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Abstract

We study the 1+1 (space-time) dimensional extension of the 0+1 dimensional Sachdev-Ye-
Kitaev (SYK) model for 𝑁 Majorana fermions, with random all-to-all quartic interactions,
averaged over disorder. At large effective couplings 𝐽 and 𝑄 , and large 𝑁 , the conformal
symmetry of the effective action emerges, which is not broken spontaneously as in the
original 0 + 1 𝑑 SYK model. Critical two-point correlators are obtained from a coupling
expansion of the Schwinger-Dyson equations. For 𝑁 = 4, the model can be mapped
onto complex fermions and solved exactly via the bosonization technique. The model
separates in two sectors, nicknamed as “pseudo-charge” and “pseudo-spin“, with gapped
and gapless excitations, respectively. Excitations allow to give an approximate analytic
form of the two-point correlators at large distances, which is adopted heuristically to
numerically evaluate the Ground State Energy of the large 𝑁 model. Absolute minimum
of the energy is found in a restricted range of parameters.
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Introduction

In recent years, there has been a lot of activity around the Sachdev-Ye-Kitaev (SYK) model
[1, 2, 3, 4, 5] due to its interesting properties. The model is a 0 + 1 dimensional system
described by 𝑁 Majorana fermions with many fermionic degrees of freedom and all-to-all
random interactions. The theory is partially solvable in a tractable large 𝑁 limit which is
possible to study through the dynamical mean field theory as well as the so-called tensor
models [6]. This allows applications within both condensed matter physics and high
energy.

These tensor models are considered as a new class of large 𝑁 theories, different from
vector models [7, 8] or matrix models [9, 10]. For example, the two-point function in tensor
Klebanov-Gurau model [11, 12] is dominated by melon diagrams in the large 𝑁 limit and
fixed by the 𝑁 dependent parameter 𝐽 , whereas the dominant diagrams for vector and
matrix models are bubble and planar diagrams, respectively. However, beyond the melonic
dominance, the low degree of symmetry makes the tensor formalism difficult to study.
In the SYK model case, this difficulty is mitigated by introducing disorder. Furthermore,
the dominance of this simple class of Feynman diagrams and their iterations allows to
evaluate all the correlation functions. Indeed, the Out-of-Time-Ordered-Correlator (OTOC)
grows exponentially on an inverse time scale which corresponds to a classical Lyapunov
exponent 𝜆𝐿 and saturates at times less than the "scrambling time" 𝑡∗ with 𝜆𝐿𝑡∗ ∼ ln 1/ℏ
[13]. In this way, the model can be seen as a holographic dual for gravity theories of
black holes [14, 15, 16, 17]. The model presents an emergent approximate conformal
symmetry at low energies, where the reparametrization symmetry is spontaneously
broken down to a 𝑆𝐿(2,R) subgroup. Goldstone soft modes appear in the excitation
spectrum. These gapless excitations become gapped when the approximate conformal
symmetry is explicitly broken by reintroducing the derivative term of the Lagrangian
as an ultraviolet correction. This implies that the soft modes acquire a mass, denoted
as pseudo-Goldstone in the literature. As a solvable many-body system, the SYK model
serves as a building block for constructing a metal and study its properties. Its capability
to describe strongly correlated systems opens up the possibility of study "strange metal"
phase [18].

Because of these interesting properties, extensions of the model to higher dimensions
have been explored. The path to reach this goal includes many different approaches. In
particular, in the context of Condensed Matter, some authors have extended the model to
higher dimensions by building a chain or a lattice of SYK dots [19, 20, 21, 22] due to the fact
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that the original 0+ 1𝑑 SYK model can be seen as mimicking a quantum dot in Condensed
Matter Physics. These extensions to higher space dimensionality appear to be a tractable
benchmark for a quantum many particle interacting system with non-Fermi-Liquid (NFL)
behaviour [23, 24]. There are complex fermion versions of the SYK model [25, 26, 27, 28]
dubbed as "strange metal" because there is at least a branch of gapless excitations which
are not the quasiparticles of the Fermi Liquid Theory. When dealing with hopping in
a spatial lattice at lowest perturbative order [29], in the infrared limit, the response of
the fermionic excitations, in the conformal symmetry limit, to an external driving to be
specified, gives rise to the celebrated linear temperature dependence of the transported
current over a large range of temperatures and to the constancy in temperature of the
thermal conductivity [27, 30, 31]. As this is a striking feature of the resistivity which
is experimentally found in the normal phase of the High Critical Temperature (𝐻𝑇𝑐 )
superconducting materials, these models are extensively studied in that connection [5,
32, 33]. It is interesting that the addition of a kinetic term to the model carries a complex
𝑈 (1) phase with, to be added to the real fields, which gives rise to bosonic collective and
gapped diffusive modes [4, 29].

Other possibility is to extend directly the quantum field theory to 1+1𝑑 by changing the
canonical scale dimension of the fermionic fields. By adding an extra spatial dimension,
the scale dimension of the coupling constants change as well as the relevance of the
interactions [34]. For a 𝑞-fermion interaction, the scale dimension of the interaction
term is 𝑞/2, which is marginal if 𝑞 = 4, i.e. the four-body interaction, which is regularly
studied in SYK models, is not relevant in the power counting in 1 + 1 dimensions. Since
the 0 + 1 𝑑 model has relevant interactions, the above is an important obstacle in the
generalization of the SYK model to higher dimensions. However, there are some attempts
in the direct dimensional extension in which some features of the model have been shown
to be preserved. In the extended 1 + 1 dimensional chiral SYK model [35], the interactions
are exactly marginal, leading to an exact scaling symmetry which makes the model exactly
solvable at all energy scales. This allows to compute the OTOC which has a Lyapunov
regime and an asymmetric butterfly cone in the large 𝑁 limit. The model is integrable in
the case 𝑁 = 4 by bosonization, where the functional form of the two-point correlators
coincides with the ones coming from the large 𝑁 case. Non-chiral extension have been
also considered [36, 37] showing that, statistically, the random couplings are overall
marginally irrelevant. An emergent approximate conformal symmetry is present at low
energies which, unlike the 0+ 1𝑑 SYK case, is not broken spontaneously by the conformal
correlator. Furthermore, the model requires a regulator to be included already in the
action, which breaks conformal invariance explicitly. The non-chiral 1 + 1 𝑑 model in
[37] can also be seen as a random version of the Thirring model, with random couplings
𝐽𝑖 𝑗 ;𝑘𝑙 drawn from a Gaussian ensemble. From the Callan-Symanzik equation, a positive 𝛽
function is obtained, which means a non-renormalizable theory. Nevertheless, the model
can be studied as an effective theory below some scale.

As we can see, the study of the extension of the SYK model as a 1 + 1 dimensional
quantum field theory is intricate, specially in the non-chiral case. Even though, it is
worthy study some open issues. First, we would like to know if the theory is stable
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below some scale and find an approximation which makes the model solvable. Non-
chiral 1 + 1 dimensional models are statistically marginal irrelevant, in the sense that
after averaging over disorder and using conformal perturbation theory, the 𝛽 function is
positive. However, there are relevant and irrelevant operators that will grow or decrease
as we flow into the infrared, and these can also change as the couplings themselves evolve.
As all these contributions are screened by the net effect of the average over disorder, we
can think of the model as an effective model with an effective coupling 𝐽 . Furthermore,
the model is not truly conformal symmetric, which implies that we can still look for some
approximation to study the model. Secondly, it would be interesting to see if gapped
excitations are still present in higher dimensions for the non-chiral 1 + 1 𝑑 SYK model. In
this case, it is known that the model is not strictly Lorentz invariant due to the regulator
that must be included. However, we speak of "quasi" Lorentz invariance at IR and an
emerging conformal symmetry at large interaction coupling 𝐽 , as it happens for the 0+ 1𝑑
case. In this limit, when an UV cutoff Λ is introduced in real time-space by regularising
the singularity at small arguments with a logarithmic factor, the disorder average of the
model provides a Schwinger Dyson equation in the 1/𝑁 → 0 limit that can be solved
without breaking the conformal symmetry and the model is found to be still critical.
This does not give us any hint about excitations being gapped: they all could be gapless
if the system remains critical. Thus, it is necessary to seek for a different approach in
order to find solutions. Finally, as the Thirring model is dual to sine-Gordon models via
bosonization, it is interesting to search for a dual sine-Gordon version of the non-chiral
SYK model in order to obtain its properties and infer from them, the features of the model
in the large 𝑁 limit.

In this thesis we propose an extended non-chiral 1 + 1 𝑑 Sachdev-Ye-Kitaev model
with the disorder average which includes the cross chirality interaction, that is to say, we
are not fixed to a diagonal coupling 𝐽𝑖 𝑗 ;𝑘𝑙 ∼ 𝐽𝛿𝑖 𝑗𝛿𝑘𝑙 . In this sense, we can think the model
as an extension of the random Thirring model [37]. As the "quasi" conformal invariance
solutions do not give any information about excitations, we seek for solutions from the
case 𝑁 = 4. In this limit, the model is non symmetrical (non Lorentz invariant) and non
traceless (non conformal invariant), however, it can be solved exactly by bosonization.
The two-point correlation functions inform us about excitations: they are both gapless
and gapped. These two branches exist due to the separation of what we nickname as
"pseudo-charge" and "pseudo-spin" sectors. Nonetheless, we should ask if this behavior
remains for large 𝑁 . From the 1+ 1𝑑 chiral SYK model [35], it is shown that the two-point
correlator for 𝑁 = 4 and large 𝑁 are equal (beyond the fact that the meaning of the
coupling is not strictly the same in both cases) and the model remains critical with gapless
excitations. On the other side, from the non-chiral case, the model is still critical in the
infrared, as it is shown by the Callan-Symanzik equation and the powerlaw behavior of
the correlator. For the strong 𝐽 coupling limit, it can be seen by variational arguments
that the model presents gap excitations. Therefore, we assume heuristically analytic
correlators suggested by the 𝑁 = 4 case to evaluate an approximated free energy in the
large 𝑁 case, and find the gap in a range of 𝐽 values.

This thesis is organized as follows: In Chapter 1 we briefly summarize some aspects of



the original 0 + 1 𝑑 SYK model. We present its effective action by averaging over disorder,
finding the Schwinger-Dyson (SD) equations and obtaining the correlation functions
by considering the emergent approximate conformal invariance. These aspects lay the
foundation for calculations in the large 𝑁 limit.

In Chapter 2 we present a general view of our 1 + 1 𝑑 extended non-chiral model in
the large 𝑁 limit. We explore by dimensional analysis its renormalizability and then we
discuss if interactions in our model are relevant, irrelevant or marginal. We complement
the analysis by comparing with the original 0 + 1 dimensional case. A brief analysis is
also included for the case 𝑁 = 4.

In Chapter 3 we begin to develop the model and study its properties in the large𝑁 limit.
We derive the effective action by using the replica trick after averaging over disorder. After
we introduce cross chirality bilocal Green’s functions, the Schwinger-Dyson equations
are represented including also off-diagonal chirality terms, besides the diagonal ones. The
solution of SD equations is obtained within the approximate conformal invariance scheme
which leads to free-like correlators in the 1/𝑁 expansion limit. An alternative expansion
around the conformal symmetry limit is also investigated giving critical correlators with
an strange exponent Γ ≠ 1 which implies Non-Fermi-Liquid behavior.

Chapter 4 is the core of the original work and includes most of the results. An
approximate free energy of the non-chiral 1 + 1 𝑑 extended SYK model is plotted as a
function of parameters for the interaction. We follow the derivation of the free energy
introduced for the 0 + 1 𝑑 SYK model in [2]. The Green’s chiral conserving functions are
required as well as the off-diagonal non-chiral conserving ones. We use results coming
from the Chapter 5 where we derive the nature of the excitation spectrum and some
correlators for our 1 + 1 𝑑 SYK extended model for 𝑁 = 4. Bosonization of the 𝑁 = 4
case allows to map the model onto the sine-Gordon field theory model and these results
are exact. For a chiral conserving case, the spectrum includes a pseudo-spin branch
which is gapless and a gapped pseudo-charge branch. We assume that these features are
conserved when 𝑁 >> 4 and that the functional form of the correlators of the 𝑁 = 4
case holds also for the 𝑁 >> 4 extension. We are encouraged to do so, based on what we
have discussed above. In the 0 + 1 𝑑 SYK model the conformal symmetry of the 𝑁 → ∞
limit is spontaneously broken by the ground state as it is revealed by the time correlator
in the infrared limit. Then, symmetry is explicitly broken by reintroducing the kinetic
term as an ultraviolet correction. This implies that the Goldstone bosons acquire a gap,
denoted as pseudo-Goldstone in the literature. At higher space dimension the conformal
symmetry is broken by hand, as well as ultraviolet corrections and there is consensus on
the fact that gapped excitations persist in all its extensions. The free energy expression
also requires the knowledge of the off-diagonal non-chiral conserving Green’s function.
We prove that they vanish identically in the 𝑁 = 4 limit because they correspond to non
number conserving correlators which are absent in the 𝑁 = 4 case. However, we find
that by posing the interaction parameters 𝑄 and 𝐽 equal we can circumvent this difficulty
because the free energy expression only requires the product 𝑔∩𝑔∪ which is represented
heuristically by the number conserving operator ⟨O𝑧†

𝑇𝑆
(𝑧, 𝑧)O𝑧

𝑇𝑆
(0, 0)⟩, in the bosonization

approach. In this way, we are able to graph by numerical methods the free energy versus
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the supposed gap and we find that there is a limited range of values for the 𝐽 parameter
in which the free energy develops an absolute minimum at finite Δ. This findings are
the most relevant results of this work and seem to confirm that the main features of the
𝑁 = 4 case are still present when 𝑁 >> 4 at least in the 1/𝑁 expansion limit.

In Chapter 5 we derive the main features of the model in the 𝑁 = 4 case. At 𝑁 = 4,
the model can be bosonized exactly by constructing complex fermions. Within the sine-
Gordon scenario, two sector fields arise which we call the pseudo-charge and pseudo-spin,
characterized by the renormalized velocities𝑢𝑐 = 𝑢0

√︁
1 + 𝐽/𝜋𝑢0 and𝑢𝑠 = 𝑢0

√︁
1 − 𝐽/𝜋𝑢0, re-

spectively, where𝑢0 is a velocity scale. The theory is diagonalized in these sectors but it still
keeps mixed chiralities. The pseudo-spin interaction factor K𝑠 =

(
1 − 𝐽

𝜋𝑢0

)−1/2
diverges

when 𝐽 → 𝜋𝑢0 which establish the strong coupling limit of this 𝑁 = 4 model. For the
pseudo-charge case, this factor appears to be K𝑐 =

(
1 + 𝐽

𝜋𝑢0

)−1/2
. As is well known, the

sine-Gordon model is in the critical phase with a powerlaw decay of the two-point corre-
lation function when K > 1, while it has a gapped spectrum with exponentially decaying
correlators whenK < 1. In this way, the excitation spectrum of the pseudo-charge modes
turns out to be gapped, while the pseudo-spin modes remain gapless. Correlators are
computed, which are after used in the calculations of the free energy in Chapter 4. The
energy-momentum tensor is obtained, which is non traceless. This indicates the fact
that the theory appears to be non conformal invariance in the 𝑁 = 4 case. Finally, other
physical quantities are obtained, distinguished by the fact that they are renormalized by a
factor depending on the interaction.

We close this thesis with a brief summary and discussion.



Figure 1: Schematic summary of the thesis. Black squares indicate models that can be
related with our non-chiral 1 + 1 𝑑 SYK within some limit. Green squares indicate the
path to study the model in the 𝑁 = 4 case. Orange squares indicate the path to study
the model in the large 𝑁 = case. Red squares indicate important outcome or concepts
developed, including the novel results. Gray squares indicate minor steps.



–1–
The 0+1 dimensional

Sachdev-Ye-Kitaev model

In this initial chapter we describe the original 0+ 1𝑑 SYK model and explore some aspects
that concern us. We present its Hamiltonian and describe the random nature of the
coupling constants. In the large 𝑁 limit, by considering the average over disorder and the
replica trick, the effective action is obtained. Self-consistent Schwinger-Dyson equations
are derived. At low energies, by dropping the kinetic term, an approximate conformal
symmetry emerges and the model can be solve analytically.

