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Abstract  

The objective of this Ph.D. thesis is the design, development and performance assessment 

of innovative Guidance Navigation and Control techniques enabling the autonomous 

execution of complex tasks required by future space missions, such as the close proximity 

maneuvering of a chaser spacecraft around a resident space object and the controlled de-

orbiting of micro-satellite by means of aerodynamic drag.  

Regarding close-proximity operations, both Active Debris Removal and In-Orbit 

Servicing missions requires an autonomous spacecraft (chaser) to safely monitor and then 

approach an active/inactive artificial space object (target) which may be or not equipped 

with artificial markers to aid the relative navigation task. In this framework, this thesis 

proposes two original relative navigation architecture to be applied in the monitoring and 

close-approach phase of an ADR/IOS mission. For the monitoring phase, an original 

multi-step architecture for the estimation of both relative motion parameters and inertia 

parameters of an uncooperative space target is proposed. Once the position and attitude 

(pose) parameters are initialized (first step), LIDAR-based pose measurements and a 

smoothing approach are used to retrieve accurate, linearly independent estimates of the 

target angular velocity. These estimates are then used to compute the target’s moment of 

inertia ratios solving a linear system based on the conservation equation for the angular 

momentum. Once the inertia parameters are accurately estimated, the LIDAR-based pose 

measurements are used to feed a Kalman Filter to determine the full relative state 

according to a loosely coupled configuration.  

In the final approach phase, when the chaser has to capture the target by means of a 

robotic arm, a second EO sensor (TOF camera) is installed on the tip of the end-effector 

in order to get direct pose measurements of the end effector with respect to the selected 

grasping point. The measurements of the two EO-sensors are integrated within two 
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different Kalman Filters aimed at the estimate of the target-chaser and end effector-

robotic arm relative motion parameters. 

Performance assessment is carried out through numerical simulations realistically 

reproducing close-range relative motion dynamics and LIDAR sensor operation, and 

considering targets characterized by highly variable size, shape, and orbital dynamics as 

test cases. The moments of inertia estimation algorithm has been validated experimentally 

within a set-up simulating the tumbling motion of an uncooperative space target.  

Controlled reentry technologies also play a fundamental role to ensure future 

sustainability of the space environment. In this framework, the problem of aerodynamic 

re-entry is addressed in this thesis by designing and developing a control system aiming 

at modulating a deployable aerobrake to make the satellite follow nominal decay path 

using an umbrella-like actuator. Performance assessment of the proposed Linear 

Quadratic Regulator-based control techniques has been carried out within a numerical 

simulation environment which reproduces both the environmental perturbations and the 

actuators constraints. 

KEYWORDS: autonomous GNC, spacecraft relative navigation, uncooperative space 

target, inertia parameters estimation, de-orbiting control, deployable aerobrake. 
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1. Introduction 

This thesis focuses on the development and performance assessment of innovative 

Guidance Navigation and Control functions enabling the autonomous execution of 

close proximity maneuvers of a chaser spacecraft around a resident space object and 

the controlled de-orbiting of micro-satellite by means of aerodynamic drag.  

1.1 Guidance, Navigation and Control Architecture for close-proximity 

operations 

Since last decades, the space community is paying an increasing attention towards the 

theme of the sustainability of the space environment. Indeed, the feasibility of future 

space operations, especially in the most crowded regions such as Low Earth Orbit 

(LEO) and Geostationary Earth Orbit (GEO), is threatened by the presence of space 

debris, [1], [2]. They include spent rocket bodies, inactive satellites, mission-related 

objects and products of fragmentations caused by explosions and/or collisions. Their 

uncontrolled increase could lead to the triggering of a catastrophic chain of collisions, 

named Kessler effect, [3], [4]. Solutions proposed by the scientific community to 

address this problem include the introduction of passive mitigation [5], as well active 

remediation measures, [6]. Regarding passive mitigation measures, until 2022, it was 

recommended to satellite operators to ensure that their spacecraft decay and re-enter 

Earth atmosphere within no more than 25 years, [5]. Recently, the 25-year benchmark 

for post-mission disposal in LEO has been shortened to 5 years. However, many 

studies have highlighted the need of complementing passive measures with active ones 

[7]–[9]: they include Active Debris Removal (ADR), i.e., actively removing a defunct 

satellite from its orbit, and In-Orbit Servicing (IOS) operations which consist in 
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performing refueling, repairing and maintenance operations to active spacecraft to 

extend its operative life. Additionally, the possibility to upgrade already in-orbit 

platforms by performing IOS operations plays a strategic role for space agencies and 

industries due to the potentially associated economic benefits. Anyway, carrying out 

these missions, require a servicing spacecraft performing high risk maneuvers in close 

proximity of a resident space object. In this framework the level of autonomy of the 

spacecraft, especially regarding their Guidance, Navigation and Control (GN&C) must 

be enhanced. The reason is twofold. On one side, the lack of coverage and 

communication delays may make tricky to rely on commands from ground stations; 

on the other hand, high degree of autonomy provides the possibility to increase 

frequency and reliability of future space missions. The main challenge comes from the 

fact that most of the potential ADR and IOS target lack of a dedicated radio-link to 

interact and exchange information with the servicing spacecraft. In this regard, a 

distinction can be made between semi-cooperative and non-cooperative targets: the 

formers are equipped with artificial markers and/or grappling fixtures to ease 

rendezvous and capture operations.  

Regardless of the degree of cooperativeness of the target, a GN&C architecture for 

close-proximity operations must rely on the measurements provided by Electro-

Optical (EO) sensors, either active (e.g., LIDAR system) or passive (e.g., monocular 

camera and stereovision system), [10] to accomplish the relative navigation task. 

Indeed, these sensors can image the target with adequate resolution to ensure the 

determination of the 6 Degree of Freedoms (DOFs) parameters describing the relative 

position and attitude (pose) between the two spacecraft. Clearly, the EO-based 

measurements must be integrated into a filtering architecture (also fed by chaser 

absolute state information) to fully characterize the relative motion with respect to the 
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target (i.e., by also estimating the relative velocity and angular velocity information). 

All these relative state measurements are then required to compute the control actions 

to be exerted by the servicing spacecraft to carry out the planned mission.  

Focusing on the relative navigation function, two major architectural choices can be 

made, thus allowing a distinction between tightly coupled or loosely coupled 

approaches. In the former, the raw data from EO sensors (i.e., images or point clouds) 

are processed to detects a set of features, i.e., fiducial markers in case or semi-

cooperative target or selected geometric structures such as the launch adapter ring or 

the apogee motor when dealing with uncooperative target, whose position is included 

within the state vector of the relative navigation filter [11]. In the loosely coupled case, 

raw sensor data are processed by a separate pose determination block to obtain relative 

position and attitude observables which are used to update the navigation filter 

estimates [12]. Although the use of tightly coupled configurations can have some 

advantages when the target is uncooperative and its shape unknown, they require the 

development of feature detection algorithms robust enough to deal with recursive 

appearance/disappearance of features and a computational effort which increases with 

the number of features to be tracked. Thus, the use of loosely coupled architecture is 

generally preferred thanks to their robustness to self-occlusion phenomena and the fact 

that they allow realizing modular architecture in which different algorithmic 

approaches can be plugged-in to adapt it to the operational scenario without 

significantly affecting its structure.  

In this context, this thesis addresses the relative navigation task of a GNC architecture 

enabling close-proximity operations with respect to both semi-cooperative (i.e., 

equipped with fiducial markers to ease the relative navigation function) and 

uncooperative target. Additionally, while the geometry of an uncooperative target is 
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typically available, there could be a significant uncertainty in the knowledge of its 

inertia parameters due to the prolonged period spent in orbit (e.g., due to exhaustion 

of propellant, collisions or explosions) which are needed to estimate the rotational 

dynamics during approach and capture operations and to control the stack in the post-

capture phase. In this regard, this thesis also presents an approach for the estimate of 

the inertia parameters exploiting the measurements of an EO-sensor and the 

conservation of the angular momentum law to estimate the moment of inertia ratios of 

a tumbling and uncooperative space target. The architecture presented in this thesis is 

tested within a numerical simulation environment which can simulate relevant ADR 

and IOS scenarios by realistically reproducing both the operation of passive and active 

EO sensors, i.e., monocular cameras and LIDAR systems, as well the relative motion 

between two spacecraft. Additionally, the performance of the inertia estimation 

algorithms has been assessed within an experimental set-up which simulates the 

tumbling motion of an uncooperative space target tracked by a solid-state LIDAR. 

This activity has been carried out during a visiting period at the ADAMUS laboratory 

of Embry-Riddle Aeronautical University (FL, USA) in the framework of Programma 

Star – Linea 2 financially supported by the University of Naples “Federico II” and 

Compagnia San Paolo.  

1.2 Trajectory control algorithms for re-entry applications 

The aerodynamic forces experienced by a spacecraft in LEO can be controlled and 

exploited to achieve useful purposes such as planetary aerocapture [13], rendezvous 

with another vehicle [12]-[13], orbital transfer [16], constellation maintenance [17] 

and attitude control [18]. In this context, deployable aerobrake may offer many 

advantages in near future, including the opportunity to control the re-entry trajectory 
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and correctly guide the spacecraft toward a selected landing site in order to recover 

payloads and samples from space with reduced risks and costs with respect to 

conventional systems. Indeed, the aerobrake can be deployed to modify the cross-

sectional area of the spacecraft and, therefore, the ballistic coefficient, thus offering 

the opportunity to perform de-orbiting without the need of a dedicated propulsive 

subsystem and re-entry with reduced aero-thermal and mechanical loads.  

The concept of mechanical deployable aerobrake has been proposed for the first time 

in the late eighties with ParaShield [19] and Bremsat [20]. Recently, NASA has tested 

this technology in a suborbital mission, ADEPT [21] while ESA is developing a 

mechanical deployable heat shield called IRENE [22] which will also be tested in a 

suborbital mission with a scaled-down prototype called Mini IRENE [23]. Also, the 

possibility to exploit inflatable system to deploy heat shields has been investigated and 

tested in the frame of IRDT ESA [24] and IRVE NASA programs [25].   

Regardless of the system used to deploy the aerobrake, the de-orbiting and re-entry of 

a small spacecraft is a critical phase of the mission, where model uncertainties and 

environmental disturbances can cause a significant deviation of the descending path, 

and thus the landing point, from the reference ones. Therefore, the development of a 

control system able to cope with all the uncertainties is vital for the success of the 

mission.  

In the scientific literature, the de-orbit and re-entry control problems have been 

addressed with several approaches. Typically, a nominal trajectory is designed, and 

then a trajectory tracking feed-back controller is used to counteract uncertainties and 

external disturbances. 

In this frame, the second part of this thesis will focus on the development and 

performance assessment of a trajectory control algorithm for a micro-satellite 
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equipped with a deployable and controllable aerobrake. This activity has been carried 

out in the frame of MISTRAL (Micro-Satellite with Air-Launchable Re-entry 

capabilities) project [26], under the supervision of the Campania Aerospace District 

(DAC) and in collaboration with a cluster of industries, research organization and 

universities, whose primary scope is the design of a multi-purpose air-launchable 50 

kg class micro-platform with re-entry capability, equipped with a small recovery 

module.  

The developed trajectory control algorithm has been tested in a numerical simulation 

scenario in which all the relevant perturbations for the scenario under study have been 

included along with the mechanical limitations and constraints posed by the presence 

of the umbrella like actuator.  

1.3 Thesis organization 

The rest of this thesis is organized as follows.  

Chapter 2 presents the state of the art about relative navigation architectures for close-

proximity applications. Also, the current existing techniques for the estimate of the 

inertia properties of uncooperative and tumbling targets are presented. This chapter 

also highlights the contribution of this thesis with respect to the state of the art. Chapter 

3 presents in detail the GNC architecture with a particular focus on the relative 

navigation task. Specifically, two GNC modes are detailed: the monitoring, during 

which the servicer flies around the target following a trajectory which satisfy some 

safety constraints to inspect it and estimate its inertia properties and the final approach 

when the chaser approaches the target and, in case of berthing, the robotic arm grasp 

the selected grappling fixture. Chapter 4 describe the simulation environment built to 

assess the performance of the techniques discussed in Chapter 3 and presents the 
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scenarios simulated in terms of sensors’ characteristics, target geometries and relative 

trajectories. Also, the performance of the GNC architecture in both monitoring and 

close-range phase are presented and discussed. The experimental validation of the 

inertia parameters estimation algorithm with a detailed description of the experimental 

set-up is presented in Chapter 5. Chapter 6 focuses on the aerodynamic-based re-entry 

applications. It presents the state of the art about trajectory tracking algorithms for 

passive deorbiting of spacecraft exploiting aerodynamic drag. Then it presents the 

developed de-orbiting control algorithm and the simulations environment in which its 

performance are evaluated together with a discussion on the achieved results. Finally, 

Chapter 7 draws some conclusions on this work and discusses the possible future 

activities related to it.  
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2. Autonomous GN&C architecture for close-
proximity operations: state of the art 

2.1 Introduction 

In the last decades, many solutions exploiting different technological architectures 

have been investigated to enable operations in close proximity of a resident space 

object, with a particular focus on the navigation function. In this regard, the sensor 

configuration can be passive (i.e., based on monocular camera [27] or stereo cameras 

[28]), active (i.e., LIDAR [29], [30] or Time of Flight cameras [31]) and hybrid [32], 

[33]. For instance, in the recent RemoveDEBRIS mission (i.e., a demonstration 

mission of many active debris removal technologies carried out using two CubeSats 

walking away from each other after the ejection from the ISS), one of the four 

experiments was aimed at testing different vision-based relative navigation 

technologies, namely a panchromatic camera, a color camera and a Flash LIDAR, [34], 

[35].  

2.2 Relative navigation filters 

Regardless of the selection of the most suitable sensor suite, the EO-based sensor 

measurements must be integrated within a filtering scheme to fully characterize the 

relative motion between the servicer and the target. Different solutions are possible 

regarding the filtering scheme suitable to estimate the full target-chaser relative 

navigation state, including Kalman filters, minimum energy filter and H∞ filters. 

Along with the filtering scheme, a dynamic model describing the temporal evolution 

of the system state, and a measurement model which establishes the relation between 

the available measurements and the state variables, must be selected.  
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2.2.1 Filtering schemes 

Kalman filter 

Kalman Filters (KF) are used whenever there are noisy information coming from 

different sources to get an estimate of the system state by minimizing the mean square 

errors between the estimated and the true state. One of the prerequisites to obtain an 

optimal solution is that the dynamics of the observed system must be governed by a 

linear stochastic equation [36], as shown in Eq. (1) 

 𝒙! = 𝐴!"#𝒙!"# + 𝐵𝒖!"# +𝒘!"# (1) 

where k, is the time instant, x represents the state of the system, 𝐴 is the state transition 

matrix (STM), 𝐵 is the input-to-state matrix, u is the input of the system and w 

represents the process noise. Also, the available measurements, z, must be related to 

the system state through a linear relation (the observation equation), as in Eq. (2) 

 𝒛! = 𝐻!𝒙! + 𝝂! (2) 

where 𝐻 is the measurement matrix and ν represents the measurement noise.  

Under the assumption that both the process and the measurement noise are 

characterized by zero-mean white Gaussian distributions, as shown in Eq. (3) and (4), 

the solution provided by the Kalman filter is the optimal one.  

 𝑝(𝒘)~𝑁 00, 𝑄4 (3) 

 𝑝(𝝂)~𝑁 50, 𝑅7 (4) 

In Eq. (3) and (4) the matrices 𝑄 and 𝑅 are the covariances of the process and 

measurement noise, respectively.  
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Given the knowledge of the system state at the time instant k-1, i.e., an a-posteriori 

state and error covariance estimate, 𝒙8!"#$  and 𝑃!"#$ , an a-priori state and error 

covariance estimate at time k is obtained through the time-update equation, shown in 

Eq. (5) and (6).  

 𝒙8!" = 𝐴𝒙8!"#$ + 𝐵𝒖!"# (5) 

 𝑃!" = 𝐴𝑃!"#$ 𝐴% + 𝑄! (6) 

Finally, the a-posteriori state and error covariance estimate at time k, are computed as 

a linear combination of the a priori-state estimate, 𝒙8!" and a weighted difference 

between the actual measurement vector, 𝒛!, and the measurement prediction 𝐻!𝒙8!", as 

shown in Eq. (7) and (8).  

 𝒙8!$ =	𝒙8!" + 𝐾!(𝒛! − 𝐻!𝒙8!") (7) 

 𝑃!$ = 5𝐼 − 𝐾!𝐻!7 𝑃!" 5𝐼 − 𝐾!𝐻!7 + 𝐾!𝑅!𝐾!% (8) 

in which 𝐾! is the Kalman gain, chosen as the factor which minimizes the a-posteriori 

error covariance. The Kalman gain is compute through Eq. (9).  

 𝐾! = 𝑃!"𝐻!% 5𝐻! 	𝑃!"𝐻!% + 𝑅!7
"#

 (9) 

Extended Kalman filter 

However, most of the systems are not governed by non-linear process. When dealing 

with non-linear systems, modified version of the classical KF can be adopted. For 

instance, the Extended Kalman Filter (EKF) linearizes both the time-update equation 

and the observation equation around the current estimate of the state and covariance 
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with a first-order Taylor approximation, [37]. Thus, if the governing equation is 

nonlinear, the process equation has the following form: 

 𝒙! = 𝑓(𝒙!"#, 𝒖!"#, 𝒘!"#) (10) 

Moreover, if the observation equation is nonlinear, Eq. (2) becomes: 

 𝒛! = ℎ(𝒙! , 𝝂!) (11) 

The a-priori estimates of the state and error covariance are given by Eq. (12) and (13).  

 𝒙8!" = 𝑓(𝒙8!"#$ , 𝒖!"#) (12) 

 𝑃!" = 𝛷!𝑃!"#$ 𝛷!% + 𝑄! (13) 

where 𝛷 is the STM derived as a first-order Taylor expansion of the time update 

equation, and it can be computed as in Eq. (14).  

 𝛷! = 𝐼 +
𝜕𝑓
𝜕𝒙B𝒙'!"#$ ,𝒖!"#

(𝑡! − 𝑡!"#) (14) 

Also, the equations providing the a-posteriori state and error covariance estimates are 

modified with respect to Eq. (7) and (8) as follows: 

 𝒙8!$ =	𝒙8!" + 𝐾!(𝒛! − ℎ(𝒙8!")) (15) 

 𝑃!$ = 5𝐼 − 𝐾!𝐻!7𝑃!" 5𝐼 − 𝐾!𝐻!7 + 𝐾!𝑅!𝐾!% (16) 

where the Kalman gain is computed according to Eq. (9) and 𝐻, called sensitivity 

matrix, is computed as the partial derivative of the measurement function h with 

respect to the state evaluated at the current a-posteriori estimate, 𝒙8!"#$ ,as shown in Eq. 

(17). 
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 𝐻! =
𝜕ℎ
𝜕𝒙B𝒙'!"#$

 (17) 

However, the performance of the EKF scheme can deteriorate if the measurement 

equations are strongly non-linear. In this scenario, the Iterated Extended Kalman Filter 

(IEKF) can improve the estimation performance by means of local iteration of the 

update step. As in many iterative methods, the iteration procedure stops when there is 

no significant difference in consecutive iterations or when a user-defined maximum 

number of iterations is reached. At each iteration, the sensitivity matrix, the Kalman 

gain and thus the a-posteriori state estimates are re-computed as follows: 

 𝐻!* =
𝜕ℎ
𝜕𝒙B𝒙'!,&$

 (18) 

 𝐾! = 𝑃!"𝐻!*
% 5𝐻!*𝑃!"𝐻!*

% + 𝑅!7
"#

 (19) 

 𝒙8!,*$ =	𝒙8!" + 𝐾!(𝒛! − ℎ(𝒙8!") − 𝐻!* (𝒙8!" − 𝒙8!,*$ ) (20) 

In Eq. (18)-(20), i is the iteration number. Once one of the convergence criteria is met, 

the procedure is ended, and the results of the last iteration are regarded as a-posteriori 

estimates of the mean and error covariance.  

Both the EKF and the IEKF may introduce large errors in the state estimation due to 

the first-order linearization approximation.  

Unscented Kalman filter 

To deal with highly nonlinear systems, a variant of the KF scheme, namely the 

Unscented Kalman Filter has been introduced, [38]. It exploits a deterministic 

approach to sample the state space, and it allows capturing the posterior mean and 

covariance accurately to the 3rd order. The UKF scheme is based on the concept of the 

unscented transform, which allows avoiding the derivation of the Jacobian matrices 
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required in the EKF formulation. The key aspect of the UKF scheme is the selection 

of the so-called sigma-points (χ), i.e., a set of state vectors chosen so that their sample 

mean and covariance are equal to the mean and covariance of the current state. The 

number of sigma-points is related to the dimension of the state vector. If L is the 

number of parameters chosen to represent the state of the system, 2L+1 sigma-points 

must be defined according to the following relations:  

 𝝌!"## = 𝒙8!"#$  (21) 

 𝝌!"#* = 𝒙8!"#$ + √𝐿 + 𝜆𝑾* , 𝑖 = 2,… . 𝐿 + 1 (22) 

 𝝌!"#* = 𝒙8!"#$ − √𝐿 + 𝜆𝑾* , 𝑖 = 𝐿 + 2,… .2𝐿 + 1 (23) 

In Eq. (22) Wi is the ith column vector of the Cholesky decomposition of 𝑃!"#$ , the a-

posteriori estimate of the covariance matrix, and λ is computed as follows: 

 𝜆 = 𝛼+(𝐿 + 𝑐) − 𝐿 (24) 

where L is the state vector dimension, a and c are two user-define parameters. 

