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Abstract

Benzodiazepines, psychotropic drugs for the treatment of insomnia and anxiety, are among the most
prescribed remedies worldwide. The massive use and abuse results in the release of active principles
and metabolites in the wastewater, where they persist since not eliminated by sewage treatments.
They are therefore considered emerging contaminants of great environmental hazard, even at low
concentrations, also considering that receptors for benzodiazepines are found in all animals and
plants. The fate and consequences of benzodiazepine exposure in aquatic organisms are not fully
clear: a large variety of these drugs is available on the market, and a plethora of direct and indirect
effects could be exerted on different, accidentally exposed non-target species. This Ph.D. project
represents the first comparative and multidisciplinary study carried out in parallel on six models, five
animals and one plant, with the aim of understanding the extent of the effects of delorazepam, a
common-used long-life, and high-potency benzodiazepine. Three concentrations were tested: 1 pg/L,
considered environmentally realistic, and 5 and 10 pg/L, considered near-future concentrations based
on growing consumption trends worldwide. Behavioural, developmental, and cyto-toxicological
effects were considered; standard locomotory and phototactic tests were conducted to determine the
effects of delorazepam on nervous and sensory activity. Conventional toxicity tests were performed
to clarify the impact on early development and embryo growth, while cytological approaches, by light
and electron microscopy, were employed to highlight effects on cell organization and functionality.
Finally, molecular and biochemical investigations were carried out to deepen the possible interference

with gene expression and protein patterns.
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State of art

Pharmaceuticals are one of the cornerstones of human scientific development, known to be
essential for the sustainability and maintenance of human health, improving people’s quality of life.
Hundreds of tons of pharmaceutical compounds are annually dispensed and consumed worldwide.
The fate of these drugs, and of their metabolites is becoming a matter of growing interest since they
are unproperly discarded in the environment, where accumulate. Households, farms, health facilities,
and pharmaceutical industries release pharmaceutical waste into the environment at low
concentrations, through routine pharmaceutical use. Pharmaceuticals can also enter the water supply
by improper disposal of unused or expired medications. Residues in the environmental compartments
are considered “compounds of emerging concern” because they have the potential to cause a
considerable impact on human health and ecosystems (Daughton, 2004). They have been found in
almost all environmental matrices on several continents, but especially in surface water (lakes, rivers,
streams, estuaries), seawater, groundwater, effluents, tributaries of wastewater treatment plants and
even drinking water (aus der Beek et al., 2016; Roig and D’Aco, 2016; Fatta-Kassinos et al., 2011,
Fekadu et al., 2019). The persistence of pharmaceuticals in the environment has become a focus for
the scientific community. Nevertheless, little is known about how pharmaceutical contaminants affect
flora and fauna. Advanced analytical techniques have enabled the determination and quantification
of almost 3.000 biologically active compounds in the environment (Richardson and Ternes, 2014).
Pharmaceutically active compounds are considered pseudo-persistent because of their continuous
influx into environmental matrices. This causes the development of a complex “pharmaceutical pool”

in many natural matrices, including soils.

Discarded products return to humans via the food chain or drinking water. This happens because
wastewater treatment plants (WWTPs) are generally designed to handle easily and moderately
degradable organics, therefore were not conceived to treat pharmaceuticals, reason why they are not
efficient in their removal. Remediation efficiencies can be less than 10% for some pharmaceutical
classes. Various degradation methods, including nanofiltration, oxidation, and photolysis, have been
hypothesized to deal with the pharmaceutical accumulation issue, but not all specialized facilities,
and more generally, not all governments have the same economic possibilities to implement them. So
far, in theory, the most effective technique for removing pharmaceuticals from aqueous solutions is
the adsorption method, which exploits the chemical-physical interactions of a substance (liquid or

gas) to absorb it onto a solid surface, but it has not yet become a practice (Patel et al., 2019).
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Among the drugs of concern, a primary position is deserved by benzodiazepines (BZDs), a class of
psychoactive drugs, worldwide one of the most prescribed remedies to treat anxiety, insomnia, and
nervous disorders (Argyropoulos and Nutt, 1999; Schmitz, 2016; Nunes et al., 2019). They are
classified as central nervous system (CNS) depressants, working by enhancing the effects of the
inhibitory neurotransmitter GABA (gamma-aminobutyric acid) on the GABA-A receptors, leading
to a regulation of the brain activity and inhibition of excessive neuronal firing, and resulting in
sedative, hypnotic (sleep-inducing), anxiolytic (anti-anxiety), anticonvulsant, and muscle relaxant
properties (Nunes et al., 2019). They are generally considered to be safe and effective when used as
directed by medical prescription, but they can be habit-forming, and their improper use is widely
reported. It has been estimated that about 2—7.5% of the population uses BZDs and, among these, 25—
75% are long-term users (Vicens et al., 2011; Lugoboni et al., 2018).

Because of their extensive use all over the world, BZDs are ranked among the most found
pharmaceuticals in water (Kosjek et al., 2012; Nunes et al., 2019). They have been found ubiquitously
in all aguatic systems (wastewater, surface water, drinking water) at concentrations ranging from
several nanograms to micrograms per liter (Batt et al., 2016; Wang et al., 2017), a range close to
human therapeutic plasma concentrations. Their stability in the environment has been demonstrated,
with persistence at unchanged concentrations in lake sediments for several decades (Klaminder et al.,
2015). The activity of these drugs is of considerable concern as they are specifically synthesized to
elicit responses in humans and animals even at low concentrations (Zuccato et al., 2006), representing
therefore a hazard, especially for aquatic species with which they inevitably come into contact
(Klaminder et al., 2015). GABA-A receptors, the site of action of BDZs, are evolutionary conserved,
from bacteria to invertebrates and vertebrates (Furuhagen et al., 2014) and large-scale effects are
foreseeable. The improper activation of the GABA inhibitory system could lead to alteration in
behavior with consequent impairment of animal fitness, including, for example, feeding, escape from
predators, or changes in reproductive performance. The early expression of GABA-A receptors in
embryos (Lujan et al., 2005) and, therefore, their early activation, can have direct negative effects on
embryo development. The most endangered are aquatic species, often exposed from the ovo stage.
Last but not least, a possible direct effect on tissues should be considered: BZDs in fact can also exert
their action via the peripheral benzodiazepine receptors (TSPO), located on mitochondrial
membranes (Papadopoulos et al., 2006) which regulate cell energy metabolism, transmembrane
potential, and sensitivity to reactive oxygen species (Casellas et al., 2002). TSPOs are ubiquitously
expressed in all tissues and are known to take part in CNS pathological disorders but also to play a

key role in neuronal apoptosis, glial cell degeneration, and regeneration (Lang, 2002).
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Aim and plan of the research

Pharmaceuticals have long been present in the environment, but their detection and hazardous effects
have only emerged in the past 2—3 decades. Despite many publications on this topic, their individual
and combined acute and chronic effects on the flora, fauna, and humans are not well understood. The
uncertainty regarding pharmaceuticals’ effects on non-target organisms and the deleterious effects
that these compounds may have on ecosystems’ functions and structures and human health have been
raising concerns among the scientific community. Thus, there is an urgent need for the development
of suitable technologies for recovering/remediating environments impacted by the presence of these
pollutants, in addition to other reducing or preventive strategies.

The aim of this project was, therefore, to start a multidisciplinary study of the effects of delorazepam
(DLZ), a long-life and high-potency benzodiazepine widely marketed in Italy. Its effects have not

been extensively tested so far, with respect to the better-known diazepam.

Studies were conducted on a panel of non-target organisms, all potentially exposed in nature to
contaminated waters, and all widely used in toxicology and ecotoxicology studies (Richards et al.,
2006; Carotenuto et al., 2020; 2022; Nunes et al., 2006; Motta et al., 2016; 2019; Curpan et al., 2022;
Ribeiro et al., 2015; Herbert et al., 2021). Since the plan was to investigate different aspects, in
particular, the effects on behavior, development, and cytotoxicity, different sets of organisms were

chosen for each line of research.

To study the effects on behavior, three different species were initially chosen: two molluscs, the
sessile Mytilus galloprovincialis and the vagile freshwater snail Planorbarius corneus, and a
crustacean, Artemia salina. Conventional behavioral tests were carried out: for mussels, the
open/closing valve test; for the two vagile species, different types of chambers were set and used to
determine the locomotory parameters.

To study the effects of DLZ on development, three models were chosen. First, the sea urchin
Paracentrotus lividus, species shedding gametes directly into the water and, therefore, very
convenient for studying the effects of the drug on fertilization and development. Two further models
were Artemia salina and Cucumis sativus, species in which the early embryos are protected by
acellular structures, the cyst chorion, and the seed integument respectively. Cucumis was chosen also
because considered an ‘out-group’, suitable to carry out a parallel between effects on flora and fauna.
GABA signaling in plants is present and modulates growth, development, and stress response

(Ramesh et al., 2017). In these models, conventional endpoints such as fertilization, hatching and
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germination percentages, growth, and mortality were assessed but parallel morphological, cytological

and/or biochemical investigations were also carried out.

The third effect studied, was cytotoxicity. DLZ is not reported to cause direct toxicity, however, the
presence in tissues of TSPO receptors suggested that local effects might be induced. Model species
were Paracentrotus lividus eggs and sperms and Mytilus galloprovincialis gills. Indirect evidence

was also collected from Cucumis sativus roots and shoots, and Artemia salina nauplii.

Preliminary evidence gathered during the first year was rather impressive: profound effects were
detected in all the models studied, and in almost all the endpoints examined. At this point a
consideration prevailed: what are the effects exerted by DLZ on a more complex vertebrate model?
To approach the question, another model species was added to the study, Xenopus laevis, whose
morphological and genetic similarities with humans make it an excellent model organism for studies
on human embryogenesis. Embryonic development was studied in presence of delorazepam and
effects on mortality, growth, and teratogenesis were firsts assayed. Results prompted further

biochemical, epigenetic, and ultrastructural investigations.
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Benzodiazepines
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1.1 Benzodiazepine: history and legislation

Benzodiazepines (BDZs) are one of the world's most widely prescribed pharmacological agents
for numerous psycho-physical and neurological conditions including anxiety, insomnia, muscle
relaxation, relief of spasticity caused by central nervous system disorders, and epilepsy. They are
also used in pre-anesthetic treatment for their amnesic and anxiolytic properties (Cascade and
Kalali, 2008).

In 1955, Hoffmann-La Roche chemist Leo Sternbach serendipitously identified the first
benzodiazepine, chlordiazepoxide, marketed in 1960 as Librium. From this, molecular
modifications were pursued in order to obtain enhanced activity: diazepam (Valium) was
synthesized and commercialized in 1963. In 1975, clonazepam (Klonopin) and two years later,
lorazepam (Ativan) were introduced into the market.

Initially, benzodiazepines appeared to be less toxic and less likely to cause dependence than other
similar drugs. They worked on analogous neurotransmitters as barbiturates and exploited similar
effects: depression of the central nervous system and production of a sense of calm, but with a
specific improvement: lack of respiratory depression, a safety concern related to the use of
barbiturates. Medical professionals greeted benzodiazepines enthusiastically at first, so that
already in the mid-to-late 1970s, benzodiazepines topped all “most frequently prescribed” lists.
Normal-dose physical dependence was first suspected in the early 1970s but it was not until the
early 1980s that scientific evidence was adduced to establish its reality and frequency: the spectre
of abuse and dependence was already a reality (Lader, 1991; Wick, 2013). As a result, individual
benzodiazepines and the entire class began to appear on guidelines and in legislation, with
attempts to limit them to short-term use.

Benzodiazepines are produced by licensed pharmaceutical companies and authorized and
marketed according to national legislation. They are prescription-only medicines and are subject
to additional restrictions on their supply, use, and possession under drug control laws. They are
recommended for short-term use at the lowest possible dose to reduce the risks of tolerance,
dependence, and withdrawal symptoms. In most countries, benzodiazepines are controlled under
drug control laws and are dispensed only after prescription only, in agreement with the 1971
United Nations Convention on Psychotropic Substances, which currently controls 38
benzodiazepines. These are alprazolam, bromazepam, brotizolam, camazepam, chlordiazepoxide,
clobazam, clonazepam, clorazepate, clotiazepam, cloxazolam, delorazepam, diazepam,
estazolam, ethyl loflazepate, etizolam (since 2020), flualprazolam (since 2020), fludiazepam,

flurazepam, flunitrazepam, halazepam, haloxazolam, ketazolam, loprazolam, lorazepam,
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lormetazepam, medazepam, midazolam, nimetazepam, nitrazepam, nordazepam, oxazepam,
oxazolam, phenazepam (since 2016), pinazepam, prazepam, temazepam, tetrazepam and
triazolam (EMCDDA, 2021)

In 2021, the International Narcotic Control Board (INCB) listed the most marketed
benzodiazepines at 21. Italy is the main manufacturer, covering more than 50% of world production,
followed by India, Switzerland, China, and the USA. (INCB, 2021).

Timeline of the international control status of benzodiazepines

Schedule IV Schedule IV
Librium (chlordiazepoxide) Mcidgzcl:I:m P;eza;eepam
First to market
1290 2016
1960s  J11970s. J111980si ) 119905 31200 }22010s08) 2020s
1984 1995 2020
Schedule IV Schedule Il Schedule IV
32 benzodiazepines  Flunitrazepam Etizolam
incl. Diazepam and Flualprazolam

Alprazolam

Figure 1. Timeline of the international control status of benzodiazepine (EMCDDA, 2021)

1.2 Structure and classification of benzodiazepines

The term benzodiazepine is the chemical name for the heterocyclic ring
system, which is a fusion between the benzene and diazepine ring
systems. Their core chemical structure is formed by the fusion of a g,

benzene ring and a diazepine ring (Figure 2). The "benzo" prefix

indicates the benzene ring fused onto the diazepine ring (Moss, 1998).
Figure 2. Benzodiazepine
structure

Different compounds have different side groups attached to this central

structure in positions 1, 2, 5, or 7. The different side groups affect the binding of the molecule to
the GABA-A receptor, therefore the BDZs’ action can vary slightly depending on their nature
(Langer et al., 2020) and selectivity with respect to the receptors. This can modulate the
pharmacological properties, the potency of the effect, and the pharmacokinetic conditions

(duration of the effect, distribution, etc.).
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These differences are mainly manifested in the hypnotic/anxiolytic sedative effect, in the time of
life, in the elimination velocity, in the hepatic metabolism, in the drug liposolubility, in the
administration mechanism, in the potency, in the action onset (fast <1h, medium 1-2h, slow >2h)
(Lechuga and Indart, 1996; Ashton, 2002; Danza et al., 2009).

