
Università degli Studi di Napoli Federico II
Ph.D. Program in Industrial Products and Processes Engineering

XXXV Cycle

Thesis for the Degree of Doctor of Philosophy

Francesco Rusciano

Fickian non-Gaussian diffusion in
glass-forming liquids

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale



Fickian non-Gaussian diffusion in
glass-forming liquids

Ph.D. Thesis presented
for the fulfillment of the Degree of Doctor of Philosophy

in Industrial Products and Processes Engineering
by

Francesco Rusciano

December 2022

Approved as to style and content by

Advisor: Francesco Greco, Raffaele Pastore

Università degli Studi di Napoli Federico II
Ph.D. Program in Industrial Products and Processes Engineering
XXXV cycle - Chairman: Prof. Andrea D’Anna



Candidate’s declaration

I hereby declare that this thesis submitted to obtain the academic degree
of Philosophiæ Doctor (Ph.D.) in Industrial Products and Processes
Engineering is my own unaided work, that I have not used other than the
sources indicated, and that all direct and indirect sources are
acknowledged as references.
Parts of this dissertation have been published in international journals
and/or conference articles (see list of the author’s publications at the end
of the thesis).

Napoli, March 10, 2023

Francesco Rusciano



Abstract

In 2009, ground-breaking experiments on nanometric beads in complex
fluids revealed the existence of a novel type of diffusion (that is distinct
from both standard and anomalous diffusion), characterized by a linear
time-dependent mean square displacement and a non-Gaussian displace-
ment distribution. In the past few years, many other examples of such a
“Fickian yet non-Gaussian Diffusion”, (FnGD) have been reported in litera-
ture. FnGD is generically associated to some dynamical and/or structural
heterogeneity of the environment. This feature motivated us to investigate
the possible occurrence of FnGD in glass-forming liquids, the epitome of
dynamical heterogeneity, drawing on experiments on hard-sphere colloidal
suspensions and simulations of a simple models of molecular liquid [1, 2].

We here demonstrate that FnGD "strengthens" on approaching the
glass transition, by identifying distinct timescales for Fickianity, τF , and
for restoring of Gaussianity, τG, as well as their associated length-scales,
ξF and ξG. We find τG ∝ τγF , with γ > 1, for all investigated systems.

In the deep FnGD regime, particle displacement distributions display
exponential tails: we show that the time-dependent decay lengths l(t) at
different temperatures all collapse onto a power-law master-curve, l(t)/ξG ∝
(l(t)/ξG)

α with α ≃ 0.33. For the investigated glass-formers, this be-
haviour is independent from interaction potential and dimensionality [2].
We further discuss the connections of the time- and length-scales character-
izing FnGD with structural relaxation and dynamic heterogeneity, through
a complementary study of the dynamics in the reciprocal Fourier-space.

Finally, we illustrate the connections between FnGD scales and stan-
dard timescales usually considered in the late relaxation of glass-forming
liquids, showing that these timescales are always related, and for whatever
system, by the same power-law relations.

Overall, a number of universal scaling laws for very long-time single
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particle dynamics (here reported for the first time) seem to emerge close
to the glass transition, and characterize the Fickian non-Gaussian regime
of glass-forming liquids.

In conclusion, this work of thesis is at the crossroads between two major
issues in soft matter, namely glass transition and the recently discovered
Fickian yet non-Gaussian Diffusion (FnGD), and unveils strong connec-
tions between them.

Keywords: Fickian non-Gaussian diffusion, Brownian non-Gaussian dif-
fusion, supercooled liquids, glass-forming liquids, glass transition, Brown-
ian motion, diffusion
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CHAPTER 1

Introduction

According to Einstein’s work on Brownian motion [3], macroscopic dif-
fusion at equilibrium corresponds to random walks of thermally agitated
particles, with a Gaussian displacement distribution, plus a Mean Square
Displacement (MSD), ⟨r2(t)⟩, increasing linearly with time, the so-termed
Fickian case: the diffusion constant is then obtained as D = ⟨r2(t)⟩/2dt,
d being the space dimensionality. In more recent years, a variety of exper-
iments has also shown the existence of anomalous (non-Fickian) diffusion,
quite often associated to correlated walks, and typically accompanied by
non-Gaussian displacement distributions [4, 5]. Thus, from this double
perspective, Fickian and Gaussian behaviours were thought to be biunivo-
cally related.

In 2009, ground-breaking experiments [6] on nanometric beads in com-
plex biological fluids broke up such scenario, revealing the existence of a
novel type of diffusion that is distinct from both standard and anomalous
diffusion, being simultaneously Fickian and non-Gaussian. In the past few
years, many other examples of such a “Fickian yet non-Gaussian Diffu-
sion”, (FnGD) have been reported, mostly in soft matter and biological
systems characterized by some kind of heterogeneity of the structure or in
the dynamics [6, 7, 8, 9, 10, 11, 12, 13, 14]. The existence of an under-
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lying heterogeneity has also been considered in various theoretical mod-
els [15, 16, 17, 18, 19] proposed to capture the main features of FnGD such
as, for example, the presence of “fat tails” (“fatter than Gaussian”, usually
exponential) in the displacement distribution. While a full understanding
of FnGD is still far from being achieved, the association between FnGD and
some kind of heterogeneity generally meets a wide consensus [20, 21, 15].

Dealing with dynamical heterogeneity (DH), it comes natural to think
next to glass-forming liquids. Single-particle dynamics in supercooled con-
ditions is characterized by an intermittent motion, with a continuous alter-
nation of localized vibrations inside the “cage” created by the surrounding
particles, and sudden “jumps” to other cages [22, 23, 24]; on sufficiently
large length- and time-scales, this leads to a grouping of “fast” and “slow”
particles, the more so the more the glass transition is approached [25].
Thus, supercooled liquids are commonly considered the epitome of DHs.
It is tempting to believe that they may also represent a paradigmatic ex-
ample of FnGD.

Noticeably, exponentially-tailed displacement distributions have been
reported for both experiments on colloidal systems and molecular dynamic
simulations [24, 22, 26] focusing on times of the order of the structural
relaxation time τα, related to the first jumps of the particles out of their
cages, which typically falls either within the subdiffusive regime or around
the subdiffusive-Fickian crossover. Deviations from Gaussianity, however,
can persist even in the Fickian regime [27], corresponding to time- and
length-scales where, on average, particles have performed many jumps.

Overall, several pieces of the puzzle now suggest that FnGD could be a
typical feature of glass-forming liquids, but this point has not been directly
addressed so far .

In this thesis we demonstrate that, on approaching glass transition,
FnGD becomes more and more marked, and identify the scaling relations
for its characteristic times and lengths. Further, we show the relevance
of these characteristic scales in interpreting structural relaxation and dy-
namic heterogeneity in glass-formers. Our study draws on a combination of
experiments on hard spheres colloidal glass-formers, and molecular dynam-
ics simulations of supercooled liquid models (soft-disks and Kob-Andersen
model) in equilibrium conditions. For the colloidal system, we analyzed
data from previous experiments performed at Physics Department "Et-
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tore Pancini" in University of Naples "Federico II"[28, 1]. Simulations and
analysis of Kob-Andersen Lennard-Jones model were carried out in col-
laboration with Prof. Walter Kob from "Laboratoire Charles Coulomb",
University of Montpellier.

The work is organised as follows. In Chapter 2 we give a brief intro-
duction to the dynamics of glass-forming liquids and introduce the issue
of Fickian non-Gaussian dynamics in soft matter systems. Methods of our
investigation are then described in Chapter 3. Chapter 4 shows the
results of our study concerning the characteristic features and the scaling
laws characteristic of the FnGD regime in the investigated glass-formers.
Finally, in Chapter 5 we summarize our findings and make some connec-
tions with other features of microscopic dynamics near the glass-transition.





CHAPTER 2

Background on the dynamics of glass-forming liquids and on
FnGD

2.1 Glass transition and the dynamics of glass-
forming liquids

Glass transition is a most intriguing and long-standing open issue in the
field of molecular liquids and soft matter. Its physical origin has drawn
an enormous interest in the last decades, but it remains still far from
being completely understood. Is it a purely dynamical crossover, or the
manifestation of a true thermodynamic transition? Is there any (static
or dynamical?) correlation length associated to the dramatic increase of
viscosity and relaxation times? A complete, shared theory of the glass
transition does not yet exist, and this topic remains largely debated.

Glassy state is reached when, under certain conditions (e.g. a fast
decrease of temperature), the crystallization of the liquid is avoided, and
the system acquires the mechanical rigidity typical of a solid. Colloidal
and soft matter systems, and molecular liquids can reach an arrested state
following different routes, such as the decrease of temperature, increase of
solute volume-fraction, or imposition of a shear stresses. However, if the
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Figure 2.1. Specific entropy, enthalpy or volume as a function of temperature
at the liquid-solid crossover. In the supercooled region, the relaxation time τ
of the system dramatically increases as a function of temperature, with respect
to the liquid phase. Adapted from Ref. [35].

degree of “supecooling” is not enough to reach the solid-like state, the liquid
enters in a supercooled stable phase and is termed supercooled liquid(or,
more generally, glass-forming liquid)

Glass-formers have a very rich phenomenology. From a macroscopic
perspective, glass-forming systems display a dramatic slowing-down of
the dynamics, with the inverse diffusion coefficient and relaxation times
increasing by orders of magnitude upon even modest supercooling. At
the microscopic level, single-molecule motion becomes strongly intermit-
tent, and can indeed be conveniently described in terms of “cage-jump”
events [24, 23, 29, 30, 31, 32, 33, 34]

2.1.1 Dramatic slowing down of the dynamics

Glasses are disordered materials that lack the periodical order of a crys-
tal, though behaving mechanically like solids. When a molecular liquid is
cooled sufficiently fast below its melting temperature Tm, molecules do not
have enough time to rearrange in an ordered structure and crystallization
is avoided [35, 36] (Fig. 2.1). Liquids in these conditions are termed super-
cooled, and show a dramatic slowing-down of the dynamics as compared to
that of a standard liquid, despite poor changes in their structure [35, 37]
(some structural changes can be still detected using multi-point corre-
lation functions and percolative approaches [38, 39, 40]). An analogous
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Figure 2.2. Relaxation times (determined as the inverse dielectric loss-peak
frequency) as a function of temperature for typical organic liquids in the ul-
traviscous phase, as indicated in the legend. Image from Ref [41].

phenomenology (i.e. the colloidal glass transition) is approached by soft
and hard dense colloids by increasing the volume fraction up to a critical
packing fraction. As a matter of fact, two-particles static indicators, as
the radial corralation function g(r) or the Static Structure Factor S(q),
defined as (for isotropic systems)

S(q) = 1 + ρ

∫︂
(g(r)− 1)sin(q · r)r2 dr (2.1)

ρ being the number density and q the probing wavevector, do not show any
marked change upon variations of the thermodynamic control parameter
in the proximity of glass transition.

Conversely, macroscopic dynamical properties, such as shear viscosity
and self-diffusivity, change by several orders of magnitude [41] upon su-
percooling (Fig. 2.2). As a matter of fact, below some conventional glass
transition temperature Tg < Tm, the system eventually reaches a non-
equilibrium disordered solid-like state, called glass, in which dynamics is
arrested over the accessible timescales [36, 29].
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2.1.2 Two-steps relaxation and the caging regime

On a microscopic level, dynamics close to glass transition shows an
intermittent single-particle motion, with an alternation of localized vibra-
tions inside the “cage” created by the surrounding particles, and sudden
“jumps” to other cages[33, 30, 31, 42, 32, 23, 24]. While at high tempera-
tures particles continuously overcome local energy barriers and smoothly
change their neighbours, cage-jump dynamics becomes progressively more
marked on lowering temperature, and is in fact clearly detectable in the
supercooled state.

A common and simple indicator to monitor microscopic dynamics is
the Mean-Square Displacement (MSD):

⟨r2(t)⟩ = 1

N

∑︂

i

(ri(t)− ri(0))2 (2.2)

where ri(t) is the position of the i-th particle and the sum runs over all the
N particles in the system. In a standard molecular liquid, we expect the
MSD to show a short-time regime in which ⟨r2(t)⟩ ∝ t2 (ballistic regime);
in this regime, particles move almost freely. After many collisions with
the surrounding environment, linearity of the MSD is reached ⟨r2(t)⟩ ∝ t
(Fickian regime) in every fluid. This latter regime is often generically
called “diffusive”, and the self-diffusion coefficient (or self-diffusivity1) is
measured through a long-time fit of the MSD, using Einstein’s relation:

⟨r2(t)⟩ = 2dDt (2.3)

d being the space dimensionality. For our purposes, this relation defines
Fickian diffusion.
However, in supercooled liquids (Fig. 2.3) these two regimes are separated
by an intermediate subdiffusion in which the particle remains confined
in a small region of space, termed cage2. Accordingly, this subdiffusive
regime is commonly called caging. When the degree of supercooling is high

1Commonly, in literature on liquid dynamics, self diffusion is indicated as Ds. Since
in this work we only deal with self-diffusion, in the text we will always use D.

2We notice that in a colloidal glass-former the ballistic regime is generally not ob-
served, and a short-time linear regime, due to free Brownian diffusion, is present also
before the intermediate caging.
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Figure 2.3. MSD as a function of time for the Kob-Andersen Lennard-Jones
model of supercooled liquid, at different temperatures from hot conditions to
supercooled state. A sketch of a typical trajectory of a particle in a glass-
former: the exit from a caging period is linked to the occurrence of a long
jump towards the successive cage. This corresponds to the exit from the MSD
plateau (red dashed circle). Image adapted from Ref. [37].

enough, the caging regime corresponds to the full emergence of a plateau in
the MSD. The length

√︁
⟨r2(tDW )⟩ (where tDW is the time of the minimum

derivative of the MSD) ideally defines to height of the plateau, and is
sometimes referred to as Debye-Waller factor, in analogy with crystalline
solids.

The behaviour of the MSD in glass-forming liquids is mirrored in the
reciprocal Fourier-space by the characteristic shape of the density-density
time correlation function, or Intermediate Self Scattering Function (ISSF)
Fs(q, t), that is defined as follows:

Fs(q, t) =
1

N

∑︂

i

e−iq·[ri(t)−ri(0)] (2.4)

In fact, the ISSF corresponds to the Fourier transform of the displace-
ment distribution function, also termed self van Hove function p(r, t)3.
For isotropic systems, like the ones that will be investigated in this work,
Fs does not depend on the wave-vector direction, but only on its modulus
|q| = 2π/λ, where λ is the wave-length. Accordingly, the ISSF can be
also expressed as a function of the wave-length, Fs(λ, t). For a liquid in

3The self van Hove function is commonly indicated as Gs(r, t) in literature on liquid
dynamics. However, in this text we refer to the displacement function as p(r, t) to avoid
any confusion with Gaussian displacement functions, here denoted with G.
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(a) (b)

Figure 2.4. (a) ISSFs for a system at different temperatures, from “hot”
conditions to glassy state. (b) Double-steps decay of the ISSF for a glass-
forming liquid. Both figures are adapted from Ref. [43]

standard conditions (sometimes pictorially termed “hot” liquid), the relax-
ation probed on the wavelength of a particle diameter (i.e. the structural
relaxation)4 is very fast, characterized by an exponential decay with a char-
acteristic time τα of the order of some picoseconds (or some nanoseconds
for colloidal suspensions in diluted conditions).

As glass transition is approached, the dynamics dramatically slows
down: the relaxation times increase by many orders of magnitude (while
diffusivity decreases similarly), and the ISSF is found to be more compat-
ible with a stretched exponential behaviour, ∝ e−(t/τ(λ))β . In the deeply
supercooled regime, the ISSF shows a two-steps relaxation when plotted in
a semi-logarithimic chart (Fig. 2.4), with an intermediate times plateau-like
regime, approximately on the timescales of the caging regime of the MSD.
The first relaxation corresponds to the short-time ballistic regime and is
termed β-relaxation; the late decay of the ISSF, named α-relaxation,
shows a stretched behaviour. The height f of the ISSF plateau is often
referred to as non-ergodicity parameter5.

4Commonly, we refer to as structural relaxation when the dynamics is probed at the
wavevector q∗ corresponding to the first maximum of the static structure factor.

5Sometimes, the expression Debye-Waller factor (here in this thesis devoted to the
height of the plateau of the MSD) is also common in literature.
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2.1.3 Dynamical Heterogeneity

The marked increase of the relaxation time τα (or viscosity η6) is ac-
companied by a similar decrease of self-diffusivity D. For molecular liquids
well above the melting point, in fact, the product Dη/T ∝ Dτα stays (ap-
proximately) constant on varying the temperature, which is commonly
considered an extension of the celebrated Stokes-Einstein relation (SER)
for the diffusion of large colloidal tracers suspended in a fluid7. The strong
violation of such an extended SER, termed Stokes-Einstein Breakdown
(SEB), is in fact one of the most intriguing phenomena occurring in su-
percooled states: typically, Dη/T is found to increase on approaching the
transition [47, 48, 36, 35, 49, 50].

SEB has been interpreted in terms of the emergence of dynamical het-
erogeneities (DHs), i.e., roughly speaking, the coexistence of two dynamic
populations of ’fast’ and ’slow’ particles [51, 52, 25, 53]. DHs emerge as dy-
namical clusters of particles with similar mobility whose spatial extension
and duration increase on approaching glass transition, in a similar fashion
to density fluctuations close to an ordinary critical point[54]. If the distinc-
tion between those populations is sufficiently sharp, a characteristic time
and a diffusivity can be associated to each population (with the time being
proportional to the inverse diffusivity) [55, 35]. In this simple picture, it is
readily shown that the overall diffusivity D is controlled by the fast par-
ticles time, whereas slow particles time determines the overall structural
relaxation time τα [55, 35]. SEB will then be a direct consequence of the
onset of two characteristic times.

The presence of two populations of particles is reflected in the shape of
the displacement distribution function (Fig. 2.5.a), which is clearly non-
Gaussian at intermediate times, exhibiting exponential behaviour in the
tails (commonly associated to fast particles) and a central Gaussian core
(linked to slow, or caged particles). The (first) Non-Gaussian parameter

6Many observations show that η/T ∝ τα [44, 45, 46], with τα = τ(q∗) the structural
relaxation time of the ISSF.

7Actually, the occurrence of a molecular version of SER is a non trivial fact: indeed,
the original SER draws on a clear separation of length and time scales between the
colloidal tracer and the molecules of the fluid, which is of course absent if the tracer
itself is a tagged molecule diffusing among similar molecules.
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(a) (b)

Figure 2.5. (a) Displacement distribution function at a fixed time in the
subdiffusive regime for a dense colloidal suspension at ϕ = 0.56. Dashed
line is a Gaussian fit to the core, while straight line is an exponential (also
termed Laplace) distribution. Image taken from Ref. [24]. (b) NGP as a
function of time for a numerical model of ultra-viscous silica melt, at different
temperatures in the supercooled state. Image taken from Ref. [57].

