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Introduction

Introduction

The present work is devoted to the study and the methodological develop-

ment of statistical approaches in the framework of Learning Analytics, with a

particular focus on the issues of students’ assessment, profiling and tutoring.

Specifically, it proposes two statistical approaches based on latent variable

models aimed to offer helpful statistical models for handling students’ learn-

ing activities data or as a knowledge base in a self-recommendation learning

environment. Indeed, the vast amount of data from modern technology-

based learning platforms requires transforming data in knowledge as support

to address the evaluation’s final aim.

In this vein, statistical modeling turns out helpful for educational institu-

tions with at least three advantages: (i) it offers a very detailed proficiency

assessment through sets of model parameters that ensure comparison within

and between students over time; (ii) it allows forecasting students’ academic

performance for the near and distant future and implementing proper actions

to limit and reduce students’ leaving; (iii) it provides insights about students’

weakness that are helpful to set up tailored recommendation systems.

Conceived as a complex process, students’ ability assessment accounts for:

Topics (learning modules) of a specific knowledge domain; Dimensions of

students’ ability (specific skills); Individual characteristics affecting students’

achievements and performance (e.g., emotional and motivational aspects).

Notably, cognitive abilities independently considered from emotional, psycho-

logical, and motivational aspects cannot alone thoroughly explain learners’

proficiency, academic performance and achievements (Thomas et al., 2017).

Specific psycho-social aspects affect performance and achievements posi-

tively (e.g., self-efficacy, grit, positive attitude, self-regulation), whereas

1



Introduction

others have a debilitative influence (e.g., anxiety, procrastination, bore-

dom). Therefore, students’ psychological characteristics should enter as

well the learning proficiency analysis, as they contribute to understand

students’ competencies, where the term competencies refers to the whole set

of personal knowledge (not strictly related to the specific acquired skills),

characteristics, and behaviors that lead students to success in learning.

From a theoretical point of view, students’ ability can be conceived as a

multidimensional latent construct measured by sets of manifest indicators.

Therefore, students’ proficiency evaluation depends on their responses to sets

of questions that are structured within homogeneous topics. Because of the

nature of not directly measurable students’ ability, latent variable models

stand out as an appropriate reference framework for assessing students’

ability. Several statistical approaches have been proposed in this framework.

Chapter 1 provides an overview of the traditional latent variable models

and some of their extensions that are frequently of theoretical and empirical

interest.

Statistical models play an ever more fundamental role in analyzing

students’ performance, especially looking at the progressive higher education

unfolding to technology-driven learning (OECD, 2015; 2021). As discussed

in Chapter 2, self-learning platforms have gained increasing popularity in

recent years, since they constitute flexible learning environments in which

technology takes over the role of teachers. Consequently, for resulting

helpful to teachers and students, they must adequately analyze responses

and provide adaptive feedback about topics needing review and advice

about beneficial learning strategies given the students’ knowledge state

(Holmes et al., 2018; Fadel et al., 2019). In addition, detected information

about psychological and motivational factors can drive the development of
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motivational feedback.

To this end, essential steps are the definition of the structure of the knowl-

edge domain to investigate, the selection of solid criteria to assess students’

ability and psychological factors, and the identification or development of

appropriate indicators for their measurement. About that, Chapter 3 de-

scribes the assessment procedure specifically designed to evaluate students’

proficiency in the considered application context, namely learning Statistics

in non-STEM1 degree courses. Data were collected within the “Adaptive

LEArning system for Statistics” (ALEAS) ERASMUS+ Project (KA+ 2018-

1-IT02-KA203-048519). In particular, data collection was carried out via

the Moodle platform and consisted of three waves, each focusing on different

statistical topics. The dimensions of students’ ability were defined according

to the Dublin descriptors, representing one of the bases for the Framework

for Qualifications of the European Higher Education Area (Gudeva et al.,

2012). Accordingly, a set of multiple-choice questions was developed for each

considered Dublin descriptor. Finally, psychometrics scale administration

allows to evaluate psychological and motivational factors hypothesised to

impact students’ performance.

From a statistical modeling point of view, the proposed assessment

procedure requires integrating multidimensionality (more variables defining

students’ ability), longitudinal design with a time-varying measurement

model (different topics per time point), and the covariate effects on the

students’ progress in learning.

The present contribution proposes two novel statistical approaches in

the framework of latent variable models, which allow to manage all the

above-mentioned elements effectively. Both proposals exploit non-parametric

1STEM states for Science, Technology, Engineering, and Mathematics
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approaches that represent an ideal tool for developing accurate feedback

during learning, allowing to qualify, in addition to quantify, individual

differences (McMullen and Hickendorff, 2018). In particular, Chapter 4

presents a novel implementation of the multilevel latent class analysis

as a classification strategy to manage complex data structures in ability

assessments. As a methodological novelty, compared to previous works

analyzing educational data, the proposal specifies a multidimensional latent

structure at the low level of the hierarchy to account for the multidimensional

nature of students’ ability. Among the advantages of this approach, there is

the ease of implementation and the availability of statistical software for

parameter estimation.

Chapter 5 includes the second proposal of this thesis, which introduces a

three-step rectangular latent Markov modeling as an extension of the tradi-

tional latent Markov models. This approach allows both for time-varying

measurement models and different number of classes for the considered

time points. As such, this proposal represents the first integration of the

bias-adjusted three-step latent Markov modeling proposed by Di Mari et al.

(2016) and the rectangular latent Markov modeling (Anderson et al., 2019).

Given the originality of the proposal, no software was available for model

implementation. Thus, I code for parameter estimation has been devel-

oped, and a simulation study was carried out to evaluate the performance

of the bias-adjusted estimator for the third step of the proposed approach.

Note that both the proposals mentioned above also allow for considering

the effect of individual characteristics on achievements and learning over

time. The results from the empirical application of the proposed approaches

for the analysis of the complex data structure deriving from the students’

assessment proposed in Chapter 3 complement the theoretical aspects.
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Chapter 1

Measuring non-observable
concepts

Everyday living posits humans to face several non-observable concepts.

Indeed, people are continuously called to understand, describe, and examine

notions that cannot be directly measured but only inferred from a series

of observable indicators. When we have to express the level of satisfaction

for a product or a service, for example, our evaluation relies on a set of

measurable characteristics, such as the price, the perceived quality, and the

fulfillment of expectations, representing observable indicators of unobserved

customer satisfaction. Also, the direct measurement of the quality of life

is not possible; however, work and health conditions, income, exposure

to pollution, and time spent on leisure activities can be used as indirect

measures. Other examples involve emotions, abilities, personality traits,

and beliefs.

Due to their unobservable nature, theoretical concepts are defined latent

constructs, whereas the corresponding observable manifestations constitute
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their manifest proxies (Raykov and Marcoulides, 2011). The description

of a latent construct in terms of manifest indicators is named operational

definition (Crocker and Algina, 1986). Examples of manifest indicators

are directly measurable properties or, as is usual in social and behavioral

sciences, a set of Likert-type items. But measuring latent constructs is

not an easy issue: choosing among different operational definitions of the

same construct, determining an adequate sample of observable proxies, and

accounting for measurement errors stand out among the major challenges

(Crocker and Algina, 1986; Raykov and Marcoulides, 2011). Moreover, the

complexity of some theoretical concepts requires to differentiate among their

multiple facets, named dimensions, leading to what are known as multi-

dimensional latent constructs (Rabe-Hesketh and Skrondal, 2008; Briggs

and Wilson, 2003). Intellectual functioning, for example, can be considered

a multidimensional construct made up of the dimensions of verbal com-

prehension, perceptual reasoning, working memory, and processing speed

(Wechsler, 2003).

The development of psychometric theories and statistical models has

primarily played an essential role in defining how observable indicators are

linked to the latent construct. In the modeling approach, latent constructs

are conceived as random variables with unknown values that can be inferred

from observed (measured) variables throughout a statistical model (Skrondal

and Rabe-Hesketh, 2007). According to the theoretical definition of latent

constructs and manifest indicators, the terms “manifest” and “latent” are

also used to define observed and unobserved variables in statistical modeling.

Over the years, a general framework for latent variable modeling has been

tuned (see, among others, Muthén, 2002; Skrondal and Rabe-Hesketh, 2004;

Borsboom, 2008), aiming to gather the properties common to a wide range
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of latent variable models. The following sections address these similarities

as well as some of the more common extensions derived from the traditional

latent variable models.

1.1 Latent variable models

There are many formal definitions of a latent variable (Bollen, 2002). In

the classical test theory (Spearman, 1961; Novick, 1966), for example, it

represents the true score, namely the expected value of the observed variable

for a particular individual. However, the local independence definition

(McDonald, 1981; Lazarsfeld and Henry, 1968) is the most common definition

(Bollen, 2002). Formally, let Θ denotes the latent variable and Y the vector

of K indicators with the generic element Yk (k = 1, . . . ,K). The joint

density probability distribution of the latent and observed variables can be

expressed as:

f(Θ,Y) = g(Θ)h(Y|Θ) = g(Θ)

K∏
k=1

h(Yk|Θ); (1.1)

where g(Θ) is the probability function of the latent variable and h(Yk|Θ)

denotes the probability function of item k conditional on the latent variable.

In particular, the first decomposition in Equation (1.1) accounts for the

dependency of Y on Θ, whereas the second one specifies the local indepen-

dence assumption that allows considering the K indicators as independent

given Θ (Skrondal and Rabe-Hesketh, 2004). Thus, the observed covariation

in the manifest variables is due to their dependence on the latent variable.

It is worth noting that the local independence assumption also holds for

multidimensional latent variable models, where a vector of latent variables

7
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Θ = (Θ1,Θ2, . . . ,ΘD)′ underlying the set of indicators is considered (Raykov

and Marcoulides, 2011).

Starting from the general formulation in Equation (1.1), different types

of latent variable models can be obtained according to the specification

of the probability function of the latent variable g(Θ) and the conditional

distribution of the K items h(Yk|Θ). In addition, the response part of

the model comprises also the specification of a link function, namely the

particular regression model used to connect (hence link) the observed

indicators with the latent variable (Bartholomew and Knott, 1999). Thus,

based on the nature of manifest and latent variables, four main (traditional)

types of latent variable models can be defined: factor analysis (or common

factor model), latent profile analysis, item response theory models, and latent

class analysis (see Table 1.1). The following subsections briefly describe the

principal features of each of them.

Table 1.1: Classification of the traditional latent variable models (from
Kankaraš et al., 2011).

Latent variable

Manifest variables Continuous Categorical

Continuous Factor analysis Latent profile analysis
Categorical Item response theory Latent class analysis

1.1.1 Factor analysis

The term factor analysis was introduced by Thurstone (1931), even though

Spearman (1904) had previously referred to the common factor concept while

arguing about intelligence (Skrondal and Rabe-Hesketh, 2007). However,

8
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the definition of factor analysis as a statistical method came later with

Lawley (1940), Rao (1955), and Lawley and Maxwell (1971).

In factor analysis (Gorsuch, 1983), both the observed and latent variables

are continuous normally distributed, and linear regression models are used

as link functions. In particular, given the vector of observed variables Y

measuring the latent variable Θ, the factor analysis model is defined as:

Y = λΘ+ ϵ

where λ is a vector of factor loadings indicating the impact of Θ on the

manifest indicators included in Y, and ϵ is a vector of measurement errors.

The model assumes that the common factor Θ and the error component ϵ

have a zero mean and are uncorrelated:

E(Θ) = 0; E(ϵ) = 0; Cov(Θ, ϵ) = 0.

It is worth noting that in literature there are two main approaches to

common factor modeling: the exploratory factor analysis (Thurstone, 1935;

Thomson, 1938) and the confirmatory factor analysis (Jöreskog, 1971,9).

The former is based on a data-driven procedure, extracting the number

of common factors from the data without specifying the loading patterns

between the observed and the latent variables. Conversely, the latter defines

the number of latent factors and their association with the corresponding

manifest indicators according to a substantive theory or a research design

before analyzing the data. For more details about the differences between

these two approaches, see Hurley et al. (1997), Thompson (2004), Suhr

(2006), among others.

9
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1.1.2 Latent profile analysis

Latent profile model was firstly introduced by Green Jr (1952), even if term

was later coined by Gibson (1959).

The latent profile analysis (Collins and Lanza, 2009; Peugh and Fan,

2013), as well as the latent class analysis discussed below, constitutes a

person-oriented approach to latent variable analysis (Woo et al., 2018;

Bergman et al., 2003), in contrast to variable-centered approaches (e.g.,

factor analysis). Indeed, starting from the manifest variable covariation,

latent profile analysis uncovers latent groups of people, called profiles, instead

of latent factors. The detected latent profiles represent meaningful patterns

of attributes that occur across individuals (Bergman et al., 2003). The

latent variable is assumed to be discrete; specifically, it has a multinomial

distribution referring to the profile membership probabilities. On the other

hand, manifest variables are treated as normally distributed and are linked

to the latent variable through linear regression models.

For latent profile analysis, the basic local independence assumption

specifies that all the K considered indicators are uncorrelated within each

latent profile; thus involving profile-specific covariance matrices with all the

off-diagonal elements equal to zero. In addition, parsimony issues during

parameter estimation commonly require to impose also the homogeneity

restriction on the variances of response variables across latent profiles (Lubke

and Neale, 2006). Hence, let Y be the vector of observed variables and

X denotes the categorical latent variable taking values i = {1, . . . , I}, the
above-mentioned assumptions can be formalized as follows:

Σi = Σ; Yi ∼ N [µi,Σ].

Due to the local independence and homogeneity assumptions, the

10
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marginal probability density function for the generic response vector

Ys = (Ys1, . . . , YsK)′ of subject s, can be obtained following the law of

total probability as:

f(Ys) =
I∑

i=1

P (Xs = i)h(Ys|Xs = i)

where I is the total number of latent profiles, P (Xs = i) is the prior

probability of belonging to latent profile i, and h(Ys|Xs = i) the conditional

probability density function of Ys given the membership to the profile i.

Finally, subjects are allocated in the latent profile for which they report

the highest posterior probability of membership, given their response pattern.

1.1.3 Item response theory models

Item response theory (IRT) models, often referred to as latent trait models,

have roots in the educational field, particularly in the work of Thurstone

(1925), who introduced their fundamentals to measure students’ abilities.

Accordingly, the latent variable is commonly called ability in IRT models.

The introduction of the normal ogive model by Richardson (1936) and

Ferguson (1942), the work of Lord (1952) on the difference between observed

test score and latent trait, the definition of the Rasch model, and the related

specific objectivity principle by Rasch (1960) represent other milestones in

this class of models. For a more careful description of the history of IRT

models, see Thissen and Steinberg (2020).

Theoretically, IRT models assume a normally distributed latent variable

measured by a set of nominal or ordered categorical variables, usually called

items. Given the multinomial or binomial distribution of the observed

variables, logit or probit models are usually employed as link functions.

11
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A peculiarity of IRT models lies in estimating the probability of an

answer to a certain item as a function of both subject’s ability and item

characteristics. Since these models involve categorical items, it is worth

distinguishing between the case of dichotomous and polytomous items.

Dichotomous items are binary items assuming only two values, such as

yes-no, correct-wrong, or true-false. Conversely, polytomous items have

more response modalities that could be ordered, as in the case of a 5-point

Likert-type item ranging from “completely disagree” to “completely agree”,

or unordered, as in multiple-choice questions about preferences.

Regarding the dichotomous scored items, the most general logit model

formulation is the 4-parameter logistic (4-PL) IRT model (Barton and Lord,

1981), which specifies the probability that a subject s with an ability level

Θs endorses the generic item k as:

P (Ysk = 1|ak, bk, ck, dk,Θs) = ck + (dk − ck)
exp{ak(Θs − bk)}

1 + exp{ak(Θs − bk)}
,

where ak is the item discrimination, namely the item’s ability to discriminate

between different levels of the latent trait, bk represents the item difficulty,

equal to the level of latent trait needed to have a probability p = 0.5 of

endorsing the item, and ck and dk are used to identify the guessing (correct

answer by chances) and ceiling (missingness for higher-ability individuals)

parameters, respectively.

Reduced formulations of this model can be obtained according to the

number of considered item parameters: the Rasch model (Rasch, 1960) only

considers the item difficulty; the 2-PL IRT model proposed by Birnbaum

(1968) accounts for both item difficulty and discrimination; the 3-PL IRT

model, introduced by Barton and Lord (1981), also looks at the guessing

parameter in addition to the difficulty and discrimination ones.

12
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For what concerns polytomous IRT models, the probability that a subject

s with an ability level Θs select the category j of item k can be generally

expressed as follows:

h[P (Ysk = j|Θs)] = ak(Θs − bjk), j = 1, . . . , J − 1,

where h(·) is the link function, J the number of modalities of item Yk, ai and

bir the discrimination and the item-step difficulty parameter, respectively.

According to the link function specification, different IRT models can be

obtained. In particular, there are three main different ways to model the

comparison between ordered categories of an item: (i) the global logit, a

cumulative approach comparing the probability that an item response is in

category j or higher (Ysk ≥ j) with the probability of a response in a lower

category (Ysk < j); (ii) local logit, an approach comparing each category

j with the previous one j − 1; (iii) the continuation ratio logits, that is

based on the comparison between the probability that an item response is

in category j or higher (Ysk ≥ j) and the probability of a response in the

previous category j − 1. In addition, a multinomial logit can be used for

nominal items, which allows comparing each category j with the reference

one (say, for example, j = 0). IRT models relying on a global logit are called

graded response models (Samejima, 1969, 2011), models based on a local

logit are known as partial credit models (Masters, 1982), models exploiting

a continuation ratio logit are referred to as sequential models (Tutz, 1990).

The nominal response model introduced by Bock (1972) represents the most

widely-used model for nominal responses. Note that several restrictions

can be imposed on item parameters resulting in constrained versions of

the above-mentioned IRT models. For a more exhaustive taxonomy of IRT

models, see Bartolucci et al. (2015), Tutz (2020) and the references therein.

13
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1.1.4 Latent class analysis

Latent class analysis (LCA) finds its origins in the early works of Lazarsfeld

and Henry (1968), Goodman (1974), and McCutcheon (1987).

Starting from observed response patterns, LCA makes it possible to

identify homogeneous groups of individuals, called latent classes, which

define the categories of the underlying discrete latent variable. Accordingly,

LCA is considered a mixture model following a person-centered approach

as the latent profile analysis, with the only difference that in LCA observed

variables are also categorical.

More formally, let Ys = (Ys1, . . . , YsK)′ be the vector of responses to the

K items for the subject s, and X be the categorical latent variable taking

values i = {1, . . . , I}, the basic latent class model can be defined as follows:

P (Ys) =
I∑

i=1

P (Xs = i)P (Ys|Xs = i),

where I is the total number of latent classes, P (Xs = i) the prior probability

of belonging to latent class i, and P (Ys|Xs = i) the conditional response

probability given latent class membership i.

Given the categorical nature of the manifest variables, logit or probit

models are usually used as link functions in LCA with proper differences

according to the binary, nominal, or ordinal scoring of the considered items.

Thus, as for IRT models, binary, multinomial, or adjacent-category ordinal

logistic regression can be used to model the dependency of manifest indicators

from the latent variable (see, for example, Heinen, 1996; Vermunt, 2001;

Magidson and Vermunt, 2004). At the end of the estimation procedure, item

response probabilities are used to characterize the latent classes, whereas

class membership probabilities allow assigning subjects to latent classes.

14



1.2. Main extensions of traditional latent variable models

1.2 Main extensions of traditional latent variable
models

Latent variable models have been very popular, especially in social and

behavioral sciences. Over the years, the increasing access to a vast amount of

data, and the complexity of the emerged data structures constitute new and

serious challenges for data analysis, leading to the development of different

extensions of traditional models to address a variety of research purposes.

In the following subsections, some of these extensions are described, each

contributing to the solution of one of the main issues typically arising in

social and behavioral sciences investigations. A summary scheme of the

discussed extensions according to the four traditional latent variable models

is provided in Figure 1.1. Note that other models can be derived from

the integration of two or more of the presented extensions and that the

below-mentioned models merely account for some of the models of greatest

theoretical and empirical interest, but it is not an exhaustive list.

1.2.1 Multidimensionality of the latent variable

When dealing with complex latent constructs defined by several more specific

dimensions, unidimensional approaches to data analysis result too restrictive,

causing misspecification and loss of information.

Violations of unidimensionality can be addressed following a consecu-

tive approach (Briggs and Wilson, 2003), or adopting multidimensional

approaches. The first considers the construct’s dimensions as independent of

each other, and thus specifies a set of corresponding unidimensional models.

Conversely, multidimensional approaches allow to account for covariances be-

tween the construct’s dimensions, simultaneously modeling the correlations
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between all the observed variables. In particular, between-item multidimen-

sional approaches assume that each item measures only one latent variable

(construct’s dimension), whereas within-item multidimensional approaches

allow each item to contribute to the measurement of more latent variables

(Adams et al., 1997a; Wang et al., 1997).

Regarding the models based on continuous latent variables, namely factor

analysis and IRT models, three main extensions have been proposed to

manage multidimensionality (Reise et al., 2010). The first one, commonly

called correlated traits model, considers latent variables as distinct correlated

“primary” traits. The second one, known as higher-order model, adds a

higher-order (general) latent variable accounting for the correlation between

the considered specific dimensions. Finally, bifactor models (Holzinger and

Swineford, 1937; Schmid and Leiman, 1957) define a latent structure where

each item is related to a general factor, reflecting commonality between items,

and one or more specific factors accounting for the different construct’s

dimensions and explaining item response variance not accounted for by

the general factor. A further extension of bifactor models, which consider

multiple general factors, is the two-tier model (Cai, 2010). Bifactor and

two-tier models represent the most common way to model within-item

multidimensionality. See also Bonifay (2015) for a comparative review.

A specific formulation of the above-mentioned models in the IRT frame-

work can be found in Reckase (2009) for multidimensional IRT models,

De La Torre and Douglas (2004) for higher-order IRT models, Gibbons and

Hedeker (1992) and Gibbons et al. (2007) for bifactor models, Cai (2010)

for two-tier IRT models, among others.

In the case of multiple discrete latent variables, a multidimensional

extension of LCA was introduced by Jeon et al. (2017), who proposed the
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joint latent class analysis (JLCA) that defines different groups of individuals

according to their class memberships for all the considered latent variables.

As such, this model represents a mixture of discrete latent variables.

1.2.2 Repeated measures of the latent variable

In longitudinal studies, latent variables are measured over several time

occasions: in such cases, interest is not only in inter-individual differences

but also in intra-individual differences accounting for latent variable changing

across time (Raykov, 2007).

One of the traditional approaches for handling longitudinal data considers

time points nested into individuals and thus exploits multilevel models

for their analysis (see, for example, Raudenbush and Bryk, 2002). The

contributions of Muthén (1997a; 1997b), Rabe-Hesketh et al. (2004), and

Skrondal and Rabe-Hesketh (2004) clearly describe the multilevel perspective

in the analysis of longitudinal data. Key references for multilevel models

in the IRT context are instead Adams et al. (1997b), Fox (2001), and Fox

and Glas (2001). Moreover, the general multilevel latent variable modeling

framework proposed by Vermunt (2003; 2008) can also be considered to

manage hierarchical data structures with discrete or continuous latent

variables at each level.