1.2.1 Classification according to the chemical structure

e 1.4 Benzodiazepines
In this category, the diazepine ring has two nitrogen atoms in positions 1 and 4. Depending
on the different bonded radicals we can find the keto benzodiazepines, the main class of
BZDs such as Diazepam and Delorazepam, the hydroxy benzodiazepines, characterised
by the presence of a hydroxyl group in position 3 such as Lorazepam and Oxazepam, and
the nitro benzodiazepines, characterised by the presence of a nitro group in position 7 such

as Clonazepam and Nitrazepam.

) o O 5

Clorazepate oxazepam

Estazolam lorazepam P 5
Me N e
\(/ - Me
H O 2

g § § ~ ‘§

Cl — Br — s O B ” B

I N= |
= Q) &
midazolam bromazepam alprazolam diazepam

Figure 3. 1,4 benzodiazepines

e 1.5 Benzodiazepines
They differ from the previous ones for the position of the carbon and nitrogen atoms in positions
4 and 5 of the diazepine ring, such as Clobazam.

e Triazolobenzodiazepines
These are characterized by the presence of a condensed triazole ring at position 1, such as

Triazolam.

Benzodiazepine effects on non-target organisms
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e Imidazolobenzodiazepines

Distinguished by the presence of a condensed imidazole ring in position 1, such as midazolam.

1.2.2 Classification according to half-life

Benzodiazepines differ significantly in potency, lipophilicity, elimination half-lives, and onset

and duration of action. These differences bring up the difference in their clinical utility and give

rise to 3 categories of benzodiazepines: short-acting, intermediate-acting, and long-acting agents

(Fig. 4).
Onset (hours) Action Duration l-:;lj;l;ge Potency g%:;ﬁl;;
flurazepam 1 Long * 40-250 low 15-30
chlordiazepoxide 1.5 Long * 36-200 low 10-25

diazepam 1 Long * 36-200 low 5-10
clorazepate 1 Long * 36-200 low 7.5-15
clonazepam 1 Long 18-50 high 0.25-0.5
temazepam 0.5 Intermediate 8-22 low 30
lorazepam 2 Intermediate 10-20 high 1
oxazepam 3 Short 4-15 low 15-20
alprazolam 1 Short 6-12 high 0.5

triazolam 0.5 Short 2-5 high 0.25-0.5

* active metabolites.

Figure 4. Pharmacokinetic differences between benzodiazepines (Guina and Merrill, 2018)

e Short-acting benzodiazepines have an average elimination half-life of 1-12 hours. This
category includes Alprazolam (Xanax), Bromazepam (Lexotan), and Lorazepam (Tavor).

e Intermediate-acting benzodiazepines have an average elimination half-life of 24-48
hours. Representative examples of this category include Flunitrazepam (Roipnol), and
Nitrazepam (Mogadon).

¢ Long-acting benzodiazepines have an average elimination half-life of more than 48 hours
(1-4 days). To this category belong, among others, Delorazepam (EN), Diazepam
(Valium), Prazepam (Prazene), and Flurazepam (Dalmadorm). Drugs in this category
have long-acting pharmacologically active metabolites (often desmethyldiazepam) and

accumulate extensively during multiple dosages (Griffin et al., 2013).

Benzodiazepine effects on non-target organisms
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1.3 Benzodiazepine pharmacology

1.3.1 Interaction with GABA-A receptors

BZDs act as positive allosteric modulators on the gamma amino butyric acid (GABA)-A receptor, a
ligand-gated chloride-selective ion channel, enhancing the activity of the chief inhibitory
neurotransmitter gamma-aminobutyric acid (GABA). Its role is in reducing neuronal excitability and,
in humans, it is also responsible for the regulation of muscle tone. This results in the sedative,
hypnotic (sleep-inducing), anxiolytic (anti-anxiety), anticonvulsant, and muscle relaxant properties
for which the drugs are prescribed. Three GABA receptors exist, A, B, and C. The GABA-A receptor

is the only one with which BZDs interact.

The GABA-A receptor comprises five glycoprotein subunits, each with multiple isoforms, arranged
like a rosette around a central pore, crossing the cell membrane, which is permeable to chloride and
other anions. GABA-A receptors contain 2 o subunits, 2 § subunits, and 1 y subunit. Each receptor
complex has 2 GABA-binding sites but only 1 BZD-binding site. The benzodiazepine binding site is
in a specific pocket at the pairing (intersection) of the o and y subunits. When BZDs bind to the
pocket, they induce a conformational change in the GABA-A receptor, allowing GABA to bind.
Benzodiazepine site ligands, therefore, do not act directly to open the channel, but rather modulate
the capacity of GABA to do so, resulting in augmentation or diminution of its inhibitory effects.
When GABA binds with the GABA-A—benzodiazepine receptor complex, it acts as an agonist:
inducing conformational changes, which increase the permeability of the central pore to chloride ions.
The resulting chloride flux hyperpolarizes the neuron, reducing its excitability and producing a
general inhibitory effect on neuronal activity. Classical benzodiazepines in clinical use act to enhance
the effectiveness of GABA uniquely by lowering the concentration of GABA required for opening
the channel (Nutt and Malizia, 2001). Pharmacological effects of BZs are mediated via positive
modulation of four different subtypes of GABA-A receptors, namely those containing the al, a2, a3,
or a5-subunit, in addition to the y2 subunit (Sieghart, 2006). Sedative effects of BZs are principally
attributed to the al-GABA-A receptor subtype, anxiolytic actions to a2-/a3- containing receptors,
anterograde amnesic effects to al/a5 subtypes and anticonvulsant activity partially to al-GABA-A
receptors (Mili¢ et al., 2012). In addition to GABA and benzodiazepines, other psychoactive
compounds, such as barbiturates and anaesthetic steroids, can also bind to the receptor and open the
chloride channel.

Benzodiazepine effects on non-target organisms
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Barbiturate site Benzodiazepine site

barbiturates ; : benzodiazepines agonists

etomidate ; non-benzodiazepines | Bniagonists
atazolate e inverse agonists

General anassthetics
propofol
steroids
halothane
ethanol

i )
' Subsynaptic membrane

Figure 5. GABA receptor with target sites. The composition of the receptor sub-units, particularly o and y sub-units,
seems to determine the benzodiazepine pharmacology of the receptor, with different subtypes having different

sensitivities to benzodiazepine receptor ligands.

Specific receptors for GABA are not restricted to the CNS, indeed GABA-A receptor has been
found in a wide range of peripheral tissues, including parts of the peripheral nervous system,
endocrines, and non-neural tissues such as smooth muscle and the female reproductive system
(Watanabe et al., 2002).

1.3.2 Interaction with Translocator protein (TSPO)

First described as a high-affinity binding site for diazepam in the rat kidney in 1977, this receptor
was therefore named as a “peripheral” benzodiazepine receptor (PBR), reflecting its expression
in peripheral tissues, in contrast with the “central” benzodiazepine receptor, which is expressed
mainly in the central nervous system (CNS). Lately, to represent more accurately its subcellular
role and putative tissue-specific functions, a second label was instituted, Translocator Protein
(TSPO).

TSPO is an 18 kDa mitochondrial transmembrane protein consisting of 169 aminoacids, which is
mainly located in the outer membrane. The three-dimensional structure of TSPO, which is highly
hydrophobic and rich in tryptophan, is characterized by five a-helices spanning one phospholipid
layer of the mitochondrial membrane (Anholt et al., 1986; Antkiewicz-Michaluk et al., 1988;
Bernassau et al., 1993). The TSPO is believed to form a complex with several proteins of the
outer and inner mitochondrial membrane collectively known as the mitochondrial permeability
transition pore (MPTP), an important regulator of apoptotic and necrotic cell death during injury.
Therefore, it mainly regulates cell energy metabolism, transmembrane potential, and sensitivity
to reactive oxygen species. TSPO is expressed in glial cells and ependymal cells in the brain, and

Benzodiazepine effects on non-target organisms
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also in peripheral tissues, particularly abundant in peripheral endocrine tissues, such as the adrenal
glands, testis, and ovary. TSPO density can be modulated under a variety of physiological or
pathological conditions (Papadopoulos et al., 2006; Casellas et al., 2002).

C-Terminus

QuelquisLISuel]

Inner Mitochondrial
Space

Figure 6. Schematic draw of TSPO. Cytosolic loop 1 and loop 2 are the binding sites for benzodiazepines (Raffa and
Pergolizzi, 2019)

Among the functional roles attributed to the TSPO, steroidogenesis is perhaps the best characterized.
The TSPO is responsible for the translocation of cholesterol from the outer mitochondrial membrane
to the inner mitochondrial membrane. This action is the rate-limiting step of steroidogenesis. Once
inside the mitochondria, the cholesterol side-chain cleavage enzyme (CYP11A1 — a member of the
cytochrome P450 family) converts cholesterol to pregnenolone. Pregnenolone is recruited to the

endoplasmic reticulum to form other important steroid products (Papadopulos et al., 1997).

Besides that, studies of TSPO function have yielded a diverse list of activities, including the
regulation of cell death, mitochondrial protein import and cellular proliferation, Ca®* ion regulation,
mitochondrial respiration and oxidation, transport of porphyrins and heme biosynthesis and

immunomodulation (Austin et al., 2013).

TSPOs also expressed in CNS take part in pathological processes linked to several nervous system
disorders, such as epilepsy, cerebral ischemia, nerve injury, and neurodegeneration, by playing
important roles in neuronal apoptosis, degeneration and regeneration of glial cells, with similar results

also in animal experiments (Lang et al, 2002).

Benzodiazepine effects on non-target organisms
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The evidence that TSPO is involved in the secretion of neurosteroids, whose levels have been reported
to be changed in several diseases, has suggested that TSPO may be implicated in the pathogenic
mechanisms of anxiety. Indeed, the important involvement of TSPO in anxiety in humans has been
extensively demonstrated by numerous studies in which TSPO expression levels have been reported
to be changed. Specifically, TSPO density is up-regulated in acute stress conditions and down-

regulated in chronic or repeated stress (Taliani et al., 2009).

1.4 Benzodiazepines Metabolism

Most compounds undergo extensive phase I metabolic transformations, mainly mediated by the
cytochrome P450 (CYP) enzyme family. The compounds are predominantly metabolized by
CYP3A4 enzymes. To a lesser extent, CYP3A5, CYP2B6, CYP2C18 and CYP2C19 enzymes are
also involved in the metabolism of benzodiazepines (Fukasawa et al., 2007; Gafni et al., 2003;
Mizuno et al.,  2009). Glucuronidation and  acetylation by  uridine 5'-
diphosphoglucuronosyltransferase (UGT) and N-acetyltransferase 2 (NAT2), respectively, are the

major enzymes involved in phase 1l metabolism of benzodiazepines.

Some metabolites are also marketed as pharmaceutical products, such as temazepam, nordazepam
and oxazepam, the main metabolites of diazepam. Some metabolites of triazolobenzodiazepines, for
example, the a-OH metabolite in the case of alprazolam and triazolam, show high binding affinities
towards GABA-A and are considered to be at least as active as the parent compound (Hester and VVon
Voigtlander, 1979). On the contrary, 4-OH metabolites generally show reduced biological activity
(Baselt, 2011). Significant binding affinity at the GABA-A receptor was also reported for a-OH-
midazolam glucuronide, a phase 1l metabolite of midazolam (Rudge et al., 2006)

1.5 Misuse and Abuse

Despite the worsening public health indicators associated with BZDs use, and although BZDs have
been ranked at high risk of dependence among licit and illicit drugs (Nutt et al., 2010), the abuse and
misuse of these psychotropics remain overlooked by policymakers and the scientific community
(Lembke et al., 2018), probably because the perceived risk associated with benzodiazepines is still

underestimated.

The matter of fact is that despite clinical recommendations for use of BZDs (should be considered as

a treatment for specific clinical situations and short-term use, no more than 2-4 weeks), long-term
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BZD users range from 6 to 76% of total users, a phenomenon affecting almost 2% to 7.5% of the
population in developed countries (Fang et al.,2009; Zandonai et al., 2022). Benzodiazepine-related
overdose deaths increased by more than 400% from 1996 to 2013 and emergency department visits
for benzodiazepines increased by more than 300% from 2004 to 2011. Contextually, the number of
benzodiazepine prescriptions not only increased by 67% from the mid-1990s to 2013, but the quantity
(i.e., dose equivalents) increased more than 3-fold during this period (Bachhuber et al., 2016; VVotaw
et al., 2019).

It is estimated that, in the U.S. alone, there are now 94 million prescriptions for various
benzodiazepines, nearly one prescription for every three citizens. A total of 30.6 million adults
(12.6%) reported benzodiazepine use in the past year—25.3 million (10.4%) as prescribed and 5.3
million (2.2%) misuse. BZDs are also the third most misused illicit or prescription substance among
adults and adolescents in the U.S. (Votaw et al., 2019).

A 2008-2009 general population survey of over 20,000 individuals ages 15-64 in Sweden found that
2.2% of participants misused benzodiazepines and other sedatives in the previous year (Abrahamsson
and Hakansson, 2015). The same rate of current benzodiazepine misuse was found in a 2008-2009
household survey of 2,280 individuals ages 15 and older residing in Thailand (Puangkot et al., 2010).
Similar rates of past-year misuse have been reported in general population samples in Brazil
(Galdurdz et al., 2005) and Australia (Hall et al., 1999). Although few studies outside of the U.S.
have examined trends in misuse, a nationwide study of 179,114 school-age respondents (14—18 years
old) in Spain found that the prevalence of tranquillizer, sedative, and sleeping pill misuse increased
from 2.4% in 2004 to 3.0% in 2014 (Carrasco-Garrido et al., 2018).

According to a recent report, benzodiazepine misuse is most common in young adults. The highest
past-year rate of combined sedative/tranquillizer misuse was observed among 18 to 25-year-olds
(5.8%), followed by 26 to 34-year-olds (4%). In the U.S., the typical age of onset of benzodiazepine
misuse is during early adulthood (18-25 years) (Boyd et al., 2018). It seems that the transition to
college may be a particularly risky time; a study of college sophomores found a 102.9% increase in
the prevalence of misuse from pre-college — one of the greatest rates of increase among all substances
during this period (Arria et al., 2008; Votaw et al., 2019).