(NGP):

α2(t) ≡
d

d+ 2

⟨r4⟩
⟨r2⟩2 − 1 (2.5)

is a simple and popular way to quantify non-Gaussian deviations of the
displacement distribution and to monitor their temporal evolution. In sys-
tems approaching the glass transition, the NGP is exploited as a proxy
for quantifying DHs [24], as its behaviour (Fig. 2.5.b) indeed closely re-
sembles more direct (and less easily obtained) indicators of DHs, such as
the dynamic susceptibility [56]. The NGP of a glass-former shows a non
monotonic time-evolution, with a maximum at intermediate times, corre-
sponding to the subdiffusive regime, and a subsequent decrease to zero at
longer times. As glass transition is approached, the NGP reaches higher
peaks, indicating stronger deviations from gaussianity of the van Hove
function.

Summing up, in the proximity of the glass transition, the dynamics
dramatically slows down upon tiny modifications of the thermodynamic
control parameter (temperature, volume fraction, shear stress), without
any easily detectable variation of the microscopic structure. Thus, the
dynamics of glass-forming liquids is characterized by
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• the intermittency of single-particle trajectories, resulting in a cage-
jump motion.

• an increase of structural relaxation times (and viscosity), or decrease
in diffusivity, by orders of magnitude;

• the emergence of a two-steps dynamics through an intermediate caging
regime, that can be visualized, for example, in the ISSF and in the
MSD;

• the presence of dynamical heterogeneities, signalled by non-Gaussianity
of the displacement function and by the presence of correlations
among particles’ mobilities.

2.2 Fickian non-Gaussian Diffusion in soft-matter
systems

In section 2.2.1 we introduce the issue of Fickian non-Gaussian dynam-
ics and then review some of the occurrences found in literature of this novel
phenomenology in different types of soft meterials (Sec. 2.2.2). Finally, we
present in Sec. 2.2.3 some models available in literature to describe the
fundamental features of FnGD.

2.2.1 The strike of a new paradigm in Brownian motion:
FnGD, a hybrid diffusion

Fickian diffusion, in which the Mean Square Displacement (MSD) grows
linearly with time, represents the most common form of diffusive transport
both at the molecular and supramolecular level. In the case of colloidal par-
ticles, this kind of diffusion was first predicted by Einstein in its celebrated
description of Brownian motion [58] assuming that the particle’s motion is
caused by a stochastic succession of collisions with the solvent molecules
that are characterized by a timescale which is much smaller than the one
of the colloidal particle. In a wider context than the colloidal one, Fickian
diffusion can be interpreted with a simple random walk model [59, 60, 61]
in which the particle performs a sequence of uncorrelated steps. In this
type of models the linear growth of the MSD is accompanied by a Gaussian
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displacement distribution function. These two properties, linearity of the
MSD (i.e. Fickianity) and Gaussianity of the displacement distribution,
together characterize what we define standard diffusion (FGD) in what
follows.

On the other hand, for example in the presence of correlations among
steps, the existence of anomalous diffusion (nFnGD) processes, with a
non linear MSD paired with a non-Gaussian displacement distribution, is
well kwnon and studied both on experimental and theoretical grounds.

Based on this scenario and on experimental observations, the linearity
of the MSD and the Gaussianity of the displacement distribution func-
tion have been believed to be intrisincally related and concomitant until
very recent years: the expressions Fickian diffusion and Gaussian diffu-
sion started to be implicitly considered as synonyms almost everywhere in
scientific literature.

However, in the last ten years, an ever increasing number of exper-
imental evidences, above all in Soft Matter systems, demonstrated the
existence of Fickian non-Gaussian diffusion (FnGD) with the consequent
breakdown of the well established dychotomy of Standard-Anomalous dif-
fusion (Fig. 2.6).

The intense although recent research on FnGD (Fig. 2.7), which we
also term “hybrid diffusion” in what follows, allowed to observe this phe-
nomenon in a great variety of systems including colloidal suspensions [62,
63, 64, 1, 7] supercooled liquids [1, 65, 66], active systems [67, 68, 9], bio-
chemical and cellular environments [6, 69, 70, 11], polymer matrices [71,
72, 73], confined media [74, 75, 12] and diffusion on liquid-solid inter-
faces [76, 77, 78], and even on very long timescales. It is also worth to be
mentioned that this dynamical behaviour was even recognized as a model
to map economic and social dynamics such as the fluctuations in stock-
exchange [79]. In particular, it is due to the great recent advances of com-
puter simulations, imaging techniques and single particle tracking that it is
now possible to measure, with a high level of accuracy, the entire displace-
ment distribution function (also with a focus on the tails corresponding to
rare-events), instead of simply measure macroscopic quantities (averages)
as the diffusion constant which, of course, bring only cumulative informa-
tion. These practical considerations help to understand why why such a
peculiar dynamics has remained unveiled until recent times.
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Figure 2.6. The diffusion paradigm. Schematic representation of diffusion
processes on a Fickian-Gaussian 2d-plane. In the bottom right corner we
expect non-Fickian Gaussian diffusion to be placed. This condition is found,
for example, in the short time β-relaxation of glassy liquids where a Gaussian
ballistic regime is present before the subdiffusive caging regime.

Hybrid diffusion represents today and intriguing puzzle that is still un-
solved: from one side the non-Gaussianity of the displacements suggests
the presence of spatio-temporal correlations, either related to heteroge-
neous interactions between the particles and the environment in which
they diffuse, or among particles themselves, just like in anomalous diffu-
sion. On the other hand these correlations must be small enough and/or
balanced somehow in order to preserve the linearity of the MSD, as it hap-
pens in standard diffusion.

2.2.2 Experimental and numerical evidences

In this section we briefly review the main occurrences, present in sci-
entific literature, of Fickian non-Gaussian behaviour both in experiments
on real systems and in numerical simulations. We limit our analysis to
the soft matter context that represents the largest field in which evidences
of this phenomenology have been collected, both in numerical and exper-
imental studies (Figs. 2.7, 2.8, 2.9). Obviously, the here presented list is
not meant to be fully exhaustive, also due to the continuous discovery of



16 Chapter 2. Background on the dynamics of glass-forming liquids and on FnGD

Figure 2.7. Number of scientific papers published every year on Fickian
non-Gaussian Diffusion (with a reference in their title or abstract) and yearly
citations to these publications. Raw data are provided by Web of Science -
ClarivateTM and updated to January 2023. There are no data before 2009,
when Hapca and Granick published their seminal works.

Figure 2.8. Main subject areas of the publications with an explicit reference
to FnGD in title or abstract. Raw data are provided by Scopus ® 2023
Elsevier B.V.
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Figure 2.9. Types of systems in which we have found clear evidences of
Fickian non-Gaussian dynamics.

this phenomenon in new systems.
We start our review with a description of the first two works (both

appeared in 2009) in which, to the best of our knowledge, the existence
of a Fickian non-Gaussian diffusion was explicitly recognized: Anomalous
diffusion of heterogeneous populations characterized by normal diffusion at
the individual level by Hapca et al. [67], and Anomalous, but Brownian [6]
(Wang et al.) by the Granick’s group.

Hapca et al. 2009

The diffusive dynamics of active particles is intrinsically heterogenous
as a consequence of the individual variavility of the microorganisms in a
population. Moreover, even the cell itself at different times, correspond-
ing to different stages of its life, shows great alterations of its mobility
due to the changes of life habits. Hapca et al. [67] first reported that
populations of the parasitic nematode Phasmarhabditis hermaphrodita, a
microorganism with characteristic size of 1 mm, show a great heterogene-
ity of mobilities and display FnGD. To the best of our knowledge, along
with Granick’s Anomalous, but Brownian (2009), this article was the first
work in which Fickian non-Gaussian dynamics was explicitly recognized.
The authors show that a correlated random walk model can be used to
correctly predict the single particle diffusivity, while the superstatistical
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Figure 2.10. (a) Displacement distributions of passive tracers for systems
in [9] at various concentrations of microswimmers, observed at the same time.
Exponential deviations from the Gaussian curve, which is present only in ab-
sence of swimmers (red line), become stronger as concentration increases. (b)
Van Hove function at a fixed concentration of swimmers Φ = 2.2%, as a
function of the displacement divided by the root-MSD, shows a self-similar
behaviour as time goes on.

model (See. 2.2.3), lately also applied by Granick’s group, is presented for
the first time in order to capture the fundamental features of the dynamics
of the whole population.

Further evidences of FnGD in active matter In [9] hybrid diffu-
sion in an active environment is instead studied from the point of view
of a passive 1-micron sized tracer. It was found that tracers in a sus-
pension of about 10 µm sized eukaryotic swimmers (the biflagellated al-
gae Chlamydomonas reinhardtii) behave diffusively, with a time-dependent
but self-similar displacement distribution function consisting of a Gaussian
core with robust exponential tails (Fig. 2.10). The role of flagellar beating
in creating oscillatory flows is central and the complex interplay between
Brownian motion and advection seems to be the origin of FnGD in this
context. Different models for this kind of advection-diffusion processes
have been proposed (see 2.2.3). Examination of 3d trajectories of the trac-
ers close to the algae shows the presence of complex loops, consistently
with recent findings on hydrodynamics at zero Reynolds number [80].

A later work by Kurtuldu et al. [68] on dynamics in two dimensions of
tracers in Chlamydomonas suspensions confined to thin films revealed even
stronger deviations from Gaussianity, compared to that in three dimen-
sions. In this case, the displacement distribution function shows power-law
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tails (∼ ∆x4), instead of the typical exponential ones, which progressively
turn to a Gaussian as time goes on.

Also simulations of self-propelled Brownian particles in 2d geometry
performed at different concentrations [81] show the presence of FnGD. In
this system, as in molecular liquids, it was found that particle diffusion is
superdiffusive at short-time and Fickian at longer times, with an effective
diffusion coefficient decreasing as concentration grows. Exponential tails
are clearly visible in the self van Hove function at any time, and Gaussianity
is never restored within the simulated time window.

Anomalous, but Brownian, Wang et al., 2009

The cell environment and, in general, all biochemical systems are char-
acterized by a high level of complexity of the microstructure. In this kind
of systems many examples of FnG dynamics were reported. The non-
Gaussianity in these environments directly stems from the complexity of
the system. In many cases the heterogeneity of the dynamics is suggested
to arise from the coupling between the relaxation of the environment and
diffusion of the tracer. As a matter of fact, it is not really surprising that
FnGD was explicitly recognized for the first time in this kind of highly
complex system [6]. Precisely, Granick’s group performed single particle
tracking experiments in two biochemical systems:

a) colloidal beads diffusing along linear phospholipid bilayer tubes whose
radius is as that of the beads;

b) colloidal beads diffusing in entangled F-actin networks with a char-
acteristic mesh size which is 3 to 6 times the diameter of the bead.

In both cases the MSD is found to be a linear function of time and the
displacement distribution is exponential-shaped (Laplace distribution) ore
clearly shows exponential tails In (a) it is shown that at long times the
distribution becomes Gaussian, while for the second system Gaussianity is
never restored. However, it is somehow expected since, as underlined by
the authors, the experiments in (b) were carried on within a time window
which is much smaller than the structural relaxation time of the system,
obtained separately via rheological measurements. In a following commen-
tary by the same authors [20], a Superstatistical Model (See. 2.2.3) was
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Ref. Year Type of analysis Type of system System details
[6, 20] 2009 Exp. Biochemistry 1D/2d - Beads in entangled network and beads on a surface
[82] 2015 Exp. Biochemistry 2d - Diffusion on a membrane
[69] 2016 Exp. Biochemistry 2d - Chemical diffusive transport in a cell
[11] 2019 Exp. Cell biology 2d - Cell migration
[70] 2022 Exp. Cell biology 2d - Migration of nanodomains in lipid monolayers
[67] 2009 Exp. Active matter 2d - Migration of 1mm-sized microorganisms
[9] 2009 Exp. Active matter 3d - Passive tracers diffusion enanched by microswimmers
[68] 2011 Exp. Active matter 2d - Passive tracers diffusion enanched by microswimmers
[7] 2014 Exp. Colloidal suspension 3d - Hard sphere concentrated suspension at ϕ = [0− 0.55]
[83] 2016 Exp. Colloidal suspension 2d - Hard sphere concentrated suspension at ϕ = [0.08− 0.66]
[1] 2022 Exp. Colloidal suspension 2d - Hard sphere concentrated suspension at ϕ = [0.63− 0.77]
[84] 2018 Exp. Supercooled liquid 3d - Neutron scattering on a molecular and an ionic liquid.
[62, 85] 2020 Exp. Colloidal suspension 2d - Hard sphere suspension at ϕ = [0]
[63] 2017 Exp. Colloidal suspension 2d - Diffusion of a sigle particle in a liquid near a wall.
[64] 2022 Exp. Colloidal suspension 2d - Diffusion of diluted particles in a glassy matrix.
[76] 2010 Exp. Colloidal suspension 2d - Diffusion on a surface
[12] 2013 Exp. Confined media 2d - Nanoparticles in microfabricated arrays
[86] 2015 Exp. Confined media 2d - Nanoparticles in microfabricated arrays
[74] 2019 Exp. Confined media 2d - Nanoparticles in microfabricated arrays
[75] 2020 Exp. Confined media 2d - Anisotropic nanoparticles in microfabricated arrays
[71] 2016 Exp. Polymer system 2d - Nanoparticles in entangled network
[72] 2016 Exp. Polymer system 2d - Nanoparticles in entangled network
[73] 2013 Exp. Polymer system 2d - Nanoparticles in entangled network
[77] 2013 Exp. Liquid-solid interface 2d - Mocromolecule adsorption from a liquid bulk
[78] 2013 Exp. Liquid-solid interface 2d - Mocromolecule adsorption from a liquid bulk
[87] 2017 Sim. Colloidal suspension 3d - WCA, 3d-LJ
[8] 2013 Sim. Colloidal suspension 2d - Hard sphere suspension at ϕ = [0.664− 0.754]
[88] 2014 Sim. Colloidal suspension 2d - Dumbells in percolating media
[89] 2018 Sim. Liquid crystal 3d - 12,6 Kihara-LJ for rods
[90] 2014 Sim. Colloidal suspension 3d - HI+LJ
[66] 2018 Sim. Supercooled liquid 3d - KALJ, 3d-IPL, 3d-R10
[10] 2019 Sim. Colloidal suspension 2d - Yukawa potential
[91] 2016 Sim. Colloidal suspension 3d - Non-equilibrium dynamics of charged binary colloid
[1] 2022 Sim. Supercooled liquid 2d - 50:50 binary mixture harmonic disks
[65] 2019 Sim. Supercooled liquid 2d - LJ, 3d-LJ, 3d-patchy
[92] 2019 Sim. Liquid crystal 3d - KALJ, 3d-R10
[93] 2018 Sim. Polymer system 3d - Bead-spring polymer + chemical heterogeneous NP
[94] 2017 Sim. Biochemical system 2d - Protein diffusion on binding-membrane
[81] 2019 Sim. Active matter 2d - Active chiral particles
[95] 2016 Sim. Lattice model 1D - Energy diffusion
[96, 97] 2021 Sim. Numerical simulation 1D - Diffusion in presence of non-Gaussian noise
[98] 2021 Exp + Sim. Colloidal suspension 1D - Diffusion in presence of non-Gaussian optical trap ϕ = [0]
[99] 2020 Sim. Numerical simulation 1D - Diffusion with evaporation model

Table 2.1. Main evidences of Fickian non-Gaussian dynamics in literature.
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Figure 2.11. Top panels refer to system (a) and bottom to system (b) in [6].
(Left) sketches of the investigated systems. (Centre) Exponential tails of the
van Hove functions as a function of the displacement, which have been di-
vided by the root-MSD in top panel and in the inset of bottom panel. (Right)
Characteristic length of the exponential tails as a function of time. The dif-
ferent data sets in right-bottom panel correspond to various combination of
the mesh-size ξ and bead diameter a: a = 50, ξ = 300; a = 100, ξ = 450;
a = 100, ξ = 300 (top-down). Diffusive scaling of the tails ∼

√
t is always

present.

tested by using an iterative algorithm [100] in order to measure the dis-
tribution of diffusion constants among the experimental sample and it is
found to be bimodal shaped.

Further evidences of FnGD in biochemical systems A similar ap-
proach has been followed by [82] in single-particle tracking experiments on
a quantum dot labeled molecule of the biochemical receptor (DC-SIGN)
with unique pathogen-recognition capabilities for pathogens such as HIV-1,
Ebola virus, hepatitis C and tubercolosis viruses inside dorsal membranes
of Chinese hamster ovary living cell. The dynamics of the receptor is
subdiffusive in the short times and shows a weak ergodicity breaking and
aging8, indicating that the system is out of equilibrium. It is also shown

8The non-equivalence between time-averaged and ensemble-averaged dynamical indi-
cators is indicated as a weak ergodicity breaking. The dependence of statistical quantities
on the observation time is termed aging.
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that the dramatic instantaneous changes in the magnitude of single parti-
cle displacements can be interpreted in terms of stochastic fluctuations of
diffusivity, in agreement with diffusing diffusivity (DD) model (See 2.2.3).
Simulations of the DD model, using as an input a so computed distribution
of diffusivities, reproduce many features of the dynamics.

Also the lateral motion9 of acetylcholine [69], another biochemical re-
ceptor present on muscle cell membranes, shows FnGD with Laplace dis-
placement distribution. The authors of this study further speculate that
the observed non-Gaussian statistics is inherently linked to the slow-active
remodelling process of the underlying cortical actin network.

Hybdrid dynamics has also been found in two-dimensional diffusion
of lung cancer cells [11] and, more recently, experiments on the diffusion
of nanodomains in lipid monolayers [70] have pointed out that the FnGD
diffusion in these membranes is peculiarly accompanied by the presence
of a double-peak in the of the displacement distribution function, with a
minimum at the centre.

Although many examples of hybrid diffusion come from experiments on
biochemical systems, these complex environments are not equally easy to
be investigated through simulations, as they require high computer perfor-
maces. All-atoms dynamic simulation of DAPP1 PH gene domains bound
on a lipid cell membrane surface [94] unveiled remarkable heterogeneous
dynamics. The magnitude of the fluctionations of mobility of the particles
is quantified using the relative standard deviation of the time averaged
mean square displacement (RSD) which is a power-law function of time
with an exponent b = −0.5. This result is consistent with some predic-
tions obtained in the framework of Diffusing Diffusivity model (See. 2.2.3).

