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Abstract: The urgency to reduce resource depletion and waste production drives through to an
economy based on renewable resources. Biofuels, for instance, are a great green alternative to
fossil fuels, but they currently derive from edible vegetable oils such as soybean, palm and
sunflower. Concerns have been raised about the social-economic implication and ecological
impacts of biodiesel production. Cultivating new lands as biodiesel feedstock rather than food
supply, with the consequent increase in food prices, leads to so-called Indirect Land Use Change
(ILUC). Establishing bioenergy crops with phytoremediation ability on contaminated soils offers
multiple benefits such as improving soil properties and ecosystem services, decreasing soil erosion,
and diminishing the dispersion of potentially toxic elements (PTEs) into the environment. Castor
bean is an unpalatable, high biomass plant, and has been widely demonstrated to possess
phytoremediation capability for several PTEs. Castor can grow on marginal lands not suitable for
food crops, has multiple uses as a raw material, and is already used in biodiesel production. These
characteristics make it perfect for sustainable biodiesel production. Linking biofuel production

with environmental remediation can be considered a win-win strategy.

2.1. Introduction

The increasing industrialization, which follows the “take-make-dispose” plan, has led to the
depletion of non-renewable resources, producing waste, and causing environmental impacts due to
air, soil and water contamination (Fagnano, 2018). Currently, there is an increased use of renewables
(e.g., biofuels) to replace the over-reliance on fossil fuels, to reduce resource consumption and waste
production (Pos¢i¢ et al., 2019). The most popular biodiesels are mainly produced from edible crops
such as soybean, rapeseed, palm, mustard and sunflower (Chatzakis et al., 2011). However, some
concerns have recently been raised about the socio-economic implications and ecological impacts
of biofuel production (Bentivoglio & Rasetti, 2015). To be sustainable, biofuels should not affect

the quality, quantity and use of water or soil, with unacceptable social consequences (Lora et al.,
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2011). Consequently, a biofuel feedstock has to reduce the Indirect Land Use Change, (e.g., the
emission of more carbon dioxide as a consequence of the cultivation of new land in response to
biofuel demand) which causes a subsequent deficit in food supply and increases in food prices
(Malins et al., 2014).

It is well known that many areas of the world are contaminated. Taking as an example, the
European Union has estimated the existence of around 2.8 million sites where land contamination
exists or is taking place (Pérez & Rodriguez Eugenio, 2018). Hence, linking the production of
renewable energy with phytoremediation may be considered a winning strategy to avoid land
competition with traditional food crops, protecting human health by remediating land
contamination, and mitigating the energy crisis and climate change (Bauddh et al., 2017; Kiran &
Prasad, 2017). In particular, the establishment of bioenergy crops with phytoremediation potential
on soil contaminated by potentially toxic elements (PTEs) may offer multiple environmental
benefits, such as improving soil properties and ecosystem services, decreasing soil erosion, and
diminishing the mobility of PTEs through their adsorption and accumulation in roots or their
precipitation within the root zone (Fiorentino et al., 2017). Phytoremediation involves the use of
plants for the restoration of polluted environments being an in situ, solar-powered alternative to
conventional remediation procedure, with a very high public acceptance (Fagnano & Fiorentino,
2018). Fast-growing perennial crops with high tolerance to biotic and abiotic stress are able to lower
soil available PTEs (phytoextraction), reducing their mobility/bioavailability (phytostabilization),
being considered the best option for phytoremediation programs (Fiorentino et al., 2017). Besides
this, while remediating a contaminated site, the plant biomass can be used for green fine chemistry,
bioplastic, and renewable energy and can be considered an integral part of a sustainable economy
(Posc¢i¢ et al., 2019). However, uncertainties have been raised about the safe use of contaminated
plant biomass for energy conversion. According to numerous studies, different thermal conversion
methods, especially pyrolysis, are exploited to convert metal contaminated biomass after
phytoremediation (Giudicianni et al., 2017; Grottola et al., 2019). Pyrolysis greatly reduces the
weight and volume of the biomass, meaning easier disposal, while concentrating the PTEs in the
char/ash fraction which can eventually undertake additional treatments or metal extraction before
discarding (Liu et al., 2012). The most contaminated plant part, or the metal-enriched slags
generated from energy conversion, can be removed according to heavy metal safe disposal (Dastyar
etal., 2019).

Taking this in mind, castor bean (CB), an unpalatable, fast-growing plant with high biomass
production, has been widely demonstrated to have phytoremediation potential for several PTEs

(Table 2.1), as well as a high tolerance to salt and drought stress (Babita et al., 2010; Bauddh &
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Singh, 2012a; Dieter Jeschke & Wolf, 1988; Pinheiro et al., 2008; Sausen & Rosa, 2010). In this
review, we evaluated the potential of using castor bean for phytoremediation programs linked to

biofuel and by-product production.

Table 2.1. Studies made on Castor bean (Ricinus communis) phytoremediation capability for PTEs.

Contaminants Aims of the Research Reference Genotype
As Phytoremediation potential of ~ (Melo et al., 2012) cv. Guarany
CB and H. annus
As, B, Cu, Fe, Mn, Zn Phytoremediation potential (Pandey, 2013) Not specified
As, Cd, Pb Phytoremediation potential (Yang et al., 2017) Not specified
co-planting CB with P.
vitatta with chitosan
addition
As, Cd, Pb, Zn Phytoremediation potential (Silva et al., 2017) Not specified
of CB and Z. mays with
chelates
B, Cd, Cr, Cu, Fe, Effects of organic matter (Abreu et al., 2012) Not specified
Mn, Ni, Pb, Zn addition
Ba Phytoremediation potential (Coscione & Berton, 2009) Not specified
of CB, B. juncea and H.
annus
Cd Cd accumulation and (Shi et al., 2015) Cv. Zibi 5
drought stress
Cd Phytoremediation potential (Yeetal., 2018) JX-22,7B-9
Cd Phytoremediation potential (Zhang et al., 2014) Zibo 5 and
Zibo 8
Cd Phytoremediation potential (Bauddh et al., 2016) Cv. Kalpi
Cd Phytoremediation potential (Bauddh & Singh, 2012a) Cv. Kalpi
of CB and B. juncea
Cd Phytoremediation potential (Bauddh & Singh, 2012b) Cv. Kalpi
of CB and B. juncea +
salinity and drought stress
Cd Phytoremediation potential (Bauddh & Singh, 2015) Cv. Kalpi
of CB and B. juncea +
Organic and Inorganic
amendments
Cd, Cu, Mn, Ni, Pb, Crude oil and bioproducts (Gonzalez-Chavez et al., 2015) Plants
Zn established
Cd, Cu, Mn, Pb, Zn Phytoremediation potential (Ruiz Olivares et al., 2013) naturally on
Cd, Cu, Ni, Pb, Zn Phytoremediation potential (Pandey, 2013) contaminated
of fly ash disposal site site
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2.2. Botanical aspects and ecological characteristics

