design.

Since it is unreasonable to think that such a complex device as the AM could
5We find unlikely that the stoic philosopher Posidonius (I cent. BC) designed or built some

device similar to the AM, as has been inferred by some scholars on the basis of Cicero’s testimony,
for the simple reason that Posidonius was neither a mathematician nor an engineer. It appears
more reasonable to interpret Cicero’s passage as an indication that in the I cent. BC some device
similar to the AM was still available in Posidonius’ school.
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Figure 6: Reconstruction of the mechanical structure of the AM, including the conjec-
tured planetary gear-trains (source: Lin and Yan 2016, p. 56).
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be the result of trial-and-error,6 we feel compelled to ask: on what mathematical
theory was based the design of the AM ? The question appears legitimate, since the
AM is clearly a brilliant (and unique) specimen of Hellenistic scientific technology,
an artifact whose design must be based on some theoretical model of the heavenly
motions, that, in some way, matched the possibility of plane mechanization via
parallel and multi-axial trains of toothed wheels.

The AM is also, among other things, the only extant astronomical source
dating back to the golden age of Hellenistic science. Therefore, its relevance for the
reconstruction of the most mature developments of Greek mathematical astronomy
is immense, its very same survival being a miracle in the general loss of scientific
works dating back to the Hellenistic period. Nevertheless, the theoretical problem
posed by the AM has not received much attention in the existing literature, and
indeed the impact of the AM on the current views about Greek astronomy has
been practically null. We have therefore the paradoxical circumstance that the
current understanding of the AM has rewritten the history of ancient technology
without even touching upon the history of ancient science. How could it be?

For the phenomena shown on the back side the problem, the theoretical
problem is indeed relatively simple and the question appears to be settled, albeit
there are still controversies on the details of the eclipse scheme.7 In any case, all
the informations shown on the spiral and auxiliary dials pertained only to the
proper synchronization of the motions of Sun and Moon, and the only astronomical
knowledge involved is that of the the appropriate lunisolar cycles. These have
been reconstructed from the counting of tooth-numbers and on the basis of the
readable inscriptions.8 It turns out that the astronomical cycles involved in the
design of the back-side of the AM are of Babylonian origin and were common
knowledge among Greek astronomers way before the middle of II cent. BC.

For the front side the problem is far more complex. Its design involves the
theoretical problem of representing via a single rotatory input the simultaneous
motions of Sun, Moon and planets as they are observable from the Earth. In other
terms, the front dial of the AM answered the question: when the Sun is there at
such a date, where should I look to see the body x? To answer such a question
is equivalent to solve the theoretical problem of synchronizing all the heavenly
motions with one another, and, then, to represent them in a geocentric reference.
Such a task appears very ambitious also by modern standards.

The answer one finds in the existing literature about the AM is that it incorpo-
rated some cruder version of Ptolemaic models, i.e. some simple eccentric/epicycle
models. Such interpretation fits well with Ptolemy’s testimony about the results
achieved by his Hellenistic predecessors (namely Hipparchus), and the analogy
between the pin-slot device found in the Moon gear-train and a suitably calibrated
epicycle/eccentric construction has been taken as a confirmation of this view.9
Therefore, according to this interpretation, the accuracy of the astronomical

6In M. Efstathiou et al. 2013 the technical difficulties involved are discussed in an engineering
perspective. See also Voulgaris, Mouratidis, and Vossinakis 2019 for a focus on the tools involved
in the construction of the parts of the AM.

7Iversen and Jones 2019; Voulgaris, Mouratidis, Vossinakis, and Bokovos 2021.
8See in particular Freeth, Bitsakis, et al. 2006; Freeth, Jones, et al. 2008; Freeth 2019.
9C. Carman, Thorndike, and Evans 2012.
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predictions given by the AM was inferior to that of Ptolemaic models, whose
predictive power comes mostly from the introduction of the equant point.10

This interpretation of the AM is coherent with the general historical narrative
which regards the Almagest as the culmination point of a continuous, homogeneous
and uninterrupted development of Greek mathematical astronomy, going from its
origins up to Ptolemy’s time. In this view, the Almagest would be the only extant
astronomical treatise of its kind because it superseded all the preceding works
treating the same subjects, just as those of Euclid are the only surviving Elements
of Greek geometry.11 Such a continuist view seems to be shared by most of the
scholars who actively worked on the study of the AM.

A different reconstruction of the general history of Greek astronomy has been
proposed by those who emphasized the relevance of the cultural breakdown that
occurred in the Mediterranean world at the middle of II cent. BC, when the
Romans expanded their dominions to the Hellenistic kingdoms of Greece, Egypt
and Mesopotamia. The events connected to such a huge expansion caused the end
of the the golden age of Hellenistic science, as clearly shown by the subsequent
decline of Alexandria’s museum, the main scientific center of antiquity. According
to this reconstruction, which was much more fashionable among historians until
the beginning of the XX century,12 Ptolemy cannot be considered as a direct
successor of scientists like Euclid, Archimedes and Apollonius, but rather as a
(very skilled of course) mathematician relying on the works of his predecessors
but animated by a very different conception of mathematical sciences (and of
astronomy, in particular). Indeed, we think that a direct comparison between
Ptolemy’s Mathematical Syntaxis and any one of Archimedes’ extant works is
sufficient to convince any scientific reader of the abyss that separates the two
authors.

In this latter view, to which we totally adhere, the Almagest clearly cannot be
taken as a paradigm for the reconstruction of the mathematical theory presiding
the design of the AM, which is the ripe fruit of a scientific tradition interrupted
three centuries before Ptolemy and animated by very different ideas about the
character and scope of mathematics and astronomy. Indeed, one may remark that
the very same existence of a device like the AM is at odds with Ptolemy’s claim
that, before him, Hipparchus (and, we infer, no one) had even began to establish
a planetary theory.

In any case, the problem of the relationship between Ptolemy and his Hellenistic
sources (notably Hipparchus) is a very complex one, and the origins of Ptolemaic
models are, to the least, matter of debate. Historical research and fact-checking on
the Almagest brought convincing evidence that Ptolemy is not always a reliable
source about the results achieved by his predecessors. Well-known examples
are the misappropriation of Hipparchus’ star catalogue (recently found in a
palimpsest), the absence from the Almagest of important ideas dating back at
least to III cent. BC (like the heliocentric hypothesis, despite traces of it have

10For the importance of the equant-point for the effectiveness of Ptolemy’s models see Evans
1984.

11See for example O. Neugebauer 1969; Toomer 1984; Pedersen 2011.
12Among others, we just mention Leopardi 1815; Delambre 1817; Loria 1893; Russo 2004.
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been recognized)13 and, above all, the numerous inconsistencies between Ptolemy’s
claims and the actual astronomical observations he could have made. These were
first noted by Jean-Baptiste Delambre at the beginning of the XIX century,14

and after him many others have questioned the authenticity of the observations
Ptolemy reports in the Almagest.15

Another cautionary argument to the exclusive use of the Ptolemy’s testimony
for the reconstruction of Hellenistic astronomy is that he probably had no access
to Hipparchus’ latest works, that in the three intervening centuries of turbulent
events never found their way to the declining Library of Alexandria. On the
contrary, there are reasons to believe that valuable informations about Hipparchus’
latest works were more easily transmitted in the Latin literature. In this regard, it
is important to remember that the research and editorial activity that had made
Alexandria’s Library the pulsating center of Hellenistic science rapidly ceased
after the dramatic events of 146-145 BC, when the Romans put a military at
the head of the Museum. On the contrary, Rhodes remained an active scientific
center for some time. Overall, the commonplace idea that Ptolemy collected all
the relevant results and methods of previous astronomy seems to be the result of
a tautology, the Almagest itself having been used as the main historical source for
the reconstruction itself.16

Everything considered, despite Ptolemy’s Almagest is undoubtedly an im-
portant source of informations about the work of previous astronomers, there
is nonetheless a considerable risk of being misled if one projects Ptolemy’s own
conceptions of mathematical astronomy onto Hellenistic mathematicians of III-II
cent. BC, namely on those, like Archimedes, who probably played a role in the
design of devices like the AM.17

If then, as after all seems much more natural, we take the extant Greek
mathematical works up to II cent. BC as a leading guide in the necessary guesswork
involved in the reconstruction of the theory underlying the AM, we are in a
completely different world: geometric algebra, numerical progressions, theory of
proportions, exhaustion methods, theory of conic sections and a whole arsenal of
mathematical techniques that is completely absent from Ptolemy’s works becomes
available. Obviously, the mathematics we find in the extant works of Euclid,
Archimedes and Apollonius must be regarded as only a lower boundary to what
could have been involved in the the original design of the AM. To this, we

13See for example Rawlins 1987 and Neugebauer 1975, p. 146.
14Delambre 1817, p. xxvi.
15It is worth mentioning Newton 1977, where an extensive study of Ptolemy’s reported

observations is carried out. The title of the book is sufficient to indicate the level reached by
the debate, but, everything considered, the factual results of Newton’s analysis seem hardly
contestable.

16This remark and the previous cautionary argument are in Russo 1994.
17Overall, the idea I get from the existing evidence is that Ptolemy heavily relied on the

work of Hellenistic mathematicians, but reinterpreting it in light of his own pseudo-aristotelian
philosophical views. Elsewhere I set forth the conjecture that the Almagest could be the result of
a reverse-engineering based on a device not too far from the AM. For more details see Amabile
2020, where it is also attempted an explanation of why a device like the AM could not be
considered by Ptolemy’s own criteria an actual proof of the existence of a planetary theory,
reconciling his primacy claim with his familiarity with sphairopoiia.
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should add what we are still learning about Babylonian astronomy of the Seleucid
period, since the decipherment of cuneiform tablets keeps revealing an unexpected
complexity of numerical computational techniques that Hellenistic mathematicians
of the II cent. BC had probably incorporated in their astronomical practice.

Also, if we agree that the AM was a follow-up of an Archimedean tradition of
sphere-making, the theoretical question above asked overlaps with another, that, as
far as we know, has never been really addressed: what kind of theory was exposed
in Archimedes’ lost treatise on sphere-making? A conjectural answer to this
question, if not of historical value by itself, may well be relevant for the not-less
conjectural reconstruction of the planetary gear-work of the AM. Conversely, it
seems reasonable that the AM itself can indicate the path for the restoration of
the Greek theory of sphairopoiia, that, as far as we can tell, died with Archimedes
during the siege of Syracuse in 212 BC.

From this perspective, the historical and theoretical question posed by the
discovery of the AM becomes much more difficult (and, of course, way more
interesting), but it is our conviction that only in this way we can hope to restore
the original form and meaning of such an extraordinary device. The fundamental
idea that underlies all the present dissertation is that we have still much to learn
about and from the AM.

Inevitably, the route we will follow to give a different look at the AM will be
long and a little tortuous, since it involves many ideas that, like the AM itself,
are at odds with deep-seated views about Greek science. It is clear that the
hermeneutics of a similar artifact touches upon delicate epistemological problems
pertaining to mathematical sciences in general, and mathematical astronomy in
particular. These must be taken into careful account, so the first thing to do is
to put the AM in its own historical, philosophical and scientific context. This
is the aim of the first chapter, in which we will dwell at length on the general
epistemological framework of Greek mathematics, with a special emphasis on
astronomical problems. At the end of it, we will state in general terms our
conjecture about what kind of mathematical theory grounded the conception and
the actual design of a device like the AM.

The second chapter is devoted to the work of William Rowan Hamilton,
Andrews Professor of Astronomy at the Trinity College of Dublin and Royal
Astronomer of Ireland from 1827 to 1865. Such a jump in time and space probably
requires a preliminary explanation.

In the history of the complex and varied relationship between modern and
ancient science, the XIX century was probably one of the happiest periods. After
the recovery of the works of Euclid, Archimedes and Apollonius had formed the
basis of the scientific revolution in the early-modern period, during the Age of
Enlightment a sort of rebellion against Greek models dominated the scene, fueled
by the overwhelming successes of Newtonian science. At the end of the XVIII
century, however, a reconciliation began with the old fathers of Western science,
that gave his fruits during the XIX century and proved very healthy for the
development of modern mathematics, which achieved its full maturity before the
"crisis" of the XX century shake again its foundations.

In particular, during the XIX century an unprecedented (and unrepeated)
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emphasis on the study of Classics in schools and universities across Europe
gave to many mathematicians the opportunity to read first-hand the works of
their Greek ancestors, and, probably for the first time, to fully understand their
scientific meaning.18 A well-known and very important example is Euclid’s complex
definition of proportion, that after many criticisms was finally understood and
put at the foundations of the theory of real numbers by Dedekind and Weierstrass.
Another example is the recovery of the Euclidean axiomatic method, which led,
among other things, to the invention of modern non-euclidean geometries (the
paradox being only in the name traditionally given to such new systems). Moreover,
the divination of lost works from authors like Apollonius received new impetus,
fueling the development of specific areas of mathematical research (e.g. the study
of curves of double curvature). In the same period, the rising of philological studies
gave birth to the first accurate editions of fundamental Greek mathematical works
such as Heiberg’s editions of Archimedes and to the still today reference works of
Thomas Little Heath on the history of Greek mathematics.

In the XIX century British science in particular underwent a significant revo-
lution, during which scientists strived to define their own status in the cultural
context of the Victorian age. It was this process that ended up with the invention
of the very word scientist, which took the place of the the old label of natural
philosopher. Among other things, at the beginning of the century Charles Bab-
bage, John Herschel and George Peacock founded the Analytical Society and
denounced the bad health of British mathematics. According to them, a too strict
adherence to Newtonian, geometrical methods had made British mathematics
obsolete with respect to continental mathematics, evolved in accord with the
Leibnizian tradition and employing chiefly symbolical methods.19 Thanks to their
efforts, Leibniz’s differentials entered in British universities’ curriculums alongside
Newton’s fluxions, but most importantly a general debate unfolded about the
relative merits of different methods and approaches in mathematical research and
education. A side effect of this debate was a renewed attention on the Euclidean
method, as exemplified by the beautiful first colored edition of the first six books
of Euclid’s Elements by Oliver Byrne, published in 1847.20

In this general landscape, William Rowan Hamilton occupies a unique place,
being an unparalleled prodigy who held with the Classics a direct, constant and
fruitful dialogue. As we will see, his general views on the aims and methods of
mathematical sciences were strongly influenced by Greek models, an aspect that
sometimes put him in plain contrast with some of his contemporaries. As his
friend and pupil Peter Guthrie Tait remarked, Hamilton’s mathematical works
"belong to no particular school unless we consider them to form, as they are

18It seems worth mentioning here that (after Galileo) William Clifford (1878, p. 15) was the
first to rightfully and explicitly ascribe to Archimedes the definitory property of uniform motion,
i.e. the establishment of a proportionality between lengths and times. For a thorough discussion
of the role of Classics in the modern history of Western culture, see Russo 2018.

19Dubbey 1963.
20Byrne 1847, also available online at https://www.c82.net/euclid/ (last access March 1st

2023). In recent times Byrne’s work has been beautifully extended to all the thirteen books of
Euclid’s Elements by Kronecker Wallis.
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well entitled to do, a school by themselves".21 Indeed, an essential part of our
arguments resides in a proper understanding of Hamilton’s own views about his
work, namely about the character and scope of his beloved theory of grammarithms
(or, as it is universally known, of quaternions), a sort of aufhebung between the
geometric and symbolical tendencies debated by British mathematicians during
the XIX century. The unfortunate fate of this theory or method or calculus (as
Hamilton alternatively referred to it) has obscured its original meaning, and we
will try to restore it by appealing to its creator’s own words.

Despite today his name is familiar to every physicist, Hamilton is one of
those giant figures like Newton or Maxwell that are much more often mentioned
than actually read. He was, among other things, also a poet and his style of
mathematical writing is probably without equals in the history of mathematics.
Full of italics and capitals, in his written texts Hamilton tried to be as close
as possible to the spoken word, but, overall, his pedantry was considered a hard
reading already by his Victorian contemporaries, leave alone by modern readers.
Yet, the insight that Hamilton’s long and often convoluted sentences afford are
definitely worth the effort, and we will quote at length from his own writings.22

Also, most of Hamilton’s works were published in the Proceedings of the Royal
Irish Academy, at the time a relatively little society with scarce financial resources.
As a result, its publications were very little distributed in Europe, and often with
a delay of three or four years with respect to the actual communication. In a
period of explosion of mathematical researches, often on overlapping domains, this
was an important handicap for the diffusion of Hamilton’s works, and it is no case
that his essays on dynamics, the basis of the well-known hamiltonian mechanics,
were the only works Hamilton published in the widely distributed Transactions of
the Royal Society of London.

However, the historian interested in hamiltonian views is in a very happy
position, since apparently Hamilton spent most of his lifetime in writing : he left
behind him such a huge amount of manuscripts, all preserved in the Library of
the Trinity College of Dublin, that one can trace the development of his ideas
almost day-by-day.23 The monumental biography in three volumes written by his
friend Robert Perceval Grave is composed for the greatest part of letters written
by Hamilton himself, where he dwelled for dozens and even hundreds of pages in
detailed expositions of his ideas that could never find their way in any published
work.24

It is a pity that Hamilton’s original views are so little known today, since many
of the subsequent developments of mathematics and physics find a common root
in his forgotten works. This is indeed another of the reasons why we chose to
devote such a large amount of space to the exposition of his ideas, a gold mine

21Tait 1880.
22When not otherwise stated, all the typographical expedients in Hamilton’s quotes are from

Hamilton himself.
23No doubt that Hamilton was fully aware of his genius, and sometimes it almost seems that

he wrote for the ease of future historians.
24Most of Hamilton’s works are collected in LateX format in David Wilkins’ personal page

(https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/, last access February 24th,
2023), a great source about Hamilton’s life and works.
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from which we are convinced there is still much to learn, today more than ever.
After all, this was also Hamilton’s wish:

I hope that it may not be considered as unpardonable vanity or presumption
on my part, if, as my own taste has always led me to feel a greater interest in
methods than in results, so it is by methods, rather than by any theorems,
which can be separately quoted, that I desire and hope to be remembered.
Nevertheless it is only human nature, to derive some pleasure from being
cited, now and then, even about a "Theorem"; especially where the quoter
can enrich the subject, by combining it with researches of his own.25

The third chapter is devoted to the method of the hodograph, an offspring
of Hamilton’s theory of quaternions that led him to a beautiful geometrical
formulation of Newton’s dynamical theory of gravitation. We will see how such
a method and the specific hypothesis which it naturally suggests when applied
to astronomical problems were well within the scope of Greek mathematics at
the time of the AM, and indeed a natural theoretical framework to ground the
art of sphere-making. So, after the exposition of the method, we will come back
to Hellenistic times and outline more precisely our view about the mathematical
theory underlying the design of the AM.

In the concluding remarks, we will summarize the view here proposed. In
particular, if our reconstruction is accepted, the AM will appear to be a direct
evidence that a theory of heavenly motions mathematically equivalent to Newton’s
gravitational theory was developed by Hellenistic mathematicians around II
cent. BC.

25Quoted in Tait 1880.
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Chapter 1

What is the Antikythera
Mechanism?

1.1 On Hellenistic Mathematics
When one compares modern and ancient mathematics, one of the most striking
differences that he/she finds is that this latter was, generally speaking, much
more problem-oriented than ours. Greek mathematics is no exception to this
thumb-rule.

Starting from the stage set by the four Pythagorean sisters - arithmetic,
geometry, harmony and astronomy - Greek mathematics gradually evolved, first
and foremost, as a collection of problem-solving disciplines, scientific arts covering
a wide range of domains and sharing a unitary methodology. In the Hellenistic
period, in particular, the intertwinement between "pure" and "applied" sciences
became so tight that most branches of mathematics borrowed their very name
from their intended application, like scenography, catoptrics or dioptrics.1

Also, there is no doubt that Greek mathematicians experienced the distinction
between "abstract" and "practical" problems in a very different way than us. In
the domains which we would call "purely" mathematical, research was mostly
driven by the search for solutions to problems like the squaring of the circle, the
trisection of the angle or the doubling of the cube.2 Some of these problems had
often a mythological origin, like the last mentioned, associated to Apollo’s oracle
request to his worshippers to double the volume of his altar without altering its
shape, or the isoperimeter problem, connected to Didon and to the myth of the
Minotaur. It seems that still in the III cent. BC celebrations were made in occasion
of the finding of new solutions to such problems. Yet, to quote the title of Knorr’s
classic book, this ancient tradition of geometrical problems crossed the boundaries
between religious mythology, "pure" mathematics and engineering, since the
solution to such abstract (and therefore general) mathematical riddles became
the key to the solution of entire classes of very practical problems. Just to make
an example, the solution to Apollo’s doubling-problem became the key ingredient
of Philo’s solution to the problems of projectile-range posed by catapults-design.

1For more details on the Hellenistic scientific method, see Russo 2004, pp. 171–202.
2Knorr 1986.
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Even arithmetic and geometry, the "purest" among mathematical sciences,
have never been for the Greeks entirely abstract disciplines, probably because at
the time their practical origin - rooted in the operations of counting and measuring
involved in everyday activities - was relatively close and sufficiently clear to their
practitioners. Thus arithmetics, the theory of numbers, was always accompanied
by logistics, the art of computing, and geometry, the theory of figures, was never
conceived as something distinct from the art of drawing.

It has been often noted how the Greeks, in mathematics as elsewhere, were
very visual thinkers. Martin Heidegger, one of the most insightful interpreters
of Greek philosophy, has underlined in particular how the Greek word for truth
(αλεθεια) literally translates not-hiding, not-concealed.3 This simple observation
is by itself sufficient to understand why the search for truth in Greek philosophy
has always the character of the unveiling : to find a truth means in Greek to
bring light where there was darkness, and to exhibit what has been found in plain
sight. Accordingly, in all Greek philosophy the idea of truth was always expressed
with words pertaining to the domain of vision, false being often synonymous of
fake appearance. In the specific domain of Greek mathematics, it seems therefore
particularly appropriate to take all the still-in-use locutions as we see, it’s evident
or it’s clear quite literally.4 For Plato the demonstration (in Greek apodeixis) of
the properties of a geometrical figure and the connected activity of drawing the
figure itself worked as a sort of exhibition to vision of the general process that
leads to the discovery of some non-evident truth.5 The proof of a mathematical
theorem is evidently the apotheosis of this kind of process, and this is probably
one of the reasons why Plato gave to the study of geometry such a prominent role.

Still Heidegger has emphasized how also the word techne was invested by the
Greeks with a strong epistemological meaning, always pertaining to the domain of
sight. Technological artifacts were perceived in fact as an exhibition to vision of
the knowledge required to the artisan to design and build the object in question.
In short, as Heidegger put it, for the Greeks that of techne was a category of
knowing and not just of doing, and, in spite of later commentators’ opinions,
for the Greeks the technological activity was intertwined with and by no means
secondary to the theoretical one.6 To put it with the words of Vico, for the Greeks

3See in particular the course he held at Freiburg University in 1931-1932 (Heidegger 1997a).
4Indeed, in English to see is still used also to mean to understand. It is barely necessary

to remark that modern cognitive sciences have totally confirmed the relevance of vision in the
forms of our understanding. Using modern metaphors, it seems that the peculiar hardware
and software of our vision process shape a large part of our conscious learning. It would seem
advisable that, among other things, mathematical teaching could return to be much more visual
than it is today. Important efforts in this direction have been those of Emma Castelnuovo
for elementary mathematics and, more recently, those of Tristan Needham for more advanced
domains (Needham 1997; Needham 2021).

5See for example the famous passage of Socrates and the slave in the Meno, about the
incommensurability of side and diagonal of a square.

6Heidegger 1997b, pp. 38–39. See also Brisson and Pradeau 1998, pp. 53–55: "Dans
la philosophie platonicienne, la réflexion sur la technique occupe une place déterminante et
constante: la technique est le paradigme du rapport que l’homme entretiens avec tous les
objects. [...] Le technicien maîtrise sa technique particulière grâce à la possession d’un certain
savoir, d’une certaine science. [...] Et c’est la raison de la relative indistinction, chez Platon,
de la technique et de la science: la technique est la science, dans la mesure où elle suppose la
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verum and factum went hand in hand. Such entanglement between episteme and
techne is indeed one of the hallmarks of Hellenistic mathematics.

This partly explains why the theoretical development of Greek mathematics
has been so largely shaped by the activity of drawing, namely by the use diagrams
which were always the ground on which mathematicians set their feet to reach the
highest peaks of abstraction and generality. It is well known, in particular, the
theoretical role played in Greek geometry by the elementary operations afforded
by the two basic drawing instruments, straight-edge and compass (which, by the
way, were not the only tools used in geometrical constructions).

The three fundamental postulates of Euclid’s Elements are nothing but the
abstractions of the three elementary operations one can perform with a straight-
edge and a compass - draw a line, produce a line, draw a circle -, and every
proposition of the Elements is essentially a list of commands involving such
operations. These commands instruct on how to draw the figure that is the
object of the proposition. The demonstration of the proposition is either the
exhibition of a certain property of this figure, or the proof that it satisfies a
previously required property. Every proposition is thus the analysis or synthesis
of a certain diagram, that in principle may be done in any way, the only constraint
being the adherence to the postulates. As Russo has emphasized, it is exactly
this operational character of the postulates that in Euclid’s system of geometry
explicitly guarantees an unbreakable connection between the abstract deductive
model and something tangible existing in the real world, i.e. a diagram drawn
according to some pre-established rules. It may be remarked that, in spite of the
emphasis that later commentators have put on the difference between theorems
and problems, such difference is a matter of perspective, since all the content of
any proposition of the Elements is encoded in how the figure is constructed. The
proof of a proposition is just the logical extraction from the figure of a certain
property that, for whatever reason, is regarded as relevant. In this sense, problems
were definitely primary in Greek mathematics with respect to theorems.

There is another reason why problems had a primary role in Greek geometry,
i.e. that it was constructive in a very strong sense that is rarely adopted in
modern mathematics. In Euclid’s Elements a certain figure literally does not exist
until it is explicitly drawn, i.e. until the problem of its construction is solved. It
is no case that the first proposition of the Elements is a problem, namely that
of drawing a regular triangle, i.e. the building block of the whole theoretical
architecture. The Euclidean definitions of parallels, squares, tangents etc. are
mere conventions, names given for convenience, but the very same existence of
such geometric objects must be proved by construction and may never be taken
for granted.7 This point was already emphasized, for example, by Aristotle, who
explicitly says that the only requirement of a good definition is that it should be
understandable, without by this implying that the object defined actually exists, a
fact that always needs to be proved.8

connaissance de la manière dont l’activité technique doit convenir à son objet."
7The importance of nominalism and linguistic conventionalism in Hellenistic mathematics

has been strongly emphasized by Russo.
8We may remark that this fact is quite obvious and generally agreed outside of the "mathe-

matical domain". The definition of unicorn as "white horse with horn and wings" is very clear
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Gemino (I cent. BC), quoted by Proclus, in his classification of Greek mathe-
matics explicitly points out that

...it is always the task of geometry, both plane and solid, to construct [figures]
or to compare or to divide those that have already been constructed.9

Construct, compare, and divide figures: this is, in short, what Greek geometers
did, with a mastery that has no equals in the history of mathematics.

It is also important to remember that for Greek mathematicians drawing was
also (but crucially) a form of computing.10 After the invention of a general theory
of continuous magnitudes (like that exposed in Book V of Euclid’s Elements)
every mathematical problem could be framed in terms of a geometrical diagram,
in which the data of the problem were represented by the length of some straight
lines, and the solution was constructed by drawing a line whose length had the
required ratio to that of the given lines. In this way, the basic instruments of
straight-edge and compass and the constructions made with them became also
extremely powerful tools for analog computing.11

So, in short, in Hellenistic science geometry was, first and foremost, a theory
of diagrams, which entangled three activities that in modern mathematics are
often regarded as independent to each other: drawing, computation and deductive
reasoning. As such, it could be put to the service of any discipline, abstract or
practical, which used diagrams to express the relationship between magnitudes.
The more the range of geometry extended, from Euclid’s Elements, through
Archimedes’ Method up to Apollonius’ Conics, the more extensive, expressive
and powerful such diagrammatic language became for the solution of any kind of
problem. Notice, in particular, how far this conception is from the modern idea of
geometry as the "science of space".

In their mature form, all Greek mathematics shared a similar conceptual
structure, with the drawing and analysis of diagrams occupying a central role
in every domain. What changed was the meaning attributed to the magnitudes
whose reciprocal proportions were encoded in a certain figure, i.e. what diagrams
represented, which depended of course on the context. This point is emphasized,
for example, by Plato, who speaking of the "method of mathematicians" wrote:

Further you know that they [mathematicians] make use of visible figures
and argue about them, but in doing so they are not thinking of these figures
but of the things which they represent...12

by itself, but no one would believe that such definition implies the existence of similar creatures.
Mythological figures like the minotaur and the centaur could have suggested to the Greeks a
similar analogy.

9Evans and Berggren 2006, p. 247.
10This point is emphasized in Russo 2021, pp. 57–62.
11Notice that, as Russo also remarks, the efficiency of geometrical computations remained

unsurpassable until the invention of logarithms, whose first tables appeared in 1614. However,
during XIX century, there was a renewed interest in graphical methods. See, for example,
Clifford 1878, pp. 14–15.

12Republic, VI, 510C-E. Quoted in Heath 1921a, p. 290.
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In Hellenistic mathematical arts the possible meanings and interpretations
of geometrical diagrams extended as long as "the method of mathematicians"
was applied to many different classes of problems.13 So, in Euclid’s Optics, in
which it is developed a theory of vision, lines represent visual rays connecting an
observer to an object, and the accompanying propositions pose and solve problems
about the sizes and speeds of such objects as seen by an observer. In Aristarchus’
On the sizes and distances of Sun and Moon the circles, lines and angles of the
diagrams accompanying the propositions represent the relative distances, sizes and
orientations of Earth, Sun, Moon and their projected shadows when they are in
some definite configurations. In Archimedes’ On Floating Bodies the paraboloids
of revolution whose properties are demonstrated in the related theorems are the
"abstract" model of a ship’s hull, and the theory there exposed has direct bearings
on the design of stable ships. We may be confident that, similarly, in Archimedes’
lost Catoptrics diagrams represented mirrors and visual rays cutting them. Of
course there is no reason to think that the lost treatise On Sphairopoiia was
methodologically different.

Despite the loss of all the advanced astronomical treatises of the Hellenistic
period, it is sure that astronomy was no exception to this epistemological frame-
work. First of all, also astronomers faced very specific problems. Today it is too
easy to forget this, but it is crucial to keep in mind that, at that time, astronomy
was an extremely practical discipline devoted, among other things, to the very
important offices of time-reckoning : calendars, agriculture, and, of course, all the
religious and civil affairs depended on the work of astronomers. Also navigation,
of course, was strongly dependent on astronomical observations.

It is worth quoting the most relevant passage we have about the difference
between physics (i.e. natural philosophy) and mathematics in dealing with astro-
nomical problems. It is a second-hand quote from Gemino, found in Simplicius’
commentary to Aristotle (VI cent. CE):

It is characteristic of physical science to consider what has to do with the
substance of heavens and celestial bodies, their powers and quality, their
generation and corruption... Astronomy, however, does not concern itself
with all that... In many cases astronomers and physicists will set out to
demonstrate the same topics, for example the size of the sun or the roundness
of the earth, but they don’t follow the same route. The latter will deduce
whatever it may be from substance or powers, or from optimality arguments,
or from generation or transformation, whereas the former will deduce it
from appropriate figures or magnitudes or the measurement of motion and
corresponding times. The physicist, with an eye towards productive power,
often touches on causes, whereas the astronomer, when he is constructing
proofs based on what comes from outside, is a poor observer of causes[.]
Sometimes [an astronomer] through a hypothesis finds a way to save the
phainomena. For example, why do the sun, the moon and the planets appear
to move irregularly? If we suppose that their round orbits are eccentric
or that these bodies move on epicycles, the apparent irregularities will be

13This point is well emphasized in Russo 2004, p. 189. It is noteworthy that also this
generalized and extended use of diagrams was fully recovered during the XIX century, among
others by James Clerk Maxwell. See, for example, Maxwell 1911.
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saved. One must investigate in how many different ways the phainomena
can be represented... 14

In other words, for the natural philosopher (and for Gemino) it is not enough
to save the phenomena, but it is necessary to find some "causal explanation"
or aitiologia pertaining to the "nature" of things.15 This kind of aitiologia was
the hallmark of Aristotle’s physics, and indeed Strabo (I cent. BC), criticizing
Posidonius for trying to introduce too much aitiologia into geography, wrote:

For him there is too much inquiry into causes, that is, ’Aristotleizing’, a thing
that our School [i.e. the Stoic School] avoids because of the concealment of
the causes.16

On the other hand, the importance for the mathematicians to seek for multiple
ways in which the same phainomena can be represented echoes a similar remark
made by Theon of Smyrne (II cent. CE) about Hipparchus’ approach.

Like other branches of mathematics, also astronomy worked in strict connection
with specific instruments. Still Gemino, now quoted by Proclus, describes the
subject matter of astronomy as follows:

There remains astronomy, which treats the cosmic motions, the sizes and
shape of the heavenly bodies, their illuminations and their distances from
the Earth, and all such questions. [...] Its parts are: gnomonics, which
is engaged with the measurement of the hours through the placement of
gnomons; meteoroscopy, which discovers the different altitudes and the
distances of the stars and teaches many complex matters from astronomical
theory; and dioptrics, which examines the positions of the Sun, Moon, and
the other stars by means of such instruments.17

So, all the three sub-branches of astronomy are identified with the instruments
astronomers employ in their inquiry: gnomonics with sundials, meteoroscopy with
the meteoroskopeion (a kind of astrolabe)18 and dioptrics with the dioptra. To
these, we should add the fascinating practice of sphairopoiia, which will be the
main focus of the following sections.

1.2 On Sphairopoiia
Immediately before the passage above quoted, Gemino describes sphairopoiia
(literally construction of spheres) as a sub-branch of mechanics "in imitation
of celestial motions, as Archimedes practiced". Today, the word sphairopoiia

14Quote from Russo 2004, p. 192. The full passage may be read in Evans and Berggren 2006,
pp. 252–255.

15The reader is pleased to remember this passage whenever in the following we will refer to
the distinction between the physical and the mathematical approaches.

16Quote from Evans and Berggren 2006, p. 57, to which we refer the reader for a discussion
about aitiologia and Gemino’s realism.

17Evans and Berggren 2006, p. 249.
18Evans and Berggren 2006, p. 48.
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Figure 1.1: Erathostenes teaching in Alexandria, painting by Bernardo Strozzi (1581-
1644), today at Montréal Museum of Fine Arts (source: cover of Cassirer 2021).

is generally used by historians to denote the Greek art of building scale-sized
objects (or sometimes, by metonymy, the artifacts themselves) exhibiting the
configuration and/or the movements of heavenly bodies. The simplest specimens
of this mathematical techne were celestial globes and armillary spheres, showing
a selection of fixed stars and of the relevant circles of the celestial sphere. The
AM, as we have seen, is a way more sophisticated device, with a wide range of
phenomena represented by multiple pointers moving simultaneously on different
dials. In the case of the AM the motion was given by hand, but Pappus (VI cent
CE) mentions similar astronomical devices put in motion by water.