Little is known about benzodiazepine misuse in older adults, despite high rates of prescribing in this

group. Rates of tranquillizer and sedative misuse are lower in adults over the age of 50, as compared

to younger age groups, anyway, the proportion of individuals with past-year tranquillizer misuse who
are over the age of 50 doubled from 2005 to 2006 to 20132014 (from 7.9% to 16.5%; Palamar et al.,
2019).
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Regarding the reasons leading to the abuse, over 75% of NSDUH (National Survey on Drug Use and
Health) respondents with past-year tranquilizer misuse reported that they misused prescription to help
with conditions for which benzodiazepines are indicated, such as sleep, tension, or emotions. They
are often used to self-manage psychiatric disorders, anxiety, and insomnia and as a way of coping
with traumatic experiences, pain and loss, boredom, and isolation. They are also misused out of
curiosity or for their pleasurable effects and their ability to both alter perceptions of time and enhance
the effects of opioids and other substances (Chen et al., 2011; Votaw et al., 2019)

1.6 Consumption in Italy

In Italy, the cost of benzodiazepines is not reimbursed by the National Health Service, so data on their
use are difficult to gather and can be inferred only from specific questionnaires and information about
sales. A study dated 1996 reported that over half of the people who took benzodiazepines (9% of the
population, in 1996) were chronic consumers (daily use, for more than 6 months) and, of these, 15%-—
44% were addicted (Magrini et al., 1996)

According to AIFA, Italy is not among the European countries with the highest consumption of BZD,
although there was a more than double increase in consumption between 2000 and 2015. From a more
recent study on the consumption of psychoactive drugs in Italy between 2015 and 2017, what emerges
was that the trend in the use of these medicines was almost stable. An increase in the utilization of
BZDs was recorded in 2017, when consumption raised to about 50 DDD/1000 * inhabitants per day,
with an increase of about 8% compared to the previous year (AIFA, 2018). (* the mean number of
defined daily doses (DDD) per 1000 inhabitants).

According to the National Report on the Use of Medicines in Italy of 2021, benzodiazepines (together
with contraceptives, drugs for erectile dysfunction, NSAIDs and antipyretics) were class C drugs
most purchased by Italians at least for the last 5 years (class C drugs, classified by AIFA, are those
medicines that are fully paid for by the patient and, therefore, not reimbursed by the NHS). In the
2021 report at the top of the ranking, benzodiazepine derivatives (anxiolytics) recorded an

expenditure of 400.9 million euros, equal to 11 .6% of the total expenditure.
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ATCI| Categoria terapeutica DDD/1000 A% Spesa %* n%

ab die 21-20 (milioni) 21-20
N Derivati benzodiazepinici (ansiolitici) 27.3 -2,8 400,9 11,6 0,0
N Anilidi 7.5 4,2 319,3 9,2 8,5
G Farmaci usati nella disfunzione erettile 2,1 10,5 237,7 6,9 11,6
G Associazioni fisse estro-progestiniche 19,9 -1,0 214,0 6,2 24
N Deriv?tli benzodiazepinici (ipnotici e 212 0,9 143,7 41 21
sedativi)
D Cnrtico'_rrte.rolid_i attivi, associazioni 49 6,5 94,1 27 6.2
con antibiotici
A Lassativi ad azione osmotica 2,2 10,0 76,0 2,2 17,5
] Vaccini influenzali 0,1 - 74,9 2,2 2285
M Analoghi delle benzodiazepine 5,8 1,6 73,3 21 5,8
5 Cortil:.oslteroidi antimicrobici in 31 6,9 71,9 21 9.4
associazione
M Altri miorilassanti ad azione centrale 1,2 9,1 69,2 2,0 15,1
R Corticosteroidi 4,8 21 68,8 2,0 5,2
N Altri psicostimolanti e nootropi 1,3 8,3 63,8 1,8 15,2
M Altri miorilassanti ad azione periferica 0,0 - 58,3 1,7 35,6
B Eparinici 2,4 9,1 56,1 1,6 13,3
N Preparati antivertigine 2.9 3,6 53,0 1,5 5.6
R Mucolitici 4,2 -12,5 47,4 14 -8,7
M Bifosfonati 0,0 - 45,2 13 59
G Preparati sequenziali estro-progestinici 3,5 0,0 44,7 13 6,4
N Benzamidi 0,3 0,0 39,7 1,1 2,6
Totale prime 20 114,8 0,3 2252,1 65,0 8,9
Totale 2128 7.9 3465,4 100,0 6,0

* calcolata sul totale della spesa

Figure 7. Top twenty class C therapeutic categories with the most expensive prescription in 2021: comparison 2020-
2021

The territorial BZDs consumption went from 40 DDD/1000 inhabitant for die in 2015 to 54,3
DDD/1000 in 2021, with an average annual variation of +5.2%. Alprazolam and lorazepam, in 2021,

remained the highest spending substances and account for 41% of the total benzodiazepines.
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Figure 8. BZDs: time trend 2015-2021 of territorial consumption and average cost
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Sottogruppie Spesa A% CAGR % DDD/1000 A% CAGR%  Costo A%

sostanze pro capite  21-20 15-21 ab die 21-20 15-21 medio  21-20
DDD
Ansiolitici 6,77 0,7 57 27,3 -2,3 4,3 0,68 3,3
Ipnotici 2,43 2,9 6,6 2172 -1,0 52 0,31 4,2
Sedativi 1,24 6,5 12,1 5,8 4,3 11,0 0,58 2,4
Benzodiazepine 10,43 1,8 6,5 54,3 -1,1 52 0,53 3,3
alprazolam 2,28 2,4 8,6 10,4 -0,5 6,9 0,60 3,2
lorazepam 2,00 -0,9 3,4 10,4 -4,0 2.1 0,53 3,5
zolpidem 1,19 6,7 12,5 5,6 4,5 113 0,58 2,4
lormetazepam 111 37 6,6 15,2 -0,6 5:3 0,20 4,5
bromazepam 0,85 -0,9 4,7 1,4 -4,7 3:1 1,65 4,3
delorazepam 0,82 3,2 6,4 2,6 0,7 5,5 0,88 2,8
triazolam 0,77 3,0 7.2 3.7 -1,6 5,4 0,57 5,0
diazepam 0,38 -2,2 5,4 1.3 -2,9 4,9 0,77 1,0
brotizolam 0,33 2,0 6,3 1,4 -4,0 4,4 0,64 6,6
flurazepam 0,15 1.5 6,5 0,7 0,2 51 0,62 1,5

Figure 9. BZDs: pro capite expenditure and consumption (DDD/1000 inhabitants per day) comparison 2015-2021

All the Italian regions, the report observes, with the exception of Valle d'Aosta, recorded an increase
in the consumption of prescription drugs, and consequently, an increase in spending volumes. The
moderate variability of consumption and expenditure for self-medication and class C prescription
drugs is mainly explained by differences in income between the Regions but also by a different
attitude of doctors and patients in the use of these drugs.

For example, while for class C drugs with prescription, the pro capite expenditure of Campania is
almost double that of the Autonomous Province of Bolzano (81.60 euros vs 41.40), with regard to
self-medication drugs the expenditure pro capite in Liguria is 72% higher than in Basilicata (48.20
euros vs 28.10) and more than 21% more is spent in the North than in the South. The greatest increases

in the consumption of class C drugs were recorded in the Marches (+35.6%), in Umbria (+28.0%).
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Regione Classe C con ricetta

Spesa A% DDD/1000 4 %
pro capite  21-20 ab die 20-19

Piemonte 61,20 6,8 2278 3,6
Valle d'Aosta 51,60 -4.4 236,2 -2.,6
Lombardia 62,00 6,3 222,0 6,3
PA Bolzano 41,40 9,8 145,5 2,5
PA Trento 44,70 4,0 188,7 10,8
Veneto 51,50 3,0 206,3 6,3
Friuli VG 47,50 51 191,6 8,0
Liguria 70,00 3.7 272,8 0,3
Emilia R. 55,90 5.5 220,3 9,7
Toscana 57,70 43 2443 7,2
Umbria 54,30 21,5 196,0 28,0
Marche 55,10 23,5 222,6 35,6
Lazio 60,50 4,1 208,1 6,4
Abruzzo 48,90 5.8 161,5 49
Molise 47,70 16,6 157,3 23
Campania 81,60 12,7 226,5 8,8
Puglia 45,80 5.5 1775 7.1
Basilicata 42,40 5.5 178,4 20,6
Calabria 54,10 12,5 218,7 11,6
Sicilia 50,80 2,6 183,0 11,5
Sardegna 55,00 5.8 219,2 2,8
Italia 58,50 6,8 2128 7,9
Nord 58,10 54 219,6 5.9
Centro 58,40 7.4 220,7 11,1
Sud ed Isole 59,10 8,0 198,0 8.7

* sono inclusi i farmaci classificati in C-Non Negoziata

Figure 10. Territorial pharmaceutical prescription 2021 for class C prescription drugs: comparison 2020-2021

1.7 Benzodiazepine use after COVID-19 pandemic

The COVID-19 outbreak has led people to realize a drastic changes in lifestyle, with social distancing,
periods of social isolation and loneliness, which have resulted in negative consequences on mental
well-being. It was found that people were three times more likely to have anxiety or depressive
disorders in 2020 compared to the previous year, and more than one in three individuals presented
one or both disorders (Twenge & Joiner, 2020). Significant was also the psychological impact of
COVID-19 among individuals who tested positive, and experienced anxiety symptoms, fear, and a
lack of hope regarding the uncertainties in treatment and health outcomes. According to a survey
conducted by the American Psychiatric Association in March 2020, 48% of the general population
reported anxiety, 36% reported that the pandemic was severely affecting their mental health, and 19%
reported insomnia. For this reason, some authors have typified COVID-19 as a “psychiatric
epidemic”. In this scenario of anxiety, panic attack and insomnia, depressive symptoms, anger, and
fear, benzodiazepine prescriptions have risen, with also anti-anxiety medications becoming easier to
access through telemedicine (EMCDDA, 2021; Turna et al., 2021).
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In 2021, a survey to gather information about the use of benzodiazepines during the COVID-19
pandemic in the general population was conducted. Of a total number of 240 participants, 65%
consumed benzodiazepines due to anxiety, 41.7% for tension, 45.8% due to insomnia, 36.7% due to
fear, and 42.5% due to restlessness. One-fourth of the benzodiazepines were prescribed by a family
doctor, and one-fifth of the respondents assumed the drug on their own initiative without a doctor's
advice and 4% without a prescription. Overall, the use of benzodiazepines shows an increase rate of
20.9% (Isjanovski et al., 2021).

The web interest and, therefore, the probable consumption of benzodiazepines has significantly
increased also in Italy after the COVID-19 pandemic. An infodemiological analysis, conducted to
gather more information on the increase in consumption of BZDs, reported an increase of the 18%
for Alprazolam, 13% for Bromazepam, 14% for Clonazepam, and 8% for Lorazepam (Mattiuzzi et
al., 2022).

1.8 Delorazepam

Delorazepam  (Chlordesmethyldiazepam) is a  long-acting
benzodiazepine, derived from diazepam. Chemically it differs from
diazepam by demethylation in position 1 and the introduction of another
chlorine atom in position 2. It has found a large application in treating
insomnia and anxiety due to its high elimination half-life (80-115 h) and

greater potency compared to diazepam (1 mg delorazepam = 10 mg

diazepam) (Altamura et al., 2013); it produces a major active metabolite

Figure 11. Delorazepam

known as lorazepam, commercially available, that represents about 15 —
34% of the parent drug (Bareggi et al., 1988).

Like all benzodiazepines, delorazepam acts at limbic, thalamic and hypothalamic levels and can
produce depression of the central nervous system: sedation, hypnosis, decreased anxiety, relaxation
of skeletal muscles and reduced aggression (in laboratory animals). It is indicated in the treatment of
anxiety, psychosis with an anxiety component, insomnia and epilepsy (Bareggi et al., 1986;
Moosmann and Auwarter, 2018). It is therefore widely marketed, especially in Italy, where it is

among the most consumed and abused benzodiazepines (Lombardi et al., 2021).

A study carried out in in Italy, in the 2020, aimed at studying frequency and characteristics of BZDs

causing adverse events requiring emergency intervention, or even hospitalization. Delorazepam
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ranked first causing adverse effects in 11.6% of cases, together with lorazepam (21.4%), alprazolam

(18.2%), and bromazepam (8.9%). It required an emergency intervention in 52.5% of patients.
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Figure 12. Trend of “abuse/misuse” and “overdose” reporting (2012-2018). ALZ alprazolam, BMZ bromazepam, DLZ
delorazepam, LMZ lormetazepam, LRZ lorazepam, ZOL zolpidem (Lombardi et al., 2020).

1.9 Environmental contamination by delorazepam

Environmental pollution by benzodiazepines is increasing generating a major threat to aquatic
ecosystems worldwide. Several biochemically active BZDs have been found in aquatic systems
globally, due to the vast and constant release in wastewater (Bade et al., 2020).