2.2.1 Botanical aspects

Castor bean (Ricinus communis L.) is a tropical plant with C3 metabolism of the Euphorbiaceae
family (Figure 2.1) (Anjani, 2012), with numerous wild and semi-wild types that differ
genotypically and phenotypically (McKeon, 2016). Castor bean can be 1.5-2.4 m high in a temperate
climate, or as tall as a moderate-sized tree in tropical and sub-tropical areas (10-13m) (Anjani, 2012;
Falasca et al., 2012). In Ethiopia, where is thought to be originated, plant size varies from a perennial
tree or shrub to a small annual (Alemaw et al., 2013; McKeon, 2016). Leaves are palmate with 5 to
11 lobes and alternate; are often dark glossy green, but the color can vary from light green to dark
red (Anjani, 2014; Milani & Nobrega, 2013). The fruit is a spiny, greenish to reddish-purple capsule
with 3 locules containing one oval, shiny, and highly poisonous brownish seed with marble-gray
marks and a light brown caruncle (Milani & Nobrega, 2013; Salihu et al., 2014); at maturity, the
capsules are dried and may have dehiscence, depending on the genotype (Vallejos et al., 2011).
Some castor varieties can produce capsules with rudimentary spines, others soft, flexible, and non-
irritant spiny capsules, and others spiny irritant capsules (Salihu et al., 2014). The seeds of castor
bean grow inside capsules on raceme that develops progressively over the life of the plant. Seeds,
exposed to different environmental conditions, end in an inhomogeneous maturity, with different
developmental stages among the raceme and their order (Koutroubas et al., 1999; Vallejos et al.,
2011). The seeds can differ in color, size, external markings, weight, and shape between cultivars
(Anjani, 2014; Velasco et al., 2015; M. L. Wang et al., 2010; Ming Li Wang et al., 2011), but being
on average of an oval form. The number of capsules per raceme depends on the number of female
flowers on it. Male flowers are yellowish green with creamy stamens, while female flowers lie in
undeveloped spiny capsules with prominent red stigmas. Castor plants can be “normal monoecious”
with pistillate flowers on the upper part of the raceme and staminate flowers on the lower part, or
“interspersed monoecious” with pistillate and staminate flowers interspersed along the entire raceme
axis (Koutroubas et al., 1999; Milani & Nobrega, 2013). Rarely, castor inflorescence can terminate
with a hermaphrodite flower that regularly drops off before capsule setting (Anjani, 2012). Female
and male flower proportion on the raceme can vary within and among genotypes (Milani & Nobrega,
2013), and is extensively influenced by the environment. Racemes can have different shapes
(conical, cylindrical, or oval) with different capsule arrangements, which can be compact, semi-
compact, or loose (Salihu et al., 2014). According to the order of manifestation the racemes are
called primary, secondary and tertiary, and their numbers increase geometrically with the number

of branches (Vallejos et al., 2011). The castor stem is round, sometimes covered with a waxy bloom,
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and it may be green, reddish, or purple (Salihu et al., 2014). The dark purple stem and the sulfur-

yellow colors are occasional (Anjani, 2014).

Figure 2.1. Ricinus communis L. (CB).

2.2.2 Ecological niche

Castor bean can grow well in a wide range of ecosystems, from temperate to tropical desert, to
wet forests (Gomez et al., 2016), in a range of 250-4250 mm annual precipitation (Anastasi et al.,
2014; Falasca et al., 2012), and in a wide range (4.5-8.3) of soil pH (Anjani, 2014). Considered a
wasteland colonizer plant, it's easy to find it on landfills, railway tracks, roadsides, etc. Castor
cultivation spreads to 40°N and 40°S latitudes, but some cultivars have been found at 52°N in
Russia (Milani & Nobrega, 2013). It can grow from sea level to more than 2000 m above sea

level (Anjani, 2012), but the optimal altitude is 300—1800 m a.s.l. (Milani & Nobrega, 2013).
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2.3. Tolerance to abiotic stress
2.3.1 Drought resistance

Castor bean is well known to be tolerant to two main abiotic stresses: salinity and drought,
making its cultivation possible in marginal lands that are not suitable for food crops (Bauddh &
Singh, 2012a). The deep taproot and the extensive root system enable CB plants to uptake water
from deep soil layers, surviving in dry conditions under which other crops would be severely
inhibited. Osmotic adjustment (OA), the active accumulation of solutes in response to water deficit,
has been reported to be a drought adaptation mechanism in several crop plants. OA helps maintain
turgor, providing a more efficient extraction of water from the soil (Maggio et al., 2005). Osmotic
adjustment capacity can vary greatly among CB genotypes, however CB plants under water deficit
accumulate proline (+ 12 %), total soluble sugars (+ 61 %), total free amino acids (+17 %), and
potassium (+ 2.8 %), indicating that sugars are the main contributors for osmotic adjustment in CB
leaves. This is in contrast with other crops in which potassium has been found to contribute the most
(Fagnano & Fiorentino, 2018). Also, prompt stomatal closure seems to be linked to drought
resistance in CB plants, resulting in reduced photosynthesis (- 59 %) and minimal water loss by
transpiration (- 96 %), while maintaining high net CO: fixation rates (Sausen & Rosa, 2010). Water
deficiency leads to reduced leaf area and fewer leaves, roots, and shoots biomass and reduced height,
with shoot elongation being affected very early after irrigation suspension (Sausen & Rosa, 2010;
Shi et al., 2015; W. R. Silva et al., 2017). This early growth response and the reduced size attained
by water-stressed plants may contribute to plant survival, reducing the plant’s water requirements
(Sausen & Rosa, 2010). Seed yield is significantly decreased by water stress mainly in the primary
racemes since the reduction is less pronounced in secondary and compensated in higher-order
racemes (Lakshmamma et al., 2017). Water deficiency stimulates CB plants to increase wax
deposition, contributing to the maintenance of relative water content, since wax is an efficient
obstacle against leaf transpiration (Silva et al., 2020). Leaf expansion is detectable 30 min after re-
watering, showing that after 2 days of no expansion there is still potential to develop (Schurr et al.,
2000), and after 7 days of re-watering, proline and total soluble sugars accumulation decrease,
though remaining higher than control plants. Drought stress increases K, Ca, and Na contents in CB
plants as the drought severity intensifies and decreases Fe, Cu, Zn, and Mg contents according to
genotype (Tadayyon et al., 2018). Castor drought resistance makes its cultivation possible without

irrigation, thus reducing its costs.
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2.3.2 Salt resistance