In different forms, this art evolved side by side with Greek mathematical
astronomy, from the first steps of the Pythagorean school (Archaic period, VI-V
cent BC), through its shaping at the time of Plato’s Academy (Hellenic period, V-IV
cent BC), up to the golden age of Alexandria’s Museum (Hellenistic period, III-II
cent BC). After II cent. BC there are mentions of sphairopoiia as a received practice,
but we have no evidence that devices such as the AM were ever constructed again
in antiquity.19

19Similar artifacts reappeared in Europe after more than one thousand years (the first being
De Dondi’s Astrarium at the middle of the XIV century), but sphairopoiia never attained again
the level of the AM, with so many astronomical informations compressed in such a compact
manner. Modern orreries, dating back to XVII century and owing their name to the English
nobleman Charles Boyle, 4th Earl of Orrery, usually represent the solar system in a heliocentric
frame of reference and, therefore, have no connections with astronomical observations. Despite
the technological complexity, their value is thus more aesthetic than scientific. A XIX century
review of this practice is Brewster 1830, and a more recent monograph devoted to it is King
and Milburn 1978. In any case, in the present dissertation we won’t deal with the complex and
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Despite in modern times the construction of mechanical devices incorporating
astronomical models has been a charming but mostly secondary activity,20 the
importance of sphairopoiia for Greek astronomy can hardly be overestimated.
In the hands of Greek mathematicians this art became a powerful tool for the
construction, visualization and validation of astronomical models, and the AM
shows that in its most mature form it became also a tool formechanical computation
specifically adapted to astronomical problems. In the beautiful words of Germaine
Aujac:

Goût pour la spéculation géométrique, référence constante à ce qui est fait
de main d’ homme, tels sont les deux pôles entre lesquels a jailli l’étincelle
et s’est intensifié le courant de la recherche scientifique en Grèce ancienne...
faisant appel sans l’ombre d’une hésitation au savoir-faire des artisans, ils
ont voulu en fabriquer des répliques sur lesquelles, à l’instar du créateur
du monde, ils pouvaient agir et, surtout, qui leur permettaient d’offrir, de
leurs conceptions, une vue synthétique. [...] Étudier les propriétés de la
sphère en se servant de la géométrie, les vérifier et en chercher de nouvelles
applications grâce aux modèles réduits, telles sont les deux démarches qui
ont conduit les Grecs à prendre de la terre et du ciel une connaissance qui,
aujourd’hui encore, nous confond d’admiration.21

We totally agree with Aujac in the view that a proper consideration of sphairopoiia
sheds a clearer light on the whole evolution of Greek mathematical astronomy.
Working like drawing as an intermediate operational layer between theory and
phenomena, it was this art that guaranteed, among other things, a solid grounding
to the theoretical activity of astronomers.

But here we wish to do a step further, and put forward the idea that, in its
most mature developments, sphairopoiia and theoretical astronomy were actually
the very same thing, in the sense that mechanical devices were designed to be
an exact realization of theoretical models, and therefore, like the AM, theoretical
computers for the occurrence of the phenomena covered by the "abstract" theory.
In other words, even if Proclus-Gemino includes sphairopoiia in the domain of
mechanics, we propose to regard it, like gnomonics and dioptrics, as an essential
part of Hellenistic astronomy itself, namely that dealing with motions of heavenly
bodies. In this regard, we remark that Proclus-Gemino defines astronomy as the
science dealing with cosmic motions, but then in the description of its different
sub-branches the word motion does not appear at all. Our conjecture is that such
class of problems was the specific object of sphairopoiia.

In support of this interpretation, many elements suggest that Geminos’ clas-
sification should be read cum grano salis, being a late systematization of the

important issue of the reception of sphairopoiia by modern science. We hope to devote a future
work to this topic, and here we will just sketch some conjectures.

20As far as I know this practice was not undertaken by most of the major figures of modern
science. An important exception is Christiaan Huygens, sometimes named the Dutch Archimedes,
the first to build a working planetarium in the modern era. It is worth noting that Huygens
used the same approximation method to determine the optimal tooth-numbers for gear ratios
found in the AM, i.e. the Euclidean algorithm of antyphairesis (Freeth, Higgon, et al. 2021),
equivalent to continued fractions.

21Aujac 1993, p. 7.
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developments of mathematical sciences in Hellenistic times, made following the
Aristotelian lines of old similar classifications.22 In particular, the main division
of Gemino’s classification is that between disciplines dealing with "mental things
only" and those dealing with "perceptible things":

But others, such as Geminos, think it proper to divide mathematics according
to another scheme. They make one branch concerned with mental things
only, and one concerned with perceptible things or touching on them. [...] In
the branch engaged with mental things, they place arithmetic and geometry
as the two first and most important parts. In the branch that operates
with perceptible things they place six parts: mechanics, astronomy, optics,
geodesy, canonics, and logistic.23

The first thing to remark is that this list is surely incomplete, missing very relevant
disciplines such as Erathostenes’ geography and Archimedes’ hydrostatics. More-
over, in the epistemological framework of Hellenistic mathematics this distinction
between "mental" and "touching" things is by itself questionable and indeed
quite blurred, even "theoretical" geometry being, as we said, strictly connected to
the "practical" activity of drawing figures on various supports. The domain of
mechanics, in particular, is later described as follows:

Besides these sciences there is one called mechanics, which is a part of the
study of perceptible and material objects. Under this comes the construction
of instruments useful in war, such as the engines for defense that Archimedes
is said to have built under the siege of Syracuse, and also the science of
wonder-working [thaumatopoiike], which works its contrivances by means
of air, as both Ctesibius and Hero describe, or by means of weights whose
disequilibrium is the cause of motion and whose equilibrium is the cause of
rest, as the Timaeus has established, or, finally, by means of cords and ropes
mimicking the tugs and movements of living creatures. Also under mechanics
come the general science of things in equilibrium and the determination of
what are called centers of gravity, as well as sphere-making [sphairopoiia] in
imitation of celestial motions, such as Archimedes practiced, and, generally,
all that is concerned with matter in motion.24

Immediately after, there is the passage on astronomy quoted above. So, according
to Proclus-Geminos mechanics ended up dealing generally with matter in motion,
and sphairopoiia with celestial motions specifically.25

Indeed, this overlapping between theoretical, "abstract" models and practical,
"concrete" mechanics fits very well with the ambiguous use that Gemino does of
the word sphairopoiia in the Introduction to the Phenomena.26 Apart from the

22For more details on this point and on ancient classifications of mathematical sciences in
general see Vitrac 2005a.

23Evans and Berggren 2006, p. 246.
24Evans and Berggren 2006, p. 249.
25A beautiful book on the range and character of ancient mechanics from Mesopotamian

civilizations up to the Imperial Period is Di Pasquale 2019.
26Such ambiguous use of the word sphairopoiia is remarked in Evans and Berggren 2006,

pp. 49–58.
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literal sense of sphere-construction, indicating the activity or the artifact itself, in
different instances Gemino uses sphairopoiia in a theoretical sense, i.e. to indicate
something that is used to explain the phenomena observed, or to deduce those
which cannot be observed, and which in general can be "in accord" or "in contrast"
with the actual observations.

For example, speaking about the possible presence of people in the southern
hemisphere of the Earth, Gemino writes:

When we speak of the southern zone and of those dwelling in it, as well
as the so called antipodes in it, we should be understood in this way: that
we have received no account of the southern zone nor whether people live
in it, but rather that, because of the whole sphairopoiia, and the shape
of the Earth, and the path of the Sun between the tropics, there exists a
certain other zone, lying toward the south and having the same temperature
character as the northern zone in which we live in.27

And a little later, speaking of rising and setting stars:

Because of such sphairopoiian, not all the stars both rise and set each night.
Rather, certain ones rise and set, certain ones rise but do not set, while
some neither rise nor set. [...] And so Krates, speaking in marvels, takes
things said by Homer for his own purposes and in archaic fashion, and
transfers them to the sphairopoiia that accords with reality. For Homer and
the ancient poets, nearly all of them, mean to say that the Earth is flat and
meets the cosmos; that the Ocean lies around in a circle, occupying the place
of the horizon; and that the risings are from the Ocean and the settings
are into the Ocean. Consequently, they supposed the Aithiopians near the
rising and those near the setting to be burned by the Sun. This notion is
consistent with their proposed arrangement, but alien to the sphairopoiia
in accord with nature.28

In all these cases, Gemino is dealing with problems of spherical astronomy, but
later on, speaking of irregular motions of the planets, he writes:

As the motion in their case is of such a kind, it is clear that the shift toward
the following does not occur by a falling behind, for they would always
be falling behind. But, in fact, there is a certain sphairopoiia proper for
each, in accordance with which they pass sometimes towards the following
sometimes toward the preceding, and sometimes standing still. [...] It has
resulted, then, from the individual sphairopoiian of each [planet] that the
shifts are different.29

So, all in all, it appears that for Gemino sphairopoiia is, to the least, something
more than the concrete construction of mechanical contrivances, and seems to
be consistently used as a byword for theoretical model accounting for some as-
tronomical phenomena. It is particularly interesting that Gemino refers to the

27Evans and Berggren 2006, p. 214.
28Evans and Berggren 2006, p. 215.
29Evans and Berggren 2006, p. 199.
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sphairopoiia of each planet, and to the results that have been deduced from them.
Our interpretation of this ambiguous use is that in a late and realist author like
Gemino, a full understanding of the complex relationship between theoretical
model and physical reality was already declining and leading to the confusion
between the two plans that in later periods will dramatically prevail.

Without dwelling on Ptolemy’s conceptions of the relationship between hy-
pothesis and phenomena, theory and observation, we limit ourselves to quote the
introduction of the Planetary Hypotheses, devoted explicitly to the practice of
sphairopoiia, which clearly exhibits such confusion:

We have worked out, Syrus, the hypothesis of heavenly motions through
the books of the Mathematical Syntaxis, demonstrating by arguments,
concerning each example, both the logicality and agreement everywhere
with the phenomena, with a view to a presentation of uniform and circular
motion which necessarily was to arise in things taking part in eternal and
orderly motion and that are not capable to undergo increase or decrease in
any way. Here we have taken on the task to set out the thing itself briefly,
so that it can be more readily comprehended by both ourselves and by those
choosing to arrange the models in an instrument, either doing this in a more
naked way by restoring each of the motions to its respective epoch by hand,
or through a mechanical approach, combining the models with one another
and with the motion of the whole. Indeed, this is not the accustomed manner
of sphairopoiia; for this [sort of manner], apart from failing to represent
the models, emphhpresents the phenomenon only, and not the underlying
[emphasis ours], so that the craftsmanship, and not the hypotheses, becomes
the exhibit. But rather [the manner] where the different motions under our
view are arranged together with the anomalies that are apparent to observers
and subject to uniform and circular courses, even if it is not possible to
intertwine them all in a way that is worthy of the aforementioned, but
having to exhibit each separately in this way. Concerning the positions
and arrangement of the circles causing the anomalies, we will apply the
simpler version in respect to the method of instrument-making, even if some
small variations will follow, and moreover we fit the motions to the circles
themselves, as if they are freed from the spheres that contain them so that
we can gaze upon the visual impact of the models bare and unconcealed.30

So, the aim of sphairopoiia, for Ptolemy, is not to represent the phenomena, but
rather the underlying hypothesis, that in his astronomy have lost their theoretical
character and are taken as assertions about the physical reality of celestial motions.
Clearly a device like the AM wouldn’t fit Ptolemy’s criteria.31

We think that the very same possibility of the aufhebung between astronomy
and mechanics represented by the art of sphairopoiia, and also the origin of
the later misunderstanding of this practice, lies in the central role that circular
motion played for the Greeks as a theoretical cornerstone of both disciplines.
Such theoretical homogeneity allowed to treat in a unified way astronomical

30Hamm 2011, pp. 44–45. As Hamm remarks, Ptolemy’s indications are indeed too vague and
of no use for the actual design of working planetaria.

31For a fuller analysis of Ptolemaic astronomical conceptions see Amabile 2020.
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problems, involving the motions of stars, Sun, Moon and planets, and mechanical
problems, involving the motions of the parts of a machine. So, enabling in
principle to incorporate exactly an astronomical theory in a mechanical device, and
coherently with the general epistemological framework of Hellenistic mathematics,
sphairopoiia came to overlap and perhaps even coincide with the most mature
developments of Greek mathematical astronomy. In these developments, it is likely
that Archimedes, mechanician, astronomer and exemplar figure of the Hellenistic
intertwinement between episteme and techne, played a prominent role.

In the next section we will sketch the outlines of this process in the historical
evolution of spherical astronomy. Then, we will turn to the more complex problems
posed by solar, lunar and planetary models.

1.3 Sphaerics and Celestial Globes
It is well known that the roots of Greek mathematical astronomy date back
to the works of the Pythagoreans. One of the most celebrated Pythagorean
mathematicians is Archytas of Tarentum (IV cent BC), a contemporary and friend
of Plato, often remembered for his studies on harmonics.

As we already remarked, astronomy was one of the four fundamental disciplines
taught in the Pythagorean school. This is a fragment by Archytas, generally
regarded as authentic:

The mathematicians (τοί τερί τά ματήματα) seem to me to have arrived at
correct conclusions, and it is not therefore surprising that they have a true
conception of the nature of each individual thing: for, having reached such
correct conclusions regarding the nature of the universe, they were bound
to see in its true light the nature of particular things as well. Thus they
have handed down to us clear knowledge about the speed of stars, their
rising and settings, and about geometry, arithmetic, and sphaeric, and last,
but not least, about music; for these μαθηήματα seem to be sisters.32

The sisterhood of such disciplines and thus the homogeneity of their methods was
given by their common ground in the notion of number. Without dwelling into the
details of Pythagorean mathematics, it is nonetheless important to make a little
digression on the meaning and extent that such notion had in the Pythagorean
school.33

For the Pythagoreans numbers were, generally speaking, points having position.
As a consequence, numbers and figures were not separate entities, but deeply
interconnected concepts, every number corresponding and being embodied in a
definite geometrical figure.34 Accordingly, numbers could be linear, plane or solid.
Indeed, according to Anatolius, the Pythagoreans were the first to include under
the single word μαθηήματα both arithmetic and geometry, previously regarded as
separated disciplines. It has been suggested that such intertwinement came from

32Heath 1921a, p. 11.
33For more details on Pythagorean arithmetic and geometry see Heath 1921a, pp. 65–117,

141–169.
34This link is still present in English, which calls figure the digits of numbers.
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the observation of constellations, whose primary properties are the number of
stars and the figure they form.

Numbers-figures were not seen as static and isolated entities, but primarily
as moving or changing entities forming progressions, i.e. numerical-geometrical
successions unfolding according to a definite law or logos that determined the
reciprocal relationship between the successive terms. The main concepts involved
in the study of such progressions were those of ratio, proportion and mean.
Arithmetic, geometric and harmonic progressions embodied different possible
laws of succession. It is thought that the "discovery" of these specific kinds of
progressions came from experiments with musical tones, but one cannot exclude a
more abstract origin.35

It is generally thought that musical experiments were also the origin of the
fundamental tenet the Pythagorean natural philosophy that such progressions of
numbers-figures are somewhat printed in the natural (i.e. physical) phenomena,
and that therefore could be the key to their decipherment. Iamblichus reports the
Pythagorean motto all things may be compared to numbers, and a famous fragment
from Philolaus says that all things, at least those we know, contain number; for it
is evident that nothing whatever can either be thought or known, without number.
Successions of number-figures were seen as generated by some initial arché (the
unit), and by the logos (from the verb legein, meaning primarily to collect together,
to arrange) keeping together the terms of the successions and determining the
character of the succession itself. Thus, by analogy, these successions could
represent physical phenomena involving grow, decay and, of course, circularity.
This idea of mimesis (or, in Plato’s language, methexis) between progressions
of number-figures and the ever-changing phenomena of physis was a key, for the
Pythagoreans, to the solution of a capital problem of Greek natural philosophy,
i.e. that of the invariance in change.

In this regard, as Zellini has remarked, an utmost importance must be accorded
to another fragment of Philolaus, where it is asserted that number must be thought
according to the nature of the gnomon. The word gnomon here doesn’t allude
(only?) to the astronomical instrument, but to the number-figure that added or
subtracted to another number-figure gives a similar one, altering its magnitude
but leaving unchanged its shape. So, gnomonic constructions are progressions
of numbers-figures in which every term includes or is included in the preceding
one, the whole progression being self-similar. For the Pythagoreans these kind of
progressions were, on one hand, compared to the auto-similar and self-generating
processes that seem to be at work in many natural phenomena, and, on the other,
to the epistemological relationship between knower and known, one included
in the other and reciprocally implied in the act of knowledge. Mathematically
speaking, gnomonic constructions and procedures became an essential tool of
Greek geometric algebra (whose fundamentals were laid down in the Pythagorean
school) and the key-ingredient of computational procedures that run through the
entire history of mathematics.36

35A beautiful book on many mathematical topics based on imaginary Pythagorean dialogues
motivated by musical problems is Camiz 2019.

36See the wonderful Zellini 2007 for more details on the role of gnomonic construction in the
history of mathematics. We also can’t omit to mention the beautiful insights offered by Simone
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In close of this digression, it is important to remark that the subsequent
development of Greek mathematics refined these Pythagorean conceptions, pruning
its more mystical aspects, but without changing some of their essential features.
About arithmetics, for example, Gemino wrote (emphasis ours):

There is a division of arithmetic into the study of linear numbers, plane
numbers, and solid numbers: for it examines the classes of number in
themselves, as they proceed from the unit, and the generation of the plane
numbers, both similar and dissimilar, and the progression to the third
dimension.37

Turning back to astronomy, Proclus specifies that for the Pythagoreans ge-
ometry proper dealt with the study of magnitudes "at rest", while sphaeric
dealt expressly with magnitudes in motion, probably indicating the fact that
Pythagorean astronomy dealt primarily with progressions of number-figures. More-
over, the term spheric indicates that already in the first half of the IV cent. BC
such study of the heavenly motions was identified with that of a turning sphere.
We barely mention that, as well known, some form of heliocentrism was already
considered in the context of Pythagorean mathematics.

Archytas, in particular, is also regarded by later sources as one of the founders
of the Greek mechanical tradition. According to Diogenes

...he was the first to bring mechanics to a system by applying mathematical
principles; he also first employed mechanical motion in a geometrical con-
struction, namely, when he tried, by means of a section of a half-cylinder,
to find two mean proportionals in order to duplicate the cube.38

In other terms, Archytas seems the first to make an explicit use of what much later
was called geometria organica, a mechanical or rather kinematical approach to
geometry in which locii as lines and surfaces are conceived as traced or described
by the motion of points and lines. Later extant examples of this approach are
Archimedes’ spiral (defined by two simultaneous motions, one rectilinear and
the other circular) and Apollonius’ cones (defined by the rotation of a triangle
around one of its sides). In the lost Apollonius’ Plane Locii we know from
Pappus that geometrical figures were generally classified in fixed (εφεκτικοι),
progressing (διεξοδικοι) and revolving (αναστροφικοι), according as they were
regarded independently from their mode of generation or as generated by a
rectilinear or circular motion.39 It is impossible to trace the development of

Weil about pythagorean mathematics and Greek science in general (S. Weil 1966; S. Weil 2014;
S. Weil and A. Weil 2018).

37Evans and Berggren 2006, p. 247.
38Vitae Philosophorum, VIII, 83 (translated by Robert Drew Hicks). As Heath remarks,

among the solutions the Greek found to the famous Delian problem Archytas’ is "the most
remarkable of all, especially when the date is considered (first half of fourth century BC) because
it is not a construction in a plane but a bold construction in three dimensions, determining a
certain point as the intersection of three surfaces of revolution, (1) a right cone, (2) a cylinder,
(3) a tore or anchor-ring with inner diameter nil. The intersection of the two latter surfaces gives
(says Archytas) a certain curve (which is in fact a curve of double curvature), and the point
required is found as the point in which the cone meets this curve." (Heath 1921a, pp. 246–247)

39Loria 1893, p. 192.
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this idea from primary sources, but it seems very likely that such a kinematical
conception of geometric objects became a standard in Greek geometry, and as
such implied in their very same definitions. Also Euclid, for example, doesn’t
define the sphere as "the set of points equidistant from a given point", but rather
as "the figure described by the rotation of a semicircle around its diameter".40

The idea of reducing the complexity of astronomical motions to a combination of
circular motions has been often ascribed to Plato, that influenced by Pythagoreans
and on the basis of his own metaphysical views would have given a sort of
"assignment" to astronomers that marked all the subsequent development of this
science until Kepler’s law of ellipses. Putting aside the fact that Kepler himself
introduced ellipses for merely computational purposes and referring explicitly to
Archimedes, this enduring false myth about Greek astronomy originated from a
passage by Simplicius (VI cent. CE), who refers an opinion of the peripatetic
philosopher Sosigenes (II cent CE). Nevertheless, no trace of such a "principle" can
be found in Plato’s works, and Wilbur Knorr (1990) has convincingly demonstrated
that the ascription to Plato of such a specific "program" for astronomy is an
invention of later commentators, further alimented by the success of Ptolemy’s
Almagest.41

A younger contemporary and pupil of both Archyta and Plato was Eudoxus of
Cnidus, probably the greatest mathematician of the Hellenic period. Despite only
fragments of his works survived, we know that he was an illustrious predecessor
of Archimedes in the masterly use of the method of exhaustion,42 and that
the theory of proportion exposed in Book V of Euclid’s Elements is mainly
due to him. Notice that the importance of this theory was immense for Greek
mathematicians (as it later was for the modern ones, who started from it to build
the concept of real number), since it was based on general definitions of magnitude,
ratio and proportion framed in such a way to allow an equal treatment of both
commensurable and incommensurable quantities, thus solving the difficulties
emerged in Pythagorean mathematics. An outcome of this process was the logical
subordination of arithmetics to geometry that we see in Euclid’s Elements, where
the theory of numbers exposed in Books VII-IX is built upon the general theory
of proportions. This was indeed an inversion of the primacy of arithmetic over
geometry generally claimed by Pythagoreans that, incidentally, grounded also
arithmetic in the activity of drawing.

It was Eudoxus, as far as we know, the first to use a combination of circular
motions to account in a relatively simple way for the irregularities observed in

40The fact that also Archimedes could have easily defined the spiral more generally and
without appealing to motion is emphasized in Netz 2017, pp. 33–36.

41Of course this doesn’t mean that Plato’s philosophy had no influence on the development of
Greek mathematics (sure it had), but such influence should be assessed much more carefully than
sticking to the third-hand testimony of an author who writes almost one thousand years later
the things he talks about. In any case, there is no doubt that Plato’s influence has been much
less important than what asserted by later pseudo-platonic commentators, and it is likely that
the opinion exposed by Simplicius gained consensus among historians only because it matches
the above alluded narrative of a continuous and uninterrupted line of development going from
Plato to Ptolemy.

42According to Heath (1921a, p. 328), despite the previous works of Antiphon and Hippocrates,
it was Eudoxus who established the method "as part of the regular machinery of geometry."
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heavenly motions. His model, exposed in a lost work entitled On Speeds (Περί
ταχών), was based on a system of concentric spheres for each planet, rotating
around different axes and with different velocities, so that a point placed the
equator of the external sphere and carried by all these simultaneous motions
periodically traced a spherical lemniscate called hyppopede. In this way, identifying
the point with the observable position of a planet, the model gave an account
of planetary phainomena, namely the periodical inversion and restoration of the
direction of their motions with respect to the fixed stars.43

A long debated issue is whether Eudoxus’ spheres should be regarded as real
objects existing in physical space or as theoretical entities, i.e. mental models
constructed to account for the observed planetary phenomena. The question
pertains to the general problem of how mathematical entities were conceived by
the Greek mathematicians. Needless to say, the debate is still ongoing today. To
the question if mathematical entities are real objects or imaginary constructions
of our minds modern mathematicians hold quite different and often opposite views.
It is likely, as Lasserre holds, that also in Plato’s Academy different views were
represented.44

In the specific case of Eudoxus’ model, we think that it can be regarded
as a masterly application of Archyta’s kinematical/mechanical geometry to the
solution of a difficult astronomical problem, namely that of planetary stations and
retrogradations. Therefore, following Schiaparelli45 and Heath46 we find no basis to
ascribe any physical reality at all to Eudoxus’ spheres, geometrical computational
tools rooted in the specific mathematical techniques mastered by Eudoxus’ and his
fellows. Eudoxus achieved his goals by the study of the hyppopede, and also in this
he was a brilliant predecessor of Archimedes, who solved the celebrated problem
of squaring the circle by rectifying it with the help his kinematically-defined spiral.
Notice, in particular, that in Archimedes treatise the word for uniform is ισοταχέος
(literally with the same speed), which recalls directly the title of Eudoxus’ work
Περί ταχών.

The theoretical features of Eudoxus’ theory by themselves fit the possibility
to embed the model of concentric spheres in a real mechanical device. We don’t
know whether Eudoxus (or someone else) built at the time such a model (probably
not, considered the technical difficulties involved), but it is beyond doubt that
in Plato’s Academy sphairopoiia was common practice. Its use as a teaching aid
in astronomy is explicitly mentioned in the Timaeus, when talking just about
planetary motions - so complex that "only few among many" know their periods
and "by observation measure their ratios with numbers" - Plato writes:

43In modern times, the first to appreciate the full import of Eudoxus’ theory was the German
chronologist and astronomer Christian Ludwig Ideler around 1830. A beautiful reconstruction
of Eudoxus’ model and the still-today standard reference about it is Schiaparelli 1874.

44Lasserre 1964, pp. 11–42.
45Schiaparelli 1874.
46According to Heath Eudoxus’ model was "on purely mathematical lines", "the first attempt

at a purely mathematical theory of astronomy, and "constitutes one of the most remarkable
achievements in pure geometry that the whole history of mathematics can show." He also notices
that "there is a good deal of similarity of character between Archyta’s construction of the curve
of double curvature and Eudoxus’ construction of the spherical lemniscate by means of revolving
spheres." (Heath 1921a, p. 251)
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But the circlings of them and their crossings one of another, and the manner
of the returning of their orbits upon themselves and their approximations,
and which of the deities meet in their conjunctions and which are in opposi-
tion, and how they pass before and behind each other, and at what times
they are hidden from us and again reappearing send to them who cannot
calculate their motions panics and portents of things to come - to declare all
this without visible illustrations of their very movements were labour lost.47

It is also noteworthy that the mechanism of nested hemispheres described in the
myth of Er, put by Plato at the close of the Republic, has evident analogies with
Eudoxus’ planetary model. In support of this interpretation, we suggest that
Eudoxus’ theory may have represented an example of the "new astronomy" that
Plato invokes in this famous passage:

These decorations in the heaven, since they are embroidered on a visible
ceiling, may be believed to be the fairest and most precise of such things;
but they fall far short of the true ones, those movements in which the really
fast and the really slow—in true number and in all the true figures—are
moved with respect to one another and in their turn move what is contained
in them. They, of course, must be grasped by argument and thought [lit.
dianoetically ], not sight. [...] Therefore the decoration in the heaven must
be used as patterns for the sake of learning these other things, just as if
one were to come upon diagrams exceptionally carefully drawn and worked
out by Daedalus or some other craftsman or painter. A man experienced in
geometry would, on seeing such things, presumably believe that they are
fairest in their execution but that it is ridiculous to consider them seriously
as though one were to grasp the truth about equals, doubles, or any other
proportion in them. [...] Therefore, by the use of problems, as in geometry,
we shall also pursue astronomy ; and we shall let the things in the heaven go,
if by really taking part in astronomy we are going to convert the prudence
by nature in the soul from uselessness to usefulness.48

So, according to Plato, astronomers should not deal directly with visible bodies,
but with the medium of invisible entities that "must be grasped by argument
and thought" (read: via consistent theoretical models formulated in terms of
(successions of) numbers and figures) and their aim should be to seize "the equal,
the double and any other proportion" existing between the motions - the fast and
slow - of the heavenly bodies. The fact that this new kind of astronomy must be
pursued by the use of problems, as in geometry is a clear indication that Plato has
in mind a mathematical treatment, in which geometrical diagrams are set up in
such a way to satisfy some previously required properties, and by analogy imitate
(mimemata in the previous passage from the Timeaus) the heavenly motions.
This is exactly what Eudoxus did with his kinematical hyppopede, what probably
Archimedes did in his treatise on sphere-making and what we see realized in the

47Timaeus, 40D. Translation by Archer-Hind (1888). It is to be remarked that the role of this
dialogue in the history of Western philosophy was immense, being the only one of the Platonic
corpus to survive throughout the Middle Age.

48Republic, 529D. Translation by Bloom (1968) All the emphasis are ours. A review of the
proposed interpretations of this passage is in Bulmer-Thomas 1984.
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AM. Also, we could add, what in different guises mathematical astronomy has
always done ever since.

Whether it was Plato’s philosophy that influenced Eudoxus’ astronomy, or
Eudoxus’ astronomy that influenced Plato’s philosophy, no one can really say. Or,
rather, in such terms the question is ill-posed. The most natural interpretation
is that they influenced each other, philosophy and mathematics being clearly
in conversation within Plato’s Academy. Also, switching from philosophical to
strictly mathematical subjects we cannot exclude that the roles of master and
pupil could have reversed. Suggestive in this sense are an anonymous scholium
to Euclid’s Book V (perhaps by Proclus) where Eudoxus is mentioned as "the
teacher of Plato",49 and the fact that Eudoxus visited Plato’s Academy at least
twice during his life, at some years apart, after having founded his own school. In
other words, Eudoxus studied at Plato’s Academy, and then returned there as an
accomplished mathematician, namely the most revered of his generation.50

Eudoxus also composed a Parapegma and other works of astronomical content.
One of these was the Phenomena, partially preserved thanks to the famous poem
of Aratus and to Hipparchus’ later commentary to it. Here are some passages
from it, as quoted by Hipparchus:

There is a certain star that remains always in the same spot; this star is
the pole of the universe.
Between the Bears is the Tail of the Dragon, the end-star of which is above
the head of the Great Bear.
The Dragon’s Head moves where the limits of rising and setting are con-
founded [i.e. on the arctic circle]51

Apparently the Phaenomena was some sort of astronomical survey, containing
among other things a detailed uranography, i.e. a description of the relative
positions of stars and constellations made with reference to some standard circles
cut off from the celestial sphere. Since we know from Hipparchus that this treatise
had a content "almost identical" to another work entitled the Enoptron, the
reference to a sort of mirror in the title of this latter suggests that it could have
contained a description of a celestial mirror, i.e. a celestial globe "mirroring" the
celestial sphere. In any case, we know from Cicero that Eudoxus was the first to
build a globe with engraved the celestial parallels and the constellations,52 and it
is very reasonable to think that Eudoxus made use of actual globes in his work.

So, to sum up, despite none of his works survives, we know from reliable
sources that Eudoxus (1) studied in detail the sphere of the fixed stars, probably
making use of celestial globes, and (2) that for each celestial body set up the
problem of finding a system of concentric rotating spheres generating a spherical
curve, the hyppopede, that was required to satisfy in its progressive generation the
properties exhibited to observation by celestial motions. As far as we know, he

49Heath 1921a, p. 325.
50To be clear, a sort of guest lecturer. Indeed, Plato’s δήμιουργος, the artisan building the

world mentioned in both the Timaeus and the Republic seems to me nothing but a divine
mathematician whose Eudoxus furnished a natural model.

51Evans and Berggren 2006, p. 5.
52De Republica, 22.
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was the first to frame the general problems of mathematical astronomy in these
terms, and for this reason he may well be regarded as the first well-attested Greek
sphere-maker.

Eudoxus’ approach became the basis for much of the further developments
of Greek mathematical astronomy. Along the lines already indicated by the
Pythagoreans, astronomy became more and more a byword for kinematical spheri-
cal geometry, i.e. the theoretical study of a moving sphere. In Eudoxus’ Phaenom-
ena there are still references to the actual astronomical bodies (i.e. stars and
constellations), but these progressively disappear in favor of the study of a general
revolving sphere carrying with it tracing points drawing circles on its surface. This
process can be seen at work in all the surviving Greek astronomical works treating
about the daily motions of Sun and stars and the connected problems of rising
and setting times.53

The works of Autolycus (360 – c. 290 BC) are the oldest Greek mathematical
treatises fully extant today. In his On the Moving Sphere the study of the daily
motions of stars is carried out in the standard form of mathematical propositions
we’re still familiar with: the enunciation in general terms of the proposition to
be proved, the enunciation of the same proposition with reference to a diagram
referenced with letters corresponding to the relevant points, the proof of the
proposition, and lastly, in some cases, the conclusion phrased in terms similar to
the enunciation. In this treatise Autolycus considers the problems of rising and
setting times of stars, but does it by reference to an abstract sphere revolving
around one of its diameters and focusing on three kinds of circular sections,
corresponding to meridians, parallels and oblique circles like the ecliptic. These
are some of the propositions demonstrated in the treatise:

1. If a sphere revolves uniformly around its own axis, all the points on the
surface of the sphere which are not on the axis will describe parallel circles
which have the same poles as the sphere and are also at right angles to the
axis. [emphasis ours]
2. If the circle in the sphere defining the visible and the invisible portions
of the sphere be obliquely inclined to the axis, the circles, the circles which
are at right angles to the axis [i.e. the parallels] and cut the defining circle
always make both their risings and settings at the same points with respect
to the defining circle and further will be also similarly inclined to the that
circle.
9. If in a sphere a great circle which is obliquely inclined to the axis define
the visible and the invisible portions of the sphere, then, of the points which
rise at the same time, those towards the visible pole set later and, of those
which set at the same time, those towards the visible pole rise earlier.

Contemporary or shortly following Autolykos’ On the Moving Sphere, Euclid’s
Phenomena treats similar topics (some of their propositions are nearly identical)
and also the important problem of determining the length of daylight at a given
date and place on the Earth.54

53This progressive abstraction in the astronomical genre of Phenomena is pointed out in
Evans and Berggren 2006, pp. 4–8, and was already noticed by Proclus.

54See Berggren and Thomas 2000, pp. 1–6 for more details.
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This problem had already been treated and partially solved by Babylonian
astronomers with arithmetical methods. In particular, they realized that the
length of daylight on a given day is the same as the time it takes the semicircle
of the ecliptic following the Sun to rise as the point occupied by the Sun moves
across the sky from the east to west. Therefore, the total length of daylight
was computed (1) by assigning rising times to a set of consecutive arcs of the
ecliptic, and (2) by adding all the rising times relative to the particular 180° of
the ecliptic following the Sun on the given day. Euclid was probably aware of such
methods, but sticks to a geometrical approach and invokes arguments based on
the symmetry between opposite arcs of the ecliptic. According to Berggrenn and
Thomas, one of Euclid’s goals in the Phenomena was just to exhibit geometrically
the implicit symmetry assumptions underlying Babylonian numerical algorithms.