A recent review analyzed 219 scientific papers from which 1642 data/entries were obtained, each
corresponding to one target compound in one aqueous matrix. Results demonstrate a strict correlation
between the country’s average income and the concentration of drugs in surface water (Cunha et al.,
2017). Among the drugs investigated, citalopram was the most cited followed by oxazepam, and

lorazepam.
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Abbreviations

D-WWI Domestic wastewater influent a W e
D-WWE  Domestic wastewater effluent D-WWI 365
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DH- Domestic and hospital wastewater influent nlx'-"‘\"\‘\"é __,3' %

WWI DH-WWE s 34

DH- Domestic and hospital wastewater effluent g "L’,‘,‘;‘}f, e §;

WWE g DHI-\\'\\'! = 20

DHI- Domestic, hospital, and industrial wastewater § pr : §3

WWI influent s i ::

DHI- Domestic, hospital, and industrial wastewater PD-WWE j §

WWE effluent il o

S-WwI Slaughterhouse wastewater influent S-WWE 14

S-WWE  Slaughterhouse wastewater effluent l.m-“'\:'::: ;

LDI- Leachate, domestic and industrial wastewater LDI-WWI ) 2 i v i i
WWI influent 0 100 200 300 400
LDI- Leachate, domestic and industrial wastewater b i e

WWE effluent Citalopram

PD-WWI  Predominantly domestic wastewater influent %  Oxazepan

PD- Predominantly domestic wastewater effluent 'g Lorazepam

WWE "-_3 Diazepam

H-WWI  Hospital wastewater influent % Alprazolam

H-WWE  Hospital wastewater effluent & Bromazepam

DW Drinking water Clonazepam

SW Surface water 0 100 200 300 400 500 600
GW Groundwater Data (Entries)

SeaW Seawater Fig.1 a Amount of data/entries per aqueous matrix (22 in total) contam-
EW Estuary water il;fn(tic? with sc\'cln psi:cho:ctiv; dmdg§ ix;cll;xdc‘:l ir:_lf!lis review; b amount
LE Leachme f[‘ol'n landﬁlls Ol data per psychoacuive drug round 1n 2 scientific papers

Figure 13. a) Amount of data/entries per aqueous matrix (22 in total) contaminated with seven psychoactive drugs; b)

amount of data per psychoactive drug found in 219 scientific papers. Adapted from Cunha et al., 2017.

Lorazepam and its degradation product, including delorazepam, are present at concentrations ranging
from nanograms to micrograms, the higher concentrations being registered in hospital wastewater.
As far as Italy is concerned, there is no information on de/lorazepam concentration in the rivers. In
contrast, data can be found for European basins. In Galicia (Spain), for example, lorazepam is
detectable at an average concentration of 562 ng/L with a maximum on influent wastewater of over

10 pg/L (Esteban et al., 2012).
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Table 2
Percentage (%) of samples and average concentrations (ng/L) with detectable concentrations in the influent (1) and effluent (E) wastewater of sewage treatment plants,
downstream rivers (DSSTP) and tap water in the watersheds of Galicia in 2008-2009.

N I(%) Average(ng/fL) N E(%) Average(ng/l) N DSSTP (%)  Average (ngfL) N Tap water (%)  Average (ng/L)

Antidepressants
Amitriptiline 15 20 24 15 27 22 6 - - 75 - -
Citalopram 15 33 114 15 73 149 6 33 10 75 - -
Clomipramine 15 - - 15 7 4 6 - - 75 1 27
Fluoxetine 15 7 16 15 60 28 6 - - 75 - -
Nortriptiline 15 - - 15 13 11 6 - - 75 - -
Sertraline 15 13 113 15 27 33 6 - - 75 - -
Venlafaxine 15 47 401 15 67 317 6 50 67 75 1 44
Antiepileptics
Carbamazepine 15 30 73 15 40 181 6 33 63 75 - -
Anxiolytics
a-Alprazolam 15 13 20 15 - - 6 - - 75 - -
Alprazolam 15 20 27 15 20 17 6 17 17 75 1 11
Lorazepam 15 87 10598 15 67 689 6 50 167 75 3 562
Nordiazepam 15 13 16 15 40 17 6 - - 75 - -
Oxazepam 15 47 83 15 67 84 6 - - 75 - -
Tetrazepam 15 40 92 15 53 64 6 - - 75 - -

I: percentage of samples with detectable concentrations in influent wastewater; E: percentage of samples with detectable concentrations in effluent wastewater; DSSTP:
percentage of samples with detectable concentrations 50 meters downstream of sewage treatment plants.

Figure 14. Detection of lorazepam in watersheds of Galicia. (Esteban et al., 2012)

Table 1 Mini and maxi ions (ng L™') of each target psychoactive drug in each investigated aqueous matrix (# = number of observations by category) 3”
e
Aqueous matrix Alprazol. B Citalopram Clonazepam Diazepam L P 0 ;
Min Max Min Max Min Max Min Max Min Max Min Max Min Max E
£
D-WWI 174 2580 13 3062 04 650 - - 17 196 21 10598 56 3300 §
(n=34) =7 (n=131) n=0) (n=33) (n=32) (n=128)
D-WWE 081 176 0s 15542 15 2100 - - 0642 720 12 920 63 LTV )
(n=37) n=9 (n=T78) n=0) (n=47) (n = 55) (n = 55) 2
DI-WWI 877 126 685 942 59 359 = - 32 693 3 438 93 |2
=2 n=2) (n=T8) (n=0) =" (1 =12) (n = 69) 8
DI-WWE 62 10 258 78 77 840,000 - - 345 632 28 3998 108 908 9]
=3 n=2) (n=8) (n=0) (n=6) (=17 =17 §
DH-WWI 19.1 491 - - 127 79 - - 2 a4 4 6 s4 neo | &
n=2) n=0) (n=10) n=0) n=8) n=0) n=4) 15
DH-WWE n3 ns - - 2 240 - - 653 2 30 M7 28 1130 §
n=2) (n=0) (n=14) (n=0) n=T (n=3$) (n=0) —
DHI-WWI - - - - 357 2040 - - 590 1180 1093 3302 n 600
(n=0) (n=0) (n=12) (n=0) (n=2) (n=3) (n=3)
DHIWWE - - - - 122 7525 - - 455 4000 3 2468 50 400
(n=0) n=0) n=4) (n=0) (n=3) (n=11 n=3)
SWWI - - - - - - - - 9 16 - - - -
(n=0) (n=0) n=0) (n=0) (n=4) n=0) n=0)
S-WWE - - - - - - - - 2 8 - - - -
(n=0) (n=0) (n=0) (n=0) =) (n=0) (n=0)
LDEWWI 10 - - z ~ = = x - 30 - -
n=1) (n=0) (n=0) n=0) n=0) n=1l) n=0)
LDIWWE 10 = - = = = = 10 0 = =
w=1 (n=0) (n=0) =0 =1 m=1 (n=0)
PD-WWI o9 - - - - - - 6 85 3 95 50 210
n=1) n=0) (n=0) n=0) n=2) n=2) n=2)
PD-WWE 25 57 - - p - - = 28 100 2 4 50 210
n=2) n=0) n=0) (n=0) n=2) (n=2) n=2)
HWWI 458 168 40 158 943 888 - - 2 244 20 1325 28 2200
(n=16) n=2) (n=23) (n=0) n=17) (n=22) (n=10)
H-WWE 122 2 125 208 19 162 49 145 2 660 38 205 17 7434
n=2) n=7) n=19) n=14) (n=32) (n=15) n=8)
W 23 n - - 15 34 - - 047 25 4 562 25 9l
(n=6) (n=0) n=2) (n=0) (n=49) n=2) (n=6)
sW 03 5900 07 19 03 76,000 - = 014 625 L6 705.5 13 1400
(n=24) n=0) (n=107) (n=0) (n=91) (n = 85) (n = 062)
Gw 64 - - 131 1400 - - 388 351 12 54 10 210
n=1) (n=0) n=4) n=0) (n=0) (n=5) M=n=4)
SaWw - - - - 09 b1} - - - - 418 - -
=0 (n=0) (n=13) =0 (n=0) =1 (n=0)
EW - - - - - - - - 208 86 12 59 12 30
(n=0) n=0) (n=0) n=0) n=13) n=35) n=06)
LE - - - - - - - - - - £9.900 20 3760
(n=0) (n=0) (n=0) (n=0) (n=0) =1 (n=2)
Minimum concentrations refer to minimum quantifiable concentrations

D-WWI domestic wastewater influent; D-WWE domestic wastewater effluent; DI-WW/ domestic and industnial wastewater influent; DI-WWE domestic and industrial wastewater effluent; DH-WW/
domestic and hospital wastewater influent; DH-WWE domestic and hospital wastewater effluent; DHI-WW/ domestic, hospital, and industrial wastewater influent; DHI-WWE domestic, hospital, and
industrial wastewater effluent; S-WW/ slaughterhouse wastewater influent; S-WWE slaughterhouse wastewater effluent; LDI-WW/ leachate, domestic, and industrial wastewater influent; LDI-WWE
leachate, domestic, and industrial wastewater effluent; PD-WW/ predominantly domestic wastewater influent; PD-WWE predominantly domestic wastewater effluent; H-WWT hospital wastewater influent;
H-WWE hospital wastewater effluent; DW drinking water; SW surface water; GW groundwater; SeaW scawater; EW estuary water; LE leachate from landfills

Figure 15. Minimum and maximum concentrations (ng L—1) of each target psychoactive drug in each investigated
aqueous matrix (n = number of observations by category, focus on lorazepam. (Cunha et al., 2017)
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Although diazepam and other benzodiazepines has been proven to be toxic for several
microorganisms (Cerveny et al., 2020, Silva et al., 2020, Oggier et al., 2010; Lebreton et al., 2021b,
Ogueji et al., 2017) for de/lorazepam no ecotoxicological assay is reported in scientific literature.
Delorazepam is detected in human remains, for forensic scopes (Bonete et al., 2018; Gerace et al.,
2015) but no information can be found on toxicity in conventional toxicological models such as the
crustacean Daphnia magna or the bacteria Vibrio fischeri (ISPRA, 2011). No information is also
available for models such as Artemia salina, or other copepods, molluscs or other invertebrates that

play a key role in the ecosystems.
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Chapter 2
Xenopus laevis

2.1 Environmental concentrations of a delorazepam-based drug impact on embryonic
development of non-target Xenopus laevis

Published in: Aquatic Toxicology (Volume 250, September 2022, 106244)
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Highlights

e Benzodiazepines are an emerging class of water pollutants

e The effects of a delorazepam-based drug were evaluated on Xenopus laevis embryos,

amphibian model
e Results demonstrate that delorazepam sedates the embryos and is teratogenic
e Delorazepam increased ROS production, lipid hydroperoxides levels, GPX and GR activity

e Delorazepam alters the expression of developmental and pro-inflammatory cytokines genes
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Abstract

Benzodiazepines, psychotropic drugs used for treating sleep disorders, anxiety and epilepsy, represent
a major class of emerging water pollutants. As occurs for other pharmaceutical residues, they are not
efficiently degraded during sewage treatment and persist in effluent waters. Bioaccumulation is
already reported in fish and small crustaceans, but the impact and consequences on other “non-target”
aquatic species are still unclear and nowadays of great interest. In this study, we investigated the
effects of a pharmaceutical preparation containing the benzodiazepine delorazepam on the
embryogenesis of Xenopus laevis, amphibian model species, taxa at high risk of exposure to water
contaminants. Environmental (1 pg/L) and two higher (5 and 10 pg/L) concentrations were tested on
tadpoles up to stage 45/46. Results demonstrate that delorazepam interferes with embryo development
and that the effects are prevalently dose-dependent. Delorazepam reduces vitality by decreasing heart
rate and motility, induces marked cephalic and abdominal edema, as well as intestinal and retinal
defects. At the molecular level, delorazepam increases ROS production, modifies the expression of
some master developmental genes and pro-inflammatory cytokines. The resulting stress condition
significantly affects embryos’ development and threatens their survival. Similar effects should be

expected as well in embryos belonging to other aquatic species that have not been yet considered
targets for these pharmaceutical residues.

Keywords: environmental toxicity; FETAX test; teratogenicity, gene expression; oxidative stress.

Introduction

Benzodiazepines (BZDs), psychotropic drugs used for treating insomnia and anxiety (Argyropoulos
et al., 1999), are worldwide one of the most prescribed remedies (Schmitz, 2016; Nunes et al., 2019).
Massive use and abuse (Votaw et al., 2019) result in a vast and constant release of these drugs and/or
their active metabolites in the wastewater (Bade et al., 2020). Since they are not efficiently degraded
during sewage treatment (Patel et al., 2019), BZDs accumulate in effluent waters and sediments
(Klaminder et al., 2015; Lei et al., 2021), reaching concentrations ranging from ug/L to ng/L (Calisto
& Estevens, 2009). As a consequence, BZDs represent nowadays an important class of emerging
pollutants (Nunes et al., 2019) and therefore a potential environmental hazard, even at low
concentrations, especially for aquatic species with which they inevitably come into contact

(Klaminder et al., 2015). GABA receptors, targets for BZDs, are evolutionary very conserved, from

Benzodiazepine effects on non-target organisms




bacteria (Guthrie et al., 2000) to animals (Furuhagen et al., 2014) and therefore large-scale effects are
foreseeable. BZDs bioaccumulate in invertebrates (Lebreton et al., 2021a) and vertebrates, inducing
relevant behavioral (Cerveny et al., 2020) and physiological alterations (Silva et al., 2020), including
interferences with gene expression, enzymes activities (Oggier et al., 2010; Lebreton et al., 2021b)

and oxidative stress (Ogueji et al., 2017).

The behavior and fate of BZDs in the aquatic environment are still not fully clear and so are the
effects exerted on non-target species which may come accidentally into contact with these drugs. In
particular, not very much is known about the effects on amphibians even if they are a class of
vertebrates at high risk of exposure being bound to the aquatic environment both during embryonic
development and adult life. In this study, therefore, we investigated the effects of a benzodiazepine
delorazepam-based drug (DLZ) on the embryo development of a model species, Xenopus laevis,
widely used in toxicology and environmental studies (Carotenuto et al., 2020; Carotenuto et al.,
2022).

Delorazepam, a derivative of diazepam, is one of the benzodiazepines with the highest elimination
half-life (80-115 hours) ant produces a major active metabolite known as lorazepam that represents
about 15 — 34 percent of the parent drug (Bareggi et al., 1988). Like all benzodiazepines, it has
anxiolytic, skeletal muscle relaxant, and hypnotic properties (Bareggi et al., 1986; Moosmann et al.,
2018).

Xenopus embryos were exposed to a largely consumed pharmaceutical product (oral drops)
containing delorazepam at a concentration of 1 mg/ml. Preparation was used as it is, assuming that
trace components are not relevant functionally or toxicologically. Preparation was diluted to a final
concentration of DLZ of 1 pg/L, calculated considering the average concentration of different
benzodiazepines in European waste and coastal waters (Fick et al., 2017; Calisto & Estevens, 2009).
Two higher concentrations were also tested, 5 and 10 pg/L, for comparison and to mimic the

simultaneous exposure to multiple BZDs occurring in nature.