In addition to drought, land salinization represents an important environmental constraint that
reduces crop growth and yield (Pinheiro et al., 2008). Castor bean can grow on marginal lands,
which are mostly located in arid and semi-arid regions where soil salinity is too high for most
common food crops (Anjani et al., 2014; Sun et al., 2013). Castor bean salt tolerance seems to be
related to its roots” marked ability to limit Na” uptake, being selective in K* uptake, excluding it
from leaf blades and maintaining relatively high K" concentrations in leaves (Jeschke & Wollf,
1988). Besides, potassium is selectively translocated to young shoots, retaining Na* and CI” in older
tissue. The stem and petiolar tissue can remove Na™ from the xylem and phloem (Jeschke & Wolf,
1988). Castor bean cotyledons are less affected by saline stress than true leaves, enabling seedling
survival in salty soils (Wang et al., 2019). After 59 days under 30 mM NaCl, corresponding to 2 g
NaCl kg™! soil, Pinheiro et al. (2008) observed a recovery of leaf water potential, suggesting an
ability of CB seedling to acclimatize to high salt conditions. The potential photosynthetic activity is
augmented by salt stimulation, as reflected by the increased Fv/Fy ratio, a very sensitive indicator
of the potential photosynthetic activity, in CB plants grown under 100 mM L' (Li et al., 2010). A
certain level of NaCl stimulation may promotes CB growth as suggested by the increase of
chlorophylls in seedlings (Li et al., 2010). Salt stress effects on chlorophyll a and chlorophyll b
contents can be seen only after 59 days (Pinheiro et al., 2008). The salt tolerance of CB can be
indicated by the maintenance of cellular integrity, as indicated by leaf electrolyte leakage, high
photorespiratory activity and nitrate assimilation (Neto et al., 2014). The salinity threshold for seed
emergence was identified by Zhou et al. (2010) at 7.1 dS m™!, but in some cultivars the emergence
index can even increase at 10.3 dS m™' (Sun et al., 2013; Zhou et al., 2010). Serious plasma
membrane lipid peroxidation may not occur, as indicated by the non-significant increase in
malondialdehyde at 200 mM L, and the proline increase in response to salt stress (Li et al., 2011).
The effects of saline irrigation water on the oil content of the racemes are small and more
pronounced in primary than in secondary racemes (Nobre et al., 2012). Castor bean growth
parameters are affected by salt stress (Pinheiro et al., 2008; Sun et al., 2013), but the sum of the
distinct responses to salinity appears to be quite a successful strategy, well-organized in the whole
plant allowing survival and reproduction even under adverse conditions of excessive external Na*
and CI" (Jeschke & Wolf, 1988). The deep-rooted perennial CB can be used to ameliorate seashore
saline soils increasing the soil porosity and thus facilitating the transfer of salts into deeper soil
layers and improving soil organic matter content. Furthermore, CB plants positively influence

microbial community activity and biodiversity, increasing functional bacteria such as halophilic,
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phosphate-solubilizing, potassium-solubilizing, cellulose decomposing, ammonifying and nitrogen-
fixing bacteria, thus enhancing soil nutrient availability, and improving soil structure (Wu et al.,
2012). The application of nitrogen fertilizers such as monoammonium phosphate plus urea has been
shown to increase root biomass and stem diameter on CB cv. BRS Energia, reducing the effect of
salinity on CB growth (Nobre et al., 2013). Finally, arbuscular mycorrhizal fungi stimulate CB
growth alleviating salt stress, increasing the aboveground biomass, phosphorus, carotenoid and
chlorophyll, soluble protein and proline content while decreasing malondialdehyde (MDA) (Zhang
et al., 2014; Zhang et al., 2018).

2.4 Agronomic features

2.4.1 Growth requirements

Castor bean requires temperatures between 20 and 26°C (Severino et al., 2012); shoots die at
temperatures below -1°C and adult plants at -3°C (Anjani, 2014). Castor bean requires a frost-free
period of 140-180 days, and at least 140 days with a mean temperature between 20° and 27°C for
satisfactory yields (Anjani, 2012; Falasca et al., 2012; McKeon, 2016) (Table 2.2). Castor grows in
all kinds of soils but prefers well-drained moisture retentive soil like sandy loam (Salihu et al.,
2014). Castor cultivation necessitates fertile, well-aerated soils with a pH of 6 — 7.3, and rainfall of
600 — 700 mm for optimum yield (Salihu et al., 2014). Is a long-day plant, but is adaptable to a wide
range of photoperiods even if with reduced (Salihu et al.,, 2014). The optimal relative air
humidity range falls between 30 and 60% (Anjani, 2014), with low relative humidity in the growth
phase to obtain maximum productivity; humid and cloudy days, despite the temperature, can be

reflected in lower seed yield (Severino et al., 2012).
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Table 2.2. Average seed and oil yield of castor bean in different countries under different treatments. n.s., not