This is an early example of a general process occurring in Greek astronomy
during the Hellenistic period, i.e. the assimilation of empirical materials, results
and methods employed by Babylonian astronomers. This is a crucial feature
of Hellenistic mathematics, that was fully understood only in the XX century,
after the decipherment of Babylonian astronomical tablets. Since Babylonian
astronomy had developed for centuries using sophisticated arithmetical algorithms,
specifically adapted to astronomical computations, in the hands of Greek geometers
this assimilation took the form of a geometrical reinterpretation of arithmetical
computational methods.55 We already mentioned the lunisolar cycles embedded
in the back side of the AM, and other well-known examples are the adoption
by Greek astronomers of the zodiac, the 360 division of the circle (reflecting the
Babylonian sexagesimal numerical system) and Hipparchus’ use of Babylonian
period-relations in the construction of his astronomical models. Despite the loss
of all his works, it is generally agreed that Hipparchus played an important part
in this assimilation and re-elaboration of Babylonian mathematical methods, also
for his geographical area of activity in the eastern part of the Mediterranean.

Theodosius Spherics (II cent BC) is an introductory textbook on spherical
geometry. Despite no explicit reference at all to celestial bodies is ever made, the
three books contain theorems and problems involving circles cut from or drawn
on a sphere that are of immediate application to spherical astronomy. The whole
first book is often attributed to Eudoxus, and Theodosius seems to have been a
compiler of results known at least since Euclid’s time. As Thomas remarks, it is
likely that the theory of spheric sections exposed in the Spherics was preliminary
to the way more advanced theory of conic sections, such as that exposed in
Apollonius’ treatise.56 Here are some of the propositions:

I.1 - The plane through three points on the surface of a sphere cuts the
surface of the sphere in the circumference of a circle. Corollary. If a circle

55The origin of this theoretical difference is linked to the different material supports used
since millennia for writing in Mesopotamia and in the Mediterranean. On clay tablets arrays of
symbols made of strokes accompanied the development of symbolical or algebraical methods, on
papyri the possibility of drawing accurate figures fueled visual or geometrical approaches. This
remark is in Russo 2004.

56See Thomas 2018, in which a list of all the definitions and propositions of the Sphaerics is
given, together with some diagrams drawn using Mathematica software. The second book is
particularly interesting, since it develops a theory of tangency for circles on a sphere.
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is in a sphere, the perpendicular produced from the centre of the sphere to
it falls at its centre.
I.2 - To find the centre of a given sphere. Corollary. If a circle is in a sphere
and a perpendicular is erected at its centre, the centre of the sphere is on
the perpendicular.
I.20 - To draw a great circle through two given points on the surface of a
sphere.
I.21 - To find the pole of a given circle in a sphere.
II.5 - In a sphere, if two circles touch each other, then the great circle drawn
through the poles of one and the point of contact goes through the poles of
the other.

Even if they don’t express with these words, Sidoli and Saito have convincingly
argued that Theodosius’ Spherics was an application to spherical geometry of the
operational approach we find in Euclid’s Elements, with the difference that here
diagrams are drawn directly on a spherical surface:

...it is clear that ancient mathematicians were interested in developing
mathematical methods that directly modeled the possible operations of
actual instruments. Although the diagrams that have been preserved in the
manuscript tradition are generally purely schematic, our investigation has
shown that the problems in the Spherics were written in such a way that
they could be carried out on an actual globe and, hence, must have derived
from an interest in producing accurate diagrams. Indeed, there is evidence
in other mathematical texts that Greek geometers were interested in working
with instruments so as to produce metrically accurate diagrams.57

Quoting later testimonies corroborating this view, the authors conclude:

...the Spherics was written for students of spherical astronomy who would
have been interested in representing the principal circles of the celestial
sphere on a globe. Indeed, a globe inscribed with these lines could well
have been produced using the kinds of constructive techniques set fourth in
Theodosius’s seven problems. Although the text is structured as a purely
deductive treatise, it was written by and for individuals who used material
objects to aid in their investigations of the mathematical aspects of their
cosmos. As an elementary treatise, the Spherics not only develops the basics
theorems necessary for understanding the geometry of the sphere, but also
sets out a series of problems that would have been useful for anyone solving
problems in spherical geometry by drawing diagrams on a real globe.

It is in this context that spherical trigonometry was invented, probably by
Hipparchus, who is likely to have used it in his lost work on simultaneous risings.
Trigonometrical methods are also used by Ptolemy in the Almagest to deal
with the same problems and recent scholarship has brought convincing evidence
that here as elsewhere Ptolemy drew on the work of Hipparchus. Indeed, the
mathematical techniques Ptolemy employs seem to be only a portion of those used
for similar problems by his Hellenistic predecessors. From a comparison between

57Sidoli and Saito 2009, pp. 606–607.
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Ptolemy’s treatment of rising times (in Books II and VII of the Almagest and in
the Analemma), and Hipparchus’ Commentary on Aratus’ poem, Sidoli concluded
that:

...it [is] likely that Ptolemy based his work on material that originated
with, or was derived from, Hipparchus’s work on spherical astronomy. [...]
Whereas Hipparchus seems to have combined the analemma with the trigono-
metrical methods, Ptolemy took pains to base his spherical astronomy on
the trigonometrical methods alone. Even in Almagest VII, where Ptolemy
demonstrates how to find the degrees of the ecliptic and equator that rise,
culminate and set with a given star, he uses only the trigonometrical theorem
In fact, when Ptolemy introduces the mathematical theorems of ancient
spherical trigonometry he states that they will allow him “to carry out
most demonstrations involving spherical theorems in the simplest and most
methodological way possible”. By calling his approach simple and method-
ological, he is likely referring to the fact that it makes use of only one of
the two ancient metrical methods on the sphere.58

So, to sum up the content of this section, we have sketched how the development
of Greek spherical astronomy overlaps and actually coincides with the development
of the spherical geometry. The simplest version of sphairopoiia, celestial globes,
allowed, on one hand, to visualize the celestial sphere, i.e. the "abstract" or
theoretical model used to account for the phenomena; and, on the other, was the
very same instrument used to frame and solve problems included in this branch
of astronomy, perhaps by the drawing of diagrams directly on actual globes.

The point we wish to stress is that the distinction between the "abstract"
theory and the "concrete" model simply vanishes: the turning sphere is the theory,
in the sense that it is, by itself, the model of a certain set of phenomena. A globe
with the proper inscribed circles, properly inclined on its support to match the
local latitude, and rotating at the proper frequency, would be an exact realization
of such theory of the celestial sphere, an analog computer of some well-definite
celestial phenomena and the simplest form of sphairopoiia in the broader sense
we have outlined above.

The originator of this thread, Eudoxus of Cnidus, already tried in his treatise
On Speeds to extend the same approach to another class of problems, i.e. those
involving the motions of Sun, Moon and planets. By the study of a kinematically-
generated spherical lemniscate, the hyppopede, he was able to account at least in
a qualitative way for the periodical occurrence of planetary stations and retrogra-
dations. This was a huge step, but after his immediate successors, Callippus and
Aristotle, we have no clue of other attempts to explain planetary motions with
tridimensional models. The only exception, in the view we here propose, would
be Cicero’s testimony on Archimedes’ sphaira, which is generally believed to have
been a tridimensional device.

58Sidoli 2004, p. 82.
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1.4 Mechanics and Circular Motions
Whereas the principle of circular motion in the context of Greek astronomy has
been matter of debate, turning to mechanics things are much easier, since circular
motion has occupied a central role in it from very remote times, and never ceased
to ever since.

The oldest extant Greek work on mechanics is the anonymous collection of
Mechanical Problems, a list of 35 how and why questions about motion, weight-
lifting, friction and other practical problems involving levers, screws, pulleys and
other simple machines. The work survived as part of the pseudo-aristotelian
corpus, but apparently no one believes it was written by Aristotle himself. A
possible candidate is Strato of Lampsacus, the successor of Aristotle at the head
of the Lyceum. Winter (2007) has argued that also Archytas is a possibility. In
any case, no scholar has supported a date of composition later than the early III
cent. BC.

In spite of its elementary character, the Mechanical Problems are extremely
interesting for many reasons. The importance of this treatise was huge also for
the rising of modern mechanics, being still considered fundamental at the time
of Galileo, who lectured upon it in Padua, and Newton, who quotes from it full
passages in the Principia.59 In it we find very important results that will prove to
be crucial, like the parallelogram rule for the composition of motions (see below)
and a first attempt to distinguish the concepts of mass and weight.60

This is how mechanics is introduced at the beginning of the work:

One marvels at things that happen according to nature, to the extent the
cause is unknown, and at things happening contrary to nature, done through
art for the advantage of humanity. Nature, so far as our benefit is concerned,
often works just the opposite to it. For nature always has the same bent,
simple, while use gets complex. So whenever it is necessary to do something
counter to nature, it presents perplexity on account of the difficulty, and
art [techne] is required. We call that part of techne solving such perplexity
a mechane. As the poet Antiphon puts it: "We win through techne where
we are beaten through nature." Such it is where the lesser overcomes the
greater, and when things having little impetus move great weights. And we
term this entire class of problems mechanics.61

So, mechanics is explicitly identified with a class of problems relating to something
that happens contrary to nature and therefore surprisingly, like those in which a
small weight moves a bigger one. Most of these problems deal with moving bodies,
and the answers involve geometrical diagrams which are meant to representmotions
in an abstract way. Most questions ask about the cause (aitia) of something that
is known to happen from experience in dealing with some device (e.g. "through

59Rose and Drake 1971.
60See Problem 9: "Why is an empty balance beam easier to move than a weighted one? In

the same way also a wheel or any such thing, the heavier is harder than the smaller and lighter.
This is true not only opposite the weight, but sideways. Opposite to its tilt it is harder to move
anything, but there is no tilt sideways." (Winter 2007, p. 17).

61Winter 2007, p. 1.
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what aitia larger balances are more accurate than smaller ones?") and the answer
generally lies in some geometrical property of the diagram representing the motion
of the device (in this case, the motion of the balance). The author immediately
points out this sort of mixed character of mechanical problems:

Mechanics isn’t just restricted to physical problems, but is common alike to
the theorems of mathematics as well as physics: the how is clear through
mathematics, the what is clear through physics [read natural philosophy ].

This is indeed, as far as I know, the first explicit mention outside the astronomical
and musical domains of the hybrid status of mathematical physics, in which
problems related to the concrete, physical world are formulated and solved in
mathematical terms.

Despite the hypothetical-deductive method of Euclid is yet to come, in the
Mechanical Problems we clearly perceive the emergence of the need for a theory of
mechanics, in which the solutions to problems are to be deduced by some assumed
principle, in the absence of which it is difficult to proceed.62 Such a guiding
principle for mechanics in general is found in the properties of circular motion,
the origin of the all the tricks and the key to their explanation:

The circle contains the first principle of all such matters. This falls out quite
logically: it is nothing absurd for a marvel to stem from something more
marvelous still, and most remarkable is for there to be opposites inherent in
each other, and the circle is made of opposites. It derives from the moving
and the standing, whose nature is opposite each the other. [...] Though
one (apparent) absurdity may suffice about the circle, a second is that it
moves opposite motions. It moves backwards and forwards at the same time.
[...] Therefore, as was said earlier, there is no surprise at its being the first
principle of all marvels. Everything about the balance is resolved in the
circle; everything about the lever is resolved in the balance, and practically
everything about mechanical movement is resolved in the lever.63

Aside from these philosophical arguments about the co-existence of opposites
(commonplace in Greek natural philosophy), from the mathematical point of view
the fundamental property of circular motion is the following:

Further, many of the marvels about the motion of circles derive from the
fact that, on any one line drawn from the center, no two points are swept at
the same pace as another but always the point further from the motionless
end is quicker.

It is important to remark that - coherently with the Greek general practice of
considering figures - the motion here considered is, primarily, the motion of the full
circle. This motion entails that of all its parts, and here it is remarked that points

62See for example Problem 32, which asks a question involving friction: "Why do objects
thrown stop? Is it because the projective force leaves off? Counter-pull? Slope, if it be greater
than the throwing force? Or is it foolish to mull such an impasse, absent the principle?" (Winter
2007, p. 34). Significantly, the question is left unanswered.

63Winter 2007, p. 2.
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internal to a rotating circle at different distances from its center have a different
velocity. It is clearly pointed out, in particular, that the points of any rotating
radius have speeds ranging from zero to a maximum, and later it is specified more
precisely what this means:

The basis of this is to ask why in the circle is the point standing farther
from the center moved faster than the one nearer, when the one nearer is
moved by the same force. The “faster” has a double meaning. For if in less
time it has crossed equal space we say it is faster; and likewise if in equal
time it has crossed more space. The greater in equal time draws a bigger
circle, and the outer is bigger than the inner. [emphasis ours]

So the essential point of the explanation is that all the points of the radius of a
rotating circle move simultaneously, and since in the same time the bigger line
sweeps a bigger circle it is said faster. It is to be noted that here the author is
not measuring the velocity of points in terms of ratios between traveled distances,
but in terms of ratios between swept areas. In other terms, areal velocity is
here considered, and not linear velocity. This aspect, that may be surprising
for modern readers used to point-mechanics, is indeed a consequence of the fact
that the author of the Mechanical Problems has in mind real objects like levers,
balances and gears, so there is no question that the points on the diagram could
be conceived as "disconnected" one another.

If one considers the diameter (i.e. the measure-across, a term used also for
polygons and other figures) of such circles, it is immediate to see that at the two
sides of the center points move also in opposite directions. This is the principle of
gears transmitting motion to each other, as the author immediately points out:

From the circle going opposite ways at the same time (e.g., one end of
the diameter, at A, is moved forward, the other, at B is moved backward)
some have set up so that from one movement, many circles are in opposite
motions, such as they have dedicated in temples, having made the little
wheels out of bronze and steel. For if circle CD touches circle AB, CD will
be moved backward when the diameter of AB is moved forward, so long as
the diameter is moved in place. So the circle CD is moved just the opposite
of the circle AB. And that circle again will move its neighboring circle EF
just the opposite to itself, and for the same reason. In the same way, if there
be more, they will all do this, being moved by one circle alone. So taking
this underlying nature of the circle, craftsmen make a machine hiding the
cause, so only the marvel of the mechanism is visible while the cause is
unseen.

This is the first extant mention of gear-work in the Greek literature, and the
evidence that gears were employed at least since the early III cent. BC in fairly
complex devices. Such contrivances placed in temples are also ascribed to Archytas
by later sources.

In explaining why of two concentric circles rotating together the bigger is faster,
the author introduces two more important elements pertaining to the theoretical
analysis and synthesis of motions.

The first is what much later was called parallelogram rule for the composition
of simultaneous motions. It is expressed as follows:

40



Figure 1.2: Diagram of rotating gears from the Mechanical Problems (source: Winter
2007, p. 3).

Figure 1.3: Composition of simultaneous motions in the Mechanical Problems (source:
Winter 2007, p. 4).

Whenever the moving point is carried in some ratio [logos ], it is necessarily
carried in a straight line, and it becomes the diagonal of the scheme that
the lines make which are stretched in that proportion. Let the logos the
point is carried be the ratio AB has to AC. Let AC be swept toward B. Let
AB be swept towards CE. Let A be carried up to D, and the line AB up
to F. If the vector ratio is that which AB has to AC, of necessity AD has
that ratio to AF. The small four-sider is proportional to the larger since the
diagonal is same for both, and the point A will be at Z. The same thing will
be seen no matter where the conveying gets stopped: Point A will always
be on the diagonal.

This is, incidentally, another example of kinematical generation of a figure, in
this case a parallelogram, which is conceived as swept out by the two sides.
The word that Winter translates vector in Greek is phora (φορα), which means
carriage, transport, and the proposition deals with the ratios between simultaneous
transports or displacements or motions of points and lines. The accompanying
diagram is therefore in all respects a diagram of motions or of velocities, since it
represents two simultaneous displacements and their combined result.

The second is a rule for the decomposition of circular motion :

To every line drawing a circle, this happens: it is both conveyed according
to nature along the periphery and carried contrary to nature, to the side
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and to the center. Being closer to the anti-pulling center, it is overcome by
it more. That the lesser circle is moved more contrary to nature than the
larger is clear from the following...

Without entering in the details of the argument, the important point is that also
circular motion is conceived as the result of the composition of two elementary
and simultaneous motions, one along the periphery (i.e. along the tangent) and
one towards the center. These, later on, are treated independently and called
motion according-to-nature (κατα φυσιν) and motion contrary-to-nature (παρα
φυσιν). The comparison of two distinct circular motions is made in terms of a
proportion between the corresponding components:

There has to be a proportion: the according-to-nature [κατα φυσιν] in the
large is to the according-to-nature [κατα φυσιν] in the small as the contrary-
to-nature [παρα φυσιν] is to the contrary-to-nature [παρα φυσιν].64

So, in short, the author gives some elementary rules indicating how rectilinear
and circular motions may be analyzed in components. The difference between the
two motions is that in circular motion the two components "have no ratio" to one
another. Following Russo’s interpretation, we take this statement as a reference
to Euclid’s definition of ratio between two magnitudes (probably introduced by
Eudoxus), according to which two magnitudes are said to have a ratio to one
another if by adding the small one to itself a sufficient number of times it eventually
becomes greater than the big one. So, more precisely, the author is saying that
the motion toward the center is infinitesimal with respect to the motion along the
tangent, a statement that will be made rigorous by Archimedes in the Spiral.65

To summarize, in the Mechanical Problems we find the first extant mathemat-
ical treatment of the phenomena of motion by the use of diagrams of velocities
representing simultaneous displacements of lines and points, for which are given
some elementary rules dictating how these should be theoretical analyzed and
constructed. The properties of circular motions, in particular, are indicated as the
cornerstone for the solution of mechanical problems. It is particularly noteworthy
that, already in this early work one finds the concept of areal velocity alongside
with that of linear velocity, which indeed is included in the former. In the Greeks
perspective this is not so surprising, since dealing with ratios between simultaneous
displacements, there is little difference, in principle, whether one deals with ratios
between lengths or areas.66

During the III cent. BC many of the ideas exposed in the Mechanical Problems
were fully developed and the mechanics greatly enlarged its scope both practically

64Winter 2007, p. 8.
65See Russo 2019, pp. 113–116 for more details on this point.
66In this regard, it is to be remarked that Kepler introduced the concept of areal velocity in

early modern astronomy just recollecting Archimedes’ practice to replace infinite sums of "small
distances" with infinite sums of "small areas" (Astronomia Nova, Chap. XL). Also, Kepler
was one of the few who appreciated the often disregarded Book X of Euclid’s Elements - the
longest book of all - where a general theory of commensurability is exposed. Here, magnitudes
are classified according to the character of the ratio formed by them and by their squares. Of
course Kepler read it in light of his own mystic views, but also didn’t fail to grasp its theoretical
relevance. For more details see Simon 1979, pp. 149–155, 358–366.
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and theoretically. In particular, it was turned in a rigorous scientific discipline,
methodologically homogeneous to the other branches of Hellenistic mathematics.
Despite only a small portion of his mechanical works survive - namely, that dealing
with problems of statics - it is sure that Archimedes took a strong part in this
process, and it is hardly imaginable that he didn’t treat also dynamical problems
involving forces and motions of bodies. From Hero’s Mechanica we infer, in
particular, that in the context of mechanics also the principle of inertia, connected
to the phenomena of friction and only adumbrated in the Mechanical Problems,
received an explicit formulation.

In the Hellenistic period also machine-design came to be based on sound
theoretical principles and standardized methods. This aspect is made clear, for
example, in Philo’s Belopoeica, an extant portion of a bigger Mechanike Syntaxis.
In it Philo discusses many aspects of machine-design, dwelling at long on how
only a proper interplay between theory (i.e. mathematics) and experimentation
can lead to success (emphasis ours):

I suppose you are not unaware that the art [technē] contains something
unintelligible and baffling to many people; at any rate, many who have
undertaken the building of engines of the same size, using the same design,
similar wood, and identical metal, without even changing its weight, have
made some with long range and powerful impact and others which fall
short of the ones mentioned. Asked why this happened, they could not
give the reason [aitia]. Hence the remark made by Polycletus the sculptor
is pertinent to what I am going to say. He maintained that excellence is
achieved gradually through many numbers. Likewise, in this art [technē],
since products are brought to completion through many numbers, those who
deviate slightly in particular parts produce a large total error at the end.
Therefore, I maintain that we must pay close attention when adapting the
design of successful engines to a distinctive construction, especially when
one wishes to do this while either increasing or diminishing the scale.67

This aspect of scale is essential, and throughout the treatise Philo insists on the
importance of symmetria as a general principle of machine-design. By symmetria
Philo means the search for a common measure, a unit element, to which the
sizes of all the parts composing the machine must be referred. If the machine
is designed in such a way that all the parts are commensurate with this single
element, the scalability of the device is in principle guaranteed.68 In the case of
catapults, such element is found in the diameter of the hole through which the
elastic ropes run through.

There is no doubt that such notion of symmetria (literally same measure)
played a crucial role also in sphairopoiia. Symmetria between what? On one hand,
between the dimensions of the different parts of the device (e.g. between the gears’
tooth-number and radii of), and, on the other, between the actual time relations
used to model celestial motions. In the AM a clever use of prime-factors between
period-ratios, for example, is the key to the optimal use of a small number of gears,

67Quoted in Schiefsky 2015, to which the reader is referred for more details on Philo’s method
in machine-design.

68See also Di Pasquale 2019, pp. 110–122 on this point.

43



some of them being shared by multiple gear-trains.69 In this perspective, it is sure
that the heliocentric hypothesis, indicating the solar year as a natural common
factor among all the planetary periods, provided essential design indications for
sphere-making. Indeed, the whole structure of the AM, centered on the solar
wheel, is by itself a strong indication of the heliocentric character of its design,
also suggested by Cicero’s description of Archimedes’ sphaira, where it is said that
all the motions were obtained "by a single conversio". It is no case, after all, that
no working planetarium has ever been built in the modern era before Copernicus,
albeit the practice of sphairopoiia had been resurrected well before.

1.5 Hellenistic Dynamical Astronomy
In 1994 Lucio Russo first proposed a conjectural reconstruction of the astro-
nomical knowledge available at the time of Hipparchus’, based on the study of
pre-ptolemaic sources and therefore independent from Ptolemy’s testimony. The
texts Russo analyzes are from literary authors dating back to the period of in-
terruption of astronomical studies occurred between II cent. BC and II cent. CE
and reporting scientific ideas from the Hellenistic period. All these authors are
extraneous to the scientific method of Greek mathematicians, therefore in some
cases a certain hermeneutical effort is required to extract from them relevant
informations. However, Russo’s study is sound and, in our opinion, his conclusions
very convincing. Since the period of Hipparchus is also the period of construction
of the AM, Russo’s analysis could be very relevant for the not less conjectural
reconstruction of the planetary mechanisms of the AM. However, Russo’s paper
seems to have been ignored by all those who worked on this problem. Here we
summarize the most important points of his paper in the perspective of the present
dissertation. For more arguments and additional details the reader is referred to
Russo’s works.70

This is a passage from Plutarch’s dialogue De facie quae in orbe lunae apparet :

Yet the moon is saved from falling by its very motion and the rapidity
of its revolution, just as missiles placed in slings are kept from falling by
being whirled around in a circle. For the motion according to nature [κατά
φύσιν] governs each thing unless it is diverted by something else. That is
why the moon is not governed by its weight, [which is] balanced by the
rotatory motion. However, there would be more reason to wonder if she
were absolutely unmoved and stationary like the earth.71

And, a little later, another speaker of the dialogue says:

To philosophers one should not listen if they want to repulse paradoxes with
paradoxes and in struggling against opinions that are amazing fabricate
others that are more strange and amazing, as these people do in introducing
their "drift towards the centre". What paradox is not involved in it? ...

69See in particular Freeth, Higgon, et al. 2021 on this point.
70See, in particular, Russo 2004, pp. 282–319.
71Moralia, 923C-D.
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Not that incandescent masses of one thousand talents drifted through the
depth of the earth, stop if they should reach the centre, though nothing
encounter or support them; and if they, drifted downwards with impetus,
should go beyond the centre, they turn back and swing ...? Not that pieces of
matter cut off from either side of the earth should not be drifted downwards
forever but falling upon the earth force their way into it from the outside
and conceal themselves about the centre? Not that a turbulent stream of
water drifted downwards, if it should reach the centre, a point which they
themselves call incorporeal, stops suspended, moves in a circle around it,
oscillating in an incessant and perpetual see-saw? ...72

In these passages we have a clear exposition of the idea that the motion of
the Moon, like missiles in slings, is the result of a twofold effect, namely that
of a rectilinear motion "according to nature" and that of a "drift towards the
center". We have seen an identical analysis applied to mechanical circular motion
in the Mechanical Problems, and indeed the word that Russo translates as "drift"
is the same φορά used in the Mechanical Problems to denote the transport or
displacement of a body due to actual carrying, push or pull. We notice that
such homogeneity in the use of technical terms is by itself an indication that the
theoretical treatment of motions in astronomy and mechanics was the same in
the more mature stages of Hellenistic mathematics.

As Russo remarks, Plutarch uses this noun and the corresponding verb φέρω
exclusively to describe varying motions, i.e. motions of bodies whose velocity
varies in magnitude and/or direction. The "paradoxes" described in the second
excerpt, which are typical solutions to dynamical problems of central force, are
clearly different examples of motions resulting from such a "φορά towards the
center". Therefore we agree with Russo’s conclusion:

The whole excerpt of Plutarch is therefore consistent, both for the qualitative
features of the described motions and for the terminology used, with the
possibility that his source might have exposed a dynamics based on the law
of inertia and on the idea that what is today called a "force" (in particular
gravity) could not uniquely determine the motion, but only the variations
of the velocity.73

The main adversary in the polemics against "mathematicians" which includes
the above passage about the "paradoxes" of the "φορά towards the center" is
Hipparchus, and many other elements indicate that he is the main source of the
scientific content of Plutarch’s dialogue. It is noteworthy that such dialogue was
known and well studied in the early modern era by Kepler and Newton, who also
reports in the Principia the same sling argument in discussing centrifugal forces.

The identification of Hipparchus as the source of Plutarch is confirmed by
Simplicius, from which we known that Hipparchus had written a treatise with
the title On bodies drifted downwards by heaviness (Περί των διά βαρυτητα κατω
φερομένον). Simplicius reports that in this treatise it was explained that the
motion of a body thrown upwards vertically is, first, upwards with decreasing

72Moralia, 923F - 924A. It
73Russo 1994, p. 216.
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velocity, and then downwards with increasing velocity, and that Hipparchus
ascribes "the same cause also in the case of bodies let fall from on high". The
unification of the explanation of these two motions is possible, as Russo remarks,
only in a theory which deals with accelerations of bodies, which in the two cases
is the same, and not only with their velocities, a further confirmation of Russo’s
interpretation of Plutarch’s passages.

In Seneca’s Naturales Quaestionaes we read:

The five planets force themselves upon our attention. Occurring in one
place or another they compel us to be curious. Recently we have begun to
understand what their morning and evening risings mean, their positions,
the time of their movement straight forwards, why they move backward.
Whether Jupiter was rising or whether it was setting or retrograde (for that
is the term they have given to it when it recedes) - we learned only a few
years ago. People have been found who would say to us: "You are wrong if
you judge that any star either stops or alters its orbit. It is not possible for
celestial bodies to stand still or turn away. They all move forward. Once
they are set in motion they advance. The end of their orbital motion will be
the same as their own end. This eternal creation has irrevocable movements.
If they stop at any time it means that the bodies which are now maintained
by a constancy and equilibrium will fall on each other. What is the reason,
then, that some celestial bodies appear to move backward? The encounter
with the sun imposes upon them the appearance of slowness, as well as the
nature of their paths and their circles which are so placed that at a fixed
period they deceive observers. In the same way ships seem to be standing
still even though they are moving under full sail".74

Here we find, first of all, another allusion to the principle of inertia, according to
which planets, once set in motion, always advance "straight forwards". Secondly,
Seneca mentions clearly the illusory character of planetary stations and retrogra-
dations, which from time to time "deceive" the observers by the arrangement
of the their "circles" ("natura viarum circolorumque sic positorum...") in the
same way as "ships seem to be standing still even though they are moving under
full sail". In other terms, Seneca is reporting the heliocentric explanation of
planetary stations and retrogradation, dating back at least to the III cent. BC
and based essentially on the relative character of the observable celestial motions.
Moreover, it is explicitly said that the Sun plays a role in the phenomenon ("Solis
occursus..."), an element which is hardly understandable in a geocentric setting.

In this regard, it is important to remember that relativity of motion in general
and the consequent non-observability of "true" celestial motions had been clearly
demonstrated by Euclid in the Optics (namely as Theorem 51). It is barely
necessary to remark the relevance of optics for astronomical observations, and
it is likely that Euclid’s theory of vision formed the necessary background of
Aristarchus heliocentric model. Thirdly, it is noteworthy that in Seneca’s source
it was said that celestial bodies. if stopped, would "fall on each other", implying
the idea of a reciprocal attraction between them.

74Naturales Quaestiones, VII, xxv, 5-7.
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Figure 1.4: Russo’s restoration of the the diagram described by Vitruvius’ in De
Architectura, IX, 11-13 (source: Russo 2004, p. 301).

In Lucretius75 there are similar remarks about the illusory character of planetary
phenomena and their connection with relativity of motion, with the important
addition that also the immobility of Sun and Moon, suspended in the sky, is indeed
a false appearance and due indeed to their very being in motion, an argument we
already found in Plutarch’s sling analogy.

On of the most impressive results of Russo’s paper is the restoration of the
meaning of two parallel and otherwise incomprehensible passages from Pliny and
Vitruvius mentioning some "triangular rays" emitted by the Sun. These are the
following:

... [The planets], struck in the aforesaid place, are prevented by a triangular
ray of the sun from moving straight forward and they are drawn upwards
by [its] burning force.76

... the mighty force of the sun extending its rays in the form of a
triangle draws to itself the planets as they follow, and, as it were curbing
and restraining those which precede, prevents their onward movement and
compels them to return to it ... and to be in a "signum" of the other [out
of two] triangle. Perhaps it will be asked why does the sun draw, by these
heats, [the planets] in the fifth "signum" away from itself rather than in the
second or third, which are nearer. I will therefore explain how this seems to
happen. Its rays are spread out in the universe on the lines of a triangle
with equal sides. Now [each side] extends neither more nor less than to the
fifth "signum" away from its one ...77

The word "signum" in Vitruvius’ passage is a calque of the Greek σεμειον, the
technical term indicating a point in Euclid’s geometry, and Russo’ key insight is
that these passages refer to a geometrical construction involving triangles with
a vertexes placed in the Sun and two legs connecting it to successive positions
of a planet. Russo’s conjectural restoration of the diagram described is showed
in Fig. 1.4, where a circular motion is analyzed in a series of simultaneous
displacements directed along the tangent and towards the Sun. In short, Vitruvius
sources applied to the motion of planets around the Sun the same decomposition
of a circular motion we have already seen multiple times.

75De Rerum Natura, IV, 387 - 394.
76Naturalis Historia, II, 69.
77De Architectura, IX, i, 11-13
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In Seneca we also find the following passages:

Apollonius [of Myndus] says that the Chaldeans place comets in the category
of planets and have determined their orbits.78

Apollonius of Myndos has a theory different from Epigenes. He says that
a comet is not one body composed of many planets but that many comets
are planets. A comet, he says, is not an illusion or fire extending from the
edges of two planets but is a celestial body on its own, like the sun and
the moon. It has a distinct shape thus: not limited to a disc, but extended
and elongated lengthwise. On the other hand its orbit is not clearly visible.
A comet cuts through the upper regions of the universe and then finally
becomes visible when it reaches the lowest point of its orbit.79

These references to comets, and in particular their being compared to planets, is
very significant from the theoretical point of view, since the occurrence and visual
appearances of comets and planets could hardly suggest anything in common
between them. Moreover, as Russo remarks, the peculiar character of cometary
phenomena makes them a true hallmark of a dynamical approach, no theory of
comets being conceivable in a purely kinematical approach to heavenly motions.

The same remark applies to Hipparchus’ well-known recognition and calculation
of the precession of the equinoxes, hardly deducible in purely kinematical approach
to the analysis of celestial motions.

Finally, we should add that during the II cent. BC a theory of tides had
been probably developed by Seleucus, who may have used it to get a proof of
the motions of the Earth.80 This is suggested by the following statement from
Plutarch:

... Did [Timaeus] put the earth in motion ... and ought the earth, globed
about the axis extended through all, be understood to have been devised
not as confined and at rest but as revolving and turning, as Aristarchus
and Seleucus afterwards maintained that it did, the former stating this as a
hypothesis, the latter demonstrating it?81

So, to sum up, it seems that at the time of Hipparchus a heliocentric and
dynamical theory of heavenly motions had been developed, similar in its essential
features to Newtonian or classical dynamics. In particular, it was based on a
principle of inertia and on the idea that deviations from such "natural" motion are
due to the mutual interactions of celestial bodies among themselves. Such theory
was used to account for planetary and cometary motions, and its application to
tides would have provided a dynamical justification to Aristarchus’ heliocentric
hypothesis.

Of course, these ideas are at odds with many commonplace views about Greek
astronomy, mainly drawn from Ptolemy’s Almagest, where no clue of dynamics
may be found.

78Naturales Quaestiones, VII, iv, 1.
79Naturales Quaestiones, VII, xvii, 1-2.
80A reconstruction of the long-term history of the theory of tides may be found in Russo 2020.
81Moralia, 1006C.
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No doubt that, if Hellenistic mathematicians had developed a dynamical
astronomy, it must have been something significantly different from Newton’s
original theory, which involves many mathematical, philosophical and metaphysical
conceptions that are completely extraneous to Greek mathematics. Among these,
we just mention the insistence on the notion of cause82 and the connected absolute
conceptions of times, space and motion.83 In other terms, If Russo’ reconstruction
is correct, we would expect from mathematicians like Archimedes, Apollonius and
Hipparchus some form of dynamics that is free from such ideas, any conceivable
Hellenistic astronomical treatise being necessarily something very different from
Newton’s Principia. Indeed, all the astronomically relevant propositions of the
Principia are in essence the analysis or construction of diagrams representing the
possible orbits of celestial bodies, i.e. the three conic sections. These problems
are treated with the method of first and last ratios, exposed in the first two books
of the Principia, which is indeed is another application of the ancient Greeks’
kinematical or mechanical approach to the generation of geometrical objects. As
Newton wrote in his De Quadratura Curvarum:

Quantitates Mathematicas non ut ex partibus quam minimis constantes,
sed ut motu continuo descriptas hic considero. Lineæ describuntur ac
describendo generantur non per ap-positionem partium sed per motum
continuum punctorum, superficies per motum linearum, solida per motum
superficierum, anguli per rotationem laterum, tempora per fluxum contin-
uum, et sic in cæteris. Hæ Geneses in rerum natura locum vere habent et
in motu corporum quotidie cernuntur. Et ad hunc modum Veteres ducendo
rectas mobiles in longitudinem rectarum immobilium genesin docuerunt
rectangulorum.84

In short, from the strictly technical point of view, Newton’s dynamical theory of
gravity may be regarded as a set of problems internal to a kinematical/mechanical
version of Apollonius’ theory of conic sections, specifically applied to the motion of
celestial bodies (regarded by Newton as parts of a cosmic machine).85 Especially
relevant in this regard is Book V of Apollonius’ treatise, in which the curvature
properties of conics are studied, and his lost works on On Contacts (τερί έπαφων),
where the general problems of circles of contacts were treated.86

Recent Newtonian scholarship has emphasized the crucial role that the problem
of curvature has played in the shaping of Newton’s dynamics, a theoretical
ingredient that is much more central than what may appear from the published
versions of the Principia. Here, methods involving curvature appear only in

82See the quote above from Gemino.
83As well known, these ideas were abandoned in the subsequent evolution of classical dynamics.