The effects of the drug were determined by a modified version of the FETAX test and its conventional
endpoints (Bernardini et al, 1994; Carotenuto et al., 2021): mortality, length, and occurrence of
malformation, in toto and at the retinal level, proven target of embryo’s toxicity (Hauptman et
al.,1993; Simoniello et al., 2014). Following the occurrence of malformations, a preliminary gene
expression analysis was also carried out to assess the possible influences of DLZ on the expression
of early development genes, on the cytokine-mediated immunological response, and on the
detoxification processes (see Table S1 and Carotenuto et al., 2021). In addition, in consideration of

the sedative activity of DLZ, the impacts on embryonic swimming performance and heartbeat rate
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were determined. Changes in redox state were evaluated by ROS content analysis and by determining
lipids oxidative damage, antioxidant enzyme activity (glutathione peroxidase and reductase), and in

vitro susceptibility to oxidants.

2. Materials and methods
2.1 Animals

Adult Xenopus laevis, obtained from Nasco (Fort Atkinson, Wisconsin, USA), were kept and used at
the Department of Biology of the University of Naples, Federico 11, according to the guidelines and
policies dictated by the University Animal Welfare Office in agreement with international rules and
strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health of the Italian Ministry of Health. The protocol was approved by
the Committee on the Ethics of Animal Experiments of the University of Naples Federico Il (Permit
Number: 2014/0017970). All procedures were performed according to Italian ministerial
authorization (DL 116/92) and European regulations on the protection of animals employed for
experimental and other scientific purposes. All surgical procedures were performed under tricaine
(MS222, Sigma) and organized to minimize suffering. To obtain eggs, X. laevis females were injected
in the dorsal lymphatic sac with 500 units of Gonase (AMSA) in amphibian Ringer solution (111 mM
NaCl, 1.3 mM CaClz, 2 mM KCl, 0.8 mM MgSOs, in 25 mM Hepes, pH 7.8). Fertilized eggs and
embryos were obtained by standard insemination methods (Bernardini et al, 1994) and staged
according to Nieuwkoop and Faber (1956).

2.2 Embryos’ treatment

Three in vitro fertilizations were performed. For each fertilization, triplicate Petri dishes were set for
controls (3 dishes containing 10 embryos for a total of 30 embryos) and delorazepam treatments (3
dishes containing 10 embryos for each concentration, for a total of 90 embryos). The experiment in
triplicate produced a total of 360 embryos, 270 of which were exposed to the drug. The conventional
FETAX assay was modified by anticipating the contact of the embryos with the drug at stage 4/8 cell,
to emulate the environmental situation of contact with the drug and to study the effects on early
development. 10 embryos at stage 4/8 for each treatment were selected for testing and placed in a 10
cm diam glass Petri dish containing 50 mL of FETAX solution (Frog Embryo Teratogenesis Assay-
Xenopus pH 7.4; 106 mM NaCl, 11 mM NaHCOs;, 4 mM KCI, 1 mM CaCl;, 4 mM CaSO., 3 mM
MgSQ.), (Mouche et al., 2017).

For the treatment, a largely consumed pharmaceutical product was used. In form of oral drops, it
contains the active principle delorazepam at a 1 mg/ml concentration and excipients in unspecified

quantities (purified water, ethanol, glycasol N, glycerol, propylene glycol, sodium saccharin).
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Solutions were prepared by dissolving the drug in FETAX solution with different dilutions to obtain
1 pg/L, 5 pg/L, and 10 pg/L. Sibling embryos grown in FETAX solution were used as controls. All
embryos were exposed up to stage 45/46 in a static condition, i.e., solutions were not renewed, so to
determine the potentially embryotoxic effects of the delorazepam-based drug and/or its active
metabolites. All the experiments were carried out at 21 °C, under a 12 h light: 12 h dark photoperiod.
The pH (7.4) of the solutions in the Petri dishes containing the embryos was checked daily. Embryo’s
survival and phenotypes were checked daily, and dead embryos were recorded and immediately

removed.

2.3 Determination of embryo’s phenotype, length, heart rate, and motility

For phenotype analysis, the survived embryos at stage 45/46 were anesthetized in FETAX containing
100 mg/L MS-222 (SIGMA) and placed under an MZ16F UV stereomicroscope equipped with a
Leica DFC 300Fx camera. A photo of each class of most common malformation was taken in ventral,
lateral, and dorsal positions. For length, heartbeat, and motility determination, thirty embryos from
each treatment were randomly collected. A stereomicroscope equipped with an eyepiece micrometer
was used to determine the length of the embryo. Heart rate was determined by counting the number
of beats in a series of 30 seconds examinations, carried out in triplicate at a distance of 1 min
(Carotenuto et al., 2016). For motility evaluation, the selected embryos were transferred into separate
glass Petri dishes (diameter: 10 cm) containing 50 mL of FETAX solution, and let acclimatize for 5
minutes, protected by a black curtain from any possible disturbance exerted by the researcher. Single
embryos were filmed for 60 seconds, and videos were analyzed by the software Tracker Video
Analysis and Modeling Tool (Open-Source Physics). Speed and swimming activity data were
normalized using the respective controls. The average velocity was determined as the distance
traveled per second (cm/s), in the 60 seconds trials; time inactive (freeze) was quantified as average

time (in seconds) spent resting, in the 60 seconds trials.
2.4 Histological analysis

Ten randomly selected embryos from each treatment were fixed in 2.5% glutaraldehyde and 4%
paraformaldehyde in 0.1 M PBS pH 7.4 for 24h at 4 °C, and post-fixed in 1% osmium tetroxide for
1 hour at 4 °C (Avallone et al., 2015). After washing in 0.1 M PBS pH 7.4 at 4 °C, samples were
dehydrated in ascending ethanol, and propylene oxide and embedded in Epon 812 (60 °C, 48 h).
Semi-thin sections (1.5 um) of the eyes were cut and stained with 1% toluidine blue solution prepared
in 1% sodium tetraborate buffer. For each embryo, 30 serial sections were examined with a Zeiss
Axiocam camera applied to a Zeiss Axioskop microscope (Zeiss, Jena, Germany). Measurements of

retina layers thickness and cell diameter were performed with the AxioVision software.
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2.5 RNA and Real-Time PCR

For each treatment group, total RNA was extracted from a pool of 6 embryos with the Direct-zol
RNA Mini Prep kit (ZymoResearch, Irvine, CA, USA) following the manufacturer’s instruction and
used for cDNA synthesis using the SuperScript Vilo cDNA synthesis kits (Life Technologies
Massachusetts, USA). Primers were designed using the software Primer 3 Plus (Table S1). Real-time
PCR was performed using Power SYBR Green Master Mix kits (Life Technologies) using the 96-
well optical reaction plate in 20 pL total reaction volume. Reactions were conducted on an AriaMx
Real-time PCR System. The magnitude of change in gene expression relative to control was
determined by the 222 method of Livak and Schmittgen (2001).

2.6 Redox state analysis
2.6.1 Preparations of homogenates

The analysis of redox state was performed on six samples for each experimental group. The embryos
were finely minced and homogenized in a cold homogenization medium (HM, 220 mM mannitol, 70
mM sucrose, 1 mM EDTA, 0.1% fatty acid-free aloumin, 10 mM Tris, pH 7.4) using a glass Potter-
Elvehjem homogenizer set at 500 rpm for 1 min. Total protein content was measured by the biuret

method and the homogenates were used for the following measures.
2.6.2 ROS content determination

The ROS content was measured according to Napolitano et al., 2022. In brief, 25 pg of homogenate
proteins diluted in 200 pL of monobasic phosphate buffer were incubated for 20 min with 10 uM
DCFH-DA at room temperature. Then, FeCls was added to a final concentration of 100 uM, and the
mixture was incubated for 30 minutes. The conversion of DCFH-DA to the fluorescent product DCF
was measured using a multimode microplate reader (Synergy™ HTX Multimode Microplate Reader,
BioTek) with excitation and emission wavelengths of 485 and 530 nm. Background fluorescence
(conversion of DCFH to DCF in the absence of homogenate and mitochondria) was corrected with

parallel blanks. ROS production was expressed as Relative Fluorescence Units per pg protein.
2.6.3 Oxidative damage to lipids

The level of lipid hydroperoxides (HPs) was used to measure the extent of the lipid peroxidative
processes in the homogenates of the embryos. The measure was spectrophotometrically performed
by using a system of two coupled enzymatic reactions catalyzed by glutathione peroxidase and

glutathione reductase, respectively, in the presence of GSH and H2O>. The HPs levels were calculated
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by the rate of NADPH oxidation at 340nm and expressed as nmol NADPH oxidized/minutes per mg

of proteins.
2.6.4 Activities of the antioxidant enzymes GPX and GR

GPX activity in 0.02 mg proteins of the homogenates was assayed at 25 °C by using H20; as substrate
according to Flohé and Giinzler (1984). The reaction was spectrophotometrically followed at 340 nm
by the oxidation of NADPH in the presence of GSH and GR. GR activity of 0.02 mg proteins of the
homogenates was assayed at 25 °C by measuring the rate of NADPH oxidation after the addition of
GSSG. Each procedure was performed by using a multi-mode microplate reader (Synergy™ HTX
Multi-Mode Microplate Reader, BioTek), and both enzymes’ activities were expressed as nmol

NADPH oxidized/minutes per mg of proteins.
2.6.5 In vitro susceptibility to oxidants

The in vitro susceptibility of homogenates to oxidants was evaluated by the change in hydroperoxide
levels induced by treatment of 1 mg of homogenate proteins/mL with Fe and ascorbate (Fe/As), at
concentrations of 100/1000 puM, for 10 min at room temperature (Venditti et al., 2016). The reaction
was stopped by the addition of 0.2% 2.6-di-t-butyl-p-cresol (BHT) and the hydroperoxide levels were

evaluated as previously described.
2.6.6 Cytochrome oxidase activity (COX)

COX activity of 0.1 mg proteins of the homogenate was polarographically determined at 25 °C by
using a respirometer Hansatech (Hansatech Instruments Ltd, United Kingdom). The measure was
performed in 1.0 mL of buffer solution (30uM Citc 3131, 10 mM Sodium Malonate, 75 mM Hepes,
4 uM Rotenone, 0.5 mM 2.4-dinitrophenol, pH 7.4) after membranes solubilization with 1% Lubrol
and in presence of a mixture of TMPD plus Ascorbate (30 mM plus 400mM). COX activity was

expressed as pumol O/min per mg of proteins.
2.7 Statistical analysis

Data were processed with GraphPad-Prism 8 software (GraphPad Software, Inc., San Diego, CA,
USA). The survival distributions in control and experimental groups were assessed in terms of
significance using the Mantel-Cox test. To evaluate differences in heartbeat, length, motility, and
oxidative stress among groups, the data were checked for compliance with parametric tests, then One-
Way ANOVA followed by Tukey's pairwise comparison tests were performed. For Real-Time PCR,

statistical significance was determined using Two-Way ANOVA with the Bonferroni test. Data were
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expressed as mean = SD; probability was considered statistically significant at p< 0.05 (*), very
significant at p< 0.01 (**) and at p<0.001 (***), and extremely significant at p<0.0001(****).

3. Results

3.1 Embryo survival and body malformations

The embryos grown in presence of DLZ showed a significant dose-dependent increase in mortality
(p<0.0001; Table S2, Figure 1A): the percent of death reached 32.2% in 1 pg/L DLZ, 44.4% in 5
Mg/L and 53.3% 10 pg/L DLZ. In controls, mortality remained at 11.1%. Control embryos showed
an average length of 0.97 mm. No significant variations were registered in embryos exposed to DLZ
at 1 and 5 pg/L while, in 10 pg/L treatment, a moderate but significant decrease in length was
observed if compared to control and 1 pg/L (0.87 mm; p<0.05; Fig. 1B).

The incidence of malformations also follows a dose-dependent trend (Table S3). Control embryos
showed a low rate of malformation, 3.7%, and anomalies consisted of moderate and diffused swelling.
In presence of DLZ, the percentages of malformations raised to 21.3% after 1 pg/L exposition and to
62.0% and 69.0% in embryos exposed to 5 or 10 pg/L.

Different types of malformations were common to the three dosages used, albeit with different
frequencies (Table S3). Diffuse edema was the most common (61.5 to 74.2%), a condition making it
impossible to distinguish the cephalic from the abdominal region (Fig. 2E-F). The head edema was
the second most represented abnormal condition (16.1 to 38.5%) where, although the presence of
abdominal swelling (Fig. 2C-D), the cephalic area was distinguishable (Fig. 2C-D). A bent tail
condition was also occasionally observed (9.7%) but only in 5 pg/L embryos (Fig. 2H).

In control embryos the intestine appeared well organized, properly convoluted (Fig. 2B); in contrast,
in DLZ-treated embryos it appeared immature (Table S3), misfolded, apparently elongated, and/or
dilated (Fig. 2D-F), often with clearly anomalous loops (Fig. 2F). The edema was frequently so
consistent to cause an outbreak of the abdominal wall, with consequent extrusion of part of the
intestine (Fig. 2G). In embryos with the bent tail condition, the immaturity of the intestine folding
was a constant condition (Fig. 2H).

Body alterations were often accompanied by an alteration in the presence and/or distribution of the

dorsal pigment (Fig. 2C, E) if compared to the control (Fig. 2A).
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Figure 1. Mortality and length in Xenopus laevis embryos exposed to delorazepam. (A) Mortality percentage significantly
increases at all the concentrations and in all stages examined. Chi-square test for trend p<0.0001. (B) Significant growth
retardation in embryos exposed to 10 pg/L if compared to control and 1 pg/L mean length. Chi-square test for trend
p<0.05. Data are means + SD; total number of embryos examined (n); Statistic Unit = 12. * p<0.05; **p<0.01,;
***p<0.001.
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Figure 2. Altered phenotypes in Xenopus laevis embryos exposed to delorazepam. (A) Dorsal and (B) ventral view of
control embryo displaying the typical gross morphology with spiralized intestine (arrowhead). Notice the correct
distribution of the dorsal pigment (black arrow); (C) Dorsal and (D) lateral view of embryos after exposition to
delorazepam; head (arrow) and abdominal (dot arrow) edema, immature intestine (arrowhead), and reduced dorsal
pigment (black arrow). (E-F) Lateral view of diffuse edema (arrow) with the presence of an immature intestine
(arrowhead) and increased dorsal pigmentation (black arrow); (G) Leaking of the intestine (arrowhead) following the

outbreak of abdominal edema; (H) Bent tail condition (asterisk) with immature intestine (arrowhead). Bar = 1.25mm.