1.1 The model
The Sachdev-Ye-Kitaev model is a 0 + 1 dimensional quantum system of 𝑁 Majorana
fermions with many degrees of freedom and random all-to-all interactions [1]. The
model proposed by Kitaev, as a variant of the original Sachdev and Ye model for pairwise
coupled spins [38], consists in a Hamiltonian with 𝑁 >> 1 Majorana sites and four-body
interaction (generalized after to 𝑞-interacting fields):

𝐻 = − 1
4!

∑︁
𝑖< 𝑗<𝑘<𝑙

𝐽𝑖 𝑗𝑘𝑙𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 (1.1)

where 𝜓𝑖𝜓 𝑗 +𝜓 𝑗𝜓𝑖 = 𝛿𝑖 𝑗 and all the indices 𝑖, 𝑗, 𝑘, 𝑙 go from 1 to 𝑁 . Here disorder effects
are weaker than in systems with pairwise interactions. The random couplings 𝐽𝑖 𝑗𝑘𝑙 are
time independent and completely antisymmetric. In the large 𝑁 context, it is not really
important the specific distribution and we can assumed a Gaussian distribution with zero
mean value and the following variance:

(𝐽𝑖 𝑗𝑘𝑙 )2 =
3!𝐽 2

𝑁 3 (1.2)

with 𝐽 being the characteristic energy scale. The model can be generalized to 𝑞-interacting
fermions, but we are going to focus in the quartic interacting case. The reason for this
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is that, when we restrict to time-reversal-symmetric interactions, the model with 𝑞 = 4
represents the dominant interactions at low energy [2].

In order to obtain the free correlator, we use the path integral formulation in the free
theory:

𝑍0 [𝐽 ] =
∫

D𝝍 exp
[
−

∫
𝑑𝜏

∑︁
𝑖

(
1
2𝜓𝑖𝜕𝜏𝜓𝑖 + 𝐽𝑖𝜓𝑖

)]
(1.3)

where a Grassmann source was included and the shorthand notation D𝝍 denotes inte-
gration measure over all paths. Expanding the fields in terms of fermionic Matsubara
frequencies 𝜔𝑛 = 𝑛𝜋

𝛽
with 𝑛 ∈ 2Z + 1, the path integral becomes:

𝑍0 [𝐽 ] =
∫

D𝝍 exp
[
− 1
𝛽

∑︁
𝑖,𝑛∈2Z+1

(
1
2𝜓𝑖,𝑛𝑖𝜔𝑖,𝑛𝜓𝑖,−𝑛 + 𝐽𝑖,𝑛𝜓𝑖,−𝑛

)]
. (1.4)

It is possible to transform the path integral into a Gaussian integral. This can be done by
shifting the fields with𝜓𝑖,𝑛 → 𝜓𝑖,𝑛 − 𝐽𝑖,𝑛

𝑖𝜔𝑛
and completing the square. Then, absorbing the

proportionality constant into the measure, we obtain:

𝑍0 [𝐽 ] = exp
[

1
𝛽

∑︁
𝑖,𝑛∈2Z+1

(
1
2 𝐽𝑖,𝑛

1
−𝑖𝜔𝑖,𝑛

𝐽𝑖,−𝑛

)]
, (1.5)

where the Euclidean time propagator

Δ(𝜏 − 𝜏′) = 1
𝛽

∑︁
𝑖,𝑛∈2Z+1

𝑒−𝑖𝜔𝑛 (𝜏−𝜏 ′)

−𝑖𝜔𝑖,𝑛
(1.6)

allows us to write the time-ordered Euclidean free propagator for Majorana fermion at
zero temperature as:

𝐺0(𝜏) = −1
2𝑠𝑔𝑛(𝜏). (1.7)

From here, it is possible to compute corrections due to the interactions. A diagrammatic
expansion is shown in Fig. 1.1, where the gray circle is the two-point function 𝐺 (dress
correlator), the thin solid lines are the free two-point function𝐺0 (bare correlator), and
the dashed lines denote the average over 𝐽𝑖 𝑗𝑘𝑙 .

As an operator, the bare correlator𝐺0(𝜏) = −1
2𝑠𝑔𝑛(𝜏) can be expressed as𝐺0 = (−𝜕𝜏 )−1.

By expanding it, the diagrammatic expansion in Fig. 1.1 is obtained and can be written in
terms of operators as

𝐺 = 𝐺0 +𝐺0 Σ̂𝐺0 + (𝐺0 Σ̂𝐺0)2 + · · · (1.8)
where the melon diagrams (and all the nested melon that contribute at leading order)
are represented by Σ̂. By factorizing the bare correlator in the right side of Eq. (1.8) (or
similarly the thin solid line in Fig. 1.1), the expanded part can be seen as the Neumann
series analog to the geometric series 1

1−𝑥 = 1 + 𝑥 + 𝑥2 + · · · and write:

𝐺 = 𝐺0(1 − Σ̂𝐺0)−1 =
[
(𝐺0)−1 − Σ̂

]−1
= (−𝜕𝜏 − Σ̂)−1 (1.9)
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Figure 1.1: Corrections to the two-point function due to quartic interactions. The expan-
sion is dominated by melon diagrams at leading order of 1/𝑁 . Nested melon diagrams
can also contribute.

where it was used 𝐺0(𝐺0)−1 = 1. Eq. (1.9) corresponds to one of the Schwinger-Dyson
equations (see Eq. 1.17) as we will see in following sections.

1.2 The effective action

In this section we show how the disorder-averaged partition function 𝑍 can be obtained.
This is important for computation of the effective action which leads to the Schwinger-
Dyson equations. Furthermore, the free energy can also be obtained by means of disorder-
averaged partition function in the replica context [2].

The functional integral of 𝑒−𝑆 [𝐺,Σ] over some variables 𝐺 and Σ gives the disorder-
averaged partition function 𝑍 , where 𝑆 is the effective action (strictly speaking, the
disorder-averaged action). On the other side, the average value of the free energy 𝐹
can be obtained from 𝛽 𝐹 = −ln𝑍 . However, ln𝑍 is not the same as ln𝑍 by terms of
order O(𝑁 2−𝑞) [1]. If we consider quartic interactions, i.e. 𝑞 = 4, these terms are not too
important in the large 𝑁 limit and the diagrammatic expansion around the saddle point of
the effective action reproduces correctly all connected 2𝑛-point functions. More accurate
computations can be done by considering a similar action with𝑀 replicas and then make
the usual𝑀 → 0 trick. In the following, we use the standard replica method to perform
the disorder average over random coupling constants assuming that the replica symmetry
is unbroken.

In the replica context, the average value of the free energy is given by:

𝛽 𝐹 = −ln𝑍 = − lim
𝑀→0

ln𝑍𝑀
𝑀

. (1.10)

For each realization of disorder, 𝑍 (𝐽𝑖 𝑗𝑘𝑙 )𝑀 is equal to the partition function of𝑀 replicas.
The exact form of the probability distribution is not really important when 𝑁 is large,
thus we can assume that it is Gaussian. Therefore, we can consider a probability den-
sity function of the form 𝑃 (𝐾𝑎𝑏𝑐𝑑) = 1√

2𝜋 (𝐾𝑎𝑏𝑐𝑑 )2
exp

(
−1

2
∑
𝑎𝑏𝑐𝑑

1
(𝐾𝑎𝑏𝑐𝑑 )2 (𝐾𝑎𝑏𝑐𝑑)

2
)
. Finally,

considering an extended set of Grassmann variables𝜓𝛼
𝑗
parametrized by 𝜏 ∈ [0, 𝛽], with



𝑗 = 1, ..., 𝑁 and the replica index 𝛼 = 1, ..., 𝑀 , the partition function becomes:

𝑍𝑀 =

∫
D𝜓DJ exp


∑︁
𝛼

∫ 𝛽

0
𝑑𝜏

©«−1
2
∑︁
𝑗

𝜓𝛼𝑗 𝜕𝜏𝜓
𝛼
𝑗 +

∑︁
𝑖< 𝑗<𝑘<𝑙

√︂
3!𝐽 2

𝑁 3 𝐽𝑖 𝑗𝑘𝑙𝜓
𝛼
𝑖 𝜓

𝛼
𝑗 𝜓

𝛼
𝑘
𝜓𝛼
𝑙

ª®¬


=

∫
D𝜓 exp


∑︁
𝛼,𝑗

∫
𝑑𝜏

©«−1
2𝜓

𝛼
𝑗 𝜕𝜏𝜓

𝛼
𝑗 +

3!𝐽 2

2𝑁 3

∑︁
𝑖< 𝑗<𝑘<𝑙

(∑︁
𝛼

∫
𝑑𝜏𝜓𝛼𝑖 𝜓

𝛼
𝑗 𝜓

𝛼
𝑘
𝜓𝛼
𝑙

)2ª®¬


=

∫
D𝜓 exp

−
1
2
∑︁
𝛼,𝑗

∫
𝑑𝜏𝜓𝛼𝑗 𝜕𝜏𝜓

𝛼
𝑗 +

𝑁 𝐽 2

8
∑︁
𝛼,𝛽

∫
𝑑𝜏𝑑𝜏′

(
1
𝑁

∑︁
𝑗

𝜓𝛼𝑗 (𝜏)𝜓
𝛽

𝑗
(𝜏′)

)4 .
(1.11)

The latter can be solved by using the following identity:

𝑓 (𝑥) =
∫ +∞

−∞
𝑑𝑥 𝑓 (𝑥)𝛿 (𝑥 − 𝑥) = 𝑁

2𝜋

∫ +∞

−∞
𝑑𝑥

∫ +∞

−∞
𝑑𝑦 𝑓 (𝑥)𝑒𝑖𝑁𝑦 (𝑥−𝑥) . (1.12)

If we define 𝐺𝛼𝛽 (𝜏, 𝜏′) = 1
𝑁

∑
𝑗 𝜓

𝛼
𝑗
(𝜏)𝜓 𝛽

𝑗
(𝜏′), we can identify that 𝑥 = −𝐺𝛼𝛽 (𝜏, 𝜏′). Ad-

ditionally, we denote 𝑦 by −𝑖Σ𝛼𝛽 (𝜏, 𝜏′). Integration over 𝜓 fields can be assumed as 𝑁
identical integrals, in such a way that the partition function becomes:

𝑍𝑀 =

∫
DΣD𝐺

(∫
D𝜓 exp

[
−1

2
∑︁
𝛼

∫
𝑑𝜏𝜓𝛼𝜕𝜏𝜓

𝛼

−1
2
∑︁
𝛼,𝛽

∫
𝑑𝜏𝑑𝜏′Σ𝛼𝛽 (𝜏, 𝜏′)𝜓𝛼 (𝜏)𝜓 𝛽 (𝜏′)

+1
2
∑︁
𝛼,𝛽

∫
𝑑𝜏𝑑𝜏′

(
𝐽 2

4 𝐺
4
𝛼𝛽
(𝜏, 𝜏′) − Σ𝛼𝛽 (𝜏, 𝜏′)𝐺𝛼𝛽 (𝜏, 𝜏′)

)])𝑁
. (1.13)

Now it is easy to perform the integral over the Grassmann variables𝜓𝛼 (𝜏). This gives the
Pfaffian of the operator −𝜕𝜏 − Σ̂. Integrals over auxiliary fields Σ and 𝐺 can be performed
by using the saddle point approximation:

− ln𝑍𝑀 = − ln
(∫

DΣD𝐺 exp
(
−𝑆 (𝑀) [𝐺, Σ]

))
≈𝑚𝑎𝑥 (𝐺) 𝑚𝑖𝑛(Σ)𝑆

(𝑀) [𝐺, Σ], (1.14)

where

𝑆
(𝑀) [𝐺, Σ] = 𝑁

[
− ln 𝑃 𝑓 (−𝜕𝜏 − Σ̂) + 1

2
∑︁
𝛼,𝛽

∫
𝑑𝜏𝑑𝜏′

(
Σ𝛼𝛽 (𝜏, 𝜏′)𝐺𝛼𝛽 (𝜏, 𝜏′) −

𝐽 2

4 𝐺
4
𝛼𝛽
(𝜏, 𝜏′)

)]
(1.15)
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is the effective action for 𝑀 replicas. Considering the following ansatz Σ𝛼𝛽 (𝜏, 𝜏′) =

Σ(𝜏, 𝜏′)𝛿𝛼𝛽 , that is to say, omitting the off-diagonal in replicas, the limit𝑀 → 0 becomes
trivial and the effective action is:

𝑆 [𝐺, Σ] = 𝑁
[
− ln 𝑃 𝑓 (−𝜕𝜏 − Σ̂) + 1

2

∫
𝑑𝜏𝑑𝜏′

(
Σ(𝜏, 𝜏′)𝐺 (𝜏, 𝜏

′) − 𝐽 2

4 𝐺
4(𝜏, 𝜏′)

)]
. (1.16)

The replica-diagonal approximation can be justified as follows: on the one hand, the
expansion of 𝛽 𝐹 = −ln𝑍 consists of those diagrams that are connected along fermionic
lines. On the other hand, the high temperature expansion of − ln𝑍 includes all connected
diagrams, i.e. there are leading diagrams proportional to 𝑁 −2. Therefore, the replica-
diagonal approximated free energy differs by O(𝑁 −2) terms, which can be neglected in
the large 𝑁 limit [1]. A way to obtain this free energy is provided in section 1.4.

As it can be seen, all this process was possible after averaging over disorder and using
the replica trick. The saddle point values of 𝐺 and Σ in the effective action correspond
exactly to the Green function and the self-energy in the mean field approximation.

1.3 The Schwinger-Dyson equations

In the large 𝑁 limit the model is solvable by dynamical mean field theory, making it
possible to write the self-consistency Schwinger-Dyson equations for the imaginary time
correlator 𝐺 (𝜏1, 𝜏2) = −⟨T𝜓𝑖 (𝜏1)𝜓 𝑗 (𝜏2)⟩, where T denotes time ordering. By taking the
maximum over 𝐺 and the minimum over Σ in the effective action (1.16), it is possible to
write the SD equations as (see Fig. 1.2):

𝐺 = (−𝜕𝜏 − Σ̂)−1, Σ(𝜏1, 𝜏2) = 𝐽 2𝐺 (𝜏1, 𝜏2)3. (1.17)

Both Green function and self-energy are bilocal antisymmetric fields with antiperiodic
boundary conditions, parametrized by the inverse temperature 𝛽 by 𝜏 ∈ [0, 𝛽]. At
low energies, there is an emergent conformal symmetry and the model can be solved
analytically.

(a) (b)

Figure 1.2: Graphical representation of the Schwinger-Dyson equations. The gray circle
denote the full two-point function, whereas the white circle represent the self-energy.
Equations (a) and (b) correspond to the left and right equations of (1.17), respectively.



1.3.1 Conformal limit
When we consider strong coupling (low energies), the kinetic part of Eq. (1.17) can be
ignored and this let us write the unitary condition:∫

𝑑𝜏′𝐺 (𝜏, 𝜏′)Σ(𝜏′, 𝜏′′) = −𝛿 (𝜏 − 𝜏′′). (1.18)

In this form, the Green function and the self-energy are invariant under the reparametriza-
tions:

𝐺 (𝜏, 𝜏′) → [𝑓 ′(𝜏) 𝑓 ′(𝜏′)]Δ𝐺 (𝑓 (𝜏), 𝑓 (𝜏′)),
Σ(𝜏, 𝜏′) → [𝑓 ′(𝜏) 𝑓 ′(𝜏′)]ΔΣ(𝑓 (𝜏), 𝑓 (𝜏′)) (1.19)

where Δ = 1/𝑞, for general 𝑞-interacting case. The Majorana correlator obtains the form:

𝐺𝑐 (𝜏) = 𝑏
𝑠𝑔𝑛(𝜏)
|𝜏 |2Δ (1.20)

for some constant 𝑏. The last expression solves the Schwinger-Dyson equations provided
the scale dimension Δ. Although the effective action and the SD equations are invariant
for any reparametrization of conformal transformations, this does not happen for the
conformal Green function, which is only invariant if we consider a reparametrization
∈ 𝑆𝐿(2,R). In this way, the strong coupling limit implies that it is possible to approximate
the model by neglecting the kinetic part in the Schwinger-Dyson equations, where
reparametrization invariance is spontaneously broken by the conformal solution𝐺𝑐 (𝜏).
In Section 3.2 of Chapter 3, we will see that, for 1 + 1 𝑑 SYK model case, a regulator
has to be already included in the action. This also emerges when Fourier transforming
the self-energy appearing in Eq. (3.16) as the integral does not converge and requires
the introduction of a regulator. This UV regularization breaks the conformal invariance,
which implies that the breaking of the scale invariance is explicit and not spontaneous.
This reparametrization invariance can be used to solve the SD equations and find at least
the two-point correlator functions.