In addition, several approaches within the structural equation modeling

framework (e.g., Bollen, 1989) have been developed to treat longitudinal

data. Among them, for example, dynamic factor analysis models (Geweke,

1977; Molenaar, 1985) have been proposed to measure changes in the latent

variables concurrently accounting for indicators’ correlation within each time

point and interrelation of the same indicator across time (Marsh and Grayson,

1994; Raffalovich and Bohrnstedt, 1987). Extensions to polytomous items
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can be ascribed to Eid (1996) and to te Marvelde et al. (2006).

The most widely used approach to analyze continuous observed variables

is the latent growth curve model (Meredith and Tisak, 1990), whose accurate

description can be found in Bollen and Curran (2006). This approach posits

the existence of continuous latent trajectories capturing individuals’ change

over time. The characteristics of the trajectory can vary across individuals;

thus, the parameters of the curve, namely the intercept and the slope, are

modeled as latent variables. In particular, the intercept describes the initial

level of the considered construct (e.g., traits, attitudes), whereas the slope

represents the rate of change over time.

For categorical observed variables, a second-order latent growth curve

model can be employed to include an IRT measurement model (Zheng, 2017;

Wang and Nydick, 2020). For a deeper discussion on the latent growth

curve model and its extensions and application, see Preacher et al. (2008),

Kohli and Harring (2013), Cagnone et al. (2009), Gorter et al. (2020).

Noteworthy, Bollen and Curran (2004) integrated the autoregressive effect

in the growth curve model leading to the autoregressive latent trajectory

model. It represents a hybrid model that explains within-subject dependence

concurrently considering individual change trajectories, as typical in growth

curve models, and the persistent effect of prior values of the observed variable

on the current ones (Bollen and Zimmer, 2010). In this framework, Jeon

and Rabe-Hesketh (2016) proposed a variant for longitudinal binary data.

Moreover, a generalization of the autoregressive latent trajectory model,

called latent variable autoregressive latent trajectory, looks at the autoregres-

sive relationships between repeated latent variables rather than manifest

variables (Bianconcini and Bollen, 2018). Further extensions of this model

to polytomous observed variables have yet to be discussed.
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In addition, also the models developed to handle multidimensional latent

variables can be used to analyze latent traits change over time. Indeed,

longitudinal measurements of a latent variable can be modeled by considering

a series of primary latent variables, one for each time point, whose correlation

reflects the stability over time (Cai, 2010). More complex multidimensional

models, such as bifactor and higher-order models, can also be used to analyze

longitudinal data, given that the different measurement occasions constitute

the construct’s facets (Koch et al., 2018). The longitudinal bifactor IRT

model (Hill, 2006) is an example referring to the IRT framework. Moreover,

several other IRT models have been proposed to examine change over

time. One of the earliest models was introduced by Andersen (1985), who

consider the repeated administration of the same items over time, with

constant item difficulties and time-varying individual ability. In particular,

in Andersen’s model, the change over time is measured as difference of

time-specific abilities. Andrade and Tavares (2005) extended this model,

defining a multivariate normal distribution for the latent variable so to

obtain a covariance matrix to study the change over time. Another notable

extension is the multidimensional Rasch model for learning and change

developed by Embretson (1991), which assumes a different ability for each

time point allowing also for time-varying observed variables. A version of

this model for polytomous items can be found in Fischer (2001). For details

on Embretson’s model and on longitudinal IRT models see Von Davier et al.

(2011), Wang et al. (2016), Embretson (1991).

Concerning discrete latent variables, longitudinal extensions account for

transitions across latent classes, or profiles, over time. In particular, the

latent class transition model extends the latent class model to longitudinal

design, whereas the latent profile transition model represents the longitudi-
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nal version of the latent profile model (Hickendorff et al., 2018). Regardless,

both extensions can be generally defined as latent transition models (Collins

and Wugalter, 1992; Collins and Lanza, 2009; Chung et al., 2005), and the

corresponding latent classes or profiles are usually called latent states to

underline their temporary nature (e.g., Collins and Lanza, 2009). Note

that latent transition models are also referred to as latent Markov models

or hidden Markov models (Kaplan, 2008; Vermunt et al., 2008), since the

latent process typically follows a first-order Markov chain, where change

only depends on the previous class. Accordingly, three types of parameters

characterize latent transition models: (i) initial state probabilities, namely

state proportion at the first time point; (ii) transition probabilities, de-

scribing the transition from one state to another at each subsequent time

point; (iii) class-conditional parameters accounting for the relation between

latent states and observed indicators and thus characterizing the latent

states (Hickendorff et al., 2018). Further details can be found in Song et al.

(2017), Raykov (2007), Vermunt (2010b), Bartolucci et al. (2014b). For

a comprehensive overview of the latent Markov models see Cappé et al.

(2009), Zucchini and MacDonald (2009), Bartolucci et al. (2012).

1.2.3 Individual covariates affecting the latent variable

Individual covariates in latent variable models can affect the distribution of

the latent variable and/or the response variables. The first case typically

looks at the effect of individual characteristics (e.g., socio-demographic

information) on the considered latent construct’s levels, whereas the latter

represents a useful tool for studying differential item functioning (Moustaki,

2003; Vermunt and Magidson, 2021; Bakk and Kuha, 2021). In this section,

the covariate effect on the latent variable is mainly discussed.
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The estimation of covariate effects can follow a one-step (global) approach

or a multi-step (consecutive) approach where the measurement model is

firstly fitted, and then the obtained factor scores or latent classes/profiles

are used as observed dependent variables in a subsequent regression analysis

(Moustaki and Knott, 2000; Goldstein, 1980; Zwinderman, 1991; Hoijtink,

1995). Because the consecutive approach leads to biased estimates (Croon

and Bolck, 1997; Bakk and Kuha, 2021), some correction methods have

been proposed especially in the latent class framework, where the hard

classification of subjects disregards the classification uncertainty (see, for

example, Bolck et al., 2004).

On the other hand, the global approach allows simultaneously estimating

model parameters and covariate effect, resulting in what is defined latent

regression model where the dependent variable is latent rather than directly

observed. Related references can be found in Sammel and Ryan (1996)

for factor analysis, in De Boeck and Wilson (2004), Rijmen et al. (2003),

Zwinderman (1991) for IRT models, and in Dayton and Macready (1988),

Hagenaars (1988), Muthén (2004) for latent class/profile models. Note that

in the continuous case, the effect of covariates on the latent variable is

modeled through a linear regression model, whereas a logit-type regression

model is specified to express the covariate effects on latent class membership

probabilities in latent class/profile models (Bandeen-Roche et al., 1997; Tay

et al., 2011; Hagenaars and McCutcheon, 2002; Maij-de Meij et al., 2008).

In the recent contribution by Bakk and Kuha (2021), the authors outline

the recommended modeling approaches for different circumstances involving

latent class models with external variables.

Among the global approaches, the multiple indicators and multiple causes

(MIMIC) model has been proposed to account for the direct and indirect (via
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the latent variable) effect of covariates on normally-distributed indicators

(Jöreskog and Goldberger, 1975). This model has been extended to other

types (i.e., binary and ordinal) of observed variables (Muthén, 1989), to

the IRT framework (Bertaccini et al., 2013), and to latent class analysis

(Muthén et al., 1998; Yang, 2005).

Other interesting references about statistical modeling of covariate effect

on latent variables are in Vermunt (2010a), Moustaki et al. (2004), and

Wang and Wang (2019).

1.2.4 Distal outcomes of the latent variable

External variables can act not only as predictors of latent variables but

also as distal outcomes. As argued in the previous subsection about the

effect of covariates, both a one-step and a multi-step approach can also be

followed for models including distal outcomes. Moreover, the observed or

latent nature of distal outcomes also determines the choice of the proper

statistical model.

When the aim is exploring hypothesized connections among a set of latent

variables, the structural equation modeling framework (SEM; Bollen, 1989;

Bentler, 1995) stands out as a reference among the one-step approaches.

Firstly introduced for continuous observed and latent variables, SEM models

have been later extended also to categorical indicators (Edwards et al., 2012;

Bovaird and Koziol, 2012) and categorical latent variables (Jedidi et al.,

1997; Dolan and van der Maas, 1998; Vermunt and Magidson, 1922; Bauer

and Curran, 2004; Arminger et al., 1999). Another example of a one-step

approach for modeling the effect of a latent variable on distal outcomes can

be found in Smid et al. (2020).

A two-step approach to SEM has been introduced by Anderson and
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Gerbing (1988), which firstly accounts for the goodness of the measurement

model through a factor analysis, and then estimates the structural con-

nections among the considered constructs performing a path analysis. On

the other hand, multi-step approaches for categorical latent variables are

discussed in Bakk et al. (2013), Zhu et al. (2017), Bakk and Kuha (2021),

Dziak et al. (2016), where the estimated class memberships by means of a

latent class/profile analysis are used for further statistical elaborations.

Distal outcomes have been widely studied in the latent class modeling

framework. In addition to the categorical SEM, that allows estimating the

association between independent and dependent categorical latent variables,

global approaches for categorical latent variables also include the latent class

analysis with distal outcomes (Lanza et al., 2013; Bolck et al., 2004), which

accounts for observed dependent variables. Moreover, latent class models

including observed or latent continuous variables as distal outcomes have

also been developed as multi-step approaches (Bakk and Vermunt, 2016;

Shin et al., 2019).

Methodological studies on distal outcomes in latent class models can

be found in Bakk and Vermunt (2016), Bray et al. (2015), and Di Mari

et al. (2020). Some recommendations about the best modeling approaches

for different situations involving distal outcomes in latent class analysis

can be found in Nylund-Gibson et al. (2019) and Bakk and Kuha (2021).

The paper of Feingold et al. (2014) provides an overview of the described

approaches.

1.2.5 Clustered data

Clustered data are characterized by multiple levels or units of analysis. One

of the widely common example regards students nested within classrooms.
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Moreover, hierarchical data structures can result from complex sample

designs, such as multistage sampling that uses clustered observations at

each stage.

There are mainly three alternatives to deal with clustered data, each

driven by a different research interest. When the focus is on the low-

level unit of analysis (e.g., students), several statistical methods can be

used to adjust parameter estimates according to the group-level structure,

namely accounting for the dependency between observations belonging

to the same group (Stapleton, 2006; Huang, 2016). The second strategy

consists of aggregating individual-level data into the group level, and thus

carrying out the analysis on the higher-level units (Stevens, 2012). Note that

the consequent drawback resides in discarding low-level variability, so this

strategy is appropriate only when the interest is in the group-level differences

(e.g., between schools). Finally, multilevel models allow to concurrently

account for both level units, decomposing the total variance in within-group

and between-group variation. Multilevel models are particularly useful for

addressing research questions regarding the influence of the group-level units

on the low-level units’ outcomes (e.g., school effect on students’ performance).

A discussion on the multilevel and single-level models for measured and

latent variables with clustered data can be found in Stapleton et al. (2016).

Regarding multilevel factor analysis (Muthén, 1991; Reise et al., 2005;

Kamata et al., 2008), the contribution of Kim et al. (2016) offers a review

of the common practices and guidelines for users. As underlined by the

authors, multilevel factor analysis also serves to investigate the psychometric

properties of scales (see, for example, Huang and Cornell, 2016).

Concerning the multilevel formulation of IRT models, Fox (2001), Fox

and Glas (2001), Kamata and Vaughn (2011), and Pastor (2003) represent
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the primary references. Multilevel IRT models comprise a “standard” IRT

component for the conditional probability of the observed item responses

given the latent trait along with regression component for the latent trait

parameter to account for the hierarchical structure of data.

In addition, a number of multilevel latent class models have been de-

scribed in the literature to account for dependency between individuals in

nested data structures where discrete latent variables are considered. Ver-

munt (2003) proposed parametric and non-parametric models, all allowing

for different parameters across higher-level units. For example, the probabil-

ity of belonging to the latent classes defined at the low level can vary across

groups specified at the high level. A comprehensive description of these

models is given by Finch and French (2014), Henry and Muthén (2010).

Multilevel latent profile analysis (Vermunt, 2003; Asparouhov and

Muthén, 2007) represents a particular version of the multilevel latent class

analysis accounting for continuous indicators, thus considers, for example,

within-group variations in the proportional distributions of individual-level

profiles (see Mäkikangas et al., 2018 for more details about different types

of multilevel latent profile models).

Other contributions also consider multilevel cross-classified structures,

where lower-level units simultaneously belong to two (or more) higher-

level clusters. For a description of the cross-classified multilevel models,

refer to Beretvas (2011), Raudenbush and Bryk (2002), Fielding and Gold-

stein (2006), Rasbash and Goldstein (1994).
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Figure 1.1: Summary scheme of the main extensions of traditional latent
variable models.
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Chapter 2

New educational frontiers in
the digital era

Digital transformation is an ongoing process that continually changes the

ways people do things, including learning activities. In the educational

context, there is a growing interest in using technology to ensure learning

achievements in a globalized society (Khatun, 2019). The OECD (2015; 2021)

has also increasingly encouraged the development of digitalized learning

environments that enable lifelong learning beyond the boundaries of space

and time. In higher education (HE), the creation and diffusion of massive

open online courses (MOOCs), as well as the implementation of e-learning

and blended learning, represent relevant attempts to meet this increasing

need (Buhl and Andreasen, 2018).

In this vein, the extensive implementation of technological devices during

the Covid-19 emergency also accelerated the progressive HE unfolding to

digital innovation, leading the way toward a new era for HE based on more

sustainable approaches which encompass technology-driven learning (Ruiz-
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Mallén and Heras, 2020; Bacci et al., 2022). Among them, self-learning

platforms represent a very flexible learning environment that fosters and

supports students’ self-learning abilities. Indeed, they enable students to

decide how, where, and when to learn and review their learning results.

The continuous innovations in advanced learning technologies have pro-

vided new opportunities for students, adapting learning activities to their

ability level, characteristics, mood, and emotion (Harley et al., 2017). Dif-

ferent levels of automation could be adopted in learning technology, which

integrates human and technological involvement to a different extent (Mole-

naar, 2021). When full automation is chosen, as often applied in self-learning

platforms, students’ learning paths are totally technology-driven. Thus,

artificial intelligence and statistical-based technologies take over the teachers’

role, resulting in what is known as an intelligent tutoring system (ITS).

Over the years, ITS has increasingly improved education efficacy ensuring

large-scale personalized learning where students receive problems, learn-

ing materials, and feedback tailored on their current ability level, and

psychological state (Holmes et al., 2018, Holmes et al., 2019).

Several studies have shown the relevance of one-to-one compared to one-

to-many tutoring, shedding light on the need for technology-based platforms

to assist traditional learning methodologies (see, for example, Elsom-Cook,

1993). The adoption of ITSs can lead to improved learning outcomes

compared to other teaching methods (Akyuz, 2020; Mousavinasab et al.,

2021; Paviotti et al., 2012) since the one-size-fits-all curriculum provided in

the standard classroom approaches may not meet students’ specific learning

needs. Therefore, in recent years, ITSs that collect and analyze responses

during user interaction for an automated assessment and profiling were

developed as a new standard to improve the learning outcome.
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2.1 Self-learning platform rationale

The diffusion of self-learning platforms meets the increasing need for large-

scale open learning environments and for improving learners’ self-regulation

skills, constituting key features of lifelong learning.

Self-regulated learning can be described, as the name suggests, as an

active process whereby learners autonomously direct, monitor, and regulate

their learning. According to Zimmerman (2000), self-regulation refers to

“self-generated thoughts, feelings, and actions that are planned and cyclically

adapted to the attainment of personal goals” (p.14). Thus, it implies several

self-regulatory processes such as planning, cognitive activation, metacogni-

tive monitoring, and reflection on the outcomes (Azevedo, 2009; Pintrich

et al., 2000).

Self-regulation can be promoted in diverse ways in self-learning plat-

forms. Personalized feedback, for example, can activate a reflection about

own strengths and weaknesses as well as suggest more appropriate learning

strategies. Moreover, self-regulation also depends on learners’ engagement

and motivation in learning activities (Azevedo, 2005; Veenman, 2007), which

can be likewise increased through the customization of the learning process.

Accordingly, to improve learners’ ability and support their self-regulation

skills, ITSs should address three essential elements in a self-learning environ-

ment (Molenaar, 2021): (i) Detect students’ abilities, characteristics, and

behavior during learning (Baker and Inventado, 2016; Azevedo and Gašević,

2019); (ii) Diagnose learners’ states throughout the learning process, namely

tracking their ability progress (Desmarais and Baker, 2012; Bosch et al.,

2015) and changes in their emotions and motivations, identifying gaps and

anticipating future development; (iii) Act to provide a personalized learning

path following the most appropriate strategy given the learner state (Shute
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and Zapata-Rivera, 2012). Regarding the latter point, adaptive learning

systems can enact three main actions that operate at step, task, and curricu-

lum level, respectively (VanLehn, 2006). More in detail, providing feedback

at the step level consists of explaining how to solve problems or subproblems.

The second type of action regards the selection of the most appropriate

next task according to the previous student’s performance to best fit the

student’s current ability and need. Finally, with the curriculum action, the

ITSs select the knowledge domains that the student is ready to learn based

on the current knowledge subsets the student has already mastered.

Thus, in sum, ITSs implemented in self-learning platforms allow to

customize: (i) the learning tasks, matching the difficulty level of the task

and the knowledge state of the student; (ii) the learning time, giving each

student the necessary time to learn a topic; (iii) the learning feedback,

providing students with advice about problem-solving steps and adopted

learning strategies; (iv) the learning pathway, assigning the topics in a

personalized order and also informing about the topics that need to be

repeated.

In this framework, it is evident that an accurate assessment of the current

state of the student is a considerable part of a personalized learning activity

over time. As discussed in the following subsections, these issues involve

pedagogical theory since they require an understanding of how learning

takes place, how to support it, and what factors have a relevant influence.

In particular, herein, a social-constructivist view is presented since it is one

of the most widely adopted pedagogical paradigms in self-learning platforms

(Ouyang and Jiao, 2021; Secore, 2017).
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2.1.1 Assessment of learners’ ability

Evaluating learners’ competencies is a crucial concern in education for its

empowering role in learning. Students’ ability assessment, conceived as a

complex process, serves multiple functions: (i) as a tool to measure students’

achievement (assessment of learning), (ii) as feedback for teachers to fine-

tune their future teaching strategies to support student learning (assessment

for learning); (iii) as helpful information enabling students to identify

their strengths and weaknesses and monitor their progress (assessment as

learning) (Toomaneejinda, 2017).

Thus, assessment should not be considered only as a final step of the

teaching/learning moment to measure students’ achievement. Instead, as-

sessment should assume a dialectic relation with teaching and learning,

consisting of an ongoing interaction that enhances teaching and learning

strategies. In this vein, “testing not functioning as a gatekeeper but as

a door-opener” (Toomaneejinda, 2017). Indeed, the assessment moment

contributes to defining what Vygotskij called the “zone of proximal develop-

ment” (Vygotskij, 1978), orienting teaching/learning activities accordingly.

This integrated design significantly improves the effectiveness of the learning

process, establishing if a student is ready to progress in her/his curriculum.

These principles can also constitute the foundation for designing self-

learning platforms (Fadeev et al., 2019), where, as stated before, ITS

technology could take over the role of teachers. Indeed, ITSs can be able to

understand students’ need and modulate the appropriate tasks and topics

based on their current state (VanLehn, 2011). In this vein, ITS aims to

provide learners with tasks that suitably challenge their ability levels and

thus are neither too hard nor too easy. Indeed, exceedingly challenging

tasks could make students feel anxious or frustrated, whereas too easy ones
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could cause boredom (Slavin, 2019). On the other hand, when tasks fall in

the zone of proximal development, students are expected to be engaged in

their self-learning process while working on the platform.

Moreover, as Vygotskij (1978) pointed out, any type of learning happens

through mediation. In particular, two main kinds of mediators act in the

process of learning: symbolic and human. The first occurs when outer

signs are used to learn and remember, whereas the second refers to “a more

knowledgeable other” who plays a scaffolding role when moving from the

current state of knowledge to the zone of proximal development.

In self-learning platforms that embed ITS, both mediations are done by

means of technologies and are based on the continuous interaction of the

learner with the platform. On the one hand, digital learning environments

provide tests and learning materials through different digital artefacts (e.g.,

3D animations, videos, pieces of music, videogames, vignettes), exploiting a

greater number of outer signs with respect to the traditional setting (Fadeev

et al., 2019). On the other hand, ITS also adaptively supports students

during the learning process, tailoring tasks and materials according to the

students’ knowledge and responding to their behavior in the digital learning

environment through dynamic feedback; thus, it acts as a learning facilitator

or expert scaffolding (Gadanidis, 2017; Wang et al., 2017).

Moreover, the design of a modern and performing ITS should integrate

cross-sectional and longitudinal data to adapt the system to the specific

user and personalize the learning experience providing accurate feedback.

In particular, cross-sectional data could be helpful to provide an assessment

of the student in comparison with the reference population (normative

assessment), namely identifying students’ strengths and weaknesses (as well

as psychological states) in comparison with their peers. Longitudinal data
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allows understanding students’ progress over time (ipsative assessment) and

thus their learning outcomes; it compares a student’s current state with the

sequence of the previous ones. Reasonably, both these types of assessment

are beneficial when developing adaptive feedback (Seery et al., 2017).

2.1.2 How do psychological factors matter?

It is well established in the literature that cognitive abilities cannot explain

learners’ academic performance and achievements thoroughly (Thomas

et al., 2017). Indeed, many emotional and motivational aspects contribute

to students’ learning process and performance (see, for example, de Barba

et al., 2016). Some of them affect performance and achievements positively

(e.g., self-efficacy, grit, positive attitude, engagement), whereas others have

a debilitative influence (e.g., anxiety, procrastination, boredom). It is worth

considering the effect of psychological variables in understanding learners’

proficiency, at least for two main reasons. Firstly, it allows avoiding biased

evaluations of students’ proficiency: for example, a bad performance may be

due to a lack of motivation instead of low ability. Secondly, it allows teachers

to personalize their support for students, accounting for their psychological

characteristics. Indeed, a learning environment should provide students with

a “zone of proximal development” not only from a cognitive perspective but

also from an affective one (Murray and Arroyo, 2002).

In the context of self-learning platforms, this means that ITSs should also

address students’ psychological characteristics, affective states, and emotions

to supply more advanced forms of personalization (see, for example, Arroyo

et al., 2014; Harley et al.,2015). Accordingly, if the attention toward non-

cognitive factors is minor, it is more likely that students become disengaged in

learning activities and gain little from them (Kang et al., 2021). In this vein,
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ITS should identify short-term students’ experiences, such as engagement,

affect, and emotion, and more stable characteristics like motivation and

interest (Walkington and Bernacki, 2019). For example, engagement and

self-regulation play a primary role in determining students’ effort to continue

learning over time. In particular, self-regulated students better manage

their learning activities (Kocdar et al., 2018), using cognitive strategies to

study a specific topic and metacognitive processes to monitor their learning.

