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³Bisogna avere ancora caos 

dentro di sé per partorire 

una stella danzante.´ 

 

³2ne must still have chaos in 

oneself to be able to give 

birth to a dancing star�´ 

 

³Man muss noch Chaos in sich 

haben, um einen tanzenden 

Stern gebären zu können.´ 

 

(Friedrich Wilhelm 

Nietzsche, Also sprach 

Zarathustra, 1967±77) 
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The possibility to predict earthquakes has always been a hotly debated topic in 

the scientific community due to the destructive power of these events. 

Although we are not (yet?) able to predict deterministically with high precision 

where, when, and how big the next earthquake will struck, currently, several 

models are able to state, in probabilistic terms, that a seismic event can occur in 

a certain place, time interval and with a certain magnitude. These models have 

a big limitation, which consists of the inability to forecast large earthquakes 

with high probabilities. In fact, these models, such as ETAS model (Epidemic 

Type Aftershock Sequence), assume the independence of the magnitude: the 

magnitude of the next earthquake is randomly sampled from an exponential-like 

distribution, bounding the probability of large earthquake to the sampling of the 

right tail of such distribution. 

In this thesis, we aim to provide new insights on this problem that can be useful 

to improve the probabilistic forecasting models. 

Specifically, we analyze foreshocks, i.e., events that precede an event of higher 

magnitude: the goal is to understand if they have characteristics such as to be 

recognized a-priori (i.e., before the occurrence of a large seismic event), thus 

distinguishing them from the rest of seismicity. If so, their predictive power 

could be used to improve the probability of larger events. 

In this thesis, we use ETAS model as null hypothesis, i.e., able to represent all 

seismicity, and we compare the foreshock sequences of synthetic and real 

catalogues. The results highlight discrepancies between what the model is able 

to predict and what we observe in reality. However, these discrepancies do not 

concern all foreshock sequences, but only seismic sequences with peculiar 



 
 

 
 

II 

characteristics: they are located mainly in areas of high heat flow, with a 

small/medium mainshock magnitude, and characterized by a high number of 

foreshocks. These sequences are commonly referred in the literature as swarms. 

Foreshock sequences occurring in low heat flux zone conform well with what 

expected by the ETAS model. 

To further investigate on the difference between earthquake sequences, we use 

a scalar parameter called ALD (Average Leaf Depth). This parameter is able to 

quantitatively represent the topological structure of the sequences, i.e., swarm 

type (with high ALD values) or burst type (the earthquake sequence explained 

by the ETAS model, with low ALD values). We test the null hypothesis that 

ETAS represents well the reality and therefore, that it is also able to reproduce 

seismic sequences with high ALD values (i.e., swarm). Comparing the ALD 

values of real sequences and synthetic sequences we obtained highly variable 

results depending on the specific ETAS model used and the type of source. This 

makes ALD a parameter to be used with extreme care and its variability makes 

it not so useful for the discretization of seismic sequences (i.e., between swarm 

and aftershock-type sequences). 

As in the literature there is no criterion to objectively differentiate the types of 

seismicity, we present a new methodology based on machine learning. First of 

all, we collect several information that characterize the seismic sequences in 

terms of space, time, and magnitude. We apply a Cluster Analysis to the 

collected dataset and identify the optimal number of clusters into which to 

divide the sequences. There are two predominant clusters that differ from a 

physical and statistical point of view: one group is mainly located in areas of 

high heat flow, is characterized by a high productivity and rate of foreshocks, 

therefore comparable to swarm-type sequences. Conversely, the other group has 

characteristics attributable to aftershock-type sequences. 

In conclusion, the above-mentioned method could be useful for recognizing the 

type of a seismic sequence (i.e., swarm or aftershock type), collecting all the 
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information available on it (ALD, heat flow value corresponding to its location, 

productivity, etc.). If we were able to apply these methodologies in the short 

term and identify swarm-type sequences, we could reduce the probability that a 

large seismic event could occur imminently, thus improving the probability 

estimates of current models. 
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6RPPDULR 

 

La possibilità di prevedere i terremoti è sempre stato un argomento ampiamente 

dibattuto nella comunità scientifica a causa del loro potenziale distruttivo.  

Allo stato attuale non siamo (ancora?) in grado di prevedere 

deterministicamente e con elevata precisione dove, quando e quanto sarà grande 

il prossimo terremoto; tuttavia, esistono diversi modelli in grado di affermare, 

in termini probabilistici, che un evento sismico possa verificarsi in un 

determinato luogo, intervallo di tempo e con una certa grandezza. Purtroppo, 

questi modelli, come quello ETAS (Epidemic Type Aftershock Sequence), 

hanno un grande limite che consiste nell'impossibilità di prevedere grandi 

terremoti con alte probabilità. Le ragioni di questa limitazione vanno ricercate 

nell'assunzione di indipendenza della magnitudo: la magnitudo di un evento non 

dipende da quella degli eventi passati. In questi modelli, infatti, la magnitudo di 

un terremoto futuro viene campionata casualmente da una distribuzione di tipo 

esponenziale, limitando la probabilità di un grande terremoto al campionamento 

della coda destra di tale distribuzione. 

In questo lavoro di tesi FL�SRQLDPR�O¶RELHWWLYR�GL�RYYLDUH a questo problema, 

fornendo delle skills che possano essere utili per migliorare la previsione 

probabilistica dei modelli. 

A tal proposito si è pensato di analizzare i foreshocks, ovvero gli eventi sismici 

che precedono una grande magnitudo: l'obiettivo è quello di capire se essi 

abbiano delle caratteristiche tali da essere riconosciuti a-priori (ovvero, prima 

GHOO¶DFFDGLPHQWR�GL�XQ�JUDQGH�HYHQWR�VLVPLFR���GLVFRVWDQGRVL� LQ�WDO�PRGR�GDO�

resto della sismicità. Se così fosse, il loro potenziale premonitore potrebbe 

essere utilizzato per migliorare la stima delle probabilità di accadimento di 

eventi più grandi. 
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In questa tesi abbiamo utilizzato il modello ETAS come ipotesi nulla, ovvero in 

grado di rappresentare tutta la sismicità, e abbiamo confrontato le sequenze di 

foreshocks di cataloghi sintetici e del catalogo reale. I risultati evidenziano delle 

discrepanze tra ciò che il modello è in grado di predire e ciò che osserviamo 

nella realtà. Tuttavia, tali discrepanze non concernono tutte le sequenze di 

foreshocks, ma soltanto sequenze sismiche con delle caratteristiche peculiari: 

esse si localizzano principalmente nelle zone di alto flusso di calore, hanno una 

magnitudo del mainshock medio-bassa, e sono caratterizzate da un elevato 

numero di foreshocks. Tali sequenze vengono comunemente definite in 

letteratura come swarm. Le sequenze di foreshocks che avvengono nelle zone 

di basso flusso sono conformi a quanto previsto dal modello ETAS. 

Per approfondire ulteriormente le differenze tra le tipologie di sequenze 

sismiche, utilizziamo un parametro scalare definito ALD (Average Leaf Depth). 

Tale parametro è in grado di rappresentare quantitativamente la struttura 

topologica delle sequenze, se di tipo swarm (con alti valori di ALD) o di tipo 

burst (ovvero le sequenze sismiche spiegate dal modello ETAS, con bassi valori 

di ALD). 1RL� WHVWLDPR� O¶LSRWHVL�QXOOD�FKe ETAS rappresenti bene la realtà e 

dunque, che sia anche in grado di riprodurre sequenze sismiche con alti valori 

di ALD (cioè di tipo swarm). Confrontando i valori di ALD di sequenze reali e 

di sequenze sintetiche abbiamo ottenuto risultati molto variabili a seconda dello 

specifico modello ETAS utilizzato e del tipo di sorgente. Questo rende ALD un 

parametro da utilizzare con estrema cautela e la sua variabilità lo rende poco 

utile per la discretizzazione delle sequenze sismiche (ovvero tra swarm e 

sequenze di tipo aftershock). 

Partendo dal presupposto che in letteratura non esiste un criterio per 

differenziare i tipi di sismicità in maniera oggettiva, presentiamo una nuova 

metodologia basata sul machine learning. In primis raccogliamo diverse 

informazioni che caratterizzino le sequenze sismiche in termini di spazio, tempo 

e magnitudo. Al dataset collezionato applichiamo una Cluster Analysis e 
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individuiamo il numero ottimale di clusters in cui dividere le sequenze.  Due 

sono i clusters predominanti che si differenziano da un punto di vista fisico e 

statistico: un gruppo si localizza principalmente in zone di alto flusso di calore, 

è caratterizzato da un elevata produttività e rate dei foreshocks, dunque 

assimilabile a sequenze di tipo swarm. Viceversa, l'altro gruppo presenta 

caratteristiche ascrivibile alle sequenze di tipo aftershocks. 

In conclusione, il metodo sopra-citato potrebbe essere utile per riconoscere la 

tipologia di una sequenza sismica (cioè se di tipo swarm o di tipo aftershocks), 

raccogliendo tutte le informazioni che si hanno su di essa (ALD, valore di heat 

flow corrispondente alla sua localizzazione, produttività, ecc.).  

Se riuscissimo ad applicare tali metodologie nel breve termine e a identificare 

sequenze di tipo swarm potremmo ridurre la probabilità che un grande evento 

sismico possa verificarsi in maniera imminente, dunque migliorando le stime di 

probabilità degli attuali modelli. 
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1 Introduction 

1 
,QWURGXFWLRQ 

 

The word science is derived from the Latin scientia which means knowledge. It 

is used in the motto Scientia Potentia Est, a Latin aphorism meaning knowledge 

is power, currently attributed to the philosopher Thomas Hobbes. According to 

his feeling, the true knowledge is based on causes, so that to understand a 

phenomenon means to be able to explain how it is produced (Jesseph, 2010). 

Knowledge being power is understood as success from ability (Greco, 2010): 

³DFWLQJ� IURP� D� SRVLWLRQ� RI� NQRZOHGJH� ± versus ignorance ± permits us to 

successfully navigate the perils of the external world´ (Farrelly, 2021). 

From this point of view, the main goal of doing science is to learn how the 

physical and natural world works. We have always been surrounded by 

incredible and mysterious natural phenomena that arouse the curiosity of 

scientists and philosophers. Among these phenomena, earthquakes are a natural 

force that fascinates the scientific community, mainly for their power and for 

the enormous impact these phenomena have on our lives; in fact, earthquakes 

are the cause of many damages and countless victims. Therefore, the reason 

why we need to study this natural phenomenon is twofold: on the one hand, we 

are driven by the curiosity to understand what exactly happens under our feet, 

and, on the other hand, we want to use this information to limit the damage that 

they can cause. Understanding a phenomenon requires to observe it, study it, 

capture principal forces, and reproduce it through physical and statistical laws; 

in this spirit, knowing also means predicting, which in this case is synonymous 

with saving.  
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In the past, scientists tried to predict, in a deterministic way, exactly the hour, 

the time, and the magnitude of very destructive earthquakes, analyzing several 

precursors, i.e., signals that are observable before earthquakes and indicate an 

impending event (Jordan et al., 2011). The grim presence of such information 

has led to a long series of failures; for this reason, the idea of being able to 

predict earthquakes through this approach remains an unrealistic dream for the 

current knowledge. 

Seismologists had the brilliant idea of collecting laws and relationships that 

characterize earthquakes to develop models that make probabilistic forecasts. 

The probabilistic approach of these mathematical models is the key word that 

differs considerably from the deterministic approach. Such probabilistic 

earthquake forecasting models (see next section) provide probabilities for the 

occurrence of earthquakes in time and space for a given magnitude (Jordan et 

al., 2011).  Such models can be tested against the observation to achieve 

important insights about the veracity of the used relationships.  

Making reliable forecasts requires understanding as much as possible about the 

spatiotemporal behavior of earthquakes and the underlying processes that drive 

them. Despite many years of research, methods for characterizing the dynamics 

of seismicity are lacking. Moreover, one of the answered questions is whether 

every earthquake follows the same laws or whether particular patterns exist that 

reflect different governing properties (Seif et al., 2019).  

In the present PhD thesis, I will address these problems by comparing what we 

observe in reality with the output of earthquake forecasting models. I briefly 

described relevant concepts in the following Section 1.1. The main motivation 

is to find new insights that can be useful to enhance earthquake forecasting, as 

for avoiding earthquake losses and improving community preparedness (Jordan 

et al., 2011). I also define several methods to explore different types of 

seismicity and explore the physical reason behind their occurrences.  
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1.1 Earthquake forecasting models 

An earthquake forecasting model is a systematic method for calculating the 

probabilities of event occurrence within a space-time-magnitude domain; 

forecasting intervals can range from long-term (several years to many decades), 

medium-term (months to years), and short-term (few months or less) (Jordan et 

al., 2011). They can be set up for certain regions (Felzer et al., 2002; Seif et al., 

2017) or globally (e.g., Bird et al. 2015) and can be based on statistical (e.g., 

Ogata, 1988, Reasenberg and Jones 1989; see next section) or physical (e.g., 

Mancini et al., 2019) approaches. Currently, the most useful information to 

create such models comes from real observation of events in different domains 

(time, space, magnitude, tectonic).  

Concerning a statistical approach, several models exist that differ according to 

the assumptions made on the observed seismicity. Among them, earthquake 

triggering models attempt to represent the properties of earthquake clustering 

through empirical relationship (Jordan et al., 2011). In these models, any 

earthquake can trigger one or more other earthquakes, generating its own 

aftershocks. This subclass includes Epidemic-Type Aftershock Sequence 

(ETAS) whose structure is detailed in the following subsection. 

 

1.1.1 ETAS: Epidemic type aftershock sequence model 

ETAS is one of the most commonly used probabilistic and statistical earthquake 

forecasting models. It was introduced by Ogata (1988) and belongs to a class of 

branching point process models known in the statistical literature as Hawkes or 

self-exciting point processes: an independent event (background) may excite the 

other events (called triggered events), starting their own branch. An important 

aspect of this model is that any event can trigger a larger event, i.e., a small-
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magnitude event (like M2.0) can trigger a M7.0. All linked earthquakes create 

an earthquake sequence (also called seismic cluster) as shown in Figure 1.1. 

 

Figure 1-1 Simple representation of self-exciting point processes 

From a mathematical point of view, the seismicity of ETAS can be described 

by the conditional intensity function that quantifies the earthquake occurrence 

rate ߣ at time ݐ and location ݔǡ  ǡ given the history of pastܯ with mainshock ݕ

events ܪ௧ (eq. 1, Seif et al., 2019). It is formed by three main components: the 

background seismicity (independent events), the triggered seismicity 

(dependent events) and the magnitude frequency distribution of events.  

ǡݐሺߣ ǡݔ ௧ሻܪȁܯǡݕ ൌ ሾρሺݔǡ ሻݕ ൅ σ ݃൫ݐ െ ௝ǡݐ ݔ െ ௝ǡݔ ݕ െ ௝൯ሿܯ�௝Ǣݕ כ ݂ሺ݉ሻ�௝ǣ௧ೕழ௧  (1) 

 

1) The first part is the spatially heterogenous background rate: it can be 

described by a Poisson process that is stationary in time:  

Ɋ�ሺ�ǡ �ሻ ൌ ǡݔሺߩ�ߥ  ሻ                                     (2)ݕ

 

where ߥ is a positive-valued parameter. 

Background rate Triggered function Magnitude frequency 
distribution 
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Events occur independently and may be interpreted as caused by the 

same underlying process (e.g., tectonic movements). The term spatially 

heterogenous means that background events are best represented by a 

heterogeneous distribution, since earthquakes cluster in space and occur 

preferably on or near faults (Seif et al., 2017). 

A preliminary step to compute the background rate is to identify events 

as background using a declustering procedure (Seif et al., 2017; Zhuang, 

2011; Van Stiphout et al., 2012). 

