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Summary 

The term microbiome refers to the whole community of living microorganisms in a sample 

along with their potential activities that might influence the metabolic capabilities and 

functioning of such a micro-environment. The study of the human microbiome has assumed a 

central role in the scientific community due to its fundamental role in health and disease, 

especially in the last few years thanks to the advancement of sequencing technologies and the 

dramatic decrease of sequencing cost for exploring complex microbial communities. This is 

generating a large amount of data that needs proper computational tools and methodologies to 

be analysed. 

The overall aim of my doctoral research activity is to develop and apply tools and analyses for 

the identification of species and sub-species in food and human microbiomes. This is 

accomplished by considering large-scale approaches built on shotgun metagenomics data. In 

chapter 2, it has been developed and validated a methodology based on a clustering approach 

for sub-species identification from genomes. The main idea is to view clustering as a supervised 

classification problem, in which we must estimate the true number of clusters (i.e., sub-species 

in our case). We tested prediction strength which is the methodology mostly used in the 

microbiome field for this purpose, and proposed an alternative solution based on clusterwise 

cluster stability assessment by resampling which exhibited higher accuracies and reduced 

computational times. Such methodology has been validated on synthetic data in which we tried 

to estimate the right number of clusters/sub-species by changing different variables such as 

number of clusters and distances among clusters. The methodology has been also applied in 

real scenarios by considering two microbial families of great relevance in the food science field 

as lactic acid bacteria (LAB) and Bifidobacteriaceae. 

In chapter 3, we performed large-scale genome-wide analysis for LAB species by considering 

microbiomes from both food sources and human body sites. We investigated the prevalence 

and diversity of LAB species in the human microbiome and their overlap with species and 

strains found in food. Quantitative taxonomic profiling was applied on the entire set of 

genomes, comprising food metagenomes coming from previously published studies and others 

newly sequenced in this study, and publicly available metagenomes corresponding to the 

human microbiome. The metagenome assembled genomes (MAGs) coming from human and 

food sources were integrated with publicly available genomes and subjected to extensive 

comparative genomic analyses. 
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A similar effort was devoted to the characterization of species and sub-species belonging to the 

Bifidobacteriaceae family in chapter 4. We estimated prevalence and abundance of 

Bifidobacteriaceae in the human microbiome, followed by sub-species identification and 

characterization. In this way, we tried to close the gap between human microbiomes and 

Bifidobacteriaceae strains that we commonly find in probiotic supplements. Also in this case 

we considered both MAGs and reference genomes, clustered them for species and sub-species 

identification, and conducted comparative genomic analyses. Finally, we built machine 

learning based predictive models to evaluate to which extent phenotype characteristics could 

be estimated by occurrence of Bifidobacteriaceae species. 

An overview of the performed research activity along with future directions are described in 

the final chapter 5.   
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1  Introduction 

1.1  An introduction to the human microbiome 

The term microbiome refers to a characteristic microbial community occupying a reasonably 

well-defined habitat which has distinct physio-chemical properties. The term not only refers to 

the microorganisms involved but also encompass their theater of activity. The latter involves 

the whole spectrum of molecules produced by the microorganisms, including their structural 

elements (nucleic acids, proteins, lipids, polysaccharides), metabolites (signaling molecules, 

toxins, organic, and inorganic molecules), and molecules produced by coexisting hosts and 

structured by the surrounding environmental conditions. Therefore, all mobile genetic 

elements, such as phages, viruses and extracellular DNA, should be included in the term 

microbiome [1].  

The human body consists of 10-100 trillion of symbiotic microbial cells and the human 

microbiome refers to the genes these cells harbor [2]. The study of the human microbiome has 

assumed a central role in the scientific community due to its fundamental role in health and 

disease [2–5], especially in the last few years thanks to the advancement of sequencing 

technologies and the dramatic decrease of sequencing cost for exploring complex microbial 

communities.  

The microorganisms colonize various sites on and in the human body, where they adapt to 

specific features of each niche (e.g., skin, gut, mouth, and vagina). A great variation in both 

composition and function is observed when comparing one body niche to another [6]. The 

majority of microorganisms found in the body live in the human gut. 

Moreover, the human microbiome has the potential to uniquely identify individuals, much like 

a fingerprint. Personal microbiomes contain enough distinguishing features to identify an 

individual over time. While individuals from the same human population usually contain 

similar species, different people typically carry person-specific strains [7]. 

 

1.2  Not only human, the food microbiome 

The microbial community found in certain types of food represents the food microbiome. The 

relationship between foods and their microbiome is fundamental to their quality and safety. 

Beneficial microbial communities can be responsible for rheological and organoleptic traits of 

https://paperpile.com/c/nJ8Mum/934t
https://paperpile.com/c/nJ8Mum/Y97H
https://paperpile.com/c/nJ8Mum/cVso+K9xI+pDvJ+Y97H
https://paperpile.com/c/nJ8Mum/qq5u
https://paperpile.com/c/nJ8Mum/kUN3
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fermented foods. However, undesirable microbes may also be present, and their development 

may affect the quality of food, leading to spoilage or other food safety issues [8]. 

Metataxonomics and metagenomics are currently the gold standard methodologies to explore 

the full potential of metagenomes in the food industry [9]. Metagenomics and metataxonomics 

display a different, although complementary, perspective. While metataxonomics does not 

provide information about the functional and metabolic features of the microorganisms and it 

is limited to depicting a profile of the members of the community, metagenomics exploits the 

information present in the whole genetic content of the community (the metagenome), usually 

by directly sequencing the total DNA pool of the microbial population, avoiding the bias 

introduced by the amplification of specific DNA fragments performed in metataxonomics 

approaches. The sequencing of all microbial DNA present in a sample has been defined as 

shotgun metagenomics, which currently is the gold standard to analyses complex microbial 

communities [10]. Shotgun metagenomics has been extensively used to depict the microbiomes 

of different environments, including those associated with foods. The food metagenome has 

been studied through shotgun sequencing in both non-fermented foods, such as milk and honey 

[11,12], and fermented foods, the latter being the ones that have received the most attention 

because their microbial load is normally high. Among fermented foods, shotgun sequencing 

methods have been applied in the cheese industry to assess the functional features of the 

microbiota of cow’s milk artisanal cheeses from Northwestern Argentina, which has 

contributed to the isolation of bacteriocin-producing bacteria against Listeria monocytogenes 

[13]. The most comprehensive metagenomic analysis of different cheese types showed the 

usefulness of shotgun sequencing to link different bacterial functionalities, such as the 

synthesis of volatile compounds during ripening or bacteriocin-production, with genes or 

bacteria present in the cheese microbiota, providing a tool to improve cheese production 

processes [14]. In addition, metagenomes of fermented-meat and meat-processing industries 

have also been investigated. The potential functions associated with meat fermentation 

processes have been studied in sausages, highlighting the key role of the starter cultures in the 

organoleptic properties of fermented products [15].  

Overall, as demonstrated in previous examples, the knowledge generated through shotgun 

metagenomics on food and food processing environments can help towards the selection of 

starter and adjunct bacterial cultures capable of conferring desired quality attributes to the final 

product, either in terms of improved nutritional, functional, or organoleptic properties. But it 

can also help to improve its safety through selecting microorganisms capable of extending their 

https://paperpile.com/c/nJ8Mum/hEqs
https://paperpile.com/c/nJ8Mum/jPgl
https://paperpile.com/c/nJ8Mum/gumA
https://paperpile.com/c/nJ8Mum/rPgh+wJPh
https://paperpile.com/c/nJ8Mum/myYB
https://paperpile.com/c/nJ8Mum/GE8D
https://paperpile.com/c/nJ8Mum/XMb0
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shelf-life and to guarantee the absence of spoilage or pathogenic bacteria in a range of food 

products.  

Finally, it is important to note that there are still great challenges to be solved in the shotgun 

analysis field, including the difficulties of analysing foods and food-related environments with 

a low microbial load with the currently available methodologies, as well as the lack of specific 

bioinformatics pipelines adapted to the study of food microbiomes. Therefore, there is a need 

to fine tune current shotgun approaches to fully explore the potential of these applications and 

implement these new methodologies in the food industry, which will undoubtedly contribute 

to the increase of quality and safety of food [9]. 

 

1.3  Identification of species and sub-species from metagenomic 

data 

Microbiome research has been strongly driven by advances in DNA sequencing technologies, 

often referred to as next-generation sequencing, NGS [16]. With the advent of DNA sequencing 

and high-throughput technologies applied in all fields of biological sciences, we are able to 

generate billions of data points, which can be used for an in-depth characterization of the 

structure, function, inter-action, and complexity of microbial ecosystems. This has stimulated 

the development of sophisticated bioinformatics tools to analyze the massive amounts of data 

generated.  

The two main approaches for analyzing the microbiome are 16S ribosomal RNA (rRNA) gene 

amplicons and shotgun metagenomics. 16S sequencing is used to identify and classify microbes 

by selectively amplifying and sequencing the hypervariable regions of the 16S rRNA gene. On 

the other hand, shotgun sequencing is less subject to amplification bias than 16S sequencing 

because it does not rely on targeted primers to amplify a marker gene. Shotgun metagenomics 

is usually more expensive but offers increased resolution, enabling a more specific taxonomic 

and functional classification of sequences as well as the discovery of new bacterial genes and 

genomes [17]. Importantly, shotgun metagenomics allows the simultaneous study of archaea, 

viruses, virophages, and eukaryotes [18,19].  

From shotgun sequencing, it is now possible to construct metagenome-assembled genomes 

(MAGs). A MAG refers to a group of scaffolds with similar characteristics from a metagenome 

assembly that represent the microbial genome [20]. In this approach, sequencing reads are 

https://paperpile.com/c/nJ8Mum/jPgl
https://paperpile.com/c/nJ8Mum/tdeQ
https://paperpile.com/c/nJ8Mum/Y30O
https://paperpile.com/c/nJ8Mum/Z7wP+A08K
https://paperpile.com/c/nJ8Mum/SOpr
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assembled into scaffolds and then the scaffolds are grouped into candidate MAGs based on 

tetranucleotide frequencies (TNFs), abundances, complimentary marker genes [21], taxonomic 

alignments [22] and codon usage [23]. The MAGs with high completeness and low levels of 

contamination are then used for further taxonomic annotation and large-scale analyses. An 

established approach to detect the many species belonging to the human microbiome is to group 

the MAGs in species-level genome bins (SGBs), as described in [24].  

Despite often being the highest resolution taxonomic category considered in microbiome 

surveys, species can contain extreme phenotypic variability [25]. Diversity within bacterial 

species is the result of continuous processes of variation generation due to mutations and gene 

flow mechanisms. Mutations are changes in DNA sequence and arise continuously in the 

genome owing to errors in the DNA replication process, damages caused by mutagens, or errors 

in the DNA repair and recombination mechanisms [26]. Mutations that arise in one genome 

can be passed vertically to descendants or horizontally to neighbouring cells. Usually, 

mutations increase the amount of variation within a species. Gene flow is the transfer of genetic 

variation from one population to another that can cause additions and rearrangements of 

genomic regions [27]. In terms of impact on within-species variation, the most important factor 

of the transfer is not the mechanism but rather whether or not the genetic material being 

transferred is novel to the recipient species. Natural selection and genetic drift determine the 

fate of within-species variability introduced through mutation and gene flow. Genetic drift 

randomly eliminates genetic variations within a population, whereas natural selection 

maintains or eliminates variations that respectively confer a fitness advantage or disadvantage. 

Diversity within species is generated, maintained and purged to different extents, such that 

some species are highly heterogeneous whereas others are tightly cohesive.  

These features of within-species variation depend on the populations observed. At one extreme, 

species can be monotypic; that is, they have a uniform distribution of genetic similarities across 

their entire population. Monotypic species with low diversity are more likely to be specialists, 

with narrow geographic distributions or host ranges [28,29]. At the other extreme, species with 

subspecies (polytypic) and high diversity are more likely to be free-living generalists with 

multiple adaptations to distinct and fluctuating environments as well as broad geographic 

ranges or many partially overlapping niches [29,30].  

Within-species genetic variation can be measured in many ways, with some common metrics 

being overall genome similarity, the number of shared and unique genes, and/or the number 

and nature of SNVs (single nucleotide variants). The overall similarity between genomes 

https://paperpile.com/c/nJ8Mum/PwSB
https://paperpile.com/c/nJ8Mum/r334
https://paperpile.com/c/nJ8Mum/9Znj
https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/CeK9
https://paperpile.com/c/nJ8Mum/wIqi
https://paperpile.com/c/nJ8Mum/N4Q7
https://paperpile.com/c/nJ8Mum/Tp3c+p7Gl
https://paperpile.com/c/nJ8Mum/5i9B+p7Gl
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belonging to the same species at higher resolution levels can be assessed from metagenomic 

data either directly from reads and reference genomes [31] or through comparison of MAGs 

[32]. Reference genome-based approaches can be limited by the low availability of appropriate 

reference genomes. Instead, large sets of MAGs are now available, and methods to calculate 

ANI (average nucleotide identity) have improved in efficiency [33]. However, calculating ANI 

for large genomic cohorts remains computationally challenging [32] and using MAGs can 

introduce inaccuracies owing to data quality limitations and incompleteness. The range and 

distribution of ANI values within species vary by taxon and population [32] and therefore, in 

contrast to species boundaries, within-species variants do not seem to display a universal 

threshold that would categorize them into groups. Further, genetic differences that are coded 

by a small number of nucleotides relative to the size of the genome, and thus have a small 

impact on ANI, can have a very large impact on phenotype. In these cases, measures of gene 

content and SNVs can be more informative than ANI for defining biologically relevant within-

species variants. 

The range of genetic variation within species can be covered by three terms: genome, strain 

and subspecies (Figure 1.1). A species potentially contains multiple subspecies, a subspecies 

contains multiple strains and a strain contains multiple (non-identical) genomes. These 

genomes can be sequenced from cultured isolates (isolate genomes) or through assembly of a 

metagenomic sample (MAGs). The former usually represents a cultured isolate with little 

diversity, whereas the latter might represent a population containing considerable diversity 

[25]. A universally applicable, operational definition of strain with a strong biological basis has 

not been established and may not exist. In theory, genomes with a few SNV differences could 

be referred to as different strains. Subspecies are clusters of strains that are genetically or 

phenotypically distinct. 

 

https://paperpile.com/c/nJ8Mum/dHsP
https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/Rrxf
https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/CeK9
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Figure 1.1. Within-species stratification 
Terminology used to stratify variation within bacterial species, ranging from a single nucleotide variant 

(SNV) in the whole genome to the species-level threshold (95% ANI). [Figure is taken from [25]]. 

 

SGBs detection allows to characterize the human microbiome at most at species-level, but it is 

more challenging to characterize it at within-species-level by identifying sub-species within 

each specific SGB. 

Along with several efforts performed in the literature to identify species in the microbiome 

from genomes and metagenomics data, a more open question is represented by the 

identification of sub-species and sub-clades. Metagenomic sequencing and technical advances 

have enabled culture-free, high-resolution strain and subspecies analyses at high throughput 

and in complex environments [25]. Overall, the identification of sub-species can be also 

relevant to perform more in-depth analyses into some specific species of interest. 