It is worth noting that short-term students’ experience, as engagement,

emerges mainly because of their interaction with the learning environment

(Christenson et al., 2012). Hence, the development of ITSs able to promote

engagement, and in general psychological states positively affecting learning,

could improve self-learning platform effectiveness. In this regard, it could be

helpful to assess these psychological and emotional factors through self-report

measures (psychometric scales), or derive them from the students’ interaction

and behavior within the self-learning platform/system. About the latter,

for example, students’ engagement could be evaluated by considering the

regularity of students’ activities, rate of return, and attempts. In contrast,

procrastination could be evaluated considering the time delay from the day

of the first activity (Carannante et al., 2019).

Once students’ characteristics and psychological state are recognized,

recommendations and tailored feedback could be a good strategy to enhance

students’ effort in learning and, in general, to strengthen their self-regulation

skills. This approach has been defined as “reactive” since the system

dynamically responds to students’ cognitive and psychological state during

the learning progress (D’Mello and Graesser, 2014). On the other hand, the

“proactive” approach is based on tools like gamification, cartoons, and other

media, allowing to design platforms that intrinsically promote students’
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engagement and positive feelings for learning (D’Mello, 2021). Of course,

the two approaches can be integrated.

According to the reactive approach, formative and motivational feedback

could be supplied to improve students’ cognitive performance and increase

their engagement and motivation. As discussed in Hatziapostolou and

Paraskakis (2010), formative feedback needs to be clearly defined and

directly related to the assessment criteria. Thus, it should summarize

learning outcomes and focus on the gap between the performance and the

expected achievement, enabling students to identify their strengths and

weaknesses and the topics they need to repeat. Therefore, this formative

feedback has a developmental focus (Lizzio and Wilson, 2008), defining goals

and suggesting learning strategies. On the other hand, motivational feedback

aims to encourage students, recognize effort, acknowledge achievements, and

give hope about their future outcomes. Thus, motivational feedback plays

an important role, especially when students feel unconfident, discouraged,

and anxious. Both types of feedback provide cognitive and metacognitive

scaffolds to learners helping them to get back on the learning path when

ineffective or inefficient strategies are used or when disengagement occurs,

or anxiety and frustration take over.

2.2 The role of psychometric theories and statisti-
cal models

The widespread introduction of self-learning platforms led to the availability

of large sets of data. But machine-readable data are not helpful per se, they

have to be appropriately handled to produce insights for interventions.

As a consequence, a new significant area of technology-enhanced learning
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research emerged, called learning analytics (Ferguson, 2012). The Society

for Learning Analytics Research (SoLAR) defined learning analytics as “the

measurement, collection, analysis and reporting of data about learners and

their contexts, for purposes of understanding and optimizing learning and

the environments in which it occurs” (Conole et al., 2011).

As such, learning analytics assumed a pivotal role in extracting infor-

mation from large datasets in order to develop recommendation engines in

education. According to the Learning Analytics Cycle proposed by Clow

(2012), the learning analytics process starts with learners, who generate data

that are processed into metrics; then, interventions are developed based on

the obtained metrics, which affect learners’ outcomes closing the cycle.

Practically, learning analytics can provide estimates of students’ current

knowledge or mental state, likely outcomes, activity on the platform, progress

over time, dropout risk, and task information such as topic’s difficulty. Hence,

interventions can include extra help during exercise, adaptive feedback, task

personalization, and motivational support (Chatti et al., 2012).

Regarding the metrics, they can be obtained by exploiting several statis-

tical methods and other similar techniques, such as machine learning, which

are able to detect meaningful patterns hidden in the data (Muslim et al.,

2020). In a literature review on learning analytics, Chatti et al. (2012)

pointed out classification and prediction algorithms, clustering methods,

information visualization, data mining, and social network analysis as the

most used techniques.

As previously stressed in Chapter 1, latent variable models represent a

relevant reference framework in this context since students’ ability can be

conceived as a latent construct measured by a set of manifest indicators. In

particular, learners’ ability evaluation in self-learning platforms is typically
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based on their proficiency in addressing diverse types of tasks, such as single-

choice tests, with a different difficulty level and referring to several skills

and topics. Hence, multidimensional latent variable models are particularly

useful for addressing the challenging task of assessing students’ skills in a

multidimensional way. Moreover, other latent variable models’ extensions

allow accounting for the effect of individual covariates (e.g., cognitive and

psychological factors) on students’ performance, which contributes to the

development of motivational reinforcement. Finally, latent variable models

for longitudinal data analysis permit to consider the dynamic nature of

students’ proficiency, behavioral and psychological states during learning.

In this regard, an interesting recent work of Kang et al. (2021) describes a

latent variable modeling approach to tracking flow during artificial tutoring.

It is worth recalling that statistical approaches proposed in this framework

mainly belong to parametric or non-parametric approaches. Parametric

approaches are usually employed when the main aim is to rank individuals,

placing them on a continuous low-to-high scale. Non-parametric approaches

define classes of individuals which are internally homogeneous according to

the considered latent trait; as such, they allow for catching also qualitative

differences between individuals, distinguishing specific response profiles. This

non-parametric approach represents a helpful tool for developing tailored

recommendations and remediations according to students’ profiles.

What here matters to point out is the role that latent variable models have

in students’ assessment and feedback tuning, in addition to the widely used

machine learning algorithms. As underlined in Bartolucci et al. (2018), the

latent variable model framework integrates the basic principles of Statistics

with the estimation procedures developed in machine learning. The adoption

of statistical models involves several advantages, such as the formulation of
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appropriate assumptions to account for data complexity and the possibility of

taking parameter and model uncertainty into account. Moreover, statistical

modeling allows researchers to fulfil issues as the data generation process,

and causal relations between variables, that constitute essential elements in

acquiring knowledge on phenomena and driving decision-making processes.

2.3 Beyond students: Insights for teachers, educa-
tional institution, and policymakers

Self-learning platforms are mainly oriented toward learner-centered objec-

tives. Nevertheless, these platforms are of interest to at least three other

groups of stakeholders, namely teachers, educational institutions, and poli-

cymakers (Muslim et al., 2020). Indeed, metrics derived from self-learning

platforms can support decision-making processes at different levels. For

example, self-learning platforms can be used as a complement to traditional

courses. In such a case, teachers can use learning analytics results to reflect

on their teaching practices and promote actions allowed to address students’

needs, improving course effectiveness (Chatti et al., 2012).

On the other hand, benefits for educational institutions include the iden-

tification of students at risk to provide interventions for reducing students’

dropouts (Jayaprakash et al., 2014) and a better understanding of strategies

to improve students’ achievements and performance. Moreover, learning

analytics can support educational institutions in adjusting course structure

and making financial decisions (Chatti et al., 2012; Graf et al., 2011).

Finally, learning analytics represents a helpful source of information for

policymakers, contributing to revealing the impact of technology-driven

learning activities in education. Accordingly, insights for future policy di-
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rections can emerge to improve educational outcomes and enhance students’

engagement. Starting from an evaluation of current practices, obtained

results, and potential barriers, educational policies can embrace, for ex-

ample, more investments in technological platforms for learning as well as

programs to facilitate access to knowledge and reduce the digital divide.

Also, an increasing integration of self-learning platforms in traditional teach-

ing settings can help foster technological literacy, concurrently favoring the

development of students’ self-regulation skills. Policymakers should look at

how self-learning platforms can facilitate the achievement of educational

goals, using learning analytics to investigate potentials according to different

contexts and purposes. Sometimes, also at the lower level, specific educa-

tional aims can be achieved by teachers and educational institutions through

technology-based learning platforms by self-defining a set of rules allowing

to customize contents, feedback for students, and the kind of indicators and

visualization of the results (Pardo et al., 2018; Muslim et al., 2016).

2.4 Self-learning platforms for frightening sub-
jects: learning Statistics in non-STEM degrees

Self-learning platforms able to personalize learning activities according to

individual characteristics have proven to be a valuable tool to help students

facing with subjects perceived as frightening (Hsu et al., 2021; Lambert and

Alony, 2018). Among them, Statistics for students enrolled in non-STEM

degrees stands out. Accordingly, some specific examples of technology-based

learning environments developed in this context follows.

Many students who attend non-STEM programs, such as Psychology,

Sociology, Medicine, and Political Science, feel unconfident and discouraged
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when learning Statistics, and exhibit higher statistical anxiety levels that

negatively affect their achievement in Statistics (Walker and Brakke, 2017;

Hanna and Dempster, 2009; Tremblay et al., 2000).

The relevance of the effect of these negative emotions on academic

performance and well-being led researchers to explore innovative teaching

techniques to increase motivation and improve students’ statistical learning.

Among them, there is the use of real-life data, active learning activities,

humorous cartoons (Lesser and Pearl, 2008), and gamification (Legaki et al.,

2020). In this regard, it is evident that technological platforms for self-guided

learning of Statistics play a key role, providing students with personalized

learning paths. Indeed, it is important to consider that each student

approaches Statistics differently, varies in psychological characteristics, and

feels several kinds of emotions. Accordingly, statistical education through

self-learning platforms has increased over the last years. In this vein,

Albert et al. (2020) provided an overview of several MOOCs developed to

learn Statistics, describing different approaches and outlining challenges

and opportunities. Another example of an online learning environment

is the Shinyapp platform developed by Potter et al. (2016). In contrast,

López Lamezón et al. (2018) demonstrated the advantages deriving from

using a virtual environment to teach Statistics in Medicine degree courses.

Finally, more sophisticated technologies consist of apps using animated

agents to deliver learning material, as the Multimedia Probability and

Statistics System (MMPASS) (Krishnasamy et al., 2020).

Among the applications specifically addressed to students enrolled in

non-STEM courses, there are the Assessment and Learning in Knowledge

Spaces (ALEKS; Doignon and Falmagne, 1999), an adaptive learning system

based on Knowledge Space Theory (Doignon and Falmagne, 2016), and
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Stat-Knowlab (de Chiusole et al., 2020), a web-app that provides students

with tailored learning exploiting a competence-based extension of knowledge

space theory (Heller et al., 2015).

Finally, a brief description of the mobile app named Adaptive LEArning

system for Statistics (ALEAS; Fabbricatore et al., 2021; Pacella et al.,

2022) follows. The system was developed in the contest of the ERASMUS+

Project (KA+ 2018-1-IT02-KA203-048519), which involved an international

partnership led by the University of Naples Federico II. ALEAS is devoted to

bachelor students enrolled in non-STEM degree programs. It encompasses

a knowledge structure for the introductory statistics course organized into a

hierarchical structure defined by Areas, Topics, and Units. Each learning

Unit considers three Dublin descriptors to assess and improve students’

ability in Statistics (a brief overview of the Dublin descriptors is provided

in Chapter 3). The tutoring system implemented in ALEAS combines two

approaches: for each Topic, a multidimensional latent class IRT model

(Bartolucci, 2007) estimates items’ difficulty and discrimination power and

simultaneously categorizes students into the latent classes; for each Area,

average ability levels were computed according to the estimated topic-

level latent class IRT models, and then an archetypal analysis (Cutler and

Breiman, 1994) clustered students into homogeneous groups. Based on

students’ categorization, the system provides tailored feedback suggesting

students either to continue training in the current Area or to progress to a

new one. ALEAS also includes an animated tutoring agent, 3D cartoons,

and vignettes to facilitate learning some essential statistical topics and

engage students in their progressive achievement. For more details about

the ALEAS architecture, methodology, and preliminary results, see Adabbo

et al. (2021) and Pacella et al. (2022).
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Chapter 3

A multidimensional approach
for assessing students’ ability

Students’ ability is a complex theoretical concept, whose evaluation requires

disentangling between its different dimensions. To this end, the main

challenges regard the construction of the knowledge domain to investigate,

the definition of what dimensions qualify the considered ability, and the

development of appropriate indicators for their measurement. In addition,

a comprehensive assessment of students’ proficiency should also consider

individual characteristics affecting students’ achievements and performance

(e.g., emotional, psychological, and motivational aspects).

Herein, a multidimensional approach based on the Dublin descriptors

(Gudeva et al., 2012) is proposed. Accordingly, sets of multiple-choice

The content of this chapter is included in the paper:
Fabbricatore, R., Bakk, Z., Di Mari, R., de Rooij, M., & Palumbo, F. (2022). A non-
parametric multilevel latent variable model for handling students’ learning activities data.
Submitted.

43



A multidimensional approach for assessing students’ ability

questions were developed to measure the considered dimensions of students’

ability. As detailed below, each question distinguishes between wrong,

correct, and partially correct answers, allowing to detect various levels of

gained knowledge. Moreover, the proposed students’ ability assessment

involves different topics over time and a set of psychological characteristics

related to students’ performance. The practical application specifically refers

to the context of learning Statistics in non-STEM degree courses; however,

the proposed approach can be generalized to any different knowledge domain.

The chapter is organized as follows: Section 3.1 briefly presents the

application context, namely learning Statistics in non-STEM degree courses;

Section 3.2 provides a detailed description of data collection, participants,

and adopted measures; Section 3.3 includes descriptive statistics regarding

students’ performance and cognitive and psychological characteristics con-

sidered in the study. Note that the collected data are used for the empirical

application of the two proposed statistical approaches presented in Chapter

4 and Chapter 5, respectively.

3.1 Learning Statistics in non-STEM degree
courses

Nowadays, statistical knowledge has become part of the new generation’s

knowledge base (Istat, 2022). Indeed, the great availability of data in the

modern age brought the need for proper data analysis tools, lending Statistics

a fundamental role in most Higher Education curricula. In STEM and non-

STEM degree courses, Statistics facilitates students’ ability to understand

and communicate the data appropriately, fostering world interpretability.

Nevertheless, Statistics not only favors hard skills development; it also
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improves soft skills, such as critical thinking and quantitative reasoning

(Lehman and Nisbett, 1990; Ben-Zvi and Makar, 2016), which are essential

in daily life.

Despite its relevance, Statistical literacy is still challenging, especially

for students enrolled in Human and Social degree courses. Such students

often believe that Statistics is not essential for their degree programs and

careers. Thus, they are less prone to study quantitative subjects and

consider Statistics a burden (Sesé et al., 2015). In addition to the lack of

motivation, often such students feel unconfident, discouraged, and anxious

during their statistical learning experience, resulting in low performance

and poor achievements in Statistics (Walker and Brakke, 2017).

The anxiety in students affording Statistics (statistical anxiety) negatively

affects: (i) the learning experience, sometimes causing drop-out during the

course, (ii) the exam preparation phase, reducing cognitive resources, and

(iii) academic outcomes such as failing the exam or getting lower grades

(Siew et al., 2019; Macher et al., 2013; Eysenck et al., 2007). Anxiety

occurring during test situations (test anxiety) also influences academic

performance due to feelings of worry, tension, and over-arousal (Rajiah

et al., 2014; Fabbricatore et al., 2022b). Among psychological factors related

to students’ performance in Statistics, attitudes toward Statistics and self-

efficacy stand out, influencing their willingness to participate in statistical

courses, enjoyment of statistical learning, use of statistical knowledge for

real-life problems, and learning motivation (Judi et al., 2011; Rosli and

Maat, 2017; Richardson et al., 2012; Honicke and Broadbent, 2016).

Other relevant dispositional antecedents relating to academic life are

academic motivation, academic procrastination, self-regulation, and the use

of cognitive strategy. Indeed, frustration due to lack of motivation and the
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tendency to delay academic tasks have a detrimental effect on students’

achievement and performance (Cokley et al., 2001; Steel et al., 2001). On

the other hand, the ability to manage the learning process and the use of

suitable cognitive strategy, e.g., integrating notions acquired during lessons

with other course materials or repeating important topics several times

to remember them better, improve the knowledge outcomes. Accordingly,

students’ engagement in the educational process enhances performance in

Statistics, increasing their interest, participation, and study regularly (Budé

et al., 2007; Lavidas et al., 2020).

Finally, cognitive factors, such as math knowledge, are also assumed to

have a prominent role in determining students’ performance in Statistics

(Johnson and Kuennen, 2006). Indeed, several studies highlighted that

severe math shortcomings could constitute a roadblock to complete statistics

courses successfully (Johnson and Kuennen, 2006; Rabin et al., 2018).

Given the importance of these factors, accounting for them during the

analysis of students’ performance provides a deeper understanding of the

learning process, and consequently allows the development of more tailored

feedback in a recommender system.

3.2 Data collection

This section describes the data at hand. Firstly, the participants and the

ability assessment procedure are illustrated. An overview of the developed

and adopted measures follows. Finally, descriptive statistics about students’

performance in Statistics and the considered psychological variables are

provided. Regarding the latter, according to the above-discussed literature,

the following cognitive and psychological characteristics were evaluated:

math knowledge, statistical anxiety, attitude toward Statistics, self-efficacy,

46



3.2. Data collection

test anxiety, cognitive strategies, self-regulation, academic procrastination,

academic motivation, and engagement in Statistics.

3.2.1 Participants and Procedure

The study involved n = 202 Italian students enrolled in the first year of

the degree in Psychology at the University of Naples Federico II, attending

the introductory Statistics course. Participants were predominantly female

(83.6%) with age ranged between 18 and 43 (mean = 19.7, sd = 2.77). At the

beginning of the course, students were invited to fill out an online self-report

questionnaire including socio-demographic questions and psychometric scales

assessing psychological variables related to learning Statistics.

Throughout the course, students were encouraged to use the Moodle

platform (Gamage et al., 2022) to practice and monitor their progress in

Statistics. In addition, at the end of each main statistical module, students

were asked to take a summary test to check their acquired knowledge. The

analyzed data comprise students’ responses to these summary Statistics

tests. In particular, the knowledge structure was organized into three main

areas, each assessed at a different time point: descriptive statistics, graphs,

tables, and Gaussian distribution (time 1), probability and random variables

(time 2), and hypothesis testing and bivariate statistics (time 3). For each

learning area, students’ ability was measured in a multidimensional way.

The following section describes the considered dimensions, herein named

Knowledge (K), Application (A), and Judgment (J). Figure 3.1 illustrates

the data collection flow. Notice that the entire data collection was carried

out through the Moodle platform, one of the most widely used learning

management systems for delivering courses and learning material, assessing

students’ competencies, and providing feedback in higher education (Gamage
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et al., 2022). During data collection, some students dropped out. More

specifically, n = 166 students remained at time 2, and n = 126 at time 3.

The study was approved by the Ethical Committee of Psychological

Research of the University of Naples Federico II (protocol number 26/2022).

Figure 3.1: Data collection flow: the four considered time points.

Time 0

- Demographics
- Math knowledge
- Academic motivation
- Statistical anxiety
- Attitude towards Statistics
- Learning strategies
- Self-efficacy
- Test anxiety
- Academic procrastination

Time 1

- Student Engagement
in Statistics
- Statistics test: 30
questions (equally
divided in K, A, and J)
on descriptive statistics,
graphs, tables, and
normal distribution

Time 2

- Statistics test: 30
questions (equally
divided in K, A,
and J) on probability
and random variables

Time 3

- Statistics test: 30
questions (equally
divided in K, A,
and J) on hypothesis
test and bivariate
statistics

Note: K, A, and J refer to the Knowledge, Application and Judgment ability’s dimensions,
respectively.
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3.2.2 Measures

Statistics performance

Students’ ability was assessed in a multidimensional way. The so-called

Dublin descriptors1 were used for this aim, representing general statements

used to evaluate the knowledge depth a student has achieved within a specific

topic at the end of each cycle of higher education studies (Gudeva et al.,

2012). More specifically, they define the following five learning objectives:

• Knowledge and understanding : the ability to demonstrate knowl-

edge and understanding, including a theoretical, practical and critical

perspective on the topic;

• Applying knowledge and understanding : the ability to apply the knowl-

edge identifying, analyzing and solving problems sustaining an argu-

ment;

• Making judgments: the ability to gather, evaluate and present infor-

mation exercising appropriate judgment;

• Communications skills: the ability to communicate ideas, problems

and solutions effectively and disseminate them to a non-specialist

audience;

• Learning skills: the ability to identify learning needs and fill the

knowledge gaps.

Since data collection was performed exploiting a technological platform,

only the first three descriptors are considered. As stated before, these three

1https://aec-music.eu/userfiles/File/Framework for Qualifications of

European HE Area.pdf
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ability dimensions are herein named, for the sake of simplicity, Knowledge

(K), Application (A), and Judgment (J), respectively.

In particular, each Statistics test consists of 30 multiple-choice questions,

equally divided into K, A, and J, each question having four answer options

and three different response scores: two credits for totally correct answers;

one credit for partially correct answers, and no credit for wrong answers.

Blank responses are considered missing values. Referring to the hypothesis

testing domain, Figure 3.2 provides an example of questions, each one

relating to one of the three considered Dublin descriptors.

The R package exams (Grün and Zeileis, 2009) was used to prepare the

test2. Interested readers can refer to Fabbricatore et al. (2021) for more

details.

Math knowledge and psychological factors

Math knowledge and psychological factors were assessed through validated

psychometric scales. In particular, the Mathematical Prerequisites for

Psychometrics (PMP; Galli et al., 2008) was used to evaluate the basic

mathematics abilities usually required for an introductory Statistics course

in a Psychology degree program. The scale consists of 30 multiple-choice

questions with only one correct answer covering 6 knowledge domains:

Fractions, Operations, Set theory, Equations, Relations, and Probability.

Students gained one point for each correct response, whereas wrong and

missing answers received no credits. Thus, scores ranged between 0 and 30.

Students’ statistical anxiety was assessed through the Statistical Anxiety

Scale (SAS; Chiesi et al., 2011), a 24-item scale embracing three different di-

2Many of the questions were developed during the “Adaptive LEArning in Statistics”
(ALEAS) Erasmus+ project (KA+2018-1-IT02-KA203-048519).
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mensions of the statistical anxiety: examination anxiety, referring to anxiety

students encounter while attending statistics classes or taking statistics tests;

interpretation anxiety, occurring when students are required to interpret or

make a decision about statistical data; fear of asking for help, concerning

the anxiety experienced when requesting the help of a peer, a tutor, or a

professor in understanding particular topics. For each item, responses are

on a 5-point Likert scale, from 1 (no anxiety) to 5 (very strong anxiety).

The score of each sub-scale is obtained by summing up the score observed

on the corresponding items, resulting in a theoretical range from 8 to 40.

A multidimensional evaluation of students’ attitude towards statistics

was obtained through the Survey of Attitudes toward Statistics (SATS;

Chiesi and Primi, 2009). Specifically, the instrument contains 28 items

assessing the following attitude components: affection (students’ positive

and negative feelings concerning Statistics), cognitive competence (students’

belief about their ability in Statistics), value (perceived usefulness and

relevance of Statistics in their personal and professional life), difficulty (the

consideration of Statistics as a difficult subject). Students were required

to express their degree of agreement for each item on a 7-point Likert

scale ranging from 1 (strongly disagree) to 7 (strongly agree). The score

of each dimension is computed as the sum of the scores observed on the

corresponding items. Thus, the theoretical sub-scale range is equal to 6-42

for affect and cognitive competence, 9-63 for value, and 7-49 for difficulty.