2) The second part describes the triggering effect: aftershocks can be 

triggered by the background events or previous aftershocks. The 

triggered function ݃ሺݐǡ ǡݔ  ௧ሻ� can be represented by three mainsܪȁݕ

statistical relationships (Seif et al., 2019):  

݃ሺݐǡ ǡݔ ௧ሻܪȁݕ ൌ ଴݁ఈሺெି�ெ೎ೠ೟ሻܭ� כ ܿ௣ିଵሺݐ ൅ ܿሻି௣ሺ݌ െ ͳሻ כ ݂ሺݔǡ  ሻ    (3)ܯȁݕ

 

i) the Productivity law describes the number of events triggered by a 

specific magnitude event ܯ (i.e., his aftershocks), ii) the Omori law 

describes the decreasing temporal occurrence of aftershocks in time, and 

iii) the Power law spatial decay describes the rate of aftershocks (number 

of earthquakes per unit area) with distance from the triggering earthquake 

with magnitude ܯ. This last relationship can be determined as follows 

(Seif et al., 2019): 

݂ሺݔǡ ሻܯȁݕ ൌ � ௤ିଵ
గ஽మ௘ംሺ೘ష೘బሻ

ቀͳ ൅ ௫మା௬మ

஽మ௘ംሺ೘ష೘బሻ
ቁ
ି௤

             (4)                   

Eq. (3) and (4) are characterized by seven parameters (ܭǡ ǡߙ ܿǡ ǡ݌ ǡݍ ǡܦ  ;ߛ

see next subsection) that have to be estimated from seismicity in the 

region under consideration (more in the next section). 

Productivity law  Omori (modified) laws Power law spatial decay 
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3) The third part describes the magnitude distribution of earthquakes, which 

is considered separately because the magnitude of an event is not 

influenced by the history (i.e., past events). This assumption implies 

magnitude independence, stating that the magnitude is randomly drawn 

from the same magnitude-frequency distribution, no matter the 

triggering event magnitude (Stallone & Marzocchi, 2019). It can be 

described by the Gutenberg-Richter relation: 

݂ሺ݉ሻ �ൌ  ሺିఉሺ௠ି௠೘೔೙ሻሻ                                (5)݁ߚ�

where  ߚ is related to the b-value of the Gutenberg-Richter relation with 

ߚ ൌ ܾ כ ����ሺͳͲሻ and ݉௠௜௡ is the lower cutoff magnitude. 

These processes combined represent the spatiotemporal clustering of 

earthquakes. An important aspect in the ³ETAS world´ is that all earthquakes 

are treated in the same way because they are realizations of the same physical 

process. In fact, there is no feature that distinguishes events and any 

discrimination (i.e., foreshocks, mainshocks, and aftershocks) can only be made 

a-posteriori. 

 

1.1.2 ETAS parameters and their estimation 

An ETAS model is parameterized, i.e., fitted, to the earthquake catalog used for 

the analysis. Given the set of eight parameters ߠ ൌ ሺߥǡ ǡܭ ǡߙ ܿǡ ǡ݌ ǡݍ ǡܦ  ሻ, I hereߛ

describe what they represent and how to determine them. 

The first parameter ߥ is related to the background seismicity. Once background 

events have been identified, the integral of Ɋ�ሺ�ǡ �ሻ over the considered area 

represents the number of background events ீܰ஻ (Seif et al., 2017), defining ߥ 

as:  
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ߥ ൌ � ேಸಳ

׬ ఘሺ௫ǡ௬ሻௗ௫ௗ௬ೣǡ೤

                                          (6) 

The parameters related to the triggered seismicity are ܭǡ ǡߙ ܿǡ ǡ݌ ǡݍ ǡܦ   .ߛ

ǡܭ -  quantifies the capability of ܭ :are related to the productivity law ߙ

triggering new earthquakes, no matter what the magnitude of the 

triggering event is; ߙ represents the scaling for the capacity to trigger 

earthquakes as function of magnitude (Seif et al., 2017). 

- ܿǡ  describe the parameters of the Omori law, i.e., the decay of ݌

aftershock occurrence with time: ܿ accomplishes a smoothed start of the 

power law decay, to avoid uniqueness of mainshock at ݐ ൌ Ͳ; ݌ describes 

the ³VSHHG´�RI�WKH�decay, which becomes faster as ݌ increases.  

ǡݍ -  ;is the aftershock scaling factor ߛ  are spatial kernel parameters and ܦ

all of them control the spatial decay of aftershocks. 

All parameters ߠ ൌ ሺߥǡ ǡܭ ǡߙ ܿǡ ǡ݌ ǡݍ ǡܦ  ሻ have to be estimated jointly, but suchߛ

procedure is a hassle because they can be strongly biased, correlated, and 

unstable (Seif et al., 2017; Harte, 2015). Several alternative approaches have 

been proposed to try to deal with this issue, such as the commonly used 

Maximum Likelihood Estimation (MLE) method, which determines the set of 

parameters ߠ that maximize the log-likelihood function: 

ሻߠሺܮ݃݋݈ ൌ σ ௞ǡݐఏሺߣ݃݋݈ ௞ǡݔ ௧ೖሻܪ௞�ȁݕ
ே
௞ୀଵ െ׬� ׭ ǡݐఏሺߣ ǡݔ ௦ݐ݀�ݕ݀�ݔ௧ሻ݀ܪ�ȁݕ

்
଴    (7) 

where the subscript ݇ runs over all events occurring in the study region ݏ and 

the study time interval ሾͲǡ ܶሿ (Zhuang et al., 2002).  

Other studies propose the use of Bayesian inference for parameter estimation 

(i.e., using prior of ߠ parameters), as the work of Ross (2021): this strategy 

reduces the correlation among parameters (through a latent variable) and 

considers their uncertainty when forecasting future earthquakes. Petrillo & 
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Zhuang (2022) also propose a Bayesian approach for parameter optimization 

that can be used for spatio-temporal ETAS model as well. 

 

1.2 Do forecasting models need to be improved? 

ETAS has shown good forecasting performance, making it an appropriate null, 

or reference, model, especially for aftershock sequences (Page and van der Elst, 

2022). It is able to provide probabilistically where, when, and how earthquakes 

will occur on the short-term.  

To validate forecasting methods, they need to be tested against the data 

prospectively (after the fact, i.e., data that is not available when creating a 

model), such as done in CSEP (Zechar et al., 2010; Schorlemmer et al., 2018). 

Testing assesses their reliability and skill, which provides valuable feedback for 

improving our understanding of involved processes. In these prospective tests, 

ETAS was found to be the best-performing model (Nanjo et al., 2012; Taroni et 

al., 2018). Specifically for the occurrence of foreshocks (i.e., events that occur 

before large events), several studies have retrospectively tested (before the fact, 

i.e., using existing data) the expectation of the ETAS model (Seif et al., 2019; 

Petrillo and Lippiello, 2021; Moutote et al., 2021). They assert that, although 

ETAS is describing seismicity generally well, there are still discrepancies.  

These findings indicate that seismicity is influenced by processes that are not 

yet considered in the (classical) ETAS models. For example, such discrepancy 

is also proposed by the pre-slip model, in which foreshocks are diagnostic 

precursors as a byproduct of an aseismic slip that precedes large earthquakes. 

Such an anomalous behavior²if it can be detected in real time²may indicate 

an impending mainshock, and consequently increase the probability for a large 

earthquake. Gulia & Wiemer (2019) explore the possibility to recognize an on-

going sequence as aftershock-sequence (i.e., the mainshock has already 
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happened) or foreshock-sequence of a future large event. Their findings suggest 

that the probability of a future larger event increases ± DIWHU�0���� ± if the b-

values are constant or falling sharply, in a well-defined box that mimics the 

VRXUFH�RI�WKH�PDJQLWXGH�0�����HYHQW. However, there is considerable skepticism 

regarding the predictability using foreshocks, and no improvement has yet been 

made in this direction (Marzocchi & Zhuang, 2011). 

Other studies (Zaliapin & Ben Zion, 2013, Chen et al., 2012, Enescu et al., 2009) 

interpreted these discrepancies as swarm-like sequences, although there is no 

accepted objective (quantitative) definition of what makes a sequence swarm-

like. Only qualitative definitions exist, based on their "atypical" behavior 

compared to aftershock-type sequences (Mogi, 1963): no dominant mainshock, 

as the largest events are of similar magnitude (Ross et al., 2021); they 

predominantly occur in particular areas, such as in zones of high heat flow 

(Zaliapin and Ben Zion, 2013), volcanic areas, or reservoirs (Kato et al, 2010); 

and they are considered to be driven by movements of fluids in the subsoil 

(Vidale & Shearer, 2006), aseismic slip (Lohman and McGuire, 2007), or 

presence of gas. If there are statistical differences between the seismic 

sequences, we should be able to characterize them quantitatively. If so, 

recognizing an on-going sequence as a swarm, rather than as a foreshock-

mainshock-aftershock-sequence, could greatly improve earthquake forecasting 

(decreased likelihood for a large mainshock). 

All these findings suggest that there is potential for improving earthquake 

forecasting models and to better understand the dynamics of earthquake 

occurrence. With this thesis, I seek to better characterize the real seismicity and 

to contribute to enhancing the earthquake forecasting skill. I will address these 

potential advances in different ways in the following three chapters. 

 

1.3 Thesis outline 
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This thesis consists of three main chapters; one is already published and the 

other two are in preparation for submission. 

In Chapter 2, together with my supervisors, I evaluate the expectation of ETAS 

(i.e., synthetic catalogs) with seismicity data of southern California with a 

specific focus on foreshock sequences. Based on previous results (Seif et al., 

2019; Petrillo and Lippiello, 2021; Moutote et al., 2021), we wondered why 

ETAS is unable to reproduce some foreshock sequences, and if this discrepancy 

can be explained with a different trigger mechanism of foreshocks. This chapter 

was recently published in GRL (Manganiello et al., 2023). 

In Chapter 3, I come back to ETAS and again compare its synthetic catalogs 

with the reality, but from a different point of view: considering the entire 

sequences and using a scalar measure ± the Average Leaf Depth. This measure 

is able to represent the topological structure of sequences. According to Zaliapin 

and Ben Zion (2013), which proposed this measure for cluster analysis, it should 

allow discriminating two different kinds of seismicity: burst-like (i.e., due to a 

mainshock) and swarm-like sequences. We explore which characteristics of the 

average leaf depth as observed in real catalogs ETAS is able to reproduce. 

Differences will hint at how burst-like sequences differ from swarm-like 

sequences. 

The results of Chapter 2 and 3 will indicate systematic discrepancies between 

ETAS and real seismicity, presumably due to the occurrence of swarm-like 

sequences. However, a univocal definition RI�³VZDUPV´�is still missing. For this 

reason, we decided to elaborate a new method that characterizes and 

discriminates seismicity in a more objective and quantitative way, which I 

present in Chapter 4. We collect several earthquake properties that characterize 

sequences in different domains (space, time, and magnitude). We perform a k-

means cluster analysis of the collected dataset to extract the most characteristic 

types of sequence, which we expect to be related to burst-like and swarm-like 
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sequences. Since not all properties will be equally important for a 

discrimination, we will identify the most important properties to discriminate 

sequences by types.  In the end, we analyze the physical properties of each 

identified cluster by performing various statistical analyses and tests. 

Finally, I will conclude my thesis providing new knowledge and findings that 

may help to make more performing and powerful forecasting models; I also 

hope that this material can lead the basis for further studies and insights into the 

study of different seismicity types.  

 

  



 
 

 
 
 

 

2-15 

2 
1HZ�SK\VLFDO�LPSOLFDWLRQV�IURP�

UHYLVLWLQJ�IRUHVKRFN�DFWLYLW\�LQ�

VRXWKHUQ�&DOLIRUQLD 

2 New physical implications from revisiting foreshock activity in southern California 

This chapter is published as: 

Manganiello, E., Herrmann, M., & Marzocchi, W. (2023). New physical 

implications from revisiting foreshock activity in southern California. 

Geophysical Research Letters, 50, e2022GL098737. https://doi. 

org/10.1029/2022GL098737  

 

Abstract 

Foreshock analysis promises new insights into the earthquake nucleation 

process and could potentially improve earthquake forecasting. Well-performing 

clustering models like the Epidemic-Type Aftershock Sequence (ETAS) model 

assume that foreshocks and general seismicity are generated by the same 

physical process, implying that foreshocks can be identified only in retrospect. 

However, several studies have recently found higher foreshock activity than 

predicted by ETAS. Here, we revisit the foreshock activity in southern 

California using different statistical methods and find anomalous foreshock 

sequences, i.e., those unexplained by ETAS, mostly for mainshock magnitudes 

below 5.5. The spatial distribution of these anomalies reveals a preferential 
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occurrence in zones of high heat flow, which are known to host swarm-like 

seismicity. Outside these zones, the foreshocks generally behave as expected by 

ETAS. These findings show that anomalous foreshock sequences in southern 

California do not indicate a pre-slip nucleation process, but swarm-like behavior 

driven by heat flow.  

 

2.1  Introduction 

It is well known that many large earthquakes are preceded by smaller events, 

e.g., 1999 M7.6 Izmit, Turkey (Bouchon et al., 2011; Ellsworth & Bulut, 2018), 

�����0����/¶$TXLOD��,WDO\��&KLDUDOXFH�HW�DO���������������0����7RKRNX��-DSDQ�

(Kato et al., 2012), 2019 M7.1 Ridgecrest, USA (Meng & Fan, 2021), which 

are (a posteriori) called foreshocks. The role of foreshocks in earthquake 

predictability can be epitomized by two still debated conceptual hypotheses 

DERXW�HDUWKTXDNH�QXFOHDWLRQ��WKH�³SUH-VOLS�PRGHO´�YHUVXV�WKH�³FDVFDGH�PRGHO´�

(Ellsworth & Beroza, 1995; Gomberg, 2018). According to the former, 

foreshocks are diagnostic precursors, because they are triggered by an aseismic 

slip that precedes large earthquakes; in the latter model, foreshocks are like any 

other earthquake, which trigger one another, with one of them eventually 

becoming exceedingly larger (the mainshock).  

Notwithstanding the still active debate on these hypotheses, seismologists are 

not yet able to recognize foreshocks in real-time, tacitly implying that 

foreshocks are not different from the rest of seismicity, indirectly supporting the 

cascade model. This view is further supported by the fact that the current best-

performing class of short-term earthquake forecasting models (e.g., Nanjo et al. 

2012, Taroni et al., 2018)²the Epidemic-Type Aftershock Sequences (ETAS; 

Ogata, 1988) model²assumes that foreshocks, mainshocks, and aftershocks are 

undistinguishable and governed by the same process. ETAS describes a 

branching point process also known as Hawkes or self-exciting point process: 
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every earthquake can trigger other earthquakes according to established 

empirical relations, with their magnitudes being independent from past 

seismicity. In essence, ETAS implicitly acknowledges the cascade model and 

its good forecasting performance makes ETAS an appropriate null hypothesis.  

Instead, if foreshocks are dominated by other mechanisms than earthquake self-

triggering, as the pre-slip model expects, foreshocks could be distinguished 

from general seismicity and potentially anticipate a larger earthquake. Several 

studies recently investigated foreshock sequences of southern California and 

found that they deviate from expectations of the classical ETAS model with 

spatially invariant triggering parameters. For example, Seif et al. (2019), Petrillo 

and Lippiello (2021), and Moutote et al. (2021) find, albeit at varying degrees, 

a higher foreshock activity in real seismicity than in synthetic catalogs simulated 

with ETAS. Hence, ETAS appears unable to completely reproduce observed 

seismicity, suggesting that foreshocks are distinct from general seismicity and 

governed by different mechanisms. These findings provide hope that identifying 

foreshocks as such could significantly improve earthquake predictability. 

Here we reexamine foreshock activity in southern California; we investigate the 

existence and main characteristics of foreshock sequences that cannot be 

explained by ETAS, i.e., anomalous foreshock sequences. In other words, we 

look for new insights on the evidence against the cascade model. To be 

comparable to previous analyses, we use ETAS with spatially invariant 

triggering parameters. We perform two statistical tests and consider the 

potential influence of subjective choices by using two different existing ETAS 

models and two different methods to identify mainshocks and their foreshocks. 