specified.
Country Site Seed yield Oil yield Genotype Treatment Reference
t ha'! t ha!
Ethiopia Rift Valley 1.2-1.4 0.6-0.7  Hiruy Planting (Alemaw et al.,
density 2013)
Greece Aliartos 3.0-3.8 n.s. Kaima 93, C-853, C-  Genotype (Alexopoulou et al.,
855, C-856, C-864, evaluation 2015)
C-1002, C-1008 (year 2014)
Italy Cadriano 0.7-4.0 n.s. C-855, C-856, C-857,  Genotype (Alexopoulou et al.,
C-864, C-1008 evaluation 2015)
(year 2014)
Italy Ragusa 0.7-7.3 0.3-3.3  Local 1, Local 2, Autumnal (Anastasi et al.,
Brazil, Tunisia sowings 2014)
Mexico Texcoco 2.6-5.2 n.s. Krishna, Rincon Optimal soil (Buendia-Tamariz
moisture etal., 2019)
Colombia Cordoba 0.8-1.2 0.3-0.6  Monteira, Cienaga de  Planting (Cabrales et al.,
Oro, Los Cordobas, density 2011)
BRS Nordestina
USA Florida, 0.7-1.3 0.3-0.6  Birminghan, Hale Plant growth (Campbell et al.,
Citra regulator and  2014)
harvest aid
USA Florida, Jay 0.7-1.2 0.3-0.6  Birminghan, Hale Plant growth (Campbell et al.,
regulator and ~ 2014)
harvest aid
Italy Sardinia 1.4-2.5 n.s. Hazera 22, ISCIOR Irrigation (Laureti & Marras,
101 1995)
USA Texas 0.2-2.7 n.s. BRS Nordestina Irrigation (Severino & Auld,
2013)
Brazil Carnaubais 0.1-1.2 n.s. BRS Nordestina Fertilization (Severino et al.,
2006¢)
Pakistan Bahawalpur 1.2-2.4 n.s. DS-30 Fertilization (Yousaf et al.,
2018)

Castor bean has a slow and cold-sensitive germination (Severino et al., 2012). Seeds (Figure

2.2) may have a dormancy period of several months, depending on variety, while others can
germinate from freshly harvested seeds without any treatment (Severino & Auld, 2013). The base
temperature for CB seed emergence was found to be 15 °C, optimum at 31°C and maximum at 35-
36°C, requiring 464 degree-days after pollination to reach physiological maturity (Anjani, 2014;
Severino & Auld, 2014; Severino et al., 2006a).

2.4.2 Planting density

Plant arrangement is a simple low-cost technology that can affect yield (Anjani, 2012; Soratto
et al., 2012), ranging from 4200 plants ha™! for tall cultivars to 70,000 plants ha™! for dwarf varieties
(Zhou et al., 2010). CB plants compensate for a low population density by producing a higher

number of racemes (Alves et al., 2015; Souza-Schlick et al., 2014) which, however, do not increase

44



the seed yield considering the reduced number of plants per hectare (Oliveira et al., 2017). A lower
plant population increases basal stem diameter and survival rate (Severino et al., 2006; Soratto et
al., 2012; Souza-Schlick et al., 2014). Seed number, a highly hereditable characteristic, is hardly
influenced by environmental or exogenous factors (Soratto et al., 2012). The raceme size is slightly
influenced by plant density (Soratto et al., 2012; Souza-Schlick et al., 2014). In all the
aforementioned studies oil content, oil yield, or oil quality were not influenced by plant density

(Cabrales et al., 2011).

2.4.3 Irrigation

Castor bean is very sensitive to root hypoxia caused by soil flooding: irreversible damage occurs
after just 3 days of flooding (Severino et al., 2006). The deep taproots and extensive root systems
enable the plant to uptake water from deep soil layers and allow seed production with little or no
irrigation. Obviously, despite the adaptability of CB to drought, the greatest yields are obtained with
irrigation. There is almost a linear increase in seed yield with irrigation nearly doubling when
additional water is supplied (Koutroubas et al., 2000; Laureti & Marras, 1995). In Brazil, a rainfed
(376 mm) CB field produced 1774 kg ha™! of seeds, +24 % with supplementary irrigation (1099
mm), and +139 % with 1662 mm of water supplied (Souza et al., 2007). Castor bean plants’ response
in seed yield to water treatments differs between cultivars, but most of the variation can be explained
by the number of racemes, followed by seeds per raceme and seed weight (Laureti & Marras, 1995;
Severino & Auld, 2013b). The seed yield increase in irrigated CB fields is small compared with that
of other common crops cultivated in the same area, suggesting that is more suitable for low-input,
arid environments (Buendia-Tamariz et al., 2019; Laureti & Marras, 1995; Neves et al., 2013).
Castor bean can grow well also with wastewater irrigation (Anjani, 2014; Chatzakis et al., 2011;
Yadav & Anjani, 2017). Wastewater is an alternative water source being recently exploited to
irrigate biofuel crops without depleting the already scarce water resources. A study by Tsoutsos et
al., (2013) investigate the use of wastewater on the quality of castor bean oil and biodiesel
production. Oil samples derived from wastewater irrigation provided a lower concentration of free
fatty acids and a slight reduction in viscosity. According to Abbas et al., (2015), irrigation with
wastewater resulted in higher fresh and dry weights of castor roots, shoots, leaves, and seeds (g ™!
plant) than the ones irrigated with freshwater, due to nutritive elements contents such as N, P, and

K.
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2.4.4 Fertilization

CB can doubtless grow on agriculturally marginal lands, but obviously, it benefits considerably
from the addition of fertilizer. For example, nitrogen applications can increase seed yield by 114 %
compared to unfertilized plants (Oliveira et al., 2017; Severino et al., 2006b). Organic fertilization
can increase productivity by 458 kg ha™!, mineral fertilization by 824 kg ha'!, and the combination
of organic fertilization and mineral by 1,009 kg ha™!. Mineral fertilization with N, P, and K, with the
addition of organic material, contributed to an increase in productivity of 184 kg ha! (Severino et
al., 2006c¢). Unfertilized plants produced 46 % less fruit compared to well-fertilized ones, with a 50
% decrease in fruit dry weight (Reddy & Matcha, 2010). However, CB plants selected to grow at a
certain nutrient level have adapted to produce the maximum at that level (Severino et al., 2006b);
when cultivated in very fertile soils, tend to produce large vegetative mass at the expense of seed
production. The oil content in seeds seems to increase only in response to P and was not influenced
by other nutrients (Severino et al., 2006b). Among the organic fertilizers, poultry manure seemed to

be more effective (Omotehinse & Igboanugo, 2019).

Figure 2.2. Ricinus communis L. seeds.