Self-efficacy, test anxiety, cognitive strategies and self-regulation were

assessed using The Motivated Strategies for Learning Questionnaire (MSLQ;

Bonanomi et al., 2018). The Self-efficacy sub-scale comprises 9 items

referring to expectancy for success in a given knowledge domain, perceived

ability to complete a task, and self-confidence. Test anxiety sub-scale
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consists of 4 items measuring students’ anxiety and concern about taking

exams. Cognitive strategies evaluation is based on 12 items focused on some

suitable strategies to use to obtain a good achievement in a learning path.

On the other hand, the application of useful cognitive and metacognitive

strategies to effectively supervise the learning process was measured through

the self-regulation sub-scale that includes 10 items. For all the considered

sub-scales, students were asked to indicate their degree of agreement on a

5-point Likert scale ranging from 1 (not at all true for me) to 5 (very true

for me). The theoretical sub-scale range, provided by the sum of the score

observed on the corresponding items, is equal to 9-45 for self-efficacy, 4-20

for test anxiety, 12-60 for cognitive strategy, and 10-50 for self-regulation.

Academic procrastination was evaluated employing The Academic Pro-

crastination Scale - Short Form (APS-SF; Yockey, 2016; Fabbricatore et al.,

2022a), a scale consisting of 5 items with a 5-point Likert response scale

from 1 (I disagree) to 5 (I agree). The total score is defined as the arithmetic

mean of the score observed on the single items (theoretical range 1-5), where

higher scores indicate a greater tendency to delay academic tasks despite

the negative outcomes it causes (e.g., low performance, distress, anxiety).

Academic motivation was assessed using The Academic Motivation Scale

(AMS; Alivernini and Lucidi, 2008) that considers 5 dimensions of motiva-

tion, each evaluated through 4 items. In particular, students were required

to indicate their degree of agreement to possible responses to the question

“Why do you go to University?” on a 7-point Likert scale, from 1 (does not

correspond at all) to 7 (corresponds exactly). Herein, the overall indicator

of students’ motivational orientation was considered, named Relative Au-

tonomy Index (RAI), which is computed as a weighted sum of the academic
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motivation dimensions. In particular, the following expression is used:

RAI =2 · (Intrinsic Motivation) + 1 · (Identified Regulation)–1 · (External

Regulation)− 2 · (Amotivation) + 0 · (Introjected Motivation).

Accordingly, RAI theoretically ranges from -72 to 72, where positive scores

indicate more autonomous regulation, whereas negative scores reveal more

controlling regulation.

Student engagement in Statistics was measured by The scale of Stu-

dent Engagement in Statistics (SSE-S, Whitney et al., 2019), grounded

on a three-factor structure: affective (8 items), behavioral (9 items), and

cognitive (7 items) engagement. The first dimension considers interest,

curiosity, and enjoyment in learning statistics. The second one concerns

learners’ observable behaviors related to study Statistics (e.g., regular study,

participation during lessons, interaction with teachers). The third aspect

refers to the application of cognitive strategies to connect, reexamine, and

assess own learning of Statistics. For all the considered sub-scales, students

were asked to indicate their degree of agreement on a 5-point Likert scale

ranging from 1 (strongly disagree) to 5 (strongly agree). The total score for

each sub-scale is obtained by averaging the score observed on the related

items, resulting in a theoretical range from 1 to 5.

3.3 Descriptive statistics

Descriptive statistics about students’ performance in Statistics are reported

in Figure 3.3 while Table 3.1 summarizes the related cognitive and psycho-

logical factors.
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Figure 3.2: Question example for each of the considered Dublin descriptors.

K
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Question
Which of the following statements related to the parametric test for hypothesis
testing is true?

Answerlist
a) The acceptance and rejection regions are subsets of the parametric space
b) The acceptance and rejection regions are compatible subsets of the
parametric space
c) The acceptance and rejection regions can be partially overlapped
d) The acceptance and rejection regions belong to two different parametric
spaces

A
p
p
li
c
a
ti
o
n

Question
A psychologist expert in specific learning disabilities (SLD) wants to verify
whether children with SLD have a normal overall intellectual functioning as
reported by the DSM-5. Thus, the psychologist administered the WISC-IV
scale to 38 children with SLD to assess their Intelligence Quotient (IQ). The
results showed an average score of 95.2. Considering that the IQ mean for the
reference population is 100 with a standard deviation of 15, calculate the value
of the statistic test to test the hypothesis H0 : µ = 100 versus H1 : µ < 100.

Answerlist
a) −1.22
b) 1.22
c) −6.01
d) −0.2

J
u
d
g
m
e
n
t

Question
The z test for hypothesis testing on the mean can be used to investigate:

Answerlist
a) if a group of patients has average cholesterol levels
b) if the attention levels are higher in individuals who sleep regularly than in
individuals who do not sleep regularly
c) if there is an association between the nationality of the individuals and the
favorite car brand
d) the amount of banknotes produced in Italy in one year

Note: The letter a) corresponds to the totally correct answer, and the letter b) to the partially
correct one.
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A multidimensional approach for assessing students’ ability

As regards Statistics performance, response distributions show that

students at times 2 and 3 scored well on a slightly larger number of items than

at time 1. In particular, 20 questions about descriptive statistics obtained

more than 50% of fully correct answers compared to the 24 questions on

probability and random variables, and the 22 questions on hypothesis testing

and bivariate statistics.

The multidimensional evaluation through the Dublin descriptors allows

also detecting impairments for specific competencies within each topic. For

example, students proved to master the theoretical definition of the arith-

metic mean and how to apply it to solve exercises, but not to have enough

competence for making an appropriate judgment given a set of available

information. At times 2 and 3, a greater balance in the students’ ability

dimensions is overall observed, with some specific topics reporting differences

in the response distribution for the considered dimensions. For example,

although students acquired the theoretical definition of conditional proba-

bility at time 2, they still experienced difficulties during problem-solving

and judgment exercises involving reasoning about conditional probability.

Another example from hypothesis testing highlights students’ difficulty in

providing a proper judgment about the type I and II errors, even if they re-

ported good scores in the corresponding application question. Moreover, as

concerns the hypothesis test on the population mean, results show that the

mastery of the Student’s t-test was more challenging for students than the

z-test, especially for the Knowledge dimension. Finally, note that missing

responses computed on the valid cases are less than 5% for each question.

Regarding cognitive and psychological factors related to learning Statis-

tics, descriptive analyses show that students have a medium-high level of

math knowledge (more than 21 out of 30 correct answers, on average).
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3.3. Descriptive statistics

Examinations represented their main source of statistical anxiety, with a

lower level of anxiety encountered when interpreting statistical data and

asking for help. General test anxiety appears to be moderate, revealing a

lower impact on students’ feelings than the more specific statistical anxiety.

Data reveal that students’ feelings concerning Statistics are more negative

than positive and that Statistics is considered a subject difficult to study

even if useful and relevant for the personal and professional life. Students’

self-confidence about the ability to learn Statistics (cognitive competence)

is quite high on average. Accordingly, scores related to the use of cognitive

and metacognitive strategies to supervise the learning process are also high,

and the distributions are negatively skewed. On the other hand, on average,

moderate levels of self-efficacy and engagement in Statistics emerge. Tak-

ing into account the engagement in Statistics, the value of the behavioral

component (such as studying regularly and participating during lessons) is

slightly greater than affective and cognitive values. Finally, students report

a high level of autonomous academic motivation and a low tendency to

delay academic tasks intentionally (academic procrastination).

Table 3.1: Descriptive statistics for the considered cognitive and psychologi-
cal covariates.

Theoretical Histogram and
Scale Dimension range Mean Sd density plot

PMP 0-30 21.58 5.13
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Continued on next page
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A multidimensional approach for assessing students’ ability

Table 3.1: Descriptive statistics for the considered cognitive and psychologi-
cal covariates (continued).

Theoretical Histogram and
Scale Dimension range Mean Sd density plot

Asking for help 8-40 18.33 7.82
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Difficulty 7-49 22.37 6.54
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MSLQ Self-efficacy 9-45 25.41 6.37
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Cognitive strategy 12-60 48.83 6.31
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Self-regulation 10-50 40.59 5.32
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3.3. Descriptive statistics

Table 3.1: Descriptive statistics for the considered cognitive and psychologi-
cal covariates (continued).

Theoretical Histogram and
Scale Dimension range Mean Sd density plot

AMS RAI -72 - 72 44.53 11.88
0.00

0.02

0.04

0 20 40 60
 

D
en

si
ty

 

 

SSE-S Affective 1-5 3.23 0.70
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0.0

0.3

0.6

0.9

2 3 4
 

D
en

si
ty

 

 

APS 1-5 1.81 0.76
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Note: PMP = Mathematical Prerequisites for Psychometrics; SAS = Statistical Anxiety Scale;

SATS = Survey of Attitudes toward Statistics; MSLQ = Motivated Strategies for Learning

Questionnaire; AMS = Academic Motivation Scale; APS = Academic Procrastination Scale;

SSE-S = Scale of Student Engagement in Statistics; RAI = Relative Autonomy Index.

To characterize students dropping out during learning, descriptive statis-

tics about psychological variables were computed according to three dropout

groups: no-dropout (students involved until the end of the course), Time2-

dropout (students dropping out at time 2), Time3-dropout (students drop-

ping out at time 3). The corresponding boxplots are depicted in Figure 3.4.

As can be seen, compared to the no-dropout group, students who dropped

out during the learning process reported a poorer mathematics background,

a more negative attitude toward Statistics (especially for the affect and
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A multidimensional approach for assessing students’ ability

cognitive competence dimensions), and a lower level of self-efficacy and

engagement in Statistics. Regarding the remainder variables, there were no

noticeable differences between the no-dropout group and students dropping

out. Time2- and Time3-dropout groups presented remarkable differences

only for some variables, such as examination and interpretation components

of statistical anxiety, with lower scores for students who dropped out at

time 3. Conversely, the latter presented higher scores for the affective

dimension of both attitude and engagement, highlighting the relevance of

the affective component in buffering students’ dropout. Concerning sex

differences, results showed the following percentage frequencies according to

the dropout groups: the 70% of males and 61% of females did not drop out

during learning (no-dropout), 12% of males and 19% of females dropped

out at time 2, 18% of males and 20% of females dropped out at time 2

(Time3-dropout).
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3.3. Descriptive statistics

Figure 3.4: Boxplots of the psychological variables scores according to the
dropout groups.
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Chapter 4

A multilevel approach for
multidimensional latent
variables

This chapter introduces a novel strategy exploiting non-parametric multilevel

latent variable models (Vermunt, 2003) to cluster students into homogeneous

groups according to their ability level.

Previous studies with a similar aim (see, e.g., Fagginger Auer et al.,

2016; Vermunt, 2003) focus on unidimensional specifications. As a relevant

methodological contribution, this proposal specifies a multidimensional

latent structure at a low level. The latter, conditional on Level 2 class

membership, is assumed to be composed of independent Level 1 discrete

latent class variables, each measuring a distinct learning dimension.

The content of this chapter is included in the paper:
Fabbricatore, R., Bakk, Z., Di Mari, R., de Rooij, M., & Palumbo, F. (2022). A non-
parametric multilevel latent variable model for handling students’ learning activities data.
Submitted.
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A multilevel approach for multidimensional latent variables

Data at hand consist of answers to items that cover different Statistics–

related topics and ability dimensions collected at several time points. For a

detailed description, see Chapter 3. As shown below, it is possible to recast

the resulting multilevel multi-dimension structure to the typical structure

of multilevel latent class models using a suitable rearrangement of the data

layout. In particular, time–points can be viewed as low–level/Level 1 unit,

clustered within individuals high–level/Level 2. Moreover, demographic

and several other psychological variables can be included in the model as

(high-level) predictors of students’ performance.

4.1 Multilevel Latent Class model

Let
(
Y

(t)
sd1, . . . , Y

(t)
sdkt

)′
be the vector of responses for individual s = 1, . . . , N

on the kt indicators at time point t = 1, . . . , T , with
∑

t kt = K. The

considered model was designed to deal with D = 3 skills that are defined

according to the Dublin descriptors (Knowledge, Application, and Judg-

ment). Note that the model can be generalized to any different number of

skills and any different definitions. Moreover, let cs be a vector of (level 2)

covariates (demographic and psychological) for the s-th student, which will

be exploited as a predictor of higher-level class membership.

This type of data can be re-arranged in the form of one record per

time point, with a unique id linking the responses of each sample unit over

time. The proposed re-arrangement of the data can be recognized as a

nested/hierarchical structure consisting of D versions of the considered

items nested within time points and three-time points nested within persons.

Therefore, multilevel latent class analysis can be used to handle this data

structure to address the research aim. In the more general framework
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4.1. Multilevel Latent Class model

of multilevel latent variable models, hierarchical data are handled by an

analytic structure exploiting discrete and/or continuous latent variables at

each level (see, e.g., Vermunt, 2003). The non-parametric approach was

adopted for its flexibility.

In particular, the considered latent structure is specified as follows. At

the lower level, D discrete latent variables correspond to the considered

dimensions (herein Knowledge, Application, and Judgment). Each of these

D dimensions is measured through a distinct set of multiple-choice questions,

coded as ordinal indicators, with q categories, indicated with j = 0, 1, . . . , J .

At the higher level, another discrete latent variable makes it possible to

cluster students based on their likelihood to be in one of the lower–level

classes for each Dublin descriptor.

Technically, let X
(t)
sd be the d-th categorical latent variable defined at a

lower level (Level 1) for the t-th time point, taking value i = 1, . . . , I. The

total number of latent classes I is assumed to be equal for the D latent

variables at Level 1. Similarly, Ws denotes the discrete latent variable

defined at Level 2, taking value m = {1, . . . ,M}. Note that, conditioning

on Ws, X
(t)
sd and X

(r)
sf are independent, for all d ̸= f and t ̸= r.

Therefore, the multilevel latent class model specifies the joint probability

of the observed response vector Ys =
(
Y 1
s11, . . . , Y

(T )
s3kT

)′
, given the available

covariates, as follows

P
(
Ys|cs

)
=

M∑
m=1

P
(
Ws = m|cs

) T∏
t=1

D∏
d=1

{
I∑

i=1

P
(
X

(t)
sd = i|Ws = m

)
P
(
Y

(t)
sd |X

(t)
sd = i

)}
.

(4.1)

The path diagram for the model (4.1) is displayed in Figure 4.1.

The joint conditional response probability, because of the local indepen-

dence assumption, can be factorized as
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A multilevel approach for multidimensional latent variables

P
(
Y

(t)
sd |X

(t)
sd = i

)
=

kt∏
h=1

P
(
Y

(t)
sdh|X

(t)
sd = i

)
.

As for ordinal items, the conditional response probabilities can be

parametrized by means of the following adjacent-category ordinal logits

P
(
Y

(t)
sdk = j|X(t)

sd = i
)
=

exp
(∑J

h=2 β
(t)
j|i

)
1 +

∑J
l=2 exp

(∑l
q=2 β

(t)
q|i

) , (4.2)

with j = 2, . . . , J . The adjacent-category ordinal logit model is typically

used to model the ordered response when partial credit is allowed during

an evaluation process, as in the proposed students’ ability assessment (Bar-

tolucci et al., 2015; Eggert and Bögeholz, 2010). In particular, partial credit

indicates intermediate performance levels on an item, moving beyond the

binary right/wrong answer coding rationale.

Let z be a vector of T − 1 time dummies - the dummy for t = 1 is

excluded for redundancy - with generic element z(t−1), where t = 2, . . . , T .

Low level conditional class membership probabilities can be parameterized

by means of the following multinomial logistic regressions

P
(
X

(t)
sd = i|Ws = m

)
=

exp
(
γ0im + γ

(t)
i z(t−1)

)
1 +

∑I
r=2 exp

(
γ0rm + γ

(t)
r z(t−1)

) , (4.3)

where γ0im is a random intercept, with i = 2, . . . , I, and m = 1, . . . ,M , and

γ
(t)
i is a time effect, with t = 2, . . . , T . Note that, for t = 1, model (4.3)

reduces to a standard random-intercept-only multinomial logistic regression.

On a practical level, the high-level class membership independent time

coefficients and the random intercepts of Equation (4.3) can be conveniently

handled by considering an expanded design matrix D of length M × (n×T ),
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4.1. Multilevel Latent Class model

with generic row equal to (d̃m, z)′. As an example, the first entry of D, i.e.

d̃1, is equal to 1, and the remaining M − 1 are equal to 0 for the first n× T

units, and so on.

Analogously, for Ws the multinomial logistic model can be considered

P
(
Ws = m|cs

)
=

exp
(
δ0m + δmcs

)
1 +

∑M
r=2 exp

(
δ0r + δrcs

) ,
where δ0m, and δm are the intercept, and the covariate effects, respectively,

with m = 2, . . . ,M .

The model (4.1) is identified, in a generic sense (see Allman et al., 2009),

provided that P
(
Y

(t)
sdh|X

(t)
sd = i

)
̸= P

(
Y

(t)
sdh|X

(t)
sd = j

)
for all i ≠ j, and

γ0im ̸= γ0in for all m ̸= n (Di Mari et al., 2022).

4.1.1 Class prediction

At population level, it is assumed that each student belongs to only one

higher level latent class Ws. Equally, true lower level class membership is

crisp (or hard), yet unobserved.

Given a full response pattern Ys and a vector of covariates cs, Level 2

class membership can be predicted, using the Bayes’ theorem, by means of

the following posterior probabilities

P
(
Ws|Ys, cs

)
=

=
P
(
Ws = m|cs

)∏T
t=1

∏D
d=1

{∑I
i=1 P

(
X

(t)
sd = i|Ws = m

)
P
(
Y

(t)
sd |X

(t)
sd = i

)}
∑M

h=1 P
(
Ws = h|cs

)∏T
t=1

∏D
d=1

{∑I
i=1 P

(
X

(t)
sd = i|Ws = h

)
P
(
Y

(t)
sd |X

(t)
sd = i

)} .

(4.4)

Similarly, the posterior probability that student s belongs to class i for

the d-th lower level latent class variable at time t can be obtained as
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P
(
X

(t)
sd = i|Ysd, cs

)
=

M∑
m=1

P
(
Ws|Ys, cs

)P (X(t)
sd = i|Ws = m

)
P
(
Y

(t)
sd |X

(t)
sd = i

)
P
(
Y

(t)
sd

) .

(4.5)

These quantities are readily available for the observed data from the

Expectation-Maximization (EM) algorithm (Dempster et al., 1977) used for

model fitting. Equations (4.4) and (4.5) can be used also to predict class

membership, given parameter estimates, for out-of-sample units. This is

done by simply plugging in the new data, and evaluating both quantities at

the ML estimates. Subsequently, well-known classification rules, like modal

or proportional assignments, can be used to cluster high/low level units.

4.1.2 Parameter estimation

By letting θ be the vector collecting all model parameters, the log-likelihood

function for model (4.1) can be written as follows

ℓ(θ) =

N∑
s=1

logP
(
Ys|cs

)
,

which has to be maximized with respect to θ in order to obtain the maximum

likelihood (ML) estimates θ̂. Such estimates can be computed either by

direct maximization, or exploiting the EM algorithm (Dempster et al., 1977).

To obtain the best of both worlds, hybrid techniques are also available. These

exploit the EM algorithm in earlier stages of model fit - i.e. far from the

(local) optimum - then switching to Newton-Raphson for faster convergence

when closer to the (local) maximum. Computations have been performed

in Latent GOLD 6.0 (Vermunt and Magidson, 2020), which implements the

above mixed strategy1.

1The Latent GOLD syntax for the current application is provided in Appendix A
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4.1. Multilevel Latent Class model

In what follows, the EM algorithm to compute the ML estimate θ̂

is outlined, with specific emphasis to the E-step. This extends the EM

presented by Vermunt (2003, 2008) for multilevel LCA. Adopting the classical

EM terminology, let

usm =

{
1, if Ws = m

0, otherwise.
, v

(t)
sdim =

{
1, if X

(t)
sd = i, Ws = m,

0, otherwise.

be the (unobserved/missing) augmenting variables, where v
(t)
sdim is defined

for all combinations of d = 1, . . . , D, and t = 1, . . . , T . Given both observed

and unobserved data, the complete data log-likelihood CDLL(θ) can be

formulated as

CDLL(θ) =

N∑
s=1

M∑
m=1

usm log
{
P
(
Ws|cs

)}
+

N∑
s=1

T∑
t=1

M∑
m=1

I∑
i=1

v
(t)
sdim log

{
P
(
X

(t)
sd = i|Ws = m

)}
+

N∑
s=1

T∑
t=1

M∑
m=1

I∑
i=1

v
(t)
sdim log

{
P
(
Y

(t)
sd |X

(t)
sd

)}
.

In the E-step, the missing data usm and v
(t)
sdim are replaced by conditional

expectations to compute the following expected CDLL

E [CDLL(θ)] =

N∑
s=1

M∑
m=1

ûsm log
{
P
(
Ws|cs

)}
+

N∑
s=1

T∑
t=1

M∑
m=1

I∑
i=1

v̂
(t)
sdim log

{
P
(
X

(t)
sd = i|Ws = m

)}
+

N∑
s=1

T∑
t=1

M∑
m=1

I∑
i=1

v̂
(t)
sdim log

{
P
(
Y

(t)
sd |X

(t)
sd

)}
,
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where the desired quantities are computed respectively as

ûsm =
P
(
Ws = m|cs

)∏T
t=1

∏D
d=1

{∑I
i=1 P

(
X

(t)
sd = i|Ws = m

)
P
(
Y

(t)
sd |X

(t)
sd = i

)}
∑M

h=1 P
(
Ws = h|cs

)∏T
t=1

∏D
d=1

{∑I
i=1 P

(
X

(t)
sd = i|Ws = h

)
P
(
Y

(t)
sd |X

(t)
sd = i

)} ,

and

v̂
(t)
sdim = P

(
X

(t)
sd = i,Ws = m|Y(t)

sd

)
= P

(
Ws = m|Ys

)
P
(
X

(t)
sd = i|Ws,Y

(t)
sd

)
= ûs,m

P
(
X

(t)
sd = i|Ws = m

)
P
(
Y

(t)
sd |X

(t)
sd = i

)
P
(
Y

(t)
sd

)
= ûs,m

P
(
X

(t)
sd = i|Ws = m

)∏kt
h=1 P

(
Y

(t)
sdh|X

(t)
sd = i

)∑I
r=1 P

(
X

(t)
sd = r|Ws = m

)∏kt
h=1 P

(
Y

(t)
sdh|X

(t)
sd = r

) .
In the M-step, the expected CDLL is maximized with respect to θ to

find the current updates for the model parameters - given the expectations

computed in the previous step. Standard complete data methods to fit

(multinomial) logistic regression models can be used to update the parameter

estimates using the complete data as if they were observed (Vermunt, 2003).

The E-step and the M-step are iterated until some convergence criterion

is fulfil. Subsequently, the hybrid technique implemented in Latent GOLD

switches to a Newton-Raphson algorithm. The latter uses analytic first

and second order derivatives - see Vermunt and Magidson (2016, Sec. 7.1).