3.2 Retinal defects

The microscopic analyses of the control eyes (Fig. 3A) showed a typical differentiating retina.
Ganglion cells (GCL) were organized in a monolayer, the inner plexiform layer (IPL) appeared a

thick and dense reticulum of fibrils. The inner nuclear layer (INL) was multilayered, with tightly

packed cells among which Muller cells were recognizable by the denser cytoplasm. The outer
plexiform layer (OPL) was barely visible below a thick outer nuclear layer (ONL). It was
characterized by the presence of large oil droplets, in the inner segment of cones photoreceptors, and
by the contact with a regular pigmented epithelium. After exposure to DLZ, the thickness of the

different layers (fig. 3E) and cell size (fig. 3F) significantly increased. At the environmental
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concentration of 1 pg/L, GCL and INL are thicker, ganglion cells and inner nuclear layer cells are
larger and disarranged (Fig 3B) if compared to controls. Increasing the dose to 5 pg/L (Fig. 3C) or
10 pg/L (Fig. 3D) caused a further dose-dependent increase in cells diameters (fig. 3F) and layers
thickness (fig. 3E). This latter alteration was particularly evident in GCL, becoming multilayered,
and in OPL, becoming distinguishable between INL and ONL. Significant changes are also observed
in cell organization. In the INL, cells appeared loosely arranged and Muller cells increased in number,
especially at 10 ug/L treatment. As a consequence, the retina appeared disorganized (Fig. 3C-D),
thicker and the volume of the vitreous chamber markedly reduced (Fig. 3B-D). Moreover, oil drops
were more numerous, bigger, and dispersed in the entire retina (Fig. 3B-D). No significant
morphological changes were detected in the inner plexiform layer (IPL).
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Figure 3. Histological section of the retina of Xenopus laevis embryos treated with delorazepam. (A) Control; typical
retinal organization with a monolayered GLC, an INL with dispersed Muller cells (white arrows), and oil drops in inner
segments of cones (black arrows). Vitreous chamber (asterisk). (B-C) Increase in GCL, INL, and OPL thickness and
marked decrease of the vitreous chamber (*). (D) GCL is multi-layered, the INL loosely organized with increased Muller
cells (white arrows) and oil droplets (black arrows). (E and F) Dose-dependent increase in retinal layers thickness and
retinal cells diameters in GLC, INC, and OPL. Data are means + SD; **p<0.01; ****p<0.0001.
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3.3 Bradycardia and impaired swimming performance

No differences were registered in the heartbeat rate between control embryos and embryos exposed
to 1 pg/L DLZ: in both groups, an average frequency of 65 beats per minute was reported. A
statistically significant decrease was observed in embryos exposed to 5 and 10 pg/L in which the
average frequency reduced to 61 beats per minute (p <0.001; Fig. 4A). A significant decrease was
also observed among the treaties (p<0.01).

Under normal conditions, swimming was inconstant, characterized by a burst in which the average
speed was 2.85 + 1.44 cm/s (Fig. 4B). The activity was followed by a short period of stasis during
which the embryos were completely steady (Fig. 4B). However, when stimulated, the embryos
immediately started moving. In the treated embryos, the average speed progressively and
significatively decreases with increasing DLZ dosage: from 0.79 £ 0.42 cm/s at the environmental
concentration (p<0.0001), to 0.62 + 0.41 at 5 pg/L (p<0.0001) to 0.55 + 0.36 at 10 pg/L (p<0.0001).
A significant decrease was also observed between embryos treated with 1 pg/L and 10 pg/L (p<0.01).
In addition, during the stasis, a prolonged stimulus was needed to restart the animal and, when
swimming was finally resumed, it was slower.

Even the rest times, if compared to the controls (average 4 seconds every 60 seconds of activity),
increased considerably after DLZ exposure, no matter the dose, lasting on average 41 seconds (Fig.
4C).
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Figure 4. Heart rate and swimming performance in Xenopus laevis embryos exposed to delorazepam. (A) Dose-dependent
bradycardia in embryos exposed at 5 and 10 pg/L. Chi-square test for trend p<0.0001. (B) Dose-dependent decrease in
swimming speed of the treated embryos. Chi-square test for trend p<0.0001. (C) Significant increase in time spent resting
(freeze) during the 60-second trials. Chi-square test for trend p=0.0042. Data are reported as means + SD; total number
of embryos examined (n); *p<0.05; **p<0.01; ****p<0.0001
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3.4 Altered genes expression

Results indicated that DLZ at the environmental dose of 1 pug/L induced a significant downregulation
of bmp4 and egr2 (p<0.001), fgf8 (p<0.01), and pax6 (p<0.05). At 5 pg/L, bmp4 and fgf8 were
normally expressed while rax1 (p<0.0001) and egr2 (p<0.001) were overexpressed, and sox9 and
pax6 significantly downregulated (p<0.0001). The highest dose of 10 pg/L induced overexpression
of bmp4 (p<0.0001), egr2 and raxl (p<0.0001) while sox9 and pax6 remained downregulated
(p<0.0001). fgf8 levels were not modified (Fig. 5A).

Pro-inflammatory tnfa and il1lb genes were already over-expressed at 1 pg/L (p<0.01 and p<0.0001),
further increasing at the higher dosages (p<0.0001). p65 showed a slight increase in expression at 1
and 5 pg/L, significantly raising at 10 pg/L (p<0.05). For the abcbl gene, the expression showed a
gradual increase up to 5 pg /L (p<0.0001) and a decrease at 10 pg/L (p<0.0001) (Fig. 5B).
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Figure 5. Changes in gene expression in Xenopus laevis embryos exposed to delorazepam. (A) Early developmental
genes expression was always downregulated at environmental doses, and up or downregulated at higher doses if compared

to control expression. (B) Pro-inflammatory cytokines and abcbl genes tend to be overexpressed in the treated embryos.

Data are means + SD. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

3.5 ROS content, oxidative damage of lipids, and antioxidant enzymes activity

ROS content significantly increases after exposure to delorazepam with the highest levels registered
in 5 pg/L and 10 pg/L treatments (Fig. 6A). Treatments also induce a dose-dependent increase in lipid
hydroperoxides levels (Fig. 6B). Both glutathione peroxidase (fig. 7A) and glutathione reductase (Fig.
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7B) activities increased after DLZ exposure, raising to the highest levels at 10 pg/L. In addition, all
treated groups showed increased susceptibility to oxidants, particularly in the presence of a maximum
concentration of delorazepam (Fig. 7C). The cytochrome oxidase activity (COX) remained

unaffected by treatment with delorazepam (Fig S1).
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Figure 6. Analysis of ROS content and oxidative damage to lipids in Xenopus laevis embryos homogenates. (A) ROS
production increases at the environmental dose and raises further after 5 and 10 pg/L treatments. (B) Dose-dependent
increase of the lipid hydroperoxides levels. Chi-square test for trend p<0.0001. Data are means + SD. Total number of
embryos examined (n); Statistic Unit = 12. *p<0.05; **p<0.01; ***p<0.001.
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Figure 7. Activities of glutathione peroxidase GPX (A) and reductase GR (B), and in vitro susceptibility to oxidants AHP
(C) in Xenopus laevis embryos homogenates. A dose-dependent increase is noticed for all parameters analysed. Chi-
square test for trend p<0.0001. Data are means + SD. Total number of embryos examined (n). Statistic Unit = 12.
*p<0.05; **p<0.01; ***p<0.001.
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Discussion

Data collected demonstrate that DLZ profoundly influences early development in Xenopus. The
benzodiazepine is confirmed sedative (Griffin 111 et al., 2013; Hollis and Boyd, 2005), as indicated
by decreased heart rate and reduced locomotory performance, two effects depending on binding to
GABA receptors of the central nervous system (Zanher et al., 2007; Hollis and Boyd, 2005). DLZ is
also confirmed teratogenic and able to alter gene expression (McElhatton, 1994; Pasbakhsh et al.,
2003) and cause oxidative stress.

Concerning morphological anomalies, in mammalian embryos, BDZs reduce birth weight and
affect head development, eyes, ears, brain, and mouth in particular (Pasbakhsh et al., 2003, Tandon
& Mulvihill, 2009). In Xenopus embryos, the head gross morphology was apparently normal but the
expression of developmental genes controlling neurulation, sox9, egr2, pax6, and rax1, was altered
suggesting interference with nervous system development. In particular, the altered expression of
sox9 suggests a dysregulation of neural plate cell multipotency (Scott et al., 2010) while the altered
expression of egr2 indicates an alteration in Schcellcells development (Duong and Svaren, 2019).
Altered pax6 indicates potential interference with telencephalon dorso-ventral and anterior-posterior
patterning, with the specification of neuronal subtypes, neuronal migration and axonal projection
(Matsumoto et al., 2008).

The hypothesis of DLZ-induced nervous system damage is supported by two further pieces of
evidence. The first is the observed changes in pigmentation, a process also depending on sox9 and
egr2: the former controls neural crest cell differentiation (Tussellino et al., 2016) and melanocytes
number while the latter controls melanocytes distribution in the skin (Aoki et al., 2003). The second
piece of evidence is DLZ interference with retinal development. The downregulation of sox9 and
pax6 can be responsible for the observed alteration in the organization of the inner plexiform and
ganglion cells layers, the two in which GABAa receptors were already expressed at the time of
treatment (Soklnick et al., 1980). The action would have been exerted by interfering with retinal
progenitors’ fate (Hsieh and Wang, 2009). Further investigation is necessary to prove the interference
and to test nervous system development and functionality; however, anomalies similar to those
observed in Xenopus were already registered in lizard embryos exposed to cadmium. In this species,
retinal damage and pax6 dysregulation were associated with anomalies in the mesencephalic roof,
due to changes in rate and time of cell proliferation (Simoniello et al., 2014).

Eye damages were not particularly severe but together with altered oil droplets size and
distribution can prelude to aniridia, cataracts, or corneal defects (Nakayama et al., 2015) and impaired

visual performance. Not to neglect the fact that ganglion cells normally produce a neuroactive steroid
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controlling the inhibitory transmission (Guarneri et al., 1995). DLZ might have interfered with its
release or function, therefore opening a number of new research questions.

Data from the retina are particularly interesting also for another aspect. pax6 under expression
accounts for the observed anticipation of retinal precursors differentiation (Philips et al., 2005) and,
in particular, for the increased number of differentiating Muller cells (Zhu et al., 2013). However, it
does not explain the increased thickness of the ganglion cells layer. The observed effects can be
attributed to increased proliferation, but this usually relates to a pax6 overexpression (Simoniello et
al., 2014). A suggestive hypothesis comes therefore from these contrasting data: that DLZ has
different, region-specific effects in the retina mimicking what is already demonstrated in the brain
(Musavi and Kakkar, 1998).

Evidence of DLZ teratogenicity also comes from gut deformities. Very frequent and particularly
evident, they are indicative of a delayed winding of gut loops (Chalmers and Slack, 1998), a common
response in Xenopus embryo intoxication (Carotenuto et al., 2022). Delay can be associated with the
observed over-expression of bmp4, a gene involved in gut specification, regionalization, and
differentiation (Fu et al., 2006). Based on this evidence, exposed Xenopus embryos wouldn’t feed
properly, and the reduced size would support the hypothesis. The smaller size of treated embryos
however can also depend on the altered expression of fgf8, a gene involved in embryonic axes

determination and elongation (Dorey and Amaya, 2010).

Coming to the causes of the observed alterations, they are probably multiple and interconnected.
Oxidative stress certainly has a primary role as both cause and effect. No information is available on
DLZ but another benzodiazepine, diazepam, has proven pro-oxidative effects (Musavi and Kakkar,
1998). ROS production can activate the MAPK signaling pathways, which further activates several
inflammatory cytokines (Park et al., 2011). In Xenopus embryos, overexpression of tnfe, illb, and
p65 is registered which explains edema and developmental changes. In addition, ROS acts as a second
messenger and, by regulating key transcription factors, both positively and negatively can affect cell
signaling, proliferation, and death affecting embryonic development (Dennery, 2007). Is not a case
that ROS represents a very early and sensitive biomarker of amphibian developmental toxicity (Rizzo
etal., 2007).

Another factor must be taken into consideration: the benzodiazepine peripheral receptors or
PBR/TSPO, a transmembrane protein located in the outer mitochondrial membrane. The TSPO binds
benzodiazepines with micromolar affinity, is evolutionary highly conserved (Bonsack and Sukumari-
Ramesh, 2018), is present in all tissues, and is already expressed in embryos (Papadopoulos et al.,
1997). The receptor controls growth and differentiation, gene expression (Yasin et al., 2017), and the
immune response (Betlazar et al., 2020). All these effects are compatible with the effects
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observed in X. laevis embryos. In addition, being an oxygen sensor, TSPO can control ROS

production and mitochondrial functionality (activity), thus contributing to oxidative stress production.

TSPO, by controlling mitochondrial functionality control cell bioenergetics (Betlazar et al.,
2020), and, as a consequence, is a potential responsible for reduced embryo motility (Alelwani et al.,
2020). However, cytochrome oxidase activity, in vitro correlating to the maximum aerobic capacity
of the tissues, did not change in DLZ-treated embryos. Therefore, the observed decreased heart rate
and reduced locomotory performance would depend exclusively on a drop in blood pressure and
sympathetic nerve activity induced by DLZ potentiation of GABAergic inhibition (Zanher et al.,
2007; Snyder et al, 2000). As expected, the increase in ROS triggered a protective response.