Specifically, the parameter a (selectable from 0 to 1) is related to the spread of the 

sigma-points around the mean of the statistical contribution, while c is typically set to 

0.  In the UKF scheme, the time-update equation is exploited to project ahead in time 

the sigma-points, and an a-priori estimate of the state and error covariance is obtained 

by properly weighting the predicted sigma-points with the assumption that they sample 

a Gaussian distribution as follows, 

 𝒙8𝒌" =	P 𝑤-* 𝑓(𝝌𝒌"𝟏𝒊
+0

*1#
) (25) 
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 𝑃22,! =	P 𝑤3*R𝝌!* − 𝒙8!"SR𝝌!* − 𝒙8!"S
%+0

*1#
+ 𝑄 (26) 

where the weight 𝑤-*  and 𝑤𝒄𝒊 are defined in Eq. (27) 

 

𝑤-# =
𝜆

𝐿 + 𝜆 

𝑤3# =
𝜆

𝐿 + 𝜆 + (3 − 𝛼
+) 

𝑤𝒎𝒊 = 𝑤𝒄𝒊 =
1

2(𝐿 + 𝜆) , 𝑖 = 2, . . ,2𝐿 + 1 

(27) 

Measurements and measurement covariance predictions are also obtained by 

projecting the sigma-points into the measurement space as in Eq. (28)-(30): 

 𝜸'( = ℎ(𝝌'( ) (28) 

 𝒛(' =	* 𝑤)( 𝜸(
*+

(,-
 (29) 

 𝑃.. =	* 𝑤/(-𝜸'( − 𝒛('/-𝜸'( − 𝒛('/
0*+

(,-
+ 𝑅 (30) 

In the UKF scheme, a cross covariance matrix is introduced, computed as in Eq. (31), 

to determine the Kalman gain (Eq. (32)): 

 𝑃1. =* 𝑤/(-𝝌'( − 𝒙3'/-𝜸'( − 𝒛('/
0*+

(,-
 (31) 

 𝐾' = 𝑃1.𝑃..2- (32) 

Once the Kalman gain has been computed, the a-posteriori estimate of the state and 

error covariance are given by:  

 𝒙3'3 =	𝒙3'2 +𝐾'-𝒛' − ℎ(𝒙3'2)/ (33) 

 𝑃'3 = 𝑃'2-3 −𝐾'𝑃..𝐾'0 (34) 
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Anyway, all the KF variants rely on some assumptions on both the process and 

measurement noise.  

Minimum energy filter 

The adoption of a filtering scheme which relies on the minimum energy formulation 

allows removing some hypothesis on both the process and measurement noise. 

According to this scheme, the error signals are assumed square integrable. The 

objective of the minimum energy filters id to find, at each time t, the estimate of the 

state, consistently with the system model, which minimized a cost function on the error 

signals, given the actual measurement U𝒚*|[7,8]X, [39]. The error function can be written 

as follows: 

 𝐽4-𝒙(0),𝒘[6,4], 𝝂[6,4]/ =
1
2
|𝒙(0) − 𝒙36|'!

* +=
1
2
|𝒘(𝜏)|8* +

1
2
|𝒗(𝜏)|9*𝑑𝜏

4

6
 (35) 

with 𝑄, 𝑅 and 𝑘7 weighting matrices and |𝒃|:+ = 𝒃%𝐴𝒃. 

The argument of the integral defines the cost on the energy of the two error signals, 

from which the expression “minimum energy” derives. Also, the subscript [0,t] 

indicates that the optimization takes place on that interval.  

The final optimal state at time t, which represents the state estimate of the system, is 

the one which minimizes the following value function.  

 𝑉(𝒙, 𝑡) = min
𝒘[6,4]

𝐽4(𝒙 , 𝑤[0, 𝑡]) (36) 

 𝒙3(𝑡) = argmin
𝒙
𝑉(𝒙, 𝑡) (37) 

The filtering scheme is given by Eq. (38) and (39), derived by applying the Hamilton-

Jacobi-Bellman (HJB) formulation, 

 𝒙3̇ = 𝐹𝒙3 + 𝐵𝒖 + 𝛴𝐻0𝑅 Q𝒚 − 𝐻𝒙3S (38) 
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 �̇� = 𝑄2- + 𝛴	𝐹0 + 𝐹	𝛴 − 𝛴	𝐻0𝑅	𝐻	𝛴 (39) 

with  

• 𝛴 indicating the inverse of the Hessian of the value function, 

• 𝐹 indicating the system model 

• 𝐵 indicating the input matrix 

• 𝐻 indicating the measurement model.  

H∞ filter 

On the other hand, the H∞ filter minimizes the ∞-norm of the estimation error rather 

than the mean-squared error and it does not make any assumption on the statistics of 

the process and measurement noise, [40]. However, as for the KF, both the system and 

measurement model must be governed by linear equations. Also, the filtering scheme 

is very similar to the KF: the main difference consists in the filter gain 𝐾!, which is 

selected so that the following the relation in Eq. (40) is satisfied: 

 ||𝑻<=||> < 	1/𝜃 (40) 

where ||𝑻;<||= represents the difference between the predicted and real state, and θ is 

a tuning parameter. Eq. (40) leads to the following expression of the gain:  

 𝐾' = 𝑃'2-3 Y𝐼 − 𝜃𝑃'2-3 +	𝐻'0𝑅'2-𝐻'𝑃'2-3 [
2-
𝐻'0𝑅'2- (41) 

The correction equations are modified with respect to the ones of the classical KF as 

shown in Eq. (42) and (43).  

 𝒙3'3 =	𝐹'𝒙3'2-3 + 𝐹'𝐾'(𝒛' −𝐻'𝒙3'2) (42) 

 𝑃'3 = 𝐹'	𝑃'2-3 Y𝐼 − 𝜃𝑃'2-3 +	𝐻'0𝑅'2-𝐻'𝑃'2-3 [
2-
𝐹'0 + 𝑄' (43) 
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However, its performance results more sensitive to the tuning parameters that the one 

of the Kalman filters.  

 

Focusing on space applications, Kalman filters, with all their variants, have a solid 

space heritage: they have been used for navigation purposes in the Apollo space 

program [41], and since then their use for aerospace applications has continuously 

grown ranging from Earth orbiting observation to space exploration missions, 

rendezvous, proximity operations and applications requiring precision formation 

flight. Many GNC architectures enabling proximity operations relies on Kalman 

filtering scheme to integrate within the relative navigation module the measurements 

provided by EO sensors whether according to loosely or tightly coupled 

configurations. For instance, some examples of tightly coupled schemes can be found 

in [11], [33], [42]. Specifically, the architectures presented in [11] and [42] relies on 

features’ coordinates extracted from stereo images fed to an EKF and UKF, 

respectively, while the relative state between two spacecraft is estimated within a UKF 

exploiting 2D features extracted from monocular images and range measurements 

provided by a distance sensor (e.g., laser range finder) in [33]. In the framework of 

loosely coupled architectures, a dual inertial multiplicative EKF can be found in [29] 

in which the pose is measured by processing LIDAR data with the Oriented, Unique 

and Repeatable Clustered Viewpoint Feature Histograms (OUR-CVFH) algorithm.  

Also, the concept of dual quaternion, which as the twofold advantage of providing a 

concise and compact representations of the state parameters and taking the coupled 

rotational-translational motion effect into account, is exploited within an adaptive 

fading factor EKF to filter vision-based pose estimates, [43]. A detailed summary of 
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the advantages and disadvantages related to the different kinds of filtering scheme is 

presented in Table 1. 

 

Table 1 - Filtering schemes: advantages and disadvantages. 

Filtering 

Scheme 
Advantages Disadvantages 

KF 
• Very simple formulation 

• Optimal solution (if all the 

hypotheses are satisfied) 

• Only applicable to the 

case of linear models 

Difficult to tune 

EKF/IEKF 

• Capability to handle Non-linear 

models 

• Costly Jacobian 

matrices computation 

• Based on local 

approximations 

UKF 

• Capability to capture the first 

three moments of an arbitrary 

PDF 

• Jacobian-free 

• Issues with nearly 

singular covariances 

• Computationally 

expensive (Cholesky 

Factorization every time 

step) 

Minimum 

Energy 

Filter 

• No assumption on the PDFs of 

noise models 

• Complex mathematical formulation 

H-∞ Filter • No assumption on the PDFs of 

noise models 

• Only linear models 

2.2.2 Process model for spacecraft dynamics 

Regardless of the selected filtering scheme, a model describing the temporal evolution 

of the state variable must be identified. Generally, these models rely on the hypothesis 

that the translational and rotational dynamics are decoupled. While the standard model 

for the rotational dynamics is represented by the Euler equation coupled with the 

kinematics of the corresponding parameters representing the attitude (i.e., 

quaternions), different option for the relative translational model can be found in the 

open literature. In this scenario, the relative translational motion between two 
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spacecraft can be modelled by a set of non-linear differential equations derived from 

the combination of the two-body problem written for both spacecraft under the 

assumption of Keplerian mechanics [44], as shown below 

 

 
�̈� −

𝜇
𝑟/*
+

𝜇(𝑟0 + 𝑥)

[(𝑟0 + 𝑥)* + 𝑦* + 𝑧*]
?
*
− 	2�̇�θ̇ − 𝑦θ̈ − 𝑥θ̇* =	𝑓0,1 

�̈� +
𝜇𝑦

[(𝑟0 + 𝑥)* + 𝑦* + 𝑧*]
?
*
+ 	2�̇�θ̇ − 𝑥θ̈ − 𝑦θ̇* =	𝑓0,@ 

�̈� +
𝜇𝑧

[(𝑟0 + 𝑥)* + 𝑦* + 𝑧*]
?
*
=	𝑓0,. 

(44) 

where x, y and z are the Cartesian components of the relative position vector expressed 

in a reference frame centered in the center of mass of the target in which the x-axis 

points outwards the Earth center, the z-axis is parallel to the angular momentum vector 

and the y-axis completes the right-handed triad, fT is the specific thrust force acting on 

the chaser spacecraft, μ is the Earth gravitational constant, rT is the norm of the position 

vector of the target position vector, �̇� and �̈� are the orbital and angular velocity 

accelerations of the target spacecraft which can be expressed as in Eq. (45) and (46) 

with aT, eT and θ being the semi-major axis, eccentricity and true anomaly of the target. 

 θ̇ = d
𝜇

𝑎0?(1 − 𝑒0*)?	
(1 + 𝑒0 cos 𝜃)* (45) 

 θ̈ = 	−
2𝑟0̇θ̇
𝑟0

 (46) 

The model reported in Eq. (44) can be linearized by applying the assumption that the 

two spacecraft fly in close proximity, obtaining the Yamanaka-Ankersen relative 

motion model [45], as shown in the following   

 �̈� − 2𝑘𝜃
?
*𝑥 − 2𝜃�̇� − �̇�𝑦 − 𝜃*𝑥 = 𝑎0,1 (47) 
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�̈� + 𝑘𝜃
?
*𝑦 + 2𝜃�̇� + �̇�𝑥 − 𝜃*𝑦 = 𝑎0,@ 

�̈� + 	2𝑘𝜃
?
*𝑧 = 𝑎0,. 

where k is equal to μ/h3/2, being h the norm of the angular momentum vector of the 

target.  

The model of Eq. (47) can be further simplified into the Clohessy-Wiltshire (CW) 

equations, shown in Eq. (48), where n represents the mean motion of the target 

spacecraft, by applying the further assumption that the target moves on a circular orbit, 

[46]. 

 

 �̈� − 2𝑛�̇� − 3𝑛*𝑥 = 𝑓0,1 

�̈� + 2𝑛�̇� = 𝑓0,@ 

�̈� + 𝑛*𝑧 = 𝑓0,. 

(48) 

The hypothesis used to derive the relative motion models are summarized in Table 2. 

Despite the simplistic hypothesis on which the CW model relies, due to the time scales 

of the problem (the prediction is update with a frequency in the order of few Hz in 

close-proximity operations), it is the most used model to describe the relative 

translational motion between two spacecraft.  

Table 2 - Relative translational motion models: hypothesis. 

Relative translational motion 
model 

Hypothesis 

Two-body 
mechanics 

Close 
Proximity 

Target on a 
circular orbit 

Gurfil et al. [44] ✓   

Yamanaka-Ankersen [45] ✓ ✓  

CW-equations [46] ✓ ✓ ✓ 

Regarding the target-chaser rotational motion, a kinematics and dynamics model must 

be introduced. The attitude kinematics can be modelled using the quaternion 
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parametrization of the attitude. Indeed, with respect to the Euler angles representation, 

the unit quaternion is not affected by singularity problem. Thus, the attitude kinematics 

is modelled through Eq. (49), where q is the unit quaternion representing the 

orientation of the target body frame with respect to a chaser body frame and ωrel is the 

angular velocity of the target with respect to the chaser and ⊗ represents the 

quaternion product. 

 �̇� =
1
2 [0	𝝎A<B] ⊗ 𝒒 (49) 

The dynamic model is instead represented by the well-known Euler equation, under 

the free-body assumption, 

 �̇�09C/E9C	 =	−𝐼02-(𝝎09C/E9C × 𝐼0𝝎09C/E9C) (50) 

where 𝝎%>?/A>? is the inertial angular velocity of the target and 𝐼% its inertia matrix. 

2.3 Relative navigation architecture for state and target’s inertia 

estimation 

Since target inertia properties might have changed due to the long time spent in orbit, 

and since their knowledge is required to both allow the estimate of the relative 

rotational motion during the approach phase and to control the stack after the capture, 

the development of reliable and robust techniques to accurately reconstruct the inertia 

properties before performing the final approach and berthing or docking operations is 

a critical task. In this respect, the pose data retrieved by EO sensors can be exploited 

to estimate the inertia properties of the target. However, it is worth to highlight that 

without perturbing the rotational dynamics of the target with an external torque and 

observing the resulting change in its rotation [47]–[49], the inertia matrix can be 

estimated up to a scale factor. This torque can be generated by either physically 
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impacting the target, [47], [49] or by getting close to it with a permanent magnet able 

to produce eddy currents [48]. Clearly, these procedures imply that the chaser 

approaches closely to the target to perturb it, thus risking unwanted collisions and 

possibly, fragmentations. Hence, safer, contactless approaches shall be preferred: 

estimate the moment of inertia ratios (MIRs) during the monitoring phase, when the 

two spacecraft are in a safe relative configuration, and then determine the scale factor 

when they are rigidly attached. In this regard, Setterfield et al. propose a method in 

which the principal axes and the inertia ratios are estimated by comparing an 

analytically predicted polhode (i.e., the curve traced by the angular velocity vector in 

the body reference frame of the target) with the one reconstructed by means of attitude 

and angular velocity data retrieved from visual sensor (in uncooperative case) or gyro 

data (in cooperative case), using a constrained optimization approach, [50]. The 

pipeline of this approach is depicted in Figure 1, where .  
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Figure 1 - Pipeline for the estimation of the principal axes and inertia ratios, [50].  

Once the target angular velocity has been estimated, the rotational motion is classified 

as single-axis or multi-axis rotation in order to determine if the inertial properties are 

observable: indeed, in case of single-axis rotation, the polhode curve collapses into a 

point which has no dependence on the direction of the principal axis or the MIRs. In 

case of multi-axis rotation, the direction of the principal axes with respect to the 

generic target fixed body frame is estimated by finding the rotation that correspond to 

ellipses and/or hyperbola that best fit the planar projection of the polhode curve. Then, 

the MIRs that fit the noisy polhode data are determined as the ones that minimize the 

Mahalanobis difference between the predicted and measured angular velocities.  This 

method was tested aboard the International Space Station using visual and gyroscope 

data of the Synchronized Position Hold Engage and Reorient Experimental Satellites 
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(SPHERES) and the Visual Estimation for Relative Tracking and Object Inspection 

(VERTIGO) and visual data from numerical simulation.  

On the other hand, kinematic equations of motion and the principle of the conservation 

of the angular momentum vector in the inertial frame can be exploited for MIRs 

estimation purposes. For instance, Sheinfeld et al. describe a strategy for the estimation 

of both center of mass location and MIRs of a tumbling space target which exploits an 

unconstrained least square approach. Moreover, it identifies the condition to be met 

which guarantees a physical solution: the angular velocity measurements involved in 

the MIRs determination procedure must be linearly independent, [51]. This approach 

has been extended in [52] to take the inequality constraints on the inertia parameters 

into account and to ensure positive diagonal entries in the estimated MIRs matrix by 

applying the active set method for convex quadratic programming. Also, the authors 

provide a discussion on the observability of the inertial properties. It is underlined that 

they can be fully estimated only when the nutation angle, i.e., the angle between the 

angular momentum vector and the angular velocity vector, is nonzero; whilst in case 

of pure rotation (i.e., when the target rotates around one of its principal axes) the MIRs 

matrix is not fully observable.  

Thus, the determination of the inertia properties of a non-cooperative space target 

cannot prescind from its motion parameters estimation. 

However, most of the state-of-the-art GNC architecture enabling close proximity 

operations which address the target’s inertia and motion state determination task relies 

on tightly coupled architectures and stereovision system as main relative navigation 

sensor. For instance, [28] presents a relative navigation architecture which enables 

close proximity operations with non-cooperative space object coping with 

uncertainties on the inertia properties of the target. The main filtering scheme is an 
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IEFK aiming at estimating the position of the tracked feature along with the relative 

motion parameters. The navigation filter is coupled with an inertia estimation 

algorithm based on the evaluation of a likelihood score over a set of probable inertia 

tensors. The resulting approach consists into different IEKF assuming different 

probable inertia tensor. Each filter determines the state vector assuming a hypothetical 

target inertia tensor. The most probable inertia tensor is then determined as the one 

corresponding to the IEFK with the lowest innovation variance using a Maximum A 

Posterior (MAP) estimator. The performance assessment is carried out within a 

numerical simulation environment in which a set of features on the target surface is 

assumed to be perfectly tracked from a sequence of stereo-images and within an 

experimental set-up with a 3-DOF (2 translational and 1 rotational) shown in Figure 

2. The experimental results show a 20-cm and 5 cm error (1σ) in the range and features’ 

positions, respectively and a steady-state estimation error of 0.5° for the relative 

attitude. Finally, the only observable MIR is estimated with a 10% accuracy.   

 
Figure 2 - Experimental 3-DOF set-up to test stereo-based motion and inertia parameters 

estimation algorithm, [28]. 

 A similar approach, in which the IEKF is substituted with an Interaction Cubature KF 

(InCKF) is proposed in [53]. Indeed, the CKF guarantees improved performance with 

respect to conventional nonlinear filters when dealing with high dimensional nonlinear 

systems. However, the presence of several estimation filters working simultaneously 

requires high computational power. Numerical simulations which simulate the 
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measurement error on the tracked features with Gaussian noise distribution show more 

accurate results than the one achieved with the IEKF.  

A different parametrization of the inertia properties corresponding to the logarithmic 

algorithm of the principal MIRs is introduced in [54]: this allows to solve the 

estimation problem without considering additional constraints, having the logarithm 

the same validity domain of the inertia ratios, i.e., ]0, +∞[. This work relies on the 

development of a probabilistic factor graph process model based on both rigid-body 

kinematics and dynamics, i.e., Newton’s second law and Euler’s equation. Figure 3 

shows a generic pose graph model in which the nodes of the graph, represented as 

circle, contains the variable to be estimated (i.e., the state x and the position of the 

features l) while the rectangles represent the factors modeling the joint probability 

distribution between the nodes which represents the error between the variables in the 

nodes that must be minimized. The pose-graph optimization problem is then solved 

with the Incremental Smoothing and Mapping (iSAM) which, with respect to classical 

approach for Simultaneous Localization and Mapping (SLAM), allows updating only 

those entries of the information matrix that change within a time step.  

 
Figure 3 - Generic Pose Graph Model, [54]. 