The inverse of the negative Hessian, available at convergence, can then be

used as an estimate of the observed Information matrix for inference on the

model parameters.
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4.1. Multilevel Latent Class model

Figure 4.1: Path diagram of the proposed multilevel Latent Class model
specification.
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Note: X
(t)
s1 , X

(t)
s2 , and X

(t)
s3 correspond to the Level 1 latent variables Knowledge, Application,

and Judgment, respectively, at time t = 1, . . . , T . Each of them was measured by kt = 10

indicators per time point (Y
(t)
sd1, . . . , Y

(t)
sdkt

)′, with
∑

t kt = K = 30. The latent variable Ws at

Level 2 defines groups of students based on their likelihood to be in one of the Level 1 latent classes
for each Dublin descriptor (K, A, J). Finally, cs refers to the demographic and psychological
covariates affecting Level 2 class membership probabilities. Light gray circles indicate latent
variables, whereas white rectangles indicate observed variables.
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4.2 Empirical application

In this section, results from the model fit considering the data presented

in Chapter 3 are described. Firstly, the latent structure output (number

and characteristics of latent classes) is shown; next, the Level 2 regression

output is presented - namely, the effect of covariates on high level class

membership probabilities.

Note that in the considered application, D = 3 ability dimensions were

considered (Knowledge, Application, Judgment), each measured across

T = 3 time points through a distinct set of kt = 10 multiple-choice Statistics

questions, with
∑

t kt = 30. Each question is coded as an ordinal indicator

with q = 3 categories, indicated with j = 0, 1, 2, corresponding to wrong,

partially correct, and totally correct answers, respectively.

4.2.1 Latent structure

The definition of the number of latent classes is a ticklish issue in LC analysis

in general (Nylund-Gibson et al., 2007; Yang and Yang, 2007). Herein, a

set of multilevel latent class models, with a varying number of latent classes

(from 1 to 5), both at Level 1 and Level 2, was estimated. These models

were then compared using the information criteria based on the number

of groups as suggested in Lukočienė and Vermunt (2009). The Sample

adjusted Bayesian Information Criterion (SABIC; Sclove, 1987) indicates

the model with three latent classes at Level 1 and Level 2 as the best one (see

Table 4.1 for details about fit statistics). These results are consistent with

those obtained in the application of the second proposal on the same data,

which is described in the following chapter. The entropy-based R2 reveals a

high separation between latent classes, i.e. low classification uncertainty,
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4.2. Empirical application

for all the discrete latent variables: R2
ENTR = 0.94 for Level 2 group

variable, R2
ENTR = 0.77 for Knowledge, R2

ENTR = 0.70 for Application, and

R2
ENTR = 0.63 for Judgment latent variables at Level 1.

Table 4.1: Fit statistics for multilevel latent class models.

No. latent classes

Group-based Group-based
Level 2 Level 1 Log-likelihood BIC SABIC Note

1 2 -12640.52 26714.28 25858.87
3 -12553.05 27017.08 25876.53
4 -12464.23 27317.18 25891.49
5 -12385.28 27637.02 25926.20

2 2 -12441.22 26432.45 25507.33
3 -12351.69 26747.07 25527.31
4 -12259.28 27055.91 25541.51
5 -12170.84 27372.71 25563.66

3 2 -12409.00 26484.80 25489.98 NC
3 -12297.60 26771.58 25472.62
4 -12227.27 27140.51 25537.40
5 -12124.40 27444.38 25537.13

4 2 -12394.72 26573.02 25508.51 NC
3 -12274.29 26857.67 25479.50
4 -12167.33 27169.28 25477.46
5 -12091.07 27542.28 25536.81

Note: BIC = Bayesian Information Criterion; SABIC = Sample adjusted BIC; NC = Not
Converge.

The conditional response probabilities defined in Equation (4.2) can

be used to characterize the output latent classes at Level 1. As can be

seen in Figures 4.2, 4.3, and 4.4, each one related to one of the considered

Dublin descriptors, three ordered latent classes indicate low, medium, and
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high levels of ability, respectively: the probability of totally correct answers

increases moving from Class 1 to Class 3, as well as the number of items

with a higher probability of correct answers.

Regarding the weights of latent classes, results show that the largest

class for the Knowledge dimension is Class 3 (43%), followed by Class 2

with 38% of the sample. Conversely, for Judgment, Class 1 is the largest

class (46%), followed by Class 3 with a class probability of 0.38. Differently,

the Application dimension presents almost balanced groups: 39% (Class 1),

31% (Class 2), and 30% (Class 3).

Concerning the Level 2 latent variable, Table 4.2 reports parameter

estimates for the low-level class proportions, conditional on higher-level

class membership. It can be observed that the discrete latent variable at

Level 2 features two well-defined groups of low-performer students (Group 1)

and high-performer students (Group 3) for all the Dublin descriptor domains.

On the other hand, Group 2 encompasses students with a moderate ability

level in Knowledge, and a low or medium level of ability in Application and

Judgment. Greater uncertainty in Application and Judgment dimensions

was observed for Group 2, with equal class proportion for low (Class 1) and

medium (Class 2) levels of ability in Application, and even more distributed

proportions between Level 1 latent classes for Judgment.
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Table 4.2: Low-level class proportion conditional on higher-level class mem-
bership averaged over time points. Class weights at both levels are available
at the margins.

Knowledge Application Judgment

Level 2 class 1 2 3 1 2 3 1 2 3 Weight
1 0.76 0.22 0.02 0.87 0.12 0.01 0.88 0.10 0.02 0.25
2 0.01 0.81 0.18 0.45 0.47 0.08 0.52 0.29 0.19 0.37
3 0.01 0.05 0.94 0.01 0.29 0.70 0.11 0.07 0.82 0.38

Weight 0.19 0.38 0.43 0.39 0.31 0.30 0.46 0.16 0.38

4.2.2 Psychological factors and time effects

The statistical significance of the effect of Level 2 covariates on class mem-

bership probabilities and of time on Level 1’s class proportions, has been

evaluated through the Wald test. Note that time effects at Level 1 ac-

count for students’ ability change according to different Statistics topics,

whereas Level 2 covariates provide insights on the impact of demographic

and psychological variables on performance.

Results reveal a significant effect of time on Knowledge (p = 0.04), and

Application (p = 0.003), but a non-significant effect on Judgment (p = 0.17).

More specifically, the output in Table 4.3 shows that the probability of

being in Classes 2 and 3 (medium and high performer) rather than in

Class 1 (low performer) is lower at time 2 and time 3 in comparison to

time 1 (see the negative sign of the corresponding coefficients), pointing out

better performance in Knowledge at time 1. On the other hand, students’

ability in Application domain increases at time 2 and decreases at time 3,

as highlighted from the positive coefficients for Classes 2 and 3 at time 2,

and the negative ones at time 3.
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All in all, for the Knowledge dimension, results reveal greater inaccu-

racies and vagueness in the acquisition of theoretical concepts related to

probability, bivariate statistics, and hypothesis testing with respect to de-

scriptive statistics, graphs, tables, and normal distribution. In addition,

regarding the Application domain, results reveal that students experience

more difficulties in bivariate statistics and hypothesis testing with respect to

descriptive statistics, whereas they encounter lower difficulty in probability.

Conversely, critical ability in Statistics remained stable over time.

Since the topic at each time point varies, the differences in students’

performance over time can be explained by the topic complexity and its

relevance for the students.

Table 4.3: Parameter estimates for the time-specific intercepts of Level 1
class membership probability’s multinomial regressions.

Time 2: Coefficients Time 3: Coefficients Wald
statistics

df p-value

Class 2 Class 3 Class 2 Class 3

Knowledge -5.26 -3.59 -7.55 -1.86 9.90 4 0.04
Application 2.52 0.48 -0.97 -3.92 15.64 4 0.003
Judgment 0.51 1.76 0.43 -0.85 6.36 4 0.17

Figure 4.5 displays statistically significant estimates for demographic

and psychological covariates. Results highlight that math knowledge, affect

attitudes towards Statistics, self-efficacy, and self-regulation positively im-

pact students’ performance, increasing their probability of being in Classes

2 and 3 (medium and high performer). Conversely, perceiving Statistics as a

difficult subject, test anxiety, and anxiety about interpreting statistical data

negatively affect students’ performance, as can be seen from the negative

sign of the corresponding regression coefficients of Classes 2 and 3.
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Students’ engagement in Statistics shows a puzzling outcome: the behav-

ioral component (namely learners’ observable behaviors related to studying

Statistics) has a positive effect on the log-odds of belonging to Class 3

relative to Class 1, but a negative effect on the probability to be in the

middle-ability group (Class 2). The affective component of engagement

(namely interest, curiosity, and enjoyment in learning statistics) has a nega-

tive impact on both the log-odds of belonging to Class 2 or 3 rather than

to Class 1. Finally, the following variables have no impact on students’

performance: Sex, Academic motivation, Examination anxiety and Fear for

asking for help (dimensions of Statistical anxiety), Cognitive competence

and Value (dimensions of Attitudes toward Statistics), Cognitive strategies,

Academic procrastination, Cognitive engagement.

Looking at the effect of psychological variables on students’ performance

in Statistics, the obtained results are in line with previous research. Specif-

ically, the positive effect of math knowledge was also described by Chiesi

and Primi (2010), and Lavidas et al. (2020). Regarding positive feelings

concerning Statistics (i.e., affective attitudes), also other studies (Chiesi

and Primi, 2010; Sesé et al., 2015; Sorge, 2001) highlighted their positive

impact on students’ performance. Moreover, as expected, self-confidence

and expectancy for success (i.e., self-efficacy), and the application of useful

cognitive and metacognitive strategies to supervise the learning process (i.e.,

self-regulation) increased the probability of obtaining a good performance.

These results also align with the previous literature (Choi, 2005; Zimmerman

and Kitsantas, 2014; Zare et al., 2011).

On the other hand, the anxiety occurring when students are required

to interpret or make a decision about statistical data, general test anxiety,

and considering Statistics as a difficult subject had a detrimental effect
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Figure 4.5: Effect of significant psychological covariates on Level 2 class
membership probabilities.
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on students’ performance. The negative impact of these psychological

variables was also reported in Tempelaar et al. (2007) and Ghani and Maat

(2018), among the others. A surprising result emerges instead for students’

engagement in Statistics, underlying the need for further investigations.

Indeed, a higher level of behavioral engagement (e.g., study regularly and

participate during lessons) is associated with a greater probability of being

in the high-performer latent class, but a smaller probability of being in

the medium-level ability group. Moreover, the affective component of

engagement (namely interest, curiosity, and enjoyment in learning statistics)
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had an overall negative impact on the performance. This unexpected

result may be related to the psychometric scale used to measure students’

engagement in Statistics. The latter has not yet been validated in the Italian

context, differently from the more classical scales used to assess the other

psychological variables.
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Chapter 5

The development of a
three-step rectangular latent
Markov model

This chapter introduces a three-step rectangular latent Markov modeling as

an extension of the bias-adjusted three-step latent Markov modeling pro-

posed by Di Mari et al. (2016). In particular, the three-step approach makes

it possible to manage different measurement models per time point. The

novelty consists in adopting a rectangular formulation of the latent Markov

model that enables different numbers of latent classes over time (Anderson

et al., 2019). Indeed, as better discussed below, changing over time may lead

Part of the chapter’s content is included in the paper:
Fabbricatore, R., Di Mari, R., Bakk, Z., de Rooij, M., & Palumbo, F. (2022). A three-step
rectangular latent Markov modeling for advising students in self-learning platforms. In
Wiberg, M., Molenaar, D., González, Kim, J.-S., & Hwang, H. (Eds.). Quantitative
Psychology - The 87th Annual Meeting of the Psychometric Society, Bologna, Italy, 2022.
New York: Springer.
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to different nature and number of latent classes for which a unique overall

definition results too restrictive or redundant. This may be the case when

assessing students’ abilities, given the complex, multifaceted and transform-

ing nature of learning. Moreover, the rectangular formulation also allows

managing another critical issue in education, i.e. students dropout during

the learning process. Specifically, in the proposed model, an additional

class is considered for time t = 2, . . . , T to explicitly account for dropouts,

allowing investigating also the covariate effects on the students’ transition

to what can be called a “dropout class”. As a further innovative element,

an item response theory (IRT) parameterization in the measurement part

of the model is adopted to take into account item characteristics during the

assessment process.

In the following section, the basic latent Markov model is first presented,

focusing on the three-step estimation procedure and the extension to rectan-

gular transition matrices. Afterwards, the proposed three-step rectangular

latent Markov modeling is outlined. Results from a simulation study provide

a preliminary evaluation of the developed bias-adjusted estimator, whereas

the real data application illustrates the empirical relevance of the proposed

approach for students’ ability assessment.

5.1 Latent Markov modeling

As pointed out in Chapter 1, latent Markov models represent the longitudinal

extension of models with discrete latent variables, which allow analyzing

individuals’ transitions across latent states over time. As such, they are

particularly helpful to analyze changes in individual or group characteristics

over time.
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These models assume the presence of a latent process, typically following

a first-order Markov chain, which affects the response variables that are

repeatedly measured over time. Given the latent process, response variables

are considered independent due to the assumption of local independence.

More formally, let Y
(t)
s =

(
Y

(t)
s1 , . . . , Y

(t)
sK

)′
be the vector of responses

for individual s = 1, . . . , N on the K indicators measured at time point

t = 1, . . . , T , with a realization y
(t)
s . Denote with Ys the full set of response

patterns at all T occasions, and with X
(t)
s the categorical latent variable at

time t taking value i = 1, . . . , I. Initial and transition probabilities can be

respectively formalized through equations

P
(
X(1)

s = i
)
= π

(1)
i (5.1)

and

P
(
X(t)

s = l|X(t−1)
s = i

)
= π

(t)
il , (5.2)

with l = 1, . . . , I,
∑I

i=1 π
(1)
i = 1 and

∑I
l=1 π

(t)
il = 1. The full set of transition

probabilities is collected in a square transition matrix indicated with Π.

When transition matrices are time-heterogeneous, T − 1 different transition

matrices Π(2), . . . ,Π(T ) are obtained, with generic element π
(t)
il .

Moreover, time-constant and time-varying covariates influencing initial

and transition probabilities are allowed. Denote with Cs the full set of the

considered covariates for subject s, being C
(t)
s a sub-vector relative to the

specific time t. According to a latent Markov model based on a first-order

Markov chain, the probability of having a particular sequence of response

configurations at different T time occasions, given the vector of individual

covariates, can be expressed as
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P (Ys = ys|Cs) =

I∑
i(1)=1

I∑
i(2)=1

· · ·
I∑

i(T )=1

P
(
X(1)

s = i(1)|C(1)
s

)
T∏

t=2

P
(
X(t)

s = i(t)|X(t−1)
s = i(t−1),C(t)

s

) T∏
t=1

P
(
Y(t)

s = y(t)
s |X(t)

s = i(t)
)
. (5.3)

The corresponding path diagram is depicted in Figure 5.1.

Figure 5.1: Latent Markov path diagram.
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The model comprises two components: the structural part, describing the

distribution of the latent process, and the measurement part that connects

the latent state to the response variables at each time point. Thus, looking

at the probability defined in Equation (5.3), the structural part refers to the

initial state probability P
(
X

(1)
s = i(1)|C(1)

s

)
and the transition probability

P
(
X

(t)
s = i(t)|X(t−1)

s = i(t−1),C
(t)
s

)
, both conditioned to individual covari-

ates. Conversely, the probability P
(
Y

(t)
s = y

(t)
s |X(t)

s = i(t)
)
represents

the measurement part of the model, which typically follows a standard

latent class model. It can be factorized, because of the local independence
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assumption, as

P
(
Y(t)

s = y(t)
s |X(t)

s = i(t)
)
=

K∏
k=1

P
(
Y

(t)
sk = y

(t)
sk |X

(t)
s = i(t)

)
. (5.4)

The response variable Y
(t)
sk can follow a Bernoulli or categorical distribu-

tion depending on its binary or ordinal nature, respectively. Accordingly,

the conditional-response probabilities P
(
Y

(t)
sk = y

(t)
sk |X

(t)
s = i(t)

)
can be

parameterized by means of the most appropriate link function.

Logistic models can be used to model the effect of the covariates on

initial and transition probabilities. In particular, taking the first category

as reference, the following parameterization can be used for the initial

probability

log
P
(
X

(1)
s = i|C(1)

s

)
P
(
X

(1)
s = 1|C(1)

s

) = β0i + β′
iC

(1)
s , i = 2, . . . , I;

where β0i and βi are respectively the intercept and the vector of coefficients

for the covariate effects, and

log
P
(
X

(t)
s = l|X(t−1)

s = i,C
(t)
s

)
P
(
X

(t)
s = 1|X(t−1)

s = i,C
(t)
s

) = γ0l + γ0il + γ ′
lC

(t)
s , i, l = 2, . . . , I

for transition probabilities, where γ0l is the intercept for latent state l, γ0il

the intercept for the considered transition, and γl the vector of covariate

coefficients. The first class is taken as reference category; accordingly,

coefficients related to the first category are set to zero.

Starting from the general formulation of latent Markov models, differ-

ent constrained versions can be obtained, imposing some restrictions on

the measurement and/or the structural part of the model. For example,

homogeneous instead of non-homogeneous transition probabilities can be
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adopted. For a more extensive description of constrained models refer to

Bartolucci et al. (2012), and Zucchini and MacDonald (2009). Moreover, a

time-variant measurement model can also be considered, as well as a direct

effect of covariates on the observed responses (see, for more details, Di Mari

and Bakk, 2018).

The estimation of the model parameters is based on maximum likelihood

(ML), and it is typically performed in one step by maximizing the following

log-likelihood function based on the manifest distribution of the full response

pattern Ys given the covariates:

ℓ(η) =
N∑
s=1

logP
(
Ys = ys|Cs

)
,

where η is the vector of free model parameters to be estimated.

Log-likelihood maximization can be performed through the forward-

backward algorithm (Baum et al., 1970). It is a special version of the

expectation-maximization (EM) algorithm (Dempster et al., 1977), which

allows reducing the exponential increase of problem size with the number

of time occasions to a linear increase (Zucchini and MacDonald, 2009).

Nevertheless, the one-step approach often becomes infeasible when the

number of time points, indicators, and covariates, and thus the number of

parameters to be estimated, is large (Di Mari et al., 2016). For this reason,

step-wise approaches are usually preferred in practice, first addressing

the measurement part of the model, and subsequently accounting for the

structural part. In this vein, two-step approaches (Bartolucci et al., 2014c)

and three-step approaches (Asparouhov and Muthén, 2014; Di Mari et al.,

2016) have been proposed. Because the present proposal introduces a three-

step procedure, a deeper description of this latter approach is provided in

the following subsection.
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5.1.1 The three-step approach

The three-step approach breaks down the estimation procedure into the

following smaller steps:

Step 1 A simple latent class model without covariates is estimated on the

pooled data;

Step 2 State membership is obtained for each individual at all the consid-

ered time points;

Step 3 Class assignments are used as single indicators in a simple latent

Markov model to estimate the structural part of the model (i.e., initial

and transition probabilities and covariate effects).

A graphical summary of the three-step approach is provided in Figure 5.2.

It is worth noting that this step-wise approach has the drawback of

providing biased estimates in the third step because ignoring the classifi-

cation error introduced in Step 2. In the context of latent class analysis,

two main approaches have been developed to overcome this problem. In

particular, Bolck et al. (2004) proposed the BCH correction method based

on a weighted logistic regression, whereas Vermunt (2010a) introduced a

maximum likelihood-based correction. The latter was generalized to latent

Markov models by Di Mari et al. (2016).

As stated above, the second proposal of this thesis consists in extending

the bias-adjusted three-step approach to the case of latent Markov models

with rectangular transition matrices. Thus, Section 5.2 provides a description

of both corrections for the proposed method. Readers interested in a deeper

discussion on bias correction methods for latent class analysis and basic

latent Markov models can refer to the references cited above.
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Figure 5.2: Three-step approach to latent Markov models (adapted from
Di Mari et al., 2016).
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5.1.2 Rectangular transition matrices

Classical latent Markov models restrict the number of latent states to be

equal over time. Nevertheless, this assumption might be too restrictive in

some application contexts. To address this issue, Anderson et al. (2019) in-

troduced the rectangular latent Markov models that allow for not time-fixed

number of latent states. Accordingly, the categorical latent variable X
(t)
s has

time-specific It support points, producing rectangular transition matrices

wherever It−1 ̸= It. In rectangular latent Markov models, Equations (5.1)

and (5.2), describing initial and transition probabilities, become

P
(
X(1)

s = i|I1
)
= π

(1)
iI1

and

P
(
X(t)

s = l|X(t−1)
s = i, It−1, It

)
= π

(t)
ilIt−1It

,

respectively. In addition, the formulation of the measurement part of the

model, see Equation (5.4), in the case of a time-varying number of latent
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classes is

P
(
Y(t)

s = y(t)
s |X(t)

s = i, It
)
=

K∏
k=1

P
(
Y

(t)
sk = y

(t)
sk |X

(t)
s = i, It

)
.

In latent Markov models with rectangular transition matrices, latent

classes can merge, split, or be rearranged over time. As a consequence,

when the number of latent states changes, groups with the same label have

a different interpretation according to conditional response probabilities.

Note that this does not mean that the measurement part of the model is

time-varying; indeed, the observed indicators are the same over time.

For parameter estimations, Anderson et al. (2019) propose to consider a

penalized likelihood approach due to the very large number of models to be

estimated to choose the best configuration for the number of latent states.

Indeed, n tested possibilities in classical latent Markov models become nT

when the rectangular formulation is considered. Moreover, they proposed a

novel Expectation-Maximization-Markov-Metropolis algorithm to efficiently

optimize the penalized likelihood (see, for more details, Anderson et al.,

2019). In their proposal, the description of the one-step estimation procedure

is driven by the considered application context (classify nations according

to well-being), focusing on a latent Markov model without covariates and

with normally distributed manifest variables. Very recently, the proposal

was extended to a completely general rectangular latent Markov model

including covariates and both continuous and categorical outcomes (Russo

et al., 2022).

In what follows, a three-step rectangular latent Markov model is in-

troduced, integrating the three-step approach described in Section 5.1.1

with the rectangular formulation of transition matrices. A bias-adjusted

approach is proposed for parameter estimation; individual covariates and
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ordinal observed variables are considered in the empirical application. Re-

garding the latter, to the best of found knowledge, this work represents the

first application of a rectangular latent Markov model to analyze students’

assessment data in education.

5.2 A three-step rectangular latent Markov mod-
eling

The proposed approach consists of a three-step procedure, running over the

following steps: carrying out a multidimensional latent class IRT model

at each time point to find homogeneous groups of students according to

their ability (Step 1); computing the time-specific class membership and

classification error probabilities (Step 2); adopting a bias correction method

(BCH or ML-based) to estimate the structural part of the model (Step 3). A

brief description of the flow of the proposed three-step approach is provided

in Figure 5.3. The remainder of the section details the procedure’s steps.

5.2.1 Step 1: Multidimensional latent class IRT model

Step 1 addresses the estimation of the measurement part of the model, which

in latent Markov models is typically based on a standard latent class analysis.

Herein, an extension that integrates IRT parameterization is considered,

leading to the framework of latent class IRT models (Bartolucci, 2007; Bacci

et al., 2014). In particular, a between-item multidimensional formulation is

exploited to account for the multidimensional nature of the latent trait in

the considered context, namely in students’ ability assessment.