 

1.4  Summary of my doctoral research activity 

The overall aim of my doctoral research activity is to develop and apply tools and analyses for 

the identification of species and sub-species in food and human microbiomes. This is 

https://paperpile.com/c/nJ8Mum/CeK9
https://paperpile.com/c/nJ8Mum/CeK9
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accomplished by considering large-scale approaches built on shotgun metagenomics data. In 

chapter 2, it has been developed and validated a methodology based on a clustering approach 

for sub-species identification from genomes. The main idea is to view clustering as a supervised 

classification problem, in which we must estimate the true number of clusters (i.e., sub-species 

in our case). We tested prediction strength [34] which is the methodology mostly used in the 

microbiome field for this purpose, and proposed an alternative solution based on clusterwise 

cluster stability assessment by resampling which exhibited higher accuracies and reduced 

computational times. Such methodology has been validated on synthetic data in which we tried 

to estimate the right number of clusters/sub-species by changing different variables such as 

number of classes and distances among classes. The methodology has been also applied in real 

scenarios by considering two microbial families of great relevance in the food science field as 

lactic acid bacteria (LAB) and Bifidobacteriaceae. 

In chapter 3, we performed large-scale genome-wide analysis for LAB species by considering 

microbiomes from both food sources and human body sites. We investigated the prevalence 

and diversity of LAB species in the human microbiome and their overlap with species and 

strains found in food. Quantitative taxonomic profiling was applied on the entire set of 

genomes, comprising food metagenomes coming from previously published studies and others 

newly sequenced in this study, and publicly available metagenomes corresponding to the 

human microbiome. The MAGs coming from human and food sources were integrated with 

publicly available genomes and subjected to extensive comparative genomic analyses. 

A similar effort was devoted to the characterization of species and sub-species belonging to the 

Bifidobacteriaceae family in chapter 4. We estimated prevalence and abundance of 

Bifidobacteriaceae in the human microbiome, followed by sub-species identification and 

characterization. In this way, we tried to close the gap between human microbiomes and 

Bifidobacteriaceae strains that we commonly find in probiotic supplements. Also in this case 

we considered both MAGs and reference genomes, clustered them for species and sub-species 

identification, and conducted comparative genomic analyses. Finally, we built machine 

learning based predictive models to evaluate to which extent phenotype characteristics could 

be estimated by occurrence of Bifidobacteriaceae species. 

An overview of the performed research activity along with future directions are described in 

the final chapter 5. 

   

https://paperpile.com/c/nJ8Mum/Dc82
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2  An automatic clustering-based approach to 

identify sub-species from genomes 

 

2.1  Introduction and scientific rationale 

2.1.1  Strategies to detect SGBs from genomes and MAGs  

The human microbiome plays a role in health, but its full diversity remains uncharacterized. 

An established approach to characterize the many unidentified species belonging to the human 

microbiome is to reconstruct the genomes coming from the human microbiome (MAGs) and 

group them in species-level genome bins (SGBs), as described in [24]. In particular, SGBs were 

obtained by considering both reconstructed and isolate genomes by clustering based on whole-

genome nucleotide similarity estimation of all of them. The cutoff on the hierarchical clustering 

was tuned based on the intra- and inter-species diversity of the confidently taxonomically 

labeled subset of the considered reference genomes.  

In general, the thus obtained SGBs were further divided into known SGBs (kSGBs) that contain 

at least one reference genome and unknown SGBs (uSGBs) without any reference genomes. 

The kSGBs were then taxonomically labeled with the species label (if available) of the 

reference genomes present in the bin, whereas uSGBs were assigned to the phylum of their 

closest reference genome, and to a genus-level and family-level annotation when possible. 

 

2.1.2  Identification of sub-species and sub-clades within each specific SGB 

SGBs detection allows to characterize the human microbiome at most at species-level, but it is 

more challenging to characterize it at strain-level by identifying sub-species within each 

specific SGB. In general, the assessment of subspecies is essential since differences can arise 

within so defined species. The SGBs do not always have an assigned taxonomy, as described 

above, and therefore they are unknown in literature.  

Therefore, the estimation of subspecies requires computational techniques based on clustering 

methods, in which the obtained clusters are equivalent to the subspecies for each SGB. The key 

https://paperpile.com/c/nJ8Mum/QxY8
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idea is to view clustering as a supervised classification problem, in which we must estimate the 

true number of clusters. 

 

2.1.3  Strategies proposed in the literature for the detection of subspecies 

For that purpose, in the literature there are some studies in which the identification of sub-

species was performed by using the prediction strength metric [34]. 

For example, Costea et al. [35] conducted a large-scale survey of population structure in 

prevalent human gut microbial species, sampled from their natural environment, with a culture-

independent metagenomic approach. They delineated population structure corresponding to 

subspecies. In particular, they used metaSNV [36] to compute a matrix of genomic allele 

distances between all samples that allowed variant calling for any given species and identified 

clusters by applying a very stringent cutoff for separation: they used the prediction strength to 

determine the support of the PAM clustering for each number of clusters 𝑘; the highest number 

of clusters that have a prediction strength above 0.8 was considered to be the number of 

subspecies, as recommended by Tibshirani and Walther for determining high-quality clusters 

[34]. With this operational definition, they found between two and four subspecies in 44 of the 

71 considered species (accounting for 72% (SD = 15%) of the assigned relative abundance per 

sample), totaling 112 subspecies (Figure 2.1). They also assessed the global geographic 

distribution of each subspecies. While many subspecies appeared to be distributed without any 

recognizable geographic pattern, some did show striking regional enrichments.  

https://paperpile.com/c/nJ8Mum/Dc82
https://paperpile.com/c/nJ8Mum/t5re
https://paperpile.com/c/nJ8Mum/NQS9
https://paperpile.com/c/nJ8Mum/Dc82
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Figure 2.1. Identification and prevalence of human gut microbial subspecies 
A,B) Human gut microbial species explored for the existence of subspecies show wide phylogenetic 

spread according to NCBI taxonomy (A) and include Methanobrevibacter smithii, the main archaeal 

member of the human gut microbiome, as well as representatives of all abundant phyla. Species names 

are according to NCBI taxonomy, with species cluster (specI) identifiers according to Mende et al. [37], 

which splits some named species into multiple specI clusters. Of 71 investigated species, 44 stratify 

into subspecies (highlighted in blue). Each species' average abundance across 2,144 human gut 

metagenomes is proportional to the size of the circles on the cladogram. Bars represent the number of 

subspecies identified in each, with “1” indicating no subdivision. The black portion of the bar 

corresponds to subspecies for which no representative genome sequence is available from NCBI. 

Geographic enrichments of subspecies are displayed as a heat map (showing only significant 

enrichment, FDR-corrected Fisher test P-value < 0.05, per country as maximum log-odds ratio across 

https://paperpile.com/c/nJ8Mum/00FG
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conspecific subspecies). Subspecies with a restricted geographic range are predominantly found in the 

Chinese and Kazakh populations. The 71 investigated species captured an average of 95.5% of 

sequencing reads that were assigned to any reference genome. The subset of 44 species with identified 

subspecies accounted for the majority of this abundance (B). [Figure with associated caption is taken 

from [35]]. 

 

Moreover, they investigated whether subspecies occurrences are also restricted in individuals 

and how stable an individual's gut subspecies composition is over time. They observed a 

general dominance or exclusivity of a single subspecies that highlights gut microbial 

individuality. Overall, that persists over time under normal conditions. 

The identification of subspecies with prediction strength was applied in a study that 

investigated the global distribution and population structure of Prevotella copri [38], a common 

human gut microbe that has been both positively and negatively associated with host health. In 

this study it was assessed if the presence of P. copri is associated with different human diseases. 

This analysis revealed that P. copri is not a monotypic species but is composed of four distinct 

clades. In a meta-analysis of available disease phenotypes, the authors found no strong 

evidence that any of the four clades were associated with a disease. Specifically, to investigate 

the association of the P. copri complex with different diseases, they analyzed the prevalence 

and abundance of the four clades for each cohort where the study design included both case 

and controls. At the clade level, there is no clear evidence to suggest P. copri is associated with 

the etiology of the considered diseases. Extending the analysis further to consider sub-clades 

also did not reveal any statistically significant associations with disease. 

The implementation of prediction strength in a large-scale analysis of the genomes belonging 

to one of the most prevalent human gut bacteria, i.e. Eubacterium rectale [39], highlights the 

existence of four subspecies (prediction strength consistently over 0.8 for k = 4), one of which 

was not observed before that study. Three of these four subspecies are large and well-defined 

monophyletic subtrees in the phylogeny, and only a minority of strains of the four E. rectale 

subspecies showed very strong geographic enrichment. In particular, the three most represented 

subspecies predominantly comprised strains from Europe and Asia. The fourth and previously 

unobserved subspecies, included strains derived mostly from sub-Saharan African countries 

but also contains strains from Peru and Indonesia. Moreover, to assess the possibility of inter-

individual E. rectale strain transmission in human populations, they further analyzed 

metagenomic data from mother-infant pairs in multiple cohorts and found evidence of vertical 

transmission. Their analyses suggest that E. rectale is specific to humans and that it can be 

https://paperpile.com/c/nJ8Mum/t5re
https://paperpile.com/c/nJ8Mum/Zi3K
https://paperpile.com/c/nJ8Mum/5b9k
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transmitted within populations. They found a statistically significant correlation (p value 0.041) 

between pairwise geographic and median genetic distances of subspecies that is confirmed 

when directly considering pairwise distances between samples (p value <1e−16), suggesting 

that E. rectale genetic stratification could have been to some extent shaped by physical isolation 

of strains over time. 

 

2.1.4  An alternative solution to identify subspecies 

We tested prediction strength but we propose a new solution to improve the accuracy and 

reduce computational time. The proposed methodology is based on clusterboot (Clusterwise 

cluster stability assessment by resampling) [40]. 

We performed both prediction strength and clusterboot on simulated data and the obtained 

results highlighted that our alternative strategy based on clusterboot works better in terms of 

assessment of clusters and computational time. 

We then applied our strategy in a real context that is the identification of subspecies (clusters) 

in large-scale analysis of bacterial species. In the further chapter 4 we described an analysis 

conducted on the Bifidobacteriaceae family delineating novel subspecies in its prevalent 

species. 

 

2.2  Materials and methods 

 

2.2.1  Definition of SGBs starting from genomes/MAGs through a clustering 

approach  

We hypothesize having a set of genomes that can be obtained from both isolate and 

metagenomic sources and would like to group them in species-level genome bins (SGBs) 

(Figure 2.2A). The genomes were clustered based on whole-genome nucleotide similarity 

estimation using Mash [33]. Mash enables the comparison and clustering of whole genomes 

and metagenomes on a massive scale; it reduces large sequences and sequence sets to small, 

representative sketches, from which global mutation distances can be rapidly estimated. 

Methods based on string matching can produce very accurate estimates of mutation distance, 

but must process the entire sequence with each comparison, which is not feasible for all-pairs 

https://paperpile.com/c/nJ8Mum/xfZE
https://paperpile.com/c/nJ8Mum/Rrxf
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comparisons. In contrast, the Mash distance can be quickly computed from the size-reduced 

sketches alone, yet produces a result that strongly correlates with alignment-based measures. 

Thus, Mash combines the high specificity of matching-based approaches with the 

dimensionality reduction of statistical approaches, enabling accurate all-pairs comparisons 

between many large genomes and metagenomes.  

The computed distances matrix by Mash is the input for hierarchical clustering, a method of 

cluster analysis in which the data are grouped into a tree of clusters. The cutoff on hierarchical 

clustering was tuned based on intra- and inter-species diversity of the confidently 

taxonomically labeled subset of the reference genomes resulting in SGBs spanning ∼5% 

genetic diversity, as independently proposed elsewhere [32]. 

 

2.2.2  Estimation of the number of sub-species in each specific SGB 

We would like to estimate the number of subspecies in each specific SGBs (Figure 2.2B). For 

this purpose, we consider the set of genomes falling in the considered SGB and estimate their 

pairwise average nucleotide identities (ANIs). This was performed through FastANI [32], 

which provides more accurate results than the more approximate distances estimated by Mash. 

ANI is the estimation of the genetic relatedness between two genomes; it represents the average 

nucleotide identity of all orthologous genes shared between any two genomes and offers robust 

resolution between strains of the same or closely related species (i.e., showing 80–100% ANI). 

The algorithm FastANI alleviates the computational bottleneck in ANI computation using 

alignment-free approximate sequence mapping. FastANI is accurate for both finished and draft 

genomes, and is up to three orders of magnitude faster compared to alignment-based 

approaches.  

Then we assessed the presence of subspecies through visual inspection in multidimensional 

scaling (MDS) plot using the Partitioning Around Medoid (PAM) algorithm as clustering 

method. In particular, we used the “cmdscale” function available in the R stats package to 

compute the MDS. The R function “cmdscale” stands for Classical (Metric) Multidimensional 

Scaling that is also known as principal coordinates analysis [41]. Multidimensional scaling 

takes a set of dissimilarities and returns a set of points such that the distances between the 

points are approximately equal to the dissimilarities. A set of euclidean distances on 𝑛 points 

can be represented exactly in at most 𝑛 − 1 dimension; “cmdscale” returns the best-fitting 𝑘-

dimensional representation, where 𝑘 may be less than the maximum dimension of the space 

https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/WFU4
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which the data are to be represented in, that is must be in [1, 2, . . . , 𝑛 − 1]. The representation 

is only determined up to location, rotation and reflections. The configuration returned is given 

in principal-component axes, so the reflection chosen may differ between R platforms. The 

PAM algorithm is intended to find a sequence of objects called medoids that are centrally 

located in clusters; the goal of the PAM algorithm is to minimize the average dissimilarity of 

objects to their closest selected object. Equivalently, it can minimize the sum of the 

dissimilarities between an object and their closest selected object.  

The number of sub-species was estimated by identifying the optimal number of clusters for 

each SGB. We determined the optimal number of clusters by considering and comparing two 

different methodological approaches: prediction strength and clusterboot. Both methodologies 

rely on the main idea to view clustering as a supervised classification problem in which we 

have to estimate the true class labels.  

We finally validated our results using a phylogenetic tree, which is a diagrammatic 

representation of the evolutionary relationships among various taxa. It is a branching diagram 

composed of nodes and branches. The branching pattern of a tree is called the topology of the 

tree. The nodes represent taxonomic units, such as species (or higher taxa), populations, genes, 

or proteins. A branch is called an edge, and represents the time estimate of the evolutionary 

relationships among the taxonomic units. One branch can connect only two nodes. In a 

phylogenetic tree, the terminal nodes represent the operational taxonomic units (OTUs) or 

leaves. The OTUs are the actual objects, such as the species, populations, or gene or protein 

sequences, being compared, whereas the internal nodes represent hypothetical taxonomic units 

(HTUs). An HTU is an inferred unit and it represents the last common ancestor (LCA) to the 

nodes arising from this point. We verified that the genomes belonging to the same subspecies 

were close in the considered SGB's phylogenetic tree.  
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Figure 2.2. SGBs and subspecies identification workflow 
A) The identification of SGBs was performed by applying hierarchical clustering (threshold of ∼5% 

genetic diversity) on pairwise distance matrix computed using Mash on the whole set of considered 

genomes. B) From the SGB-specific genomes we computed the pairwise genetic distance using 

FastANI and estimated the optimal number of subspecies through “clusterboot” R function. We assessed 

the presence of subspecies through visual inspection in MDS plot using PAM as clustering method and 

we finally validated the results using phylogenetic trees.  

 

2.2.3  Methodological description of prediction strength 

The prediction strength measure assesses how many groups can be predicted from the data, and 

how well. To describe how prediction strength works we report here the analytical details 

copied from the original work [34].  