Towards simpler systems: FnGD of colloidal particles

In more recent years, Granick’s group [7] focused on the motion of
small tracers in a colloidal suspension of eight times larger hard spheres
submerged in a simple liquid solvent. This work represents a turning point
in FnGD field, as it clearly demonstrated that even a system of simple

9Hop-like movement of lipids within each leaflet of the lipid bilayer, due to membrane
"fluidity".
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Figure 2.12. Left panel: normalized van Hove function for various concen-
tration of hard spheres ϕ in [7] at a fixed time lag. The distributions cross the
Gaussian fit (orange curve) twice seemingly at the same distances from the
origin for every system. This interesting feature is much clearer on the right
panel, where the ratio between expected Gaussian and actual distribution is
plotted against the normalized displacement. The ratio strongly increases in
the tails where non-Gaussian deviations are at their most. The same phe-
nomenology was reported in different systems [62, 1].

particles (in a simple liquid), can display hybrid dynamics. In this case
the heterogeneity of the dynamics must have an entropic origin since all
interactions are negligible. In this work, a wide range of volume fractions is
investigated, from dilute conditions to the proximity of cristallization (55%
nominal) and, even at relatively low concentration (15%), deviations from
gaussianity can be noticed in the Fickian regime (Fig. 2.12). Gaussianity
is never restored on the experimental time window, but the non-Gaussian
parameter approaches a decreasing trend at long times. The tails here are
not exponential as in other systems; anyway, displacement distributions are
self similar and they all collapse into a mastercurve when plotted against
the displacement rescaled on the square root of the MSD.

Molecular dynamics simulations are suited to study the impact of dif-
ferent interaction potentials on the microscopic dynamics and over a wide
range of timescales.

Above all, Lennard Jones (LJ) potential is the most popular among
simple yet realistic models. Lots of variants of this potential have been pro-
posed and have been extensively used both in materials modelling and fun-
damental studies. For example, studies of small WCA/LJ solute particles
in a solvent medium, where the solute particle is much smaller in size than
the solvent, are used to mimic the diffusion of small particles in crowded
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Figure 2.13. (Left panel) Rescaled 2πrGs(r, t) at several times for one system
in [87]. A Gaussian distribution of G(r, t) of the above distributions should
result in a unimodal function with height indicated by the horizontal line.
(Right panel) Peak of the rescaled self van Hove distribution as a function of
time rescaled on the structural relaxation time for systems with different mass
of the solute particles m = 0.5− 100. Horizontal line represents the expected
value for normalized Gaussian function. It is clear from this picture that the
restore of Gaussian diffusion largely exceed the structural relaxation time of
the system as particle mass increases and structural relaxation and Gaussian
diffusion are decoupled phoenomena.

environments [87]. In this case, the solute was proved to exhibit Fickian
diffusion arising from non-Gaussian van Hove function (Fig. 2.13)for sev-
eral values of the potential energy scale, solvent particle mass and solvent-
solute diffusivities ratio. Dynamics eventually becomes Gaussian for every
system at longer times; however, in some cases FnGD is still present even
at times much larger than the structural relaxation timescale of the sys-
tem. Results also show an interesting feature: as the mass of the solute
particle increases, the degree of non-Gaussianity of the displacement dis-
tribution also increases, even if the Fickian regime is achieved at earlier
times compared with systems with smaller solute particles. Two possible
reasons can be proposed to rationalize the presence FnGD in this system:
the decoupling of the solute-solvent dynamics, which becomes stronger as
the mass of the solvent particles increases, and intermittency that, accord-
ing to the authors, can be also recognized by the emergence of a secondary
peak in the radial displacement distribution function.

Similar results come from studies on rotational diffusion of dumbells in
a porous percolating medium [88] investigated through molecular dynam-
ics. The single molecule shows Gaussian diffusion, but all the dumbells
have different mobilities. The result is a non-Gaussian total distribution.
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This result well fits the picture of the Superstatistical model (See 2.2.3).
However, it is not true that the presence of more complex interactions

in the system generally leads to more marked hybrid features. Indeed,
a generalization of LJ potential for non-spherical particles (12-6 Kihara
potential) has been used in Brownian simulations of oblate and prolate
colloidal particles in the nematic phase [89] to prove that in this anisotropic
system a FnGD regime is not present: dynamics is standard both at short
and long times, while on the intermediate timescale the diffusion is non-
Fickian and non-Gaussian. This proves that FnGD is not an ubiquitous
phenomenon.

Figure 2.14. In [90] spectacular deviations from Gaussian displacement dis-
tribution are reported for LJ solute particles in Fickian regime (left panel)
although 2πrGs(r, t) shows only one peak (right panel), as in contrast to other
systems that show bimodal shaped functions.

Also the influence of hydrodynamics in a LJ system has been investi-
gated numerically. The dynamics of a dilute colloidal tracer (ϕ = 0.2%)
immersed in a concentrated solution (ϕ = 20−60%) of much larger spheres
(from 3 to 5 times larger) was studied for the first time [90] in simulations
with and without hydrodynamic interactions (HI) through simple Brow-
nian dynamics in the fast lubrication approximation of the full Stokesian
dynamics. FnGD is present (Fig. 2.14) with and without HI for both small
and big particles, implying that this behavior is a general feature of col-
loidal dynamics. Although HI affects the specific value of the diffusion
constant, generally resulting in a lower diffusivity with respect to the case
without HI, the displacement distribution is found to be very similar in
both cases, provided that they are compared at the same value of the
mean-square displacement.

Performing experiments on colloids at higher concentration and, hence,
closer to the dynamical arrest, is much more complicated. In this case,
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Figure 2.15. Exceptional heterogeneous dynamics in 2d hard disks hexatic
phase [8]. 2πrGs(r, t) demonstates the presense of multiple peaks at different
area fractions (a) ϕ = 0.713, (b) ϕ = 0.717. The presence of peaks is also
recognizable in the Self van Hove function (c) which also shows exponential
tails. non-Gaussianity is also related to the non-exponential decay of the self
scattering function in the proximity of the relaxation time (d).

numerical simulations may come back into play and aid in studying the
dynamics even on very long time-scale. Simulations of a two dimensional
suspension of hard discs [8] were studied in a wide range of area fractions
and showed that FnGD is present even in the hexatic phase. Dynamics
is massively heterogeneous, as shown by the displacement function that is
exponential at large r and oscillatory with multiple peaks on intermediate
length-scales (Fig. 2.15). The existence of such several peaks is attributed
to the presence of clusters of discs with discretized mobility. Investigations
on clusters of marginally mobile discs reveal that the size of the cluster
increases in time and begin to percolate at the relaxation time. A recent
work [10] showed that also Yukawa colloids exhibit FnGD, and the degree
of non-Gaussianity increases as temperature is decreased. Both the two
latter systems indeed shares some similarities with glass-forming systems
and eventually reach an arrested state, as some thermodynamic parameter
is properly varied.

As a matter of fact, many experiments on real systems are performed
using scattering techniques that provide results in the reciprocal Fourier-
space. However, the equivalent of the features of FnGD (that is precisely
defined through real space quantities) in Fourier space is non-trivial and
the exact relation remains unclarified. A first step in this direction has been
recently provided in [64]. Using confocal differential dynamic microscopy
(ConDDM) on diluted tracers diffusing in a glassy matrix of larger hard
spheres, it was shown that the experimentally determined ISSF can be
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well fitted by diffusing diffusivity model, whose analytical predictions are
available only in reciprocal space. [64] explicitly propose that the recip-
rocal space counter-part of FnG fundamental features are a q2-scaling of
the structural relaxation time (Fickianity) in presence of a non-exponential
decay of ISSF (non-Gaussianity). However, the connection between FnGD
and reciprocal-space dynamics remains subtle and needs to be further clar-
ified. In next chapters we will further address this point.

The dynamics of a single colloidal tracer in a simple molecular solvent
cannot give rise to FnGD unless some kind of heterogeneity is superim-
posed. A study [62, 85] on an extremely dilute colloidal suspension has
demonstrated that FnGD could arise also in a very simple system without
long range correlations. A stationary random field of optical forces (speckle
pattern) with tunable features is used in order to reproduce an environment
for the colloidal tracers that mimics the heterogeneous energy landscape of
a typical soft matter matrix. This optimal experimental system displays
all the main benchmarks of FnGD and makes it possible to investigate
this phenomenon over a wide range of time and length-scales. The exper-
iments also pointed out that the hybrid diffusion regime is closely tangled
to the temporary anomalous diffusion occurring at shorter time, suggesting
a causal connection between anomalous and hybrid dynamics [1].

Also other experiments on dilute colloidal suspensions under particular
conditions reported the occurence of FnGD. In [63] a test particle with
2.5µm diameter is placced in the vicinity of a wall where edge effects are
not negligible on the hydrodynamics of the colloidal particle. In this way
the diffusivity of the colloid can be regarded as a function of space and the
Diffusing Diffusivity model (See 2.2.3) can be tested.

Conceptually, a similar situation is presented in [76], a study of the
diffusive motion of a small object (45µm placed on a solid support using
an inertial tribometer. With an external bias and a Gaussian noise, the
object slides accompanied by a fluctuation of displacements that exhibits
unique characteristics at different powers of the noise. While the particle
motion is fluid-like at high powers, a stick-slip motion occurs at lower
powers. Below a critical power, no motion is observed anymore. As the
power of the noise increases, the effect of the non-linearity appears to play
a lesser role, and the displacement fluctuation becomes more Gaussian.
When the distribution is exponential, it also exhibits an asymmetry with
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its skewness increasing with the applied bias.
Many experiments on the diffusive dynamics of diluted nanoparticles

in confined conditions have been carried out in recent years. Dispersions
of nanoparticles in microfabricated arrays of nanoposts in a square lattice
has been systematically investigated both for simmetric [12, 86, 74] and
anisotropic objects [75] and a FnG regime is detectable. As the spacing
between posts is decreased, the dynamics slows down and self scatter-
ing function is well represented by a stretched exponential rather than
a simple exponential at all length-scales. Both the diffusivity and the
stretching exponent decrease with increased confinement or, equivalently,
with decreased void volume. Both MSD and the structural relaxation time
show Fickian scaling. The slowing down of the dynamics and the broad-
ening of the distribution of nanoparticles’ displacements with increased
confinement anticipate a confinement-induced vitrification. The degree of
order/disorder of the environment in which the nanoparticles diffuse was
instead taken into account in [74]. Several structural configurations of
micropillars, acting as obstacles for the free diffusion process, are investi-
gated, from perfect order to completely disordered. The dynamics slows
with increasing the degree of order and going from diluted to concentrated
conditions. Furthermore, the degree of randomness and the concentration
increase the non-Gaussianity of the van Hove function. The MSD is always
found linear and the NGP seems to reach a plateau at a non-zero value:
the Gaussianity is never restored.

Evidences of FnGD have also been found in confined diffusion of parti-
cles in entangled network. Diffusion of polystyrene nanoparticles in poly-
ethyleneoxide (PEO) solutions is investigated in [71]. Experiments are per-
formed by controlling the particles’ diameter (from 40 to 200 nm), PEO
molecular weight (0.6 to 8M) and also PEO concentration. Their findings
suggest that the non-Gaussianity of the van Hove can be explained only
at short time by invoking the local heterogeneity of the environment. At
long times the main source of non-Gaussianity is attributed to the hopping
dynamics of the nanoparticles between the pores of the polymer mesh.

An extensive study on the diffusion of fluorescent tracers in agarose and
dextran polymer gels is carried out in [72]. Experiments are carried out
by using variable-lengthscale fluorescence correlation spectroscopy (VLS-
FCS) that allows to directly track the dynamics over five decades. It is
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worth noticing that the dynamics in this system is very fast if compared
with other crowded environments (as colloidal glass-formers), hence the
detection of a transient hybrid diffusion is remarkable. Results show that
not all dense cross-linked polymer solutions display FnGD.

An intriguing experimental work [73] on the dynamics of tracers in
polymer matrices with different degrees of humidity (mimicing the stages
of a plasticization process) suggests that FnGD could be a microscopic
hallmark also in system of great pratical interest that are generally inves-
tigated at a mesoscopic level. Experiments on PVP, a high Tg amorphous
polymer, which is often used as coatings on pharmaceuticals, are carried
out in a wide range of temperatures from far above the glass transition to
lower than Tg. Also anomalous and confined diffusion can be observed in
this system. However, non-Gaussianity of the van Hove function remains
a common feature of the microscopic dynamics.

As a matter of fact, studies on solid nanoparticles in polymeric materi-
als are very common because of their wide range of technological applica-
tions. However, from a theoretical point of view, the diffusion of particles
of characteristic size comparable to the structural correlation length of the
environment has not yet been fully rationalized. In [101] the dynamics of
weakly interacting mixtures of nanoparticles in an entangled polymer melt
is studied through large-scale molecular dynamics simulations. The parti-
cle size is varied from 1 to 15 times the characteristic size of the monomers.
However, in this simple system the dynamics of the nanoparticle is found
to be Fickian and Gaussian, while the chains of the polymer shows non-
Gaussian dynamics.

FnGD in peculiar conditions

In the context of polymer physics, also the mechanism of adsorption
of polymer chains on a solid interface from a dilute solution is reported
to be FnG and different from what expected [77]: the molecules do not
localize immediately after attaching on the surface and then crawl on it
towards adsorption sites. On the contrary, particles adsorb (forming weak
bonds with the surface) and then diffuse back to solution, and then again
they adsorb until they reach the site (with a permanent bonding). This
mechanism is faster than expected and is modelled by CTRW as a Levy
process.
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The effects of the heterogeneity of the interface between polymer and
nanostructured solids can instead introduce intriguing dynamical effects
as shown in MD simulations [102], inspired by the experiments of Ref.[77],
where chemical heterogeneity is introduced by placing strongly and weakly
attractive sites at variable relative compositions. In this case, the hetero-
geneous interaction leads to FnG dynamics that is reflected in a stretched
exponential decay of the ISSF and is inconsistent with Rouse model of
polymer dynamics that predicts a simple exponential relaxation for each
single mode; also the single-mode relaxation time shows an unexpected
wave-vector scaling.

Similar results [78] were found for Atto6G, a fluorescent rhodamine
derivative dye. Trajectories of the molecules were segmented in order to
extract a waiting time distribution. Predictions of the CTRW model agree
with the experimental van Hove and a power law waiting time distribu-
tion ψ(τ) ∼ τ−2.5 is found. However, we notice as an aside that for this
kind of power-law lag time distribution, the expected MSD in the CTRW
formalism cannot be Fickian (as instead visible in experimental data), but
anomalous. This point should be further clarified.

As a final remark, we note that some interest is found in literature for
showing that FnG dynamics is a common feature in models and experi-
ments on particles diffusing in the presence of non-equilibrium conditions,
such as equilibrium noise [96, 97, 98], evaporation model [99] and diffusion
of charged colloids in an electric field.

Finally, in Table 2.2 we have summarized the dynamical features which
found in systems displaying FnGD and described in this section.

Ref.s Type of "non-standard" dyamical feature

[70, 87] Multiple peaked rnGs(r, t), n = 0, 1, 2...
[6, 20, 69, 11, 9, 68, 1, 62, 85, 71, 73, 88, 90, 65, 92] Exponential tails
[68, 77] Power-law tails
[1, 64, 8, 10, 93] Stretched exponential ISSF’s decay
[1, 93] Non-q2 scaling of structural relaxation time
[6, 20, 1, 64, 8, 92] Presence of long-time Gaussian restore
[69, 70, 68, 1, 62, 85, 71, 77, 8, 90, 65, 92, 93, 94] Pre-Fickian subdiffusion
[87, 10] Pre-Fickian superdiffusion
[69, 70, 1, 62, 85, 76, 77, 78, 8, 65, 92, 94] Intermittent single-particle trajectories
[6, 20, 9, 7] Self-similar displacement distribution

Table 2.2. Main dynamical features related to systems with Fickian non-
Gaussian dynamics found in literature.
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2.2.3 Models of FnG dynamics

Currently, no specific model is present in literature proved to be able to
catch all the features of Fickian non-Gaussian diffusion. Moreover, there
is not an intuitive statistical explanation to fully rationalize the rise of this
phenomenology in a variety of different systems.

However, there seems to be a general agreement of the scientific com-
munity that a certain degree of heterogeneity in the mobilitiy of the dif-
fusing particle, over different time and length-scales, is the key element to
unfold hybrid diffusion. This heterogeneity can have different origins, for
example:

• the environment in which the particle is moving is heterogeneous
from a morphological point of view (e.g. in structural heterogeous
systems or in isotropic suspension with a decoupling of solvent-solute
relaxation times);

• there is a morphological or chemical heterogeneity in the ensemble
of diffusing particles;

• the dynamics self-induces dynamical heterogeneities on certain scales,
as it happens in strongly interacting systems, such as crowded media
and glassy systems [103];

Identifying and isolating the different possible causes of heterogeneity is
a challenging issue, as they appear to be often linked to each other and
coexist in the same environment. Just few studies have shown how hy-
brid diffusion is directly induced from a recognized and controlled source
of heterogeneity [62, 85, 63, 96, 97, 98]. Anyway, the heterogeneity of the
dynamics is the fundamental ingredient of Fickian non-Gaussian diffusion,
either if it is induced by correlations in multibody systems, or if it is a
consequence of a real structural rearrangement of the environment on dif-
ferent timescales.

Statistical mechanism: delaying the Central Limit Theorem.

At a fixed time t, the displacement x(t) of a Brownian particle is a
random variable and corresponds to the sum of all displacements performed
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by the walker up to time t = tN = Nδt, δt being an elementary timescale
and N ∈ ℵ:

x(t) =
t∑︂

ti=0

x(ti) (2.6)

Hence, the probability distribution function p(x, t) of the random variable
x(t) is a distribution of summed random variables. If all elementary dis-
placements are independent and identically distributed, the distribution
of the summed variables converges to a Gaussian function as long as the
number of summands is large enough (i.e. for sufficiently long time): this
is the essence of the so-called Central Limit Theorem (CLT).

The statistical foundation of anomalous diffusion is nowadays clearer
and has been rationalized to a certain extent: everything comes from the
fact that the Central Limit Theorem for particle displacements does not
hold in its usual form, either because the distribution of summed variable
is too broad, or because the random variables are somehow long-range cor-
related [103].

While in the case of strong correlations there is no general understand-
ing on the limit distribution of dependent summed random variables, a
general extension of the CLT in the case of broad displacement distribu-
tions was given by Levy, Khintchine, Gnedenko and Kolmogorov [104]. If
the distribution of displacements’ lengths decays more slowly than l−3 for
large l, then the limit distribution of x(t) must be a stable distribution
(also called α−stable Levy distribution). These distributions represent at-
tractors in the space of probability distributions of independent summed
variables, towards which any distribution must converge as time goes on
(and the number of summed variables grows to infinity). Stable distri-
butions are in general leptokurtic and heavy-tailed, fully characterized by
two parameters (unless translations).

Actually, only few cases of completely analytic stable distributions are
known, and the Gaussian function is just a special case among possible
stable distributions, being characterized just by one parameter (its vari-
ance) and mesokurtic. Stable non-Gaussian distributions (such as Cauchy,
Laplace or Levy distributions) are very common in soft matter physics.
For example, they play a fundamental role in glassy dynamics as pointed
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out in the Mode Coupling Theory [105] and experiments on structural
glasses [106].

However, it is not clear whether and to what extent the current under-
standing on the statistical mechanisms of subdiffusion will be fruitful to
catch the origin of hybdrid diffusion. We also report that in the case of the
usual Central Limit Theorem, the convergence of the probability function
towards the Gaussianity was characterized by Chebyshev [103] through a
systematic expansion in time.