The multidimensional latent class IRT (MLCIRT) model represents a

semi-parametric extension of the traditional IRT model in which both the
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Figure 5.3: Flow of the proposed three-step approach.
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constraints of unidimensionality and continuous nature of the latent trait

are released (Bartolucci, 2007). Given the matrix of students’ response

patterns, the MLCIRT model allows detecting sub-populations of homoge-

neous students according to their ability, concurrently accounting for the

multidimensional nature of students’ ability and item characteristics (e.g.,

difficulty and discriminating power). Note that the notation used in this

section is inspired to the IRT framework; not familiar readers can refer

to Bartolucci et al. (2015) for more details.

Formally, the vector Θ =
(
Θ1,Θ2, . . . ,ΘD

)′
of the D latent variables, at

each time t = 1, . . . , T , follows a discrete distribution with ξ
(t)
1 , ξ

(t)
2 , . . . , ξ

(t)
It

vectors of support points defining It latent classes, where It indicates the

number of classes at the time t. For any t, π(t) = π
(t)
1 , . . . , π

(t)
It

are the prior

probabilities of belonging to latent classes. Specifically, π
(t)
i = P

(
Θ(t) = ξ

(t)
i

)
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with i = 1, . . . , It, and
∑It

i=1 π
(t)
i = 1. At time t = 2, ..., T , the vector of class

weights is obtained as π
′(t) = π

′(1)
∏t

h=2Π
h, where Πh is the time-specific

matrix of transition probabilities of order Ih−1 × Ih, given the considered

working assumptions. It is worth noting that at each time point, the number

of latent classes It is assumed to be equal for all the latent trait dimensions

in order to facilitate the interpretation of the latent classes and improve

model parsimony (Bacci et al., 2014). Consequently, individuals belonging

to the same latent class share the common profile in terms of all the D

latent variables.

The manifest distribution of the individual’s response vector Y
(t)
s at time

t follows the latent class model specification

P
(
Y(t)

s = y(t)
s

)
=

It∑
i=1

P
(
Y(t)

s = y(t)
s |Θ(t) = ξ

(t)
i

)
π
(t)
i

=

It∑
i=1

Kt∏
k=1

P
(
Y

(t)
sk = y

(t)
sk |Θ

(t) = ξ
(t)
i

)
π
(t)
i , (5.5)

where the probability P
(
Y

(t)
sk = y

(t)
sk |Θ

(t) = ξ
(t)
i

)
is expressed according to

an IRT parameterization, and Kt is the number of considered indicators at

time t.

Without loss of generality and for the sake of space, the measurement part

of the model is presented only referring to the Generalized Partial Credit

Model (GPCM; Bacci et al., 2014) among the IRT models. As also pointed

out in Chapter 4, a natural way to model the ordered response assuming

partial credit for intermediate performance levels, as in the proposed students’

assessment, is to use the adjacent-category ordinal logit model or partial

credit model (Bartolucci et al., 2015; Eggert and Bögeholz, 2010). Thus, let

θ(t) =
(
θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
D

)′
be a realization of Θ at time t, and θ

(t)
id taking
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value in ξ
(t)
i . The response Y

(t)
sk of the individual s = 1, . . . , N (t) to a generic

polytomous item k
(
k = 1, . . . ,Kt

)
, with J response categories indexed

from 0 to J − 1 and administered at time t, can be parameterized as follows

according to the GPCM:

g
[
P
(
Y

(t)
sk = j|Θ(t) = ξ

(t)
i

)]
= log

P
(
Y

(t)
sk = j|Θ(t) = ξ

(t)
i

)
P
(
Y

(t)
sk = j − 1|Θ(t) = ξ

(t)
i

) =

= ak

(
D∑

d=1

δkdθ
(t)
id − bkj

)
, j = 1, . . . , J − 1;

where g(·) is the local logit link function; δkd is a dummy variable equal to 1 if

the item k measures the latent trait d; ak and bkj represent the discrimination

and the item-step difficulty parameters, respectively. According to a local

logit link formulation, the item-step difficulty parameter bkj points out the

difficulty of passing from answering category j − 1 to answering category j

to item k. Note that item parameters are constrained to be equal among

the latent classes. Moreover, to ensure the identifiability of the model, for

each latent trait, it is required that one discriminating index is equal to 1

(usually a1 = 1), and one difficulty parameter is equal to 0 (usually b1 = 0).

Regarding the choice of the number of latent classes It, it is a ticklish

issue that can be addressed according to some external knowledge or via a

model selection process based on a data-driven approach (e.g., comparing

models with a different number of classes using the BIC index).

Parameter estimation

Given the number of latent classes It, the parameter estimation of the

multidimensional latent class IRT model is performed by means of the

Maximum Marginal Likelihood (MML) approach (Thissen, 1982).
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Three-step rectangular latent Markov model

Let η be the vector containing all the free model parameters, the following

log-likelihood has to be maximized:

ℓ(η) =

n∑
s=1

log
[
P
(
Y(t)

s = y(t)
s

)]
=

P∑
p=1

nplog
[
P
(
Y(t)

p = y(t)
p

)]
,

where P indicates the total number of distinct response configurations

observed in the sample, np is the frequency of the p-th response vector y
(t)
p ,

and P
(
Y

(t)
p = y

(t)
p

)
defined according to the Equation (5.5). In particular,

the model parameters to be estimated are the matrix of ability levels with

generic element θid, the class weights π
(t)
i , and the item discriminant and

difficulty parameters.

The maximization of ℓ(η) with respect to η is obtained using the

Expectation-Maximization (EM; Dempster et al., 1977) algorithm that

exploits the log-likelihood of the complete data. Given the observed and un-

observed data, the complete data log-likelihood CDLL(η) can be formulated

as

CDLL(η) =

It∑
i=1

P∑
p=1

mi,p log
{
P
(
Y(t)

p = y(t)
p |Θ(t) = ξ

(t)
i

)
π
(t)
i

}
. (5.6)

For estimation purposes, the complete data log-likelihood in Equation (5.6)

is decomposed as

CDLL(η) = CDLL(η1) + CDLL(η2),

where η1 represent the subvector of η containing the free latent class

probabilities, and η2 all the other free parameters. Specifically,

CDLL(η1) =

It∑
i=1

P∑
p=1

mi,p log
{
π
(t)
i

}
(5.7)

and

CDLL(η2) =

It∑
i=1

Kt∑
k=1

mik log
{
λ
(t)
ik

}
, (5.8)
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5.2. A three-step rectangular latent Markov modeling

where mik is a column vector with elements
∑P

p=1 I
(
Y

(t)
pk = j

)
mi,p, with

j = 1, . . . , J−1, and I(·) denoting the indicator function equal to 1 if its argu-

ment is true (the response of item Ypk is the category j), and 0 otherwise. The

vector λ
(t)
ik contains the J conditional probabilities P

(
Y

(t)
sk = j|Θ(t) = ξ

(t)
i

)
.

The EM algorithm alternates two steps until convergence:

• E-step. The missing data mc,p are replaced by conditional expecta-

tions to compute the following expected CDLL:

E [CDLL(η)] =

It∑
i=1

P∑
p=1

m̂i,p log
{
P
(
Y(t)

p = y(t)
p |Θ(t) = ξ

(t)
i

)
π
(t)
i

}
,

where the expected value of mi,p given np is computed, for every i

and p, as

m̂i,p = np
P
(
Y

(t)
p = y

(t)
p |Θ(t) = ξ

(t)
i

)
π
(t)
i∑It

h=1 P
(
Y

(t)
p = y

(t)
p |Θ(t) = ξ

(t)
h

)
π
(t)
h

. (5.9)

Starting from Equation (5.9), the expected frequencies
∑P

p=1 m̂i,p and

m̂ik can be determined and substituted in Equation (5.7) and Equa-

tion (5.8) to obtain E [CDLL(η1)] and E [CDLL(η2)], respectively.

• M-step. The expected CDLL is maximized with respect to η to find

the current updates for the model parameters - given the expectations

computed in the previous step. In particular, the maximization of

E [CDLL(η1)] have the following explicit solution:

π
(t)
i =

∑P
p=1 m̂i,p

N (t)
, i = 2, . . . , It,

whereas the maximization of E [CDLL(η2)] is usually implemented

through a Fisher-Scoring algorithm (Colombi and Forcina, 2001).
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Three-step rectangular latent Markov model

The E- and M-steps are iterated until the difference in the log-likelihoods of

two consecutive steps is lower than a threshold (say 10−10). The I package

MultiLCIRT (Bartolucci et al., 2014a) can be used for the estimation process.

A note about notation: in the following sections, the used notation

shifts again to resemble the most typical one in the latent Markov mod-

els framework. Therefore, it is important to explicit the connection

P
(
Θ

(t)
s = ξ

(t)
i

)
= P

(
X

(t)
s = i

)
before moving ahead.

5.2.2 Step 2: Modal class assignment and classification error

Since different measurement models are estimated for each time point, time-

specific class membership and classification error probabilities are computed

at this step. Once the model parameters are estimated, each observation

is assigned to the class corresponding to the highest posterior probability

of belonging (modal assignment rule). In particular, the posterior class

probability that the individual s belongs to latent class i = 1, . . . , It at time

t can be expressed according to the Bayes’s theorem as follows:

P
(
X(t)

s = i|Y (t)
s = y(t)

s

)
=

P
(
X

(t)
s = i

)
P
(
Y

(t)
s = y

(t)
s |X(t)

s = i
)

P
(
Y

(t)
s = y

(t)
s

) .

For each time point, modal assignment estimates the predicted class

W
(t)
s allocating a weight w

(t)
si = P

(
W

(t)
s = i|Y (t)

s = y
(t)
s

)
= 1 if

P
(
X

(t)
s = i|Y (t)

s = y
(t)
s

)
is the largest posterior probability, and zero

weight otherwise.

On the other hand, the conditional probability of the estimated class

value conditional on the true one defines the classification error. According

to Vermunt (2010a), the overall classification error probabilities are obtained

by averaging over all possible observed response configurations at time t,
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5.2. A three-step rectangular latent Markov modeling

resulting in the time-specific D(t) matrix with elements:

P
(
W (t)

s = g|X(t)
s = i

)
=

1
N(t)

∑N(t)

s=1 P
(
X

(t)
s = i|Y (t)

s = y
(t)
s

)
w

(t)
sg

P
(
X

(t)
s = i

) ,

where g, i = 1, . . . , It and N (t) is the sample size at time t. It is worth noting

that the classification error is strongly related to class separation, turning

out to be larger in the case of lower separation between classes (Bakk et al.,

2013; Vermunt, 2010a).

5.2.3 Step 3 with BCH correction

In Step 3, according to the BCH correction (Bolck et al., 2004), the D(t)

matrices computed at the previous step are used in the weighted logistic

regressions to find the effect of covariates on initial and transition prob-

abilities. More technically, using a multinomial logistic regression model,

the probability of the estimated class membership W
(t)
s at time t given the

vector C
(t)
s of Q individual covariates can be parameterized as follows:

P
(
W (t)

s = g|C(t)
s

)
=

exp
(
γ
(t)
0g +

∑Q
q=1 γ

(t)
qg C

(t)
sq

)∑It
l=1 exp

(
γ
(t)
0l +

∑Q
q=1 γ

(t)
ql C

(t)
sq

) . (5.10)

However, the interest is in the relationship between X
(t)
s and C

(t)
s because

simply considering the estimated class membership W
(t)
s in Equation (5.10)

causes an underestimation of the covariate effects. Thus, in order to model

the probability P
(
X

(t)
s = i|Cs

)
, for t = 1, . . . , T , let express the probability

P
(
W

(t)
s = g|C(t)

s

)
as a linear combination of P

(
X

(t)
s = i|C(t)

s

)
considering

the classification errors as weights, according to Bolck et al. (2004):

P
(
W (t)

s = g|Cs

)
=

It∑
i=1

P
(
X(t)

s = i|C(t)
s

)
P
(
W (t)

s = g|X(t)
s = i

)
. (5.11)
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Let be e
(t)
sc = P

(
W

(t)
s = g|Cs

)
, a

(t)
sg = P

(
X

(t)
s = i|Cs

)
, and

d
(t)
gc = P

(
W

(t)
s = g|X(t)

s = i
)
element of matrices E(t), A(t), and D(t),

respectively. The matrix notation of Equation (5.11) is:

E(t) = A(t)D(t).

Accordingly, the matrix A(t) with the probabilities of true class membership

given individual covariates can be obtained as follows:

A(t) = E(t)D(t)−1
.

Thus, using the entries of the inverse of the D(t) matrix as observation

weights during the estimation of the multinomial regression in Equation

(5.10), regression parameters referring to the probability P
(
X

(t)
s = i|Cs

)
are obtained (Vermunt, 2010a).

Specifically, in the proposed approach, a multinomial regression with

individual classification at time 1 as dependent variable allows evaluating

the covariate effect on initial probability. On the other hand, to estimate

the effect of covariates on all the possible transitions over time,
∑T−1

t=1 It

multinomial regressions are required, each one considering the individuals

belonging to one of the latent classes emerged at time t as sample (in total

It sub-samples for each time point) and the corresponding classification at

time t+ 1 as dependent variable.

5.2.4 Step 3 with ML correction

Step 3, based on the ML correction, consists of fitting a rectangular latent

Markov model with class assignments computed at Step 2 as a single

indicator and known error probabilities included in the time-specific D(t)

matrices.
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5.2. A three-step rectangular latent Markov modeling

The bias-adjusted three-step estimation procedure exploiting the ML

correction was introduced in the context of latent Markov models by Di Mari

et al. (2016). It extends the work of Vermunt (2010a) on the three-step

estimation of LC models. Herein, their proposal is further generalized to

the rectangular formulation of latent Markov models.

In the three-step approach, the log-likelihood maximized at Step 3 to

estimate the structural part of a latent Markov model is

ℓ(η) =
N∑
s=1

logP
(
Ws|Cs

)
, (5.12)

where Ws is the vector of class membership for all the T occasions, and

Cs the full set of the considered covariates for subject s. The probability

P
(
Ws|Cs

)
can be expressed for rectangular transition matrices as

P
(
Ws|Cs

)
=

I1∑
i(1)=1

I2∑
i(2)=1

· · ·
IT∑

i(T )=1

P
(
X(1)

s = i(1)|C(1)
s

)
T∏
t=2

P
(
X(t)

s = i(t)|X(t−1)
s = i(t−1),C(t)

s

)
T∏
t=1

P
(
W (t)

s = g(t)|X(t)
s = i(t)

)
,

where I1, . . . , IT are the number of latent states at time t = 1, . . . , T .

Parameters estimation

In standard latent Markov models, the maximization of the third-step log-

likelihood defined in Equation (5.12) is typically performed through the

Baum-Welch algorithm (Rabiner, 1989), a special case of the EM algorithm

which exploits forward and backward probabilities during estimation.
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For the proposed rectangular specification, no functions were available

for model implementation. Thus, a generalization of the Baum–Welch

algorithm is necessary to obtain the parameters’ estimate. In what follows,

a description of the proposed bias-adjusted estimator for the three-step

rectangular latent Markov model is provided, referring to the simplest case

of a model without individual covariates. Current developments of the

proposed estimation function aim at considering also the covariates’ effect

on initial and transition probabilities.

Keeping out of consideration the effect of covariates, the third-step

log-likelihood expressed in Equation (5.12) reduces to

ℓ(η) =

N∑
s=1

logP
(
Ws

)
.

Given the observed vector of class membership Ws = (W
(1)
s , . . . ,W

(T )
s ) and

the unobserved sequence of latent states Xs =
(
X

(1)
s , . . . , X

(T )
s

)
, the com-

plete data log-likelihood CDLL
(
η
)
= log{P

(
Ws,Xs

)
} can be formulated

as

CDLL
(
η
)
=

N∑
s=1

I1∑
i=1

u
(1)
si log

{
P
(
X(1)

s = i
)}

+

N∑
s=1

T∑
t=2

It−1∑
i=1

It∑
l=1

v
(t)
sil log

{
P
(
X(t)

s = l|X(t−1)
s = i

)}
+

N∑
s=1

T∑
t=1

It∑
i=1

u
(t)
si log

{
P
(
W (t)

s |X(t)
s

)}
, (5.13)

where u
(t)
si and v

(t)
sil can be defined according to the classical EM terminology

as follows
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5.2. A three-step rectangular latent Markov modeling

u
(t)
si =

{
1, if X

(t)
s = i

0, otherwise.
, v

(t)
sil =

{
1, if X

(t−1)
s = i, X

(t)
s = l,

0, otherwise.

As stated before, in order to find the maximum likelihood estimates of

the model parameters included in the vector η, the Baum-Welch algorithm

exploits the properties of forward and backward probabilities.

Let the forward probability α
(t)
si be the joint probability

P
(
W

(1)
s , . . . ,W

(t)
s , X

(t)
s = i

)
, and the backward probability β

(t)
si the

conditional probability P
(
W

(t+1)
s , . . . ,W

(T )
s |X(t)

s = i
)
. For each time

t = 1, . . . , T , it results

α
(t)
si β

(t)
si = P

(
Ws, X

(t)
s = i

)
, i = 1, . . . , It.

The vectors α
(t)
s and β′

s
(t) containing the forward and backward probabilities

can be expressed, respectively, as

α′
s
(t) =π′(1)P(1)

s Π(2)P(2)
s · · ·Π(t)P(t)

s = π′(1)P(1)
s

t∏
h=2

Π(h)P(h)
s

β(t)
s =Π(t+1)P(t+1)

s Π(t+2)P(t+2)
s · · ·Π(T )P(T )

s 1 =

( T∏
h=t+1

Π(h)P(h)
s

)
1,

where P
(t)
s is the diagonal matrix It × It with generic diagonal element

equal to the state-dependent probability Psi

(
W

(t)
s |X(t)

s = i
)
. Note that

by convention an empty product is the identity matrix, as in the case

of β
(T )
s = 1 at t = T . For more details about forward and backward

probabilities’ demonstration refer to Zucchini and MacDonald (2009), among

others. From the above-defined relationships follows that
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α′
s
(t)β(t)

s = P
(
Ws

)
= LT for t = 2, . . . , T,

providing T different ways to obtain the likelihood LT , one for each value

of t. Nevertheless, the most convenient way to compute LT is

LT = α′
s
(T )1 (5.14)

that requires only the computation of forward probabilities, with a general

forward recursion defined as

α′
s
(t) = α′

s
(t−1)Π(t)P(t)

s . (5.15)

Note that P
(t)
s in Equation (5.15) can be also expressed as a It × 1 col-

umn vector r
(t)
s with generic element r

(t)
si = Psi

(
W

(t)
s |X(t)

s = i
)
. Let

I =
(
I1, . . . , IT

)
be the vector with the number of latent states at each

time point, Imax = max
(
I
)
, and Rs the matrix with dimensions Imax × T

containing the T vectors r
(t)
s .

From a computational point of view, the likelihood in Equation (5.14)

requires the product of probabilities, leading to the well-known problem of

numerical underflow. To address this issue, a scaling computation of the

likelihood is required. In the particular case of the proposed function, the

maximum absolute scaling is applied to the vector of forward probabilities

at each time t, as described in the Algorithm 1 (see Appendix C). For the

sake of clarity, it is worth reminding that π′(t) = π′(1)∏t
h=2Π

h.

The forward–backward algorithm for the computation of forward and

backward probabilities is described in Algorithm 2 (see Appendix C). Note

that H indicates a matrix N × T , with entries h
(t)
s equal to 1 if data

for subject s are available at time t, and 0 if missing. h′
s is the s-th

row vector from H. Moreover, define Γ as an array It−1 × It × (T − 1)
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containing the T − 1 considered transition matrices with generic element

π
(t)
il = P

(
X

(t)
s = l|X(t−1)

s = i
)
.

Forward and backward probabilities are then used in the EM algorithm

to maximize the expected CDLL in Equation (5.13) with respect to η.

The complete data log-likelihood is composed of three components related

to initial state probabilities, transition probabilities, and state-dependent

distributions. Because the state-dependent distributions are considered

fixed parameters in the three-step ML approach, only initial and transition

probabilities have to be estimated.

In particular, the E-step exploits the following properties of forward

and backward probabilities to replace u
(t)
si and v

(t)
sil by their conditional

expectations given the vector of class membership Ws:

û
(t)
si =P

(
Xt

s = i|Ws

)
= α

(t)
si β

(t)
si /LT

v̂
(t)
sil =P

(
Xt−1

s = i,Xt
s = l|Ws

)
= α

(t−1)
si π

(t)
il r

(t)
si β

(t)
sl /LT .

Once the expected value of u
(t)
si and v

(t)
sil are obtained, the M-step maximizes

the CDLL according to the two sets of parameters of interest, namely

initial and transition probabilities. On the other hand, state-dependent

distributions are fixed to their estimated values at Step 2.

Thus, the algorithm maximizes:

1) E
[
CDLL

(
η1

)]
=
∑N

s=1

∑I1
i=1 û

(1)
si log

{
P
(
X

(1)
s = i

)}
with respect to

π′(1) leading to the solution:

π
(1)
i = û

(1)
si /

∑I1
i=1 û

(1)
si ;

2) E
[
CDLL

(
η2

)]
=
∑N

s=1

∑T
t=2

∑It−1

i=1

∑It
l=1 v̂

(t)
sil log

{
P
(
X

(t)
s = l|X(t−1)

s = i
)}
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with respect to Γ leading to the solution:

πil =
∑T

t=2 v̂
(t)
sil/

∑T
t=2

∑It
l=1 v̂

(t)
sil .

The details of the EM algorithm for the proposed method are in the Algo-

rithm 3 (see Appendix C). Given the iterative nature of the EM algorithm,

the initialization of the vector of initial probabilities π′(t) and transition

probability matrices collected in Γ is required. Specifically, in Algorithm 3,

initialization is carried out assuming the classification from the second step

arises from an observed Markov chain. Note that W denotes the matrix

N × T with modal class assignment for each subject s at each time point t,

and dW the list of the T matrices N × It containing class assignments in a

dummy coding. Moreover, let cD be the array Imax × Imax × T , including

the T time-specific D(t) matrices computed at Step 2 with generic element

d
(t)
gi = P

(
W

(t)
s = g|X(t)

s = i
)
.

5.3 Simulation study for the developed bias-
adjusted estimator

A simulation study was carried out to evaluate the performance of the

bias-adjusted estimator for the third step of the proposed approach. Different

conditions were considered, mainly concerning class separation and sample

size. Note that class separation was herein manipulated by the class–item

associations.

The bias in the model parameters estimates was used to compare the

estimator’s performance under the different conditions. Moreover, CPU time

was considered to evaluate how each condition affects the computational

time.
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5.3.1 Simulation setup

The simulation design is organized as follows:

• Measurement model. Three simple latent class models (one per

time point) with 3-3-2 latent classes (as emerged in the real data

application illustrated in Section 5.4).

• Number of items. Ten items for all the considered conditions.

• Class separation. Two conditions: Moderate (the response proba-

bilities for the most likely responses were set to 0.8), and Large (the

response probabilities for the most likely responses were set to 0.9).

The first is indicated with M in the labels, whereas the second is

indicated with L.