One could also mention the universal character, a realistic view of mathematical objects and
the very same metaphor of physical law as Newton conceived it (Zilsel 1942). A general and
accessible portrait of Newton and his works is Guicciardini 2021.

84For more details on Newton’s mathematical methods see Guicciardini 2009. For the debts
that Newton owes to the ancients, see Russo 2004, pp. 365–378.

85See in particular the Preface to the Principia. It is worth remembering that Newton believed
in the myth of the prisca sapientia, which to him included also his law of gravitation (ascribed
to Pythagora).

86Loria 1893, pp. 190–192.
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the second edition as "alternate proofs", but from Newton’s manuscripts it has
emerged that curvature methods were indeed primary in the early formulations of
the theory, namely before the correspondence with Hooke suggested to Newton
the connection between central forces and Kepler’s area law.87 One of the most
important features of these methods is that they don’t require to appeal continually
to limiting procedures.88 Brackenridge has analyzed in detail the role and use of
different approximation methods in Newton’s published and unpublished works,
concluding that the real "key" to his dynamics (and therefore to classical dynamics
in general) lies in his analysis of circular motion and in its use to approximate
curves by their osculating circle.89

In particular, curvature methods lead systematically to way simpler solutions
to the same problems as compared to other methods, and overall today it is clear
that the theory exposed in the Principia could have been much simpler than it
actually was.90 In fact Newton himself embarked in the project of revisioning it,
but in the end such a task proved too big and was never carried to completion.
According to Brackenridge, however, there were also other, extra-scientific reasons
why Newton didn’t adopt curvature methods as basic:

The disadvantage of the proposed revision is that it appears to restore
the devices of uniform circular motion to a prominent position in the
analysis of celestial motion. But there has been a fundamental change.
For the Scholastics, uniform circular motion occurs in the absence of a
force. Newton’s circular motion, however, requires a centripetal force that
changes with position along an elliptical orbit. But if that difference is not
clearly understood, then Newton could be seen as returning to the scholastic
tradition and in that sense he would be reactionary. However, Newton
may not have been willing to take the risk of being misunderstood. He
’toyed’ with the idea and then set it aside. If the diagram for Proposition
6 had been revised [by the addition of the circle of curvature], however,
the text would have been much more understandable to nineteenth- and
twentieth-century physicists and, perhaps, the Principia would have been
read as much as it has been revered.91

87Nauemberg 1994.
88See for example Chandrasekhar 1995, p. 78.
89For more details see the beautiful Brackenridge 1995, a very clear exposition of the content

of the first three sections of Newton’s Principia.
90Indeed, the central role of curvature in Newton’s dynamics must have been clear to Huygens,

probably one of the few who had the mathematical knowledge necessary to understand and
appreciate Newton’s Principia when it first appeared. Huygens had developed independently a
theory of evolutes mathematically equivalent to that exposed by Apollonius in Book V, which
could have been used to solve the same problems attacked by Newton in the Principia. However,
the Dutch Archimedes, as Huygens was sometimes called, applied his theory to rectification
of curves and to the design of accurate pendulum clocks, and never dealt with dynamical
problems such as those addressed by Newton in the Principia. Though impressed by Newton’s
mathematical skills, Huygens was never convinced by his views about absolute space, time and
motion, and started a project to re-establish the foundations of mechanics on a relativistic
grounding. He died too early to complete such a project, but his beautiful insights may be
found in his manuscript notes, first published in Mormino 1993. It is also noteworthy that the
approximation of the orbits by osculating circle was explicitly used by Leibniz, who had been
Huygens’ pupil, in the Tentamen (for more details see Aiton 1964).

91Brackenridge 1988.
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Figure 1.5: Hipparchus’ diagram. The motion of D as seen by O is the same as the
motion of T as seen by H.

Later on we will see how simple Newton’s solution to Kepler’s problem may actually
be, if one doesn’t get so scared about circular motions. Quite paradoxically, we
will see how in this way Newtonian dynamics may indeed be freed from many of
the metaphysical (and useless) ideas that obscure its inner simplicity.

1.6 Hipparchus’ Diagrams
At some point during the III cent. BC, plane astronomical models made their
appearance in Greek astronomy, under the well-known form of eccentric circles
(literally off-center circles) and epicycles (literally circles upon circles). The origin
of these models in the context of astronomy is a complete mystery. The earliest
extant allusion to such constructions (and also of their equivalence in terms of
saving the phainomena) is Gemino’s above quoted passage about the different
approaches of mathematicians and natural philosophers to astronomical problems.
We wish to emphasize that, excluding Ptolemy’s interpretation and use of such
models, all we know about eccentrics and epicycles from other sources is their
name, which says something only about their structure as diagrams composed
of circles, and the fact that they were used in some way to account for celestial
motions.

Different non-exclusive possibilities have been conjectured. Eccentrics/epicycles
could have been the result of stereographic projection of some Eudoxian tridi-
mensional model, or maybe a simplification resulted from Greek absorption of
Babylonian astronomy, in which it was common practice to disregard ecliptic
latitude altogether. Therefore, plane models would have been a way to match
and put to profit Babylonian observations and computational techniques, with
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Babylonian numerical period relations translated as relations between the frequen-
cies of rotation of eccentrics/epicycles. This seems to have been, in particular,
Hipparchus’ geometrical translation of Babylonian numerical relations involving
planetary periods.

The analogy between eccentrics/epicycles and the pin-slot device found in the
Moon mechanism of the AM has opened a new and more evidence-based track to
the solution of this problem, i.e. that such constructions could have a mechanical
origin in the context of sphairopoiia. This possibility is explored by J. Evans and
C. C. Carman (2000), where the authors conclude:

Everything considered, it would have been easier to arrive at a mechanical
representation of Moon and inner and outer planets based on the pin-and-
slot mechanism simply by starting from the phenomena than by starting
from epicycle-and-deferent theory.

In this paper it is also remarked that between eccentric/epicycle models and
pin-slot device there is only a quasi-equivalence, since the two are equivalent only
with regard to observed angular motion. It seems noteworthy that this is the only
relevant magnitude for ancient naked-eye planetary astronomy (and for a device
like the AM), putting aside the fact that the variations of distances predicted by
(a realistic interpretation of) eccentrics/epicycles are completely wrong and in
plain contradictions with observations in the case of the Moon.

Coherently with the general epistemological framework of Hellenistic astronomy,
as we said above, we think that also for the problems of Sun, Moon and planets the
evolution of theoretical models eventually coincided with that of concrete models
which embodied the theory itself. In other terms, such distinction is simply a
fake distinction, a sort of modern mirage, eccentrics/epicycles constructions and
pin-slot devices being, astronomically speaking, one and the same thing. Like with
Eudoxus’ spheres, we find no reason to ascribe any physical character neither to
eccentrics/epicycle constructions (apart from Ptolemy’s later view of them), nor to
the pin-slot gearing. All these constructions can and should be regarded as mere
tools for computation internal to a well definite theory. Drawn on paper, they
are theoretical diagrams representing the solution of some astronomical problem;
mechanized with gears, they became analog computers of such solutions. Since the
name usually associated to eccentric/epicycle models are those of Apollonius and
Hipparchus, we will call the whole class of eccentric/epicycle/pin-slot constructions
Hipparchus’ diagrams.

Now, the question is: if we reject Ptolemy’s interpretation and use of such
constructions, what could have been the original meaning of Hipparchus’ diagrams?

Putting together the pieces laid down in the present chapter, our conjecture is
that such diagrams were originally diagrams of velocities, resulting from the appli-
cation of Apollonius’ theory of conic sections to the solutions of an astronomical
problem, namely that of computing the succession of relative motions of two given
celestial bodies. Consistently with what is suggested by pre-ptolemaic sources, we
think that this solution derived from a dynamical theory of celestial motions based
on the idea of mutual attraction between bodies, so that these diagrams embodied
in their structure the kinematical relationships of two given bodies attracting
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each other, i.e. the velocities and accelerations of a given body around a given
center of attraction. As we will see, it turns out that conic sections and Newton’s
dynamics are hidden in the structure of Hipparchus’ diagrams, and therefore in
the gear-work of the AM. If our conjecture is correct, in such a framework a device
like the AM was an analog computer of the solutions of a well-definite problem
internal to such a dynamical theory of celestial motions.

But, before getting there, it will be better to trace the route that led a
later follower of the Greeks to free classical dynamics from all the metaphysical
dust covering its foundations, and to discover the hidden symmetry that, if our
interpretation is correct, made the "law of gravitation" easily visible to the eye of
Greek geometers.
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Chapter 2

William Rowan Hamilton.
The Classicist Mathematician

William Rowan Hamilton was born at Dominick Street, Dublin, the night between
the third and the fourth of August, 1805. At about three years old he was sent
to his uncle James Hamilton, curate of Trim, to be raised and educated in a
more comfortable environment. James took care personally of William’s first
instruction, and soon realized that his nephew was a rare prodigy.

Uncle James was a graduate of the Trinity College of Dublin, renewed scholar
of the Classics and skilled linguist very passionate about oriental languages. As
it happens, the first domains in which William displayed his intellectual talents
were reading and languages. When he arrived at Trim he already read the Bible
in English, but under the guide of his uncle he immediately started to learn
Hebrew. Uncle James had his own teaching methods, consisting in spelling all
the monosyllabic words of the dictionary in which the letter a occurred, then
those with the letter b, and so on through all the alphabet; after covering all
the monosyllabic words, he moved on to words of two syllables, and so on. As
Hankins remarks,1 from the very beginning Hamilton familiarized with obscure
words that most adults had never heard or seen, and probably only his precocity
saved him from total confusion. In any case, with him James’ method gave his
results: after Hebrew Hamilton rapidly absorbed Latin and, above all, Greek, in
which he became so proficient to astonish all the learned visitors with his precise
and expressive readings of Homer. He soon passed to oriental languages, and at
eleven years old wrote a little book on Syriac Grammar. It ends like this:

Thus have I gone through what is necessary to be known for reading and
writing Syriac - the forms of their pronouns, and of their regular nouns and
verbs; thus comprising in four chapters the Rudiments of Syriac Grammar.
Soon may be expected an account of their irregular and indeclinable words,
etc., with a Syntax.

Also in view of a possible diplomatic career in the East India Company, by the
age of thirteen Hamilton had already learned a dozen languages including Arabic,

1Hankins 1980, p. 13. Hankins’ book is an excellent biography of Hamilton, dwelling also on
his mathematical works.
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Hindu, Sanscrit, Chaldee and Malay, besides of course all the modern European
languages. When the Persian Ambassador visited Ireland in 1819, apparently the
young William was one of the only two people in the whole country able to write
him a welcome letter in his native language.

Another domain in which Hamilton showed an extraordinary ability that never
left him throughout his life was computation. Since his early childhood he enjoyed
making long mental calculations of whatever could occur to him, usually devising
his own methods to do it more efficiently. At thirteen years old he confronted Zerah
Colburn, an American boy who was famous at the time for his out-of-ordinary
computational skills and traveled around Europe exposed by his father. Hamilton
lost, but, most importantly, two years later he met Colburn again and didn’t miss
the occasion to ask him about his methods. Then he tried to figure out how and
why these worked, and dwelled at length comparing Colburn’s methods and his
owns, in search for better ones. On April 8th, 1820, he wrote to his cousin Arthur:

I have been considering the methods which Zerah imparted to me of calculat-
ing the square and cube roots in particular, and I wish to put this question
to him, viz.- Can his method be of any use to discover the nearest square
to surd numbers or those which have no exact square root? If not, it will
deduct much from its practical utility. As the great use of extracting square
root is in operations wherein there will scarcely ever occur an exact square.
[...] You may remember my mentioning that he started a new difficulty with
respect to his other operation of discovering the factors of high numbers...
It is indeed less simple than I at first supposed it to be. [...] I expect to find
more and more light on this subject as I continue to consider it...2

Hamilton later recalled that it was the first meeting with Colburn to first arise
his interest in arithmetic and mathematics in general. However, for some time
mathematics was to Hamilton mainly a diversion from the Classics, the main
topic of his studies in view of the admission to the Trinity College.

In mathematics Uncle James couldn’t help him so much, and Hamilton was
almost totally self-taught. His first approaches were Newton’s Arithmetica Uni-
versalis and Clairaut’s Algebra, which he rapidly mastered. One of his albums
dated 1818 contained a "Compendious Treatise on Algebra", in which he sum-
marized his new learning, together with a "Grammar of the Sanscrit Language",
an "Arabic Praxis" an "Analyisis of a passage in Syriac".3 When he discovered
Euclid’s Elements his interest for arithmetic and algebra somewhat declined, but
only to be rekindled by the discovery analytic geometry, by which he remained
deeply fascinated. This is a passage from a letter dated September 4th, 1822, to
his cousin Arthur, in which he summarized the course of his first mathematical
studies:

It is now a good while since I began Euclid. Do you remember when I used
to go to breakfast with you, and we read two or three propositions in the
morning? I was then so fond of it, that when my uncle wished me to learn
Algebra, he said he was afraid I would not like its uphill work after the

2Graves 1882, pp. 78–80.
3Graves 1882, pp. 54–55.

55



smooth and easy path of Geometry. However, I became equally fond of
Algebra, though I never mastered some parts of the science. Indeed the
resources of Algebra have probably not yet exhausted... Three years ago
I read Stack’s Optics. If you add to what I have mentioned some popular
knowledge of Astronomy, you will have the whole of my acquirements in
Science, at the beginning of last year. I was lent at that time Brinkley’s
Astronomy and a Trigonometry, which I read, but had not time to make
myself sufficiently acquainted with them. I bought an Ephemeris, and my
favourite amusement was calculating and observing occultations of stars
by the moon; eclipses too, but there were not any to observe. But in
August, while the King was in Dublin, my uncle gave me Lloyd’s Analytic
Geometry. Ill-omened gift! it was the commencement of my present course
of mathematical reading, which has in so great a degree withdrawn my
attention, I may say my affection, from the Classics. It prepared the way
for Puissant, Garnier, Lagrange. I soon became quite fascinated with it...
My next attempt was so much of Newton’s Principia as is read for the
Science Medal. In June I was lent Garnier. At Christmas I was made a
present of two Nautical Almanacks, which gave me a new impulse to observe
the heavenly bodies. In June I was lent Garnier, and some other French
mathematical books, which I nearly read through since, though only at
stolen intervals from my classical studies with my uncle.

As emerges from this sketch, in these years Hamilton also got into astronomy. He
made a great amount of observations, reported them in his journals and wrote
letters full of astronomical calculations. His greatest excitement came from eclipses,
and in some letters he confessed that waiting for their predicted occurrence he
could "think of nothing else". He also started designing his own instruments: he
turned a tall tower in a field at Trim in a sun-dial, drawing from it meridian and
hour-lines, built a quadrant by himself and also devised a telegraphy system to
communicate with his friends at a distance.

It is to be remarked that the acquaintance with languages in general, and with
Greek in particular, strongly interacted with his scientific studies. Throughout
his youth Hamilton spent a huge amount of time reading and, more importantly,
translating texts in different languages, ancient and modern. It was probably the
deep and prolonged study of so many idioms involving different symbols, grammar
rules and semantical structures to imprint him that unparalleled attention to the
origin, use and meaning of words and symbols that will become a hallmark of
his future mathematical researches. More specifically, his familiarity with Greek
gave him insights into scientific terminology that often came directly from a
clear understanding of the received names used to denote abstract concepts and
operations.

How early was his habit of questioning and analyzing the received mathematical
terminology is well illustrated by the following remarks, dated 1822 (he was less
than seventeen years old), about the meaning of division and other arithmetical
operations:

Division, according to the most obvious definition, is the dividing of a
quantity into a given number of parts, whence that number is called the
Divisor. This kind of Division was probably the first made use of, but is very
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limited in extent, not admitting any Divisors but such as are real positive
integer numbers; in short such as are the series 1, 2, 3, 4, etc.. The result of
this operation always bore the same proportion to the original number that
Unity did to the Divisor. By adopting this property as a definition, namely
that Division is the finding of a fourth proportional to Divisor, Unity, and
Dividend, all sorts of Numerical Divisors were admitted.

But there is another view of the subject, naturally suggested by the
term Quotient; namely, that Division is the finding how often one quantity
is contained in another. This is the Definition at present generally adopted.
The distinction between it and the former is, that in this the Divisor must be
homogeneous to the Dividend; in the former it must be a number. Perhaps
the best definition of Division would be "the finding that quantity which
multiplied by the Divisor will produce the Dividend".

Before I quit this subject I may be allowed to remark that all the branches
of Arithmetic are applied in a much more extensive manner than was
contemplated by the inventors of them. By the introduction of negative and
fractional quantities, operations that diminish are included under Addition
and Division. As the boundaries of science were extended, new operations
were designed by old names. The name of Geometry shows that it was at
first confined to what is now only a subordinate part of it, Mensuration: and
Calculation itself, the objects of which are so extensive and so wonderful,
continues to record by its etymology its humble origin in the rude custom
of counting by pebbles.4

As we will see, twenty years later exactly the same kind of reflections will form
the background of his theory of quaternions.5

Indeed, from the very beginning Hamilton showed a great originality and
independence of thought, striving to find his own ways to attack mathematical
problems without resorting to what others had done before him, and soon con-
fronting on equal grounds with the authors he studied. Needless to say, he could
often find new and better solutions to old problems. This is, for example, how he
described his first approaches to Euclid’s more advanced propositions:

To return to Euclid: I have since read through the six Books on this plan:
when I am walking, or otherwise prevented from graver pursuits, I glance
at the title of a proposition and then work it, having resolved not to assist
myself by text or figure until I conquer the difficulty by my own resources.
In general I find this very easy - sometimes not. Still I have observed my
rule. The hardest question I met was Euclid, iv.10: to construct an isosceles
triangle having each angle at the base double that at the vertex. I found by
Analytic Geometry that the base must be the greater segment of either side,
cut in extreme and mean ratio, and then formed a demonstration depending
only on the Second Book of Euclid. On referring to his text, I saw that
the construction was the same, but the demonstration quite different, being
entirely from the Third Book, and therefore less simple than mine.6

4Graves 1882, pp. 101–102.
5It is noteworthy that the introductory chapter of Kendall and Tait (1873) is almost a

paraphrase of these remarks.
6Graves 1882, p. 140.
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A clearer idea of the kind of reflections in which he was engaged while studying
Euclid is given by a little dialogue entitled Waking Dream, or fragment of a
dialogue between Pappus and Euclid, in the meads of Asphodel, composed in 1823,
at seventeen years old.7 In it Pappus asks a series of questions to Euclid about
the composition of the Elements. This is how it begins:

Pappus. And now that we have discussed these more recent improvements
in that science of which you are held the inventor, permit me to inquire
how you were enabled to deduce consequences so remote from principles
so simple: inform me what it was that first suggested to your mind the
consideration of those Theorems which have come down under your name?
For so successful have you been in disguising the Analysis which you pursued,
that to this day even the learned are doubtful whether your discoveries were
made by a gradual process, like that which conducts to truths the minds of
other men: or whether they were imparted as an immediate gift from Him
who constructed for the Bee its wondrous habitation - of whom it has been
justly said, ΄Ο Θεός γεωμετρεΐ.

Euclid. It was not unintentionally that I adopted, as the medium of
communicating to my contemporaries those results at which I arrived, a
Synthesis, which presented them under a form the best adapted to excite
astonishment, and to disguise the process of discovery. To exoterics the
science appeared more interesting as it was more mysterious; and for myself
- if the world had known all the fortuitous circumstances to which I owed
the perception of so many Theorems, would they have reverenced as they
did the Mathematician of Alexandria? The inventor of a curious piece
of mechanism does not expose his artifice to the vulgar eye; nor does an
architect, when he as erected a magnificent edifice, leave the scaffolding
behind. Or think you that the nest of the Phoenix, with its odorous flame,
would be regarded with the same veneration, were its place accessible to
human foot? Yet now, since here no motive to disguise remains, I am willing,
if such be your desire, to reveal the entire process of discovery.

After a question about the origin of Definitions, Postulates and Axioms, Pappus
asks about the "intellectual ground" from which Euclid began, and this is the
answer:

E. While yet a boy my imagination had been captivated by the ’Eternal and
Immutable Ideas’ of my illustrious contemporary [Hamilton’s note: "Plato"].
I sought to discovery what I could fancy to have been in the Divine mind the
archetype of Figure: something simple, perfect and one. I found it in the
equilateral triangle: and from the contemplation of this figure, Geometry as
a Science has arisen.

P. Was not the Circle at least equally simple?
E. You forget that those late discoveries on which our conversation turned

not long ago have shown the circle to be the limit of regular rectilinear
figures. [Hamilton’s note: "If you conceive an Equilateral Triangle, a Square,
Pentagon, Hexagon etc, inscribed successively in a Circle, you will find

7Graves 1882, pp. 662–671. In Greek mythology the Asphodel is one of the rivers of the
underworld.
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Figure 2.1: Optical origin of Euclidean superposition according to the seventeen-years
old Hamilton (source: Graves 1882, p. 668).

Figure 2.2: Astronomical generalization of Euclidean superposition according to the
seventeen-years old Hamilton (source: Graves 1882, p. 669).
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that they go on approaching to it; so that some have called a Circle a
Regular Figure of an infinite number of sides.] Of these the simplest is
evidently the equilateral triangle. [...] I might mention, as another reason for
attending to a rectilinear figure rather than to a curvilinear, the natural bias
of the human mind to consider a straight line in some way emblematic of
rectitude, and a curve of the contrary; a remark confirmed, I believe, by the
etymological analogy of all languages: [Hamilton’s note: "Curvo dignoscere
rectum, atque inter silas Academi quaerere verum."] and which has had
so strong an influence on the ideas of those who have inquired into the
constitution of Nature, that every curve is thought to be a deviation from
a line, and it has been questioned whether curvilinear motion be possible
without som external and ever-acting force. [Hamilton’s note: Newton’s
Law of Rectilinear Motion was suspected by some among the ancients.]
[...] Besides, the idea which I entertained of symmetry, and of the το
καλόν, induced me to attend only to regular figures, regarding none else as
symmetric and beautiful.

The Waking Dream is disseminated with wonderful glimpses into the young
Hamilton’s ways of thinking. We just quote the explanations of the origin of
Propositions 4 and 5 and of the idea of superposition of triangles, which is
particularly interesting:

E. Chance. Having graved the diagram in this simple form upon a transpar-
ent substance, I happened to turn it in such a manner that when placed
between my eye and light, the uninscribed surface was next my eye, and
the diagram assumed the appearance here delineated [see Fig. 2.1]. You see
that the lines themselves appear to preserve the same position; but that the
letters are altered in such a manner that β and γ, δ and ε, have mutually
changed places. [...] Thus you have been admitted to behold my discovery
in its embryo state. You will find no difficulty in perceiving how the idea
of applying one triangle to another having been once suggested, I was led
by my love of generality, and the desire I had to diminish the labour of
this demonstration by throwing some of it into a preparatory theorem, to
form the 4th Proposition, which was to me the more easy as I had been
accustomed to observe the motions of fixed stars round the Pole, revolving
as they do in concentric circles, and in such a manner, that if you select any
three bright stars α, β, γ, the distance αγ, βγ continue always the same, as
also the angle at γ; and, therefore, the triangle alters not in reality, however
differently it may be placed to the eye [see Fig. 2.3]. In demonstrating this
4th Proposition separately, the fundamental principle employed therein to
prove equality being conceived coincidence, I was induced to form the eighth
axiom, as also the tenth in words, though I have already mentioned that it
occurred to my mind on a former occasion.

And the dialogue concludes thus:

P. Even for this brief and rapid sketch I thank you. Many however of my
most interesting questions remain behind. I wished to have inquired about
the origin of several theorems more curious and less likely to have been
intuitively perceived; the equality of the three angles of every triangle to
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Figure 2.3: Entrance of the Trinity College of Dublin in the late XIX century. Photo
by William Mervin Lawrence (source: Wikipedia).

two right angles, and the 35th Proposition in particular. But see, stalking
yonder through the shades, the murderer of Archimedes! Let us disperse in
haste, and meet again by Lethe’s banks. Bring with you, if you find him,
the Samian Sage.8

In this very same period Hamilton started to study differential calculus, and
in about a year he had absorbed and mastered Laplace’s monumental Mécanique
Celeste. He did it so well, indeed, that he detected a slight error in the deduction
of the parallelogram rule.9 This vaulted him the attention of John Brinkley,
Royal Astronomer of Ireland, from whom William received assistance and warm
encouragements to pursue his mathematical studies. When he payed him a visit
at Dunsink Observatory, he brought with him a certain number of original papers
about osculating circles, surfaces of double curvature and other topics that he had
developed all by himself.

After the entrance at Trinity College, even if a the great share of his studies
was still devoted to the Classics, Hamilton’s attention drew more and more on
contemporary mathematics. In addition to his normal courses, under the guide of
his tutor Charles Boyton Hamilton became familiar also with the mathematical
curriculum of the French École Polytechnique, at that time by far the most
important institution in the world for pure and applied mathematics.

A letter sent to the cousin Arthur on September 28th, 1823, gives a flavor of
the kind of student Hamilton was:

...My life as a Student has always to me be divided into two principal parts -
8The Samian Sage is clearly Aristarchus, contemporary of Euclid. The Lethe is another river

of the Greek underworld, associated with the ideas of oblivion, forgetfulness and concealment
preliminary to the unveiling of truth, α-λεθηια. See above.

9Hamilton’s analysis and correction of Laplace’s error can be found in Graves 1882, pp. 661–
662.
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preparation for Entrance; preparation for Fellowship. The part is over, and
I think the second has begun. For I consider Academic honors as not only
valuable per se, but important as steps (gradus) to the ultimate rank at
which I aim. And were it only for the weight they must give to answering
in the Fellowship Hall, I would think them well worth an effort to attain.
So you see I am trying to prove that in reading for premiums [i.e. the
honors at Term Examination], I am really aiming higher. But besides this,
which you may perhaps think a subtlety, whatever study is not given to my
immediate course has a tendency to prepare me for remoter objects, and yet
at the same time facilitates my intermediate progress. For example, I have
found an old Logic by Burgersdicius;10 it is, I believe, read for Fellowship;
it is a great deal fuller Murray’s [i.e. the text-book of Logic for the Term
Examinations], and throws a good deal of light in those parts which he
passes rapidly over - for example, the Categories. It tells you, too, what
Aristotle said on every part of the subject... A little time, too, is bestowed
on Newton’s Algebra, a subject that is treated of by the great author in the
same masterly manner as the Principia, and yet in many parts is rendered
almost as difficult, by its conciseness and omission of intermediate steps. In
Classics I continue the Blank Verse Translation, and Uncle is correcting the
Virgil. So much for my studies...11

Hamilton’s college career was, as expected, more than brilliant: he ranked
first at all Term Examinations, won all the medals he could and earned an optime
in two disciplines - Greek and Physics -, something that apparently had never
happened before him.12 However, it didn’t last long: when still an undergraduate,
at less than 22 years old, Hamilton was offered the place of Royal Astronomer of
Ireland left vacant by Brinkley, and the connected chair of Andrews Professor of
Astronomy at the Trinity College. He accepted, and kept this position from 1827
until his death in 1865.

A sort of childish joy continued to animate Hamilton’s research. He spent
his life at the Dunsink Observatory, often isolated (above all at the end of his
career), applying his mathematical prowess to every problem attracted his interest,
opening entire new fields of research and giving groundbreaking contributions in
any domain he touched. He corresponded with many of the leading scientists of his
age (Arthur Cayley, Augustus De Morgan, John Herschel, just to mention some
of them), took stimuli from everyone but always followed his own very original
views, often at odds with those of his contemporaries. In a letter to Aubrey De
Vère dated 1835 he recognized this fact quite plainly:

I differ from my great contemporaries, my ’brother-band’, not in transient
or accidental, but in essential and permanent things: in the whole spirit
and view with which I study Science.13

10Franck Pieterszoon Burgersdijk (1590 - 1635), Dutch logician and natural philosopher.
11Graves 1882, pp. 148–149.
12At the time, an optime was a true rarity at Trinity College, meaning that the candidate

was out of scale, having displayed a mastery of the subject comparable to that of the examiners.
13Graves 1882, p. 319.

62



Figure 2.4: Photograph of William Rowan Hamilton in his late years (source:
Wikipedia).

Despite often misunderstood by his "brother-band", he achieved great honors
already in his lifetime, and since the advent of quantum mechanics his name is
known to every physicist.

For some time in his youth, Hamilton had been undecided about what career
to pursue, if in the Classics, which to him meant also poetry, or in mathematics.
In the end, also thanks to the advice of his dear friend William Wordsworth, he
chose mathematics, but of course the love for the Classics never left him. He
kept writing poems, and we will see the crucial role that Greek models will play
throughout his mathematical career. However, Hamilton’s ambitions went way
beyond the veneration of the Ancients:

I have been continuing my Classics, as usual, with my uncle. But I fear
I shall never be so fond of them as of the Mathematics that I am now
reading. [...] Who would not rather have the fame of Archimedes that of
his conqueror Marcellus, or than any of those commentators of Classics,
whose highest ambition was to be familiar with the thoughts of other men?
If indeed I could hope to become myself a Classic, or even to approach in
any degree to those great masters of ancient poetry, I would ask no more;
but since I have not the presumption to think so, I must enter on that field
which is open for me. Mighty minds in all ages have combined to rear upon a
lofty eminence the vast and beautiful temple of Science, and inscribed their
names upon it in imperishable characters; but the edifice is not completed:
it is not yet too late to add another pillar or another ornament. I have
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scarcely arrived at its foot, but I may aspire one day to reach its summit.14

It is exactly what he did.15

2.1 The Introductory Lecture on Astronomy
A good starting point to enter Hamilton’s more mature conceptions of mathemat-
ical sciences is the Introductory Lecture on Astronomy he delivered in November
1832, at 27 years old.16 In this lecture, the first of a full course in Astronomy rang-
ing from the Greeks to Newton’s dynamics, Hamilton exposed his general views
about the status, epistemology and methodology of pure and applied mathematics.
With obvious nuances, he’ll remain quite faithful to these ideas throughout his
long and varied career, and these views, as we’ll see, impressed a peculiar character
to much of his mathematical researches.

After a general and highly rhetorical introduction about astronomy, "the parent
of all sciences, and the most perfect and beautiful of all" - Hamilton starts his
lecture emphasizing that the course he’s going to deliver marks the passage from
the sciences of pure reason - "the logical, the metaphysical, and the mathematical"
- to the physical sciences - "in which reason is combined with experience" -,
astronomy being "a favourable introduction to the rest, and a specimen and type
of the whole". However, before entering this new field, Hamilton recalls to his
audience "the nature and spirit" of two pure mathematical sciences they’re already
acquainted with, namely geometry and algebra:

In all the mathematical sciences we consider and compare relations. The
relations of geometry are evidently those of space; the relations of algebra
resemble rather those of time. For geometry is the science of figure and extent;
algebra, of order and succession. The relations considered in geometry are
between points, and lines, and surfaces; the relations of algebra, at least
those primary ones, from the comparison of which others of higher kinds are
obtained, are relations between successive thoughts, viewed as successive
and related states of one more general and regularly changing thought. Thus
algebra, it appears, is more refined, more general, than geometry; and has
its foundation deeper in the very nature of man; since the ideas of order
and succession appear to be less foreign, less separable from us, than those
of figure and extent.

Both these pure sciences, algebra and geometry, are called into question in the
study of motion:

Motion, although its causes and effects belong to a physical science, yet
furnishes, by its conception and by its properties, a remarkable application
of each of these two great divisions of the pure mathematics: of geometry, by

14Letter to Aunt Mary Hutton, August 26th, 1822 (Graves 1882, pp. 110–111).
15The reader who is familiar with Giacomo Leopardi (1798 - 1837) won’t fail to notice the

deep affinities between him and Hamilton, two intellectual giants who turned out to be the
greatest poet and the greatest mathematician of their age.

16Hamilton 1833a.
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its connexion with space; of algebra, by its connexion with time. Indeed, the
thought of position, whether in space or time, as varied in the conception of
motion, is an eminent instance of that passage of one general and regularly
changing thought, through successive and related states, which has been
spoken of as suggesting to the mind the primary relations of algebra.

So, the observation of motion, although rooted in experience, is for Hamilton the
primary source of this general idea of regularly ordered succession of states. This
idea lies, in Hamilton’s view, at the foundation of algebra, in the same way as the
idea of extension is the intuitive ground for geometry; and the abstract study of
motion, involving both the ideas of space and time, is a natural application of
both geometry and algebra. It is clear from the context that Hamilton is thinking
to astronomy, where, without inquiring about causes and effects, one studies in
an abstract way the regular successions of configurations of heavenly bodies going
through progressive and related states.17

The ideas of order, number and figure, as deductively developed in the pure
sciences of algebra and geometry and as applied to astronomy, compose the
"scenery of an inner world" in which we may study continuous change in general:

We may add, that this instance, motion, is also a type of such passage;
and that the phrases which originally belong to and betoken motion, are
transferred by an expressive figure to every other unbroken transition. For
with time and space we connect all continuous change; and by symbols of
time and space we reason on and realise progression. Our marks of temporal
and local site, our then and there, are at once signs and instruments of that
transformation by which thoughts become things, and spirit puts on body,
and the act and passion of mind are clothed with an outward existence,
and we behold ourselves from afar. The idea of order, with its subordinate
ideas of number and of figure [...] appears to be only the development of
our original powers, the unfolding of our proper humanity. Foreign, in so
far that they touch not the will, nor otherwise than indirectly influence our
moral being, they yet compose the scenery of an inner world, which depends
not for its existence on the fleeting things of sense, and in which the reason,
and even the affections may at times find a home and a refuge.