To fathom the main characteristics of possible anomalous foreshock sequences, 

we investigate different magnitude classes and analyze the spatial correlation 

with heat flow as a physical parameter.  
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2.2 Data and Methods 

We use the relocated earthquake catalog for southern California catalog 

(Hauksson et al., 2012), selecting all earthquakes with ܯ ൒ ʹǤͷ�from 1-1-1981 

to 31-12-2019 except nuclear events (i.e., at the Nevada Test site), totaling 

��¶����HYHQWV�� 

Analyzing a catalog and distinguishing mainshocks, foreshocks, and 

aftershocks is unavoidably subjective because no absolute and precise 

procedure exists for this task (Molchan & Dmitrieva, 1992; Zaliapin et al., 

2008). To reduce subjectivity, we analyze the catalog using two different 

techniques: the Nearest-Neighbor (NN) clustering analysis proposed by Baiesi 

and Paczuski (2004) and elaborated by Zaliapin et al. (2008), and the 

spatiotemporal windows (STW) method. 

The NN method involves calculating distances in the space-time-magnitude 

domain between every event j and all previous events i. The event i with the 

shortest distance to j is called parent event, or NN; this distance is the NN 

distance Șj. By assigning a NN to each event j, all events become associated 

with another. To identify individual families (i.e., sequences) or single events, 

we use the same threshold ߟ଴ �ൌ �ͳͲିହ as Zaliapin et al. (2008), which removes 

event associations with too large Șj. For each sequence, we refer to the event 

with the largest magnitude as the mainshock and all associated preceding events 

as its foreshocks. We only consider sequences with foreshocks and ignore those 

that have no foreshocks. 

For the STW method, we initially consider all events with magnitude ܯ ൒ Ͷ as 

possible mainshocks; to select foreshocks, we consider any preceding event 

within a spatiotemporal window of 10 km and 3 days from each mainshock 

(Agnew and Jones, 1991; Marzocchi and Zhuang, 2011; Seif et al., 2019). We 

exclude mainshocks that (i) do not contain any events within this window (i.e., 

sequences without foreshocks); (ii) are preceded by a larger event within this 
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window (Seif et al., 2019); and (iii) are preceded by an event with ܯ ൐ ͷ within 

100 km and 180 days (similar to Seif et al., 2019). 

To simulate synthetic catalogs, we use two different parametrizations of the 

ETAS model that are already calibrated to southern California: (i) of K. Felzer 

(Felzer et al., 2002, see Supporting Information SI1 Text S1 and Table S1), 

based on parameter values of Hardebeck et al. (2008), see Table S2; and (ii) of 

S. Seif (Seif et al., 2017, see Text S1 and Table S3). In the results section, we 

only show results based on the former ETAS model and refer to results of the 

second model in the supporting information SI1. We prefer using existing 

models for four reasons explained in Text S1 (e.g., reduce degrees of freedom 

and confirm stability of our results). We verified the reliability of both ETAS 

models to produce realistic earthquake rates for different magnitude ranges 

using a Turing-style test (Page & van der Elst, 2018), see Text S2 and Figures 

S1±S4.  

Once the mainshocks and their foreshocks have been identified in both the real 

DQG���¶����V\QWKHWLF�FDWDOogs (1000 for the second ETAS model), we compare 

their foreshock statistics using two tests named TEST1 and TEST2. Both are 

described in detail below; they both use ETAS as null hypothesis²which 

implies a cascade model as null hypothesis²but they examine different aspects 

of the problem. TEST1 involves the average number of observed foreshocks per 

sequence, whereas TEST2, which has been inspired by the work of Seif et al. 

(2019), involves the frequency of observing a certain number of foreshocks per 

sequence. We apply both tests to various mainshock magnitude classes ܥ୑ ൌ

ሼͶǤͲ ൑ ݉୑ ൏ ͶǤͷ, ͶǤͷ ൑ ݉୑ ൏ ͷǤͲ, ͷǤͲ ൑ ݉୑ ൏ ͷǤͷ, ͷǤͷ ൑ ݉୑ ൏ ͸ǤͲ, ݉ ୑ ൒

͸ǤͲሽ and foreshock magnitude thresholds ୊ܶ ൌ {݉୊ ൒ ʹǤͷ, ݉୊ ൒ ͵ǤͲ, ݉୊ ൒

͵Ǥͷ, ݉୊ ൒ ͶǤͲ}; these choices are based on Seif et al. (2019), but we added the 

class ͶǤͲ ൑ ݉୑ ൏ ͶǤͷ to ܥ୑. Although we report statistical test results, we do 

not formally account for applying the tests multiple times; the results are 
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therefore meant to indicate possible patterns of (apparently) anomalous 

foreshock activity. 

In TEST1, the null hypothesis under test ܪ଴
ሺଵሻ is that the average number of 

foreshocks (among sequences with foreshocks) in the real catalog is not larger 

than the corresponding quantity in the synthetic catalogs. For each mainshock 

magnitude class � א � ୑ and each foreshock magnitude thresholdܥ א ୊ܶ, we 

count the number of mainshocks (with foreshocks), ܰ୑UHDO, and the number of 

foreshocks )ܰ
UHDO in the real catalog; )ܰ

UHDO is normalized by ܰ୑UHDO to obtain ෡ܰ)୰ୣୟ୪. 

We calculate the same quantity for each synthetic catalog and build its empirical 

cumulative distribution function (eCDF); if ෡ܰ)UHDO�is above the 99th percentile of 

the eCDF, we reject ܪ଴
ሺଵሻ at a significance level of 0.01.  

In TEST2, the null hypothesis under test ܪ଴
ሺଶሻ is that for each number of 

foreshocks, ୊ܰ ൐ Ͳ, the frequency of observed cases is not larger than the 

frequency in synthetic catalogs. For each ܿ א ݐ ୑ and eachܥ א ୊ܶ, we count the 

number of mainshocks that have a certain ୊ܰ and normalize it by ܰ୑୰ୣୟ୪. In this 

way, we obtain the probability mass function (PMF) for the real catalog as a 

function of ୊ܰ. Then, we apply the same procedure to each synthetic catalog 

DQG�REWDLQ���¶����V\QWKHWLF�30)V�������30)V�IRU�WKH�VHFRQG�(7$6�PRGHO���

for which we calculate the 99th percentile at each ୊ܰ. Finally, at each ୊ܰ, we 

reject ܪ଴
ሺଶሻ at a significance level of 0.01 if the corresponding PMF value of the 

real catalog is larger than the 99th percentile (i.e., when the real catalog contains 

more foreshock sequences with this specific ୊ܰ than expected by ETAS). In 

essence, TEST2 seeks anomalies at every ୊ܰ, whereas TEST1 could be seen as 

a cumulative version of TEST2.  

Based on the results of the tests, we can label each foreshock sequence as 

µDQRPDORXV¶� RU� µQRUPDO¶� XVLQJ� DQ� LQWXLWLYH� DSSURDFK�� IRU�7(67��� LI� WKH� QXll 

hypothesis is rejected for a certain class, all foreshock sequences with a ୊ܰ 
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larger than the 99th percentile of the eCDF in that class are labeled as 

µDQRPDORXV¶� �DQG� µQRUPDO¶� RWKHUZLVH��� IRU� 7(67��� LI� WKH� QXOO� K\SRWKHVLV� LV�

rejected for a specific ୊ܰ, all sequences with this� ୊ܰ DUH�ODEHOHG�DV�µDQRPDORXV¶�

�DQG�µQRUPDO¶�RWKHUZLVH���(IIHFWLYHO\��D�IRUeshock sequence in ܿ א  ୑�is labeledܥ

µDQRPDORXV¶� LI� LW� LV� µDQRPDORXV¶� LQ�DW� OHDVW�RQH�FODVV� ݐ א ୊ܶǤ For TEST1, we 

argue that the approach is conservative due to comparing individual sequences 

with the average behavior of foreshock sequences; we therefore perform an 

alternative analysis (but not a test) without normalizing the number of 

foreshocks by ܰ୑, see Text S3 and Figure S6. 

To approach a physical interpretation of possible anomalous foreshock 

sequences in the real catalog, we analyze their spatial distribution. Specifically, 

taking inspiration from Zaliapin and Ben-Zion (2013), we interpolate heat flow 

measurements with a radial smoothing approach (ݎ ൌ ʹͲ�NP) to acknowledge 

areas without data. We associate each foreshock sequence with the interpolated 

heat flow value at the mainshock location; if measurements within r are 

unavailable, we discard the sequence. Then we test if the distribution of 

associated heat flow values is significantly different for normal and anomalous 

foreshock sequences. We employ two statistical tests: the two-sample 

Kolmogorov-Smirnov test (null hypothesis: the two distributions have the same 

parent distribution) and the paired Wilcoxon test (null hypothesis: the two 

distributions have the same median). The Kolmogorov-Smirnov test is sensitive 

to any kind of difference between both distributions, whereas the Wilcoxon test 

is sensitive to one distribution having higher values than the other. 
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2.3 Results 

2.3.1 Testing for anomalous foreshock activity  

Figure 2.1 shows the results of TEST1 for each class in ܥ୑ and ୊ܶ using the 

ETAS model of K. Felzer and NN to identify mainshocks and their foreshocks; 

the results using STW are reported in Figure S5. Each subplot compares the 

eCDF (based on synthetic catalogs) with the observed value from the real 

catalog. As shown in Figure 2.1 and Figure S5, TEST1 rejects ܪ଴
ሺଵሻ, i.e., 

identifies anomalous foreshock sequences, exclusively for mainshock 

magnitudes ݉୑ ൏ ͷǤͷ. Of a total of 152 foreshock sequences, we find 61 (40%) 

to be anomalous; with the STW method we find 143 foreshock sequences of 

which 34 (23%) are anomalous. Using instead the alternative analysis without 

normalizing by ܰ୑�(Figure S6), we find 19 (13%) to be anomalous, which 

suggests that TEST1 overestimated the number of anomalies due to using 

averages, as anticipated in Text S4. Applying TEST1 to the second ETAS 

model, we find 47 anomalous foreshock sequences for both NN and STW 

methods (31% and 33%, respectively, see Figures S7 and S8). 

Figure 2.2 shows the results of TEST2 for each class in ܥ୑ and ܶ ୊ using the NN 

method; the results using the STW method are reported in Figure S9. Most PMF 

values of the real catalog are not anomalous because they are below the 99th 

percentile of synthetic PMF values. We find 22 of 152 (14%) foreshock 

sequences to be anomalous, most of which are again associated with ݉୑ < 5.5 

(only three have larger ݉୑). Using the STW method we find 13 of 143 (9%) to 

be anomalous. Applying TEST2 to the second ETAS model, we identify 34 

(22%) using NN method and 14 (10%, using STW method) to be anomalous 

(Figures S10 and S11, respectively). 

For comparison, Figures 2.2 and S9±S11 also report the results using the 

approach of Seif et al. (2019), which tests a similar yet different null hypothesis 

than TEST2. Specifically, they treat all synthetic catalogs as one single 
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compound catalog. In this way, the PMF is normalized by a much larger number 

of mainshocks than contained in an individual synthetic catalog; for an 

increasing number of synthetic catalogs, the PMF decreases progressively (i.e., 

lowering the detectable minimum frequency) and moves further away from the 

real observation. In other words, our TEST2 honors that a finite earthquake 

catalog must have a lower detectable frequency of foreshocks in the PMF; this 

lower frequency depends on the number of mainshocks that have foreshocks, 

which in turn depends on the length of the earthquake catalog (the lowest 

frequency is one out of the number of mainshocks that have foreshocks). In 

addition, the approach of Seif et al. (2019) normalizes the PMF by the total 

number of mainshocks that have foreshocks (ܰ୑, as we do in TEST2) or no 

foreshocks, which further reduces the PMF by another 0.5±1 order of magnitude 

depending on ܿ א  .୑ܥ

We repeated TEST1 and TEST2 at a 0.05 significance level (i.e., 95th 

percentile), which was originally used by Seif et al. (2019), see Text S4 and 

Figures S12 and S13.  
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Figure 2-1 Results of TEST1 for various classes of the mainshock magnitude ݉ெ (rows) and thresholds 

for the foreshock magnitude ݉ி (columns). Each subplot displays the number of normalized foreshocks 
෡ܰ) for the real catalog (vertical line; red if anomalous, black otherwise) and the empirical Cumulative 

Distribution Function (eCDF, dashed curve) with its 99th SHUFHQWLOH��GDVKHG�YHUWLFDO�OLQH��IRU���¶����

synthetic catalogs. Each subplot also reports the number of anomalous foreshock sequences, ஺ܰிௌ, the 

p-value for TEST1, and the number of mainshocks, ܰெ��7KH�UHVXOWV�DUH�EDVHG�RQ�.��)HO]HU¶V�(7$6�

model and the NN method; Figure S5 shows results using the STW method, and Figure S7 and S8 using 

the second ETAS model. Note that each subplot uses a different ܰ ி-axis range to account for the varying 

data range. 
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Figure 2-2 Results of TEST2 showing probability mass functions (PMFs) of the number of foreshocks 

ிܰ for various classes of ݉ெ (rows) and ݉ி (columns). The PMFs are shown for (i) the real catalog 

(triangles), (ii) all synthetic catalogs (small gray dots as swarm distributions) with their 99th percentile 

(gray horizontal bars), and (iii) when considering all synthetic catalogs as a single compound catalog 

(blue open circles, using the approach of Seif et al., 2019). Triangles become red when they are located 

above the 99th SHUFHQWLOH�RI��LL���7KH�UHVXOWV�DUH�EDVHG�RQ�.��)HO]HU¶V�(7$6�PRGHO�DQG�WKH�11�PHWKRG��

Figure S9 shows results using the STW method, and Figures S10 and S11 using the second ETAS model. 

Note that each subplot uses a different� ிܰ-axis range. 

 

2.3.2 Correlating foreshock sequences with the heat flow 

To investigate the physical cause of anomalous foreshock sequences, we inspect 

their correlation with the local heat flow. We choose this property because 

previous studies suggested a relation between heat flow and statistical properties 

of earthquake sequences (e.g., Enescu et al., 2009, Chen & Shearer, 2016; Ross 

et al., 2021; Zaliapin & Ben-Zion, 2013).  
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Figures 2.3a and 2.4a overlay the locations of normal and anomalous foreshock 

sequences identified by TEST1 and TEST2, respectively, on a heat flow map. 

Figures 2.3b and 2.4b show the corresponding eCDFs of the heat flow 

interpolated at the locations of normal and anomalous foreshock sequences. In 

both cases, anomalous foreshock sequences tend to occur more frequently at 

locations of higher heat flow than normal foreshock sequences. This trend is 

confirmed by the p-values of the two-sample Kolmogorov-Smirnov and paired 

Wilcoxon tests (see annotations in Figures 2.3b and 2.4b): Being below 0.05, 

they indicate that the two samples come from different parent distributions with 

different medians. Figures 2.3 and 2.4 are based on the NN method to identify 

mainshocks and their foreshocks; the results based on the STW method confirm 

our findings (see Figures S14 and S15), as do the results based on the second 

ETAS model (see Figures S16±S19) and on the 0.05 significance level (Figures 

S20 and S21). Moreover, TEST1-based results are stable even if we use the 

alternative analysis without normalizing by ܰ୑ (see Figure S22). We verified 

the stability of our results using an independent modeling of foreshock 

sequences by Petrillo and Lippiello (2021): the authors provided us locations of 

their identified normal and anomalous foreshock sequences, letting us apply our 

analysis on a dataset that is completely independent from our assumptions and 

modeling choices (see Figure S23). It confirms our findings of a preferential 

occurrence of foreshock anomalies in high heat flow zones. We summarize the 

p-values of all the different analyses in Table S4. 
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Figure 2-3 Correlating foreshock sequences with the heat flow. (a) Locations of normal (empty circles) 

and anomalous foreshock sequences (filled circles) identified with TEST1 overlayed on a heat flow map. 

The circles sizes scales with m_M (see legend). The interpolated heat flow map is based on sampled 

heat flow measurements (small gray dots, see Data and Methods section); (b) eCDFs of heat flow values 

at locations of normal (dashed curve) and anomalous foreshock sequences (solid curve); both eCDFs 

are compared using two statistical tests (see annotation with corresponding p-values). The results are 

EDVHG�RQ�.��)HO]HU¶V�(7$6�PRGHO�DQG�WKH�11�PHWKRG��)LJXUH�6���VKRZV�UHVXOWV�XVLQJ�WKH�67:�PHWKRG��

and Figures S16 and S18 using the second ETAS model. 