1.4 Free energy
The free energy can be studied from the functional integral by considering the original
partition function. However, as it was observed, the leading large 𝑁 approximation of the
free energy reads:

−𝛽𝐹/𝑁 = ln 𝑃 𝑓 (−𝜕𝜏 − Σ̂) − 1
2

∫
𝑑𝜏𝑑𝜏′

(
Σ(𝜏, 𝜏′)𝐺 (𝜏, 𝜏

′) − 𝐽 2

4 𝐺
4(𝜏, 𝜏′)

)
. (1.21)

As it is shown in [2], it is convenient to take the derivative with respect 𝐽 𝜕𝐽 in order to
avoid evaluating the Pfaffian term. Since 𝐺 and Σ obey the equations of motion, the only



Chapter 1 - The 0+1 dimensional Sachdev-Ye-Kitaev model 13

contributing term is the derivative of the explicit dependence on 𝐽 , such that:

𝐽 𝜕𝐽 (−𝛽𝐹/𝑁 ) =
𝐽 2𝛽

4

∫ 𝛽

0
𝑑𝜏𝐺𝑞 (𝜏) = −𝛽4 𝜕𝜏𝐺

����
𝜏→0+

= −𝛽𝐸. (1.22)

Because the partition function just depends on the combination 𝛽 𝐽 , we can consider that
𝐽 𝜕𝐽 is the same as 𝛽𝜕𝛽 . This provides a way to obtain the energy. We adopt this method
to obtain the free energy in our extended 1 + 1 𝑑 non-chiral SYK model, as it is shown in
Section 4.1, where diagonal in chirality and cross-chirality (off-diagonal) correlators are
required.

With this we have finished our review of the original 0 + 1 𝑑 SYK model. Even if the
theory has other interesting properties such as its relation with chaos and black holes,
we are not going to focus on them in this work. This is basically due to the fact that
reparametrization invariance in the 1 + 1 𝑑 case is different from the 0 + 1 𝑑 case. In
the original SYK model, the action was consistently reparametrization invariant and a
scale invariant solution can be found. Invariance is seen after spontaneously broken.
By including the explicit breaking of reparametrization, the four-point function can be
computed, and these are required to study the chaos limit. In the extended case, the
cut-off already breaks reparametrization explicitly in the action and solution is not scale
invariant. A four-point function is much more complicated to obtain and possibly requires
a different approach that we do not study here.





–2–
The non-chiral 1+1 dimensional SYK

model: generalities

In this chapter we describe some general aspects of the theory. We introduce the action of
the model. The free spectrum is linearized around 𝑘 = 0 and two branches for right and
left-movers appears. The generalized interaction includes two different random couplings
which control interactions between the same or different chirality branches. We perform
dimensional analysis of the action, making the comparison with the original 0 + 1 𝑑 SYK
model. For the 𝑁 = 4 case, the relevance of the interaction is studied by analyzing the
scaling dimension and the conformal spin parameters.

2.1 The model

We propose an extended 1 + 1 dimensional non-chiral SYK model described by Majorana
fermions with fermionic degrees of freedom labeled by a flavour index that can take 𝑁
(even) values on each site 𝑥 . In a general way, we can express the free theory action as

𝑆0 =
𝑖

2

𝑁∑︁
𝑖

∫
𝑑2𝑥

(
𝜓 𝑖𝛾

𝜇𝜕𝜇𝜓𝑖

)
, (2.1)

where the spinor is𝜓 = 𝜓 †𝛾0 and 𝛾 𝜇 are the gamma matrices. In the chiral representation
[39] the real Majorana fermionic operator of flavor 𝑖 will be denoted by 𝜓𝑖 (𝑥) with
𝜓𝑖 (𝑥)𝑇 ≡ (𝜓𝑖−(𝑥),𝜓𝑖+(𝑥)), where 𝜓𝑖±(𝑥) are eigenstates of 𝜎𝑧 and ± labels the chirality.
The𝜓𝑖 (𝑥)’s of different flavor or site satisfy the anticommutation relation{

𝜓𝑖 (𝑥), 𝜓 𝑗 (𝑦)
}
= 𝛿𝑖, 𝑗 𝛿 (𝑥 − 𝑦). (2.2)

In Euclidean space,𝜓𝑖+(𝑥, 𝜏) is only a function of the complex coordinate 𝑧 = 𝑥 + 𝑖 𝜏 while
𝜓𝑖−(𝑥, 𝜏) is only a function of 𝑧 = 𝑥 − 𝑖 𝜏 . In the following, 𝑥 in 𝜓𝑖±(𝑥) will denote both
variables (𝑥, 𝜏) if no ambiguity arises.
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Following within the chiral representation, in 1 + 1 dimensions the gamma matrices
are given by Pauli’s matrices as follow:

𝛾0 = 𝜎𝑥 ; 𝛾1 = −𝑖𝜎𝑦 ; 𝛾5 = 𝜎𝑧 . (2.3)

They satisfy the Clifford algebra

{𝛾 𝜇, 𝛾𝜈 } = 2𝜂𝜇𝜈 , (2.4)

where 𝜂𝜇𝜈 is the Minkowski metric with signature (+,−). The action for the free massless
case can then be expressed by

𝑆0 =
1
2

𝑁∑︁
𝑖

∫
𝑑2𝑥 𝜓𝑖 (𝑥)𝑇 (−𝜕𝜏 + 𝑖𝜎𝑧 𝑢0𝜕𝑥 )𝜓𝑖 (𝑥). (2.5)

After a Legendre transformation of the free Lagrangian, the free Hamiltonian can be
easily obtained to be

𝐻 =
1
2

𝑁∑︁
𝑖

∫
𝑑𝑥 [𝜓𝑖−(𝑥) (𝑢0𝑖𝜕𝑥 )𝜓𝑖− +𝜓𝑖+(𝑥) (−𝑢0𝑖𝜕𝑥 )𝜓𝑖+] , (2.6)

where it is observed that, after a Fourier transform into 𝑘-momentum space, the free
spectrum is linearized around 𝑘 = 0 with velocity ±𝑢0 for ±𝑘 .

In the original SYK model, 𝑁 Majorana fermions have all-to-all fermion random
interaction where 𝐽𝑖1...𝑖𝑞 are a set of random Gaussian couplings. Here, we generalize it by
defining

𝑆𝐼 =

∫
𝑑2𝑥

[
1
2

∑︁
𝑖< 𝑗<𝑘<𝑙

𝐽𝑖 𝑗𝑘𝑙 (𝜓 𝑖𝛾5𝛾 𝜇𝜓 𝑗 ) (𝜓𝑘𝛾5𝛾𝜇𝜓𝑙 )

+
∑︁

𝑖< 𝑗<𝑘<𝑙

𝑄𝑖 𝑗𝑘𝑙

(
1
2 (𝜓 𝑖𝛾

𝜇𝜓 𝑗 ) (𝜓𝑘𝛾𝜇𝜓𝑙 ) + (𝜓 𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 )
)]
, (2.7)

where the couplings 𝐽𝑖 𝑗𝑘𝑙 and 𝑄𝑖 𝑗𝑘𝑙 are real and antisymmetric with respect to any two
indices, and the labels {𝑖, 𝑗, 𝑘, 𝑙} run from 1 to 𝑁 . In Section 3.2.1, for the large 𝑁 case
and after averaging over disorder, we will see that the model can be seen as the Random
Thirring model [37] when 𝐽 = 0, while if 𝑄 = 0, the model becomes in two decoupled
left/right-mover SYK chiral systems. As for the original SYK model, the specific distribu-
tion is not very important in the large 𝑁 case, therefore we will assume that they obey
the random Gaussian distribution 𝑃 with zero mean and the following variances:

(𝐽𝑖 𝑗𝑘𝑙 )2 =
3!𝐽 2

𝑁 3 ; (𝑄𝑖 𝑗𝑘𝑙 )2 =
𝑄2

3𝑁 3 . (2.8)

It is important to note that the model is just random with respect to Majorana flavor
indices, while the translational invariance is unaffected.
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On the other side, for the 𝑁 = 4 case, just one way to order indices is valid and the
couplings become fixed. Hence, without loss of generality, we will assume that both 𝐽
and 𝑄 are equal. As we will see in Chapter 5, the model can be bosonized by constructing
complex fermions and using a bosonization technique (see Appendix B). Doing that,
the model is separated into "pseudo-charge" and "pseudo-spin" sectors, as it is shown
in Section 5.2. The interaction has two effects: on one hand, the following part of the
interaction

1
2

(
(𝜓 𝑖𝛾5𝛾 𝜇𝜓 𝑗 ) (𝜓𝑘𝛾5𝛾𝜇𝜓𝑙 ) + (𝜓 𝑖𝛾 𝜇𝜓 𝑗 ) (𝜓𝑘𝛾𝜇𝜓𝑙 )

)
rescales the velocity. On the other hand, the interacting part

𝜓 𝑖𝜓 𝑗𝜓𝑘𝜓𝑙

introduces cosine-like interaction terms in both sectors. These two branches has different
behavior on their excitations according to the interaction parameter K𝑐/𝑠 = 1/

√︃
1 ± 𝐽

𝜋𝑢0
introduced in Eq. (5.34). For pseudo-spin sector it is found that excitations remains gapless,
while on the contrary, for pseudo-charge sector it is found that excitations becomes gapped.
We will assume that these two branches hold for the 𝑁 >> 4 case, based on the results
coming from Section 3.2.3 for small coupling regime (where the system remains critical) ,
and from variational analysis in the strong coupling regime (where indications of gapped
excitations appear).

As a last comment, if we add to the interaction the following term

(𝜓 𝑖𝛾5𝜓 𝑗 ) (𝜓𝑘𝛾5𝜓𝑙 ), (2.9)

it is possible to obtain a non-symmetrical model having the cosine interacting term in just
one of the spin-charge sectors. For instance, in the Random Gross-Neveu like interaction
[40, 41]

1
2

[
(𝜓 𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 ) − (𝜓 𝑖𝛾5𝜓 𝑗 ) (𝜓𝑘𝛾5𝜓𝑙 )

]
∼ 1

2𝜋2𝛼2 cos (
√

8𝜋𝜙𝑠) (2.10)

the cosine of the charge sector disappears.

2.2 Dimensional analysis

Doing a dimensional extension in a model implies that we have different scaling dimen-
sions for fields and hence, for interactions. The latter invites us to analyze the conditions
in which interactions are relevant, irrelevant or marginal. It is also worth asking whether
the theory is still renormalizable or not, and see if perturbations can be made.

One of the criteria that gives us information about the convergence of Feynman
integrals and, therefore, about renormalizability of the model, is the "power counting".
This method is used to classify divergences systematically. It can be related with the
superficial degree of divergence, which studies the UV behavior of Feynman diagram



(a) (b)

Figure 2.1: (a) Four-body fermionic interaction represented by one interaction vertex and
four external fermionic lines. (b) Four-body fermionic interaction with one internal loop
and two interaction vertices.

integrals containing all the contributions with powers of momentum 𝑘 . In Fig. 2.1 (a), it
is observed a 𝑞 = 4 fermionic interaction where, for some coupling constant 𝑔, there is
a family of diagrams of order 𝑔, 𝑔2, 𝑂 (𝑔) in an expansion to one loop, two loops, three
loops, etc. For example, one diagram of order 𝑔2 and one loop of fermions is represented
in Fig. 2.1 (b), where there are two interaction vertices and one internal loop. In a general
𝑑 space-time dimensional system, for a diagram of order 𝑛 (with 𝑛 being the number of
interaction vertices), 𝐸 external lines, 𝐼 internal lines and 𝐿 loops, we have a 𝑘-momentum
integral: ∫

𝑑𝑑𝐿𝑘

𝑘2𝐼 . (2.11)

The superficial degree of divergence 𝐷 is defined as [42]:

𝐷 = 𝑑𝐿 − 2𝐼 +
∑︁
𝑎

𝐷𝑎 (2.12)

where 𝐷𝑎 is the number of derivatives in the interaction for each vertex 𝑎. It is useful to
express (2.12) in terms of external lines and vertices. The number of loops is given by:

𝐿 = 𝐼 − 𝑛 + 1 (2.13)

while the number of external lines is:

𝐸 =
∑︁
𝑎

𝜈𝑎 − 2𝐼 . (2.14)

Here, 𝜈𝑎 is the number of lines (bosonic ones or fermionic ones) that connect with the
vertex 𝑎. Using these expressions, and considering bosonic and fermionic fields, we can
express an extended version of Eq. (2.12) as:

𝐷 = 𝑑 −
(
𝑑 − 2

2

)
𝐸𝐵 −

(
𝑑 − 1

2

)
𝐸𝐹 −

∑︁
𝑎

[
𝑑 − 𝐷𝑎 −

(
𝑑 − 2

2

)
𝜈𝐵𝑎 −

(
𝑑 − 1

2

)
𝜈𝐹𝑎

]
(2.15)

where labels 𝐵 and 𝐹 are for bosons and fermions, respectively. It is recognized the vertex’s
dimension 𝑑𝑎 as:

𝑑𝑎 = 𝐷𝑎 +
(
𝑑 − 2

2

)
𝜈𝐵𝑎 +

(
𝑑 − 1

2

)
𝜈𝐹𝑎 . (2.16)

Thus, according to the dimension of the vertex, the model can be considered
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• super-renormalizable, if 𝑑𝑎 < 𝑑

• renormalizable, if 𝑑𝑎 = 𝑑

• non-renormalizable, if 𝑑𝑎 > 𝑑 .
The dimension of the vertex 𝑎 is related to the interacting part of the Lagrandian density.
Thus, by performing a dimensional analysis of the action, we can relate 𝑑𝑎 with the
dimension of the coupling constant:

𝑑𝑎 + [𝑔] = 𝑑. (2.17)
It is not surprising this relation between convergence of Feynman integrals and the
dimension of the coupling constants. Indeed, when 𝑑𝑎 < 2 for all vertices, the coupling
constant has a positive dimension. Then, going to higher orders in perturbation theory
produces more powers of 𝑔 and forces the Feynman integrand to vanish faster at large
momenta so that the total dimension remains fixed. On the contrary, when 𝑑𝑎 > 2, it is
expected more and more divergent integrals [42]. Accordingly, depending on the coupling
scale [𝑔], the model can be (in mass units):

• super renormalizable if [𝑔] > 0

• renormalizable if [𝑔] = 0

• non-renormalizable if [𝑔] < 0.
A theory can be expressed in terms of different kind of interactions. These interactions
can be relevant, irrelevant or marginal. Broadly speaking, an interaction becomes relevant
if it grows when it is considered larger scales of the theory, having noticeable effects in
the IR. On the other side, an irrelevant interaction decrease when it is increased the scale
of the model, having negligible effects in the IR. Other cases are said marginal. Now let
us consider, for example, the irrelevant terms. As the interaction becomes irrelevant in
the IR, in the momentum space it diverges in the UV. If the model is capable to include
enough counter-terms to cancel these divergent terms, the theory it is said renormalizable
(or super renormalizable). If not, the model is non-renormalizable.