It is important to stress that standard diffusion and anomalous diffusion
are generally present on different time-scales in the same system: standard
diffusion represents the asymptotic diffusive behaviour and it is preceded
by an anomalous regime. However, in many cases, tipically when the
dynamics is pretty fast (e.g. in molecular simple liquids or diluted colloidal
suspensions), non-Fickian diffusion concerns timescales that are simply too
short to be observed.

An intriguing hypothesis connecting FnGD and subdiffusion [1, 62] lies
in the fact that FnGD could be intrinsically related to the pre-Fickian
regime, and considered as a long-time memory effect of the anomalous
regime. This could be applied also in cases in which Gaussian diffusion is
never restored, even in the long time regime (See Table 2.2). As a matter
of fact, it is very common that the experimental observation time is too
short for the system to reach the standard diffusive asymptote. (This
latter being a universal feature of equilibrium fluid-like matter since the
CLT must be finally fulfilled, in the thermodynamic limit).

As a direct consequence, the establishment of a permanent long-time
hybrid regime must be intepreted as a (weak) ergodicity breaking. On
the other hand, for out of equilibrium systems the Central Limit Theorem
simply is not strictly required to be suited and standard diffusion is not
necessarily expected to take place. non-Gaussianity of the van Hove func-
tion as a proxy of ergodicity break was also investigated in heuristic trap
models for diffusion in supercooled liquids [107, 108, 109, 110].

Back to the past, reset the clock to 1905. Before going on and
present the models of hybrid diffusion found in literature, we believe that
it could be very useful to stress the range of validity and the assumptions
lying behind the theory of standard diffusion. We take Einstein’s theory
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of Brownian motion as an instructive example.

Einstein’s model of standard diffusion and heat equation In [58]
Einstein gave the first microscopic statistical foundation of the macroscopic
diffusion (or heat) equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
(2.7)

empirically found by Fick precisely 50 years before [111]. This linear
parabolic equation is uniquely solved by the standard Fickian-Gaussian so-
lution when accompanied by a delta-distribution initial condition (which is
an intuitive condition in diffusion processes). Einstein’s derivation consists
of a microscopic detailed balance for the 1-particle displacement distribu-
tion function under the following assumptions:

1. Mass conservation law ⇐⇒ Normalized probability density function∫︁∞
−∞ p(x, t)dx = 1 ∀t;

2. Isotropic system ⇐⇒ Spatially simmetric distribution function p(x, t) =
p(−x, t);

3. Equivalence between the time-independent displacement distribution
function ϕ(∆x) and the position distribution function p(x, t) in an
appropriate frame of reference;

4. Existence of a well defined unique timescale that is short enough to
allow one to neglect higher order time derivatives;

5. All non-zero terms after the first one in series expansions are ne-
glected;

As a matter of fact, Einstein model leads rigourously to uncontrolled
power-series expansions of the displacement function p(x, t) if only Hp.1,
2 are invoked. Precisely

∆t
∂p(x, t)

∂t
+

∆t2

2

∂2p(x, t)

∂2t
+ ...+

∆tn

n!

∂np(x, t)

∂nt
=

∂2p(x, t)

∂x2

∫︂ +∞

−∞

∆x2

2
ϕ(∆x)d∆x
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+
∂4p(x, t)

∂x4

∫︂ +∞

−∞

∆x4

24
ϕ(∆x)d∆x+

∂2mp(x, t)

∂x2m

∫︂ +∞

−∞

∆x2m

2m!
ϕ(∆x)d∆x

(2.8)
which can be rewritten in a more compact form:

∆t
∂p(x, t)

∂t
+

∆t2

2

∂2p(x, t)

∂2t
+ ...+

∆tn

n!

∂np(x, t)

∂nt
=

⟨x2(t)⟩
2

∂2p(x, t)

∂x2
+

⟨x4(t)⟩
24

∂4p(x, t)

∂x4(t)
+ ...+

⟨x2m(t)⟩
2m!

∂2mp(x, t)

∂x2m

(2.9)

Expansions in Eq. 2.9 are arrested to the first non-zero derivative order
(Hp.4,5):

∂p(x, t)

∂t
=

⟨x2(t)⟩
2∆t

∂2p(x, t)

∂x2
(2.10)

By comparing this microscopic equation with the macroscopic phenomen-
logical law, we get Einstein’s relation for the MSD

⟨x2⟩ = 2D∆t ⇐⇒ D =
⟨x2⟩
2∆t

(2.11)

which also identifies the microscopic meaning of the diffusion constant in
a Fickian process.

Einstein’s model indicates the existence of a timescale over which (at
equilibrium) Brownian dynamics can be modeled as a standard stochastic
process, the same as that of fortuitous errors, which was to be expected [58].

However, Gaussianity and Fickianity do not explicitly arise from Hp.
4, 5 in a distinct way, so that it is not clear, a priori, the physical meaning
of those approximations taken separately.

Higher order expansion of the standard limit Einstein model
does not offer an accurate physical description of Brownian dynamics in
general, but it is a universal asymptotic theory, derived heuristically. The
model is forced to self-reduce to heat equation through Hp.4 and 5. There-
fore, one could conjecture that the hybrid regime is somehow encoded in
the general equation Eq.2.9 taking the expansions to the 2m-th order in
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space and the n-th order in time n,m ∈ N. However, there is no a priori
statistical justification at the moment for choosing any values of (n,m)
different from the standard case (n,m) = (1, 1). Furthermore, a closure
relation would be probably needed anyway, in order to practically solve
the model because of its integro-differential nature, that naturally fades
away when dealing with the standard diffusion asymptote. We note that
this procedure corresponds to the Kramers-Moyal expansion of a generic
master-equation [112, 113]

Literature models of FnG dynamics

In this section we briefly review the main mathematical approaches
presented in literature to model Fickian non-Gaussian dynamics. Table 4.1
presents a brief summary of the peculiar features of the models described
in what follows.

Model Eqs. Inputs Gaussian restoring Pre-Fickian regime Characteristic timescales Ref.
Superstatistics Eq. 2.13 pD No No None [6, 20, 67, 17]
Diffusing Diffusivity Eqs. 2.18, 2.19 τ , σ, n or pD Yes Yes τ [114, 16, 115, 116, 17]
Mora-Pomeau trap model Eq. 2.23 λ Yes No τtr [15]
Ideal CTRW Eqs. 2.24, 2.25 P (l), ψ(τ) Yes No Unknown [117]

Table 2.3. Peculiar dynamical features of the main models of FnGD present
in literature.

Superstatistical Approach Both the superstatistical (and, later, dif-
fusing diffusivity models, 2.2.3) are concerned with the possibility of in-
troducing correlations between subsequent length-steps in a random walk
without triggering anomalous diffusion. This point can be readily shown
by considering the MSD of a 1D random walker:

⟨x2(t)⟩ =
N∑︂

i=1

⟨x2i (t)⟩+
N∑︂

i ̸=j

⟨xixj⟩ (2.12)

we can neglect correlations in the different directions of motion (that are
present when anomalous diffusion is originated from having a preferred
direction on certain scales) still keeping correlations among lengths of sub-
sequent steps. The idea that long steps (in any direction) follow from long
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steps (and, conversely, for small steps) can be represented by introducing
a distribution of diffusion coefficients.

The superstatistical approach (SS) was first proposed in modern days
by Granick and Hapca in their 2009 seminal papers to rationalize Fick-
ian non-Gaussian behaviour[6, 20, 67]. This naming traces back to the
works of Cohen and Beck [118] on thermodynamics of non-linear systems.
In the SS framework, the overall diffusion process is modeled as a result
of independent standard Brownian trajectories of particles with different
mobilities, i.e. a distribution of diffusion coefficients pD(D) is defined.
Therefore the overall distribution function is a super -position (hence the
name of the model) of two different distributions: the single particle Gaus-
sian displacement distribution and the distribution of diffusivities:

p(x, t) =

∫︂ +∞

0
pD(D)

1√
4πDt

e−
x2

4DtdD (2.13)

Fickian diffusion is clearly obtained for every choice of the (time-independent)
distribution of diffusivity. On the other hand, the displacement distribu-
tion is Gaussian only in the case of a unique diffusivity pD(D) = δ(D−D0).

The main lack of this picture is that it cannot predict a restore of
standard Gaussian diffusion at long times, and the distribution function
remains timescale-invariant [17]. Furthermore, the model can only be rea-
sonably applied in scenarios in which there is a clear distribution of mo-
bilities among diffusing objects, e.g. the diffusion of microorganisms in a
solvent. Otherwise, the physical meaning of the distribution of diffusivities
is lost.

Role of initial conditions in the standard model In this paragraph
we give a possible interpretation of the superstatistical formula from the
point of view of Einstein’s standard model. Heat equation (Eq.2.7) is
uniquely solved by a standard Gaussian process as long as the initial
condition is chosen as a Dirac delta function centered in the origin of
the frame of reference [119]. In the case of a generic initial distribution
p(x, t = 0) = p0(x), the solution is a convolution

p(x, t) =

∫︂
G(x− x′, t)p0(x′)dx′ (2.14)
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Figure 2.16. Diffusivity probability distribution for parallel and orthogonal
component computed through inversion of Eq. 2.13 for system (b) in [6]. Ver-
tical lines represent the macroscopic diffusion coefficient obtained from MSD
linear fits. Both curves show bimodal shape, which can be interpreted as slow
particles and fast particles clusters (separated by a vertical black line on the
right panel).

of the initial distribution p0(x) and the fundamental heat kernel G(x, t) =
e−

x2

4Dt√
4πDt

. This formula indeed shares some similarities with Eq.2.13. This
suggests the possibility of interpreting the distribution of diffusivities as
a way to incorporate a non-delta initial distribution in a process which is
still described by the heat equation.

Delta distribution at time zero represents the initial configuration in a
radially simmetric diffusion process from a point source. However, in the
case of FnGD it seems that the common belief that all particles can be
thought as concentrated in the origin at time zero is not so obvious. In a
Fickian non-Gaussian process described by diffusion equation there must
be an initial condition that takes into account the correlations between
particles, that can be present in the short time regime. In this case, the
initial condition might encode a second timescale different from the one
enclosed in the diffusion constant.

However, we stress that not all initial conditions may lead to standard
diffusion in the long time regime and a bifurcation analysis is needed[119,
120]. This speculation suggests another point of view to connect structural
information, Hybrid Brownian dynamics and departure from ergodicity.
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Diffusing Diffusivity Model

The Diffusing Diffusivity model (DD) is probably the most cited in
FnGD literature and represents, as we will demonstrate, a generalisation of
the superstatistical approach. Although a very similar model had already
been introduced by Harrowell and Hurley [114] to catch some features of
supercooled liquid dynamics many years before the discovery of Fickian
non-Gaussian diffusion, it was more recently shown by Chubynsky and
Slater [16] that this model gives an intuitive explanation of hybrid diffusion,
also giving the current name to this model. Although there have been a
lot of contributions and modifications to this model, the essence of this
model has not really changed from its original formulation given in [16].

The model describes the heterogeneity of the dynamics by represent-
ing the diffusivity itself of the random walker as a stochastic process in
a mean-field framework. The expression diffusing diffusivity is not com-
pletely justified as it is not linked to a purely diffusive dynamics since
the fundamental equation proposed for the dynamics of the diffusivity is
always not only diffusive (which would merely reproduce the superstatis-
tical limit), but it must have an “elastic” term which generates a memory
effect on the displacement distribution function. That is why it could
be suggested to prefer the more generic expression fluctuating diffusiv-
ity [115, 121, 122] .

A simple introductory case First, we will consider the simple case of a
1D random walker with time lags and displacement moves taken as discrete
variables. Let p(∆xi, t) be the displacement distribution of the the i-th
particle with diffusivity Di, or, equivalently, the displacement distribution
in the i-th region in which all the particles have the same local diffusivity
Di. The physical origin of the mobility heterogeneity is irrelevant in the
DD model, since diffusivity and displacement are not coupled nor they are
necessary linked to real space features. Now, we assume that p(xi, t) is a
standard Brownian process (i.e. Fickian and Gaussian process):

p(∆xi,∆t) =
1√

4πDi∆t
e
− ∆x2

4Di∆t (2.15)

and we can compute the MSD of all particles assuming that the time steps
∆t are evenly distributed (t = N∆t):
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⟨x2(t)⟩ =
N∑︂

i=1

⟨∆x2i ⟩ = 2⟨Di⟩N∆t (2.16)

By comparing Eq. 2.16 with the usual definition of a Fickian process
given by Einstein ⟨x2⟩ = 2Dt, we conclude that the macroscopic diffusion
constant is the average of the diffusivities of the single trajectories in a DD
framework, regardless of the distribution given for the diffusivities.
At this stage we do not have any information on the shape of the over-
all displacement distribution function. However, we can already measure
the intensity of the deviations from Gaussianity for this random walk, by
computing the excess kurtosis of the displacement distribution for all the
trajectories, averaging both over the distribution p(∆xi, t) of different par-
ticles’ displacements and the unknown distribution of diffusivities [114]:

⟨x4(t)⟩ − 3⟨x2(t)⟩2 = 12(⟨D2(t)⟩ − ⟨D(t)⟩2)t+

+24
N−1∑︂

i=1

N∑︂

j=i+1

(︃
⟨D(ti)D(tj)⟩ − ⟨D(ti)⟩⟨D(tj)⟩

)︃
(2.17)

Now, to have more information on the time evolution of non-Gaussian
deviations, it is necessary to know how diffusivities are distributed among
trajectories. It is evident that in the case of a unique diffusivity pD(D) =
δ(D −D0), the standard diffusion is regained.

Interestingly, some features can be estimated also without having the
complete shape of the diffusivity distribution, since it happens that some
dynamical features are shared by diffusivity distributions pertaining to a
same class. As an example, we can define a correlation timescale for
the diffusivities τD, which can be seen as the longest relaxation time
of the two-times correlator ϕD(|ti − tj |) = ⟨D(ti)D(tj)⟩ − ⟨D(ti)⟩⟨D(tj)⟩,
considered as a function of |ti− tj |. If τD −→ ∞ the environment is slowly
varying and D experiences very small changes from step to step, hence
the double sum in Eq.(2.17) dominates. By taking ⟨D2⟩ − ⟨D⟩2 ∼ ⟨D⟩2,
the first non-Gaussian parameter α2 = ⟨x4⟩/3⟨x2⟩2 − 1 ∼ 1 for t ≲ τD,
while α2 ∼ τD/t for t ≫ τD. This very slow decay of the NGP in the
long time regime agrees with idealized Mode Coupling Theory [123] and
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CTRW [124].
Since the NGP only decays as 1/t, deviations from Gaussianity can be

appreciated even at times larger than τD. We will come back later to the
possible central role of the correlator ϕD to explain the Fickian-Gaussian
decoupling. Different shapes of the diffusivity distribution function have
been proposed in literature. It was first shown using Monte Carlo sim-
ulations [16] that by sorting a diffusivity from an expontial distribution
and then a displacement from Eq.(2.15), we obtain a total displacement
distribution which changes from an exponential-like to a Gaussian curve
as time goes on, with a linear MSD at any time.

General formulation Some authors have shown that it is possible to
represent the algorithimic procedure described at the end of the previous
paragraph, with an analytical model that gives the complete shape of the
Fourier transform of the displacement distribution at any time, namely the
Self Intermediate Scattering Function, also using different types of p(D),
such as power-law [125], exponential [17, 126] or, more generally, a Gamma
function [19].

In order to get more general analytical insights, it is useful to present
the DD model as a set of coupled stochastic/Fokker-Planck equations
((2.18) and (2.19)):

dx(t)

dt
=

√︁
2D(t)ξ1(t) ⇐⇒ ∂p(x, t)

∂t
= D(t)

∂2p(x, t)

∂x2
(2.18)

dD(t)

dt
= f(D(t), t) + σ(D(t), t)ξ2(t) ⇐⇒

⇐⇒ ∂pD(D, t)

∂t
=

∂

∂D

(︃
f(D, t)pD(D, t) +

1

2
σ2(D, t)

∂pD(D, t)

∂D

)︃ (2.19)

where ξ1(t), ξ1(t) are Gaussian white noises and f, σ are generic deter-
ministic functions. Eq. 2.18 is a truly diffusive dynamics which formally
agrees with mass conservation law. All the deviations from standard diffu-
sion due to the complex interactions between the particle and the environ-
ment are enclosed in the stochastic diffusivity D(t) which coarse-grains the
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dynamics and colours the white noise through eq.2.19. As already shown
for the introductory model, it is possible to prove the general relation be-
tween the distribution of the diffusivities and the macroscopic diffusion
constant. Using Green-Kubo relation [13]:

D(t) =

∫︂ +∞

0
⟨v(t)v(0)⟩dt =

∫︂ +∞

0

⟨︃√︁
2d(t)ξ1(t)

√︁
2d(0)ξ1(0)

⟩︃
dt =

= 2⟨D⟩ = 2

∫︂ +∞

0
DpD(D, t)dD

(2.20)

We notice as an aside that some authors [115] have also suggested the pos-
sibility of extending the model of the Langevin equation with fluctuating
diffusivity to a tensorial form, in order to take into account other kinds of
heterogeneity.

The possibility of a time-dependent distribution of the diffusivity has
also been considered [125, 19, 127] to obtain a diffusing-diffusivity model
also for the pre-Fickian anomalous dynamics. However, the linear relation
between time and MSD is ensured by any p(D, t) which has a stationary
mean value.

Solving the DD model A complete solution for the model in the sim-
plest non-trivial case of an Ornstein-Uhlenbeck modulated white noise10

was provided by Chechkin et al. [17] in terms of the Fourier-transform
of the displacement distribution functions F (q, t) using a subordination
scheme [34]. Jain and Sebastian [116] demonstrated that the model with
f(D, t) ∝ D(t) and σ(D, t) ≃ const. is equivalent to Brownian motion in
the presence of a sink and provided a similar solution by means of phase
space path integral. A similar approach was proposed by [128] and ex-
tended to the case of a memory kernel in the diffusivity dynamics [129].

Analytical solutions in the asymptotic cases of very short and very long
times show that a slow convergence from a Laplace distribution (t −→ 0)
to a Gaussian (t −→ ∞) is a common feature of DD models. In particular,

10We notice as an aside that in [17] the proposed Ornstein-Uhlenbeck model is not
for the stochastic diffusivity, but for its square-root Y (t), D(t) = Y 2(t).
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at short time the DD model is equivalent to SS model since a particle
experiences only a certain value of diffusivity and memory effects are not
yet at play. Conversely, in the long time regime every particle has sampled
all the diffusivity distribution and memory has faded away.

As previously noticed, it is possible to derive direct relations between
the correlation function of the diffusivities and some dynamical properties,
such as the relative fluctuation of the time averaged MSD or the NGP [115,
121, 32, 114], regardless of the details of the dynamics of the diffusivity
and without explicitly solving the model. In particular, we can prove that
as long as ϕD(t) is fastly decaying (faster than 1/t) we expect the NGP to
decay as 1/t in the long time regime. Some examples (such as exponential
decay) can be recognized in different models. It can be further conjectured
that a slower decay of ϕD leads, in turn, to a slower decay of the NGP.
This is point is crucial since the seemingly power-law decay of the NGP in
the asymptotic regime seems to be a common feature of the FnGD regime
of glass-formers [1, 123], as we will demonstrate in next chapters.