 

Figure 2-4 Like Figure 2.3 but with foreshock VHTXHQFHV� ODEHOHG�DV�µDQRPDORXV¶�RU� µQRUPDO¶�XVLQJ�

TEST2. Figure S9 shows results using the STW method, and Figures S17 and S19 using the second 

ETAS model.  
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Finally, we add a word of caution on the interpretation of the results, that is, the 

spatial coverage of heat flow data compared to the earthquake activity is rather 

incomplete in northern Mexico. For instance, several anomalous foreshock 

sequences occur in this area but cannot be included in the heat flow analysis due 

to the lack of data. In addition, the available heat flow measurements in northern 

Mexico are not consistent with the Geothermal map of North America 

(Blackwell & Richards, 2004), which indicates a generally high heat flow (> 

100 µW/m2) in this area along the San Andreas Fault. 

 

2.4 Discussion & Conclusion 

We have found that foreshocks have the same characteristics of general 

seismicity as expected by ETAS, except for some cases. Our finding is in 

general agreement with previous studies of foreshock activity, all of which 

found (with some important differences not discussed here) higher foreshock 

activity than expected (Chen & Shearer, 2016; Moutote et al., 2021; Petrillo & 

Lippiello, 2021; Seif et al., 2019). However, our results additionally show that 

foreshock anomalies are mostly associated with mainshock magnitudes below 

5.5²independently from the two tests, the two ETAS models, the two 

procedures to identify mainshocks and their foreshocks, and an independent set 

of foreshock anomalies. Moreover, these anomalies are located preferentially 

(and statistically significant) in zones of high heat flow. The combination of 

these two findings suggests that sequences with anomalous foreshock activity 

behave more like seismic swarms. In fact, independent studies (e.g., Enescu et 

al., 2009, Chen & Shearer, 2016; Ross et al., 2021; Zaliapin & Ben-Zion, 2013) 

have shown that swarm-like seismicity is common in those areas where we have 

found anomalous foreshock sequences.  

Our results do not allow us to further elucidate why foreshock anomalies 

correlate with high heat flow. The anomalies may be driven by specific physical 
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mechanisms (e.g., actual seismic swarms mostly driven by fluids) or still relate 

to a cascade model that is not spatially uniform. The latter may be better 

described by an ETAS model with spatially varying triggering parameters. 

Indeed, Enescu et al. (2009) and Nandan et al. (2017) show that some 

parameters of a spatially varying ETAS model (which mostly depend on the 

more abundant aftershocks) correlate with the heat flow in southern California. 

Their more elaborated clustering model implies more active foreshock 

sequences where the heat flow is high, which agrees with our empirical findings 

using (less abundant) foreshocks. 

Conversely, foreshock sequences located in zones of lower heat flow 

predominantly behave as expected, i.e., in agreement with the null hypothesis 

given by the ETAS model (which mimics the cascade model). If we interpret 

the difference in foreshock activity as evidence of the pre-slip model, it must 

have a minor effect in zones of lower heat flow, but it may become more 

important in zones of high heat flow. In other words, our results are inconsistent 

with pre-slip as a general nucleation process; pre-slip may become only relevant 

under specific tectonic conditions, such as in high heat flow. Our results do not 

prove the cascade model as the truth, but neither do they bring any evidence 

against it nor in favor of the pre-slip model. Perhaps alternative hypotheses open 

up a middle ground: recent studies proposed that both processes can coexist and 

relate to each other (McLaskey 2019; Cattania & Segall 2021) or that nucleation 

follows a different process (Kato and Ben-Zion, 2021). But like the pre-slip 

model, these conjectures remain to be tested. 

Our results also highlight the importance of analyzing earthquake sequences in 

zones of high heat flow in more detail, especially to understand the physical 

reasons of anomalous foreshock sequences: Are they related to seismic swarms 

with an implicit limitation to the mainshock magnitude? Or are they related to 

different clustering processes than those driving tectonic sequences? The 

difference is crucial, in particular regarding the forecasting of large earthquakes.  
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Our findings raise an urgent need to find (quasi-)real-time methods to 

discriminate swarm-like from ETAS-like sequences. Such a discrimination 

could lead to significant improvements in earthquake forecasting, because being 

able to identify a swarm-like sequence as such could markedly reduce the 

forecast probability for a large earthquake. A promising indicator could be the 

background rate component of ETAS, which has been found to increase during 

swarm-like seismicity (Hainzl and Ogata 2005; Lombardi et al., 2006; Llenos 

et al. 2009; Kumazawa et al., 2016). Another possibility was raised by Zaliapin 

and Ben-Zion (2013) demonstrating that swarm-like sequences have a different 

topologic tree structure (i.e., an internal clustering hierarchy, which connects 

background and triggered earthquakes). Unfortunately, this approach can 

currently only be used retrospectively, limiting its applicability in earthquake 

forecasting. We envision other possible parameterizations of the topologic tree 

structure that may facilitate its use for earthquake forecasting. 
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$�XVHIXO�VFDODU�PHDVXUH�IRU�LPSURYLQJ�

HDUWKTXDNH�IRUHFDVWLQJ� 
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3 A useful scalar measure for improving earthquake forecasting: the Average Leaf Depth  

Abstract 

Recent studies have shown significant differences between observations of 

earthquake sequences and the expectation by ETAS (Epidemic-Type 

Aftershock Sequence) models - a well-performing class of earthquake 

clustering models. To better understand why these discrepancies exist, we 

discriminate different types of seismicity using the average leaf depth (ALD), a 

scalar measure that represents the topological structure of a sequence. Zaliapin 

and Ben Zion (2013) showed that high ALD values characterize swarm-type 

sequences, which the standard ETAS model anticipates poorly. Here we 

estimate ALD of real and synthetic catalogs using several ETAS models: we 

note important variation according to the used model.  

 

3.1 Introduction 

One of the most addressed issues in seismology is characterizing earthquake 

sequences and represent them through physical laws and/or empirical relations. 

These ingredients are the basis of the best-performing class of earthquake 

forecasting models, ETAS (Epidemic Type Aftershock Sequences). Studying 
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phenomena of the past (i.e., seismicity) makes it possible to forecast what will 

happen in the future. The question arises: can we anticipate earthquake 

sequences well, i.e., reproduce reality? To provide an answer, we need to 

quantify the discrepancies and understand how well ETAS is able to reproduce 

the reality. 

We already know that there are significant differences between real and 

synthetically simulated catalogs (Moutote et al., 2021; Lippiello et al., 2017; 

Petrillo & Lippiello, 2021; Seif et al., 2019; Zaliapin et Ben Zion, 2013). These 

discrepancies concern sequences that are typically defined as swarm: they do 

not have a single large earthquake but many of the same size that is typically in 

the medium magnitude range (M3-5), have many foreshocks before those large 

events over an extended time period, and are located in particular regions. All 

those behaviors are not described well by a standard ETAS model, which leads 

us to believe that different types of seismicity exist, but no objective (i.e., 

quantitative) way to differentiate between them. This ability would pave the 

way for improved earthquake forecasting by being able to 1) identifying the 

different types of seismicity, ii) studying and understanding their differences, 

and iii) characterizing them from a physical and mathematical point of view. 

Ultimately, these findings could be implemented in forecasting models. 

To address points i) and ii), Zaliapin &Ben Zion (2013) use a simple scalar 

measure, the average leaf depth (ALD), which quantifies the topological 

structure of sequences. They use ALD to divide sequences into burst-like (low 

ALD, dominated by first-generation offspring of the mainshock) and swarm-

like sequences (high ALD, composed of many offspring generations). As there 

is not a specific threshold between these types, Zaliapin and Ben Zion (2013) 

GHVFULEH�WKH�GLVWULEXWLRQ�RI�$/'�DV�³a mixture of two exponential distributions 

with distinct slopes and change point at ALD = 5´��,Q�DGGLWLRQ��Whey compute 

ALD for sequences of a single synthetic catalog: they do not find ALD > 5, nor 
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evidence of swarm-like seismicity. This finding confirms that swarm-type 

sequences follow different laws than ETAS. 

Here, we reinvestigate the work Zaliapin & Ben Zion (2013) and explore the 

characteristics of sequences that ETAS does not describe well. For that, we 

compute ALD for real and synthetic catalogs reproduced using different ETAS 

models.  

 

3.2 Method 

We use the same real catalog provided in Chapter 2 (see Method section). We 

UHSURGXFH� WKUHH� VHW� RI� �¶���� V\QWKHWLF� FDWDORJV� XVLQJ�� L�� .�� )HO]HU� PRGHO�

imposing point sources for all earthquakes, ii) K. Felzer model with planar 

sources for large earthquakes (M > 6.5), and iii) S. Seif model that uses point 

sources for all earthquakes (more details in Method section of Chapter 2). 

In this contest, we use only the NN-declustering method to identify sequences 

for all catalogs, as explained in Chapter 2 (see Method section). 

Once sequences have been identified, we use the average leaf depth (ALDሻ as 

a scalar measure to characterize them quantitatively. ALD is based on the idea 

to represent a sequence as a tree structure (see Figure 3.1): the first vertex is the 

parent event and starts a family; subsequent events that are directly triggered by 

the parent represent the first generation of event(s) (i.e., one or more child, 

which each creates a branch); each of those children can trigger a second 

generation of event(s), and so on. ALD is the sum of the generation level of 

each leaf (i.e., last event of each branch), σ݀௚, divided by the total number of 

leaves ݊௚:   

ܦܮܣ ൌ �
σ݀௚
݊௚
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To explain why this measure is useful to characterized sequences, we show the 

structure of two different sequences (Figure 3.1): the first one with high ALD 

(Linear structure), and the second one with low ALD (Burst structure). High 

ALD values represent sequences with many events for each generation that 

follow one each other (݊௘ ൌ ͵), and few number of generations ( ݊௚ ൌ ͳ). On 

the other side, a burst structure has low ALD: the number of generations is too 

high (݊௚ ൌ Ͷ) with few events for each generation (݊௘ ൌ ሾʹǡ ʹǡ ͳǡ ʹሿ). Therefore, 

in sequences with the linear structure, an event tends to trigger only one event; 
sequences with a burst structure are characterized by an event that triggers 

several branches of events. 

These findings come from the work of Zaliapin and Ben Zion (2013). Although 

they are not able to identify a sharp boundary between the cluster types, ALD 

is believed to facilitate the classification of two basic types of earthquake 

sequences: swarms (ܦܮܣ ൐ ͷ) and bursts (ܦܮܣ ൏ ͷ). This classification can 

only be done for large family size, i.e., ݊ ൐ ͳͲͲ�and mainshock magnitude 

ெܯ ൏ ͹ (Zaliapin and Ben Zion, 2013). 

In Figures 3.2 & 3.3, we explore ALD values as function of family size and 

mainshock magnitude for each dataset. We also compare the results obtained in 

this work with those of Zaliapin and Ben Zion (2013) (Figures 3.4); they use a 

single synthetic catalog with minimum magnitude ܯ ൌ ʹ and a different ETAS 

model with respect to ours. By performing the analysis of ALD for each family 

in one synthetic catalog, they do not find ���� ൐ ͷ, defining such values as 

highly improbable. Such finding supports the hypothesis that ETAS does not 

forecast swarm-type sequences. 
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3.3 Results 

In this chapter, we want to explore ALD values of real and synthetic catalogs. 

In Figure 3.1, we provide a simple example of his computation for two different 

types of sequences: linear and burst.  

 

Figure 3-1 Average leaf depth, ALD, of two different types of simplistic sequences; ݀௚ is the sum of 

events over each leaf, and ݊௚ is the number of leaves; ALD is the ratio of ݀௚ and ݊௚  (figure inspired 

by the work of Zaliapin & Ben Zion, 2013). 

Each subplot of Figure 3.2 represents a specific dataset: we plot ALD as 

function of the family size (i.e., the logarithm of the number of events in each 

sequence) colored according to the density of data: the closer one gets to the 

area of higher density, the more data overlaps. 

Figure 3.2 (a) highlights a deviation of ALD distribution in the real catalog 

respect to the expectation from ETAS (Figures 3.2 b, c, d). In detail, the real 

seismicity (Figure 3.2 a) is characterized by several trends: i) sequences 

where�ALD increases with the family size (until N < 3), ii) sequences whose 

ALD �is independent from the family size, and iii) apparent increase of ALD for 

large families (N > 2). The maximum ALD is ���� ൌ ͳͶ.  

With K. Felzer ETAS models, important differences rise according to the used 

shape-source: imposing point-source, the maximum value is ܦܮܣ ൌ ͳͲ and 

ALD�is independent from the family size (Figure 3.2 b); using planar source for 
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sequences with mainshock ܯெ ൒ ͸Ǥͷ, the maximum ALD is ܦܮܣ ൌ ʹ͹ and all 

of high ALD are related to the sequences with ܰ ൒ ͵ (Figure 3.2 c). Both lack 

an increasing trend of ALD with the family size for ܰ ൏ ͵, that instead 

characterize the real catalog.  

In Figure 3.2-d, we show the results using S. Seif point source model: compared 

to previous models, there are higher ALD values (until ܦܮܣ ൌ ͵͹) also for ܰ ൏

͵. Furthermore, it is not possible to recognize an increasing trend of ALD values 

with family size.  

 

 

Figure 3-2 Average leaf depth, ALD, vs family size, N, for the real catalog (a) and 1000 synthetic 

catalogs reproduced using Felzer model with point source (b), Felzer model with planar source (c), and 

Seif model with point source (d). Dots are colored according to the density of the data. Higher density 

areas have more overlapped data. 
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To better explore discrepancies among real and ETAS models, in Figure 3.3 we 

plot ALD as function of the mainshock magnitude ܯெ of sequences.  

We can note the same trends as in Figure 3.2: for both real and synthetic 

catalogs, most sequences have ALD that is independent from ܯெ (i.e., constant 

trend); for large sequences (ܯெ ൒ ͸Ǥͷ), ALD increases again with ܯெ only for 

real catalog and for model using planar source (Figure 3.3 a, c).  

 

Figure 3-3 Average leaf depth, ALD, vs mainshock magnitude, MM, for the real catalog (a) and 1000 

synthetic catalogs reproduced using Felzer model with point source (b), Felzer model with planar 

source (c), and Seif model with point source (d). Dots are colored according to the density of the data. 

Vertical line highlights the threshold ܯெ ൌ �͸Ǥͷ used for Felzer planar source model. Higher density 

areas have more overlapped data. 
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Figure 3.4 shows the distribution of ALD for real and synthetic catalogs using 

histograms. To make a comparison with previous findings by Zaliapin and Ben 

Zion (2013), we compute the fraction of families with ��� ൐ ͷ. Considering 

the complete dataset, 1.95% of real sequences have ALD larger than this 

threshold; using Felzer model with point source, only 0.03% of the synthetic 

sequences have ܦܮܣ ൐ ͷ, and 0.06% using planar source model. We note 

similar results for point-source model by S. Seif: 0.06% of synthetic sequences 

with ܦܮܣ ൐ ͷ.  

 

Figure 3-4 Distribution of ܦܮܣ in terms of histograms for (a) the real catalog and 1000 synthetic 

catalogs reproduced using Felzer model with point source (b), Felzer model with planar source (c), and 

Seif model with point source (d). The vertical dotted lines represent ܦܮܣ ൌ �ͷ, the maximum ALD found 

by Zaliapin and Ben Zion (2013) using one synthetic ETAS catalog; curly brackets represent the fraction 

of families with ܦܮܣ ൐ ͷ; 
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3.4 Discussion and Conclusion 

In the current study, we have found that the topological structures of synthetic 

sequences depending on the used ETAS model. None of the analyzed models 

fully represents the topological structures of real sequences. 

We also highlight important difference using the same ETAS model (by K. 

Felzer) with different type of earthquake-sources. Using a point source, it is hard 

to find sequences with very high ALD and no dependence with mainshock 

magnitude and/or family size can be noted (that instead characterize real 

seismicity). These results partially agree with the work of Zaliapin and Ben Zion 

(2013): they argued that it is highly unlikely to produce sequences with ܦܮܣ ൐

�ͷ using ETAS. 

