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1. BACKGROUND

1.1. FKBPS5 isoforms

FKBP51 is a member of the FK506 binding proteins (FKBP), these proteins,
together with cyclophilins (Cyp), belong to the family of immunophilins
(Dornan et al. 2003). FKBP51 was firstly cloned in lymphocytes (Baughman et
al. 1995) and abundantly expressed by immune cells (Baughman et al. 1997).
This protein exerts an N-terminus domain (FK1) known to be the binding
domain to immunosuppressant agents, such as FK506 and rapamycin. This
domain is endowed with a peptidyl-prolyl-isomerase (PPlase) enzymatic
function, able to catalyze the isomerization of the prolines of FKBP51 substrates,
thus guiding their proper folding and greatly improving their stability and
function (Fischer et al. 2003). In humans, at least 15 FKBPs have been identified
and named to reflect their molecular weights (Somarelli et al. 2008). Family
members of this ubiquitous enzyme class are found in abundance in virtually all
organisms and subcellular compartments. Their amino acid sequences are highly
conserved phylogenetically (Fischer et al. 2003). FKBP51 also exerts
tetratricopeptide (TPR) domains at the C-terminus, involved in protein-protein
interactions and by which the immunophilin participates in several pathways,
such as protein folding, improvement of kinase performance, receptor signaling,
protein trafficking, and transcription (Dornan et al. 2003, Somarelli et al. 2008).
TPR domains are responsible for protein-protein interactions with heat shock
(chaperone) proteins HSP90 and HSP70 as well as with other proteins, including
steroid receptors (Somarelli et al. 2008, Romano et al. 2011a). The role of this
immunophilin in supporting tumor proliferation and aggression has been widely
documented in many human cancers (Romano et al. 2011b). In 2014 the
research group to which I belong identified, for the first time, the splicing
isoform of the FKBPS5 gene, namely FKBP51s. This splicing variant is generated
by alternative splicing of FKBP5 pre-mRNA; particularly, it arises from the

recognition of an intronic splice site that drives to an exon skipping and a
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frameshift with the generation of a premature stop codon. As such, the splice
isoform loses the C-terminus domain and generates a shorter protein, namely
FKBP51s, with a new C-terminal polypeptide of 44 amino acids, in comparison
with canonical FKBP51. FKBP51s retains the PPlase activity but loses the TPR
domain, deputed to the interaction with multiple protein complexes through

HSP90 (Romano et al. 2015) (Fig. 1).
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Figure 1. Schematic representation of the canonical protein FKBP51 and its splice isoform
FKBP51s: (Top) Locus on the chromosome. (Middle) The gene with exonic and intronic regions;
ENSG00000096060. (Bottom) Encoded protein(s): isoform 1, NP_004108.1, NP 001139247,
NP _001139248; isoform 2, NP_001139249.1. FKB51 contains a tandem FKBD separated by a
short linker sequence. The N-terminal FKBD is responsible for the PPlase- and ligand-binding
activities. The 2nd FKBD is inactive in those activities but seems to retain an interaction ability.
This domain contains an ATP/GTP-binding sequence (D Arrigo et al. 2016).
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1.2. FKBPS51s is a PD-L1 regulator

The research group demonstrated that the splicing isoform is
opportunistically exploited by melanoma to suppress undesired immunity,
through the interaction of the Programmed cell death ligand (PD-L1) with its
receptor PD1 (Romano et al. 2015). Particularly, they found that FKBP51s
expression in the tumor-infiltrating lymphocytes (TILs) of melanoma patients
was influenced by the expression of PD-L1 by the tumor (Romano et al. 2015).
Furthermore, cocultures of peripheral mononuclear blood cells (PBMCs) with
melanoma cells bidirectionally stimulated the expression of FKBP51s because
of the immune cell/tumor interaction through PDI1/PD-L1, respectively.
FKBP51s, indeed, increases the expression of PD-L1 by acting as a foldase in
the post-translational modifications of PD-L1 itself, which occur during the
maturation of the protein and drive its expression on the plasma membrane, thus
playing a relevant role in the immune suppression induced by the tumor
(Romano et al. 2015; D’ Arrigo et al. 2017). As shown in Fig. 2A, FKBP51s, but
not FKBP51, was found in the endoplasmic reticulum (ER); moreover, treatment
of the immunoprecipitated PD-L1 protein with PNGase F resulted in a decrease
in the band at 68 kDa and the appearance of an additional band at about 37 kDa
(Fig. 2B), demonstrating that FKBP51s has a role in catalyzing the folding of
PD-L1, an essential step in glycosylation. Finally, as shown in Fig. 2C, pull-
down of FKBP51s or PD-L1 confirmed that the two proteins interact with each
other in the ER (D’ Arrigo et al. 2017).
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Figure 2: FKBP51s is associated with PD-L1 in ER. (A)Immunoblot of D54 lysates obtained
from sub-cellular compartments. PD-L1, FKBP51 and FKBPS51s levels are shown along with
relative organelle markers. (B) Whole D54 lysates immunoprecipitated with anti-PD-L1 and
subjected, or not, to PNGase F treatment; the arrows indicate the higher (- PNGase F) and
lower (+ PNGase F) PD-LI band. Fetuin, on the left of the panel, was used as positive control
of PNGase digestion. (C) Co-IP of PD-L1 and FKBP5ls in ER fraction. ER lysate was
immunoprecipitated with anti-PD-L1 and anti-FKBP51s and recognized for each protein by
immunoblot (D Arrigo et al 2017).

1.3. FKBP51s marks PBMCs of melanoma patients

Previous data obtained by the research group led to the identification of
FKBP51s as a signature generated by crosstalk between tumor and immune cells.
Expression levels of the FKBP51 spliced variant was measured in 70 control
subjects and 115 patients with metastatic (25) and primary (90) melanoma. The
results showed that FKBP51s is present in PBMCs of melanoma patients,

particularly those with metastatic melanoma (Fig. 3) (Romano et al. 2015).
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Figure 3. FKBPS51s expression levels are increased in PBMCs of patients with melanoma.
FKBPS51s transcript was measured in 70 control subjects and 115 patients with metastatic (25)
and primary (90) melanoma, by qPCR. The values are expressed in arbitrary units (relative
normalized expression) (Romano et al. 2015).