This method has been validated on-board the International Space Station using 

SPHERES and the VERTIGO test platform.  
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The same logarithmic parametrization of the MIRs by Tweddle has been adopted in 

[11] for the simultaneous estimation of the state and inertia parameters of an 

uncooperative target within a filtering procedure, which is more efficient than a 

smoothing algorithm from a computational point of view, in which the MIRs are 

addressed as time-independent variables. Specifically, the authors compare the 

performance of a EKF and an IEKF in which the MIRs are addressed as time-

independent variable and a pseudo-measurement constraint is added to force the inertia 

rations to converge to the correct value: this pseudo measurement is the classical Euler 

equation for the rotational dynamics of free-rigid bodies. Thus, a null output is 

considered in the measurement vector, whilst the Euler equation is added to the 

observation model. The main drawback of this approach comes from the need of 

angular acceleration measurements in pseudo-measurement equation which can be 

only retrieved by numerical differentiating the angular velocity measurements. The 

performance assessment is carried out within a numerical simulation environment 

which simulates the performance of a stereo-vision system by adding a Gaussian error 

to the reference position of the tracked features.   

An adaptive UKF and the classic MIRs inertia parametrization is instead adopted in 

[42]. The authors integrate a classical UKF scheme for state and inertia parameters 

estimation with an adaptive algorithm which aims at modifying the covariance of the 

MIRs according to the measurement updating errors of the relative state obtaining a 

two-stage state and MIRs estimation procedure. First, the covariance of the MIRs is 

set large to ensure a sufficient degree of variability of the relative state parameters. 

Then, when the measurement updating error of the relative state reaches a certain 

threshold, the covariance of the MIRs is decreased so to ensure the convergence of 

both relative state and MIRs estimation errors. The validity of the proposed method 
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has been verified within a numerical simulation environment simulating the noise of 

the tracked feature position with a Gaussian distribution. Stereo-vision measurements 

are exploited also in [55] in which the authors propose a method that allows 

determining the motion of a freely tumbling rigid body, including the MIRs, using a 

set of tracked feature by solving an optimization problem in which the objective 

function is the difference between the observed and predicted motion, thus without 

relying on a filtering scheme.  

However, the use of stereovision systems can be effective only at very short distance 

(e.g., up to ten meters) due to the limits posed on the achievable baseline by installation 

constraints. Alternative technological solutions to stereo-vision systems have also 

been considered. In [56], the relative motion and the target inertia parameters are 

estimated in a two-stage algorithm which exploits the measurement provided by a 

monocular camera. In the first stage the initial condition for the motion propagation 

and the target’s tensor of inertia are estimated by minimizing the difference between 

the points’ pixel coordinate of a set of features tracked by a passive monocular camera 

and the corresponding ones on the target model through a continuous time interval, in 

a least square sense. In the second stage, the pose is tracked in real-time by minimizing 

the reprojection error of a set of features extracted in the monocular image. The 

algorithm has been tested using the frames acquired during the separation of the 

satellite “Chibis-M” from the cargo vehicle “Progress-13M”. The results underline the 

major drawbacks related to the use of passive systems which is the presence of the Sun 

that can cause overexposure effect. On the contrary, active vision system guarantees 

robustness against the harsh lighting condition that a spacecraft may encounter on 

orbit.  



 46 

Active systems are often integrated within loosely coupled architectures.  In this 

regards, Aghili et Parsa propose an EKF which estimates the full relative motion state 

and the inertia parameters of the target satellite as well as the covariance of the 

measurement noise by exploiting the pose measured with data provided by a Laser 

Camera System (LCS), [57]. Experimental results demonstrate the possibility to 

implement the presented scheme in real-time and also its robustness against the 

occlusion of the sensor for a limited time interval (e.g., 10 seconds). The use of active 

systems is also foreseen in [58] where range images acquired by a set of cooperating 

3D sensors are exploited for the estimate of the motion state, shape and inertia 

parameters of uncooperative and unknown target. The proposed architecture, shown 

in Figure 4, estimate the pose parameters (i.e., relative position and attitude) by 

performing the kinematic data fusion of the range images which are fed to a KF to 

determine the full motion state and target’s inertia parameters. At the same time, the 

range data are exploited to reconstruct the shape of the target using a stochastic map-

building approach. However, the numerical simulations carried out for performance 

assessment relies on the hypothesis that the range sensors are perfectly synchronized 

with respect to each other. 
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Figure 4 - Pipeline for the estimation of state, shape and inertia of uncooperative space target 

using range images, [58]. 

The possibility to deal with an unknown target is addressed also in [59] where the 

authors use the Iterative Closest Point (ICP) algorithm to track the pose of an 

uncooperative target by registering consecutive point clouds measured with a LIDAR 

system and estimate the target MIRs within an EKF settings. The performance of the 

proposed scheme are assessed within an experimental set-up which simulates both the 

rotational and translational motion of the chaser, while the target simulator is fixed on 

a 3-axis platform. Despite the high accuracy achieved in the estimate of the relative 

motion parameters (cm-level and degree error level for the relative position and 

attitude), the inertia parameters converge to constant biases due to the weak 

observability of the system caused by the low angular velocities in play. More in 

general, some limitations arise from the use of KF for inertia properties estimation due 

to the strong influence on the achievable results of the filter tuning parameters and to 

the strong sensitivity to non-Gaussian noise which usually characterize the vision-

based measurements.  
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To conclude, Table 3 provides a summary of the reviewed architectures for motion 

and inertia parameters estimation of non-cooperative space object.  

 

Table 3 - Survey of approaches for motion and inertia parameters determination of 
uncooperative space target. 

Reference Relative navigation sensor Algorithmic solutions Performance 

Assessment 

criterion 

[28] Stereo-vision system IEKF + MAP 

estimator 

Ground-based 

experimental test 

[53] Stereo-vision system InCKF + MAP 

estimator 

Numerical 

simulations 

[54] Stereo-vision system Factor graph model-

based smoothing 

algorithm 

Experimental test 

in micro-gravity 

condition 

[11] Stereo-vision system EKF/IEKF Numerical 

simulations 

[42] Stereo-vision system AUKF Numerical 

simulations 

[55] Stereo-vision system LSO Numerical 

simulations 

[56] Monocular camera LSO Numerical 

simulations using 

real images 

[57] Active sensor EKF Ground-based 

experimental test 

[58] Multiple active sensors EKF Numerical 

simulations 

[59] LIDAR EKF Numerical 

simulations 
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2.4 GNC architecture for close approach phase 

As stated in Chapter 1, the knowledge of the inertia properties of the target is vital to 

plan the final phase of a rendezvous mission (namely, reach and capture phase) and it 

must be carried out during the monitoring phase. If the target is tumbling, or does not 

have a proper docking interface, the best way to capture it is by means of a robotic 

arm. It stays in a stowed configuration until the start of the reach and capture phase, 

when it is deployed so to reach a pre-defined grasping point on the target surface. In 

this phase, it is mandatory to have an accurate knowledge of the position of the end 

effector placed at the end of the robotic arm with respect to the target. In this case, the 

relative navigation subsystem may include (if necessary) an active or passive EO 

sensor on the tip of the robotic arm end effector.  In the following, the main 

architectural solutions proposed in the recent literature are recalled, highlighting their 

main advantages and drawbacks.  

In the framework of the COMRADE project, two different options for the GNC 

architecture were proposed, [60]. The architectures were developed to be suitable to 

both ADR and OOS scenarios in which the chaser spacecraft is equipped with a robotic 

arm. According to the first option (Option 1 in the following), the navigation function 

is entrusted to two different EO sensors, one mounted on the body of the chaser 

spacecraft, and the other mounted near the end-effector of the robotic arm. The 

measurements retrieved by the raw data, i.e., the target/chaser and end-

effector/grasping point poses, are then processed by two different navigation filter, 

according to the scheme in Figure 5. The “Navigation Filter Chaser” fully 

characterizes the relative motion between the two spacecraft by exploiting the 

measured pose and chaser absolute navigation state, while the “Navigation Filter 



 50 

Visual Servoing” provides refined estimate of the gripper/grasping point pose together 

with relative velocity and angular velocity information by exploiting the pose 

measured by means of the sensor fixed to the robotic arm, the kinematic model of the 

manipulator and also the output of the “Navigation Filter Chaser” 

 
Figure 5 - GNC architecture COMRADE project, Option 1, [60]. 

The second option, Option 2 in the following, investigated in the framework of the 

COMRADE project is depicted in Figure 6. The relative navigation function is 

entrusted to an EO sensor mounted on the body of the chaser which provides the 

target/chaser pose measurement, while the gripper/grasping point pose information is 

retrieved by combining the joint positions, the robotic arm kinematic model and the 

target/chaser measured pose. 
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Figure 6 GNC architecture COMRADE project, Option 2, [60]. 

A different architecture (Option 3 in the following) relying on two EO sensors, one 

body mounted and one fixed to the robotic arm is presented in [61]. In this case the 

two EO sensors share the recognition task in a collaborative behavior, i.e., they trace 

different feature points on the target surface to measure the pose parameters according 

to the scheme provided in Figure 7. As in the Option 2 proposed in the framework of 

the COMRADE project, the pose of the end effector with respect to the grasping point 

can be computed by combining the joint positions, the robotic arm kinematic model 

and the target/chaser measured pose. 
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Figure 7 - Flow-chart for the pose estimation with collaborative cameras, [61]. 

Some trade-off considerations about the described architectures are reported below. 

• The main advantage of Option 1 with respect to Option 2 is the possibility to 

compensate the ego motion uncertainty of the robotic arm introduced by the 

kinematic model, i.e., by the uncertainty in the knowledge of the joint’s 

rotation angles. Clearly, the update rate at which this compensation is carried 

out is limited by the measurement rate of the camera on the robotic arm. 

• In scenarios in which the residual relative motion between the target and the 

chaser during the reach and capture phase is particularly slow, as well as when 

the target is collaborative (i.e., its attitude can be actively controlled to ease the 
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capture operations) or semi-collaborative (i.e., it keeps a stable attitude), 

Option 2 can be also viable. In this respect, the main disadvantage of Option 1 

with respect to Option 2 is given by the additional computational burden 

required to process the data acquired by the sensor attached to the end effector. 

• Option 3 can be applied to scenarios in which the body-fixed camera and the 

robotic arm are mounted on the chaser so that only the hand-in-eye camera 

looks at the target face hosting the selected grasping point. One major 

drawback related to this approach lies in the fact that the ego motion 

uncertainty of the robotic arm will affect not only the robotic arm/grasping 

point, but also the target/chaser pose estimation process. This occurs since the 

robotic arm kinematic model must be used to get the LOS of the feature points 

detected by the hand-in-eye camera with respect to the body-fixed camera 

reference frame. Moreover, this approach is only applicable if an initial guess 

for the length of the position vector of the above-mentioned feature with 

respect to the hand-in-eye camera is available. 
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3. Autonomous GNC architecture for close-
proximity operations 

This section describes the details of the developed GNC architecture for both the 

monitoring and reach and capture phase. The relative navigation architecture for the 

reach and capture phase has been developed in the framework of the GRACC 

(preparation of enabling space technologies and building blocks: Gnc and Robotic 

Arm Combined Control) study, conducted under ESA contract by a consortium of 

Italian universities composed by teams from Università degli Studi di Padova, 

Politecnico di Milano and Università degli Studi di Napoli “Federico II”. Specifically, 

for the monitoring phase, an original LIDAR-based relative navigation architecture 

which relies on a multi-step strategy to estimate both the target-chaser relative motion 

parameters and the MIRs of the target. The focus of LIDAR systems is motivated by 

their capability to provide direct 3D data about the observed scene, unlike monocular 

cameras, with much larger operative range than stereovision systems. On the other 

hand, for the reach and capture phase, the relative navigation function relies on two 

sensors and two separate filtering schemes, inspired by Option 1 of the COMRADE 

project. This approach has advantages in terms of flexibility and modularity with 

respect to designing a single filter since it allows to continuously update the state of 

the robotic arm with respect to the grasping point independently of the availability of 

measurements from the robotic arm sensor (e.g., when the robotic arm is being 

deployed from its stowed configuration and the target is not enclosed in the robotic 

arm sensors’ FOV). 

Before introducing the developed architectures for the monitoring and reach and 

capture phase, the mathematical notation as well a list of the reference frame adopted 

within this thesis is provided in the following sub-chapter.  
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3.1 Mathematical Preliminaries 

The following mathematical notation are adopted. 

• Plain italic letters (a) are used to indicate scalar quantities. 

• Bold italic letters (a) are used to indicate vector. 

• Double underlined capital italic letters 5𝐴7	 are used to indicate matrices.  

Also, the position vector of a reference frame B with respect to a reference frame A in 

reference frame C is indicated as 𝒕:→CD , while 𝒗C/:D  represents the velocity (both 

translational and rotational) of a frame A with respect to frame B in frame C. The 

superscript is omitted if C coincides with A. Finally, the rotation matrix from reference 

A to reference B is indicated as 𝑅:C and its corresponding quaternion is denoted as qB/A. 

The list of the relevant reference frames used within this thesis is here provided and 

their graphical representation is depicted in Figure 8. 

• Inertial Reference Frame (IRF): inertial frame with the origin at the Earth 

center of mass (COM). The x axis points to the mean equinox of the year 

2000, the third axis is aligned with the Earth rotation axis, and the second 

axis completes the right-hand triad. 

• Hill’s Reference Frame (HRF): reference system centered in the spacecraft 

COM. The x axis points outwards the Earth center, the z axis lies along the 

direction of the angular momentum vector and the y axis completes the 

right-handed triad.  It is useful to describe the relative motion between two 

spacecraft. 

• Chaser Reference Frame (CRF): centered in the center of mass of the chaser. 

The directions of the three axes are fixed with respect to the spacecraft body.  
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• Chaser Sensor Fixed Frame (CSFF): a reference frame with the origin in the 

optical center of the EO sensor with the z axis in the sensor boresight 

direction. The x and y axes lie in the image plane forming a right-hand triad. 

The suffix arm indicates the reference frame fixed to the EO-sensor 

mounted on the robotic arm. 

• Robotic Arm Base Frame (RABF): reference frame with the origin at the 

nominal center of the base of the robotic arm.  

•  Target Reference Frame (TRF): centered in the center of mass of the target 

whose axes are fixed with respect to the target body.  

• Target Attachment Point Frame (TAPF): reference with the origin at the 

nominal point of contact with the target. 

 

 

Figure 8 - Representation of the reference frames adopted. 

3.2 Relative navigation approach for the monitoring phase  

The multi-step approach adopted in the developed relative navigation architecture is 

highlighted in Figure 9. In the first step, the pose is initialized by means of a template 

matching technique, [62]. The second step includes the tracking of the pose parameters 
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through an ICP-based algorithms. The pose estimates are also employed to determine 

the target absolute angular velocity. After a temporal interval large enough to ensure 

an adequate variation of the target angular velocity, e.g., one relative orbit, these 

measurements are processed to obtain an estimate of the target MIRs. Finally, in the 

third step, the full relative state estimation is entrusted to an UKF loosely coupled with 

the ICP-based pose tracker.  

 

Figure 9 - Block diagram highlighting the multi-step approach of the developed relative 
navigation architecture for the monitoring phase. The processing steps are highlighted in red, 

the constant and time-varying input parameters are highlighted in blue and orange, 
respectively, the outputs in black. 

3.2.1 Pose Acquisition 

This sub-chapter aims at describing the first step of the relative navigation architecture 

corresponding to the pose acquisition, i.e., the determination of the pose parameters 

without any a-priori information on the relative motion state.  

Once the first point cloud is acquired by the LIDAR sensor on board the chaser, an 

initial coarse estimate of the pose parameters is firstly obtained by applying the on-

line PCA-based Template Matching (PCA-TM) algorithm, [62]. It consists of the 

following phases. First, a tentative solution for the relative position vector of the chaser 

with respect to the target is computed as the centroid of the point cloud. Second, 

according to the Principal Component Analysis [63], the direction of the target main 
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axis is estimated as the eigenvector corresponding to the maximum eigenvalue 

associated to the point cloud covariance matrix. While two rotational DOFs can be 

directly derived from this direction, the remaining one is computed by applying a TM 

approach [62]. Since it is not possible to directly establish whether the target main axis 

is parallel or antiparallel to the direction estimated by the PCA, an ambiguity arises in 

the estimation of the main axis orientation, and, consequently in the relative attitude 

quaternion. This ambiguity in the pose vector is solved by applying twice a customized 

version of the ICP algorithm (whose main concept are recalled in the next sub-chapter) 

and choosing the solution characterized by the minimum value of the cost function. It 

is important to highlight that the initialization is considered successful if the ICP error 

metric function at convergence and the number of iterations are lower that the pre-

defined thresholds. In fact, these parameters represent a measure of the pose estimation 

accuracy level. Hence, this approach ensures robustness against unfavorable 

observation conditions which may be encountered at the beginning of the monitoring 

phase. Clearly, if one of the two condition is not met, the initialization step is re-applied 

to a new point cloud. 

It is worth outlining that the PCA-TM algorithm is tailored to target having a main 

geometric direction (indeed, most resident space objects, such as rocket bodies, have 

an elongated structure). However, in case the target does not have this characteristic, 

the initialization scheme can still be applied by substituting the PCA-TM algorithm 

with different state-of-the-art techniques able to provide an estimate of the pose 

parameters without relying on a prior-knowledge of the pose parameters [29], [64]–

[67].  
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3.2.2 Pose tracking and MIRs estimation 

Once the pose has been initialized, the target motion is monitored through an ICP-

based pose determination strategy. By definition, the ICP is an iterative technique 

aiming at aligning two datasets by finding correspondences between them and 

minimizing an error metric function, [67]. In this case, the datasets to be aligned are a 

model point-cloud (built based in the available information about the target geometry) 

and the LIDAR point cloud. Hence, the following error metric function can be 

minimized to get the orientation and the translation vector aligning the two point 

clouds: 

 
𝑓ADE(𝑻, 𝑞) =

1
𝑁F

Pf𝑷G* − 𝑅(𝑞)%R𝑷0* + 𝑻Sf
+

HG

*1#

 
(51) 

where 𝑷G*  and 𝑷0*  are the corresponding i-th points in the model and LIDAR point 

cloud, respectively, while 𝑁F is the number of the correspondences, T is the relative 

position vector of a reference frame fixed to the sensor with respect to acquired point 

cloud and 𝑅(𝒒) is the rotation matrix corresponding to the relative attitude quaternion 

q.  

At the same time, also the angular velocity of the target is tracked by exploiting the 

ICP-based relative attitude knowledge and the data coming from the absolute 

navigation system of the chaser. The inertial attitude of TRF can be computed as in 

(59): 

 𝒒%>?/A>?(𝑡7 + 𝛥𝑡) 	= 	𝒒%>?/A>?(𝑡7)	⨂	𝛥𝒒%>?/A>? (52) 

where 𝛥𝒒%>?/A>? is the quaternion that describes the target attitude variation between 

𝑡7 and 𝑡7 + 𝛥𝑡. By applying the small angle assumption (which is verified if the pose 

measurement update rate is large enough with respect to the relative attitude variation 



 60 

rate), the term 𝛥𝒒%>?/A>? can be approximated by considering the vector form of the 

rotation angle between two different time instants, as in Eq. (59). 

 
𝛥𝒒0/E ≈	s

1
1
2𝛥𝜱

u 
(53) 

Once the rotation vector that describes the change in the attitude of the target is 

known, its absolute angular velocity can be computed under the small angle 

assumption as: 

 𝝎09C/E9C
09C ≈	

𝑑𝜱
𝑑𝑡  

(54) 

The time derivative as shown in Eq. (54) is computed numerically by applying a 

first order finite difference method. Since the estimate of the absolute angular velocity 

of the target must be as accurate as possible in order to correctly compute the target 

MIRs, the time interval over which the rotation angle is computed is not constant, but 

it is chosen depending on the accuracy of the measured relative attitude. Indeed, as 

anticipated, the value of the error metric function at convergence of the ICP algorithm, 

fEND, can be used as a measure of the pose accuracy. The output of the iterative process 

is used to compute the numerical derivative only if the value of fEND, is lower than a 

selected threshold, τICP. Also, once the first good estimate if the relative pose is 

obtained, the angular velocity is estimated by considering a time interval short enough 

to keep the small angle assumption valid. Specifically, the equivalent Euler angle 

which describes the attitude variation between the two time instants must be lower 

than 10°. After the chaser has collected enough information (e.g., after completing one 

relative orbit in LEO), the target MIRs can be estimated by exploiting the principle of 

the conservation of the angular momentum vector. This is possible since the target is 

a tumbling rigid body which can be assumed torque-free if the effects of the external 

forces are negligible in the short period. The principle states that the components of 
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the angular momentum vector of a free rigid body in an inertial frame remains constant 

over time, leading to the following relation, 

 𝒉A>? = 𝑅%>?A>? (𝑡)𝐼%𝝎%>?/A>?
%>? (𝑡) (55) 

where 𝒉A>? is the angular momentum vector in IRF and 𝐼
𝑇

 is the target inertia matrix. 

Equation (6) represents a linear system with 9 unknowns (i.e., three components of 

𝒉A>? and six elements of 𝐼
𝑇

) and can be written in the explicit form 𝐴𝒙 = 𝒃: 

 l𝛺 −𝑅A>?%>?n o 𝑰𝒗
𝒉A>?

q = [𝟎K2#] (56) 

where 

• 𝛺 is a matrix containing the components of the angular velocity vector 

𝝎%>?/A>?
%>? = [𝜔2; 	𝜔L; 	𝜔M]. 