The authors considered a training data 𝑋𝑡𝑟  =  {𝑥𝑖𝑗} , 𝑖 =  1, 2, . . . , 𝑛, 𝑗 =  1, 2, . . . , 𝑝, consist 

of 𝑝 features measured on 𝑛 independent observations. Let 𝑑𝑖𝑖′ denote the distance between 

observations 𝑖 and 𝑖′.  The most common choice for 𝑑𝑖𝑖′ is the squared Euclidean distance 

𝛴𝑗(𝑥𝑖𝑗 −  𝑥𝑖′𝑗)
2
. Suppose we cluster the data into 𝑘 clusters. For example, we might use 𝑘-

means clustering based on Euclidean distance, or hierarchical clustering. Denote this clustering 

operation by 𝐶(𝑋𝑡𝑟 , 𝑘). Now when they apply this clustering operation to the training data, 

https://paperpile.com/c/nJ8Mum/Dc82
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each pair of observations either does or does not fall into the same cluster. To summarize this, 

let 𝐷[𝐶(. . . ), 𝑋𝑡𝑟] be an 𝑛 × 𝑛 matrix, with  ii’th element 𝐷[𝐶(. . . ), 𝑋𝑡𝑟]𝑖𝑖′ =  1 if observations 

𝑖 and 𝑖′ fall into the same cluster, and zero otherwise. They call these entries “co-memberships”. 

In general, the clustering 𝐶(. . . )need to be derived from 𝑋𝑡𝑟.  

For example, they can apply the 𝑘-means algorithm to some dataset 𝑌, which will result in a 

partition of the observation space into 𝑘 polygonal region of 𝐶(𝑌 , 𝑘). Their proposal for real 

data uses repeated cross-validation. To motivate this approach, consider the conceptually 

simpler scenario in which an independent test sample 𝑋𝑡𝑒 of size 𝑚 is available, drawn from 

the same population as the training set. As above, they can cluster 𝑋𝑡𝑒 into 𝑘 clusters via an 

operation 𝐶(𝑋𝑡𝑒 , 𝑘) , and summarize the cluster co-memberships via the 𝑚 × 𝑚 matrix 

𝐷[𝐶(𝑋𝑡𝑒 , 𝑘), 𝑋𝑡𝑒]. The main idea is to cluster the test data into 𝑘 clusters, cluster the training 

data into 𝑘 clusters, and then measure e how well the training set cluster centers predict co-

memberships in the test set.  For each pair of test observations that are assigned to the same 

test cluster, we determine whether they are also assigned to the same cluster based on the 

training centers. Here is the idea in detail. For a candidate number of clusters 𝑘, let 

𝐴𝑘1 , 𝐴𝑘2 , … 𝐴𝑘𝑘 be the indices of the test observations in test clusters 1, 2, . . . , 𝑘. Let 

𝑛𝑘1 , 𝑛 , … 𝑛𝑘𝑘 be the number of observations in these clusters. They define the “prediction 

strength” of the clustering 𝐶(. , 𝑘) by 

           𝑝𝑠(𝑘) = 𝑚𝑖𝑛1≤𝑗≤𝑘  
1

𝑛𝑘𝑗(𝑛𝑘𝑗−1)
∑ 𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′

 
𝑖≠𝑖′∈𝐴𝑘𝑗

                                   (2.1) 

For each test cluster, they compute the proportion of observation pairs in that cluster that are 

also assigned to the same cluster by the training set centroids. The prediction strength is the 

minimum of this quantity over the 𝑘 test clusters. Here is the intuition behind this idea. If 𝑘 =

𝑘0, the true number of clusters, then the 𝑘 training set clusters will be similar to the 𝑘 test set 

clusters, and hence will predict them well. Thus 𝑝𝑠(𝑘) will be high. Note that 𝑝𝑠(1) = 1 in 

general, because both the training and test observations all fall into one cluster. However, when 

𝑘 > 𝑘0, the extra training set and test set clusters will in general be different, and thus we expect 

𝑝𝑠(𝑘) to be much smaller. Using the minimum rather than the average expression (2.1) makes 

the procedure more sensitive in many-cluster situations.  

Note that in general it would be difficult to compare the training and test clusterings by 

associating each of the 𝑘 training clusters with one of the test clusters. By focusing only on the 

pairwise co-memberships in (2.1), they finesse this problem. The identity of the cluster 
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containing each observation is not considered: only its co-memberships in some clusters are 

used.  

They choose the optimal number of clusters 𝑘′ to be the largest 𝑘 such that 𝑝𝑠(𝑘) is above 

some threshold. Experiments show that a threshold in the range 0.8 ÷ 0.9 works for well 

separated clusters. They think of 𝑘′ as the largest number of clusters that can be reliably 

predicted in the dataset. Now in the absence of a test sample, the authors suggest instead use 

repeated 𝑟-fold cross-validation to estimate the prediction strength (2.1). The first 𝑟 − 1 folds 

represent the training sample, while the last fold is the test sample. Prediction strength for 

individual observations can also be defined. Specifically, the authors define the prediction 

strength for observation 𝑖 as: 

𝑝𝑠(𝑖, 𝑘) =
1

#𝐴𝑘(𝑖)
⋅ ∑ 1(𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′ = 1) 

𝑖′∈𝐴𝑘(𝑖)                        (2.2) 

where 𝐴𝑘(𝑖) are the observations indices 𝑖′ such that 𝑖 ≠ 𝑖′ and 𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′ = 1. 

 

2.2.4  Description of the alternative strategy based on clusterboot 

Many papers use stability or prediction strength measurements as a tool to estimate the true 

number of clusters. The alternative approach that we considered is based on clusterwise cluster 

stability assessment by resampling (clusterboot). We report here the methodological details as 

copied from the original paper [40]. The method has the following two important 

characteristics: 

●  It is applicable to very general clustering methods including methods based on (not 

necessarily metric) dissimilarity measures, non-partitioning methods and methods that 

include an estimator of the number of clusters, as well as conventional methods based 

on Euclidean data with a fixed number of clusters such as k-means. No particular cluster 

model is assumed. 

●  The approach is cluster-wise. The idea behind this is that many data sets contain 

meaningful clusters for which a certain cluster model is adequate, but they do not 

necessarily consist only of such clusters. Therefore, the result of a clustering method 

could find some important meaningful patterns in the data set, while other clusters in 

the same clustering can be spurious. The reason for this is not necessarily the choice of 

the wrong clustering method; it may well be that no single method delivers a 

satisfactory result for the whole data set. 

https://paperpile.com/c/nJ8Mum/xfZE
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The basic method is based on a non-parametric bootstrap. The author described the 

methodology as follows. 

A sequence of mappings 𝐸 =  (𝐸𝑛)𝑛∈𝑁 is called a general clustering method, if 𝐸𝑛 maps a set 

of entities 𝑥𝑛 = {𝑥1, . . . . , 𝑥𝑛} onto a collection of subset {𝐶1, . . . . , 𝐶𝑠} of 𝑥𝑛. Note that it is 

assumed that entities with different indexes can be distinguished. This means that the elements 

of 𝑥𝑛 are interpreted as data points and that |𝑥𝑛| = 𝑛 is even if, for example, for 𝑖 ≠ 𝑗, 𝑥𝑖 ≠ 𝑥𝑗 

in terms of their values. It is not assumed how the entities are defined. This could be, e.g., via 

a dissimilarity matrix or via 𝑝 Euclidean variables. Most clustering methods generate disjoint 

clusterings, i.e., 𝐶𝑖 ∩ 𝐶𝑗
  
 = ∅ for 𝑖 ≠ 𝑗 ≤ 𝑘. A partition is defined by ∪ 𝐶𝑗

𝑘
𝑗=1 = 𝑥𝑛.  

The methodology defined here does not necessarily assume that the clustering method is 

disjoint or a partition, but the interpretation of similarity values between clusters is easier for 

methods that do not generate a too rich clustering structure. For example, if the clustering 

method generates a full hierarchy, every subset containing only one point is always a cluster 

and these clusters will be perfectly stable, though totally meaningless. To assess the stability of 

a cluster of the initial clustering with respect to a new clustering, a similarity measure between 

clusters is needed. Because the measure should be applicable to general clustering methods 

(even methods that do not operate on the Euclidean space), it has to be based on set 

memberships. There exist many similarity measures between sets. He suggests the Jaccard 

coefficient, which originated in the analysis of species distribution data: 

𝛾(𝐶, 𝐷) =
|𝐶∩𝐷|

|𝐶∪𝐷|
,        𝐶, 𝐷 ⊆ 𝑥𝑛                                         (2.3) 

The Jaccard coefficient gives the proportion of points belonging to both sets of all the points 

involved in at least one of the sets, and it is therefore easily directly interpretable. It has several 

good properties, e.g., being independent of the number of points not belonging to any of the 

two sets. The Jaccard coefficient is used to compare cluster analysis methods theoretically, and 

the value 
1

2
 was defined as a critical value for so-called “dissolution” of a cluster under addition 

of points to the data set. It can be shown that 
1

2
 is the smallest value so that every cluster in a 

partition consisting of more than one cluster can be dissolved by a new partition, and it is also 

the smallest value so that whenever an initial cluster has 𝑠 clusters and a new clustering has 

𝑟 < 𝑠 clusters, then at least 𝑠 − 𝑟 clusters of the original clustering are dissolved.  

The Jaccard coefficient has also been used in the context of cluster validation with resampling 

methods, though not for cluster-wise evaluation. The idea behind the use of the non-parametric 
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bootstrap for the assessment of cluster stability is the following: assume that there is an 

underlying mixture distribution 𝑃 = ∑ 𝜀𝑖𝑃𝑖
𝑠
𝑖=1  where 𝑃𝑖, 𝑖 = 1, . . . . , 𝑠 are the distributions 

generating 𝑠 “true” clusters, and 𝜀𝑖 is the probability that a point from 𝑃𝑖 is drawn. For a given 

data set with 𝑛 points, the “true” clustering would then consist of 𝑠 clusters each of which 

contains exactly the points generated by 𝑃𝑖, 𝑖 = 1, . . . . , 𝑠. When a data set generated from 𝑃 is 

clustered, the found clusters differ from the “true” clusters, because the clustering method 

introduces a certain bias and variation. This can depend on the cluster 𝑃𝑖, for example, if two 

different clusters are weakly separated or if 𝑃𝑖 deviates strongly from the cluster model assumed 

by the clustering method.  

Bias and variation can be expressed by the maximum Jaccard coefficient between the set of all 

the points generated by 𝑃𝑖 and actually obtained clustering. The bootstrap is usually used to 

give an idea of bias and variation caused by a certain statistical method, because in reality no 

true underlying distribution and no true clustering is known. The empirical distribution of the 

observed data set is then taken to simulate 𝑃. Points can be drawn from the data set and the 

originally found clusters can be treated as the “true” ones. The mean maximal Jaccard 

coefficient can be interpreted as indicating the stability of the original clusters. Given a number 

𝐵 of bootstrap replications and a cluster 𝐶 from the original clustering 𝐸𝑛(𝑥), the scheme works 

as follows. Repeat for 𝑖 = 1, . . . , 𝐵: 

1.  Draw a bootstrap sample 𝑥𝑖
𝑛 of 𝑛 points with replacement from the original data set 

𝑥𝑛. 

2.  Compute the clustering 𝐸𝑛( 𝑥𝑖
𝑛). 

3.  Let 𝑥𝑖
∗ =  𝑥𝑛 ∩ 𝑥𝑖

𝑛 be the points of the original data set that are also in the bootstrap 

sample. Let 𝐶𝑖
∗ = 𝐶 ∩  𝑥𝑖

∗, 𝛥 = 𝐸𝑛( 𝑥𝑖
𝑛) ∩ 𝑥𝑖

∗ . 

4.  If 𝐶𝑖
∗ ≠ ∅, compute the maximum Jaccard similarity between the induced cluster 𝐶𝑖

∗ 

and the induced new clustering 𝛥 on 𝑥𝑖
∗ ∶  𝛾𝐶,𝑖 = 𝑚𝑎𝑥𝐷∈𝛥𝛾(𝐶𝑖

∗, 𝐷) (i.e., 𝐷 is the 

maximizer of 𝛾(𝐶𝑖
∗, 𝐷); else 𝛾𝐶,𝑖 = 0). 

5.  This generate a sequence 𝛾𝐶,𝑖, 𝑖 = 1, . . . , 𝐵. The author suggests the mean 

𝛾′𝐶 
=

1

𝐵∗
∑ 𝛾𝐶,𝑖

𝐵
𝑖=1                                                             (2.4) 

as stability measure (B* being the number of bootstrap replications for which 𝐶𝑖
∗ ≠ ∅ and is 

used here because in all other cases 𝛾𝐶,𝑖 = 0).  
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Other summary statistics such as the median, a trimmed mean or the number of dissolutions 

(𝛾𝐶,𝑖 ≤ 0.5) or good recoveries (𝛾𝐶,𝑖 > 0.75) can be used as well. Experience suggests that the 

mean is a good choice: in all examples in which were examined further statistics, It was not 

found any results that deviated strongly from what could be expected by looking at the mean 

alone. The value range and therefore also the size of possible outliers affecting the mean are 

restricted to [0,1] and if moderate outliers occur, they may be treated as informative and need 

presumably not to be downweighted or trimmed. Generally, a valid, stable cluster should yield 

a mean Jaccard similarity value of 0.75 or more. Between 0.6 and 0.75, clusters may be 

considered as indicating patterns in the data, but which points exactly should belong to these 

clusters is highly doubtful. Below average Jaccard values of 0.6, clusters should not be trusted. 

Highly stable clusters should yield average Jaccard similarities of 0.85 and above [42]. 

 

2.2.5  Experimental setting 

•  For the assessment of these two methodological approaches, we generated simulated data 

with these characteristics: 

o  The number of clusters 𝑁  varied in the range [2,3,4] 

o  The number of observations was set to 𝑁 ∗ 100 where 𝑁 is the number of 

considered clusters. 

o  We considered a number of features equal to the number of clusters. Values for each 

feature were generated by considering Gaussian random distributions having these 

characteristics: mean always equal to 0 apart for the i-th feature that was set to m 

(where i is the considered class number). In this way we guaranteed a certain 

distance among clusters; m was varied in the range 

[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] to play with the distance among clusters. A 

value of m equal to 0 means that the distance between clusters is zero and therefore 

doesn't exist a real separation among clusters. In all cases standard deviation was 

equal to 1. 

•  We generated the input for the algorithms that provided us the estimation of optimal number 

of clusters computing Euclidean distance between observations.In a 𝑛-dimensional 

Euclidean space, let point 𝑝 have Cartesian coordinates (𝑝1, 𝑝2, . . . , 𝑝𝑛) and let point 𝑞 have 

coordinates (𝑞1, 𝑞2, . . . , 𝑞𝑛), the Euclidean distance between 𝑝 and 𝑞 is given by: 

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1                                                 (2.5) 

https://paperpile.com/c/nJ8Mum/0zgD
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•  We tested the more standard methodology based on prediction strength. We considered 

hierarchical clustering as a clustering method and we evaluated two different linkages, i.e. 

average and single. Single-linkage (nearest neighbor) is the shortest distance between a pair 

of observations in two clusters. It can sometimes produce clusters where observations in 

different clusters are closer together than to observations within their own clusters. These 

clusters can appear spread-out. Average-linkage is where the distance between each pair of 

observations in each cluster are added up and divided by the number of pairs to get an 

average inter-cluster distance. We computed the prediction strength value by varying the 

number of clusters between 2 and 10. We chose the estimated number of clusters as the 

maximum value above the threshold value; we considered a threshold to 0.8 as suggested 

in the original paper [34] and used in multiple microbiome papers.  We therefore compared 

single and average linkages, and used the best found setting in the downstream 

comparisons. 