This became true using planar source for sequences with mainshock magnitude 

ெܯ ൒ ͸Ǥͷ: above this threshold, ALD values increase exponentially as function 

of mainshock magnitude and family size, as apparently happen for real 

sequences. However, even such planar-source model has some discrepancies 

with the real seismicity: it is not able to forecast sequences with high average 

leaf depth values (ܦܮܣ ൐ ͳͲ) with moderate mainshock magnitude (͵Ǥͻ ൏

ெܯ ൏ ͸) and large number of events inside (ͳ ൏ �ܰ ൏ ͵). We could associate 

these unreproducible sequences with swarm-type seismicity: although there is 

no clear definition of a swarm-type seismicity, they typically have a large 

spatiotemporal extension, large number of foreshocks and aftershocks, and 

several of the largest events in a comparable magnitude range; all these 

characteristics agree with the range of ܦܮܣǡ ெܯ , and ܰ  of sequences that ETAS 

planar-source model of K. Felzer is unable to reproduce. In fact, previous results 

(Chen and Shearer, 2016; Manganiello et al., 2023; Moutote et al., 2021; Seif et 

al., 2019; Lippiello et al., 2017; Zaliapin and Ben Zion, 2013) assert, albeit at 

varying degrees, that ETAS does not reproduce swarm-type sequences, which 

are characterized by large number of foreshocks, with small-to-moderate 
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mainshock magnitude, and located in a particular region (like high heat flow 

zones).  

Anyway, we cannot assert the same conclusion using the point-source model by 

S. Seif. We find sequences with very high ALD (��� ൐ ͷሻ for different order 

of magnitude (i.e., also for ܯெ ൏ ͸Ǥͷ), which is in contrast to the above and 

Zaliapin and Ben-Zion (2013) results. 

Currently, we are not able to explain why there are differences in ALD-trend 

using several models and types of sources. Finally, we can only assert that 

ETAS, in some cases, is able to reproduce sequences with average leaf depth 

values higher than those identified by Zaliapin and Ben Zion (2013), but the 

percentages of such sequences are still lower than for real seismicity, for all 

used models. Some ETAS models cannot reproduce sequences which seem to 

be associate with swarm-type seismicity. Moreover, the used source model 

could also play a very important role in the calculation of ALD. In this regard, 

Bayliss et al. (2019) highlights another significant uncertainty in the average 

leaf depth computation by using a probabilistic approach for identifying 

earthquake clusters (i.e., without using a binary threshold). This aspect can be 

also a limiting factor when discriminating between burst and swarm-type 

seismicity. 

Although ETAS is one of the best-performing earthquake forecasting models, 

it still describes seismicity differently from what we observe in reality. 

However, the variability of the ALD values, among the different models, leads 

us to think that ALD is not a completely objective method for the discretization 

of seismic types. On the contrary, its computation can be influenced by various 

factors, such as the type of used source. Consequently, it is difficult to state 

whether the observed discrepancies between ETAS and real seismicity are 

actually associated with swarm-type sequences at all. At least, we cannot assert 

that, just using average leaf depth. 
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4 What makes an earthquake sequence a swarm? Using Cluster analysis to discriminate earthquake sequences in southern California 

Abstract 

Characterizing and discriminating earthquake sequences, especially in southern 

California, is nothing new (e.g., Zaliapin & Ben Zion, 2013; Chen et Shearer 

2016), but it lacks a formal and consistent definition of their main types (i.e., 

swarm-type and aftershock-type sequences). Here we propose a method to 

discriminate between sequences quantitatively using a comprehensive 

collection of their properties. For each sequence we extract various features that 

characterize them in space, time, and magnitude domain (incl. previously 

proposed definitions of swarms based on average leaf depth and relative timing 

of the largest event). We perform a k-means cluster analysis of collected features 

for different k-values and using different methods to identify the optimal 

number of clusters. Finally, we investigate identified clusters in terms of their 

spatial distribution, their correlation with the heat flow, and statistical properties 

such as the magnitude frequency distribution, temporal rate behavior, and 

foreshock/aftershock productivity. We find statistically significant differences 

among them, which indicates that they represent different types of seismicity, 

making our discrimination meaningful. One cluster is more common in zones 
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of high heat flow, with a high productivity of foreshocks for small mainshock 

magnitude and larger number of events approaching the mainshock (rate), 

indicating swarm seismicity. Our findings provide insights into the interrelation 

and joint significance of sequence properties, which allows distinguishing 

sequences consistently in retrospect. To contribute to improved earthquake 

forecasting in future work, we will restrict our approach to features related only 

to foreshock information (i.e., before the largest event); characterizing an on-

going sequence could then allow us to recognize the type of sequence in real-

time and adjust the probability for a larger earthquake accordingly (e.g., 

lowering it upon indication of a swarm-W\SH�VHTXHQFH��ௗ� 

 

4.1 Introduction 

Swarm sequences are one of the most debated topics in seismological field 

(Zaliapin & Ben Zion, 2013; Chen et al., 2012; Enescu et al., 2009; Farrell et 

al., 2009; Mogi et al., 1963), since there is no objective definition of what they 

are. There are several evidence of the fact that they have "atypical" behavior 

compared to normal seismicity, i.e., the best known and already widely studied 

aftershock-type sequences (Mogi, 1963). Usually, for such seismic sequences, 

we can recognize a larger-magnitude event (mainshock) that (directly or 

indirectly) triggers smaller-magnitude events that tend to decrease over time 

(Mogi, 1963). In the case of swarm-type sequences, the mainshock is not easily 

distinguishable from other events, as its magnitude is very similar to the others 

(Ross et al., 2021); external forcing may play an important role, increasing stress 

and/or reducing strength on seismogenic faults (Shelly et al., 2016). In fact, the 

engine of these sequences seems to correlate with high heat flow zones 

(Manganiello et al, 2023; Zaliapin and Ben Zion, 2013), movements of fluids in 

the subsoil (Vidale & Shearer, 2006), aseismic slip (Lohman and McGuire, 

2007), presence of gas, volcanic areas, reservoirs (Kato et al., 2010). 
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Consequently, there is no clear definition of what a swarm is, and this affects 

the possibility to perform statistical analysis on them, not understudying their 

origins. Previous studies attempted to quantify the difference between the types 

of sequences, in particular: 

1. Zaliapin & Ben Zion (2013) use the average leaf depth (ALD) as a simple 

scalar measure to classify sequences based on their topological 

structures; they identify swarm-like sequences (with more linear 

structure) and burst-like sequences (with more branched structure) 

according to their ALD (see Chapter 3 for more details).  

2. Chen et Shearer (2016) use the relative timing (which is the time delay 

of the largest event normalized by the mean time delay within the 

sequence) to define aftershock-type cluster (trel< 0.2, less prone to spatial 

migration) and swarm-type (trel > 0.2 more prone to spatial migration).  

However, we do not know if these definitions are influenced by the same 

underlying laws or mechanisms. 

The main goal of this chapter is to inspect all southern California sequences and 

to provide a working definition of the different types of sequences, starting from 

their characterization in space, time, and magnitude domain; in so doing, we 

collect a large comprehensive dataset for seismicity, also considering the 

knowledge we already have (as ALD and relative timing as quantitative 

measurements to classify sequences). We analyze all these characteristics at the 

same time, and we perform the k-means cluster analysis to split the sequences 

into different groups, if dissimilar, or in the same group if similar. As we do not 

assume the existence of only two types of seismicity, we explore several groups.  

Moreover, we wonder if all collected features have the same weight for the 

cluster analysis, or if there are some needless ones. To explore that, we use an 

approach based on the leave one out method, getting a subset with the most 
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influential features to use for the cluster analysis. We also wonder about the 

selected characteristics and why they are so useful for the cluster identification. 

Finally, we focus on understanding the origin of identified clusters and why they 

are different, to achieve different governing properties among them. For that, 

we analyze the spatial correlation of identified clusters with heat flow values (as 

a physical parameters) and their statistical properties such as the magnitude 

frequency distribution, temporal rate behavior and foreshock/aftershock 

productivity. Based on previous studies, we expect to find a cluster (the 

aftershock-type) which responds to the laws we are already aware of, and 

another cluster (the swarm-type) whose physical and statistical properties are 

unusual and in agreement with previous studies, such as localization of 

mainshocks in particular areas (as already found by Manganiello et al., 2023; 

Zaliapin & Ben Zion, 2013) and with a huge productivity of foreshocks (Seif et 

al., 2019; Lippiello et al., 2017).  

The usefulness of this procedure lies in being able to discriminate between 

sequences quantitatively, finding the best separation simultaneously for all 

properties. This is handier than performing statistical analyses for each property 

separately. Being able to identify different types of sequences, with specific 

characteristics, can contribute to improving earthquake forecasting and the 

understanding of earthquake nucleation processes. If there are statistical 

differences among seismic sequences, we could i) classify them in different 

clusters according to their statistics, ii) characterize them from different points 

of view (Magnitude frequency distribution, rate, productivity), and iii) use these 

outlooks to improve earthquake forecasting: recognize an ongoing sequence a-

priori DV� ³VZDUP´� FRXOG� H[FOXGH� WKH� K\SRWKHVLV� RI� DQ� LPSHQGLQJ� ODUJe 

earthquake.   
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4.2 Data & Method 

The method is explained in several steps through the following subparagraphs 

(from 4.2.1 to 4.2.4) and each of them is graphically showed in Figure 4.1. 

 

4.2.1 Collected dataset 

The real catalog used in this chapter and the NN-declustering method for 

identifying sequences are explained in Chapter 2 (see Method section). We only 

consider sequences with a number of events N t 10 and we collect the following 

features for each of them: 

1.  Relative timing of the largest event 

2.  Average Leaf Depth (ALD) 

3.  Depth of the largest event 

4.  Nearest fault distance of each sequence 

5.  Relative duration of foreshocks and aftershocks 

6.  Area of foreshocks and aftershocks 

7.  Magnitude difference between mainshock and largest foreshock & 

aftershock 

8.  Productivity of foreshock and aftershocks 

9.  Largest magnitude 

In the Supporting Information file SI2, we provide all the equations used to 

calculate the characteristics listed above and we also show several plots 
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representing them (from Figure S2.1 to S2.11). Before performing the analyses, 

we normalize the dataset using the following boxcox MATLAB function:  

If O is not = 0, then: 

ሻߣሺܽݐܽ݀ ൌ � ௗ௔௧௔
ഊିଵ
ఒ

; 

If O is = 0, then: 

ሻߣሺܽݐܽ݀ ൌ ��ሺ݀ܽܽݐሻ Ǣ 

where O is the value that maximizes the Log-Likelihood Function (LLF). One 

of the most important conditions for using the boxcox function is that all 

variables (i.e., all features computed for all sequences) have non-null (i.e., no-

missing values) or positive values. This condition could limit the analysis, as it 

is not possible to comply with that for various characteristics: for example, it is 

not possible to calculate the area of the foreshocks for sequences that do not 

have any, as well as the difference in magnitude with the mainshock, etc. In 

these cases, we replace null or zero values with the minimum positive value of 

that specific variable, reduced by one unit.  

 

4.2.2 k-means Cluster Analysis 

We perform the cluster analysis exploring the entire collected and normalized 

dataset. We use this technique because it is able to find clusters that share 

common features and explore valuable information hidden in the groups. 

Considering that there are numerous clustering algorithms proposed in the 

literature, we decide to use the k-means due to its simplicity and efficiency (Li 

& Wu, 2012): it is able to split data in several k-groups, selecting a set of initial 

centroid locations (according to k-value). Each feature of the dataset is assigned 
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to a centroid using the squared Euclidean distance; in this way clusters start to 

form. The centroid position is updated every time a feature is added to the 

cluster; this process ends when all characteristics are assigned to a group and 

there are no more variations (Kaufman and Rousseeuw, 1990).  

The first step of this analysis is to understand how many clusters characterize 

seismicity. For this purpose, k-means cluster analysis comes in handy, as we can 

decide how many types of clusters we want to explore (i.e., k-values); therefore, 

to achieve our goal, we perform the analysis for k-values = [1:10].  

However, it is well known that k-means cluster analysis can be a double-edged 

sword: it is always able of identifying different types of clusters (for each k-

value) even if there is no relationship among data and, consequently, no 

possibility to interpret the results. To overcome this problem, we look for the 

optimal number of clusters ( ௢ܰ௣௧) by crossing the results of different methods: 

i) Average silhouette mean, for which the maximum value is the appropriate 

number of clusters (Kaufman and Rousseeuw, 1990), and ii) the Elbow method, 

for which the knee point of the distribution of the total within-cluster sum of 

square is the optimal number of cluster. 

 

4.2.3 Statistical properties of identified clusters 

To prove the statistically differences among identified clusters, we start to 

investigate sequences in terms of spatial distribution. For each cluster, we 

explore the correlation of the mainshock location with heat flow values of 

southern California as physical quantity, taking inspiration from Manganiello et 

al., 2023 (Chapter 2). We make eCDFs of interpolated heat flow values and we 

compare them using two statistical tests: Kolmogorov-Smirnov (KS) and 

Wilcoxon rank (W) tests. 
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As we want to discriminate the types of sequences from different points of view, 

we also perform a statistical analysis in the time and magnitude domain. We 

plot the MFDs of the mainshocks and MFDs of all events, both for each 

identified cluster. We test if the magnitude distribution is significantly different 

among clusters, performing two statistical tests (KS and W tests mentioned 

above) and we compute the b-values and their uncertainties for all event 

distributions (Marzocchi et al., 2020): 

ܾ௡ ൌ � ଵ
ெഥି�ெ೘೔೙

; 

ܾ ൌ ܾ௡ כ �
ேିଵ
ே�

; 

where ܯഥ  is the mean magnitude of events above ܯ௠௜௡�Ǣ �ܰ is the number of 

events above ܯ௠௜௡. We compute the uncertainties using Tinti e Mulargia 

(1987): 

ܾ߂� ൌ �
ͳ െ ݌

݈݊ͳͲ כ ݌�ඥܯ߂ כ ܰ
 

with ܯ߂ ൌ ͲǤͲͳ,  ݌ ൌ ͳ ൅� ௱ெ
ெഥି�ெ೘೔೙

 

Using Z-test, we also test the null hypothesis: 

଴ǣܪ ܾଵ ൌ �ܾଶ� 

ݐݏ݁ݐ�ܼ ൌ �
ܾଵ െ�ܾଶ

ඨߪଵ
ଶ

ଵܰ
൅ ଶߪ�

ଶ

ଶܰ

� 

Where ܾଵǡ ܾଶ� (the b-values), ଵܰǡ ଶܰ (the number of events) and ߪଵଶǡ  ଶଶ (theߪ

variances) are referred to identified couple of clusters, respectively. 

Next, we count the number of foreshocks and aftershocks of each sequence as 

function of the mainshock magnitude; we fit their logarithmic values with a 
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regression line, returning the slope and the intercept for each cluster. We also 

compute the productivity mean values for each magnitude bin (large 0.01).  

As last statistical property, we analyze the temporal behavior of each cluster 

(i.e., the rate). First, we compute the time differences between each mainshock 

and its foreshocks and aftershocks ( ிܶ ǡ ஺ܶǡ respectively); second, we use the 

following formulation to compute the rate: 

ݐܴܽ ௙݁௢௥ ൌ
ி̴ܶ௕௜௡

݂݂݀݅ሺܾ݅݊ிሻ 
כ
ͳ
ܰெ

Ǣ ௔௙௧݁ݐܴܽ����� ൌ
஺̴ܶ௕௜௡

݂݂݀݅ሺܾ݅݊஺ሻ 
כ
ͳ
ܰெ

Ǣ 

ி̴ܶ௕௜௡ are the difference-time values for each logarithmic bin,�ܾ݅݊ிǡ�that go from 

the logarithm of ிܶ minimum value to the logarithm of ிܶ maximum value, 

spaced by 25 (the same for ஺ܶ�Ƭ�ܾ݅݊஺). 