So, the very same concepts of number and figure are subordinate to the ideas of
ordered progression suggested by astronomical motions, being mere instruments
through which this human ordering faculty operates. Ultimately, all physical
sciences, dealing with change in space and time, deal with motion, and live for
Hamilton between these two worlds of thoughts and things :

It has been said, that in all the mathematical sciences we consider and
compare relations. But the relations of the pure mathematics are relations
between our own thoughts themselves; while the relations of mixed or applied
mathematical science are relations between our thoughts and phenomena.
To discover laws of nature, which to us are links between reason and
experience - to explain appearances, not merely by comparing them with

17Compare this idea with that exposed in the passage of the Waking Dream above quoted
about the origin of the Euclidean idea of superposition of figures.
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other appearances, simpler or more familiar, but by showing an analogy
between them on the one hand, and our own laws and forms of thought on
the other, “darting our being through earth, sea, and air” -18 such seems to
me the great design and office of genuine physical science, in that highest
and most philosophical view in which also it is most imaginative.

It is noteworthy that to Hamilton laws of nature are neither something purely
descriptive of the phenomena, nor a pure product of our minds, but rather
expression of an analogy between the inner world of our reason and the outer world
of appearances, between our mathematical inventions and natural phenomena,
the ultimate aim of physical sciences being to build and exhibit a correspondence
between the two. In this perspective, a physical theory should become at its
maturity co-extensive with the phenomena it describes. In a draft of the lecture
Hamilton is more explicit on this point, giving as chief example Newton’s theory
of dynamical astronomy:19

And so say I with respect to the observation of phenomena, even when
combined with mathematical calculation: that the visible world supposes an
invisible world as its interpreter, and that in the application of mathematics
themselves there must (if I may venture on the word) be something meta-
mathematical. Though the senses may make known the phenomena, and
mathematical methods may arrange them, yet the craving of our nature is
not satisfied till we trace in them the projection of ourselves, of that which
is divine within us; till we perceive an analogy between the laws of outward
appearances and our inward laws and forms of thought. [...] This it is, and
not the beauty of mathematical reasoning, nor the practical accordance
with phenomena, great and important as they are, which gives the highest
value and the deepest truth to the dynamical theory of gravitation. Do you
think that we see the attractions of the Planets? We barely see their orbits.
We see, indeed, some brightness afar, some brilliances amid the blue of
night. We observe, or rather we make, the configurations and arrangements
of these visibles by mathematical moulds of our own minds; we form them
into asterisms and constellations; we give them names; we attribute to each
a body and a position. A little while, an hour or two, has passed; we look
again, and much is changed, while much remains the same...

He then gives a sketch of the different forms assumed by such "mathematical
moulds of our minds" in the history of astronomy, from the revolving celestial
sphere of the first Greek astronomers, through Ptolemy’s epicycles and Kepler’s
ellipses until Newton’s dynamical idea of universal gravitation:

We have now the idea of a turning sphere, which carries the stars along
with it; and this conception, this beginning of astronomical theory, enables
us already to draw into our mental view an immense variety of appearances,
and to reason, to explain, and to predict them. But there let be a little
more of patience and of time, and we find that even this conception is not
enough. It will not solve all the phenomena, though it solves so many.

18Quote from Shakespeare.
19Graves, 1, p. 67.
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Arcturus and Pleiades may well be represented by it; but Jupiter and Saturn
are not. [...] The theory of epicycles did much to satisfy this new want
of the intellect... [and] perhaps, if it were properly modified, it might be
made commensurate with even modern accuracy... [yet] a single ellipse of
Kepler, with his law of equable areas, represented the motion of a planet
not only more exactly than any combination of epicycles then known, but
more simply and more beautifully by far than any combination of them
which could ever be invented. [...] But this was only the opening of a field,
the furnishing of an element to Newton. If Kepler had connected facts, it
was the destiny of Newton to bind together laws. While the three great laws
of Kepler remained isolated and independent, they seemed to Newton little
better than isolated and arbitrary facts [...] all this seemed little to him
unless it could be fused by the fire of intellect into one glowing whole: unless
all these separate truths could be seen as deductions from one principle,
as rays from one common centre. He achieved this fusion, he attained this
central point; and he did so by a dynamical idea [our emphasis], by an
external image of the will, by the principle of universal gravitation. Of
the immense extent of this principle it would be hard to give an adequate
notion.

For Hamilton the main difference between mathematical and physical sciences
is also in the role played by induction, admitted in the former only to assist the
reasoning, but absolutely central when one deals with empirical matters. So there
must be a proper balance, in physical sciences, between induction and deduction,
the paradigm being the route followed by Newton in the creation of his dynamical
theory of gravitation.

Dwelling on this point, Hamilton mentions the debt that Newton owes to
Bacon, who "more than any other man, of ancient or of modern times, appears
to have been penetrated with the desire, and to have conceived and shown the
possibility, of uniting the mind to things, say rather of drawing things into the
mind". This is instrumental to express a criticism to the inductionist tendency of
modern science, especially as it was practiced in Britain:

For, I cannot suppress my fear, that the signal success, which since the time,
and in the country, and by the method of Bacon, has attended the inductive
research into the phenomena of the material universe, has injuriously drawn
off the intellect from the study of itself and its own nature; and that while
we know more than Plato did of the outward and visible world, we know less,
far less, of the inward and ideal. But not now will I dwell on this high theme,
fearing to desecrate and degrade by feeble and unworthy utterance those
deep ideal truths which in the old Athenian days the eloquent philosopher
poured forth.20

At the end of the lecture, Hamilton emphasizes the role played in physical
sciences by imagination and beauty, elements that make the scientific activity a

20In a personal memorandum dating back to 1828 Hamilton remarks that "the Newtonian, no
less than the Platonic, Philosophy, appears to me to be a work, a fabric, an architectural edifice.
It is only in conformity with vulgar apprehension that Newton’s system is stated to be true."
Similar remarks were made by Leopardi, who referred to Newton’s system as a fantasia, the
same word he used for Plato’s theory of ideas.
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creative art analogous in many respects to poetry or sculpture, in which truth
and beauty are strictly connected:

As to imagination, it results, I think, from the analysis which I have offered
of the design and nature of physical science, that into such science generally,
and eminently into astronomy, imagination enters as an essential element
[...] Be not startled at this, as if in truth there were no beauty, and in
beauty no truth; as if [...] no connecting influence could radiate from their
common centre. Be not surprised that there should exist an analogy, and
that not faint nor distant, between the workings of the poetical and of the
scientific imagination...21

So, let’s summarize in a slightly more modern (and less rhetorical) terms
Hamilton’s views on mathematical astronomy. To begin with, astronomy is one
among other branches of mathematical physics, an essentially creative activity
dating back at least to the Greeks, consisting in the construction of mental models
of natural phenomena and ultimately grounded in the human ability to order
things in time and space. The instruments through which such ordering faculty
of our minds operates are numbers and figures, whose primary conceptions are
rooted in the observation of motion, namely in the contemplation of ordered
and regular successions of configurations exhibited to our view by the heavenly
motions. The essential point, to Hamilton, is the reduction by a theory of a
variety of disconnected appearances to few and simple facts, logically connected
to each other, bringing unity and order into chaos and thus constituting to our
ordering minds a convincing explanation of phenomena themselves. The purely
deductive sciences of algebra and geometry are the logical development of this
natural ordering faculty, and starting from their application to the problem of
motion they are metaphorically extendible to the abstract or mental or theoretical
study of every continuous change occurring in time and/or space. In this way
all physical sciences come to be regarded as different applications of one and
the same discipline, mathematics, and more specifically as the construction and
interpretation of ordered successions of numbers and/or figures representing by
analogy the successive observable states of a physical system.

I think it is clear how much Hamilton’s conceptions are in direct continuity
with those of the beloved Greeks he knew so well, and the homage he pays to Plato
only confirms what is otherwise evident.22 No doubt such a clear and insightful
(re-)interpretation of Greek mathematical conceptions came from his familiarity

21Such a parallel between science and poetry was not unusual among Victorian Scientists. See
Brown 2013 for more details on this very interesting topic.

22The reader of Kant may have recognized some traces of the Critique of the Pure Reason.
Indeed, in the preceding year Hamilton had started studying it (in German, of course), and
he greatly appreciated it. As we will see, it played a role in his future researches, but for this
lecture Hamilton only borrowed some terminology from Kant, and the whole epistemological
framework he outlines is largely independent from its reading. His manuscripts demonstrate
the truth of what he later wrote, i.e. that the pleasure he found in Kant came "more from
recognition than from learning". After all, Plato is the author most quoted by Kant, and the
ease Hamilton found in the reading of Kant’s Kritik probably came also from his familiarity
with Plato’s works.
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with their language. It is worth quoting a remark he made at seventeen years old
on this point:

In all the Classics, I find that my pleasure in reading them increases with
every new perusal. And I think the reason that few people enjoy them
is this: they do not take the trouble to read them so often, that their
attention may not be distracted from the beauties of the poetry and the
composition in general, by an imperfect knowledge of the meaning of words
and sentences. In short, the Classics will not give the degree of pleasure
they are calculated to impart, as long as the reader is reminded that they
are in a foreign language, by his want of familiarity with them. Do you
concur in this view on the subject?

In the following sections we will see how Hamilton put to practice his ideas in
his works on optics and dynamics. Then we’ll turn to his work on the foundations
of algebra that led him to the invention of grammarithms or quaternions, the
theory that realized many of his Greek-like conceptions and expressed rigorously
the entanglement between algebra and geometry that he regarded as intrinsic to
the general problem of motion and, therefore, of continuous change in time and
space.

2.2 From Optics to Dynamics
The formulation of classical mechanics known today as hamiltonian grew out
directly of Hamilton’s researches in optics. His first work in this field was the
Theory of Systems of Rays, whose roots date back to 1822, when Hamilton devoted
great attention to the problem of curvature in space and curved surfaces in general,
ending up writing a paper On Caustics.23 The Theory of Rays was developed for
the most part when he was still an undergraduate and its first part published in
1828. In it Hamilton develops a very general theory of mathematical optics whose
primary objects are luminous or visual rays, i.e. lines connecting pairs of points
in space and passing through whatever combination of mirrors, lenses and media.
As far as I know, the only surviving precedent of this kind was Euclid’s Optics,
which however only treated about direct vision.

This is how Hamilton describes the fundamental objects and the general scope
of his theory:

A Ray, in Optics, is to be considered here as a straight or bent or curved
line, along which light is propagated; and a System of Rays as a collection or
aggregate of such lines, connected by some common bond, some similarity
of origin or production, in short some optical unity. Thus the rays which
diverge from a luminous point compose one optical system, and, after they
have been reflected at a mirror, they compose another. To investigate
the geometrical relations of the rays of a system of which we know (as in
these simple cases) the origin and history, to inquire how they are disposed
among themselves, how they diverge or converge, or are parallel, what

23Graves 1882, p. 115.
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surfaces or curves they touch or cut, and what angles of section, how they
can be combined in partial pencils, and how each ray in particular can be
determined and distinguished from every other, is to study that System of
Rays. And to generalise this study of one system so as to become able to
pass, without change of plan, to the study of other systems, to assign general
rules and a general method whereby these separate optical arrangements
may be connected and harmonised together, is to form a Theory of Systems
of Rays.24

The key idea of Hamilton’s method is quite simple, and consists in studying
the dependence between the directions of ingoing and outgoing rays (i.e. the
six numerical ratios corresponding to the cosine-directors of the rays) and the
positions of two observers looking at each other from these directions (i.e. the space
coordinates of two points belonging to initial and final rays).25 Hamilton focuses on
such optical unities, systems composed of visually connected points, and develops
a general method for the analysis of the geometrical configurations they may
assume; every admitted possibility corresponding, in principle, to some realizable
optical system and, therefore, to a certain class of optical phaenomena. In this
way, despite the highly abstract and, therefore, general character, Hamilton’s
theory bears directly on vision and on the design of optical instruments, where
the only thing one is interested in is how the light path is altered by its passage
in the device.26 Notice that the direction of propagation of the rays is completely
irrelevant, exactly as it was irrelevant in Euclid’s Optics, a fact which caused
many misunderstandings in the following centuries.

Treating about rays, the conceptions underlying the theory are essentially
geometrical, and in fact it is regarded still today as the standard of "geometrical
optics". However, this is somewhat paradoxical, since Hamilton explicitly aimed
to make available to optics "the powers of the modern mathesis, replacing figures
by functions and diagrams by formulae", i.e. to build what he called an algebraical
optics.27 In short, he wanted to effect in optics a transformation similar to
that brought in early-modern geometry by Descartes. It is worth quoting the
masterly description Hamilton gave of the essence of Descartes’ contribution in
the perspective of his own views about algebra and geometry:

That great and philosophical mathematician conceived the possibility, and
employed the plan, of representing or expressing algebraically the position of
any point in space by three co-ordinate numbers which answer respectively
the questions how far the point is in three rectangular directions (such as

24Graves 1882, pp. 228–231.
25Today we would probably speak of emitter and receiver of a light signal. This idea of

optical unity, i.e. of couples of observers emitting and receiving light signals, will come back in
Einstein’s relativity.

26This is a typical example of a general feature of Hamilton’s mathematical intelligence: the
ability to perceive what are, among infinite possibilities, the most relevant variables to look at
for the description of a certain system. This choice translates into the construction of functions
connecting these variables, that exhibit with their form the relationship between such variables
and therefore all the relevant properties of the physical system.

27Every time Hamilton calls a certain expression formula, I think he wishes to underline the
fact that, syntactically speaking, it is an array of symbols arranged in a particular form.
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north, east and west), from some fixed point or origin selected or assumed
for the purpose; the three dimensions of space receiving thus their three
algebraical equivalents, their appropriate conceptions and symbols in the
general science of progression. A plane or curve surface became thus
algebraically defined by the assigning as its equation the relation connecting
the three co-ordinates of any point upon it, and common to all those
points: and a line, straight or curved, was expressed according to the
same method, by the assigning two such relations, correspondent to two
surfaces of which the line might be regarded as the intersection. In this
manner it became possible to conduct general investigations respecting
surfaces and curves, and to discover properties common to all, through
the medium of general investigations respecting equations between three
variable numbers: every geometrical problem could be at least algebraically
expressed, if not at once resolved, and every improvement or discovery in
Algebra became susceptible of application or interpretation in Geometry.
The sciences of Space and Time (to adopt here a view of Algebra which
I have elsewhere ventured to propose) became intimately intertwined and
indissolubly connected with each other. Henceforth it was almost impossible
to improve either science without improving the other also. The problem of
drawing tangent to curves led to the discovery of Fluxions or Differentials:
those of rectification and quadrature to the invention of Fluents or Integrals:
the investigation of curvatures of surfaces required the Calculus of Partial
Differentials: the isoperimetrical problems resulted in the formation of the
Calculus of Variations. And reciprocally, all these great steps in Algebraic
Science had immediately their applications to Geometry, and led to the
discovery of new relations between points or lines or surfaces. But even if
the applications of the method had not been so manifold and important,
there would still have been derivable a high intellectual pleasure from the
contemplation of it as a method.28

Now it should be clearer why in the Introductory Lecture on Astronomy Hamilton
remarked that algebra is a "more general and refined" science than geometry. In
Cartesian geometry using one single algebraic formula (i.e. one single equation
between arrays of symbols) one may make assertions and deductions about entire
classes of lines or surfaces, with no need to distinguish among different cases as
is often necessary in geometrical constructions. Similarly, by differential calculus
one may find the tangents, normals etc. to any curve by an algorithm that
is independent from the considered curve. Therefore, if algebra is taken as an
autonomous discipline, geometry may be ultimately regarded as an application of
it, one of possibly many ways to interpret its symbolical expressions, giving them
a definite meaning that appeals to the operations of drawing figures.29

In the case of optics, commonly regarded as a geometry-based science, Hamilton
was able to express its fundamental problem into one single algebraical equation,
whose solution is a function, called characteristic function, relating the directions
of propagation of ingoing and outgoing rays with the positions of the two extreme

28Although not mentioned here, an important source of inspiration for Hamilton was Monge’s
analytic geometry, perhaps even more than Descartes’ original system. (Hankins 1980, pp. 64–67)

29Or, in the terms of modern logic, a semantic to an otherwise purely syntactical system,
geometrical constructions becoming a model for algebraical formulas.
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points connected by these rays. As in Descartes’ algebraical geometry all the
properties of a line or surface are encoded in its equation, so in Hamilton’s algebraic
optics all the properties of a system of rays are encoded in its characteristic function.
Given the features of the optical system, the characteristic function is uniquely
determined, and if the form of the characteristic function is known, the paths of
light rays through the optical system may be deduced by simple differentiation,
or, in Hamilton’s words, by the unfolding of one radical or central relation.

From a methodological point of view, Hamilton aims to turn mathematical
optics into a rigorously deductive science. In a paper preliminary to the extension of
his optical method to dynamics, Hamilton sketches the history of theoretical optics,
starting from the "law of seeing in straight lines", known and used since ancient
times to explain the appearances (Hamilton explicitly mentions its connections
with astronomy). After quoting Newton’s famous passage about induction and
deduction at the end of the Optiks, he complaints about how relatively little the
deductive side of this science had been developed as compared to the inductive in
two millennia:

It is, however, remarkable that, while the laws of this science admit of
being stated in at least as purely mathematical a form as any other physical
results, their mathematical consequences have been far less fully traced than
the consequences of many other laws; and that while modern experiments
have added so much to the inductive progress of optics, the deductive has
profited so little in proportion from the power of the modern algebra. [...] It
is better to ascend to the source of the imperfection, the want of a general
method, a presiding idea, to guide and assist the deduction.30

Following Lagrange’s example of Méchanique Analytique, the presiding idea Hamil-
ton chooses to guide the deductive reasoning, the one and only principle on
which the whole theory is built upon, is the celebrated Principle of Least Action,
rephrased more generally as Law of Stationary Action. Hamilton attributed a
paramount importance to this principle, lying at the foundations of both his optics
and dynamics.

Mathematically speaking the Principle of Least Action is a variational principle,
a postulate requiring that a quantity depending on the whole evolution of a physical
system, called action, must assume a minimum value along the actual motions of
the system, if compared to all other neighboring possibilities. Such a requirement
is translated into an equation asserting the invariance of the value of a certain
sum or path-integral connecting two points, when the path is changed in a smooth
manner. Hamilton usually wrote such a variational principle in the form

δV = δ

∫
vds = 0, (2.1)

where δ denotes the change of path, v is a magnitude varying along of the path
and ds is an element of the path. The product vds is the action expended by the
system along the element ds, and V is the total action expended by the system in
the whole path. Thus the Principle of Least Action operates as a selection rule

30Hamilton 1833b.
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among all conceivable paths, that singles out the one along which the total expense
of action is minimum. In the more general form of the principle employed by
Hamilton the requirement is that such an expense must have a stationary property
with respect to its close possibilities, so its value on the actual motion may also
be a local maximum. In all the applications of this principle Hamilton always
treated the action as a function of the path and/or of its endpoints, sometimes
with the addition of some other numerical parameters.

In optics, v is the ratio between the velocity of light in vacuum c and its
velocity in the medium u = ds/dt, a number called index of refraction of the
medium. So in this case vds = cdt and the action expended in a portion ds of
the path equals the distance traveled by light in the corresponding time. The
Principle of Least Action then reads

δV = c δ

∫
dt = 0, (2.2)

i.e. it reduces to Fermat’s Principle of Least Time. As Hamilton remarks sketching
the history of this principle, such an idea has its roots just in optics, and also this
one was already suggested in antiquity by the observation that light "employs
the direct, and, therefore, the shortest course to pass from one point to another".
Following Laplace’s account, he attributes to Ptolemy the observation that such a
minimum property is valid also in the case of reflection on a plane mirror, since
"the bent line formed by the incident and reflected rays is shorter than any other
bent line, having the same extremities, and having its point of bending on the
mirror". In the works of Fermat, Maupertuis, Euler and Lagrange this idea was
extended to mechanics and progressively evolved until it reached "the last step
in the ascending scale of induction", i.e. Hamilton’s Law of Stationary Action.
This is "the highest and most general axiom (in the Baconian sense) to which
optical induction has attained", the maximum generalization achieved starting
from the empirical laws of visual communication, and thus a proper starting point
for setting out the deductive development of an optical theory.

Hamilton’s characteristic optical function V is nothing but the total action
integral evaluated between two fixed initial and final points of a light ray (pro-
portional to the total time taken by light to go from one point to the other),
expressed as a function of the cosine directors of the initial and final rays and
of the color of light. The equation of the characteristic function is the analytic
development of the formula δV = 0, i.e. the constraint on the actual light/visual
ray expressed by the principle of stationary action.

It is important to remark that Hamilton explicitly rejected all of the physical
or metaphysical meanings sometimes attributed to such a variational principle on
the basis of some preconceived "economy of nature":

But although the law of least action has thus attained a rank among the
highest theorems of physics, yet its pretensions to a cosmological necessity,
on the ground of economy in the universe, are now generally rejected. And
the rejection appears just, for this, among other reasons, that the quantity
pretended to be economised is in fact often lavishly expended. In optics, for
example, though the sum of the incident and reflected portions of the path
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of light, in a single ordinary reflexion at a plane, is always the shortest of
any, yet in reflexion at a curved mirror this economy is often violated. If
an eye be placed in the interior but not at the centre of a reflecting hollow
sphere, it may see itself reflected in two opposite points, of which one indeed
is the nearest to it, but the other on the contrary is the furthest; so that
of the two different paths of light, corresponding to these two opposite
points, the one indeed is the shortest, but the other is the longest of any. In
mathematical language, the integral called action, instead of being always
a minimum, is often a maximum; and often it is neither the one nor the
other: though it has always a certain stationary property [...]. We cannot,
therefore, suppose the economy of this quantity to have been designed in
the divine idea of the universe: though a simplicity of some high kind may
be believed to be included in that idea. And though we may retain the
name of action to denote the stationary integral to which it has become
appropriated - which we may do without adopting either the metaphysical
or (in optics) the physical opinions that first suggested the name - yet we
ought not (I think) to retain the epithet least: but rather to adopt the
alteration proposed above, and to speak, in mechanics and in optics, of the
Law of Stationary Action.

Hamilton’s optical theory is the deductive development of the consequences
of this law, when applied to systems of rays as above defined. One of the key
results Hamilton deduces is a generalized version of Malus’ theorem, asserting
the existence of families of surfaces cut perpendicularly by all the rays of a given
system, whatever may be the number of successive reflections or refractions. These
surfaces are called surfaces of constant action, since in going from one surface
of the family to another all the rays expend the same amount of action. In the
case of light rays starting from the same point, all of them reach these surfaces
expending in the same amount of time. For example, in the simple case of straight
rays diverging from a point source in a homogeneous isotropic medium, which is
easy to visualize, these surfaces are concentric spheres described by the equation
V = const.

One of the most relevant features of Hamilton’s optics is its independency
from any hypothesis about the nature of light. At his time the debate between
undulatory and corpuscular models was at its apex, and Hamilton’s theory simply
bypasses the problem. This is a consequence of the fact that the Law of Stationary
Action says something only about the motion of light, its propagation in time
and space, but nothing about its composition or mechanism of propagation (e.g.
the actual vibrations of a possible medium). Therefore, whatever consequence
may be drawn from this principle, it will be only about motion: if one assumes
a corpuscular model, rays represent motions of particles; if one assumes a wave
model, the same rays represent motions of wave-fronts, represented by the surfaces
of constant action.31

The most important result of Hamilton’s theory was the theoretical prediction
of conical refraction, a phenomenon occurring in biaxial crystals, i.e. crystals in
which the speed of light depends on its direction of propagation. On applying

31After meeting with Faraday, with which Hamilton got along very well, he reported in a
letter that they agreed on the idea that light, after all, is just "the motion of a motion".
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his theory to such crystals Hamilton found that if a single ray of light entered
or emerged from them in a certain direction, then that ray of light would be
refracted into a cone of rays. The actual existence of conical refraction was
experimentally confirmed by Humprey Lloyd on December 14th, 1832, making
the young Hamilton instantly famous in Britain and abroad.32

A few weeks later Hamilton was already extending his method of the charac-
teristic function to mechanics. This is not so surprising, after all, neither from
the historical point of view nor from the conceptual one. Describing the optical
system in terms of a quantity that is expended or consumed by light during its
propagation (be it called action or time), Hamilton adopted at the very outset
a dynamical approach, whose connections with the motion of matter are almost
immediate. In fact Hamilton started to apply his method to mechanics as early
as 1826, when, preparing for college examinations, he had already determined the
explicit form of the characteristic function for the problem of projectile motions,
and in the extensive table of contents of the Theory of System of Rays he had
announced his intention to apply it to a system of mutually attracting points.
Now, after a good amount of practice on optical problems, Hamilton proceeded
quite fast in generalizing the method to a general dynamical system.33

Hamilton’s dynamics is based on a slightly different variational principle. If the
Law of Stationary Action is "the last step in the scale of induction", the first step
in the "descending scale of deduction" is what Hamilton calls the Law of Varying
Action. Mathematically speaking, the difference is that now also the endpoints of
the path along which the action integral is evaluated are made to vary. Hamilton
changed the adjective from stationary to varying also to emphasize the fact that,
in dynamics much more than in optics, the principle is intended to express the
law of variation of the action, i.e. the equation describing the evolution of the
system of bodies, and not a state equation as is the case in the optical theory.34

What exactly does Hamilton mean by the word dynamics? The first paper
On a General Method in Dynamics opens with some introductory remarks that

32As far as I know, this is the first instance of theoretical prediction of the very same existence
of a new phenomenon, never observed before. It has been sometimes compared to the theoretical
discovery of Neptune, made in 1846. However this latter, as astonishing as it was, was still an
inference made to account for the observed motions of the other planets. This seems to me an
important difference.

33In a letter to Lloyd dated February 9th, 1833, he wrote that he had found the form of a
new function describing elliptical motion and expressed his intention to apply it to the problem
of planetary perturbations; meanwhile, he had already worked out in his new approach the
equations of motion for a system of any number of mutually attracting points. The first published
paper in which Hamilton gave a sketch of the extension of his method to dynamics, applying it
to dynamical astronomy, was published in October 1833. The two essays On a General Method
in Dynamics, where the method is fully exposed, were complete by the fall of 1834 (Hankins
1980, p. 173).

34In optics this necessity arise if one considers non-homogeneous media, where the index of
refraction changes continuously in space, the velocity of light varies from point to point and
rays are curved. This is the case, for example, of the atmosphere of the Earth, a very important
problem for its connections with astronomical observations. Hamilton developed the theory
including these systems in the Third Supplement of his Theory of Rays, where the most general
version of his optical theory is exposed, but this was never published. From this theory, the
transition to dynamics was just a change in the semantics of the formulas involved.
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clarify this point:

The theoretical development of the laws of motion of bodies is a problem
of such interest and importance, that it has engaged the attention of all
the most eminent mathematicians, since the invention of dynamics as a
mathematical science by Galileo, and especially since the wonderful extension
which was given to that science by Newton. Among the successors of those
illustrious men, Lagrange has perhaps done more than any other analyst,
to give extent and harmony to such deductive researches, by showing that
the most varied consequences respecting the motions of systems of bodies
may be derived from one radical formula; the beauty of the method so
suiting the dignity of the results, as to make of his great work a kind of
scientific poem. But the science of force, or of power acting by law in
space and time, has undergone already another revolution, and has become
already more dynamic, by having almost dismissed the conceptions of solidity
and cohesion, and those other material ties, or geometrically imaginably
conditions, which Lagrange so happily reasoned on, and by tending more
and more to resolve all connexions and actions of bodies into attractions
and repulsions of points: and while the science is advancing thus in one
direction by the improvement of physical views, it may advance in another
direction also by the invention of mathematical methods. And the method
proposed in the present essay, for the deductive study of the motions of
attracting or repelling systems, will perhaps be received with indulgence, as
an attempt to assist in carrying forward so high an inquiry.35

So dynamics is to Hamilton the science of power acting by law in space and time.
Such a science was invented by Galileo (in studying falling bodies), extended by
Newton (to astronomical phenomena, by the help of his fluxions) and put into a
deductive form by Lagrange (who deduced Newton’s theory from the Principle of
Least Action). The further step of progress, according to Hamilton, consists in
freeing the theory from any consideration about themechanism involved, "resolving
all connexions and actions of bodies into attractions and repulsions of points".
In other words, Hamilton aims to expunge natural philosophy from Newton’s
dynamics and turn it into a full-fledged mathematical theory. Even if he makes
appeal to the physical concepts of power, action and forces (coherently with the
etimology of the greek δυναμισ), the only magnitudes his theory really deals with
are the effects of these actions, i.e. the reciprocal motions of bodies. As Hamiltonian
optics is about motion of light, modeled by systems of rays independently of any
hypothesis about their "nature" and "mechanism of propagation", so Hamiltonian
dynamics is about motions of bodies, modeled as moving points independently

35These words are echoed by Maxwell, who in the preface of Matter and Motion wrote:
"Physical Science, which up to the end of the eighteenth century had been fully occupied in
forming a conception of natural phenomena as the result of forces acting between one body and
another, has now fairly entered on the next stage of progress—that in which the energy of a
material system is conceived as determined by the configuration and motion of that system,
and in which the ideas of configuration, motion, and force are generalised to the utmost extent
warranted by their physical definitions. To become acquainted with these fundamental ideas, to
examine them under all their aspects, and habitually to guide the current of thought along the
channels of strict dynamical reasoning, must be the foundation of the training of the student of
Physical Science."
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of any hypothesis about their "nature" and "mechanism of interaction".36 In
another occasion Hamilton was more explicit about the scope of his dynamics:

Professor Hamilton is of opinion that the mathematical explanation of
all the phaenomena of matter distinct from the phaenomena of life, will
ultimately be found to depend on the properties of systems of attracting and
repelling points. And he thinks that those who do not adopt this opinion
in all its extent, must yet admit the properties of such systems to be more
highly important in the present state of science, than any other part of the
application of mathematics to physics. He therefore accounts it the capital
problem of Dynamics “to determine the 3n rectangular coordinates, or other
marks of position, of a free system of n attracting or repelling points as
functions of the time,” involving also 6n initial constants, which depend
on the initial circumstances of the motion, and involving besides, n other
constants called the masses, which measure, for a standard distance, the
attractive or repulsive energies.37

As in optics the form of the characteristic function is intended to determine the
configuration of a system of rays, so in mechanics it must determine fully the
motions of points, i.e. their mutual positions and velocities as functions of the time.
In the solution of this fundamental problem, Hamilton remarks that Lagrange,
Laplace, and others have managed to employ a single function to express the
different forces of a system (i.e. the potential energy), and thus to encode in a
single and general formula the problem of the motion (i.e. the Euler-Lagrange
equations). His aim, now, is to express with a general formula all the possible
solutions to such equations, i.e. the general form of possible motions (or, in
mathematical terms, the form of the integrals of the Euler-Lagrange equations).

So, Hamilton’s aim was not, in principle, to simplify the solution of dynamical
problems. He knew it very well, of course, but didn’t care too much about this
aspect:

...and even if it should be that no practical facility is gained, yet an intel-
lectual pleasure may result from the reduction of the most complex and,
probably, of all researches respecting the forces and motions of body, to the
study of one characteristic function, the unfolding of one central relation.38

However, this is what people expected from a "new" theory, and Hamilton’s
dynamics was not fully understood by many of his contemporaries. As Cayley

36This might seem a paraphrase of Newton’s hypothesis non fingo, but it’s not. Aside from
his improper use of the word hypothesis, Newton stated that he didn’t inquire about the causes
of forces. Since forces are defined by Newton as the "cause of motions", his statement amounts
to saying that he didn’t inquire about the "causes" of the "causes of motion", which is quite
obvious if one doesn’t want to go backward indefinitely in an endless chain of "causes". Here, it
seems to me, Hamilton is actually removing from dynamics the very same notion of mechanical
cause, his theory dealing expressly with change, forces being merely "expressive figures" to
speak about such changes (compare in this regard the Introductory Lecture on Astronomy). It
is worth remarking here that, in the case of Hamilton’s dynamics, the label mechanics is a plain
misnomer.

37Hamilton 1834b.
38Hamilton 1834a.
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remarked in 1857 in his Report on Theoretical Dynamics, in response to Jacobi’s
criticisms, even if Hamilton didn’t simplify, in the first place, the problem of
solving the equations of motion, what he invented is a theory of the representation
of the integral equation assumed to be known.

The question Hamilton asked (and answered) is, in short, the following: given
the structure of the dynamical equations, what are the properties that all their
solutions must satisfy? Framing the question in these terms, Hamilton found
that the integrals of the differential equations of motion depended on the general
properties of a "hitherto unimagined" function, i.e. the characteristic or principal
function, such properties being common to any solution of any dynamical problem
that is formulated in terms of a variational principle.39

2.3 From Algebraic Couples to Geometric Quater-
nions

The achievement that Hamilton regarded as the most important of his mathe-
matical career was the invention of quaternions, new mathematical objects to
the study of which he devoted almost exclusively the last twenty years of his life.
One of the aims of this section and the following is to convey the reasons why
Hamilton gave such a big importance to this theory.

Quaternions grew out of Hamiltom’s prolonged effort to clarify (above all
to himself) the foundations of algebra as an autonomous science, independently
from geometry, by making appeal to the fundamental notion of time progression.
Hamilton’s interest in these topics was sparkled by the results of his friend John
Graves, who in 1824 had found that the logarithm of a complex number depends
on the value of two independent integers. The interpretation of these results was
not clear at all, and therefore their validity questioned. Hamilton struggled to
solve the issue, and found that the notion of progression could be the key element
to settle the debate. The first suggestions of this kind appear in a memorandum
dated 1827, where Hamilton wrote that the concept of time "might serve to give
greater precision and simplicity to our notion of ratio". In 1830 he started his
attempts to define the basic operations of algebra in terms of time-steps and in
November 1833 the theory of algebraic couples, fully confirming Graves’ results,
was presented to the Royal Irish Academy.

However, on this occasion Hamilton said nothing about the very original
conceptions underlying his theory. Foundations of algebra were a hot topic of
debate among British mathematicians in the first half of the XIX century, and
Hamilton was well aware that his somewhat metaphysical views differed from
those of his contemporaries. Therefore, for a long time he avoided any public

39This "discovery" is often summarized by saying that Hamilton’s theory exhibited the
so-called symplectic structure of classical dynamics, i.e. the fact that every solution of the
dynamical equations is a symplectomorphism, a coordinate transformation on the phase space
that preserves its symplectic structure. In this framework, Hamilton’s characteristic function is
the infinitesimal generator of a one parameter family of such transformations. For more details
on the relevance of such "discovery" for mathematical physics see, for example, Gotay and
Isenberg 1992; Guillemin and Sternberg 1984.
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statement on the matter, sure as he was of the opposition he would have met.
The encouragement he needed came from the reading of Kant’s Critique of Pure
Reason,40 where the possibility of building a science grounded on the intuition or
inner mental form of time is explicitly suggested.41 Finally, on June 1st, 1835,
Hamilton exposed his views about algebra in the Preliminary and Elementary
Essay on Algebra as the Science of Pure Time. No new results are given in this
work - "the novelty being in the view and method"-, but here Hamilton set forth
a new interpretation of the known symbols, rules and operations of algebra based
on the general notion of ordered continuous progression, which formed the basis of
the work that would later lead him to the invention of quaternions.