Immunoreactivity for FKBP51s has also been found in TILs and melanomas.
The expression of PDL1 and FKBP51s was investigated in a series of 76
melanoma specimens (12 from primary and 64 from metastatic patients) by
immunohistochemistry (IHC). Most interestingly, in PDL-1-expressing
melanomas, immunoreactivity for FKBP51s was observed in TILs (Fig. 4A).
Furthermore, FKBP51s-positive TILs were closed to PDL-1-expressing
macrophages, which nevertheless infiltrate PDL-1-negative tumors (Fig. 4B).
These results support the idea that immunosuppressive macrophages also

mediate immune evasion of tumors (Romano et al. 2015).
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Figure 4. FKBPS5I1s expression in TILs is increased in PDL-1-expressing melanoma.
Representative IHC of melanoma specimens. Sections from the same specimen were stained with
PDL-1 and FKBP51s. (4) Left, a case of invasive primary cutaneous melanoma (vertical growth
phase), showing extensive immunoreactivity for PDLI of the tumour population. Original
magnification: 9250. Right, the same case stained with FKBP51s, showing positive neoplastic
melanocytes and an intense signal in the great majority of inflammatory cells. Original
magnification: 9250. (B) Left, a metastatic melanoma negative for PDL-1; numerous PDL-1-
positive macrophages infiltrate the tumour. Right, the same case stained with FKBP51s. No/low
expression in tumour cells, numerous macrophages immunoreactive, TILs stained by FKBP51s
<20%. Original magnification: 9250. (Romano et al. 2015).
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1.4. Monocytes of melanoma patients express increased levels of

FKBPS51s

FKBP51s isoform can be considered an immune signature, virtually
associated with the tumor-induced immune tolerance and, therefore, capable of
monitoring the immunotherapy response of melanoma patients. In details, by
immunophenotyping 3 different cohorts of patients, 1% undergoing anti-
cytotoxic T lymphocyte associated protein (CTLA)-4 (ipilimumab)
immunotherapy treatment (Romano et al. 2017), 2" receiving anti-PD]
treatment (nivolumab or pembrolizumab) (Troiani et al. 2020), and a 3" of
glioblastoma patients (Giordano et al. 2021), refractory to immunotherapy, the
research group observed a cluster of differentiation (CD)14+ subset of
monocytes co-expressing PD-L1 and FKBPS5l1s. In 2017, Romano et al.
measured FKBP51s expression in peripheral blood CD14 monocytes from a
cohort of 118 patients and 77 age- and sex-matched healthy controls. Blood
samples were collected before patients underwent ipilimumab treatment. The
number of PD-L1+ monocytes was increased in the Nonresponsive (NR) patients
compared to Responsive (R) patients and the controls. Subsequently, in 2020, by
studying a different cohort of melanoma patients (22 patients receiving
nivolumab or pembrolizumab), the research group confirmed previous findings
that FKBP51s+ PD-L1+ monocytes are associated with response to checkpoint-
targeted therapy. This subset significantly increased after 4 weeks from the
beginning of the treatment, but only in those patients NR to immunotherapy (Fig.
5A). The observation that the treatment produced an increase in the expression
levels of genes such as Arginase 1 (ARG1) and Macrophage scavenger receptor
1 (MSRI) in NR patients, while a decrease in these same transcripts was
observed in R patients (Fig. 5B), supported the hypothesis of an alternative
polarization of macrophages, responsible for tumor tolerance and resistance to

immunotherapy (Troiani et al. 2020).
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Figure 5. Increased counts of FKBP51st PD-LIT monocytes in non-responder patients to

anti-PD1. (4) Graphic representation of FKBP5 1 stPD-LIT monocyte counts at baseline and
during treatments from 8 R and 8 NR patients. (B) Levels of ARGI and MSRI in 6 R and 5 NR
patients were assessed by qPCR at baseline and at T2/T3 (follow-up) (Troiani et al. 2020).

In a third cohort of glioblastoma patients, a tumor NR to immunotherapy,
notwithstanding high expression of PD-L1, they confirmed the existence of this
monocyte subset even more numerous in this case, but they observed a further
phenotype more stringent related to the tumor and co-expressing FKBP51s along
with CD163, the most represented M2 marker of glioblastoma peripheral
monocytes. Particularly, FKBP51s and CD163 marked circulating monocytes
associated with the presence of the tumor upon surgical resection: a dramatic
decrease of such a subset was observed in those patients with radical surgery,
but not in those with a partial surgical removal of the tumor (Fig. 6) (Giordano

etal. 2021).
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Figure 6. CD163+FKBP51s+ monocytes are sensitive to tumor removal. Representative
Boxplots of CD163/FKBP51s monocytes. In patients with incomplete resection, no significant
changes in whole CDI163 monocyte count were registered after surgery, but the fraction co-
expressing FKBPS5 Is+ resulted in significant increase (Giordano et al. 2021).
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1.5. Macrophage heterogeneity, plasticity, and nomenclature

Macrophages are a heterogeneous and complex population of immune cells
with roles in host defense against pathogens, maintenance of tissue homeostasis,
and tissue architecture (Italiani et al. 2014). Macrophages are highly plastic cells
and in response to microenvironment signals such as chemokines and cytokines
they differentiate/polarize into distinct phenotypes with specific functionalities.
Multiple macrophage populations are known to occur within the same
microenvironment, and each phenotype has a distinctive combination of receptor
expression, chemokine secretion, and cytokines (DeNardo et al. 2019). The
current classification of macrophages is based on their function and response to

polarizing agents (Fig. 7).
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Figure 7. Schematic representation of M1 and M2-like macrophages functions in tumor
development. During the early stages of tumorigenesis, activated macrophages (M1) present
antigens and support cytotoxic T lymphocytes (CTLs) by producing proinflammatory cytokines.
They eliminate tumor cells with nitrogen radicals and oxygen or by phagocytosis. These anti-
tumor macrophages can be captured by the tumor and shifted to the M2-like state by secretion
of immunosuppressive cytokines. The formed M2-like macrophages suppress the function of
CTLs and redirect them to immunosuppressive T-cell subgroups. M2-polarized TAMs support
tumor growth at all stages of the disease, including proliferation, angiogenesis, and metastasis.
(van Dalen et al. 2018)

