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Introduction

In the 1970s humankind was able to perform the first space explorations; the
first satellites were launched along the Earth’s orbit (Sputnik 1957), then they
reached the moon’s surface (Apollo 11 1969). The event signified a fundamental
historical turning point as space became a territory of conquest by mankind and
scientists have the opportunity to acquire new data and images. The need to
open new exploratory frontiers in the cosmos made the study and development
of space launchers and satellites important to the aerospace industry. Indeed,
the first satellites were heavy and bulky and without autonomous propulsion
systems; when technology improved, satellites became lighter and resistant, and
they also became equipped with propulsion systems that improved their orbital
correction capability and stability. As a result of these improvements, it has
been possible to build a large number of satellites for various applications. In
particular, many of the objects in use in the modern era rely upon satellites
in orbit: GPS, television, and telecommunications. In addition, scientists use
satellites to monitor the environment and weather and predict disasters in cer-
tain areas. The increasing use of low-cost satellites for ordinary activities has
stimulated the development of satellites characterized by their small size; for
this reason, new frontiers in aerospace have led to the design and development
of nanosatellites. Nanosatellites, also known as CubeSats, were initially con-
ceived as theoretical models for academic studies; however, in recent times the
idea has arisen that they can be employed for missions both in Earth orbit and
for extra orbital travel. In general, CubeSats have a volume of about 1dm3 and
a mass on the order of a kilogram, and they have properties that promote their
development to other satellites:

• 1) their small size and low cost, which make them a platform for space ac-
tivities usable by a larger number of players (universities, research centers,
private companies);

• 2)the ease in their construction and development.

Due to their size, CubeSats present a challenge, i.e., they have a small payload;
for this reason, we have to identify a propulsion system that can be implemented
in the nanosatellite without limiting the payload. In general, common thruster
systems can be electric or nonelectric, depending on the availability of power
within the satellite:
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• 1)nonelectrical systems, such as chemical systems, generate propulsion
through a combustion reaction with a propellant (solid, liquid, or gaseous).
The release of material caused by the resulting chemical reaction generates
a force in the opposite direction of the propellant, due to Newton’s third
law of motion.

• 2) electrical systems exploit physical phenomena to induce propulsion, for
example, ion’s expulsion induced by a strong electromagnetic potential.

These systems have good parameters of propulsion (i.e., the force induced on
the satellite) and specific impulse (the ratio between the force and the mass
ejected from the system); however, although the propulsion device’s load can be
reduced, the injector, combustion chamber, and propellant combination equally
occupy a large part of the CubeSat payload. The search for a solution to this
problem is one of the motivations behind the PM3 (Modular Multi-Mission
Platform) project. Various partners participate in this project, including the
National Research Council (CNR), the Campania Aerospace District (DAC),
and other national universities and industries. The project aims to develop a
CubeSat capable to perform a mission along the Earth’s orbit.

My Ph.D. work, in collaboration with CNR, involved the study and devel-
opment of a secondary propulsion system that could be used in a CubeSat.
Given the nanosatellite’s small payload capacity, we assumed that we can not
equip it with a conventional propulsion system but we can induce propulsion
remotely, using a nearby orbiting mother satellite as a control platform. For
this reason, it is necessary to study and apply a type of propulsion that allows
remote control; the propulsion systems that can ensure these peculiarities are
optical-type systems. In general, optical propulsion systems use the interaction
between photons and satellite structure either directly, or through the activation
of propellant to induce propulsion. Optical thrusters usually have low force and
specific impulse parameters compared to other systems since the momentum
associated with the photon is very low; however, the phenomena underlying the
propulsion can be induced directly by laser or solar radiation, thus making re-
mote activation possible. In general, optical thrusters exploit some phenomena
typical of electromagnetic waves to induce forces:

• 1) momentum exchange between a photon and a rigid body, a phenomenon
typical of solar sails, which has low propulsion and high specific impulse,
but requires a large footprint;

• 2) ablation that is a phenomenon that uses the power of a laser to induce
vaporization on a propellant that is ejected due to the pressure induced
by the laser itself. Laser ablation thrusters have good values of thrust
and specific impulse and also dimensions suitable for loading a CubeSat;
however, they have low long-term stability that is likely to impair the
ability to maneuver a CubeSat in the long term;

• 3) the gradient force, a phenomenon that exploits a spatially variable
electromagnetic field distribution to induce a force capable of ejecting
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nanoparticles acting as propellant. This phenomenon requires amplifica-
tion of the EM field to have effects for propulsion; for this reason, the opti-
cal force is combined with a radiation-matter interaction effect to amplify
the distribution and obtain thrust and specific impulse values that can be
used for practical applications. Such systems have reduced performance
compared with other optical systems, but they have small dimensions and
excellent precision, and characteristics that make them extremely inter-
esting as secondary propulsion systems in nanosatellites.

In analyzing the various optical propulsion systems found in the literature, our
focus is on the gradient force phenomenon. In particular, we analyzed propulsion
systems that exploit plasmonic phenomena to generate EM field distributions
for inducing sufficiently intense and extremely concentrated forces. The phe-
nomenon that gives rise to the generation of surface plasmonics is based on the
radiation-matter interaction between an electromagnetic wave which invests an
interface between a metallic medium and a dielectric medium. The plasmonic
interaction results in a strongly localized amplification of the electric field that,
when properly controlled, implies a very intense and localized optical force near
the interface. Plasmonic phenomena are of two types: surface plasmon po-
laritons (SPPs) and localized surface plasmon (LSPs). SPPs are waves that
propagate along the dielectric-metal interface, while LSPs are localized phe-
nomena that occur in the near-field region of a metal nanostructure immersed
in a dielectric medium. These phenomena have different modes of excitation
and several characteristics that can be coupled to generate an asymmetric field
distribution inducing propulsion on nanoparticles. In particular, it is possible
to generate an LSP from a plasmonic dimer and make this as a near-field source
for the excitation of a set of SPPs. Constructive interference between SPPs
leads to the formation of a spatially asymmetric field distribution and thus po-
tentially inducing an optical force on an external body. With this premise, we
designed a device capable to induce an optical force useful for the displacement
of a macroscopic object. We, therefore, began the study of two nanostructures
presented in the literature:

• 1) The ”optical nanocannon,” [1] which is a V-shaped structure carved
out of a gold film laid on a dielectric substrate capable of inducing a
strongly asymmetric electric field along its height, generated by coupling
the LSP formed at the bottom of the structure with the SPPs formed on
its edges. The nanocannon generates an optical force capable of ejecting
small nanoparticles at high speed; however, the size and the shape of the
device do not allow to reach thrust values sufficient to induce macroscopic
displacements and aren’t thus useful for application to a nanosatellite.

• 2) trapezoidal constant-gap planar nanostructures [2], which are devices
consisting of two gold-based trapezoidal prisms deposited on a glass sub-
strate that generates an asymmetric EM field distribution by coupling the
LSP formed in the gap between the structures with the SPPs that are trig-
gered on the edges of the trapezoids. The optical force generated by the
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device is not high, but the geometrical configuration is such that a large
number of elementary structures can be coupled in an array configuration
amplifying the force effects and the exit velocity of the ejected nanopar-
ticles. This configuration has limitations related to the particular spatial
distribution of the force field that generates potential barriers limiting the
motion of the nanoparticles.

The Ph.D. thesis work was focused on the design of an original structure
that is a synthesis of the two solutions found in the literature. It consists
of an elementary cell composed of two trapezoidal gold structures deposited
on a dielectric substrate and defined in such a way to form a v-shaped gap.
The elementary cell, so defined, can be replicated in an array configuration to
amplify the nanoparticle’s exit velocity, and hence the thrust. In this way, a
periodic force distribution is generated that leads to the amplification of the
final nanoparticle velocity and, in addition, the shape of the gap of the ele-
mentary cell, which has a variable width, results in a strong reduction of the
potential barrier that opposes the ejection of the nanoparticles. In this way, the
nanoparticles can be ejected at high speed generating a significant boost for our
application. The analysis of the new device and verification of its performances
conducted using simulations based on the finite element method (FEM), imple-
mented using COMSOL Multiphysics software. Thus, we were able to evaluate
the characteristics of the EM field distribution generated by the designed device,
and how this field distribution varies as the geometry of the device changes. The
proposed device changes its characteristics and performances as a function of
variation in the geometrical parameters of the structure (major base, height,
angle, gap, thickness of the gold film), modifying the distribution of the gener-
ated electric field and resonance wavelength. Once the optimization step was
completed, we studied the induced dynamics on different types of nanoparti-
cles to assess whether the estimated velocity is comparable to typical values
for a secondary propulsion system. In addition, we analyzed and studied other
forms of array configuration, evaluating the hypothesis of a circular array. For
such a configuration, we observed that due to the properties of the induced mo-
tion, higher velocity values can be obtained with a significant decrease in the
size of the whole system. Finally, based on the positive results obtained from
the simulations, we moved, in collaboration with the Dutch foundry Nanophab
(https://www.nanophab.com), to the fabrication of the first set of prototype
devices. The technology process used exploits the electron beam lithography
step and lift-off. The research activity is continuing with the characterization of
the fabricated devices and experimental verification of the plasmonic resonance
characteristics.

Summary of the thesis

The objective of this thesis work is to design, simulate, fabricate, and character-
ize a family of plasmonic devices capable of inducing propulsion on a population
of nanoparticles.

8



In Chapter 1, the main propulsion methods used for satellite movements are
presented in detail, focalizing chemical and electrical propulsion, and specifying
the reasons why they cannot be used within a CubeSat. In addition, the main
characteristics of optical thrusters are discussed, especially their ability to be
remotely controlled, and the reasons why we selected plasmonic thrusters as
suitable devices for use in secondary propulsion systems for the CubeSat.

In Chapter 2, the basic concepts of the phenomenon behind plasmonic
propulsion, namely surface plasmons, are presented. We analyze how the elec-
tromagnetic field acts within metals and at the interface between metallic and
dielectric materials, and we discuss in detail the formation and characteristics
of surface plasmons.

In Chapter 3, we present the numerical tool at the basis of the study of plas-
monic optical thrusters analyzed, namely the finite element method. We show
how COMSOL Multiphysics software is able, mediated by FEM techniques,
to compute an approximate solution of a differential problem describing one or
more physical phenomena at the origin of the operation of plasmonic devices. In
particular, we have addressed the different stages of constructing a FEM model,
starting with the definition of the mesh, i.e., the subdivision of the physical do-
main of the definition of the differential problem, which is fundamental for the
development of the solution of the problem itself. The basic types of mesh are
discussed and also some methods for refining and modeling the mesh depending
on the physical problem are presented. Finally, we analyze the solvers present in
COMSOL, with special attention to their main characteristics and adaptability
according to the physical problem considered.

In Chapter 4, we present some applications of plasmonics, including op-
tical tweezers that exploit optical forces to constrain in a static or dynamic
equilibrium a nanoparticle, and other devices that can induce propulsion by
optical forces, such as the aforementioned optical nanocannon and constant gap
trapezoidal systems. Once we have discussed their main characteristics and ap-
plication limitations, highlighted by the analysis of their operation, we study
original solutions to produce a suitable performance for the secondary propul-
sion of a nanosatellite. A new prototype device is designed and analyzed using
FEM simulations, and an in-depth study of its performance is made as the geo-
metrical parameters of the elementary cell change. Next, we show the dynamic
characteristics of the system in a linear array configuration and present a new
circular array configuration, which allows further increases in the final velocity
of the ejected nanoparticles.

In Chapter 5, we present a method to control the dynamics of nanoparticle
output. In particular, we observe that starting from the coupling of the photon
helicity (spin) with the angular momentum of the evanescent wave, a transverse,
incident-polarization-dependent momentum is generated that will change the
nanoparticle exit trajectories making the process fully controllable.

Finally, in Chapter 6, we present the technological process for the fabrication
of the demonstrator prototype, analyzing in detail all its subsequent steps. In
addition, morphological characterizations of the fabricated prototype, carried
out using an atomic force microscope (AFM) and a scanning electron microscope
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(SEM), are illustrated and discussed. Afterward, some results from the optical
characterization of the sample obtained with coherent light illumination are also
presented to evaluate the field re-emitted by the plasmonic structure and the
resonance wavelength obtained, verifying the agreement with the simulations
carried out.
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Chapter 1

Overview of Propulsion
Technologies

A propulsion system is the primary mobility system of a spacecraft and helps
with various maneuvering operations like orbit changing and station keeping.
A key parameter that differentiates a propulsion system is its dependence on
onboard power. Accordingly, propulsion systems can be classified into non-
electric and electric systems[3, 4, 5, 6, 7]. The non-electric propulsion system can
be classified into cold gas, liquid, and solid rocket system and require on-board
power only to regulate (initiate and terminate) the propulsion process, while the
electric propulsion systems are mainly classified into resistojet, electrospray, ion,
Hall, and pulsed plasma systems and they actively require on-board power for
their operation. Some important performance factors for any propulsion system
are outlined[8][3]: thrust (τ), specific impulse (Isp), effective exit velocity (ve),
and delta-v (∆v).

The thrust generated is a combination of momentum thrust and pressure
thrust as shown:

τ = ṁve + (Pe + Pa)Ae (1.1)

Momentum thrust depends on the mass flow rate ṁ of propellant and the exit
velocity ve while pressure thrust, on the other hand, is a function of exit area
(Ae), exit pressure (Pe) and ambient pressure (Pa). The ambient pressure for the
case of a spacecraft propulsion system is approximated to zero due to vacuum
conditions in space. Specific impulse is the impulse generated per unit weight
(at sea level) of propellant as shown:

Isp =
τ

ṁg0
(1.2)

this is dependent on the thrust generated and mass flow rate of the propellant
(ṁ). Exit velocity is the velocity of the propellant at the exit region of the
nozzle as shown:

ve = g0Isp (1.3)
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this depends on the specific impulse and the acceleration due to gravity at sea
level (g0).

The delta-v is obtained from the Tsiolkovky Rocket Equation that relates
the exit velocity of a spacecraft to its initial (mi) and final (mf ) masses, as
shown:

∆v = ve ln
mi

mf
(1.4)

we can use this basic concept for the description of the fundamental prop-
erties of some type of propulsion mechanism.

1.1 Chemical Thruster

Cold Gas Propulsion (CGP) System

A cold gas propulsion system [3][9][10] relies on the process of controlled ejec-
tion of compressed liquid or gaseous propellants to generate thrust. Due to the
absence of a combustion process, a CGP system requires only one propellant
(without an oxidizer), and hence can be designed with minimum complexity.
The schematic of a typical CGP system is shown in fig.1.1 and the main com-
ponents include propellant storage and a nozzle. The simpler design of a CGP
system leads to a smaller system mass and lower power requirement for regula-
tion purposes. However, these advantages come at the cost of a monotonically
decreasing thrust profile over a time frame. The thrust produced is directly
proportional to the pressure of the propellant inside the tank and throughout
the mission, tank pressure decreased resulting in a decrease in the maximum
thrust that is generated by the system [3]:

Isp =
γC∗

g0

√
2

γ − 1
(

2

γ − 1
)

γ+1
γ−1 (1− Pe

Pc
) (1.5)

The specific impulse of a CGP system mainly depends on the exit-to-chamber
pressure (Pe/Pc) and characteristic velocity C∗. The exit-to-chamber pressure
is related to the expansion of the propellant, while at Poisson constant (γ)
is the ratio of specific heats at constant pressure and constant volume. Exit
velocity is another important performance factor that not only depends on the
exit-to-chamber-pressure but also the chamber temperature (Tc) as shown[3]:

ve =

√
2γTc
γ − 1

(1− Pe

Pc
) (1.6)

A cold gas propulsion system use can either liquid or gaseous propellant; how-
ever, using a liquid propellant will lead to a reduction in the storage volume.
The propellant selected should have high-density Isp to increase the longevity
of the onboard propellant.
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Figure 1.1: Sketch of a Cold Gas Propulsion System. Image reproduced by [3]

Liquid Propulsion (LP) System

In a liquid propulsion system[3][11][12], thrust is generated by ejecting the gases
formed during the process of combustion of liquid propellant. Depending on
the mission requirements, a spacecraft can have an LP system with one (mono)
or two (bi) propellants. Mono-propellant LP system makes use of a catalyst to
decompose the propellant and generate thrust. The decomposition process takes
place when the propellant is injected into the combustion chamber through the
catalyst bed[13][8]. A bi-propellant LP system, on the other hand, comprises

Figure 1.2: Sketch of a Liquid Gas Propulsion System. Image reproduced by [3]

both an oxidizer and fuel. Either LP system has primarily been used on larger
satellites for high ∆v operation and a single propellant is typically used for
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low ∆v operations. The schematic of a bi-propellant LP system is shown in
fig.1.2 and it primarily consists of a combustion chamber, nozzle, and propellant
storage for both oxidizer and fuel. The thrust and the specific impulse of an
LP system can be obtained from the eq.1.1 and eq.1.2 respectively. The exit
velocity of an LP system, like a CGP system, is dependent on the exit-to-
chamber-pressure-ratio (Pe/Pc) and combustion chamber temperature Tc[8][3]:

ve = sqrt
2γ

γ − 1
RTc[1− (

Pe

Pc
)

γ−1
γ ] (1.7)

where γ is the Poisson constant and R is the universal gas constant.

Solid Rocket Propulsion (SRP) System

A solid rocket propulsion system [14][15][16] works on the principle of burning
solid propellants and generating thrust by ejecting the gases formed during
combustion. Similar to an LP bi-propellant system, an oxidizer is used in the
SRP system. However, it differs from an LP system in a couple of ways: first,
the solid propellant is stored within the combustion chamber itself; second, the
sloshing effect seen in the LP system is absent because both fuel and oxidizer
are solid. Although SRP systems do not experience sloshing, the lack of control
over propellant burn rate creates difficulty for thrust regulation. The schematic
of the SRP system is shown in fig.1.3 and comprises a combustion chamber that
holds the solid propellant, an igniter that initiates the combustion process, and
a nozzle[8][3]. Considering that thrust regulation is difficult in the SRP system,

Figure 1.3: Sketch of a Solid Rocket Propulsion System. Image reproduced by
[3]

burn rate can be used in the initial phase of the system design. The burn rate
allows us to understand the combustion process because it governs the mass
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flow rate of hot gases generated during the combustion. The burn rate (r) can
be expressed by the equation:

r = aPn
c (1.8)

is dependent on the chamber pressure (Pc), temperature coefficient (a) and
combustion index (n). The temperature coefficient is a non-dimensional em-
pirical constant, while the combustion index describes the influence of chamber
pressure on the burn rate.

1.2 Electric Thruster

Resistojet

In a resistojet[17][18][19][3], the propellant is passed through a heat exchanger
(or heating element) where it is super-heated and ejected through an expansion
nozzle. The heating process reduces the gas (propellant) flow rate from a given
upstream pressure through a given nozzle area, thus leading to the increase
in the specific impulse that is proportional to the square root of temperature.
The working principle of a resistojet is similar to that of a CGP system except
that the propellant is heated before the expansion process. Because of the
propellant’s high energy (gained by heating), an exhaust velocity much greater
than the CGP velocity is achieved in the resistojet. The exit velocity of the micro

Figure 1.4: Sketch of a Resistojet Propulsion System. Image reproduced by [3]

CGP system ranges between approximately 300 − 700 m/s [20], while those of
micro resistojet are approximately 2.2 km/s [21]. A major drawback of resistojet
is that their performance (τ, Isp) is limited by the melting temperature of the
heating element used. In addition, power and thermal losses during the heating
of the elements contribute to the inefficiency of the resistojet. The schematic
of a resistojet propulsion is shown in Fig.1.4, and the main component includes
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propellant storage, heating element, and nozzle[22]. The thrust produced by
the propellant is shown in the equation:

τ = A0(
n0kBT0

2
)χ (1.9)

depends on stagnation number density of propellant n0 in m−3, stagnation
temperature T0 and the probability (χ) of molecule exiting the expansion slot
area (A0). Specific impulse is shown in the equation:

Isp =

√
πkBT0
2m

1

g0
(1.10)

where kB is the Boltzmann constant and g0 is the acceleration due to gravity
at sea level.

Radio-Frequency Ion Thruster (RIT)

Radio Frequency Ion thrusters[23][24][25] belong to a subset of gridded ion
thrusters that generate thrust by accelerating the ionized propellant (plasma)
through an electrostatic grid. In RITs, the stored propellant is let into the
discharge chamber where it is ionized and becomes plasma through Radio Fre-
quency (RF) power (from RF coils). The ionized propellant is then extracted
from the discharge chamber and accelerated by a series of grids (ion optics)
called screen and accelerator grids[26]. The screen grid extracts propellant

Figure 1.5: Sketch of a Radio-Frequency Ion Propulsion System. Image repro-
duced by [3]

cations from the ionized plasma and directs them to the exterior of the thruster
in all ion engines, providing electrons to neutralize the ionized propellant that
is emitted from the thruster. The specific impulse of a gridded thruster can
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be varied by changing the voltage that is applied to the accelerating grid. The
schematic of an RF ion propulsion system is shown in fig.1.5 which includes the
propellant storage, RF coil, discharge chamber, and neutralizing cathode. Ion
thrusters are characterized by high thruster efficiency resulting in high specific
impulse (from 2000 s to 10000 s)[26]; however, they have been plagued with is-
sues that are caused by cathode wear and contamination over prolonged usage.
The performance factor of ion engines are[26][3]:

τ =

√
2mionVi

q
Ii Isp = 1.417× 103γcηm

√
Vi
mion

(1.11)

where ηm is the thruster mass utilization efficiency and γc is the total thrust
correction factor. The thrust is a function of the charge of the propellant ion,
mass propellant ion mion, and ion accelerating voltage Vi. Ion engines use
heavier elements (elements with higher atomic mass) as propellants because the
thrust generated is proportional to the ion beam current (Ii). Specific impulse
is a function of ion accelerating voltage and mass of the ion.

Hall thruster

Hall thrusters[26][27][28] are electrostatic devices that generated thrust by first
ionizing and then accelerating the propellant in a mutually perpendicular elec-
tric and magnetic field. These thrusters work on the principle of the Hall effect
that states the following[29]: when the electric current is applied to a conductive
material (propellant) placed in a mutually perpendicular electric and magnetic
field and formed a potential difference from the field that accelerated the pro-
pellant. The schematic of a Hall thruster is shown in fig.1.6 which includes

Figure 1.6: Sketch of a Hall Propulsion System. Image reproduced by [3]

propellant storage, discharge channel, external cathode, anodes, and the mag-
netic field generator. The applied magnetic field is radial, while the accelerating
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electric field (acting from the anode towards the cathode) is axial. Note that
the Hall thruster, unlike the gridded ion thruster, does not have a grid system,
instead the grids are replaced by a strong magnetic field perpendicular to the
flow of ions. The magnetic fields reduce the mobility of electrons coming from
the external cathode, thereby restraining many advantageous features like a
high specific impulse, higher thrust density, and simplicity in design[30]. How-
ever, they also face some challenges with the erosion of magnetic circuitry due
to discharge plasma and lower efficiency[31]. The performance factor for Hall
thrusters like thrust and specific impulse is the same as the RIT’s parameters.

Electrospray thruster

An Electrospray thruster[32] is a plasma-free electric propulsion system that
works on the principle of electrostatic extraction and acceleration of charged
particles (ions) from liquid (propellant) surfaces to produce thrust. Their fun-
damental working mechanism is based on a process by which the conductive
liquid surface of the propellant is deformed into a sharp cone-shaped meniscus
called a Taylor cone[33][34][35]; when a certain threshold of the electric potential
is surpassed, ions are extracted from the cone’s apex. Electrospray thrusters
accelerate positive or negative ions, respectively generating either positive or
negative ion beams, thereby eliminating the need for an external cathode to
neutralize the ejected ions, unlike in plasma propulsion devices where an ex-
ternal cathode is essential[32]. The propellant used for electrospray thrusters
is usually ionic liquid, and their negligible vapor pressure serves as an advan-
tage by resolving the need for propellant pressurization and helps with system
miniaturization. The schematic of an electrospray propulsion system is shown
in fig.1.7, and the major components comprise propellant storage, emitter, and
extractor electrode. The performance of an electrospray thruster can be varied
by changing the voltage passed through the emitter and the extractor electrodes.
In an electrospray thruster, the mass-to-charge ratio plays an important role in
determining the exit velocity and thrust. The underlying mathematical relations
summarizing the relationship are given below[36][3]:

⟨ q

mion
⟩ = 1

ρQ
(1.12)

vie =
√

2ViIi ⟨q⟩mion (1.13)

τ = ˙mionvei (1.14)

The average mass-to-charge ratio ⟨ q
mion

⟩ is inversely proportional to the density
ρ of the propellant ion/droplet and the volume flow rate (Q) of ion/droplet. The
exit velocity is a function of the square root of ion accelerating voltage (Vi), ion
beam current (Ii), and average mass-to-charge-ratio. The thrust is a function
of ion accelerating voltage, ion beam current, and mass flow rate of ions ( ˙mion).
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Figure 1.7: Sketch of a Electrospray Propulsion System. Image reproduced by
[3]

Pulsed Plasma Thruster

Pulsed Plasma Thrusters (PPT)[37][38][39] operate by creating a pulsed, high-
current discharge across the exposed surface of a solid insulator that serves as a
propellant. The arc discharge ablates the propellant material from its surface,
thereby ionizing and accelerating the propellant at high speeds. A current pulse
lasting a few microseconds is generally driven by a capacitor that is charged and
discharged approximately once every second[40]. The schematic of PPT is shown
in fig.1.8 containing a spring-loaded mechanism, propellant, capacitor, anode,
cathode, and acceleration chamber. During the process of propulsion, the spring
feeds the propellant (usually solid) between two electrodes, and the spark plug
is simultaneously fired to raise the electrical conductivity of the acceleration
chamber. The electric current from the Power Processing Unit (PPU) flows to
the electrodes through the capacitor and then into the arc, thereby completing
a current loop and simultaneously generating a magnetic field. The electric arc
generated ablates the propellant and ionized plasma is created. The plasma
is then accelerated due to Lorentz force generated by the electric arc and the
induced magnetic field. The advantages of a PPT are its ability to provide small
impulse bits for precision maneuvering, robustness by programming impulse bits
to cater to mission needs, design simplicity owing to its ability to use a large
variety of propellants, and its ability to maintain constant specific impulse and
efficiency over a wide range of input power levels. However, these advantages
come at the cost of issues that result due to electron erosion, the presence of
macro-particle in plumes due to non-uniform ablation, and very low thruster
efficiency[37][38]. The exit velocity and the thruster of a PPT can be obtained
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from this equation[41]:

τ = mion
dvi

dt
= q(E+ vi ×B) +

∑
(Pi)k (1.15)

ve =
τ

η4π
=

µ0

η4π
ln (

Ra

Rc
) (1.16)

The thrust produced is calculated from the law of conservation of momentum.
For any electric thruster, Lorentz force describes the relationship between the
force (thrust) produced due to charged particles moving through a self-induced
magnetic field. Thrust production also depends on the charge of ions (q), the
sum of all collision forces per particle (propellant) over all particles, and the
particle velocity. The effective exit velocity of the ionized propellant is a function
of the thrust generated and the mass flow rate of propellant efficiency. Effective
exit velocity can also be calculated in terms of the radius of the anode and the
radius of the cathode. The specific impulse of a PPT can be obtained from the
equation eq.1.2.

Figure 1.8: Sketch of a Pulsed Plasma Propulsion System. Image reproduced
by [3]

1.3 Optical Thruster

The propulsion systems analyzed (electric thrusters and chemical thrusters) are
suitable for moving large objects. Satellites can accommodate the propellants
and the power required to activate these systems. However, this work aims to
implement a propulsion system on a nanosatellite known as CubeSat[5][42][43].
CubeSat is a very small satellite in which 1U of CubeSat has 10 cm3 of volume
and reaches 1 kg of mass. Since its early development and use as a university
training tool, CubeSat has been increasingly developed for commercial and mil-
itary purposes and NASA science missions. The decreasing size of technology,
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combined with increased capabilities of components used, and the low cost of
developing, building, and launching, has led to a proposal for more demanding
CubeSat missions. Proposed missions include low-cost technology demonstra-
tion missions, formation flying missions that consist of swarms of CubeSat, and
inspection satellites that can approach larger satellites already in orbit. Given
the small size required for a propulsion system to fit inside a CubeSat, it is
assumed that a remotely induced propulsion system (and thus without onboard
power) is suitable for moving the nanosatellite. Therefore, our research has
shifted to the study of optical propulsion systems. The optical thruster[44] is
different from the chemical and electric propulsion system because the thrust
is induced by the direct action of light and can not require any onboard power
system. In this section, we will review some optical propulsion systems already
in use and their characteristics.

Solar Sail

Figure 1.9: Sketch of a Solar Sail Propulsion System

A solar sail is a form of propellant-less spacecraft system that generates
thrust through momentum change due to the incoming solar radiation. Solar
sails ( sketch in fig.1.9)[45][46][47] have a flat surface and are usually made of
thin reflective material supported by a lightweight deployable structure[48]. As
they do not use a propellant, solar sails by definition possess infinite specific
impulse. However, the main drawback of a solar sail is its very low trust levels,
resulting in a long time to gain appreciable momentum charge. A generated
force vector (fsrp) on a solar sail is a function of the solar radiation pressure
(P ), the surface area of the sail (A), and angle of attack (α). Accordingly, the
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acceleration is obtained from Newton’s Second Law as described below[3][49]:

asrp =
fsrp
m

=
2PA cos2 (α)n

ms
(1.17)

where n is the sail normal vector and ms is the mass of spacecraft.

Laser Ablation Thruster

Figure 1.10: Sketch of a Laser Ablation Propulsion System. Image adapted
from [50]

A laser ablation thruster[51][52] is an optical propulsion system in which
the thrust is induced by vaporizing a solid propellant and ejecting the gaseous
propellant with the high pressure generated by the laser beam incidence. The
general mechanism of the laser ablation is shown in fig.1.10[50]. When a focused
laser beam strikes a surface, the electrons present in the substrate are excited
by the laser photons. This excitation results in the generation of heat due to
the absorption of photon energy, which is consistent with Beer Lambert’s law.
Beer Lambert’s law states that the amount of light absorbed is dependent on
the thickness of the material and intensity of the light source in this manner:

A = elc (1.18)

where A is the optical absorbance, e is the molar attenuator coefficient, l is
the optical path length and c is the molar concentration. The heating effect
causes melting or vaporization of the material, thus resulting in the removal
of macroscopic material from the substrate. The transition from solid to gas
results in the formation of a plasma plume. The temperature further increases
due to incoming pulses and the melt pool reach the vaporization state. High
pressure is created during vaporization, which is also called recoil pressure,
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which pushes molten materials from the pool where it is ejected. Based on the
properties of the laser and of the material such as fluence, absorption coefficient,
reflectivity, wavelength, and pulse duration, the ablation mechanism can be
purely chemical, thermal, or a combination of both. The typical Isp of laser
ablation propulsion is in the range of 200 − 3000 s [53]. The thrust density
is on the order of 8 × 105 N/m2 because the thrust arises on a spot with an
area equal to a focused laser beam. Remote thrust generation is a unique and
clear advantage of this technique. It has the potential to achieve significant mass
reduction and improved payload capability. The use of solid propellant alleviates
problems in propellant storage. The thrust is roughly proportional to laser
power. Therefore the system size can be scalable to a required thrust. Despite
these advantages, laser ablation propulsion systems have some challenges. In
particular, the stability of the lasers is easily compromised in long-term travel,
and the system requires large amounts of propellant and onboard power. For
this reason, the laser ablation propulsion system is not yet used for practical
applications.

Plasmonic Propulsion System

In addition to ablation and the direct incidence with photons (a solar sail),
there is another way to use optical forces to induce propulsion. Specifically,
it is possible to design a propulsion system that uses the gradient generated
by an electromagnetic field to induce an optical force and achieve propulsion.
Plasmonic propulsion[2] (an example in fig.1.11) uses the interaction between
an electromagnetic wave and the metal-dielectric interface to generate strongly
amplified electric fields that can be tuned to have asymmetric spatial distribu-
tions. The asymmetry of the field distribution leads to high gradients and thus
optical forces which can induce propulsion on a nanoparticle. Given Newton’s
third law of motion, the ejection of large numbers of nanoparticles implies the
displacement of a macroscopic object (e.g., a CubeSat). Plasmonic propulsion
has characteristics useful for nanosatellite applications:

• 1) Like solar sails, plasmonic propulsion can not require onboard power,
because we can generate the optical force with a remote laser on a mother
satellite.

• 2) It does not have a large propellant usage (as in the case of laser ab-
lation) because the nanoparticles used for displacement occupy a small
space inside a nanosatellite’s payload.

• 3) Compared to solar sails, it has a much smaller size and light intensities
are highly concentrated favoring higher force values

• 4) Compared to other propulsion systems, it does not have large values of
trust and specific impulse but is highly accurate and therefore useful for
orbit corrections and small changes in trajectory
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Figure 1.11: Sketch of a Plasmonic Propulsion System

Since the CubeSat dimension, we require a propulsion system remotely driven
with a small size. In addition, we need that the propulsion induced has perfor-
mance useful for trajectory correction and orbit displacement. For this reason,
we need small power and good precision. Analyzing all the micro-propulsion
systems and focalizing in the optical thrusters, because it is the only propulsion
system where we can induce the force at distance, we consider the plasmonic
thruster as a system suitable for a CubeSat propulsion system. In the next chap-
ter, we discuss some of the basic principles of the surface plasmon phenomenon,
necessary to design a plasmon device.
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Chapter 2

Principles of Plasmonic
Propulsion

The small size and lack of onboard power make some optical thrusters suitable
for application in a CubeSat. Thus, the work aims to design an optical thruster
that displaces nanoparticles through the space variation of the electric field
distribution, i.e., a plasmonic thruster.

However, to build this device, it is necessary to analyze how the electromag-
netic field induces a dynamic force and which optical phenomena can improve
it. From the study of the electromagnetic field in vacuum and continuous media
(Appendix A), the optical forces obtained do not have suitable values for particle
displacement. However, the interaction between the electromagnetic field and a
dispersive medium presents effects that have a great incidence in the induction
of dynamic phenomena. In this chapter, we introduce the electromagnetic field
in dispersive media to understand the basic principles of a plasmonic device.

2.1 Electromagnetism in dispersive media

In appendix A, we present the basic aspects of electromagnetism with special
attention to some features of the induction of mechanical quantity by electro-
magnetic waves. To design an optical propulsion device, it is not possible to
use electromagnetism in a vacuum because the force and energy parameters
obtained turn out to have low-level performance. Therefore, it is necessary to
study the radiation-matter interactions that allow the formation of phenomena
that accumulate and amplify the electromagnetic field.