 
𝛺 =	 w

𝜔2 −𝜔L −𝜔M 0 0 0
0 −𝜔2 0 𝜔L −𝜔M 0
0 0 −𝜔2 0 −𝜔L 𝜔M

x 
(57) 

 

• 𝑰𝒗 is a vector containing the six moments of inertia with respect to the TRF 

axes, 

 𝑰𝒗 =	 [𝐼22 𝐼2L 𝐼2M 𝐼LL 𝐼LM 𝐼MM]′ (58) 

• 𝟎K2# is a 3-by-1 null matrix. 

It is worth noting that the number of rows in the linear system shown in Eq. (56) is 

lower than the number of unknows, thus three linearly dependent angular velocity 

vectors must be considered to find a solution.  

Also, since (56) represents a homogeneous system, it cannot be completely solved, but 

its solution can be determined up to a scale factor. If the linear system is non-

dimensional with respect to the term 𝐼22, a unique solution can be determined. Thus, 

the linear system to be solved becomes: 
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w
−𝜔L −𝜔M 0 0 0
−𝜔2 0 𝜔L −𝜔M 0
0 −𝜔2 0 −𝜔L 𝜔M

z −𝑅A>?C>?x o 𝑰
{𝒗
𝒉|A>?

q = }
−𝜔2
0
0
~ 

(59) 

 

where 𝑰{𝒗 contains the MIRs of the target while 𝒉|A>? is the ration between the inertial 

components of the angular momentum vector and 𝐼22.  

The whole process of the on-line MIRs estimation is summarized in Figure 10. Ideally, 

the target MIRs could be computed by considering three different angular velocity 

measured at different time instants. However, the estimated data about the absolute 

rotational dynamics of the target are affected by noise. So, more than three 

observations (N, in general) are needed to improve the accuracy of the results. 

Therefore, the system to solve is a 3N-by-8 linear system. Moreover, as mentioned 

before, the measurements used to define the linear system must be linearly 

independent.  

The observation of the angular velocity vector collected while the chaser follows the 

monitoring trajectory, are not directly included in the linear system, but some post-

processing operations are required. First, a Savitzky-Golay filter is applied to the 

measured time-history of the absolute angular velocity of the target to reduce the level 

of noise. It is a low pass filter widely used in literature to smooth and differentiate time 

series of data when dealing with noisy signal, [68].  

Once the angular velocity data have been smoothed, a Fast Fourier Transform (FFT) 

is applied to find the period of the target attitude dynamics. This operation allows 

excluding repetitive data (which correspond to linearly dependent equations in Eq. 

(59)) from the observations. Then, a set of smoothed angular velocity measurements 

are uniformly sampled over the polhode period with a time span large enough to 

enhance the difference in the inherent information. Finally, a least square solver is 

applied to solve the system. The MIRs value obtained at the end of this procedure will 
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be used within the next step to improve the accuracy of the dynamic model used to 

propagate the target rotational dynamics, as described in the next sub-chapter.  

 

Figure 10 - Block diagram summarizing the MIRs estimation process. The processing steps are 
highlighted in red, while the inputs are enclosed in blue square-shaped boxes. 

 

3.2.2 Relative navigation filter 

The third step of the relative navigation architecture aims at estimating the relative 

motion parameters between the chaser and the target through a filtering scheme. 

Following the considerations of Section 2.2, a Kalman Filter has been selected as 

filtering scheme to estimate the relative velocity and absolute angular velocity of the 

target, as well as the relative position and attitude of the target with respect to the 

chaser spacecraft: both the EKF and UKF have been considered as viable option to be 

applied to the scenario under study.  

As mentioned in Section 2.2., regardless of the selected version of the Kalman Filters, 

the state vector along with a plant and an observation model must be defined.  

The state vector is defined as follows:  

 𝒙 = [𝒕09C→I9CJ9C 	𝒗J9CI9C/09C 		𝒒09C/I9C 	𝝎09C/KIE] (60) 

The translational dynamics has been modelled by means of the CW equations (see Eq. 

(48)) , i.e., a set of differential equation derived from the two body mechanics and by 

applying a number of hypothesis listed in Table 2. As regards the rotational dynamics, 

the temporal evolution of the relative attitude quaternion is described by Eq. (49), 

while the absolute angular velocity of the target has been propagated by means of Euler 
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equation with the hypothesis of a freely tumbling rigid body (i.e., neglecting the effect 

of external torque).  

It is worth noting that if one uses the quaternion parametrization to describe the relative 

attitude, the covariance matrix associated to the state vector may become singular 

because of the unit norm constraint which introduces a linear dependence between the 

rows of the matrix. To overcome this issue, a three-parameters representation for the 

covariance of the relative attitude can be introduced under the assumption of small 

angular error, [69]. The Gibbs vector, defined as the ratio between vectorial and scalar 

part of the attitude quaternion, has been selected in this work as three-parameters 

representation for the relative attitude error.  

In case of EFK use, the matrix 𝐽 whose elements contain the partial derivative of the 

dynamic model equation with respect to the state variable. Being the relative rotational 

kinematics described by a non-linear equation, a linear model describing the 

kinematics of the attitude error in terms of the Gibbs vector can be obtained, as in [70] 

from Eq. (61):  

 𝒒 = 𝛿𝒒	⨂	𝒒3 
(61) 

where 𝛿𝒒 is the quaternion error, defined as the rotation from the estimated attitude 

quaternion,  𝒒8, to the true one q. Taking the time derivative of Eq. (61), and combining 

it with (49), the kinematics of the quaternion error can be obtained, as shown in Eq. 

(62). 

 
𝑑
𝑑𝑡
(𝛿𝒒) =

1
2𝝎A<B⨂𝛿𝒒 −

1
2𝛿𝒒⨂𝝎A<B (62) 

Then, by applying the definition of the Gibbs vector, the linearized kinematics of 

the relative attitude error can be obtained: 

 𝛿�̇� =
1
2𝛿𝝎𝒓𝒆𝒍 −

1
2𝝎A<B × 𝛿𝒈 −

1
2𝝎3 A<B × 𝛿𝒈 

(63) 
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From Eq. (63), recalling that 𝝎𝒓𝒆𝒍 is defined as in Eq. (64) and being 𝛿𝝎𝒓𝒆𝒍 the 

difference between the estimated and the true relative angular velocity, the partial 

derivative with respect to state vector components can be evaluated. 

 𝝎A<B = 𝝎09OC/KIE − 𝑅I9OC→09OC𝝎I9OC/KIE	 (64) 

For all the other equations, it is straightforward to derive the partial derivatives with 

respect to the state variables. For the sake of clarity, the expressions of the components 

of the 𝐽 matric are reported below. 

𝐽 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
3𝑛* 0 0 0 2𝑛 0 0 0 0 0 0 0
0 0 0 −2𝑛 0 0 0 0 0 0 0 0
0 0 −𝑛* 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝜔. −𝜔@ 1/2 0 0
0 0 0 0 0 0 −𝜔. 0 𝜔1 0 1/2 0
0 0 0 0 0 0 𝜔@ −𝜔1 0 0 0 1/2
0 0 0 0 0 0 0 0 0 𝐴-- 𝐴-* 𝐴-?
0 0 0 0 0 0 0 0 0 𝐴*- 𝐴** 𝐴*?
0 0 0 0 0 0 0 0 0 𝐴?- 𝐴?* 𝐴??⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(65) 

where the matrix 𝐴 is: 

𝐴 = 𝐼8"#[[𝝎%>Q?/RDAx](𝐼8	𝝎%>Q?/RDA − [𝝎%>Q?/RDAx]𝐼8 

As stated in Section 2.2.1, the observation model is a system of equation which relates 

the available measurements, i.e., the output of the pose determination algorithm, with 

the system state and shown in the following: 

𝒛" = 	 %
𝑅!"#→!%##(−𝒕!"#→!%## 	–	𝑅&"#→!"#𝒕'"#→!"# 		)

𝒒!%##/!"#	⨂𝒒!"#/'"#	
 (66) 

 

Since the observation model consists of non-linear equations, the sensitivity matrix 𝐻, 

must be computed as the Jacobian matrix of the observation model with respect to the 

state variables evaluated at the current state estimate. The expression of the 

components of the sensitivity matrix are shown in Eq. (67).  
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𝐻 =	 �
−𝑅I9C→IPCC𝑅J9C→I9C 0?1? 0?1? 0?1?

0?1? 0?1? −𝑅I9C→IPCC𝑅09C→I9C 0?1?
� 

(67) 

It is worth noting that since in both the state and measurement vector, the attitude 

is parametrized by means of unit quaternion, the innovation term 𝛥𝒛, conventionally 

computed as the difference between the measurement vector and the projection of the 

state in the measurement space, is computed as follows: 

 𝛥𝒛 = 	 �
𝒕IPCC→09C − 𝒕(IPCC→09C
𝒈(𝒒IPCC/09C⨂𝒒3IPCC/09C)

� 
(68) 

where 𝒕�DS??→%>? and 𝒒8DS??/%>? are the components of 𝒛�, while 𝒕DS??→%>? and 

𝒒DS??/%>? are the measured pose parameters. The innovation term must be pre-

multiplied by the Kalman gain to get the correction term, Δ𝒙TF, as follows: 

 Δ𝒙QR = 𝐾(Δ𝒛) 
(69) 

The correction term is used to get the a-posteriori estimate of the state and 

covariance according to Eq. (70) and (16), respectively.  

 𝒙3𝒌3 =	

⎣
⎢
⎢
⎢
⎢
⎡𝒕
J9C

09C→I9C'
3	

𝒗J9CI9C/09C'
3

𝒒09C/I9C'
3

𝝎09C/KIE'
3

⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝒕
J9C

09C→I9C'
2 + Δ𝒕J9C09C→I9C

𝒗J9CI9C/09C'
2Δ𝒗J9CI9C/09C

[1	𝚫𝒈]
�1 + Δ𝒈(𝚫𝒈)′

⊗ 𝒒09C/I9C'
2

𝝎09C/KIE'
2 + Δ𝝎09C/KIE ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
(70) 

3.3 Relative navigation approach for the final approach phase 

In the final approach phase of an ADR/OOS mission in which the chaser must capture 

the target with a robotic arm, as stated in Section 2.4, the relative navigation function 

must be entrusted to two EO sensors, one mounted on the body of the chaser and the 

other on the end-effector of the robotic-arm. Based on the trade-off considerations 

presented in Section 2.4, the Option 1 is the most convenient architectural choice to 

support the capture operations, as it can provide a solution for the gripper-grasping 
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point relative state without including the robotic arm ego-motion uncertainty. A high-

level block diagram for this architecture highlighting its main processing steps and 

interface is provided in Figure 11. The main blocks are highlighted in red, while the 

blocks providing constant and time-varying inputs are highlighted in orange and blue, 

respectively. The architecture is loosely coupled, i.e., the data collected by the body-

mounted and robotic arm EO sensors, as well as by the joints’ sensors, are processed 

within separate block to obtain measurements used by the filtering schemes. 

Specifically, the measurement set for the T/C relative state estimation block is given 

only by the T/C pose estimates (obtained processing the body mounted sensor data). 

Instead, the measurement set for the G/E relative state estimation block comprises the 

G/E pose estimates (obtained processing the robotic arm sensor data) and the C/E pose 

estimates (obtained by applying the robotic arm forward kinematic model which 

requires joints’ sensors data). An important aspect to highlight is the fact that the 

robotic arm EO sensor is used to produce direct pose measurements of the end effector 

with respect to the grasping point only in the final portion of the reach and capture 

trajectory, i.e., when the robotic arm is fully deployed and pointed to the selected 

grasping point up to contact. However, the G/E relative state estimation block is 

adopted to measure end-effector-grasping point relative state estimate during the entire 

reach and capture phase, i.e., even in absence of these direct G/E pose measurements.  

As regards the choice of the robotic arm sensor, a Time of Flight (TOF) camera is 

selected instead of a LIDAR (selected as main body sensor) since it poses lower 

constraints to the allocation on the robotic arm end effector in terms of cost, weight, 

size and power consumption. 
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Figure 11 - Block diagram describing at high level the architectural choice for the relative 
navigation subsystem for the final approach phase of an ADR/OSS mission. The processing 

steps are highlighted in red, the constant and time-varying input parameters are highlighted in 
blue and orange, respectively. 

While the pose determination and the T/C relative state estimation blocks are the same 

adopted in the relative navigation architecture developed for the monitoring phase, the 

remaining processing block are described in the following. 

3.2.1 Robotic arm forward kinematics 

The relative state of a reference frame attached to the end-effector of the robotic arm 

with respect to its base fixed to the chaser body can be determined as a function of the 

joints’ angles by exploiting the forward kinematics model of the robotic arm. The most 

common approach for describing the robot kinematics is the Denavit-Hartenberg (DH) 

method which uses a four-parameters representation: the link length ai, the link twist 

αi, the link offset di and the joint angle θi, The homogeneous matrix of Eq. (71) defines 

the transformation between two frames attached to two consecutive links.  
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 𝐴((2- = �

𝑐𝑜𝑠 𝜃( −𝑠𝑖𝑛 𝜃( 0 𝑎(
𝑠𝑖𝑛 𝜃( 𝑐𝑜𝑠 𝛼( 𝑐𝑜𝑠 𝛼( 𝑐𝑜𝑠 𝜃( −𝑠𝑖𝑛 𝛼( −𝑑( 𝑠𝑖𝑛 𝛼(
𝑠𝑖𝑛 𝜃( 𝑠𝑖𝑛 𝛼( 𝑐𝑜𝑠 𝜃( 𝑠𝑖𝑛 𝛼( 𝑐𝑜𝑠 𝛼( 𝑑( 𝑐𝑜𝑠 𝛼(

0 0 0 1

� 
(71) 

For a n-DOF manipulator, the homogeneous matrix defining the transformation 

between the frame attached to the base of the robotic arm and the frame attached to 

the end effector, is given by Eq. (72). 

 𝐴 = 	𝐴-6…𝐴T2-T2*	𝐴TT2- =	𝐴T6  
(72) 

Thus, knowing the joint variables, the position of the end-effector with respect to a 

frame fixed to the base is given by Eq. (73), while the rotation matrix is given by Eq. 

(74). 

 𝑷𝒆𝒆 = 𝐴(1: 3,4) 
(73) 

 𝑹 = 𝐴(1: 3,1: 3) 
(74) 

The relationship between joint velocities and end-effector velocities is provided by the 

Jacobian matrix, which is computed with a geometric approach, i.e., by considering 

the contributions of each joint velocity to the components of the end-effector linear 

and angular velocities, as shown in Eq. (75), 

 Y𝒗𝝎[ = J(𝐪)�̇�, 𝐽(𝑞) = 	 �𝒛𝟏 × 	(𝒑𝒆𝒆 − 𝒑𝟏) … 𝒛𝒊 × (𝒑𝒆𝒆 − 𝒑𝒊)
𝒛𝟏 … 𝒛𝒊

� 
(75) 

where 

• Zi represents the axis of rotation of the ith joint expressed in the base frame. It 

is obtained from the third column of the homogeneous matrix, 

• pee is the position of the end-effector in the base frame, 

• Pi is the position of the ith joint expressed in the frame. 
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3.2.2 Grasping point-end effector relative state estimation 

The grasping point-end effector relative state estimation is entrusted to an EKF which 

exploits as measurements (i) the output of the forward kinematics model and (ii) the 

grasping point-end effector pose obtained by processing the raw-data of the TOF 

camera (when available).  

The state vector of the G/E filter is defined as follows: 

 𝒙 = [𝒕9WXC→0YXC 		𝒗0YXC/9WXC 		𝒒9WXC/0YXC 	𝝎9WXC/0YXC] (76) 

As for the target-chaser relative navigation filter, the covariance associated to the 

estimated relative attitude is expressed in terms of the Gibbs vector to avoid singularity 

problems. The process, in this thesis, is described by a constant velocity and angular 

velocity model, as follows: 

 

⎩
⎨

⎧
�̇�0YXC/9WXC	 = 0

�̇�9WXC/0YXC =
1
2 [0	𝝎9WXC/0YXC] ⊗ 𝒒9WXC/0YXC
�̇�9WXC/0YXC = 0

 
(77) 

By applying the definition of the Gibbs vector to the model described in Eq. (77), it is 

straightforward to derive the state transition matrix according to its definition given in 

Eq. (14), whose components are shown below: 

 

Φ =	

⎣
⎢
⎢
⎢
⎡
I?×? 0?×? 0?×? 0?×?
0?×? I?×? 0?×? 0?×?

0?×? 0?×? I?×?
dt
2 I?×?

0?×? 0?×? 0?×? I?×? ⎦
⎥
⎥
⎥
⎤

 
(78) 

The a-priori state estimate has to be projected into the measurement space through the 

observation model of Eq. (79). Depending on whether the target falls in the FOV of 

the robotic arm TOF camera or not, the observation model can include or not the 

equations relating the state vector with the measured pose parameters. 
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𝒛( = 	

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝒕I9C→9WXC =	−𝑅J9CI9C𝒕09C→I9CJ9C +

+𝑅09CI9C Q𝒕09OC→0YXC	 − 𝑅0YXC9WXC𝒕9WXC→0YXCS

𝒗9WXC/I9C =
1
2Q−𝑅09C

I9C Q𝑅9WXC0YXC-𝒗0YXC 9WXC⁄ +𝝎9WXC 0YXC⁄ ×	𝒕9WXC→0YXC/	 +

+𝝎09C I9C⁄ ×	𝑅9WXC0YXC𝑡9WXC→0YXC 	− 𝝎09C I9C⁄ ×	𝒕09C→0YXC) +

−2𝑅+\+JI9C ¢𝒗I9C
09C

J9C +𝝎J9C
I9C

× 𝒕09C→I9CJ9C £¤	

𝒒9WXC/I9C = 𝒒9WXC/0YXC 	⨂𝒒09C/I9C
𝝎9WXC/I9C = 𝝎9WXC/0YXC + 𝑅0YXC9WXC𝝎09C/I9C

𝒕IPCC]A)→0YXC = −𝑅9WXCIPCC]A)𝒕9WXC→IPCC]A) + 𝑅9WXCIPCC]A)𝒕9WXC→0YXC
𝒒IPCC]A)/0YXC = 𝒒PCC]A)/9WXC 	⨂𝒒9WXC/0YXC

 
(79) 

As for the T/C relative navigation filter, the observation model is not linear and the 

sensitivity matrix 𝐻 has to be computed as the partial derivatives of Eq. (79) with 

respect to the state variables, as follows: 

𝐻 =	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑅09OC

I9OC𝑅9WXC0YXC 0?1? 2𝑅09OCI9OC𝑅9WXC0YXC[𝒕9WXC→0YXC ×] 0?1?

𝐴 −
1
2𝑅09OC

I9OC𝑅9WXC0YXC 𝐵 0?1?
0?1? 0?1? 𝐼?1? 0?1?
0?1? 0?1? 2𝑅0YXC9WXC¥𝝎09OC/I9OC ×¦ 𝐼?1?

𝑅IPCC]A)9WXC 0?1? 0?1? 0?1?
0?1? 0?1? 𝑅IPCC]A)9WXC 0?1?⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(80) 

with  

𝐴 = 	−
1
2𝑅%>?

D>?𝑅>UE?%:E?(l𝝎>UE?/%:E? ×n �5𝑅>UE?>UE?𝝎%>?/D>?7 ×� 

𝑩 =	𝑅%>?D>? 5𝑅>UE?%:E?Rl𝑣%:E?/>EU? ×n + lR𝜔>EU?/%:E? × 𝑡>UE?→%:E?S ×nS

+ l𝜔%>?/D>? ×n𝑅>UE?%:E?[𝑡>UE?→%:E? ×]7 

Similarly to the T/C relative state filter, the Kalman gain pre-multiplies the innovation 

vector 𝛥𝒛 (see Eq. (81)) in order to get the correction term Δ𝒙TF. Finally, the a-

posteriori state and covariance estimate can be computed according to Eq. (82) and 

Eq. (16), respectively.  
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𝛥𝒛 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝒕9WXC→0YXC − 𝒕

(9WXC→0YXC
𝒗0YXC/9WXC − 𝒗30YXC/9WXC
𝒈(𝒒9WXC/0YXC⨂𝒒39WXC/0YXC)
𝝎9WXC/0YXC −𝝎39WXC/0YXC
𝒕I9OC→9WXC − 𝒕(I9OC→9WXC
𝒈(𝒒9WXC/I9OC⨂𝒒39WXC/I9OC)⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
(81) 

 

𝒙3𝒌3 =	
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⎡𝒕9WXC→0YXC'
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𝒗0YXC/9WXC'

3
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⎤
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⎢
⎢
⎢
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𝒕9WXC→0YXC'

2 + Δ𝒕9WXC→0YXC
𝒗0YXC/9WXC'

2Δ𝒗0YXC/9WXC
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⊗ 𝒒9WXC/0YXC'

2

𝝎9WXC/0YXC'
2 + Δ𝝎9WXC/0YXC ⎦

⎥
⎥
⎥
⎥
⎤

 

(82) 
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4. GNC Architecture Performance Assessment 

This chapter describes the numerical simulation environment and the performance 

assessment of the developed relative navigation architectures described in Chapter 3.  