2.5. Castor bean products

Castor bean has been used for a very long time, and is one of the oldest commercial products
(Nahar & Pan, 2015), known in the traditional medicine of the ancient Mediterranean and Asian

cultures (Polito et al., 2019), being still used in traditional medicine worldwide (e.g., Chinese and
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Ayurveda)(Anjani, 2012; Polito et al., 2019). Long before “biobased” became a catchphrase, CB
oil-derived products were used for centuries (e.g., in ancient Egypt lamps) (Anjani, 2012; Copley et
al., 2005). Nowadays, CB oil has more than 700 industrial uses, and its global demand is increasing
steadily by 3-5 % per year (Zhou et al., 2020). It’s a well-recognized commodity with a well-
established market, costing 2-3 times more than soybean oil being cultivated only in a few countries
(Anjani, 2012). Castor bean oil consists mainly of ricinoleic acid (85-90 %), a hydroxylated fatty
acid with one double bond, and some unique properties. Castor has an oil close to a technical grade
of purity, a rare natural phenomenon (Anjani, 2012; Bateni & Karimi, 2016). Is more versatile than
other vegetable oils and it is extensively used in a variety of industries, such as cosmetic and
pharmaceutical, in paint, varnish and lacquer production (Borg et al., 2009; Ogunniyi, 2006).
Because of'its high viscosity, it’s used as a lubricant in two-stroke engines, neat or blended, reducing
smoke emissions by up to 50-70 % (Lemos et al., 2016; Singh, 2011). It is a polyol that can readily
form polymers making polyurethanes that find applications in adhesives and coatings, electrical
insulators, semi-rigid foams used in thermal insulation (Cardoso et al., 2012) and it was also
suggested as a possible candidate biomaterial for wound dressings (Uscategui et al., 2019) and as a
graft for bone defect treatments (Sousa et al., 2018). The so-called Turkey red oil, produced by CB
oil sulphation is widely used in textile industries in dyeing and in finishing cotton and linen
(Mubofu, 2016). The CB oil obtained mechanically by pressing results in CB cake, while CB meal
derives from CB oil production through solvents. CB cake is a good organic fertilizer, containing
about 5.5 % nitrogen, 1.8-1.9 % phosphorus and 1.1 % potassium (Lima et al., 2011; Shrirame et
al., 2011). It can be applied in moist soil 3 weeks before sowing the crops allowing for toxicants
degradation (Gupta et al., 2004). It has been used as a substrate for tomato seedlings and as fertilizer
for onion production (Lopes et al., 2011; Mello et al., 2018). CB cake has also shown great potential
for biogas production and is found to be a very interesting feedstock for the production of pyrolysis
bio-oil (Bateni et al., 2014; Kalogiannis et al., 2016). According to Gonzalez-Chavez et al. (2019),
castor cake derived from plants naturally established on polluted mine tailings can be utilized as
organic fertilizer due to the lower levels (e.g., Pb in cake: 2.6-8.8 mg kg™!) of metal contamination
allowed by EU regulations (e.g., maximum limit values of Pb in organic fertilizer 120 mg kg™!' of
dry matter) (EU, 2019).

Castor bean meal may contain up to 55.8 % crude protein and can be used as a protein source
for animal feedstock (Nicory et al., 2015). Due to its ricin content, CB meal use necessitates caution.
Different types of seed processing can reduce or eliminate this toxin (Akande et al., 2016; McKeon
et al., 2013). For instance, it can be detoxified with calcium oxide replacing up to 50 % of soybean

meal in the lambs’ diet (Nicory et al., 2015) and reducing the production costs in a beef cattle grazing
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system (De Matos et al., 2018). Furthermore, up to 15 % non-detoxified CB meals can be used in
goat feed ( Silva et al., 2015). Castor bean can also be considered an eco-friendly and economic
alternative to synthetic insecticidal agents (e.g., against Spodoptpera frugiperda, S. littoralis, Musca
domestica and Phlebotomus duboscqi, the Leishmania vector) (Bakr et al., 2015; Rossi et al., 2012;
Samuel et al., 2016; A. Singh, 2016). Leaf extracts have also shown antimicrobial potential and
antifungal activity (Carolina et al., 2019; Naz & Bano, 2012; Shazia et al., 2016). Castor bean leaves
are used, especially in India and Africa (Sharma et al., 2020; Umer et al., 2016), as food for Samia
cynthia, a moth used to produce silk, and in Italy the use of senescent leaves for eri-silkworm
artificial diet has provided a promising opportunity for valorizing residual biomass to good use after
biorefinery (Zanetti et al., 2017). Moreover, the reactive surface of CB leaf powder has been studied
as a green adsorbent for the removal of heavy metals from natural river water (Martins et al., 2013).
In the eastern part of Nigeria, CB seeds are used as a food seasoning called Ogiri and CB can be

used in honey production (Ogunniyi, 2006; Severino et al., 2012).

2.5.1 Castor biodiesel

Recently, castor bean biodiesel is receiving great attention (Keera et al., 2018). Biodiesel is the
alcoholic ester of vegetable oils obtained by transesterification. It presents many advantages over
fuel, e.g., non-toxicity, biodegradability, renewability, and the decline of most exhaust emissions.
For instance, the presence of oxygen in biodiesel makes it burn cleaner, and its higher viscosity
cancels the need for added sulfur compounds in diesel, reducing SO emissions (McKeon, 2016;
Osorio-Gonzalez et al., 2020). Biodiesel production begins with vegetable oil extraction from the
seeds, generally carried out with mechanical pressing, solvent extraction, or a combination of both
technologies (Osorio-Gonzalez et al., 2020). Lately, supercritical fluids, ultrasound, and microwave
are the newest technologies developed for oil extraction (Osorio-Gonzalez et al., 2020). After oil
extraction, some refining steps are carried out to improve biodiesel quality, such as filtration or
discoloration (Osorio-Gonzalez et al., 2020). Subsequently, biodiesel is obtained through the
transformation of triglycerides into fatty acids (FA), which can be performed with ethanol (resulting
in FAEEs) or methanol (FAMESs), in the presence of catalysts that can be chemical (alkali or acid
catalysts) or biological (enzymes) (Issariyakul & Dalai, 2014). Afterward, separation by
centrifugation or decantation is performed to decrease the impurities and recover all products
(biodiesel, solvent, and glycerol) (Osorio-Gonzélez et al., 2020). The Fatty acid composition of the
feedstock, its property, and the production process employed, are the parameters that mainly affect

biodiesel quality (Sajjadi et al., 2016). The biodiesel obtained, used alone or blended with
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petrodiesel, has to conform to specific standards, like ASTM D6751 or EN 14214 (Ismail et al.,
2014; Osorio-Gonzalez et al., 2020). Some important biodiesel properties that need to conform to

standards are kinetic viscosity, cetane number, cloud and pour point, and flashpoint.