In this section, we analyze some electromagnetic behaviors in materials,
with special emphasis on the case of metals, which will be the argument of the
following paragraphs. Dielectric media exhibit behavior that is approximately
independent of the wavelength of the incident beam. This is described by equa-
tions A.2a-A.2d and constitutive relations eq.A.4a-eq.A.4c considering dielectric
permittivity as a constant[54].
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Metals, on the other hand, exhibit characteristics that change depending on
the frequency (or wavelength) of the incident beam. Three different behaviors
of metals can be defined: for microwave and far-infrared, the metal behaves as a
perfect conductor, that is, only an extremely small part of the electromagnetic
field penetrate the material[55][56]. For near-infrared and visible spectrum the
metal has dissipative behavior since the penetration of the electromagnetic field
increases considerably. Finally, in ultraviolet, the electromagnetic field exhibits
the same behavior as analyzed for dielectric media. To obtain dispersive prop-
erties we use the relationship between J and E (eq.A.4a). We can demonstrate
that in metals it is possible to define a similar local relationship between ϵ and
σ. It is important to note, however, that eqs.A.4a and eq.A.4b have to be gen-
eralized for the metals; in particular, given their dispersive nature, the metal
optical response depends on the light frequency. For this reason, the constitutive
relation is rewritten in the following form[56]:

D(r, t) = ϵ0

∫
dt′dr’ϵ(r− r’, t− t′)E(r’, t′) (2.1a)

J(r, t) =

∫
dt′dr’σ(r− r’, t− t′)E(r’, t′) (2.1b)

We assume that all length scales are significantly larger concerning the lattice
spacing of the material; this ensures homogeneity, i.e., the impulse response
functions do not depend on absolute spatial and temporal coordinates, but
only their differences. The homogeneity simplifies the eq.2.1a and eq.2.1b by
taking the Fourier to transform for k and ω and the convolution becomes a
multiplication. This led to the constitutive relations in the Fourier domain

D(k, ω) = ϵ0ϵ(k, ω)E(k, ω) (2.2a)

J(k, ω) = σ(k, ω)E(k, ω) (2.2b)

Consider that in dielectric media exist a relation between D,J and the polar-
ization P[56]:

D = ϵ0E+P J =
dP

dt
(2.3)

using this relation we define:

ϵ(k, ω) = 1 +
iσ(k, ω)

ϵ0ω
(2.4)

The general form of the dielectric response can be simplified to the limit of the
local space, i.e., ϵ(k = 0, ω) = ϵ(ω). This approximation is valid as long as
the wavelength λ in the material is significantly greater than all characteristic
dimensions, such as the size of the unit cell or the mean free path of the elec-
trons[57][58]. In general ϵ(ω) and σ(ω) are complex quantities in function of the
angular frequency ω.
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The characteristics of dispersive media are also reflected in the analysis of
the wave solutions obtained through Maxwell’s equations[56]. Using eq.A.22
and leading the Fourier domain we obtain:

k(k ·E)− k2E = −ϵ(k, ω)ω
2

c2
E (2.5)

Two cases can be distinguished, depending on the polarization direction of the
electric field vector. For transverse waves k·E = 0 yielding the generic dispersion
relation

k2 = ϵ(k, ω)
ω2

c2
E (2.6)

for longitudinal waves we obtain:

ϵ(k, ω) = 0 (2.7)

This implies that the longitudinal collective oscillation can only occur at fre-
quencies corresponding to zeros of ϵ(ω), this can be defined as a bulk plasmon.

2.2 Optical Response in metals

The optical properties of metals, over a wide frequency range, can be explained
by a plasma model, where a gas of free electrons of number density n moves
against a fixed background of positive ion cores[55][56]. In the plasma model,
details of the lattice potential and electron-electron interactions are not taken
into account; for this reason in alkali metal, this is a good approximation for
the optical proprieties until the ultraviolet range while in the noble metals, this
approach is limited by an interband transition in visible frequency. For the
plasma model, the electrons oscillate in response to the applied electromagnetic
field, and their motion is damped via collision occurring with a characteristic
frequency γ = 1/τ . τ is known as the relaxation time of the free electron gas.
We can write a simple equation of motion for an electron of the plasma sea
subjected to an external field E[57]:

mẍ+mγẋ = −eE (2.8)

If we assume a harmonic time dependence E(t) = E0e
iωt of the driving field,

a particular solution of this equation describing the oscillation of the electron
is x(t) = x0e

−iωt. The complex amplitude x0 incorporates any phase shift
between the driving field and response:

x(t) =
e

m(ω2 + iγω)
E(t) (2.9)

The displaced electrons contribute to the macroscopic polarization P = −nex
and in the constitutive relations D = ϵ0E+P obtaining:

D = ϵ0(1−
ω2
p

ω2 + iγω
)E (2.10)
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where ωp = ne2

ϵ0m
is the plasma frequency of the free electron gas. Therefore, we

arrive at the dielectric function of the free electron gas:

ϵ(ω) = 1−
ω2
p

ω2 + iγω
(2.11)

the real and imaginary components of this complex dielectric function are given
by:

ϵ1(ω) = 1−
ω2
pτ

2

1 + ω2τ2
(2.12a)

ϵ2(ω) =
ω2
pτ

ω(1 + ω2τ2)
(2.12b)

It is useful to study the eq.2.12a-2.12b to observe the different regimes to the
collision frequency γ. We limit only for ω < ωp, where metals retain their
metallic character. For large frequencies close to ωp, the product ωτ ≫ 1 leads
to negligible damping. Here, ϵ(ω) is predominantly real, and:

ϵ(ω) = 1−
ω2
p

ω2
(2.13)

can be taken as the dielectric function of the undamped free electron plasma.
However, the behavior of the noble metals [59] in this frequency region is com-
pletely altered by interband transitions, where electrons from the filled band
below the Fermi surface are excited to a higher band. For low frequencies, i.e.,
ω ≪ τ−1, hence ϵ2 ≫ ϵ1, in this region, metals are mainly absorbing and we
have a good conductor approximation. Finally the eq.2.13 related the optics
response (see eq.2.4) with the metal conductivity in the Drude model[60]:

σ(ω) =
σ0

1− iωτ
(2.14)

where σ0 = nep
m .

In the previous paragraph, we observed that the energy induced by the
electromagnetic field in continuous media is defined in the eq.A.12. However, in
dispersive media ϵ is complex and frequency-dependent and the eq.A.12 is not
suitable.

For a monochromatic field, Landau and Lifshitz[61] have shown that the
conservation law is valid also in dispersive media if uE is replaced by an ueff
defined:

ueff =
1

2
Re[

d(ωϵ)

dω
]ω0

⟨E(r, t) ·E(r, t)⟩ (2.15)

where ⟨E(r, t) ·E(r, t)⟩ is the field averaging over one optical cycle, and ω0 is
the frequency of interest. This expression is valid if E is only appreciable in a
narrow frequency range around ω0 and the fields are slowly varying compared
to a timescale 1/ω0. In addition, it is assumed that |ϵ2| ≪ |ϵ1| so that the
absorption is small. In metal, the requirement of low absorption limits the
validity for visible and near-infrared frequencies. Using the expression of the free
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electron type dielectric function eq. 2.13 the typical form of the electromagnetic
energy in metals is obtained:

ueff =
ϵ0
4
(ϵ1 +

2ωϵ2
γ

)|E|2 (2.16)

respect to the eq.2.15 an additional factor 1
2 is included due to an implicit

assumption of harmonic time.

2.3 Surface Plasmon Polaritons

In the eq.2.7, we obtain a solution defined as ”plasmon” from the optical prop-
erties of dispersive media. The plasmon solution represents the collective oscil-
lations of the electrons of a metal at a certain frequency. The same phenomena
can also occur in an interface between a metal surface and a dielectric; in this
case, it is called a surface plasmon. Surface Plasmon Polaritons (SPPs) are
the propagative surface plasmons. In this section we discuss the characteris-
tics of SPPs; however, to define the properties of SPPs, we need to know how
electromagnetic waves propagate within an interface.

As we have seen, Maxwell’s equations lead to the wave equation defined to
eq.A.22. If we assume a harmonic time dependence of E(r, t) = E(r)e−iωt of
the electric field we obtain that the wave equation become[55][56]:

∇2E+ k20ϵE = 0 (2.17)

where k0 = ω
c is the wave vector of the propagation wave in a vacuum. This

equation is known as the Helmholtz equation. For an interface solution, it

Figure 2.1: Geometry for SPP propagation at a single interface between a metal
and a dielectric. Image reproduced by [55]

is necessary to define the wave propagation geometry[62]. In particular, we
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consider a surface parallel to the xz plane (as in fig.2.1). We can assume for
simplicity a case of a one-dimensional problem, i.e., ϵ depends only on one
spatial coordinate. Specifically, if the waves propagate along the x direction of a
Cartesian coordinate system, and show no spatial variation in the perpendicular
(y-plane) direction therefore ϵ = ϵ(z).

Applied to electromagnetic surface problems, the plane z = 0 coincides with
the interface sustaining the propagating waves, and the electric can be described
as E(x, y, z) = E(z)eiβx. The complex parameter β = kx is called the propaga-
tion constant of the traveling waves and corresponds to the component of the
wave vector in the direction of propagation. Inserting this expression into eq.
2.17 yields the following form of the wave equation[62]:

∂2E(z)

∂2z
+ (k20ϵ− β2)E (2.18)

A similar equation exists for the magnetic field H. In order to use the wave
equation to obtain the spatial field profile and dispersion of propagating waves,
we need the explicit expression for different field components of E and H using
the curl equation. However, we can use some approximation if considering a
propagation along the x-direction ∂

∂x = iβ and homogeneity in the y-direction.
It can be shown that the system allows two sets of self-consistent solutions with
different polarization properties. The first set is the transverse magnetic (TM
or p) modes, where only the field component Ex, Ez and Hy are non-zero, and
the second set is the transverse electric (TE or s) modes, with Hx, Hz and Ey

being nonzero. For TM modes, the system of governing equations reduces to:

Ex = −i 1

ωϵ0ϵ

∂Hy

∂z

Ez = − β

ωϵ0ϵ
Hy

(2.19)

and the wave equation for TM modes is:

∂2Hy

∂z2
+ (k20ϵ− β2)Hy = 0 (2.20)

For TE modes the analogous set is:

Hx = i
1

ωµ0

∂Ey

∂z

Hz =
β

ωµ0
Ey

(2.21)

with TE wave equation:

∂2Ey

∂z2
+ (k20ϵ− β2)Ey = 0 (2.22)

Once we have determined the action of propagating waves in space, we can
study the behavior of Surface Plasmon Polaritons[55]. The most simple geome-
try sustaining SPPs is a single flat interface between a dielectric, non-absorbing
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half-space (z > 0) with positive real dielectric constant ϵ2 and an adjacent con-
ducting half-space (z < 0) described by a dielectric function ϵ1(ω) (fig.2.1).
The requirement of metallic character implies that Re[ϵ1(ω)] < 0. The met-
als fulfilled this condition only frequencies below ωp. We want to observe the
propagating wave solution confined to the interface.

Starting with the TM solutions. Using the equation set (2.19-2.20) in both
half spaces yields:

Hy(z) = A2e
iβxe−k2z

Ex(z) = iA2
1

ωϵ0ϵ2
k2e

iβxe−k2z

Ez(z) = −A2
β

ωϵ0ϵ2
eiβxe−k2z

(2.23)

for z > 0 and:

Hy(z) = A1e
iβxek1z

Ex(z) = −iA1
1

ωϵ0ϵ1
k1e

iβxek1z

Ez(z) = −A1
β

ωϵ0ϵ
eiβxek1z

(2.24)

for z < 0. ki(i = 1, 2) is the component of the wave vector perpendicular to
the interface in the two media. The reciprocal value, ẑ = 1/|kz| defines the
evanescent decay length of the field perpendicular to the interface, which quan-
tifies the confinement of the wave. Continuity of Hy and ϵiEz at the interface
requires that A1 = A2 and:

k2
k1

= −ϵ2
ϵ1

(2.25)

If we consider the previous convention in the exponent, the confinement to the
surface demands Re[ϵ1] > 0 if ϵ2 > 0, i.e., the surface waves exist only at
the interface between materials with opposite sign in the real part of dielectric
permittivity; in particular, between conductor and an insulator. The expression
for Hy further has to fulfill the wave eq.2.20 yielding:

k21 = β2 − k20ϵ1

k22 = β2 − k20ϵ2
(2.26)

Combining the eq. 2.25 and eq.2.26 we obtain the dispersion relation of SPPs
propagating at the interface between the half-spaces:

β = k0

√
ϵ1ϵ2
ϵ1 + ϵ2

(2.27)

This expression is valid for both real and complex ϵ1, i.e., for conductors without
and with attenuation. Now, we analyze the situation for TE surface modes.
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Using the eq.2.21, the respective expression for the field component is:

Ey(z) = A2e
iβxe−k2z

Hx(z) = −iA2
1

ωµ0
k2e

iβxe−k2z

Hz(z) = A2
β

ωµ0
eiβxe−k2z

(2.28)

for z > 0 and:
Ey(z) = A1e

iβxek1z

Hx(z) = iA1
1

ωµ0
k1e

iβxek1z

Hz(z) = A1
β

ωµ0
eiβxek1z

(2.29)

for z < 0. Continuity of Ey and Hx at the interface leads to the condition:

A1(k1 + k2) = 0 (2.30)

since confinement to the surface requires Re[k1] > 0 and Re[k2] > 0, this con-
dition is only fulfilled if A1 = 0, so that also A2 = A1 = 0. Thus no surface
modes exist for TE polarization. Surface Plasmon Polaritons exist only for TM
polarization.

After the definition of the dispersion relation, we can examine the properties
of the SPPs[55]. In fig.2.2 shown a plot of eq. 2.27 for a metal with negligible

Figure 2.2: Dispersion Relation at the interface between a Drude metal and
silica (black curves) and air (gray curves). Image adapted from [55].

damping described by a real Drude dielectric function for air (ϵ2 = 1) and a
fused silica interface (ϵ2 = 2.25). In this plot, the frequency is normalized to the
plasma frequency ωp, and both the real (continuous curve) and the imaginary

32



part (dashed curve) of the wave vector β are shown. Due to their bond nature,
the SPP excitation corresponds to the part of the dispersion curve lying to the
right of the respective light lines of air and silica. Radiation into the metals
occurs in the transparency regime ω > ωp. Between the regime of the bound
and radiative modes, a frequency gap region with purely imaginary β prohibiting
propagation exists. For small wave vector constant is close to k0 at the light
line, and the waves extend over many wavelengths into the dielectric space. In
this regime, SPPs acquire the nature of the grazing-incidence light field and are
also known as Sommerfield-Zenneck waves[63]. In the opposite regime of large

Figure 2.3: Dispersion relation between silver/air (gray curves) and silver/silica
(black curves). Image adapted by [55]

wave vectors, the frequency of the SPPs approaches the characteristic surface
plasmonic frequency

ωsp =
ωp√
1 + ϵ2

(2.31)

In the limit of negligible damping of the conduction electron oscillation Im[ϵ1] =
0, the wave vector β goes to infinity as the frequency approaches ωsp and the
group velocity vg → 0. The mode thus acquired an electrostatic character, and
it is known as surface plasmon. The above discussion of fig.2.2 has assumed
an ideal conductor with Im[ϵ1] = 0. Excitation of the conduction electrons
of real metals however suffers both from free-electrons and interband damping.
Therefore ϵ1(ω) is complex, and also the SPPs propagation constant β. The
traveling SPPs are damped with an energy attenuation length (also called prop-
agation length) L = (2Im[β])−1, typically between 10µm and 100µm in the
visible regime, depending upon the metal/dielectric configuration. Compared
with the dispersion relation of completely undamped SPPs depicted in fig.2.3,
it can be seen that the bound SPPs induced by a silver/air and a silver/silica
interface[55] have a maximum wave vector at the surface plasmon frequency ωsp

of the system.
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2.4 Excitation of Surface Plasmon Polaritons

In the previous section, we analyzed the fundamental physics of the Surface
Plasmon Polaritons. However, the generation of SPPs on a dielectric metal
interface is not easy. Thus, this section reviews the most common techniques of
plasmonic generation phase matching, such as prism coupling, grating coupling,
as well as excitation using a highly focused beam[55].

First of all, given β > k (eq.2.27) where k is the wave vector of light on
the dielectric interface, the SPPs cannot be excited directly by the light beam.
In particular, if we consider the projection along the interface of the photon
momentum impinging under an angle θ normal to the surface (kx = k sin (θ)) is
always smaller than the SPP propagation constant β even at grazing incidence,
prohibiting phase-matching. This assertion is confirmed in fig.2.2, where the
SPP dispersion curve lies outside the light cone of the dielectric. The relation
between β and k implies the use of various optical techniques for the SPP
excitation.

Prism Coupling

The phase-matching to SPPs can be achieved in a three-layer system consisting
of a thin metal film sandwiched between two insulators of different dielectric
constants. For simplicity[55], we consider one of the insulators to be air (ϵ = 1).
A beam reflected at the interface between the insulator of higher dielectric con-
stant ϵ, usually in a prism shape, and the metal will have an in-plane momentum
kx = k

√
ϵ sin (θ), which is sufficient to excite SPPs at the interface between the

metal and the lower-index dielectric, i.e., in this case at the metal/air inter-
face. As can be seen in fig.2.4, the range of frequency in which the propagation

Figure 2.4: Prism coupling and SPP formation: the metal-air SPPs lie between
the light line of the air and the prism so we obtain k = β that induce an SPPs.
Image reproduced by [55]
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constant β excites the SPP lies from the light lines of the air and the light
lines of the prism. For the prism coupling, we can design two different geome-
tries, sketched in fig.2.5. The most common configuration is the Kretschmann
method[64], in which a thin metal film is placed above a glass prism. The light
beam illuminates the prism at an angle greater than the critical angle of total
internal reflection through the metal film and excites SPPs at the metal/air
interface.

Another geometry is the Otto configuration[65], in which the prism is sep-
arated from the metal film by a thin air gap. Total internal reflection takes
place at the prism/air interface, exciting SPPs via tunneling to the metal/air
interface.

Figure 2.5: Prism coupling configuration: in the left part of the figure
Kreschmann configuration, in the right part of the figure Otto configuration.
Image adapted by [55]

Grating Excitation

The mismatch in wave vector between the in-plane momentum kx = k sin (θ) of
incident photons and β can also be overcome by patterning the metal surface
with a shallow grating of grooves or holes with a lattice constant a. For a one-
dimensional sample of groves in fig.2.6, phase matching takes place when the
following condition[55]:

β = k sin (θ)± νg (2.32)

is fulfilled, where g = 2π/a is the reciprocal vector of the grating, and ν =
1, 2, 3.... As the prism coupling, excitation of SPPs is detected as a minimum
of reflected light.
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Figure 2.6: Phase-matching of light to SPPs using a grating coupling. Image
adapted by [55]

The reverse process can also take place: SPPs propagating along a surface
modulated with a grating of grooves or holes radiate an electromagnetic wave in
which the direction has an angle θ with the grating surface. In addition, given
the eq.2.32 the exit angle (θ) of the electromagnetic field depends on the grating
parameter a.

The gratings do not need to be milled directly into the metal surface, but
the surface can also consist of dielectric material. Thus we can generalize the
grating incidence[66]: SPPs can also be excited on films in areas with random
surface roughness or manufactured localized scatters. Momentum components
∆kx are provided via scattering so that the phase matching condition is:

β = k sin (θ)±∆kx (2.33)

Near Field Excitation

In excitation schemes such as a prism or grating coupling, we obtain SPPs over
a macroscopic area defined by the dimensions of the spot of the coupling beam
at wavelength λ0[55]. In contrast, near-field optical microscopy techniques allow
for the local excitation of SPPs[67] over an area a ≪ λ0, and can thus act as
a point source for SPPs. Fig.2.7 sketches the typical geometry: a small probe
tip of aperture size a ≤ λSPP ≤ λ0 illuminates the surface of a metal film in
the near field. Due to the small aperture size, the light ensuing from the tip
will consist of wave vector component k ≤ β ≤ k0, thus allowing phase-matched
excitation of SPPs with propagation constant β. Due to the ease of lateral
positioning of such probes in scanning near-field optical microscopes, SPP at a
different location on the metal surface can be excited[55].
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Figure 2.7: Local excitation of SPPs using near-field illumination. Image
adapted by [55]

2.5 Localized Surface Plasmon

In the previous section, we explored the physics of propagating surface plasmons
(SPPs). However, there is another phenomenon that is generated at a metal-
dielectric interface known as Localized Surface Plasmon (LSP), which will be
discussed in detail in this section. LSPs, as well as SPPs, have interesting en-
ergy localization properties in areas smaller than the diffractive limit ensuring
interesting applications in nanotechnology. First of all, consider the interaction

Figure 2.8: Sketch of a homogeneous sphere placed into an electrostatic field.
Image reproduced by [55]

of a particle of size d with the electromagnetic field. If d ≪ λ, i.e. the particle
is much smaller than the wavelength of light in the surrounding medium, the
electric field can be analyzed using the quasi-static approximation. In this case,
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the phase of the harmonically oscillating electromagnetic field is practically con-
stant over the particle volume, so we can calculate the spatial field distribution
assuming the simplified problem of a particle in an electrostatic field. We start
with the most convenient geometry for an analytical treatment (as can be seen
in fig.2.8): a homogeneous, isotropic sphere of radius a located at the origin in a
uniform static electric field E = E0ẑ. The surrounding medium is isotropic and
non-absorbing with dielectric constant ϵm, and the field lines are parallel to the
z-direction at a sufficient distance from the sphere. The dielectric response of
the sphere is further described by the dielectric function ϵ(ω), which we take as
a simple complex number ϵ. In the electrostatic approach[56], we are interested
in a solution of the Laplace equation for the potential E = −∇ϕ. Due to the
azimuth symmetry of the problem, the general solution is of the form

Φ(r, t) =
∞∑
l=0

[Alr
l +Blr

−(l+1)]Pl(cos (θ)) (2.34)

where Pl(cos (θ)) are the Legendre Polynomials of order l, and θ the angle
between the position vector r of the point P and the z-axis (see fig.2.8). Due to
the requirement that the potentials remain finite at the origin, the solution for
Φin inside and Φout outside the sphere can be written as:

Φin(r, θ) =

∞∑
l=0

Alr
lPl(cos θ)

Φout(r, θ) =

∞∑
l=0

[Blr
l + Clr

−(l+1)]Pl(cos (θ))

(2.35)

The coefficient Al, Bl and Cl can now be determined from the boundary con-
ditions at r → ∞ and at the sphere surface r = a. The requirement that
Φout → −E0z = E0r cos (θ) as r → ∞ demands that B1 = −E0 and Bl = 0
for l ̸= 1. The remaining coefficient Al and Cl are defined by the boundary
condition at r = a.

Equality of the tangential component of the electric field demands that:

−1

a

∂Φin

∂θ
|r=a = −1

a

∂Φout

∂θ
|r=a (2.36)

and the equality of the normal components of the displacement field:

−ϵ0ϵ
∂Φin

∂r
|r=a = −ϵ0ϵm

∂Φout

∂θ
|r=a (2.37)

Application of these boundary conditions leads to Al = Cl = 0 for l ̸= 1,
and the calculation of the remaining coefficient A1 and C1 leads the potential
evaluation[56] to:

Φin = − 3ϵm
ϵ+ 2ϵm

E0r cos (θ)

Φout = −E0r cos (θ) +
ϵ− ϵm
ϵ+ 2ϵm

E0a
3 cos(θ)

r2

(2.38)
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It is interesting to physically interpret the equation: Φout describes the sphere
of magnitude proportional to |E0|. If we introduce the polarizability α, defined
via p = ϵ0ϵmαE0, we obtain that:

α = 4πa3
ϵ− ϵm
ϵ+ 2ϵm

(2.39)

Eq.2.39 represents the complex polarization of a small sphere of sub-wavelength
diameter in the electrostatic approximation. Fig.2.9 shows the absolute value
and phase of α for frequency of a dielectric constant ϵ(ω) of the Drude form. The
polarizability shows a resonant enhancement under the condition that |ϵ+2ϵm|
is a minimum and for the case of small or slowly-varying Im[ϵ] the resonance
simplifies to:

Re[ϵ(ω)] = −2ϵm (2.40)

This relationship is called the Froelich condition and the associated mode is the
dipole surface plasmon of the metal nanoparticle. We note that the magnitude
of α at resonance is limited by the incomplete vanishing of its denominator, due
to Im[ϵ(ω)] ̸= 0. The distribution of electric field E = −∇Φ can be evaluated
from the potentials:

Ein =
3ϵm

ϵ+ 2ϵm
E0

Eout = E0 +
3n(n · p− p)

4πϵ0ϵm

1

r3

(2.41)

As expected, the resonance in α also implies a resonant enhancement of both
internal and dipolar fields.

From the viewpoint of optics, it is much more interesting to note that another
consequence of the resonantly enhanced polarization α is the efficiency that a
metal nanoparticle scatters and absorbs light. The corresponding cross section
for scattering and absorption Csca and Cabs can be calculated via the Pointing
vector[68]:

Csca =
k4

6π
|α|2 =

8π

3
k4a6| ϵ− ϵm

ϵ+ 2ϵm
|2 (2.42a)

Cabs = kIm[α] = 4πka3Im[
ϵ− ϵm
ϵ+ 2ϵm

] (2.42b)

For small particles with a ≪ λ, the efficiency of absorption, scaling with a3,
dominates over the scattering efficiency, which scales with a6. The expression for
the cross sections is valid both for metallic scatterers and dielectric scatterers.
The eqs.2.42a-2.42b also shows that for metal nanoparticles both absorption and
scattering are resonantly enhanced at the dipole particle plasmon resonance,
i.e. when the Froelich condition (eq.2.40) is met. For this reason, in a sphere
of volume V and a dielectric function ϵ = ϵ1 + iϵ2 in the quasi-static limit, we
can define the extinction cross section Cext = Csca+Cabs that has the following
expression[69]:

Cext = 9
ω

c
ϵ3/2m V

ϵ2
[ϵ1 + 2ϵm]2 + ϵ22

(2.43)
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Figure 2.9: amplitude and argument of the polarizability in terms of the fre-
quency in quasi-static approximation. Image reproduced by [55]

We can relax the assumption of a spherical nanoparticle shape. Even if the
physics is well defined of the sphere, we can define a more general geometry in
which we can use the analytical treatment in the electrostatic approximation.

The geometry is an ellipsoid with semiaxes a1 ≤ a2 ≤ a3, specified by x2

a2
1
+ y2

a2
2
+

z2

a2
3
= 1. A treatment of the scattering problem in the ellipsoidal coordinate lead

to the following expression for the polarizabilities αi, along the principal axes
(i = 1, 2, 3)[69]:

αi = 4πa1a2a3
ϵ− ϵm

3ϵm + 3Li(ϵ− ϵm)
(2.44)

Li is a geometrical factor given by:

Li =
a1a2a3

2

∫ ∞

0

dq(ai + q)f(q) (2.45)

where f(q) =
√

(q + a21) + (q + a22) + (q + a23). The geometrical factor satisfy∑
Li = 1 and for a sphere L1 = L2 = L3 = 1

3 . An important special class of
ellipsoids is spheroids, in which two of the three axes are equal, (for example a1 =
a2). Using the eq.2.44, we reveal that a spheroids metal nanoparticle exhibits
two spectrally separated plasmon resonances, corresponding to the oscillation
of its conduction electrons along the major or minor axis respectively.

The resonance due to oscillation along the major axis can show a significant
spectral red-shift compared to the plasmon resonance of a sphere of the same
volume. Thus, plasmon resonance can be lowered in frequency into the near-
field region of the spectrum using metallic particles with a large aspect ratio. It
is observed that considering a quasi-static approximation, the metallic sphere
acts like an electric dipole and obtains a resonance behavior controlled by the
value of polarizability α[69][55].

However, the theory of the dipole particle plasmon is strictly valid only for a
vanishing small particle; in practice, the calculation outlined provide a reason-
ably good approximation for spherical and ellipsoidal particles with dimension
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below 100nm illuminated with visible or near-infrared radiation. In fact, for
the particle of larger dimensions, where the quasi-static approximation is not
justified due to the significant phase change of the driving field over the particle
volume, a rigorous electrodynamics approach is required. Mie[70] developed a
complete theory of the scattering and absorption of electromagnetic radiation by
a sphere. The approach that is known as Mie Theory is to expand the internal
and scattered fields into a set of normal modes described by harmonic vectors.
The quasi-static results valid for sub-wavelength spheres are then recovered by a
power series expansion of the absorption and scattering coefficient and retaining
only the first term. Under this consideration, we will now analyze changes to
the spectral position and width of the plasmon resonance with particle size not
captured by the quasi-static approximation. Two regimes will be considered:
First, a larger particle where the quasi-static approximation breaks down due
to the retardation effect, and second the regime of a very small metal particle of
a radius a < 10nm, where the particle dimensions are appreciably smaller than
the mean free path of its oscillating electrons. Starting with larger particles,
a straight-forward expansion of the first TM mode of Mie-Theory yield for the
polarizability of a sphere of volume V the expression[70]:

αsph =
1− ( 1

10 )(ϵ+ ϵm)x2 +O(x4)

1
3 + ϵm

ϵ−ϵm
− 1

30 (ϵ+ 10ϵm)x2 − i 4π
2ϵ

3/2
m

3
v
λ3
0
+O(x4)

V (2.46)

where x = πa
λ0

is the so-called size parameter, relating to the radius of the
free-space wavelength. Compared to the simple quasi-static solution eq.2.39,
some additional terms appear in the numerator and denominator, each having
a physical significance. The term quadratic in x in the numerator includes the
effect of retardation of the exciting field over the volume of the sphere, leading
to a shift in the plasmon resonance. The quadratic term in the denominator also
causes an energy shift of the resonance, due to retardation of the depolarization
field inside the particle[71]. For Drude and the noble metals[59], the overall
shift is towards lower energies; the spectral position of the dipole resonance
red-shift with increasing particle size. Intuitively, this can be understood by
recognizing that the distance between the charges at the opposite interface of
the sphere increases with the size, thus leading to a smaller restoring force and
therefore a lowering of the resonance frequency. The quadratic term in the
denominator also increases the magnitude of polarization, and thus inherently
lessens the influence of the absorption due to the imaginary part of ϵ. However,
this increase in strength is counteracted by the third, completely imaginary term
in the denominator, which accounts for radiation damping. Radiation damping
is caused by a direct radiative decay route of the coherent electron oscillation
into photons and is the main cause of the weakening of the strength of the dipole
plasmon resonance as the particle volume increases[72]. We can summarize that
the plasmon resonance of particles beyond the quasi-static regime is damped by
two competing processes: a radiative decay process into photon, dominating for
larger particles, and a non-radiative process due to absorption. To arrive at a
quantitative description, these two damping processes can be incorporated into
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a simple two-level model of the plasmon resonance. Using it, the homogeneous
line-width Γ of the plasmon resonance can be related to the internal damping
processes via the introduction of a dephasing time T2. In energy unit, the
relation between Γ and T2 is[73]:

Γ =
2ℏ
T2

(2.47)

We note that in analogy to dielectric resonators, the strength of a plasmon
resonance can also be expressed using the notion of a Quality factor Q, given by
Q = Eres/Γ, where Eres is the resonant energy. In this theory, the dephasing of
the coherent excitation is either due to energy decay, or scattering events that
do not change the electron energy but its momentum. This can be expressed
by relating T2 to a population relaxation or decay time T1, describing both
radiative and non-radiative energy loss processes, and a pure dephasing time
T ∗
2 resulting from elastic collisions:

1

T2
=

1

2T1
+

1

T ∗
2

(2.48)

it can be shown that in general T ∗
2 ≫ T1 so that T2 = 2T1. We can now turn

our attention to the regime of very small particles. For gold and silver particles
of radius a < 10nm, an additional damping process, loosely termed chemical
interface damping, must be considered. Empirically, the associated broadening
of the experimentally observed plasmon line-width Γobs can be modeled via[72]:

Γobs(R) = Γ0 +
AvF
R

(2.49)

here, Γ0 describes the plasmon line-width of particle that are outside the regimes
where interface damping or radiation damping dominate. vF is the Fermi ve-
locity of electrons, and A ≃ 1 a factor incorporating details of the scattering
processes. Eq.2.46 then allows us to determine how the resonance varies as the
size of the sphere increases due to effects outside the limit of the quasi-static
approximation[74]. Mie’s theory[70] allows us to evaluate analytically the elec-
tric field and polarizability of spherical and spheroidal plasmonic structures of
any size as seen in eq.2.44. To evaluate plasmonic structures of generic shape, it
is necessary to modulate the form of eq.2.46 with terms obtained by numerical
simulations, obtaining the following formula[75]:

α ≃ V

(L+ ϵm
ϵ−ϵm

) +Aϵmx2 +Bϵ2mx
4 − i 4pi

2ϵ3/2

3
V
λ0

(2.50)

where A and B are the parameters to be determined and depend on the material
used and the morphology of the nanostructure. This implies that the resonant
condition, in the limit of low radiation loss (ϵ1 ≫ ϵ2) is therefore:

(L+
ϵm

ϵ1 − ϵm
) +Aϵmx

2 +Bϵ2mx
4 = 0 (2.51)
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To determine the parameters the eq.2.50 is compared with a light scattering
in Au and Ag spheroid (eq.2.42a-2.42b). Then by analyzing the results for
plasmonic structures with different L and different materials compared with the
spheroidal case we obtain a numerical estimate of the values of A and B[75]:

A(L) = −0.4865L− 1.046L2 + 0.8481L3

B(L) = 0.01909L+ 0.1999L2 + 0.6077L3
(2.52)

Coupling Between Localized Plasmons

We have seen that the localized plasmon resonance of a single metallic nanopar-
ticle can be shifted in frequency from the Froelich condition via alterations in
particle shape and size. In particle ensembles, additional shifts are expected
to occur due to electromagnetic interactions between the localized modes. For
small particles, the coupling is essential of a dipolar nature, and the particle
ensemble can in a first approximation be treated as an ensemble of interacting
dipoles. We will now describe the effects of such interactions in ordered metal
nanoparticle arrays. Here, we assume that the particles of size a are arranged
within an ordered one-or-two dimensional array with interparticle spacing d.
We further assume that a ≪ d, so that the dipolar approximation is justified,
and the particles can be treated as point dipoles[55]. Two regimes have to be
distinguished, depending on the magnitude of the interparticle distance d. For
closely spaced particle d ≪ λ, near-field interactions with a distance depen-
dence of a d−3 dominate, and the particle array can be described as an array
of point dipoles interacting via their near-field. In this case, strong field local-
ization is due to a suppression of scattering into the far field via the excitation
of plasmon modes in particles along the chain axis, mediated by near-field cou-
pling[76]. One can intuitively see that interparticle coupling will lead to shifts
in the spectral position of the plasmon resonance compared to the case of an iso-
lated particle. Using the simple approximation of an array of interacting point
dipoles, the direction of the resonance shifts for in-phase-illumination can be
determined by considering the Coulomb forces associated with the polarization
of the particle. The restoring force acting on the oscillating electrons on each
particle in the chain is either increased or decreased by the charge distribution
of the exciting light, this leads to a blue shift of the plasmon resonance for the
excitation of transverse modes, and a redshift for longitudinal modes. For larger
particle separation[77], far-field dipolar coupling with a distance dependence of
d−1 dominates. The far-field coupling has pronounced influences on the plas-
mon line shape, both in terms of resonance frequency as well as spectral width.
In particular, the quality factor (Q) is subject to the influence of the far-field
coupling and decrease in function of d.