Macrophages can be schematically divided into non-polarized macrophages,
called MO (naive), classically activated macrophages MI1, with pro-
inflammatory activity and induced by T helper (Th) 1 cells, and macrophages
derived from alternative activation M2, with anti-inflammatory activity and
mainly induced by stimulation of Th2 cells. This classification also includes
M2a, M2b, M2c, and M2d subtypes (Martinez et al. 2008). Mantovani et al.
(2004) defined classically activated macrophages or M1 those resulting from
stimulation with interferon (IFN) y combined with lipopolysaccharide (LPS), or
tumor necrosis factor (TNF). Macrophages alternatively activated macrophages
in vitro by interleukin (IL) 4 were, instead, renamed M2a. Two other M2-like

macrophage phenotypes were induced by activation of the Fc receptor (FcRs) by
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immune complexes (M2b) or glucocorticoids and IL-10 (M2c) (Mantovani et al.

2004).
1.5.1. M1 macrophages

M1 macrophages exert tumor suppressors and pro-inflammatory functions;
they produce pro-inflammatory cytokines, mediate resistance to pathogens, and
exhibit strong microbicidal properties, but also contribute to tissue damage. M1
macrophages, also known as inflammatory macrophages, are activated mainly
by IFN-y secreted by Thl cells, cytotoxic T lymphocytes (CTLs) and natural
killer (NK) cells; they are also activated upon long exposure to microorganisms
or microbial products such as LPS, a component of the outer membrane of Gram-
negative bacteria and granulocyte-macrophage colony-stimulating factor (GM-
CSF) that stimulates the production of pro- inflammatory cytokines (Fleetwood
et al. 2007). These cells show enhanced antigen presentation and phagocytosis
capacity and secrete high levels of proinflammatory factors and cytokines, such
as TNF-a, IL-1p, IL-12 and IL-18, nitric oxide (NO), thus participating in the
type I immune response (Rhee et al. 2020). These factors, in turn, exert positive
feedback on unpolarized macrophages by attracting them into the M1 state. Key
transcription factors, such as nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), signal transducer and activator of transcription
(STAT) 1, STATS, Interferon regulatory factor (IRF) 3, and IRF5 have been
shown to regulate the expression of M1 genes. It seems that NF-xB and STAT1
are the two major pathways involved in M1 macrophage polarization and result
in microbicidal and tumoricidal functions (Yao et al. 2019). Phenotypically, M1
macrophages express high levels of major histocompatibility complex (MHC)
II, CD68, as well as costimulatory molecules CD80 and CD86 (Raggi et al.
2017).
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1.5.2. M2 macrophages.

M2 macrophages possess tissue repair and tumor growth promotion activities.
M2 macrophages, also known as anti-inflammatory macrophages, are mainly
activated by IL-4, IL-13, colony stimulating factor 1 (CSF-1), IL-10,
transforming growth factor (TGF) B and helminth infections through activation
of STAT6, peroxisome proliferator-activated receptor (PPAR) vy, suppressor of
cytokine signaling (SOCS) 2. Key transcription factors, such as STAT6, IRF4
and PPARy have been shown to regulate the expression of M2 genes (Murray et
al. 2017). M2 macrophages produce many anti-inflammatory factors, including
IL-10, TGF-B and ARG, participating in the type II immune response, which
plays a central role in the response to parasites, tissue remodeling, angiogenesis,
and allergic diseases. ARG1 is an enzyme of the urea cycle; its action catalyzes
the hydrolysis of arginine to ornithine. Ornithine is the substrate for ornithine
decarboxylase (ODC). This pathway regulates a multitude of cellular processes
like DNA replication, protein translation, cell growth, and differentiation
(Murray et al. 2014). Up-regulation of cytokines and chemokines, such as IL-10,
TGF-B, C-C Motif Chemokine Ligand (CCL) 1, CCL17, CCL18, CCL22, and
CCL24 also attract unpolarized macrophages to polarize into the M2 state
(Gordon et al. 2010; Mulder et al. 2014). Phenotypically, M2 macrophages are
characterized by the expression of specific membrane glycoproteins. CD206 is
a transmembrane glycoprotein that binds and internalizes collagen glycoproteins
and ligands. Macrophages expressing CD206 have unfavorable profibrotic
effects, as they promote fibroblast growth through secretion of TGF-f and
CCLI18 (Bellon et al. 2011). CD163 is a scavenger receptor for haptoglobin. It
is an M2 marker protein, mainly due to its upregulated expression in response to
IL-4, IL-10, and glucocorticoids (Murray et al. 2014). Macrophages co-
expressing CD206 and CD163 are large producers of IL-10, IL-1 receptor
antagonist (IL-1ra) and CCL18. They also have high uptake of apoptotic cells
(Zizzo et al. 2012). The CD36 scavenger receptor is a membrane glycoprotein

that acts as a receptor for a wide range of ligands, including fibronectin, collagen,

21



Background

and ligands of a lipid nature such as fatty acids. Cellular responses to these
ligands are involved in angiogenesis, inflammatory response, and fatty acid

metabolism (Liang et al. 2018).
1.5.3. The Subsets of M2 Macrophages and Their Characteristics

As mentioned above, M2 macrophages are subgrouped into M2a, M2b, M2c,
and M2d (Fig. 8).
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Figure 8. Schematic representation of M2 macrophages subsets and their characteristics. The
different stimuli, surface markers, secreted cytokines, and biological functions of the M2
macrophage subsets (M2a, M2b, M2c, M2d) were summarized (Yao et al. 2019).