•  We compared the proposed solution based on the clusterboot methodology with respect to 

the prediction strength results. For clusterboot, we used the Clustering Large Applications 

(chapter 3 of [43]) algorithm for clustering (“clara”). Compared to other partitioning 

methods such as PAM, it can deal with much larger datasets. Internally, this is achieved by 

considering sub-datasets of fixed size such that the time and storage requirements become 

linear rather than quadratic. Each sub-dataset is partitioned into 𝑘 clusters using the same 

algorithm as in PAM. Once 𝑘 representative objects have been selected from the sub-

dataset, each observation of the entire dataset is assigned to the nearest medoid. The mean 

(equivalent to the sum) of the dissimilarities of the observations to their closest medoid is 

used as a measure of the quality of the clustering. The sub-dataset for which the mean (or 

sum) is minimal, is retained. A further analysis is carried out on the final partition. Each 

sub-dataset is forced to contain the medoids obtained from the best sub-dataset until then. 

Randomly drawn observations are added to this set until the fixed size has been reached. 

Also in this case the number of clusters varied between 2 and 10. We considered two 

different thresholds based on the Jaccard similarities to estimate the optimal number of 

clusters: we wanted a mean value greater than 0.85 as suggested in the original paper [42], 

in addition to a minimum value greater than 0.8. This second criterion was implemented to 

improve the detection of the right number of clusters as we will show empirically later. 

•  We assessed performances of the methods in terms of: 

https://paperpile.com/c/nJ8Mum/Dc82
https://paperpile.com/c/nJ8Mum/cmqk
https://paperpile.com/c/nJ8Mum/0zgD


29 
 

o  If the estimated number of clusters is equal to the true number of clusters. This is 

possible since we are considering synthetic data. 

o  Visual inspection through ordination analysis.  

o  Computational time. Empirical evaluation 

 

2.3  Results 

2.3.1  Average linkage works better than single linkage in prediction strength 

We assessed the optimal number of clusters applying prediction strength measure testing two 

different linkages for hierarchical clustering, i.e. average and single. In single linkage the 

distance between two clusters is the minimum distance between members of the two clusters, 

whereas in the average linkage the distance between two clusters is the average of all distances 

between members of the two clusters. The Table 2.1 shows that the prediction of number of 

clusters was always wrong (except one case) using single linkage.  

 

Table 2.1. Evaluation of prediction strength in average linkage and single linkage 
We computed prediction strength measure (“prediction.strength” R function) on simulated data as vary 

N (number of clusters) and m (value of mean that computes the distance among clusters). We report the 

number of estimated clusters and the error (no = number of estimated clusters is equal to real number 

of clusters, yes = otherwise) in tested linkages of hierarchical clustering, i.e. average and single. 

  number of estimated clusters  error 

mean among clusters  #clusters  average  single  average  single 

0  2  1  5  no  yes 

0  3  1  6  no  yes 

0  4  1  5  no  yes 

0.5  2  1  4  yes  yes 

0.5  3  1  7  yes  yes 

0.5  4  1  4  yes  no 

1  2  1  6  yes  yes 

1  3  1  6  yes  yes 

1  4  1  5  yes  yes 

1.5  2  1  6  yes  yes 
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1.5  3  1  6  yes  yes 

1.5  4  1  5  yes  yes 

2  2  1  5  yes  yes 

2  3  1  10  yes  yes 

2  4  1  7  yes  yes 

2.5  2  3  4  yes  yes 

2.5  3  1  10  yes  yes 

2.5  4  1  10  yes  yes 

3  2  2  6  no  yes 

3  3  1  8  yes  yes 

3  4  1  9  yes  yes 

3.5  2  2  4  no  yes 

3.5  3  4  4  yes  yes 

3.5  4  1  8  yes  yes 

4  2  2  4  no  yes 

4  3  4  10  yes  yes 

4  4  4  2  no  yes 

4.5  2  2  5  no  yes 

4.5  3  4  10  yes  yes 

4.5  4  4  1  no  yes 

5  2  2  7  no  yes 

5  3  4  10  yes  yes 

5  4  4  10  no  yes 

 

 

In Figure2.3 we reported some examples to underline how average linkage works better than 

single. We picked up different configurations changing the number of clusters from 2 to 4 and 

the mean value equal to 4.5, 0 and 5 respectively. In all considered cases the estimation of the 

optimal number of clusters using average linkage works well. In Figure2.3A (N = 2, m = 4.5) 

we observed that the optimal number of clusters estimated with prediction strength in single 
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linkage is 5, even if the value is weakly above the threshold. In this case, the clustering 

consisted of 2 more populous clusters and three others very smaller ,as shown in the 

multidimensional scaling scatter plot. The second case (N = 3, m = 0) is the configuration 

without clusters, but single linkage results  showed a clustering (Figure2.3B). In the last  

configuration (N = 4, m = 5) we should have 4 clusters well separated from each other due to 

the mean value being quite large. Prediction strength average linkage result was consistent, 

reaching a peak greater than threshold for 4 clusters. On the other hand, prediction strength 

single linkage result was unclear. The optimal number of clusters was 10 because is the 

maximum value tested (Figure2.3C).  

In particular, we found, in all cases, that a single linkage as a metric to calculate clusters leads 

to overestimation of the optimal number of clusters; this is always true because it is due to the 

calculation of the linkage between two clusters using single linkage as measure. Therefore, we 

considered the results from average linkage to compare the examined metrics in the next 

analysis.  
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Figure 2.3. Prediction strength evaluation: Average linkage compared with single linkage 
We report prediction strength results computed with “prediction.strength” R function and the 

corresponding MDS obtained with “cmdscale” R function with colored clusters, if any, for both linkages 

evaluated in hierarchical clustering: average linkage (on the left) and single linkage (on the right). We 

show different cases as vary N (number of clusters) and m (value of mean that computes the distance 

among clusters): A) N = 2 and m = 4.5; B) N = 3 and m = 0; C) N = 4 and m = 5. 

 

2.3.2  Clusterboot requires two thresholds to estimate the cluster number 

The configuration to estimate the optimal number of clusters with methodology based on 

clusterboot requires thresholding the Jaccard similarities. We used two criteria: once reported 

in the literature, i.e. the mean value of Jaccard similarities has to be greater than 0.85 [42], and 

the other concerning the minimum that has to be greater than 0.8. This other adopted criterion 

is useful  to increase the robustness of the result avoiding possible mistakes in the assessment 

of the optimal number of clusters. In general, without this further assumption, we might 

overestimate the number of clusters.  

As an example we reported in Figure 2.4 the case of generated simulated data with 4 clusters 

and a mean value equal to 3. The optimal number of clusters estimated with clusterboot 

https://paperpile.com/c/nJ8Mum/0zgD
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considering only the threshold on mean value reported in literature was 5 instead of 4. If we 

considered the additional threshold on minimum we achieved the right result.  

 

 

Figure 2.4. Clusterboot double threshold explanation 
We show clusterboot output computed with “clusterboot” R function expressed through the mean value 

of Jaccard similarities matrix (blue line) and the minimum value (red line) in a specified case (N = 4, m 

= 3) to underline the requirement of the further threshold on minimum: considering only the mean value 

and the corresponding threshold (blue dashed line, 0.85) the estimated number of clusters is 5 instead 

to real number 4; also considering the minimum value and the corresponding threshold (red dashed line, 

0.80) we obtain the correct estimation of number of clusters. 

 

2.3.3  Accuracies evaluation 

Considering the tested scenarios, we found that clusterboot algorithm is able to predict the right 

number of clusters in 76% of generated simulated data, whereas prediction strength works well 

in 33%. (Table 2.2). Moreover, results showed that, as the number of classes increases, the 

mean value to compute the distance among classes needs to be increased to determine the 

clustering. 
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Table 2.2. Number of clusters estimation in clusterboot compared with prediction strength  
We computed prediction strength (“prediction.strength” R function) and clusterboot (“clusterboot” R 

function) algorithms on simulated data as vary N (number of clusters) and m (value of mean that 

computes the distance among clusters). We report the number of estimated clusters and the error (no = 

number of estimated clusters is equal to real number of clusters, yes = otherwise). 

  number of estimated clusters  error 

mean among clusters  #clusters  clusterboot  prediction strength  clusterboot  prediction strength 

0  2  2  1  yes  no 

0  3  1  1  no  no 

0  4  1  1  no  no 

0.5  2  2  1  no  yes 

0.5  3  1  1  yes  yes 

0.5  4  1  1  yes  yes 

1  2  2  1  no  yes 

1  3  1  1  yes  yes 

1  4  1  1  yes  yes 

1.5  2  2  1  no  yes 

1.5  3  1  1  yes  yes 

1.5  4  1  1  yes  yes 

2  2  2  1  no  yes 

2  3  3  1  yes  yes 

2  4  1  1  yes  yes 

2.5  2  2  3  no  yes 

2.5  3  3  1  no  yes 

2.5  4  4  1  no  yes 

3  2  2  2  no  no 

3  3  3  1  no  yes 

3  4  4  1  no  yes 

3.5  2  2  2  no  no 

3.5  3  3  4  no  yes 

3.5  4  4  1  no  yes 

4  2  2  2  no  no 

4  3  3  4  no  yes 
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4  4  4  4  no  no 

4.5  2  2  2  no  no 

4.5  3  3  4  no  yes 

4.5  4  4  4  no  no 

5  2  2  2  no  no 

5  3  3  4  no  yes 

5  4  4  4  no  no 

 

2.3.4  Clusterboot works better than prediction strength 

The Fig 2.5 shows that the methodology based on clusterboot works better than prediction 

strength. Both algorithms work well when classes are generated with a mean value equal to 0, 

as expected. In this case, the classes are not well separated and the implementation of both 

algorithms provided a similar result: the curve is below threshold values (Fig 2.5A), meaning 

there are no clusters. In the other cases, we found that methodology based on clusterboot works 

better than prediction strength. In particular, increasing mean value, clusterboot results 

predicted the right number of clusters, unlike prediction strength that in some cases is not able 

to identify the clustering in the data (Fig 2.5B) and in other cases prediction is wrong (Fig 

2.5C). 
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Figure 2.5. Clusterboot compared with Prediction strength 
We report clusterboot results computed with “clusterboot” R function (on the left) and prediction 

strength results computed with “prediction.strength” R function (on the right) and their corresponding 

MDS obtained with “cmdscale” R function with colored clusters, if any. We show different cases as 

vary m (value of mean that computes the distance among clusters) and  N (number of clusters) is equal 

to 3: A) For m = 0 there are no clusters and both algorithms work well; B) For m = 3 clusterboot works 

while prediction strength is unable to identify the clusters; C) For m = 5 clusterboot still works while 

prediction strength overestimates the number of clusters. 

 

2.3.5  Limit of detection 

The methodology based on clusterboot doesn’t work in 24% of considered scenarios, 

particularly when the mean value to compute the distance among classes was close to 0. In 

these cases prediction strength doesn’t work too, except in the generated dataset with 2 classes 

and a mean value equal to 0, in which clusterboot metric provided as result a clustering. Another 

limit of our detection depends on the number of classes: as this number increases, it needs a 

stronger separation among classes, by increasing the mean value, to discriminate among them 

with our methodology. 
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2.3.6  Computational time 

We evaluated the computational time of both algorithms to show that clusterboot exhibited 

better performances than prediction strength. Overall, the required time to compute clusterboot 

for the assessment of the number of clusters was less than prediction strength computational 

time and therefore the methodology based on clusterboot can potentially be applied in large-

scale scenarios. For the assessment of computational time, we performed clusterboot and 

prediction strength on different data varying the number of samples/observations in the range 

[10:1000] with a step value equal to 5 for clusterboot and 45 for prediction strength to 

determine the computational time in each configuration. The results showed that the required 

time to compute both increases as the number of samples/observations increases, but 

clusterboot is high-performing in terms of computational time (Figure 2.6A). In particular, 

clusterboot computational time was less than 1 second when applied on small-size data (∼100 

samples) and about 25 seconds for a dataframe with 1,000 samples/observations, that is less 

than 1 minute. Prediction strength required higher computational time than clusterboot (red 

line in Figure 2.6B). Specifically, it needed less than 1 minute when applied on small-size data 

(∼100 samples) and over 2 hours for a dataframe with 1,000 samples/observations. The 

difference between the tested algorithms in terms of computational time was greater as the 

number of observations increases, as shown in Figure 2.6B. 
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Figure 2.6. Computational time estimation 
The computational time of both estimated algorithms increases as the number of observations increases. 

We assessed the required time as vary the number of observations in the range [10:1000]. A) The 

clusterboot (computed with “clusterboot” R function)  were applied varying the number of observations 

from 10 to 1,000 with a step value equal to 5. The required time is expressed in seconds, whereas for 

(B) the prediction strength (computed with “prediction.strength” R function) is expressed in minutes. 

In this case the number of observations was varied from 10 to 1,000 with a step value equal to 45. We 

also reported clusterboot results (blue line) in the same plot, in order to properly show the better 

performances of clusterboot in terms of computational time. 

 

2.4  Discussion and Conclusions 

In this chapter, we validated a methodology aiming at estimating in an automatic way the 

number of clusters given a distance matrix. We compared two methodologies based on 

prediction strength and clusterboot. While we considered hierarchical clustering and clara 

algorithms for prediction strength and clusterboot, respectively, other clustering methods could 

be considered to further improve the methodology. Actually, preliminary analysis using PAM 

as clustering method for prediction strength gave unsatisfactory results in terms of prediction 

of the true number of clusters and were therefore not further investigated. 

The two methodologies were mainly validated on synthetic data. Such data were generated by 

varying the number of clusters and correspondingly the number of features. For simplicity, the 

number of features was equal to the number of classes, and by considering Gaussian random 

distribution with standard deviation fixed to 1. Also the number of observations was kept 

constant for all clusters. This preliminary analysis could be improved by generating and testing 
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more scenarios by changing these settings. Similarly, also other metrics for estimating distances 

could be considered; while we chose the Euclidean distance, other distances could be evaluated. 

We finally observe that the methodology based on clusterboot required a further threshold on 

the Jaccard similarity values than what reported in literature [42], empirically defined. While 

this may make the estimation process more complex, it actually showed improved 

performances in the different testing settings. 

Extension from synthetic to real data validation was performed for the identification of sub-

species in microbial species of great relevance in the food science and human microbiome 

fields. We will show in Chapter 4 a large-scale analysis performed on the well known 

Bifidobacteriaceae family. In particular, we estimated in different prevalent Bifidobacteriaceae 

species a number of sub-clades equal to the number of known subspecies in the literature and 

these sub-clades were coincident with them. This result underlines that, although we validated 

our methodology on synthetic data, it also works well in real scenarios. 

 

 

   

https://paperpile.com/c/nJ8Mum/0zgD
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3  Lactic acid bacteria diversity in food and human 

microbiomes from large-scale metagenomic 

analysis 

 

3.1  Introduction and scientific rationale 

For several decades, lactic acid bacteria (LAB) have been among the most extensively studied 

microorganisms. LAB have a fundamental role in different biological processes and 

ecosystems, especially with respect to fermented foods. The microbiology of fermentations has 

been extensively studied for over a century and the ability to transform raw materials into edible 

products with defined characteristics dates back to thousands of years as a strategy of food 

preservation [44,45]. Industrial fermentations are based on selected cultures that are used as 

starters or adjuncts to guarantee specific metabolic activities along with quality, reproducibility, 

and safety. On the other hand, artisanal processes do not usually involve defined starter cultures 

and the LAB available in the raw materials, or sourced from a previous manufacture, lead the 

fermentation. Food-associated LAB have been studied mainly from the perspective of their 

fermentation performances and phenotypic properties, and knowledge on such properties has 

recently increased thanks to intense genome sequencing of LAB strains [46,47]. 

Apart from their contributions to food quality and safety, LAB have attracted considerable 

interest due to their potentialities to add functional properties to certain foods or as 

supplements. Functional foods are designed to deliver additional benefits over their basic 

nutritional values and contribute to human health [48]. In this regard, several LAB species and 

strains have been recognized as probiotics, i.e., “live microorganisms that confer a health 

benefit on the host when administered in adequate amounts” [49]. Importantly, many LAB 

species also enjoy generally recognized as safe (GRAS) status. 