In the following, we are going to analyze the renormalizability of the model and the
relevance of the interactions for each 0 + 1 𝑑 and 1 + 1 𝑑 models. We must notice that we
have a set of random couplings, which implies that the flows of each realisation can be
different. This is specially important when interactions are marginal in the dimensional
analysis because some operators will grow and some will decrease as we flow to the IR
[37].

2.2.1 Power counting in the 0+1 dimensional SYK model
Let us start with the dimensional analysis of the original SYK model. The dimensionless
action is

𝑆 =

∫
𝑑𝜏

©«
∑︁
𝑖

𝜓𝑖𝜕𝜏𝜓𝑖 +
∑︁
𝑖 𝑗𝑘𝑙

𝐽𝑖 𝑗𝑘𝑙𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙
ª®¬ . (2.18)



For the analysis, we are going to consider the characteristic energy scale 𝐽 , which is
related to the set of coupling constants 𝐽𝑖 𝑗𝑘𝑙 by means of the variance (1.2). Then, doing a
dimensional analysis, we have

1 = [𝑡] [𝜓 ]2 [𝑡]−1 = [𝑡] [𝐽 ] [𝜓 ]4 (2.19)

→ [𝜓 ] = 1 → [𝐽 ] = [𝑡]−1. (2.20)

It is common to make the power counting by putting time as length by multiplying a
velocity such as [𝑡] → [𝐿] which is the inverse of mass (in natural units) [𝑀] = [𝐿]−1.
With this, the convention indicates that the field is dimensionless and the scale dimension
of the coupling is 1. Therefore, we conclude that the model is super-renormalizable and
the interaction term is relevant, being strongly coupled in the IR. The same conclusion
can be reached evaluating (2.16) by considering 𝐷𝑎 = 0, 𝑑 = 1, 𝜈𝐵𝑎 = 0 and 𝜈𝐹𝑎 = 4, such
that 𝑑𝑎 = 0 < 𝑑 , the model being super-renormalizable.

2.2.2 Power counting in the 1+1 dimensional extension

Let us see what happens if we extend the theory to 1 + 1 dimensions. The dimensionless
action (omitting some interaction terms for simplicity) is

𝑆 ∼
∫

𝑑𝜏𝑑𝑥
©«
∑︁
𝑖

𝜓𝑖 (𝜕𝜏 + 𝑢0𝜕𝑥 )𝜓𝑖 +
∑︁
𝑖 𝑗𝑘𝑙

𝐽𝑖 𝑗𝑘𝑙𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙
ª®¬ . (2.21)

In 0+ 1𝑑 , the set of random couplings is related to the characteristic energy scale 𝐽 . In our
1 + 1 𝑑 model, the sets of random couplings 𝐽𝑖 𝑗𝑘𝑙 and 𝑄𝑖 𝑗𝑘𝑙 are related to the characteristic
velocity scales 𝐽 and 𝑄 , respectively, by means of the variances (2.8). Repeating the
dimensional analysis, we have

1 = [𝑡] [𝑥] [𝜓 ]2 [𝑡]−1 = [𝑡] [𝑥] [𝐽 ] [𝜓 ]4 (2.22)

→ [𝜓 ] = [𝑥]−1/2 → [𝐽 ] = [𝑥] [𝑡]−1. (2.23)

Considering again that [𝑡] → [𝐿] and [𝑀] = [𝐿]−1, the scale dimension for Majorana
fields is 1/2, while the coupling is now dimensionless. The model is still renormalizable,
but interaction is marginal. The same conclusion can be reached evaluating (2.16) by
considering 𝐷𝑎 = 0, 𝑑 = 2, 𝜈𝐵𝑎 = 0 and 𝜈𝐹𝑎 = 4, such that 𝑑𝑎 = 2 = 𝑑 , the model being
renormalizable.

Finally we can conclude that including space in the original 0 + 1 𝑑 theory, the model
remains renormalizable, but interaction becomes marginal when we consider a four-
fermion interaction.
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2.2.3 Scaling dimension and conformal spin
Most of the work on SYK model has been described by Majorana fermions with all-to-all
fermion random interaction. Notwithstanding, in the Chapter 5, we present the model in
the bosonization picture for the specific case 𝑁 = 4, where the model can be related to
its dual sine-Gordon version, after introducing complex fermions. In this subsection, we
explore an alternative approach to analyze the relevance of the interactions in the specific
𝑁 = 4 case. In this scenario, fermionic fields can be replaced by bosonic ones described in
general by analytic and anti-analytic fields [43]:

𝑐 (𝛽, 𝑧) ∼ 𝑒𝑥𝑝
[
𝑖

2𝛽 (𝜙 (𝑧, 𝑧) + 𝜃 (𝑧, 𝑧))
]

; 𝑐 (𝛽, 𝑧) ∼ 𝑒𝑥𝑝
[
𝑖

2𝛽 (𝜙 (𝑧, 𝑧) − 𝜃 (𝑧, 𝑧))
]
, (2.24)

where 𝑐 and 𝑐 are operators related to the bosonic field 𝜙 and its dual field 𝜃 , 𝑧 and 𝑧
are the complex coordinates, and 𝛽 and 𝛽 are generally different numerical factors. By
construction, these dual fields are, in fact, compose by chiral "±" components (see Section
5.1).

If we consider first the free case of this 𝑁 = 4 SYK model in the bosonization picture,
we basically have the Gaussian bosonic model, where the pair correlation function is
(𝑧12)−𝛽

2/4𝜋 (𝑧12)−𝛽
2/4𝜋 . By defining the "scaling dimension" 𝑑 as

𝑑 ≡ Δ + Δ =
1

8𝜋 (𝛽
2 + 𝛽2) (2.25)

and the "conformal spin" 𝑆 like

𝑆 ≡ Δ − Δ =
1

8𝜋 (𝛽
2 − 𝛽2) (2.26)

we can study how perturbations affect our model and whether they are relevant or not.
For example, in a 𝑑-dimensional system (space and time), a perturbation with scaling
dimension 𝑑 and conformal spin 𝑆 = 0 is said to be relevant if [43]

𝑑 < 𝑑 (2.27)

irrelevant if
𝑑 > 𝑑 (2.28)

and marginal if
𝑑 = 𝑑. (2.29)

As already mentioned, in the 𝑁 = 4 case cosine-like interaction terms will appear, which
are not strange in one-spatial direction systems. This cosine is constructed by exponentials
with exponent’s prefactors proportional to 𝛽 and 𝛽 , which are in general equal but opposite
in sign. Keeping this in mind, cosine interaction will be relevant if

𝛽2 < 4𝜋𝑑. (2.30)



For our 1 + 1 dimensional model 𝑑 = 2. Thus, in the 𝑁 = 4 case, relevant or marginal
interactions occur when 𝛽2 < 8𝜋 or 𝛽2 = 8𝜋 , respectively.

We will see in Chapter 5 that the model separates in two sectors: the pseudo-charge
and pseudo-spin, as it is showed in the Hamiltonian (5.25). In both sectors there is a cosine-
like interaction of the form cos(𝛽𝜙) = cos(

√
8𝜋𝜙). Therefore, we can again conclude that

interactions are marginal. However, by re-scaling the bosonic fields and the conjugate
momenta in the Hamiltonian, it is possible to obtain extra information about excitations,
as it is observed in Eqs. (5.30), (5.31) and (5.32), where it is found that pseudo-charge has
gapped excitations while the pseudo-spin case is gapless. This analysis shows that the
case 𝑁 = 4 can help us to explore features of the model.



–3–
Large N limit of the non-chiral 1+1

dimensional SYK model

In this chapter we solve the model for a large number 𝑁 of left and right-movers Ma-
jorana fermions. The 𝑞 = 4 fermionic interactions dominate and are mediated by the
independent sets of real random couplings 𝐽𝑖 𝑗𝑘𝑙 and 𝑄𝑖 𝑗𝑘𝑙 with zero mean and random
Gaussian distribution. They are characterized by dimensionless parameters 𝐽 and 𝑄
which determinate interactions between fermions of the same and opposite branches,
respectively. Schwinger-Dyson equations are computed after averaging over disorder. An
approximate free energy is obtained. Cross interacting correlators are also considered,
and it is found that they modify the free energy. In the strong coupling limit an emergent
approximate conformal limit appears.

3.1 Effective action

Let us remember our extended 1 + 1 𝑑 SYK model of 𝑁 (even) 𝑞 = 4 interacting Majorana
fermions. The full action is given by:

𝑆 ≡ 𝑆0 + 𝑆𝐼 =
𝑖

2

𝑁∑︁
𝑖

∫
𝑑2𝑥

(
𝜓 𝑖𝛾

𝜇𝜕𝜇𝜓𝑖

)
+

∫
𝑑2𝑥

[
1
2

∑︁
𝑖< 𝑗<𝑘<𝑙

𝐽𝑖 𝑗𝑘𝑙 (𝜓 𝑖𝛾5𝛾 𝜇𝜓 𝑗 ) (𝜓𝑘𝛾5𝛾𝜇𝜓𝑙 )

+
∑︁

𝑖< 𝑗<𝑘<𝑙

𝑄𝑖 𝑗𝑘𝑙

(
1
2 (𝜓 𝑖𝛾

𝜇𝜓 𝑗 ) (𝜓𝑘𝛾𝜇𝜓𝑙 ) + (𝜓 𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 )
)]
, (3.1)

where spinors and gamma matrices are in the chiral representation [39]. 𝑆0 refers to the
free action, while on the contrary, 𝑆𝐼 refers to the interacting part of the full action. In
Euclidean space,𝜓𝑖+(𝑥, 𝜏) is only a function of the complex coordinate 𝑧 = 𝑥 + 𝑖 𝜏 while
𝜓𝑖−(𝑥, 𝜏) is only a function of 𝑧 = 𝑥 − 𝑖 𝜏 . We maintain the convention from the previous
chapters where 𝑥 in𝜓𝑖±(𝑥) will denote both variables (𝑥, 𝜏) if no ambiguity arises. As in
the original SYK model, 𝑁 Majorana fermions have all-to-all fermion random interaction
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where the couplings 𝐽𝑖 𝑗𝑘𝑙 and 𝑄𝑖 𝑗𝑘𝑙 are a set of real random Gaussian couplings and they
are antisymmetric with respect to any two indices. In the large 𝑁 case, the exact form of
the probability distribution is actually unimportant and we will assume that they obey a
random Gaussian distribution 𝑃 with zero mean and the following variance:

(𝐽𝑖 𝑗𝑘𝑙 )2 =
3!𝐽 2

𝑁 3 ; (𝑄𝑖 𝑗𝑘𝑙 )2 =
𝑄2

3𝑁 3 (3.2)

where its randomness is just with respect to Majorana flavor indices, keeping translational
invariance unaffected.

In the incoming calculations, we follow the same procedure as in Section 1.2 to obtain
the effective action. We use the standard replica method [1] to perform the ensemble
average over random coupling constants assuming that the replica symmetry is unbroken.
To achieve it we must find the average partition function 𝑍𝑀 for the replica integer 𝑀
and then take the limit 𝑀 → 0. For each realization of disorder, 𝑍 (𝐽𝑖 𝑗𝑘𝑙 )𝑀 is equal to
the partition function of𝑀 replicas. In this way we can relate 1

𝑀
ln𝑍𝑀 with ln𝑍 = −𝛽𝐹 ,

where 𝐹 is the averaged free energy. For a general probability density function 𝑃 (𝐾𝑎𝑏𝑐𝑑),
it is known that 𝑃 (𝐾𝑎𝑏𝑐𝑑) = 1√

2𝜋 (𝐾𝑎𝑏𝑐𝑑 )2
exp

(
−1

2
∑
𝑎𝑏𝑐𝑑

1
(𝐾𝑎𝑏𝑐𝑑 )2 (𝐾𝑎𝑏𝑐𝑑)

2
)
. Then, considering

𝑃 (𝐽𝑖 𝑗𝑘𝑙 ) and 𝑃 (𝑄𝑖 𝑗𝑘𝑙 ) from our model, averaging disorder, completing the square and doing
Gaussian integration over couplings, the partition function

𝑍 =

∫
D𝜓

∫
DJ

∫
DQ 𝑃 (𝐽𝑖 𝑗𝑘𝑙 )𝑃 (𝑄𝑖 𝑗𝑘𝑙 ) exp [−𝑆0 + 𝑆𝐼 ] (3.3)

becomes:

𝑍 =

∫
D𝜓 𝑒

− 𝑖
2
∑𝑁

𝑖

∫
𝑑2𝑥

(
𝜓 𝑖𝛾

𝜇𝜕𝜇𝜓𝑖

)

× exp
{
𝑁

8
∑︁
𝑎=±

∫
𝑑2𝑥𝑑2𝑥′

[
𝐽 2

(∑︁
𝑗

𝜓 𝑗𝑎 (𝑥)𝜓 𝑗𝑎 (𝑥′)
𝑁

)4

+ 𝐽 2

(∑︁
𝑗

𝜓 𝑗𝑎 (𝑥)𝜓 𝑗𝑎 (𝑥′)
𝑁

)4

+2𝑄2

(
1
𝑁

∑︁
𝑗

𝜓 𝑗𝑎 (𝑥)𝜓 𝑗𝑎 (𝑥′)
)2 (

1
𝑁

∑︁
𝑘

𝜓𝑘𝑎 (𝑥)𝜓𝑘𝑎 (𝑥′)
)2

+2𝑄2

(
1
𝑁

∑︁
𝑗

𝜓 𝑗𝑎 (𝑥)𝜓 𝑗𝑎 (𝑥′)
)2 (

1
𝑁

∑︁
𝑘

𝜓𝑘𝑎 (𝑥)𝜓𝑘𝑎 (𝑥′)
)2

+8𝑄2
∑︁
𝑖

𝜓𝑖𝑎 (𝑥)𝜓𝑖𝑎 (𝑥′)
𝑁

∑︁
𝑗

𝜓 𝑗𝑎 (𝑥)𝜓 𝑗𝑎 (𝑥′)
𝑁

∑︁
𝑘

𝜓𝑘𝑎 (𝑥)𝜓𝑘𝑎 (𝑥′)
𝑁

∑︁
𝑙

𝜓𝑙𝑎 (𝑥)𝜓𝑙𝑎 (𝑥′)
𝑁

]}
(3.4)

where, if 𝑎 → ±, then 𝑎 → ∓. In the previous calculation, after Gaussian integration, we
obtained sums like

∑
𝑖 𝑗𝑘𝑙

(∫
𝑑2𝑥𝜓𝑖±𝜓 𝑗±𝜓𝑘±𝜓𝑙±

)2
. Taking care on the antisymmetry of index
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and using combinatorial properties of the sum 𝑖 𝑗𝑘𝑙 , it was possible to write the latter as
1
4!