ி̴ܶ௕௜௡ and ஺̴ܶ௕௜௡ are normalized by ݂݂݀݅(ܾ݅݊ி) & ݂݂݀݅(ܾ݅݊஺)ǡ respectively, 

(i.e., differences between adjacent elements) and by the number of mainshocks 

(ܰெ) of that specific cluster. 

We also compute the survival function of the rate for foreshocks (ܵ௧೑೚ೝ) and 

aftershocks (ܵ௧ೌ೑೟) for each cluster; survival functions are computed as follows: 

ܵ௧೑೚ೝ ൌ ͳ െ ሺܨܦܥ݁ ிܶሻǢ 

ܵ௧ೌ೑೟ ൌ ͳ െ ሺܨܦܥ݁ ஺ܶሻǤ 

 

4.2.4 Leave one out method 

To make the analysis more concise and straightforward, we wonder if all 

characteristics of the used dataset are needful for the classification, or if there is 

a subset of them able of achieving the same result. For that, we use a method 

based on the leave one out strategy: we remove from the dataset one feature at 
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a time to explore several subsets. For each subset, we repeat the whole 

declustering procedure, exploring the optimal number of clusters through the 

average silhouette mean. ܥே௜  are the initial clusters identified using the entire 

dataset (with ܰ ൌ ͳǣ ௢ܰ௣௧ሻ and ܥே௦  the clusters identified for a specific subset. 

Each initial cluster ܥே௜  is compared with a new identified cluster ܥே௦ , the one 

with which it has the most elements in common. If the difference of elements 

(i.e., misclassified sequences) between the compared clusters is less than 10%, 

we go ahead with the analysis by removing another feature from the current 

subset. Vice-versa, the removed feature has a very strong influence on cluster 

analysis, so it is reinserted into the subset and another one is removed. In Table 

4.1 we figure out the used procedure and, for each explored subset, we specify 

the removed and (eventually) reinserted feature, the optimal number of clusters 

(k) and the number of misclassified sequences respect to each initial ܥே௜ .  

We redo the cluster analysis using the most important features as subset, 

exploring again the physical properties of new identified clusters. We wonder 

about the importance of selected features for seismicity classification: we look 

at their eCDFs for each identified cluster. 
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Figure 4-1 Simple explanation of the proposed method: 1) Collect information on seismic sequences as 

explained in section 4.2.1; 2) perform a k-means cluster analysis on collected dataset and identify the 

optimal number of clusters to split sequences, as explained in section 4.2.2; 3) look at statistical 

Feature 2

k-means

Fe
at

ur
e 

1

(Simple 
example)

1. Collected features (F) of 
seismic sequences (id)

2.  k-means cluster 
analysis

Fe
at

ur
e 

1

Feature 2

id F1 F2 F3

Seq.1 2.3 3.2 2.7

Seq.2 4.5 2.1 4.8

͙ ͙. ͙ ͙

Seq.n 4.6 7.6 8.8

(Simple example of collected dataset)

� Split sequences in k-clusters (for k = 1:10)
� Use Average silhouette method and Elbow 

method to identify the optimal number of clusters 

3. Statistical properties of 
identified clusters

For each identified cluster explore:

� Heat flow values of mainshock location

� The Magnitude Frequency Distribution (MFD)

� Foreshock and aftershock productivity

� Foreshock and aftershock rate

4. Leave one out method

id F1 F2 F3

Seq.1 2.3 3.2 2.7

Seq.2 4.5 2.1 4.8

͙ ͙. ͙ ͙

Seq.n 4.6 7.6 8.8

X

� Remove one feature at time from the dataset

� Redo k-means cluster analysis and identify new clusters (i.e., point 2.)

� Compare the new clusters with the previous identified clusters 

(i.e., using the complete dataset)

9 If the number of miss-classified sequences is high, the features 

is important for the seismic discrimination and must be used 

into the dataset! 
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properties of each identified cluster, as explained in section 4.2.3; 4) perform the leave one out method 

to identify the most important features from the collected dataset, as explained in section 4.2.4. 

 

4.3. Results 

In section 4.3.1 we show the results of the cluster analysis using the entire 

dataset; next we search for the optimal number of clusters using two different 

statistic methods. Finally (section 4.3.2), we study sequences of each identified 

cluster from several points of view. 

In section 4.3.3, we show the results of the leave one out method used to identify 

a subset with the most influential characteristics; moreover, we do an in-depth 

analysis to understand the reason for their strong influence in the identification 

of sequence-types. Finally, we use the selected subset to repeat the cluster 

analysis and explore each identified seismicity group (section 4.3.4). 

 

4.3.1 Results of cluster analysis using the complete dataset  

First, we represent the normalized dataset in form of histograms (Figure 4.2). 

As explained in the method section, some sequences do not have foreshocks, 

and null or zero values have been replaced with the minimum positive value 

(rescaled of one unit) of the feature. They correspond to left bars in some 

histogram (as relative timing, relative duration of foreshocks, area of foreshocks 

DQG�VR�RQ��´ 
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Figure 4-2 Histogram of normalized feature values. 

In Figure 4.3 we display the identified clusters for each k-value using the 

silhouette plots (on the left): for each sequence inside the cluster, its silhouette 

value represents how similar it is to other sequences in the same cluster, respect 

to sequences in other clusters (Kaufman and Rousseeuw, 1990); values range 

from ±1 (bad matched) to 1 (well matched). We also report the number of 

sequences belonging to each cluster using stem plots (right plot). 
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For k-values = 2 sequences are better matched to its own cluster having mostly 

positive silhouette values. This is a useful clue to identify the optimal number 

of clusters. 

 

Figure 4-3(On the left) Silhouette plots for each k-value = [1:10]: x-axis corresponds to the silhouette 

value of each element; y-axis corresponds to the number of identified clusters. (On the right) 

Corresponding stem plot for each silhouette plot: x-axis represents the number of clusters and y-axis 

represents the number of sequences inside each cluster. 

To properly define how many types of the seismic sequences exist, we present 

in Figure 4.4 two methods used to identify the optimal number of clusters. The 

result of average silhouette mean is a representation of what we highlighted in 
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Figure 4.3, i.e., the optimal number of clusters corresponds to k-value = 2. 

However, we decide to also perform the Elbow method in order to investigate 

the existence of only one cluster; this method requires a more subjective 

interpretation of the results, i.e., selecting the knee of the curve as the optimal 

number of clusters. However, it seems to agree with the previous results: for N 

clusters = [2:10] all wss values are included in a range between 2*103 and 1*103 

with a slightly decreasing rate, while for N cluster = 1 the value rises 

dramatically to 3*103, making a knee at N cluster = 2. 

 

Figure 4-4 Different methods used to identify the optimal number of clusters highlight by the vertical 

dotted lines. 

Selecting k-value = 2 as the optimal number, we identify two clusters named 

C1
i= 148 sequences and C2

i = 85 sequences. 

 

4.3.2 Physical interpretation of identified clusters  

The main goal of this work is to provide a method for sequence classification, 

but also, we want to explore the statistical differences among clusters; we 

analyze the two set of sequences from several points of view, in order to make 

a final crossing of all information. 
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First, we deepen the spatial correlation of sequences using heat flow values 

interpolated at their mainshock location (Figure 4.5); statistical results highlight 

an important difference: the null hypothesis is rejected for both tests (p-values 

< 0.05), stating that the heat flow values of the clusters do not belong to the 

same population. 

 

Figure 4-5 On the left, interpolated heat flow map with sampled points and mainshock location of 

sequences of each cluster; on the right eCDF of interpolated heat flow values of each mainshock of 

each cluster; eCDF are compared using two statistical tests (see annotation with corresponding p-

values). 

Second, we compare different clusters in the magnitude domain: Figure 4.6-a 

shows the Magnitude Frequency Distribution (MFD) of the mainshock 

magnitudes of sequences; in Figure 4.5-b, we consider the magnitude of all 

events belonging to each cluster.  We test the null hypothesis that the magnitude 

of events come from the same parent distribution: due to the rejection of the null 

hypotheses (p-values < 0.05), we can assert that the magnitude of clusters come 

from different parent distribution (based on the KS-test) with different means 

(based on the W-test). Testing the b-values using Z-test, the null hypothesis 

଴ǣܪ) ܾଵ ൌ � ܾଶ) is rejected as ܼ݁ݎ݋ܿݏ ا െ͵ & ݌ ا ͲǤͲͲͳ͵ (Z-score table 

provided by Davis 2002). 
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Figure 4-6 a) Magnitude Frequency Distribution of mainshocks for each identified cluster; b) 

Magnitude Frequency Distribution of all events for each identified cluster; b-value is also computed 

and reported for each cluster with the uncertainty. MFDs are compared using two statistical tests (see 

annotation with corresponding p-values). 

We show the results of productivity for foreshocks (Figure 4.7, left) and 

aftershocks (Figure 4.7, right) for each identified cluster. For small mainshock 

magnitudes (�୫ ൏ ͸), the productivity of foreshocks is generally higher for C1
i; 

C2
i has higher productivity for larger mainshock magnitude (Cluster2 S = 0.4), 

while C1
i depends less on the mainshock magnitude (Cluster1 S = 0.2). The 

aftershock productivity does not differ among the clusters (Fig. 4.7, left). 
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Figure 4-7 Number of foreshock and aftershock for each mainshock magnitude (dots); mean values of 

number of foreshocks and aftershocks (squares) for each bin of magnitude (large 0.1); solid lines are 

regression fit of each cluster; we also report the slope values (s) and the intercept (i) of each line. 

Figure 4.8 shows the temporal evolution of the foreshock and aftershock rates 

for both clusters. The foreshock rate of C1
i (red line) is higher than the one of 

C2
i (black line). This trend is confirmed by the survival function in Figure 4.9. 

For aftershocks, we do not find differences among the clusters. 

 

Figure 4-8 Rate for aftershock and foreshock sequences: x-axis is the day of events before or after the 

mainshocks; y-axis are the normalized time of foreshocks or aftershocks for specific time interval. 

Different function corresponds to different identified clusters. 



 
 

 
 
 

 

4-59 

 

Figure 4-9 Survival function of rate of foreshocks (left) and aftershocks (right) for different identified 

clusters. 

 

4.3.3 Results of cluster analysis using the most influential subset 

In Table 4.1 we show the procedure used to select the most important subset of 

features to use for cluster analysis; it is easy to note that results do not change 

until specific features are removed from the dataset: relative duration of 

foreshocks, area of foreshocks, foreshock productivity, and the magnitude of the 

largest events (see columns 5 & 6 of Table 4.1). In these cases, there is a larger 

number of misclassified sequences respect to the initial clusters (larger than 

10%). Following the logic behind the method, the features have a very important 

role in the sequence classification.  

Finally, in Figure 4.10 we present the results of the cluster analysis using only 

the most important features; the optimal number of clusters is for k-value = 2 

yet (Figure 4.11) we identify two clusters named C1
s = 140 sequences and C2

s = 

93 sequences. 
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Table 4-1 Leave one out procedure to select the needful subset: for each selected subset (column 1), we 

report the removed feature from the previous subset (column 2), the eventually reinserted feature 

(column 3), the optimal number of clusters for the current subset (column 4), the number of misclassified 

sequences respect to cluster ܥଵ௜�(column 5) & ܥଶ௜ (column 6). 

Row Removed 
feature 

Reinserted 
feature 

optimal 
k-value 

Miss-
classified 
events C1 

Miss-
classified 
events C2 

ALD ± Depth of mainshock  

 Distance fault ± Relative Duration 

Foreshocks   

 Relative Duration Aftershocks ± 

Area Foreshocks  

 Area Aftershocks ± Magnitude diff 

(Main-Foreshocks)  

 Magnitude diff (Main-Aftershocks) 

± Productivity (Foreshocks)  

 Productivity (Aftershocks) ± 

Magnitude of largest events 

Relative 

Timing 

 
2 7 2 

Depth of mainshock ± Distance 

fault  

 Relative Duration Foreshocks ± 

Relative Duration Aftershocks   

 Area Foreshocks ± Area 

Aftershocks  

 Magnitude diff (Main-Foreshocks) 

± Magnitude diff (Main-

Aftershocks)  

 Productivity (Foreshocks) ± 

Productivity (Aftershocks)  

ALD 
 

2 11 3 
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 Magnitude of largest events - 

Distance fault ± Relative Duration 

Foreshocks   

 Relative Duration Aftershocks ± 

Area Foreshocks  

 Area Aftershocks ± Magnitude diff 

(Main-Foreshocks)  

 Magnitude diff (Main-Aftershocks) 

± Productivity (Foreshocks)  

 Productivity (Aftershocks) ± 

Magnitude of largest events 

Depth of 

mainshock 

 
2 11 3 

Relative Duration Foreshocks ± 

Relative Duration Aftershocks   

 Area Foreshocks ± Area 

Aftershocks  

 Magnitude diff (Main-Foreshocks) 

± Magnitude diff (Main-

Aftershocks)  

 Productivity (Foreshocks) ± 

Productivity (Aftershocks)  

 Magnitude of largest events - 

Distance 

fault 

 
2 11 3 

Relative Duration Aftershocks ± 

Area Foreshocks  

 Area Aftershocks ± Magnitude diff 

(Main-Foreshocks)  

Relative 

Duration 

Foreshocks  

Relative 

Duration 

Foreshocks  

3 55 20 
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 Magnitude diff (Main-Aftershocks) 

± Productivity (Foreshocks)  

 Productivity (Aftershocks) ± 

Magnitude of largest events 

Relative Duration Foreshocks -Area 

Foreshocks ± Area Aftershocks  

 Magnitude diff (Main-Foreshocks) 

± Magnitude diff (Main-

Aftershocks)  

 Productivity (Foreshocks) ± 

Productivity (Aftershocks)  

 Magnitude of largest events - 

Relative 

Duration 

Aftershocks  

 
2 5 2 

Relative Duration Foreshocks ± 

Area Aftershocks ± Magnitude diff 

(Main-Foreshocks)  

 Magnitude diff (Main-Aftershocks) 

± Productivity (Foreshocks)  

 Productivity (Aftershocks) ± 

Magnitude of largest events 

Area 

Foreshocks 

Area 

Foreshocks 

2 17 3 

Relative Duration Foreshocks ± 

Area Foreshocks Magnitude diff 

(Main-Foreshocks) ± Magnitude diff 

(Main-Aftershocks)  

 Productivity (Foreshocks) ± 

Productivity (Aftershocks)  

 Magnitude of largest events  

Area 

Aftershocks 

 
2 4 2 
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Relative Duration Foreshocks ± 

Area Foreshocks Magnitude diff 

(Main-Aftershocks) ± Productivity 

(Foreshocks)  

 Productivity (Aftershocks) ± 

Magnitude of largest events 

Magnitude 

diff (Main-

Foreshocks) 

 
2 14 1 

Relative Duration Foreshocks ± 

Area Foreshocks Productivity 

(Foreshocks) ± Productivity 

(Aftershocks)  

 Magnitude of largest events - 

Magnitude 

diff (Main-

Aftershocks) 

 
2 12 0 

Relative Duration Foreshocks ± 

Area Foreshocks Productivity 

(Aftershocks) ± Magnitude of largest 

events 

Productivity 

(Foreshocks) 

Productivity 

(Foreshocks) 

2 16 1 

Relative Duration Foreshocks ± 

Area Foreshocks Productivity 

(Foreshocks) Magnitude of largest 

events - 

Productivity 

(Aftershocks

) 

 
2 8 0 

Relative Duration Foreshocks ± 

Area Foreshocks Productivity 

(Foreshocks) 

Magnitude 

of largest 

events 

Magnitude 

of largest 

events 

3 42 3 
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Figure 4-10 Same plots as Figure 4.3 but using the most important features for cluster analysis.  

 

Figure 4-11 Same plots as Figure 4.4 but using the most important features for cluster analysis. 
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This prompt the question of why the selected features are the most important 

ones for the classification of seismic sequences. In this regard, we go into the 

details looking at the eCDFs of features for each identified cluster (Figure 4.12). 

The number of foreshocks seems to be the discriminating factor:  C2
s (black 

line) represents a group of sequences not having a huge number of foreshocks 

respect to C1
s (red line), for this reason the relative duration, area and 

productivity values are lower than others. In addition, the magnitude of the 

largest events plays an important role:  C1
s is characterized by sequences with 

small-medium mainshock magnitude (no events with ܯெ ൒ ͸). 