M2a macrophages, also called wound-healing macrophages, enhance endocytic
activity, promote cell growth, and tissue repair. They are induced by IL-4 and
IL-13 and express high levels of CD206, IL-1 decoy receptor (IL-R) and CCL17
and secrete pro-fibrotic factors such as TGF-f, insulin-like growth factor (IGF)
and fibronectin to contribute to tissue repair (Mantovani et al. 2004). M2b
macrophages, also known as regulatory macrophages, regulate the extent and

depth of immune responses and inflammatory reactions. They can be induced by
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combined exposure to Toll-like receptors (TLR) agonists or IL-1R agonists and
express high levels of CCL1 and TNF superfamily member (TNFSF) 14
(Mantovani et al. 2004). In addition to proinflammatory cytokines (IL-1f, IL-6
and TNF-a), M2b cells also express and secrete substantial amounts of the anti-
inflammatory cytokine IL-10 and low levels of IL-12, which is the functional
inverse of M1 cells (Yue et al. 2017). M2c macrophages, also known as
inactivated macrophages, play crucial roles in the process of phagocytosis of
apoptotic cells. They are induced by glucocorticoids, IL-10 and TGF-f through
activation of STAT3 and show strong anti-inflammatory activity by releasing
large amounts of IL-10 and pro-fibrotic activity by secreting high levels of TGF-
f (Mantovani et al. 2004). In addition, M2c macrophages exhibit high
expression of Mer receptor tyrosine kinase (MerTK), resulting in efficient
phagocytosis of apoptotic cells (Zizzo et al. 2012). M2d macrophages promote
angiogenesis and tumor progression; they are induced by costimulation with
TLR ligands and adenosine receptor (AR) 2 agonists or by IL-6 (Shapouri-
Moghaddam et al. 2018). These cells are mainly characterized by high
production of IL-10, TGF-f and vascular endothelial growth factor (VEGF) and
low production of IL-12, TNF-a and IL-1£ (Martinez et al. 2008).

1.6. Origins of Tumor-associated-macrophages (TAMs)

Macrophages have two main origins: tissue-resident macrophages (TRMs)
and monocyte-derived macrophages (MDMs). TRMs develop from embryonic
precursors (yolk sac or fetal liver progenitors), whereas MDMs develop from
bone marrow hematopoietic cell progenitors (Blériot et al. 2020) and play
different roles in both health and disease. TRMs are widely distributed
throughout the body and, depending on their location, are called osteoclasts in
bone, alveolar macrophages in the lungs, microglial cells in the central nervous

system, and Kupffer cells in the liver. In general, they play tissue-specific
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homeostatic roles, as well as basic functions such as removing dying cells.
MDMs are recruited to tissues during inflammation, secrete pro-inflammatory
cytokines, help clear infection, regulate the immune response, and serve as a
reservoir for macrophage reconstitution and are recruited in pathology (De
Nardo et al. 2019). Under physiological conditions, TRMs and MDMs have
distinct tissue distribution: (i) both subpopulations are found in the liver,
pancreas, lung, heart, kidney, and spleen; (ii) only TRMs are found in the brain;
and (ii1)) MDMs predominate in the gut and dermis (Zhu et al. 2017). Therefore,
in pathological situations, macrophages are a heterogeneous population.
Compared with tissue homeostasis, cancer is characterized by increased
recruitment of monocytes and/or expansion of TRMs, with both populations

involved in tumorigenesis (De Nardo et al. 2019) (Fig. 9).

24



Background

. Blood vessel

Myeloid-biased HSPCs

Tissue-resident -
macrophages \

Spleen

Embryo TAM niche (o | o Normal cells
P i
N7 N
Tissue-resident TAMs Monocyte-derived TAMs Cancer types
Proinflammatory Immunosuppressive Brain cancer [31, 32, 71]
Effector of anti-CD47 therapy
Profibrotic Antigen presentation Pan tic ductal ad oma [34)
Protumor growth Protumor spreading Breast and lung cancer [35, 56]
Pro-EMT and cancer stemness Ovarian cancer [72)
Collagen degradation Subcutaneous Lewis lung carcinoma (73]
Collagen synthesis
Protumor growtt Colorectal cancer [74]

Figure 9. Schematic representation of the two main origins of TAMs: TRMs and MDM:s.
TRMs develop from embryonic precursors (yolk sac or fetal liver progenitors), whereas MDMSs
develop from bone marrow hematopoietic cell progenitors. Tissue-resident TAMs and monocyte-
derived TAMs have different functions in tumor progression (Zhang et al. 2021).

Several pathways are involved in monocyte recruitment to the tumor, including
cytokines, chemokines, and growth factors that recruit monocytes. Inhibition of
the recruitment of monocyte-derived macrophages is a promising strategy to
reduce the TAM population and enhance the antitumor response. The M-
CSF/CSF-1R, CCL2/CCR2, CCL5/CCRS and CX3CL1/CX3CR1 pathways are
major targets showing potential in cancer therapy (Peyraud et al. 2017). In
general, TAMs are thought to closely resemble M2 macrophages with Th2
immune response and immunosuppressive features. However, current studies
have shown that the TAM population is in a state of constant transition between

the two forms of M1 and M2 types (Pan et al. 2020) (Fig. 10).
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Figure 10. Schematic representation of TAMs characteristics. M1 macrophages exert pro-
inflammatory, cytotoxic and tumoricidal roles. On the contrary, M2 macrophages and TAMs
exert immunosuppressive and pro-tumorigenic roles. In general, TAMs are thought to more
closely resemble M2 macrophages, however they show some different characteristics (Chen el
al. 2019).