∫
𝑑2𝑥𝑑2𝑥′

(∑
𝑗 𝜓 𝑗±(𝑥)𝜓 𝑗±(𝑥′)

)4 and similar expressions for the other sums. Now, we use
the Hubbard-Stratonovich procedure which requires the introduction of bilocal auxiliary
fields 𝑔 and Σ, with the following definition: 1

𝑁

∑
𝑗 𝜓 𝑗𝑎 (𝑥) 𝜓 𝑗𝑎′ (𝑥′) = 𝑔𝑎𝑎′ (𝑥, 𝑥′), where 𝑎

is the chirality label. Thus, the partition function is written as:

𝑍 =

∫
𝜕Σ𝜕𝐺

[∫
D𝜓 𝑒

− 𝑖
2
∑𝑁

𝑖

∫
𝑑2𝑥

(
𝜓 𝑖𝛾

𝜇𝜕𝜇𝜓𝑖

)
× exp

{
−

∫
𝑑2𝑥𝑑2𝑥′

2

(
Σ+𝜓+(𝑥)𝜓+(𝑥′)

+Σ∩𝜓−(𝑥)𝜓+(𝑥′) + Σ∪𝜓+(𝑥)𝜓−(𝑥′) + Σ−𝜓−(𝑥)𝜓−(𝑥′)

− 𝐽
2

4
∑︁
𝛼

(𝑔𝛼 (𝑥, 𝑥′))4 − 𝑄2
2 (
𝑔2
+𝑔

2
− + 𝑔2

∩𝑔
2
∪ + 4 𝑔+𝑔∩𝑔−𝑔∪

))}]𝑁
, (3.5)

where the label 𝛼 runs over (+,−,∩,∪) with the short notation 𝑔± ≡ 𝑔±± and 𝑔∩ ≡
𝑔+−, 𝑔∪ ≡ 𝑔−+ (and similar ones for Σ auxiliary fields). In the original 0 + 1 𝑑 SYK model,
due to the fact that diagonal replicas terms minimized the solution in the saddle-point
approximation for effective action, only diagonal replica terms of the partition function
were considered (see Section 1.2). In this way, the action is diagonal in all its labels. In
our case, we also consider just diagonal replica terms, however, as our model is 1 + 1 𝑑
with chirality label, it is possible for off-diagonal chirality terms have some contribution
to the free energy. The integral over fermions𝜓± is equal to the Pfaffian of the operator
−(𝜕𝜏 ± 𝑖𝜕𝑥 ) − Σ± while, in the large 𝑁 limit, the outer integrals 𝜕Σ𝜕𝐺 can be performed
by finding a saddle point [1]. We introduce the 𝐺 and the self energy Σ̂ as 2 × 2 matrices
in the chirality label:

𝐺 =

(
𝑔+ 𝑔∩
𝑔∪ 𝑔−

)
, Σ̂ =

(
Σ+ Σ∩
Σ∪ Σ−

)
, (3.6)

𝐺−1 =

(
−(𝜕𝜏 − 𝑖𝜕𝑥 ) − Σ+ −Σ∩

−Σ∪ −(𝜕𝜏 + 𝑖𝜕𝑥 ) − Σ−

)
(3.7)

and the parity transformed (and transposed)𝐺 function, P𝐺P† =

(
𝑔− 𝑔∩
𝑔∪ 𝑔+

)
. Integrating

the fermion degree of freedom in Eq. (3.5), and considering the previous definition of the
matrices, we can write the effective action as:

−𝑆 [Σ̂,𝐺] = 𝑁

[
ln 𝑃 𝑓

[
𝐺−1] − 1

2

∫
𝑑2𝑥𝑑2𝑥′

(
Tr

[
Σ̂(𝑥, 𝑥′) 𝐺 (𝑥′, 𝑥)

]
− 𝐽

2

4
∑︁
𝛼

(𝑔𝛼 (𝑥, 𝑥′))4 − 𝑄4
2 (

Tr
[(
P𝐺P† 𝐺

)2
]
− 4 𝑔+𝑔∩𝑔−𝑔∪

))]
.

(3.8)



Since the model is translationally invariant in both time and space, its two-point functions
𝑔𝛼 and self-energy Σ𝛼 will depend on the difference of the two space-time points, e.g.
𝑔𝛼 (𝜏1, 𝑖𝑥1;𝜏2, 𝑖𝑥2) = 𝑔𝛼 ((𝜏1 − 𝜏2), 𝑖 (𝑥1 − 𝑥2)).

As for the original SYK model, the effective action (3.8) allows us to obtain the
Schwinger-Dyson equations using a saddle point approximation.

3.2 The Schwinger-Dyson equations

In the replica-diagonal approximation, the diagrammatic expansion of − ln𝑍 contains
all the connected diagrams, whereas 𝛽 𝐹 = −ln𝑍 just contains those connected along
fermionic lines. The difference between both are leading diagrams of order O(𝑁 −2), with
the free energy error being of the same order [1]. Since we are in the large 𝑁 limit,
the integrals in − ln𝑍 = − ln

(∫
DΣD𝐺 exp (−𝑆 [Σ,𝐺])

)
can be performed by the saddle

point approximation. The maximum for 𝐺 fields and the minimum over Σ fields give the
Schwinger-Dyson equations. In the mean field approximation, these saddle point values
of 𝐺 and Σ are exactly the Green function and self-energy of the model.

3.2.1 First approximation: diagonal solution
As in the 0 + 1 𝑑 SYK model, in the limit of large 𝐽 , 𝑄 , the Schwinger-Dyson equations
provide solutions which are invariant under reparametrizations. We prove this here in
the simpler setup which drops the off-diagonal terms in the matrices of Eqs.(3.6) and (3.7).
This is partially justified since, when focusing in the case 𝑁 = 4, the cross-correlators
vanish (see Appendix C, Eq. C.45). In this context, the effective action becomes:

𝑆 [Σ,𝐺] = 𝑁
∑︁
𝑎=±

[
− ln 𝑃 𝑓 [−(𝜕𝜏 + 𝑎𝑖𝜕𝑥 ) − Σ𝑎 (𝑥 .𝑥′)]

+1
2

∫
𝑑2𝑥𝑑2𝑥′

(
Σ𝑎 (𝑥, 𝑥′)𝑔𝑎 (𝑥, 𝑥′) −

𝐽 2

4 𝑔
4
𝑎 (𝑥, 𝑥′) −

𝑄2

2 𝑔
2
+(𝑥, 𝑥′)𝑔2

−(𝑥, 𝑥′)
)]
.

(3.9)
In the large𝑁 limit we resort to the saddle point approximationwhich gives the Schwinger-
Dyson equations:

Σ+(𝑥, 𝑥′) = 𝐽 2𝑔3
+(𝑥, 𝑥′) +𝑄2𝑔+(𝑥, 𝑥′)𝑔2

−(𝑥, 𝑥′) (3.10)
Σ−(𝑥, 𝑥′) = 𝐽 2𝑔3

−(𝑥, 𝑥′) +𝑄2𝑔−(𝑥, 𝑥′)𝑔2
+(𝑥, 𝑥′). (3.11)

The approximate solution of the Schwinger-Dyson equations in the large 𝐽 ,𝑄 limit, where
it is dropped the inverse free Green function term appearing in Eq.(3.7), is justified as the
prefactor of Σ𝑎 given by Eqs. (3.10) and (3.11) includes positive powers of 𝐽 and 𝑄 .

Finally, in the Schwinger-Dyson equations (3.10) and (3.11), it is evident the role that
play 𝐽 and 𝑄 . If 𝐽 = 0, we have the Random Thirring model [37], while on the contrary if
𝑄 = 0, we have two decoupled left/right-mover SYK models [35].



Chapter 3 - Large N limit of the non-chiral 1+1 dimensional SYK model 27

Reparametrization invariance

In original 0 + 1 𝑑 SYK model, the strong coupling limit implies that it is possible to
approximate the model by neglecting the kinetic part in the Schwinger-Dyson equations.
Written in that way, they are invariant under reparametrizations and a scale invariant
solution can be found. Then, it occurs a spontaneous symmetry breaking down to
𝑆𝐿(2,R) in the two-point correlator. In 1 + 1 𝑑 SYK models [35, 37] it has seen that UV
regularization plays an important role on correlation functions. Regularization breaks
conformal invariance and a regulator has to be included in the action, with the breaking
of scale invariance being explicit and not spontaneous.

In the large 𝐽 ,𝑄 limit, by dropping the dependence on free propagator, the Schwinger-
Dyson equations are invariant under reparametrization. According to [37], it is also
possible to include the kinetic part in the equations and still have conformal invariance.
However, as it was said, the regulator which is included in the action, breaks the scale
invariance and the situation becomes quite different from 0 + 1 𝑑 SYK model. Within this
approximation, Eqs. (3.10) and (3.11) are invariant under the conformal transformation
𝑧 → 𝑓 (𝑧) and 𝑧 → 𝑓 (𝑧), which reads:

𝑔±(𝑧, 𝑧′; 𝑧, 𝑧′) = [𝑓 ′(𝑧) 𝑓 ′(𝑧′)]Δ± [𝑓 ′(𝑧) 𝑓 ′(𝑧′)]Δ±𝑔±(𝑓 (𝑧), 𝑓 (𝑧′); 𝑓 (𝑧), 𝑓 (𝑧′))
≡ [𝑓 2]Δ± [𝑓 2]Δ±𝑔± (3.12)

where

[𝑓 2] = [𝑓 ′(𝑧) 𝑓 ′(𝑧′)] ; 𝑓
2
= 𝑓

′(𝑧) 𝑓 ′(𝑧′) ; 𝑔± = 𝑔±(𝑓 (𝑧), 𝑓 (𝑧′); 𝑓 (𝑧), 𝑓 (𝑧′)) . (3.13)

Up to nowwe have considered a four fields interactingmodel. Generalising to a𝑞−interaction
model, the self-energy Σ𝑎 , according to Eq.(3.11), with the same short-hand notation,
transforms as:

Σ±(𝑧, 𝑧′; 𝑧, 𝑧′) = 𝐽 2 [𝑓 2]Δ± (𝑞−1) [𝑓 2]Δ± (𝑞−1)𝑔±
𝑞−1

+𝑄2 [𝑓 2]
𝑞

2 (Δ±+Δ∓)−𝑞

4 Δ± [𝑓 2]
𝑞

2 (Δ±+Δ∓)−𝑞

4 Δ±𝑔±
𝑞

4𝑔∓
𝑞

2 . (3.14)

Under the same approximations, the unitary condition,∫
𝑑2𝑧′ 𝑔±(𝑧, 𝑧′; 𝑧, 𝑧′) Σ±(𝑧′, 𝑧′′; 𝑧′, 𝑧′′) = −𝛿 (𝑧 − 𝑧′′) 𝛿 (𝑧 − 𝑧′′), (3.15)

arises from minimization of the action with respect to Σ±. The unitary condition of
Eq.(3.15) implies that 𝑞

2 (Δ± + Δ∓) =
𝑞

2 (Δ± + Δ∓) = 1. Unbroken parity implies that
𝑔+(𝑧, 𝑧) = 𝑔−(𝑧, 𝑧) ≡ 𝑔(𝑧, 𝑧). Under these assumptions, Δ+ = 0 and Δ− = 0, so that we
can just redefine Δ+ → Δ− and Δ− → Δ+, and we can conclude that the saddle point
and unitary equations are invariant under conformal transformation 𝑧 → 𝑓 (𝑧), 𝑧 → 𝑓 (𝑧)
with Δ ≡ Δ− = 2

𝑞
.



Solutions of the Schwinger-Dyson equations in the q=4 case

Reparametrization invariance suggests the following solutions for Eqs.(3.10), (3.11) and
(3.15) in the 𝑞 = 4 case:

𝑔(𝑧, 𝑧) = 𝐶
′

𝑧
, Σ(𝑧, 𝑧) = 𝐶′3

(
𝐽 2

𝑧3 + 𝑄2

𝑧𝑧2

)
. (3.16)

Here 𝐶′ is a constant to be fixed by the unitary condition (3.15). Unlike the 0 + 1 𝑑 SYK
model, where scale invariance breaking was spontaneous, here the scale invariance is
an explicitly broken solution starting from the action where a UV regularization has to
be introduced all the way down to the IR limit with an UV cutoff Λ. This also emerges
when Fourier transforming the self-energy appearing in Eq. (3.16) as the integral does
not converge and requires the introduction of a regulator. Following [37], we pose the
Ansatz:

𝑔(𝑧, 𝑧) = 𝐶
𝑧

ln𝛼 (𝑧𝑧Λ2), Σ(𝑧, 𝑧) = 𝐶3
(
𝐽 2

𝑧3 + 𝑄2

𝑧𝑧2

)
ln3𝛼 (𝑧𝑧Λ2), (3.17)

where the log-term softens the RG flow on top of some leading power law term. The
second of the Eqs. (3.17) derives from the saddle point equation (3.10). In the present form,
these equation already solve the Schwinger-Dyson equations. To obtain the constant 𝐶
from the unitary condition (3.15), we have to express it, along with the Ansatz (3.17), in
momentum space:

𝑔(𝑝, 𝑝) Σ(𝑝, 𝑝) = −1, (3.18)

𝑔(𝑝, 𝑝) = 𝐶
∫

𝑑2𝑧

𝑧
ln(𝑧𝑧Λ2)𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 (3.19)

Σ(𝑝, 𝑝) = 𝐶3
(
𝐽 2

∫
𝑑2𝑧

𝑧3 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 +𝑄2
∫

𝑑2𝑧

𝑧𝑧2 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧
)
. (3.20)

The Fourier transforms in the large 𝐽 , 𝑄 limit are given by:

𝑔(𝑝, 𝑝) = 𝑖𝜋𝐶
𝑝

ln𝛼
(
Λ2

|𝑝 |2

)
, (3.21)

Σ(𝑝, 𝑝) ≈ 𝑖𝜋 𝑝 𝐶3 (𝐽 2 +𝑄2)
3𝛼 + 1 ln3𝛼+1

(
Λ2

|𝑝 |2

)
, (3.22)

where |𝑝 |2 = 𝑝𝑝 . Computations are developed in Appendix A. From the unitary condition
in momentum space given by Eq.(3.18), we get 𝛼 = −1

4 and 4𝜋2𝐶4 (
𝐽 2 +𝑄2) = 1.

Inclusion of the cutoff Λmakes the model not strictly Lorentz invariant. Just by consid-
ering low energy solution, i.e. by neglecting the kinetic part of Eq. (3.9), we have a Lorentz
covariance and conformal symmetry solution. This is a free-like solution except by the
inclusion of the regulator in the logarithmic term, as it is shown in Eq. (3.17). Our "quasi"
conformal symmetry is not broken by this free-like solution, therefore, not spontaneously
breaking of symmetry occurs. Also, by Fourier transform the quasi-conformal correlator,
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it is possible to solve the quasi-conformal Schwinger-Dyson equations. However, we
are still in a quasi-conformal invariant case, in such a way that no information about
excitations can be obtained from the quasi-conformal correlator solution.

The logarithmic dependence appearing in Eqs. (3.21) and (3.22) suggests to look for a
solution of the unitarity condition in terms of the correlation functions 𝐹𝛼

[
ln

(
Λ2

|𝑝 |2
)]

≡

ln𝛼
(
Λ2

|𝑝 |2
)
by rewriting Eq. (3.15) as:

1
𝐹𝛼

= 𝜋2(𝐽 2 +𝑄2)
∫ ln(Λ2/|𝑝 |2)

𝑑 ln𝑦 𝐹 3
𝛼 [𝑦] . (3.23)

From Eq. (3.23) one can get the differential equation 𝐹 ′𝛼 = 𝜋2(𝐽 2 +𝑄2)𝐹 5
𝛼 (the prime means

derivative), which provides the solution: 𝐹𝛼 =

[
1 + 4𝜋2(𝐽 2 +𝑄2) ln

(
Λ2

|𝑝 |2
)]−1/4

.
Correlation functions involving 𝐹𝛼 can be plugged into the Callan-Symanzik equation

(with 𝐽 2 = 𝐽 2 +𝑄2):[
Λ
𝜕

𝜕Λ
+ 𝛽 (𝐽 ) 𝜕

𝜕𝐽
+ 2 𝛾 (𝐽 )

]
1[

1 + 4𝜋2𝐽 2 ln
(

4Λ2

|𝑝 |2
)]1/4 = 0. (3.24)

The 𝛽-function satisfied by the fermion propagator 𝑔(𝑝, 𝑝) can be obtained

𝛽 (𝐽 ) = 4𝜋2𝐽 3 ; 𝛾 (𝐽 ) = 𝜋2𝐽 2. (3.25)

Since the 𝛽-function is positive, the coupling increases with increasing energy scale, and
the model becomes strongly coupled at high energy.

We must notice that RG flows have been obtained by considering the average coupling
𝐽 , which is coming from random coupling for realisations 𝑖, 𝑗, 𝑘, 𝑙 . One can think that some
realisations make also the coupling scale invariant or decreasing with increasing energy
scale. Then, there are relevant and irrelevant operators that will grow or decrease as we
flow into the IR, and these can also change as the couplings themselves evolve. However,
all these contributions are screening by the net effect of the average over disorder, and we
can think the model as an effective model with an effective coupling 𝐽 . A nice description
of this analysis is discussed in [37], where authors studied the flow of ensemble for the
random Thirring model, which is also a model with an infinite number of couplings in a
given realisation. Despite the above, the model serves as an effective theory below some
scale, how it is shown in Chapters 4 and 5, where properties of the model are inferred
from the limiting case 𝑁 = 4.