Some considerations on the fluctuating diffusivity model The
main issue concering the DD model is that it does not present any physical
justification for the form of the drifting term of Eq.(2.19), which is directly
linked to the form of the auto-correlation function of the diffusivity ϕD.

Moreover, from an experimental point of view, there are some problems
in measuring a fluctuating diffusivity, since diffusion constant is a well de-
fined observable only for the ensemble or long-time dynamics. Hence, any
effort to determine a fluctuating diffusion constant from single trajectories
must rely on some ad hoc criterion. However, some attempts in this regard
have been made with encouraging partial results [82].

Finally, we note that the DD model seems to be intrinsically unable to
give any information on the relation between the fundamental dynamical
timescales: it is not a microscopic theory, but a dynamical model lacking
a clear link to thermodynamic control parameters.

Trap model

Recently [15], it was demonstrated that Fickian non-Gaussian diffusion
is also expected in a very simple model of an isolated Brownian particle
diffusing among a dilute field of randomly located traps. The proposed
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model relies on a clearcut and simple microscopic mechanism without ad
hoc laws for mobility fluctuations, which in principle could be valid even in
homogeneous media. At variance with diffusing-diffusivity scenarios, which
rely on the presence of diffusivity fluctuations, the trap model describes
the random motion in a heterogeneous medium, characterized by a non
trivial energy landscape.

The microscopic dynamics of the center of mass of a Brownian particle
with characteristic size r0 is governed by an overdamped Langevin equation

dr
dt

= −1

ζ
∇Φ+ ξ(t) (2.21)

where Φ is the potential energy due to the presence of random traps, and
ξ(t) is a Gaussian white noise. Dynamics inside the cage is corse-grained
since the complete form of the potential is not given. Therefore any poten-
tial (and noise) which does not contrast with the microscopic constraint
of reversibility and that satisfies a proper form of the Fluctuation - Dis-
sipation Theorem (in order to ensure thermodynamic consistency) can be
chosen. The total potential energy of a particle is a linear superposition
of single traps potentials:

Φ = −
∑︂

i

wi(r − rtri ) (2.22)

Two main simplifications are made at this stage: (i) all traps are isotrop-
ically distribututed, (ii) each trap is isotopic w(r) = w(r) and (iii) they
all have same depth w0 larger than kT . Therefore, all the traps are char-
acterized by a unique trapping time τtr that represents the long timescale
needed to have non-Gaussian fluctuations, even if the dynamics is Fickian
from time t = 0. Dynamics in the trap is thus coarse-grained and the
whole system can be described by a set of mass balances for the density of
the particles inside the trap ptr(r, t) and outside pout(r, t):

{︄
∂ptr
∂t = pout − ptr

∂pout
∂t = ∇2pout − λ(pout − ptr)

(2.23)

The Markovian form of the model holds because of dilution hypotheses,
therefore memory effects due to previously visited traps are neglected. This
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mean field model describes an equilibrium dynamics since time-translatian
invariance is ensured by the conservation of the total 1-particle displace-
ment probability P (x; t).

The theory presents just one non-dimensional parameter λ = 4πνr3oτtr
3τF

with ν being the volume fraction of traps in the environment. This param-
eter represents a balance between the time spent outside the trap and the
total time inside the trap. Conceptually, two contributions to the latter
are present: the density of traps ν, and the strength of the trap through
the trapping time. However, the model is reliable in the ν → 0 limit, thus
only one contribution really plays a role.

The total probability density function p(x; t) is of course the weighted
sum of the one outside and inside the trap and can be analytically eval-
uated by Laplace-Fourier transform of Eq. 2.23 in the small and large λ
regimes. In both cases exponential tails of the distribution are present with
a charachteristic length described by a power law ∝ tα, with an exponent
α depending on λ. The diffusion is Fickian for all values of λ and over all
time-scale and Gaussianity is always recovered at long times, as the NGP
decreses as 1/t in the long time regime.

We notice tha the presented model, in spite of its simplicity, was found
to be qualitatively in agreement with some experimental results [1, 6, 20,
65].

Continuous Time Random Walk Approch

In the ideal Continuous Time Random Walk (CTRW) a random walker
performs a stationary process with distributed step-sizes and waiting times
taken from two indipendent distributions. It could be considered as the
most simple extension of the classic random walk model that is obtained
as a special case of CTRW by taking a delta distrbuted (constant) time
lags and a Gaussian distribution for the steps length. CTRW model was
successfully applied to model microscopic dynamics in a great variety of
systems, including polymer systems and supercooled liquids [102, 51, 130,
131].

In the case of decoupled CTRW, the displacement distribution func-
tion of a single particle can be splitted in the two separate contributions
from the input distributions of step lengths pn(x) and time lags ψ(t). In
particular, if χn(t) is the probability of taking exactly n steps up to the
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time t, then the subordination formula

p(x, t) =

+∞∑︂

n=0

pn(x)χn(t) (2.24)

takes into account that the total probability of having a step x at time
t comes from all the combinations of precisely n steps until time t which
gives as total displacement x. Eq. 2.24 is equivalent to the celebrated
Montroll and Weiss formula [132] in the Laplace-Fourier domain:

F (q, s) =
1− ψ(s)

1− λ(q)ψ(s)

1

s
(2.25)

Recently [117, 133], it was demonstrated that for a large class of systems
where CTRW description is applicable, exponential tails are expected in-
dependently from the shape of the second moment of the van Hove distri-
bution. However, strict assumptions must be required:

• waiting times distribution must be not too broad in order to be
analytic in the vicinity s = 0;

• step-size distribution must not be too-broad.

The first property is enough to ensure that the mean waiting time is finite,
which is a necessary condition not to have anomalous diffusion.

Finally, we note that the link between non-Gaussian dynamics (also
in the long time regime) and the shape of waiting time distributions was
studied in a semi-quantitative way in [107, 108, 109, 110] at least in some
cases of practical interest for structural glassformers.

Other models

In the last decades, many advances have been made in particle tracking
and our understanding of the behaviour of microswimmers such as bacte-
ria or algae in dilute and concentrated suspension has advanced greatly.
For this kind of mesoscopic systems, specific arguments can be brought to
explain the rise of non-Gaussian displacement distribution in the Fickian
regime. In particular, hydrodynamic considerations can be made to ex-
plain the peculiar characteristics of the motion of flagellated microorgan-
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isms [134]. Through a scaling argument one can prove that the velocity
distribution function has the power law form

p(v) ∝ v−(1+3/n) (2.26)

To ensure the validity of the central limit theorem, the second moment
must be finite, which is true for n < 3/2. This condition is satisfied in the
case of Stokeslets (n = 1), but it is not in the case of stresslets (n = 2)11.

The displacement PDF is linked to the velocity PDF trough the hydro-
dynamic decay law r−n. In the spatial point in which we have a variation
of this law, we also have a deviation from the gaussianity of p(x) in the
case n > 3/2. In this way, we can infer the shape of the near-field velocity
around a particle from the displacement distribution and demonstrate the
presence or absence of Stokeslet contributions on the fluctuation spectrum.

A complete model for the motion of self-propelled particles was devel-
oped by [135] starting from a set of two stochastic equations describing
the motion of an active brownian particle in the general case of a chiral
(rotating) particle. The complete equations of motion which are derived
are equivalent, under certain conditions, to the simple Smoluchowski-like
equation for the one-particle distribution function:

∂2p(x, t)

∂t2
+ 2D

∂p(x, t)

∂t
=
v20
3

∂2p(x, t)

∂x2
(2.27)

D being the rotational diffusivity of the particle and v0 the modulus of the
average rotational velocity. This telegrapher’s equation generalizes the dif-
fusion equation [136, 137, 138] and provides also a model for the crossover
from anomalous to Fickian diffusion.

2.3 FnGD in glass-forming systems?

Four are the main motivations that justify the scope of the present
work, namely the quantitative search and characterization of Fickian non-
Gaussian diffusion in supercooled liquids:

11A fundamental solution of Stokes equations in the presence of a point-like force, or
dipolar force in the origin are termed stokeslet and stresslet, respectively.
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1. As pointed out in previous sections, the heterogeneity of the dynam-
ics is a fundamental ingredient of all systems displaying FnGD; as
indicated in Section 2.1, glass-forming liquids, in fact, can be consid-
ered the epitome of soft-matter systems with dynamical heterogene-
ity [25];

2. Hybrid diffusion is accompanied in many systems by intermittency of
single-particle trajectory; cage-jump motion is considered hallmark
of feature of glassy dynamics [28];

3. FnGD has been suggested [62, 139] to be present in systems with a
subdiffusive pre-Fickian regime, which is also present and particu-
larly extended in glass-formers;

4. The dynamics close to glassy state is extremely slow, hence a com-
plete characterization of an intermediate-time regime (as FnGD is
expected to be in equilibrium systems) is likely easier.

We now review some previous results on dynamics of glass-forming liquids
to show that, although it was never claimed, the the presence of a FnG
regime in these systems was already detectable by examining retrospec-
tively some previous findings present in literature.

Noticeably, exponentially-tailed displacement distributions had been
reported for both experiments on colloidal systems and molecular dynamic
simulations [24, 22, 26, 140] focusing on times of the order of the struc-
tural relaxation time τα (related to the first jumps of the particles out of
their cages) which typically falls either within the subdiffusive regime or
around the subdiffusive-Fickian crossover. For example, in [141] it was
found that τα and a so-called “Fickian time”, which is in fact defined from
the restoring of Gaussianity (with no reference to the restoring of linear-
ity in the MSD) show different temperature dependence, the latter being
larger than the structural relaxation time. Interestingly, the authors of that
article declare [141]: “The probability distribution P (log∆r; t) is a conve-
nient indicator of Fickian diffusion, because if particles move via Fickian
diffusion, then the self-part of the van Hove function is Gaussian”. As a
matter of fact, with Fickian diffusion they meant Fickian and Gaussian
diffusion. This latter naming mirrors the belief in a coincidence of Fickian
and Gaussian diffusion, as it was widespread before the discovery of FnGD.
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It is also very intersting to note that in [141] it is also hinted that the onset
time of Gaussian diffusion “occurs well within the regime of apparent linear
time dependence of the mean-squared displacement”, but, nevertheless, no
quantitative analysis of this issue (primarily, the time needed to recover
the linearity in the MSD) had been provided in [141].

This point has never been fully clarified [142]. Indeed, it was also
speculated [143, 144] that the structural relaxation time is expected to
increase at least as fast as the time needed for the restoring of van Hove
Gaussianity as glass transition is approached.

Only very recently, some studies have shown how different inter-particle
potentials can give rise to non-Gaussianity in supercooled liquids is pre-
sented in [66, 1, 65, 92]. An interesting result of [66] is that the length-
scale of dynamical heterogeneity, computed through finite-size scaling, is
proportional to the length-scale which can be measured through a coarse-
graining of the displacement distribution function using a binning size for
which the distribution appears Gaussian. This result further strengthens
the idea that non-Gaussianity of the van Hove (a single-particle indicator)
and DHs in glassy liquids (stemming from multi-particle correlations) are
connected to each other, as originally suggested in the seminal work by
Weeks et al. [24], and lately largely remarked in literature of glassy dy-
namics [145, 49, 106].

Some deviations from Gaussianity, however, do persist even in the Fick-
ian regime of glass-formers, as clearly demonstrated in [92, 1].

A fundamental work on FnGD in this model-system of supercooled
liquid, carried out very recently by [65], focuses on the time-dependence of
the characteristic length of the exponential tails of the van Hove function
in 2d and 3d. Furthermore, a comparison with results of simulations on
systems with anisotropic interaction (3d tethraedral patchy particles) is
also provided. The main results of this work will be further discussed in
next chapters and compared with our results presented in Chapter 4.

Concentrated colloidal suspensions are often regarded as good proxies
for glass forming liquids, which can be easily studied via experiments, at
odds with their supercooled counterpart. For example, the 2d hard sphere
suspension case was investigated by [83] in a wide range of volume frac-
tions. The authors specifically focus their analysis on testing the validity of
the so-called Gaussian approximation of the ISSF, without a specific con-
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nection to the concomitant achievement of the linearity in the MSD. As
also suggested by [146], the unsuitability of the Gaussian approximation in
most complex fluid should strongly suggest to reconsider the interpretation
of many findings on diffusion on colloidal systems (and soft matter in gen-
eral). However, the departure from the Gaussian behaviour is not dramatic
at this (not too high) concentrations. In fact, only small deviations are
visible in the tails of the van Hove distribution and a first-order correction
to the Gaussian approximation of the self-scattering function already gives
excellent agreement with the experimental correlation functions computed
from single-particles’ trajectories. Of course, the persistence of these small
non-Gaussian deviations in the long-time Fickian regime is not readily as-
sessed. However, a short-lived FnG regime seems detectable at the highest
concentrations (ϕ = 0.66) at intermediate times, although not explicitly
noted by the authors.

Experiments on real supercooled liquids remain way harder to be car-
ried out, so they are not as popular as their colloidal counterpart for study-
ing self diffusion processes. In line of principle, FnGD is not detectable as
long as a real space analysis is not performed with non scattering tecniques.

However, if we consider (as elsewhere proposed [64]) the co-existence
of a so-called “Fickian” scaling of the structural relaxation time (τα ∝
q2) with a stretched exponential decay of the ISSF as the Fourier-space
counterpart of FnGD, it becomes evident that many known results on
glassy dynamics should be re-examined on a different perspective, as also
suggested in [64]. For example, incoherent quasielastic neutron scattering
measurements carried out on two types of glass-forming liquids revealed
the possible presence of FnGD both in a molecular and an ionic liquid [84].
From the combined analysis of the dependence on the probing wavevector
both of the stretching exponent of intensity correlation function and of its
relaxation time, a crossover was found between a short wave-vector regime
(in which the exponent is nearly 1 and the relaxation time has a diffusive
scaling with the wavector) and a long wave-vector regime (characterized
by a constant beta at 0.5 and a diffusive scaling). The crossover regime is
bounded between two conventional critical values of the wavevector: the
first threshold is defined as the Fickian crossover and the second Gaussian
crossover. However, it would be very interesting to understand the physical
meaning of these scalings in real-space, and the connection with anomalous
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and hybrid diffusion time windows.
In conclusion, we think that the here presented framework fully sup-

ports the motivation of the present thesis, namely the characterization of
the peculiar features of Fickian non-Gaussian regime in the proximity of
the glass transition.





CHAPTER 3

Methods

3.1 Investigated systems

In this chapter we describe the methods of our analysis, consisting in
numerical simulations on 2d and 3d models of supercooled molecular liq-
uids, and experiments on a quasi-2d hard-sphere colloidal suspension at
high area fractions. While in the numerical systems glass transition is
approached by decreasing the temperature below the crystallization (or
melting) point, in the experiments the dynamic slows down with increas-
ing concentration. Since the present thesis aims at a novel characteri-
zation of the effects of the dynamical heterogeneity of glass-forming liq-
uids (in which dynamical behaviours are not necessarily related to evident
structural changes), we chose very simple model-systems of glass-formers,
namely crowded binary mixtures of spherical particles with pair-additive
and isotropic interactions. Hence, the impact of different polydispersities
on the dynamics is not considered in this work, while the possible role of
spatial dimensionality and type of inter-particle potential is instead taken
into account.
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3.1.1 Experiments on 2d Hard colloidal Disks binary mix-
ture (2HD)

We analyzed data from previous experiments performed at Physics
Department "Ettore Pancini" in University of Naples "Federico II"[28, 1].
Quasi-two dimensional hard-sphere-like colloidal suspensions at different
area fractions, ϕ, were obtained by using a 50:50 binary mixture of sil-
ica beads dispersed in a water. Surfactant (Triton X-100, 0.2% v/v) was
added to the solution to avoid particle sticking through van der Waals
forces. Large and small beads diameters measure σL = 3.16 µm and
σS = 2.31 µm, respectively, resulting in an average particle diameter
σ = 2.7 µm and in an 1.4 ratio known to prevent crystallization. We
focused on a area fraction range where the samples can be equilibrated on
the experimental time scale, and monitored the dynamics after thermal
equilibrium is attained. Digital videos of the samples were obtained using
a standard microscope equipped with a 40x objective (OlympusUPLAPO
40XS) and a fast digital camera (Prosilica GE680). At the highest area
fraction, roughly a thousand particles in the field of view of the microscope
were imaged. At each area fraction, the video duration, tv, was several
times larger than the structural relaxation time, τα, while the interval be-
tween subsequent frames, tf , was much smaller than τα. In particular, tv
ranged in [103s, 105s] and tf in [0.2s, 2s], respectively, depending on the
area fraction, i.e., larger times at larger area fraction. Particle tracking was
performed through a Python based implementation of the Crocker-Grier
algorithm [147]. Data analysis was performed using Matlab and different
SciPy libraries in Python [148]. Interactive data exploration and visual-
ization was performed using IPython and Jupyter notebooks [149]. All
dynamic observables are computed averaging over all particles and over
the time origin, since the system is time-translation invariant. When not
explicitly stated, results on this system are expressed in time units of sec-
onds and length units of micrometers.

3.1.2 Simulations of 2d Soft Disks binary mixture (2SD)

NVT molecular dynamics simulations were performed (with the stan-
dard Noseé-Hoover thermostat implemented in LAMMPS [150, 151]) of a
two dimensional binary (50 : 50) mixture of disks with diameter σL and
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σS for large and small disks, respectively, and size ratio σL
σS

= 1.4, which
is known to avoid long-range crystallization[102, 1]. The total number of
particles is 2N = 103 at constant area fraction ϕ = 1. Particles interact
through harmonic soft pair potential

V (rij) = ϵ

(︃
σij − rij
σL

)︃2

Θ(σij − rij) (3.1)

with rij the inter-particle separation and σij =
σi+σj

2 the average diameter
of the interacting particles and Θ the Heavyside function, ϵ a characteristic
energy scale. We adopt reduced units σL = m = ϵ = kB = 1, with m being
the mass of both particle species and kB the Boltzmann constant. Thus,
temperatures displayed in the text are measured in units of the interaction
energy scale ϵ. Periodic boundary conditions are applied in two dimensions.
The dynamics is monitored after fully equilibrating the system. While
the two species generally show a qualitatively similar behaviour, in what
follows we solely focus on the smallest component. All dynamic observables
are computed averaging over all particles of the selected species and over
the time origin, since the system is time-translation invariant.