In this chapter, we have set the basis for understanding plasmonic phenom-
ena. In particular, starting with the behavior of dispersive media, we focalize on
the analysis of an important radiation-matter phenomenon: Surface Plasmon.
The surface plasmon has two different phenomenologies: SPPs are phenomena
of propagation of an evanescent wave along a metal-dielectric interface while
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LSPs are localized phenomena that generate amplified electric fields. In the
next chapters, we will see how the physical properties of surface plasmons are
used for practical applications. In particular, modulation of electric fields in-
volves defining forces that can manipulate nanoparticle trajectories for various
uses.
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Chapter 3

Finite Element Method

The analysis and design of a plasmonic device require numerical techniques to
analyze the electric field response as a function of various input parameters.
We require numerical algorithms that solve differential equations over a 3D
domain with varying conditions depending on the type of device considered
and the solution obtained has to be consistent with the physics of the problem.
For this reason, we choose the software COMSOL Multiphysics. COMSOL
is software that exploits the Finite Element Method (FEM) to solve complex
systems of differential equations that can be traced back to physical problems
applied to 2D or 3D models. In this chapter, we will review the features of the
FEM method focusing on the properties useful in constructing the model for a
periodic electromagnetic problem.

The finite element method (FEM)[78] is a numerical technique for solving a
problem that is described by partial differential equations or can be formulated
as functional minimization. The domain of interest is represented as an assembly
of finite elements. Approximating functions in finite elements are determined
in terms of nodal values of the physical field which is searched. A continu-
ous physical problem is transformed into a discrete finite element problem with
unknown nodal values. For a linear problem, a system of linear algebraic equa-
tions should be solved. Values inside finite elements can be recovered using
nodal values. Two features of the FEM are worth to be mentioned:

• 1) Piece-wise approximation of physical fields on finite elements provides
a good precision even with simple approximation functions (increasing the
number of the element we can achieve any precision).

• 2) Locality of approximation leads to a sparse equation system for a dis-
cretized problem. This helps to solve problems with a very large number
of local unknowns.

The FEM can be summarized in a list of steps:

• 1) Discretize the continuum. The first step is to divide a solution region
into finite elements. The description of mesh consists of several arrays
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main of which are nodal coordinates and element connectivities.

• 2) Select interpolation functions. Interpolation functions are used to inter-
polate the field variables over the element. Often, polynomials are selected
as interpolation functions. The degree of the polynomial depends on the
number of nodes assigned to the element.

• 3) Find the element properties. The matrix equation for the finite ele-
ment should be established which relates the nodal values of the unknown
function to other parameters.

• 4) Assemble the element equations. To find the global equation system
for the whole solution region we must assemble all the element equations.
In other words, we must combine the local element equation for all el-
ements used for discretization. Element connectivities are used for the
assembly process. Before the solution, boundary conditions (which are
not accounted for in the element equations) should be imposed.

• 5) Solve the global equation system. The finite element global equation
system is typically sparse, symmetric, and positive definite. Direct and
iterative methods can be used for the solution. The nodal values of the
sought function are produced as a result of the solution.

• 6) Compute additional results. In many cases, we need to calculate ad-
ditional parameters which are obtained after the solution of the global
equation system.

In the following sections, all points of the finite element method will be described
in detail.

3.1 Discretization: Linear Triangular Element

The first step of the finite element method is to discretize the physical domain.
The physical domain can be either 2D or 3D. In our specific case, the electro-
magnetic field is evaluated within a parallelepiped-shaped physical domain. To
obtain the best results from the surface plasmon, the software COMSOL gen-
erates a subdivision of the domain as efficiently as possible. In this section, we
show the mathematical tool for a subdivision in a 2D domain[79]. It’s important
to know that the 3D subdivision of the domain occurs with the same method
but the fundamental element is different. Considering a 2D generic domain Ω
as in the fig.3.1(a). An elliptical partial differential equation in weak form with
boundary condition is defined as:∣∣∣∣∣∣

find u in H1(Ω), such that

u = g0 on ΓD∫
Ω
∇u · ∇v + c

∫
Ω
uv =

∫
Ω
fv +

∫
ΓN

g1v ∀v ∈ H1
ΓD

(Ω)
(3.1)

where u is the unknown function, c is a non negative constant value, f is the
source term defined in the physical domain. g0 and g1 are two functions defined
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Figure 3.1: a)Generic 2D Domain Ω. b) Triangulation of Ω

in two different parts of the boundary; in particular, g0 is defined in ΓD that is
the Dirichlet boundary while g1 is defined in ΓN that is the Neumann boundary.

v is a test function defined in the physical domain, without losing the gen-
erality we can redefine v such that v = 0 ∈ ΓD. The space indicated is the
Sobolev space defined as:

H1(Ω) =

(
u ∈ L2(Ω)| ∂u

∂x1
,
∂u

∂x2
∈ L2(Ω)

)
(3.2)

where L2(Ω) is the space of the square-integrable functions.
Now, we want to discretize this differential equation and the physical domain

for an approximate value of u. The easiest way to divide a physical domain is a
polygonal subdivision. Software that takes advantage of the FEM method (in-
cluding COMSOL), subdivides the domain in such a way as to have a reasonable
number of elements to best approximate u with the minor use of computational
resources. The simplest polygonal to subdivide a 2D physical domain are trian-
gles. When the domain is 3D, as in our case, the triangles become tetrahedrons.

Let us take an arbitrary, non-degenerate triangle K, a vertices p is uniquely
determined by the value of points (x1, x2) for the following equation:

p = a0 + a1x1 + a2x2 a0, a1, a2 ∈ R (3.3)

The set of the vertices p that follows this equation is called P1. In other words,
an edge is determined only from the adjacent vertices, this point is called the
local grade of freedom.

Starting from the eq.3.3, we can generate the domain partition into a tri-
angle. A triangulation of Ω (fig.(3.1(b)) is a subdivision of this domain into
triangles that must cover all Ω with the followings rules:

• 1) if two triangles have some intersection, it is either on a common vertex
or a common full edge and two different triangles do not overlap;

• 2) the triangulation must respect the partition into Dirichlet and Neumann
boundaries. This means that an edge of a triangle that lies of Γ cannot
be part Dirichlet and part Neumann, there must be a transition from the
boundaries.
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The set of triangles that the domain has been divided is called Th with h as the
length of the longest side among all the triangles. If we consider the functions
uh ∈ P1 for all vertices of all triangles we obtain a function space Vh defined as:

Vh =

(
uh ∈ C(Ω̄)|uh|K ∈ P1, ∀K ∈ Th

)
(3.4)

An element of Vh is uniquely determined by a set of vertices of the triangulation.
The value of the vertices is the degrees of freedom that determine an element
of Vh. In this context, we call nodes the vertices where we take the value. In
other words, the triangulation nodes are the mathematical elements where the
physical problem is applied. In COMSOL, the memory usage of the software
is highly dependent on the number of nodes considered in the approximation
of the physical problem. Thus, the construction of an optimal mesh requires
control over the number and the placement of the nodes efficiently. Once the
nodes within the physical domain are defined, the differential equation described
above (eq.3.1) is discretized (all steps are described in appendix B1) and the
following result is obtained:∑

j∈Ind

(Wij + cMij)uj = bi −
∑

j∈Dir

(Wij + cMij)g0(pj) (3.5)

where Ind is the set of independent node , Dir is the set of Diriclet node. Wij

and Mij are called Stiffness and mass matrix respectively (defined in appendix
B1). Both matrices are symmetric and the mass matrix is positive definite,
instead, the stiffness matrix is semidefinite positive. This is a linear system in
which the nodal values of uh on the free vertices (non-Dirichlet) of the triangula-
tion are unknown. After solving the linear system, the formula for uh (eq.B.11)
recovers the function everywhere, not only on the nodes. This represents the
fundamental difference between a finite element algorithm respect other types of
algorithms (e.g. finite difference). Indeed, a finite difference algorithm applied
in a 2D or 3D domain evaluates the function in the domain by interpolating the
values obtained in the nodes. A finite-element algorithm (COMSOL) fully re-
covers the function within each element ensuring greater accuracy in estimating
u. After the discretization step, we transform a differential equation in integral
form (eq.3.1) into a finite set of differential equations. We obtain a simplification
of the problem but the result is not numerically solvable yet.

3.2 Assembly

In the previous paragraph, we discussed the discretization part of the Finite
Element Method. In particular, we search the solution of a partial differential
equation u with a discretization of the physical domain Ω and transform the
continuous system in eq.3.1 in a discretized system in eq.3.5. The next step
in which the discretized system becomes an ensemble of the linear systems is
called the assembly algorithm and in this section, we will explain it[79].
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Assembly algorithms are usually ”invisible” to the COMSOL user but funda-
mental in the development of numerical analysis because we transform a differ-
ential equation in data that the computer can calculate. Assembly algorithms
have two basic steps: localization of the equation’s variables and association
with solution easy to evaluate. It is known that eq.3.5 is defined on the nodes of
the whole system, i.e., the whole mesh of the domain. In the first step, eq.3.5 is
redefined such that the variables are defined in each triangle of the mesh. This
is possible through the definitions of particular local functions that ”cut” all the
domains except a given triangle. (Details are discussed in appendix B2). Once
the localization of the equation has been obtained, the second step is to trans-
form the single triangle into a known geometry called the reference triangle[79].
The reference triangle (K̂) is usually the triangle that has the following ver-
tices: p̂1 = (0, 0), p̂2 = (1, 0), p̂3 = (0, 1). The reference triangle simplifies the
solution of eq.3.5 however, moving from the triangular element to the reference
triangle involves the definition of a BK transformation matrix that contain all
the physics and geometrical issue (see appendix for details). Then, once the as-
sembly process is completed, the set of differential equations becomes a system
of numerical equations whose only unknown is the coefficients of the transfor-
mation matrix BK . Once the assembly process is completed, we calculate the
matrix coefficient by some matrix algorithms known as solvers.

3.3 Convergence in P1 and Grid Refinement

In the previous section, we have shown a practical application of the Finite Ele-
ment Technique. the finite element method allows us to obtain an approximate
solution uh of a system of differential equations with unknown u. To obtain,
the best estimate of u it is necessary to estimate the difference between the
real solution and the approximate solution by estimating the error ϵ. To be
able to arrive at an analytical formulation of the error, it is necessary to recall
some mathematical definitions typical of the finite element method also called
Galerkin’s method[80]. In general, given a Sobolev space H1(Ω) define a norm
||u|| such that:

||u|| =
(∫

Ω

|∇u|2 +
∫
Ω

|u|2
)1/2

(3.6)

and a closed subspace V0, if V is a Hilbert space, define a bilinear form a(u, v)
in V that is continuous, i.e. exist a positive constant M > 0 such that:

|a(u, v)| ≤M ||u||||v|| ∀u, v ∈ V (3.7)

and has a property of ellipticity, i.e. exist α > 0 such that:

a(u, v) ≥ α||v|| ∀v ∈ V0 (3.8)

define a linear form l continuous, i.e. exist a constant Cl > 0 such that:

|l(v)| ≤ Cl||v|| ∀v ∈ V (3.9)
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Thus, a general problem has the following form:

find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V0
(3.10)

that has a unique solution and well-posed u. Galerkin’s Method consists of a
choice of a finite-dimensional space V 0

h ⊂ V and takes the following discrete
problem:

find uh ∈ V 0
h such that

a(uh, vh) = l(vh), ∀vh ∈ V 0
h

(3.11)

that have a unique solution uh. The solution uh differ from the solution of the
problem u for an error ϵ defined as follows[80][79]:

ϵ ≤ (1 +
M

α
) inf

(
||u− vh||

∣∣∣∣vh ∈ Vh, vh(p) = g0(p), ∀p Dirichlet node

)
(3.12)

Then if ϵ is small enough, the solution of the discrete space uh ∈ V h
0 accurately

approximates the solution of the system u ∈ V .
Now, we want to check [81] if the solution of the triangulation of Ω (uh ∈ P1)

used in the previous paragraph is a good approximation for the value of u. Let
us consider that the error of the finite element method is bounded by the error of
interpolation of the exact solution in the finite element space. The interpolation
is done triangle by triangle so the global error for interpolation is the sum of
the errors element by element. Thus, the error in P1 is defined as:

ϵ ≤ Ch

(∫
Ω

|∂xxu|2 + |∂xyu|2 + |∂yyu|2
)1/2

(3.13)

where C is a constant, and h is the size of the longest edge of the triangulation.
The expression on the right side is the Sobolev seminorm. The eq.3.13 involves
that the error depends on the coefficient of the problem, the geometry of the
physical setting, and the smallest angle of the triangle. The error value defines
the mesh quality in a COMSOL model.

In particular, we can see that the geometric characteristics of triangles are
crucial in the evaluation of mesh quality. In general, a mesh should be refined
if:

• 1) the triangles have large dimensions compared to the physics of the
model.

• 2) the angles of the triangles have angles greater than 90°.

The dependence of the error on the edge of the triangle implies that the
mesh quality can be improved by reducing the size of the triangles. In addition,
the error equation in the P1 approximation (eq.3.13) is proportional to h thus,
the approximation method is the order one. In addition, mesh quality in P1

approximation has a linear dependence on the size of the triangle edge. However,
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the reduction of the triangle sides has negative effects from a computational
point of view. A reduction in the sides of the triangles implies an increase
in the number of unknowns since the matrices to be computed are equal to
the number of triangles obtained by subdividing the domain. Thus, a different
method is needed for mesh enhancement in a model. One recommended method
is to apply a triangulation of higher order than P1.

Let us consider the space of polynomials in two variables with degree at most
two[79]:

P2 =

(
a0 + a1x+ a2y + a3x

2 + a4y
2 + a5xy

∣∣∣∣a0, ......a5 ∈ R
)
. (3.14)

An element of P2 is determined by six independent parameters (the quantities
ai), so the space P2 has a dimension equal to six. Let us take a triangle K and
the nodes are the three vertices of the triangle and the midpoints of the three
edges. In addition, an element of P2 is a parabolic function and is determined
by three different points. Therefore the value of a function in P2 on an edge
of the triangle is uniquely determined by its three values on the nodes that lie
on that edge (two vertices and one midpoint). Because of these properties, we
can link together two P2 triangles as in the P1 case. The triangulation has the
same condition and recovers a similar space Vh for the triangulation function.
If we want to implement P2 we need to compute the usual integrals for mass
and stiffness matrices. The final matrices for the computation of the discrete
system of equations are evaluated with the same procedure as in the P1 case.
However, given P2 has a larger number of vertex respect to P1, the resulting
mass and stiffness matrix are 6x6 instead of 3x3 as in the case of P1, related to
the increase of the number of nodes. In P2 the error is[81]:

ϵ ≤ Ch2|u|3,Ω (3.15)

where the constant C depends on the PDE operator, the geometry, and the
smallest angle of triangle K and |u|3,Ω is the Sobolev seminorm that uses the
third order partial derivative of u. In the error of order two, reducing the size
of the triangle the gain of precision is much faster to the P1 case. It is possible
to increase the order of P (ex. P3,P4...) by increasing the number of nodes
present on a single triangle. The procedure for the evaluation of stiffness and
mass matrices is the same as in the P1 and P2 cases. When the order has
increased the solution gains an accuracy advantage since (ϵ ≤ Chn|u|n+1,Ω) but
the stiffness matrix and the mass matrix increase in size gaining a larger number
of unknowns.

3.4 Quadrilater division of domain

Division of a physical domain is not necessarily carried out using triangulation.
Some domains, such as rectangles or a box in 3D, are better subdivided into
smaller rectangles. Sometimes the triangulation becomes messy. Because the
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triangulation is produced, working from the boundary to the interior and avoid-
ing very acute angles (that increase the error), this implies a very disorganized
and non-symmetric pattern. If the problem favors directions, this is not the
best way to generate discretization.

Figure 3.2: Quadrilateral subdivision of a domain

First of all, we define a new polynomial space, introduced in the reference
variables[79]:

Q1 =

(
a0 + a1ξ + a2η + a3ξη

∣∣∣∣a0, a1, a2, a3 ∈ R
)

(3.16)

These are polynomials on two variables both of order one in each variable sep-
arately. In general, the discretization of a rectangular domain (or similar) into
a set of parallelograms is performed with the same rules used for the triangu-
lation described in the previous paragraph, i.e. the edges of the parallelograms
cannot be overlapped and the Neumann and Dirichlet edge condition is always
satisfied (fig.3.2). Once the domain is discretized, the calculation of the stiff-
ness and mass matrices occurs using the same method as in the triangular case.
The obtained solution uh differs from the real solution u of a value ϵ given
by the eq.3.12[81]. Compared to the Pk case, h indicates the largest edge on
the parallelogram. However, there is a difference in FEM calculation between
the two types of domain subdivisions. At the time of assembly, transforming
the reference rectangle into a parallelogram, which is the fundamental element
of a quadrilateral mesh, is very complex compared to the triangular case. In
particular, the transformation matrix between the reference element and the
mesh element depends on the geometric characteristics of the element under
consideration, i.e., quadrilateral angles and quadrilateral side size. Thus, if the

52



quadrilateral mesh does not perfectly fit the physical domain, the calculation
becomes difficult, and mesh error occurs, unlike in the triangular case. It follows
that the quadrilateral mesh is optimal only for particular types of domains such
as Perfectly matched layer (PML) domains or in computing flows in polygonal
domains (given the directionality of the solution).

3.5 Isoparametric Element

In the previous sections we have analyzed various types of discretization (Tri-
angles, Parallelograms), and the difference between the real solution and the
approximate solution by observing the error and its trend to the geometry of
the system. We also showed how to refine the discretization for example, going
from a P1 space to a Pk space. The physical domains used, however, were always
suitable for the discretizations employed (e.g., rectangular for parallelograms or
polygonal for triangulations). It is necessary to understand what happens when
the domain has curvatures and thus how the finite element method ”fits” the
curvatures of the domain[79]. Let us consider a curve domain Ω and let us gen-

a) b)

Figure 3.3: a) Triangle and isoparametric triangle. Image adapted by [79] b)
Subdivision of a curved domain approximation (Ωh)

erate a triangulation, and substitute the real domain with a polygonal approx-
imation. It is important to note that when the grid is generated all boundary
nodes of the triangulation have to be placed on the real boundary. This means
that if you need small triangles, you cannot obtain them by simply subdividing
your grid but you add new vertices of the triangles on the boundary. Thus, it
is deduced that in a curved domain, exist an error produced by the geometri-
cal approximation and not depending on the triangulation method considered.
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Thus we can use any high-order method Pk of triangulation but the solution
does not converge.

Given the condition in which a triangle has vertices on the boundary of
Ω, the transformation functions F (K) that relate a reference triangle with an
element of the triangular mesh has a non-linear element. This non-linear term
is dependent on the distance between the polygonal approximation of Ω and the
boundary of Ω itself. Thus the triangle formed by this transformation (details
are shown in the appendix B3) is called isoparametric (see fig.3.3(a)) and has
one of the edges that ”fit” with the curved boundary.

The triangulation process is a set of triangles and isoparametric triangles
that do not overlap each other. When we write the equations of the finite
element method using the local space, the union of all triangles (curved and
straight) is not the original domain Ω but an approximation of it, which we
called Ωh. The Diriclet node, however, is in the correct boundary Γ.

The matrices obtained after the assembly process are non-linear, thus the
isoparametric element is difficult to evaluate numerically.

The final result shows some difficulty to mesh a curved domain. In particular,
the mesh defined in a sphere or cylinder (see fig.3.3(b)) has some error derived
from the isoparametric approximation. The mesh refinement of this domain is
possible but the number of the element or the approximation level is higher.
This impacts the CPU memory and can decrease the mesh quality in a model.

3.6 Matrix Solvers

Given a system of differential equations over a physical domain, we have shown
that through Galerkin’s method, it is possible to transform it into a system of
equations over a discrete domain (Chapters 3.1 and 3.2). The assembly algo-
rithms subsequently allow us to reduce the differential equation to the evaluation
of a system Au = f . To solve this linear system, simulation software (includ-
ing COMSOL) uses computational algorithms called solvers. In this section,
we analyze the two most common types of solvers: direct solvers and iterative
solvers[82].

3.6.1 Direct Solvers

Direct solvers are algorithms that simplify the matrix in such a way as to de-
rive the solution of a linear system analytically. In Direct solvers, the actual
approximate solution is obtained with robust and high-precision algorithms.
However, the derivation of a solution involves a large allocation of processor
memory so it is often recommended not to use these algorithms for problems
with a high number of unknowns ( i.e., when we need a large number of nodes
to solve the problem). There are many direct solvers, for example in COMSOL
Multiphysics there are MUMPS, PARDISO, and SPOOLES. The direct solvers
return the same value of the approximate solution and the only difference be-
tween them is in the speed of execution and allocation properties: PARDISO is
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the fastest followed by MUMPS and finally by SPOOLES, while MUMPS and
PARDISO can also generate solutions in out-of-core (i.e. using in the simulation
the hard disk in addition to the RAM of the machine used) MUMPS allows the
use of eventual multi-core of the machine to speed up the process.

In the numerical evaluation of the solution, all direct solvers use a solving
technique known as lower-upper (LU) decomposition[83][84], in which a sparse
matrix (such as that obtained by assembly algorithms) is factorized into the
product of a low triangular matrix and a high triangular matrix.

A = LU →

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

u11 u12 u13
0 u22 u23
0 0 u33


where L is a lower triangular matrix and U is an upper triangular matrix. The
LU method is a consequence of the Gauss reduction algorithm. Recall that the
Gauss reduction algorithm transforms a sparse matrix into an upper triangular
matrix. The upper triangulation is achieved after n − 1 steps, where n is the
matrix rank. To have a Gauss reduction algorithm well-defined, the matrix
entries a′11.....a

′
n−1,n−1 must be nonzero. These quantities are called pivots. If

no zero pivots are encountered, then Gauss transformation M1, ......,Mn−1 are
generated such that Mn−1.....M1A = U is upper triangular. It is easy to check
that if Mk = In − τ (k)eTk , then its inverse is prescribed by M−1

k = In + τ (k)eTk
and so:

A = LU L =M−1
1 .....M−1

n−1

L is a unit lower triangular matrix because each M−1
k is a unit lower triangular.

Once the matrix is divided into two triangles calculating the result of the system
becomes very quick and simple. Since the size of the matrix affects the speed
of the Gauss reduction algorithm, it is clear that a large number of unknowns
implies a longer computation time and for some solvers (such as MUMPS) a
huge use of computer memory. Direct solvers are the best method when the
mesh is sustainable by the computer although a thoughtful choice of the solver
is necessary based on the characteristics of the computational system with which
the simulation is carried out.

3.6.2 Iterative Solvers

The iterative solvers use an iterative method for the Au = f problem generating
a sequence of approximate solutions u(k) that converges to u = A−1f . Typically,
the matrix A is involved only in the context of matrix-vector multiplication and
that is what makes this framework attractive when A is large and sparse. The
use of an iterative solver involves less use of machine memory being an approxi-
mate computation of the solution and this implies a higher speed of solving the
linear system. The use of an approximate solution is very useful for systems
with a large number of unknowns and greater versatility since the algorithm
does not depend on the properties of matrix A like the direct case. However,
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using a non-direct solution reduces the robustness of the solver because the it-
erative solution has a difference from the solution obtained[82]. Some iterative
solvers exist in COMSOL Multiphysics including CG, BiCG, BCGSTAB, GM-
RES, and others. Unlike the direct case where the various solvers guarantee the
same solution, in the case of iterative solvers the solution can be different from
solver to solver since the method of calculating the approximate solution is dif-
ferent. In addition, it is noted that pre-conditioning or matrix transformation is
necessary to simplify the numerical calculation in the various iterative solvers.
COMSOL Multiphysics software uses some pre-conditionings (SOR, Multigrid,
etc.) that combine with the different iterative solvers.

• 1) Conjugate Gradient method (CG)[82][85]: The conjugate gradi-
ent (CG) method is an iterative algorithm that applies to a symmet-
ric positive definite system. The solver is based on the evaluation of
ϕ(x) = 1

2u
TAu−uT f . Thus, the solver applies an iteration that produces

a sequence of even-better approximate minimizes for ϕ. The minimization
of ϕ produces an approximate solution to Au = f . The simple example of
the minimization of ϕ is the method of steepest descent. In this method,
the minimization of uc is improved by searching in the direction of the
negative gradient, i.e., the direction of the most rapid decrease.

• 2) Biconjugate Gradient Method (BiCG)[86]: The biconjugate gra-
dient method is a generalization of the conjugate gradient (CG) algo-
rithm that applies to non-symmetrical systems as well as symmetrical
ones. However, the BiCG has a strong numerical instability that can be
solved through some numerical stabilization methods.

• 3) Biconjugate Gradient Method Stabilized (BiCGSTAB)[87][88]:
the biconjugate gradient stabilized method, is an iterative method devel-
oped by H. A. van der Vorst for the numerical solution of nonsymmet-
ric linear systems. It is a variant of the biconjugate gradient method
(BiCG) and has faster and smoother convergence than the original BiCG
as well as other variants such as the conjugate gradient squared method
(CGS). To solve the system, the BiCGSTAB exploits a Krylov matrix
(K = span(r0, Ar0.....A

n+1r0)) where r0 is the starting solution of the
iterative method. Unlike the original BiCG method, it doesn’t require
multiplication by the transpose of the system matrix.

• 4) General minimal residual method (GMRES)[89][90]: the gener-
alized minimal residual method (GMRES) is an iterative method for the
numerical solution of an indefinite nonsymmetric system of linear equa-
tions. The method approximates the solution using the Krylov matrix
(K) to find a vector and apply the minimization.

Preconditioning Algorithm

In general, in an iterative method for Au = f , the matrix A can be sparse,
making solution evaluation very slow and complex. However, if the matrix A
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had a particular form, for example, it was positive defined such that A = I+∆A
it is observed that an iterative method returns a solution after a limited number
of steps k. In this section, we analyze the principle of preconditioning algorithms
that simplify the matrix A making the iteration process easier. Having a good
preconditioner means fewer interactions. However, the cost of an iteration is an
issue associated with the construction of the preconditioner matrix.

• 1) Jacobi Preconditioner[82][91]: The Jacobi preconditioner is one of
the simplest forms of preconditioning, in which the preconditioner is cho-
sen to be the diagonal of the matrix P = diag(A) and the matrix is split
in A = P −N and the resolution of the problem becomes Px1 = Nx0+ b.
In this manner, the iteration is simplified.

• 2) Symmetric successive over-relaxation (SSOR)[92]: The Symmet-
ric successive over-relaxation consists of dividing the matrix into a diagonal
an upper triangular and a lower triangular (A = D+L+LT ) by defining
the preconditioner M = (D+L)D−1(D+L)T . Successive over-relaxation
(SOR) is derived from SSOR but it is faster.

• 3) Incomplete LU Factorization[93]: The incomplete LU Factorization
uses the LU method to derive a preconditioner M = LU and solve the
iteration system.

Brief Conclusion

This chapter reviewed the main features of the finite element method. In our
specific case, through the use of COMSOL software, the FEM models will be
used for various simulations in the context of optics and therefore the meshes
used will be adapted to the characteristics that the physics of the problem re-
quires i.e., triangulation size much smaller than the incident wavelength, mesh
refined on metallic objects given the strong variability of the response, use of
parallelograms for the PML (Perfectly Matched Layer), and mesh extremely
controlled in the case of periodic boundary conditions. it is important to con-
sider that the mesh construction is highly dependent on the physics considered
and the demands of the problem. This prevents the definition of a general algo-
rithm for all cases but requires a case-by-case analysis. To obtain an estimate
of the physical solution, a solver appropriate for the number of unknowns in
the problem and the computational speed of the machine must be used in ad-
dition to the mesh. In addition, in some software like COMSOL, we can use
post-processing tools for data manipulation. In general, The data can then be
put into 2D or 3D graphs or a part of it can be cut obtaining a 1D evaluation.
The data can also be manipulated to obtain the evaluation of certain derived
variables, for example, the optical force from the electromagnetic field according
to eq.A.21 in our specific case. In the next chapters, we will discuss in detail
some physical problems in the field of optics by characterizing them from the
point of view of numerical analysis by seeing how the analysis carried out for
mesh construction applies to a ”real” problem.
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Chapter 4

Plasmonic Device for
Nanoparticle Manipulation

In the previous chapter, we showed that the Maxwell tensor T (see. eq.A.18)
indicates the moments and forces induced by the electromagnetic field applied
to an object. It is possible to demonstrate that the effect induced by direct
light produces low values of forces and momentum. Thus, for practical use of
the optical forces, an amplification of the electric field and the force associated
is required. The radiation-matter interaction phenomena, for example the sur-
face plasmon discussed in the previous chapter, are necessary for the optical
forces amplification. However, the surface plasmons have large concentrations
of energy in dimensions that are smaller than the diffraction limit[55], i.e., con-
centrated in a small area (about ≃ 10−12/10−13m2); for this reason, we can use
the optical forces for the manipulation of micro- and nanometric-sized objects.

In this chapter, we present some nanodevices in which the optical forces
control the dynamics of nanoparticles. A typical example is the optical tweezer
that constrains the nanoparticles in well-defined areas in statical or dynamic
equilibrium. In addition, the literature reports some nanodevices that manipu-
late the optical force to induce a thrust in the nanoparticle. The characteristics
of these structures focus on a possible application for propulsion in macroscopic
objects. Finally, we discuss the limits of this class of devices.

4.1 Force in Confined Field

From the previous chapters, the eq.A.21 recalls the force induced by the elec-
tromagnetic field on a body. The formula has general validity and depends on
the electromagnetic field along the object’s surface. In this chapter, we define
a force approximation when the body has a small size[94].

Let us consider a system with a size much smaller than the incident wave-
length d≪ λ0; we can approximate the system with a dipole, i.e., two oppositely
charged particles with masses m1 and m2, separated by a small distance |s|, and
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illuminated by an arbitrary electromagnetic field E,B. In the non-relativistic
limit, the equation of motion for each particle follows from eq.A.13 by setting
F equal to m1r̈1 and m2r̈2 respectively. The dots denote differentiation to
time. Since the bound of the particles, we consider a binding energy U . the
two-particles equations are:

m1r̈1 = q[E(r1, t) + ṙ1 ×B(r1, t)]−∇U(r1, t)

m2r̈2 = −q[E(r2, t) + ṙ2 ×B(r2, t)] +∇U(r2, t)
(4.1)

The two particles constitute a two-body problem which is solved using the center
of mass coordinate r = m1

m1+m2
r1 +

m2

m1+m2
r2. Expressing the problem in terms

of r allows us to separate the internal motion from the center of mass motion.
The electric field at the position of two particles can be represented by a Taylor
expansion[94]:

E(r1) =

∞∑
n=0

1

n!

[
(r1 − r) · ∇

]n
E(r) = E(r) + [(r1 − r) · ∇]E(r) + ....

E(r2) =

∞∑
n=0

1

n!

[
(r2 − r) · ∇

]n
E(r) = E(r) + [(r2 − r) · ∇]E(r) + ....

(4.2)

A similar expansion can be found for B(r1) and B(r2). For |s| ≪ λ, we can
truncate it after the second term (dipole approximation) and define the dipole
moment d = qs with s = r1 − r2; leading the following formula for the total
force acting on the system of particles:

F = (d · ∇)E+ ḋ×B+ ṙ× (d · ∇)B (4.3)

The second term in eq.4.3 can be represented as:

ḋ×B = −d× d

dt
B+

d

dt
(d×B) = d× (∇×E) +

d

dt
(d×B)

We have approximated the d
dt like ∂

∂t because the velocity of the center of mass
is small compared to c and we use the Maxwell eqs.A.1a-A.1d. We obtain that
the eq.4.3 become:

F = (d · ∇)E+ d× (∇×E) +
d

dt
(d×B) (4.4)

In addition, the last term vanishes, and the force has the following form:

⟨F⟩ =
∑
i

⟨di∇Ei(t)⟩ (4.5)

If we consider that the dipolar particle is irradiated by an arbitrary electromag-
netic wave with angular frequency ω, we obtain the following equation:

E(r, t) = Re[E(r, t)e−iωt]

B(r, t) = Re[B(r)e−ωt]
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In the Taylor expansion(eq.4.2) we consider a linear relationship between the
dipole and fields, so the dipole assumes the same time dependence and becomes:

d = Re[de−iωt] (4.6)

We assume that the particle has no static dipole moment. The first order of the
dipole momentum is proportional to the electric field in the position r:

d = α(ω)E(r) (4.7)

where α denotes the polarizability of the particle and generally is a tensor of
rank two but for some atoms and particles α has a scalar representation. The
force in eq.4.4 can be represented as:

⟨F⟩ =
∑
i

1

2
Re

[
d∗i∇Ei

]
=

1

4
∇
(
d∗ ·E+ d ·E∗

)
Using the expression of d (eq.4.7) and representing the complex amplitude of
the electric field in terms of real amplitude E0 and phase ϕ as:

E(r) = E0(r)e
iϕ(r)nE (4.8)

with nE denoting the unit vector of the polarization, allow us to cast the force
into the following form:

⟨F⟩ = α
′

4
∇E2

0 +
α

′′

2
E2

0∇ϕ (4.9)

where we used α = α
′
+ iα

′′
. So, the force induced by an electromagnetic field is

composed of two terms. The first term, called ”gradient force” depends on the
variation of the electric field amplitude and the real part of the polarizability;
this term is also known as the scattering force since it can be assumed to result
directly from the collision of photons with the nanoparticle. The second term,
the ”radiation pressure”, depends on the phase variation of the electric field and
the dissipative part of the polarizability; we consider this term as the pressure
exerted by the light beam on the nanoparticle surface.