3.2.2 Full effective action: off-diagonal solution
In order to obtain the full solution from the effective action (3.8), we have to include the
off-diagonal terms of Eqs.(3.6) and (3.7). These give us the extra terms Σ∩𝑔∪ and Σ∪𝑔∩



for Tr
[
Σ̂(𝑥, 𝑥′) 𝐺 (𝑥′, 𝑥)

]
and the extra terms 2𝑔2

∩𝑔
2
∪ and 12𝑔+𝑔∩𝑔−𝑔∪ for Tr

[(
P𝐺P† 𝐺

)2
]
.

Collecting these terms, the action becomes:

−𝑆 [Σ̂,𝐺] = 𝑁

[
ln 𝑃 𝑓

[
𝐺−1] − 1

2

∫
𝑑2𝑥𝑑2𝑥′

(
Σ+𝑔+ + Σ∩𝑔∪ + Σ∪𝑔∩ + Σ−𝑔−

− 𝐽
2

4
∑︁
𝛼

(𝑔𝛼 (𝑥, 𝑥′))4 − 𝑄2
2 (
𝑔2
+𝑔

2
− + 𝑔2

∩𝑔
2
∪ + 4 𝑔+𝑔∩𝑔−𝑔∪

))]
,

(3.26)

where the label 𝛼 runs over (+,−,∩,∪). Most of the arguments developed for the diagonal
case can be extended and applied to the off-diagonal solution. The Schwinger-Dyson
equations are taken from the saddle-point approximation where, from the maximum for
𝑔𝛼 we have:

Σ+(𝑧, 𝑧) = 𝐽 2𝑔3
+ +𝑄2 [

𝑔2
−𝑔+ + 2 𝑔∩𝑔−𝑔∪

]
(3.27)

Σ−(𝑧, 𝑧) = 𝐽 2𝑔3
− +𝑄2 [

𝑔2
+𝑔− + 2 𝑔∪𝑔+𝑔∩

]
(3.28)

Σ∩(𝑧, 𝑧) = 𝐽 2𝑔3
∪ +𝑄2 [

𝑔2
∪𝑔∩ + 2 𝑔−𝑔∩𝑔+

]
(3.29)

Σ∪(𝑧, 𝑧) = 𝐽 2𝑔3
∩ +𝑄2 [

𝑔2
∩𝑔∪ + 2 𝑔+𝑔∪𝑔−

]
. (3.30)

In the same way, the equations can be solved in the conformal limit, which is suggested by
reparametrization arguments. Thus, in real space we assume that 𝑔+(𝑧, 𝑧) = 𝑎

𝑧
ln𝛼

(
|𝑧 |2Λ2) ,

𝑔−(𝑧, 𝑧) = 𝑎
𝑧

ln𝛼
(
|𝑧 |2Λ2) and 𝑔∩ = 𝑔∪ = 𝑏

|𝑧 | ln𝛼
(
|𝑧 |2Λ2) , obtaining:

Σ+(𝑧, 𝑧) =
[
𝐽 2𝑎

3

𝑧3 +𝑄2
(
𝑎3

𝑧 |𝑧 |2 + 2 𝑎𝑏2

𝑧 |𝑧 |2

)]
ln3𝛼 (

|𝑧 |2Λ2) (3.31)

Σ−(𝑧, 𝑧) =
[
𝐽 2𝑎

3

𝑧3 +𝑄2
(
𝑎3

𝑧 |𝑧 |2 + 2 𝑎𝑏2

𝑧 |𝑧 |2

)]
ln3𝛼 (

|𝑧 |2Λ2) (3.32)

Σ∪(𝑧, 𝑧) = Σ∩(𝑧, 𝑧) =
[
𝐽 2 𝑏

3

|𝑧 |3 +𝑄2
(
𝑏3

|𝑧 |3 + 2 𝑎
2𝑏

|𝑧 |3

)]
ln3𝛼 (

|𝑧 |2Λ2) , (3.33)

where |𝑧 |2 = 𝑧𝑧 and 𝑎 and 𝑏 are two constant parameters. From the minimization of
effective action over self-energy we can obtain the second group of Schwinger-Dyson
equations, which are of the form 𝐺−1 = −Σ̂ in momentum space. Accordingly, we need
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the matrix equations (3.6) and (3.7) expressed in Fourier space. In conformal limit they
take the form:

𝐺−1(𝑝, 𝑝) = 1
𝑔+𝑔− − 𝑔∩𝑔∪

(
𝑔− −𝑔∩
−𝑔∪ 𝑔+

)
(𝑝, 𝑝) =

(
−Σ+ −Σ∩
−Σ∪ −Σ−

)
(𝑝, 𝑝) = −Σ̂(𝑝, 𝑝).

(3.34)

The latter takes the form of the unitary condition (3.18) when off-diagonal terms are
neglected. Equations from diagonal terms are equal. The same occurs from the off-
diagonal terms, therefore we have two independent equations to obtain constants 𝑎 and 𝑏.
By taking the Ansatz, it is not difficult to find that, after Fourier transform (see Appendix
A), we have

4𝜋2 [
𝑎2(𝐽 2 +𝑄2) + 2𝑏2𝑄2] ln4𝛼+1

(
Λ2

|𝑝 |2

)
=

1
(𝑎2 − 𝑏2) (3.35)

and
4𝜋2 [

𝑏2(𝐽 2 +𝑄2) + 2𝑎2𝑄2] ln4𝛼+1
(
Λ2

|𝑝 |2

)
= − 1

(𝑎2 − 𝑏2) (3.36)

which again requires 𝛼 = −1/4 and has the solution 𝑏 = ±𝑖𝑎. Inserting the solution in any
of previous equation we found that:

𝑎4 =
1

8𝜋2(𝐽 2 −𝑄2) . (3.37)

This proves that the Schwinger-Dyson equations can be easily solved in the conformal
limit. In this limit, the off-diagonal part changes the contribution of the 𝑄 interaction in
the self-energy. However, as for the diagonal solution, the quasi-conformal correlator does
not give us any hint about excitation spectrum. Since we are still in a quasi-conformal
invariant case, excitations could be gapless if the system remains critial and/or gapped if
not.

3.2.3 Critical correlator at large distances in the conformal sym-
metry limit

The previous case shows that except for a very soft breaking obtained by the envelope

function ln
(
|𝑝 |2
Λ2

) 1
4 , the conformal symmetry forces the correlation function 𝑔+(𝑧, 𝑧) ∝ 1/𝑧

as in the free 1+1𝑑 case. Here we show that a critical powerlaw decay of the correlators at
large distance with non free-like exponent Γ ≠ 1 can also be obtained from the conformal
symmetry limit, for intermediate values of the couplings. Actually wewill use linearization
in approximating the self-energy obtained from the Schwinger-Dyson equations, which
will hold for just one single value of the coupling strengths. However, the method could
be extended to introduce dependence of Γ on 𝐽 in some range of 𝐽 values.

We consider the correlator by keeping just the lowest order of the expansion in
inverse powers of 𝑧 for large 𝑧. Introducing the additive correction 𝜂 (𝑧) and the expansion



parameter 𝜆 << 1 we have:

𝑔(𝑧, 𝑧) ≈ 𝑖 𝐶Γ
𝑟0
𝑧
[1 + 𝜆 𝜂 (𝑧)] + ... (3.38)

We linearize the saddle point equations for Σ, given in Eq. (3.16), with 𝜂 (𝑧) = 𝜂 𝐽 (𝑧) +
𝜂𝑄 (𝑧, 𝑧):

Σ𝐽 (𝑧, 𝑧) ≈ −𝑖
(
𝐽

𝜋𝑢0

)2 1
𝐶3
Γ

(𝑟0
𝑧

)3 (
1 + 3𝜆 𝜂 𝐽 (𝑧)

)
, (3.39)

Σ𝑄 (𝑧, 𝑧) ≈ −𝑖 3𝜆
(
𝑄

𝜋𝑢0

)2 1
3𝐶3

𝑄

(
𝑟 3

0
𝑧 |𝑧 |2

)
, (3.40)

where we have put 𝜂𝑄 (𝑧, 𝑧) just constant in Σ𝑄 for simplicity. We have dropped the
regularizing logarithmic term of Eq. (3.31). 𝐶Γ and𝐶𝑄 are fixed by the unitarity condition.
We invert the Fourier transform of Eq. (3.38) and use the Schwinger-Dyson equation
𝑔−1(𝑝) = 𝑔−1

0 (𝑝) − Σ(𝑝), assuming that, as in the conformal symmetry limit, all three
quantities have a 𝑝− dependence, which we drop, obtaining:

𝐶Γ × 𝑔−1(𝑝) → 1
1
𝑖 𝑝

− 𝑖 𝜆FT [(𝑟0/𝑧) × 𝜂] (𝑝, 𝑝)
≈ 𝑖𝑝 − 𝑖 𝑝2𝜆FT [(𝑟0/𝑧) × 𝜂] (𝑝, 𝑝) = 𝑖 𝑝 −𝐶ΓΣ(𝑝, 𝑝), (3.41)

where FT stands for Fourier transformation. The last equality allows to write down two
separate differential equations for 𝜂 𝐽 (𝑟 ) and 𝜂𝑄 (𝑟 ). The first one is:

𝜕2
𝑧/𝑟0

[𝑟0
𝑧
× 𝜂 𝐽 (𝑧)

]
≈

(
𝐽

𝜋𝑢0𝐶Γ

)2 (𝑟0
𝑧

)3
(

1
𝜆
+ 3 𝜂 𝐽 (𝑧)

)
. (3.42)

Introducing ℎ 𝐽 (𝑧) =
[ 1
𝑧
× 𝜂 𝐽 (𝑧)

]
, the first contribution in Eq. (3.38) can be written as

𝑔(𝑧)/𝐶Γ = 𝑖
𝑧
+ 𝑖 𝜆 ℎ 𝐽 , where 𝑧 is in units of 𝑟0. Defining 𝑏 =

(
𝐽

𝜋𝑢0𝐶Γ

)2
, we get the simple

differential equation

𝜕2
𝑧 ℎ 𝐽 (𝑧) −

3𝑏 𝐽
𝑧2 ℎ 𝐽 (𝑧) =

𝑏 𝐽

𝜆 𝑧3 , (3.43)

whose solution is

ℎ 𝐽 (𝑧) = −1
𝑧

1

𝜆

[
1 + 2

(
1 − 1

𝑏 𝐽

)] + 𝑧 1
2
(
𝑐1 𝑧

𝑠/2 + 𝑐2 𝑧
−𝑠/2

)
, 𝑠2 = 1 + 12 𝑏.

Putting 𝑐1 = 0, we get:

𝑔(𝑧)
𝐶Γ

=
𝑖

𝑧
− 𝑖

𝑧

1[
1 + 2

(
1 − 1

𝑏 𝐽

)] + 𝜆 𝑐2
𝑖

𝑧
𝑠
2−

1
2 .

(3.44)
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If we want that the free-like 1/𝑧 dependence to disappear in favour of 1
𝑧Γ

= 1/
(
𝑧

𝑠
2−

1
2

)
, we

have to put 𝑏 𝐽 = 1 and 𝑐2 ∝ 1/𝜆. Also the exponent Γ = (
√

13 − 1)/2 ≈ 1.3 is fixed. The
value of the exponent has been obtained just for a fixed 𝐽 ,𝑄 pair, due to the linearization
procedure adopted in Eqs. (3.39) and (3.40). It is remarkable that it is independent of 𝜆.

We now turn to the second term, Σ𝑄 , which provides a contribution that does not
conserve chirality.

As Σ𝑄 involves 𝑔2
−𝑔+ in real space, in place of Eq. (3.42), we have:

𝜕2
𝑧/𝑟0

[𝑟0
𝑧
× 𝜂𝑄 (𝑧, 𝑧)

]
≈ −

(
𝑄

𝜋𝑢0

)2
𝐶Γ

𝐶3
𝑄

𝑟 3
0

𝑧 𝑧2 . (3.45)

Defining once more 𝑏𝑄 =

(
𝑄

𝜋𝑢0𝐶𝑄

)3
, 𝜂𝑄 solves the differential equation

𝜕2
𝑧 𝜂𝑄 (𝑧, 𝑧) −

2
𝑧
𝜕𝑧 𝜂𝑄 (𝑧, 𝑧) +

2
𝑧2 𝜂𝑄 (𝑧, 𝑧) = −𝑏𝑄

1
𝑧2 𝑒

3 ℎ𝑄 (𝑧,𝑧) .

The solution for this equation, which adds non chirality to the general solution, is
𝜂𝑄 (𝑧, 𝑧) = 𝑧2

𝑧2

[
1 − 𝑏𝑄 ln(𝑧𝑧)

]
. Adding this contribution to Eq. (3.44) gives finally

𝑔(𝑧, 𝑧)
𝐶Γ

=
𝑖

𝑧
+ 𝑖 𝜆 ℎ 𝐽 (𝑧) +

𝑖

𝑧
𝜆 𝜂𝑄 (𝑧, 𝑧) ≈

(
𝑖

𝑧
+ 𝑖 𝜆ℎ 𝐽 (𝑧)

) [
1 + 1

𝑖
𝑧

𝑖 𝜆 𝜂𝑄 (𝑧, 𝑧)
𝑧

]

→ 𝑖(
𝑧
𝑟0

) √
13
2 − 1

2

1 + 𝜆
𝑧2

𝑧2
1

1 + 𝑏𝑄 ln
(
𝑧𝑧

𝑟 2
0

)  . (3.46)

The term in square brackets recalls an analogous term ( but in FT ), characterizing 𝐹𝛼 in
Eq. (3.24). However, the linearization of Eqs. (3.39) and (3.40) has the consequence that
the non chiral contribution disappears in the limit 𝜆 → 0.

As last comment, correlator 𝑔(𝑧, 𝑧) can be Fourier transformed with respect to time
and acquires a powerlaw dependence ∼ 𝜔Γ−1. As the exponent is smaller than unity (in
the approximate derivation presented above is Γ − 1 = 0.3), we find that this correlation
function originates from Non-Fermi-Liquid collective excitations.





–4–
Approximate Free Energy in the

non-chiral 1+1 dimensional extended
SYK model

This Chapter is the core of the original work and includes most of the results. It is a direct
continuation of the previous Chapter. However, we heavily use results and concepts
coming from the Chapter 5. Readers are invited to start reading the next Chapter if they
want to go deeper into the topic, or continue with this Chapter first to go directly to the
main results.

In the following Chapter 5 we derive the nature of the excitation spectrum and some
correlators for the 𝑁 = 4 version of the model which can be bosonized exactly. We find
that the pseudo-charge excitations display a gap, while the pseudo-spin ones are gapless.
In this Chapter we try to draw an analogy between the 0+1𝑑 SYK model and our extended
model by assuming that the features of the spectrum found in the 𝑁 = 4 case still hold
when 𝑁 >> 4.

In the 0+1𝑑 SYK model the conformal symmetry of the 𝑁 → ∞ limit is spontaneously
broken by the ground state. Then, symmetry is explicitly broken by reintroduce the
derivative term of the free Lagrangian as an ultraviolet correction. This implies that
the Goldstone bosons acquire a gap and they are denoted as pseudo-Goldstone in the
literature. At higher space dimension the symmetry is broken by ultraviolet corrections
and we can guess that gapped excitations are also present in our model. In this Chapter
we derive an expression for the free energy of the model in terms of the Green’s functions
that solve the SD equations and we assume that the correlators of the 𝑁 >> 4 case consist
again of two branches, one corresponding to the pseudo-spin, with free-like excitations
(Eq.5.77) and renormalized velocity𝑢𝑠 = 𝑢0

√︁
1 − 𝐽/𝜋𝑢0 of the linear spectrum, and another

corresponding to the pseudo-charge, with gapped excitations (Eq.5.100) with velocity
𝑢𝑐 = 𝑢0

√︁
1 + 𝐽/𝜋𝑢0, that reduce to the free-like excitations when 𝐽 → 0. While the

pseudo-charge excitations allow any large value of 𝐽 , the velocity vanishes at 𝐽/𝜋𝑢0 = 1
in the pseudo-spin branch. Therefore, this should be considered as the strong coupling
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limit.
Evaluation of the free energy requires also that the cross-chirality Green’s functions

𝑔∩, 𝑔∪ are known. We show that the correlators corresponding to these ones in the 𝑁 = 4
model vanish because they are non number conserving (Appendix C.3). A direct evaluation
of these correlators would require a precise knowledge of the excitation spectrum and it is
out of the present possibilities. However, the correlator corresponding to 𝑔∩𝑔∪ (Eq.5.104)
is number conserving in the model and can be evaluated in the 𝑁 = 4 limit exactly.