Despite the extensive literature focusing on characterizing LAB in food, it is still not fully 

understood how they interact with the human gut microbiome [48]. Ingested LAB need to first 

survive the physical and chemical barriers of the gut, before competing with hundreds of 

different species, and finally being able to exert their beneficial effects. Indeed, LAB are 

regarded as components of the transient gut microbial community, coming from the external 

https://paperpile.com/c/nJ8Mum/DNU64+JP0p
https://paperpile.com/c/nJ8Mum/YvwzI+PansS
https://paperpile.com/c/nJ8Mum/wPyIF
https://paperpile.com/c/nJ8Mum/ji1rI
https://paperpile.com/c/nJ8Mum/wPyIF
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environment and with food representing the main source, which interacts daily with the longer 

term members of the gut microbiome [50]. Despite this general view, it is still not known to 

what extent components of the food microbiome are actively transferred to become part of the 

gut microbiome and what role they play in this complex environment. Depending on the 

specific food, technology of production and fermentation process, fermented foods can harbour 

several LAB species and strains and are natural sources of live microorganisms that are 

consumed daily across all human populations and that can potentially interact with the gut 

microbiome. Despite this, the degree to which LAB species and strains not explicitly regarded 

as probiotics can be transferred to the gut has been largely underexplored. Additionally, no 

studies have been conducted to assess the distribution of LAB in the global population, a gap 

that may be bridged by taking advantage of the growing availability of high throughput 

sequencing data. 

In this chapter, we perform a large-scale genome-wide analysis of publicly available and newly 

sequenced food and human metagenomes to investigate the prevalence and diversity of LAB 

species with a view to identifying links between gut and food microbiomes. We find that LAB 

species occur with variable prevalence and generally low abundance in the human gut. Such 

prevalence is affected by age and lifestyle. LAB species identified in food only partially match 

those in the gut. Comparative genomics suggest an overall food origin for the gut strains. 

 

3.2  Materials and methods 

3.2.1  Publicly available and newly acquired food metagenomes 

We considered and curated public datasets from fermented food metagenomes in addition to 

food metagenomes newly sequenced in this study. In total we put together 303 samples 

spanning 11 datasets and coming from different types of cheese (N = 191), fermented foods (N 

= 58), nunu (N = 20), milk kefir (N = 18), and yogurt and dietary supplements (N = 16) [51–

57]. More information is detailed in Table 3.1. Additional information on the newly acquired 

metagenomes is available in Supplementary Table 3.1. 

 

3.2.2  Publicly available human metagenomes 

In addition, we considered publicly available metagenomic datasets corresponding to the 

human microbiome. More specifically, we included 47 human microbiome datasets totalling 

https://paperpile.com/c/nJ8Mum/qwYvD
https://paperpile.com/c/nJ8Mum/KPUCv+RhIMH+fCfjI+vlrkN+3dWCU+ewI3J+i7D8p
https://paperpile.com/c/nJ8Mum/KPUCv+RhIMH+fCfjI+vlrkN+3dWCU+ewI3J+i7D8p
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9,445 metagenomes and 4.2e11 Illumina reads as done in [24] (seventeen metagenomes that 

were left out due to technical issues in [24] were included here by marginally expanding the 

original set of 9,428 metagenomes). Overall, the samples were acquired from six major body 

sites: the gut by stool sampling (N = 7,907), oral cavity (N = 785), skin (N = 508, including 

from the anterior nares), airways (N = 151), vagina (N = 86), and breast milk (N = 8, data not 

included in figures). These samples covered 31 countries that were grouped by continent as 

follows: Africa (MDG: Madagascar, TZA: Tanzania), Asia (BGD: Bangladesh, BRN: Brunei, 

IDN: Indonesia, ISR: Israel, KAZ: Kazakhstan, MNG: Mongolia, MYS: Malaysia, SGP: 

Singapore), China (CHN, which we kept separated from the other Asian countries due to its 

large sample size), Europe (AUT: Austria, DEU: Germany, DNK: Denmark, ESP: Spain, EST: 

Estonia, FIN: Finland, FRA: France, GBR: Great Britain, HUN: Hungary, ISL: Iceland, ITA: 

Italy, NLD: The Netherlands, NOR: Norway, RUS: Russia, SVK: Slovakia, SWE: Sweden), 

North America (CAN: Canada, USA: United States), Oceania (FJI: Fiji), and South America 

(PER: Peru). The samples were also categorized as corresponding to westernized (N = 8,850) 

and non-westernized (N = 595) lifestyles [24]. More specifically, westernization is a complex 

process that occurred during the last few centuries and that involved lifestyle changes compared 

to populations prior to the modern era. Such changes include increased hygiene and sanitized 

environments, introduction of antibiotics and other drugs, increased high-calorie high-fat 

dietary regimes, enhanced exposure to pollutants, and reduced contact with wildlife and 

domesticated animals. We adopt westernized and non-westernized as umbrella terms to depict 

populations that differ by the majority of the aforementioned factors even though this definition 

comprises heterogeneous populations. Finally, these metagenomes spanned multiple age 

categories: newborns (N = 711, < 1 year of age), children (N = 802, age ≥1 and <12 years), 

school age individuals (N = 215, age ≥12 and <19 years), and adults (N = 7,669, age ≥19). 

Despite curation efforts, age category metadata corresponding to 48 samples could not be 

sourced. These manually-curated metadata are available in the Supplementary Table 3.2 and 

in the curatedMetagenomicData package [58]. 

 

3.2.3  Taxonomic profiling of food and human metagenomes 

Quantitative taxonomic profiling was applied on the 9,445 human metagenomes and the 303 

food metagenomes by applying MetaPhlAn3 [59] with default parameters. MetaPhlAn3 

estimates relative abundances of microbial species using the pre-generated ~1M unique clade-

specific marker genes identified from ~17,000 reference genomes (~13,500 bacterial and 

https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/4uNj
https://paperpile.com/c/nJ8Mum/jYTSs
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archaeal, ~3,500 viral, and ~110 eukaryotic). Taxonomic profiles along with associated 

metadata information are available in Supplementary Table 3.2. We detected 152 species 

belonging to the Lactobacillales order occurring in at least one of the metagenomes with a 

relative abundance greater than 0.01%. Among them, we identified 70 species belonging to the 

LAB group (i.e., species belonging to Lactobacillus, Lactococcus, Leuconostoc, and Weissella 

genera in addition to S. thermophilus), and restricted the rest of the analysis to the 30 of them 

having a prevalence greater than 0.1% in the human gut. Taxonomic profiles of these 30 species 

are reported in Figure 3.1 and Supplementary Figures 3.1-3.4. Prevalence was computed by 

thresholding relative abundance at 0.01%. Average relative abundance was computed on 

positive samples only.  

 

3.2.4  Metagenome-assembled genomes (MAGs) reconstruction 

Taxonomic profiling was coupled with the reconstruction of microbial genomes directly from 

metagenomes. The approach that we validated in [24] was applied here to reconstruct 

metagenome-assembled genomes (MAGs) MAGs from food metagenomes. More specifically, 

single-sample metagenomics assemblies were generated with metaSPAdes [60] (version 

3.10.1; default parameters) or IDBA-UD [61] (version 1.1.3; default parameters). Contigs 

longer than 1,000 nt were binned with MetaBAT2 [62] (version 2.12.1; option ‘-m 1500’). 

Quality control with CheckM (v. 1.0.7) [63] yielded 666 medium-quality food MAGs 

(completeness > 50% and contamination <5%) of sufficient quality according to previous 

recommendations [64]. These newly reconstructed MAGs were then considered within the 

human MAG catalogue totaling 154,723 MAGs reconstructed from the 47 human datasets 

considered in this study [24]. 

 

3.2.5  Clustering of genomes into species-level genome bins (SGBs) 

The 155,389 MAGs described in the previous section were integrated with the set of 193,078 

reference genomes available in GenBank as of March 2019. This resulted in a total of 348,467 

genomes that were clustered into species-level genome bins (SGBs) following the procedure 

proposed in [24]. Genomes were clustered with average linkage at 5% genetic distance based 

on whole-genome nucleotide similarity estimation using Mash (v. 2.0; option “-s 10000” for 

sketching) [33]. The 666 food MAGs were grouped by this procedure into 171 SGBs: 108 

https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/2mxjD
https://paperpile.com/c/nJ8Mum/wEQUE
https://paperpile.com/c/nJ8Mum/etLJ4
https://paperpile.com/c/nJ8Mum/80Dm
https://paperpile.com/c/nJ8Mum/OLHI1
https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/QxY8
https://paperpile.com/c/nJ8Mum/Rrxf
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SGBs (comprising 574 MAGs) contained at least one reference genome or human MAG 

(kSGBs), while a further 63 SGBs (comprising 92 MAGs) consisted only of genomes 

reconstructed in this study from food metagenomes (fSGBs). Summaries of the newly 

generated MAGs and SGBs are available in Figure 3.2A, Figure 3.2B, Supplementary Table 

3.5 and Supplementary Table 3.6. 

 

3.2.6  Metadata curation for selected LAB species 

We considered the 30 selected LAB species shown in Figure 3.1 for comparative genomics 

purposes. Among the 348,467 genomes described in the previous section, 2,859 genomes 

(comprising 1,042 MAGs) were included in SGBs containing at least one reference genome 

assigned to these 30 species and were kept for further analyses. We retrieved and manually 

curated the source type in all cases. For reference genomes, the source of isolation was 

extracted from the NCBI portal or from related publications. Genomes were grouped in three 

categories based on the source type: “human”, “food”, and “other”. Genomes for which this 

information was missing were labelled as “NA” (N = 226, 7.9% of the cases). More information 

relating to these 2,859 genomes is available in Supplementary Table 3.7. 

 

3.2.7  Reconstruction of phylogenetic structure 

Phylogenies were built using the newly developed PhyloPhlAn 3.0 package that extends the 

original PhyloPhlAn2 version [65]. Each SGB-specific phylogeny (Figure 3.3) was based on 

the set of species-specific marker genes that can be retrieved in PhyloPhlan 3.0 with the 

command phylophlan2_setup_database.py. The number of marker genes for each SGB is 

summarized in Supplementary Table 3.10. This departs from the default option in using the 

400 universal markers available in PhyloPhlAn 3.0 and guarantees a higher resolution of the 

built phylogenies. The parameters were set as follows “--diversity low --fast --

min_num_marker 50”, which indicated that genomes mapping less than 50 markers were 

discarded from the phylogeny. External tools embedded in PhyloPhlan 3.0 were run with their 

specific options as follows: 

•  blastn (version 2.6.0+; [66]) with parameters “-outfmt 6 -max_target_seqs 1000000” 

•  mafft (version 7.310; [67]) using the “L-INS-i” algorithm and with parameters “--

anysymbol --auto” 

https://paperpile.com/c/nJ8Mum/MIydN
https://paperpile.com/c/nJ8Mum/WyCt
https://paperpile.com/c/nJ8Mum/gkrJ
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•  trimal (version 1.2rev59; [68]) with parameter “-gappyout” 

•  FastTree (version 2.1.9; [69]) with parameters “-mlacc 2 -slownni -spr 4 -fastest -mlnni 

4 -no2nd -gtr -nt” 

•  RAxML (version 8.1.15; [70]) with parameters “-p 1989 -m GTRCAT -t <phylogenetic 

tree computed by FastTree>” 

Phylogenetic trees (Figure 3.3 and Figure 3.4) were visualized with GraPhlAn [71]. 

Additionally, multidimensional scaling (MDS) plots (Figure 3.3, Figure 3.4, Supplementary 

Figure 3.4, and Supplementary Figure 3.5) were built on the whole-genome Average 

Nucleotide Identity (ANI) distances computed with FastANI [32]. 

 

3.2.8  Functional analysis and statistical significance 

The set of genomes (MAGs and reference genomes) considered in this study was annotated 

with Prokka (v. 1.12; [72]) using default parameters. Proteins inferred by Prokka were then 

processed with Roary [73] (v. 3.11; option ‘-i 90’) to generate the presence-absence binary 

matrix on the core and accessory genes. Gene enrichment within human and food genomes was 

determined by considering only MAGs and reference genomes having completeness >80% in 

order to avoid possible biases coming from highly incomplete genomes and by taking into 

account genes present in at least 5% and less than 95% of the genomes. Statistical significance 

was tested through Fisher’s test with false discovery rate (FDR) correction for multiple 

hypothesis testing. 

 

3.3  Results 

3.3.1  Large-scale meta-analysis on food and human microbiomes 

We performed a large-scale meta-analysis on microbiomes from food sources and human body 

sites to investigate the prevalence and diversity of LAB species in the human microbiome and 

their overlap with species and strains found in food. To achieve this goal, we considered 303 

food metagenomes (152 publicly available and 151 obtained in this study) (11 datasets, Table 

3.1 and Supplementary Table 3.1) that we curated in this study, which corresponded to 

different types of fermented foods and beverages [51–57]. In addition, we considered 9,445 

https://paperpile.com/c/nJ8Mum/DbuR
https://paperpile.com/c/nJ8Mum/oytW
https://paperpile.com/c/nJ8Mum/0Mdd
https://paperpile.com/c/nJ8Mum/aR0T1
https://paperpile.com/c/nJ8Mum/H5Id
https://paperpile.com/c/nJ8Mum/adEb
https://paperpile.com/c/nJ8Mum/b2419
https://paperpile.com/c/nJ8Mum/KPUCv+RhIMH+fCfjI+vlrkN+3dWCU+ewI3J+i7D8p
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human metagenomes from 47 public datasets spanning multiple body sites (84% from the gut), 

age categories, countries, and lifestyles that we retrieved from recent meta-analyses [24,58]. 

Table 3.1. Summary of the analysed food metagenomic datasets. 

Study  Type of food  # samples  Accession number  Reference 

BertuzziAS_2018  Surface ripened cheese  42  PRJEB15423  [51] 

Escobar-ZepedaA_2016  Mexican ripened cheese  1  PRJNA286900   [52] 

LeechJ_2019  Fermented food  58  PRJEB35321  This study 

MacoriG_2019  Cheese  77  PRJEB32768  This study 

MilaniC_2019  Parmesan cheese  2  PRJNA482503  [53] 

PasolliE_2019  Yogurt and dietary supplement  16  PRJNA603575  This study 

PfeferT_2018  Cheese  36  PRJNA430402  - 

QuigleyL_2016  Continental type cheese  10  PRJEB6952  [54] 

WalshAM_2016  Milk kefir  18  PRJEB15432  [55] 

WalshAM_2017  Nunu  20  PRJEB20873  [56] 

WolfeBE_2014  Smear ripened cheese  23  mgp3362  [57] 

 

3.3.2  Variable prevalence of LAB in the human gut 

We considered reference-based taxonomic profiles [59] of all 9,445 human metagenomes 

[24,58] (see Methods) and focused specifically on LAB species in this study (Supplementary 

Table 3.2). We detected 152 species belonging to the Lactobacillales order occurring in at least 

one of the metagenomes with a relative abundance greater than 0.01%. Among them, we 

identified 70 species belonging to the LAB group, and restricted the following analysis to the 

30 of them having a prevalence greater than 0.1% in the human gut (see Methods). These 

represented mainly species (spanning Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, 

and Weissella genera) of potential food origin, including bacteria occurring in probiotic 

supplements, in addition to typically non-food origin species such as Lb. mucosae, Lb. ruminis, 

and Lb. salivarius (Figure 3.1). The two most prevalent species in the gut were Streptococcus 

thermophilus (prevalence 31.2%, i.e., present at > 0.01% relative abundance in 31.2% of the 

gut metagenomes) and Lc. lactis (16.3%), both commonly found in dairy products (Figure 3.1, 

https://paperpile.com/c/nJ8Mum/4uNj+QxY8
https://paperpile.com/c/nJ8Mum/KPUCv
https://paperpile.com/c/nJ8Mum/RhIMH
https://paperpile.com/c/nJ8Mum/fCfjI
https://paperpile.com/c/nJ8Mum/vlrkN
https://paperpile.com/c/nJ8Mum/3dWCU
https://paperpile.com/c/nJ8Mum/ewI3J
https://paperpile.com/c/nJ8Mum/i7D8p
https://paperpile.com/c/nJ8Mum/jYTSs
https://paperpile.com/c/nJ8Mum/QxY8+4uNj
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Supplementary Figure 3.1, and Supplementary Table 3.3). Multiple Lactobacillus species 

of predominantly food origin were detected at lower prevalence (3%-5%) and comprised Lb. 

casei/paracasei, Lb. delbrueckii, Lb. fermentum, and Lb. rhamnosus). Non-food origin bacteria 

were also identified at remarkable levels such as Lb. ruminis (11.0%), Lb. salivarius (4.7%), 

and Lb. mucosae (4.0%). While prevalence was variable, average relative abundance 

(computed on positive samples only) of single species was generally rather low (<2%), 

including the case of the two most prevalent species S. thermophilus (0.6%) and Lc. lactis 

(0.4%). Exceptions (rel. ab. >2%) were verified for Lb. amylovorus, Lb. brevis, and Lb. 

buchneri, which however rarely occurred (prev. < 1%). 