The proportion of each form is determined by the type and concentration of
different signals in the tumor microenvironment. It is known that the population
of TAMs within the Tumor microenvironment (TME) is phenotypically
heterogeneous (De Nardo et al. 2019), and the total number of TAMs
accumulated within a tumor is not considered in estimating clinical prognosis.
However, the M1/M2 ratio is considered an important prognostic marker (Dan
et al. 2020). A low M1/M2 TAM ratio is associated with tumor progression and
poor prognosis, whereas a high M1/M2 ratio tends to correlate with positive
outcomes in ovarian cancer, gastric cancer, colorectal cancer, osteosarcoma,
lung cancer, and oral squamous cell carcinoma. Numerous studies have shown

that M2 TAMs play an important role in promoting tumor growth, angiogenesis,
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extracellular matrix modification, inhibition of antitumor immunity, metastasis,

immunotherapy resistance, and recurrence (Hourani et al. 2021).

1.7. TAMS in tumor initiation

Tumors acquire mutations in oncogenes or suppressor genes that allow them
to progress to malignancy. For years cancer research focused on these mutations,
and cancer therapies also aimed to target oncogenes. Nowadays it is known that
stromal cells in the microenvironment evolve along with the tumor and provide
essential support for their malignant phenotype (Joyce and Pollard 2009). The
presence of inflammation is a shared feature of many cancers: more than 20
percent of neoplasms are induced or aggravated by infection, chronic
inflammation, or autoimmunity in the same tissue or organ (Grivennikov et al.
2010). Activated macrophages are central to this type of immune response and

work in concert with other immune cells (Balkwill et al. 2005) (Fig. 11).
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Figure 11. Overview of macrophages involvement in myeloid cell differentiation in cancer.
Macrophages development, accumulation, suppressive activity, and survival are controlled by a
complex network of transcription factors, cytokines, and non-cytokine immune regulatory
factors. Under different conditions such as the tumor microenvironment, a variety of factors
promote cancer risk, facilitate cancer onset and progression, and polarize TAMs (Li et a.l 2021).

It has been hypothesized that these immune cells produce a mutagenic
environment by generating reactive nitrogen and oxygen species that cause
mutations in the adjacent epithelial cells (Pang et al. 2007). In addition, there is
evidence that the inflammatory microenvironment also promotes genetic
instability within the developing tumor epithelial cells (Colotta et al. 2009). In
either case, the mutations are fixed after replication of the epithelial cells, a
process that is stimulated by growth factors synthesized by the infiltrating or
resident immune cells that include macrophages. Macrophages are a major
infiltrating immune cell in chronic inflammation, secreting inflammatory factors
and cytokines and influencing angiogenesis and tumor metastasis, such as IL-6,
TNF-a and IFN-y (Grivennikov et al. 2010). TNFa action through NF-kB is a
causal agent in this promotion through mechanisms that act directly on epithelial
cells and on the inflammatory cells in the surrounding stroma, particularly the
macrophages (Balkwill et al. 2009). Together these data strongly support causal

roles for inflammation in cancer initiation and promotion. Although not

28



Background

definitive, given that macrophages have not been uniquely targeted in any
system, the data suggest that macrophages are key cells in cancer induced by

inflammation.

1.8. TAMs functions in the Primary Tumor

The macrophage phenotype associated with cancer initiation and promotion
is comparable to the pro-inflammatory (or activated) one (Gordon et al. 2003).
However, once tumors are established, macrophages are educated to become
pro-tumor (Qian and Pollard. 2010). At various stages of tumor mass
development, immune system cells with Thl type inflammatory action, initially
recruited to fight it, are gradually and progressively modified to create a Th2
type immune environment. Macrophage plasticity is a characteristic that is
opportunistically exploited by the tumor. Macrophages are, in fact, drawn into
the tumor tissue as M1 macrophages and progressively "reprogrammed" into
M2, with the result that they are deprived of their antitumor functions and
diverted to contribute to the growth and spread of malignant cells (Fig. 12)
(Yunna et al. 2020).
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Figure 12. Schematic representation of main roles of TAMs in tumorigenesis. TAMs promote
tumor growth, angiogenesis, Treg cells induction, metabolic starvation of T cells, cancer stem
cells induction, T cells inactivation, epithelial-mesenchymal transition (EMT), invasion,
migration and metastasis (Chen el al. 2019).

Macrophage plasticity can also be used as an opportunity to cure cancer by
repolarizing TAMs to become anticancer. Several options are currently used to
select the M1 phenotype from the TAMs or to reprogram the TAMs from the
M2 to M1 phenotype: TLR agonists, Monoclonal antibodies (mAbs) targeting
inhibitory proteins of the M1 phenotype, and other compounds. TLR agonists
represent a promising anticancer therapy (De Meyer et al. 2012). An anti-
scavenger receptor CD204 antibody conjugated to the gustin toxin reduced the
number of vascular leukocytes and inhibited tumor progression in a murine

ovarian cancer model (Bak et al. 2007). Macrophage receptor with collagenous
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structure (MARCO) is a pattern recognition scavenger receptor and is expressed
by immunosuppressive TAMs. Targeting this receptor is a promising new way
to treat breast cancer, colon cancer and melanoma by reprogramming
immunosuppressive TAMs to a pro-inflammatory phenotype and increasing the

tumor immune response (Georgoudaki et al. 2016).

1.9. TAMs in promoting tumor invasion, migration, and intravasation

Tumor metastasis is an important feature of poor prognosis after tumor
therapy. The main reason for tumor cell migration and metastasis is the
degradation and damage of the basement membrane of endothelial cells in the
tumor tissue. It has been reported that activated TAMs exert a direct effect on
promoting metastasis through the direct production of soluble factors. They are
the key that opens the gate for tumor cells to escape. Mechanistically, tumor cells
synthesize CSF-1, which stimulates macrophages to move and produce
epidermal growth factor (EGF), which in turn activates tumor cell migration
(Wyckoff et al. 2004). Macrophages and tumor cells move in tandem, and
inhibition of EGF or CSF-1 signaling pathways results in inhibition of migration

and chemotaxis of both cell types (Wyckoff et al. 2007) (Fig.13).
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Figure 13. Overview of contribution by TAM to tumor invasion and metastasis. TAMs EGF
and tumour cells secrete CSF-1 to induce a paracrine loop-driven co-migration and invasion of
both cells type towards blood vessels (Dwyer et al. 2017).