By looking at the free energy, we realize that if the coupling 𝑄 is set equal to the
coupling 𝐽 , the single 𝑔∩, 𝑔∪ are not needed in the free energy expression, as they always
appear as a product. Consequently we have decided to limit ourselves to the 𝑄 = 𝐽 case.
In this way we can surmise the contribution of the off-diagonal chirality correlators to
the free energy and give its approximate expression in terms of the velocities 𝑢𝑐 , 𝑢𝑠 and
of a gap Δ for the gapped excitation spectrum branch, which is chosen as a parameter. In
this way we are able to plot the free energy vs the gap Δ, given the value of 𝐽 and of the
velocities in the two spectrum branches and look for the minimum of the free energy for
a given coupling 𝐽 . The 𝐽 = 0 limit corresponds to the conformal symmetry at 𝑁 → ∞
limit which is a free limit. The results at finite 𝐽 are plotted in Fig. 4.1 and 4.2. They
show that a small value of 𝐽 is unable produce a minimum of the free energy at finite
gap, but the minimum at 𝐽 = 0 disappears and the free energy increase with Δ. When 𝐽
increases the free energy develops a minimum which becomes the absolute minimum
of the free energy in a restricted range of values of 𝐽 . In this range, at least within our
approximations, our model confirms the presence of gapped excitations in the spectrum.
At higher values of 𝐽 , 0.7 < 𝐽 < 0.9, the minimum is still present but it is metastable.
Meanwhile a stable minimum of free energy is lost. Values of 𝐽 > 0.9 make the minimum
fully disappear.

We now turn to show these results starting from the derivation of the free energy in
the 0 + 1 𝑑 SYK model [2].

4.1 Free energy

In the following we are going to derive the free energy as it can be done for the 0 + 1 𝑑
case. It is possible to relate the free energy with the effective action by writing the original
partition function as a functional integral and then inserting the solutions of Green’s
function and self-energy in the resulting expression [44, 45]. Due to the fact that 𝐺 and
Σ obey the equations of motion, the only contributing term are the derivatives of the
explicit dependence on 𝐽 and 𝑄 , so that we can take derivatives to avoid evaluating the
Pfaffian term [2]:

1
𝑃 𝑓 (𝐴)

𝜕𝑃 𝑓 (𝐴)
𝜕𝑥

=
1
2 𝑇𝑟

(
𝐴−1 𝜕𝐴

𝜕𝑥

)
.

Therefore, for the 𝐽 part first, we have:

𝜕𝐽 ln 𝑃 𝑓 [−(𝜕𝜏 + 𝑎𝑖𝜕𝑥 ) − Σ𝑎 (𝑥 .𝑥′)] =
1
2 𝑇𝑟

(
𝐺
𝜕Σ

𝜕𝐽

)
; (4.1)
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−𝜕𝐽
1
2 (Σ𝐺) = −1

2
[
Σ𝜕𝐽𝐺 +𝐺𝜕𝐽Σ

]
; (4.2)

𝜕𝐽

[
1
2
𝐽 2

4
∑︁
𝛼

(𝑔𝛼 (𝑥, 𝑥′))4
]

=
1
2 2 𝐽4

(∑︁
𝛼

𝑔𝛼 (𝑥, 𝑥′)
)4

+ 1
2
∑︁
𝛼

𝐽 2 (𝑔𝛼 (𝑥, 𝑥′))3
𝜕𝐽𝑔𝛼

=
𝐽

𝑞
𝐺𝑞 + 1

2Tr
[
Σ 𝜕𝐽𝐺

]
(4.3)

where the last term is Σ+𝑔+ +Σ∩𝑔∪ +Σ∪𝑔∩ +Σ−𝑔− and cancels with the one in the previous
line. Therefore, by summing all together, only one term survives from the 𝐽 contribution:

−𝛽𝐹 (𝐽 ) = 𝐽 𝜕𝐽
(
−𝛽𝐹

(𝐽 )

𝑁

)
=

(𝛽 𝐽 )2

𝑞

∫
𝑑2𝑧

∑︁
𝛼

(𝑔𝛼 (𝑧, 𝑧))4 (4.4)

Applying the same argument to evaluate the𝑄2 contribution to the free energy we obtain
the final result:

−𝛽𝐹 = 𝐽 𝜕𝐽 (−𝛽𝐹/𝑁 ) +𝑄 𝜕𝑄 (−𝛽𝐹/𝑁 )

=

∫
𝑑2𝑧

(
(𝛽 𝐽 )2

4
∑︁
𝛼

(𝑔𝛼 (𝑧, 𝑧))4 + (𝛽𝑄)2

2
[
𝑔2
+𝑔

2
− + 𝑔2

∩𝑔
2
∪ + 4𝑔+𝑔∩𝑔−𝑔∪

]
(𝑧, 𝑧)

)
.

(4.5)

As we can observed, single cross-chirality correlators 𝑔∩, 𝑔∪ are required. We do not have
any information about them. However, the product 𝑔∩𝑔∪ can be assumed heuristically
from correlators obtained in the 𝑁 = 4 case. This can help us to circumvent the lack of
information about off-diagonal correlators, as we will explore in Section 4.3.

4.2 Green’s functions
Let us recap the necessary Green’s functions to be used in the free energy expression.
From the 𝑁 = 4 case (see Chapter 5 for details) we have suggestions for 𝑔±(𝑧, 𝑧) (see
Eq.5.100) and for the product 𝑔∩(𝑧, 𝑧) 𝑔∪(𝑧, 𝑧) (see Eq.5.104). Here we emphasize the fact
that the capital 𝐺 will refer to correlators coming from the 𝑁 = 4 case, while 𝑔 stands for
large 𝑁 case. These quantities are all real and non chiral. However, in principle we have
no hint on 𝑔∩(𝑧, 𝑧), which is not expected to be real, but can be reasonably assumed to be
complex conjugate of 𝑔∪(𝑧, 𝑧). In fact, as it turned out in Section 3.2.2, 𝑔∩/∪ ∼ 𝑏/|𝑧 | with
𝑏 = ±𝑖𝑎, and 𝑎 being a real constant.

Assuming that the functional form of the correlators of the 𝑁 = 4 case holds also for
the large 𝑁 case, we are going to use the average Majorana fermion two-point function

𝐺±(𝑟 ) =
1
4
∑︁
𝑖

⟨𝜓 𝑖±(𝑟 )𝜓 𝑖±(0)⟩ (4.6)



as an indication for the 𝑁 >> 4 limit. In the 𝑁 = 4 case, it is possible to write the latter
as:

𝐺±(𝑟 ) =
1
4

∑︁
𝜎=↑,↓

⟨𝑐𝜎±(𝑟 )𝑐†𝜎±(0) + 𝑐†𝜎±(𝑟 )𝑐𝜎±(0)⟩. (4.7)

To reach this result, we have to introduce the complex fermions (5.64) and (5.65). The
bosonized version of this two-point function is:

𝐺±(𝑟 ) = ± 𝑖

2𝜋𝛼 (𝑒
𝜋
2 ⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0)−𝜙

2
𝑐 (0)⟩𝑒

𝜋
2 ⟨𝜃𝑐 (𝑟 )𝜃𝑐 (0)−𝜃

2
𝑐 (0)⟩𝑒

𝜋
2 ⟨𝜙𝑠 (𝑟 )𝜙𝑠 (0)−𝜙

2
𝑠 (0)⟩𝑒

𝜋
2 ⟨𝜃𝑠 (𝑟 )𝜃𝑠 (0)−𝜃

2
𝑠 (0)⟩).

(4.8)
The explicit form of the latter depends on the strength of the coupling. By considering
the strong coupling limit, the Green’s chiral conserving function 𝑔±(𝑧, 𝑧) ∼ 𝐺±(𝑟 ) is:

𝑔±(𝑧, 𝑧) = ± 1
2𝜋𝛼

(
𝛼√

(𝑢𝑠𝜏+𝛼)2+𝑥2

) 1
4

(
K𝑠+ 1

K𝑠

)
𝑒
− 1

8

(
K𝑐+ 1

K𝑐

) [∫ 𝑖 𝑥+𝑢𝑐𝜏
0

Δ
𝐿

√
−2𝑖 𝑥
𝑧+𝛼 𝐾1( Δ

𝐿

√
−2𝑖 𝑥

√
𝑧+𝛼)𝑑𝑧+𝑐.𝑐 .

]

×∏
± 𝑒

Δ
8K𝑐

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︃
±𝑖 𝑥
2𝜋𝐿 Γ

(±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

] Δ
8K𝑐 𝑒

− Δ𝑢𝑐𝜏
𝐿

(4.9)

which reproduces the free-like case when 𝐽 → 0. Evaluation of the free energy requires
also the off-diagonal Green’s functions 𝑔∩(𝑧, 𝑧) and 𝑔∪(𝑧, 𝑧), which are different from zero
in the large 𝑁 limit but they unfortunately vanish in the 𝑁 = 4 model (Appendix C.3).
For instance, some of the combinations which mix both left and right-movers Majorana
fermions that we can consider for the off-diagonal Green’s functions are: the sum on
Majorana’s flavors,

1
4
∑︁
𝑖

𝜓 𝑖±(𝑟 )𝜓 𝑖∓(0) =
1
4

[
𝜓 1
±(𝑟 )𝜓 1

∓(0) +𝜓 2
±(𝑟 )𝜓 2

∓(0) +𝜓 3
±(𝑟 )𝜓 3

∓(0) +𝜓 4
±(𝑟 )𝜓 4

∓(0)
]
, (4.10)

the next combination that we will call O𝑥
𝑇𝑆
(𝑟 ),

O𝑥
𝑇𝑆 (𝑟 ) =

1
2

[
(𝜓 1

+𝜓
1
− −𝜓 2

+𝜓
2
− +𝜓 3

−𝜓
3
+ −𝜓 4

−𝜓
4
+) − 𝑖 (𝜓 1

+𝜓
2
− +𝜓 2

+𝜓
1
− +𝜓 3

−𝜓
4
+ +𝜓 4

−𝜓
3
+)

]
, (4.11)

and other similar combination that we call O𝑦

𝑇𝑆
(𝑟 ),

O𝑦

𝑇𝑆
(𝑟 ) = −1

2
[
(𝜓 1

+𝜓
2
− +𝜓 2

+𝜓
1
− −𝜓 3

−𝜓
4
+ −𝜓 4

−𝜓
3
+) + 𝑖 (𝜓 1

+𝜓
1
− −𝜓 2

+𝜓
2
− −𝜓 3

−𝜓
3
+ +𝜓 4

−𝜓
4
+)

]
. (4.12)

Introducing again complex fermions (5.64) and (5.65) and its complex conjugates, previous
expressions are given by:

1
4
∑︁
𝑖

𝜓 𝑖±(𝑟 )𝜓 𝑖∓(0) =
1
4

∑︁
𝜎=↑,↓

[
𝑐𝜎±(𝑟 )𝑐†𝜎∓(0) + 𝑐†𝜎±(𝑟 )𝑐𝜎∓(0)

]
, (4.13)

O𝑥
𝑇𝑆 (𝑟 ) = 𝑐

†
↑+(𝑟 )𝑐

†
↑−(𝑟 ) + 𝑐

†
↓−(𝑟 )𝑐

†
↓+(𝑟 ), (4.14)
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O𝑦 (𝑟 )
𝑇𝑆

= −𝑖
[
𝑐
†
↑+(𝑟 )𝑐

†
↑−(𝑟 ) − 𝑐

†
↓−(𝑟 )𝑐

†
↓+(𝑟 )

]
. (4.15)

They reflect that, starting from mixed chirality Majorana components, expressions of
mixed chirality complex fermions are reached. The first of those, Eq. (4.13), is non-chiral
conserving and its correlator in the 𝑁 = 4 case vanishes (see Appendix C, Eq. (C.45)) and
is given by:

𝐺∩/∪(𝑟 ) =
1
4
∑︁
𝑖

⟨𝜓 𝑖±(𝑟 )𝜓 𝑖∓(0)⟩ =
1
4

∑︁
𝜎=↑,↓

⟨𝑐𝜎±(𝑟 )𝑐†𝜎∓(0) + 𝑐†𝜎±(𝑟 )𝑐𝜎∓(0)⟩ = 0. (4.16)

The other two, Eqs. (4.14) and (4.15), are non number conserving and, therefore, their
correlators also vanish in the 𝑁 = 4 case. Accordingly, no information about single
𝑔∩/∪(𝑧, 𝑧) is suggested from the 𝑁 = 4 case, at least for the cross-chirality expressions
considered above.

On the other side, the correlator corresponding to 𝑔∩𝑔∪ is number conserving and
it does not vanish in the 𝑁 = 4 model. To see this, let’s consider again the off-diagonal
expression Eq. (4.13) and let us define the four-Majorana component∑︁
𝑖, 𝑗

𝜓 𝑖+(𝑟 )𝜓 𝑖−(0)𝜓 𝑗
−(𝑟 )𝜓

𝑗
+(0) =

∑︁
𝜎,𝜎 ′

[
𝑐𝜎+(𝑟 )𝑐†𝜎−(0)𝑐𝜎 ′−(𝑟 )𝑐†𝜎 ′+(0) + 𝑐𝜎+(𝑟 )𝑐

†
𝜎−(0)𝑐†𝜎 ′−(𝑟 )𝑐𝜎 ′+(0)

+𝑐†𝜎+(𝑟 )𝑐𝜎−(0)𝑐𝜎 ′−(𝑟 )𝑐†𝜎 ′+(0) + 𝑐
†
𝜎+(𝑟 )𝑐𝜎−(0)𝑐†𝜎 ′−(𝑟 )𝑐𝜎 ′+(0)

]
.