Castor oil is mainly composed of ricinoleic acid (85-90%). CB has a very high percentage of
seed oil content (40-55 %), higher than other normally used oil crops such as soybean (15-20 %),
sunflower (25-35 %), or rapeseed (38-46 %), with a cultivation cost reduced by up to 50 % compared
to rapeseed (Table 2.3) (Keera et al., 2018). Castor oil can be used in diesel engines with few
modifications (Bello et al., 2020; Scholz & da Silva, 2008), lowering the level of pollutants,
carcinogens, and greenhouse gasses (McKeon, 2016; Osorio-Gonzalez et al., 2020). According to
Anjani (2014), about 79782 t of CO2 emission can be saved if 10% of total castor seed oil produced
is transesterified into biodiesel. The world average castor seed production is 1.1 Mg ha’,
corresponding to 460 kg of castor oil with a seed oil content of 47% and oil yield of 90%, but a
higher yield can be obtained, indicating promising oil productivity (Bateni & Karimi, 2016; Scholz
& da Silva, 2008). Castor oil FAMEs present an unacceptably high value of kinematic viscosity
(which influences characteristics such as the amount of fuel that drips in the injection pump
(Issariyakul & Dalai, 2014)) and low cetane number (that quantifies the time between injection and
ignition of the fuel (McKeon, 2016)) that do not allow it to achieve the standard specifications
(Berman et al., 2011; Sajjadi et al., 2016; Scholz & da Silva, 2008). Blending castor biodiesel with
diesel is nowadays the only way to use it in the current diesel engine without complicating engine
performance, and to meet all the required specifications (Berman et al., 2011; Scholz & da Silva,
2008). Castor biodiesels’ high viscosity could improve diesel lubricity when blended, at a
concentration of 2 g kg™, while rapeseed needs to be added at a concentration above 7.5 g kg™! to
achieve the equivalent effect (Severino et al., 2012). Castor biodiesel presents a cetane number
(43.7) lower than diesel CN (51). Nevertheless, the B5 blend gave a CN of 50.6 (Keera et al., 2018).
Moreover, castor biodiesel also presents a high cloud and pour point (which monitors the flow
proprieties at low temperatures (Issariyakul & Dalai, 2014), making it suitable for extreme winter
temperatures, alone and blended (Berman et al., 2011; Keera et al., 2018). Castor biodiesel requires
a negligible amount of catalysts to give a high biodiesel yield, reducing the production costs on a
large scale (Berman et al., 2011; McKeon, 2016). Furthermore, castor biodiesel can be obtained at
low temperatures (Bateni & Karimi, 2016; Da Silva et al., 2013): for instance, Keera et al. (2018)
produced castor biodiesel through alkaline transesterification, with biodiesel yield obtained at 30°C
similar to those obtained at 60°C. It is highly soluble in alcohol, due to the presence of hydroxyl

groups, with great advantage during transesterification (Da Silva et al., 2013; Demirbas et al., 2016;
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Osorio-Gonzalez et al., 2020; Severino et al., 2012). A study by Bateni & Karimi (2016)
demonstrated that the whole castor plant may be used in biodiesel production, with
transesterification performed with ethanol obtained by saccharification and fermentation of plant
residues: 1 kg of castor plant produced 149 g of biodiesel and 30.1 g of ethanol. Meneghetti et al.
(2006) studied a comparison of ethanolysis versus methanolysis on commercial castor oil, obtaining
similar yields but a shorter reaction time for methanolysis. All the above-mentioned studies indicate
that castor bean is a great feedstock for biodiesel production. Some mathematical experimental
designs and methodologies, such as Response Surface Methodology (Da Silva et al., 2013; Sanchez
et al., 2015) or Taguchi approach (Karmakar et al., 2018; Ramezani et al., 2010), can improve and
optimize castor oil transesterification. New technological innovations, new diesel engines, and
mathematical model applications could greatly increase castor biodiesel production and utilization.
According to Amouri et al. (2017), who studied the impact of castor biodiesel production on global
warming, energy return-on-energy investment (EROEI), and ecosystem and human health, castor
biodiesel showed a positive carbon balance, equivalent to the reduction of climate-change emission,
and an EROEI of 2.60. The above-mentioned positive impacts of castor biodiesel can also be
improved by reducing its ILUC: according to Gonzalez-Chavez et al. (2019), oil produced by

Ricinus shrubs grown on metal-polluted sites presents low levels of contamination (e.g., Cd: 0-1.26

mg/L; Pb: 0-2.2 mg/L) and could be used as raw material.

Table 2.3. Comparison between the most common biodiesel feedstocks

Feedstock  Seed Advantages Disadvantages References
oil
content
Non-edible, High flash point. (Barbosa et al., 2010;
Hight pour and cloud POINT Bello et al., 2020; Scholz
Castor oil 45-55%, (useful in Wll’l'FeI' condition), Can LQW cetane number, high viscosity, & da Silva 2008)
grow on marginal and PTEs Ricin content
contaminated soils, Miscible in
alchool, Easy to transesterificate,
Low viscosity, high thermal High production cost, edible, high (Qiuetal., 2011;
700
Soybean — 15-20% (o bility acid value Uyumaz et al., 2018)
. . Edible, high acid value, long-term (Balat et al., 2011,
_ 0 s ’ B ’
Sunflower  23-35%  Low viscosity cultivation unsustainable Demirbas et al., 2007)
. . High cloud point, edible, long-term  (Balat et al., 2011;
- 0 > > >
Palm 18-40%  Cheap feedstock, high flashpoint cultivation unsustainable Mekhilef et al., 2011)
High cetane number, Cheap . . . . (Alam et al., 2013; Sanjid
Mustard 28-32%  feedstock, can grow on soils ‘I;I;igh Vlllsic?lsnly’ Iaowirltheatmg etal., 2014)
contaminated with PTEs ue, ugh cloud po
Effective power and torque (Qiu et al., 2011; Rashid
Rapeseed 38-46% High flash point and low cloud decrease at all engine loads, et al., 2008; Aldhaidhawi

point

increase NOx emissions up to 15%
in most of the experiments

etal., 2017)
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2.6. Phytoremediation potential