Strong age-related patterns were verified for some of the species prevalent in gut samples (N 

= 7,907) (Figure 3.1, Supplementary Figure 3.2, and Supplementary Table 3.4). S. 

thermophilus increased in prevalence from newborns (8.4%) to adults (33.7%, p < 1e-40), with 

comparable average abundance. This may reflect the increase in consumption of yogurts and 

other dairy products that can be sources of S. thermophilus [74]. A similar pattern was observed 

for Lb. delbrueckii (p < 1e-10) and the non-food origin species Lb. mucosae (p < 1e-10), Lb. 

ruminis (p < 1e-20), and Lb. salivarius (p < 1e-10), which suggests their gut colonization later 

in age. Also, Lc. lactis had higher prevalence in adults (15.8%) than newborns (8.6%, p < 1e-

6), with its detection in only one infant cohort originating from Estonia, Finland, and Russia 

[75]. Other lactobacilli were more prevalent and abundant in newborns such as Lb. 

casei/paracasei (p < 1e-20 with respect to adults), Lb. gasseri (p < 1e-7), Lb. plantarum (p < 

1e-4), and Lb. rhamnosus (p < 1e-70). These species have also been detected in human breast 

milk [76] suggesting their possible transmission from mother to infant through breastfeeding, 

as previously reported for Lb. plantarum [77]. Notably, these species were not found to be 

vertically transmitted from other mother’s body sites[78]. 

Overall, we found that LAB are a subdominant component of the gut microbiome, although 

several species exhibited non-negligible contributions. More specifically, we identified twenty-

one LAB occurring with prevalence greater than 1% and eighteen with relative abundance 

greater than 0.5% when detected in the gut. It is reasonable to hypothesize that those species 

may be short- or long-term colonizers of the human microbiome. 

 

https://paperpile.com/c/nJ8Mum/QusAj
https://paperpile.com/c/nJ8Mum/jAiF3
https://paperpile.com/c/nJ8Mum/pQyqH
https://paperpile.com/c/nJ8Mum/OBu7a
https://paperpile.com/c/nJ8Mum/G25os
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Figure 3.1. Average prevalence of LAB species from human and food microbiomes.  
We report the 30 LAB species having a prevalence greater than 0.1% in the human gut. Values are 

obtained from 9,445 publicly available human metagenomes and stratified by multiple host conditions 

(i.e., body site, age category, westernized lifestyle, and continent). Age category, westernized lifestyle, 

and continent statistics refer to stool samples only. Food results are obtained from 303 food 

metagenomes. Numbers and p-values (Fisher’s test, false discovery rate correction) in Supplementary 

Figures 3.1-3.4 and Supplementary Table 3.4. Relative abundances in Supplementary Table 3.2 and 

Supplementary Table 3.3. 

 

3.3.3  Occurrence and abundance of LAB is linked to lifestyle 

We then stratified the gut metagenomes in terms of host lifestyles (Figure 3.1, Supplementary 

Figure 3.3, and Supplementary Table 3.4), which revealed variations in prevalence and 
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abundance between westernized and non-westernized populations for multiple species. Higher 

prevalence in westernized populations was observed for six lactobacilli, mostly of food origin, 

such as Lb. acidophilus (p < 1e-6), Lb. casei/paracasei (p < 1e-4), Lb. delbrueckii (p < 0.01), 

Lb. gasseri (p < 1e-6), Lb. rhamnosus (p < 1e-9), and Lb. sakei (p < 1e-3).  By contrast, Lb. 

mucosae (p < 1e-8) and Lb. ruminis (p < 1e-100) that do not occur in food were more prevalent 

in the non-westernized cohorts. Despite different patterns in terms of prevalence, all lactobacilli 

were on average more abundant in the westernized populations. Among the other genera, S. 

thermophilus was highly prevalent in the westernized cohorts (p < 1e-50). Higher prevalence 

in the non-westernized group was observed for Lactococcus garvieae (p < 1-e30) in addition 

to multiple heterofermentative species such as Leuconostoc citreum (p < 1e-70), Leuconostoc 

lactis (p < 1e-60), Weissella cibaria (p < 1e-10), and Weissella confusa (p < 1e-100), which is 

consistent with their widespread prevalence in raw vegetables [79] that are likely consumed in 

such populations. In fact, non-western populations usually have hunter-gatherer diet and 

lifestyle, which is recognized to be characterized by high consumption of tubers, drupes, roots, 

and fruits [80,81]. Indeed, it was also reported that the !Kung and the Hadza, two non-Western 

African populations, still obtain 60–80% and 50–65% of their diet from plant foods, 

respectively [82]. 

We further grouped metagenomes by host country of origin (see Methods) and identified more 

subtle geographical variations (Figure 3.1 and Supplementary Figure 3.4). Overall, food-

associated lactobacilli were most prevalent and abundant in Europe, were less so in Asia and 

North America, and almost absent in China (kept distinct from the other Asian countries due to 

its large sample size) and in the non-westernized populations. The higher prevalence in 

European cohorts was significant (p < 0.05) for Lb. casei/paracasei (8.0%), Lb. delbrueckii 

(6.6%, with a similar value in Asia), and Lb. rhamnosus (7.1%). Exceptions were Lb. gasseri, 

having comparable prevalence in continents including westernized cohorts, and Lb. fermentum, 

more prevalent in North America, South America, and China, with the latter observation being 

consistent with its widespread occurrence in Chinese fermented foods [83]. Non-food 

lactobacilli were not prevalent in Europe. Lb. mucosae exhibited high prevalence (>10%) in 

Africa, China, and South America, with comparable abundance across the globe. A similar 

trend was verified for Lb. ruminis, although with higher prevalence in non-westernized cohorts, 

while the presence of Lb. salivarius was distinctive for the Chinese population (p < 0.01). 

Among the other genera, Lc. lactis exhibited high prevalence across the entire globe (ranging 

from 11.5% in Africa to 44.4% in South America) with the sole exception of China (1.7%). S. 

https://paperpile.com/c/nJ8Mum/dyGDf
https://paperpile.com/c/nJ8Mum/0Y0gK+V9vAb
https://paperpile.com/c/nJ8Mum/vUlmX
https://paperpile.com/c/nJ8Mum/aLRkC
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thermophilus reached high prevalence in Asia (41.5%), Europe (39.6%), and North America 

(28.1%), but was much less prevalent in the Chinese (5.6%) and non-westernized (<3%) 

cohorts. 

 

3.3.4  LAB species from food only partially match those in the gut 

We established genome level links between the microorganisms populating the human 

microbiome and those found in food by integrating the genomes reconstructed from a set of 

9,445 human metagenomes with those from the set of 303 food metagenomes that we 

generated, collected and curated in this work (Table 3.1 and Supplementary Table 3.1). More 

specifically, we considered 303 metagenomic samples spanning eleven datasets and coming 

from different types of cheese (N = 191), multiple fermented foods (N = 58), nunu (N = 20), 

milk kefir (N = 18), and yogurt and dietary supplements (N = 16).  We applied a validated 

[24,84] computational pipeline that combined single-metagenome assembly, contig binning, 

and genome quality control to reconstruct de novo metagenome-assembled genomes (MAGs) 

from the set of food metagenomes (see Methods). We generated a total of 666 food MAGs 

(completeness > 50% and contamination <5%) of sufficient quality according to previous 

recommendations [64]. These MAGs from food were integrated with the set of 154,723 MAGs 

that we retrieved from the 9,445 human metagenomes using the same assembly-based pipeline 

[24] and with the set of 193,078 reference genomes (available in GenBank as of March 2019). 

This resulted in a total of 348,467 genomes that were clustered at 5% genetic distance based 

on whole-genome nucleotide similarity estimation and recapitulated in species-level genome 

bins (SGBs, i.e., clusters of genomes spanning 5% genetic diversity, see Methods). The 666 

food MAGs were grouped into 171 SGBs (Supplementary Table 3.5 and Supplementary 

Table 3.6), which we discuss below on the basis of their occurrence in food samples and human 

gut (Figure 3.2A and Figure 3.2B). 

Most of the food MAGs (349, 52.4%) belonged to SGBs also found in the human gut, with 265 

of them associated with twenty of the thirty LAB species discussed previously (Figure 3.2A, 

top panel and Supplementary Figure 3.5). The species most reconstructed from food sources 

was Lc. lactis (N = 90 MAGs), with 86 MAGs extracted from cheese. Sixty MAGs were 

associated with S. thermophilus, the majority of them was reconstructed from cheese and 

yogurt, and five additional genomes were extracted from different fermented foods such as 

wagashi, beetroot kvass, ryazhenka, ruž’a, and labne. A consistent number of MAGs was also 

https://paperpile.com/c/nJ8Mum/QxY8+nlYv
https://paperpile.com/c/nJ8Mum/OLHI1
https://paperpile.com/c/nJ8Mum/QxY8
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retrieved from Lb. helveticus (33 MAGs from cheese), Lb. curvatus (14 MAGs from cheese 

and one from sauerkraut), Lb. delbrueckii (11 MAGs from cheese or yogurt in addition to single 

genomes from dietary supplement and tofu), Leuconostoc mesenteroides (5 MAGs from nunu 

and single genomes from bread kvass, ginger beer, milk kefir, beetroot kvass, ruž’a, and 

cheese), and Lb. casei/paracasei (4 MAGs from cheese, 2 MAGs from dietary supplements, 

and 2 MAGs from water kefir). We also extracted 4 MAGs of Lb. mucosae, a typically non-

food microorganism that is usually found in the intestine of pigs or other animals [85] and that 

we instead reconstructed from different fermented foods such as kimchi, kombucha vinegar, 

agousha, and sauerkraut. 

We identified seventeen additional non-LAB SGBs having MAGs from both food and human 

metagenomes, for a total of 84 food MAGs (12.6%; Figure 3.2A, bottom panel) and spanning 

three phyla (namely Actinobacteria, Firmicutes, and Proteobacteria). Some of these may be 

microbial contaminants in the food chain that can arise from different sources including animal, 

feed, and soil [86,87]. The SGB with the most MAGs (N = 16) was that containing 

Streptococcus equinus and Streptococcus infantarius genomes, two species usually found in 

the rumen [88] but occasional pathogens for humans [89] and that we found in African 

fermented foods [56].  

The majority of the food SGBs (134 out of 171), accounting for 317 MAGs (47.6%), did not 

exhibit an overlap with human MAGs, likely representing species unable to reach the colon or 

characterized by low prevalence and abundance in the human gut (Figure 3.2B). Among them, 

71 SGBs (53.0%; comprising 225 MAGs) contained at least one reference genome (kSGBs; 

Figure 3.2B, left panel). The most prevalent food-specific species was Brevibacterium linens 

(24 MAGs) which was reconstructed from multiple cheese types (i.e., surface ripened [51], 

smear ripened [57], hard, and tomme). Food-specific SGBs also included Staphylococcus 

saprophyticus (13 MAGs), Glutamicibacter arilaitensis (12 MAGs), and 58 MAGs from 21 

LAB species spanning 6 families, the most prevalent being Lc. lactis subsp. cremoris. This set 

of MAGs and reference genomes showed a >5% genetic distance from Lc. lactis subsp. lactis 

genomes [90], which we kept as a separate SGB (ID 7985) and found to be prevalent in both 

food and human metagenomes, in contrast to Lc. lactis subsp. cremoris which was only 

detected in food metagenomes. Similarly, Lc. raffinolactis was divided into two SGBs, with 

human and food MAGs grouped in the SGBs 7989 and 7991, respectively. 

Out of the 134 SGBs not overlapping with human MAGs, 63 SGBs (47%; comprising 92 

MAGs) consisted of MAGs reconstructed in this study from food metagenomes without any 

https://paperpile.com/c/nJ8Mum/R5qMv
https://paperpile.com/c/nJ8Mum/wySgO+v8S1i
https://paperpile.com/c/nJ8Mum/hCOym
https://paperpile.com/c/nJ8Mum/nfveJ
https://paperpile.com/c/nJ8Mum/ewI3J
https://paperpile.com/c/nJ8Mum/KPUCv
https://paperpile.com/c/nJ8Mum/i7D8p
https://paperpile.com/c/nJ8Mum/VtOtY
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reference genomes. These represented new species currently not represented in public 

repositories (Figure 3.2B, right panel), of which only 12 were assigned to known genera, and 

which should be targeted for cultivation-based analysis.  

The set of genomes reconstructed and the SGBs identified in this study and that we made 

publicly available (see Methods) facilitated a more in-depth comparative genomics analysis. 

 

 

Figure 3.2. Microbial genomes reconstructed from food metagenomes.  
A) Most prevalent species-level genome bins (SGBs) in 666 MAGs reconstructed from 303 food 

metagenomes and overlapping with human MAGs (i.e., found in at least one of the 154,723 human 

MAGs). Numbers in parenthesis represent the SGB IDs. B) Most prevalent food SGBs not overlapping 

with human MAGs. kSGBs denote SGBs with at least one reference microbial genome, whereas fSGBs 

identify newly assembled SGBs from food metagenomes only. X-axes for panels A) and B) are in 

logarithmic scale. C) Fraction of reference genomes per source type for the 30 selected LAB species 

and grouped by genera (the same plot at species-level is reported in Supplementary Figure 3.6). Raw 

data in Supplementary Table 3.6 and Supplementary Table 3.7. 

 

3.3.5  Comparative genomics suggests a food origin for the gut strains 

Within the available set of MAGs and reference genomes, we performed strain-level 

comparative genomic analysis for the set of 348,467 genomes previously described and 

comprising 193,078 reference genomes, 154,723 human MAGs, and 666 food MAGs. The 

2,859 genomes (including 1,042 MAGs) associated with the thirty LAB species of interest were 
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kept for comparative genomics purposes. To inform the comparative analysis, we retrieved and 

manually curated the source types for all genomes (see Methods), and grouped MAGs and 

reference genomes in three categories: human, food, and other. Genomes for which this 

information was missing were labelled as NA (7.9% of genomes; Figure 3.2C, 

Supplementary Figure 3.6 and Supplementary Table 3.7). 