The interaction between tumor cells and TAMs plays a key role in the epithelial-
mesenchymal transition (EMT) process. TAMs induce EMT in tumor cells by
secreting a series of cytokines and growth factors, such as TGF-3, TNF-q, IL-6,
and IL-8, thereby promoting tumor invasion and metastasis. TAMs not only
contribute to early EMT of tumor cells, but also help to prepare a distant site
ready to support metastatic growth (Li et al. 2022). The extracellular matrix
(ECM) plays an important role in modifying tumor cell invasiveness.
Macrophages synthesize secreted protein acidic and rich in cysteine
(SPARC)/osteonectin, which is important for collagen IV deposition, increased
tumor cell invasion, and adhesion to other ECM components (such as
fibronectin). SPARC/osteonectin has been shown to be required for spontaneous
metastasis formation from the primary tumor (Sangaletti et al. 2008). Fibrillar

collagen 1 also promotes the invasion process, as tumor cells and macrophages
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move ~10 times faster on these structures than through the stroma itself. This
has the unfortunate consequence of recruiting cells to blood vessels, as these
collagen fibrils also anchor these structures (Condeelis and Segall 2003).
Macrophages on the vessels then give approach signals that cause tumor cells to
migrate along the collagen fibrils toward the vessels, where the tumor cells
escape into the vasculature aided by the macrophages. Tumor cell migration also
requires proteolytic destruction of the matrix to allow tumor cells to escape from
the borders of the basement membrane. Subsequently, proteolysis is required for
tumor cell migration through the dense stroma. Macrophages are potent
producers of many proteases, including cathepsins, matrix metalloproteases
(MMPs) and serine proteases (Egeblad and Werb 2002). M2- like TAMs induce
proteolytic clearance of interstitial collagen through upregulated MMP
expression, such as MMP-2, MMP-9, and MMP-12, accompanied by increased
endocytosis and lysosomal degradation of collagen (Madsen et al. 2017). In
addition to ECM degradation, in a colorectal cancer model, TAMs contribute to
ECM deposition. Interestingly, this study found that here TAMs are the major
cell type to upregulate synthesis and assembly of collagens, specifically collagen
types I, VI and XIV, and induce deposition, cross- linking and linearization of
these collagen fibers near invasive tumor cells (Afik et al. 2016). These data add
to growing evidence that immune cells contribute to ECM deposition, as
macrophages also deposit the glycoprotein osteonectin, which promotes stromal

invasion in a mouse model of breast cancer (Sangaletti et al. 2008).

1.10.TAMs promote the cancer stemness

Cancer Stem Cells (CSCs) are cellular elements in the tumor tissue with stem-
like properties which have been demonstrated to play a key role in disease
progression and tumor recurrence. They represent a distinctive cell subset within

the tumoral mass and are characterized by unlimited self-renewal properties,
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tumor initiation ability and chemo-resistance (Kreso and Dick 2014). In tumors,
also the CSCs reside in a cancer niche that defends them from stress signals,
such as apoptosis- inducing chemotherapeutic agents and from attacks by the
immune system (Plaks et al. 2015). Key players in the cancer niche are TAMs,
which indeed secrete a variety of soluble factors and physically interact with
CSCs to protect them from environmental damage (Liguori et al. 2021). As
mentioned above, TAMs are active producers of matrix-degrading enzymes and
also of ECM macromolecules, thus contributing to the incessant remodeling of
the tumor stroma (Liguori et al. 2011). Matrix components are crucial for
preserving the niche architecture as well as for the communication between
CSCs and the surrounding cells. Notably, the physical interaction between
macrophages and CSCs appears crucial to support stemness features, as
demonstrated in studies specifically addressing the importance of juxtacrine
signaling mechanisms. Cell—cell contact activates several pathways that are
important for CSC, such as: SHH, NOTCH, STAT3 (Yang et al. 2013),
PI3K/AKT, WNT/b-catenin, NANOG (Morgan et al. 2018) and NF-kB
(Galoczova et al. 2018).

1.11. TAMs in immunosuppression

The coordinated interaction between the innate immune system, represented by
macrophages and dendritic cells (DCs), and the adaptive immune system,
consisting largely of T lymphocytes, is essential to prevent the development and
progression of neoplastic cells (Koebel et al. 2007). While the immune
surveillance process functions normally in noncancer hosts, a key problem in
cancer immunology is to combat immunosuppressive factors within the ECM,
which tame normal antitumor responses. Substantial evidence has supported that

TAMs change the composition of immune cells within the TME, reducing
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antitumor immune cells and simultaneously increasing the presence of

immunosuppressive cell types to accelerate tumorigenesis (Fig. 14).
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Figure 14. Schematic representation of the immunosuppressive role of TAMs.
Immunosuppressive TAMs express immune checkpoint ligands, which directly inhibit the
Sfunctions of CTLs. TAMs also promote immunosuppression by recruiting Th2 cells and T reg
cells through the production of chemokines (Lopez-Yrigoyen et al. 2021).

The immunosuppressive effects of TAMs consist of direct interactions with
CTLs in an antigen-specific and antigen-non-specific manner or indirect
overpressure of effector T cells through Treg expansion (Petty and Yang 2017).
Cathepsin K, cyclooxygenase (COX) 2, ARG1 and MMPs secreted by TAMs
can directly inhibit the effector function of CD8+ and CD4+ T cells. In addition,
these TAM-derived chemokines, cytokines, and enzymes can also stimulate the

generation of induced regulatory T cells (iTregs) and recruit natural Tregs
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(nTregs), which perform an immunosuppressive function by directly inhibiting
effector T cells or secreting immunosuppressive factors. In turn, Treg cells
indirectly promote an M2-like phenotype of TAMs and support their survival by
suppressing CD8+ T cells in the TME (Liu.C et al. 2019). In addition, some
studies suggest that TAMs also induce NK cell dysfunction; in fact, TAM-
derived IL-10 inhibits the local production of IL-12, a cytokine essential for NK
cell cytotoxicity (Sica et al. 2000). Finally, TAMs further promote dysfunction
of TILs by expressing inhibitory receptor ligands of PD- 1 and CTLA- 4 (Kuang
et al. 2009). Taken together, this evidence suggests that TAMs are an important
force in disrupting antitumor responses by effector cells in the TME and remain

a significant obstacle to effective immunotherapy.