• Sample size. Four conditions: 200, 500, 2000, 10000.

• Initial probabilities. Equal size: 1/3, 1/3, 1/3.

• Transition probabilities. Persistent Markov chains:

Γ1 =

0.850 0.130 0.020
0.100 0.800 0.100
0.050 0.150 0.800

 ;

Γ2 =

0.900 0.100
0.600 0.400
0.200 0.800

 .

For each condition, 500 replications were carried out.

107



Three-step rectangular latent Markov model

5.3.2 Parameters of interest

Parameters of interest include the bias in the estimated parameters, namely

initial and transition probabilities, and the CPU time.

Initial probabilities:

The bias for initial probabilities is calculated considering the following

relation:

β0i = log
P
(
X(1) = i

)
P
(
X(1) = 1

) .
Under the given simulation conditions, considering three latent classes at

time 1, β02 and β03 have to be evaluated.

Transition probabilities:

The bias for transition probabilities is calculated considering the following

relation:

γtli = log
P
(
X(t) = l|X(t−1) = i

)
P
(
X(t) = i|X(t−1) = i

) .
Under the given simulation conditions, six values have to be calculated for

the transition matrix from time 1 to time 2 (namely, γ121, γ131, γ112, γ132,

γ113, γ123), and three values for the transition matrix from time 2 to time 3

(namely, γ221, γ212, γ213).

CPU Time:

The CPU time required per iteration is stored. Thus, the mean CPU time

in seconds was calculated for the full procedure (all the three steps) and for

only the third step. The procedure is executed on a 3.00GHz Dell computer

with 32GB of RAM running the Windows 11 Pro operating system.
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5.3.3 Simulation results

Simulation results support the overall good performance of the proposed

third-step bias-adjusted estimator. In particular, Figure 5.4 shows the

boxplots of the estimated bias for initial probabilities across the simulated

samples under the considered conditions. As can be seen, the variability

of the estimated bias distribution becomes smaller as class separation and

sample size increase. Thus, large sample size and class separation reduce

overestimation problems, enhancing the accuracy of model parameters’ es-

timates. A similar pattern emerges for the estimated bias for transition

probabilities, as displayed in Figures 5.5 and 5.6. Small sample size par-

ticularly affects parameter estimation, as indicated by the larger standard

error of the estimated bias for n = 200. However, already with n = 500

observations, the accuracy of parameter estimation significantly increases.

Moreover, the stronger bias for transition probabilities with respect to initial

probabilities in the case of a small sample size (n = 200) depends on the

presence of very small probabilities in the transition matrix cells that can

easily end up in an estimate close to the boundary. Of course, this rarely

happens with large samples. Note also that, as stated in Vermunt (2010a), a

small separation between classes increases the classification error, affecting

the performance of three-step correction methods.

Regarding CPU time, Figure 5.7 shows that it is affected by class sep-

aration and sample size, gradually increasing as the class separation gets

smaller and sample size increases. Differences in CPU time between the total

three-step function and only the third-step reveal that the computational

load of the three-step estimation procedure is mainly borne by the third step.

The data log-likelihood increases monotonically according to the number of

iterations and the algorithm reaches convergence within 20 iterations (see
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Figure 5.8 for an example from one of the simulated conditions).

In sum, as expected, the proposed estimator proved to perform well

asymptotically, with a larger estimation bias for small samples and lower

class separation. These results are in line with those reported in Di Mari

et al. (2016) for the bias-adjusted estimator in classical latent Markov

models with square transition matrices.

Figure 5.4: Initial probabilities bias.
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5.3. Simulation study for the developed bias-adjusted estimator

Figure 5.5: Mean and standard error of transition probabilities bias (T1 to
T2).
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Figure 5.6: Mean and standard error of transition probabilities bias (T2 to
T3).
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5.3. Simulation study for the developed bias-adjusted estimator

Figure 5.7: CPU time for the total function (a) and the third step (b).
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Figure 5.8: Example of log-likelihood series.
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5.4 Empirical application

In this section, the three-step rectangular latent Markov approach is used to

analyze the complex data structure deriving from the students’ assessment

proposed in Chapter 3. In particular, this application exploits the BCH

correction method for the third step of the estimation procedure. The

corresponding I code is provided in the Appendix B.

Firstly, scale comparability across time was ensured in order to compare

the classifications obtained at the different time points. It is worth noting

that when an IRT model parameterization is exploited to estimate the mea-

114



5.4. Empirical application

surement part of a model, as in the proposed approach, the measurement

scale is determined up to an arbitrary linear transformation (Kim and Lee,

2004). Thus, to ensure model identifiability, some constraints have to be

imposed, such as standardizing the latent trait distribution or constraining

the parameters of a certain item referred to as a “reference item”. Con-

sequently, to compare individuals’ performance on different test forms, a

common metric scale has to be defined by linking the different scales, which

is a process called “test equating” (Kolen and Brennan, 2013). When the

interest is to track longitudinal trends of students’ achievement, one of the

most common linking approaches is vertical scaling with a common-item

design (Harris, 2007), where there is a set of linking items used across

the different test forms. However, as Marengo et al. (2018) pointed out,

including common items in a longitudinal evaluation may be unfeasible in

some contexts, especially in high-stakes testing, due to a possible learning

effect or different test conditions. In such cases, some post-hoc operations

can be performed to place scores on various test forms onto a common scale.

To this aim, herein, an IRT factor analysis on the whole set of items was

carried out to assess item characteristics and select, for each dimension, the

three items (one per time point) with the most similar characteristics in

terms of difficulty and discrimination parameters. These “parallel items”

can be employed as common items and thus used as reference items for

identifiability issues in the multidimensional latent class IRT models at

Step 1 to guarantee scale comparability over time. The similarity of the

“parallel items” was also tested through a χ2 test comparing nested IRT factor

models where the constrained model has parameters across the reference

(parallel) items imposed to be equal. Table 5.1 shows the results for both

unidimensional and multidimensional models, all pointing at a not significant
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difference between the nested models, and thus moving in favor of scale

comparability. Given the above results, the parallel items were considered

as the reference for model identifiability in the multidimensional latent class

IRT models in Step 1.

Table 5.1: IRT factor analysis results: Fit statistics for nested models to
test parallel item similarity.

BIC χ2 df p-value

Knowledge
Constrained 6411.63
Unconstrained 6436.25 4.30 6 0.64

Application
Constrained 6891.54
Unconstrained 6919.74 0.73 6 0.99

Judgment
Constrained 6735.15
Unconstrained 6760.20 3.88 6 0.69

Multidimensional
Constrained 20041.1
Unconstrained 20116.4 11.47 18 0.87

Note: Constrained = equal parameters across reference (parallel) items.

The number of latent classes for each time point was defined according

to the Bayesian Information Criterion (BIC), pointing at three latent classes

at time 1 and time 2, and two latent classes at time 3 (see Figure 5.9).

Looking at class profiles in Figure 5.10, corresponding to the best models

in terms of BIC, it can be seen that latent classes are increasingly ordered

according to all the latent trait dimensions at each time point. Hence, Class

1, Class 2, and Class 3 indicate low, medium, and high levels of ability,

respectively. Moreover, scale comparability allows affirming that students’

ability was higher in time 1 (descriptive statistics) than in time 2 and time

3, especially in Knowledge and Judgment. In contrast, a smaller difference

in ability levels over time was found for Application. Finally, the level of

ability associated to Class 2 at time 3 is very similar to the ability level of
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Figure 5.9: BIC values for different number of latent classes at each time
point.
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Class 2 at time 1. It is worth noting that differences over time in the number

and ability characteristics of the latent classes are also influenced by the

dropout of some students during learning in addition to the learning topics.

As displayed below, the proposed three-step rectangular latent Markov

modeling allows for managing these issues effectively, explicitly accounting

for class change and dropouts.

Regarding classification error probabilities computed in Step 2, the

following D(t) matrices resulted:

D(1) =

0.834 0.165 0.000
0.071 0.890 0.039
0.000 0.181 0.819

 ;

D(2) =

0.819 0.176 0.005
0.049 0.845 0.106
0.002 0.049 0.950

 ;
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D(3) =

[
0.977 0.023
0.031 0.969

]
;

with the elements on the main diagonals providing evidence for an accurate

classification at each time point.

Figure 5.10: Class profiles for the selected models.
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Note: Support point value on the y-axis indicates the level of ability of students belonging to the
considered latent classes. Accordingly, Class 1, Class 2, and Class 3 indicate low-, medium-, and
high-ability learners, respectively.
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The inverse of the obtained D(t) matrices was used for the estimation of

covariate effects in Step 3. Note that because of the small sample size, a

reduced set of the collected covariates was considered in the model.

Results showed that sex, math knowledge, and engagement significantly

affect initial classification probabilities, whereas no significant effects were

found for statistical anxiety, attitudes toward Statistics, and self-efficacy. In

particular, females had a lower probability of being in class 2 (γ2 = −1.44,

p-value = 0.058) and Class 3 (γ3 = −2.77, p-value = 0.001) with respect

to Class 1 than males, highlighting an impairment in the level of ability

according to sex at time 1. Moreover, a higher level of math knowledge

was associated with a greater probability to be in class 2 (γ2 = 0.08, p-

value = 0.03) and 3 (γ3 = 0.31, p-value < 0.001), and thus a medium

and high performance in Statistics. Also students’ engagement in statistics

positively affected students’ performance, increasing the probability to be

in Class 2 (γ2 = 0.73, p-value = 0.02) rather than in Class 1.

Observed students’ transitions over time are depicted in Figure 5.11.

Students allocated in Class 1 at time 1 are most at risk of dropout at time

2 and time 3. Students with a high level of ability at time 1 tend to be high

performers over time, whereas it is very difficult for a student in Class 1 at

time 1 to reach the highest ability level at time 2 and time 3.

The effect of covariates on transition probabilities is reported in Figure

5.12. Note that only the significant effects are reported, using red color for

negative effects and green color for positive ones. Moreover, because some

students dropped out during learning, an additional class (Dropped) was

considered for time 2 and time 3 at this step.

Looking at transitions from time 1 to time 2, it emerged that a lower

level of engagement increased the risk of dropout for students belonging to
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Class 1, who have low ability levels. Moreover, math knowledge positively

affected ability change over time, fostering the transitions of students from

Class 2 and Class 3 at time 1 to Class 3 at time 2, namely the class with

the highest level of ability.

Figure 5.11: Observed students’ transitions over time.
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In addition, Statistical anxiety and attitudes toward Statistics, although

not significantly affecting initial classification probabilities, revealed to have

a significant effect on the transitions. Specifically, feeling anxious during

a Statistics test and considering Statistics a difficult subject negatively
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affected students’ performance, reducing the probability of moving from

Class 2 and Class 3 at time 1 to Class 2 and Class 3 rather than Class

1 at time 2. On the other hand, positive feelings concerning Statistics

(affective attitudes) increased the probability of students’ transition from

Class 2 at time 1 to Class 2 rather than Class 1 at time 2 (positive effect on

performance).

Figure 5.12: Significant covariate effects on transitions.
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Conversely, transitions from time 2 to time 3 were affected only by math

knowledge and engagement among the considered cognitive and psychological

variables. This result could be related to the difficulty of the topics at time

3, requiring more basic ability in math and students’ effort in studying

Statistics to perform well. Regarding the sex variable, results showed that

it also affected some transition probabilities, in addition to the initial ones,

again underlying impairment in favor of males.
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Conclusions

An accurate assessment of students’ ability undoubtedly represents a consid-

erable part of a personalized learning activity. However, the derived complex

data structure, also produced by the growing use of technology-based learn-

ing environments, has brought new challenges for data analysis, especially

when the main aim consists in providing students with appropriate feedback

on their latent ability level. Indeed, if relying on a comprehensive assess-

ment of students’ proficiency lead to the availability of large sets of data

on its dimensions and determinants, on the one hand, it requires advanced

psychometric modeling to bring the whole latent underlying structure into

the light, on the other one.

In this vein, the present contribution proposed two statistical approaches

in the framework of non-parametric latent variable models, which allow to de-

tect homogeneous groups of students according to their ability level, concur-

rently accounting for the effect of individual characteristics on achievements.

Specifically, the first proposal exploits a non-standard implementation of

multilevel latent class analysis defining a multidimensional latent structure

at the low level of the hierarchy to account for the multidimensional nature

of students’ ability. At the higher level, another discrete latent variable

makes it possible to cluster students based on their likelihood to be in one

of the lower–level classes for each Dublin descriptor. The obtained two-level

clustering turns out helpful to teachers and students to understand points

of straight and weaknesses both at a global level and with reference to

the learning dimensions. Moreover, the analysis of the time effect on the

low-level class membership probabilities provides insights into differences in

students’ performance according to the considered topics, informing about
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those that are more complex for students and need to be repeated. Some

practical advantages of the proposed strategy are: (i) a significantly reduced

computational workload compared to parametric approaches, (ii) weaker

distributional assumptions, (iii) the ease of code implementation and (iv)

the availability of statistical software for parameter estimation.

The second proposal presents a bias-adjusted three-step rectangular

latent Markov modeling, either exploiting BCH or ML-based correction

methods at the third step. In particular, a new estimation function was built

to carry out the ML-based correction, whose good performance was proved

by the simulation study. Moreover, the IRT parameterization adopted for

the estimation of the measurement part of the model allows to take into

account also item characteristics during the assessment process. Thus, the

proposed method addresses several typical issues of ability assessment, espe-

cially on self-learning platforms, which is based on a different measurement

model per time point, different item characteristics (e.g., item difficulty

and discrimination), and multiple ability dimensions. Moreover, it allows

combining cross-sectional and longitudinal information, identifying students’

strengths and weaknesses in comparison with their peers for each topic

(cross-sectional) and understanding students’ progress over time (longitudi-

nal). In this regard, the rectangular formulation of latent Markov models

also accounts for changes leading to different nature and number of latent

classes or, as in the presented application, the presence of dropouts. Notably,

explicitly accounting for dropouts, and thus for factors affecting students’

leaving during learning, provides insights to fine-tune proper actions to

reduce that risk. The obtained model parameters can be used to provide stu-

dents with adaptive feedback during learning at different levels: according to

the ability dimensions, the topics, peer performance, and progress over time.
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When the topic at each time point varies, as in the described applications,

differences in students’ performance over time are primarily explained by the

considered learning topics. It is important to underline that the treatment

of multiple learning topics during the assessment process does not affect

the implementation of the proposed statistical models but only requires

carefulness for results interpretation. Indeed, individuals’ change should not

be interpreted as an increase or decrease of the latent trait level over time

but rather as a comparison between latent trait levels for the given learning

topics. A similar analytics strategy can be found in Nylund-Gibson et al.

(2014), where the authors estimated a latent Markov model considering

multiple latent class variables that are not repeated measures to study

the link between kindergarten readiness profiles and elementary students’

reading trajectories.

In both the presented approaches, model parameters can be employed

for the prediction of class membership of new individuals according to

their response vector and demographic and psychological characteristics.

Accordingly, researchers and stakeholders could plan specific interventions

to improve learning outcomes, promoting psychological states and skills. It

is worth noting that to obtain an accurate prediction of class membership

and covariate effects for out-of-sample individuals, reliable estimates of

model parameters should be obtained considering representative samples.

In this sense, the applications of the proposed approaches, which involve

a convenience sample, provide results that are helpful to develop tailored

recommendations for students belonging to the considered sample but

are not easily generalized to the entire population of psychology students.

However, model parameter estimates could also be periodically updated by

repeating the same study with other psychology students, thus becoming
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more accurate as the sample size increases. A further note regarding the

application context: herein, the focus on learning statistics in non-STEM

degree programs mainly aims to address the Statistical literacy issue that

currently represents a relevant topic for society; however, the proposed

modeling approaches can also be employed in any different contexts where the

latent trait (ability) dimensions and covariates should be defined according

to the specific practical or theoretical aim. In this vein, the application

in the context of learning Statistics sheds light on the amount of helpful

information provided by the models with the aim of encouraging researchers

to employ such models when dealing with complex evaluations of students’

ability, as the one herein discussed. In addition, future research could also

integrate the introduced methods, or some of its advanced versions, in

an adaptive learning system where students’ clustering is used to develop

formative feedback, whereas the analysis of psychological covariate effects

drives motivational feedback definition.

126



References

References

Adabbo, B., Fabbricatore, R., Iodice D’Enza, A., and Palumbo, F. (2021).
Statistics knowledge assessment: an archetypal analysis approach. In
Perna, C., Salvati, N., and Schirripa Spagnolo, F., editors, BoSP SIS2021,
pages 1388–1393. Pearson, Milano.

Adams, R. J., Wilson, M., and Wang, W.-C. (1997a). The multidimen-
sional random coefficients multinomial logit model. Applied Psychological
Measurement, 21(1):1–23.

Adams, R. J., Wilson, M., and Wu, M. (1997b). Multilevel item response
models: An approach to errors in variables regression. Journal of Educa-
tional and Behavioral Statistics, 22(1):47–76.

Akyuz, Y. (2020). Effects of intelligent tutoring systems (ITS) on personal-
ized learning (PL). Creative Education, 11(6):953–978.

Albert, J., Cetinkaya-Rundel, M., and Hu, J. (2020). Online statistics
teaching and learning. In Howard, J. P. and Beyers, J. F., editors,
Teaching and Learning Mathematics Online, pages 99–116. Chapman and
Hall/CRC, New York.

Alivernini, F. and Lucidi, F. (2008). The Academic Motivation Scale (AMS):
Factorial structure, invariance and validity in the Italian context. Testing,
Psychometrics, Methodology in Applied Psychology, 15(4):211–220.

Allman, E. S., Matias, C., Rhodes, J. A., et al. (2009). Identifiability of
parameters in latent structure models with many observed variables. The
Annals of Statistics, 37(6A):3099–3132.

Andersen, E. B. (1985). Estimating latent correlations between repeated
testings. Psychometrika, 50(1):3–16.

Anderson, G., Farcomeni, A., Pittau, M. G., and Zelli, R. (2019). Rectangu-
lar latent Markov models for time-specific clustering, with an analysis of

127



References

the wellbeing of nations. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 68(3):603–621.

Anderson, J. C. and Gerbing, D. W. (1988). Structural equation modeling
in practice: A review and recommended two-step approach. Psychological
bulletin, 103(3):411–423.

Andrade, D. F. and Tavares, H. R. (2005). Item response theory for longi-
tudinal data: population parameter estimation. Journal of Multivariate
Analysis, 95(1):1–22.

Arminger, G., Stein, P., and Wittenberg, J. (1999). Mixtures of conditional
mean-and covariance-structure models. Psychometrika, 64(4):475–494.

Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., and Tai, M.
(2014). A multimedia adaptive tutoring system for mathematics that
addresses cognition, metacognition and affect. International Journal of
Artificial Intelligence in Education, 24(4):387–426.

Asparouhov, T. and Muthén, B. (2007). Multilevel mixture models. In
Hancock, G. and Samuelsen, K., editors, Advances in Latent Variable
Mixture Models, pages 27–51. Information Age Publishing, North Carolina.

Asparouhov, T. and Muthén, B. (2014). Auxiliary variables in mixture mod-
eling: Three-step approaches using Mplus. Structural Equation Modeling:
A Multidisciplinary Journal, 21(3):329–341.

Azevedo, R. (2005). Computer environments as metacognitive tools for
enhancing learning. Educational Psychologist, 40(4):193–197.

Azevedo, R. (2009). Theoretical, conceptual, methodological, and instruc-
tional issues in research on metacognition and self-regulated learning: A
discussion. Metacognition and Learning, 4(1):87–95.
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Sesé, A., Jiménez, R., Montaño, J.-J., and Palmer, A. (2015). Can attitudes
towards statistics and statistics anxiety explain students’ performance.
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A. Latent GOLD syntax for the multilevel latent variable model

Appendix

A Latent GOLD syntax for the multilevel latent
variable model

options

maxthreads =8;

algorithm

tolerance =1e-08 emtolerance =0,08 emiterations =5000

nriterations =50;

startvalues

seed =7854 sets =16 tolerance =1e-6 iterations =50;

bayes

categorical =1 variances =1 latent =1 poisson =1;

montecarlo

seed=0 sets=0 replicates =500 tolerance =1e-08;

quadrature nodes =10;

missing includeall;

output

parameters= first betaopts=wl standarderrors

profile probmeans=posterior bivariateresiduals

estimatedvalues=model;

variables

groupid ID;

dependent T1_S_ArithmeticMean_A ordinal ,

T1_S_ClassVar_A ordinal , T1_S_GraphForQuant_A ordinal ,

T1_S_Median_A ordinal , T1_S_Percentiles_A ordinal ,

T1_S_StandardDeviation_A ordinal ,

T1_S_SkewnessNKurtosis_A ordinal ,

T1_S_NormalDist_A ordinal ,

T1_S_CumulativeFrequences_A ordinal ,

T1_S_Zscores_A ordinal ,

T1_S_FrequencyTables_J ordinal ,

T1_S_ClassVar_J ordinal ,

T1_S_GraphForQuant_J ordinal , T1_S_Mode_J ordinal ,

T1_S_Percentiles_J ordinal ,
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T1_S_StandardDeviation_J ordinal ,

T1_S_SkewnessNKurtosis_J ordinal ,

T1_S_NormalDist_J ordinal , T1_S_Zscores_J ordinal ,

T1_S_FrequencyTables_K ordinal ,

T1_S_ClassVar_K ordinal , T1_S_GraphForCateg_K ordinal ,

T1_S_ArithmeticMean_J ordinal , T1_S_Mode_K ordinal ,

T1_S_ArithmeticMean_K ordinal ,

T1_S_Percentiles_K ordinal ,

T1_S_StandardDeviation_K ordinal ,

T1_S_SkewnessNKurtosis_K ordinal ,

T1_S_NormalDist_K ordinal ,

T1_S_Zscores_K ordinal , T2_S_SamplingSpace_A ordinal ,

T2_S_Probability_A ordinal ,

T2_S_ConditionalProb_A ordinal ,

T2_S_Bernoulli_A ordinal , T2_S_Binomial_A ordinal ,

T2_S_Uniform_A ordinal , T2_S_Gaussian_A ordinal ,

T2_S_SamplingMean_A ordinal ,

T2_S_SamplingVariance_A ordinal ,

T2_S_CentralLimitTheorem_A ordinal ,

T2_S_SamplingSpace_J ordinal ,

T2_S_Probability_J ordinal ,

T2_S_ConditionalProb_J ordinal ,

T2_S_Bernoulli_J ordinal ,

T2_S_Binomial_J ordinal , T2_S_Uniform_J ordinal ,

T2_S_Gaussian_J ordinal , T2_S_SamplingMean_J ordinal ,

T2_S_SamplingVariance_J ordinal ,

T2_S_CentralLimitTheorem_J ordinal ,

T2_S_SampleSpace_K ordinal ,

T2_S_Probability_K ordinal ,

T2_S_ConditionalProb_K ordinal ,

T2_S_Bernoulli_K ordinal , T2_S_Binomial_K ordinal ,

T2_S_UniformBin_K ordinal , T2_S_Gaussian_K ordinal ,

T2_S_SamplingMean_K ordinal ,

T2_S_SamplingVariance_K ordinal ,

T2_S_CentralLimitTheorem_K ordinal ,

T3_S_NullandAlternativeHypo_A ordinal ,

T3_S_TypeITypeIIErrors_A ordinal ,

T3_S_HypoTestPopMeanZTest_A ordinal ,
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T3_S_HypoTestPopMeanTTest_A ordinal ,