4.1 Numerical simulation environment 

The numerical simulation environment developed in MATLAB/Simulink reproduces 

both the target-chaser relative dynamics and the operation of a scanning LIDAR. A 

block diagram showing all the inputs needed to perform the numerical simulations and 

how they are collected is depicted in Figure 12.  

 

Figure 12 - Block diagram of the numerical simulation environment. 

The functioning of the simulator can be summarized as follows. 

• The nominal trajectories of the target and the chaser are required in input by 

the T/C relative motion block to obtain the nominal relative motion parameters 

required in input by the LIDAR simulator block to simulate the output of the 

body mounted LIDAR system. Clearly, to this aim, the LIDAR/TOF simulator 
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block also require in input the target model, the sensors specifications, as well 

as the chaser and robotic arm (when applicable) geometries. It is worth 

underlying that the TOF camera and LIDAR measurements are simulated with 

the same process.  

• The T/E relative motion block is entrusted to simulate the motion of the robotic 

arm. It requires in input the nominal trajectories of the target and the chaser as 

well as the nominal joint’ rotations. Then, the output of this block is fed to the 

LIDAR simulator block to simulate the output of the TOF camera installed on 

the end-effector. To this aim, also the target model along with the sensor’s 

intrinsic parameters and the chaser and robotic arm geometries are required. 

• The simulated absolute trajectory of the chaser, the joint’s rotations and the 

synthetic generated point cloud are used as input by the Relative Navigation 

Architecture block. Clearly, this block also requires in input a set of specific 

target geometric information required for the application of the pose 

determination algorithm.  

• The encoder error model and chaser navigation error model are used to 

simulate the joint’s rotations and chaser absolute navigation state 

measurements from their nominal values. 

4.1.1 Nominal relative motion parameter generation 

The goal of this paragraph is to describe the operations carried out within the T/C 

relative motion and T/E relative motion blocks.  

First, both the target and chaser absolute translational motion have been propagated 

using the General Mission Analysis Tool (GMAT) starting from the instantaneous 

orbit parameters which satisfy the initial relative geometry of the scenario under study. 

For the propagation of the nominal trajectory the main orbital perturbations (i.e., 
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aerodynamic drag, gravitational harmonics up to the fourth order and the solar 

radiation pressure) have been included.  

With regards to the rotational motion, the time variation of the attitude parameters and 

angular velocity of the target have been obtained by numerically propagating the 

quaternion kinematic equation and the Euler equation including the gravity-gradient 

torque and a disturbance torque modelled with an harmonic law as in [71], as shown 

in Eq. (83) 

𝑀 = [102^(1 − sin(𝜔O9_𝑡))				102^ cos(𝜔O9_𝑡)			−102^ cos(𝜔O9_𝑡)] (83) 

where 𝜔Q>C is the orbital angular velocity. On the other hand, for the rotational motion 

of the chaser, it has been assumed that the chaser is controlled so that the LIDAR’s 

boresight axis is always pointed towards the center of mass of the target. Then, the 

target-chaser motion parameters have been computed by combining the absolute 

motion parameters of both spacecraft. 

The gripper-grasping point relative trajectory is computed by solving the inverse 

kinematics of the manipulator in two different instants: at an intermediate instant and 

at the final one so to guarantee that RGPF and TAPF are aligned and grasping point to 

be tracked is enclosed in the FOV of the TOF camera in its operative range. The 

nominal joint rotations and velocities are obtained over the entire time frame through 

a linear interpolation.  

4.1.2 LIDAR measurement simulator 

The LIDAR measurement block requires in input the sensor’s specification, e.g., the 

FOV and the angular resolution (δLOS). This block comprises three modules, as 

described in detail in [72]. The first block generates a purely geometric point cloud by 

applying a ray-tracing algorithm (no source of noise considered). The ray tracing 

algorithm finds the range of interception between each transmitted laser beam 
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according to the defined scan pattern and the closest surface of the geometric model 

of the target.  

Once the ideal point cloud is computed, the LIDAR detection process is simulated in 

order to establish whether the backscattered laser beams are detected or not. This is 

done by evaluating the probability of detection (PD) of each received echo as a function 

of the probability of false alarm (PFA) and the Signal to Noise Ratio (SNR), as in [73]. 

Finally, the detected point cloud is modified considering the sensor measurement 

uncertainties, which are simulated as a Gaussian White Noise on the measured range 

(σρ) and laser beam direction (σLOS). The possibility to produce outliers as a percentage 

of the detected points (O%) is also considered. Specifically, they are randomly 

extracted among the elements of the measured point cloud and their range uncertainty 

is set to four times σρ.  

4.1.3 Error models 

The Chaser navigation error model and encoder error model blocks allows adding a 

time correlated error (sp) to a true signal (st). this error is obtained by adding a white 

Gaussian noise (with zero mean and σ standard deviation) through a discrete-time 

lowpass filter, whose input-output relation is as follows: 

 𝑦(𝑡) = 𝑎	𝑦(𝑡 − 1) + 𝑏	𝑥(𝑡), 𝑡 = 𝑛𝑇, 𝑛 = 1,2, … (84) 

where y is the output signal, x is the input one and T is the sampling period. This means 

that, for a given input signal, the corresponding output at each time step is a linear 

combination of the output at the previous time step and of the input at the current one. 

The values that have been selected for the a and b coefficients of the filter are the 

following: 𝑎 = 0.99	𝑎𝑛𝑑		𝑏 = 1. 
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4.2 Error metrics definition 

The error metrics adopted to describe the performance of the relative navigation 

architectures are defined in the following. 

First, the error level for each component of the relative position, velocity and angular 

velocity vectors can be defined. As an example, considering a generic vector a, the 

following error metrics can be introduced: 

𝑒(𝒂) = 	𝒂<`4 − 𝒂4AQ< 
(85) 

where the subscript “est”/“true” indicates the estimated/true quantity. Also, a more 

synthetic metric can be introduced by considering the error in the norm of the relative 

position, velocity and angular velocity vectors: for the generic vector a is defined as: 

|𝒂|K99 = |𝒂<`4| − |𝒂4AQ<| (86) 

where |.| indicates the Euclidean norm operator. 

With regards to the relative attitude, while typically the output of the navigation system 

is represented using the quaternion parametrization, it is more convenient to use 

angular parameters as performance metrics since its interpretation is more 

straightforward with respect to the quaternion error. Thus, the attitude estimation error 

can be evaluated as the error in each Euler angles by introducing the following error 

metrics: 

𝛥𝛼 = 𝛼<`4 − 𝛼4AQ< 

𝛥𝛽 = 𝛽<`4 − 𝛽4AQ< 

𝛥𝛾 = 𝛾<`4 − 𝛾4AQ< 

(87) 

However, to avoid ambiguities in the error calculation when Euler angles are close to 

their singular sequences (e.g., if β = 90°), the relative attitude error can be also 
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evaluated by computing the angular deviations between the true and estimated 

direction of a generic reference frame A in a generic reference frame B, as follows: 

𝑒a(AY =

⎣
⎢
⎢
⎡cos

2-(𝑅-,<`4 ∙ 𝑅-,4AQ<)

cos2-(𝑅*,<`4 ∙ 𝑅*,4AQ<)

cos2-(𝑅?,<`4 ∙ 𝑅?,4AQ<)⎦
⎥
⎥
⎤
 

(88) 

Also, a synthetic metrics for the attitude error can be introduced with the Equivalent 

Euler angle error: 

𝛷K99 = 2cos2-(𝑞6,K99) (89) 

where 𝑞0,𝐸𝑅𝑅 is the scalar component of the quaternion error q computed as: 

𝒒K99 = 𝒒4AQ< ⊗𝒒<`42-  
(90) 

4.3 Relative Navigation for state and target inertia estimations: numerical 

results 

The relative navigation architecture presented in paragraph 3.1 has been tested in the 

simulation environment described in paragraph 4.1 considering four different target 

geometries placed on both LEO and GEO orbits, as shown in the following. The UKF 

scheme has been adopted to estimate the relative state parameters of the chaser with 

respect to the target. Indeed, the UKF allows capturing better the non-linearity of the 

relative dynamics with respect to the MEKF in case of a freely tumbling target. 

For all the test cases described in the next paragraphs, the same LIDAR sensor, whose 

characteristics are listed in Table 4 have been considered. These data are consistent 

with the characteristics of this kind of system for spaceborne applications, [64], [74]. 



 79 

Table 4 - Scanning LIDAR operational and noise parameters. 
Operational parameters 

Field of view (FOV) 40°x40° 

Resolution (δLOS) 1° 

Scan Frequency 

(fL) 
1 Hz 

Noise parameters 

Range Uncertainty (σρ) 2.5 cm 

LOS uncertainty (σLOS) 0.0007° 

Outlier percentage (O%) 5% 

 

4.3.1 Test Case A 

The target considered in the first simulation scenario is ENVISAT, an eight tons 

satellite for Earth observation declared inoperative in 2021. As described in paragraph 

3.1, the algorithm requires a target model with which the measured point cloud must 

be compared for pose determination purposes. Here, a simplified geometric model of 

the selected target has been built. As shown in Figure 13, its geometry is made of three 

cuboid-shaped elements which represents the main body, the solar panel and the 

synthetic aperture radar (SAR) antenna with the related appendixes. Table 5 collects 

the main geometrical and physical characteristics used to generate the target model 

and for the LIDAR measurements simulation, as found in the open literature, [75], 

[76], [77].  
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Figure 13 - Point-cloud representation of the simplified geometric model of ENVISAT. 

Table 5 - ENVISAT: geometrical and physical characteristics. 

Element Dimension 
Reflection 

coefficient 

Moment of inertia 

(kg.m2) 

Main body 4 m x 4 m x 10 m 0.15 Ixx 129112.2 Ixy -344.2 

Sola panel 6 m x 15 m  0.97 Iyy 124825.7 Ixz 271.4 

SAR 

antenna 
1.3 m x10 m 0.17 Izz 17023.3 Iyz 397.1 

The relative trajectory travelled by the chaser has been designed following the 

approach presented in [78] which ensures passive safety and guarantees favorable 

relative observation geometries. In Figure 14, the designed safety ellipse for 

monitoring purpose and the time variation of the target-chaser relative range are 

depicted: it can be noted that the relative distance varies from 25 to 57 meters. Figure 

15 shows the polhode of the target, i.e., the curve traced by the angular velocity vector 

in the body-fixed frame.  
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Figure 14 - Relative trajectory around ENVISAT: (left) safety ellipse for monitoring purpose. 
(right) Time variation of the target-chaser distance. 

 

Figure 15 – Polhode of the target. Test Case A. 

As described in paragraph 3.1, the first part of the proposed strategy is aimed at 

collecting relative attitude information useful to estimate the target MIRs relying only 

on pose determination algorithms. The time variation of both relative position and 

attitude error metrics averaged over 100 simulations is depicted in Figure 16 , while 

the corresponding root mean square (RMS) and the maximum error values, evaluated 

over one relative orbit, are collected in Table 6. These results show that pose 

determination in a stand-alone configuration is able to achieve a centimeter and sub-

degree level of accuracy in the estimate of the relative position and attitude, 

respectively. 
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Figure 16 - Mean (blue) and 3σ bounds (red) of the error metrics relevant to the pose tracking 
phase. (left) relative position, (right) relative attitude. Results are averaged over 100 

simulations. Test Case A. 

Table 6 - Statistics for the time variation of the error metric functions in the pose tracking phase 
(averaged over 100 simulations) computed over one relative orbit. Test Case A. 

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 2.8.10-2 0.3 

ΦΕRR (°) 0.2 9.4 

The time variation of the pose error is characterized by the presence of some peaks 

related to unfavorable target-chaser observation geometries for pose estimation 

purposes, which tend to occur while the chaser moves around the target, [62], [79]. 

Then, the retrieved pose information is exploited to estimate the absolute angular 

velocity of the target. Specifically, it is estimated with a mean error of 3.10-4 degrees 

per seconds and a standard deviation of 3.5.10-2 degrees per seconds. Figure 17 shows 

the time variation of the error metric defined for the absolute angular velocity of the 

target. It shows that, due to the error in the relative attitude measurements, the absolute 

angular velocity estimates obtained through a first order derivative scheme are 

particularly noisy.  
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Figure 17 - Time variation of the error metric defined for the absolute angular velocity of the 
target. Test Case A. 

The accuracy in the measurements of the target absolute angular velocity is improved 

by applying the Savitzky-Golay smoother. This operation is effective in reducing the 

level of noise. In fact, after smoothing, the mean error evaluated over 100 simulations 

is 1.2.10-5 degrees per seconds while the standard deviation is 3.9.10-3 degrees per 

seconds, which means an improvement of one order of magnitude in both values. 

Figure 18 depicts the mean value and the 3σ bounds of the absolute angular velocity 

error after smoothing.  
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Figure 18 - Time variation of the mean (blue) and 3σ bounds (red) of the error in the target 
absolute angular velocity measurements after smoothing. Test Case A. 

Then, the FFT is applied to the time variation of the estimated target angular velocity, 

and the resulting estimated polhode period is 1024 seconds (the real polhode period is 

1038 seconds). This operation allows discarding absolute angular velocity 

measurements corresponding to already considered positions on the polhode curve. 

Figure 19 shows the 10 measurements selected at the end of this process to estimate 

the inertia properties of the target: they are widely spaced in time, thus ensuring the 

condition of linearly independence. 
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Figure 19 - Measured values of the absolute angular velocity of the target used to estimate the 
MIRs. Test Case A. 

Thus, the system shown in Eq. (59) is solved to obtain an estimate of the MIRs of the 

target. The achieved results are summarized in Table 7.  

Table 7 - Estimation error of the MIRs averaged over 100 simulations. Test Case A. 
MIRs True values Estimated valued Percentage error 

𝐼@̅@ 0.9668 0.9069 6.2 % 

𝐼.̅. 0.1318 0.1230 6.7 % 

𝐼1̅@ -0.0027 0.0047 275 % 

𝐼1̅. 0.0168 0.0146 13 % 

𝐼@̅. 0.0031 0.0006 80 % 

The results show that the accuracy in the off-diagonal elements of the MIRs matrix is 

significantly worse than the one characterizing the diagonal elements. This is justified 

by the fact the off-diagonal elements are two/three orders of magnitude smaller than 

the diagonal ones. Consequently, as it will be demonstrated in the following, such a 

significant error in their estimation does not have a relevant impact on the target-chaser 

relative state estimation accuracy when the UKF is applied.  



 86 

Figure 20 shows the level of accuracy achieved by the filtering scheme described in 

paragraph 3.2, Here the time variation of the error metrics defined for the performance 

assessment is depicted. Also, the time statistics of the error metrics are averaged over 

100 simulations are collected in Table 8. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 20 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged on 100 simulations: (a) relative position, (b) relative velocity, (c) relative 

attitude, (d) absolute angular velocity of the target. Test Case A. 

Table 8 - Time statistics (one relative orbit, i.e., 6000 seconds) of the error metric function 
describing the performance of the filtering scheme. Results are averaged over 100 simulations. 

Test Case A. 

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.7.10-2 0.1 
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|𝛒|̇YZZ (m/s) 0.6.10-3 2.9.10-2 

ΦΕRR (°) 0.1 1.4 

|ω|ERR (°/s) 
0.7.10-3 8.1.10-2 

It can be noted that the presence of the filtering scheme allows improving the 

estimation accuracy achieved by the pose determinations run in a stand-alone 

configuration. Indeed, the presence of the filter coupled with the autonomous failure 

detection strategy (based on the value of the ICP cost function at convergence, as 

described in Section 3.2.2) allows limiting the impact of unfavorable target-chaser 

observation geometry on the accuracy of the estimated relative motion state. By 

looking at the time variation of the relative attitude error during the entire considered 

time interval (i.e., two consecutive relative orbits) depicted in Figure 21, it can be 

noted how, when the filtering scheme starts, the error peaks are drastically reduced, 

and the global accuracy level improves. The reduction in the error level achieved by 

the UKF is important in view of the strict control requirements typical of proximity 

operations. Finally, in order to prove that the larger percentage error on the off-

diagonal elements of the MIRs matrix does not have a significant impact on the 

estimate of the absolute angular velocity of the target, a comparison is done running 

the simulation using the true and estimated off-diagonal elements MIRs, respectively. 

The absolute angular velocity errors are compared in Table 9 showing that the use of 

the estimated off-diagonal MIRs produces a worsening in the estimate of the order of 

10-5 degrees per seconds. The effect on the accuracy in the target-chaser relative state 

parameters estimate is negligible. 

Table 9 - RMS of |ω|ERR estimated with the real and estimated off-diagonal elements of the 
MIRs matrix. Test Case A. 

RMS 
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 True off-diagonal MIRs Estimated off-diagonal MIRs 

|ω|ERR (°/s) 10-4 °/s 1.3.10-4 °/s 

 

Figure 21 - Time variation of ΦΕRR averaged over 100 simulations. Test Case A. 

4.3.2 Test Case B 

As second test case, a different target geometry has been considered. This geometry 

represents a typical satellite configuration with a main body to which three 

appendages, two solar array and a SAR antenna are attached; also, the assigned 

dimensions of the target model used to evaluate the performance of the relative 

navigation architecture are comparable to a large amount of the LEO satellites. Figure 

22 shows the target used to evaluate the performance of the relative navigation 

architecture. The target geometry is inspired by a constellation of Earth observation 

satellites, i.e., COSMO Sky-Med (CSM) [59], [80]. The reflection coefficients of the 

surface are the same considered in the Test Case A, while the geometrical 

characteristics and inertia properties are listed in Table 10.  
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Figure 22 – Point cloud representation of the simplified geometric model for Test Case B. 

Table 10 - Test Case B: geometrical and inertia characteristics of the target. 

Element Dimension Moment of inertia (kg.m2) 

Main body 1.5 m x 3 m x 1.5 m Ixx 21087.34 Ixy 10.37 

Solar panel 1.4 m x 6.56 m  Iyy 31600.95 Ixz 18.79 

SAR antenna 1.4 m x 5.7 m Izz 13826.53 Iyz -121.82 

Αs regards the simulated scenario, the trajectory followed by the chaser aroud the 

target is shown in Figure 23. The minumum and the maximum distances of CRF from 

the center of mass of the target are 13 and 21 meters, respectively, while the rotational 

dynamics of the target is described the the polhode depicted in Figure 24. It can be 
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noted that the three components of the absolute angular velocity in TRF are harmonics 

functions of the time. 

  

Figure 23 – Relative trajectory around the target. Test Case B. (left) Safety ellipse for 
monitoring purpose. (right) time variation of the target-chaser distance. 

 

Figure 24 - Polhode of the target. Test Case B. 

The results of the tracking phase are summarized in Table 11 and Table 12. In the Test 

Case B, the pose determination algorithm in a stand-alone configuration guarantees a 

millimeter level and sub-degree level of accuracy in the estimation of the relative 

position and attitude, respectively. Then, the accuracy of 2.8.10-3 degrees per seconds 

is achieved in the target absolute angular velocity measurements by applying the 

Saitzky-Golay smoother. This level of accuracy allows estimating the main diagonal 

elemtns of the MIRs matrix with an error lower than 2%, as shown in Table 12.  
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Figure 25 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged over 100 simulations: (left) relative position, (right) relative attitude. Test Case 

B. 

Table 11 - Time statistics of the error metric functions describing the performance of the pose 
tracking phase averaged over 100 simulations. Test Case B.  

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.4.10-2 0.06 

ΦΕRR (°) 0.3 6.1 

 

Table 12 - Estimation error if the diagonal MIRs averaged over 100 simulations. Test Case B. 
Error metrics % Estimation 

Error 

𝐼L̅L 0.8 % 

𝐼M̅M 1.9 % 

 

Also, the time histories of the relative state estimation error achieved in the final step 

of the relative navigation architecture by UKF are depicted in Figure 26, while their 

statistics are summarized in Table 13. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 26 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged on 100 simulations: (a) relative position, (b) relative velocity, (c) relative 

attitude, (d) absolute angular velocity of the target. Test Case B. 
 

Table 13 - Time statistics (one relative orbit, i.e., 6000 seconds) of the error metric function 
describing the performance of the filtering scheme. Results are averaged over 100 simulations. 

Test Case B. 