In the preceding months Hamilton had discussed the nature, purpose, and
methods of mathematics in general and of algebra in particular in a series of
letters to his pupil and friend Lord Adare.42 The content of these letters formed
the bulk material of the General Introductory Remarks to the Essay, and exhibits
quite plainly the Greek filiation of Hamilton’s conception of arithmos.

The first letter is devoted to a careful distinction between the sciences generally
dealing with numbers :

In Arithmetic, properly so-called, Number is considered as an answer to the
question How many, and as constituting a Science of Multitude, founded on
the relation of more and fewer, or ultimately of the many and the one. In
a more complex Science, of Magnitude and Measure, which may perhaps
be called Metrology (though often classed as a higher part of Arithmetic),
Number is the answer to the question How much, and the fundamental
relation is that of greater and less, or of whole and part. But in Algebra
I taught that Number answers the question How placed in a succession,
the guiding relation being that of before and after (or of positive, negative,
and zero); and the Science itself being one of Order and Progression, or,
as it might be called concisely, of Pure Time. To count, to measure,
to order, are three different, although connected, acts of thought, and
belong to these three different, although closely connected, Sciences, of
Arithmetic, Metrology, and Algebra. Groups as counted, magnitudes as
measured, positions or states as ordered ; and, therefore, finally the relations
of the counted to the counter, of the measured to the measurer, of the
ordered to the orderer—such are the ultimate objects of these three acts of
thought, and the ultimate or elementary conceptions of these three Sciences.

So, according to Hamilton, mathematics in general is about specific acts of thought
oriented to answer specific questions by means of numbers. Algebra, in particular,
is first and foremost about ordered progressions of positions or states, rather than
with magnitudes, and its fundamental problem is the study and comparison of

40In the Preface to the Lectures on Quaternions he acknowledged this explicitly, quoting a
full passage of Kant’s Trascendental Aesthetic. Yet, in various letters, Hamilton noted how Kant
conceived the possibility that a science of pure time was possible, but didn’t realize that such a
science could be already at hand, namely, in the existing but still far-from-rigorous operations
of algebra. A summary of Hamilton’s view of Kant’s first Kritik is in Graves 1885, pp. 103–105.

41The German word for this is Auunschaung, literally to look through or inside. It is sometimes
also translated as contemplation, a word that Hamilton often used.

42Hamilton 1879.
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positions or states of the same or of different progressions, with reference only to
their arrangements in such progressions. Arithmetic, Metrology and Algebra are
viewed by Hamilton as three languages whose syntax is made of the same symbols,
but differing according to the use and meaning accorded to them. Therefore, they
are called respectively a quotitative, quantitative and ordinal language. As he
expressed elsewhere, Hamilton wishes to make in Algebra "Position, instead of
Quantity, or much more instead of Quotity, the primary and elementary conception
from which all others are to be deduced".

In the later Lectures on Quaternions Hamilton was even more explicit on this
point, and extended the primacy of the mental operation of ordering to the whole
of mathematics:

For my own part I cannot conceal that I hold it to be of great and even
fundamental importance, to regard Pure Mathematics as being primarily
the science of order (in Time and Space), and not primarily the science
of magnitude: if we would attain to a perfectly clear and thoroughly
self-consistent view of this great and widely-stretching region, namely, the
mathematical, of human thought and knowledge. In mathematical science
the doctrine of magnitude, or of quantity, plays indeed a very important part,
but not, as I conceive, themost important one. Its importance is secondary
and derivative, not primary and original, according to the view which has
long approved itself to my own mind, and in entertaining which I think that
I could fortify myself by the sanction of some high authorities: although
the opposite view is certainly more commonly received.43

In accordance with the etymological meaning of the Greek arithmos, the
emphasis to the ordinal instead of the cardinal meaning of numbers and to the
idea of position in a succession instead of that of magnitude, are the only clear
way, according to Hamilton, to avoid the paradoxes involved in what he calls the
doctrines of negative and imaginary quantities.44 If the symbols reasoned upon in
algebraic formulae are interpreted as quantities, one is inevitably led to meaningless
statements such as that a quantity is less than nothing or that a a greater quantity
may be subtracted from a less, and to contradictory assertions like those about
the negative squares of imaginary quantities. Of course these difficulties are
not a problem for many practical purposes, or for those who view algebra "as
a mere system of symbols". Therefore Hamilton is careful to distinguish three
different tendencies among mathematicians, the practical, the philological, and the
theoretical, "according as Algebra itself is accounted an Instrument, or a Language,
or a Contemplation; according as ease of operation, or symmetry of expression,
or clearness of thought, (the agere, the fari, or the sapere,) is eminently prized
and sought for". Hamilton belongs, of course, to the last category, "seeking more
a clear and lively intuition, by whatever cost of meditation or mental discipline
to be attained, than language, however perfect in its structure, or rules, however

43Hamilton 1853, p. 12.
44See also Graves (1885, p. 303): "In short, ordinals seem to me to have, in thought, priority

over cardinal numbers, "one", "two", "three" mean, originally "first", "second", "third", they
are names rather of the counted things, than of the groups containing them".
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easy of application", and always trying to "look beyond or through the signs of the
things signified."45

Overall, according to Hamilton’s criteria, if algebra is regarded as dealing
primarily with quantities it cannot be considered as a science (read: episteme) at
all:

Yet a natural regret might be felt, if such were the destiny of Algebra; if a
study, which is continually engaging mathematicians more and more, and
has almost superseded the Study of Geometrical Science, were found at last
to be not, in any strict or proper sense, the Study of a Science at all: and if,
in thus exchanging the ancient for the modern Mathesis, there were a gain
only of Skill or Elegance, at the expense of Contemplation and Intuition.

Needless to say, the model Hamilton follows to turn algebra into a proper
science - "strict, pure and independent; deduced by valid reasonings from its own
intuitive principles" - is Euclid’s system of geometry:

I habitually desire to find or make in Algebra a system of demonstrations
resting at last on intuitions, analogous in some way or other to Geometry,
as presented by Euclid - for I own that Geometry itself might be presented
in a merely logical or symbolical form, though I for one would not thank
him who should so present it.46 And I persuade myself, with a confidence
that has been gradually gaining strength for years, that as Geometry, in
the popular mind and mine, rests ultimately on the Intuition of Space, so
Algebra may be made to rest on the kindred Intuition of Time... Pure Time -
the before and after; precedence, subsequence, and simultaneity; continuous
indefinite progression from the past through the present to the future - this
thought, or intuition, or form of the human mind, appears to force itself
upon me whenever I seek to analyse what I and others mean, as the objects
reasoned upon, in Algebraic Science: though I willingly admit that the Time
thus considered is Pure (just as Space of the Geometers is Pure), and does
not depend on any phenomenal marks or measures, nor need not use the
notion of Cause and Effect. The moment is to Algebra, with me, what the
point is to Geometry; transitions, intervals, from one moment to another,
are analogous to finite straight lines, while Time itself may be conceived
or pictured (as indeed metaphysicians generally admit) under the image
of an indefinite straight line; and number is the ratio of such transition to
another, or the complex relation between them, determined partly by their
relative largeness and partly by their relative direction...47

In the same days Hamilton took a personal note clarifying what he meant by
moment of pure time:

45As examples of philological school Hamilton mentions Woodhouse and Peacock, Ohm and
Lagrange; to the theoretical school he admits Cauchy and Fourier.

46Such a program was actually carried out by David Hilbert and the formalistic school during
the XX century. No doubt that Hamilton would have been even more isolated from the rest of
the mathematical community, had he lived some decades later. However, it is worth remembering
that Hilbert’s train quite soon crashed on the wall of Kurt Gödel’s incompleteness theorems.

47Graves 1885, pp. 143–144.
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Though the mind exerts an act (of will) in thinking of a moment, yet the
thought once formed becomes an object given: and we may and must treat
it as such, and conceive ourselves as determining its position, although
we ourselves had generated that position. We Must conceive Progression
of a Moment, or a Moment as Progressive, and Time itself as generated
thereby...48

Hamilton justifies his view of the intertwinement between algebra and time noting
that the notion of ordered progression had actually always been involved in
algebraic procedures. This is evident, he argues, from the crucial role that the
idea of continuous progression has played in the history of algebraical inventions
such as Newton’s method of fluxions - which "employs, as its primary conception,
the thought of a flowing point" - and Napier’s logarithms - who grew out "not
(as it is commonly said) from the arithmetical properties of powers of numbers,
but from the contemplation of a Continuous Progression; in describing which, he
speaks expressly of Fluxions, Velocities and Times".49 It is worth quoting the
following passage:

The History of Algebraic Science shows that the most remarkable discoveries
in it have been made, either expressly through the medium of that notion of
Time, or through the closely connected (and in some sort coincident) notion
of Continuous Progression. It is the genius of Algebra to consider what it
reasons on as flowing, as it was the genius of Geometry to consider what
it reasoned on as fixed. Euclid defined a tangent to a circle, Apollonius
conceived a tangent to an ellipse, as an indefinite straight line which had
only one point in common with the curve; they looked upon the line and
curve not as nascent or growing, but as already constructed and existing in
space; they studied them as formed and fixed, they compared the one with
the other, and the proved exclusion of any second common point was to
them the essential property, the constitutive character of the tangent. The
Newtonian Method of Tangents rests on another principle; it regards the
curve and line not as already formed and fixed, but rather as nascent, or in
process of generation: and employs, as its primary conception, the thought
of a flowing point. And, generally, the revolution which Newton made in
the higher parts of both pure and applied Algebra, was founded mainly on
the notion of fluxion, which involves the notion of Time.

Hamilton also quotes Lagrange’s definition of algebra as the science of functions,
a function being essentially a law connecting Change with Change and thus
intimately connected to time.50

Hamilton privately described the Essay as his "long-anspired union of Math-
ematics and Metaphysics" and, in later years, defended the legitimacy of his
metaphysical introduction in the draft of a letter to De Morgan, dated 8th
December 1851:

48Graves 1885, p. 695.
49Indeed, in Napier’s original work logarithms are defined as numbers that synchronize an

arithmetical and a geometrical progression.
50Today, after the decipherment of cuneiform tablets, we could add the origins themselves of

arithmetical algorithms in Babylonian astronomy.
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You would do me no great good by criticising - and I can conceive your
feeling a temptation to do so - the metaphysics of the early articles at
present. I know that I have not done justice even to my own views in
that direction, much lesst to existing philosophy: sed liberavi animam
meam. I could not bring myself to enter on the subject without some
such introductory remarks, and must only hope that while thus imperfectly
recording some moods or frames of mind, which have really influenced myself
in mathematical speculations of the class we are now considering, I shall
not have materially embarassed the path of any student who will have even
a moderate degree of patience to wait till he sees how I use the notions with
which I profess to set out. At one time I read a good deal of Kant’s works
in the German, besides portions of Plato in the Greek...

Indeed, apart from such introductory remarks, no metaphysics is involved in the
Essay, since, as Hamilton beautifully summarizes:

There is something mysterious and transcendent involved in the idea of Time;
but there is also something definite and clear: and while Metaphysicians
meditate on the one, Mathematicians may reason from the other.

To give a hint about the character the work, we briefly sketch how Hamilton
interprets in his system the "rule of signs", i.e. the fact that the product of two
"negative quantities" gives a "positive quantity", and the so-called "imaginary"
unit, i.e. the square root of the "negative" unity.

The whole theory starts from the stipulation that the elementary symbols a,
b, c, d etc. denote dates or, more abstractly, moments of a one-dimensional
progression (i.e. extending backward and forward). The elementary binary symbols
=, >,< denote respectively simultaneity, precedence and succession of dates, so
that if a moment a is given, any another moment b may be simultaneous to a,
earlier than a, or later than a. Accordingly, the formulas

b = a (2.3)
b < a (2.4)
b > a (2.5)

express the possible relationships of simultaneity, precedence and succession of
the moment b relatively to the moment a . So, to be completely consistent with
Hamilton’s view, such formulas should be read respectively "b is simultaneous
to a", "b precedes a", and "b follows a".51 Pairs of moments form intervals
of time or time-steps and are denoted with small letters a, b, c etc. A time-step
is clearly a complex object, involving both magnitude and direction, this latter
being either forward or backward or, more abstractly, positive or contrapositive. A
key point is that numbers in Hamilton’s theory are not primitive objects, but are
defined as quotients of time-steps, i.e. as operators or factors or multipliers that
act on a step in such a way as to produce or mentally generate the other. Hamilton
showed that, with this definition, all the common rules of addition, subtraction,
multiplication, division, extraction of root etc. on algebraic numbers admit a

51Some time later this was called the topological layer.
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simple interpretation in terms of operations on time-steps, altering in general both
their direction and magnitude. Therefore numbers come to be naturally either
positive or contrapositive, according as the steps they connect are in the same or
in opposite directions, and the rule of signs translates the simple circumstance
that, given a time-step, two successive reversals restore its original direction.

Moreover, in Hamilton’s view there is no difficulty in considering couples of
moments, couples of time-steps and couples of numbers, extending to such couples
all the elementary operations. In particular, simple numbers come to be viewed
as degenerate forms of number-couples with a null secondary part, and Hamilton
recovers by a different route Cauchy’s view of complex numbers as couples of real
numbers, the "imaginary unit" corresponding to the number-couple (0, 1).52 By
Hamilton’s definitions this secondary unit is an operator acting on step-couples in
such a way as to reverse the second step and to transpose the order the two steps,
so that applying it twice to the same step-couple one gets the original couple with
both steps reversed. So - "by a certain abstraction of operators from the operand"
- he established the formula

(0, 1)2 = (−1, 0) = −1, (2.6)

that in his view gives "a new, and clear interpretation" to the formula expressing
the root of the imaginary unit

(0, 1) = (−1, 0)
1
2 = (−1)

1
2 =
√
−1; (2.7)

"without anything obscure, impossible, or imaginary being in any way involved in
the conception."

An important difference between Hamilton’s theory of couples and other
formally equivalent systems in which a similar meaning had been given of the
imaginary unit (for example Warren’s 1828 work On the Geometrical Repre-
sentation of the Square Root of Negative Quantities, where the symbol

√
−1 is

interpreted as a unit line perpendicular to the unit real line) is that no reference
is made to the notion of space, but only to the concept of progression. However,
Hamilton’s theory of couples can be interpreted geometrically and consistently
applied to problems of plane geometry.

For years Hamilton attempted to extend his theory to triplets in view of a
possible applications to space geometry. A posteriori, we know that this was an
impossible task, since, to speak in modern terms, what Hamilton looked for is a
tridimensional associative division algebra. Such a structure cannot be constructed,
since, up to an isomorphism, there are only three associative division algebras over
the reals: real numbers themselves, complex numbers and quaternions, having

52In his paper on algebraic couples Hamilton derived in an independent way also the so-called
Cauchy-Riemann equations and remarked: "The author acknowledges with pleasure that he
agrees with M. Cauchy, in considering every (so-called) Imaginary Equation as a symbolic
representation of two separate Real Equations: but he differs from that excellent mathematician
in his method generally, and especially in not introducing the sign

√
−1 until he has provided

for it, by his Theory of Couples, a possible and real meaning, as a symbol of the couple (0, 1)."
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respectively dimensions 1, 2 and 4.53 So, on one hand, Hamilton’s search for an
autonomous theory of triplets satisfying the criteria he required was doomed to
fail, but, on the other, his perseverance and methodological coherence led almost
necessarily to the theory of quaternions (in which a theory of triplets is actually
included as a particular case).

The "discovery" of quaternions, as Hamilton sometimes referred to it, came
with a sudden epiphany on October 16th, 1843. This is how Hamilton remembered
that moment in 1865, shortly before dying, in a tender letter to his son Archibald:

...I happen to be able to put the finger of memory upon the year and month
- October, 1843 - when having recently returned from visits to Cork and
Parsonstown, connected with a meeting of the British Association, the desire
to discover the laws of the multiplication [of triplets]... regained with me a
certain strength and earnestness, which had for years been dormant, but
was then on the point of being gratified, and was occasionally talked of
with you. Every morning in the early part of the above-cited month, on my
coming down to breakfast, your (then) little brother William Edwin, and
yourself, used to ask me, "Well, Papa, can you multiply triplets"? Whereto
I was always obliged to reply, with a sad shake of the head: "No, I can only
add and subtract them." But on the 16th day of the same month - which
happened to be a Monday, and a Council day of the Royal Irish Academy - I
was walking in to attend and preside, and your mother was walking with me,
along the Royal Canal, to which she had perhaps driven; and although she
talked with me now and then, yet an under-current of thought was going on
in my mind, which gave at last a result, whereof it is not too much to say
that I felt at once the importance. An electric circuit seemed to close; and
a spark flashed forth, the herald (as I foresaw, immediately) of many long
years to come of definitely directed thought and work, by myself if spared,
and at all events on the part of others, if I should even be allowed to live
long enough distinctly to communicate the discovery. Nor could I resist the
impulse - unphilosophical as it may have been - to cut with a knife on a
stone of Brougham Bridge, as we passed it, the fundamental formula with
the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem, but of course, as an inscription,
has long since mouldered away.54

53The main difficulty arises in defining the multiplication rules in such a way that the inverse
of any element of the algebra different from the null element is unique. For more details see
May (1966) and bibliography therein. In any case, even if Hamilton didn’t give a formal proof
of impossibility, it is likely that he perceived this, as also Gauss did before him. In a letter
written to John Graves after the "discovery" of quaternions, later published in the Philosophical
Journal, in describing some of his unsuccessful attempts to multiply triplets Hamilton wrote:
"And here there dawned on me the notion that we must [emphasis mine] admit, in some sense,
a fourth dimension of space for the purpose of calculating [capital mine] with triplets."
It is clear then that, at this stage, for Hamilton such "fourth dimension" is necessary in order to
construct an effective calculus on triplets. He later found a geometrical justification. A fuller
account of Hamilton’s attempts to find an autonomous theory of triplets is given by himself in
the preface of the Lectures on Quaternions.

54Graves 1885, pp. 434–435. Seven years before, Hamilton gave a similar account of the event
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A month later, on November 13th, Hamilton read at the Academy a paper On a
new system of imaginaries in algebra, connected with a theory of quaternions, in
which quaternions are defined as follows:

It is known to all students of algebra that an imaginary equation of the form
i2 = −1 has been employed so as to conduct to very varied and important
results. Sir Wm. Hamilton proposes to consider some of the consequences
which result from the following system of imaginary equations, or equations
between a system of three different imaginary quantities:

i2 = j2 = k2 = −1
ij = k, jk = i, ki = j;

ji = −k, kj = −i, ik = −j;

no linear relation between i, j, k being supposed to exist, so that the
equation

q = q’,

in which

q = w + ix+ jy + kz,

q′ = w′ + ix′ + jy′ + kz′,

and w, x, y, z, w′, x′, y′, z′ are real, is equivalent to the four separate
equations

w = w′, x = x′, y = y′, z = z′.

Sir W. Hamilton calls an expression of the form q a quaternion; and the
four real quantities w, x, y, z he calls the constituents thereof.55

Hamilton devoted the rest of his life to the "consideration of the consequences" of
these definitions, but probably could never imagine how far such consequences
would be extended in the XX century. The literature on quaternions, their
applications and subsequent fate is exterminate. Here we must limit ourselves to
some general remarks more closely related to the subject of this dissertation.56

Hamilton’s theory of quaternions was a turning point in the history of modern
mathematics, marking the beginning of abstract algebra. According to Whittaker
the formula ij = −ji

in a letter to Peter Tait: "...I then and there felt the galvanic circuit of thought close; and the
sparks which fell from it were the fundamental equations between i, j, k; exactly such as I have
used them ever since. I pulled out on the spot a pocket-book, which still exists, and made an
entry, on which, at the very moment, I felt that it might be worth my while to expend the labour
of at least ten (or it might be fifteen) years to come. But then it is fair to say that this was
because I felt a problem to have been at that moment solved - an intellectual want relieved -
which had haunted me for at least fifteen years before." (Graves 1885, pp. 435–436)

55Hamilton 1843.
56A short and clear introduction to quaternions is Tait’s article for the Encyclopedia Britannica,

published in Tait (1900b, pp. 445–455), where the history and relation of Hamilton’s method
to others is also discussed. Probably the best starting point to enter quaternions in a way
that is more direct to the point but still faithful to Hamilton views is Kendall and Tait 1873.
See Gsponer and Hurni 1993 for a more recent review of the relevance of quaternions for
contemporary mathematical physics; Gsponer and Hurni 2008a; Gsponer and Hurni 2008b are
extensive bibliographies on quaternions and allied systems.
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was the supreme moment in the history of mathematical symbolism. It
began the creative process which yielded not only quaternions, but all the
other systems which broke away from old rules - Cayley and Sylvester’s
matrices, Boole’s symbolic logic, Grassman’s Ausdehnungslehre, Gibbs’
dyadics and the Heisenberg-Dirac algebra of quantum mechanics.57

For the first time it became clear that one could create from scratch new and
coherent number systems (and, more generally, meaningful systems of symbols),
provided a set of postulates defining the properties of the numbers through the
operations that may be effected on them. Hamilton was one of the first, in fact, to
recognize as fundamental (i.e. as definitory of the meaning of symbols employed)
the commutative, associative and distributive properties of the basic operations
of elementary algebra. One of the great novelties of his system was the renounce
to the commutative property of multiplication, until then considered a "natural"
or "necessary" property of numbers "themselves", conceived as primitive entities
whose properties would be "evident". Indeed, it is hard to think differently if
numbers themselves are left undefined or implicitly regarded as representing quan-
tities. But, as we saw, a critical analysis of the concept of ratio led Hamilton to an
explicit operational definition of real numbers as quotients of steps. When numbers
are thus regarded as operators, it becomes naturally relevant the order in which
the operations encoded in a symbolical formula are effected, and commutativity
appears clearly as a possibility rather than as a necessity. Something similar
occurred in the same period with the "discovery" of "non-euclidean" geometries,
i.e. with the analogous recognition that the existence and uniqueness of parallel
lines is a possibility58 rather than a logical necessity, so that denying Euclid’s
parallel postulate leads to different but coherent and meaningful geometries.

As we already remarked, despite quaternions were introduced as algebraic
sets (i.e. as systems of symbols and operations defining them), at the very outset
Hamilton framed the search for triplets in geometrical terms, interpreting triplets
as positions in space, and in view of the possible geometrical applications of
such a new method. The first such application was to problems of spherical
trigonometry. In the first paper of November 1843 Hamilton already remarked

57Whittaker 1944. George Boole, in particular, was strongly influenced by Hamilton’s works,
and repeatedly looked for his support. However, contrarily to his habits, Hamilton was not very
responsive to Boole’s requests, a fact that Hankins finds hard to explain. I think a clue is given
by Hamilton himself in the letter to De Morgan already quoted above, dated December 8th,
1851, which continues as follows: "...it is one of my hopes to resume, at what may be called
leisure hours, some of my old studies of that kind, and to combine them with the reading of
some other and more Aristotelian than Platonic works - including the ’Formal Logic?’- although
my own temperament of mind is far more Platonic than Aristotelian. Don’t be so malicious as
to quote the Malim cum Platone errare, however applicable you may think it to be; and let me
tell you that when I was a boy at College I acquired some undergraduate renown by a short
proof (which I have totally forgotten, and which would at all events have bee since superseded
by one of Mr Boole’s), that in no legitimate syllogism can the conclusion change place with
either of the premises." (Graves 1889, p. 296). It seems worth noting here that today we know
that also in Hellenistic times Chrysippus (III cent. BC), third master of the Stoic school, had
demonstrated theorems internal to what later was called propositional logic. For more details
see Russo 2004, pp. 218–221.

58Namely, that of drawing on a plane surface rather than on a curved one.

87



how the multiplication properties of quaternions indicated "a new sort of algorithm,
or calculus, for spherical trigonometry", and a letter dated October 24th to John
Graves proves that Hamilton immediately foresaw such application:

I think that this Calculus of Quaternions will at least be found to assist in
discovering many theorems in spherical trigonometry. Some such theorems
have been suggested to me by it, which I do not know how to prove
otherwise...59

Alongside with the first applications, Hamilton’s attention drew more and more on
the geometrical interpretation of the results to which the new symbolic calculus led
him, and the more he clarified the matter the more he came to conceive quaternions
chiefly as geometric objects (i.e. objects constructed in tridimensional space), as
contrasted with the initial purely algebraic definition based on the multiplication
rules for the fundamental symbols i, j, k. This might seem paradoxical, but as
Hamilton immediately perceived (and this was his great intuition) the additional
abstract "extra-spatial" dimension is the price to pay to treat all directions of
space as equivalent. Some time later in response to De Morgan’s attempts to
build a system of triplets different from that included in his theory of quaternions
Hamilton emphasized the importance of this point:

It will surprise me, I confess, if either your theory, or any other person’s,
of pure triplets shall be found to surpass that which I have been led to
perceive, as included in my theory of quaternions on all, or most, of the
three following points:

1. Algebraic simplicity ; ...analogy to ordinary algebra, as to the rules of
addition and multiplication (the commutative property excepted);

2. Geometric simplicity ; ...ease of construction; the rule of the diagonal;
and, above all, simmetricity of space, no one direction being eminent;

3. Determinateness of division; ...a quotient being never indeterminate
or impossible unless the constituents of the divisor all vanish.

Of all these assumed requisites, or things aimed at me (and I admit that I
aimed at others), what now appears to me most my own is the symmetri-
calness of space in my system. If you have succeded in representing this
with pure triplets, eris mihi magnus Apollo. My real is the representative
of a sort of fourth dimension, inclined equally to all lines in space.60

A year after the discovery, the geometrical interpretation of the algebraic theory
of quaternions was essentially complete. Hamilton exposed it in the short paper
On Quaternions.61 In it, this real representative of the fourth dimension are
interpreted as expressing a time-relation between steps, pertaining to a one-
dimensional ordering representable on a scale, whence the name of scalar part
of the quaternion; and the three imaginary parts, forming the vector part of
the quaternion, are interpreted as expressing a space-relation between steps,

59Graves 1885, p. 442.
60Quoted in Hankins, p. 305.
61Hamilton 1844.
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pertaining to their tridimensional ordering. In other words, since quaternions are
conceived to express relations between successions, their very same existence in
space presupposes their existence in time.62

After the triumph of cartesian geometry in the early modern period, this
indifference to the directions of space made quaternions the first coordinate-free
language in which the choice of a reference system, expressed or implied, is not
required at all. The importance of this aspect, that became generally acknowledged
after Einstein’s theory of relativity, was clearly perceived by Peter Guthrie Tait,
who, after a period of self-study of the Lectures on Quaternions, became the only
true pupil of Hamilton with regards to his method of quaternions. Therefore, we
turn to him and to his closer fellows to get a clearer view of quaternions as a
method.63

2.4 Hamilton’s Elements
Tait gave great importance to Hamilton’s progressive shift in emphasis (at least
in his published works) from the algebraical to the geometrical definition of
quaternions. In his opinion, the history of the development of this theory should
be divided in two distinct phases: the first, going from their (algebraic) invention in
1843 to the publication of the Lectures on Quaternions in 1853, when quaternions
were defined as an "analytical system of imaginaries", and then interpreted as
geometrical objects (see Fig. 2.5); and a second one, going from 1853 to 1865,
when Hamilton died and left unpublished the huge and ever-almost-complete
Elements of Quaternions, in which he finally exposed his original (and ultimate)
view on his own creation. As Tait put it:

...[Hamilton] raised Quaternions from the comparatively low estate of a
mere system of Imaginaries to the proud position of an Organ of Expression;

62In this regard, it seems relevant to remark that in a letter to De Morgan dated May 12th,
1841, Hamilton wrote: "Let me own that I am not prepared to decide, with you, that it is
possible for a human mind to ’imagine a given length to be instantaneously generated, no one
portion of it coming into the thoughts before or after another,’ in opposition to the teaching of
Kant, which seems to me confirmed by my own consciousness, that ’we can think to ourselves
no line without drawing it in thought’." (Graves 1885, p. 342)

63In a note at the end of the Elements of Quaternions Hamilton explicitly elected Tait
his "successor" in the further development of the theory of quaternions, and especially of
its applications to physics. After the death of the master Tait strongly advocated the use
of quaternions as a general language for physical sciences, and got involved in a quarrel on
Nature with Gibbs’ and the supporters of vector calculus. This was born as a byproduct of
quaternion calculus, and indeed the quarrel originated by Tait’s remark that Gibbs’ vector
calculus was a "hermafrodite monster" that borrowed words from Hamilton’s system but
completely misunderstood the nature of the method. Through Tait, quaternions came under the
notice of his lifelong friend James Clerk Maxwell, who also became a supporter of Hamilton’s
system. To illustrate their utility Maxwell wrote his monumental Treatise on Electricity and
Magnetism in a double language, using both coordinate methods and quaternions. On the
contrary, Lord Kelvin remained faithful to coordinates and decided not to include quaternion
methods in the influential Treatise on Natural Philosophy he co-authored with Tait. It is quite
likely, as Hankins remarks, that the subsequent fate of quaternions was strongly influenced
by Kelvin’s choice. Conversely, it seems that Tait’s strict adherence to quaternion methods
condemned his impressive works to a relative oblivion.
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Figure 2.5: Frontispiece of the 1853 edition of the Lectures on Quaternions. Notice the
emphasis on the fact that a new mathematical method is exposed, "with some geometrical
and physical applications".
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giving simple, comprehensive, and (above all) transparently intelligible,
embodiment to the most complicated of Real geometrical and physical
relations. From the most intensely artificial of systems arose, as if by magic,
an absolutely natural one!

Considering the care that Hamilton put in the choice of names, the title of
Elements he gave to the crowning work of his mathematical career should be read
as an explicit homage to his beloved Euclid. Indeed, according to Tait, the Greek
ancestry of quaternions is imprinted in their very name:

The word quaternion properly means "a set of four". In employing such a
word to denote a new mathematical method, Sir W. R. Hamilton was prob-
ably influenced by the recollection of its Greek equivalent, the Pythagorean
Tetractys, the mystic source of all things.64

It is noteworthy that for some time Hamilton considered the possibility to call
these new objects grammarithms, which literally translates figure-number, i.e. the
fundamental notion of Pythagorean mathematics. Indeed, mutatis mutandis, it
would be not inappropriate to regard the geometric theory of quaternions as a
modern realization of the old Pythagorean idea of spatial numbers disposed in
ordered progressions.

The fundamental problem posed and solved in Hamilton’s Elements is the
very general one of multiplication and division of directed lines in space. In the
letter to his son we already quoted above, dated 1865, Hamilton was very explicit:

No more important, or indeed fundamental question, in the whole Theory
of Quaternions, can be proposed than that which thus inquires: "What is
such multiplication? What are its Rules, its Objects, its Results? What
Analogies exist between it and other Operations, which have received the
same general Name? And finally, what is (if any) its Utility?"

Indeed, as we already remarked, from the very beginning Hamilton pursued the
search for triplets following Euclid’s steps, i.e. searching for the line which is a
fourth proportional of three perpendicular lines in space.65 Hamilton found that a
quaternion can be seen, very simply, as the unique quotient of two directed lines in
space that satisfies the requirement of isotropy or symmetry between all directions
of space. This latter property makes the resulting method a symbolical calculus
uniquely adapted to the symmetries of Euclidean space or, as Hamilton expressed
himself, to the symmetricalness of space.

The Euclidean filiation of Hamilton’s theory was well understood by Maxwell,
who wrote in this regard:

The fact is, that even in the purely geometrical applications of the Quater-
nion method we meet with three different kinds of directed quantities: the

64Tait 1886.
65See, in particular, Hamilton 1844, and compare with Hamilton’s juvenile remarks on the

meaning of division quoted above. Note that in a plane, the construction of a line that is the
fourth proportional of three given lines is equivalent to the calculation of a ratio. In his search
for triplets Hamilton has thus generalized Euclid’s procedure to three dimensions.
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vector proper which represents transference from A to B; the area or "aper-
ture," which is always understood to have a positive and a negative aspect,
according to the direction in which it is swept out by the generating vector;
and the versor which represents turning round an axis. The Quaternion
ideas of these three quantities differ from the ideas of the line, the surface,
and the angle only by giving more prominence to the fact that each of them
has a determinate direction as well as a determinate magnitude. When
Euclid tells us to draw the line AB he supposes it to be done by the motion
of a point A to B or from B to A. But when the line is once generated he
makes no distinction between the results of these two operations, which,
on Hamilton’s system, are each the opposite of the other. Surfaces also,
according to Euclid, are generated by the motion of lines, so that the idea of
motion is an old one and we have only to take special note of the direction
of the motion in order to raise Euclid’s idea to the level of Hamilton’s.66

And also by Kendall (emphasis ours):

The fundamental idea on which the science is based is that of motion -
of transference. Real motion is indeed not needed, any more than real
superposition is needed in Euclid’s Geometry. An appeal is made to mental
transference in the one science, to mental superposition in the other. We
are then to consider how it is possible to frame a new science which shall
spring out of Arithmetic, Algebra, and Geometry, and shall add to them
the idea of motion - of transference. It must be confessed that the project
we entertain is not a project due to the nineteenth century. The Geometry
of Des Cartes [sic] was based on something very much resembling the idea
of motion, and so far the mere introduction of the idea of transference was
not of much value. [...] What the nineteenth century has done, then, is to
divorce addition from multiplication in the new form in which the two are
presented, and to cause the one, in this new character, to signify motion
forwards and backwards, the other motion round and round.67

So, in short, Hamilton’s theory of quaternions is a symbolical and kinematical
"upgrade" of Euclidean space geometry, where the two algebraic operations of ad-
dition and multiplication are made to correspond to the geometrical operations of
tracing and rotating a straight line, and where, more generally, all the magnitudes
involved are conceived as generated by the directed motion of lower-dimensional
ones. In Hamilton’s view, every quaternion equation is thus the symbolical expres-
sion of the correspondence or equivalence between two simultaneous progressions
of figure-numbers.

It is clear how Hamilton recovered and put to profit many of the primal
conceptions of Greek mathematics. His calculus, in particular, greatly simplifies
the study of surfaces of revolution and their intersections, making easily available to
modern, symbolic-minded mathematicians many results that the Greeks achieved
by their unparalleled geometrical skills and visualization abilities. Indeed, this
is what makes Apollonius’ Conics so hard to read for modern mathematicians.

66Maxwell 1873.
67Kendall and Tait 1873, p. 4.
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As it turns out, many of Apollonius’ theorems are demonstrated by quaternion
methods with a few lines of calculation.68 Still Tait (emphasis ours):

Perhaps to the student there is no part of elementary mathematics so
repulsive as is spherical trigonometry. Also, everything relating to change
of systems of axes, as for instance in the kinematics of a rigid system,
where we have constantly to consider one set of rotations with regard
to axes fixed in space, and another set with regard to axes fixed in the
system, is a matter of troublesome complexity by the usual methods. But
every quaternion formula is a proposition in spherical (sometimes degrading
to plane) trigonometry, and has the full advantage of the symmetry of
the method. And one of Hamilton’s earliest advances in the study of
his system (an advance independently made, only a few months later, by
Cayley) was the interpretation of the singular operator q(.)q−1, where q is
a quaternion. Applied to any directed line, this operator at once turns it,
conically, through a definite angle, about a definite axis. Thus rotation is
now expressed in symbols at least as simply as it can be exhibited by means of
a model. Had quaternions effected nothing more than this, they would still
have inaugurated one of the most necessary, and apparently impracticable,
of reforms.69

If one recalls the young Hamilton’s imaginary dialogues with Euclid, it should be
clear why he later accorded such a great importance to his new "method".