4.2 Plasmon Force Confinement

The previous paragraph illustrates the force behavior in the microscopic environ-
ment through the eq.4.9. Thus, a nanoparticle immersed in an electromagnetic
field suffers two types of force: radiation pressure and gradient force. When
we consider the field generated by a surface plasmon, the gradient force tends
to dominate over the radiation pressure, thus a nonuniform field distribution
induces intense optical forces.

This paragraph presents some plasmonic devices capable to induce the gra-
dient force for nanoparticles[95]. In particular, one of the earliest uses of optical

61



Figure 4.1: Optical trapping method used by Askin. Image reproduced by [95]

forces was to transport and trap static or dynamic equilibrium nanoparticles;
in literature, these devices are called optical tweezers.

An optical tweezer is a device proposed for the first time by Askin[96][44]
in 1970. Their operation in a macroscopic case is defined as follows: a spheri-
cal particle of dielectric material (index of refraction nb) immersed in a liquid
(refractive index nl). A laser is focused on the dielectric particle at a point far
from the center of the sphere. Due to the transmission effect, the momentum
of the incoming beam (pin) has a different direction than the momentum of the
outgoing beam (pout). The formation of (∆p = pout −pin) defines a force that
has the same intensity as the force of gravity of the nanoparticle. (see fig.4.1).
Moreover, if the particle deflects from the equilibrium point, a pullback force
reports the particle to its original position, making the equilibrium stable. If we
reduce the particle size to the order of microns or less, Askin’s method is unable
to maintain the stable equilibrium of the particle due to effects that disturb its
effectiveness[97]. In particular:
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• 1) The reduction of the pullback force is related to its dependence on the
volume of the particle.

• 2) The reduction in viscous fraction due to the dependence on the surface
area of the particle.

• 3) The increase of the temperature effect when the particle is microscopic
and the consequent generation of chaotic motion around the equilibrium
point.

The intensity increase of the incident laser beam mitigates the delocalization
effect and other microscopic effects. The main limitation of this technique is
related to the size of the particles. When this reaches a value close to half of
the wavelength of the incident beam, diffractive effects appear which tend to
disperse the beam of light and prevent it from focusing on the particle. To over-
come this limitation we can use the surface plasmon phenomena[97][98][99] that
generate extremely concentrated fields beyond the diffractive limit, succeeding
to trap a nanoparticle with extreme efficiency. When an electromagnetic wave
irradiates a plasmon optical tweezer at the resonance frequency, a symmetrical
field distribution (hotspot) is generated in a specific area of the structure such
that the resulting force tends to trap the nanoparticles in the hotspot center. A

Figure 4.2: Image showing the silicon waveguide separated by a sub-micrometer
gap to metal substrate, showing the optical force applied to the nanoparticle.
Image reproduced by [100]

typical example of a plasmonic optical tweezer is shown in fig.4.2[100], where a
cylindrical silicon waveguide is placed at a distance (g) from a metallic substrate.
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When the system is illuminated from the z axis, an electric field hotspot
is generated in the space between the guide and the metal substrate, and the
associate force is such that the nanoparticle is trapped in this gap. In addition,
generating symmetrical field distribution that tends to lock the nanoparticles at
a defined point, plasmonic optical tweezers can also be designed to achieve equi-
librium dynamically, that is generating a stationary movement around a given
point. An example of these types of structures is illustrated in fig.4.3(a)[101],
where an optical tweezer is constructed using a plasmonic bull’s eye configura-
tion to transform the incident wave into converging plasmonic waves. For the
particles to be trapped in the center of the structure, the plasmonic wave has
to interfere constructively in the center, and a phase shift of π is required in the
generation of various SPPs. It is necessary to modulate the plasmonic wave in
such a way that the interference of the various SPPs occurs at different positions
from the center of the structure.

Thus, the phase function (ϕ) of the incident beam must depend on both
the polar angle of the bull’s eye (θ) and the spatial point where the particle is
trapped (x, y):

ϕ(x, y, θ) =


2π

√(
cos θ + x

a

)2

+

(
sin θ + y

a

)2

− π
2 ≤ θ ≤ π

2

π + 2π

√(
cos θ + x

a

)2

+

(
sin θ + y

a

)2
π
2 ≤ θ ≤ 3π

2

(4.10)

where a is the period of the Bull’s eye pattern which is chosen equal to the
wavelength of the SPP at the interface between silver and water. To verify this
behavior, the authors carried out some simulations using COMSOL in which
the plasmonic ring was modeled assuming a set of sources along the ring with
a field defined as:

Esp
z (ρ, θ) =

eikspρ

√
ρ
eiϕ cos (θ) (4.11)

where ρ is the distance from the source point, ksp is the wave number of the
SPP with θ, ϕ defined in the eq.4.10. The simulation shows that a hot spot
(fig.4.3(b)-(c)) is formed whose position depends on the phase of the incident
beam, confirming the assumption defined above. Fig.4.3(d) shows the difference
between the x-long component of the resulting force in a Bull’s eye device case
(orange) compared to a conventional optical tweezer (blue). It can be seen that
the force generated by the Bull’s Eye is much more intense than in the con-
ventional case; the same result is also obtained if we compare (fig.4.3(e)) the
component along z of the forces of the Bull’eye (orange) for the conventional
case (blue). For this reason, the plasmonic Bull’s Eye has more effective trap-
ping than the conventional case. Moreover, the result shows that using a beam
with a time-varying phase, the trapping site moves, generating a movement of
the nanoparticle. The motion obtained is such as generating either linear trajec-
tories along specific directions or circular trajectories (some examples are shown
in fig.4.3(a)). Fig.4.4[102] proposed another particular case of a plasmonic op-
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Figure 4.3: a) the plasmonic bull’s eye with the direction of the plasmonic waves
used to trap the particle in the center and some trajectories that can be gener-
ated with time-dependent beam; b) centered hot spot simulated with eq.4.10 c)
shifted phase profile hot-spot simulated with eq.4.10;d) Normalized force plot
for a Bull’s eye device and conventional optical tweezers for x-component force
;(e) Normalized force plot for a Bull’s Eye device and a conventional optical
tweezers for z-component force. Images reproduced by [101]

tical tweezer with dynamic equilibrium obtained using an array of gold dimers
separated by a gap. These are irradiated by a polarized field along x, generating
forces and relative moments on polystyrene nanoparticles in the vicinity of the
system.
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Figure 4.4: Configuration of a 1D gold dimer array trapping a nanoparticle
using a normally incident Gaussian beam. The dimer gap, lattice constant, and
displacement along y are denoted respectively by d, c, and Dy . The Gaussian
beam is polarized along x and has parameters hf and w0. Image reproduced by
[102]

The fig.4.5(a) shows the optical force generated by the system; to achieve
the equilibrium this optical force is compensated by the friction force generated
by the liquid in which the nanoparticle is immersed. The system generates
two types of equilibrium: a contact equilibrium in which the nanoparticle tends
to adhere to a gold dimer, and a non-contact equilibrium in which the dimers
generate a swirling motion around a point in space, known as the stagnation
point. The resulting moment is the combination of the angular momentum
generated by the Maxwell Tensor and the momentum generated by friction with
the liquid. Fig.4.5(b) illustrates the generation of two nanoparticle spins, the
direction of which depends on the vortex’s torsion. In particular, if the vortex
rotates clockwise (Fig.4.5(a)), there will be an anticlockwise nanoparticle spin
(Fig.4.5(b)), whereas if the vortex rotates anti-clockwise (Fig.4.5(a)), there will
be a clockwise nanoparticle spin. Moreover, the result shows that if the dimer
array is moved away from the focal point of the beam, the nanoparticle initially
tends to follow the array. However, there is a threshold length which, if exceeded,
generates an additional vortex leading to trapping of the nanoparticle away from
the dimeric matrix. Finally, since these structures are plasmonic, the increase
in the vortex intensity reduces the distance or gap between the dimers.

4.3 Plasmonic Optical Thruster

The previous paragraph explains how plasmonic optical tweezers can keep a
nanoparticle in equilibrium using a symmetrical electric field distribution. How-
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Figure 4.5: a) Optical vortex manifested in a streamlined map of the optical
force field. In particular, this streamlined map depicts the field of forces (Fy,
Fz ) applied to a polystyrene nanoparticle centered at different places in space
(y, z) in the yz plane at x = 0. The arrows and colors represent the direction
and magnitude of the optical force respectively. The dotted lines represent the
physical limit of the polystyrene nanoparticle considered here with a radius of
100 nm. The image is evidence of the presence of both contact and non-contact
modes for optical trapping. The stagnation points of the non-contact modes
are shown at x0 = (0,±361nm, 207nm). b) Map of nanoparticle spin moments.
The coloring represents the intensity of the moment. Images reproduced by
[102]

ever, it is possible to induce a long-range force in a microscopic object using
a gradient force induced by a specific field distribution. This paragraph shows
that the surface plasmonic effect achieves the gradient force for nanoparticle
displacement.

A simple plasmonic device [103] consisting of a metal layer placed on a base
of a prism with the tip pointing downwards (Kreshmann configuration) (see
Fig.4.6). A gold nanoparticle is placed in this structure in an aqueous solution.
If the particles are free from any constraint they tend to move only for thermal
effects. These effects generate a chaotic motion (Brownian motion) in all space
directions. When an incident beam illuminates the prism at a certain angle,
a nanoparticle tends to acquire a drift velocity in the direction parallel to the
air-metal interface (x-axis) and in the direction orthogonal to it (z-axis) (we
can see in Fig.4.6). However, the drift only occurs if the incident beam has
a TM polarization. This suggests that the cause of the drift phenomenon is
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Figure 4.6: Interface of plasmonic coupling with gold nanoparticle (xz plane).
Image reproduced by [103]

attributable to the formation of SPP. The contextual observation of a chaotic
motion along the y-axis confirms the hypothesis. The SPPs are such that they
generate field distribution only along the interface and orthogonal to it so this
implies that forces are obtained only along the aforesaid directions, leaving the
y-axis free from any constraint. Fig.4.7 presents the results of the analysis of
the optical forces (and the induced velocity) acting on the nanoparticles, as a
function either of the distance between the metal surface and the aqueous solu-
tion and the intensity of the optical beam. In particular, the drift speed tends
to increase in function of the incident beam intensity, implying that the optical
force also increases as the intensity increase. On the other hand, as the distance
between the metal and the nanostructures increase, the force tend to decrease,
with different behavior depending on the force component observed. The force
along z tends to decay exponentially as the distance varies, while that along x
decays linearly. Finally, the authors[103] compare the propulsion generation ob-
tained through the formation of an SPP, and the propulsion generation obtained
through total internal reflection,i.e., using the same structure but without the
metal layer. The results show that the SPPs electric fields are much more in-
tense, although they can only be used if the excitation beam illuminates the
structure at the right resonance angle. A more complex configuration capable
of generating propulsion with an output speed that can be used for medical-
biological applications is the optical nanocannon[104][1]. The structure ( see
Fig.4.8) consists of a V-shape cavity made of a gold film deposited on a glass
substrate. When a TM-polarized light wave irradiates the structure from above
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Figure 4.7: a) The components of the optical force applied to the nanoparticle
as a function of the distance between the particle and the metal substrate. b)
The velocity of the particle is measured as the intensity of the incident beam
changes.Images reproduced by [103]

Figure 4.8: Sketch of the V-shape plasmonic structure, illuminated by a TM-
polarized light. Image adapted by [104]

(see fig.4.8), generates an intense electric field at the bottom of the trench; this
is due to the generation of a resonant LSP. Once the resonance is excited, two
SPPs are formed along the edges of the structure by near-field excitation. The
coupling of the two Surface Plasmons implies a significant field amplification.
The amplification factor is a function of the geometrical parameters and in par-
ticular, an increase can be obtained if the angle (θ) of the V-shape is reduced.
In particular, when the two edges of the V-shaped trench approach each other,
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the interference effects between the two SPPs are amplified. Even the resonance
is highly dependent on the depth (h) and angle (θ) of the V-shape. In particu-
lar, the wavelength of the resonance increases (red-shift) if the trench depth h
increases or its angle θ decreases. On the other hand, the amplification factor of
the electric field tends to decrease when the resonances are at long wavelengths.
This behavior can be explained by considering that gold at long wavelengths
tends to behave like an ideal metal, absorbing most of the SPPs that form along
the edges. The plasmonic structure generates an electromagnetic field with an
asymmetric distribution. The distribution presents a maximum at the bottom
of the V-shape and a minimum at the top of the trench, at the surface of the
metal layer. This distribution can be explained by taking into account that
SPPs tend to reduce their effectiveness as they propagate along the edge of
the trench. Starting from the spatial distribution of the electromagnetic field
and integrating the Maxwell tensor on the surface of a nanoparticle (eq.A.21),
the force acting on the particle and its outward ejection can be determined.
The force obtained from the Maxwell tensor (eq.4.9) has a dominant gradient
term over the radiation pressure. In particular, the gradient force displaces
the nanoparticle along the z-axis (i.e., along the height of the V-shape) with a
velocity derived from the formula (eq.A.21) that takes on the following value[1]:

v =

√
3

2ρeff
α̃ϵ0E (4.12)

where ρeff is the effective density of the nanoparticle, whereas α̃ represents the
polarizability per unit volume that is a function of the dielectric permittivity
relative to the substrate and the metal. The eq.4.12 is derived by considering
that the force is entirely a gradient force and that the potential generated by it
is entirely transformed into kinetic energy. Numerical simulations were carried
out on the structure and the velocity of a silver nanoparticle with a radius of 8
nm was estimated. The estimated velocity is 0.1m/s[1] when illuminating the
plasmonic structure by a TM-polarized wave having a power density of 1−2mW

µm2

and a wavelength in the visible range (required for the SPPs formation). The
speeds obtained allow the transport of drugs and genetic material in the cells and
are therefore interesting for possible application in the medical-biological sector.
However, a single structure does not induce a high velocity in nanoparticles,
so the propulsion described above can be used for applications requiring the
movement of a small object for extremely small distances.

Rovey’s[2][105][106] group has designed a plasmonic structure that allows
higher values of thrust and velocity. Rovey’s device does not increase the force
generated in a single structure; however, the single device can be coupled in
a large number of elementary structures defining an array configuration. The
resulting force is the sum of elementary contributions related to the single struc-
ture. The resultant force is greatly amplified and can be used in numerous
applications, including space propulsion. The system (see Fig.4.9) consists of
two trapezoidal gold structures separated by a constant gap and deposited on
a glass substrate.
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Figure 4.9: Sketch of the asymmetrical trapezoidal plasmonic structure. Image
reproduced by [95]

Figure 4.10: a) A cut in the xy plane of the trapezoidal structure, showing
the direction of the ejection force; b) the graph of the force in function of the
y-coordinates for different resonant wavelength. Images reproduced by [2]

When the structures are uniformly illuminated, a resonance, due to the
generation of an LSP, is formed in the gap between the two trapezoids. The
resonance wavelength depends on the geometrical parameter of the gold struc-
tures, i.e., the width of two bases of the trapezium, its length, its thickness, and
the gap size. After the formation of an LSP, the near-field excitation forms two
SPPs along the edges of the two trapezoids that couple within the gap and, as
in the structure discussed in the previous paragraph, generate a strongly am-
plified and asymmetric field distribution. By calculating the forces through the
Maxwell tensor (eq.A.21), we obtain a distribution that depends on the posi-
tion along y-coordinate of the system (see Fig.4.10(a)), such that a nanopar-
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ticle undergoes a strong initial acceleration followed by a deceleration zone of
lesser intensity (see Fig.4.10(b)). Preliminary experimental results for this con-
figuration confirm the functionality expected from theory and simulation[106].
In general, the structures with larger horizontal asymmetries (i.e. along the
x-axis) have more amplified electric fields. Therefore to induce further asym-
metry, the oblique side of the trapezoid can be modified in a stepwise manner.
(Fig.4.11) shows a comparison of the field distribution between a trapezoidal
structure with linear and stepper oblique sides[107]. As mentioned above, the

Figure 4.11: a) Electric field distribution in a trapezoidal structure the wave
is polarized along x at wavelength 532 nm; b) electric field distribution of a
modified oblique-sided trapezoidal structure with the wave polarized along x
and at wavelength 580 nn. Image reproduced by [107]

Figure 4.12: a) A sketch of the array configuration in end-to-end mode; b) the
thruster hypothesized by Rovey et al. (2015) to make full use of sunlight.[2].
Images reproduced by [95] and [2]

output speed induced by a single plasmonic structure is relatively low. To ob-
tain more efficient performances useful for practical application, an array of the
above elementary structure can be constructed by organizing it through a 2D
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distribution in a so-called end-to-end configuration (Fig.4.12(a)). In this config-
uration, the minor base of a trapezoid is adjacent to the major base of the next
structure. The array configuration implies a continuous sequence of pushes on
the nanoparticle, which implies a considerable increase of the force applied and,
consequently, of the output speed. The plasmonic structure [2] was arranged
in a multilayer array configuration where each layer has a different resonance
wavelength to function properly even with broadband illumination such as solar
radiation (see Fig.4.12(b)). In fact, with this approach, each layer of the stack
can use a specific part of the solar spectrum, increasing the overall efficiency.
The nanoparticles are contained in a nanochannel between the active layers so
that the resulting force applied to the nanoparticle will be a combination of
the forces obtained from the arrays above and below each channel. Thanks to

Figure 4.13: Y-component of the force applied to a glass particle of radius 50
nm as a function of the y-coordinate of a set of trapezoidal structures as in
Rovey et al. (2015), placed in an end-to-end configuration with the following
parameters: height 350 nm, major base 120 nm, minor base 60 nm, gap 40 nm,
thickness 50 nm. The light is polarized along x and at wavelength 730 nm and
the amplitude of the incident electric field is such that it is normalized.Image
reproduced by [95]

its estimated performance, this plasmonic configuration has been proposed as
a thruster for space applications. The values of thrust, specific impulse, and
ejection velocity of a nanoparticle for the thruster based on the multilayer array
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configuration are estimated using the following relationships:

v2i
2

=

∫ L

0

Fabove(y)− Fbelow(y)

m
dy

T =
∑

mfvi Isp =
|T|

Nmfg0

(4.13)

where m is the mass of the nanoparticle, N is the number of arrays in
a single layer (the number of rows in Fig.4.12(b)), f is the ejection rate of
the nanoparticle, L is the acceleration length, and Fabove, Fbelow are the force
distribution generated by the arrays located above and below the nanoparticle
under consideration, respectively. The result obtained from the simulations
shows propulsion values of around 400 − 600nN and specific impulse around
20s, with an exit velocity of 3− 4m/s. These parameters are highly dependent
on the area of the amplification lens, which determines the actual value of the
optical power density illuminating the structure.

However, as can be seen in fig.4.13[108], the array presents a potential lim-
itation. When the elementary structures are organized in an array with an
end-to-end configuration, the distribution of forces is such that the particle
must overcome a potential barrier to pass from one elementary structure to the
next. The intensity of this potential barrier is such that the kinetic energy of the
particle is not sufficient to allow its overcoming in the short space in which the
particle acquires velocity. For this reason, the particle needs an additional initial
thrust that is sufficiently high to overcome the potential barrier and continue
the motion.

In this chapter, we then presented some applications of optical forces in-
duced by surface plasmons. In particular, we focused on the characteristics and
limitations of plasmonic devices that induce a propulsive optical force. The
devices just described lay the foundation for the design of a secondary plas-
monic propulsion system. As we will discuss in the next chapter, the design,
and analysis of new plasmonic structures that induce dynamics in nanoparticles
will depend on overcoming the limitations exposed in the literature.

4.4 Plasmonic Device with gap variation: Alter-
nating constant gap trapezoids

We introduce some devices capable of inducing propulsion such as the optical
nanocannon or trapezoidal structures. In paragraph 4.3 we showed that the
devices considered have a limitation that reduces their effectiveness in some
specific cases: e.g. the nanocannon has good parameters only for the ejection
of small nanoparticles while the trapezoidal structures need an initial boost to
induce a good estimate of force. However, for the displacement of a CubeSat,
it is necessary to design a plasmonic optical thruster without dynamic restric-
tions. Let us consider the eq.4.9 and observe a relation between the electric
field variation and the optical force applied to a nanoparticle. If we want to
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overcome the previous limitations we need a periodic structure ( in order to
have a periodic growth of the velocity), with the slope of the electric field am-
plitude distribution having strong variability, because the associated gradient
induces a good estimate of the force according to eq.4.9. Given the propagation
equation of SPPs (eq.2.23-2.24), we observe that the wave is evanescent along a
transverse direction to the propagation. In the case of a trapezoidal structure,
propagation follows the direction of the gap (i.e., the y-axis), and we will ob-
serve evanescence along the x- and z-axis. The presence of an evanescent wave
along the x-axis implies that the distance between the trapezoid edges reduces
the interference effect between the SPPs. Thus, the amplitude of the center gap
resonance decrease. Therefore, it is possible to control the electric field strength
by varying the gap of the trapezoidal structures. In particular, if we design a
periodic nanodevice with a large gap in one part of the structure and a very slow
gap on the other side, the electric field distribution will be strongly asymmetric.

The following hypothesis is the design of an alternating system consisting of
a pair of rectangular trapezoids with constant gap g1, followed by another couple
of rectangular trapezoids with constant gap g2. When an incident light beam
illuminates at the resonance wavelength, the structure forms an LSP along the
major bases of the trapezoid. However, due to the evanescent property of SPPs,
if g1 > g2 we have that |E2| > |E1|. As in the previous case, the LSPs become
a near-field source for the SPPs along the edges, and the coupling generates
two asymmetric electric field distributions with different intensity values. The
different intensity values imply an increase in the electric field gradient and the
formation of an optical force without dynamics limitation.

We performed a FEM simulation to verify the optical force in this trapezoidal
device using COMSOL Multiphysics software. The model (see fig.4.14) consists

Figure 4.14: Sketch of plasmonic structure with alternating gap

of four trapezoids that have the following dimensions: major base (B) = 120nm,
minor base (b) = 60nm, height(h) = 350nm, thickness (t) = 50nm; two trape-
zoids are placed at distance g1 = 25nm, while the other two are placed at
distance g2 = 50nm. We design a pair of trapezoids with gap g1 and a pair of
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trapezoids with gap g2 such that the minor base of g1 trapezoids is adjacent to
the major base of g2 trapezoid. The structure is made of gold, and a block of air,
with width (w = 600nm) and height (h2 = 1500nm), is defined above the struc-
ture, and a block of silica with the same dimension below the structure. Physics
is described using the ”wave optics”[109] module of COMSOL Multiphysics. In
particular, the ”wave optics” module defines the incident wave in two different
ways. 1) Background wave: the incident wave is defined through a plane wave
with electric field E = E0eiωt with t fixed, which represents an approximation
of an incident wave in an infinite-size substrate; however, this approximation
doesn’t consider the optical response of the substrate (reflections, transmissions,
diffraction). 2) Port: Simulates the presence of an electromagnetic source that
”illuminates” an object placed at a certain distance. Unlike the background
wave case, the port does not approximate the incident field, so it simulates the
real case of a source impinging on a substrate of the dimensions defined in the
geometry.

PML

Input port

Output port

First step Second step

Background 
field

Figure 4.15: Two-step model used for the simulation with and the mesh of the
domain

To simulate the case of a wave acting in a plasmonic device placed in an infi-
nite substrate, a background wave is not suitable since the electric field response
would not be complete given the plane wave approximation. However, the ports
also present some issues because, for a good approximation of the infinite-size
substrate, the geometric domain has to be one order of magnitude larger than
the structure size. Thus, the number of nodes in the domain subdivision during
the FEM calculation will be huge and the available computer is not able to reach
to evaluate them. For this reason, a technical artifice observed in the COMSOL
application[110] is used (fig.4.15). A double study was considered; the first step
use a port with an x-polarized incident field E0 = 1V/m and a power given

by the formula P = 1
2
E2

0A
Z , where Z0 is the vacuum impedance and A is the

illuminated area. The port illuminates an air-substrate system and the result
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of the first step becomes the background wave acting on the structure for the
second step. PML surrounds the physical domain to avoid backscattering effects
and simulate the infinite-size substrate for a single isolated cell. The PML is an
artificial absorbing layer for the wave equation, commonly used to truncate com-
putational regions in numerical methods ( FEM methods) to simulate problems
with open boundaries. In particular, a PML layer is designed to absorb waves
propagating using the following transformation: considering z the propagation
direction and ∂/∂z its derivative we apply the following transformation:

∂

∂z
=

1

1 + iσ(z)
ω

∂

∂z
(4.14)

where ω is the angular frequency and σ is some function of z positive defined.
When using this transformation the propagating waves are attenuated because:

ei(kz−ωt = ei(kz−ωt)− k
ω

∫
z
σ(z

′
dz

′

(4.15)

Given the properties of PML[111],[112], the electric field dampens in the
artificial domain,i.e., we are simulating the following property of infinite-length
domains:

E(x, y, z) → 0 if x, y, z → ∞ (4.16)

Finally, the result obtained from the second study will be the electric field
response from a plasmonic device immersed in a domain of infinite dimension.

Once the physics of the system is defined, we define the subdivision of the
geometric domain for the FEM calculation; in COMSOL, this is called ”mesh
definition.” In this specific case, the mesh has two different subdivisions: one
for the physical domain and one for the PML (see fig.4.15). For the PML
case, we use a parallelepipeds subdivision because the directionality of the PML
requires a quadrilateral mesh. In the physical domain, on the other hand, we
don’t need to consider any directionality, therefore, a solid with fewer nodes
is preferred to facilitate computation. We use a set of tetrahedrons for the
physical domain mesh. The tetrahedrons have different sizes depending on the
region of the physical domain we subdivide. In air and silica domain, we will
have tetrahedrons of maximum size λ/5 and minimum size λ/90. On the other
hand, in the gold region, since the evanescent wave has a small spatial range
tetrahedrons have maximum size λ/20 and minimum size λ/200. Moreover,
we chose the tetrahedrons in such a way that they are very dense around the
plasmonic device region and with increasing size the further we move away from
the plasmonic zone. We use a direct solver (MUMPS) to solve the numerical
system, and the study initially evaluates the wavelength range from 600nm
to 1000nm for the research of the resonance wavelength. Once we found the
resonance wavelength at 730nm, we evaluate the electric field of the structure
(|E|) observed in fig.4.16(a).

Fig.4.16(b) shows that the electric field induced by the plasmonic device is
located within the gap between the trapezoid pairs (along the red dashed line
of the fig.4.16(a)). In particular, we observe the presence of two peak maxima:
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Figure 4.16: a) 2D distribution of the electric field amplitude in the trapezoidal
structure with an alternating gap. b) Electric field amplitude in the function of
y coordinate in the trapezoidal structure with an alternating gap along the red
line of the fig.4.16(a)

a main maximum located around the major base of the trapezoids with gap g1
and a secondary maximum located at the major base of the trapezoids with gap
g2. The resonance wavelength of the LSP depends on the shape of the plasmonic
structure (major base, minor base, height, and thickness). Thus, the gap varia-
tion doesn’t change the resonant wavelength. Instead, the gap variation affects
the amplitude of the electric field that depends on the trapezoid’s distance. The
two peaks obtained (one per pair of structures) have different field values. The
result increases the asymmetry of the electric field distribution.

For the evaluation of the dynamic properties of the plasmonic device, we
place the elementary cell in an end-to-end linear array configuration. The FEM
simulation model for the linear array configuration is different from the iso-
lated cell model. We use the same geometry of the single isolated cell case but
the boundary surface of the computational domain coincides with the bound-
ary surface of the plasmonic device. The physics of an array configuration is
reproduced using periodic boundary conditions along the surfaces of the com-
putational domain. This physics tool simulated an infinite times reproduction
of the elementary cell; for this reason, we did not use the previous double study.
The Perfectly Matched Layer is no longer placed all around the structure but
only above and below the ports to cancel the backscattering effects of the inci-
dent beam.

In mesh construction, periodic boundary conditions require special atten-
tion. In particular, the surfaces where the periodicity condition is valid must
have the same triangulation. In preserving the equivalence between the periodic
boundary condition, dummy surfaces are defined, such that the same triangula-
tion is imposed between the boundary surfaces. In contrast, the model’s volume
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has the same mesh as the single-structure case. We have for the physical domain
a set of tetrahedral with the same dimensions as the previous case and the PML
presents a set of parallelepipeds to maintain the directionality typical of this
artificial domain.

As in the case of a single structure, a direct solver (MUMPS) is used to
resolve the linear system, and the study analyzes the solution for wavelengths
ranging from 600nm to 1000nm, evaluating the resonance wavelength. Once the
resonance wavelength is found at 780nm we plot of electric field amplitude in
Fig.4.17. Fig.4.17 shows that the electric field of the linear array configuration

Figure 4.17: Electric field amplitude in the function of y coordinate in an array
configuration of trapezoidal structure with an alternating gap along the red line
in the fig.4.16(a)

exhibits the same characteristics as the single-structure case,i.e., the presence
of two peaks of maximum: one main peak around the major base of the trape-
zoid with gap g1 and the other secondary peak around the major base of the
trapezoid with gap g2. However, the amplification of the electric field is globally
reduced in the array configuration compared with the single-structure case. The
coupling of the elementary cells generates destructive interference that dampens
the plasmonic amplification. For the force analysis, since the nanoparticle has
dimensions smaller than the incident wavelength we can approximate the opti-
cal force using the eq.4.9. Since the radiation pressure depends on the incident
electric field and it will be negligible compared to the gradient force that de-
pends on the total electric field (more amplified from the plasmon phenomena),
the gradient force is the value that determines the cinematic of a nanoparticle.
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Figure 4.18: Fp|y in the function of y coordinate in an array configuration of
trapezoidal structure with alternating gap along the red-line in fig.4.16(a)

We can define the following quantity:

Fp = F/(Pα
′
) =

ϵ0∇|E|2

P
(4.17)

where α
′
is the real polarizability of the nanoparticle. Fp represents the optical

force contribution per unit of power produced by the plasmonic device. In
fig.4.18 the trend of Fp for constant gap trapezoidal structure is shown; we can
compare it with the constant trapezoidal force case shown in fig.4.13. In the
constant-gap trapezoidal structure, we show that an initial boost is required
to obtain good propulsion estimates, since the distribution of Fp|y is different
between the two cases we assume that the net dynamic effect is positive without
the use of velocity boost. However, the force-induced velocity obtained from the
alternating gap case is very low, especially about the distances traveled by the
nanoparticle in going from one push to the next (which are twice as long as in the
constant gap case). In a real case, it could lead to a net friction effect between
the medium and the nanoparticle reducing or eliminating the propulsive effect.
For this reason, a different configuration is needed that allows the development of
a strongly asymmetric electric field without considerably altering the distances
traveled by the nanoparticle between one push and the next. Therefore, in the
next section, we will discuss a new type of trapezoidal structure that is designed
according to the characteristics just defined.
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4.5 Plasmon Device with a linear variation of
gap

The design of a nanodevice that induces optical thrust implies, as the literature
shows, the search for a system that overcomes some dynamic limitations: the
small exit velocity and the requirement of an initial boost. The first solution is a
periodic trapezoid structure with alternating gap variation. However, the force
obtained does not still reach values suitable for the ejection of a nanoparticle.

In this section, we consider the next step of gap variation in the trape-
zoidal system,i.e., the trapezoid gold couple has a continuous variant gap. Since
the gap has a v-shape form, the system is considered a hybridization and op-
timization of the characteristics of the optical nanocannon[1] and trapezoidal
structures[2] observed in the previous chapters. In this chapter, therefore, we
will analyze the physical and geometrical characteristics of the structure, also
focusing on the numerical model considered. Finally, we will evaluate the im-
provements obtained with this device compared to previous ones.

4.5.1 Elementary cell of the nanostructure

A sketch of the elementary cell of the proposed nanostructures is shown in
Fig.4.19. The elementary cell consists of two gold scalene trapezoids fabricated

Figure 4.19: Sketch of the proposed gold trapezoids nanostructure with design
parameters

on a glass substrate; the oblique sides of the trapezoids are separated by a
no-constant gap, forming a V-shaped section.

When light, with appropriate wavelength, illuminates this nanostructure,
two resonant LSPs are generated near the major base (B) on both sides of the
gap. LSPs generate hot spots due to the amplification of the incident electric
field amplitude. These LSPs act as near-field excitations that generate SPPs
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along the edges of the gap; the coupling between the SPPs produces an asym-
metric field distribution along the y-axis, which induces a resultant force on a
nanoparticle positioned around the nanostructure gap. The geometry of the
nanostructure not only influences the characteristics of the generated force but
also determines the wavelength of the LSP resonance. Therefore, the resonance
wavelength can be matched to the optical radiation of interest by appropriately
designing the geometry of the nanostructure. To evaluate the resonance wave-
length, electric field distributions and induced forces produced by plasmonic
nanostructures, simulations were carried out with COMSOL Multiphysics. The
COMSOL model of the nanostructures consists of a pair of gold trapezoidal
prism positioned in such a way that the oblique side forms an angle with the
y-axis equal to θ so that the dimension of the oblique side is h/sin(θ). The
lower substrate is glass, whereas the vacuum surrounds the entire structure.
The thickness of the three-dimensional elementary cell is (t+ t1), where t is the
thickness of the gold. Given the low adhesion of gold on the glass substrate,
the system needs a thickness t1 of a material that bonds to the substrate. How-
ever, the material and the thickness are determined such that the electric field
response of the surface plasmon suffers a minimum variation. Among the vari-
ous materials, titanium and chromium have a higher absorption coefficient than
gold, so the plasmonic system with a gold-titanium hybrid layer exhibits a less
amplified electric field than a gold plasmonic system without modifying the
electric field distribution. For the material selection, we use a COMSOL simu-
lation on a rectangular trapezoid with constant gaps and analyze the damping
difference between the chromium and the titanium. From the simulations, we
observe that the device with a chromium layer shows a greater electric field loss
for the titanium layer case.

Thus the model has a t1 titanium buffer layer required in the manufacturing
process. However, a thin layer of titanium should be deposited to avoid exces-
sive plasmonic energy losses. The value of t1 = 2nm is selected to minimize
performance losses of the plasmonic device while ensuring good adhesion of the
gold to the substrate.