Castor bean has a great potential for phytoremediation programs because it is a high biomass
fast-growing plant, unpalatable to stock, and a potential phytoaccumulator of several PTEs, such as
As, Cd, Pb, and Zn (Abreu et al., 2012; Amouri et al., 2017; Bauddh & Singh, 2012a; Huang et al.,
2011). Being a perennial plant, its vegetation cover can immobilize PTEs in the rhizosphere,
reducing their wind dispersion, and thus interrupting the exposure pathways. In addition, it has a
massive root growth, which can reduce PTEs leaching into the water (Fagnano & Fiorentino, 2018b;
Visconti et al., 2019), and makes it capable of adsorbing a high number of contaminants (Palanivel
et al., 2020; Rehn et al., 2019). Castor bean low translocation factor demonstrates that it’s highly
suitable for phytostabilization of heavy metals and metalloids (Bauddh et al., 2015; Palanivel et al.,
2020; Silva et al., 2017). The phytoremediation potential of castor plants is of primary importance,
given the increasing number of PTEs contaminated soil. According to Dastyar et al. ( 2019), one-
third of world resources are contaminated, mainly by heavy metals, although the real rate could be
higher.

Copper accumulation, originating from the long-term use of Cu-based fungicides, carries an
environmental risk of progressive increase of Cu in agricultural soils (Fagnano et al., 2020). Lead,
considered one of the most hazardous PTE, can have a geological origin in soils or be released into
the environment by smelting, battery recycling and mining (Fagnano & Fiorentino, 2018b).
Cadmium, by contrast, is less common in soils but exposure even to low concentrations can cause
serious human health problems, with carcinogenic effects, cell injury and endocrine destruction (
Huang et al., 2011).

Copper toxicity results in growth cessation in plants, chlorosis and necrosis symptoms and
interference with many biological processes (e.g. cellular respiration) (Huang et al., 2018). Castor
bean plants exhibit a well-documented copper phytostabilization aptitude. Copper contaminated soil
seems to increase the biomass production of CB plants (Andreazza et al., 2013; Palanivel et al.,
2020), without significant phytotoxic symptoms except for chlorosis in few leaves, indicating its
Cu-tolerant capacity (Palanivel et al., 2020; Zhou et al., 2020). Copper concentration in roots greatly
exceeds the concentration in other tissue (Huang et al., 2018; Ren et al., 2017). Depending on soil
type, CB is able to remove 5900 g ha! of Cu in Inceptisol and 3052 g ha™! in Mollisol, with root
copper concentration 90 times higher than leaves and stems (Andreazza et al., 2013). Castor bean
plants exhibit a bioconcentration factor (BCF, a ratio of element concentration in the plant shoots to
element concentration in soil (Visconti et al., 2018, 2019) and translocation factor (TF, the ratio of
element concentration in shoots and roots (Duri et al., 2020; Visconti et al., 2020) lesser than 1,

indicating that CB is not a Cu accumulator plant and is well suited for phytostabilization due its low
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metal transfer rate (Andreazza et al., 2013; Napoli et al., 2019; Palanivel et al., 2020). Copper
accumulation in CB seems to be directly related to phosphorous content in soils (Palanivel et al.,
2020). Accordingly, phosphorous fertilization at 300 mg P kg ! increased Cu root concentration by
68 % while decreasing malondialdehyde (MDA) content (Huang et al., 2018). Sulfur application
decreases copper accumulation in roots by 30 %, by reducing Cu bioavailability in soils (Ren et al.,
2017). Conversely, nitrogen fertilization increases Cu roots content, while restricting Cu transport
from the underground part to the aboveground, thus reducing the translocation factor (Zhou et al.,
2020).

Cadmium soil contamination events have been increasing progressively over the last few years,
because of the excessive use of chemical fertilizers and pesticides, mining, smelting and industrial
wastewater irrigation (Bauddh et al., 2016). Almost 5.6 — 38x 10° kg year ' of Cd released into the
environment is anthropogenic, e.g., by metallurgic works, wastes from the cement industry,
municipal waste, sewage sludge, mining, and metal processing: Cd production worldwide in 2015
estimated at 24,900 metric tons (Khan et al., 2017). CB has a strong ability for Cd accumulation in
roots (Bauddh et al., 2016; Bauddh & Singh, 2012a). Eight months old CB plants grown in soil
characterized by a total Cd concentration of 17.50 mg Cd kg™' showed no morphological differences
with the controls, with only a 5% decrease in the number of capsules and seeds per plant (Bauddh
et al., 2016). After the harvest, in the same study, Bauddh et al. (2016) observed a reduction of about
27 % in soil cadmium. Cadmium tolerance and accumulation are dependent on the cultivar (Ye et
al., 2018; Zhang et al., 2014). Compared with a well-known Cd hyperaccumulator, Brassica juncea,
CB accumulates 17 times higher Cd in roots, appearing more suitable for longer-term soil
remediation in single sowing, thus reducing operational costs roots (Bauddh et al., 2016; Bauddh &
Singh, 2012a). Synthetic chelates, such as ethylenediaminetetraacetic acid (EDTA) or
ethylenediamine disuccinic acid (EDDS) can increase the plant’s ability to uptake cadmium
(Fiorentino et al., 2018). EDDS was shown to be the most suitable chelate for the phytoremediation
of Cd in soil (Zhang et al., 2016). Besides chelates, the application of water-soluble chitosan also
enhances Cd uptake (Yang et al., 2017) Moreover, crop co-planting with Medicago sativa can
increase the cumulative amount of cadmium by 1.14 times (Xiong et al., 2018). Under the saline
condition, Cd translocation from soil to CB roots is enhanced due to salt induced Cd mobilization
in soil and CI-Cd complex formation that increase Cd accumulation in plants. On the other hand,
drought reduces it (Bauddh & Singh, 2012a). Application of bio-stimulants, such as Bacillus subtilis
and Azotobacter chrocoocum, and inorganic fertilizer (e.g., urea, diammonium phosphate) enhanced

Cd accumulation, improved tolerance mechanism and decreased MDA content (Bauddh & Singh,
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2015). Spent mushroom substrate (SMS) applied as an organic amendment increased plant Cd
uptake and the total amount of Cd accumulation in CB by 28-152 % (Cheng et al., 2018).