 

Figure 4-12 eCDFs of most important features: a) relative duration of foreshocks, b) area of foreshocks, 

c) foreshock productivity and d) the magnitude of the largest event for each identified cluster. 

In the next section, we analyze in detail the sequences belonging to each single 

cluster identified with the most important features. 

 

4.3.4 Physical interpretation of identified clusters using most important 

features 

We saw that, using the most important features as dataset for cluster analysis, 

seismic sequences may be classified into two different clusters. From Figure 

4.13 to Figure 4.17, we deepen physical reasons behind them as we show in 

Section 4.3.2 (using complete dataset).  
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 C1
s is located mostly in areas of high heat flow respect to C2

s (Figure 4.13). 

This trend is confirmed by the p-values of the two-sample Kolmogorov-

Smirnov and paired Wilcoxon tests (see annotations in Figure 4.13): being 

below 0.05, C1
s come from different parent distributions with different medians 

respect to C2
s. We obtain the same statistical results for magnitude frequency 

distribution MFDs (Figure 4.14); as we did in section 4.3.2, we perform Z-test 

to test the null hypothesis: ܪ଴ǣ ܾଵ ൌ � ܾଶǤ Also in this case ܪ଴ is rejected as 

݁ݎ݋ܿݏܼ ا െ͵ & ݌ ا ͲǤͲͲͳ͵ (Z-score table provided by Davis 2002). 

Furthermore, C1
s has higher foreshock productivity values (Figure 4.15) and the 

slope of the straight line is lower than other as depends less on the mainshock 

magnitude (see annotation in Figure 4.15); in addition, the foreshock rate values 

(Figure 4.16) indicate a higher foreshock number per time unit (red line is above 

the other) as we see for the survival function (Figure 4.17, the red line is below 

the black one).  

 

Figure 4-13 As Figure 4.5 but using the most important features for cluster analysis. 
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Figure 4-14 As Figure 4.6 but using the most important features for cluster analysis.  

 

 

Figure 4-15 As Figure 4.7 but using the most important features for cluster analysis.  
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Figure 4-16  As Figure 4.8 but using the most important features for cluster analysis. 

 

Figure 4-17 As Figure 4.9 but using the most important features for cluster analysis.  

 

 

4.4 Discussion and Conclusion 

The main goal of this study is to provide a quantitative, objective and statistic 

method to characterize seismic sequences and split them in different groups. 

The reason for doing that is simple: we want to understand if there are physical 

differences between the seismic sequences and therefore different mechanisms 

that originate them. In fact, due to a gap in the definition of sequence-types, it 

is hard to identify sequences in a certain category rather than another. Our study 
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may represent the solution for this type of problem: for any sequence it is 

possible to determine the cluster to which it belongs, due to the simplicity of the 

method and the easy availability of data it needs. The idea comes from previous 

works that have already highlighted important variation among sequences, in 

terms of their location (Manganiello et al., 2023; Zaliapin and Ben Zion, 2013) 

and number of foreshocks (Seif et al., 2019; Petrillo & Lippiello, 2021; Moutote 

et al., 2021). Here, we decided to quantify these differences considering space, 

time, and magnitude of a seismic dataset for southern California. 

Initially, the results of the k-means cluster analysis allow us to identify two main 

groups; we wonder if all used dataset is necessary for the analysis, or if there 

are more important features useful for sequence classification. Through the 

leave one out method, we find that the most influential ones are: relative 

duration of foreshocks, area of foreshocks, foreshock productivity and the 

magnitude of the largest event. Performing the cluster analysis using this 

selected subset, we are able to identify two main clusters again, but with a 

slightly different number of sequences for each cluster. 

The question arises spontaneously: why they are so influential on the cluster 

identification? Analyzing the eCDF of their values, we can see that the number 

of foreshocks is the strongest influential parameter:  C2
s has sequences with no 

or fewer foreshocks than those in C1
s; C1

s is also characterized by sequences 

with small-medium mainshock magnitude. 

By comparing the heat flow values, the MFDs, the productivity and the rate of 

foreshocks and aftershocks of sequences, we began to outline the seismicity 

types: i) the sequences of  C2
s occur in areas of low flow and are characterized 

by low productivity of the foreshocks for different orders of magnitude; 

foreshocks rates are lower in the hours preceding the mainshocks, and 

seismicity is more focused after mainshocks; ii) sequences of C1
s have higher 
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productivity of foreshocks, are located in areas of high heat flow and have 

small-medium mainshock magnitude sequences.  

In doing so, we have outlined two types of sequences which differ from a 

physical and objective points of view; they can be more commonly named 

aftershock-type sequences (C2
s) and swarm-type sequences (C1

s). The 

distinction is much more pronounced using the most important features for 

cluster analysis: for example, using the whole dataset, also large seismic 

sequences (undoubtedly of aftershock-type, with mainshock magnitude M > 6) 

were part of swarm-type cluster C1
i. These miss-classified sequences affected 

the productivity, MFD and rate values of swam-type cluster. This result 

highlights the importance of using only influential features to better appreciate 

differences among clusters. 

Our results are in line with previous studies that identify atypical sequences 

compared to the widely known aftershock sequences: Zaliapin & Ben Zion 

(2013) identify swarm-type sequences in high-flow areas characterized by high 

values of average leaf depth (ALD > 5), i.e., with a topological structure that 

tends to extend in space and time. These findings are partly in agreement with 

our results, in particular for the spatial variability of the sequences with the heat 

flow values; however, ALD proved to be an unneeded feature within our cluster 

analysis. It should be noted that, in the current study, large seismic sequences 

(mainshock magnitude M > 7) are taken into consideration, which could 

influence the effect of the ALD values in the cluster analysis: in fact, Zaliapin 

and Ben Zion (2013) consider these sequences with a separate category, having 

intermediate characteristics between two main clusters identified by them (burst 

and swarm type). In addition, other studies (e.g., Enescu et al., 2009, Chen & 

Shearer, 2016; Ross et al., 2021) have shown that swarm-like activity is 

common in areas with high heat flow. 
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We also use another quantitative feature to split sequences in different types: 

the relative timing proposed by Chen & Shearer, (2016). Even if we cannot 

consider this characteristic as indispensable for the classification, the findings 

of Chen & Shearer, (2016) agree with our results: swarm-type sequences have 

larger relative timings respect to aftershock type sequences, and they are located 

in high heat flow region. The reason of such classification could be match with 

the high foreshocks productivity of swarm sequences discovered in this work.  

In previous studies, the large number of foreshocks is also a widely debated 

feature and which seems to characterize swarm-type sequences (Manganiello et 

al., 2023; Petrillo & Lippiello, 2021; Moutote et al, 2021; Seif et al., 2019); in 

these works, it has also been shown that such sequences are not predicted by the 

ETAS models. This suggests that they could follow different laws than those 

used for the forecast, as the productivity, rate and MFD that we discover here.  

As shown by previous study (Farrell et al., 2009), swarm sequences appear to 

be characterized by high b-values (up to 1.3 ± 0.1). Here, we perform statistical 

test on b-values and MFDs of identified clusters, and we can confirm that they 

are completely different due to the rejection of the null hypotheses.  

Finally, the versatility of this method lies in the fact that it is possible to consider 

any characteristic, evaluate its importance and impact on the results. Our 

procedure may be useful to improve earthquake forecasting in future work, 

restricting features related only to foreshock information (i.e., before the largest 

event). We could characterize the on-going sequences, recognize their type (i.e., 

as aftershock or swarm sequence) and adjust the probability for a larger 

earthquake accordingly (e.g., lowering it upon indication of a swarm-type 

sequence).   

 

 



 
 

 
 
 

 

5-72 

5 
&RQFOXVLRQ 

5 Conclusion 

Is it possible to predict large earthquakes? How far in advance? With what 

probability? These are some of the hottest topics plaguing the scientific 

community. The interest in being able to do so is twofold: saving human lives 

and enriching cultural background on the functioning of our Earth-system. 

For these reasons, in this PhD thesis we are committed to providing skills that 

can be used to enhance earthquake forecasting models. To do that, we use 

different approaches that are aimed at the characterization of the seismic 

sequences. We believe that deeper knowledge on seismicity, existing 

typologies, physical parameters influencing them, etc., could be useful 

information to be implemented in the probabilistic models. 

In this regard, in Chapter 2 we analyze foreshocks as possible precursors, and 

we answer the main question: do they have characteristics such as to be 

recognized a-priori? This could definitely improve the probability of large event 

occurrence. For that, we start from the null hypothesis that ETAS represents all 

the seismicity, and we compare the foreshocks observed in reality and those of 

synthetic catalogues. Any discrepancies could assume that foreshocks have 

some peculiar characteristics that differentiate them from normal seismicity and 

that would help to recognize them a-priori. However, we find none of this. One 

difference is noteworthy: there are particular sequences that ETAS models are 

unable to forecast. They occur mainly in areas of high heat flow, characterized 

by a high number of foreshocks and small-medium mainshock magnitude. In 

the literature, sequences with similar characteristics are defined as swarm-type, 
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although there is no objective method to identify them. Several physical 

mechanisms (e.g., fluids) could explain their occurrence or using not spatially 

uniform cascade model. 

According to what has been identified in the previous chapter, we decide to 

further investigate what ETAS is unable to forecast. To do this, we use a scalar 

measure, the Average Leaf Depth, as possible discriminator between burst-like 

(with small ALD values) and swarm-like (with high ALD values) sequences 

and investigate if ETAS is able to predict both types. We find incongruous 

results exploring different ETAS models, with different parametrization and 

types of sources: the planar source model is characterized by very high ALD 

values, although they are only related to sequences of large mainshock 

magnitude (therefore not comparable to swarm-type sequences). Using ETAS 

models with point-source, the trends in ALD values remain different between 

those observed and those predicted. Based on that, we assert that the ETAS 

model used to reproduce synthetic sequences plays a very important role in the 

calculation of ALD. For this reason, the ability of ALD to differentiate the types 

of sequences is not objective at all and can be influenced by several parameters. 

The finding obtained in Chapter 2 and Chapter 3 arose the need to find (quasi-) 

real-time methods to discriminate swarm-like from ETAS-like sequences. For 

this reason, we decided to focus on an analysis that could improve earthquake 

forecasting: being able to identify an on-going swarm-like sequence could 

reduce the forecast probability for a future large earthquake. 

In Chapter 4 we provide a new quantitative, objective, and statistical method to 

characterize seismic sequences and split them in different groups. We identify 

two main seismicity groups which differ from a physical and objective points 

of view: one having high productivity of foreshocks, located in areas of high 

heat flow, with an important concentration of events before the mainshocks (i.e., 

swarm-type cluster). The other occur in areas of low heat flow, with low 
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productivity and rate of foreshocks for different orders of mainshock magnitude 

(i.e., aftershock type cluster). Noteworthy, the characteristics that allows the 

best discretization of seismicity are the relative duration of foreshocks, area of 

foreshocks, foreshock productivity and magnitude of largest event. 

These results are not surprising but confirm the results of Chapter 2 and 3: 

sequences not reproduced by ETAS are those with a high number of foreshocks 

and small-medium mainshock magnitude; consequently, we would expect that 

such sequences delineate a larger area, duration, and productivity of foreshocks. 

 

5.1 Outlook 

In this thesis, I hope to have contributed useful insights that could help to 

improve earthquake forecasting models. However, various issues still remain 

unresolved or need to be investigated. Here, I list some suggestions that should 

be considered in future research: 

x In Chapters 2 and 3 we have better outlined the discrepancies between 

the ETAS model and the real seismicity; many elements led us to think that such 

discrepancy is due to swarm seismicity. We have also shown that the heat flow 

values could strongly influence the occurrence of swarm-type sequences. For 

this reason, we believe that it is necessary to deepen the physical reasons that 

cause these anomalous sequences. 

x In Chapter 4 we perform a cluster analysis collecting a dataset of 

characteristics that can represent earthquake sequences in different domains 

(space, time, and magnitude). The method is versatile as it can consider any 

feature, evaluate its importance in the discriminative power. Therefore, our 

method can be used in future research to explore the impact that any other 

feature has on the characterization of seismicity. This could help to understand 

the mechanisms behind the origin of the different types of seismicity. 
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x Finally, we remind to stay always interested about the things that 

surround our life, understand their mechanisms, and derive benefits from them 

(science is power, and knowledge help to face the dangers of life, from the point 

of view of a sapient). 
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SI. Supporting Information for Chapter 2 

SI.1 
6XSSRUWLQJ�,QIRUPDWLRQ�IRU�&KDSWHU�� 

 

This is published as Supporting Information of: 

Manganiello, E., Herrmann, M., & Marzocchi, W. (2023). New physical 

implications from revisiting foreshock activity in southern California. 

Geophysical Research Letters, 50, e2022GL098737. https://doi. 

org/10.1029/2022GL098737  

 

Introduction  

The supporting information contains additional information about the ETAS 

models used for the analyses and their verification. It also reports the results 

using alternative methods to infer and select anomalous foreshock sequences 

(e.g., the spatiotemporal windows (STW) method to identify mainshocks and 

their foreshocks, using a significance level of 95%, using an alternative analysis 

of TEST1, and using an independent dataset of anomalous foreshock 

sequences). 

SI.1.1 Used ETAS models 

We used the stochastic ETAS aftershock simulator program developed by K. 

Felzer (see Felzer et al., 2002 and Table S1), which is calibrated to southern 

California using spatially invariant triggering parameter values of Hardebeck et 

al., 2008, see Table S2. The program simulates background events and triggered 
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earthquakes in time and space. It makes use of Monte Carlo methods and 

empirical aftershock relationships following the ETAS model of Ogata (1988).   

We use another ETAS model proposed by Seif et al. (2017) with spatially 

invariant triggering parameters calibrated for southern California. The model 

simulates background events and triggered earthquakes in time and space using 

the relationships of Ogata (1988). The supplement of Seif et al. (2017) explains 

each parameter of the model as well as the maximum likelihood estimation 

(MLE) procedure. We report their estimated parameters in Table S3.  

We prefer to use reliable (see Text S2) and independent (made by someone else) 

ETAS models for a few important reasons that are worth being mentioning. 

First, we lower the degrees of freedom of our analyses, avoiding that we, 

unconsciously, tune our results. Second, we make our results more comparable 

with previous analyses that used such classical ETAS models. Third, by using 

two different ETAS models with different parameterization, we demonstrate the 

stability of our results. Fourth, although more complex ETAS models should fit 

past data better, this does not mean that they are more reliable; results of the 

first prospective experiments carried out by the Collaboratory for the Study of 

Earthquake Predictability (CSEP) show that simple models may outperform 

more complex models (e.g., Nanjo et al., 2012).  

 

SI.1.2 Verifying the reliability of the ETAS models 

For the purpose of this work, we verify the reliability of both ETAS models to 

produce realistic earthquake rates for different magnitude ranges. Specifically, 

we adopt a Turing-style test (Page & van der Elst, 2018) by comparing the 

number of events in the real catalog with the distribution of simulated 

earthquakes in the synthetic catalogs (Figure S1 and S2). We also apply the 

same kind of analysis to different earthquake magnitude classes  ࡹ࡯  �^������
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0��������������0��������������0��������������0��������0������`��)LJXUH�6��DQG�

S4). In all cases, the real observation (solid vertical line) is within the 95% 

confidence interval (vertical dashed lines), indicating that the ETAS models 

produce synthetic catalogs with earthquake rates that are consistent with the 

observations for different magnitude ranges. 