In addition, considering that technological processes do not allow the fab-
rication of perfect edges, the model is constructed to have rounded edges and
therefore more similar to a real structure. Again, we simulated the physics of
the system in the ”wave optics”[109] module of COMSOL Multiphysics with the
same method used in the single structure of the alternating gap system in the
previous paragraph. A double study was considered; the first step use a port
with an x-polarized incident field (because the transverse gap polarization gen-
erates the maximum amplitude of the electric field) E0 = 1V/m and a power

given by the formula P = 1
2
E2

0A
Z , where Z0 is the vacuum impedance and A

is the illuminated area. The port illuminates an air-substrate system and the
result of the first step becomes the background wave acting on the structure for
the second step. PML surrounds the physical domain to avoid backscattering
effects and simulate the infinite-size substrate for a single isolated cell. The
mesh of the system also has the same characteristics as the case in paragraph
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4.4, obtaining a good level of accuracy of the result which we evaluate with a
direct MUMPS solver. The table in fig.4.19 shows the values of the nanostruc-
ture geometry derived from parametric simulations (described in Section 4.5.3
below) and inducing an optimal electric field distribution for incident optical ra-
diation at 810nm. A 2D plot of the induced electrical field strength is illustrated
in fig.4.20(a), whereas, its profiles along the three axes (specifically, along the
position 1 for the x-axis, at the center of the gap for the z-axis and along the
dashed line for the y-axis) are illustrated in Fig. 4.20(b),4.20(c), and 4.20(d),
respectively. In particular, the x profile of the induced electric field amplitude
(fig.4.20(b)) has a parabolic shape in which the minimum is at the center of the
gap, as a consequence of the symmetry of the structure along the y-axis. In
fact, the evanescent electric field of LSPs [55] generated on each trapezoid has a
maximum near the edges of the plasmonic structure and reaches a minimum at
the center of the gap. The z-profile (fig.4.20(c)) is maximum within the struc-
ture gap at z = (t1 + t2)/2, while for z > t1 + t2 the effect of the evanescent
behavior of LSPs and SPPs [55] results in an exponential decay of the electric
field amplitude.

Figure 4.20: (a) Pseudocolor plot of the magnitude of the electric field generated
in the trapezoid structure along the xy plane. Electric field profile: (b) along
x-axis at position 1 (fig.4.20(a)) and z = (t+ t1)/2; (c) along z-axis at position
1 and x = 0; (d) along the dashed line of the fig.4.20(a)- the inset 1 and 2 show
a pseudocolor plot of the electric field in the xz plane in the y-position indicated
by fig.4.20(a)
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Finally, the y profile (fig.4.20(d)) is highly concentrated and amplified near
the major base (B) of the trapezoids (i.e. position 1 in fig.4.20(a)) due to the
small gap size, which implies a strong coupling between the SPPs generated
on each trapezoid. On the contrary, the amplification of the generated field is
reduced near the minor base (i.e. position 2 in fig.4.20(a)) due to the large value
of the gap, which implies decoupling between the generated SPPs.

As in the alternating gap case, the spatial distribution of the electric field
can be used to evaluate (eq.4.9), the gradient force contribution generated by
the proposed plasmonic nanostructure. Therefore, in fig.4.21(a) shows the x
component of the force per unit of incident power and per unit of polarizability
(i.e., Fp eq.4.17). We note that the potential well of the electric field results
in an oscillating force that at equilibrium traps a particle located in the gap.
For the z-component (fig.4.21(b)) the negative values imply that the force is
directed toward the substrate and any particles located above the structure
tend to be ’captured’ in the direction of the plasmonic nanostructure. However,
this is observed only in the area where the electric field is amplified by the
LSP. In fact, the force along z tends to zero at 40/50 nm above the plasmonic
nanostructure.

Finally, the force along the y-component (Fig.4.21(c)) has a positive value
up about 50 nm, which moves the nanoparticle from the major base towards
the minor base. From 50 nm onwards, the force takes on a negative value,
which tends to move the nanoparticle in the opposite direction. The net effect
between the two terms is such that the nanoparticle experiences predominantly
the effect of the positive term weakly constrained by the negative term and
therefore tends to move along the positive direction of the y-axis. Indeed, the
energy density per power unit acting on a nanoparticle can be estimated by
evaluating the area under the curve shown in Fig.4.21(c)). The result obtained
is 1.26 × 10−11 pJ

W∗nm3 , which guarantees positive kinetic energy and thus a
propulsive motion of the nanoparticle. Thus, the plasmonic device acts as optical
tweezers for the x- and z- components of the force and induces propulsion only
along the y-axis. The achieved result allows us to compare the performance
of the proposed nanostructure with the structures proposed by Rovey [2] and
Shalin[1]. The comparison of the maximum forces obtained is shown in table
4.1.

Structure Estimated force
Rovey’s ≃ 10−5pN/(W ∗ nm3)
Shalin’s ≃ 10−3pN/(W ∗ nm3)
our ≃ 6× 10−2pN/(W ∗ nm3)

Table 4.1: Performance comparison between the proposed isolated nanostruc-
ture and others reported in the literature

As expected, the elementary cell of the proposed structure (i) induces a gen-
erated force almost comparable to the V-shaped structure proposed by Shalin;
(ii) is characterized by a high asymmetrical field distribution that guarantees
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Figure 4.21: Component of Fp derived from the electric field illustrated in: (a)
fig.4.20(b) for the x component; (b) fig.4.20(c) for the z component, and (c)
fig.4.20(d) for the y-component

a positive net energy, ensuring the movement of a nanoparticle, and (iii) can
be organized in an array configuration to further increase, as discussed in the
following sections, the propulsion force.

4.5.2 Array Configuration

The force induced by the V-shaped elementary cell described in the previous
paragraphs can be enhanced by creating a sequence of elementary cells in a
configuration called end-to-end, i.e., with the minor base of one elementary cell
attached to the major base of the adjacent one. A sketch with a sequence
of three elementary cells of such a configuration is shown in Fig.4.22. If an
optical beam linearly polarized along the x-axis illuminates the entire array of
nanostructures, a resonant source is generated at each plasmonic elementary
cell in the array, and the resulting force is a sequence of periodic pushes. This
produces on a nanoparticle an amplification of its kinetics and a significant
spatial displacement. FEM simulations of the array configuration require the
addition of appropriate periodic conditions (Floquet periodic boundary) on the
boundaries perpendicular to the plane of the structure (see Fig.4.19) to model
the periodic distribution of the elementary cells. The mesh considered for this
model is similar to the array case considered in section 4.4. However, as observed
in Fig.4.23, the periodic conditions have different dummy surfaces due to the
asymmetry of the v-shape structure. In addition, to improve the quality of the
simulation, we added a dummy volume (as seen in Fig.4.23) that has thickness
t + t1 and whose mesh is dense compared to the rest of the model air volume.
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Figure 4.22: sketch of a sequence of three elementary cells of trapezoids struc-
tures

Figure 4.23: Mesh in the boundary surface in array case of the trapezoidal
device

The dimensions of the tetrahedron for the dummy volume have lambda/60 as
the maximum and λ/200 as the minimum. In addition, we refine the size of the
device tetrahedron, so we have a maximum size of lambda/140 and a minimum
λ/1000. The mesh ensures higher accuracy and avoids differences in the various
electric field peaks caused by numerical inaccuracies.

The red line of fig.4.24 shows the force distribution (Fp|y) obtained along the
y-axis in the gap and relative to three successive elementary cells for an array
designed with the geometrical parameters given in fig.4.19. In particular, the
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Figure 4.24: Profile along the y-axis of the contribution of Fp|y (red line) and
of the contribution of the electric field intensity (blue line).

profile of the Fp|y magnitude presents a maximum value higher than that of the
elementary cell (see fig.4.21(c)). The result can be explained by considering that
the SPPs generated around the minor base of an elementary cell can propagate
a few microns towards the adjacent elementary cell and thus interfere with the
LSPs of the major base of this cell[55]. In addition, the periodic condition also
induces a small amplification around the minor base, caused by the interference
between the SPPs that propagate towards the adjacent elementary cells. This
small amplification induces a second peak of the electric field amplitude that is
shown in the blue line of fig.4.24. We can verify that the amplification charac-
teristics are due to the group effect due to the periodicity condition of the array.
In particular, if we define spacing along the y-coordinate in the system (as in
Fig.4.25) the electric field and resonance wavelength tend to regain the values
of the isolated cell case. Thus, in fig.4.25, we observe the difference between
plasmonic devices placed in an end-to-end configuration and a configuration of
plasmonic devices in arrays with spacing along y of d = 20. The figure shows
how the spacing between elementary cells reduces the group effect between the
various surface plasmons. The reduction of the coupling effect results in a re-
duction of the electric field amplification. In addition, the resonance wavelength
given the spatial period variation of the system tends to undergo a blue shift
in value. The blue shift of the resonance wavelength tends to increase as pa-
rameter d increases until it reaches the value of the isolated cell case. When d
is about 500nm, the SPPs decay in the gap transverse direction. In this case,
the array condition is negligible and the system returns in an isolated cell case.
This analysis ensures that the end-to-end configuration optimizes the system
field. Therefore to obtain the best dynamic conditions the elementary cell will
always be placed in an array configuration.
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Figure 4.25: a) Electric field profile along the y-axis (dashed line fig.4.20(a))
of an end-to-end array configuration b) Electric field profile along the y-axis
(dashed line fig.4.20(a)) for an array configuration with a spacing between the
elementary cells d = 20nm

4.5.3 Analysis of the influence of geometric parameters

Figure 4.26: Transmission spectrum (solid red line) and maximum field distri-
bution (dashed blue line) as a function of wavelength of the incident field for a
nanostructure with geometrical parameter reported in fig.4.19

The geometry of the proposed nanostructure’s elementary cell was deter-
mined through an interactive simulation process that optimized the optical
interaction between the incident radiation and the trapezoidal nanostructure
array, in order to maximize the force induced on a nanoparticle. The trans-
mission spectrum of a single elementary cell of the array nanostructure with
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geometric dimensions given in fig.4.19 is shown in Fig.4.26.
From this spectrum, it is possible to identify a wavelength at which strong

absorption of light occurs. Moreover, at this wavelength, the magnitude of the
electric field has its maximum value. This means that if the nanostructure is
illuminated with an appropriate wavelength, the absorbed light is strongly con-
fined, allowing a strong induced force to be generated. Therefore, depending
on the wavelength of the radiation beam to be used, the geometrical param-
eters (such as minor base (b), major base (B), height (h), angle (θ), metals
thickness (t + t1) and the gap (s) of the structures) have to be appropriately
defined. COMSOL simulations were performed to assess the influence of the
geometric parameters on the electric field distribution and thus on the induced
force, which as seen in the previous section occurs within the gap between the
two trapezoids. We observe the effect of the gap on the plasmonic device in
Fig.4.27. Fig.4.27 shows the trend of maximum Fp|y as the wavelength changes

Figure 4.27: Maximum of Fp|y as a function of wavelength for different gap
value; the other geometrical parameters are reported in table of fig.4.19

for different values of structure gap. For the amplification value, the analysis of
Fp is useful to evaluate the structure that is performing propulsive rather than
the structure with the most intense amplification. It is clear from the figure
that the strength tends to decrease as the gap changes. The effect is in agree-
ment with the characteristics of plasmonic dimers. The plasmonic dimer has an
inversely proportional response as the gap increases. In addition, the resonance
wavelength exhibits a slight blue shift as the gap increases. This is in agreement
with the interparticle coupling effect of plasmonic dimers, which exhibit a blue
shift in the transverse excitation modes induced in the gap of the dimers when
the dimer distance increase. The fig.4.28 shows the effect of the thickness on the
plasmonic device on the electric field amplitude and the resonant wavelength.
We observe that a larger bulk size tends to decrease the intensity of Fp|y. The
damping of Fp|y results from the properties of gold that absorbs part of the
incident radiation, reducing the amplification effect of the surface plasmon. In
addition, we observe a blue shift of the resonance wavelength. This is in agree-
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Figure 4.28: Maximum of Fp|y as a function of wavelength for different thickness
values; the other geometrical parameters are reported in the table in fig.4.19

ment with Froelich’s condition (eq.(2.50) when the structure has a non-negligible
size. Thus, the resonant wavelength acquires a volume dependence.

We make some consideration about the result of the fig.4.27-4.28 for the
definition of the optimal trapezoidal structure:

• 1) Gap variation has negligible wavelength variation to the other geometric
parameters but the amplitude variation is significant. Therefore, in the
geometrical analysis, we consider the case of the minimum gap allowed by
fabrication tools (30nm).

• 2) The thickness variation does not change the amplitude of the electric
field. However, a set of plasmonic devices with different thicknesses im-
plies a complication in the fabrication process; thus, we consider only the
optimal thickness (30nm) without any variation.

Considering that the structure is composed of two rectangular trapezoids
separated by a variable distance, formed by the oblique sides of the two trape-
zoids (see Fig. 4.19), a geometric relation can be defined that relates the geo-
metrical parameters (h, θ,B, b):

cos(θ) =
(B − b)√

h2 + (B − b)2
=

1√
1 + h2

B2(1−k)2

(4.18)

where k is the ratio between minor base (b) and major base (B). As a result of
this dependence, the analysis of the electric field and the electric field gradient
was carried out only as a function of k, h, θ. Each geometric parameter varies
while the other two are kept constant, as illustrated in Fig.4.29. The maximum
of both the electric field and gradient electrical field as a function of the incident
wavelength for different values of the ratio of the bases k are shown in Fig.4.30(a)
and Fig.4.30(b), respectively. In particular, k = 0 means that a right triangle
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Figure 4.29: Variation of geometric parameters adopted for COMSOL interac-
tive simulations

with base a is considered, while by increasing k, a rectangle with base b is
combined with the previous right triangle, to obtain a rectangular trapezoid
with minor base b and major base B = b+ a (see Fig.4.29).

The fig.4.30(a) shows that the electric field amplitude tends to grow when k
lies in the range [0.1, 0.4], reaches a maximum in the range [0.5, 0.7], and then
decreases for k > 0.7. In addition, there is a plasmon resonance blue shift with
increasing k.

The behavior of the electric field amplitude and plasmonic resonance shift
could be explained physically if the trapezoidal device is roughly schematized
as a set of N plasmonic dimers with length (w) and gap (g) gradually increasing
in the interval [b, B] and [s, s+ 2(B − b)], respectively, and height δh = h/N .

As the plasmonic dimer gap (g) narrows, the enhanced optical fields in the
gap increase, and the plasmonic resonance red-shifts[55][113]. On the other
hand, as the length (w) of the plasmonic dimer increases, radiative contribu-
tions to the plasmonic damping have to be taken into account; the loss of plas-
mon energy due to the emission of electromagnetic radiation implies a weaker
enhanced optical field[72].

For small values of k, the dimensions of the dimers forming the minor
base region have small dimensions and are therefore characterized by a large
area/volume ratio, resulting in a high non-radiative contribution to plasmonic
damping. As k values increase, this non-radiative contribution decreases, and
the amplification of the electric field amplitude increases[72]. However, for high
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Figure 4.30: (a) Pseudo-colour plot of the variation of the maximum electric
field amplitude as a function of incident wavelength and the basic ratio k = b/B
(crosshairs indicate the maximum values reached). (b) Pseudo-colour plot of the
variation of Fp|y as a function of incident wavelength and the basic ratio k = b/B
(crosshairs indicate the maximum values reached). (c) Pseudo-colour plot of
the variation of the force maximum Fp|y as a function of incident wavelength
and angle θ (crosshairs indicate maximum values attained). (d) Electric field
amplitude along the dashed line shown in fig.4.20(a).

values of k, the radiative contributions to plasmonic damping increase, causing
a weakness in the generated electric field[55][114]. The plasmonic resonance
shift is attributable to the dependence of polarizability on the shape and size of
the nanostructure (eq.2.50).

Fig.4.30(b) shows the behavior of the maximum of Fp|y as a function of the
incident wavelength parameterized to the base ratio k. Fp|y grows by the trend
of the maximum electric field up to k = 0.5. Then, Fp tends to decrease for
k > 0.5 despite the electric field having a similar maximum amplitude between
k = 0.5 and k = 0.7. To explain this result, the schematization of the struc-
ture as composed of dimers can once again be useful. The plasmonic device for
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k > 0.5 has large dimensions along the x-axis and the dimers will be charac-
terized by w >> g, so all the dimers have approximately the same plasmonic
behaviour. This implies a symmetric distribution of the electric field along the
y-axis and therefore, according to equation eq.4.17, a reduced value of the force.
In order to investigate the influence of the angle θ, Fig. 4.30(c) shows the max-
imum of the force Fp|y as a function of the incident wavelength for values of
θ from 0° (i.e., constant gap) to 14° (see Fig.4.29), while h and k are constant
and equal to the value in table (fig.4.19). Two interesting behaviors can be ob-
served from the figure: firstly, the amplitude of the force generated increases as
the angle increases, reaching a maximum for θ = around 10°, then decreasing.
Furthermore, the variation of θ induces a shift in the resonance wavelength.

As θ increases, the distance between the structures increases and this induces
a blue-shift of the plasmon resonance. On the other hand, to keep the ratio k
constant, the bases B and b have to increase (see Fig.4.29), so the length of the
set of dimers increases, causing a red-shift of the resonance. The net effect is the
weak blue shift shown in Fig. 4.30(c). These behaviors are typical of V-shaped
nanostructures, in fact, similar results were observed for the bulk V-shaped
structure proposed by Shalin et al.[1][104], showing that only a specific couple (θ,
h) allows to optimize the structure performance. The second aspect highlighted
is the increase in the quality factor (which is defined as the ratio of the resonance
wavelength to the full width at half maximum (FWHM) of the resonance) of
the plasmonic device as the angle increases. A high Q-factor corresponds to
a stronger and sharper plasmonic resonance. The influence of the angle θ on
the Q-factor can be justified by considering the variation in size of the dimers
mentioned above. Indeed, a plasmonic dimer generates a resonance in the gap if
the distance (g) between the edges does not exceed 50/60nm and, moreover, an
increase in g induces a blue shift of the resonance[55, 114]. Thus, for low angles,
all the dimers have a similar gap implying similar, slightly shifted resonances,
so the overall envelope is a diffuse wavelength response. As the angle theta
increases, the dimers that can resonate (i.e. g¡50/60nm) are fewer and fewer,
resulting in a narrowing of the envelope and, consequently, an increase in the Q-
factor. Furthermore, taking into account the V-shape of the proposed structure,
the g gap of the set of dimers tends to increase moving from the major to the
minor base. As a result, the electric field amplification tends to decrease from
the major to the minor base, creating a strong asymmetric field distribution. As
shown in Fig.4.30(d), this asymmetry becomes more pronounced as the angle θ is
around 10° and, consequently, the induced force on a nanoparticle is maximized
(see equation 4.17). For higher angles, the radiative contributions to plasmonic
damping increase, causing a weakening of the induced force. The dependence of
the height h of the trapezoid on the plasmonic performance of the nanostructure
is shown in fig.4.31, where the maximum value of Fp|y as the incident wavelength
varies and with k and θ having the values indicated in fig.4.19. As the height h
increases, a linear red-shift of the structure’s wavelength resonance is observed
(larger plasmonic structures tend to have a higher plasmonic resonance than
smaller structures[55]). Furthermore, the maximum field amplitude tends to
increase linearly up to h=550 nm. This can be explained by considering again
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Figure 4.31: Maximum of the force Fp|y in the function of the incident wave-
length parameterized respect to the height of trapezium h

the trapezoid as a set of dimers. As h increases, both the number of plasmonic
dimers composing the trapezoidal structure and their length w increase (see
Fig.4.29). Considering the electromagnetic field of the entire nanostructure as
a superposition of the fields of the individual dimers, it can be assumed that
the increase in the number of large dimers leads to greater amplification of the
field and the value of Fp|y grows in virtue of eq.4.17. However, for h >600 nm,
as the resonance wavelength is greater than 1100 nm, gold becomes a perfect
conductor[59], and thus its optical absorption coefficient increases[104][56] (i.e.,
the contribution of the non-radiative term to the plasmonic damping increases).
As a result, the electric field is absorbed more and this leads to a decrease in
the maximum Fp|y.

The analysis of the influence of geometrical parameters on the performance of
the nanostructure presented in this paper can provide a flowchart to be adopted
to design the plasmonic structure according to the desired incident wavelength.
Starting from the incident wavelength, the first value to be determined is h,
because of its strong wavelength dependence. In particular, with reference to
the type of plasmonic structure analyzed in this work, the following fitting
equation can be derived from fig.4.31:

h = 669.79 · 10−2λ− 210.26 (4.19)

Then, taking into account the analysis of the variation of θ, the structure
has to be designed with an angle of about 10°. This allows to determine the base
a (a = h/tan(θ)) of the rectangle triangle shown in Fig.4.29. Since the ratio,
k that optimizes the performance of the structure must be 0.5, the major base
B of the trapezoidal structure will be equal to 2a and the minor base b will be
equal to a. Optimizing θ and k generates small resonance displacements, so the
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design process requires an interactive approach to be sure that the geometric
parameters can maximize the force generated at the desired incident wavelength.

4.5.4 Kinetic of nanoparticles

To evaluate the kinetic performance induced by an array configuration, eq.4.9,
which relates the gradient of the electric field strength and the optical force,
was used to estimate the dynamics induced by the plasmonic structure on a
nanoparticle. In the FEM model, the principal variation is the introduction
of a sphere (representing the nanoparticle) placed at a user-controlled position
(x0, y0, z0). In the physics of the model, we define the force using Maxwell’s
tensor (eq.A.21) and integrate it on the surfaces of the sphere. Since the optical
force depends on the electric field evaluated around the sphere, a very accurate
mesh on the sphere surface is required. So we construct a fictitious cubic volume
circumscribing the sphere and refine the mesh inside the cube. A free set of
tetrahedrons subdivide the cube domain, and their maximum and minimum
sizes are the same used for the subdivision of the device volume. (see paragraph
4.4). We analyze the optical force acting on a nanoparticle relative to two

Figure 4.32: Electric field profile along the y-axis (dashed line fig.4.20(a)) of an
end-to-end array configuration with a 10nm silica particle placed above it

different nanoparticle materials: glass (dielectric) and gold (metal). In Fig.4.32
we observe the electric field of a plasmon device evaluated along the y-axis in
which a glass particle is placed above them[56]. Fig.4.32shows that when the
incident wave interacts with the glass nanoparticle, i.e., a dielectric material, it
can pass undisturbed. Consequently, the plasmonic field is weakly affected by
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the presence of the nanoparticle. Gold, on the other hand[59], as observed in

Figure 4.33: Electric field profile along the y-axis (dashed line fig.4.20(a)) of an
end-to-end array configuration with a 10nm gold particle placed above it

fig.4.33, being a metal, modify the incident electric field then the field generated
by the plasmonic device suffers a variation due to the presence of the gold
nanoparticle. We observe the difference between the two effects in fig.4.34,
which shows the optical force (normalized with the input power F̃ = F/P )
applied to the nanoparticle for different materials. In particular, the optical
force on a glass particle (green solid line) exhibits a similar functional form
to that of Fp in fig.4.24, since the material does not considerably alter the
field. In contrast, the optical force on gold has a slightly different functional
form where the area with Fy < 0 increases relative to that with Fy > 0.In
addition, an increase in the optical force values on the gold particle compared
to the values on the glass particle is observed in Fig.4.34 because the presence
of a gold nanoparticle above the plasmonic structure alters the electric field
distribution by increasing the gradient of the electric field. Since the response
to the plasmonic field provides higher optical forces, we use gold as the material
for subsequent analysis. Fig.4.35(a) shows the profile along the y-axis of the
generated optical force (normalized to the incident power as the previous case)
applied to a gold sphere of radius 10nm. We evaluate the optical force for two
different z-positions of the sphere’s center: inside the gap (solid blue curve) and
just above the gap (dashed red curve), i.e., tangent to the plasmonic structure.
As was to be expected, when the nanosphere is inside the gap of the structure,
the induced force has an intensity approximately one order of magnitude greater
than when the nanosphere is above the structure. The effect is due to the
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Figure 4.34: y component of F̃ of a 10nm silica particle (solid black line) and a
10nm gold nanoparticle (solid red line)

evanescence of the plasmonic wave along the z-axis. Indeed, the exponential
decay of the plasmonic electric field shown in fig.4.20(c), drastically reduces
the optical force applied to the nanoparticle. In figure 4.35(b), the effect of
the size of the gold nanoparticle on the induced force distribution along the
y-axis is illustrated. Gold nanoparticles with a radius between 10nm and 50nm
were simulated, and each nanoparticle was positioned so as to be tangent to the
plasmonic structure. For nanospheres with a radius of 10nm, the force profile
has an asymmetric distribution where the area relative to F̃y < 0 is greater

than that for F̃y > 0. The net effect is the displacement of the nanoparticle
along the y-axis. Increasing the volume of the nanoparticles induces stronger
forces, because the force is a function of polarizability (eq.4.9) that is (eq.2.50)
proportional to the sphere volume. However, if the nanoparticles have a radius
greater than half the gap (s/2=15nm), part of the nanoparticle will extend above
the gold trapezoids. Thus, when the incident optical radiation comes from above
the structure, part of the nanoparticle obscures the plasmonic structure (and
thus absorbs part of the radiation that should excite the plasmonic structure),
creating scattering effects. All these effects cause the damping of the force
and the kinetic of larger nanoparticles tend to slow down. The effects due to
the larger particles can be avoided by changing the direction of the incidence
of the light beam. In particular, since the substrate is glass and therefore
transparent, the incident optical beam can illuminate the nanostructure through
the substrate. Fig.4.35(c) shows the force distribution induced on a large gold
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Figure 4.35: (a) Profile along the y-axis of the force induced on a gold
nanosphere with a radius of 10nm and positioned within the gap (z=20nm blue
solid curve) and above the structure (z=42nm red dashed curve). (b) Profile
along the y-axis of the force induced on a nanoparticle positioned above the
nanostructure (z = t+ t1 + r) and parameterized with respect to the radius of
the sphere. (c) Profile along the y-axis of the force generated with illumination
from above the nanostructure (black dashed curve) or from the substrate (red
solid curve). (d) Velocity along the y-axis of a nanoparticle of radius 50nm
placed above the nanostructure gap and estimated from the force distribution
shown in Fig. 4.35(c).

nanoparticle (r=50nm) for illuminating the nanostructure from both above (z >
0) and below (z < 0). By illuminating the trapezoidal nanostructure through
the substrate, the surface plasmon excitation occurs before the nanoparticle
interference and the net effect of the force is improved.

The distribution of force acting on the nanoparticle can be used to esti-
mate the induced kinetics. Since COMSOL does not allow the kinetic of the
particle to be coupled with the variation of the electric field by the particle’s
motion, the induced kinetics was evaluated by combining the functionalities
of COMSOL Multiphysics and MATLAB using LiveLinkTM [115]. Specifically,
the simulation process involves the following steps:

• 1) Force estimation, through the Maxwell tensor, using the COSMOL
simulation of the trapezoidal model with the nanoparticle located at the
origin of the array configuration.

• 2) Force field processing using MATLAB code to evaluate (via the equation
of motion) the dynamics in terms of velocity and displacement of the
nanoparticle.
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• 3) The new position of the gold nanoparticle is transferred to the FEM
model for a new COMSOL evaluation of the optical force distribution.

• 4) The cycle is repeated.

In fig.4.35(d), the velocity of a gold particle, with a radius of 50 nm and
located above the nanostructure gap, is shown as a function of the space. The
initial velocity of the nanoparticle is set to zero then, recalling the profile of
the force distribution, the velocity initially tends to increase strongly reaching a
maximum value of about 85nm/s, then there is a deceleration due to the positive
part of the force distribution (F̃y > 0) resulting in a final velocity at the end of
the first elementary cell of about 32nm/s. Therefore, the net effect is that the
gold nanoparticle acquires kinetic energy from the optical forces even though the
initial velocity is zero. If we compared with the literature configuration shown
in Section 4.3, we observe that it is not necessary to use a strong initial boost
to induce propulsion but the system can eject the nanoparticle autonomously.

Fig.4.36 shows the final nanoparticle velocity at the end of an elementary
cell as a function of nanoparticle radius. The velocity initially grows in the
range (r = 10nm, r = 40nm) while for r = 50nm the velocity of the nanoparticle
decreases. Indeed, according to the results shown in fig.4.35(b), the optical force
increases with increasing nanoparticle size. However, for r = 50nm the value of
the nanoparticle mass reduces the effect of the optical force and this leads to
a reduction in the final velocity. Furthermore, according to Figs. 4.35(a) and
4.35(c), the cases of particles inside the gap or illumination from below induce
an improvement in particle velocity.

Figure 4.36: Nanoparticle velocity at the end of an elementary cell as a function
of nanoparticle radius with incident electric field E0 = 1V/m

Taking advantage of the periodicity property of the array structure it is
possible to estimate the final velocity achieved when the nanoparticle passes
the N elementary cell of the linear array. Specifically, if a conservative system
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composed by N elementary cells of the periodic array is considered, the following
conservation of energy can be assumed:

Ep =
1

2
mv2f (4.20)

where Ep is the system’s potential energy induced by the optical force, and
vf is the final velocity of the particle at the end of the N-th elementary cell.
Considering that the shape of the force distribution for a periodic array can be
seen as the repetition of the distribution induced on the single elementary cell,
we can assume that:

Ep = NEpi (4.21)

where Epi is the potential energy for a single elementary cell, so:

vf =
√
Nvi (4.22)

where vi =
√
2Epi/m is the velocity reached by the particle when crossing

an elementary cell of the matrix. Thus, the speed of the nanoparticle increases
proportionally to the square root of the number of elementary cells that compose
the array. For example, for an array 1 mm long and considering the dimension
reported in fig.4.19, the number N of elementary cells of the proposed trapezoidal
structure is approximately 2860. So the final speed of a nanoparticle with
a radius of 10nm and located above the gap can reach values of about 0.4
µm/s. In order to attempt a comparison with similar structures reported in the

Structure Incident Intensity Estimated velocity
our 1W/m2 1.88µm/s

Rovey’s 1W/m2 1.16µm/s
Shalin’s 109W/m2 0.3m/s

Table 4.2: Comparison between the proposed nanostructure and others reported
in the literature for the velocity reached by a 10 nm nanoparticle at the end of
an isolated elementary cell

literature, only the isolated elementary cell can be considered. In fact, Shalin’s
structures [1] do not allow for any periodic configuration, whereas the array
configurations shown by Rovey [2][108] require an initial boost on which the final
velocity of the nanoparticle depends. A comparison of the speed reached by a
nanoparticle with a radius of about 10nm at the end of an isolated elementary
cell for the structures mentioned above is given in table 4.1. For our structure,
the same incident light intensity as used by Rovey (1W/m2) was considered.
The proposed nanostructure allows a velocity almost similar to that obtained
by Rovey, but with the advantage that, when considering an array configuration,
no initial thrust is required (i.e. the movement of the particle is obtained even
without imposing an initial velocity on the nanoparticle). On the other hand,
it is worth noting that the high speed reported by Shalin is due to very intense
lighting.
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4.5.5 Circular Array

In addition to the linear end-to-end configuration, the periodicity of the plas-
monic nanostructure can also be realized using a circular end-to-end configura-
tion for which the number of elementary cells positioned depends on the radius
of the ring (see Fig.4.37(a)). If N = L/h is the number of plasmonic cells that
compose a linear array of length L (where h is the height of the individual cell),
the same number of cells is present in a circular configuration with a diameter
of L/π. Thus, the circular configuration allows for a more compact spatial ar-
rangement. However, due to the presence of surface plasmons, the SPPs/LSP
coupling effect is only generated when the polarization of the incident radiation
is transverse to the structure gap. Fig.4.37(b) shows the amplitude of the elec-

Figure 4.37: (a) Sketch of the circular arrangement of the trapezoidal structure
showing the direction of movement of the nanoparticles. (b) Pseudocolor plot
of the electric field amplitude in a circular array induced by incident light with
linear polarization. Detail of the electric field amplitude induced by (c) linear
polarization and (d) radial polarization.

tric field distribution generated on a circular array illuminated with incident
radiation linearly polarized along the x-axis. In particular, the field distribution
varies between an induced maximum in the elementary cells with gaps trans-
verse to the y-axis and a minimum (ideally no excitation) in the elementary
cells with a gap transverse to the x-axis(fig.4.37(c)). In order to generate the
same electric field distribution over all elementary cells in the array, incident
radiation with radial polarization (i.e., with the electric field always directed
parallel to the radius of the ring[116]) was simulated. Indeed, in this case, the
polarization is always transverse to the gap of the elementary plasmonic cells,
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and so the resulting electric field is adequately excited in any nanostructure (see
Fig.4.37(d)). The resulting electric field generates periodic optical forces along
the ring and thus the induced velocity is directed tangent to the ring, leading
to a circular motion at a nanoparticle placed in the nanostructure. In terms
of kinetic, the advantage of the circular configuration is that the final velocity
reached by a nanoparticle is not limited by the number N of elementary cells
that composite the ring. Since the circumference is a closed curve, a ”final” el-
ementary cell can not be individuated, but the nanoparticle continues to rotate
along the ring until it is ejected. Indeed, a circular configuration allows to a
nanoparticle to accumulate velocity until the centrifugal force induces a change
in trajectory thus ejecting the nanoparticle. In order to estimate the number
of rounds performed by a nanoparticle before its ejection, the centrifugal force
has to be considered:

Fc =
mv2

r

where m is the mass, v is its velocity, and r is the radius of the circular array.
For an array of nanoplasmonic cells, the nanoparticle velocity depends on the
number n of elementary cells that the particles have crossed (see eq. 4.22), so
in a first approximation, the following relationship can be written:

Fc ≃
mnv2i
r

(4.23)

if N is the total number of elementary cells that compose a circular array with
radius r, i.e., r = Nh/2π, the centrifugal force can be rewritten in the following
form:

Fc ≃
2πnmv2i
Nh

= γ
2πmv2i
h

(4.24)

where γ = n
N is the number of rounds the nanoparticle performs. The nanopar-

ticle is ejected when the centrifugal force exceeds the trapping force Ft present
in the transverse direction to the gap (see the red line in fig.4.20(b)). Thus, the
number of rounds performed by the nanoparticle before ejection is:

γ ≃ Fth

2πmv2i
(4.25)

Thus, γ doesn’t depend on the number of elementary cells composing the circu-
lar configuration array. For example, considering a gold nanoparticle of 10nm
radius and located above the gap, an incident field of E0 = 1V/m induces a
trapping force Ft that requires approximately γ = 10 rotations for the ejec-
tion of the nanoparticle. The possibility of ejecting the nanoparticle after γ
rounds allows the size of the nanostructures to be drastically reduced, particu-
larly compared to the linear configuration. For example, as seen above, using a
linear array 1 mm long, a nanoparticle of radius 10nm reaches a final velocity
of approximately 0.4 µm/s traveling through 2860 elementary cells. Similarly,
the same number of cells can be traversed with 10 rounds of a circular array
configuration of about 286 elementary cells, which means that it is possible to
realize a circular nanostructure with a radius of about 16µm can be realized.
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In this chapter, we defined a new plasmonic device capable of inducing
propulsion by hybridizing the characteristics of plasmonic acceleration systems
already found in the literature, namely Shalin’s Nanocannon and Rovey’s Trape-
zoidal structures. The device analyzed through a FEM model, exhibits a field
response capable of defining an optical force that produces propulsion. In addi-
tion, the geometry is such that it produces a periodicity of the force, and thus
we can construct array configurations capable of increasing the output velocity
of the system. The system has strong versatility since the resonance changes
over a wide range (from 700 to 1300nm wavelength) by varying the geometry
of the elementary cell, i.e., major base, minor base, height, and angle of the
trapezoids. The kinetics associated with the trapezoidal structure present good
results, we observed that a circular array configuration would lead to a kinetic
energy buildup, given the characteristics of circular system velocity and force
performance Before moving on to the fabrication phase of the system, given the
simulative results obtained, we will discuss a phenomenon that through the cou-
pling of spin with angular momentum allows the manipulation of nanoparticle
trajectories and thus could be of interest in dealing with the ejection direction
of the nanoparticle once accelerated by the plasmonic system.
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Chapter 5

Spin-Orbit Coupling Effect

In the previous chapter, we designed and evaluated, through FEM analysis, a
plasmonic system capable of inducing propulsion. The result allows the ejection
of nanoparticles with good velocity parameters using a periodic array config-
uration. However, in the CubeSat displacement, strong directional control is
required. Given the small size of the nanoparticles, we can not achieve direc-
tional control through the usual methods. In this chapter, we will observe an
interesting phenomenon induced by spin-orbit coupling,i.e., the coupling of the
photon spin (helicity) with the orbital angular momentum of the light wave.
In particular, evanescent waves and thus surface plasmons generate a trans-
verse momentum, which defines a polarization-dependent displacement of the
nanoparticle that allows us to remotely control the position of a nanoparticle.
In this chapter, we look at the basic principles of spin-orbit coupling focusing on
the effects present in evanescent waves. We will discuss the behavior of the mo-
mentum generated by a gold nanoparticle as the incident polarization changes
and the trajectory changes induced by the aforementioned spin momentum.
Finally, the case of a plasmonic dimer will be evaluated, given the particular
electric field configuration, observing a discontinuous spin distribution that will
be of interest for numerous practical applications in the field of spin optics[117].