T3_S_HypoTestDiffPopMeanTTest_A3 ,

T3_S_HypoTestDiffPopMeanTTest_A5 ,

T3_S_HypoTestPopProp_A ordinal ,

T3_S_HypoTestRatioPopVar_A ordinal ,

T3_S_Correlation_A ordinal ,

T3_S_EtaSquared_A ordinal ,

T3_S_StatSignificance_K ordinal ,

T3_S_TypeITypeIIErrors_J ordinal ,

T3_S_HypoTestPopMeanZTest_J ordinal ,

T3_S_HypoTestPopMeanTTest_J ordinal ,

T3_S_HypoTestDiffPopMeanTTest_J3 ,

T3_S_HypoTestDiffPopMeanTTest_J4 ,

T3_S_HypoTestPopProp_J ordinal ,

T3_S_HypoTestRatioPopVar_J ordinal ,

T3_S_Correlation_J ordinal ,

T3_S_ChiSquareTest_J ordinal ,

T3_S_NullandAlternativeHypo_K ordinal ,

T3_S_StatSignificance_J ordinal ,

T3_S_HypoTestPopMeanZTest_K2 ,

T3_S_HypoTestPopMeanZTest_K5 ,

T3_S_HypoTestPopMeanTTest_K ordinal ,

T3_S_HypoTestDiffPopMeanTTest_K ordinal ,

T3_S_HypoTestPopProp_K ordinal ,

T3_S_HypoTestRatioPopVar_K ordinal ,

T3_S_ContingencyTable_K ordinal ,

T3_S_EtaSquared_K ordinal;

latent GClass group nominal 3, Application nominal 3,

Judgement nominal 3, Knowledge nominal 3;

independent Time nominal , Sex , PMP_Total , AMS_RAI ,

SAS_Examination , SAS_Help , SAS_Interpretation ,

SATS_Affect , SATS_Cognitive , SATS_Value ,

SATS_Difficulty , MSLQ_SelfEfficacy , MSLQ_TextAnxiety ,

MSLQ_CognitiveStrat , MSLQ_SelfRegulation , APS_Total ,

ENG_Affective , ENG_Behavioral , ENG_Cognitive;
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equations

GClass <- 1 + Sex + PMP_Total + AMS_RAI +

+ SAS_Examination + SAS_Help + SAS_Interpretation +

+ SATS_Affect + SATS_Cognitive + SATS_Value +

+ SATS_Difficulty + MSLQ_SelfEfficacy +

+ MSLQ_TextAnxiety + MSLQ_CognitiveStrat +

+ MSLQ_SelfRegulation + APS_Total + ENG_Affective +

+ ENG_Behavioral + ENG_Cognitive;

Application <- 1| GClass +time;

Judgement <- 1| GClass +time;

Knowledge <- 1| GClass+time;

T3_S_NullandAlternativeHypo_A <- 1 + Application;

T3_S_TypeITypeIIErrors_A <- 1 + Application;

T3_S_HypoTestPopMeanZTest_A <- 1 + (1) Application;

T3_S_HypoTestPopMeanTTest_A <- 1 + Application;

T3_S_HypoTestDiffPopMeanTTest_A3 <- 1 + Application;

T3_S_HypoTestDiffPopMeanTTest_A5 <- 1 + Application;

T3_S_HypoTestPopProp_A <- 1 + Application;

T3_S_HypoTestRatioPopVar_A <- 1 + Application;

T3_S_Correlation_A <- 1 + Application;

T3_S_EtaSquared_A <- 1 + Application;

T3_S_TypeITypeIIErrors_J <- 1 + Judgement;

T3_S_HypoTestPopMeanZTest_J <- 1 + (1) Judgement;

T3_S_HypoTestPopMeanTTest_J <- 1 + Judgement;

T3_S_HypoTestDiffPopMeanTTest_J3 <- 1 + Judgement;

T3_S_HypoTestDiffPopMeanTTest_J4 <- 1 + Judgement;

T3_S_HypoTestPopProp_J <- 1 + Judgement;

T3_S_HypoTestRatioPopVar_J <- 1 + Judgement;

T3_S_Correlation_J <- 1 + Judgement;

T3_S_ChiSquareTest_J <- 1 + Judgement;

T3_S_NullandAlternativeHypo_K <- 1 + Knowledge;

T3_S_StatSignificance_J <- 1 + Knowledge;

T3_S_HypoTestPopMeanZTest_K2 <- 1 + (1) Knowledge;

T3_S_HypoTestPopMeanZTest_K5 <- 1 + Knowledge;

T3_S_HypoTestPopMeanTTest_K <- 1 + Knowledge;

T3_S_HypoTestDiffPopMeanTTest_K <- 1 + Knowledge;
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T3_S_HypoTestPopProp_K <- 1 + Knowledge;

T3_S_HypoTestRatioPopVar_K <- 1 + Knowledge;

T3_S_ContingencyTable_K <- 1 + Knowledge;

T3_S_EtaSquared_K <- 1 + Knowledge;

T3_S_StatSignificance_K <- 1 + Knowledge;

T1_S_ArithmeticMean_A <- 1 + (1) Application;

T1_S_ClassVar_A <- 1 + Application;

T1_S_GraphForQuant_A <- 1 + Application;

T1_S_Median_A <- 1 + Application;

T1_S_Percentiles_A <- 1 + Application;

T1_S_StandardDeviation_A <- 1 + Application;

T1_S_SkewnessNKurtosis_A <- 1 + Application;

T1_S_NormalDist_A <- 1 + Application;

T1_S_CumulativeFrequences_A <- 1 + Application;

T1_S_Zscores_A <- 1 + Application;

T1_S_FrequencyTables_J <- 1 + (1) Judgement;

T1_S_ClassVar_J <- 1 + Judgement;

T1_S_GraphForQuant_J <- 1 + Judgement;

T1_S_Mode_J <- 1 + Judgement;

T1_S_Percentiles_J <- 1 + Judgement;

T1_S_StandardDeviation_J <- 1 + Judgement;

T1_S_SkewnessNKurtosis_J <- 1 + Judgement;

T1_S_NormalDist_J <- 1 + Judgement;

T1_S_Zscores_J <- 1 + Judgement;

T1_S_ArithmeticMean_J <- 1 + Judgement;

T1_S_FrequencyTables_K <- 1 + (1) Knowledge;

T1_S_ClassVar_K <- 1 + Knowledge;

T1_S_GraphForCateg_K <- 1 + Knowledge;

T1_S_Mode_K <- 1 + Knowledge;

T1_S_ArithmeticMean_K <- 1 + Knowledge;

T1_S_Percentiles_K <- 1 + Knowledge;

T1_S_StandardDeviation_K <- 1 + Knowledge;

T1_S_SkewnessNKurtosis_K <- 1 + Knowledge;

T1_S_NormalDist_K <- 1 + Knowledge;

T1_S_Zscores_K <- 1 + Knowledge;

T2_S_SamplingSpace_A <- 1 + Application;

T2_S_Probability_A <- 1 + Application;

T2_S_ConditionalProb_A <- 1 + Application;
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T2_S_Bernoulli_A <- 1 + Application;

T2_S_Binomial_A <- 1 + Application;

T2_S_Uniform_A <- 1 + Application;

T2_S_Gaussian_A <- 1 + Application;

T2_S_SamplingMean_A <- 1 + (1) Application;

T2_S_SamplingVariance_A <- 1 + Application;

T2_S_CentralLimitTheorem_A <- 1 + Application;

T2_S_SamplingSpace_J <- 1 + Judgement;

T2_S_Probability_J <- 1 + Judgement;

T2_S_ConditionalProb_J <- 1 + Judgement;

T2_S_Bernoulli_J <- 1 + Judgement;

T2_S_Binomial_J <- 1 + Judgement;

T2_S_Uniform_J <- 1 + Judgement;

T2_S_Gaussian_J <- 1 + (1) Judgement;

T2_S_SamplingMean_J <- 1 + Judgement;

T2_S_SamplingVariance_J <- 1 + Judgement;

T2_S_CentralLimitTheorem_J <- 1 + Judgement;

T2_S_SampleSpace_K <- 1 + Knowledge;

T2_S_Probability_K <- 1 + Knowledge;

T2_S_ConditionalProb_K <- 1 + (1) Knowledge;

T2_S_Bernoulli_K <- 1 + Knowledge;

T2_S_Binomial_K <- 1 + Knowledge;

T2_S_UniformBin_K <- 1 + Knowledge;

T2_S_Gaussian_K <- 1 + Knowledge;

T2_S_SamplingMean_K <- 1 + Knowledge;

T2_S_SamplingVariance_K <- 1 + Knowledge;

T2_S_CentralLimitTheorem_K <- 1 + Knowledge;
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B R Code for the three-step rectangular latent
Markov model

Step 1: Multidimensional latent class IRT model

1 library(readxl)

2 library(MultiLCIRT)

3 library(dplyr)

4 library(mclust)

5 library(mclogit)

6

7 # Read the data file

8 Data = read_excel("data_matrix.xlsx", na = "999")

9

10 # Select items of Time 1 and order them according to the

considered dimensions

11 Data_lc_r = dplyr:: select(Data , starts_with(’T1_S_’))

12 K = dplyr:: select(Data_lc_r , ends_with(’_K’))

13 A = dplyr:: select(Data_lc_r , ends_with(’_A’))

14 J = dplyr:: select(Data_lc_r , ends_with(’_J’))

15 Data_lc_r = cbind(K, A, J)

16

17 # Define the matrix with item indices according to the

measured dimensions (for each dimension , the first item is

the reference for model identifiability)

18 multi = rbind(c(3, 1, 2, rep (4:10)), c(14, rep (11:13) ,

19 rep (15:20)), c(23, 21, 22, rep (24:30)))

20

21 # Model selection (compare models with different number of

classes) following the GPCM

22 GPCM = list()

23 for (i in 1:5) {

24 GPCM[[i]] <- est_multi_poly(Data_lc_r , k = i, link = 2 ,

25 disc = 1, difl = 0, output = T, multi = multi)

26 }

27

28 BIC_value = c(GPCM [[1]]$bic , GPCM [[2]]$bic , GPCM [[3]]$bic ,
29 GPCM [[4]] $bic , GPCM [[5]] $bic)
30

31 # Best model according to the BIC

32 GPCM3 = GPCM [[3]]
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33 # Model parameters

34 GPCM3$piv # Class weights

35 GPCM3$Th # Matrix of support points

36 GPCM3$Bec # Item difficulty parameters

37 GPCM3$gac # Item discriminating parameters

38 GPCM3$Pp # Matrix of posterior probabilities

39

40 # Repeat lines 10-38 for Time 2 and Time 3 and obtain: "

Data_lc_r2" and "Data_lc_r3" (datasets); "GPCM3_t2" and "

GPCM2_t3" (MultiLCIRT model output)

Step 2: Modal class assignment and classification error

41 # Classify the observations according to the posterior class

probabilities

42 Data_lc_r$Id = rep (1: nrow(Data_lc_r))

43 Data_lc_r$Clus1 = data.frame(rep(0, nrow(Data_lc_r)))

44 for (j in 1:nrow(Data_lc_r)) {

45 Data_lc_r$Clus1[j,] = which.max(GPCM3$Pp[j,])
46 }

47

48 # Repeat lines 41-46 for Time 2 and Time 3 and obtain: "

Data_lc_r2$Clus2" and "Data_lc_r3$Clus3"
49

50 # Create a matrix n x T with class assignments

51 total_class = as.data.frame(left_join(Data_lc_r[, c("Id",

52 "Clus1")], Data_lc_r2[, c("Id", "Clus2")], by = c("Id")))

53 total_class = as.matrix(left_join(total_class[, c("Id", "Clus1

",

54 "Clus2")], Data_lc_r3[, c("Id", "Clus3")], by = c("Id")))

55

56 # Create a function for the modal D matrix computation

57 Dmatrix = function(outmodel){

58

59 classweight = outmodel$piv
60 numobservation = nrow(outmodel$Pp)
61 numofclasses = length(outmodel$piv)
62 posteriorprob = as.matrix(outmodel$Pp)
63

64 W = posteriorprob == outer(apply(posteriorprob ,1, max),

65 rep(1, numofclasses))

66 num = (t(posteriorprob) %*% W)/numobservation
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67 Dmatrix = num/classweight

68

69 return(Dmatrix)

70 }

71

72 # Calculate the D matrix for each Time and store the results

in the cD array

73 cD = array(NA , c(3,3,3))

74 cD[,,1] = Dmatrix(GPCM3)

75 cD[,,2] = Dmatrix(GPCM3_t2)

76 cD[1:2 ,1:2 ,3] = Dmatrix(GPCM2_t3)

Step 3: BCH correction to account for covariate effect

77 # Cross -tabulate class assignments from previous steps to

obtain initial and transitions as if the assignments were

realizations of an observed Markov chain

78 inistart = table(total_class [,1+1], useNA = "always")/sum(

table(total_class [,1+1], useNA = "always"))

79 PI2 = table(total_class [,1+1], total_class [,1+2], useNA = "

always")/rowSums(table(total_class [,1+1], total_class [,1+2],

useNA = "always"))

80 PI3 = table(total_class [,1+2], total_class [,1+3], useNA = "

always")/rowSums(table(total_class [,1+2], total_class [,1+3],

useNA = "always")) # Dropout class for NAs at Time 2 and

Time 3

81

82 total_class_recod = total_class [,-1]

83 N = dim(total_class_recod)[1]

84 for(t in 1:3){

85 total_class_recod[is.na(total_class_recod[,t]),t] = max(

total_class_recod[,t],na.rm=T)+1

86 }

87

88 modal_class1 = mclust ::unmap(total_class_recod [,1])

89 modal_class2 = mclust ::unmap(total_class_recod [,2])

90 modal_class3 = mclust ::unmap(total_class_recod [,3])

91

92 # Create "individual" transitions

93 iK = c(3,3,2) # Number of latent classes for each time point

94 PI2_dep = array(0,c(N,(iK [2]+1) ,iK[1]))

95 for(n in 1:N){
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96 PI2_dep[n,,] = t(( modal_class1[n,]) %*%t(modal_class2[n,]))

97 }

98

99 PI3_dep = array(0,c(N,(iK [3]+1) ,iK [2]+1))

100 for(n in 1:N){

101 PI3_dep[n,,] = t(( modal_class2[n,]) %*%t(modal_class3[n,]))

102 }

103

104 # Create BCH weights from classification error probabilities

105 cDexp2 = diag (4)

106 cDexp2 [1:3 ,1:3] = cD[,,2]

107 cDexp3 = diag (3)

108 cDexp3 [1:2 ,1:2] = cD[1:2 ,1:2 ,3]

109

110 wei1 = diag(solve(cD[,,1]))[total_class_recod [,1]]

111 wei2 = diag(solve(cDexp2))[total_class_recod [,2]]

112 wei3 = diag(solve(cDexp3))[total_class_recod [,3]]

113

114 # Select the covariates from the dataset

115 covar = dplyr:: select(Data , c("Sex", "PMP_Total",

116 "SAS_Examination", "SAS_Interpretation", "SATS_Affect",

117 "SATS_Difficulty", "MSLQ_SelfEfficacy", "ENG"))

118

119 # Estimate covariate effect at Time 1

120 df_t1 = data.frame(y = factor(mclust ::map(modal_class1)),

covar)

121 out_t1 = mblogit(y ~ ., data = df_t1 , weights = wei1)

122

123 # Estimate covariate effect on transitions at Time 2

124 # Starting in state 1 (first row of transition matrix), first

(arrival) state as reference

125 df_t2_s1 = data.frame(y = factor(mclust ::map(PI2_dep [,,1])),

covar)

126 out_t2_s1 = mblogit(y ~ ., data = df_t2_s1 , weights = wei2)

127

128 # Repeat lines 123 -126 for each sub -sample of individuals

defined by the latent classes emerged at Time t considering

the corresponding classification at Time t+1 as dependent

variables to estimate the covariate effect on all the other

transitions at Time 2 and Time 3
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C Pseudocode of the ML correction in the three-
step rectangular latent Markov model

Algorithm 1 Scaling the likelihood computation

1: function MixtDensityScale(π(t), log(r
(t)
s ), It)

2: ν(t) = log(π(t)) + log(r
(t)
s ) = log(α(t))

3: scale = max(ν(t)) ▷ Scale factor

4: ν
(t)
scaled = ν(t) − scale

5: L = 1′[exp(ν
(t)
scaled)] ▷ Scaled likelihood

6: l = log(L) + scale ▷ Log-likelihood
7: return l
8: end function

Algorithm 2 Forward Filtering, Backward smoothing

1: function FFBS Rectangular(log(Rs),h
′
s,π

(1),Γ, I)
2: ▷ Forward probabilities computation
3: ν(1) = log(π(1)) + log(r

(1)
s ) = log(α(1))

4: lscale = MixtDensityScale(π(1), log(r
(t)
s ), I1) ▷ Log of the sum of α(1)’s elements

5: ν
(1)
scaled = ν(1) − lscale ▷ Working parameter

6: Lα ← matrix (Imax × T ) containing the vectors log(α(t))
7: Lα[1 : I1, 1]← log(α(1))
8: for t in 2 : T do
9: if h′

s[t] == 1 then
10: z = 0(It,1)

11: for j in 1 : It do
12: z[j] = MixtDensityScale(Γ[1 : It−1, j, t− 1],ν

(t−1)
scaled, It−1)

13: end for
14: ν(t) = z + log(r

(t)
s ) ▷ Natural parameter

15: lscale = lscale + MixtDensityScale(exp(z), log(r
(t)
s ), It) ▷ Update lscale

16: ν
(t)
scaled = ν(t) − lscale ▷ Update ν

(t)
scaled

17: log(α(t)) = ν(t)
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18: Lα[1 : It, t]← log(α(t))
19: end if
20: end for
21: l(T ) = lscale(T ) = log(α′(T )1) ▷ Log-likelihood of the model
22: ▷ Backward probabilities computation
23: Lβ ← matrix (Imax × T ) containing the vectors log(β(t))
24: Lβ[1 : IT , T ]← log(β)(T ) = 0(IT ,1)

25: ν(T ) ← vector of length T with elements log(1/IT )
26: lscale = log(IT )
27: for t in (T − 1) : 1 do
28: u = 1(It,1)

29: if h′
s[t] == 1 then

30: z = log(r
(t+1)
s ) + ν(t+1) ▷ Working parameter

31: ν(t) ← 0(It,1)

32: for j in 1 : It do
33: ν(t)[j] = MixtDensityScale(Γ[j, 1 : It+1, t]

′,z, It+1)
34: end for
35: log(β(t)) = ν(t) + lscale ▷ Natural parameter
36: Lβ[1 : It, t]← log(β(t))
37: ν(t) = ν(t) − MixtDensityScale(u,ν(t), It) ▷ Update ν(t)

38: lscale = lscale+ MixtDensityScale(u,ν(t), It) ▷ Update lscale
39: end if
40: end for
41: return l(T ), Lα, Lβ

42: end function

Algorithm 3 Baum-Welch algorithm

1: function RLM FIXED(dW,W,H, I, cD, tol = 1e−8,maxit = 1000)
2: N ← number of rows in W
3: T ← number of columns in W
4: Imax ← maximum of the vector I
5: π(1) ← matrix Imax × Imax

6: Γ← array Imax × Imax × (T − 1)
7: π(1) ← mean for columns of dW[[1]] ▷ Initialize π(1)

8: for t in 2 : T do
9: Γ[1 : It−1, 1 : It, t − 1] ← contingency table between W[, t − 1] and W[, t]

divided by row sum ▷ Initialize Γ
10: end for
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11: ▷ E-Step
12: Qα, Qβ ← array N × T × Imax

13: R← array N × Imax × T
14: liks ← vector N × 1
15: for t in 1 : T do
16: for s in 1 : It do
17: N (t) ← number of observation at time t
18: R[H[, t] == 1, s, t] ← log{Multinomial(x = dW, size = 1, prob =

cD[s, , t])} ▷ Evaluating the density of available (non-missing) units
19: end for
20: end for
21: for i in 1 : N do
22: out = FFBS Rectangular(R[i, , ]′,H[i, ],π(1),Γ, I)
23: Qα[i, , ]← Lα from out (transposed)
24: Qβ [i, , ]← Lβ from out (transposed)
25: liks[i]← l(T ) from out
26: end for
27: lik ← sum of the element in liks
28: V = Qα +Qβ

29: for j in 1 : Imax do
30: V [, , j]← V [, , j] scaled dividing by the log-likelihood ▷ Compute û

(1)
si

31: end for
32: V = exp(V )
33: for t in 1 : T do
34: V [, t, ]← V [, t, ] scaled dividing by row sum
35: end for
36: Z ← array N × Imax × Imax × (T − 1)
37: for t in 2 : T do
38: liks temp ← logarithm of the sum of exp{Qα +Qβ} avoiding underflow
39: for c in 1 : It−1 do
40: for d in 1 : It do
41: Z[H[, t] == 1, c, d, t − 1] = exp{log(Γ[c, d, t − 1]) + Qα[H[, t] ==

1, t− 1, c] +Qβ [H[, t] == 1, t, d] +R[H[, t] == 1, d, t]− liks temp} ▷ Compute v̂
(t)
sil

42: end for
43: end for
44: Z[, 1 : It−1, 1 : It, t− 1]← Z[, 1 : It−1, 1 : It, t− 1] scaled dividing by row sum
45: end for
46: lkold ← lik∗2
47: iters = 1
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48: while lik-lkold>tol and iters<maxit do
49: ▷ M-Step
50: if I1 > 1 then
51: π(1) ← sum for columns of elements in V [, 1, 1 : I1]
52: π(1) ← π(1) divided by the sum of its elements ▷ ML estimate of π(1)

53: end if
54: for t in 1 : (T − 1) do
55: for c in 1 : It do
56: for d in 1 : It+1 do
57: Γ[c, d, t]← sum of elements in Z[, c, d, t]
58: if Γ[c, d, t] < 1e−5 then
59: Γ[c, d, t] = 1e−5

60: end if
61: end for
62: Γ[c, , t]← Γ[c, , t] divided by the sum of elements ▷ ML estimate of Γ
63: end for
64: end for
65: llkseries[iters]=lik
66: lkold=lik
67: ▷ Repeat lines 21-45 to perform the E-Step
68: iters=iters+1
69: end while
70: np← 1′[2 ∗ I] + I1 − 1
71: for j in 1 : Imax do
72: for h in 1 : Imax do
73: trans = I[−T ] == j and I[−1] == h
74: if any trans then
75: np = np+ j ∗ (h− 1) ▷ Number of parameters
76: end if
77: end for
78: end for
79: AIC = −2∗lik+2 ∗ np
80: BIC = −2∗lik+log(N) ∗ np
81: llkseries = llkseries[1 : (iters− 1)]
82: return π(1),Γ, llkseries, lik,AIC,BIC
83: end function
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