Overall, two thirds of the reference genomes came from food (43.8%) and human sources 

(21.0%). The group of genomes from strains not isolated from foods or humans (22.8%) 

comprised 67 genomes from probiotics and dietary supplements in addition to 347 genomes 

mainly coming from animal sources. The proportions of species assigned to the different source 

types was quite variable across species, with a general under-representation of human genomes 

corresponding to LAB that were prevalent in non-westernized cohorts (Figure 3.2C, 

Supplementary Figure 3.6). This reflected the overall scarce availability of genome from 

isolates for a substantial fraction of the non-pathogenic, commensal members of the human 

microbiome as recently highlighted [24,91,92]. Reference genomes from human samples were 

surprisingly almost absent in the case of prevalent species such as Lc. lactis (with only one 

reference genome from the vagina and one MAG from the gut) and S. thermophilus (with only 

one MAG from the gut). The absence of good reference genomes in public repositories 

prevented the comparison of food and human strains until now, which we aimed to overcome 

in the present study through an extensive comparative genomics analysis. 

S. thermophilus was the species of LAB most frequently reconstructed from metagenomes (243 

human and 60 food MAGs; Figure 3.3A), an observation consistent with its high prevalence 

from mapping-based taxonomic profiling (Figure 3.1). Comparative genomics, also including 

44 reference genomes, did not highlight food-specific or gut-specific sub-clades suggesting 

that food can be regarded as the main source of this species in the human microbiome. S. 

thermophilus also appeared to be a quite genetically diverse species both in food and human 

sources with MAGs reconstructed from Asian gut metagenomes enriched in a specific clade 

(Clade A, Figure 3.3A, p < 1e-10). Lb. delbrueckii was not prevalent in the gut, and the only 

two subspecies found in human samples were subsp. lactis and subsp. bulgaricus (Figure 

3.4A). Human MAGs of both subspecies clustered together with food MAGs and isolates, 

again indicating food as the most likely source of this species in the gut. On the other hand, 

subsp. delbrueckii, subsp. sunkii, and subsp. jakobsenii were found in food, but never 

reconstructed from the gut. Although Lb. rhamnosus was the LAB species for which the 

greatest number of genomes corresponding to human isolates (N = 105) was available, we 

https://paperpile.com/c/nJ8Mum/QxY8+DGBRz+tRPyg
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collected only 32 human MAGs, which is in agreement with its low prevalence and abundance 

in the gut (Figure 3.4B). We identified a specific cluster including 17% of the Lb. rhamnosus 

human genomes that included the reference genome associated with the Lb. rhamnosus strain 

GG (LGG), which may be due to recent consumption of commercial products due to its wide 

use in probiotic supplements [93]. 

The highest number of food MAGs was obtained for Lc. lactis (N = 90, Figure 3.3B). We refer 

here to subsp. lactis, while subsp. cremoris was associated with 12 food MAGs but never 

reconstructed from human metagenomes. Lc. lactis subsp. lactis formed two distinct clusters 

including both food and human genomes. The first cluster included 63% of the genomes, 

exhibited an overall low diversity (<0.8% genetic distance between closest genome pairs), and 

included all the food genomes related to cheese and dairy fermentation. The second cluster was 

more diverse, dominated by environmental and raw vegetable products, and included the only 

MAG from human skin and the three gut MAGs from non-westernized cohorts. An additional 

cluster containing two genomes from nunu[56] was never found in humans and exhibited a 

>3% genetic diversity from all other genomes. Such results highlighted the overall importance 

of conducting strain-level analysis on the food-gut axis, depicted here by the identification of 

two main clusters in the human gut associated with different food sources (i.e., one from cheese 

and dairy fermentation, and the other one from environmental and raw vegetables products). 

Strains of these clusters are likely characterized by differences in functional traits and potential 

interaction with the host that deserve to be investigated in future studies. 

https://paperpile.com/c/nJ8Mum/3cjFQ
https://paperpile.com/c/nJ8Mum/ewI3J
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Figure 3.3. Comparative genomic analysis of the two most prevalent LAB identified in the human 

gut microbiome. 
 A) S. thermophilus is a genetically diverse species both in food and human sources with MAGs 

reconstructed from Asian gut metagenomes enriched in Clade A (p < 1e-10). B) Lc. lactis subsp. lactis 

is formed by three main clusters: Cluster 1 exhibits an overall low diversity and includes mostly food 

genomes related to cheese and dairy fermentation; Cluster 2 is dominated by environmental and raw 

vegetable products and more diverse human MAGs; Cluster 3 includes only two MAGs from nunu. 

Phylogenetic trees were built on species-specific marker genes and report five different metadata. 

Multidimensional scaling (MDS) on average nucleotide identity (ANI) distance is coloured with source 

information. 

 

The SGB 7142 (N = 216, Figure 3.4C), labelled Lb. casei/paracasei, included reference 

genomes identified as both Lb. casei and Lb. paracasei, which, as recently highlighted, can be 

used interchangeably [94]. Within the combined species, we detected two main clusters, both 

of which occurred in food and human samples. The major cluster contained 86% of the 

available genomes, including all the dietary supplement strains and the majority (86%) of the 

https://paperpile.com/c/nJ8Mum/AVdyP
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human MAGs. Consistent with its low abundance (Figure 3.1), only seven reference genomes 

and a single MAG were reconstructed from human samples for Lb. helveticus (Figure 3.4D). 

We identified three main subspecies, all occurring in both food and human sources. One cluster 

included all the dietary supplement strains, while genomes coming from food were 

predominantly spread across the other two groups. 

Despite the high number of collected genomes (N = 369), Lb. plantarum was scarcely prevalent 

(1.8%) and abundant (av. 1.2%) in the gut (Figure 3.1), which was reflected by only 11 MAGs 

being reconstructed from human microbiomes (Supplementary Figure 3.7). All of these 

belonged to the main cluster (96% of the total genomes) associated with subsp. plantarum. A 

separate cluster was identified as subsp. argentoratensis, which was found in both food and 

human isolates but never reconstructed from metagenomes. The occurrence of multiple 

subspecies within the same SGB was also observed for eight additional LAB, i.e., Lb. brevis, 

Lb. fermentum, Lb. johnsonii, Lb. reuteri, Lb. sakei, Leuconostoc lactis, Leuconostoc 

mesenteroides, and W. cibaria, (Supplementary Figure 3.7). On the other hand, Lc. garvieae 

was spread into two different SGBs, with one comprising human MAGs from both westernized 

and non-westernized populations and the other only from non-westernized cohorts 

(Supplementary Figure 3.7). No genomes from food samples were collected at all for Lb. 

crispatus, Lb. gasseri, Lb. jensenii, Lb. ruminis, and Lb. salivarius (excluding a single isolate 

from ground beef). The non-food species Lb. ruminis and Lb. salivarius were quite prevalent 

in the gut with 145 and 42 MAGs reconstructed from human metagenomes, respectively 

(Supplementary Figure 3.7). For both species, isolate and MAGs extracted from the gut were 

distinct from genomes isolated from other animal microbiomes, which suggested long-term 

adaptation of these species to the human gut. We also identified a specific Lb. salivarius cluster 

associated with dietary supplement strains, which was found in a couple of saliva samples but 

never in the human gut. 
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Figure 3.4. Comparative genomic analysis of relevant lactobacilli found in both food and human 

microbiomes. 
A) Lb. delbrueckii is not prevalent in the gut, and the only two subspecies found in both food and human 

samples are subsps. lactis and. bulgaricus. Subsps. delbrueckii, sunkii, and jakobsenii are found in food, 

but never reconstructed from the gut. B) Lb. rhamnosus exhibits the greatest number of genomes from 

human isolates but is scarcely reconstructed from metagenomes. A specific cluster identifies the LGG 

strain. C) Lb. casei/paracasei includes reference genomes identified as both Lb. casei and Lb. 
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paracasei. We detect two main clusters both occurring in food and human samples. D) Lb. helveticus 

exhibits three main clusters, with Cluster 1 including all the dietary supplement strains (source in green), 

while food genomes are predominantly spread across the other two groups. Phylogenetic trees were 

built on species-specific marker genes and report five different metadata. Multidimensional scaling 

(MDS) on average nucleotide identity (ANI) distance is coloured with source information. 

 

3.3.6  LAB occurrence in non-human primates is affected by captivity 

We finally considered the set of 203 publicly available gut metagenomes from non-human 

primates (NHPs) that was recently retrieved, curated and processed with the same pipeline 

employed in this study [84]. It comprised 22 host species from 14 different countries in five 

continents. Among the 2,985 reconstructed MAGs, we found that only 46 of them (1.6%) were 

assigned to the Lactobacillales order (Supplementary Table 3.8), which suggested an overall 

low prevalence and abundance of LAB in the NHP gut microbiome. We found strong 

differences between MAGs retrieved from wild NHPs and those extracted from NHPs living 

in captivity. Wild NHPs generated 29 MAGs of LAB, with 66% of them associated with new 

species not available in public repositories and never found in human metagenomes, therefore 

likely representing bacteria peculiar to the NHP gut microbiomes. Ten MAGs were instead 

associated with kSGBs, with only five of them belonging to LAB species found also in human 

gut metagenomes such as Lc. garvieae (N = 3), Lc. lactis, and Weissella cibaria. Comparative 

genomics analysis highlighted that the strains harboured in NHPs were quite different from 

those reconstructed from human microbiomes (Supplementary Figure 3.8). Interestingly, the 

three MAGs of Lc. garvieae resembled more the strains found in non-westernized human 

populations in terms of nucleotide identity. No MAGs from lactobacilli were extracted at all 

from wild NHPs. A very different situation was observed in captive NHPs (Supplementary 

Figure 3.8), in which the 17 MAGs were exclusively reconstructed from kSGBs associated 

with multiple Lactobacillus species, i.e., Lb. acidophilus, Lb. animalis (N = 2), Lb. johnsonii 

(N = 4), Lb. mucosae (N = 2), Lb. reuteri (N = 5), and Lb. salivarius (N = 3). Strains of Lb. 

reuteri and Lb. salivarius found in NHPs were distinct from those extracted from human and 

food sources, which suggested possible host adaptation mechanisms. A stronger overlap among 

NHPs, human, and food MAGs was instead observed for the other species and likely linked to 

the sharing of strains due to the exposition of NHPs living in captivity to human-like 

environments and diets [95]. 

 

https://paperpile.com/c/nJ8Mum/nlYv
https://paperpile.com/c/nJ8Mum/ZZBFQ
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3.4  Discussion and Conclusions 

In this chapter, we showed that food is likely the major source of LAB in the human gut 

microbiome. This was accomplished by conducting a large-scale meta-analysis that integrated 

taxonomic profiling and comparative genomics from almost ten thousand metagenomes from 

human and food sources in addition to reference genomes from public repositories. We focused 

the analysis on the thirty LAB that exhibited a prevalence greater than 0.1% in the human gut, 

which resulted mainly in species of potential food origin, including LAB occurring in probiotic 

supplements, in addition to non-food origin species such as Lb. mucosae, Lb. ruminis, and Lb. 

salivarius. The comparative genomics suggested that closely related strains are present in both 

food and gut microbiome. While such evidence does not exclude the possibility of other 

potential sources of LAB strains in the gut, we believe that being fermented foods the principal 

ecological niche for LAB in nature, our results support the hypothesis that food is the major 

source of LAB for the gut microbiome. While we considered the currently available taxonomic 

nomenclature, a substantial reclassification of the genus Lactobacillus into 25 novel genera 

enclosing the current Lactobacillus species was recently proposed [96]. The new Lactobacillus 

genus incorporates only the species included in the Lb. delbrueckii group. 

We found an overall limited amount of LAB in the gut in terms of prevalence and relative 

abundance, however several species exhibited non-negligible contributions that deserve 

attention for potential probiotic potentials. There was no evident correlation between 

prevalence and relative abundance of the different LAB species in the human samples. The 

most prevalent LAB species was S. thermophilus. Its role as a gut microbiome member is 

questioned. However, the mechanisms and metabolic features that lead to it being regarded as 

a candidate probiotic species have been studied and debated, especially in terms of resistance 

to gastrointestinal barriers and potential positive health effects [97]. Beyond being one of the 

two LAB widely employed for yogurt making, S. thermophilus is also employed as starter 

cultures for many cheeses characterized by a thermophilic fermentation. Continuous exposure 

to S. thermophilus through cheese and yogurt consumption can be a likely explanation of its 

prevalence in human gut samples as resulted in this study. 

We detected a remarkable prevalence in the gut also for Lc. lactis, which is widespread in 

cheeses produced by mesophilic fermentation. Albeit recognized as a transient member of the 

gut community, higher levels of this species were found in buttermilk consumers [98]. In 

addition, strains of L. lactis have been shown to survive the gastrointestinal stress and this 

https://paperpile.com/c/nJ8Mum/eLa3
https://paperpile.com/c/nJ8Mum/dxJbA
https://paperpile.com/c/nJ8Mum/Sd9ae
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species can be considered to potentially convey health benefits by antimicrobial activity 

through bacteriocin production against clostridia, to boost the immune system, and to be 

potentially used as a vehicle of interesting beneficial properties such as antimicrobial activity 

[99,100]. 

The prevalence of LAB in the human gut was strongly affected by lifestyle [101], intended here 

as possible consumption of fermented foods that are characteristics of specific geographical 

regions. Unfortunately, direct associations of genomic data with dietary patterns could not be 

achieved as dietary records documenting systematic food consumption in the human public 

cohorts considered were not available. Minor associations between gut microbiota and 

consumption of plant fermented foods were very recently found within the American gut 

cohort. A few LAB species were linked to fermented plant food consumers and included Lb. 

acidophilus, Lb. brevis, Lb. kefiranofaciens, Lb. parabuchneri, Lb. helveticus and Lb. sakei. 

Interestingly, the authors highlighted that the stool detection of LAB may be a useful tool to 

verify the reliability of self-reported dietary information on fermented foods consumption 

[102].  

In our study, LAB species widely occurring in dairy products and yogurt, such as S. 

thermophilus and lactobacilli, were more prevalent in westernized populations, while the 

heterofermentative Leuconostoc and Weissella, likely carried as part of the epiphytic 

microbiota of raw vegetables [79], fermented vegetables [103], and cereal-based fermented 

foods [104] were more common in the non-westernized cohorts. We could speculate that this 

pattern was linked to the habitual consumption of foods and diets that were characteristics of 

the specific geographical areas. For example, non-westernized populations that have a higher 

consumption of raw plants and plant based fermented foods were enriched in 

heterofermentative cocci LAB, while the very low prevalence of Lc. lactis and S. thermophilus 

in multiple Chinese cohorts reflects the low consumption of dairy products by the Chinese 

population [105]. 

We conducted an extensive comparative genomic analysis by integrating reference genomes 

and MAGs from human, food, and environmental sources. This opportunity was previously 

prevented even for prevalent species such as S. thermophilus and Lc. lactis due to the lack of 

reference genomes acquired from human sources in public repositories. We identified a general 

overlap among genomes from food and gut sources, which suggested again food as the main 

source of LAB in the human gut. To this end, we conducted a preliminary analysis devoted to 

https://paperpile.com/c/nJ8Mum/RtsWP+GGCMp
https://paperpile.com/c/nJ8Mum/RMcao
https://paperpile.com/c/nJ8Mum/llJHD
https://paperpile.com/c/nJ8Mum/dyGDf
https://paperpile.com/c/nJ8Mum/q72v8
https://paperpile.com/c/nJ8Mum/gWitM
https://paperpile.com/c/nJ8Mum/dOf3r
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evaluate potential differences in functions of strains between food and gut sources, that we 

limited to Lc. lactis and S. thermophilus due to their large number of MAGs reconstructed in 

this study (see Methods). We found 266 (247 in food) and 323 (275 in food) differently 

prevalent genes (p < 0.05) for Lc. lactis and S. thermophilus, respectively, after removing genes 

encoding for unidentified functions or occurring redundantly in both food and gut groups 

(differently prevalent sugar metabolism genes are listed in Supplementary Table 3.9). 