5.1 Spin-orbit in optics phenomena

In the previous chapters, we analyzed electromagnetic phenomena from a clas-
sical point of view to understand the phenomenology of evanescent waves. The
electromagnetic field can also be analyzed from a quantum point of view as a
particle (photon). The behavior of the photon generates a set of forces and
moments that can lead to macroscopic effects[118][119].

we observed in eq.A.18 that the moment of forces and angular momen-
tum can be carried by electromagnetic waves and plays a crucial role in many
radiation-matter interactions. However, electromagnetism being a field theory
has quantum effects that can define new dynamic properties[120].
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Let us consider a momentum p(r) in a quantum or classical field theory,
that can be written as a local expectation value of the canonical momentum
operator p̂ = −i∇, i.e., p = Re(ψ†p̂ψ), where ψ(r) is the wave function, and we
use units ℏ = 1. For the field vector, an additional spin momentum density was
introduced in 1939 by Belinfante[121] to explain the spin of quantum particles
and symmetrize the canonical energy-momentum tensor in field theory. Thus
the momentum density in a vector field theory can be written as:

p = Re(ψ†p̂ψ) +
1

2
∇× s = pO + ps (5.1)

where s is the spin Angular moment (AM) density defined as the local expec-
tation value of the corresponding matrix spin operator ŝ, i.e. s = ψ†ŝψ. This
relation is valid for various types of particles. For example in the electrons ŝ
is the spin-1/2 operator and ψ(r, t) is the Dirac bi-spinor. In the case of the
electromagnetic field, the eq.5.1 yields the time-averaged Poynting vector (see
appendix A1) when ŝ is given by the helicity of the photon (left-handed polariza-
tion or right-handed polarization). Using the Maxwell equation (eq.A.1a-A.1d)
we can define optical momentum and optical spin density with the following
formula:

pO =
1

16πω
Im[E∗ · ∇E+H∗ · ∇H]

s =
1

16πω
Im[E∗ ×E+H∗ ×H] pS =

1

2
∇× s

(5.2)

The momentum of the Poynting vector p generates, respectively, the orbital
and spin parts of the AM density (since the eq.5.1). The orbital AM density
l = r×pO, and this is an extrinsic origin-dependent quantity. At the same time,
the spin AM density s, eq.5.2 is intrinsic (origin-independent). The orbital mo-
mentum pO is naturally proportional to the local phase gradient ( scattering
force in eq.4.9) in the field. On the other hand, the spin momentum provides
the physical origin of the spin AM of quantum particles; but it is usually con-
sidered as an auxiliary quantity, which cannot be observed by itself. Indeed,
the spin momentum represents a solenoidal current, which does not contribute
to the energy transport and only generates spin AM. The characteristics of the
observed moments become clearer by considering the moment and spin mea-
surements for the electromagnetic field. A small absorbing particle immersed in
the field can be employed as a natural meter of these quantities. From the parti-
cles, it is possible to measure force (eq.4.9) and torque, which has the following
formula:

T =
1

8πω
Im(α)s (5.3)

The force gives us an estimate of the complex orbital momentum (pO) while
the calculation of the torque allows us an estimate of the spin AM density (s).
It follows from the following result that the pO and not the Poynting vector (p)
is physically significant because the momentum ps is a ”virtual” quantity that
is not observable in weak-interactions measurement.
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The interplay and mutual conversion between the two types of optical an-
gular momentum (orbital angular momentum and spin angular momentum)
produce the optical spin-orbit interaction.

In general, the fundamental mechanism underlying the spin-dependent de-
formation of optical fields is geometric phases. These can be explained as origi-
nating from the coupling between the SAM (Spin angular moment) and rotation
of the coordinate frames naturally determined in a particular problem[118].

The first important example of SOI (Spin-Orbit Interaction) occurs in the
propagation of paraxial light in an inhomogeneous isotropic medium[122][123].
It is well-known from geometrical optics that light changes its direction of
propagation and momentum due to refraction or reflection at medium inho-
mogeneities. However, the trajectory of an optical beam is independent of the
polarization in traditional geometrical optics in the absence of anisotropy. This
is because geometrical optics neglect all wavelength-scale phenomena, which be-
come important for nano-optics. Let us consider the propagation of light in a
gradient-index medium with refractive index n(r). The smooth trajectory of a
light beam in a such medium can be described by the mean coordinates R and
the momentum Pm which vary with the trajectory length τ . Considering semi-
classical correction to this formalism the trajectory of light in a gradient-index
medium is described by the following equation:

Ṗ = ∇n(R) Ṙ =
P

P
− σ

k0

P× Ṗ

P 3
(5.4)

Here the overdot stands for the derivative for τ , k0 is the vacuum wavenumber
and we used the dimensionless momentum P = ⟨k⟩ /k0. The last term in eq.5.4
describes the transverse spin-dependent displacement of the trajectory, i.e., the
Spin-Hall effect of light[124]. It was shown that the helicity-dependent term in
eq.5.4 can be considered as a Lorentz force produced by the geometric phase
variation analogous to those for electrons in condensed matter. However, while
the electron’s momentum is driven by an applied electric field, in optics the
refractive-index gradient plays the role of an external driving force.

The Spin-Orbit Interaction manifests itself in free-space nonparaxial fields[124]
[125][126]. Consider, for example, focused circularly-polarized vortex beams
carrying spin and orbital intrinsic AM. The simple association of the SAM and
OAM with the polarization and vortex is not valid anymore. For a nonparax-
ial beam, consisting of circularly-polarized plane waves with the wave vectors
forming a cone with an opening angle θ, the SAM and OAM become:

S = σ cos θ
P

P
L = [l + σ(1− cos θ)]

P

P
(5.5)

The total intrinsic AM of the beam is preserved: Jz = Sz + Lz = σ + l, so
that the eq.5.5 can be interpreted as if a part of SAM was transferred to the
OAM. This is another fundamental manifestation of the SOI: the spin-orbital
AM conversion. Part of the orbital AM becomes helicity dependent, i.e., a
helicity-dependent vortex should appear even in beams with l = 0.
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The spin-orbit effect considered above is called intrinsic SOI, which originates
from fundamental properties of the Maxwell equations and is not related to spe-
cific media. Another class of SOI effect can be induced by particular properties
and symmetries of the medium[127][128][129]. These ”extrinsic” effects emerge
in anisotropic media and artificial structures including metamaterials[130]. Let
us consider light transmission through a planar anisotropic element. For simplic-
ity, we assume a transparent retarder providing a phase δ with the anisotropy
axis oriented at an angle α in the (x, y)−plane. In the coordinates attached
to the anisotropy axis, the evolution of light is described by the transmission
Jones matrix T = diag(eiδ/2, e−iδ/2). Performing a rotation by the angle α
to the laboratory coordinate frame and also writing this matrix in the helicity
basis of the right-hand and left-hand circular polarizations, the Jones-matrix
transformation of the wave polarization becomes:

E
′
=

[
cos ( δ2 ) i sin ( δ2 )e

−2iα

i sin ( δ2 )e
2iα cos ( δ2 )

]
E (5.6)

Here the off-diagonal element with phase factors exp(±2iα) originates from
geometric phases induced by the rotation of coordinates. For the half-wave
retardation δ = π, the matrix eq.5.6 becomes off-diagonal and describes the
transformation for σ = ±1 circularly-polarized light into the opposite polariza-
tion σ

′
= ∓1, with geometric phase difference ΦG = −2σα.

Let the orientation of the anisotropy axis change linearly with one of the
coordinates: α = α0+qx. In this case, for half-wave retardation, the σ-polarized
light is converted into light of opposite helicity and also acquires the helicity-

dependent component in the momentum of light P
′

x = −2σq. Thus, the x-
variant anisotropic structure deflects the right-hand and left-hand polarized
beam in opposite x-directions. This can be considered as the anisotropy-induced
spin-Hall effect of the light. While in the intrinsic spin-Hall effect the coordinate
shift is caused by the wavevector gradient of the geometric phase, here the
momentum shift is generated by the coordinate gradient of the geometric phase.
The extrinsic spin-Hall effect generated by the space-variant anisotropic element
allows complete spatial separation of the two spin-states of light: a linearly-
polarized light with σ = 0 is transformed into two well-separated σ

′
= ±1

beams propagating in different directions.

5.2 Spin momentum in evanescent wave

The quantum nature of light introduces the quantity of spin that can be associ-
ated with the variation of the helicity of the light beam. Spin defines an angular
momentum (SAM) and a ps momentum, which, however, is a virtual quantity
that cannot be observed experimentally. Instead, spin in terms of angular mo-
mentum can be observed in optics through the spin-orbit coupling (SOI) effect.
In the previous chapter, SOI was shown using various techniques that also allow
for its practical uses (e.g., the construction of metasurfaces that modulate the
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polarization of the electric field). However, SOI can also be observed in phe-
nomena that induce evanescent waves such as surface plasmons. Plasmonics SOI
coupling shows unique characteristics compared to other types of SOI given the
nature of evanescent waves[120]. Let us consider the electric evanescent-wave
field:

E =
A√

1 + |m|2
(x̄+m

k

kz
ȳ− i

κ

kz
z̄)exp(ikzz − κx) (5.7)

where κ is the decay rate of the evanescent wave. Substituting the electric and
magnetic field (eq.5.7) into eqs.5.2, we calculate the canonical momentum, spin
momentum, and spin AM density in an evanescent wave:

pO =
w

ω
kz z̄

s =
w

ω
(σ

k

kz
z̄+

κ

kz
ȳ)

ps =
w

ω
(−κ

2

kz
z̄+ σ

κk

kz
ȳ)

(5.8)

where w is the spatially-inhomogeneous energy density (see eq.2.16).Given this
equation, we observe some characteristics in sharp contrast with the propaga-
tive wave. In particular, the transverse y-component of the momentum and
spin in the wave propagating solely within the (x, z) plane. In addition, the
momentum psy ∝ σ is helicity dependent, while the spin is helicity independent.
This property is due to the features of the evanescent field:

the first one is the imaginary longitudinal component of the field polariza-
tion −i κ

kz
z̄. This induces a rotation of the fields in the propagation plane and

generates the spin sy independently of σ. The second feature is the evanescent
energy density w starting with eq.2.16 with the assumption of the field eq.5.7
became:

w =
1

8π
|A|2e−2κx (5.9)

This inhomogeneity destroys the cancellation of the spin momentum in (x, y)-
plane which results from a non-zero transverse Belinfante’s spin momentum
psy ̸= 0. The direction of the transverse spin momentum becomes uniquely locked
[131] with the direction of propagation of the evanescent wave. Oppositely,
propagating waves with kz > 0 and kz < 0 carry opposite tranverse spins
psy > 0 and psy < 0 respectively. In evanescent waves, given the properties
that distinguish the transverse moment, ps is not a virtual quantity as in the
propagative case, and therefore measurements can be made to be able to reveal
its intensity.

In particular, illuminating a prism with a laser beam generates an evanescent
wave by internal reflection. If A nano-cantilever is placed on the prism, it un-
dergoes a force caused by the ps moment and begins to oscillate transversely to
the propagating wave[132]. Based on the oscillation of the cantilever, the effect
of ps induced by the evanescent waves can be measured. Similarly, it is possi-
ble to perform the same measurement using SPPs in a prism in a Kreshmann
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configuration, obtaining very intense transverse forces given the field amplifica-
tion properties typical of surface plasmons. The ps moment was also detected
in LSPs. In particular, a system consisting of a circularly polarized incident
wave impinging on a gold nanoparticle was evaluated[133]. It is shown that
under resonant conditions the orbital momentum has a greater intensity than
the Poynting vector (see eqs.5.1-5.2) since the plasmonic κ is greater than kz.
Furthermore, the spin couples with the moment of the evanescent wave but in a
manner independent of the helicity of the incident wave, due to spin-momentum
locking. A ps momentum is generated in a different direction than the orbital
pO momentum. However, given the characteristics of LSPs, that is, the am-
plified field is strongly localized around the surface of the sphere, and the spin
momentum and spin-orbit coupling remain localized around the surface of the
sphere tending to decrease with increasing distance[55]. In the case where a test
particle is located in the vicinity of a nanosphere under resonant conditions, it
experiences a very intense transverse force, in addition to radiation pressure,
due to the spin-orbit coupling of the evanescent field[134]. The direction of the
transverse force, however, is dependent on the incident helicity and presents a
direction reversal when the helicity goes from 1 to -1. The phenomenon can
be observed, albeit to a lesser extent even when the nanosphere is outside the
plasmonic resonance since the evanescent wave is equally generated along the
surface of the nanosphere. Moreover, the phenomenon does not require an in-
cident helicity to be generated; if the gold nanosphere is polarized along y and
with an incident electric field directed along z and under resonant conditions, a
transverse momentum (along the x direction) is induced by the spin-orbit effect
creating a different trajectory in the test particle.

5.3 Polarization-Addressable Optical Force on
Plasmonic Nanoparticles and Hot-Spot Spin
Vortices

Previously we observed that the evanescent wave forms a transverse spin mo-
mentum in addition to the usual orbital momentum. In this section, we analyze
the consequences of the spin induced by the LSP resonance of a gold nanoparti-
cle. Unlike the literature case [134] where we observed the dynamics of a probe
particle near a resonant gold particle; here we show the dynamics of the resonant
gold nanoparticle considering the effects that the generated spin induces on the
particle itself. Starting with a 10 nm radius sphere of gold immersed in an air
substrate; the particle is irradiated by a linearly polarized plane wave with a
wavelength of 530nm. Specifically, the COMSOL Multiphysics model features a
gold sphere of radius 10nm immersed in an air sphere of radius 400nm concen-
trically. PML domains are placed around the air sphere to avoid backscattering
and multiple reflection effects of the incident field. The physics used is in the
”Electromagnetic wave frequency domain” module, which is very similar to the
”wave optics” used in Chapter 4 but with the possibility of observing the far
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field domain of the system as well as the near field (needed to evaluate radiation
pressure behavior). The incident wave is a parameterized background field and
can be easily varied to modulate its amplitude and polarization. The mesh, in
addition to a domain quadrilateral subdivision for the PML, has two different
tetrahedra sizes for the physical domain subdivision. The outer sphere is sub-
divided by tetrahedra with a maximum size equal to λ/8 and a minimum size
equal to λ/125. In the golden sphere instead, the tetrahedra have a maximum
size equal to λ/50 and a minimum size equal to λ/6000. This subdivision is
necessary to maximize the accuracy in calculating the electric field around the
sphere surface. In fig.5.1 the incidence radiation is directed along z and po-
larized along x; in fig.5.1(a) we observe the calculation, of the spin moment s
and the Electric field amplitude on the surface of the gold sphere using eq.5.2.
In resonance, the electric field is distributed such that the area of maximum
amplitude is the yz plane. From eq.5.2 it is known that the spin depends on the
electric field components, for this reason, the spin is most widely distributed
along the same surface of the electric field maximum i.e. the yz plane. s is also
distributed such that the direction is tangent to the plane under consideration.
If we change the direction of polarization, for example, using an incident beam
polarized along y, the electric field changes its distribution and the maximum
shift to the xz plane. For the eq.5.2 relationship, the spin also becomes dis-
tributed, tangent to the surface, along the xz plane. It is therefore possible
to assume that given a beam with a linear electric field polarization direction,
the spin always distributes tangent to the plane orthogonal to the polarization
direction. In Fig.5.1(a) and particularly in Fig.5.1(b) where the distribution of
spin over the entire spherical surface is represented; it is shown that the spin
distribution is symmetrical to the x-axis; we observe that the yz plane at x > 0
exhibits an anti-clockwise distribution while the corresponding one at x < 0
exhibits a clockwise distribution, moreover there is a transition zone between
the two planes where the spin is discontinuous. The axial symmetry of the spin
is in agreement with the geometry of the structure. In Fig.5.1(c) we observe the
plot of the spin momentum intensity (the Belinfante [121] component) as com-
pared to the Poynting vector, according to eq.5.1, as a function of wavelength.
It is shown that the spin moment exhibits a resonant peak for values around
540/550nm where it reaches a value of 0.5; it follows that the spin moment
becomes an important component of the Poynting vector with consequences
in force analysis. If, on the other hand, we analyze the graph away from the
resonance peak, the spin moment becomes negligible compared to the orbital
moment in the evaluation of the Poynting vector and the radiation pressure
remains the dominant force on the system. The plot is compared to the Ab-
sorption Plot (ACS); ACS indicates the absorption coefficient of the gold sphere
and is indicative of the plasmonic resonance of the gold nanosphere as specified
in [55]. The result implies that the maximum spin value is reached when occur-
ring a plasmonic resonance, following [120], where the relationship between the
Belinfante moment and the evanescent waves is specified. Once we had studied
the behavior of the Belinfante moment intensity, we evaluated in Fig.5.1(d) the
behavior of the direction of the spin momentum on the surface of the sphere. In
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c) d)

e)

Figure 5.1: a)x-polarized electric field distribution in a resonant fold nanosphere
and the spin distribution along the surface. b) 3D vision of the sphere surface
with spin distribution in resonant condition. c) ACS plot (red line) and the
ratio ps/ptot in the function of the wavelength. d) 3D vision of the nanosphere
with distribution of ps and p along the surface. e)trajectory of a resonant gold
nanoparticle with an x-polarized electric field.

agreement with eq.5.2 we observe that, given an incident beam polarized along
x, the spin moment is transverse to s so it is radial to the yz plane. Even tuning
linear polarization, for example considering a polarization along y, the spin mo-
ment tends to form along the plane orthogonal to the polarization direction (in
this case the xz plane) directed radially. The direction of ps varies in the two
hemispheres; as in the case of s, we will have two different directions depending
on whether we are positioned at x > 0 or x < 0. Once we have studied the be-
havior of the spin moment, we use the force equation (eq.A.21) to evaluate the
effect of the spin moment on the dynamics of the gold particle. Fig.5.1(e) shows
the dynamic of the gold nanoparticle for an incident wave polarized along x.

112



The nanoparticle dynamics are obtained using the same LiveLinkTM method
seen in chapter 4. These results are obtained when we evaluate the force using

a)

b)

Figure 5.2: a) on the upper side, electric field, spin distribution, and momentum
distribution along the sphere surface of a gold nanosphere LCP polarized; on
the lower side, electric field, spin distribution, and momentum distribution along
the sphere surface of a gold nanosphere RCP polarized. b) trajectory of the gold
nanoparticle for LCP polarization and RCP polarization.

the Maxwell Tensor, see eq.A.21 and derived the dynamic parameters using the
equation of motion. As a consequence of ps distribution, the gold nanoparticle
has a displacement along the y-axis in addition to the expected movement along
the z-axis induced by the radiation pressure of the incident beam. The observed
displacement exhibits a polarization dependence; since we have already observed
that the distribution of ps depends on the direction of incidence of the beam,
this phenomenon also manifests in the dynamics that is orthogonal to the direc-
tion of polarization; in fact if, for example, we consider a beam polarized along
y instead of along x, the gold nanosphere undergoes a displacement along the
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x-axis. Once we have observed the behavior of linear polarization in Fig.5.1 we
go on to analyze the results in the case of circular polarization. In Fig.5.2(a) we
observe the spin vector (s) and associated moment (ps) defined by the eq.5.2
on the surface of the gold nanoparticle illuminated by a beam of light circularly
polarized. Given a polarized LCP beam, we can observe in Fig.5.2(a) top left,
the electric field distribution with associated s distribution on the surface of the
gold sphere. In particular, we can see that the spin, unlike linear polarization, is
distributed along the electric field minimum and directed radially to the plane.
As in the linear case, the distribution reverses its direction along one axis of
the sphere, as we can see in Fig.5.2(a) in the upper center; however, unlike the
linear case, the distribution presents an asymmetry in intensity given that the
spin is present more intensely in one hemisphere than the other. In Fig.5.2(a)
on the upper right we observe the behavior of ps along the surface of the sphere,
we can see that, following eq. 5.2, ps is tangent to the surface of the sphere
and keeps the characteristics observed previously for s. Considering instead a
polarized RCP light beam, as we can observe in the lower part of Fig.5.2(a),
the behavior of s and ps is the same respect a beam LCP-polarized, but we
also noted that the two trends are symmetrical to an axis of the sphere. Thus,
from the results of the simulations, a helicity-dependent behavior is obtained
for circular polarizations such that the spin and its associated momentum are
distributed more in an area of the spherical surface that changes as the helic-
ity changes. The behavior of the spin moment is reflected in the dynamics of
the gold nanoparticle observed in Fig.5.2(b). Remember that the Poynting mo-
mentum, when the gold particle is near the plasmon resonance, has a relevant
Belinfante term, as seen in Fig.5.1(c). The force and dynamics induced by the
spin distribution, present some differences compared to that induced only for
the radiation pressure. We observe in Fig.5.2(b) a displacement from the radi-
ation pressure trajectory along the xy plane, in agreement with the Belinfante
momentum distribution (Fig5.2(a)). In particular, for an LCP polarization, the
nanosphere will have a deviation along the y < 0 axis and x < 0 axis while in
RCP polarization the nanosphere has a deviation along the y < 0 axis and x > 0
axis. This result involves that the nanoparticle’s path in circular polarization is
helicity dependent; in particular, we observe a symmetry for the y-axis of the
trajectory when the helicity of the beam changes.

5.3.1 Spin Momentum in Plasmonic Dimer

Once we have studied the behavior of SAM on a gold monomer and observed
the dynamic variation of the particle, we turn to the study of a gold dimer; in
particular, given the particular dimer field configuration, the spin moment takes
on a nontrivial topological conformation. This new distribution depends on the
polarization of the incident beam, as was the case for SAM in the monomer, but
also the gap size between the two particles. In Fig.5.3 a dimer formed by two
gold particles of radius 10nm positioned parallel to the x-axis and separated by
a gap of size 1nm. The incident light is directed along the z-axis and polarized
along the x-axis with a wavelength of 530nm. The FEM model of a plasmonic
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dimer has the same features as the previous case but we design two gold spheres
of radius 10nm separated by a gap of 1nm centered at the origin. The physics
and mesh are the same as in the previous case, except that a dense subdivision
in the sphere domain results in a refined mesh in the gap. We use a refined
mesh for an accurate momentum distribution in the gap dimer. In Fig.5.3(a),

a) b)

Figure 5.3: a) 3D spin distribution in the dimer gap. b) 2D spin distribution
and spin amplitude along the sphere surface in a gold dimer.

the distribution of the spin momentum within the gap of the structure is shown;
In this case, the spin moment tends to form a counterclockwise vortex nearby
the left nanoparticle and clockwise nearby the right particle. The two vortices
tend to intersect in the center of the gap where they collapse, generating a
discontinuity. Fig.5.3(b) shows a section along the yz plane of the spin within the
dimer gap. The spin is directed tangentially to the plane, evaluating its intensity
as a function of its maximum value, it is observed that it is most concentrated
at the center of the gap by decreasing its intensity radially. The phenomenon is
explained by considering the behaviors of plasmonic structures observed in the
literature[134]. the eq.5.2 defines a relationship between the spin components
with the electromagnetic field components; a consequence is a direct relationship
between the electric field amplitude and the intensity of the spin vector. For this
reason, from fig.5.3 it was shown that in the dimer plasmonic hotspot, there is a
more intense spin distribution. In agreement with what we have already seen in
the single-particle case, the direction of the spin in a plasmonic dimer is tangent
to the maximum field distribution. Since the dimer exposes the opposite surface
in the gap between the structures we expect the directions of the two vortices
to be opposite. The formation of the spin discontinuity can be explained by
considering an overlapping phenomenon between the two spin vortices at the
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center gap between the two structures. As in the case of the gold monomer,
the spin distribution in the dimer is polarization-dependent. In particular, if
we illuminate the structure with a y-polarized beam, i.e., transverse to the gap
direction, the electric field is generated orthogonally to the gap. For the eq.5.2,
the spin vortex is orthogonal to the gap and not inside the dimer. If we use
the circularly polarized incident beam, like Fig.5.2, the spin distribution of the
plasmonic monomer is asymmetric to the axis of rotation of the sphere. In a
dimer, using circular polarization, spin distribution forms a vortex within the
gap between the two surfaces. However, since the asymmetry along the rotation
axis of the nanosphere, the spin distribution within the gap is asymmetric, unlike
the linear case. In Fig.5.4, we analyze the behavior of spin intensity, considering

Figure 5.4: spin amplitude in function of the ratio g/R in a x-polarized gap
dimer

an x-polarized beam, as the distance between the two nanoparticles varies. In
particular, we observe the maximum amplitude of s (calculated within the gap
between the two particles), relate to the factor g/R, where R is the radius of the
nanosphere. The maximum spin value tends to decay as the g/R factor changes.
In particular, you can make a fit of the type y = Axb on the plot obtained and
we get that A = 3.22 ∗ 10−18 and b = −1.66, so the maximum spin value shows
this trend:

smax ≃ 1

g2

In conclusion, manipulation of the trajectory of a nanoparticle by evanes-
cent waves led to the analysis of the spin-orbit effect. Specifically, the coupling
between photon spin and angular momentum in the presence of an evanescent
wave leads to the generation of a momentum transverse to the direction of
the incident wave. By analyzing the phenomenon of gold nanospheres in plas-
mon resonance, we observed that we can induce polarized-dependent trajectory
shifts. In addition, the formation of plasmonic dimer results in the formation
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of a spin vortex such that at the center of the gap the distribution exhibits dis-
continuities. The presence of these phenomena in the evaluation of nanoparticle
trajectories opens up new scenarios in the definition of the propulsion system. In
particular, the detection of the plasmonic spin momentum would allow control
over the direction of the nanoparticle exit velocity by ensuring directionality in
a plasmonic thruster.
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Chapter 6

Fabrication and
Characterization

The optimized device, which was analyzed in the previous chapter using the
FEM method, promises to provide usable performance in real applications com-
pared to other plasmon thrusters; in fact, the parameters and the estimates
obtained from simulations are optimal for secondary propulsion in a nanosatel-
lite. Therefore, the final part of our research activity is finalized to fabricate a
prototypal device and to obtain experimental results in agreement with what
is predicted by the numerical analysis. In this chapter, we discuss the fab-
rication method of the designed and simulated trapezoidal device; then some
measurements to characterize its effectiveness are carried out and reported.

6.1 Techonogical process for device fabrication

The technological process used to fabricate our plasmonic nanodevices is based
on standard steps for the microelectronic industry. The peculiar aspects of the
process flow are to be found in the electron beam lithography, necessary to
guarantee the resolutions required by the design, and in the lift-off phase for
the physical definition of the devices. In general, this fabrication process is used
for creating a structure of a target material on the surface of a substrate using a
sacrificial layer. It is an additive technique and the structure size can vary from
the nanoscale to the centimeter scale. The whole process can be summarized
(see fig.6.1) in the following point:

• 1) the substrate is prepared;

• 2) sacrificial layer is deposited, and an inverse pattern is created (ex. pho-
toresist is exposed and developed). Depending on the resist, different
methods can be used such as Extreme UltraViolet Lithography (EUVL)
or Electron Beam Lithography (EBL). The photoresist is removed in the
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Figure 6.1: Summaries of the process based on lift-off etching

areas where the target material is to be located, creating an inverse pat-
tern.;

• 3) target material (usually a thin metal layer) is deposited on the whole
surface of the wafer). This layer covers the remaining resist as well as
part of the wafer that was cleaned of the resist in the previous developing
steps;

• 4) the rest of the sacrificial material is washed out together with parts of
the target material covering it, only the material that was in the ”holes”
having direct contact with the underlying layer (substrate/wafer) stays.

Usually, this flowchart is utilized when a direct etching of structural material
would have undesirable effects on the layer below. However, this useful technique
presents some issues:

• 1) retention: unwanted parts of the metal layer may remain on the sub-
strate. The reason can be different: the resist below the parts that should
have lifted off not dissolved properly. Also, the metal may have adherent
so well to parts that should remain that it prevents lift-off;

• 2) ears: when the metal is deposited, and it covers the sidewall of the
resist, ”ears” can be formed. These are made of metal along the sidewall
which will be standing upwards from the surface. Also, these ears may
fall over the surface, causing an unwanted shape of the substrate;

• 3)re-deposition: during the lift-off process particles of metal may become
reattached to the surface, at a random location.

In this chapter, we will explain in detail all phases listed previously. We will
also give a brief introduction of the machines used, specifying the process recipes
used for the construction of the samples that we will analyze and evaluate.
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Plasma-enhanced chemical vapor deposition (PECVD)

First of all, we need a proper substrate for the plasmonic system. In general,
the substrate for a plasmonic system must be much thicker than the thickness of
the metal on which the interaction phenomenon occurs. Therefore, a microscope
slide of 1mm thickness is typically used as the basis for plasmonic devices. How-
ever, standard glass slides have excessive surface roughness which causes prob-
lems throughout the manufacturing process and is a source of unwanted scatter-
ing of optical radiation. For this reason, it is necessary to deposit on this slide,
a buffer layer of SiO2 using a technique known as Plasma Enhanced Chemical
Vapor Deposition (PECVD). The SiO2 layer deposited through PECVD turns
out to be smooth and free of imperfections reducing errors in the manufacturing
process. Thickness of this layer must be in the order of 100/150nm.

The PECVD (fig.6.2(a)) is a vacuum deposition method used to produce
high-quality and high-performance solid materials. The process is usually used
to produce thin films. In typical CVD (Chemical Vapor Deposition), the sub-
strate is exposed to one or more volatile precursors, which react and/or de-
compose on the substrate surface to produce the desired deposit. Frequently,
volatile products are also obtained which are removed by the gas flow through
the reaction chamber. However, in PECVD the plasma enhances the chemical
reaction rates of the precursor. A plasma is any gas in which a significant per-
centage of the atoms or molecules are ionized. Processing plasmas are typically
operated at pressures of a few millitorrs to a few torrs.

Plasmas are of great interest for material processing because electrons are
so light, compared to atoms and molecules, that energy exchange between the
electrons and neutral gas is very inefficient. Therefore, the electrons can be
maintained at a very high equivalent temperature while neutral atoms remain
at ambient temperature. These energetic electrons can induce many processes
that would otherwise be very improbable at low temperatures, such as the dis-
sociation of precursor molecules and the creation of large quantities of free
radicals. The second benefit of the PECVD is in the mobility of the electrons.
Since the electrons are more mobile respect to the ions, the plasma is normally
positive respect to the other elements in the CVD otherwise a large flux of elec-
trons flows from the plasma. The presence of the electron’s flow generates a
potential difference between the plasma and the reagent in a thin region of the
CVD. Ionized atoms or molecules that diffuse to this region feel an electrostatic
force and are accelerated toward the neighboring surfaces. Thus, all surfaces
exposed to the plasma receive energetic ion bombardment. The potential in the
thin region is typically only 10− 20V but a much higher potential amplitude is
achievable with a variety of geometry and configuration. The ion bombardment
can increase the density of the film, help to remove contaminants, and improves
the film’s electrical and mechanical properties. When a high-density plasma is
used, the larger ion density induces the sputtering of the deposited film. This
sputtering can be employed to planarize the film and fill trenches or holes.

The PECVD[135] apparatus used is an Oxford PlasmaLab System 100 fig.6.2(b).
The system, used for deposition of SiO2, consists of a load-lock and a reactor
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a) b)

Figure 6.2: a)sketch of the PECVD working principle b) Image of Oxford Plas-
malab 100 used for the sample. Image reproduced by [135]

chamber. The former can be easily vented or pressurized at room temperature
and is used for sample loading. The latter can be kept at low pressure and
heated to a temperature up to 400°C. Through a sealed venting port the sam-
ple can be transferred between the load lock and the reactor chamber without
any contamination. Mass flow controller (MFC) valves, interfacing the reaction
chamber with specific cylinders in the technical room of the clean room, allow
the injection of the precursor gasses (silane SiH4, ammonia NH3 and oxygen
O2) with a controlled ratio. Such a reaction can be enhanced by the mean of
an RF field created by a plasma of precursor gases between a top electrode and
the bottom grounded sample plate. Temperature and gases-ratio can be used
to control the deposition rate of the film and therefore the final thickness.