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.3.10-2 8.8.10-2 

|𝛒|̇YZZ (m/s) 0.7.10-4 3.4.10-2 

ΦΕRR (°) 0.2 5.1 

|ω|ERR (°/s) 
4.6.10-3 4.1.10-3 
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4.3.3 Test Case C 

In this test-case, an example of abandoned rocket body, i.e., a KOSMOS 3M second 

stage, has been modelled as a 6 meters length cylinder with a radius of 1.2 meter based 

on the data found in the open literature [81], as shown in Figure 27. This test case is 

used to evaluate the performance of the developed architecture when dealing with a 

completely symmetric target, which may introduce ambiguity when trying to 

determine the relative pose. As regards the physical properties of the target, a constant 

reflection coefficient of 0.4 has been assumed, while the inertia matrix is shown in Eq. 

(91). 

𝐼 = 	 $
4200 0 0
0 4200 0
0 0 1238

+ 𝑘𝑔	𝑚! 
(91) 

  

Figure 27 - Point cloud representation of the simplified geometric model for the rocket body. 

The designed relative trajectory, shown in Figure 28, allows the chaser to monitor the 

target from a distance that varies from 10 to 17 meters, while the rocket body is 

tumbling with an angular velocity of 1 degree per second around the along-track 

direction[82], as described by the polhode of Figure 29. 
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Figure 28 – Relative trajectory around the target. Test Case C. (left) Safety ellipse for 
monitoring purpose. (right) time variation of the target-chaser distance. 

 

 

Figure 29 - Polhode of the target. Test Case C. 

The performance achieved in the pose tracking phase are shown in Figure 30 and 

summarized in Table 14. The relative position and attitude are estimated by the model-

based pose determination algorithm, despite the presence of some peaks between 

1500-2500 seconds and 4000-5000 seconds, with a millimeter and sub-degree level of 

accuracy. 
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Figure 30 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged over 100 simulations: (left) relative position, (right) relative attitude. Test Case 

C. 

Table 14 - Time statistics of the error metric functions describing the performance of the pose 
tracking phase averaged over 100 simulations. Test Case C.  

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.6.10-2 2.7.10-2 

ΦΕRR (°) 0.1 8.7 

Also, a very accurate estimation of the absolute angular velocity of the target (a mean 

error of 10-4 degrees per seconds is achieved by applying the Savitzky-Golay 

smoother), allows estimating the diagonal elements of the MIRs matrix with an error 

of 0.07% and 0.84%, respectively. Finally, the time histories of the error metrics 

function selected for the performance assessment of the filtering scheme are shown in 

Figure 31. It is worth noting that the figure referring to the absolute angular velocity 

error shows a larger initialization error which is quickly reduced by reaching a mean 

value of 10-4 degrees per seconds, as shown in Table 15, where the statistics of the 

error metrics averaged over 100 simulations are summarized.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 31 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged on 100 simulations: (a) relative position, (b) relative velocity, (c) relative 

attitude, (d) absolute angular velocity of the target. Test Case C. 

Table 15 - Time statistics (one relative orbit, i.e., 6000 seconds) of the error metric function 
describing the performance of the filtering scheme. Results are averaged over 100 simulations. 

Test Case C. 

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.5.10-2 4.9.10-2 

|𝛒|̇YZZ (m/s) 0.7.10-3 3.1.10-2 

ΦΕRR (°) 0.08 4.8 

|ω|ERR (°/s) 1.5.10-3 0.4 
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4.3.4 Test Case D 

In this case, a geostationary spacecraft has been considered as target. Figure 32 shows 

the target model used in the model-based pose determination algorithm to retrieve pose 

information from the 3D point-clouds supplied by the LIDAR system. The model is 

generated considering the physical and geometrical properties of HISPASAT 36W-1 

satellite (see Table 16), developed by OHB System AG (Germany) and the European 

Space Agency for the smallGEO programme [83]–[85].  

 

Figure 32 - Point cloud representation of the simplified geometric model for the GEO target. 

Table 16 - Test Case C: geometrical and inertia characteristics of the target. 

Element Dimension Moment of inertia (kg.m2) 

Main body 2.5 m x 1.9 m x 1.3 m Ixx 21087.34 

Solar panel 0.2 m x 9 m x 2.2 m Iyy 31600.95 

Antennas 
0.2 m x 1.9 m x 2.3 m 

Izz 13826.53 
0.15 m x 1.425 m x 1.425 m 

 

Figure 33 shows the designed safety-ellipse for monitoring purpose around the target, 

but due to the high orbital period of the geostationary satellites, the presented results 
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refer only to a shorter, but relevant time interval. The chaser initial and final position 

are shown in Figure 33 

 
 

 

F 
Figure 33 – Relative trajectory around the target. Test Case D. (left) Safety ellipse for 

monitoring purpose. (right) time variation of the target-chaser distance. 

The rotational dynamics of the target is described by the polhode depicted in Figure 

34: it tumbles with an angular velocity of 0.6 degrees per seconds and the three 

vectorial components show a harmonic behavior. 

 

Figure 34 - Polhode of the target. Test Case C. 

Figure 35 and Table 17 summarize the performance achieved by the relative 

navigation architecture in the first step. It can be noted how the initialization error is 

slightly larger than the one in the previous test cases, but the error quickly converges, 
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and similar level of accuracies is reached. Specifically, the relative position is 

estimated with a millimeter accuracy, while the relative attitude with a mean error of 

0.2°. Also, by applying the smoother to the time-history of the absolute angular 

velocity of the target measured through the quaternion differentiation technique, the 

mean error is reduced from 10-3 to 10-4 degrees per seconds. This level of accuracy 

allows estimating the diagonal elements of the MIRs matrix with an error of 1% and 

0.6%, respectively.  

 

Figure 35 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged over 100 simulations: (left) relative position, (right) relative attitude. Test Case 

D. 

Table 17 - Time statistics of the error metric functions describing the performance of the pose 
tracking phase averaged over 100 simulations. Test Case D.  

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.8.10-2 1.8 

ΦΕRR (°) 0.4 8.7 

The performance achieved by the UKF when dealing with a geostationary satellite are 

described by Figure 36, where the time-histories of the mean and 3σ bound of the error 

metrics defined for the performance assessment of the relative navigation filter are 

shown, and by Table 18, where the related time statistics (averaged over 100 

simulations) are collected. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 36 - Time variation of the mean value (blue) and the 3σ-bounds (red) for the error 
metrics averaged on 100 simulations: (a) relative position, (b) relative velocity, (c) relative 

attitude, (d) absolute angular velocity of the target. Test Case D. 

Table 18 - Time of the error metric function describing the performance of the filtering scheme. 
Results are averaged over 100 simulations. Test Case D. 

Error metrics RMS 
Maximum 

value 

|ρ|ERR (m) 0.5.10-2 7.7.10-2 

|𝛒|̇YZZ (m/s) 0.8.10-3 2.8.10-2 

ΦΕRR (°) 0.2 7.8 

|ω|ERR (°/s) 
2.5.10-3 0.4 
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4.4 Relative Navigation for close-approach phase: numerical results 

This paragraph describes the simulation scenario and reports the performance 

verification of the relative navigation architecture for the close approach phase 

described in paragraph 3.3. Both the UKF and MEKF has been adopted as relative 

navigation filter. However, once verified that in the close approach phase they provide 

the same accuracy level, for the sake of brevity, the results corresponding to the MEKF 

has been reported in the following. 

4.4.1 Simulation scenario  

The target selected for this scenario is ENVISAT. With respect to the test case 

presented in paragraph 4.3.1, a more detailed model of the spacecraft, shown in Figure 

37, has been adopted. In this case the ray-tracing algorithm of the OPCODE library 

[86], which exploits the representation of the target geometry with an AA-BB-tree 

(Axis Aligned Bounding Box-tree) data structure, to generate the ideal point clouds in 

the LIDAR measurement simulator. 
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Figure 37 - Detailed ENVISAT geometry. 

In the simulated scenario, the chaser approaches the target along the R-bar direction 

starting from a 10 meters distance between TRF and CRF, as shown in Figure 38. 

 

Figure 38 - Time variation of the target-chaser relative distance. 

As regards the rotational dynamics, it has been assumed that the target has a tumbling 

motion around the z axis of TRF, which in turn, is aligned with the negative direction 

of the x-axis of HRF. The time variation of the 3-1-3 sequence of Euler angles 
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parametrizing the inertial attitude of TRF and the target absolute angular velocity are 

shown in Figure 39. 

 

Figure 39 - (left) Time variation of 313 sequence of Euler angles representing the inertial 
attitude of TRF. (right) Time variation of the target angular velocity. 

 

The chaser is equipped with a 7-DOF robotic arm whose geometry is described by the 

modified Denavit-Hartenberg parameters, listed in Figure 40. Also, a scheme showing 

the definition of the adopted convention for the reference frame attached to each link 

is reported in Table 19. All the joints are purely rotational ones. 

 

Figure 40 - Geometry of the robotic arm. 

Table 19 - Modified DH parameters for the robotic arm. 
 a (m) α (°) d (m) 

Joint 1 0 0 0.300 

Joint 2 0 -90 0.160 

Joint 3 0 90 1.150 

Joint 4 0 90 0.160 

Joint 5 0 -90 1.150 
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Joint 6 0 90 0.160 

Joint 7 0 -90 0.200 

Joint 8 0 0 0.200 

The trajectory of the end-effector with respect to the grasping point (which is placed 

on the launch adapter ring (LAR)) has been defined starting from the stowed 

configuration of the robotic arm shown in Figure 41. 

 

Figure 41 - Stowed configuration of the robotic arm. 

The only condition that must be satisfied by the trajectory of the end-effector is that 

part of the target surface is imaged in the scan window of the TOF camera. The end 

effector-grasping point relative trajectory, obtained as described in 4.1.1, is described 

by the time variation of the pose parameters shown in Figure 42. 
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Figure 42 - (left) Time variation of grasping point-end effector relative position. (right) Time 
variation of Euler angles (3-2-1 sequence) representing the attitude of RGPF with respect to 

TAPF. 

Considering the relative distance involved, both the specifications of the LIDAR 

mounted on the body of the spacecraft and the TOF camera on the end-effector of the 

robotic arm, listed in Table 20, have been selected based on coverage constraints: 

• The target shall be fully in view in the operative range of both monitoring and 

close approach phase.  

• The LAR shall be fully in view at the start of the close approach phase. 

Table 20 - Sensors' operational and noise parameters. 
Sensor Sensor 

format 
FOV IFOV  

Range uncertainty 

(1σ) 

Body-mounted Flash 

LIDAR 128x128 
Up to 

45°x45° 

0.35°x0.35°  

(514 points/m2) 
2 cm 

 

TOF camera 
640x480 57°x43° 

0.09°x0.09°  

(8270 points/m2) 
3 cm 

Also, error on the knowledge of the initial sate has been modelled as a Gaussian White 

Noise whose standard deviation is listed in Table 21. The error on the chaser absolute 

state parameters have been modelled as described in paragraph 4.1.3, whit a standard 

deviation as shown Table 22, while a σ equal to 10-5 radiant and 10-6 radiant per 
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seconds has been set for the joint’s rotation and velocity errors, respectively, 

considering typical performance of incremental encoders. 

Table 21 - Uncertainty in the knowledge of the initial state. 
 

Relative position (m) 
Relative 

velocity (m/s) 

Relative attitude 

(°) 

Angular velocity 

(°/s) 

𝝈 0.10 (along-boresight direction) 

0.033 (cross-boresight direction) 
0.0033 1° 0.066 

Table 22 - Uncertainty on the knowledge of the inertial state navigation of the chaser. 

 Position (m) 
Relative velocity 

(m/s) 

Relative attitude 

(°) 

Angular velocity 

(°/s) 

𝝈 0.8 0.001 0.0017 0.0117 

4.4.2 Numerical results 

A 100-run Montecarlo simulation has been performed to verify the robustness of the 

relative navigation architecture against the uncertainty on the initial conditions. The 

statistics of the error metrics describing the achieved accuracy in the target-chaser and 

gripper-grasping point relative estimation task averaged over 100 simulations are 

summarized in Table 23 and Table 24. 

Table 23 - Statistics of the error metric functions for the target-chaser relative state estimation 
task. Results are averaged over 100 simulations. 

Error metrics Unit Mean Standard deviation 

𝒆(𝒕09OC→I9OCJ9C (𝑥)) cm -0.02 0.08 

𝒆(𝒕09OC→I9OCJ9C (𝑦)) cm 0.01 0.2 

𝒆(𝒕09OC→I9OCJ9C (𝑧)) cm 0.03 0.1 

𝒆(𝒗09OC I9OC⁄
J9C (𝑥)) mm/s -1.19x10-2 0.3 

𝒆(𝒗09OC I9OC⁄
J9C (𝑦)) mm/s 7.29x10-3 0.5 

𝒆(𝒗09OC I9OC⁄
J9C (𝑧)) mm/s -1.39x10-3 0.4 

𝑒1a(A09OC ° 0.03 0.01 

𝑒@a(A09OC ° 0.03 0.01 
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𝑒.a(A09OC ° 0.02 0.01 

𝒆(𝝎09OC/KIE(𝑥)) °/s 1.42x10-4 1.60x10-3 

𝒆(𝝎09OC/KIE(𝑦)) °/s -1.91x10-4 1.60x10-3 

𝒆(𝝎09OC/KIE(𝑧)) °/s -1.21x10-4 5.00x10-4 

 

Table 24 - Statistics of the error metric functions for the gripper-grasping point relative state 
estimation task. Results are averaged over 100 simulations. 

Error metrics Unit Mean Standard 

deviation 

𝒆(𝒕9WXC→0YXC(𝑥)) cm -0.03 0.2 

𝒆(𝒕9WXC→0YXC(𝑦)) cm -0.04 0.2 

𝒆(𝒕9WXC→0YXC(𝑧)) cm -0.08 0.1 

𝒆(𝒗0YXC/9WXC(𝑥)) mm/s 11.1 4.0 

𝒆(𝒗0YXC/9WXC(𝑦)) mm/s 0.64 5.4 

𝒆(𝒗0YXC/9WXC(𝑧)) mm/s -11.5 2.4 

𝑒1a(A0YXC ° 0.03 0.01 

𝑒@a(A0YXC ° 0.02 9.4x10-3 

𝑒.a(A0YXC ° 0.03 0.01 

𝒆(𝝎9WXC/0YXC(𝑥)) °/s -5.09x10-4 2.0x10-3 

𝒆(𝝎9WXC/0YXC(𝑦)) °/s 4.54x10-4 1.7 x10-3 

𝒆(𝝎9WXC/0YXC(𝑧)) °/s -7.18x10-4 2.7 x10-3 

Statistics of the selected error metrics show that the target chaser relative position and 

velocity are estimated with a millimeter and sub-millimeter per second level of 

accuracy, respectively. Instead, the target-chaser relative attitude is estimated with a 

sub-degree level of accuracy and the target absolute angular velocity with an error 

level of 10-3 degrees per seconds. As regards the gripper-grasping point relative state 

estimation, the relative position and relative velocity are estimated with millimeter and 

centimeter per second level of accuracy, respectively; while the error level achieved 
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in the relative attitude and relative angular velocity estimate are 10-2 degree and 10-3 

degree per second. Also, for the sake of completeness, the time variation of the 

estimation error of all the relative motion parameters for a particular realization of the 

uncertainty on the knowledge of the initial state is reported in Figure 43 and Figure 

44. Specifically, it can be noted that the gripper-grasping point relative navigation 

filter allows avoiding the worsening in the relative position estimation observed in ff, 

which correspond to the position and attitude estimation errors of the pose 

determination algorithm in a stand-alone configuration, thanks to the measurement 

provided by the forward kinematic model of the robotic arm.  

 

Figure 43 - Time variation of the error metrics defined for the target-chaser relative state 
estimation task. 
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Figure 44 - Time variation of the error metrics defined for the gripper-grasping point relative 
state estimation task. 

 

Figure 45 - Time variation of the mean value and the 3σ-bounds for the error metrics averaged 
on 100 simulations of the pose determination algorithm in stand-alone configuration.



 110 

5. Experimental Validation for Inertia 
Parameters Estimation 

This chapter presents the experimental activity conducted at the ADAMUS laboratory 

of Embry Riddle Aeronautical University (FL, USA) aimed at assessing the 

performance of techniques for inertia and attitude parameters estimation of an 

uncooperative but known space target. The adopted experimental set-up along with 

the experimental results are described in the next sub-chapter, while a list of the 

adopted reference frame is reported in the following: 

• The LIDAR reference frame (LRF) is a sensor-fixed coordinate system with 

the origin in the sensor optical center, the zLRF axis pointing along the boresight 

direction and the xLRF and yLRF axis laying on the image plane. It is worth noting 

that in this case, the LRF can be considered an inertial reference frame, being 

fixed with respect to the ground. 

• The target body fixed reference frame (BRF) is a target fixed coordinate 

system. 

• The Motion Tracking Reference Frame (MTRF) is the one in which the motion 

tracking system outputs its measurements.  

5.1 Experimental set-up 

A schematic representation of the experimental set-up is provided in Figure 46.  

The spherical air bearing provides the rotational degrees of freedom: it guarantees full 

360° rotation around the vertical axis; however, the rotation around the axes parallel 

to the floor is limited by the presence of structural elements. The air used by the 

bearing is stored in two 4500 psi paintball tanks and it is stepped down to a 100 psi by 
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pressure regulators. Then, the air flows through the line which connect the tanks to the 

spherical cup air bearing supporting the spherical segment ball.  

A 3D-printed scaled-down satellite mock-up made of Acrilonitrile-Butadiene-Stirene 

(ABS) is attached to the bearing.  

 

Figure 46 - Experimental set-up. 

A counterbalancing system is used to minimize the gravity torque by the misalignment 

between the center of mass of the system and the center of rotation (which coincides 

with the center of the spherical bearing). It is a passive system composed of four arms 

symmetrically extending downwards the 3D printed model to whose ends static 

weights are placed. The details of both the mock-up and the counterbalancing system 

are shown in Figure 47. 
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Figure 47 - CAD model of the satellite mock-up, spherical air bearing and counterbalancing 
system. The reference frame shown is parallel BRF. 

The LIDAR selected as navigation sensor is the Intel-RealSense LIDAR camera L515, 

a low-cost, high-resolution solid state LIDAR depth camera, [87]. An overview of the 

sensor characteristics is provided in Table 25,  

Table 25 - Intel RealSense LIDAR camera L515 characteristics, [87]. 
Operational parameters Noise parameters 

Field of View 70°x55° 

Depth standard 

deviation 

2.5mm @ 1m 

Resolution 1024x768  

Frame rate 30 fps 15.5mm @ 9m 
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The ground truth which allows evaluating the accuracy of the ICP-based pose estimate 

is provided by the PhaseSpace Impulse System: it is a motion capture system which 

provides the reference pose parameters of BRF with respect to MTRF. It consists of a 

string of eight LEDs powered by a small rechargeable battery pack imaged by a set of 

12 cameras hung up around the experimental facility. The configuration of the LEDs 

on the spacecraft model is shown in Figure 48. 

 

Figure 48 - Position of LEDs on the spacecraft mock-up represented by red dots. The axes 
shown in the figure are parallel to the ones of BRF. 

Each LED blinks according to a unique pattern which make them recognizable and 

identifiable by the system. The cameras send the acquired data to a server through 

Ethernet cables which computes the position and attitude of the rigid body equipped 

with LEDs with a latency of 8 milliseconds and an accuracy of 1-5 millimeters, [88]. 

5.2 Testing Procedure 

Once the system is balanced to a satisfactory level and the spherical bearing is active, 

an instantaneous torque can be applied to the model, and it will start rotating simulating 

an almost friction and torque-free motion. While the model is rotating, the LIDAR 

acquires images of the scene, and the target motion is estimated through the ICP-based 

pose determination strategy presented in Chapter 3. It is worth noting that the ICP 
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requires an initial estimate of the pose parameters (pose initial guess). However, since 

this activity does not focus on the pose acquisition task, the pose initial guess is 

obtained from the PhaseSpace data: to obtain the pose parameters of BRF with respect 

to MTRF, the position of each LEDs in BRF must be known. They can be determined 

by combining the knowledge of the geometry of the 3D-printed model and the position 

of the LEDs tracked by PhaseSpace system.  

Also, the extrinsic calibration parameters (i.e., the position vector and the attitude 

quaternion of LRF with respect to MTRF) must be computed to obtain the pose initial 

guess of BRF with respect to LRF and to compare the PhaseSpace-based and LIDAR-

based pose measurements. The extrinsic calibration procedure is described in the 

following.  

5.2.1 Extrinsic Calibration  

Horn’s absolute orientation method is applied to obtain the translation and rotation 

vector of LRF with respect to MTRF, [89]. It requires the knowledge of the position 

of at least four points in both reference frames. To this aim a string of eight LEDs is 

placed on a flat panel, as shown in Figure 49. The position of the LEDs in MTRF are 

straightforward to obtain by turning on the LEDs and tracking them with PhaseSpace.  
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Figure 49 - Calibration object. 

On the other hand, to obtain the position of the LEDs in LRF, the RGB sensor of the 

LIDAR L515 is exploited. Two different images of the calibration object are acquired: 

one with the LEDs switched on and one with the LEDs switched off. Then, by 

performing the pixel-wise subtraction of the corresponding grey-scale normalized 

images in Figure 50 a-b, one containing only the LEDS is obtained (see Figure 50 c). 