 

SI.1.3 Alternative analysis of TEST1 

For TEST1, we argue that the approach of labeling anomalous and normal 

foreshock sequences is conservative, because comparing a single sequence 

against the average behavior of foreshock sequences may lead to wrongly label 

PRUH�DFWXDO�QRUPDO�IRUHVKRFN�VHTXHQFHV�DV�µDQRPDORXV¶��L�H��� IDOVH�SRVLWLYHV��

WKDQ�ZURQJO\� ODEHOLQJ�DQRPDORXV�IRUHVKRFN�VHTXHQFHV�DV�µQRUPDO¶��L�H���IDOVH�

negatives). To investigate this aspect, we perform an alternative analysis by 

building two eCDFs of ୊ܰ (i.e., without normalizing by ܰ୑): one for the real 

catalog (eCDFreal) and one for all synthetic catalogs combined (eCDFETAS). If 

the 99th percentile of eCDFreal is larger than the corresponding percentile of 

eCDFETAS in a certain class, we label HDFK�IRUHVKRFN�VHTXHQFH�DV�µDQRPDORXV¶�

whose ୊ܰ is above the 99th percentile of eCDFETAS. We apply this procedure 

XVLQJ�.��)HO]HU¶V�(7$6�PRGHO�DQG�WKH�11�PHWKRG�WR�LGHQWify mainshocks and 

their foreshocks; results are shown in Figure S6. 

 

SI.1.4 Results for a significance level of 95% 

)LJXUHV�6���VKRZV�WKH�UHVXOWV�RI�7(67��XVLQJ�.��)HO]HU¶V�(7$6�PRGHO�DQG�D�

significance level of 95%. Of a total of 152 foreshock sequences, we found 65 

(43%) anomalous foreshock sequences using the NN method. Figure S13 shows 

the results for TEST2: we found 52 of 152 (34%) foreshock sequences to be 

anomalous using the NN method.  
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Table S1 3DUDPHWHUV�XVHG�LQ�.��)HO]HU¶V�(7$6�VLPXODWRU� 

Start date of simulation 1-1-1981 

Start date of synthetic catalogs  1-1-1983 

End date of synthetic catalogs  31-12-2019 

Lower magnitude limit of active earthquakes, M0 2.5 

Lower magnitude limit in synthetic catalog 2.5 

Lower magnitude limit for modelling planar 

sources  

6.5 

Upper magnitude limit 7.9 

Minimum aftershock distance from parent event  0.001 (km) 

Maximum aftershock distance from parent event 500 (km) 

 

Table S2 Used ETAS parameters as given by Hardebeck et al., 2008 for M0 = 2.5. µ is the background 

UDWH��.��F��DQG�S�DUH�SDUDPHWHUV�RI�2PRUL¶V�ODZ��Q�LV�WKH�DIWHUVKRFN�GHFD\�ZLWK�GLVWDQFH��H[SRQHQW�LQ�U-

n); Į is the productivity law exponent (productivity scaling with magnitude); and bȕ is the Gutenberg±

Richter b-value multiplied by ln(10) and describes the magnitude distribution. 

µ K c (days) p n Į��ȕ 

spatially 

variable 
0.008 0.095 1.34 1.37 ln(10) ൎ 2.30 
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Table S3 Used ETAS parameters as given by Seif et al., 2017 for M0 = 2.5 and fixed Į. For a description 

of K, Į, ȕ, p, and c see Table S2. q, d, and Ȗ describe the spatial distribution of earthquakes. 

K Į��ȕ p c  q d Ȗ 

0.0804 ln(10) ൎ 2.30 1.11 0.014 1.9 0.005 km2 1.49 

 

 

Table S4 p-values for comparing eCDFs of heat flow values at locations of normal versus anomalous 

foreshock sequences for each analysis. 

ETAS model by K. Felzer NN-99 STW-99 NN-95 

TEST1 

KS test 0.0004 0.035 0.0003 

W. rank test 0.000006 0.009 0.000004 

TEST2 

KS test 0.019 0.016 0.003 

W. rank test 0.018 0.047 0.0004 

 

ETAS model by S. Seif NN-99 STW-99 

TEST1 

KS test 0.003 0.0008 

W. rank test 0.0001 0.0002 
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TEST2 

KS test 0.021 0.041 

W. rank test 0.004 0.038 

 

 

 

 

 

Alternative TEST1 

(ETAS model of K. Felzer, 

NN-99) 

Independent dataset 

(G. Petrillo) 

KS test 0.013 0.002 

W. rank test 0.004 0.001 
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S1 Total number of events in the synthetic catalogs (distribution) and the real catalog (solid vertical 

line), using events above M2.5. The dashed vertical lines refer to the 95% confidence interval (i.e., the 

2.5th ± 97.5th percentile range of the distribution). For more information, see Text S2. 

 

S2 Like Figure S1 but for the second ETAS model (by S. Seif). 
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S3 Like Figure S1 but for different magnitude classes. 

 

S4 Like Figure S3 but for the second ETAS model (by S. Seif). 
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S5 Like Figure 2.1 in Chapter 2 (TEST1) but using the STW method. 
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S6 Like Figure 2.1 in Chapter 2 (TEST1, NN method) but using the individual number of foreshocks, 

NF (alternative analysis of TEST1). In this way, the empirical Cumulative Distribution Function (eCDF) 

of NF FDQ� EH� FRQVWUXFWHG� IRU� ERWK� WKH� UHDO� FDWDORJ� �VROLG� FXUYH�� DQG� DOO� ��¶���� V\QWKHWLF� FDWDORJV�

combined (dashed curve); vertical lines show their corresponding 99th percentile (real catalog: solid; 

synthetic catalogs: dashed). If the former is above the latter, the solid vertical line becomes red, 

indicating more anomalous foreshock sequences than expected. Each subplot also reports the number 

of anomalous foreshock sequences, NAFS, and the number of mainshocks, NM. 
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S7 Like Figure 2.1 in Chapter 2 (TEST1, NN method) but using the second ETAS model. Results are 

based on 1000 synthetic catalogs. 
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S8 Like Figure S5 (TEST1, STW method) but using the second ETAS model. Results are based on 1000 

synthetic catalogs. 
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S9 Like Figure 2.2 in Chapter 2 (TEST2) but using the STW method. 
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S10 Like Figure 2.2 in Chapter 2 (TEST2, NN method) but using the second ETAS model. Results are 

based on 1000 synthetic catalogs. 
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S11 Like Figure S9 (TEST2, STW method) but using the second ETAS model. Results are based on 1000 

synthetic catalogs.  
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S12 Like Figure 2.1 in Chapter 2 (TEST1, NN method) but using a significance level of 95%. 
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S13 Like Figure 2.2 in Chapter 2 (TEST2, NN method) but using a significance level of 95%. 
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S14 Like Figure 2.3 in Chapter 2 (TEST1) but using the STW method. 

 

S15 Like Figure 2.4 in Chapter 2 (TEST2) but using the STW method. 
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S16 Like Figure 2.3 in Chapter 2 (TEST1, NN method) but using the second ETAS model. 

 

S17 Like Figure 2.4 in Chapter 2 (TEST2, NN method) but using the second ETAS model. 
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S18 Like Figure S14 (TEST1, STW method) but using the second ETAS model. 

 

S19 Like Figure S15 (TEST2, STW method) but using the second ETAS model. 
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S20 Like Figure 2.3 in Chapter 2 (TEST1, NN method) but using a significance level of 95%. 

 

S21 Like Figure 2.4 in Chapter 2 (TEST2, NN method) but using a significance level of 95%. 
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S22 Like Figure 2.3 in Chapter 2 (TEST1, NN method, 99th percentile) but with anomalous sequences 

identified using an alternative analysis that uses the distributions of the individual number of foreshocks 

(not the average, see Figure S6). 

 

S23 Like Figure 2.3 in Chapter 2 but with the locations of normal and anomalous foreshock sequences 

identified by Petrillo & Lippiello (2021). 
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SI.2 Supporting Information for Chapter 4 

SI.2 
6XSSRUWLQJ�,QIRUPDWLRQ�IRU�&KDSWHU�� 

 

Average Leaf Depth   

For each seismic sequence, the average leaf depth (ALD) is the sum of the 

generation level of each leaf (i.e., last event of each branch), σ݀௚, divided by 

the total number of leaves ݊௚ (for more details see Chapter 3, Method section):   

ܦܮܣ ൌ �
σ݀௚
݊௚

 

In Figure S2.1, we plot the computed ALD of each sequence vs family size (i.e., 

number of events of each family) and the ALD vs mainshock magnitude (ܯ௠) 

of the sequences. As in Zaliapin and Ben Zion (2013), we can recognize: i) 

sequences with high ALD, low family size and low mainshock magnitude 

௠ܯ) ൏ ͸) reflecting the swarm-like behavior, ii) sequences with low ALD, 

higher mainshock magnitude (ܯ௠�t��ͷ�Ƭܯ�௠ ൏ ��͹) and higher family size 

corresponding to aftershock sequences, and iii) sequences with a large 

mainshock size (ܯ௠�t�͹) that consist likely of combined of previous types. 
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S2.1 (On the left) ALD vs number of events for each family; (on the right) ALD vs mainshock 

magnitude of each family 

 

Relative timing of the largest event  

The relative timing is the definition of Chen and Shearer (2016) used to 

characterize cluster types: 

௥௘௟ݐ ൌ
ሺ ௠ܶ െ ଴ܶሻ

݉݁ܽ݊ሺ ௜ܶ െ ଴ܶǡ ݅ ൌ ͳǥܰሻ
 

 

 is the time of the mainshock (largest event),  is the time of the first event 

of the sequence and  is the time of other events in the sequence ( ).  

Noteworthy, the relative timing ݐ௥௘௟ is only computed for foreshock sequences. 

If there are no foreshocks for some sequences, relative timing is equal to the 

minimum value (larger than 0) rescaled of one unit.  

We plot the relative timing ݐ௥௘௟ vs magnitude of the largest event (Figure S2.2, 

left) and the eCDF of ݐ௥௘௟ (Figure S2.2, right). Chen & Shearer (2016) define a 

sequence as swarm-type when ݐ௥௘௟ ൒ ͲǤʹ (see Figure S2.5, from Chen & 
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Shearer, 2016), considered more prone to spatial migration. Only sequences 

whose largest magnitude is rather low (ܯ ൏ ͷǤͷ) have higher ݐ௥௘௟.  

 

S2.2 (On the left) Relative timing vs mainshock magnitude of each sequence; (On the right) eCDF 

of relative timing values 

 

Relative duration of foreshocks and aftershocks 

The relative duration of foreshocks (ܴܦ௙௢௥௦) and aftershocks (ܴܦ௔௙௧) respect to 

the time occurrence of the mainshock is a feature that can be used to make a 

strict division between clusters: traditional sequences tend to have low relative 

duration values (both for foreshocks and aftershocks) respect to swarm-type 

sequences (Zalipain et al., SCEC3 report): 

௙௢௥௦ܦܴ ൌ
ሺݐ௠ െݐ�௙௜௥௦௧ሻ

ͳͲெ೘
 

௔௙௧ܦܴ ൌ
ሺݐ௟௔௦௧ െ� ௠ሻݐ

ͳͲெ೘
 

in which ݐ௠ is the time of the mainshock, ݐ௙௜௥௦௧ is the time of the first event, 

 ௟௔௦௧ is the time of the last event of the sequence. If there are no foreshocks forݐ

some sequences, relative duration is equal to the minimum value (larger than 0) 

rescaled of one unit. 
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Figure S2.3 show the relative duration of sequences vs their mainshock 

magnitude. It seems that both are inversely correlated, albeit with a large scatter. 

Especially moderate-sized sequences scatter the most. 

 

S2.3 On the left: relative duration of foreshock sequences vs their mainshock magnitude; on the 

right: same plot but for aftershock sequences.   

 

Area of foreshocks and aftershocks 

To characterized sequences in the space-domain, we compute the area of 

foreshocks and aftershocks for each sequence. To do that: 

1) we convert the coordinate (Latitude and Longitude) of each event in km 

respect to the first event of the sequence; 

2) we compute the 3D component Mahalanobis distance, and we use an 

inversion chi-square function to remove outlier (above 0.01 significance 

values) (Hadi,1992) for sequences with at least 4 foreshocks or aftershocks 

(example of a foreshock sequence in Figure S2.4 (left));  

3) we compute the area of each sequence (considering x and y location of no-

outlier events) using the convex hull function (example of a foreshock 

sequence in Figure S2.4 (right));  
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4) we plot the results in Figure S2.5 & 6 for foreshock and aftershocks 

sequences respectively, for no-normalized and normalized values respect to 

the magnitude of the mainshock sequences;  

 

S2.4 (On the right) 3D location of foreshock sequence; red points are identified outlier events; (On 

the left) 2D location of foreshock sequence after removed outlier; green points are identified to 

compute the area of the foreshock sequence. 

Normalized values are used for cluster analysis. Noteworthy, small mainshock 

magnitude sequences (ܯ௠ t� 4 & ܯ௠ < 7) have foreshock area larger than 

higher mainshock magnitude sequences (ܯ௠ > 7) (Figure S2.5). In the case of 

aftershock sequences, we see an increasing trend (Figure S2.6). 
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S2.5 On the left: area of foreshocks sequences vs their mainshock magnitude; on the right: same plot 

but values are normalized by the mainshock magnitude. 

 

S2.6 On the left: area of aftershocks sequences vs their mainshock magnitude; on the right: same 

plot but values are normalized by the mainshock magnitude. 

If there are no foreshocks or aftershocks for some sequences (or a number of 

events lees than 4), area values are equal to the minimum value (larger than 0) 

rescaled of one unit.  
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Depth of each sequence 

To fully investigate sequences in space-domain, we decide also to look at the 

depth of the mainshock of sequences. We compare them with the mainshock 

magnitude in Figure S2.7. All sequences, except one, are above 25 km, and we 

do not see a correlation. All events with a negative depth are replaced with the 

minimum positive depth rescaled of one unite. 

 

S2.7 Depth of mainshock vs mainshock magnitude. 

 

Magnitude differences (foreshocks-mainshocks & mainshocks-aftershocks) 

Looking at the magnitude domain, we compute the difference between the 

magnitude of the mainshock and the largest foreshock and aftershock of each 

sequence. Then, we plot these values vs mainshock magnitude. From Figure 

S2.8 we can see an increasing trend: larger mainshocks have larger magnitude 

difference respect their foreshocks and aftershocks. If there are no foreshocks 

or aftershocks for some sequences, the magnitude difference is equal to the 

minimum value (larger than 0) rescaled of one unite.  
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S2.8 On the left: magnitude differences between the mainshock and the largest foreshock of each 

sequence vs mainshock magnitude; on the right: same plot but considering the largest aftershock of 

each sequence. 

 

Normalized Productivity  

The productivity of foreshocks ( ) and aftershocks ( ) is also a feature that 

can be used to make a strict division between clusters: we expect that traditional 

sequences should have large  respect to , and we cannot assert that for 

swarm-type sequences (Zalipain et al., SCEC3 report). 

Here we compute the productivity using the following formulation: 

௙ܲ௢௥௦ ൌ
௡೑೚ೝೞ
ଵ଴ಾ೘

; 

௔ܲ௙௧ ൌ
௡ೌ೑೟
ଵ଴ಾ೘

; 

where ݊௙௢௥௦is the number of events before the mainshock, ݊௔௙௧is the number of 

events after the mainshock, and ܯ௠ is the mainshock magnitude. We look at 

the computed results in Figure S2.9. 

If there are no foreshocks or aftershocks, the productivity is equal to the 

minimum value (larger than 0) rescaled of one unite.  
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S2.9 On the left: productivity of foreshocks vs mainshock magnitude; on the right: same plot but 

considering aftershocks. 

 

Nearest fault of each sequence 

Associating sequences with their faults could be an interesting feature to 

characterize sequences in southern California. Different clusters of sequences 

could be characterized by specific fault types. To perform this kind of 

association, we use the dataset provided by SCEC Community Fault Model 

(CFM, dataset provided here: https://www.scec.org/research/cfm), which is a 

representation of active faults in southern California; Figure S2.10 shows the 

location of used fault traces. 
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S2.10 Fault locations from used SCEC datasets. 

Figure S2.11 illustrates a method for associating the mainshock with his source 

fault in the Southern California (Plesch et al., 2020): we compute the 3D 

distance between each point of each fault and the mainshock location, 

considering the shortest one for the association. Figure S2.11 shows also a 

mainshock with its associated fault.  
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S2.11 Location of a mainshock (black point) and its associated fault (red points); gray points are 

the location of all other faults. Different subplots correspond to different visualizations of the same 

example. 
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