Reactive Ion Etching (RIE)

After using PECVD we obtain a glass substrate with a surface free of imperfec-
tions and impurities. The next step is to coat the substrate with a resist, in our
specific case PMMA. However, the glass surface, due to the low reactivity of the
material, does not bond with PMMA, consequently, the PMMA layer does not
adhere to the glass substrate. Therefore, to achieve perfect adhesion between
the resist and substrate, the glass surface must be chemically ”activated”; this
process is carried out using Reactive-Ion Etching (RIE).

RIE technology used in microfabrication is a type of dry etching and uses
chemically reactive plasma to remove material deposited on substrates. RIE
generates the plasma under low pressure (vacuum) by an electromagnetic field.
High-energy ions from the plasma attack the wafer surface and react with it.

A typical RIE[135][136] (as can be seen in fig.6.3) consists of a cylindrical
vacuum chamber, with a wafer platter situated in the bottom portion of the
chamber. The wafer platter is electrically isolated from the rest of the chamber.
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Gas enters through small inlets in the top of the chamber, and exits to the
vacuum pump system through the bottom. The types and amount of gas used
depend on the process. The method of operation is the following: Plasma

Figure 6.3: sketch of RIE system

is induced in the system by applying a strong RF electromagnetic field to the
wafer platter. The oscillating electric field ionizes the gas molecules by stripping
them of electrons, creating a plasma. In each cycle of the field, the electrons
are accelerated up and down in the chamber striking both the upper wall of the
chamber and the wafer platter. At the same time, the ions move in response
to the RF electric field. When the chamber’s wall absorbs the electrons, they
are fed out to the ground and do not alter the electronic state of the system.
However, electrons deposited on the wafer platter cause the platter to build up
charge due to its DC isolation. The charge develops a large negative voltage on
the platter, typically around a few hundred volts. The plasma itself develops a
slightly positive charge due to the higher concentration of positive ions compared
to free electrons. Because of a large voltage difference, the positive ions tend to
drift toward the wafer platter, where they collide with the samples to be etched.
The ions react chemically with the materials on the surface of the samples and
knock off (sputter) some materials with their kinetic energy. Due to the vertical
delivery of reactive ions, the RIE produces a very anisotropic etch profile.

Spinning of resist layer

Once the RIE has activated the substrate, we can deposit on it the layer of
PMMA, that is the sacrificial layer in the lift-off process. The PMMA layer
must be enough thin to pattern it with the geometry of the designed device
through the lithography process. Therefore, a solution containing PMMA is
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spun at a speed of 4000 rpm on the substrate in liquid form to completely
cover the surface; finally, the PMMA film is heated with a heating plate to a
temperature of about 100°C to make the solvent evaporate and to bring the
polymeric layer to the solid state. Once this process is completed, we obtain a
substrate covered by an electron sensitive polymeric film that can be patterned
with the geometry of the plasmonic device.

E-beam lithography (EBL)

The substrate plus PMMA layer must finally be patterned, that is we must de-
fine the geometry of our sample. PMMA is exposed and then removed in some
areas by defining the shape of the desired structures through a process using
an electron beam called Electron Beam Lithography (EBL). Since our sample
has very thin features, it is necessary to use high-resolution lithography like
EBL because its higher precision. EBL[135][137] consists in the scanning of a
focused beam of electrons to draw custom shapes on a surface covered with an
electron-sensitive film called a resist (exposition). The electron beam changes
the solubility of the resist, enabling selective removal of either the exposed or
non-exposed regions of the resist by immersing it in a proper solvent (devel-
opment). The purpose is to create very small structures in the resist that can
subsequently be transferred to the substrate material, often by etching. The
primary advantage of electron-beam lithography is that it can draw custom
patterns with sub-10nm resolution. This form of maskless lithography has high
resolution but low throughput and low volume of production. The EBL system

Figure 6.4: sketch of Electron Beam Lithography working principle. Image
adapted by [135]

consists (fig.(6.4)) of a motorized x− y − z stage, a 30keV electron gun inside
a scanning electron microscope (SEM) column, a movable beam deflector and
blacker, and a pattern generator that allows for the high-resolution control of
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the relative position between sample and electron beam. The electron source
emits electrons with thermionic or field electrons emission effect. The position
accuracy is controlled within 1nm using laser interferometric techniques. The
pattern is drawn by the electron beam into the e-beam sensitive resist following
the coordinates of a series of geometrical shapes that can be specified in ded-
icated software. The software allows the control also the electron dose of the
emitter. In particular, the minimum time to expose a given area for a given
dose depends on the following formula:

D ·A = t · I (6.1)

where t is the time to expose the object (can be divided into exposure
time/space size), I is the beam current, D is the dose and A is the area ex-
posed. The software is used to input t, I, A and define the output for the elec-
tron source. An initial manual alignment is necessary to regulate the sample
orientation, the aperture, the stigmation and the focus of the beam, and the
write-field mismatch. The write field is an imaginary square of 100 × 100µm2

and is the smallest unit of discretization in the raw movement of the electron
beam. While proceeding with the automatic patterning, the stage moves from
the center of one writing field to another. Within each write field, a stitching
error < 50nm may occur. The SEM detectors can also be used to perform mix-
and-match exposures on a substrate already patterned with alignment marks.
When the electron beam hits the resist surface an inelastic scattering or colli-
sion occurs. The momentum transfer from the incident electron is capable of
breaking the atom’s bond in the resist. In general for a molecule AB:

e− +AB → A+B− (6.2)

The electrons obtained from the atoms bound generate an electron cascade and
have a significant contribution to the evaluation of energy deposition. The sec-
ondary electrons induced by the incident beam and the forward scattering of
the primary electrons (incident electrons make multiple scattering with the sub-
strate) generate a proximity effect. The proximity effect increases the electron
dose and exposure area of the resist, effectively enlarging the image and re-
ducing the contrast. The proximity effect can be addressed by evaluating an
inverse problem and calculating the exposure function E(x, y) that leads to a
dose distribution as close as possible to the desired dose D(x, y). Thus, in our
case, initially using CAD software, the geometries for the samples, named Pr01
and Pr02, were defined. Once the geometries are imported into the software,
the minimum dose and current fed into the EBL are defined to obtain the pat-
tern with the least possible error. The ideal dose, in our case, is between 800
and 1400 uC/cm2 with current ranging from 1nA to 2nA. Once the lithography
process is completed, the sample is developed i.e., the PMMA weakened by the
electron beam is removed using a proper solvent.
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Metal evaporation and etching (lift-off)

After the development process, our system consists of a substrate with a PMMA
layer on top that has ”holes” with the shape of the designed sample geometry.
The specimen is then ready for the following step of the process, that is the
metal layer deposition. The metals used for the fabrication of our sample are
titanium and gold, 2nm and 30nm thick respectively. The titanium is only
intended to act as an adhesion layer between the gold and the SiO2 substrate
so that (as analyzed in Chapter 4) it does not excessively alter the field response.
Evaporation is a common method for thin metal film deposition. The source
material is evaporated in a vacuum chamber. The vacuum allows vapor particles
to travel directly to the target object (substrate), where they condense back to
a solid state. The evaporator[138][135] is an electron-beam type machine where

Figure 6.5: sketch of metal evaporator working principle

the metals are loaded in crucibles that can be selectively rotated and heated
up to very high temperatures by an electron beam with energy up to 15keV .
Once the metal starts to evaporate, a shutter is opened allowing the migration
of its atoms towards the surface of the sample mounted inside the main vacuum
chamber at ≃ 10−7mbar. The evaporated metal particle can travel directly to
the deposition target without colliding with the background gas, thanks to the
high vacuum made in the chamber. The deposition rate, and therefore the final
thickness, is monitored using a piezoelectric sensor which resonance frequency
depends on the thickness of material deposited on the crystal.

However, evaporated atoms may collide with other gas molecules which are
present in the chamber and react to them. This reduces the amount of matter
that reaches the substrate and so the thickness becomes difficult to control. In
addition, if the substrate has a rough surface, the evaporated atoms deposition
is non-uniform. Because the evaporated material attacks the substrate mostly
from one direction, the surface’s grooves black the evaporated atoms in some
areas. This phenomenon is called ”shadowing” or ”step coverage”. The metal
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condensed then on the entire wafer forming a thin metallic layer with controlled
thickness. Once the evaporation process is concluded, the metal coats the entire
surface of the substrate. Finally, through a bath in an acetone-based solution,
the PMMA film is chemically removed together with the metal layer deposited
on it. On the other hand, only the metal regions deposited in correspondence
with the areas exposed during the EBL lithography and in which the PMMA
had already been removed before the evaporation, remain present on the sample.
This last phase of the process is more properly called lift-off. The obtained
samples, named Pr-01 and Pr-02, will be then characterized by microscopy
techniques to verify the accuracy of the technological process.

6.2 Fabrication Result

Once the lift-off process was terminated, we have fabricated two samples named
Pr-01 and Pr-02. The samples have a 5mm × 5mm area in which a series of
trapezoidal structures ready for the characterization step was written. Specifi-
cally, sample Pr-01 is composed of trapezoidal structures of gold and titanium
(30nm and 2nm thick respectively) with constant gaps in two different configu-
rations:

• 1) linear array configuration, 3µm long and composed of about 15 elemen-
tary cells;

• 2) circular array configuration, with two different radii, 5µm and 10µm.

The linear array configuration is replicated several with different geometric pa-
rameter values (major base, height, gap, spacing along y) so that the results
of the simulations can be verified as the geometric parameters change (section
4.5.3). Instead, the circular configuration has a geometry optimized for reso-
nance at the wavelength of 810nm, which is the wavelength of the laser source
available in our laboratory. The Pr-02 sample, on the other hand, is composed of
similar trapezoidal titanium and gold structures, but with alternating or linearly
variable gap, organized in the following configurations:

• 1) linear array of alternating gap structures, with length of 6µm, composed
of 15 elementary cells;

• 2) linear array of linearly variable gap structures with length of 6µm ,com-
posed of 15 elementary cells;

• 3) circular arrays of alternating gap structures, with radius 5µm and 10µm
respectively;

• 4) circular arrays of linearly varying gap structures, with radius 5µm and
10µm respectively.

As in the case of sample Pr-01, the linear arrays in the Pr-02 sample are repli-
cated several times with different geometrical parameters. The circular arrays
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in the Pr-02 sample are designed to have resonance at 810nm, but they were
replicated with different spacings between the elementary cells for solving some
fabrication process issues that will be exposed latter in this section. Each array
in the two samples is separated by about 0.5µm to avoid interference effects
between one structure and the next. The Pr-01 sample was designed to test the
technological process developed and used, while Pr-02 is the sample designed
for characterization. In this chapter, we report the results obtained from the
morphological characterization of the fabricated devices using the Atomic Force
Microscope (AFM) and the Scanning Electron Microscope (SEM), which have a
sub-wavelength resolution, given the geometrical features we expect to evaluate.

Atomic Force Microscopy

Once the fabrication process is terminated, the PR-01 sample is tested with
Atomic Force Microscopy (AFM). AFM is a very-high-resolution type of scan-
ning probe microscopy, with a resolution of a nanometer’s fraction (0.1nm),
more than 1000 times better than the optical diffraction limit. The AFM sys-

Figure 6.6: Sketch of AFM working principle

tem is sketched in (fig.6.6)[139]. A small spring-like cantilever (l = 110µm
w = 35µm) is carried by the support, a piezoelectric element (made of ceramic
material) oscillates the cantilever, a sharp tip (curvature radius 10nm) is fixed
to the free end of the cantilever, a laser is focalized on the cantilever and a four-
sector photodetector records the deflection of the laser, deriving the motion of
the cantilever. The photodetector converts the deflection of the cantilever into
an electric signal; the intensity of the signal is proportional to the displacement
of the cantilever. The sample is mounted on a stage and an x-y-z drive allows
its displacement in a controlled way. A z-feedback loop controls the z-position
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of the cantilever, and it verifies the position error of the tip and evaluates the
z-topography.

The AFM systems have two main operating modes, according to the nature
of the tip motion: contact mode and non-contact mode.

In contact mode[140], after defining a signal intensity like a ”set point”, the
tip is placed across the surface of the sample. The atomic force, in virtue of the
Lennard-Jones potential, is repulsive; thus, the tip suffers a force that displaces
it, so altering its position respect to the laser focalized on it. The variation of the
laser spot position is monitored with a four-sector photodetector and its changes
modify the produced electrical signal intensity. The z-electronic feedback loop
is employed to keep the probe sample force constant during scanning. Thus,
the difference between the new signal intensity and the ”set point” is an input
to the z-feedback loop, and its output controls the distance along the z-axis.
When the feedback modifies the distance, the signal returns to the ”set point”
intensity. The repetition of this cycle for each point (x, y) during a raster scan
of the sample allows us to obtain the topography its surface.

In non-contact mode[140], the tip of the cantilever does not contact the
sample surface. The cantilever instead oscillates at its resonance frequency
(320Hz in our microscope). The van der Waals forces are strongest in the
range from 1nm to 10nm above the surface than any other long-range force.
This force extends above the surface decreasing the resonance frequency of the
cantilever. The shift of the resonance frequency, combined with the feedback
loop system, maintains a constant oscillation frequency by adjusting the tip-to-
sample distance. Measuring the tip-to-sample distance at each (x, y) data point
allows the scanning software to reconstruct a topographic image of the sample
surface.

Figure 6.7: AFM imaging of sample Pr-01
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Fig.6.7 shows the results of the Pr − 01 sample analysis carried out with
the AFM in contact mode. Through AFM measurements, we observed some
elementary cells present in the linear and circular arrays, focusing on the di-
mensions of the geometric parameters of the trapezoid, namely major base,
minor base, height, gap, and spacing between the elementary cells. The data
obtained from the AFM analysis are compared with the design parameters of
the Pr-01 sample; it was noticed that the dimensions of the major base, minor
base, and height are increased in the fabricated structures by 20nm compared
to the design data, while the spacing between the elementary cells is reduced
by 15nm. From the AFM analysis, we are not able to obtain information about
the size of the gap; because the AFM tip has a larger dimension (radius of
curvature) than the gap between the two structures. For this reason, AFM can
not reconstruct the correct topology of the gap and then we decided to analyze
this specific feature of the Pr-01 sample through a scanning electron microscope
(SEM).

6.2.1 Scanning Electron Microscope (SEM)

The results of the AFM analysis report partial indications on sample Pr-01. The
reason is that the low resolution due to the tip size being larger than the gap size
of trapezoidal devices. To overcome this limit, switching from probe microscopy
to electron scanning microscopy (SEM) is required (fig.6.8). Electron scanning
microscopy[141][142] has a higher resolution and thus allows gap analysis, to-
gether with other geometric parameters that are ”invisible” to AFM analysis.
An SEM is a type of microscope that produce images of a sample by scanning its

Figure 6.8: Sketch of SEM system

surface with a focused beam of electrons. The electrons interact with atoms of
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the sample, producing various signals that contain information about its topog-
raphy. The electron beam is scanned in a raster pattern, and the intensity of the
detected signal is correlated with the position of the beam to produce an image.
The signals used in a SEM to produce an image result from interactions of the
electron beam with atoms at various depths within the sample. Various types
of signals come from secondary electrons (SE), back-scattered electrons (BSE),
characteristic X-rays, and cathodoluminescence (CL). Secondary electrons (SE)
have very low energy, on the order of 50eV , which limits their mean free path
in solid matter. SE can only escape from the top few nanometers of the sample
surface. The signal from secondary electrons tends to be highly localized at
the point of impact of the primary electron beam, making it possible to col-
lect images of the sample with a resolution of 1nm and below. Back-scattered
electrons (BSE) are beam electrons that are reflected from the sample by elas-
tic scattering. Since they have much energy than SE, Back-scattered electrons
emerge from deeper locations within the specimen; consequently, the resolution
of BSE images is lower than SE images. BSE images, thanks to the character-
istic X-ray spectra, can provide information about the distribution but not the
identity of a different element of the sample. Due to the very narrow electron
beam, SEM micrographs have a large depth of field yielding a characteristic
three-dimensional appearance useful for understanding the surface structure of
the sample. In a typical SEM, an electron beam is emitted from an electron gun
fitted with a tungsten filament cathode or with a field emission source (Schottky
emitter or tungsten tip). Tungsten is normally used in electron guns because it
has the highest melting point and lowest vapor pressure of all metals, thereby
allowing it to be electrically heated for electron emission. The electron beam
has an energy ranging from few hundreds of eV up to several tens of keV and is
focused by one or two condenser lenses to a spot from about 0.5nm up to 5nm
in diameter. The beam passes through pairs of scanning coils in the electron
column, typically the final lenses, which deflect the beam in the x and y axis and
scan in a raster way a rectangular area of the sample surface. When the primary
electron beam interacts with the sample, the electrons lose energy by repeated
random scattering and by absorption within a part of the volume, which ex-
tends from less than 100nm to approximately 5µm into the surface. The energy
exchange between the electron beam and the sample results in the reflection of
high-energy electrons by elastic scattering, the emission of secondary electrons
by inelastic scattering, and the emission of electromagnetic radiation, each of
which can be detected by specialized detectors. The beam current absorbed by
the specimen can also be detected and used to create images of the distribution
of the specimen current. Electronic amplifiers of various types are used to am-
plify the signal, which is displayed as a variation in brightness on a computer
monitor. Each pixel of computer video memory is synchronized with the posi-
tion of the beam on the specimen in the microscope, and the resulting image is,
therefore, a distribution map of the intensity of the signal being emitted from
the scanned area of the specimen. The sample Pr-01 was visualized with the
SEM microscope (see fig.6.9; in particular, some elementary cells of different
linear and circular arrays were analyzed focusing on the size of the geometric
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Figure 6.9: SEM imaging of sample Pr-01

parameters of each elementary cell, as in the case of analysis by AFM. The
SEM data are in agreement with those of AFM about the dimensions of the
major base, minor base, heights, and spacing between elementary cells. Given
the resolution of the SEM microscope, it was possible to visualize the size of the
gap between the two trapezoids. From SEM images, it is evident that the gap
between the trapezoids decreases by about 15nm compared with that predicted
from the design data of sample Pr-01. However, as observed in fig.6.9, a prob-
lem arises at the time when the elementary cells in the end-to-end configuration
are analyzed. In particular, it can be seen from the figure that the gap of the
elementary cells in an end-to-end matrix tends to close around the fifth or sixth
trapezoidal structure along the array; this event can be observed for both linear
and circular array structures. The phenomenon can be explained by considering
a manufacturing defect that occurs during the patterning of the sample caused
by the proximity error typical of the EBL technique (see paragraph 6.1.3). In
the Pr-02 sample, to avoid the formation of structures with closed gaps, we pre-
ferred to design the array configurations with the constant presence of an offset
in the spacing between the elementary cells. The Pr-02 sample, fabricated with
these corrections, can then be analyzed under an optical microscope to verify
the plasmonic resonance predicted by the numerical simulations discussed in the
previous chapters.

6.3 Characterization of the sample

Once the results of the fabrication process are completely analyzed, the Pr-02
sample is tested in some experiments to characterize the electric field response
of the surface plasmon and its resonance wavelength.

An initial experimental analysis was carried out using an optical microscope
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in transmission mode. For the experiment, we use a Leica DM 6000M micro-

Figure 6.10: Microscope Leica DM6000M in laboratory

scope, shown in fig.6.3, with a white light lamp source and collection objectives
with magnification up to 100x, needed for visualizing plasmonic structures. In
our setup, we focus the white light through the microscope onto the sample,
and then we collect the transmitted light on the opposite side, in the so-called
transmission mode. A polarizer oriented along x (see fig.6.11) is applied to the
incident light beam, while a polarizer orthogonal to the input one is placed in
front of the collection objective. In this way, we get a better view of the re-
sponse field of the plasmonic structure by cutting off the incident field. The
results are shown in Fig.6.11. In particular, the figure illustrates that the circu-
lar structures exhibit a response field only in some areas of the ring (highlighted
in green) This conformation is repeated symmetrically over the entire circumfer-
ence. The result is in agreement with the characteristics of our plasmonic device.
Specifically, when incident light passes through the polarizing filter, becoming
x-polarized, and illuminates the circular structure, a resonance is generated in
devices with transverse gap at the light polarization. The resonance is man-
ifested, in far-field analysis by the formation of a shadow cone in the area of
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Figure 6.11: Result of the transmission analysis in circular plasmonic device with
x-polarized incident field and a y-polarized filter on the collector; highlighted in
green the excitation zones of the plasmonic device

interest. If the polarized light along x passes through a filter that orthogonally
polarizes the beam, the incident wave is darkened. This implies that the area
where the circular device is not excited, i.e., where the polarization is parallel to
the gap, is darkened. Finally, we consider the plasmonic response of the circular
device that is partially excited by the incident beam (green circle of fig.6.11),i.e.,
the structures in which the polarization of the incident light is neither parallel
nor transverse to the gap and therefore the device reacts to the incident field
partially. In the area highlighted in green in Fig.6.11, only the transverse gap
component of the incident polarization excites the structures while the com-
ponent parallel to the gap passes undisturbed through the system. Since the
component that excites the system is not transmitted, only the incident field
component parallel to the gap of the structures in green in fig.6.11 arrives on the
collector. Since a polarizer has been placed on the collector along y (according
to the reference system in fig.6.11) and the component parallel to the gap is a
superposition of Ex and Ey it follows that only part of the field is absorbed by
the polarization filter and for this reason, the area highlighted in green remains
illuminated.

The results obtained from fig.6.11 show the resonant behavior of the plas-
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a) b)

Figure 6.12: a) the high-pass laboratory filter for the infrared transmission
analysis b) transmittance as a function of the wavelength in each filter

monic device. However, with this type of setup, we are unable to confirm
that the plasmonic resonance is at the wavelength predicted by the simulations
with the geometrical parameters used for the fabrication of the Pr − 02 sam-
ple (810nm). Therefore, it is necessary to reduce the spectrum of wavelengths
emitted by the light source. For this reason, we place high-pass filters on the
incident beam (fig.6.12(a)); the filters can cut the wavelengths of the incident
beam according to the curves observed in fig.6.12(b). With this type of setup,
we observed circular devices with two different polarizations. Initially, in fig.6.13
the circular devices with spacings along the elementary cells are shown with the
same polarization as in fig.6.11 and for different filters. We note how as the
wavelength increases, the filter cuts the intensity of the transmitted field in the
area around the green circle up to 850nm, where the transmitted field is not vis-
ible. The decrease in intensity can be explained if we look at the transmittance
spectrum of an elementary cell of the plasmonic device reported in fig.4.26; in
particular, it is evident from the graph that in the area around the plasmon res-
onance the transmittance decreases rapidly compared to what happens in other
spectral ranges. Therefore, the more the filter tends to eliminate light radiation
close to the plasmon resonance, the lower the amount of transmitted light we
receive from the plasmonic device. When the transmitted radiation is no longer
visible, the system does not admit resonance in the filter spectrum, as all the
transmitted beam is absorbed by the filter placed on the microscope collector.
The same phenomenon occurs in fig.6.14 where we analyze in transmission some
circular devices in an end-to-end configuration in which the incident beam is po-
larized as indicated in the upper left figure and along the collector we have a
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Figure 6.13: Transmitted beam in circular plasmon device with spacing in the
elementary cell. The incident field is polarized along x and the analyzer is
polarized along y; highlighted in green the excitation area of the plasmonic
device. The incident wavelength is cut with different high-pass filters seen in
fig.6.12(a)

polarizer filter transverse to the incident field. Since the polarization is different
from that in fig.6.13, the area illuminated by the transmitted beam shifts around
the x and y-axis (as indicated by the green circle), which repeats symmetrically
throughout the circumference. Again, passing through filters with longer cut-
off wavelengths results in a reduction in the intensity of the transmitted beam
until 850nm, following what is predicted by the calculated transmission spec-
trum. Measurements produced with this setup appear to identify a wavelength
spectrum in which the plasmonic structure can resonate and in agreement with
what is predicted by the calculated transmission spectrum appears to be be-
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Figure 6.14: Transmitted beam in circular plasmon device. The incident electric
field is polarized as indicated in the upper left figure and the collector has a
filter with transverse polarization with respect to the incident field; highlighted
in green an excitation zone of the plasmonic device. The incident wavelength is
cut with different high-pass filters seen in fig.6.12(a)

tween 780nm and 850nm. However, the CCD that collects the transmitted light
by the device has a higher efficiency in the visible than in the infrared range,
so the reduction in intensity can also be induced by the loss of efficiency of the
CCD. A final analysis of the plasmonic structure characteristics was performed
by replacing the white light lamp with a laser beam with a wavelength of 805
nm. (See fig.6.15) In this case, we use the same polarizer and the same analyzer
of the fig.6.14.
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Figure 6.15: Trasmission Microscope Leica DM6000M with a source laser of
805nm of wavelength (red circle).

The results obtained are reported in fig.6.16 where a behavior similar to
fig.6.14 is observed. In fact, the partial resonance is found around (the green
circle) repeated with symmetry along the entire circumference. In fig.6.16 we
also observe the ray transmitted by a linear array. The measurement performed
confirms the presence of a resonance in a wavelength spectrum of approximately
100nm around the value of λ = 805 originating from the laser source.

Finally, an analysis of the scattered field was also carried out, which unlike
the transmission analysis allows to obtain the confirmation of the electric field
induced by the surface plasmon. Specifically, the sample was analyzed using a
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Figure 6.16: Trasmission spectrum of circular device (upper left with spacing
between elementary cell and upper right end-to-end configuration) and linear
device (lower left end-to-end configuration and lower-right with spacing between
elementary cell) in which the incident field (laser beam with wavelength 805nm)
is polarized as indicated by the upper left figure; along the collector we use a
polarizer filter transverse to the incidence polarization. Highlighted in green a
excitation area of the plasmonic device

WiTec alpha300R SNOM (fig.6.17) that is capable to visualize the electric field
distribution through the scattered field analysis. The analysis of the scattered
field (s-SNOM) allows us to collect only the field diffused by the sample exclud-
ing the transmitted beam so as to be able to visualize the areas in which the
field re-emitted by the plasmon structure tends to maximize. Fig.6.18 shows
the results of scattered field analysis; in particular, the incident field comes
from a supercontinuum laser,i.e., Super K with a maximum power of 4W and
wavelengths ranging from visible to infrared [450 − 2500nm]. We observe that
the structure exhibits amplification in the plasmonic device placed along the
x-axis, in agreement with when observed in transmission analysis, as shown in
Fig.6.1. Analysis of the wavelength spectrum showed that the system tends to
be in resonance at around 750nm. This result is in fair agreement with what
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Figure 6.17: The WiTec alpha300R microscope

was observed in the simulations in which the structures were found to have
resonance at about 810 nm; however uncontrolled spacings between the various
elementary cells in the fabricated device result in a blue shift of the resonance
length. Furthermore, to overcome the manufacturing defects found in the AFM
and SEM analyses, it was necessary to design the sample structures with a lower
height than the simulated one; this may have led to a further blue shift of the
wavelength.

Summarizing what was presented in this chapter, given the good outcome of
the FEM simulations, we first moved on to the phase of realizing the designed
devices and then to their morphological and functional characterization. The
technological process used consists of the following steps:

• 1) starting from a 1mm-thick glass slide, 150nm of SiO2 were deposited
to reduce substrate imperfections;

• 2) after surface activation by RIE, the substrate was coated with a thin
layer of PMMA;

• 3) the PMMA was patterned with the geometry of the plasmonic device
using EBL;

• 4) the patterned PMMA was developed with a solvent and then titanium
(2nm) and gold (30nm) layers were deposited on the substrate;

• 5) the substrate, except for the patterned area, is cleaned of excess metal
and PMMA with a bath in acetone solution (lift-off step).
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Figure 6.18: Scattered field microscopy of the circular plasmonic device

Two samples Pr-01 and Pr-02 were obtained by this process. Pr-01 is the sample
used to verify the goodness of the fabrication method. After AFM and SEM
analyses, some imperfections were observed in the dimensions of the various
geometric parameters and in the gap between the structures. Sample Pr-02,
taking into account the corrections obtained from the Pr-01 characterization,
was fabricated and then used for the first analysis of plasmonic resonances. The
analysis was performed using two different methods: a transmission microscope
and a scattered near-field scanning optical microscope (s-SNOM). In both cases,
the system showed resonance in the range between 700nm and 850nm, in agree-
ment with what was predicted by FEM simulations on the same structures.
The results obtained are decidedly encouraging and can be the starting point
for further experimental verifications, in particular for the characterization of
the dynamics induced by these systems on nanospheres.
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Conclusion

The new frontier of satellite design for intra- and extra-orbital missions has
led to the development of the nanosatellite concept. However, to optimize the
performance and payload capacity of nanosatellites, it is necessary to adopt
a propulsion system, that is extremely compact and lightweight, maintaining
performance for the satellite control. The required characteristics have led to
the development of several remote propulsion techniques, in which thrust is
induced through the activation of various physical phenomena by a source of
energy placed at a certain distance from the body on which the propulsion acts.

In this thesis, we discussed one of these approaches, i.e., the propulsion
induced by the emission of nanoparticles from a propulsion system inside the
nanosatellite appropriately activated by a remote source. The need to ma-
nipulate nano- and microscopic objects with remote techniques has implied the
development of devices capable of locally amplifying and concentrating the elec-
tromagnetic field of a remote source, intensifying the electromagnetic force act-
ing on the nanoparticles and inducing their ejection and propulsion. One of the
most interesting techniques is based on the use of surface plasmonic phenomena
that can amplify and model the electromagnetic field in small areas.

In this thesis work, we have reported the results of the activity of study,
analysis, and numerical simulation of the operation of a plasmonic nanostruc-
ture optimized to generate an appropriate spatial distribution of EM field. The
research activity carried out has led to the definition of an optimized geometry
that allows to overcome the limitations of similar structures presented in the
recent scientific literature, thus making their performance of real application
interest. The proposed nanostructure consists of two trapezoidal scalene prisms
of gold deposited on a glass substrate; when the device is illuminated with po-
larized light, a plasmonic phenomenon is excited, i.e., a coupling between LSP
(Localized Surface Plasmon) and SPP (Surface Plasmon Polaritons), which gen-
erates a strongly asymmetric and amplified electromagnetic field distribution
that induces kinetics on a nanoparticle. A numerical technique called Finite
Element Method (FEM) implemented in the commercial software COMSOL
Multiphysics, coupled with Matlab software, was used to simulate the opera-
tion of the structure and evaluate its performance. In the first step, we derived
the electric field distribution and the optical force in the plasmonic structure
when it is excited with light radiation with the correct wavelength and polar-
ization. Results were compared with those of other similar devices proposed in
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literature, obtaining better performance in terms of induced force. For the ele-
mentary cell, we next evaluated the effects of varying geometrical parameters on
the characteristics of the plasmonic phenomenon, such as resonance wavelength
and electric field distribution, and consequently on the force generated. From
the simulation results, we define the guidelines for the design of an optimized
structure at the wavelength of a specific illumination source. The spatial repli-
cation of the proposed nanostructure was designed to analyze the behavior of
linear or circular arrays of such elementary cells. This is a useful approach to
periodically replicate and thus amplify the contribution of the generated force,
and increase the final velocity of the ejected nanoparticles. Among the two
configurations analyzed, the circular one achieves the same performance as the
linear array, but with a spatially more compact structure eliminating the de-
pendence of the final velocity on the number of elementary cells composing the
array. However, due to inevitable manufacturing imperfections, the trajectory
of the uniformly accelerated particle in a circular array may not be easily pre-
dictable, as well as its ejection point. A spiral configuration could be adopted
to overcome this limitation.

The estimated results (induced force between 30-450 pN/W, final velocity
with an incident electric field E0 = 1(V/m) of about 0.01-0.15 µm/s for an
elementary cell, depending on the size of the nanoparticle considered) are in-
teresting because the proposed structure, without the need of a power source
on board the nanosatellite, and at the same time, characterized by small size
and weight, has performance comparable to other secondary optical thrusters.
In addition, we analyzed the difference between the two configurations (circular
and linear) observing that the circular configuration with the same size is more
efficient than the linear array.

A required property for a secondary propulsion system is the control of
the nanosatellite displacement to improve the accuracy of the orbit corrections.
Thus, the second step of the work performed is directed toward finding a solu-
tion for controlling the trajectory of the ejected propellant. For this reason, we
studied a technique for the direct control of ejected nanoparticles that exploits
the coupling effect between the wave intensity with the direction of field polar-
ization. This effect arises from the quantum nature of the light that associates
the electromagnetic wave with a particle (photon) with a spin of its own and is
known as the spin-orbit effect. The spin-orbit effect in evanescent waves defines
a transverse momentum that changes the trajectories of particles affected by it.
Based on this information, we studied the phenomenon of a gold nanoparticle
generating an LSP resonance and derived the following characteristics:

• 1) in the case of a single particle, the spin is distributed tangentially to
the plane orthogonal to the polarization direction of the incident field and
exhibits vortex and anti-vortex, given the symmetry of the system;

• 2) the dynamics of the resonant nanoparticle undergo deflections induced
by the spin transverse momentum. This deflection depends on the incident
polarizations;
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• 3) in a plasmonic dimer, a vortex and an anti-vortex are formed within
the gap for only a few polarizations, with varying intensities depending on
the size of the gap and the polarization used; these two vortices collapse
at the center, forming a discontinuous spin zone.

It is possible to modulate the direction of a nanoparticle exiting a plasmonic
thruster by applying an appropriate polarization to the incident field. In addi-
tion, the plasmonic spin-orbit effect also has significant consequences on plas-
monic dimers, leading to the generation of spin vortices and topological charging
of the system. Spin control in surface plasmons may also have other future ap-
plications besides those related to propulsion, particularly in the development
of spintronics, or the creation of electronics controlled by the spin of an electro-
magnetic wave.