 

(a) (b) 
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(c) 

Figure 50 – (a) Grey-scale image with LEDs off (b) Grey-scale image with LEDs on (c) 
Difference intensity image obtained subtracting the two acquired images. 

The image plane coordinated of each LEDs are obtained as the coordinates of the 

centroid of the blobs of pixels computed by weighting each pixel based on the 

intensity, as in Eq. (92), 

Ui = 
∑ ujIjN
j =1

∑ IjN
j =1

,      Vi =
∑ vjIjN
j =1

∑ IjN
j =1

,      i =1,…,N	 
(92) 

where (Ui, Vi) and (uj, vj) are the image plane coordinates of the i-th blobs of the j-th 

pixel, respectively and Ij its intensity. Then, the normalized image coordinates are 

obtained as follows: 

xdn,i =
𝑈( − 𝑝Q
𝑓1

	,			𝑦dn,i =
𝑉( − 𝑝b
𝑓@

	 
(93) 

where 𝑓2 and 𝑓L are the horizontal and vertical focal lengths and (𝑝T, 𝑝[) are the 

coordinates of the camera principal point.  
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Equation (93) represents the distorted normalized coordinates to obtain the undistorted 

ones, (xn,I, yn,I), the Brown Conrady distortion model must be applied to remove the 

radial and tangential distortion, as explained in [90]: 

xn,i =	 xdn,i	ℎ + 2𝑘"ℎ#xdn,i𝑦dn,i + 𝑘$(𝑟 + 2xdn,i
# ℎ#	* 

𝑦n,i =	 ydn,i	ℎ + 2𝑘"ℎ
#xdn,i𝑦dn,i + 𝑘$(𝑟 + 2ydn,i

# ℎ#	)	 (94) 

where 

ℎ = 1 + 𝑘-𝑟 + 𝑘*𝑟* + 𝑘c𝑟? 
(95) 

𝑟 = 	µ(xdn,i* + 𝑦dn,i* ) (96) 

and 𝑘* is the i-th image distortion coefficients.  

To improve the accuracy of the extrinsic calibration procedure, multiple acquisitions 

varying the position and orientation of the calibration object with respect to the camera 

are considered: this allows solving the absolute orientation problems using 24 points 

instead of 8.   

Figure 51 shows the reprojection error of the coordinated of each LED Pi , computed 

with the obtained extrinsic calibration parameters (𝒕E>?→0>? , 𝒒0>?/E>?) as in Eq. (97), 

while in Table 26 the root mean square (RMS) and maximum of 𝒙𝒆𝒓𝒓,𝒓𝒆𝒑 are listed.  

𝒙𝒆𝒓𝒓,𝒓𝒆𝒑 = 𝑷(e09C − 𝒕e09C→+9C + 𝑅+9Ce09C𝑷(+9C 
(97) 
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Figure 51 - Reprojection error of the points used for the extrinsic calibration. 

Table 26 - Statistics of the reprojection errors. 
 𝒙𝒆𝒓𝒓,𝒓𝒆𝒑(𝑥) 𝒙𝒆𝒓𝒓,𝒓𝒆𝒑	(𝑦) 𝒙𝒆𝒓𝒓,𝒓𝒆𝒑	(𝑧) 

RMS (m) 0.0077 0.0056 0.0038 

MAX (m) 0.0161 0.0138 0.0105 

5.2.2 Residual Gravity Effect 

Due to the difficulties of precisely balancing the system by moving the static weights 

along the balancing bars, it is not possible to obtain a perfectly gravity free-torque 

motion. However, the offset between the center of gravity (COG) and the center of 

ration (COR) along with the reference value for the moment of inertia ratios, can be 

both estimated from the CAD model by defining the density properties of each element 

of the system. Also, to check possible discrepancies between the real system and the 

modelled ones, the integral form of the Euler equation in which the gravity toque is 

added, and the COG-COR offset is included in the unknown vector can be exploited: 

[𝛺_9C/+9C+9C (𝑡 + 𝛥𝑡) − 𝛺_9C/+9C+9C (𝑡) +	 

+	= [𝝎_9C/+9C
+9C ×]𝛺_9C/+9C+9C 𝑑𝜏

43f4

4
, = [𝒈 ×]𝑑𝜏]

43f4

4
��̧�𝒗	; 	

𝑚𝒓
𝐼11
� = �

−𝜔1
0
0
� 

(98) 
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In Eq. (98) g is the gravity vector; m is the mass of the system and r is the COG-COR 

offset vector. The system of Eq. (98) is solved using the data acquired by the 

PhaseSpace system. The results obtained from different acquisitions (denoted as PS-i) 

along with the values obtained from the CAD model are reported in Table 27. 

Table 27 - MIRs and COG-COR offset estimated from the CAD model and PhaseSpace data. 
Parameter CAD PS-1 PS-2 PS-3 PS-4 PS-5 PS-6 

𝐼@@/𝐼11 0.2440 0.2897 0.2938 0.2413 0.2465 0.2359 0.2741 

𝐼../𝐼11 0.9900 1.0040 0.9879 0.9147 0.8928 0.9563 0.9532 

𝐼1@/𝐼11 0.0096 -0.0060 0.0024 0.0060 -0.0031 -0.0072 0.0166 

𝐼1./𝐼11 -0.0032 -0.0153 -0.0029 -0.0064 -0.0186 0.0033 0.0124 

𝐼@./𝐼11 -0.0289 -0.0203 -0.0218 -0.0067 -0.0108 -0.0284 -0.0009 

𝑚𝑟1/𝐼11 0 -0.0014 0.0041 0.0017 0.0034 0.0046 -0.0015 

𝑚𝑟@/𝐼11 -0.3467 -0.3853 -0.3887 -0.3722 -0.3716 -0.3768 -0.3807 

𝑚𝑟./𝐼11 0 0.0103 0.0090 0.0107 0.0088 0.0074 0.0071 

The reason for the different results in the PhaseSpace acquisitions lies in the numerical 

differentiation of the quaternion to estimate the angular velocity. However, as shown 

in Table 28, the standard deviations of both the principal moment of inertia ratios 

(𝐼LL/𝐼22 and 𝐼MM/𝐼22) and the dimensionless COR-COG vertical offset are one order 

of magnitude lower than the estimated values. The high variability of the other 

parameters between the different acquisitions is due to the fact that, being very low 

with respect to the principal MIRs and vertical offset, they have a negligible impact 

on the rotational dynamics of the system which makes their estimate highly sensitive 

to the measurement noise.  

Table 28 – Mean Standard Deviation of MIRs and COG-COR offset. 
Parameter Μean Standard Deviation 

𝐼@@/𝐼11 0.2680 0.0245 

𝐼../𝐼11 0.9570 0.0412 
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𝐼1@/𝐼11 0.0026 0.0087 

𝐼1./𝐼11 -0.0044 0.0106 

𝐼@./𝐼11 -0.0168 0.0109 

𝑚𝑟1/𝐼11 0.0016 0.0026 

𝑚𝑟@/𝐼11 -0.3746 0.0138 

𝑚𝑟./𝐼11 0.0076 0.0036 

It is worth underlining that the gravity torque term is only needed to counteract the 

fact that the system is not perfectly balanced. In an ideal case in which the centers of 

gravity and rotation are coincident, the only perturbation acting in the model is due 

to the friction between the spherical bearing cup and segment ball which has a 

negligible effect, [91].  

5.3 Test Results 

Before introducing and discussing the experimental results, the performance metrics 

adopted to evaluate the accuracy of both ICP and MIRs estimation algorithm are 

defined. 

The attitude performance metrics of the ICP-based pose determination algorithm are 

the angular deviations between the reference (i.e., PhaseSpace data) and the estimated 

direction of BRF in LRF computed as in Eq. (99): 

𝑒1,a(A	 = cos2-(𝑅-,KP0 , 𝑅-,09hK	)		 

𝑒@,a(A	 = cos2-(𝑅*,KP0 , 𝑅*,09hK	)			 

𝑒.,a(A	 = cos2-(𝑅?,KP0 , 𝑅?,09hK	)		 

(99) 

where 𝑅*	 is the i-th column of the rotation matrix representing the attitude of BRF 

with respect to LRF. Regarding the moment of inertia ratios, the error metric is defined 

as follows:  
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 𝑰K99 =
|𝑰9KC − 𝑰KP0|

𝑰9KC
 (100) 

where 𝑰>R? is the vector containing the mean values among the reference solutions 

obtained by the PhaseSpace-based test and from the CAD model (listed in Table 27).  

As described in Chapter 3, the first step is to obtain attitude and angular velocity 

estimates by processing the acquired point clouds. The time variation of the attitude 

performance metrics for the test case presented in this Chapter is depicted in Figure 

52, while the statistics are listed in Table 29.  

 

Figure 52 - Time variation of the performance metrics defined for the relative attitude. 

Table 29 - Statistics of the performance metrics defined for the relative attitude. 

Metrics Mean (°) Standard 
Deviation (°) 

𝑒1,a(A	 5.312 1.897 
𝑒@,a(A	 5.299 2.23 
𝑒.,a(A	 4.686 1.775 

It is worth outlining that the errors of the ICP-based pose determination algorithm 

include, along with the errors related to the limited accuracy of the sensors, the 

calibration errors (cm-level error) and the tracking errors of the PhaseSpace system. 
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These latter errors include two contributions: the errors in the tracking of each LED 

and the uncertainty due to the imperfect knowledge of their position in BRF. 

Once the attitude information is collected, the angular velocity of the system is 

estimated through Eq. (54). Since the estimate of the angular velocity must be as 

accurate as possible to obtain a good estimate of the MIRs, the time interval over which 

the rotation angle φ (see Eq. (53)) must be computed is not constant but it is chosen 

by taking into account the accuracy of the estimated pose provided by the value of the 

ICP cost function at the last iteration, fEND. Thus, the numerical derivative of φ is 

computed only if the value of fEND is lower than a user defined threshold. 

With the estimated values of attitude and angular velocity, along with the COG-COR 

offset provided by the CAD model, Eq. (101) is exploited to obtain an estimate of the 

MIRs whose results are summarized in Table 30. These values are considered as 

reference value since they fall in the range mean ± standard deviation obtained from 

the tests listed in Table 27.  

It is worth noting that in this case, with respect to the procedure described in Chapter 

3, the hypothesis of the conservation of the angular momentum cannot be applied due 

to the presence of the gravity torque term.  

 [𝛺09C/+9C+9C (𝑡 + 𝛥𝑡) − 𝛺09C/+9C+9C (𝑡) +	 

+	= [𝝎09C/+9C
+9C ×]𝛺09C/+9C+9C 𝑑𝑡

43f4

4
]𝑰0𝑑𝜏 =	 

= �
−𝜔1
0
0
� − =

𝑚[𝒈 ×]𝒓
𝐼11

𝑑𝜏
43f4

4
 

(101) 

 

Table 30 - Estimation errors of the principal MIRs. 

MIRs Reference 
values 

Estimated 
values 

Performance 
metrics 

𝐼@@/𝐼11 0.2440 0.2186 10.40% 
𝐼../𝐼11 0.9900 1.0751 8.60% 
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It is important to underline that the results provided in Table 30 are not only influenced 

by the uncertainty on the angular velocity estimate, but they also depend on the 

accuracy on the knowledge of the gravity torque (i.e., COG-COM offset) and 𝐼22 terms 

added to Eq. (101) to counteract the effect of an imperfectly balanced system and 

derived from the CAD model. The performance of the algorithm is expected to 

improve with a more accurate knowledge of the system parameters and by integrating 

an active balancing system able to perfectly align the COG with the COR. 
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6. Aerodynamic de-orbiting control 

This chapter presents a trajectory control strategy for the de-orbiting phase of a micro-

satellite equipped with a deployable aerobrake. This activity is framed in the design of 

the Italian space mission MISTRAL (MIcro-SaTellite with Air-Launchable Re-entry 

capabilities). Developed under the supervision of the DAC-Campanian Aerospace 

District, MISTRAL aims at developing a prototype of a multi-purpose air-launchable 

50 kg class micro-platform, able to return limited mass and volume payloads to Earth.  

6.1 Literature review 

As stated in Chapter 1, deployable aerobrakes for re-entry satellites may offer many 

advantages in the near future, including the opportunity to recover payloads and 

samples with reduced risks and costs with respect to conventional systems. A 

deployable aerobrake can be modulated to control the re-entry trajectory and to 

correctly guide the capsule towards the selected landing site.  

The de-orbit and re-entry control problems have been addressed with several 

approaches in the scientific literature. Typically, a nominal trajectory is designed, and 

then a trajectory tracking feedback controller is used to counteract uncertainties and 

external disturbances; moreover, a gain scheduling of the controller parameters is also 

adopted to adapt to different flight conditions.  

Feedback control laws can be designed as linear-proportional-integrative-derivative 

(PID) actions, [92], [93]. In [94], a gain scheduling controller is designed on the basis 

of a Linear Parametric Varying (LPV) model describing the vehicle dynamics. In [95], 

a double-loop control system with fuzzy gain-scheduling is proposed. Other 

approaches based on fuzzy logic are presented in [96] and [97], where PID controllers 
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are used to track the drag minimal reference profile. Time-varying linear feedback 

controllers are proposed in [98], [99]. In [100], an adaptive controller is based on 

feedback linearization theory, coupled with a sliding mode observer to estimate the 

drag and its rate of variation. Controllers based on feedback linearization are also 

presented in [101] and [102]. In [103], the control algorithm, is based on a time-

varying Linear Quadratic Regulator (LQR) minimizing the trajectory tracking error. 

Other controllers based on gain scheduling techniques are presented in [104], [105] 

and [106]. In [107] a nonlinear PID control is proposed: it guarantees globally 

asymptotically stable tracking of the reference trajectory [108], or to optimize the 

control action taking into account the error with respect to the target landing position 

([109] and [110]). In [111] and [112], the trajectory task is achieved by using an 

incremental nonlinear dynamic inversion controller.  

When using deployable surfaces, the control signal aims at modifying the ballistic 

coefficient of the spacecraft. A common idea is to build a dynamic aero-brake with the 

ability to change its shape, and therefore its area during the flight, [113]-[114], in order 

to control the trajectory to reach a predefined landing location [115]. The modulation 

of the ballistic coefficient has been investigated as a viable option in spacecraft 

formation control and spacecraft de-orbiting and re-entry, so to reduce the risk of 

reaching populated areas [104], [116], [117]. As regards the use of the aerodynamic 

force in formation flying applications to control the geometry if a spacecraft 

constellation, bang-bang control techniques have been applied in open loop 

configuration [118]. Open-loop control techniques modifying the ballistic coefficient 

at a certain time instant, have also been exploited to assign the re-entry time and 

consequently change the longitude and latitude of the re-entry location [117]. 

Although this approach has been applied for the re-entry of Skylab, it exhibits a low 
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robustness due to the absence of feedbacks: this makes the system not reactive to 

uncertainties, such as those on the atmospheric density, which is particularly difficult 

to predict. Performance of a drag-based re-entry control algorithm can be drastically 

improved by the introduction of a closed-loop control, as proposed in [119], in which 

a Model Predictive Control (MPC) scheme is implemented to change the ballistic 

coefficient so to minimize the state error.  

In this framework, a feedback control law has been selected for MISTRAL. However, 

two different approaches have been adopted for the de-orbiting (i.e., from 300 km up 

to 150 km) and re-entry phase (i.e., 100 km up to 30 km). The idea to adopt two 

different approaches for the de-orbiting and re-entry phases comes from the 

consideration that the stability of the control algorithm is one of the main requirements 

for the first phase, since it lasts longer than the second one. To this end, an LQR based 

approach with state feedback has been selected, since, among the linear controllers, it 

results in a control law that is guaranteed to be stable (for the linearized system). Non-

linear controls have not been considered due to the associated computational burden. 

On the other hand, the main objective of the re-entry phase is to land in the correct 

area. To this purpose, an MPC approach with terminal cost on the prediction time 

horizon proved to be more effective. This thesis focuses on the de-orbiting phase and 

the algorithmic details of the LQR-based control along with the results of an extensive 

simulation campaign are presented in the next sections.  

6.2 Control algorithm for the de-orbiting phase 

During the de-orbiting phase, MISTRAL shall decay from an initial altitude HD = 300 

km to an altitude HR = 150 km following a reference orbital decay trajectory. The 

control system must be able to keep the spacecraft as close as possible to the nominal 
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trajectory despite all the uncertainties, system constraints (including those deriving 

from the actuator performance limitations), and the environment perturbations (i.e., 

atmospheric density variations) by varying the ballistic coefficient with respect to the 

reference value provided by the guidance.  

With respect to previous work [105] where a dead-band approach has been introduced, 

a fixed control frequency (0.0042 Hz) and a moving average filtering is adopted to 

avoid high frequency switching of the commanded ballistic coefficient. This also 

makes the tracking algorithm robust to GPS-noise and unmodelled perturbations (e.g., 

high order gravity terms). 

To describe the deviation of a real spacecraft trajectory with respect to the reference 

one, a linearized model around the reference path is used. A HRF with the origin in 

the center of a mass of a fictious spacecraft following the nominal trajectory has been 

defined. The analytic model used to describe the time evolution of the system is given 

by Schweighart-Sedwick linearized equations [44], [120]. These equations are similar 

in form to Hill’s equation in [44] but they include the mean effect of J2, as shown in 

the following: 

 
/
	�̈�"#$ − 2�̇�%&'𝑛𝑐 − (5𝑐! − 2)𝑛!𝑋%&' = 0

�̈�%&' + 2�̇�%&'𝑛𝑐 = 0
�̈�%&' + 3(𝑐! − 2)𝑛!𝑍%&' = 0

 
(102) 

In Eq. (102) n is the orbital angular velocity, 𝑋^>?, 𝑌 >? and 𝑍^>? are the radial, along-

track and cross-track coordinates of the spacecraft in HRF, while c is defined as 

follows:  

 
𝑐 = <1 +

3𝐽!𝑅(!

8|𝑹𝑬𝑪𝑰|𝟐
(1 + 3 cos 2𝑖) 

(103) 

with 𝑅; being the Earth radius, |𝑹𝑬𝑪𝑰| is the norm of the position vector of the fictious 

spacecraft and i its orbital inclination.  
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The control algorithm must provide the time variation of the ballistic coefficient 

minimizing the deviation of the spacecraft from the reference trajectory. Since the 

aerodynamic drag has a negligible effect on the out-of-plane motion, only the 

equations describing the in-plane motion in Eq. (102) are considered. The differential 

drag ΔD experienced by the real spacecraft with respect to the reference one is the 

control input inducing a relative acceleration and it is expressed as follows: 

 Δ𝐷 =	−𝜌|𝑽𝑬𝑪𝑰|!		Δ𝐶- (104) 

where 𝜌 is the atmospheric density, |𝑽𝑬𝑪𝑰| is the norm of the reference Earth-relative 

velocity vector, provided by the guidance algorithm, and Δ𝐶bis the commanded 

difference between the ballistic coefficient needed to follow the reference trajectory 

and the nominal one; the variation of the ballistic coefficient Δ𝐶b represents the 

parameters on which the control logic can act. It is then converted in the actuation 

command via a static relationship. The ballistic coefficient is defined as follows: 

 
𝐶- =

𝐶.𝐴
2𝑚

 (105) 

where 𝐶c is the drag coefficient, A is the cross-sectional area and m is the spacecraft 

mass.  

Defined the state vector  𝒙𝑫 = l𝑋^>? , 𝑌 >? , 	�̇�^>? , �̇̂� >?n
% and the input vector 𝑢e =

Δ𝐶b, the dynamic model of the system can be written in the matrix state space form as 

in [105]: 

 �̇�𝑫 =

⎣
⎢
⎢
⎢
⎡�̇�&'(
�̇�&'(
�̈�&'(
�̈�&'( ⎦

⎥
⎥
⎥
⎤
= 	 8

0 0 1 0
0 0 0 1

(5𝑐# − 2)𝑛# 0 0 2𝑛𝑐
0 0 −2𝑛𝑐 0

?

⎣
⎢
⎢
⎡
𝑋&'(
𝑌&'(
�̇�&'(
�̇�&'( ⎦

⎥
⎥
⎤
+ 8

0
0
0

−	𝜌𝑣)#
?Δ𝐶* = 𝐴𝒙𝑫 + 𝐵𝑢+ (106) 

The adopted control logic is based in a Linear Quadratic Regulator (LQR) approach. 