As in other species, Xenopus embryos activated low molecular weight antioxidants and
antioxidants enzymes, such as GPX and GR. Glutathione reductase catalyzes the reduction of
glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), which is a critical molecule
in resisting oxidative stress and maintaining the reducing environment of the cell. The enzyme
glutathione peroxidase utilizes reduced glutathione to neutralize hydrogen peroxide and lipid
hydroperoxides (Napolitano et al., 2021). These enzymatic activities have been reported to increase
after diazepam exposure (Ogueji et al., 2017). However, the antioxidant enzyme activity was not
sufficient to counteract the DLZ-induced increase in ROS level. Indeed, in Xenopus embryos, the
capacity to face in vitro oxidative stress was reduced in DLZ-treated animals, especially at the higher
concentrations. This could explain why, though different DLZ concentrations increase ROS content
to the same extent, at the higher DLZ concentrations oxidative damage was more consistent. On the
other hand, the reduced capacity to face in vitro oxidative stress at the highest DLZ concentration can
depend on the reduced expression of the abcbl gene, a member of the ABC cassette multi-xenobiotic
pump involved in detoxifying mechanisms and, in the extrusion from the cells of unmodified

exogenous compounds (Guo et al., 2020).
Conclusion

Data evidentiate that benzodiazepines such as delorazepam if released in the environment, interfere
with amphibians’ embryo development. Morphological, behavioral, and molecular alterations are
induced, and these significantly impair embryo survival. Oxidative stress is certainly involved but up
to now, it is unclear if ROS is a cause or a consequence of the observed alterations. Most probably
the effects depend on a synergic action of ROS, GABA, and TSPO receptors but only further studies
will fully clarify the delorazepam way of action. The relevance of the observed effects indicates that
immediate attention must be paid to this class of contaminants and that they should be monitored

during environmental risk assessment.
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Supplementary Material

Table S1

Table S1. Primers

decarboxylase

Gene name Oligo Forward Sequence Oligo Reverse Sequence
bmp4 - bone morphogenetic | CCTCAGCAGCATTCCAGAGAA | TCCGGTGGAAACCCTCATCC
protein 4
fgf8 - fibroblast growth factor | CGTTTGGAAGCAGAGTTCGC GTTGCCTTGTCTTCGACCCT
8
sox9 - sex determining region | ACGGCGCAGAAAGTCTGTTA | GACATCTGTCTTGGGGGTGG
Y-box 9
egr2 - early growth response | AGTAAGACCCCAGTCCACGA | GCAGTAATCGCAGGCAAAGG
2
pax6 - paired box protein CAGAACATCTTTTACCCAGGA | GAATGTGGCTGGGTGTGTTA
Pax-6
rax1 - retinal homeobox GGAAAGACCTCAAGCGAGTG | ATACCTGCACCCTGACCTCG
protein Rx1
tnfa, — tumor necrosis factor | CAAGCAATGAAAGGGGAAAA | TGCAGTCAGGACCTGTGAAG
alfa
il1b- interleukin 1 beta TGTGCAGATAACCCATGGAA | TGCAGAGCAACAGAAGATGG
p65 — Nf-kB transcription TGGCTATTGTCTTCCGAACC ATATGGTGGGGGTCTCCTTC
factor family
abcbl — ATP binding GGCTGTTGCTGAAGAGGTTC | ACCATACCAAAAGGCGAGTG
cassette, subfamily B member
1
odcl - ornithine GTGGCAAGGAATCACCCGAA | TCAAAGACACATCGTGCATC

Table S2
Table S2. Embryotoxic effects of delorazepam on Xenopus laevis embryos
Control 1 pg/L 5 pg/L 10 pg/L
Embryos (n) 90 90 90 90
Dead embryos (n) 10 29 40 48
Living embryos (n) 80 61 50 42
Mortality (%) 111 32.2° 44 4¢ 53.3¢d

n=number of embryos; ® chi-square test p<0.001; ¢ chi square test p<0.0001;
d chi-square test for trend p<0.0001.
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Table S3

| Table S3. Malformations on living embryos after delorazepam treatment
Control| 1 pg/L 5 pg/L \ 10 pg/L
Living embryos (n) 80 61 50 42
Total malformed embryo (n; %) | 3 (3.7) 13 31 (62.0)° 29 (69.0) ¢4
(21.3)2
Head edema 0 5 (38.5)° 5 (16.1)° 9 (31.0)°
Diffuse edema 0 8 (61.5)° 23 (74.2)° 20 (68.9)°
Bent tail 0 0 3(9.7)° 0
Intestine alteration 0 13 (100)° 31 (100)° 29 (100)°

n=number of embryos; 2 chi-square test p<0.01; ® chi-square test p<0.001;
¢ chi-square test p<0.0001; ¢ chi-square test for trend p<0.0001.
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Figure S1. Cytochrome oxidase activity (COX) of Xenopus laevis embryos homogenates. No effects are observed for

control and different treatment. Data are means + SD. Total number of embryos examined (n).
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Water contamination by delorazepam induces epigenetic defects and genomic instability in
the embryos of the clawed frog Xenopus laevis
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Structural and functional damage to the retina, intestine, and skeletal muscle in Xenopus
laevis embryos exposed to the commonly used psychotropic benzodiazepine delorazepam
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Chapter 3
Mytilus galloprovincialis

3.1 Behavioral alterations and gills damage in Mytilus galloprovincialis exposed to an
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Highlights

e An environmental concentration of delorazepam was tested on Mytilus galloprovincialis
e Delorazepam affected valve movements by inducing muscles relaxation

e Damaged gills’ lamellae and decreased oxygen consumption were observed

e Delorazepam treatment modified gills protein pattern

e The exposition to the psychotropic delorazepam would severely impair animal fitness
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Abstract

Psychoactive compounds, and benzodiazepines (BZPs) in particular, represent an important class of
emerging pollutants due to their large (ab)use and high resistance to degradation. Nowadays it is
known that sewage treatment does not completely eliminate these substances and, therefore, BZPs
and their metabolites reach concern levels in most aquatic environments all over Europe, ranging
from pg/L to ng/L. In this study, we investigated the effects of delorazepam on Muytilus
galloprovincialis, a model organism in toxicity testing and a key species in coastal marine
ecosystems. Given its psychoactive activity, the study primarily addressed discovering the effects on
behavior, by conventional valve opening and closure tests. Possible cytotoxic activity was also
investigated by analyzing valve abductor muscles, gills histology, and correlated oxygen
consumption. Results demonstrate negative effects on mussel behavior, interference with
metabolism, and alteration of gill morphology and protein content. In conclusion, delorazepam
confirms its toxicity to aquatic environments, highlighting the possibility that BZDs can ultimately

affect the structure of the food web and the functions of the coastal ecosystems.

Introduction

In the last decades, it has become clear that most pharmaceutical residues released in wastewater
are not degraded during their passage through the waste plants (Fatta-Kassinos et al., 2011; Kot-Wasik
et al., 2016). As a consequence, they are dispersed in the environment, accumulating in superficial

waters at nanogram to microgram concentrations (Hernando et al., 2006).

Psychoactive compounds and benzodiazepines (BZDs), in particular, are very common among
these contaminants (Lei et al., 2020) due to their extensive (ab)use and high resistance to degradation,
especially in sediments (Kosjek et al., 2012; Klaminder et al., 2015). BZDs and their metabolites have
reached concerning levels in most aquatic environments all over Europe (Fick et al., 2017), and
negative effects on aquatic species have been already reported even at low concentrations (Brodin et
al., 2014; Silva et al., 2020). In addition, direct exposure effects might be further magnified by

bioaccumulation in the food web chain (Gomez et al., 2012; Cerveny et al., 2020).

BZDs cause sedation by potentiating the effect of the inhibitory neurotransmitter y-aminobutyric
acid (GABA) on GABAAa receptors, ligand-gated chloride channels (Sieghart etal., 2012).
Benzodiazepines bind between the al and y2 subunits, at a site distinct from that of GABA and, by
acting as allosteric modulators, increase ligand-receptor affinity potentiating the response (Manchester

et al., 2018). This results in significant mitigation of signal at the synaptic level corresponding to
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reduced excitability. A second mechanism of action is exerted via peripheral benzodiazepine receptors
(TSPO) located on mitochondrial membranes (Papadopoulos et al., 2006). On mitochondria, TSPO
regulates cell energy metabolism, transmembrane potential, and sensitivity to reactive oxygen species
(Casellas et al., 2002).

Improper activation of GABA receptors may induce potentially relevant consequences on the
behavior of non-target aquatic species, while the effects on TSPO receptors may alter mitochondrial
function and energy availability. The consequent impairment of animal fitness includes, for example,

reduced feeding success, inefficiency to elude predators or altered reproductive behavior.

The present work aimed to investigate the effects of the benzodiazepine delorazepam (DLZ) on
Mytilus galloprovincialis, model organisms in toxicity testing (Prud’homme et al., 2020) and key
species in coastal marine ecosystems (Maggi et al., 2009). Mussels are filter feeders preferring
eutrophicated waters, rich in plankton or suspended particulate matter as occurring in richly populated
basins. A drawback however is the concomitant exposure to high levels of contaminants, potentially
endangering their survival (Sampaio et al., 2022). Consequences may be severe considering that
mussels contribute to the circulation of matter and nutrients, provide shelter for reproducers and protect
from erosion. Not less important, they are of conspicuous commercial relevance (Seitz et al., 2014;
Alegria et al., 2017).

Therefore, to mimic an environmental condition, mussels were exposed to delorazepam at 1 pg/L
(Fogliano et al., 2022), under static conditions in order to determine the potentially toxic effects of the

active principle and its biotransformed products.

Treatment effects were determined by analyzing valve opening and closing, a conventional
behavioral test (Ayad et al., 2011), and the condition of the valve abductor muscles. To correlate
changes in valve and/or muscle activity with changes in metabolic activity, oxygen consumption was
determined. Finally, cytological and SDS-PAGE analyses were performed to test DLZ cytotoxicity on
the gills, directly exposed to the drug and probable absorption site (Ogueji et al., 2017).

2. Materials and methods
2.1 Animals handling and maintenance

Adult samples of Mytilus galloprovincialis (valve range 6-8 cm) were obtained from a commercial
supplier and maintained in 50 L tanks with artificial seawater (Instant Ocean Sea Salt, salinity

36+ 1%0), maintained at 16 + 1 °C under a natural photothermal regime (Motta et al., 2018). They were
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fed with unicellular algae, homogenized mussel tissues, and food for filter feeders (Coral Diet, Filtrator,

Xaqua, Italy).

After two weeks of acclimation (Motta et al., 2018), animals were randomly divided into two
groups (n=30 controls; n=45 DLZ-treated) and transferred into 30 L aquaria filled so to maintain a ratio
of 2.5 L/animal. The first group was left untreated (control); the second received a largely consumed
pharmaceutical product containing the active principle delorazepam at 1 mg/ml concentration and
excipients in unspecified quantities (purified water, ethanol, glycasol N, glycerol, propylene glycol,
sodium saccharin). The solution was prepared by dissolving the drug, already dissolved in oral drops
(Img/ml) in artificial seawater to a final concentration of 1 pug/L of delorazepam (Fogliano et al., 2022).

Treatments, carried out in triplicates, were static (solutions remained unchanged throughout the
test, Avallone et al., 2015; Fogliano et al., 2022) so to expose the animals to both the drug and the
metabolites. The experiments lasted for 21 days and the water level was maintained by adding pure
distilled water to adjust for evaporation loss. Oxygen levels and water circulation were granted by an
external pump connected to an oxygenator for aquaria. No biological or chemical filter was used so to
avoid drug absorption and/or metabolization in filtering materials. Experiments were carried out
between November and February, in a non-reproductive period, to avoid any possible interference from

changes in behavior and physiology related to spawning.
2.2 Behavioral tests

Animal tanks were placed under stable conditions of light and temperature (16 + 1 °C). On days 1,
3,7, 14, and 21 the animals with open valves were gently touched with a glass stick in order to induce
their closure. The operation was always performed between 11.00 and 12.00 am, so to reduce possible
interferences of circadian rhythm (Gnyubkin, 2010). In addition, care was taken to avoid touching the
same animal more than twice during the observation period. Proper manipulation and animal response
were verified by filming the operations with a camera. Video obtained were used to calculate the
average time employed by animals to close the valves after stimulation and the average time employed
by animals to reopen the valve by at least 5 mm, after the induced closure. Measurements were carried
out on a total of 150 control mussels and 225 DLZ-treated mussels, in three different experiments.
After the operation, a few animals were extracted from the tank and processed for histological and

biochemical analyses. The water level was reduced accordingly to maintain the volume at 2.5 L/mussel.
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2.3 Oxygen consumption determination

The respiratory oxygen consumption (rMO2) was measured in a closed system, using a Clark
electrode, as described by Uliano et al. (2010), and expressed as pg Oz h'* k! total weight. On days 1,
3,7, 14, and 21 after the beginning of the experiments, 5 control and 5 treated animals were randomly
collected from the tanks and individually placed in 300 mL respiratometric chambers connected with
a recirculation pump and a flush pump. The chambers were placed in a larger seawater bath and
maintained at 20°C via thermocriostat. Animals were left to adapt to the chamber for at least 15 min;

during measurements, valves were constantly open.
2.4 Histological analyses

For each experiment, on days 1, 3, 7, 14, and 21, 9 control and 9 treated animals were opened, and

samples of gills and abductor muscles were dissected and processed for microscopy.

The gills were fixed in Bouin’s solution for 6 hours, dehydrated in a graded series of ethanol, and
embedded in wax. Sections were stained with Galgano’s trichrome or hemalum-eosin to show the
general morphology (Motta et al., 2018), with the methyl blue to show the gills chitinous support
(Atkins, 1943) or Alcian blue 1% to show goblet cells and mucous (Motta et al, 2022).

To characterize glycans, a panel of three FITC-lectins was used (Vector Laboratories Inc; 2
mg/ml). In particular, WGA (Triticum vulgaris agglutinin) was used to detect N-acetyl-glucosamine
(glcNAc), DBA (Dolichos biflorus agglutinin) for N-acetyl-galactosamine (galNAc) and PNA
(Arachis hypogaea agglutinin) for terminal galactose (gal). Sections were covered with 1pl of lectin
diluted in 19 ul of PBS, placed in a dark moist chamber at room temperature for 15 min, rinsed with
PBS, and observed under a UV microscope (excitation maximum at 495 nm and emission maximum
at 515 nm). Negative controls were prepared by incubating slides with the lectin and the specific

competing sugar or by omitting the lectin (Motta et al., 2005).