1.12.Macrophage metabolism

Macrophage polarization also involves metabolic reprogramming, their
metabolism in fact clearly reflects their functions. An M1 macrophage is part of
the first line of defense of the innate immune system, which takes place over
hours or days, compared with an M2 macrophage, which plays a greater role in
the resolution phase and thus has more long-term functions. We now know that
the metabolism of M1 macrophages is characterized by high expression of iNOS
and NO production, glycolysis, and low oxidative phosphorylation (OXPHOS)
while the metabolism of M2 macrophages is characterized by high levels of

ARGTI, fatty acid oxidation (FAO), and OXPHOS (Fig.15).
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Figure 15. Schematic representation of immunometabolic pathways in macrophages. Pro-
inflammatory macrophages are more glycolytic, reflecting their need to rapidly meet the energy
requirements of acute inflammation in the form of ATP. By contrast, anti-inflammatory
macrophages utilize fatty acid OXPHOS to slowly but efficiently generate ATP to support the
resolution of inflammation (O Neill et al 2016)

In M1 macrophages, upon activation, aerobic glycolysis is induced, resulting in
increased glucose uptake and conversion of pyruvate to lactate. At the same time,
respiratory chain activities are attenuated, allowing the production of reactive
oxygen species (ROS). In addition, the pentose phosphate pathway is also
induced following classical action. This pathway is critical for the generation of
NADPH for NADPH oxidase, which is important for ROS production, but also
for nitric oxide synthesis (Aktan et al. 2004). Thus, these metabolic events can
provide the cell with energy and fast reducing equivalents, which are necessary

for bactericidal activity. A key mechanism for increased glycolysis in the
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presence of activated macrophages is the induction of pyruvate kinase
isoenzyme (PK) M2. This form of PKM (which is an enzyme that generates
pyruvate and ATP from phosphoenolpyruvate and ADP during glycolysis) is
regulated to slow down glycolytic flux and allow the detour of glycolytic
intermediates to biosynthetic pathways. PKM2 also has a separate function
outside of its role in glycolysis. It translocates to the nucleus, where it interacts
with Hypoxia Inducible Factor 1 Subunit Alpha (HIFla) and promotes the
expression of HIFla-dependent genes, including those encoding the glycolytic
enzymes and inflammatory factors, such as IL-1B. Also interesting is the
observation that a small molecule that forces PKM2 into a tetrameric state (in
which it is unable to enter the nucleus and is more active in glycolysis than
dimeric PKM2) reprograms macrophages to become more M2-like in their gene
expression profiles (Palsson-McDermott et al. 2015). This indicates that
inhibition of HIFla (as will occur in this situation, since PKM2 is no longer
nuclear) will change the macrophage phenotype from pro-inflammatory M1 to a
pro-reparative (or alternatively activated) M2 phenotype (O’Neill et al. 2016).
In M2 macrophages, NO production is low, allowing OXPHOS to be
maintained. High ARG1 activity is associated with the metabolism of arginine
to proline, a component of collagen (Gordon et al. 2003). Collagen production
can stimulate matrix synthesis, which is necessary for tissue repair and
granuloma formation, both of which are important for the resolution of
inflammation. Unlike M1 macrophages, M2 macrophages do not show increased
glycolytic activity (Galvan-Pena and O’Neill 2014). Following alternative
activation, the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 1
gene is expressed instead of PFKFB3, resulting in higher levels of the hepatic
isoform of Phosphofructokinase-2 (PFK2) and lower levels of fructose-2,6-
bisphosphate. The lower glycolytic levels are compensated by increased
OXPHOS. Following macrophage activation with IL4, an oxidative metabolic
program is induced, ranging from fatty acid uptake and oxidation to OXPHOS

and mitochondrial respiration. The mechanism underlying this increase is
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somewhat better understood than that of glycolysis in M1 macrophages.
Following treatment with IL4, the transcription factor STAT6, which is
responsible for mediating the transcriptional responses of this cytokine, is
activated. Active STAT6 can induce PPARy-coactivator-1p (PGC-1B). PGC-1f
can induce mitochondrial respiration and mitochondrial biogenesis. Moreover,
together with the transcription factors, nuclear respiratory factor 1 (NRF-1) and
estrogen-related receptor-a (ERRa), it drives the production of key
mitochondrial components, such as cytochrome ¢ and ATP synthase (St-Pierre
et al. 2003). It is therefore not surprising that PGC-1p is considered the key
player responsible for metabolic change in M2 macrophages. The Krebs o
tricarboxylic acid (TCA) cycle and OXPHOS have been extensively studied in
immune cells. In M2 macrophages, there is an intact TCA cycle that is coupled
to OXPHOS. This allows the generation of UDP-GIcNAc intermediates, which
are required for glycosylation of M2-associated receptors, such as the mannose
receptor (Jha et al. 2015). However, in M1 macrophages the situation is quite
different. In these cells, the TCA cycle has been shown to be interrupted at two
points: after citrate (due to decreased expression of isocitrate lyase) and after
succinate (Tannahill et al. 2013). It has been shown that citrate that accumulates
in M1 macrophages is exported from mitochondria via the citrate transporter. It
is then used to produce fatty acids, which in turn are used for membrane
biogenesis. The succinate that accumulates in M1 macrophages because of TCA
cycle disruption has a direct impact on cytokine production by macrophages
(Tannahill et al. 2013). One mechanism involved is the inhibition of prolyl
hydroxylases by succinate, which leads to stabilization of HIF1a and sustained
production of IL-1p. This pathway functions in both normoxia and hypoxia and
thus represents a mechanism for HIFla activation under aerobic conditions