Finally, given the encouraging results obtained from the FEM analysis of
the structure, the design of the optimized structure led to the fabrication of a
family of prototype devices at a nanofabrication foundry, where a technological
process based on the use of electron beam lithography and subsequent lift-
off step was developed and employed. The devices fabricated, in both linear
and circular array configurations, were characterized morphologically and from
the optical point of view for the evaluation of resonance wavelengths and the
generated EM field distribution. From initial analyses, the experimental results
appear to be in excellent agreement with the simulative ones. Shortly, we will
try to improve the performance of the structure; the first goal is to overcome
the main limitation of plasmonic devices, namely the strong decay of electric
field amplification when moving away from the metal structure supporting the
plasmon itself. In particular, we observed that nanoparticles located higher than
the gap where LSPs and SPPs are generated, that is, in the region of exponential
decay of the plasmonic wave, have lower force parameters. To overcome the
lower force amplification, one can exploit a structure with a similar electric
field distribution, but characterized by a lower reduction in the amplification
induced by plasmonic damping; one example sees the excitation of plasmonic
phenomena in semiconducting materials instead of metals. In the literature, it
is known that semiconductors are capable of exciting surface plasmonic effects,
but the material induces a plasmonic electric field with less spatial damping.
The derived optical force does not reduce its intensity by moving away from the
structure, and the velocity of even distant nanoparticles could be significant. In
addition, the thermal stability of a semiconductor structure reduces the thermal
effects related to heating-induced deformation in the trapezoidal device, and the
dynamics induced on the nanoparticle turn out to be more stable.

In conclusion, a plasmonic propulsion system would take the use of Cube-
Sats to the next level. The remote use of nanosatellites, controlled through
the plasmonic propulsion system, would ensure easier maneuverability of the
CubeSat with the ability to acquire data and images most efficiently. However,
a propulsion system with this size and phenomenology can have other appli-
cations besides the aerospace sector. In particular, in the medical-biological
field, a recurring theme is the displacement of genetic and molecular material.
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Thus, such a plasmonic locomotion system, suitably tuned for biological sys-
tems, would ensure the movement of the genetic material of various types with
efficiency and stability. Given these premises, plasmonic propulsion turns out
to be a topic with higher prospects, the improvement of which would bring
incredible development in many areas of research.
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Appendix A

Electromagnetism in
vacuum

A.1 Vacuum Relation of E and B

In this first part, we will look in detail at the equations describing light in a ma-
terial focusing on how to derive mechanical quantities (force and energy) from
electromagnetic waves. In 1893 Maxwell demonstrated the electromagnetic na-
ture of light i.e., that light rays are the result of a combination of two vectors E
and B electric field and magnetic induction field, respectively. Electromagnetic
waves are defined through relationships between the electric field and the mag-
netic induction field, namely Maxwell’s equations, which can be schematized as
follows[54]:

∇×B =
1

c
Ė (A.1a)

∇×E =
1

c
Ḃ (A.1b)

∇ ·E = 0 (A.1c)

∇ ·B = 0 (A.1d)

To describe the effect of the fields on a material object it is necessary to introduce
a second set of vectors: the electric current density J, the electric displacement
D, and the magnetic field H. The presence of a continuous medium changes
Maxwell’s equations eq.A.1a-A.1d which will be defined as[54]:

∇×H− 1

c
Ḋ =

4π

c
J (A.2a)

∇×E− 1

c
Ḃ = 0 (A.2b)

∇ ·D = 4πρ (A.2c)
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∇ ·B = 0 (A.2d)

where ρ is a known scaled quantity representing the charge density within the
continuous medium; ρ is related to J by the following equation[54]:

ρ̇+∇ · J = 0 (A.3)

the eq.A.3 is called the equation of continuity. It represents the charge conser-
vation in the neighborhood of any point.

The Maxwell equations connect the five basic quantities E,H,B,D and J.
The result is a unique determination of the field vectors from a given distribution
of currents and charge; however, these equations must be supplemented by
relations that describe the behavior of substances under the influence of the field.
These relations are known as constitutive relations. They take the following
form[54]:

J = σE (A.4a)

D = ϵE (A.4b)

B = µH (A.4c)

Where σ is called specific conductivity, ϵ is known as dielectric constant and
µ is called magnetic permeability. Eq.A.4a is the differential form of Ohm’s
law. Substances with σ ̸= 0 are called conductors. Substances with σ negligible
are called dielectrics. Their electric and magnetic properties are determined
from the value of ϵ and µ. In general, most substances have µ ≃ 1; however
in the case in which µ ̸= 1 appreciably, the material is defined as magnetic.
Maxwell’s equation is only applicable to regions of space in which the physical
properties of the medium are continuous. In optics, it is easy to find situations
in which the properties of the medium change abruptly across one or more
surfaces. The vectors E,H,B,D become discontinuous and ρ and J degenerate
into corresponding surface quantities. Thus, it is possible to determine the
behavior of the electric and magnetic field components when moving from one
continuous medium to another[143][144]. It is shown that the normal component
of the magnetic induction is continuous across the surface of discontinuity:

n12 · (B(2) −B(1)) = 0 (A.5)

where n12 is the norm across the discontinuity surface. The normal component
of the electric field displacement change across the surface:

n12 · (D(2) −D(2)) = 4πρ̃ (A.6)

where ρ̃ is the charge density along the discontinuity surface.
Instead, The tangential component of the electric field is demonstrated that

is continuous across the surface:

n12 × (E(2) −E(1)) = 0 (A.7)
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While the tangential component of the magnetic vector changes abruptly as:

n12 × (H(2) −H(1)) =
4π

c
J̃ (A.8)

where J̃ is the charge surface current density.
Maxwell’s equations define the relationships between electric and magnetic

fields, however, it is possible to relate the intensity of electromagnetic fields to
mechanical properties such as energy flows and transferred moments. Recalling
Maxwell’s equations (eq.A.2a-A.2d) it follows that[54][144]:

E · ∇ ×H−H · ∇ ×E =
4π

c
J ·E+

1

c
E · Ḋ+

1

c
H · Ḃ (A.9)

By a known vector identity, i.e. a · (b × c) = b · (a × c) = c · (a × b), the left
term may be expressed as the divergence of the vector product of H and E and
obtain:

1

c
(E · Ḋ+H · Ḃ) +

4π

c
J ·E+∇ · (E×H) (A.10)

After we make the product between this equation and the factor c
4π and integrate

throughout an arbitrary volume and apply Gauss’s theorem, obtain:

1

4π

∫
(E · Ḋ+H · ḂdV +

∫
J ·EdV +

c

4π

∫
(E×H) · ndS = 0 (A.11)

where the last integration is taken over the boundary of volume and n is the
normal unit outward. Considering the presence of a continuous medium, the
constitutive relations (eq.A.4a-A.4c) are valid, and the eq.A.11 can be rewritten
as follows:

1

4π

∫
(
∂

∂t
ϵE2 +

∂

∂t
µH2)dV +

∫
J ·EdV +

c

4π

∫
(E×H) · ndS = 0 (A.12)

we can define we = 1
8π ϵE

2, wm = 1
8πµH

2 and W = we + wm. It is possible to
demonstrate that W represents the total energy contained within the volume
so that we is the electric density within the volume and wm is the magnetic
density within the volume. For an isolated system, the increase of W per unit
of time is associated with the work done on the system during this time. We can
define Q = J ·E; this term represents the resistive dissipation of energy (called
Joule’s heat) in a conductor. Another term appears if the field extends to the
boundary surface. In particular, we define S = E×H as a Poynting vector and
represent the amount of energy which crossed per second a unit of area normal
to the direction of E and H.

The electromagnetic field, since it generates energy and work on a body,
consequently also defines dynamic and thus electromagnetic field-induced mo-
ments. The forces defined by the electric field are called Lorentz Forces and are
defined as follows[56]:

F = q(E+ v×B) =

∫
ρ(E+ v×B)dV (A.13)
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where q is the charge of the body, ρ is the volume charge density and v the
velocity of the body. we can define f = ρE+J×B as the electromagnetic force
per unit volume. Given Maxwell’s equations (A.2a-A.2d), we replace ρ and J
in terms of the electric and magnetic fields respectively and obtain:

f = ϵ0(∇ ·E)E+
1

µ0
(∇×B)×B− ϵ0

∂E

∂t
×B (A.14)

The part of the equation with the time derivative can be rewritten in terms of the
Poynting vector using a combination of Leibniz’s rule and Maxwell’s equations
(A.2a-A.2d) in the following way:

∂E

∂t
×B =

∂(E×B)

∂t
+∇× (∇×E) (A.15)

Substituting into f and separating the terms in E and B we get the following
result:

f = ϵ0[(∇·E)E+∇×(∇×E)]+
1

µ0
[(∇·B)B−∇×(∇×B)]−ϵ0

∂(E×B)

∂t
(A.16)

The term (∇·B)B was added by considering equation A.2d to keep the symme-
try of the relation. We also use the vector identity 1

2∇(a·a) = a×(∇×a)+(a·∇)a
to eliminate curl from the formula of f (eq.A.16) and obtain:

f = ϵ0[(∇ ·E)E+ (E · ∇)E] +
1

µ0
[(∇ ·B)B+ (B · ∇)B]+

−1

2
∇(ϵ0E

2 +
1

µ0
B2)− ϵ0

∂

∂t
(E×B)

(A.17)

This expression contains every aspect of electromagnetism and momentum
and is relatively easy to compute. It can be written more compactly by intro-
ducing the Maxwell stress tensor[56]:

Tij = ϵ0(EiEj − δij |E|2) + 1

µ0
(BiBj − δij |B|2) (A.18)

Such that the overall moment induced by the electromagnetic field is thus de-
fined as:

∇ ·T = f+ ϵ0µ0
∂S

∂t
(A.19)

So Maxwell’s tensor includes all the dynamics of objects induced by the elec-
tromagnetic field. If integrate the eq.A.19 over an arbitrary volume V which
contain all sources ρ and J we obtain[94]:∫

V

∇ ·TdV =
d

dt

1

c2

∫
V

[(E ×H)dV +

∫
V

ρE+ J×BdV

remember that f = ρE+ J×B. The volume integral can be transformed into
a surface integral using Gauss’s integration law∫

V

∇ ·T =

∫
∂V

T · nda
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∂V denotes the surface of V , n the unit vector perpendicular to the surface, and
da an infinitesimal surface element. We then finally arrive at the conservation
law for linear momentum:∫

∂V

T(r, t) · nda =
d

dt
[Gfield +Gmech] (A.20)

Here, Gfield and Gmech denote the mechanical momentum, i.e. F = d
dtGmech

and the field momentum (Gfield =
∫
V

1
c2 [E ×H]dV ). If we consider the time

average of the force the field term disappears thus the average mechanical force
is:

⟨F ⟩ =
∫
∂V

⟨T(r, t)⟩ · n(r)da (A.21)

this equation is of general validity. It allows the mechanical force acting on
an arbitrary body within the closed surface ∂V to be calculated. The force is
entirely determined by the electric and magnetic field on the surface ∂V .

A.2 Electromagnetic wave and optical phenom-
ena

Maxwell’s equations relate the field vectors using simultaneous differential equa-
tions. For the evaluation of the electric and magnetic field distribution, we need
an equation system where the fields are decoupled. Starting with the eq.A.2b,
using a curl operator on each term of the equation and substituting the B term
using the eq.A.2a remember that H = B

µ as can be seen in the eq.A.4c, this

became[56][54]:

∇× (
1

µ
∇×E) +

ϵ

c2
Ë = 0 (A.22)

using the identity vector for the curl elimination and considering the homoge-
neous media we obtain:

∇2E− ϵµ

c2
Ë = 0 (A.23a)

∇2H− ϵµ

c2
Ḧ = 0 (A.23b)

The eq.A.23b is obtained when we make the same process substituting E instead
ofB. The equations just obtained recall the form of differential equations known
as wave equations for this reason they are defined, the coupling of Maxwell’s
equations is also referred to as ”electromagnetic waves”. The term c

ϵµ is then

the propagation speed of the wave with c = 3×108 which is defined as the speed
of light in a vacuum. The characterization of the wave equation allows a formal
evaluation of light phenomena.

Before analyzing the characteristics of the main light-induced phenomena,
it is necessary to introduce the concept of polarization[54][143]. Let us consider
a harmonic wave plane, i.e., when each Cartesian Component of E and H have
the following form:

E,H = a cos (ωt− k · r+ δ) (A.24)
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where ω is the frequency of the wave and k is the propagation length of the wave
and δ is the phase shift of the wave. In the eq.A.24 we have chosen the z-axis-like
propagation direction; it can be demonstrated that E,H and the propagation
direction formed an orthogonal triad of vectors. The field component is only in
the x and y directions obtained:

Ex = a1 cos (ωt− k · r+ δ1) Ey = a2 cos (ωt− k · r+ δ2) (A.25)

These two terms can be manipulated and rewritten in the following way:

(
Ex

a1
)2 + (

Ey

a2
)2 − 2

ExEy

a1a2
cos δ = sin2 δ (A.26)

where δ = δ2 − δ1. This is a conic equation; in particular, this is the ellipse
equation since the associate determinant is not negative. The electric field is
defined as elliptical polarized; it can be demonstrated that also the magnetic
field is elliptically polarized. it is possible to define the polarization parameters
instead of on the Cartesian axes, on the axes of the ellipse by redefining the
field components on a new Oξη reference system and obtain:

Eξ = a cos (ωt+ k · r+ δ0) Eη = ±b cos (ωt+ k · r+ δ0) (A.27)

where a and b are the axes of the ellipse; The two reference systems are related
in the following way:

a21 + a22 = a2 + b2 (A.28a)

tanψ = (tan (2α)) cos δ (A.28b)

sin 2χ = (sin 2α) sin δ (A.28c)

where α = tan a2

a1
, ψ is the angle between the new reference system Oξη and

the Cartesian system and χ is an auxiliary angle that defines the shape and
orientation of vibrational ellipse. From the ellipse parameter, it is possible to
distinguish two particular cases of polarization. One is the linear polarization
and is generated when χ = 0 → δ = 0 and the shape of the ellipse degenerate in a
linear shape. The circular polarization instead is according to the sense in which
the endpoint of the electric vector describes the ellipse. For this reason, we can
define a right-handed polarization when an observer looking in the direction
where the light is coming and the ellipse is described in a clockwise sense;
otherwise, we have a left-handed polarization. Concerning the ellipse parameter,
we have that δ > 0 or for the eq. 0 < χ ≤ π/4 for the right-handed and δ < 0 and
−π/4 ≤ χ < 0 for the left-handed. We have observed that to characterize the
polarization ellipse three independent quantities are necessary: the amplitudes
a1, a2, and the phase difference δ or in the ellipse reference system the axis a
and b and the angle χ which specifies the orientation of the ellipse.

For practical purposes, it is convenient to characterize the state polarization
by certain parameters that have all the same physical dimensions, introduced
by Stokes[54]. The Stokes parameters of a plane monochromatic wave are four
quantities:

s0 = a21 + a22 (A.29a)
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s1 = a21 − a22 (A.29b)

s2 = 2a1a2 cos δ (A.29c)

s3 = 2a1a2 sin δ (A.29d)

three of them are independent and they are related by the following identity:

s20 = s21 + s22 + s23 (A.30)

the value s1,s2,s3 may be regarded as a point P on a sphere σ of radius s0.
This implies that every possible state of polarization of a plane monochromatic
wave of a given intensity (s0=const), corresponds at one point on σ and vice-
versa. The relation of sin δ and s3 imply that the left-handed polarization is
represented by the point in Σ below the equatorial plane and the right-handed
polarization is the point in σ above the equatorial plane; the linear polarization
instead is the point in the equatorial plane. The sphere Σ is called the Poincarè
sphere.
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Appendix B

Mathematical Tools of
Finite Element Method

B.1 Linear Triangular Discretization

Let us consider the differential equation,[145] in Ω:∣∣∣∣∣∣
find u in H1(Ω), such that

u = g0 on ΓD∫
Ω
∇u · ∇v + c

∫
Ω
uv =

∫
Ω
fv +

∫
ΓN

g1v ∀v ∈ H1
ΓD

(Ω)
(B.1)

Now, we want to discretize this differential equation and the physical domain
to obtain an approximate value of u. Let us take an arbitrary, non-degenerate
triangle K, a vertices p is uniquely determined by the value of points (x1, x2)
for the following equation:

p = a0 + a1x1 + a2x2 a0, a1, a2 ∈ R (B.2)

The set of the vertices p that follows this equation is called P1. In other words,
an edge is determined only from the adjacent vertices, this point is called the
local grade of freedom.

Starting from the eq.B.2, we can generate the domain partition into a tri-
angle. A triangulation of Ω is a subdivision of this domain into triangles that
must cover all Ω with the followings rules:

• 1) if two triangles have some intersection, it is either on a common vertex
or a common full edge and two different triangles do not overlap;

• 2) the triangulation must respect the partition into Dirichlet and Neumann
boundaries. This means that an edge of a triangle that lies of Γ cannot
be part Dirichlet and part Neumann, there must be a transition from the
boundaries.
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The set of triangles that the domain has been divided is called Th with h as the
length of the longest side among all the triangles. Focalize now to the function
defined in the whole polygon Ω that has been triangulated. Given the space
Th that contains all triangles, we take two triangles K and K ′ who have a
common edge. In this case, we can define four functions uh ∈ P1 of the edge of
two triangles. Since any function of P1 depends only on the vertices adjacent
to the edge under consideration, all the functions uh are unique and globally
continuous. If we consider the functions uh for all vertices of all triangles we
obtain a space Vh defined:

Vh =

(
uh ∈ C(Ω̄)|uh|K ∈ P1, ∀K ∈ Th

)
(B.3)

If we fix a node and associate value one to the node and zero to all other
elements, exists a unique function ϕi ∈ Vh such that:

ϕi(pj) = δij (B.4)

where δij is the Kronecker delta respect to i-vertex. The function ϕj represents
the union of triangles that have pj as a vertex. Take uh ∈ Vh we can show that:

uh =

N∑
j=1

uh(pj)ϕj (B.5)

For a complete partition of domain Ω it is necessary to define the partition of
the boundary edge.

First of all, we define two different boundary edges: the Dirichlet boundary
ΓD and Neumann boundary ΓN that is associated with the boundary condition
of the differential equation. The defined boundaries define two different discrete
entities: the Dirichlet node and Neumann edges. Remind that the function v is
defined as v = 0 in ΓD so it belongs to the space H1

ΓD
(Ω). When we perform

a triangulation in Ω the condition on v becomes a condition on a function vh
associated with the triangle set Th such that vh is in the space V ΓD

h defined as:

V ΓD

h = Vh ∩H1
ΓD

= (vh ∈ Vh|vh = 0 on ΓD) (B.6)

For this condition, vh vanished on ΓD if and only if vanished in all Dirichlet
nodes. As in the domain Ω, it is possible to write vh with a linear combination
of elements in the nodal basis that is:

vh =

N∑
j=1

vh(pj)ϕj (B.7)

Consider the system of equation defined in eq.B.7, the finite element method
consists of the following discrete version of the previously weak formulation:∣∣∣∣∣∣

find uh ∈ Vh, such that

uh(p) = g0(p) for all Dirichlet node p∫
Ω
∇uh · ∇vh + c

∫
Ω
uhvh =

∫
Ω
fvh +

∫
ΓN

g1vh ∀vh ∈ V ΓD

h

(B.8)
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In this formulation, we have reduced the problem in eq.B.1 to the solution of
uh in the vertices of the triangulation, and the number of unknowns is finite;
in addition, the Dirichlet condition is fixing for the Dirichlet nodes and reduces
the number of unknown only at the free nodes. Without loss of generality, we
take vh = ϕi ∈ V ΓD

h and the method is equivalent in a set of N equations whose
unknown is the function uh:∫

Ω

∇uh · ∇ϕi + c

∫
Ω

uhϕi =

∫
Ω

fϕi +

∫
ΓN

g1ϕi ∀i ∈ Ind (B.9)

where Ind is the set of indices that indicates the number of Dirichlet nodes.
To obtain a linear system, we write uh in terms of nodal basis function (see
eq.B.1) with j ∈ Nod, where Nod is the set of indices that indicates the number
of nodes in Ω. The set Nod can be separated into two subsets: one is Ind, i.e.
the number of free nodes and the other is Dir, i.e. the number of the Dirichlet
nodes. This implies that uh can be written as:

uh =
∑
j∈Ind

uhϕj +
∑
j∈Dir

ujϕj (B.10)

Then we substitute the discrete Dirichlet condition in this expression:

uh =
∑
j∈Ind

uhϕj +
∑
j∈Dir

g0(pj)ϕj

Finally, we apply this expression in the discrete variation equation (eq.B.8)
linearly, and we note that:

∇uh =
∑
j∈Ind

uj∇ϕj +
∑
j∈Dir

g0(pj)∇ϕj

and the discrete variational equation became:∑
j∈Ind

(

∫
Ω

∇ϕj · ∇ϕi + c

∫
Ω

ϕiϕj)uj =

∫
Ω

fϕi +

∫
ΓN

g1ϕi+

−
∑
j∈Dir

(

∫
Ω

∇ϕi · ∇ϕj + c

∫
Ω

ϕiϕj)g0(pj)

(B.11)

This is a linear system in which the nodal values of uh on the free vertices (non-
Dirichlet) of the triangulation are unknown. After solving the linear system,
the formula for uh recovers the function everywhere, not only on the nodes. It
is possible to define two matrices from eq.B.12. The first is called the Stiffness
matrix such that:

Wij =

∫
Ω

∇ϕj · ∇ϕi (B.12)

and the second one is called mass matrix:

Mij =

∫
Ω

ϕiϕj (B.13)
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both matrices are symmetric and the mass matrix is positive definite, instead,
the stiffness matrix is semidefinite positive. The eq.B.11 can be rewritten in a
simpler form:∑

j∈Ind
(Wij + cMij)uj = bi −

∑
j∈Dir

(Wij + cMij)g0(pj) ∀i ∈ Ind (B.14)

where bi =
∫
Ω
fϕi +

∫
ΓN

g1ϕi is called source term.

B.2 Assembly

Starting with the value of stiffness (Wij) and mass (Mij) matrices. The Ω
integration domain can be decomposed as a sum of integrals over different tri-
angles[146]:

Wij =

∫
Ω

∇ϕj · ∇ϕi =
∑
K

∫
K

∇ϕj · ∇ϕi =
∑
K

wK
ij (B.15)

On each triangle, we define three local nodal basis functions. Since the vertices
of a triangle K: pK1 , pK2 and pK3 consider the function NK

α with α = 1, 2, 3 such
that:

NK
α (pKβ ) = δαβ α, β = 1, 2, 3 (B.16)

The nodal basis function ϕi restricted to the triangle K is either zero when pi is
not one of the three vertices of K or one of the NK

α functions. More precisely,
let nα be the global number of the local node with the number α in the triangle
K. This means that NK

α = ϕnα
on the triangle K; we now compute the matrix

kαβ :

kKαβ =

∫
K

∇NK
β · ∇NK

α α, β = 1, 2, 3

and we associate the local matrix k with the global matrix wK consider that
kKαβ = wK

nαnβ
. For the assembly process, we can compute the local matrices for

the stiffness and the mass matrix and obtain a local definition of the discrete
equation system:∫

K

∇NK
β · ∇NK

α + c

∫
K

NK
β N

K
α α, β = 1, 2, 3 (B.17)

For the linear computation of the elements, we need an effective way to eval-
uate the functions NK

α and their gradients and a closed form for the resulting
integrals. Both possibilities are usually obtained by moving to the so-called ref-
erence element. The reference triangle (usually indicated by K̂) is design by the
following point: p̂1 = (0, 0), p̂2 = (1, 0) and p̂3 = (0, 1). In math literature, it is
indicated as (ξ, η) the variables in the reference triangle and (x, y) the variables
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in the physical system. The local nodal functions in the reference triangles sat-
isfy the same condition of the local function in the physical system (eq.B.17),
but the variables are fixed and the local nodal function has the following form:

N̂1 = 1− ξ − η N̂2 = ξ N̂3 = η (B.18)

Let us now take three vertices of a triangle K:

pK1 = (x1, y1) pk2 = (x2, y2) pK3 = (x3, y3)

It is possible to define an affine transformation:

(x, y) = BK × (ξ, η) + (x1, y1) (B.19)

where BK is the affine matrix transformation. This transformation called FK

maps the reference triangle K̂ into K such that:

FK(p̂α) = pKα α = 1, 2, 3

Using this equation we can write the nodal function in the physical system in
terms of the nodal function in the reference system:

NK
α (x, y) = N̂K

α (F−1
K (x, y)) (B.20)

this formula gives a simple way to evaluate the functions NK
α . To evaluate the

gradient of NK
α we have to apply the chain rule:

BT
K(∇ϕ ◦ Fk) = ∇̂(ϕ ◦ FK)

where BT
K is the transposed of the matrix of the linear transformation FK and

ϕ is a general function. Taking ϕ = NK
α in this expression we obtain a formula

for the gradient of the local basis functions:

∇NK
α = B−T

K ((∇̂N̂α) ◦ F−1
K ) (B.21)

The formula shows that if we want the value of the gradient of NK
α in a point

(x, y) ∈ K, we first compute the transformed point (ξ, η) = F−1
K (x, y) in the

reference triangle, evaluate the gradient of N̂α in this point and then multiply
it by the matrix B−T

K , which is the transposed of the inverse of BK .
Now the values of the local nodal functions have been uniquely evaluated,

it is necessary to find a method for solving the integrals in the physical system.
The general resolution of the integrals is possible in the reference system, so
we make a change of coordinates. For the mass matrix, the change of variables
gives: ∫

K

NK
β N

K
α = |detBK |

∫
K̂

N̂βN̂α (B.22)

The evaluation of the integral in the reference system is defined and the result
is the matrix K̂0, we obtain the following result:

MK
ij = |detBk|K̂0

K0 =
1

24

2 1 1
1 2 1
1 1 2

 (B.23)
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For derivatives the result is more complex:∫
K

∇NK
β · ∇NK

α = |detBK |
∫
K̂

(∇NK
β ◦ FK) · (∇NK

α ◦ FK)

= |detBK |
∫
K̂

(B−T
K ∇̂N̂β) · (B−T

K ∇̂N̂α)

= |detBK |
∫
K̂

CK∇̂N̂β · ∇̂N̂α

where CK = B−1
K B−T

K is asymmetric 2x2 matrix that depends only on the tri-
angle considered. If we compute the following matrices in the reference element:

K̂ξξ =

∫
K̂

∂ξN̂β∂ξN̂α =
1

2

 1 −1 0
−1 1 0
0 0 0


K̂ηη =

∫
K̂

∂ηN̂β∂ηN̂α =
1

2

 1 0 −1
0 0 0
−1 0 1


K̂ξη =

∫
K̂

∂ξN̂β∂ηN̂α =
1

2

 1 0 −1
−1 0 1
0 0 0


The final result for the stiffness matrix is the following:

WK
ij = |detBK |(CK

11K̂ξξ + CK
22K̂ηη + CK

12(K̂ηξ + K̂T
ηξ)) (B.24)

Where CK
ij are the element of the matrix CK .

After the evaluation of the stiffness and mass matrices, we apply the same
process at the source term. The source term is composed of two vectors:

bi =

∫
Ω

fϕi +

∫
ΓN

g1ϕi

this is applied for the free nodes, but it is possible to compute them for all nodes
and discard the element to Dirichlet nodes. the first term of the equation can
be treated in a similar way to the stiffness and mass matrix:∫

Ω

fϕi =
∑
K

∫
K

fϕi

and for each K triangle we can compute the vector in the function of the local
nodal function: ∫

K

fNK
α α = 1, 2, 3

This process can be done at the same time as the matrix assembly since it makes
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triangle by triangle.

∫
K

fNK
α ≃ 1

3

3∑
β=1

f(pKβ )

∫
K

NK
α

≃ |detBK |
3

3∑
β=1

f(pKβ )

∫
K̂

N̂K
α

≃ detBK

18

3∑
β=1

f(pKβ )

(B.25)

For the P1 elements the three integrals to the element K are approximated by
the same number. The function f is approximated by a function constant over
each triangle: the constant value is the average of the values on its vertices.

The Neumann boundary conditions impose the computation of the second
part of the source term integral. The process is different from the computation
of eq.B.25. First of all, we have to decompose the Neumann boundary in the
set of edges that lie on it: ∫

ΓN

g1ϕi =
∑
L

∫
L

g1ϕi

Next, for each edge consider the two vertices that delimit it: pL1 and pL2 . Like
as the triangular element, we define a nodal basis function for the local point of
the Neumann edge, and considering the parameterization of the segment L the
following function:

ψ1 = 1− t ψ2 = t

define the nodal basis function for the reference element [0, 1] for the space of a
linear polynomial in one dimension. It is simple to see that:

ϕi ◦ ϕL(t) =

ψ1(t), if pi = pL1
ψ2(t), if pi = pL2
0, otherwise

The integrals to be computer are:∫
L

g1ϕnα = lL

∫ 1

0

(g1 ◦ ϕL)(t)ψα(t) α = 1, 2

as before nα denotes the global index for the local nodes α and lL is the length
if the segment L. We can approximate this result and obtain:∫

L

g1ϕnα
≃ 1

2
(g1(p

L
1 ) + g1(p

L
2 ))

∫
L

ϕi =
lL
4
(g1(p

L
1 ) + g1(p

L
2 )) α = 1, 2 (B.26)
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B.3 Isoparametric Element

Let us consider K̂ to be the reference triangle andK0 a triangle with the vertices
pKα = (xα, yα) with α = 1, 2, 3 and with this point, we construct the linear map
F 0
k : K̂ → K0. Let us take a point called p̂K4 that is the midpoint of the segment

that joins p̂2 and p̂3 and using the function F 0
K , take the transformed point in

the physical space pK4 = (x4, y4) and compute its deviation from the midpoint
of pK2 and pK3 [145]:

δx = x4 −
x2 + x3

2

δy = y4 −
y2 + y3

2

Finally take the transformation FK : K̂ → R2 given by:

FK(ξ, η) = F 0
k (ξ, η) + 4ξηδ (B.27)

where δ = [δx, δy]. Note that is a linear transformation plus a correction term.
The transformation satisfied the following properties[145]:

• 1) It sends the chosen points in the reference domain to the ones in the
physical space:

FK(p̂α) = pKα α = 1.....4

• 2) If ξ = 0 then FK(0, t) = F 0
K(0, t). This means that the image of the

vertical edge in reference coordinates is the segment joining pK1 and pK3 ,
covered at a constant velocity as if we were using the linear transformation.
The same happens to the horizontal side of K̂.

• 3) If pK4 is aligned with pK2 and pK3 , then the image of the edge that joins
p̂2 and p̂3 is the segment that joins pK2 and pK3 . However, this segment is
parameterized at a constant velocity only when pK4 is the midpoint of pK2
and pK3 (in that case δx = δy = 0 and we have only linear term in FK).

• 4) The Jacobian Matrix of FK is not constant:

BK = DF (ξ, η) = B0
K + 4α · δ (B.28)

where α = [η, ξ] vector. When pK4 is not too far from the midpoint of
pK2 and pK3 , that is when the deviation (δx, δy) is not large, it is possible

to prove that the image of K̂ under this transformation K = FK(K̂) is
mapped bijectively from the reference element and there we can construct
an inverse transformation.

Now we have the physical element, K which is defined as the image of K̂ by the
transformation FK . So we define the local space transforming the triangulation
method P2 on reference variables using the following transformation:

P2(K) =
(
p : K → R

∣∣p ◦ FK ∈ P2

)
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The degrees of freedom are placed in six nodes: the three vertices, the midpoints
of the two straight sides, and the point pK4 . Following the same method, N̂K

α

are the nodal basis function of the P2 reference element, and we can define:

NK
α = N̂α ◦ F−1

K (B.29)

form a basis of P2(K). The following properties are considered[145]:

• 1) A function in P2(K) is uniquely determined by the values on the six
nodes on K.

• 2) Restricted to any of the two straight sides of K, a function of P2(K) is a
polynomial of degree two in one variable (that is, the form of function does
not depend on the geometry of the element) and is uniquely determined
by its values on the three nodes that lie on the side.

• 3) The value of a function in P2(K) on the curved edge of K is uniquely
determined by its value on the three nodes that lie on that edge.

Using these properties we can design an approximate triangulation of a curved
domain following the rules:

• 1) Intersection of two different triangles can only happen in a common
vertex or edge.

• 2) There must be a vertex placed on each transition point from Dirichlet
to Neumann boundaries.

• 3) Triangles with an edge on the approximating polygon can have only one
edge on this boundary and both vertices have to be on the exact boundary
Γ.

The second part of the triangulation process consists of choosing a point on
the exact boundary for each boundary edge. This point should be close to the
midpoint of the straight edge that approximates the real curved boundary. We
use this point to design an isoparametric triangle with the same vertices for each
boundary triangle. When we write the equations of the finite element method
using the local space, the union of all triangles (curved and straight) is not
the original domain Ω, but an approximation of it, which we called Ωh. We
call Dirichlet nodes the nodes on the Dirichlet boundary, remarking that these
nodes are in the correct boundary Γ. The full finite element space is:

Vh =

(
uh ∈ C(Ω̄)

∣∣∣∣uh|K ∈ P2(K), ∀K ∈ Th

)
and the subspace with homogeneous Dirichlet boundary condition is:

V ΓD

h =

(
vh ∈ Vh

∣∣∣∣vh(p) = 0 ∀p Dirichlet node

)
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Note that the function of V ΓD

h is not zero on the Dirichlet boundary ΓD but
on the curved approximation of that boundary. The process of the formation
of nodal basis and transformed local nodal function in the Dirichlet boundary
is the same for the previous case (eq. B.16). So, the discrete bilinear form is
ah : Vh × Vh → R:

ah(uh, vh) =

∫
Ωh

∇uh · ∇vh +

∫
Ωh

uhvh (B.30)

and the linear form is lh : Vh → R:

lh(vh) =

∫
Ωh

fvh +

∫
Γh
N

gvh (B.31)

with them obtain the Galerkin numerical method:

find uh ∈ Vh such that

uh(pi) = g0(pi), ∀i ∈ Dir

a(uh, ϕi) = lh(ϕi) ∀i ∈ Ind

The triangulation on a curved domain implies the definition of an approximate
Ωh domain in which Galerkin’s method is developed. When assembling the
numerical equations it’s important to make some consideration about the dif-
ferences between the domains Ω and Ωh.

The linear functional lh, i.e. the term composed by f the source term and
g1 the Neumann condition, is defined in Ω but they may not be defined in the
approximate domain Ωh; therefore in integration, it is necessary to assemble
the equations by eliminating the points where the functions are supported. In
addition, in the mass and stiffness matrix, the transition from nodal functions
from a reference system to a physical system has a non-linear equation system
given eq.B.30, so it must be solved by special numerical techniques.
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[70] Gustav Mie. “Beiträge zur Optik trüber Medien, speziell kolloidaler Met-
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[114] Péter Dombi, Zsuzsanna Pápa, Jan Vogelsang, Sergey V Yalunin, Mu-
rat Sivis, Georg Herink, Sascha Schäfer, Petra Groß, Claus Ropers, and
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