Lead accumulation in soils, and subsequently in plant tissue can reduce biomass and
photosynthetic activity, root and shoot elongation, and increase the generation of reactive oxygen
species (ROS) (Pal et al., 2013). Castor bean was able to accumulate high amounts of Pb in roots,
tolerating above phytotoxic levels of Pb without any symptom of toxicity (Pal et al., 2013; Romeiro
et al., 2006). Fungi are well known for their ability to detoxify potentially toxic elements through
precipitation or valence transformation, and by passive and active uptake (Fiorentino et al., 2018).
According to this, arbuscular mycorrhizal fungi treatments significantly influenced rhizosphere soil
pH, Pb bioavailability and CB shoots Pb concentration (Gonzéalez-Chavez et al., 2019).
Amendments, such as biochar or rice husk ash, can be used in mitigating Pb toxicity, improving
plant growth and decreasing Pb accumulation in roots by up to 59% by immobilizing Pb (Kiran &
Prasad, 2019). Among the chelates, citric acid can remove 17 times more Pb than untreated plants
(Silva et al., 2017) and improves photosynthesis and plant growth (Mallhi et al., 2019). EDTA is
the most effective for Pb phytoextraction, but due to environmental persistence is not the best option
for field use (Zhang et al., 2016). Castor beans seem to defend itself against lead toxicity by
increasing its production of proline and carotenoids, and by upregulation of ABC transporter
transcript which are likely responsible for Pb detoxification in roots (Pal et al., 2013). According to
Costa-Souza, CB growth was not affected by lead (2012).

Among the other PTEs, CB also emerged as a Zn phytostabilizer (Gonzalez-Chavez et al., 2015;
Olivares et al., 2013; Palanivel et al., 2020) and for being As and Ba tolerant (Coscione & Berton,
2009; Melo et al., 2012). Only B and Mn were translocated more intensely into the shoots, showing
a TF greater than 1 (Abreu et al., 2012; Olivares et al., 2013; Palanivel et al., 2020). Furthermore,
CB has also been used for phytostabilization and revegetation of fly ash disposal, derived from coal-
fired power plants, showing a BCF in roots greater than 1, and a TF lower than 1 (Pandey, 2013).
Castor bean can also provide other benefits such as carbon sequestration and an esthetically pleasant
landscape (Pandey, 2013).

Organochlorine pesticides such as dichlorodipheno-xytrichloroethane (DDT) and organic
pollutants are widely known for their toxicity, persistence in the environment and bio solubility in
fatty tissue (Rissato et al., 2015). Accumulation of organic pollutants in plant roots can be the result
of two processes: 1) uptake and translocation, for pollutants with low hydrophobicity, and 2)
adsorption in root tissue (Rissato et al., 2015). However, nowadays, it is well known that the
presence of arbuscular mycorrhizal fungi, which increase the contact surface and interact with roots

and rhizosphere, can modify the bioavailability of organic contaminants and enhance plant
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adsorption (Rissato et al., 2015). Moreover, microbe-assisted phytoremediation, i.e.,
rhizoremediation, the degradation of pollutants in the rhizosphere, is affected by root characteristics
and exudate compounds, which influence soil properties and organic pollutant mobilization (Wang
et al., 2013). Studies have proven that CB can be used in the phytoremediation of soils contaminated
with these kinds of pollutants (Huang et al., 2011; Rissato et al., 2015). For example, co-planting
CB with Sedum alfredii enhances the degradation of pyrene and anthracene, two polycyclic aromatic
hydrocarbons (PAHs) (Wang et al., 2013). Moreover, CB plants grown on soil contaminated with
mineral oil can remove up to 81 % of soil hydrocarbons, manifesting visual toxic effects only after
45 days of treatment (Rehn et al., 2019). Remediation of soils contaminated by organic pollutants
with CB is a potential biotechnological approach with the side effects of erosion control, site

restoration, carbon sequestration, and feedstock production for biofuel (Rissato et al., 2015).
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Figure 2.3. Castor bean phytostabilization scheme for biodiesel production. TF is Translocation Factor. BCF is Bio

Concentration Factor. PTEs are Potentially Toxic Elements.

2.7. Conclusions

The multiple uses of CB oil clearly show that it is one of the most promising sources of
renewable raw materials for many industries. Being a non-edible plant, its use as an energy source
does not compete with food production, and unlike other industrial plants, CB can grow on marginal
and PTE-polluted lands not suitable for food crops. It can survive in conditions under which other
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crops would be severely damaged, allowing seed production with little or no irrigation. CB fast
growth and high biomass production can reduce the time required for phytoremediation programs,
which is considered the real weakness of phytoextraction/phytostabilization. Furthermore, it has a
higher oil yield potential, compared to other bioenergy crops.

According to the life-cycle analysis of the whole production system, CB cultivation has a major
impact on the environment. Thus, exploiting metal-contaminated lands for bioenergy production
might decrease CB cultivation impacts, reduce ILUC of biodiesel production, and convert
contaminated soils into fully utilized and productive sites (Fig. 2.3). Moreover, oil produced from
CB plants grown in PTE-polluted mine tailings had higher linoleic acid content, which enriches fuel
properties (ignition quality, cloud point), and non-toxic concentrations of Cd, Pb, Zn, Ni, Mn.
Besides this, CB plant residues of biodiesel production could be used in biogas and ethanol
production, when the PTEs concentration allows it. Among thermal conversion methods, pyrolysis
reduces the weight and volume of the contaminated biomass while concentrating the PTEs in the
char/ ash fraction, which can be removed according to heavy metal safe disposal.

Despite its high adaptability to a different climate, CB oil is produced mainly in India, China,
and Brazil, but one-quarter of its transformation is done by the EU oleochemical industry, which is
completely dependent on imports. Using CB in different countries such as Europe to remediate
contaminated sites and produce biofuel and by-products could result in a great opportunity for the
environment and a bio-based economy, leading to new job creation and opportunities. Moreover,
the biodiesel produced from CB grown on marginal lands and contaminated soils would be able to

eliminate the Indirect Land Use Change making the production of biofuels truly sustainable.
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