(O°Neill et al 2016).
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1.13.TAMs metabolism

The homeostasis and evolution of the TME are governed by an intimate
exchange within and between all cellular compartments, including malignant,
endothelial, stromal, and immune cells. This complex interaction often involves
extracellular metabolites, which not only provide a source of energy but also act
as communication signals between different cellular compartments. TAMs react
with metabolic changes in response to stimuli in the TME and actively engage
in metabolic crosstalk with tumor (and other) cells, which often promotes cancer

progression (Vitale et al. 2019) (Fig. 16).
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Figure 16. Schematic representation of TAMs and cancer cells crosstalk. Early neoplastic
lesions exhibit limited degree of hypoxia, abundant infiltration by effector T cells, and a TAM
compartment largely polarized toward an immunostimulatory MI-like state. As disease
progresses, cancer cells avidly deplete the TME of glucose as they produce increased amounts
of lactate and secrete cytokines that favor the recruitment of blood-borne monocytes and their
polarization toward an immunosuppressive M2-like state (Vitale et al 2019).

A major metabolic pathway in macrophages that has been shown to influence
tumor growth is amino acid metabolism, and as mentioned above, protumoral
TAMs highly express ARG1 (Murray et al. 2014). Tumor-associated myeloid

cells express cationic amino acid transporters 1 and 2B at higher levels than non-
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tumor-associated myeloid cells, leading to increased uptake of arginine and its
depletion in the TME (Geiger et al 2016). This phenomenon leads to three
results. First, ARG1 converts arginine to ornithine and urea, inhibiting tumor
NO synthesis. Second, arginine is metabolized into ornithine and polyamines,
which promote tumor growth. Myeloid-specific deletion of ODC, a rate-limiting
factor in the polyamine biosynthesis pathway, also leads to increased production
of M1-associated cytokines, including TNFa, IL-18, IFNy, and NOS2, resulting
in reduced tumor burden and improved survival in carcinogenesis. Third,
depletion of arginine from TME suppresses the antitumor activity of T cells
(Singh et al. 2018). Tryptophan metabolism is also involved in the modulation
of antitumor immune responses. The enzyme Indoleamine 2,3-dioxygenase
(IDO) performs the first step of the kynurenine pathway, which converts
tryptophan to N-formyl kynurenine. In the context of tumors, this has been
linked to T-cell suppression through depletion of tryptophan from TME and
promotion of regulatory T-cell responses (Campesato et al. 2020). However,
tumors overexpressing IDO also recruit more TAMs into the TME, where they
express CD206 and high levels of TGFp, but low levels of NOS2, CD86, and
IL-12, characteristic of protumorigenic macrophages (Campesato et al. 2020).
Tumor cells and TAMs also engage in metabolic crosstalk (Fig. 14). Cancer cells
are typically highly glycolytic due to exclusive expression of the M2 isoform of
PKM?2 (Christofk et al. 2008), which can lead to competition for nutrients with
other glycolytic cells in the TME (Chang et al. 2015). The product of cancer cell
glycolysis is lactate, which promotes VEGF and ARG1 production in TAMs to
support vascularization and tumor proliferation. Lactate metabolism 1is
particularly relevant not only because of the metabolic symbiosis between
hypoxic (lactate-generating) and normoxic (lactate-importing) tumor cells
(Allen et al. 2016), but also because of the ability of hypoxic tumor cells to re-
educate TAMs toward a poorly glycolytic M2 profile, with increased FAO,
decreased antigen-presenting capacity (Liu.N et al. 2019) and, at least in

glioblastoma, increased expression of immunosuppressive molecules (Kren et
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al. 2010). The M2 bias of melanoma-associated TAMs appears to be promoted
by a mechanism involving a G-protein-coupled receptor (GPCR) that senses
TME acidification induced by increased glycolysis of cancer cells (Bohn et al.
2018). Based on these observations, the development of treatments that target

key metabolic enzymes could have important clinical benefits (Fig. 17).

e
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Figure 17. Schematic representation of metabolic reprogramming of TAMs toward an
antitumoral phenotype. Strategies that metabolically reprogram protumoral M2 TAM into an
antitumoral M1 phenotype, without depleting the full TAM population, could reduce tumor
growth and metastasis and allow re-establishment of conventional cancer therapies (Geeraerts
etal 2017).

A prototypical inhibitor of mTOR, rapamycin, repolarizes protumoral
macrophages towards an antitumoral phenotype by suppressing mitochondrial
ROS and NLRP3 inflammasomes, suggesting that targeting upper stream factor
of glucose would be beneficial for antitumoral responses in TAMs (Aslam et al.

2017). As expected, the glucose-lowering drug, metformin, reduces M2
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polarization in TAMs in murine pancreatic tumors and osteosarcoma tumor
models and reduces IL-1p production (Uehara et al. 2019).

A study by the group of Mazzone revealed that TAM metabolism directly
affects tumor vasculature and metastasis, making the link between TAM
metabolism and its protumoral functionality. Regulated in development and
DNA damage responses 1 (REDDI), an inhibitor of mTOR, is highly expressed
by TAM in the hypoxic regions of the tumor, which have been described
previously as more M2-like macrophages with high angiogenic potential.
Genetic deletion of REDDI in hypoxic TAM induced mTOR activity, which in
turn increased glucose uptake and directed hypoxic macrophage metabolism
toward glycolysis. Enhanced glycolysis upon REDDI deletion caused
competition for glucose between hypoxic TAM and tumor endothelial cells
(Wenes et al. 2016). Together, these observations suggest that altering the
metabolic programs of TAMs could be a useful strategy for repolarizing

macrophages to promote antitumor effector functions.
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