Valve abductor muscles were processed for resin embedding (Avallone et al., 2015). Briefly, for
each experiment, on days 1, 3, 7, 14, and 21, 3 control and 3 treated animals were opened and samples
of muscles were fixed in 2.5 % glutaraldehyde + 4 % paraformaldehyde in 0.1 M PBS pH 7.4 for 4h
at 4°C, and post-fixed in 1% osmium tetroxide. After washing in 0.1 M PBS pH 7.4 at 4 °C, samples
were dehydrated in an ascending series of ethyl alcohol and embedded in Epon 812. Semi-thin
sections (1,5 um) were cut with a glass knife and stained with 1% toluidine blue solution prepared in
1% sodium tetraborate buffer. Sections obtained were analyzed with a Zeiss Axiocam microscope

camera applied to a Zeiss Axioskop microscope.
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2.5 Protein analysis by SDS-PAGE

For each experiment, on days 1, 3, 7, 14, and 21, gill samples were collected from 3 control and
3 treated animals, pooled, rapidly frozen, and stored at -80 °C until processed. For protein extraction,
the frozen tissue was dissolved in 50 mM PBS, pH 7.5 with protease inhibitor cocktail (Sigma),
sonicated for 2.5 min, and centrifuged at 13,000 rpm for 20 min (Coscia et al., 2014). The supernatant
was collected, and the extracted proteins were run on a 12.5% acrylamide gel, in Tris-glycine buffer,
at 60 mA (Motta et al., 2017).

2.6 Statistical analysis of data

Data on behavioral performance and oxygen consumption are presented as means + SE of three
separate determinations. A two-way ANOVA was used to compare means with Sidak's multiple
comparisons post hoc test. Statistics were performed with GraphPad Prism 9.0 (GraphPad Software,
San Diego, CA, USA). Probability was considered statistically significant at p< 0.05 (*) and very
significant at p< 0.01 (**).

3. Results
3.1 Behavioral effect of delorazepam on mussels’ valve closure and opening

After mechanical stimulations, about 2 seconds is the average time taken by the control mussels
to close the valves (fig. 1A); at the different experimental times, values do not change significantly
(p=0.59), indicating that mussels do not undergo habituation to the mechanical stress. After exposition
to the DLZ, responses show a significant delay on days 1 and 3 (p<0.01) and on day 7 (p<0.05), while
on days 14 and 21 no significant differences are observed compared to control animals.
Valves reopening in control mussels occur, on average, after 100 seconds, with a significant decrease
on day 21 (fig. 1B; p=0.02). After DLZ exposure, valve reopening is significantly anticipated on days
1 and 3 (p<0.01), with average values reducing to about 60 seconds. On days 7, 14, and 21 similar

responses to the control group were observed.
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Figure 1. Behavioral response to the benzodiazepine delorazepam (1 pg/L) in M. galloprovincialis. A) Valves closure after
mechanical stimulation is significantly delayed in animals exposed for 1, 3, and 7 days. B) Valves reopening after closure
induced by mechanical stimulation is significantly anticipated in treated animals, on days 1 and 3. Data are means * SD. *,
p < 0.05; **, p <0.01.

3.2 Cytological effects of delorazepam on valve abductor muscles

Abductor muscles of animals exposed to DLZ for 1, 3, or 7 days do not show evidence of relaxation
or injury compared to control muscles. In all samples, muscular bundles are distinct and well-defined,
myofilaments show a regular and compact arrangement with the alternation of smooth and curled fibers
with peripheral nuclei, divided by thin connective tissue that forms the myosepta. Fiber dimensions do
not differ, except on day 7 of treatment, when the muscle is more compact. After 3 days of treatment a
slight increase in myosepta metachromasia is noticed (fig. 2). No changes were highlighted for muscles

after 14 and 21 days of treatment (data not shown).
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Figure 2. Effects of the benzodiazepine delorazepam (1 pg/L) in M. galloprovincialis valve abductor muscles. Longitudinal
semi-thin sections. A) Control: normal morphology with smooth and curled fibers. B) 1-day exposure muscle with no
difference compared to control. C) 3 days exposure muscle with a slight increase of metachromasia in myosepta (asterisk).
D) 7 days exposure muscle, with reduction of space between muscle bundles (arrows) which looks enlarged (arrowhead).
Toluidine blue staining, 40x magnification.

3.3 Effects of DLZ on oxygen consumption

The oxygen consumption of M. galloprovincialis was significantly affected by the treatment with
DLZ (repeated measure 2-way ANOVA, p = 0.0052). rMO: tended to be lower than the control (Fig.
3). However, post-hoc test indicated that this effect was statistically significant at 14 days only
(p<0.05).
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Figure 3. Effects of benzodiazepine delorazepam (1 pg/L) on oxygen consumption (VO2) in M. galloprovincialis. Two-
way ANOVA indicated a significant effect of treatment (p < 0.01). The “Sid"ak’s post hoc test indicated a significant

reduction respect to control at day 14. Data are means + SD.*, p < 0.05

3.4 Effects of DLZ on gill tissues morphology

In controls, gill filaments are ordinarily arranged (fig. 4A), the apical epithelium is rich in frontal
and lateral cilia and is underlined by a thin, hardly visible chitinous support (fig. 4B-C). This latter
significantly thickens in DLZ-exposed mussels as evident in 14- and 21-day samples (fig. 4D-E). In
the same samples, the epithelial cells contain several eosinophilic bodies (fig. 4E-F). Goblet cells in
control gills form two distinct groups, one on the top of the lamellae and one at the base of the
epithelium (fig. 4G). DLZ exposure causes a temporary decrease in their mucous content on day 14

(fig. 4H) but by day 21 differences are no longer evident (fig. 4F).
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Figure 4. Effect of benzodiazepine delorazepam (1 pg/L) on Mytilus galloprovincialis gill tissue. A) Regularly arranged
gill filaments (I) showing a central vessel (v) and groups of cilia (c). B) Detail of the epithelium showing the cilia (c) and
the thin chitinous layer (arrows). C-D) Thickening of the chitinous layer (arrows) underlying the epithelium. (E) Epithelium
with eosinophilic bodies (small arrows) and an underlying thick chitinous layer (arrow). F) Goblet cells (arrows) and
epithelial cells with eosinophilic bodies (small arrows). G) Goblet cells (arrows) in lamellae with thin chitinous support
(small arrow). H) Goblet cells in basal and apical lamellae (arrows); unstained chitinous support. Hemalum-eosin staining
(A-B); methyl blue staining (C, D); Galgano’s trichrome staining (E); Alcian blue (F-H) with eosin contrast (F). Bars: 40
um.

3.5 Effects of DLZ on protein pattern of gills

SDS-PAGE highlights the existence of significant differences in protein patterns between control
and DLZ-treated gills tissues, indicating a time-dependent relationship (fig. 5). All DLZ-treated
samples lack a very high and a 100 kDa band; at lower MWs, several bands disappear or reduce in
intensity. An apparent and partial recovery is observed from day 14, a time in which, however, a further

high MW band disappears. Bands below about 30 kDa do not undergo noticeable variations.
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Figure 5. Effects of delorazepam (1 pg/L) on gill’s protein pattern. Significant differences are observed in the different
lanes, at all molecular weights. Notice that three high MW bands disappear (black arrows) while, at lower MW, several

bands become weaker or disappear (red arrows) often reappearing (green arrows) at later experimental times.

3.6 Effects of DLZ on gill tissues glycan content

WGA stains goblet cells in control (fig. 6A) and DLZ-treated animals highlighting a progressive
increase in cell number and mucus content (fig. 6B-D). PNA stains chitin support of gill lamella in
controls and in DLZ-treated animals up to day 7 (fig. 6E) but from day 14 (fig. 6F) labeling disappears.
DBA also stains the chitinous support in control (fig. 6G) and in DLZ-treated gills but only up to day

3. In later samples, gill lamellae are always unstained (fig. 6H).
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Figure 6. Effects of delorazepam (1 ug/L) on gill’s glycan residues distribution: N-acetyl-glucosamine (WGA lectin),
terminal galactose (PNA lectin), and N-acetyl-galactosamine (DBA lectin). A-D) Time-dependent increase in stained goblet
cells (arrows). Chitinous support (small arrows). E-F and G-H) Disappearance of labeling on chitinous gill support (arrows)

and epithelial cells (asterisks). Bars: 40 um.

4. Discussion

The results indicate that delorazepam has a sedative effect on the mussel and that, in particular, it
induced relaxation of the shell abductor muscles. In Mytilus, valve closure depends on the active
contraction of the abductor muscles that counteract the action of an elastic ligament (Gnyubkin, 2015).
The abductor muscle relaxation induced by DLZ explains the increase in the time necessary for valve
closure and why valves reopen earlier than expected. This is a foreseeable result considering that
Mytilus possesses GABA receptors (Betti et al., 2003) and that benzodiazepines reduce the intensity of
the action potential by opening GABA-A ligand-gated chloride channels on the postsynaptic neurons
(Gallager et al., 1991).

Delorazepam, however, like all benzodiazepines (Nothdurfter et al., 2012), also binds to the TSPO

peripheral receptor, in the outer mitochondrial membrane (Jaremko et al., 2015). By controlling
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mitochondrial functionality, the receptor regulates oxygen-mediated metabolism (Fan et al., 2012),
respiration (Austin et al., 2013), and, eventually, cell bioenergetics (Betlazar et al., 2020). The abundance
of TSPO receptors in muscle fibers (Beavis, 1989; Larcher et al., 1989) suggests that the reduced
performance in valve tests might depend on interference with mitochondrial functionality rather than on
a direct effect of benzodiazepine on GABA. This putative effect would explain the reduced oxygen
consumption observed at the whole-body level (rMO.), which, on the other hand, is likely to depend on
the altered and probably functionally impaired branchial system. The first evidence of gills damage is
goblet cell hyperplasia. Mucus is released as the first line of defense (Garcia-Reyero et al., 2015), and
contributes to detoxification by absorbing contaminants and by preventing contact with the cell surface
(Dimitriadis et al., 2003; Marigomez et al., 2002). However, hypersecretion may induce asphyxiation
(Kent et al., 1995) and affect feeding, and by increasing the formation of pseudofeces, decreases

metabolic efficiency (Salas-Yanquin et al., 2018).

Further confirmation of gills toxicity of DLZ is represented by the changes induced in the chitinous
support, a preferred target of toxicity since rich in positively charged glucosamide residues (Einsporn
and Koehler, 2008). The observed thickening could reduce the diffusion rate of O2 (Jayakumar et al.,
2011; McDonnell et al., 2016) with consequent respiratory failure, and a decrease in metabolic efficiency
and energy production. Chitinous thickening may also affect the innate defense (Willoughby and
Tomlinson, 1999) and, by deceiving the immunocompetent circulating hemocytes, alter the lamellar
robust line of defense against potential pathogens and chemical contaminants (Venier et al., 2011).
Staining with lectins indicates that thickening is accompanied by a loss in galactose and galNAc.
Unfortunately, no data on chitinous support composition could be found in mussels; however, in fungi,
the chitinous cell wall is reported to contain 6% of insoluble residues including mannose, galactose, and
uronic acid (Skujins et al., 1965). Their role in the chitinous support is unclear, and so are the

consequences of the observed changes.

Another indication of altered branchial function is the appearance of intracytoplasmic eosinophilic
bodies in lamellar epithelial cells. These are protein structures already associated with exposure to
various xenobiotics (Camargo and Matinez, 2007; Van Dyk et al., 2007), a direct consequence of cell
damage (Abdel-Moneim et al., 2012), and associated with lysosomal activity in macrophages (Nagy et
al., 1989). Of particular significance is the evidence that DLZ toxic effects are induced very rapidly.
Staining with DBA lectin shows a decrease in galNAc in the chitinous support already on day 3 and
SDS-PAGE indicates that alterations are even more immediate, being already appreciable at 24 hours.
In addition, the protein analysis reveals a very dynamic situation during the 21 days of observation,

with several bands disappearing and reappearing at different times and others simply disappearing. At
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the moment, no attempt has been made to identify the different proteins, but their characterization will

give important information on the toxicodynamics of delorazepam.

Another important point concerns the toxicokinetic of the drug. The liquid drop formulation used in
this study is reported to be absorbed quickly and to have good bioavailability. Early responses confirm
that DLZ penetrates rapidly in gills epithelial cells. Delorazepam is a long-acting benzodiazepine,
between 1 and 7 days (Morgan et al., 1990), which makes it superior to lorazepam, its major metabolite.
So, with this respect, it could be speculated that the combination of delorazepam/lorazepam, which is
relatively potent (1 mg of delorazepam being the equivalent of 10 mg of diazepam) (Cosci et al, 2016)
could bring long-lasting effects or, simply, that active principle gave rise to very stable metabolite in
the first 7 days, which continue to exert secondary effect until day 21. It’s reported that metabolites
can accumulate more than the parent drug, even without being present in water (Miller et al., 2017)
reaching concentration levels sufficient to exert a pharmacological effect (Cerveny et al., 2021a).
Because of their biological activity on non-target organisms, metabolites of many drugs should be
considered pharmaceutically active compounds (PhACs) and be included in ecotoxicology studies
(Celiz et al., 2009). For these reasons, delorazepam/lorazepam bioconcentrations in tissues, half-life,

and catabolite production are currently under investigation.

Conclusions

Results obtained show that DLZs and/or metabolites, at environmental concentrations, have a
profound impact on mussel behavior. More significantly, they are toxic to gill cells affecting respiratory
function in a time-dependent manner. As far as we are aware, this is the first report of a direct cytotoxic

effect of benzodiazepine, a drug considered essentially safe for tissues.

Relapses are relevant as they open to a reconsideration of the evidence collected so far. The
consequences of exposing the aquatic ecosystems to benzodiazepines appear now more severe than
previously postulated. Future studies are essential to evaluate if damages observed in mussels are
exerted also on other models and to accurately evaluate the impact that these effects can have on the

survival of the shore communities, the more exposed to anthropic pollution.
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Chapter 4
Planorbarius corneus

3.1 Benzodiazepine delorazepam inhibits feeding behavior while inducing hyperactivity and
altering pedal mucus characteristics in the freshwater gastropod Planorbarius corneus
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Chapter 6
Artemia salina

6.1 Toxic effects of the anxiolytic benzodiazepine delorazepam on Artemia salina
development
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Chapter 7
Cucumis sativus

7.1 Effects of benzodiazepine delorazepam on Cucumis sativus: a preliminary investigation
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General conclusions

In conclusion, this multidisciplinary study proved, without a doubt, the negative impact of
delorazepam on a wide range of mechanisms and functions, in all the six models examined. The
effects were mostly dose-dependent and already observable at the lower, environmental
concentration, thus indicating that interference with natural ecosystems is more severe than

considered so far.
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