3.1.3 Simulations of 3d Kob-Andersen Lennard-Jones bi-
nary mixture (3KALJ)

Three-dimensional (3d) NVT molecular dynamics simulations, using
the standard Noseé-Hoover thermostat, are performed in LAMMPS of a
80:20 (A:B) binary mixture of particles interacting via a shifted and trun-
cated version of the LJ interaction potential

V LJ = Vα,β(rij) = 4ϵαβ

[︃(︃
σαβ
rij

)︃12

−
(︃
σαβ
rij

)︃6]︃
(3.2)

where α, β ∈ A,B, rij is the distance between the centres of mass of par-
ticles i and j, σAA = 1, σAB = 0.8, σBB = 0.88, ϵAA = 1, ϵAB = 1.5,
ϵBB = 0.5; precisely, the potential is (i) truncated at r = rc = 2.5σAB

in order to save unessential computer time (at the cutoff the potential is
1.6% of its minimum value −ϵ); (ii) a constant term V ′

LJ(rc) is subtracted
in the force in order to have the force continuously go to zero at the cutoff
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distance. Modifications (i) and (ii) corresponds to the following implemen-
tation of the potential:

{︄
V (r) = VLJ(r)− (r − rc)V

′
LJ(r)− VLJ(rc) r < rc

V (r) = 0 r > rc.
(3.3)

Hence, this model is a modification, introduced in [152, 153], of the stan-
dard Kob-Andersen Lennard Jones (KALJ) model of supercooled liquid[154],
in order to prevent crystallization at very low temperatures. This modifi-
cation is essential for the scope of our study (i.e. the rare event statistics
occurring in the long time dynamics close to the glass transition). For the
standard KALJ model at standard density 1.2, crystallization unavoidably
occurs [155, 156, 152] for lengthy simulations starting from T ∼ 0.45 by
phase separating into a pure A phase, and it is anticipated for larger sam-
ples [157]. In our study, the so-modified KALJ model (mKALJ) did not
present crystallization for every run and simulated temperature. Moreover,
dynamics and structure of mKALJ were tested to be equivalent to those
of the standard model as far as a comparison was feasible.

All results are given in reduced units, where σAA is the unit of length,
ϵAA the unit of energy and

√︂
mσ2AA/ϵAA the unit of time (being m = 1 the

mass of the particles). For argon these units correspond to a length of 3.4Å,
an energy of 120kBK and time of 2.1×10−12s. Notice that the here adopted
unit of time differs from the original

√︂
mσ2AA/(48ϵAA) convention by a

factor
√
48 [37]. The total number of particles is N = 32.000 at constant

density ρ = 1.2, and temperature was varied in the range T = 5.000−0.380.
The dynamics is monitored after fully equilibrating the system (i.e. no

drift in temperature, pressure or potential energy is observed). The system
is initially prepared and equilibrated at high temperatures, where relax-
ation times are shorter. Temperature in the high-T equilibrated configura-
tion is then lowered to a desidered value and the system is re-equlibrated.

The integration time-step is dt = 0.003 for T > 1 and dt = 0.005 for
T ≤ 1. At the lowest temperatures, the maximum run length extends up
to 2×109 integration time steps, i.e. a time duration of 1×107 time units.
While the two species generally show a qualitatively similar behaviour,
in what follows we solely focus on the largest component (particles A).
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Unless otherwise explicitly indicated, dynamic observables are computed
averaging over all particles of the selected species and over 100 different
runs of simulation at T > 0.550, 200 runs for 0.550 ≥ T ≥ 0.400 and 400
runs fot T < 0.4

Simulations and analysis of this system were carried out in collabora-
tion with Prof. Walter Kob from Laboratoire Charles Coulomb, University
of Montpellier.





CHAPTER 4

Results

4.1 Characteristic scales of the FnG regime

In this section we show that all the glass-formers investigated in our
study (3KALJ, 2SD, 2HD) show Fickian non-Gaussian dynamics and iden-
tify the fundamental timescales (as well as the corresponding length-scales)
that characterize this regime.

For the estimate of the Fickian onset τF , we will demonstrate that, in
the investigated systems, the standard diffusion timescale marks the onset
of linearity in the MSD, while Gaussianity is still far from being reached,
the timescale of the onset of Gaussianity τG systematically being larger
than τF .

We anticipate that our approach to define Fickian and Gaussian on-
sets robustly draws on “time-temperature/concentration” superpositions,
in analogy with other characteristic scales defined in a variety of sys-
tems [158, 49, 159].

We also remark that in molecular supercooled liquids (2SD and 3KALJ),
the glassy state is approached by decreasing temperature, while in the ex-
perimental colloidal system (2HD) glass transition is is the area fraction
of colloidal particles. We will generally refer either to temperature or area
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fraction as thermodynamic control parameter, in the following.
Results on 2SD and 2HD systems have been recently published in [1],

while the publication of results on 3KALJ is still in preparation.

4.1.1 The Fickian onset

The estimate of the time- and length-scales, τF and ξF , for restoring the
Fickian behaviour after the subdiffusive regime draws on the MSD data
(Fig. 4.1). While subdiffusion becomes more marked and persistent on
approaching the glass-transition, the length-scales for attaining the Fickian
regime seem instead to remain constant (as the thermodynamic parameter
is varied) and of the order of the particle diameter, σ1.

Thus, we assume as an ansatz ξF = σ (whose effectiveness will be ver-
ified a posteriori, in the following). Accordingly, the corresponding time
τF is defined through the relation ⟨r2(τF )⟩ = 2dDτF = ξ2F , d being the
spatial dimensionality, and therefore coincides with the standard diffusion
time. Hence, the Fickian length is constant, while the Fickian time, τF
(that is also a broad estimate of the duration of subdiffusion), scales as
the inverse of the diffusion coefficient, consistently with theoretical predic-
tions for diffusion in a heterogeneous energy landscape [160] and previous
numerical results on glass-formers [27].

The effectiveness of the just discussed estimation of τF and ξF is fully
demonstrated by the data collapse reported in Fig. 4.2. The adopted
shifting factors are ξF = σ and τF : all MSD datasets collapse on a linear
master curve starting from the point of coordinates (1, 1) (Fig. 4.3).

We also notice that, in fact, the adopted rescaling leads data to collapse
even before the Fickian regime (Fig. 4.4), consistently with Mode Coupling
predictions and previous numerical results on glass-forming systems [161,
49, 37]. Collapse at short time becomes less effective for all systems around
t ≲ 0.1τF .

We further checked the effectiveness of τF and ξF . Fig. 4.5 shows the
time evolution of the logarithmic derivative of the MSD a = d log ⟨r2(t)⟩

d log t .

1For molecular systems with soft interactions, σ is here defined as the length-scale
corresponding to the first peak of the radial correlation function. Another common way
to determine σ is to consider the length λ∗ = 2π/q∗ corresponding to the first peak of
the static structure factor. However, the two methods provide similar estimates of σ,
both independent on variations of thermodynamic parameters close to glass transition.
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Figure 4.1. MSD as a function of time for the three systems at different
values of the thermodynamic control parameters.
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Figure 4.2. MSD as a function of the rescaled time t/τF for the three systems
at different values of the thermodynamic control parameters.
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Figure 4.3. MSD as a function of the rescaled time t/τF for KALJ system
within the supercooled temperature-window.
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Figure 4.4. MSD as a function of the rescaled time t/τF in the pre-Fickian
regime for the three systems at different values of the thermodynamic control
parameters.
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Simulations of the KALJ system, in particular, provide an illustrative ex-
ample of the evolution of the MSD over more than ten decades in time.
At very short time, single-particle motion is ballistic and a = 2; KALJ
system in the supercooled temperature-window (T ≲ 0.8) show a clear
subdiffusive regime (a < 1) at intermediate times, which becomes more
marked as temperature is decreased. At very low temperature (T ≲ 0.42),
the system enters a temperature regime in which the minimum value of the
derivative, amin = a(tDW ) (tDW being the Debye-Waller time, Fig. 4.6.a),
remains almost constant and close to zero as temperature is decreased.
This corresponds to the appearance of a plateau-like regime in the MSD.
Interestingly, the Debye-Waller factor

√︁
⟨r2(t = tDW )⟩, (i.e. the length-

scale of the inflection of the MSD), is not constant, but keeps decreasing
as temperature is lowered (Fig. 4.6.b). This can be intuitively interpreted
as a small shrinking of the particle cage as the system approaches glass
transition [33].

Figure 4.7 further confirms the effectiveness of the Fickian timescale
τF , obtained from the long-time collapse of the MSD: indeed, it is found
that all a(t) datasets in the supercooled regime now collapse onto a unique
mastercurve for any t > tDW , and approach the asymptotic value a = 1
around t/τF = 1. (Precisely, all curves are around a value of 0.95 at the
Fickian onset.)

4.1.2 The Gaussian onset

The (first) Non-Gaussian Parameter (NGP) α2 is the simplest and
most common indicator to monitor the time evolution of non-Gaussian
deviations of the displacement distribution function. In the systems here
investigated, α2(t) displays an increasing maximum, on approaching glass
transition, at times around τF , and vanishes in the long-time limit, as
typically reported for glass-forming liquids [26] (Fig. 4.8).

Our approach to identify the timescale τG characteristic of the onset of
Gaussian diffusion, and the associated length-scale ξG = (4DτG)

1/2, draws
on a visual inspection of NGP data in double logarithmic plot, as shown in
Fig. 4.9. We define τG as the time where α2(t) reaches an arbitrarily chosen
(low) threshold α2∞ = 0.05 (shortly, we will come back to the choice of this
threshold). As a matter of fact, the displacement distribution for t ≥ τG
is indistinguishable from the Gaussian distribution of standard Brownian
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Figure 4.5. Log-derivative of the MSD as a function of time for the three
systems at different values of the thermodynamic control parameters.
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Figure 4.6. (a) Debye-Waller time and (b) Debye-Waller factor as a function
of temperature for KALJ system.

motion, as it will be shown in Section 4.3.
Figure 4.10 shows a striking result of our definition of τG. By plotting

the NGPs as a function of t/τG, we succeed in collapsing all the long-time
tails over well defined mastercurves. The collapse works quite well within
the Fickian time-window (Fig. 4.11). At high-ϕ/very low-T conditions,
where the adopted low threshold α2∞ is not attained within the monitored
time window, we estimate τG as the appropriate shifting factor to obtain
the aforementioned data collapse.

Fig. 4.12 (b-c) shows that, in the long-time, α2(t) seemingly shows a
power-law tail ∝ t−δ with exponent δ = 0.55 for experiments on hard
spheres and δ = 0.7 for simulations on soft disks. In KALJ system (panel
a) the behaviour of the mastercurve does not seem to be compatible with a
unique power-law function of time. The curve apparently shows a crossover
from a power-law with an exponent δ < 1 to δ = 1 (at very long times).

We notice that several theories, including Mode Coupling Theory for
hard-spheres [161], some Diffusing Diffusivity [16, 17] and Continuous Time
Random Walk models [124] predict power-law tails of the NGP with an
exponent 1. Other models, such as [162, 110], predict however power-
law tails, with an exponent that can differ from unity, consistently with
our results here and with some previous numerical simulations of glass-
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Figure 4.7. Log-derivative of the MSD as a function of the rescaled time
t/τF for the three systems at different values of the thermodynamic control
parameter.
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Figure 4.8. NGP as a function of time for the three systems at different
values of the thermodynamic control parameters.
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Figure 4.9. Same data of Fig. 4.8 on a double logarithmic scales.

formers [163, 124, 164]. As a matter of fact, failures of MCT in predicting
the NGP behaviour in numerical glass-forming models are reported also in
other works [165, 166, 29].

Notice that the existence of the data collapse (whether it is a power-law
or not) ensures that the choice of the threshold α2∞ does not affect the
volume-fraction or temperature dependence of the estimated τG. Indeed,
on changing the threshold, τG would merely change by a constant factor,
provided that the NGP has reached its asymptotic behaviour. This is
readily demonstrated in Fig. 4.13.a that shows a data collapse equivalent
to that in Fig. 4.10.a, obtained with a different definition of the threshold.
In this case τ ′G ≡ t(α2 = α′

2∞ = 0.1). In panel b we compare τ ′G with a
τ ′′′G defined with a very small threshold, α′′′

2∞ = 0.01: Fig.4.13.b definitely
demonstrates that even if α2∞ is varied by a factor 10, the measured
timescales are linearly related.

Finally, it is worth noticing that the NGP also provides another char-
acteristic timescale, τ∗ (< τF ), related to the presence of a maximum α2

∗.
As demonstrated by Fig. 4.14, this time scale is not relevant for our study
and further investigations on τ∗ are not necessary.

Of course, it is likely that stronger displacementS correlationS at short
times (signalled by the presence of higher peaks of the NGP) are also more
persistent in the long-times. However, the absence of a collapse in Fig. 4.14
suggests that the connection between long-time behaviour of the NGP and
non-Gaussianity in the caging regime is not trivial. However, this timescale
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Figure 4.10. NGP as a function of the rescaled time t/τG for the three
systems at different values of the thermodynamic control parameters.
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Figure 4.11. NGP mastercurves as a function of the rescaled time t/τG in
the range t > τF for the numerical systems.
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Figure 4.12. (a-c) NGP as a function of the rescaled time t/τG for the nu-
merical systems, at different values of the thermodynamic control parameters.
Solid lines are power-law function of the rescaled time.



72 Chapter 4. Results

10−9

10−9

10−8

10−8

10−7

10−7

10−6

10−6

10−5

10−5

10−4

10−4

10−3

10−3

10−2

10−2

10−1

10−1

100

100

101

101

t/τG2

10−2 10−2

10−1 10−1

100 100

101 101

α
2

T =0.38

T =0.385

T =0.39

T =0.40

T =0.41

T =0.42

T =0.43

T =0.44

T =0.45

T =0.475

T =0.50

T =0.55

T =0.60

T =0.70

T =0.80

T =1.00

T =1.50

T =2.00

T =3.00

T =4.00

T =5.00

(a) 3KALJ

10−1

10−1

100

100

101

101

102

102

102

102

103

103

104

104

105

105

106

106

107

107

108

108

τG2

101 101

102 102102 102

103 103

104 104

105 105

106 106

107 107

108 108

109 109

τ G

power law 1.0

(b) 3KALJ

Figure 4.13. (a) NGP as a function of the rescaled time t/τG2 for KALJ
system. (b) Scatter plot of τG vs τG2.

is out of the central scope of our investigation, being definitely not referring
to very long time dynamics.

4.1.3 The Fickian non-Gaussian window

Figure 4.15 shows the area-fraction/temperature dependence of τF and
τG, as measured trough the just described approaches, for experiments and
simulations. For each 2d-system, the two timescales are well fitted by the
same functional form: a power-law A(ϕc−ϕ)b (with a unique ϕc = 0.81) for
experiments, and an Arrhenius law Be

E
T for simulations. In both systems,

τG is always larger and increases faster than τF on approaching the glass
transition, as indicated by the power-law exponents (in experiments) and
the activation energies (in simulations) of τG being roughly twice those
estimated for τF .

In the Kob-Andersen mixture, data cover a much wider range, from hot
to highly supercooled conditions, and a crossover between two (approxi-
mately exponential) behaviours for both timescales is seemingly present
(See Section 4.4 for further analysis). Hence, a single Arrhenius fit is not
suited to fit data in the whole investigated range of investigate tempera-
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Figure 4.14. NGP rescaled as a function of the rescaled time t/τ∗ (a) and as a
function of t/τG (b) in KALJ system at different values of the thermodynamic
control parameters.
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Figure 4.15. Gaussian τG and Fickian τF timescales as a function of the
thermodynamic control parameter for the three systems. Dashed lines in panel
(b) are Arrhenius fits e

E
T with EF = 2.3× 10−2 ± 3× 10−3 for τF and EG =

4.2× 10−2± 3× 10−3 for τG. Dashed lines in panel (c) are fits through power-
laws of (ϕc − ϕ), with exponent bF = −2.8 ± 0.2 for τF and bG = −5.5 ± 0.2
for τG, and with a unique ϕc = 0.81± 0.01.
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Figure 4.16. Scatter plot of τF VS τG for the three systems. Dashed lines
are power-law fits.

tures. However, also in this case we confirm that τG is markedly larger
and more steeply increasing than τF .

In both two-dimensional systems, the just presented behaviour implies
that the two timescales are directly connected by a power-law relation,
τG ∝ τγF (as demonstrated in Fig. 4.16.b-c). In fact, a unique value of the
exponent, γ = 1.8, is found for both 2-dimensional systems. Surprisingly,
also in KALJ system, in which a crossover in the dynamics seems to be
present, τG and τF are connected by a unique power law relation, with an
exponent γ = 1.4 (Fig. 4.16.a).

Figure 4.17 shows that the Gaussian length ξG markedly grows on
approaching the glass transition (while the Fickian length, ξF , is constant).

Overall, figures 4.16 and 4.17 clearly demonstrate that FnGD exists in
all the examined systems, and spans increasingly larger time- and length-
scales on approaching the glass transition.

4.2 FnGD and dynamics in reciprocal Fourier-space

To have a complementary perspective on FnGD, we probe the dynam-
ics through the Intermediate Self Scattering Function (ISSF) Fs(λ, t) at
different wave-lengths λ.

In Fourier space, the hallmarks of standard Brownian diffusion (both
Fickian and Gaussian) are a pure exponential shape of the ISSF, i.e.
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Figure 4.17. Gaussian length-scale ξG rescaled by the Fickian length ξF as
a function of the thermodynamic control parameters for the three systems.
Dashed line in panel (b) is an Arrhenius law ξG ∝ e
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2 .

Fs(λ, t) = e−t/τB(λ)[83] and a wavelength-dependent relaxation time given
by τB(λ) = λ2

4π2D
. It is interesting to check how these features change

and/or decouple when FnGD is present.
We report in Fig 4.18 the ISSFs for both experimental and numerical

systems computed at the Fickian length-scale, λ = ξF ≃ λ∗, as a function
of the non-dimensional time t

τ(ξF ) , τ(ξF ) being the ISSF relaxation time at
the probing length ξF

2. In the linear-log representation (Fig. 4.19, a and
b) a straight line corresponds to an exponential decay e−

t
τ , which should

be expected for t > τG. For τ(λ) < τG, conversely, the observed non-
Gaussian shape of the displacement distribution turns out to be mirrored
into a stretched exponential ISSF decay, e−( t

τ(λ)
)β(λ) , with β(λ) < 1.

ISSFs clearly show stretched behaviour for τ(λ = ξF ) < τG (and in
particular for t ≃ τ)3. Data clearly indicate that the degree of non-
exponentiality (and, hence, non-Gaussianity in the van Hove) increases

2For all systems, we fitted the late-time decay of the ISSF computed at a fixed
wave-length λ with a Kohlrausch-Williams-Watts stretched exponential law e

( t
τ(λ)

)β(λ)

and extracted the relaxation time τ(λ) and the stretching exponent β. The so ob-
tained relaxation time closely coincides with the value τe(λ) obtained from the relation
Fs(λ, τe(λ)) = 1/e.

3β exponents computed via stretched exponential fits lie in the range 0.5− 0.75 for
2DS and 2HS systems and 0.5− 0.95 for KALJ system.
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Figure 4.18. ISSF computed at wavelength λ = ξF as a function of time for
the three systems at different values of the thermodynamic control parameters.
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as glass transition is approached.
Hereafter, we will focus on the wavelength-dependence of the relaxation

time τ(λ) for wavelengths λ ≥ ξF only, i.e. where Fickian behaviour is at
play in the real-space. We further stress that, since in our systems ξF ≃ λ∗,
τα ≡ τ(λ∗) is around the lower boundary of the τ(λ)-range investigated
here.