Those who familiarized with quaternion methods clearly perceived their emi-
nently geometric power. In response to Cayley’s opinion that quaternions are just
a compact way of using coordinates - which remained to him "the natural and
appropriate basis of the science" -, Tait summarized his view on the matter as
follows:

To me Quaternions are primarily a mode of representation:—immensely
superior to, but of essentially the same kind of usefulness as, a diagram
or a model. They are, virtually, the thing represented: and are thus
antecedent to, and independent of, coordinates: giving, in general, all the
main relations, in the problem to which they are applied, without the
necessity of appealing to coordinates at all. Coordinates may, however,
easily be read into them:—when anything (such as metrical or numerical
detail) is to be gained thereby. Quaternions, in a word, exist in space,
and we have only to recognize them :—but we have to invent or imagine
coordinates of all kinds. The grandest characteristic of Quaternions is their
transparent intelligibility.70

Notice, in particular, that such a use of coordinates intrinsically adapted to the
figure at hand is exactly the way in which coordinates are employed by Apollonius
in the Conics.71

68See for example the exercises proposed in Kendall and Tait 1873.
69Tait 1900b, pp. 453–454.
70Tait 1900b, p. 393.
71It is noteworthy that Hieronymus Zeuthen (1839-1920) was able to recognize Apollonius’

methods as a geometric algebra only after its modern analogue was invented, in the same span
of years, first by Hamilton and then by others.
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On different occasions Tait also emphasized the pedagogical value of the
geometrical approach to quaternions, as contrasted to the algebraical, in particular
with regard to the manifold physical applications of the method:

Keeping always in view, as the great end of every mathematical method, the
physical applications, I have endeavoured to treat the subject as much as
possible from a geometrical instead of an analytical point of view. Of course,
if we premise the properties of i, j, k merely, it is possible to construct from
them the whole system; just as we deal with the imaginary of Algebra, or, to
take a closer analogy, just as Hamilton himself dealt with Couples, Triads,
and Sets. This may be interesting to the pure analyst, but it is repulsive to
the physical student, who should be led to look upon i, j, k, from the very
first as geometric realities, not as algebraic imaginaries.72

As he also said, with quaternions there can be no "shut up your eyes, and write
down your equations", since every manipulation of a quaternion formula can
and should be immediately interpreted in geometrical terms. In the same article
quoted above Maxwell expressed his enthusiasm about this feature of Hamilton’s
method:

Now Quaternions, or the doctrine of Vectors, is a mathematical method,
but it is a method of thinking, and not, at least for the present generation, a
method of saving thought. It does not, like some more popular mathematical
methods, encourage the hope that mathematicians may give their minds a
holiday, by transferring all their work to their pens. It calls upon us at every
step to form a mental image of the geometrical features represented by the
symbols, so that in studying geometry by this method we have our minds
engaged with geometrical ideas, and are not permitted to fancy ourselves
geometers when we are only arithmeticians.73

According to Tait it was an unfortunate choice on Hamilton’s part not to
publish earlier his theory in its improved form, without appealing at all to the
algebraic definition of quaternions. He explained this fact as follows:

He had fully recognized, and proved to others, that his i, j, k were mere
excrescences and blots on his improved method:—but he unfortunately
considered that their continued (if only partial) recognition was indispensable
to the reception of his method by a world steeped in Cartesianism! Through
the whole compass of each of his tremendous volumes one can find traces
of his desire to avoid even an allusion to i, j, k; and, along with them, his
sorrowful conviction that, should he do so, he would be left without a single
reader. [...] And I further believe that, to this cause alone, Quaternions owe
the scant favour with which they have hitherto been regarded.74

72Tait 1890, p. xi.
73Maxwell 1873. Such remarks will be echoed in a different context by Vladimir Arnol’d

(1990), another strong advocate of geometrical methods in mathematical physics.
74In this paper Tait also copied a letter dated 1859 in which Hamilton asked him to differ the

publication of his planned manual on quaternions, claiming precedence for the presentation of
the theory in his new form: "Meanwhile I trust that it cannot be offensive to you, if I confess,
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Tait’s analysis applies identically, I think, to the historical reception of the theory
quaternions, often mentioned as a mile-stone in the history of algebra but rarely
exposed in its essential geometrical meaning.75 In any case, Tait admits that it
was not from Hamilton’s published works that he grasped the full import of the
theory:

I do not now think that Hamilton, with the "peculiar turn of mind" of which
he speaks, could ever, in a book, have conveyed adequately to the world his
new conception of the Quaternion. I got it from him by correspondence, and
in conversation. When he was pressed to answer a definite question, and
could be kept to it, he replied in ready and effective terms, and no man could
express viva voce his opinions on such subjects more clearly and concisely
than he could:—but he perpetually planed and repolished his printed work
at the risk of attenuating the substance: and he fatigued and often irritated
his readers by constant excursions into metaphysics. One of his many letters
to me gave, in a few dazzling lines, the whole substance of what afterwards
became a Chapter of the Elements; and some of his shorter papers in the
Proc. R. I. A. are veritable gems. But these were dashed off at a sitting,
and were not planed and repolished.

Faithful to himself and to his official charge as Royal Astronomer of Ireland, the
first physical domain in which Hamilton applied his new method of grammarithms
was, of course, astronomy. Indeed, the first systematic exposition of his method,
the Lectures on Quaternions, were in origin included in his Astronomy course
at Trinity College, where the occasion allowed him "select his illustrations from
Geometry" and, at the same time, to "clothe them in an Astronomical garb."76

In the astonishing Lectures on Quaternions the deep connection between Hamil-
ton’s conception of quaternions and the fundamental problems of mathematical
astronomy is made crystal clear.

[...] that in any such future publication on the Quaternions as you do me the honour to meditate,
I should prefer the establishment of ’Principles’ being left, for some time longer,—say even
2 or 3 years,— in my own hands. Open to improvement as my treatment of them confessedly
is, I wish that improvement, at least to some extent, to be made and published by myself.
Briefly, I should like (I own it) that no book, so much more attractive to the mathematical
public than any work of mine, as a book of yours is likely to be, should have the appearance
of laying a ’foundation’ [...] But my peculiar turn of mind makes me dissatisfied without
seeking to go deeper into the philosophy of the whole subject, although I am conscious that
it will be imprudent to attempt to gain any lengthened hearing for my reflections. In fact I
hope to get much more rapidly on to rules and operations, in the Manual than in the Lectures ;
although I cannot consent to neglect the occasion of developing more fully my conception of the
Multiplication of Vectors, and of seeking to establish such mult[iplication] as a much less
arbitrary process, than it may seem to most readers of my former book to be." Following the
master’s wishes, Tait published his Elementary Treatise on Quaternions in 1867, a few months
after Hamilton’s Elements. Hamilton’s treatise remained the only exposition of such principles
and foundation of the theory of quaternions. However, the difficulty of the treatise, combined
with the subsequent fate of the theory, makes it not unlikely that relatively few people have
actually ever read Hamilton’s major work.

75Of course there are some exceptions. See for example Loria (1939), in which the history of
the geometrical representation of magnitudes is outlined, and quaternions are mentioned as the
latest development of a thread initiated by Greek geometers.

76Hamilton 1853, p. 5.
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Outcome of this first application was another startling "discovery", which
Hamilton described as follows in a letter to De Vère:

I have, however, a new conception to tell you of, which bears on all the
applications of Newton’s great Law of Attraction, and which has in the
strangest way concealed itself from all our mental eyes, till it was pleased
to allow me to fix on it my gaze a little time ago - not, I trust, that I may
share the fate of him who beheld the Virgin Huntress in her transparent
bath, but was afterwards devoured by his own hounds.77

To this new conception we devote the following chapter.

77Graves 1885, p. 546. The Classic reference is to the myth of Artemis and Atteon.
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Chapter 3

The Method of the Hodograph

On December 14th 1846 Hamilton read to the Royal Irish Academy a commu-
nication "respecting a new mode of geometrically conceiving, and of expressing
in symbolical language, the Newtonian law of attraction, and the mathematical
problem of determining the orbits and perturbations of bodies which are governed
in their motions by that law".1 In this short paper Hamilton introduces a new
mathematical method through which the solution to many relevant dynamical
problems may be greatly simplified. The key-idea of the method simple, and con-
sists in focusing the attention, first and foremost, on the kinematical relationship
or relative motion between the bodies under study, rather than on their spatial
relationship or relative position. This conception is concretely realized by the
definition of a new curve, which Hamilton calls hodograph (from the Greek οδός, a
way, and γράφω, to describe), intended to describe such kinematical relationship.

Generally speaking, the hodograph of a given curve γ is another curve γ′
determined by how the former is described by a tracing point. In the applications
to mechanics, i.e. if the point is conceived to represent a material body moving
along a path in "physical" space, its hodograph is the curve traced by the moving
extremities of the succession of its vectors of velocity, provided all of them are
drawn from a common point as origin. In other terms, the hodograph of a moving
body is a diagram in an abstract velocity space answering how the body moves at
any given point of its path.

The main result of Hamilton’s paper is the so-called Law of the Circular
Hodograph, a geometrical characterization of the inverse-square law by which
the two-body problem is solved in a very simple and elegant way. In particular,
starting from the circular hodograph, all the solutions to the dynamical two-body
problem may be explicitly constructed and represented by a diagram which encodes
in its structure all (and only) the observables of the problem, namely the position
along the path and the corresponding velocity of the moving point.

Despite its beauty and simplicity, the method of the hodograph is not widely
known today. At the time of its invention, it was well received by some of
Hamilton’s closest correspondents, mainly for his high pedagogical value. Thomson
and Tait, for example, used hodographic methods in their famous textbook (albeit
framing it in coordinate language) to solve specific problems that otherwise would

1Hamilton 1847b.
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require way more sophisticated mathematical techniques.2 Also Maxwell used the
circular hodograph to solve the Kepler problem in his little gem Matter and Motion.
However, in the first half of the XX century the hodograph practically disappeared
from the literature and was later independently rediscovered in different contexts.3
Its most famous revival is probably Feynman’s lost lecture about the motion of
planets around the Sun, where the circular hodograph, although not named in
this way, is used to deduce the elliptic shape of the orbits.4

In the last decades the hodograph has been the subject of many works exploring
its features and possible generalizations, but none of these has much in common
with Hamilton’s original approach.5 In particular, in all the subsequent revivals of
the method the law of the circular hodograph is deduced from the inverse square law,
appearing thus as one among its many consequences. This is, of course, legitimate,
the two laws being completely equivalent from the mathematical standpoint, but
doing so one misses the most interesting aspects of Hamilton’s method.

In Hamilton’s original paper the law of the circular hodograph is the result
of a general analysis that yields a symmetry criterion which uniquely selects the
inverse-square proportion among all the conceivable dynamical laws. In other
words, Hamilton’s treatment suggests the possibility and indicates the route to an
a priori justification of the inverse-square proportion based on the symmetries of
Euclidean space. The dynamical symmetry exhibited by Hamilton’s procedure is
very remarkable, and, as we read in the letter quoted at the end of last chapter,
Hamilton himself was surprised when he realized that such a simple property of
Newton’s gravitational law went unnoticed for so long.

The reasons of such a "strange" circumstance lie, of course, in the intrinsic
features of Hamilton’s theory of quaternions, of which the geometrical method
of the hodograph was an immediate offspring. In July 1845 Hamilton read to
the Royal Irish Academy a communication On the application of the method of
Quaternions to some dynamical questions. Here we read:

The author stated that, during a visit which he had lately made to England,
Sir John Herschel suggested to him that the internal character (if it may
be so called) of the method of quaternions, or of vectors, as applied to
algebraical geometry, - that character by which it is independent of any

2Among others, Thomson was particularly enthusiastic about the hodograph, and asked
Hamilton multiple copies of his paper. He also made the hodograph the subject of examination
in his courses. In light of the thesis here exposed, it is noteworthy that Thomson was among
the modern pioneers of analog computing. Probably the first mechanical device of the modern
era comparable in conception and sophistication to the AM was Thomson’s Tidal Clock.

3A notable exception is Sommerfeld 1952, who probably knew about Hamilton’s method
from his master Felix Klein. Klein was one of the few mathematicians on the continent who
was thoroughly familiar with Hamilton’s works, which probably also influenced the ideas of his
Erlangen Program (Hankins 1980, pp. 199–210). It is noteworthy that in F. Klein (1949) it is
sketched how Euclid’s geometry can be reframed by reference to the concept of motion, but
Hamilton is never named.

4The lecture was later published in D. Goodstein and J. Goodstein 1997. The audio recording
is available on Youtube.

5See for example Eades 1968; Derbes 2001; Ben Ya’acov 2017 and bibliography therein. I
don’t understand why Hankins regards the hodograph method as a "mathematical curiosity"
that has "nothing to do with the quaternions" (Hankins 1980, p. 326).
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foreign and arbitrary axes of coordinates, - might make it useful in researches
respecting the attractions of a system of bodies. A beginning of such a
research had been made by Sir William Hamilton in October, 1844, which
went so far, but only so far, as the deducing of the constancy of the plane of
an orbit, and the equable description of areas, under one common formula...
Since the suggestion above acknowledged was made, Sir William Hamilton
has proposed to himself to express by an equation, on the principles of
the method of vectors, the problem of any number of bodies attracting
according to Newton’s law...

In the later Elements Hamilton remarked that the law of the circular hodograph
was "virtually contained in a quaternion formula" included in this communication,
and indeed there he deduced by quaternion methods many of the results which
will be obtained geometrically in the hodograph paper of 1846. Also, at the
very beginning of the Lectures on Quaternions, Hamilton remarked that "theory
of Hodographs... had been suggested to me as a geometrical interpretation, or
construction, of some integrations of equations in physical astronomy whereto I
had been conducted by the Method of Quaternions."6 This later recollection is
confirmed by a letter he sent to John Herschel during 1846, where he remarked:

...it is a feature of my method that it suggests geometrical demonstrations
in a degree which I never experienced while practising the method of
coordinates...

It was exactly such suggestive character of his method that prompted the recog-
nition of the dynamical symmetry hidden in Newton’s gravitational law and
expressed by the law of the circular hodograph. The last stimulus Hamilton
needed for this came from the theoretical discovery of Neptune, occurred in the
September 1846, which rekindled his interest in the problems of planetary pertur-
bations. In the preparation of a supplementary lecture to his course on Astronomy
at the Trinity College for this special occasion, the geometrical method of the
hodograph came to light.

In the 1846 paper quaternions are named just at the end and throughout
employed only in the degenerate form of vectors. However, the quaternion origin
of the method probably explain why the title of the paper refers to a symbolical
language and why, despite the geometrical character of the conception exposed, no
figure is included.7 This lack makes it quite difficult to read, so we reconstructed
the missing diagrams. In any case, before turning to Hamilton’s paper, it will be
helpful to sketch Feynman’s version of the hodograph method.8

3.1 Feynman’s Lost Lecture
On March 13th, 1964, Richard Feynman gave a guest lecture about the motion
of the planets around the Sun to the undergraduate students of the California

6Hamilton 1853, p. 3.
7At least in in the printed version of the paper. It is sure that Hamilton presented diagrams

when he communicated the paper at the Royal Irish Academy.
8For a full exposition of the hodograph method by quaternions the reader is referred to

Hamilton’s Elements (Book III, Art. 419) and, for a simpler treatment, to Tait 1890, pp. 279–287.
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Institute of Technology. The general aim of the lecture is to prove Kepler’s first
law in the context of Newton’s dynamics.

After an historical introduction and some preliminaries devoted to the proper-
ties of the ellipse, the steps of Feynman’s proof may be summarized as follows.

From Kepler’s second law, i.e. from the observation that the planets describe
equal areas in equal time, it is deduced that the force which deviates the planets
from their inertial path must be directed to the Sun. In this step Feynman
reproduces essentially Newton’s proof of the inverse result (i.e. that central forces
imply equal areas in equal times) as it appears in the Principia.

From Kepler’s third law, i.e. from the observation that the square of the
periods of revolution is proportional to the cube of the major semiaxis of the
orbits, assuming for simplicity that the orbits are circles it is deduced that the
intensity of the force must decrease as the square of the distance. Also in this step
Feynman reproduces the proof sketched in the introduction to the third edition of
the Principia, written by Roger Cotes.

From the central inverse-square law it is deduced that the planetary orbits are
ellipses with the Sun occupying one of the focii, i.e. Kepler’s first law. This is the
main focus of the lecture, being according to Feynman the "most dramatic" of
Newton’s discoveries:

...what Newton discovered—and which was the most dramatic of his dis-
coveries—was that the third law [Feynman means the First Law] of Kepler
was now a consequence of the other two. Given that the force is toward the
Sun, and given that the force varies inversely as the square of the distance,
to calculate that subtle combination of variations and velocity to determine
the shape of the orbit and to discover that it is an ellipse is Newton’s
contribution, and therefore he felt that the science was moving forward,
because he could understand three things in terms of two.

Feynman confesses that on this point he couldn’t follow Newton’s proof, "because
it involves so many properties of the conic sections",9 so he "cooked up" an original
proof, more elementary than Newton’s in a very specific sense, that is particularly
interesting in the perspective of this dissertation:

“Elementary” means that very little is required to know ahead of time in
order to understand it, except to have an infinite amount of intelligence.
It is not necessary to have knowledge but to have intelligence, in order to
understand an elementary demonstration. There may be a large number of
steps that are very hard to follow, but each step does not require already
knowing calculus, already knowing Fourier transforms, and so on. So by an
elementary demonstration I mean one that goes back as far as one can with
regard to how much has to be learned. [...] Secondly, this demonstration is
interesting for another reason—it uses completely geometrical methods.10

9To be pedantic, Newton never gave in the Principia an explicit proof of this result, corre-
sponding to the solution of the so called inverse Kepler problem. In the Principia it is the
direct Kepler problem that is explicitly solved, while the inverse result, that guarantees also
the uniqueness of the solution, is stated without proof. This gave rise to a long controversy
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Figure 3.1: Feynman’s version of Newton’s diagram for Proposition 1 in the Principia.

Figure 3.2: Proof that the triangles SAB,SBc and SBC have equal areas. SAB and
SBC have the same base because AB = Bc and a common altitude SH, so they have
the same area; also SBC has the same area as SBc, because they have the same base
SB and are comprised between the same parallel line; therefore, SAB = SBc = SBC.
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Following Newton’s paradigmatic example of the Principia, Feynman approxi-
mate the orbit whose shape is to be found with a polygon formed by a succession
of points A,B,C,D,E, representing the successive positions of a planet, the Sun
being placed at the fixed point S, and assuming that the positions of the planet
are separated by equal intervals of time (see Fig. 3.1). This assumption, together
with Newton’s first and second laws of motion and with the hypothesis about
the centripetal character of the gravitational force, implies that the successive
triangles SAB, SBC, SCD, SDE on the diagram are all in the same plane and
have equal areas (see Fig. 3.2). In this approximation the planet moves in each
interval at a constant velocity along the lines AB,BC,CD,DE and these triangles
have an area equal to that swept by the line joining the Sun and the planet in the
corresponding interval of time; therefore the result that the planet describes, in
this approximation, equal areas in equal times. Since the successive positions are
separated by equal times, the lines AB,BC,CD,DE represent both the mean
displacement and the mean velocity of the body in the corresponding intervals of
the orbit, and the lines BV,CW,DX represent the changes of velocity impressed
by the gravitational force at the points B,C,D. In the limit of smaller and smaller
intervals of time the approximate polygonal orbit approaches without limit a
curve, and the same lines tend more and more to the instantaneous values of the
same magnitudes corresponding to the middle instant of the same intervals.

Next, Feynman departs from Newton and considers a succession of positions
of the planet in its orbit, J,K, L,M,N , separated each other by an equal angle
with respect to the fixed point S (see Fig. 3.3). If we identify this fixed center
of attraction with an observer, this is equivalent to choose the true anomaly of
the orbiting body as the independent variable tracking its successive positions in
the orbit. Clearly the true anomaly is not in general proportional to the time, so
equal angles described by the orbiting planet correspond in general to unequal
times of description. Nevertheless, these times are in a definite proportion to each
other, for the triangles SJK, SKL, SLM,SMN have by construction the angle
at the vertex S equal and thus are in the continuous limit more and more similar
to each other. So their areas are to each other as the square of any one of their
homologous sides,11 that is as the square of the distance of the planet from the
Sun. In other terms, equal angles of true anomaly are described in times that are
among themselves in the same ratio as the squares of the mean distance of the
planet from the Sun in those intervals. Feynman goes quite fast on this important
point:

Now listen: I would point out to you that . . . equal angles, which is what
I’m aiming for, means that areas are not equal, no, but they are proportional

among later mathematicians and scholars, standing on opposite positions on the matter. For
more details see, for example, Arnol’d 1990.

10More than twenty years later Feynman saw the fragments of the AM when he visited Athen’s
National Archeological Museum, and remained deeply fascinated by them. He wrote a letter to
his wife about it, which may be read in Feynman 1989, pp. 93–97. I like to think he would be
happy to see his lecture employed in the effort to understand the meaning of those fragments he
was so curious about.

11Euclid, VI.19: "Similar triangles are to one another in the duplicate ratio of their homologous
sides."
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Figure 3.3: Successive positions on the orbit separated by equal angles of true anomaly.
The areas of the triangles SJK,SKL, SLM,SMN are unequal and proportional to the
square of the mean distance of the planet from the Sun in the corresponding interval of
the orbit.

Figure 3.4: Diagrams of position (in red) and velocity (in blue) of the planet in
equal angles of true anomaly in the orbit. Oj,Ok,Ol,Om are the mean velocities in
the intervals and are parallel to JK,KL,LM,MN ; jk, kl, lm are the mean changes of
velocities in the intervals, are parallel to SK,SL, SM and have equal lengths. The two
diagrams are not in the same scale and their sizes have no connection with each other.
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to the square of the distance from the Sun; for if I have a triangle of a given
angle, it is clear that if I make two of them that they are similar; and the
proportional area of similar triangles is proportional to the square of their
dimensions. Equal angles therefore means—since areas are proportional to
time—equal angles therefore means that the times to be swept through these
equal angles are proportional to the square of the distance. In other words,
these points—J, K, L, and so on—do not represent pictures of the orbit at
equal times, no, but they represent pictures of the orbit with successions of
times which are proportional to the square of the distance.

Since, by Newton’s second law, the mean change of velocity in any interval of
the motion is given by the product of the mean force acting in that interval into
the time of its action in that interval (in symbols ∆v = F∆t),12 if the force
decreases as the square of the distance and in equal intervals of true anomaly the
corresponding time of action increases in the same proportion, i.e. if F and ∆t
vary inversely as each other, their product will be constant and the net effect will
be the same in all the intervals. In other terms, the effect of the gravitational
force is such that, whatever may be the distance of the planet from the Sun, in
equal intervals of true anomaly equal changes of velocity are produced. Feynman
expresses this important property of the action of the gravitational force in these
terms:

Now, the dynamical law is that there are equal changes in velocity, no—that
the changes in velocity vary inversely as the square of the distance from
the Sun—that is, the changes of velocity in equal times. Another way of
saying the same thing is that equal changes of velocity will occupy times
proportional to the square of the distance. It’s the same thing. If I take
more time, I get more change in the velocity, and, although they are falling
off for equal times inversely as the square, if I make my times proportional
to the square of the distance, then the changes in velocity will be equal. Or,
the dynamical law is: equal changes in velocity occur in times proportional
to the square of the distance. But look, equal angles were times proportional
to the square of the distance. And so we have the conclusion, from the
law of gravitation, that equal changes of velocity will occur in equal angles
in the orbit. That’s the central core from which all will be deduced—that
equal changes in velocity occur when the orbit is moving through equal
angles.

In symbols, Feynman’s reasoning may be expressed as follows. The dynamical
law is given by the proportion ∆v2 : ∆v1 = F2∆t2 : F1∆t1, the pedices 1 and 2
indicating any two intervals of the motion. The gravitational force is described by
the proportion F2 : F1 = r21 : r22. If 1 and 2 are equal-angle intervals of the orbit,
we saw that ∆t2 : ∆t1 = r22 : r21, therefore in these intervals F2 : F1 = ∆t1 : ∆t2
and ∆v2 = ∆v1, i.e. "equal changes in velocity occur when the orbit is moving
through equal angles." From the centripetal character of the gravitational force it
also follows that the changes in the directions of the mean velocity are the same
in equal-angle intervals of the orbit.

12We assume throughout this analysis that the planet has unit mass.
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Next, Feynman proceeds to construct a new diagram representing the succession
of the velocities of the planet at the points J,K, L,M,N . This diagram of velocities
will be composed of straight linesOj,Ok,Ol, Om parallel to JK,KL,LM,MN , all
drawn from a common origin O, and with a length that must be proportional to the
displacement the planet would made in a unit of time starting from J,K, L,M,N
if no force acted on it. As Feynman remarks, and this is an important point, now
these lengths will not be proportional to JK,KL,LM,MN , since these intervals
are described in unequal times and, therefore, the mean velocities in these times
are not in the same proportion as the corresponding mean displacements. In
symbols, ∆r2 : ∆r1 = v2∆t2 : v1∆t1, and since in equal-angle intervals ∆t2 6= ∆t1,
then ∆r2 : ∆r1 6= v2 : v1.13

The mean changes in velocity occurring in any interval of the motion of the
planet are represented on the velocity diagram by the straight lines jk, kl, km
connecting the successive velocity points, i.e. the variable extremities of the
straight lines representing the velocities - the vectors of velocity, as Feynman
himself can’t resist to say, immediately pointing out, however, that "you’re not
supposed to know what a vector is in this elementary description". So, the
dynamical law expressed by the proposition "equal angles described by the planet
in orbit correspond to equal changes of its velocity" translates into a rule for the
construction of the diagram of velocities, i.e. for the drawing of the succession of
points j, k, l,m: every point of the succession is obtained from the preceding by an
equal translation, rotated at every step by an equal angle. These equal angles of
rotation of the elementary first step corresponds to equal angles of true anomaly
described by the body in its orbit around the Sun in the corresponding (unequal)
times. If the elementary rotation is expressed as the n-th part of a round angle,
the resulting figure will be a regular polygon with n sides.

It is clear that the rule is iterative, so starting from one vector of velocity Oj,
the direction of the corresponding vector of position SJ and the relative change
of velocity occurring in the first n-th part of true anomaly, the full diagram of
velocity may be constructed. In general, the center C of the polygon of velocities
will be different from the common origin O of the vectors of velocity, the two
points coinciding if and only if the vectors of velocity have all equal length. As the
number of divisions of the round angle is taken bigger and bigger, the (irregular)
polygon approximating the orbit approaches without limit the curve orbit whose
shape we’re looking for, while the regular polygon of the velocities approaches
without limit a circle of center C, traced by straight lines originating from an
eccentric point O.

Feynman now considers this limit and draws the continuous diagram of veloc-
ities of a planet orbiting around the Sun (Fig. 3.5).The line Op represents the
velocity of the planet when its true anomaly is θ, i.e. the angle that p describes
on the circle with respect to its center C, measured starting from the point of

13Also on this delicate point Feynman goes over rapidly: "I now draw on this diagram a little
line to represent the velocities. Unlike the other diagram, those lines are not the complete line
from J to K, for in that diagram those were proportional to the velocities, for the times were
equal, and the length divided by equal times represented the velocities. But here I must use
some other scale to represent how far the particle would have gone in a given unit of time, rather
than in the times which are, in fact, proportional to the square of the distance."
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Figure 3.5: Diagram of velocities of a planet orbiting around the Sun. The line Op
represents the velocity of the planet when its true anomaly is θ, measured starting from
the point of maximum velocity. The orbit is not represented.

maximum velocity j.
To achieve the goal of the lecture, it remains to determine the shape of an

orbit corresponding to such an angular distribution of velocities, i.e. the curve
having at all his points the tangents parallel to the lines that trace the circle of
velocities. Feynman reviews the state of affairs at this point of the proof:

So here is the problem, here’s what we have discovered: that if we draw
a circle and take an off-center point, then take an angle in the orbit—any
angle you want in the orbit—and draw the corresponding angle inside this
constructed circle and draw a line from the eccentric point, then this line
will be the direction of the tangent. Because the velocity is evidently the
direction of motion at the moment and is in the direction of the tangent
to the curve. So our problem is to find the curve such that if we draw a
point from an eccentric center, the direction of the tangent of that curve
will always be parallel to that when the angle of the curve is given by the
angle in the center of that circle.

Now Feynman draws again the diagram of velocities, but rotates it by a right
angle, so that the line Op from the eccentric point O to the circumference of the
circle is now to be regarded as perpendicular to the the tangent at the position on
the orbit corresponding to the true anomaly θ. Such a rotation doesn’t change
anything about the meaning of the diagram, but is instrumental to match the
construction of the ellipse that Feynman purposedly set up at the beginning of
the lecture (Fig. 3.6). A little before Feynman had closed his preliminaries about
the ellipse with these words:
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Figure 3.6: Construction of an ellipse by the director circle, showed by Feynman at
the beginning of the lecture. As G′ describes a circle of center F , the point P describes
an ellipse with focii F ′ and F and major axis equal the half the radius of the circle. The
tangent to the ellipse in P is the perpendicular bisector of F ′G′.

I just want to summarize that, to remind you of a property of an ellipse,
which is this: that as a point G′ goes around a circle, a line drawn from
an eccentric point to this point G′—this is an off-center point to the point
G′—will always be perpendicular to the tangent of the ellipse. Or the
other way around: the tangent is always perpendicular to the line—or a
line—drawn from an eccentric point. All right, that’s all, [and] we’ll come
back to it and we’ll remember...

The circle in Fig. 3.6 is called director circle for the ellipse drawn in its interior
with the described construction. If one interprets the circle of velocities as a
director circle, the ellipse constructed with the same method will have as focii the
points O and C. The identity between the constructions shown in Figg. 3.6 and
3.7 proves that the orbit having the correct angular distribution of tangents is,
indeed, an ellipse. Therefore, an ellipse constructed as in Fig. 3.7 is a possible
orbit according to Newton’s dynamics, and the planet in this case describes an
ellipse similar to that described inside its diagram of velocities by the point P .
The proof is complete: elementary, but difficult.

Notice that an identical procedure gives also the open possible orbits, namely
the parabola and hyperbola, provided the eccentric point origin of the velocity
vectors is situated on or outside the velocity circle.14

14Indeed, Feynman says that he borrowed the idea of the velocity circle from U. Fano and
L. Fano (1959), where it is used to deduce the formula of Rutherford scattering.
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Figure 3.7: Construction of the orbit of a planet corresponding to a circular diagram of
velocities of center C and origin O inside the circle. The orbit is the ellipse described by
the point P , whose velocity at the true anomaly θ is equal in length and perpendicular
to Op.

So, to summarize, Feynman’s diagram provides a geometrical construction of
the general solution of the two-body problem, i.e. of the whole pattern of relative
positions and velocities of the moving body that satisfies the constraints posed
by the general laws of dynamics and, in particular, by the inverse-square law of
gravity. Every solution is obtained by an identical procedure and is uniquely
determined by the relative positions of the centre of the velocity circle and of the
eccentric point which is the origin of the straight lines representing in magnitude
and direction the motion of the body at each position along its path.

Notice that the diagrams shown in Figg. 3.6 and 3.7 are identical except for
colors, to emphasize the fact that the only difference between the two is semantic,
i.e. they differ only in the meaning attributed to the parts of one and the same
geometrical construction.15 This fact is indeed a key feature of Newton’s Principia,
the explicit inspiration of Feynman’s lecture. In Newton’s original work, apart
from the mathematical method he employs, the essential point is that lines, angles,
areas and other parts of the geometrical diagrams accompanying the propositions
(in this case, the construction of an ellipse from its director circle) are given
a dynamical or physical interpretation as representing the ratios between the
successive positions and velocities of a real body under the assumed conditions (in
this case, those of a planet moving under the gravitational pull of the Sun). More
generally, cleaning off the metaphysical dust, Feynman’s lectures exhibits very

15From the audio recording of the lecture it appears that Feynman himself used colors to
make diagrams "more interesting".
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clearly that Newton’s dynamics may be regarded as a set of rules (i.e. the laws of
motion) giving instructions on how to analyze and construct geometrical diagrams
that are meant to represent by analogy the reciprocal motions of bodies.16

3.2 The Law of the Circular Hodograph
Hamilton’s paper on the hodograph method (Hamilton 1847b) begins like this:

Whatever may be the complication of the accelerating forces which act
on any moving body, regarded as a moving point, and, therefore, however
complex may be its orbit, we may always imagine a succession of straight
lines, or vectors, to be drawn from some one point, as from a common
origin, in such a manner as to represent, by their directions and lengths, the
varying directions and degrees (or quantities) of the velocity of the moving
point: and the curve which is the locus of the ends of the straight lines
so drawn may be called the hodograph of the body, or of its motion, by
a combination of the two Greek words, οδος, a way, and γραφω, to write
or describe; because the vector of this hodograph, which may also be said
to be the vector of velocity of the body, and which is always parallel to
the tangent at the corresponding point of the orbit, marks out or indicates
at once the direction of the momentary path or way in which the body is
moving, and the rapidity with which the body, at that moment, is moving
in that path or way.

In one single long paragraph Hamilton gives both the geometrical definition and
the physical meaning of this new curve, the hodograph, intended to describe the
motion of a point along its path, whatever this may be. Consider a fixed point
O and another point P moving relatively to it and tracing a curve Γ(s), called
the orbit of P relatively to O. Then, by definition, the hodograph of P is another
curve, γ(s), simultaneously traced by another point p, conceived to be the moving
extremity of a straight line op drawn from an arbitrary but fixed origin o. The
correspondence between orbit and hodograph of a moving point P is given by
the postulate that the line op(s), called the vector of the hodograph or vector of
velocity of P , must be drawn parallel to the tangent at P = Γ(s), and with a
length proportional to the instantaneous speed of P . Thus the line op represents
in direction and magnitude the momentary state of motion of the point P along
its orbit.

Notice that Hamilton treats velocity as an autonomous and primary magnitude,
on the same footing as position and not derived from it.17 Moreover, the hodograph

16This is, I think, what Feynman suggests when, after the setting up of the construction
shown in Fig. 3.6 says: "That’s the ellipse. On the other hand, we have to learn dynamics, we
have to put them together. So now we have to explain what dynamics is all about. I want this
proposition, that’s the geometry ; now the mechanics, what this proposition means. What Newton
means by this is this: ...", and goes on with the proof of Proposition 1 of the Principia, the
cornerstone of Newton’s dynamics. This seems to imply that, according to Feynman, Newton’s
mechanics provides a meaning to well-definite geometrical constructions.