However, such differences did not suggest remarkable potential functional differences between 

food and gut genomes, which was consistent with the comparative genomics and phylogenetic 

results shown in Figure 3.3. At the same time, we identified an increase of unannotated genes 

in the gut genomes for both species, which agreed with the scarcity of reference genomes from 

human sources in public repositories. This may reflect further differences of strains found in 

the human gut that are currently unexplored due to the incompleteness of available functional 

databases [106]. Functional differences may suggest a possible adaptation of the food LAB to 

the gut environment. However, such mechanisms of adaptations cannot occur in strains that are 

part of a transient microbiome and would only take place for those LAB that more stably 

colonize the gut environment. This opens the need to conduct new analyses focused on the 

isolation of these microorganisms from the gut and their more in-depth functional 

characterization, also based on phenotypic traits. Different patterns were observed for typical 

non-food origin species such as Lb. ruminis and Lb. salivarius. By comparing human genomes 

with those found in other environments including animal microbiomes, we identified a strong 

adaptation of these species to the human gut, which suggested that these species are more 

specific and persistent for the human host (Supplementary Figure 3.7). 

Some of the analysed LAB exhibited distinct groups with human and food genomes clustering 

together, which indicated the presence in the gut of different strains potentially coming from 

different food sources. For example, the genomes of Lb. delbrueckii reconstructed from the gut 

appeared to cluster in two main groups associated with subsp. bulgaricus and subsp. lactis, 

which were representative of LAB in yogurt and cheese, respectively. Multiple subclusters 

were identified also in Lb. rhamnosus, with only 17% of the reconstructed human MAGs 

corresponding to the strain GG largely used in probiotic supplements. These species, along 

with others such as Lb. casei, Lb. plantarum, and Lb. reuteri have been largely explored due to 

their probiotic potential. However, their general low prevalence and abundance in the human 

gut suggested that they are unlikely to be long-term residents of the gut microbiota. However, 

we used only faecal samples as representative of the gut microbiome, while such species may 

https://paperpile.com/c/nJ8Mum/s5bgr
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be more tightly adhered to the gut epithelium and therefore less detectable in stool specimens 

[107].  

Finally, we highlight the importance of considering computational approaches such as those 

exploited in this chapter. Strain-level genome comparison is fundamental to track the resilience 

and persistence of probiotic LAB in the human gut and can be a useful approach to be adopted 

in clinical trials aimed at evaluating the efficacy of microbial strains for gut health. 

Additionally, the same methodologies can be considered to evaluate the prevalence and 

resilience of non-food microorganisms that are currently studied as candidates for next 

generation probiotics. Such knowledge and approaches can be useful for an informed design 

of functional foods, conveying health benefits upon daily consumption beyond their nutritional 

value. Several functional foods are enriched with probiotic microbial strains and their fate in 

pre-clinical and clinical trials can be efficiently and reliably monitored by culture-independent 

genome reconstruction and comparison to help assess both their efficacy as probiotics and the 

quality of the functional food. 

The interest in LAB will keep the scientific community active in studies of their genomics and 

evolution. Some of the LAB species occurring in the gut can surely arise from the consumption 

of fermented foods or probiotic preparations. However, efforts in research and isolation of LAB 

from human specimens would be desirable in the future in order to have further evidence on 

their specific genomic features that may better reflect adaptation to the complex gut ecosystem. 

   

https://paperpile.com/c/nJ8Mum/Z9l51
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5  Conclusions 

In my doctoral research we have implemented and validated a computational methodology 

aiming at estimating the number of sub-species in selected microbial species belonging to the 

human and food microbiomes. This is based on the analysis of reference genomes and MAGs 

and the use of advanced clustering techniques. The methodology has been mainly validated on 

synthetic data and also applied in real scenarios by considering two microbial families of great 

relevance in the food science field as LAB and Bifidobacteriaceae. 

We conducted a large-scale analysis of LAB from (meta-)genomics data in which we 

considered 9,445 metagenomes from human samples and 303 food metagenomes. We 

demonstrated that the prevalence and abundance of LAB species in stool samples using state-

of-the-art methodology is generally low and linked to age, lifestyle and geography, with 

Streptococcus thermophilus and Lactococcus lactis being most prevalent. We also identified 

genome-based differences between food and gut microbes. Overall, the large-scale genome-

wide analysis demonstrated that closely related LAB strains occur in both food and gut 

environments and provides unprecedented evidence that fermented foods can be indeed 

regarded as possible sources of LAB for the gut microbiome. 

We also performed a large-scale analysis for species belonging to the Bifidobacteriaceae 

family. Similarly to the analysis conducted for LAB, we demonstrated that their prevalence and 

abundance is linked to age, lifestyle and geography. We found variable predictive capabilities 

in estimating host phenotypes from microbiome data using Bifidobacteriaceae relative 

abundances as the only information. Moreover, we identified multiple sub-species in different 

prevalent Bifidobacteriaceae species which are new with respect to what reported in the 

literature. 

We established the methodological framework to detect and characterize sub-species in food 

and human microbiomes. Although our methodology showed high performances, it could be 

improved by validating and testing more scenarios by varying setting parameters in synthetic 

data generation (i.e., number of clusters, probability distribution, number of observations) and 

computed distance among observations (i.e. euclidean). While more in depth analysis was 

performed on LAB and Bifidobacteriaceae similar efforts may be performed on other species 

of relevance for the human microbiome and potentially linked to human health. 
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6  Supporting informations 

 

 

Supplementary Figure 3.1. Average prevalence and relative abundance of LAB species from the 

human microbiome stratified by body site.  
Average relative abundance is computed on positive samples only. Raw data in Supplementary Table 

3.2. 
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Supplementary Figure 3.2. Average prevalence and relative abundance of LAB species from the 

human microbiome stratified by age category. 
 Statistics refer to stool samples only. Average relative abundance is computed on positive samples only. 

Raw data in Supplementary Table 3.2. 
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Supplementary Figure 3.3. Average prevalence and relative abundance of LAB species from the 

human microbiome stratified by westernized lifestyle.  
Statistics refer to stool samples only. Average relative abundance is computed on positive samples only. 

Raw data in Supplementary Table 3.2. 
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Supplementary Figure 3.4. Average prevalence and relative abundance of LAB species from the 

human microbiome stratified by continent. 
Statistics refer to stool samples only. Average relative abundance is computed on positive samples only. 

Raw data in Supplementary Table 3.2. 
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Supplementary Figure 3.5. Average nucleotide identity (ANI) for the 30 selected LAB species on 

the set of reference genomes and MAGs. 
The ANI is computed using FastANI and excluding genomes having completeness < 80%. Numbers in 

parenthesis represent the SGB ID and the sample size. Three species (i.e., Lb. gasseri, Lb. jensenii, and 

L. garvieae) span two SGBs and are identified with two numeric identifiers. The lower and upper hinges 

correspond to the first and third quartiles (i.e., the 25th and 75th percentiles). The line inside the box 

represents the median value. The upper whisker extends from the hinge to the largest value no further 

than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and 

third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of 

the hinge. Points beyond the end of the whiskers are outliers and plotted individually. 
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Supplementary Figure 3.6. Fraction of reference genomes per source type for the 30 selected LAB 

species. 
The same plot grouped at genus-level is reported in Figure 3.2C. 
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Supplementary Figure 3.7. Comparative genomic analysis of relevant LAB species. 
Results refer to A) Lb. brevis (N = 58); B) Lb. fermentum (N = 81); C) Lb. johnsonii (N = 46); D) Lb. 

plantarum (N = 369); E) Lb. reuteri (N = 143); F) Lb. sakei (N = 47); G) Leuconostoc lactis (N = 24); 

H) Leuconostoc mesenteroides (N = 75); I) W. cibaria (N = 26); J) L. garvieae (N = 43); K) Lb. ruminis 

(N = 164); and L) Lb. salivarius (N = 129). A)-I) Species having occurrence of multiple subspecies into 

the same SGB with genomes from both food and human gut sources; J) L. garvieae is spread into two 
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different SGBs; and K)-L) the typical non-food origin species Lb. ruminis and Lb. salivarius exhibit 

genomes extracted from the gut that are distinct from genomes isolated from other environments and 

animal microbiomes, suggesting long-term adaptation of these species to the human gut. 

Multidimensional scaling (MDS) on average nucleotide identity (ANI) distance is colored with source 

information. Plots for additional species are reported in Figure 3.3 and Figure 3.4. 

 

 

Supplementary Figure 3.8. Comparative genomic analysis of the LAB species reconstructed from 

NHP metagenomes that overlap with MAGs extracted from the human gut. 
Results refer to A) Lc. garvieae (N = 3 NHP MAGs); B) Lc. lactis (N = 1); C) Weissella cibaria (N = 

1); D) Lb. acidophilus (N = 1); E) Lb. johnsonii (N = 4); F) Lb. mucosae (N = 2); G) Lb. reuteri (N = 

5); and H) Lb. salivarius (N = 3). NHP MAGs were retrieved from A)-C) wild NHPs and D)-H) NHPs 

living in captivity. Multidimensional scaling (MDS) on average nucleotide identity (ANI) distance is 

coloured with source information. 
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Supplementary Figure 4.1. Average relative abundance and prevalence of Bifidobacteriaceae spp. 

in the human gut microbiome across multiple host phenotypes. 
Values are stratified by body site, age category, lifestyle, and geography. 

 

 

Supplementary Figure 4.2. Fraction of isolate genomes per source and environment type 

considered in this study. 
Only the Bifidobacteriaceae species having at least 5 genomes are reported. 
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Supplementary Figure 4.3. Phylogenetic analysis for B. adolescentis by integrating isolate 

genomes and MAGs. The phylogenetic tree reports multiple host characteristics. 
 

 

Supplementary Figure 4.4. Phylogenetic analysis for B. angulatum by integrating isolate genomes 

and MAGs. The phylogenetic tree reports multiple host characteristics. 
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Supplementary Figure 4.5. Phylogenetic analysis for B. breve by integrating isolate genomes and 

MAGs. The phylogenetic tree reports multiple host characteristics. 
 

 

Supplementary Figure 4.6. Phylogenetic analysis for B. dentium by integrating isolate genomes 

and MAGs. The phylogenetic tree reports multiple host characteristics. 
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Supplementary Figure 4.7. Phylogenetic analysis for B. pseudocatenulatum by integrating isolate 

genomes and MAGs. The phylogenetic tree reports multiple host characteristics. 
 

 

Supplementary Figure 4.8. Phylogenetic analysis for B. pseudolongum by integrating isolate 

genomes and MAGs. The phylogenetic tree reports multiple host characteristics. 
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Supplementary Figure 4.9. Phylogenetic analysis for G. vaginalis by integrating isolate genomes 

and MAGs. 
The phylogenetic tree reports multiple host characteristics. G. vaginalis spans 10 SGBs that are further 

divided into different subspecies for a total of 15 clusters. 
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Supplementary Table 3.1. Description of the food metagenomes collected in this study 

 

Supplementary Table 3.2. Taxonomic profiles generated with MetaPhlAn3 with curated 

metadata of all metagenomic samples from human microbiomes considered in this paper 

 

Supplementary Table 3.3. Average prevalence and relative abundance of the 30 LAB 

species across the 303 food metagenomes estimated with MetaPhlAn3. 

 

Supplementary Table 3.4. P-values associated with the Fisher’s test (after FDR 

correction) applied on the presence/absence of the 30 LAB species determined by 

MetaPhlAn3 spanning age, body site, continent, and westernized lifestyle categories. 

 

Supplementary Table 3.5. Description of the MAGs extracted in this study from food 

metagenomes with their assigned SGB and estimated taxonomy. 

 

Supplementary Table 3.6. Summary of the SGBs retrieved from food metagenomes in this 

study, and their overlap with SGBs extracted from human metagenomes. 

 

Supplementary Table 3.7. Source type for the reference genomes associated with the LAB 

species considered in this study. 

 

Supplementary Table 3.8. Description of the MAGs extracted from non-human primate 

metagenomes with their assigned SGB and estimated taxonomy. pSGBs (primate SGBs) 

identify newly assembled SGBs from NHPs metagenomes only. 

 

Supplementary Table 3.9. List of sugar metabolism genes found to be differently 

prevalent (p < 0.05) between food and human gut genomes in S. thermophilus and Lc. 

lactis. 

 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM5_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM5_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM6_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM6_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM8_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM8_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM9_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM9_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM10_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM10_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM11_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM11_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM11_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM12_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM12_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM12_ESM.xlsx
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Supplementary Table 3.10. Number of markers per species used to build the phylogenies 

through PhyloPhlAn.  

 

Supplementary Table 4.1. List and description of the 54 publicly available datasets 

associated with human metagenomes. For each dataset, we report the number of samples 

and the PMID of the original publication in addition to relevant metadata information 

(i.e., age category, environment, lifestyle, source, and study condition). 

 

Supplementary Table 4.2. Summary of the 1,192 genomes from isolate sources considered 

in this study. For each genome, we report basic statistics (i.e., genome length and GC 

content) in addition to metadata information in terms of environment retrieved from the 

NCBI portal or from original publications. For the human genomes, we also report the 

age category and source of the host. Finally, we report the taxonomy as reported in the 

NCBI portal in addition to the SGBID assigned by our computational pipeline aiming at 

delineating SGBs and clustering genomes into them. 

 

Supplementary Table 4.3. Relative abundance for taxa belonging to the 

Bifidobacteriaceae family along with metadata information for the 9,528 human 

metagenomes considered in this study. 

 

Supplementary Table 4.4. Average relative abundance and prevalence for taxa belonging 

to the Bifidobacteriaceae family for the 9,528 human metagenomes considered in this 

study. Values are stratified by age category, bodysite, and lifestyle. 

 

Supplementary Table 4.5. Summary of the 110 SGBs belonging to Bifidobacteriaceae 

identified from the set of isolate genomes and MAGs considered in this study. For each 

SGB, we report the number of genomes retrieved from both isolate and metagenomic 

sources.   

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM13_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16438-8/MediaObjects/41467_2020_16438_MOESM13_ESM.xlsx
https://www.dropbox.com/scl/fi/cdhnvc8ywn0vgh5ee22n7/Supplementary-Table-4.1_datasets.xlsx?dl=0&rlkey=wqej0770k5b6n0x8g2bsh4pr4
https://www.dropbox.com/scl/fi/cdhnvc8ywn0vgh5ee22n7/Supplementary-Table-4.1_datasets.xlsx?dl=0&rlkey=wqej0770k5b6n0x8g2bsh4pr4
https://www.dropbox.com/scl/fi/cdhnvc8ywn0vgh5ee22n7/Supplementary-Table-4.1_datasets.xlsx?dl=0&rlkey=wqej0770k5b6n0x8g2bsh4pr4
https://www.dropbox.com/scl/fi/cdhnvc8ywn0vgh5ee22n7/Supplementary-Table-4.1_datasets.xlsx?dl=0&rlkey=wqej0770k5b6n0x8g2bsh4pr4
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/53rc02sp8co7kvkber4gn/Supplementary-Table-4.2_isolate-genomes.xlsx?dl=0&rlkey=covuyk20qlearthjikzbjpaor
https://www.dropbox.com/scl/fi/qg5bdscju2nbnylm1idhz/Supplementary-Table-4.3_profiles_metadata.xlsx?dl=0&rlkey=77u8out2y8aewa6f64jry7b9n
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