In order to clarify the effect of increasing the wavelength λ, Fig. 4.20.a,
shows the ISSFs for KALJ system at T = 0.45 and for different values of
λ. The figure clarifies that, for very large λ’s, the relaxation becomes less
stretched, the plateau disappears, and pure exponentiality is gained on the
Gaussian probe length (i.e., at λ ≃ ξG). Of course, for λ < ξF dynamics
becomes even more heterogeneous4.

For any λ value, in principle, relaxation must eventually revert to a
simple exponential at very large times, (t > τG). However, for small λ,
such transition to a pure exponential occurs at very low values of the
correlation function. For small enough λ (i.e. when τ(λ) ≪ τG), the
transition, in fact, becomes no more detectable, since it occurs when the
ISSF has already vanished within the statistical noise. Figure 4.20.b should
help clarify this point: the figure shows the ISSF for λ = ξF as a function
of t/τG. At relatively short times, the relaxation is clearly non-exponential
(panel a). The restoring of exponentiality should be observed on a longer
timescale (t/τG = 1), but it is, in fact, completely masked by the noise
(panel b). Indeed, the ISSF has vanished within the noise already for
t/τG = 0.2 for λ = ξF , hence the transition towards exponentiality cannot
be detected. In our systems, in fact, we confirmed the occurrence of a
simple exponential decay of the ISSF as far as τ(λ) > τG.

Fig. 4.21 shows τ(λ)/τB(λ) vs λ/ξG for 2D simulations and experi-
ments. We find all datasets to collapse onto a single master-curve which
smoothly decreases on increasing λ/ξG, and attains a unitary plateau, cor-
responding to standard-Brownian scaling, just around λ/ξG = 1. Notice
that small λ/ξG values hint at a strong FnGD regime5: in fact, the range
λ/ξG < 0.5 is covered by simulations only, whereas experimental data start

4Notice that an apparent purely exponential eventually sets in also at very small λ,
λ ≫ ξF . This limit corresponds to the very short-time ballistic dynamics (β-relaxation).
In this case α-relaxation is shifted on very low values of the correlation function, and,
in fact, not visible in semilog-scale.

5The existence of small values λ/ξG implies ξG ≫ ξF .
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Figure 4.19. ISSF computed at wavelength λ = ξF , plotted as a function of
the rescaled time t/τ(λ) for numerical systems.
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(a) 2DS+2HS

Figure 4.21. τ(λ)/τB(λ) as a function of λ/ξG for 2DS (empty symbols) and
2HS (full symbols) systems at different values of the thermodynamic control
parameter.

close to the plateau.

It should be remarked that the behaviour of τ/τB at small λ/ξG im-
plies that the product Dτ(λ) does depend on temperature. Such a Stokes-
Einstein Breakdown (SEB) is commonly reported in systems approaching
the glass-transiton, for wavelengths close to the first peak of the static
structure factor, and is ascribed to the presence of marked DHs [35].
Fig. 4.22 shows that, in soft disks simulations, SEB is about a factor 7 at
the lowest temperature and for λ = ξF , indicating that DHs are strongly
at play when the dynamics is probed at the Fickian length-scales. Con-
versely, at a wavelength corresponding to the lowest-temperature Gaussian
length, ξG(Tmin), the Stokes-Einstein behaviour is fully recovered over the
whole temperature range, suggesting that DHs are averaged out on this
probe-length. We will further discuss the analysis of the Stokes-Einstein
breakdown in all three investigated systems in Section 4.4.

Overall, we can conclude that the recovery of both the standard-Brownian
features in Fourier space is solely ruled by the Gaussian scale: the stretched-
exponentiality of ISSF and the λ-dependence of its relaxation time remain
coupled throughout FnGD.
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(a) 2SD

Figure 4.22. Product Dτ(λ) for three values of the probing length λ in
soft disks simulations. Data have been rescaled for the values at the highest
temperature.

4.3 Characterization of the deviations from Gaus-
sianity

Figure 4.23 show the displacement distributions6 for all the investigated
systems at representative values of the thermodynamic control parame-
ter and for many non-dimensional times t/τG with t ≥ τF , i.e. within
the FnGD regime. To properly compare the distributions at different
times, we have rescaled the axes as follows: x → X = x√

⟨x2(t)⟩
, and

p(x, t) → P (X, t) = p(x, t)
√︁
⟨x2(t)⟩, thus preserving normalization. It

is worth noticing that the standard Gaussian distribution g(x, t) = e−
x2

4Dt√
4πDt

becomes, after this rescaling, a universal time-independent master-curve:
G(X) =

√︂
2
πe

−X2

2 .
The distributions in Fig. 4.23 always display an excess probability with

respect to G(X) both at small and large values of X, ’compensated’ by a
defect probability at intermediate displacements. At large displacements
and short times (t/τG < 0.1), tails are well fitted by exponential decays

6p(x, t) is computed over both the x− and y− and z− component of displacements,
since systems are isotropic.
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Figure 4.23. Rescaled van Hove function P (X, t) as a function of X at
different times for KALJ system at T = 0.43 (a), for 2DS system at T = 0.0018
(b) and for 2HS experiments at ϕ = 0.77 (c). The red dashed lines are the
universal Gaussian distribution G(X).

≃ e
− X

L(t) over at least two orders of magnitude of probability values; the
non-dimensional decay length L shows a continuous decrease within this
time-range. Such an initial smooth change in L is then followed by the
restoring of Gaussianity for the distribution function, which is fully at-
tained in the numerical examples, consistently with the simulations time
eventually reaching the estimated τG at those temperatures.

4.3.1 Exponential decay of the displacement distribution
tails

We monitored the temporal evolution (withn the FnG window) of the
non-dimensional exponential decay length L, and the corresponding di-
mensional length l = L

√
2dDt, in all the investigated systems and for all

choices of the thermodynamic control parameters (e.g. Fig. 4.24). This
type of analysis is commonly reported in literature on FnGD [6, 7, 9, 65].

Let us now separately discuss numerical and experimental systems. It
proves convenient here to start from simulations. Figures 4.25.a and b show
the non-dimensional length L in the FnGD regime at all temperatures, in
the time-range where exponential fits to the tails are reliable. L data at
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Figure 4.24. The exponential decay length l as function of time in the range
τF (T ) ≤ t ≥ 0.3τG(T ), for KALJ system at different temperatures.

all temperatures do collapse onto a power-law decrease:

L = C

(︃
t

τG

)︃−ζ

, (4.1)

C being a unique constant and ζ = 0.17± 0.02. Some deviations from this
collapse are only observed at the highest temperature and large times,
where, however, the fits to the distribution tails are less robust. No-
tice that, at high temperature, the recovery of Gaussianity is relatively
rapid and exponential tails become quickly limited to a small X-range
(see Fig. 4.26.a). The occurrence of this master-curve not only points out
the power-law dependence of L upon time t/τG, but also highlights that
the effect of changing temperature is fully captured by the T -dependence
of τG. Notice that the first point in each dataset in Fig.d corresponds to
the ratio τF /τG as its abscissa. Since such ratio decreases on lowering the
temperature (see Fig. 4.16), L(τF /τG) is larger at lower temperatures, i.e.
the exponential tails are more extended. In other words, on approaching
the glass transition, FnGD becomes not only more time-persistent, but
also more marked.
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Figure 4.26. Rescaled van Hove function P (X, t), as a function of X at
different times for KALJ system at T = 1.00 (a), T = 0.50 (b), T = 0.39 (c).
The red dashed lines are the universal Gaussian distribution G(X).
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Figure 4.27. The rescaled dimensional exponential decay length l/ξG as
function of t/τG (starting from t = τF ), for all systems, at different values of
the thermodynamic control parameters. The black dashed line is a power law
∝ (t/τG)

0.33. Red dashed lines are ∝ (t/τG)
0.5.

Let us now separately discuss numerical and experimental systems. It
proves convenient here to start from simulations. The just found behaviour
for L implies that, at any temperature, the dimensional decay length l
increases as a power-law of time with an exponent α = 0.5−ζ = 0.33±0.02,
which is different from the value 0.5 commonly reported in FnGD [6, 7, 9].
In addition, from Eq.4.1, data corresponding to different temperatures will
of course collapse onto a single power-law, when plotted as l(t)/ξG versus
t/τG (Fig. 4.27).

We now turn to experimental distributions, as the ones shown in Fig. 4.25
and Fig. 4.27. Seemingly, here, at small t/τG, the tails of the distributions
nearly collapse onto an exponential decay with a unique L; for larger t/τG,
evolution towards the Gaussian mastercurve is observed. Full restoring
of Gaussianity is however far from being attained here, consistently with
the fact that the estimated τG ≈ 5 × 105s at this area fraction is signifi-
cantly larger than the total observation time t = 3 × 104s. At lower area
fractions, we find the same qualitative scenario, with less persistent and
weaker deviations from G(X), consistently with the behaviour of the NGP
(Fig. 4.10).

A comparison of Fig. 4.27 a-b and c may suggest a different behaviour
of the exponential decay length, with L ≃ const for experiments, but
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depending on time in simulations (see Eq.4.1). Such difference should
be carefully reconsidered, however, in the light of the relatively narrow
ranges of times and probability available for the colloidal system. Indeed,
in our experiments, t/τG for each concentration spans less than a decade,
and probabilities are reliable down to 10−3, at most. In simulations, by
contrast, the range of t/τG for each temperature exceeds two decades, and
probabilities are fairly-well sampled down to 10−4. Thus, our observation
of a nearly constant L may simply be due to limited experimental data.
As a matter of fact, experimental data for L and l/ξG as functions of
t/τG, reported in Fig., display collapses and scaling exponents that are
compatible (at least) with those found in our simulations.

However, the limited experimental datasets leave open the possibility
that these scalings may be system-dependent, as suggested in a recent
study [65], whose results are analyzed in details and questioned in next
Section 4.3.2. In this perspective, we notice that, at a single area fraction,
data can be described equally well by “local fits” with exponents α = 0.33
or α = 0.5 (Fig. 4.28), but a “global fit”, i.e. for all area fractions, with
this latter power-law will patently fail, at variance with what is found for
the exponent α = 0.33. In Fig. 4.27 we have made a comparison between
a “global” fit (i.e. for experiments at all area fractions) with α = 0.33 vs
two “local fits” (i.e. for single area fractions) with α = 0.5. In order to
make a “homogeneous comparison” between the two power laws, we also
report in 4.28 the results for local fits with α = 0.33. Indeed, we fit two
of our datasets (with different prefactors for different area fractions) with
0.33 and 0.5 power-laws. We do find a very similar quality of the fittings.
Precisely, the R-squared values are as follows: i) ϕ = 0.71, R2 = 0.905
and 0.890 for α = 0.5 and 0.33, respectively; ii) ϕ = 0.77, R2 = 0.931
and 0.936 for α = 0.5 and 0.33, respectively. Thus, from a single set of
our experimental data, no sharp conclusion concerning the exponent can
in fact be drawn. The global fitting, as reported in Fig. 4.27.c, is instead
evidently in favour of the α = 0.33 power-law.

4.3.2 Does tails behaviour depend on dimensionality?

In a recent article [Miotto et al., Phys. Rev. X 11, 031002 (2021)],
dealing with FnGD in glass-forming liquids, it is claimed that exponential
tails of the displacement distribution are characterized by a non-universal

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031002
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(a) 2HD

Figure 4.28. Rescaled decay length l(t)/ξG of the tails of the displace-
ment distribution as a function of t/τG, for experiments at two different area
fractions,ϕ = 0.71 (triangles) and 0.77 (circles). The red lines are local power-
law fits l(t) ∝ t0.5, coinciding with those in Fig. 4.27 of the main text. The
blue lines are local power-law fits l(t) ∝ t0.33.

time-dependence of the decay length l(t).
Going in more detail, Miotto and co-workers claim that, in the FnGD

of glass-forming liquids, l(t) displays a behavior that is non-universal, but
depends on system features, such as dimensionality d or the inter-particle
potential. In the specific case of the paradigmatic Kob-Andersen model,
they claim that l(t) ∝ t1/d, and further speculate that this behaviour
can be generally extended to the whole class of glass-forming liquids with
isotropic potential.

Concerning the time-dependence of l(t), we have showed in the previous
section that in our glass-formers l(t) ∝ t1/3 holds, not only for the 3d KALJ
system, but also for both our 2d systems (which does not agree with the
proposal by Miotto and co-workers), In this section, we try to reconcile
such an apparent contrast, by re-analysing the KALJ data provided in
that article.

We start by examining the data in Miotto et al. [65] for the displace-
ment distributions p(r, t) at various times, and at temperatures T = 0.45
for the 3d case and T = 0.40 for the 2d case, respectively7. (We notice

7We have normalized raw data from [65] of p(r, t) in the usual way,
∫︁
p(r, t)rd−1dr =
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Figure 4.29. Non-dimensional distributions of particle displacements at dif-
ferent times, for 3d KALJ system at temperature T = 0.45 (a) and for 2d
KALJ system at T = 0.40 (b). (Data from Fig. 1.c and d in Ref. [65].) The
red lines are the universal Gaussian distribution G(R). Times in legend are
reported in units of the characteristic onset time of Fickian diffusion τF .

as an aside that the model studied in [65] is the standard KALJ, not the
modified one considered in our work. Results for the two models do co-
incide at T > 0.45, i.e. the regime investigated by Miotto et al., while
at lower temperatures the standard model presents crystallization at long
times.) The adopted rescaling in Fig.4.29 allows to clearly highlight de-
viations from Gaussianity and their time-evolution, and also to compare
displacement distributions pertaining to different systems [7, 6, 62]. Times
are reported in units of τF (T ) = σ2

2dD(T ) , an estimate of the onset time of
the Fickian regime, with σ the particle diameter,

The figure shows that, within the late sub-diffusive and early Fickian

1. In Fig. 4.29, we rescaled the data by defining R = r√
⟨r2(t)⟩

, and P (R, t) =

p(r, t)⟨r2(t)⟩d/2, where ⟨r2(t)⟩ =
∫︁
r2p(r, t)rd−1dr is the mean square displacement.

Notice that, with this rescaling, the standard Brownian-Gaussian distribution g(r, t) =

e
− dr2

2⟨r2(t)⟩ ( d
2π⟨r2(t)⟩ )

d/2 becomes a time-independent curve: G(R) = ( d
2π

)d/2e−dR2/2. We
will not consider distributions at deep pre-Fickian times, either in the ballistic or in the
early sub-diffusive regime shown in [65].
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regime, the displacement distributions exhibit exponential tails ∝ e−R/L(t)

in both 3d and 2d systems (panels a and b, respectively), with a monotonic
decrease of L(t) in time. We emphasize that, under the adopted represen-
tation, the presence of tails with different slopes unequivocally implies that
the dimensional decay-length l(t) = L(t)

√︁
⟨r2(t)⟩ does not scale as t0.5, for

both systems. This simple observation already questions the main conclu-
sion by Miotto et al. on the 2d-KALJ system.

A noticeable difference between the two panels of Fig. 4.29 is that all
the distributions show clear exponential tails in the 3d system, whereas,
in the 2d system, the displacement distribution at the longest available
time, t ≃ 10τF , seems to have reached the Gaussian limit, being in fact
indistinguishable from the Gaussian mastercurve. This difference is simply
due to the time-window spanned for the 3d system being smaller, in terms
of t/τF , than for the 2d system.

As a direct consequence of the already completed Gaussian recovery
for the 2d system at t ≃ 10τF , any exponential fit to the tails of p(r, t)
for t ≥ 10τF is definitely unreliable. All those fits in Ref. [65] should
actually be considered as very local fits to what in fact are Gaussian dis-
tributions8. The conclusion that, for the 2d system at T = 0.40, the expo-
nential fits to p(r, t) for t ≥ 10τF are definitely unreliable can certainly be
extended to higher temperatures. By contrast, the same conclusion cannot
be blindly extended to lower temperatures since, on cooling, the timescale
for recovering Gaussianity grows more steeply than the time τF for the
onset of Fickian diffusion, as we will discuss later on. Moreover, since the
exponential-to-Gaussian crossover is a smooth process, exponential fits are
expected to become inadequate quite earlier than the complete Gaussian
recovery. Thus, the exponential fits at T ≥ 0.40 cease to be reliable way
before t = 10τF : we can safely assume t ≃ 10τF as an indicative upper-
boundary for meaningful exponential fits.

To quantitatively characterize the temporal evolution of the decay-
length of the exponential fits, we now draw our attention on the behaviour
of l(t). Also in this case, we exclude the deep pre-Fickian regime and limit
the range of considered times to the very late subdiffusive and the Fick-
ian regimes. Firstly, we focus on the same two systems of Fig. 4.29: the

8Notice that, in figure 1d of Ref. [65], the impropriety of late exponential fits is partly
hidden by the adopted scale.
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Figure 4.30. Decay length l as a function of t/τF in 3d (a) and 2d (b) KALJ
systems, for different temperatures, as indicated in legends. (Data from Fig.
1.e, f in Ref. [65].) Black solid lines are power-law ∝ t0.33, red dashed lines
are power-law ∝ t0.5. The vertical blue line indicates the time t/τF = 10 at
which the displacement distribution for 2d KALJ at T = 0.40 has already
and clearly reached Gaussianity, as inferred from Fig.1b. The three points in
panel b with different color and marker-style correspond to the distributions
displayed Fig. 4.29.b.
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exponential decay length is reported in Fig. 4.30, as a function of t/τF .
l(t) has the same behaviour in both 3d and 2d systems (panel a and b,
respectively) over around the first decade in t/τF . In this range, including
the early Fickian regime, the exponential tails of the displacement distri-
butions are clear-cut, and the time-dependence of l(t) is well captured by
a t0.33 power-law in both panels. We notice as an aside that this behaviour
is already well established in the late sub-diffusive regime (t/τF < 1).

For the 2d system (panel b), where data are available up to quite long
time, l(t) shows a clear crossover to a t0.5 scaling around t/τF = 10. As
previously noticed, however, exponential fits for this system are definitely
not reliable for t/τF ≥ 10, and therefore all data corresponding to this
time-range in Fig. 4.30 must be disregarded. This consideration implies
that the long-time “regime”, l(t) ∝ t0.5, is an artifact arising from the fit-
ting protocol adopted in Ref. [65], which does not take into account any
time-boundaries for the presence of exponential tails. Incidentally, we no-
tice that the missing identification of such boundaries is also evident on
the short-time side: indeed, data for the exponential decay length l(t) in
Fig.1 e and f in [65] include the short-time ballistic regime, even though
this latter is known to be characterized by Gaussian displacement distri-
butions [37].