17A similar move was made later by Einstein, who set out his relativistic kinematics starting
from the velocity of light as a primary magnitude, and then defining space and time intervals in
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is defined kinematically, so that the vector of the hodograph (from the latin vehere,
to transport or to carry) is a directed straight line that literally draws the
curve.18 Since this and the orbit are described by assumption simultaneously to
each other, there holds a one-to-one correspondence between the succession of
position-points forming the orbit and the succession of velocity-points forming
the hodograph. Therefore, when in the following we say motion we mean the
simultaneous progression of such a couple of corresponding points.

The first property of the hodograph that Hamilton highlights is the fact that
it exhibits more directly than the orbit the properties of the forces acting on the
moving body:

This hodographic curve is even more immediately connected than the orbit,
with the forces which act upon the body, or with the varying resultant
of those forces, for the tangent to the hodograph is always parallel to the
direction of this resultant; and if the element of the hodograph be divided by
the element of the time, the quotient of this division represents (to the usual
units) the intensity of the same resultant force; so that the whole accelerating
force which acts on the body at any one instant is represented, both in
direction and in magnitude, by the element of the hodograph, divided by
the element of the time. We have also the general proportion, that the force
is to the velocity, in any varied motion of a point, as the element of the
hodograph is to the corresponding element of the orbit.

By definition, in any interval of the motion the mean velocity of p along the
hodograph is the same as the mean acceleration of P along the corresponding
interval on the orbit, and the same is true in the limit of small intervals (i.e. for
the instantaneous values of the same magnitudes). Therefore, the principle of
dynamics translates into the hypothesis that for any interval of motion a definite
proportion holds between, on one side, the ratio between the physical magnitudes
describing the motion, i.e. its accelerating force and its velocity, and, on the
other, the ratio between the geometrical magnitudes that by analogy represent
them, i.e. the curvilinear lengths simultaneously described by the two points p
and P . Notice that the passing reference to time is just incidental, and that the
proportion holds whatever time interval is considered, the only requirement being
that it must be finite. Moreover, the role of time may be played by whatever
continuous parameter that allows to track the evolution of the binary system.

Next, Hamilton restricts his attention to the case in which the force acting on
the body is central, i.e. to the assumption of rotational symmetry :

These general remarks respecting varied motion, under the influence of any
accelerating forces whatever, having been premised, let it be now supposed
that the force is constantly directed towards some one fixed point or centre,
which it will then be natural to choose for the origin of the vectors of the
hodograph. The straight lines drawn to the moving body from the centre of

terms of it. I thank Aimeric Colléaux for calling my attention on this important point, many
years ago.

18It is worth noting here that exactly in this sense Winter (2007) translated vector the Greek
φορά in the Mechanical Problems. See above.
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Figure 3.8: Corresponding vectors of orbit and hodograph in the case of central force.
O is the fixed center of force, OP and OP ′ are successive vectors of the orbit, OT and
OT ′ are the corresponding vectors of the hodograph. PP ′ represents the mean velocity
of the moving point, TT ′ its mean acceleration. H is the center of curvature of the
hodograph (source: Hamilton 1866, p. 727).

force being called, in like manner, the vectors of the orbit, or the vectors of
position of the body, we see that each such vector of position is now parallel
to the tangent of the hodograph drawn at the extremity of the vector of
velocity, as the latter vector was seen to be parallel to the tangent of the
orbit, drawn at the extremity of the vector of position; so that the two
vectors, and the two tangents drawn at their extremities, enclose at each
moment a parallelogram, of which it is easily seen that the plane and area
are constant, although its position and its shape are generally variable from
one moment to another, in the motion thus performed under the influence
of a central force. If, therefore, this constant area be given, and if either
the hodograph or the orbit be known, the other of these two curves can be
deduced, by a simple and uniform process, of which account the two curves
themselves may be called reciprocal hodographs.19

Hamilton’s construction is shown in Fig. 3.8. The hypothesis of central force and
Kepler’s area law are translate into a constraint on the simultaneous descriptions
of orbit and hodograph. As Hamilton remarks, the constancy of the plane and
area of the parallelogram formed by the corresponding vectors of orbit and
hodograph allows in particular to construct one curve given the other and any
pair of corresponding vectors, making the two curves reciprocal to each other. The

19Here the reader familiar with hamiltonian mechanics won’t fail to recognize a method that
today has become standard, namely that of using the symmetries of the problem at hand and
their translation via Nöther theorems into conservation laws to restrict the domain of the phase
space accessible to the system. If a sufficient number of symmetries is assumed, the problem may
be completely integrated. The Kepler problem, as well known, is super-integrable, its symmetries
being even more numerous than what is strictly necessary for its solution.

111



Figure 3.9: Construction of the orbit, given two corresponding vectors and the succes-
sive vector of the hodograph. The areas in purple are all equal.

key ingredient of the construction is the same as Newton’s and Feynman’s proof
of the same result, i.e. or the equivalence of parallelograms constructed on the
same base and between parallel lines.20

To see how this comes about, refer to Fig. 3.9. Let’s start from the given
vectors OA,Oa and Ob, i.e. one vector of the orbit and two successive vectors of
the hodograph. Oa is the velocity of the point P when it is at A, and Ob is the
velocity it must have at the successive point of the orbit B; ab is the change of
velocity that occurs at B. The point B is determined by the dynamical constraint
that OB and Ob must enclose a parallelogram of the same area as that enclosed
by OA and Oa or, what is the same, that the triangles OAa and OBb must be
equal. B is found simply by drawing the parallel to ab through O and intersecting
the parallel to Oa through A. The triangles OAa and OBa are equal because
they have the same base OA and the same altitude OYA, and OBa is equal to
OBb because they have the same base OB and the same altitude OYB; therefore,
OAa = OBa = OBb. Given the successive vectors of the hodograph Oc,Od,
the procedure may be iterated and the full orbit constructed starting from the
hodograph. An identical procedure allows to construct the hodograph given a
succession of points A,B,C... on the orbit (Fig. 3.10).

To summarize, given one of the two reciprocal hodographs and any pair of
corresponding vectors, the other curve can be drawn constructing a succession
of parallelograms equivalent to the one formed by the given pair. Starting from
this latter, every parallelogram OPP ′p of the succession is obtained from the

20This is nothing but Euclid, I.35, the proposition that aroused the special admiration of
Pappus in Hamilton’s juvenile Waking Dream.
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Figure 3.10: Construction of the orbit, given two corresponding vectors and a succession
of vectors of the hodograph. The areas in purple are all equal.

preceding keeping the vertex O fixed and sliding alternatively the two adjacent
and opposite vertexes P and p along a line parallel to the other side, so that the
area is preserved at every step. Notice that the construction is the same, whatever
may be the spatial and temporal distribution of the given points on the orbit or
on the hodograph, and whichever of the two reciprocal curves is given.

Now it comes the crucial step of Hamilton’s analysis. We have alluded to the
role that curvature plays in Newton’s dynamics, though this is not so apparent
from Newton’s exposition in the Principia. However, this aspect must have been
perfectly clear to Hamilton, who indeed devoted much work to the problems
of curvature throughout his career.21 Here, Hamilton chooses to analyze the
curvature properties of the hodograph, approximating it with its osculating circle:

The opposite angles of a parallelogram being equal, it is evident, that if
the central force be attractive, any one vector of position is inclined to the
next following element of the orbit as the same angle as that at which the
corresponding vector of velocity is inclined to the next preceding element of
the hodograph. Also, if from either extremity of any small element of the
curve, a chord of the circle which osculates to that curve along that element
be drawn and bisected, the element subtends, at the middle point of this
chord, an angle equal to the angle between the two tangents drawn at the
two extremities of the element; that is, here, if the curve be the hodograph,

21Significantly, Hamilton’s mathematical career opened and closed with problems of curvature.
His first paper, as a teenager, was On Caustics, and the last one, published posthumous in 1867
in the usual Proceedings of the Royal Irish Academy, was On a New System of Two General
Equations of Curvature.
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Figure 3.11: Approximation of the hodograph with its circle of curvature. The orange
triangles MTT ′ and OPP ′ are similar.

to the angle between the two near vectors of position, which are parallel to
the two extreme tangents of its element.

In Hamilton’s (and Newton’s) kinematical approach to approximate a motion
with its osculating circle in a certain interval means to replace it with another
motion that is circular and uniform around a point assumed stationary in the
considered interval. In other terms, with respect to this point, the momentary
center of curvature, the approximating motion changes its direction but not its
magnitude. Here, Hamilton’s wrinkle is to apply such circular approximation to
the corresponding motions on the hodograph and on the orbit.

To visualize his construction, refer to Fig. 3.11. The blue circle centered on
H osculates the hodograph between the points T and T ′, separated by an angle
2θ. The point O, which can be anywhere, is the center of force and OT , OT ′ are
the vectors of the hodograph at the extremities of the interval. The hodographic
point enters the interval TT ′ at the point T , with direction perpendicular to HT ;
after an angle θ its direction is perpendicular to HU ; and after an angle 2θ it
leaves the circle from T ′ with direction perpendicular to HT ′.

To construct the vectors of the orbit corresponding to such hodographic motion,
draw OP perpendicular to HT and with arbitrary length and the perpendicular
to HT ′ through O. Then draw through P the tangent to the orbit, i.e. a line
parallel to OT . Draw the perpendicular to HU through O, which intersects
this latter tangent in Q. Through this Q draw the parallel to OT ′. This meets
the perpendicular to HT ′ in the point P ′, which will be the point of the orbit
corresponding to T ′. Next, draw the line through O and U , meeting the osculating
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Figure 3.12: The triangles HMT and OPY are similar.

circle in V and V ′, and bisect it at M . The orange triangle MTT ′ thus obtained
is similar to the triangle OPP ′, and they remain so also in the limit when T ′

approaches T :

We have, therefore, two small and similar triangles, from which results
the following proportion, that the half chord of curvature of the hodograph
(passing through, or tending towards the fixed center of force) [MT] is to
the radius vector of the orbit [OP] as the element of the hodograph [TT’] is
to the element of the orbit [PP’], that is, by what was lately seen, as the
force is to the velocity.

Moreover, it holds this other general proportion (see Fig. 3.12):

But also, the radius of curvature of the hodograph [HT] is to the half chord
of curvature of the same curve [MT], as the radius vector of the orbit [OP]
is to the perpendicular let fall from the fixed center on the tangent to the
same orbit [OY];

So, compounding the two proportions:

therefore, by compounding equal ratios, we obtain this other proportion: the
radius of curvature of the hodograph [HT] is to the radius vector of the orbit
[OP], as the rectangle under the same radius vector and the force [OP.TT’]
is to the rectangle under the velocity and the perpendicular [PP’.OY], or to
the constant parallelogram under the vectors of position and velocity.

And the final step:
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If, therefore, the law of the inverse square hold good, so that the second
and third terms of this last proportion vary inversely as each other, while
the fourth term remains unchanged, the first term must be also constant;
that is, with Newton’s law of force (supposed here to act towards a fixed
centre) the curvature of the hodograph is constant: and, consequently, this
curve, having been already seen to be plane, is now perceived to be a circle,
of which the radius is equal to the attracting mass divided by the constant
double areal velocity of the orbit. Reciprocally, we see that no other law of
force would conduct to the same result: so that the Newtonian law may be
characterized as being the Law of the Circular Hodograph.

So, the hodograph is a circle if and only if the inverse square law holds. It is
noteworthy that Hamilton deduced this result by a geometrical analysis of the
intrinsic proportions between the two reciprocal curves, i.e. in a way that is
independent, in particular, from any consideration of Newtonian time.

Immediately Hamilton highlights a fundamental feature of the circular hodo-
graph, which makes it a tool especially useful for astronomical applications:

The point on the hodograph which is the termination of any one vector of
velocity may be called the hodographic representative of the moving body,
and the foregoing principles show, that with a central force varying as the
inverse square of the distance, this representative point describes, in any
proposed interval of time, a circular arc, which contains the same number
of degrees, minutes and seconds, as the angle contemporaneously described
round the centre of force by the body itself in its orbit, or by the revolving
vector of position; because, whatever that angle may be, an equal angle
is described in the same time by the revolving tangent to the hodograph.
Thus, with the law of Newton, the angular motion of a body in its orbit is
exactly represented, with all its variations, by the circular motion on the
hodograph; and this remarkable result may be accepted, perhaps, as an
additional motive for the use of the new term which it is here proposed to
introduce.

In other terms, the circular motion of the hodographic point extracts from the
motion in space the only component which is available to direct observation from
the center of attraction, i.e. the center of the rotational symmetry of the problem,
whatever may be the actual trajectory.

In the rest of the paper Hamilton deduces other important results from the
hodographic representation, and, in particular, the shape of the orbits. Before
that, he defines the vector of eccentricity as follows:

Whichever of these situations the centre of force may have [inside, on or
outside the circular hodograph], we may call the straight line drawn from
it to the centre of the hodograph, the hodographic vector of eccentricity ;
and the number which expresses the ratio of the length of this vector to
the radius of the hodograph will represent, if the orbit be closed, the ratio
of the semidifference to the semisum of the two extreme distances of the
body from the centre of force, and may be called generally the numerical
eccentricity of the hodograph, or of the orbit (without violating the received
meaning of the term).
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This is instrumental to what comes next:

Whatever the value of this numerical eccentricity may be, the constant area
of the parallelogram under the vectors of position and velocity may always
be treated as the sum or difference of two other parallelograms, of which one
is equal to the rectangle under the constant radius of the hodographic circle
and the varying radius vector of the orbit, while the other is equal to the
parallelogram under the vectors of position and eccentricity; and hence it is
not difficult to infer that the length of the vector of position, or of the radius
vector of the orbit, varies in a constant ratio, expressed by the numerical
eccentricity, to the perpendicular let fall from its extremity, that is, from
the position of the body, on a constant straight line or directrix, which is
situated in the plane of the orbit, and is parallel to the hodographic vector
of eccentricity. The orbit, therefore, whether it be closed or not, is always
(with the law of the inverse square) a conic section, having the centre of
force for a focus - a theorem which has indeed been known since the time of
Newton, but has not perhaps been proved before from principles so very
elementary.

At the end of the paper, Hamilton outlines the application of the method to a
binary and multiple system of mutually attracting bodies.

Hamilton’s construction in the case of a closed orbit is shown in Fig. 3.13,
where, inspired by Feynman, we have replaced the two directrix lines with one
single director circle, which corresponds to the hodograph rotated anti-clockwise
by a right angle around the eccentric point.

The motion is in the plane of the paper. The hodograph is the blue circle,
conceived as drawn by the blue line OT , and the orbit is the red ellipse, conceived
drawn by the red line OP . OT and OP are the corresponding vectors of position
and velocity, respectively parallel to PQ and TQ and forming the purple parallel-
ogram of constant area representing the double areal velocity of the moving body
or angular momentum. The green line OH is the constant vector of eccentricity,
perpendicular to the apsidal line of the orbit connecting the points of maximum
(minimum) and minimum (maximum) velocity (distance). The angle θ is the
true anomaly, here reckoned starting from the point of minimum velocity and
maximum distance.

Notice, in particular, the following points:

1. The vector of velocity is decomposed in two parts: one constant in both
direction and magnitude (i.e. the constant vector of eccentricity), and the
other constant in magnitude but varying direction (i.e. the rotating radius
of the hodograph).

2. The line OY is the perpendicular from the center of force to the line tangent
the orbit in P . It is equal in length to OT ′ and, by Euclid I.35, forms with
the vector of the hodograph OT a rectangle equivalent to the parallelogram
between distance and velocity. By Euclid III.35 all the rectangles formed
by the segments in which the chord of the hodograph passing through the
eccentric point is cut are equal, so the conservation of angular momentum
and the constancy of areal velocity are expressed by the constancy of the
product between opposite velocities.
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Figure 3.13: Construction of the elliptical orbit from the circular hodograph.
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3. The director circle, if regarded as traced by CY , is also the zero-eccentricity
solution of the problem. In this case, O coalesce with C and the motion
is circular with constant speed around this point. Therefore, the angle µ
formed by CY with the apsidal line is also the so-called mean anomaly, and
the motion of the point Y is the same as the mean motion of the orbiting
body. If our interpretation of Hamilton’s words is correct, the construction
shown in Fig. 3.13 is that alluded to in this passage of the Elements :

Some not inelegant constructions, deduced from the theory of the
hodograph, might be assigned for the case of a closed orbit, to represent
the excentric and mean anomalies...22

As a result, if you set in motion the construction moving at a constant
angular velocity the point Y , the point P will describe the elliptical orbit
in accord with Kepler’s area law, and the ratio between the area swept by
OP and the area swept by CY will be equal to the ratio between true and
mean time.23

So, to summarize, the key idea of Hamilton’s hodograph method is to frame
the problem of motion in terms of the geometrical analysis of a new curve, the
hodograph, which is meant to describe the kinematical relationship between two
bodies, one of which is regarded as fixed. This curve is put in correspondence with
the curve that describes their spatial relationship, the orbit or path of the moving
body, by the hypothesis that the two are traced simultaneously by the moving
extremity of two straight lines representing the relative position and velocity of
the two bodies in relative motion. In the maximally symmetric case in which the
hodograph is a circle, the orbit is found to be a conic section having a focus in an
eccenter point of the hodograph, and the two curves may be constructed explicitly
one from the other starting from any two corresponding values of position and
velocity. Moreover, for any considered interval of the motion, the circular arc
traced by the hodographic point coincides with the angular displacement of the
body on its conical orbit as observed by the other, or, what is the same, the angle
at the center of the hodographic circle identifies with the true anomaly of the
orbiting body. The deviation from uniform circular motion is measured by the
eccentricity vector, a straight line parallel to the direction of maximum/minimum
velocity, that with its direction and magnitude characterizes the particular solution
to the two-body problem.

22Hamilton 1866, p. 731.
23This may be easily done with a software of dynamic geometry like Geogebra, which indeed

I used extensively in the preparation of this dissertation. All the geometric diagrams, if not
otherwise stated, have been made with it.
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Chapter 4

A New Look at the Antikythera
Mechanism

Consider again Hipparchus’ diagram, shown in Fig. 4.1 in the eccentric version,
and compare it to Fig. 4.2.

If we interpret the angle at the center of Hipparchus’ diagram as the true
anomaly, and the line from the moving point to the eccenter as the vector of
velocity of the moving body, we obtain an exact replica of Hamilton’s diagram. In
other terms, Hipparchus’ diagrams provide, on one hand, a method of construction
for the ellipse, its tangents and normals (and, in the general case, of all the conic
sections) and, on the other, a complete graphical solution to the so called Kepler
problem in the context of Newtonian dynamics. Since Hipparchus’ and Hamilton’s
diagram are meant to solve one and the same problem, i.e. that of geometrically
representing the observable motions of the heavenly bodies, we find it hard to
believe that such a perfect match is the result of a mere coincidence.

If one accepts the idea that the Greeks conceived something like Hamilton’s
method of the hodograph, the hypothesis of a circular hodograph in the context
of astronomy would be just natural, and all the rest would follow. In other
terms, just like the law of inverse square has the status of hypothesis in Newton’s
theory, so the law of the circular hodograph could be the fundamental hypothesis
of the dynamical theory that, if one accepts Russo’s reconstruction, Hipparchus
developed in his later years. We have already remembered that Hipparchus also
solved the problem of falling bodies and projectile motions. It is an easy exercise
to see that in this latter case (and, more generally, in presence of a constant
force) the hodograph turns out to be a straight line traced with uniform velocity.
In other words, it holds the remarkable circumstance, at least from the Greeks’
perspective, that the method of the hodograph leads to the straight line and the
circle as the two hypotheses that save the phenomena pertaining to motion under
gravity near the surface of the Earth and at astronomical distances from it.

At this point, we can state more fully our conjecture about the theory under-
lying Hellenistic sphairopoiia in general and the AM in particular.

Our proposal is that Hipparchus’ diagrams were, in origin, dynamical diagrams
of successive velocities analogous to those obtained by Hamilton through the
hodographic construction of the solution to the Kepler problem to which he was
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Figure 4.1: Eccentric version of Hipparchus’ diagram.

led by the internal character of his method of quaternions. The hypothesis of the
circular hodograph was the cornerstone of Hellenistic dynamical astronomy, and the
theoretical basis for the design of mechanical devices that worked as hodographic
computers internal to such theory. The AM is a highly refined example of such
kind of devices, that put to profit the Babylonian astronomical expertise that
during II cent. BC Greek mathematicians (notably Hipparchus’) incorporated in
their theoretical astronomy.

In light of the historical evidence analyzed in the first chapter, and of the route
that led Hamilton to the discovery of such a beautiful and simple geometrical
picture of the dynamical law of gravitation we outlined in the second chapter, we
think that our interpretation fits reasonably well with the existing ancient and
modern sources. Before concluding, here are some further arguments.

All the existing sources agree in indicating as the subject matter of astronomy
the study of the motions of the heavenly bodies, rather than of their positions.
This is of course a natural consequence of the simple observation that, in the skies,
everything moves at the same time, and the very same title of Eudoxus seminal
work On Speeds (Περι τακεον) is significant in this regard. Eudoxus himself
developed a general notion of magnitude which naturally applies to motions as
well as to lengths, and we have seen how the kinematical approach became a
standard in Greek geometry. In short, there is no difficulty in the idea that
diagrams of velocity could have been considered by Hellenistic mathematicians
working on astronomical problems.

In this regard, it is important to remark that relativity of motions (and the
connected heliocentric hypothesis) by itself implies the idea that astronomical
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Figure 4.2: Dynamical interpretation of Hipparchus’ diagram. OT and OP are
corresponding vectors of hodograph and orbit for the Kepler problem. The motion of P
observed by O is the same as the motion of T seen by H.
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observations may not give any information about the positions in space of celestial
bodies, but only about their relative velocities. This observation leads naturally
to regard motions instead of positions, as the primary magnitude to deal with
in theoretical astronomy. This is one of the key ideas of Hamilton’s method
of the hodograph, where, as we already remarked, relative velocity is treated
autonomously with respect to relative position.

It has been often remarked that the concept of orbit is extraneous to ancient
astronomy, being a modern addition due above all to Kepler’s work.1 In this
regard, a noteworthy feature of Hamilton’s method is that it exhibits very clearly
the fact that, for chiefly astronomical purposes, the explicit construction of the
orbit is superfluous. From the observations of maximum and minimum velocity
and their angular location on the ecliptic one may find the eccentricity vector (in
magnitude and direction), and, from this, construct the full diagram of velocities,
which completely solves the problem of the observable motions. In particular, we
have seen how the preserved area, playing an essential dynamical role, is nothing
but the rectangle formed by two opposite velocity vectors. So, all in all, the
actual drawing of the orbit in a diagram solving such astronomical problem is
by no means necessary, and, indeed, a useless complication, the net effect of the
hodographic construction being the extraction of the observable circular motion
from the conic one.

We have also seen how motion was theoretically handled in the context of
mechanics in the Mechanical Problems. Even if this work was not a rigorous
mathematical treatise, the key idea is already clear: to compare simultaneous
motions and study the ratios between the lengths described in the same time. This
is one of the core ideas of Hamilton’s method of the hodograph, and indeed a
natural approach in astronomy, where the only thing one can do is to compare
the simultaneous motions of different bodies, picking one among them and using
it as a clock to track the motion of all the others. In particular, in the context
of mechanics areal velocity was considered from the very beginning, a natural
choice from the Greek perspective that would later play a pivotal role in modern
astronomy thanks to Kepler’s "area law".2

Notice, in particular, that the construction shown in Fig. 4.2 is scalable at
pleasure, one of the fundamental requirements for theory-based machine design
according to Philo. Given the eccentricity, an infinite number of similar and
confocal ellipses may be constructed starting from the same hodograph. Among
these, there will be the actual orbit, uniquely determined by the length of its
major axis.

We already outlined how in Hellenistic astronomy the theoretical treatment of
1For more details on the important role of Kepler in the passage from ancient mathematical

astronomy to modern physical astronomy see Stephenson 1987. A beautiful monograph about
Kepler is Simon 1979.

2It is worth remarking that Kepler always called his famous "laws" simply ratios or proportions,
and often compared the "area law" to the analogous proportion existing between force and arm
of a lever (Zilsel 1942, pp. 265–267). For more details on the origin and reception of Kepler’s
"area law" see Aiton 1969, In Simon 1979, pp. 358–366 it is emphasized how Kepler’s new
astronomy deeply transformed the meaning of ancient astronomical terms and concepts, namely
that of mean motion and, therefore, of astronomical time.
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motion could well have been one and the same for both mechanics and astronomy,
not so differently from what happened in modern times. Since it is sure that in
Archimedes’ lost mechanical works a rigorous theory of mechanics was developed,
through the medium of sphairopoiia an astronomical theory could well have arisen
as an extension/application of such a theory to the reproduction of the observable
celestial motions. Such a step was probably made by Archimedes himself, and
we think that this was, loosely speaking, the subject matter of the lost treatise
on sphairopoiia: a mechanical theory of celestial motions, based on what later
Hamilton called law of the circular hodograph. Today we know from Archimedes’
Method that he explicitly used mechanics to induce results that he later deduced
by standard geometrical methods. His sphairopoiia would be, in essence, the
extension/application of his mechanical method to astronomical problems.3

Notice that the Archimedean development we are outlining - machines first,
celestial bodies later - would have been just the opposite of that followed in modern
times, when Newton’s theory, whose main field of application was astronomy,
was regarded by Newton and his followers as a universal theory of the motion
of bodies, provided of the course all the metaphysics involved in the idea of a
mechanical universe.4

As we already remarked, the aim of any astronomical theory and of a device
like the AM is, in essence, to synchronize the heavenly motions with each other.
Archimedes’ masterly use of the idea of simultaneous motions describing two
connected curves as it appears in the treatise On Spirals is a strong indication in
this sense. The following theorem of hodographic isochronism, communicated by
Hamilton to the Royal Irish Academy in March 1847, gives, in our view, a clue
about the possible character of Archimedes’ mechanical-astronomical theory:

If two circular hodographs, having a common chord, which passes through
or tends towards a common centre of force, be cut perpendicularly by a
third circle, the times of hodographically describing the intercepted arcs
will be equal.5

Notice that the circles here mentioned are conceived as sections cut off from a
sphere, and are in general in different planes.

So, everything considered, apart from Ptolemy’s astronomy we find nothing in
the existing sources which is in contradiction with our interpretation of Hipparchus’
diagrams as diagrams of velocity. Arguments in its support come from the already
mentioned Greek assimilation of Babylonian astronomical methods, which, overall,

3Compare with the auxiliary role played by induction in pure mathematics described by
Hamilton in his Introductory Lecture on Astronomy. No doubt Hamilton would have been
delighted by the discovery of Archimedes’ Method.

4Probably the inverse path would have avoided to the moderns such metaphorical traps and
all the painstaking effort that was necessary to get rid of them. It is noteworthy that, despite
the huge technological development of mechanics, a rigorous theory of machines was developed
in modern times only at the end of the XIX century by the German engineer Franz Reuleaux
(1876), another passionate reader of the Classics. Reuleaux, among other things, strived to build
what he called a language of invention for mechanics, intended, in principle, to clear the way for
the theoretical analysis and synthesis of whatever possible machine.

5Hamilton 1847a.

124



seems to be the real characteristic element of the more mature stages of Hellenistic
astronomy and of Hipparchus’ work in particular.

It was common practice of Babylonian astronomers in the Seleucid period
to describe the motion of celestial bodies not in terms of positions and time,
but rather in terms of daily motions, where one day corresponded to the time
employed by the Sun to describe one degree on the ecliptic. An example is the
tablet labeled ACT 190, a listing of Moon daily velocities over a period of 248
days, not attached to any specific date.6 This was a template of velocities that
could be used to generate day-by-day positions of the Moon over any desired
period. If our conjecture is right, Hipparchus’ diagram would be a geometrical
translation of this kind of tables, indicating graphically at each angular position
the rate of displacement of the considered body.

Moreover, from the decipherment of cuneiform texts reporting calculations
relative to the motion of Jupiter, Mathieu Ossendrijver made the groundbreaking
discovery that, starting from these observed pairs of time and velocity, the position
of Jupiter at any given date was computed by a process equivalent to the so-called
Merton Rule or mean-speed theorem, i.e. by integration of the area under a
trapezoidal time-velocity diagram. Ossendrijver concludes:

The Babylonian trapezoid procedures are geometrical in a different sense
than the methods of the mentioned Greek astronomers, since the geometrical
figures describe configurations not in physical space but in an abstract
mathematical space defined by time and velocity (daily displacement).7

We find no difficulty in imagining that also Greek mathematicians, and Archimedes
in particular, could have made use of such "abstract mathematical spaces defined
by time and velocity", computing future celestial positions by quadrature of
velocity diagrams.

6O. Neugebauer 1955, p. 179.
7Ossendrijver 2016, p. 484.
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Conclusion

Let me summarize in the most direct way the general view of the art of sphairopoiia
and the new interpretation of the Antikythera Mechanism that, in my opinion,
emerges from the previous chapters.

Greek mathematics was a collection of problem-solving disciplines sharing
a unitary language and method. In the mature epistemological framework of
Hellenistic sciences a central role was played in all domains by geometry and by
the connected activity of drawing diagrams. These were the main conceptual tool
used to frame and solve problems internal to well-definite theories or theoretical
models. These had a twofold aim: to give a unified account of a certain domain of
natural phenomena, and to ground the design of technological artifacts. These
two moments were not separated but advanced together in a dialectic relationship,
technological artifacts becoming also tools for further theoretical investigations.

In the context of astronomy, a central role was played by sphairopooiia, the
art of building tangible and visible illustrations of the theoretical models used to
account for astronomical phenomena. This practice formed an integral part of the
Greek astronomical practice at least since Eudoxus, the greatest mathematician
of Plato’s time, first in the simple form of celestial globes and later in the form of
geared mechanisms imitating the observable motions of the heavenly bodies. The
prominent role that circular motion played in kinematical geometry, mechanics
and astronomy became the key ingredient for the blending of these three sciences
in the art of sphairopoiia.

This process was carried further by Archimedes, the most celebrated mathe-
matician and engineer of the Hellenistic period. His lost treatise On sphairopoiia
exposed a theory of sphere-making, i.e. a theory of celestial motions that at the
same time grounded the design of mechanical devices intended to imitate such
motions. Crucial ingredients in this development were Aristarchus’ heliocentric
hypothesis and the connected idea, already exposed in Euclid’s Optics, that in
general observation exhibits to view nothing but relative motions. This idea, in
particular, was fully restored during the XIX century, and formed the necessary
background of Einstein’s theory of relativity.

The theoretical homogeneity of Hellenistic mechanics and astronomy was
granted by the common use of diagrams that encoded the kinematical relationship
between two given bodies, be these parts of a device or celestial bodies, in
which, as usual in Greek mathematics, circles played a central role. Motions were
represented geometrically as ratios, proportions and successions of the simultaneous
descriptions of curves and surfaces traced by moving points and lines. Archimedes’
Spiral is a beautiful example of this approach, and Archimedes’ Method gives a
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clue of how deeply in his lost treatise On sphairopoiia mechanics could interact
with theoretical astronomy.

Loosely speaking, the astronomical problem as framed and solved by Archimedes
was that of synchronizing all the heavenly motions with the motion of the Sun.
Therefore, in Archimedean sphairopoiia theoretical mechanics and astronomy
overlapped completely, with symmetry principles and optimality criteria as bench-
marks for theoretical activity, computational procedures and machine-design.

Further developments resulted from the Greek assimilation of computational
methods and empirical materials originated in the ancient tradition of Babylonian
astronomy, a process that generally took the form of a geometrical reinterpretation
of numerical algorithms. Already began by Euclid, this work was carried further
in the following decades, notably by Hipparchus, generally remembered as the last
and greatest astronomer of the Hellenistic period. He probably put to profit the
computational algorithms developed by Seleucid astronomers, Apollonius’ theory
of conic sections and Archimedes’ mechanical approach to build a dynamical model
of celestial motions which gave results equivalent to those of modern dynamics. Our
proposed reinterpretation of eccentrics/epicycle diagrams suggests that a central
ingredient of Hipparchus’ model was the hypothesis of the circular hodograph, a
geometrical picture of the inverse-square proportion between accelerations and
relative positions that, by its very conception, was fully within the range of the
mathematical arsenal available at Hipparchus’ time.

Plane astronomical models based on the hypothesis of the circular hodograph
made possible the design of hodographic computers that involved eccentric/epicycle
constructions and computed graphically the solutions to what later was called
Kepler problem. The Antikythera Mechanism is an example of such analog
mechanical-astronomical computers.

After three centuries of scientific decline and the loss of the Hellenistic scientific
method, the role and meaning of sphairopoiia in the context of mathematical
astronomy was no more understandable and the hybrid status of this art deeply
misunderstood. The slip consisted, loosely speaking, in taking a theoretical diagram
of relative velocities as a realistic picture of relative positions, which transformed
a dynamical succession of relative velocities into a kinematical succession of
relative positions. In other words, hidden behind Ptolemy’s metaphysical principle
of circular motions there is Hipparchus’ mathematical hypothesis of circular
hodographs. However, only a careful analysis of Ptolemy’s Almagest in the light of
this hermeneutical proposal could give a solid ground to such a conjecture about
the origin of Ptolemaic models, and must be left to future investigations.

In the following centuries, the art of sphairopoiia disappeared, but its memory
survived and this practice was resurrected together with the ancient scientific
method in the early-modern era. In particular, the first to recompose the dispersed
union of kinematical geometry, mechanics and astronomy was Isaac Newton, who
elaborated a general philosophical system incorporating very different ideas and
grounded on the metaphorical notion of mechanical universe. Generally speaking,
the role of sphairopoiia in the transmission and reception of ancient ideas has been
immense for the history of Western philosophical, mathematical and cosmological
inventions. Also this vast and important topic is open to further investigations in
the light of the historical reconstruction here outlined.
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Only in the XIX century dynamical astronomy was turned again into the
mathematical theory it originally was, and this task was accomplished by William
Rowan Hamilton, who invented classical dynamics with the direct help of the
Classics. Hamiltonian dynamics became the ground on which quantum dynamics
was built, but for multiple reasons the methods and conceptions that led Hamilton
to his theory remained largely unknown to the community of physicists of XX
century. It is likely that this fact played some role in the vagueness of the theoretical
foundations that, according to many people, one hundred years after their invention
still obscure the meaning of quantum theories, despite their unparalleled empirical
success.

Modern technological developments made available different ways to effect the
same purposes of ancient sphairopoiia, and this art never reached again the level
of perfection witnessed by the Antikythera Mechanism.

Clearly there are still many important details to fill in this reconstruction,
which, for the moment, is just a new look at and through the encrusted fragments
of the Antikythera device. The aim that I proposed myself in my PhD was to
explicitly restore the theory behind the mechanism, a necessary preliminary step
to any new and well-grounded reconstruction that is worth of Archimedes’ name.
However, the task proved too ambitious for the time at my disposal and, for now,
must be left unaccomplished. I hope it will be the subject of future works.
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