Given the linearized model (106), in which the state vector is composed of the radial 

and along-track distance of the spacecraft from the reference trajectory, optimal 
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control is aimed at nullifying the distance between the actual spacecraft position and 

the desired one: this is equivalent to minimize the following objective function,  

 
𝒥i =	= ½𝒙𝑫𝑻 	𝑄𝒙𝑫 + 𝑢i0𝑅𝑢i¿ 	𝑑𝑡

>

6
 (107) 

where t is the time, 𝑄 and 𝑅 are the state and control positive semidefinite penalty 

matrix weighting the relative importance between two different goals: reaching the 

desired state as fast as possible and minimizing the control effort. In practical 

application, they are generally designed as diagonal matrix. The control variable 𝑢e 

is: 

 𝑢i =	−𝐾𝒙𝑫	 (108) 

Since the along-track error is greater than the radial one, due to the direction in which 

the drag force acts on the spacecraft, it can be assumed that the control performance is 

mostly affected by the along-track error. Thus, the quadratic performance index is 

modified as follows: 

 
𝒥/ =	K (𝑄!		𝑌%&'! 	+ 𝑅0	𝑢/! )

1

𝟎
𝑑𝑡	 (109) 

According to the Bryson principle [121], which is widely applied for the selection of 

the weighting matrix in LQR-based control law, Q2 and R1 can be selected by first 

normalizing them with respect to the maximum values of the states and control 

quantities, as in Eq. (110). 

 𝑄!𝑌%&',-.
! = 𝑅0	𝑢/,-.

! = 1 (110) 

The value of Q2 and R1 provided by the Bryson principle are used as initial guess. They 

have been refined to optimize the performance of the system in terms of both tracking 

error and control effort by means of numerical analysis. 
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Since Eq. (106) represents a linear time varying model, a practical approach to take 

into account the time variation of the matrix coefficients, is to update the LQR gains 

on the basis on the value of the atmospheric density: every time the ratio between the 

actual atmospheric density and the one used to compute the gains is larger than a given 

constant (1.2 is set in this case), the linearized matrices are updated and new gains are 

computed. This ends up in a continuous gain scheduling of the feedback control gains. 

Obviously, the controller gains matrices can be computed off-line and stored in the on-

board computer.  

Also, in order to smooth the oscillations of the required command caused by the 

measurement noise and the high gains, a moving average filter in the discrete time of 

the control command is applied. The order of the filter is chosen so as to average the 

control input over a one-hour time window.  

6.3 Numerical simulation environment and results 

A 3-degree of freedom orbital propagator based on Eq. (111), has been developed in 

MATLAB/Simulink to simulate the orbital flight dynamics of the MISTRAL capsule. 

It includes the main LEO perturbations, i.e., the atmospheric drag and the gravitational 

harmonics up to the 4th order.  

 �̇�𝑬𝑪𝑰 = 𝑽𝑬𝑪𝑰 

 

�̇�𝑬𝑪𝑰 = −𝜇 ⋅
𝑹𝑬𝑪𝑰
|𝑹𝑬𝑪𝑰|3

+ 𝒂𝑱𝟐 + 𝒂𝑱𝟑 + 𝒂𝑱𝟒 −
1

2 ⋅ 𝑀5
⋅ 𝜌 ⋅ |𝑽|! ⋅ 𝐶/ ⋅ 𝑆 ⋅ 𝑽U 

(111) 

In Eq. (111): 

• 𝑹𝑬𝑪𝑰 = [𝑋678 , 𝑌678 , 𝑍678 	]9 is the position vector of the capsule in the ECI frame 

• 𝑽𝑬𝑪𝑰 = Y𝑉:,678 , 𝑉<,678 , 𝑉=,678 	[
9 is the velocity vector of the capsule in the ECI frame 
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• 𝑽 = 𝑽𝑬𝑪𝑰 −𝛀𝑬 × 𝑹𝑬𝑪𝑰  is the Earth-relative speed of the capsule, 

• 𝛀𝑬 is the rotation speed of the Earth, 

• 𝜌 = 𝜌(𝐻) is the atmospheric density, 

• 𝐶/ = 𝐶/(𝐻)		is the drag coefficient, 

• 𝑆 is the surface of the aerobrake, 

• 𝑀5 is the mass of the capsule, 

• 𝜇 is the gravitation universal constant,  

• 𝐻 = |𝑹𝑬𝑪𝑰| − 𝑅( is the geometric altitude,  

• 𝑅( is the approximate radius of the Earth, 

• 𝒂𝑱𝟐, 𝒂𝑱𝟑, and  𝒂𝑱𝟒 are the accelerations related to zonal harmonics 𝐽!, 𝐽3 e 𝐽>, 

• |⋅|	indicates the Euclidean norm. 

The model assumes that the spacecraft is a single point of mass, no rotational dynamics 

are considered, and the aerodynamic side force is assumed negligible. It also considers 

a standard atmospheric model USSA76 with a perturbed density model reported in Eq. 

(112), 

 
𝑘<AA =	𝑘6 +	*𝑘( 	sin ½

2𝜋
𝑇𝑖 𝑡 −	𝜑(¿

?

(,-

	 
(112) 

where Ti values are set to 26 days, 1 day and 5400 seconds, respectively, ki values are 

set to 0.25, 0.1 and 0.1, while  𝜑* and 𝑘7 are randomly selected from a uniform 

distribution between 0 and 2π and 0.77 and 1.3, respectively.  

Clearly, the atmospheric density is, among all the variables at play, the most difficult 

to predict. The use of this perturbation model guarantees a realistic uncertainty in the 

knowledge of the atmospheric density with respect to the one used to generate the 

reference trajectory. This allows to test the control robustness against the high 

variability of this parameter. 
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Also, a simplified actuation system model is included in the simulation environment 

taking into account quantization errors of the umbrella like device which is reflected 

in a quantization level of the aero-brake surface. The actuator command is subject to 

a maximum/minimum amplitude, as shown in Figure 53, a maximum rate of variation 

of 3 mm/s, duty cycle limitations of 10% and position error uniformly distributed 

between -0.07 and 0.07 mm. Figure 53 shows the non-linear relation between the aero-

brake surface and the aero-brake linear command.  

 

Figure 53 - Aero-brake linear command vs aero-brake exposed area. 

Also, an uncertainty on the navigation data based on the performance of OEM719 

Multi-Frequency GNSS Receiver has been simulated. Specifically, the navigation 

error has been considered as a sum of two contributions: 

• A Gaussian white noise with standard deviation of 1.5 √2⁄  meters for both 

horizontal and vertical error and a standard deviation of 0.03 √3⁄  meters per 

seconds for speed error. Those values have been defined on the basis of 

Cubesat kit GPSRM-1 GPS Receiver which uses a OEM719 Multi-Frequency 

GNSS Receiver, [122]. 
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• A sinusoidally varying bias errors with a frequency equal to the average orbital 

angular velocity and a millimeter level amplitude for position error and 10-2 

millimeter per second amplitude for velocity error. 

The proposed numerical simulation results are obtained starting from the main mission 

scenario orbit which is characterized by the parameters reported in Table 31. The 

nominal trajectory for the de-orbit phase is generated as described in [104] by 

considering a piecewise constant aero-brake surface divided as follows: 

• SRef = 0.15 m2 for altitude in the range 300𝑘	𝑚 ≤ H < 285	𝑘𝑚. 

• SRef = 0.5 m2 for altitude in the range 285	𝑘𝑚 ≤ H < 160	𝑘𝑚. 

• SRef = 0.15 m2 for altitude in the range 160	𝑘𝑚 ≤ H < 150	𝑘𝑚. 

Table 31 - MISTRAL mission scenario. 
Parameter Value 

Altitude 300 km 

Semi-major axis 6678 km 

Eccentricity 0 

Right Ascension of Ascending Node 32.57° 

Inclination 51.6° 

Argument of perigee  0° 

True anomaly 356.60° 

Satellite Epoch 25/11/2020 10:00:00 (UTC) 

Target coordinates [-29.52°, 133.35°] 

 

Finally, to test the validity of the control approach, a large family of simulations is 

generated considering uncertainties on the initial conditions, vehicle parameters 

randomly selected from uniform distributions which have the following 

characteristics: 

• Maximum uncertainty of ±20% on the drag coefficient. 

• Maximum uncertainty of ±10% on the mass of the spacecraft. 

• Maximum uncertainty on the actuator position ±0.07 mm. 
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• Maximum deviation of ±1 km from the nominal initial position. 

• Maximum deviation of 0.00013 from the nominal orbital eccentricity (which 

leads to a velocity error of about 1 meter per second. 

The control time cycle was set to 240 seconds (i.e., about 0.0042 Hz) and the 

performance of the control system is evaluated by considering the position and 

velocity error of the spacecraft with respect to the reference trajectory at the end of the 

de-orbiting phase.  

Three different simulation cases and statistical analysis are reported hereinafter.  

The uncertainties considered for each simulation are listed in Table 32, whereas the 

results are reported in Table 33: the purpose of comparison between the presented 

simulation results is to give an idea of how the different uncertainties and their 

combination affects the performance of the system.  

Table 32 - De-orbiting phase: simulation uncertainties. 
Uncertainties 

 Simulation 
#1 

Simulation #2 Simulation #3 
Uncertainty on actuator position (1σ) 0.0055 

mm 
0.0055 mm 0.0055 mm 

Uncertainty on navigation data (sensor 
noise) 

No Yes Yes 

Uncertainty on drag coefficient 0% 0% 3.21 % 

Uncertainty on the mass of the 
spacecraft 

0% 0% 1.1 % 

Uncertainty on the atmospheric density Yes No Yes 

Uncertainty on the initial state No  Along track error 
1 km, Velocity 

error 1 m/s 

Along track error 
885.5 m, Velocity 

error 0.4 m/s 
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Table 33 - De-orbiting phase: position and velocity errors at HR = 150 km. 
Errors @ HR 

 Simulation #1 Simulation #2 Simulation #3 

ECI Position Error 𝐸|𝑹𝑬𝑪𝑰|
@%5 	 0.24 𝑘𝑚 0.012 𝑘𝑚 0.074 𝑘𝑚 

ECI Speed Error 𝐸|𝑽𝑬𝑪𝑰|
@%5  0.24	𝑚/𝑠  0.030	𝑚/𝑠  0.060	𝑚/𝑠  

Distance from target point 

on the Earth surface 

0.32	𝑘𝑚 0.017	𝑘𝑚 0.11	𝑘𝑚 

In Simulation #1, the effect of the uncertainty in the knowledge of the atmospheric 

density is firstly analyzed. The time variation of the commanded aerobrake is depicted 

in Figure 54, compared with the nominal command calculated by the Guidance 

algorithm. Figure 55 and Figure 56 show the time variation of the position and velocity 

errors, respectively: the uncertainty in the knowledge of the atmospheric density 

causes a position error in the order of 100 meters, and a speed error in the order of 1 

meter per second at the final height (i.e., 150 km); the commanded value if the aero-

brake surface is biased with respect to the reference values provided by the guidance 

with moderate oscillations due to the difference between the known value of the 

atmospheric density (provided by the model USSA76) and the actual one (perturbed 

by model of Eq. (112)): this results in a steady-state term in both tracking position and 

velocity errors.  
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Figure 54 - De-orbiting phase, Simulation #1: Aero-brake control command (blue) and aero-
brake command of the reference trajectory (red). 

 

Figure 55- De-orbiting phase, Simulation #1: ECI position error. 
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Figure 56 - De-orbiting phase, Simulation #1: ECI speed error. 

As a second test case (called Simulation #2), the effect of initial state displacements 

with respect to the nominal one is analyzed. Assuming an initial along-track error of 1 

kilometer, and a velocity error of 1 meter per second, Figure 57 shows the time 

variation of the commanded value of the aero-brake surface over the de-orbiting 

trajectory. Also, a highlight of the first 6000 seconds shows the oscillation of the aero-

brake command over one orbital period. Figure 58 and Figure 59 show the time 

variation of the position and velocity errors. It can be noted that, although the 

perturbation on the initial state of the orbit causes higher oscillations of the aero-brake 

command with respect to Simulation #1, the final position and speed errors are 

comparable to the one of the previous simulation, proving that the control system is 

able to nullify the initial tracking error.  
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Figure 57 - De-orbiting phase, Simulation #2: (left) Aero-brake control command (blue) and 
aero-brake command of the reference trajectory (red). (right) Zoom of the first 6000 seconds. 

 

Figure 58 - De-orbiting phase, Simulation #2: ECI position error. 
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Figure 59 - De-orbiting phase, Simulation #2, ECI speed error. 

In Simulation #3, the effect of the uncertainties on drag coefficient and satellite’s mass 

are also taken into account (the values of the uncertainties are listed in Table 32). 

Figure 60, Figure 61 and Figure 62 depict the time behavior of the commanded value 

of the aero-brake and of the position and velocity errors. 

The first part of the de-orbiting phase is characterized by a higher control effort as a 

consequence of the large initial errors and of the low value of the atmospheric density, 

which reduces the command effectiveness. Once the error has been nullified, the 

spacecraft starts following the reference trajectory and small corrections are required. 

The final position error is in the order of 200 meters, and the speed error is in the order 

of 0.3 meters per seconds.  

As shown in Figure 60, the de-orbiting control command has low amplitude 

oscillations, and the spacecraft follows the reference trajectory with a position error at 

150 km in the order of hundreds of meters.  
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Figure 60 - De-orbiting phase, Simulation #3: (left) Aero-brake control command (blue) and 
aero-brake command of the reference trajectory (red). (right) Zoom of the first 6000 seconds. 

 

Figure 61 – De-orbiting phase, Simulation #3: ECI position error.  



 141 

 

Figure 62 - De-orbiting phase, Simulation #3: ECI speed error. 

Finally, a statistical analysis has been conducted in the results of 100 simulations with 

different combination of uncertainties, whose characteristics are described at the 

beginning of this paragraph. Table 34 summarizes the results of this simulation 

campaign. It turns out that the proposed technique can guarantee a mean ECI position 

error of about 400 meters with a standard deviation of about 600 meters, and a mean 

ECI velocity error of about 0.5 meter per seconds with a standard deviation of about 

0.7 meter per seconds. Finally, the distance from the target point on the Earth surface 

is reports (mean value of 530 meters with a standard deviation of 860 meters). 

Table 34 - De-orbiting phase: Statics of position and velocity errors at HR = 150 km evaluated 
over 100 simulations. 

Statistical Analysis: Errors @ HR 

 Mean Standard Deviation 

ECI Position Error 𝐸|𝑹𝑬𝑪𝑰|
@%5 		 0.4 𝑘𝑚 0.64 𝑘𝑚 

ECI Speed Error 𝐸|𝑽𝑬𝑪𝑰|
\@%5 0.49	𝑚/𝑠  0.73	𝑚/𝑠  
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Distance from target point 

on the Earth surface 

0.53	𝑘𝑚 0.86	𝑘𝑚 
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7. Conclusions 

This thesis presented the development and performance assessment of original 

autonomous GNC functions for operations in close proximity of uncooperative space 

targets and re-entry applications.  

Relative Navigation architecture for spacecraft close proximity operations  

In the frame of ADR and IOS operations, a LIDAR based relative navigation 

architecture able to deal with non-cooperative and partially unknown target has been 

proposed for both monitoring and final approach phase. The architecture has a multi-

steps configuration which allows to separate the inertia properties estimation task from 

the relative navigation task, thus avoiding the influence of a time-varying uncertainty 

on the inertial properties on the estimate of the relative motion parameters when they 

are included in the state vector of the filter. 

Also, a loosely coupled configuration has been preferred to a tightly coupled one for 

two main reasons. On one hand, a loosely coupled approach allows realizing a modular 

architecture in which different algorithmic approaches can be plugged-in to adapt it to 

the operational scenario without significantly affecting its structure. For instance, one 

can change the relative navigation sensor with a monocular camera without modifying 

the process or measurement model of the navigation filters, as long as the algorithms 

aims at processing the raw data of the camera provides an estimate of the pose 

parameters. On the other hand, the loosely coupled configuration allows avoiding 

dealing with the recursive appearance/disappearance of the target features from the 

FOV of the sensor which requires the development of robust feature detection 

algorithm.  
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The robustness of the overall architecture is provided by an autonomous failure 

detection strategy in which the measured poses are fed to the Kalman filter only if the 

associated error metric function of the ICP is lower than a selected threshold.  

The performance assessment has been carried out by means of numerical simulations 

considering targets with different characteristics in terms of size, shape and 

orbital/rotational dynamics. For all the considered test cases, the diagonal elements of 

the MIRs matrix were estimated with a maximum error of 6% and a best error of 

0.07%. Results also showed that the accuracy level in the estimation of the off-

diagonal elements of the MIRs matrix does not have a noticeable impact on the target-

chaser relative state estimation performance.  

Exploiting the estimated moments of inertia ratios, the Kalman Filter, initialized with 

highly accurate pose estimates provided by the previous step, allows obtaining a 

millimeter level of accuracy in the relative position, a millimeter per second level of 

accuracy in the relative velocity, while the relative attitude and the target absolute 

angular velocity are estimated with 10-1 degrees and 10-4 degrees per seconds level of 

accuracy, respectively. It is also worth noting how the filtering scheme is effective in 

improving the performance in the estimation of the relative state parameters with 

respect to the pose determination algorithms in standalone configuration. This is also 

due to the capability of obtaining highly accurate estimate of the inertia ratios to be 

used within the filter dynamics model, thanks to the multi-step approach. 

The attitude and moment of inertia estimation algorithm has been validated within an 

experimental set-up which, by means of a spherical air-bearing, simulates the tumbling 

motion of an uncooperative space target represented by a scaled down satellite mock-

up, whose motion is tracked with a solid-state LIDAR. The presented test case shows 

that the ICP allows estimating the attitude with a mean error of 5° and a standard 
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deviation of 2°, while the principal moment of inertia can be estimated with an error 

lower than 20%. However, it is worth pointing out that this accuracy is influenced by 

all the uncertainties of the set-up which includes the residual gravity torque effect due 

to a non-perfect alignment of the center of mass and the center of rotation of the 

system, the extrinsic calibration error and the intrinsic accuracy of the PhaseSpace 

Impulse system which represents the benchmark. Also, it is important to underline that 

the pose has been tracked with a low-cost solid-state LIDAR whose performance are 

not comparable with the recent technological solution for space applications.  

With regards to the final approach phase, in which the chaser has to capture the target 

by means a robotic arm, a trade-off analysis on the relative navigation architecture has 

been carried out to evaluate advantages and disadvantages of the state-of-the-art 

solutions. The analysis shows that an additional EO sensor (a TOF camera in this case) 

shall be foreseen on the end-effector of the robotic arm in order to have direct 

measurements of the pose of the end-effector with respect to the selected grasping 

point on the target which is independent from the ego-motion uncertainty of the robotic 

arm. These measurements, along with the pose of the end-effector with respect to its 

base (the chaser), are processed by a navigation filter, separate from the one which 

estimate the target-chaser motion parameters. This architecture has been tested within 

a numerical simulation environment in which the final approach phase toward 

ENVISAT of a chaser equipped with a 7-DOF robotic arm. The numerical results 

shows that the architecture is able to reach the same level of accuracy of the monitoring 

phase for the target-chaser motion estimation parameters despite the additional 

uncertainties considered in this test case (e.g., the uncertainty in the knowledge of the 

absolute navigation state of the chaser). Also. relative position and relative velocity of 

the gripper with respect to the grasping point are estimated with millimeter and 
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centimeter per second level of accuracy, respectively; while the error level achieved 

in the relative attitude and relative angular velocity estimate are 10-2 degree and 10-3 

degree per second.  

The future of this activity regards the introduction of a shape reconstruction step which 

allows to validate the target model on board the chaser to check for possible hit or 

collision that could have modified the target geometry. From the point of view of the 

performance assessment, the real time implementation of the relative navigation 

function can be verified with Software in the Loop Tests and Hardware in the Loop 

Tests (HIL). The HIL Tests will require an experimental set-up which is able to 

simulate the full 6-DOF relative motion between two spacecraft.  

Aerodynamic de-orbit control 

Regarding the trajectory tracking control of a de-orbiting micro-satellite by means of 

aerodynamic drag, an LQR-based control system has been developed and tested in a 

numerical simulation environment in the framework of the activities related to the 

MISTRAL mission. Specifically, the control system must determine the aperture of an 

umbrella-like actuator, which has the twofold function of a thermal shield and aero-

braking device, that minimizes the deviation of the spacecraft from a reference 

trajectory.  

The robustness of the control algorithm has been assessed in presence of different 

sources of uncertainties, including those related to the atmosphere, to the knowledge 

of the spacecraft parameters, the limitation of its actuation systems (e.g., saturation 

and duty cycle) and the perturbation on the initial state. The simulation campaign 

shows that the spacecraft reaches the atmospheric interface at 150 kilometers with a 

hundred of kilometers level position error and meters per second in speed error. 

Specifically, it can be noted that the initial state perturbation is the one that most 
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stresses the actuator in terms of oscillation amplitude: it causes the system to reach the 

saturation value multiple times. Even if this is not ideal from a mechanical point of 

view, the numerical simulations shows that the final accuracy reached at the end of the 

de-orbiting phase is not affected by this phenomenon. To this aim, future works will 

include the development of a trajectory generation algorithm which takes into account 

the actuation system limitations as well as an improved control algorithm which 

optimize the control effort to be exerted the umbrella-like actuator by considering the 

actuator’s physical constraints.  
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