At variance with the 2d system (Fig. 4.30b), 3d simulations in Fig. 4.30a
are too short-lasting to verify whether any clear deviation from the l(t) ∝
t0.33 behaviour emerges or not at long time. For this reason, in Fig. 4.31,
we examine l(t) for the 3d system at a temperature T = 0.5, slightly
higher than the one considered in Fig. 4.30a. It is interesting to note, in
fact, that comparing the dynamics in 3d at T = 0.5 with that in 2d at
T = 0.45 is particularly appropriate, since these two systems are at similar
“distance” from their respective Mode Coupling temperatures [167, 37, 168]
and, therefore, similar dynamical features are expected. (An analogous
consideration was made by Miotto et al. for choosing the temperature
range displayed in their work.) For the 3d system at T = 0.5, the simulated
dynamics is long enough (in terms of t/τF ) to observe the same 0.33-to-0.5
power-law crossover in l(t) found in 2d (Fig. 4.30.b), with the t0.5 scaling
stepping in charge at a similar time t/τF ≃ 10.

Also in the 3d case, however, we argue that the long-time behaviour
l(t) ∝ t0.5 is an artifact, again arising from exponential fits having been
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Figure 4.31. Decay length as a function of t/τF , in 3d KALJ system at
temperature T = 0.5. (Data from figure 1e in Ref. [65].) Black solid line is
a power-law ∝ t0.33; red dashed line is a power-law ∝ t0.5. The vertical line
indicates the time t/τF = 10.

performed in a (late) time-range, where Gaussianity of the displacement
distributions has fully restored. This conclusion is supported by recent
results on the non-Gaussian parameter for the same KALJ 3d system [27]
at the same T = 0.5 temperature, showing that non-Gaussianity is already
small at time t/τF ≃ 2.

Performing the same analysis at different temperatures, both in 2d and
3d, leads to similar conclusions (see Fig. 4.32 below for plots including all
considered temperatures).

Overall, the same scenario emerges in 3d and 2d: the only well-defined
scaling for the decay length of the exponential tails is l(t) ∝ t0.33; both
the crossover and the (apparent) ensuing scaling law l(t) ∝ t0.5 should be
merely regarded as an indirect signal of the full restoring of Gaussianity.

The upper time limit of the l(t) ∝ t0.33 regime, in t/τF units, may
in general depend on temperature. Indeed, in the emerging scenario, such
time limit is controlled by the time for restoring of Gaussianity, whereas τF
is a (lower) timescale related to onset of Fickianity: those two timescales
do not necessarily have the same temperature dependence.

To address this issue, we re-analyzed the l(t) datasets in 3d and 2d at
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Figure 4.32. (a) Non-dimensional decay length l/ξ as function of non-
dimensional time t/τ in 3d (a) and 2d (b) KALJ systems, and at different
temperatures. (Data from figure 1 e and f of Ref. [65].) Black solid lines are
power-law ∝ t0.33 and red dashed lines are power-laws ∝ t0.5 . Vertical blue
lines indicate t/τ = 1. (c) Same data reported in the same plot.
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many different temperatures included in Ref. [65]. In this case, we also
consider short-time (very pre-Fickian) data. We rescale the abscissa of all
l curves by a shifting factor τ . For each dataset, τ is selected so as to
make the apparent crossover to occur at t/τ ≃ 1. Once the τ values are
identified, the vertical axis for each curve is rescaled by the diffusion length
ξ =

√
2dDτ associated to the corresponding τ .

Using this rescaling, all data do collapse onto a single master-curve
(apart from early-time deviations), as shown in Fig. 4.32 a and b, for the
3d and 2d system, respectively. These results clearly demonstrate that
a common phenomenology - with a unique master-curve - arises for all
systems, regardless not only of temperature, but also of space dimension-
ality, at odds with the main claim by Miotto et al. It is worth remarking
that, by virtue of the τ -based rescaling procedure, the previously described
power-laws become more clearly visible, now covering several time decades.
Notice that early-time deviations from the master-curve are essentially lim-
ited to the very pre-Fickian regime, especially to the ballistic range, where
they take a “comb-like” shape. As discussed above, measurement of an
exponential decay length in this regime are likely artificial. Similarly, the
long-time t0.5 behaviour, present both in 3d and 2d, comes from spurious
late exponential fitting.

The real scaling characterizing exponential tails, l(t) ∝ t0.33, starts in
the subdiffusive regime and persists in the early Fickian one (this latter be-
ing the true FnGD time-window), spanning more than four t/τ decades. In
the emerging picture, the shifting factor τ(T ) is the characteristic timescale
for the disappearing of exponential tails and the recovering of Gaussianity
(similarly to our τG). These findings are fully consistent with our results
on 2d-systems (and, of course, on 3d-KALJ system).

The aforementioned similarities suggest the idea that the behaviour
of the tails of the displacement distribution is universal near the glass
transition, at least for systems with isotropic potential. Of course, other
aspects of glassy dynamics, such as the caged particle motion, may show
differences between 2d and 3d, as indicated by a body of recent works,
including Refs. [169, 170, 171, 172, 173]. However, the present results
suggest that universal and non-universal behaviours may coexist, e.g. for
different observables and/or on different timescales.
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4.3.3 Mobile particles analysis

The formation of heavy tails in the displacement distribution is linked
to the presence of a certain amount of particles that are markedly faster
than the average. In this section, we precisely measure the extension (in
terms of number of particles) of this sub-population9.

When dealing with DHs in glass-formers, different definitions of fast
(or mobile) particles have been proposed. In order to study the temporal
evolution of this population, we set a threshold to identify particles that
are faster than the average: we here define as mobile a particle that has
moved more than δ times the root-MSD. This definition is well-grounded
as long as δ is chosen in an appropriate way and large enough. A smart
choice of this value can be readily made by inspecting the rescaled van Hove
functions plotted as a function of X = x/

√
MSD (Figs. 4.26 and 4.23).

As previously noticed, it seems that “long”-time exponential behaviour is
always at play for X = x/

√
MSD > 2 to 4 (and provided that t ≪ τG),

thus a value of δ in this range might be a natural choice. Hence, this
definition is different in spirit from other (time-independent) definitions of
mobile particles present in literature [106].

The total number10 of mobile particles is thus

Nmm(t) =

∫︂ ∞

δ
√
MSD

p(x, t) dx =

∫︂ ∞

δ
P (X, t) dX (4.2)

In Fig. 4.33 we show Ñmm(t) ≡ Nmm(t)/NG(t) − 1, where NG is the
percentage of particles that has moved more than δ times the root-MSD
in a Gaussian diffusion. In this case, the threshold is set to δ = 2. The
definition of Ñmm allows one to readily figure out the occurrence of rare
events (large displacements) with respect to a Gaussian process.

It is not surprising that the behaviour of Ñmm closely resembles other
DH indicators, as the NGP or the four-point correlation function χ4: as
glass transition is approached, Ñmm shows a higher and higher maximum
at intermediate times, and decays to zero at very large times.

9This analysis has only been preliminarily performed on KALJ system, which is the
largest available dataset in terms of number of particles, simulation length and explored
temperature regimes. Hence, all data presented in this section pertain to this system.

10Since our distribution functions are normalized, we are, in fact, expressing Nmm in
terms of percentages.
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Figure 4.33. Rescaled number of mobile particle Ñmm as a function of time
for KALJ system at different temperatures for a threshold δ = 2.
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Figure 4.34. Maximum Ñ
∗
mm for KALJ system at different temperatures,

for two different choices of the threshold, δ = 2 (a) and δ = 4 (b).

Intriguingly, the presence of a “shoulder” in Ñmm close to the maximum
(and on its rightside) is recognized at very low temperature (T < 0.42).
This latter feature indirectly indicates the appearance of some qualitative
change in the shape of the displacement function for times close to the
maximum of non-Gaussianity. However, this temporal regime is out of the
central scope of our analysis.

In Fig. 4.34, we show the maximum N∗
mm of the rescaled number of

mobile particles for two different choices of the threshold δ (δ = 2 and δ =
4). While showing rather similar temperature-dependence (this point is
further clarified in Fig. 4.37), the two panels also indicate that the absolute
value of N∗

mm increases by many orders of magnitude with increasing δ
threshold. This effect might be primarily ascribed to the fact that NG −→
0 faster than Nmm as δ increases11.

It is worth noticing that the growth of N∗
mm slows down at very low

temperature T < 0.42. Further analysis are needed to determine whether
this slowing corresponds to the approach of a saturation value (as it has
been found also in this system for χ4 [174]) on not (the NGP, conversely,
does not show any saturation at low temperature, Fig. 4.35).

Finally, we investigate the connection with FnGD scales. In Fig. 4.36
we study the evolution of Ñmm as a function of the distance from the Gaus-

11The Gaussian function, indeed, decreases much more rapidly than the exponential
decay that characterizes the tails.
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Figure 4.36. (a, b). Rescaled number of mobile particle Ñmm as a function
of the rescaled time t/τG for KALJ system at different temperatures. (c)
Mastercurve of Ñmm as a function of the rescaled time t/τG in the Fickian
time-window t > τF .
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Figure 4.37. Scatter plot of the Fickian time τF vs the characteristic time
of maximum extension of mobile clusters tmm(δ), for various choices of the
threshold: δ = 2, 3, 4 (for tmm2, tmm3, tmm4, respectively). Dashed lines are
power-law guides to the eyes.

sian onset τG. It is emphasized that, the adopted time-rescaling leads to
a clear data collapse in the long time tails of Ñmm. This scaling, origi-
nally found for the NGP tails (see Figs. 4.10, ?? and 4.11), suggests that
the long-time persistence of non-Gaussian deviations is mostly due to the
presence of fast particles which, indeed, control higher moments of the dis-
placement distribution (and, hence, the NGP).

By constrast, Fig. 4.37 instead demonstrates that the timescale to reach
the maximum extension of mobile clusters Ñ

∗
mm in the system, tmm, is pro-

portional to the Fickian timescale. This result agrees with the intuitive and
widespread idea[35] that the onset of Fickian behaviour in glass-formers is
controlled by faster particles. Fig. 4.37 also show that the absolute magni-
tude of tmm depends on the chosen threshold. However, the temperature-
dependence of tmm depends on δ only weakly

4.4 Scaling laws and crossovers in single-particle
long-time dynamics

In this section we compare all the investigated timescales, characteriz-
ing the early and late α−relaxation of our glass-formers, and set them in
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the framework of FnGD diffusion. Then, we summarize the scaling-laws
identified in our study.

4.4.1 Comparison of fundamental timescales of long-time
dyanmics

We start by showing all relevant timescales in Fig. 4.38 as a function of
the thermodynamic control parameters in the investigated systems. The
Gaussian timescale is the longest and, apparently, the steeply growing
timescale in all investigated systems. We also confirm [142, 175, 33] that
the Fickian timescale τF is always (and generally significantly) larger than
the structural relaxation time τα. However, in both numerical systems
data indicate an approach to a crossover at the lowest temperatures.

Indeed, the structural time is growing more than τF as glass transition
is approached, as also shown in Fig. 4.39, which corresponds to a break-
down of Stokes Einstein relation (Fig. 4.40). Fig. 4.39 also shows that a
power-law relation between the two times firmly holds for both numeri-
cal systems over the entire supercooled window. Deviations are of course
present in KALJ system at very high temperature (hot fluid limit), where
structural relaxation and self-diffusion are expected to be coupled and
Stokes-Einstein relation holds. Experimental data are more lacking and
scattered, but still compatible with the same power-law relation. However,
the breakdown of Stokes-Einstein relation is not so evident (Fig. 4.40.c).

We compare, in Fig. 4.41, the structural relaxation timescale and the
onset time of Gaussian diffusion τG. In KALJ system, two power-law
regimes are clearly present: at higher temperatures, the Gaussian time
markedly grows more steeply than τα, and τG ∝ τ1.55α ; at T = 0.50 a
crossover to a low-temperature τG ∝ τα regime is present. Data on soft-
disks system are compatible with the presence of such a crossover, while
more experiments at different area fractions are necessary to clarify this
point in the colloidal system.

The low temperature linear relation between τα and τG found in KALJ
is not trivial since structural relaxation in supercooled liquids is often
considered to be controlled by very slow particles [35, 176]. However,
Fig.s 4.10, 4.36 and 4.27 indicate that the non-Gaussianity of the van Hove
function is inherently linked to the presence of a number of fast particles,
controlling higher moments of the displacement distribution (and, hence,
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Figure 4.38. Characteristic timescales in the long-time dynamics as a func-
tion of 1/T for numerical systems (a,b), and as a function of ϕC − ϕ for
experiments (c).
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Figure 4.41. Scatter plot of τG VS τα for the three systems. Dashed lines
are power-law fits.

the NGP). Thus, this picture suggests that also non-Gaussian deviations
in the core of the van Hove functions are not completely erased in the long
time regime and large enough to “compensate” tail deviations. We also
notice that this result is at odds with some models and speculations [144,
143] on single-particle dynamics in supercooled liquids.

As already mentioned, the peak of non-Gaussian deviations is reached
at τ∗, before the onset of Fickian diffusion at τF . Really surprisingly,
Fig. 4.42 demonstrates that the two-timescales are always, and for what-
ever system, related through a power-law τF ∝ τ∗1.16.

4.4.2 Analogy with critical phenomena

The large limit of a random walk process can be viewed as a critical
phenomenon in which the displacement distribution function shows a scal-
ing form characterized by a few relevant parameters corresponding to a
“universality class” [103].

In this view, anomalous diffusion, as first suggested by Bouchaud and
Georges [103], corresponds to a departure from mean-field behaviour [104]
signalled by large-scale divergences.

It is tempting to consider Fickian non-Gaussian processes as the first
departure from the mean field. Also in this case, scaling behaviours with
critical-like exponents arise and a relation among those is likely encoded
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Scaling law Exponents
Exponential tail decay length λ

ξG
∝ ( t

τG
)α α ≃ 0.33± 0.02

Long-time NGP decay α2 ∝ ( t
τG

)δ δ ≃ 0.55− 1

Fickian-Gaussian window τG ∝ τγF γ ≃ 1.40− 1.80
Relation Fickian time - maximum of NGP time τF ∝ τ∗θ θ ≃ 1.16
Relation Fickian time - structural relaxation time τF ∝ τµα µ ≃ 0.80

Table 4.1. Scaling behaviours in long-time dynamics of glass-forming liquids
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in the (unknown) scaling form of the displacement distribution, if any. In
Table 4.1 we summarize the scaling behaviours and the exponents identified
in our investigation.



CHAPTER 5

Conclusions

In this work, we investigated the connection between two major issues
in soft matter, namely, glass transition, a very long-standing problem, and
the recently discovered FnGD. Such a "hybrid" diffusion is, in fact, gener-
ically associated to some dynamical and/or structural heterogeneity of the
environment. On the other hand, glass-forming liquids are considered the
epitome of dynamical heterogeneity (which has been fairly well charac-
terized in these systems) and, thus, represent a privileged stage to study
FnGD.

Our study draws on experiments on hard-sphere colloidal suspensions
and simulations of simple models of molecular liquids. In Section 4.1
we demonstrated that a FnGD regime exists in all investigated systems
and spans increasingly larger time- and length-scales on approaching the
glass transition. The timescales of the onset of a linearly increasing MSD
(Fickian diffusion) and the recovery of Gaussian displacement distribution
(Gaussian diffusion) are related by a power-law relation τG ∝ τγF , with
γ > 1, for all investigated systems. The here introduced timescale τG
leads to the identification of novel scaling-laws for several dynamical indi-
cators, as demonstrated throughout this work.

We further studied, in Section 4.2, the characteristic features of the
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late relaxation in the reciprocal Fourier-space, when FnGD is at play in
real space. Results indicate that recovery of the standard-Brownian fea-
tures in Fourier space (i.e. exponentiality of the ISSF and the quadratic
dependence of its relaxation time on wavelength) is exclusively related to
the Gaussian scales in direct space, whereas the Fickian scales do not seem
to play a major role. Moreover, on the Gaussian length-scale, Dynamic
Heterogeneities are fully averaged out, and Stokes-Einstein relation is re-
gained.

In Section 4.3, we focused on the study of the non-Gaussian deviations
in the tails of the displacement distribution function. In the FnGD regime,
in fact, such distribution displays exponential tails. We show that the
time-dependent exponential decay lengths l(t) at different temperatures
all collapse onto a power-law master-curve, l(t)/ξG ∝ (l/ξG)

α with α ≃
0.33. We also demonstrate that, in our glass-formers, this behaviour is
independent from interaction potential and dimensionality [2], suggesting
that this scaling is a universal hallmark of glassy dynamics, linked to some
mean-field property.

Finally, in Section 4.4 we illustrated the connections between FnGD
scales and other commonly adopted timescales identified in the early and
late α-relaxation of glass-forming liquids, namely, the time τ∗ of maximum
of the NGP, and the structural relaxation time τα. We show that, for what-
ever systems, all timescales are related by the same power-law relations.

Overall, these results suggest that FnGD is the one-particle counterpart
of long-time effects of Dynamical Heterogeneities. A number of "universal"
scaling laws for single particle dynamics seem to emerge close to the glass
transition, somehow in analogy to what occurs in critical phenomena.

We observe that all theoretical models of FnGD present in the literature
are not able to capture the complete phenomenology described in this
work. However, we must also notice that most of the scalings shown in
this thesis are here reported for the first time. Thus, it is apparent that
the validation of the here-proposed scalings largely relies on the availability
of long-time data for other glass-formers, at many different values of the
control parameter (temperature and concentration in our case) ruling the
approach to glass transition.

In general terms, it would be interesting to examine in detail the pre-
cursors of FnGD, which build up in the subdiffusive regime. In our glass-
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forming systems, strenghtening of FnGD corresponds to deepening of sub-
diffusion. How much such a connection between precursors in the subdif-
fusive time-window and FnGD is relevant on approaching glass transition
is an intriguing open issue.

The idea that FnGD can be looked at as the "first" deviation from
standard Brownian dynamics as a mean field representation of motion is
tempting. In this direction, It seems interesting to study to what extent
the Continuous Time Random Walk (which, of course, represents the sim-
plest deviation from Einstein’s model of random walk) can reproduce the
rich phenomenology illustrated in this thesis. We have given some initial
contributions (not reported in this thesis) in this vein [33, 51].

Finally, we stress that understanding the fundamental mechanisms of
FnGD as a typical feature of glass-forming liquids, has deep practical im-
plications. Firstly, this is demonstrated by the widespread presence of
glassy materials and glass-formers in industry: optical fibers and photo-
voltaic cells are made of amorphous silica, most engineering plastics are
in a glassy or supercooled state, liquid fabric softners are colloidal glass-
esk [177], metallic glasses and alloys are of great interest because of their
soft magnetism [178]. Secondly, glasses provide a tunable model system
to mimic the complex dynamics of a number of systems which are much
more complicated from a physico-chemical point of view, such as biochem-
ical systems or active matter. Indeed, many systems with FnGD often
share also other features of glassy dynamics, such as intermittency, het-
erogenous dynamics or intermediate subdiffusion. Polymer adsorption on
a solid surface from a bulk [78], diffusion of molecule in complex environ-
ments and cells [90, 6, 82] and chemical reactions are just a few examples
of systems in which heterogeneous dynamics and the occurrence of rare
events have deep consequences in the long-time behaviour before reaching
an asymptotic state.
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