(4.17)

The corresponding correlator of the last expression depends on the first and fourth terms
of the right side, while the others do not contribute. In this way, we obtain heuristically
the correlator corresponding to the product 𝑔∩𝑔∪ to be a four-point function that, in the
𝑁 = 4 language, we define as 𝐺∩∪:

𝐺∩∪ ≡
∑︁
𝑖, 𝑗

⟨𝜓 𝑖+(𝑟 )𝜓 𝑖−(0)𝜓 𝑗
−(𝑟 )𝜓

𝑗
+(0)⟩

∼
∑︁

𝜎,𝜎 ′=↑,↓
⟨𝑐𝜎+(𝑟 )𝑐†𝜎−(0)𝑐𝜎 ′−(𝑟 )𝑐†𝜎 ′+(0) + 𝑐𝜎+(𝑟 )𝑐

†
𝜎−(0)𝑐†𝜎 ′−(𝑟 )𝑐𝜎 ′+(0)

+𝑐†𝜎+(𝑟 )𝑐𝜎−(0)𝑐𝜎 ′−(𝑟 )𝑐†𝜎 ′+(0) + 𝑐
†
𝜎+(𝑟 )𝑐𝜎−(0)𝑐†𝜎 ′−(𝑟 )𝑐𝜎 ′+(0)⟩

∼ ⟨𝑐𝜎+(𝑟 )𝑐†𝜎−(0)𝑐𝜎−(𝑟 )𝑐†𝜎+(0) + 𝑐†𝜎+(𝑟 )𝑐𝜎−(0)𝑐†𝜎 ′−(𝑟 )𝑐𝜎 ′+(0)⟩ ≠ 0. (4.18)

These behaviors of the correlators for 𝑔∩/∪ and 𝑔∩𝑔∪ corresponds to the ones of the
triple-pairing operators O𝑥

𝑇𝑆
(𝑟 ), O𝑦

𝑇𝑆
(𝑟 ) and O𝑧

𝑇𝑆
(𝑟 ) = O𝑥

𝑇𝑆
(𝑟 ) + 𝑖O𝑦

𝑇𝑆
(𝑟 ), which describe

pairing with zero total momentum and are detailed in Subsection 5.4.4. Specifically, the
correlators of the non number conserving operators

O𝑧
𝑇𝑆 (𝑟 ) = 2𝑐†↑+(𝑟 )𝑐

†
↑−(𝑟 ) =

1
𝜋𝛼
𝑒−𝑖

√
2𝜋𝜃𝑐 (𝑟 )𝑒−𝑖

√
2𝜋𝜃𝑠 (𝑟 ) (4.19)



and its complex conjugate, vanish, while for the number conserving operator

O𝑧†
𝑇𝑆
(𝑟 )O𝑧

𝑇𝑆 (0) = 4𝑐↑+(𝑟 )𝑐†↑−(0)𝑐↑−(𝑟 )𝑐
†
↑+(0) (4.20)

does not. As Eq. (4.20) behaves as Eq. (4.18) in the 𝑁 = 4 case, we adopt the correlator
⟨O𝑧†

𝑇𝑆
(𝑧, 𝑧)O𝑧

𝑇𝑆
(0, 0)⟩ as an indication on the product𝑔∩(𝑧, 𝑧)𝑔∪(𝑧, 𝑧). Its explicit expression

is computed in Chapter 5 (Subsection 5.4.4) and allows us to write 𝑔∩(𝑧, 𝑧) 𝑔∪(𝑧, 𝑧) ∼
⟨O𝑧†

𝑇𝑆
(𝑧, 𝑧)O𝑧

𝑇𝑆
(0, 0)⟩ in such a way that we have:

𝑔∩𝑔∪(𝑧, 𝑧) =
1

𝜋2𝛼2

(
𝛼√︁

(𝑢𝑠𝜏 + 𝛼)2 + 𝑥2

) 1
K𝑠

𝑒
− 1

2K𝑐

[∫ 𝑖 𝑥+𝑢𝑐𝜏
0

Δ
𝐿

√
−2𝑖 𝑥
𝑧+𝛼 𝐾1( Δ

𝐿

√
−2𝑖 𝑥

√
𝑧+𝛼)𝑑𝑧+ln (𝛼2)+𝑐.𝑐 .

]

×
∏
±
𝑒

Δ
2K𝑐

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︂
±𝑖 𝑥
2𝜋𝐿 Γ

(
±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

] Δ
2K𝑐 𝑒

− Δ𝑢𝑐𝜏
𝐿

(4.21)

which reproduces the free-like case when 𝐽 → 0. In this way, we can relate the triple-
pairing operators with the correlators needed to compute the free energy, with the single
𝑔∩/∪(𝑧, 𝑧) being non number conserving, while the product 𝑔∩𝑔∪ is number conserving,
in the 𝑁 = 4 case.

4.3 Approximate Free energy in the Q = J case

Since we have no information about single 𝑔∩/∪(𝑧, 𝑧) in the large 𝑁 limit (and it is not
possible to obtain any suggestion from 𝑁 = 4 model), we restrict the model to the case
𝐽 2 = 𝑄2:

𝛽𝐹 =
(𝛽 𝐽 )2

4

∫
𝑑2𝑧

(∑︁
𝛼

(𝑔𝛼 (𝑧, 𝑧))4 + 2
[
𝑔2
+𝑔

2
− + 𝑔2

∩𝑔
2
∪ + 4 𝑔+𝑔∩𝑔−𝑔∪

]
(𝑧, 𝑧)

)
. (4.22)

By doing this, we can rearrange the related terms in order to obtain dependence only in
the product 𝑔∩𝑔∪. We proceed as follows:

𝑔4
∩ + 𝑔4

∪ + 2𝑔2
∩𝑔

2
∪ =

(
𝑔2
∩ + 𝑔2

∪
)2 ≡

(
𝑔2
∩ + 𝑔∩2

)2

= 4
[
(ℜ𝑒𝑔∩)2 − (ℑ𝑚𝑔∩)2]2

= 4 [ℜ𝑒 (𝑔∩𝑔∪) + ℑ𝑚(𝑔∩𝑔∪)]2

= 4 |𝑔∩𝑔∪ |2 . (4.23)

The free energy takes the form:

−𝛽𝐹 = (𝛽 𝐽 )2
∫

𝑑2𝑧
{
(𝑔+𝑔−)2 + (𝑔∩𝑔∪)2 + 2 𝑔+𝑔∩𝑔−𝑔∪

}
=

(𝛽 𝐽 )2

2

∫
𝑑2𝑧

(
Tr𝐺2

)2
, (4.24)
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with𝐺 given in Eq. (3.6). This is the extension of the result for the 0+1𝑑 Sachdev-Ye-Kitaev
model [2] to the 1 + 1 𝑑 non chiral case for 𝐽 2 = 𝑄2. We now discuss how this expression
behaves in presence of the gap Δ, defined in Eq. (5.94) as:

Δ

𝐿
=

2
𝛼

√︄
K−2
𝑐 − 1
K2
𝑐

, (4.25)

where K−1
𝑐 =

√︃
1 + 𝐽

𝜋𝑢0
is a dimensionless factor related to the interaction. Up to now,

all ours calculations have been performed analytically. Now, graphs are drawn from
numerical solutions of the diagonal correlators 𝑔±(𝑧, 𝑧), given by Eq. (4.9), and the off-
diagonal correlators product 𝑔∩(𝑧, 𝑧)𝑔∪(𝑧, 𝑧), given by Eq. (4.21). We also have to consider
the gap Δ, which is choosen as a parameter.

In Fig. 4.1 it is shown the free energy 𝛽𝐹 vs the gap Δ for different values of the
coupling 𝐽 normalized to 𝑢0𝜋 , in the physical bound 0 < 𝐽/𝑢0𝜋 < 1. In the range 𝐽 ≤ 0.3,
the model is unable to produce a minimum of the free energy for a finite gap. When 𝐽 goes
to zero, the minimum disappears and the free energy increases with Δ. For increasing
values of 𝐽 , the free energy develops an absolute minimum which confirms, at least within
our approximations, the presence of gapped excitations in the model’s spectrum in the
range 0.4 ≤ 𝐽 ≤ 0.6. At higher values of 𝐽 , let us say 0.7 ≤ 𝐽 ≤ 0.8, the minimum is still
present but becomes metastable, meanwhile a stable minimum of the free energy is lost
and the model with a gap no longer holds. Close to the upper limit 𝐽 = 1 of the physical
bound, when 𝐽 ≥ 0.9, the minimum fully disappears, as it is shown in Fig.4.1(b) and, more
in detail, in Fig. 4.2.

(a) (b)

Figure 4.1: Free energy 𝛽𝐹 vs the gap Δ for different values of 𝐽 . From (a) it is observed
that the model does not develop any minimum when 𝐽 = 0.3 or lower. At 𝐽 = 0.4 an
absolute minimum starts. Gapped excitations hold until 𝐽 = 0.6. Figure (b) shows high
values of 𝐽 . The minimum is not longer stable, but it is metastable and well defined at
𝐽 = 0.7. For 𝐽 > 0.7, the minimum becomes shallow and eventually disappears for 𝐽 ≥ 0.9.



Figure 4.2: Free energy 𝛽𝐹 vs the gap Δ for 𝐽 = 0.9. In the strong coupling limit, close
to the upper limit 𝐽 = 1 of the physical bound, the minimum of the free energy fully
disappears.

In Fig. 4.3 are represented the 𝑥/𝐿 dependent Green’s functions used in the code in the
gapped regime 𝐽 = 0.6, where 𝑥 represents the difference of the two space points, due to the
translational invariance, and 𝐿 is the size of the system. Both 𝑔++ ≡ 𝑔+ and 𝑔+−𝑔−+ ≡ 𝑔∩𝑔∪
are taken from the 𝑁 = 4 case in such a way that 𝑔+ ∼ 𝐺++ and 𝑔∩𝑔∪ ∼ 𝐺+−𝐺−+ by
assuming that the functional form of the correlators are the same for 𝑁 >> 4. Correlators
were drawn for the specific time 𝜏 = 0.01, and the fixed gap Δ = 1.71. 𝑔+ = 𝑔− tends
to unity by construction when 𝑥 → 0 and shows a crossover from powerlaw decay to
exponential decay ∼ 𝑒−

𝜋𝑥
8

Δ
K𝑐 at large 𝑥 . The product 𝑔∩(𝑧, 𝑧)𝑔∪(𝑧, 𝑧) has been chopped to

unity at small distances and has an exponential decay ∼ 𝑒−
𝜋𝑥
2

Δ
K𝑐 at large distances. This

does not affect the qualitative results.

Figure 4.3: Spatial 𝑥/𝐿 dependent decay of the normalized Green functions 𝑔++ ≡ 𝑔+(𝜏 =
0, 01, 𝑥 ; 𝐽 = 0.60,Δ = 1.71) and 𝑔+− ∗ 𝑔−+ ≡ 𝑔∩(𝜏 = 0, 01, 𝑥 ; 𝐽 = 0.60,Δ = 1.71)𝑔∪(𝜏 =

0, 01, 𝑥 ; 𝐽 = 0.60,Δ = 1.71) used to compute the free energy. The figure shows them for
the specific fixed values Δ = 1.71, 𝜏 = 0.01 and 𝐽 = 0.6, in the gapped regime.
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(a) (b)

Figure 4.4: (a) Gap of the minimum Δ𝑚𝑖𝑛 vs coupling 𝐽 . By increasing 𝐽 also the Δ𝑚𝑖𝑛
increases. (b) Minimum depth of free energy vs gap of the minimum Δ𝑚𝑖𝑛 . The minimum
of 𝛽𝐹 approaches to zero when Δ𝑚𝑖𝑛 increases, i.e. when 𝐽 increases, becoming shallow.

Finally, from Fig. 4.4 (a) we can realize that, as 𝐽 increases, so does Δ of the minimum.
The divergent tendency for values close to the upper limit 𝐽 = 1 of the physical bound
reflects the fact that the minimum becomes shallow for higher values of 𝐽 , as can be seen
in Fig. 4.4(b).

In conclusion, we have drawn an analogy between the 0 + 1 𝑑 SYK model and our
extended model by assuming that the features of the spectrum found in the 𝑁 = 4 case still
hold when 𝑁 >> 4. We surmise that the spectrum of the 𝑁 >> 4 case includes again two
branches as in the 𝑁 = 4 case: a gapless one, corresponding to the pseudo-spin sector with
renormalized velocity 𝑢𝑠 = 𝑢0

√︁
1 − 𝐽/𝜋𝑢0, and a gapped one, with gap Δ, corresponding

to the pseudo-charge sector with velocity 𝑢𝑐 = 𝑢0
√︁

1 + 𝐽/𝜋𝑢0. While the pseudo-charge
excitations have no restriction in the value of 𝐽 , the velocity of the pseudo-spin branch
vanishes at 𝐽/𝜋𝑢0 = 1, so that we consider 𝐽/𝜋𝑢0 ≲ 1 as the strong coupling limit in
this approach. In this way, the physical bound 0 < 𝐽/𝜋𝑢0 < 1 is established. We derive
an expression for the free energy 𝛽𝐹 in terms of the Green function given by Eq. (3.6).
We evaluate it , for the case 𝐽 = 𝑄 , in the zero temperature limit 𝛽 → ∞, by adopting
heuristically the functional form of 𝑔±(𝑧, 𝑧) and 𝑔∩(𝑧, 𝑧)𝑔∪(𝑧, 𝑧) obtained in the Chapter 5
for the 𝑁 = 4 case (Eqs. 4.9 and 4.21). These functions tend to the "free-like" limit when
𝐽/𝜋𝑢0 is small and Δ → 0, a limiting form that has been discussed in the Section 3.2.
This limiting form is in contrast with the fact that the derivation of the pseudo-charge
correlators in the 𝑁 = 4 case requires Δ and 𝐽/𝜋𝑢0 to be sizeable. It follows that our
results, which are in any case just qualitative, cannot reproduce the real features of the
large 𝑁 model in the two opposite limits of small and large coupling 𝐽/𝜋𝑢0. As it is shown
in Fig. 4.1, there is a range of intermediate values for 𝐽/𝜋𝑢0 in which the free energy of
our model has a minimum at finite Δ and the minimum is indeed lower in energy than
the reference energy at Δ = 0 (see Fig.4.4).
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The non-chiral 1+1 dimensional SYK

model: N = 4 case

In this chapter we solve the model for a specific value of 𝑁 by considering four Majorana
fermions. In this context, random Gaussian distribution of coupling loses its meaning and
becomes fixed at a constant value 𝐽 ≥ 0. By studying the theory in the bosonization picture
after constructing complex fermions, it is observed a pseudo-charge and pseudo-spin
sectors separation. Correlators are obtained for small and large coupling 𝐽 . In the small
coupling regime, correlators are free-like in the sense that, free solutions are renormalized
by the interaction factor K𝜌 and the renormalized velocity 𝑢𝜌 . In the strong coupling
regime, an approximate correlator function is obtained, which becomes free-like in the
limit 𝐽 → 0. By studying the energy-momentum tensor, it is observed that the model is
non traceless. Therefore, the 𝑁 = 4 case appears to be non conformal invariant. Finally,
other physical quantities are obtained, characterized by renormalized factors.

5.1 Bosonization of the model

In the 𝑁 = 4 case there is just one interaction parameter 𝐽 = 𝑄 ≥ 0 and just one way to
order the four Majorana fermions. Lagrangian density acquires a simple form:

L = L0 + L𝐽 ≡
𝑖

2
∑︁
𝑖=1,4

[
𝜓 𝑖+(𝜕𝑡 + 𝜕𝑥 )𝜓 𝑖+ +𝜓 𝑖−(𝜕𝑡 − 𝜕𝑥 )𝜓 𝑖−

]
−𝐽

{
𝜓 1
+𝜓

2
+𝜓

3
+𝜓

4
+ +𝜓 1

+𝜓
2
+𝜓

3
−𝜓

4
− +𝜓 1

+𝜓
2
−𝜓

3
−𝜓

4
+ +𝜓 1

+𝜓
2
−𝜓

3
+𝜓

4
− + (+ ↔ −)

}
.

(5.1)

Bosonization is an useful technique in one-spatial dimensional systems where some results
can become trivial by considering bosonic operators. For instance, a quartic fermionic
interaction can be replaced by a quadratic bosonic interaction, which is easier to solve
[46]. One of the bosonization prerequisites is a theory that can be formulated in terms of
a set of fermion creation and annihilation operators with canonical anti-commutation

45



relations [47] {
𝑐𝑘𝜂, 𝑐

†
𝑘 ′𝜂′

}
= 𝛿𝜂𝜂′𝛿𝑘𝑘 ′, (5.2)

where 𝜂 denotes species (chirality, spin, etc.) and 𝑘 is an energy index. Therefore, it is
convenient to introduce complex fermion fields for each chirality of Majorana fermions:

𝑐↑± =
1
√

2
(𝜓 1

± + 𝑖𝜓 2
±) , 𝑐↓± =

1
√

2
(𝜓 3

± + 𝑖𝜓 4
±)

𝑐
†
↑± =

1
√

2
(𝜓 1

± − 𝑖𝜓 2
±) , 𝑐

†
↓± =

1
√

2
(𝜓 3

± − 𝑖𝜓 4
±) (5.3)

distinguished by a pseudo-spin index (↑,↓). The free action adopts the following form:

𝑆0 =

∫
𝑑2−→𝑥

∑︁
𝜎=↑,↓

[
𝑐
†
𝜎+(𝜕𝑡 + 𝑖𝜕𝑥 )𝑐𝜎+ + 𝑐†𝜎−(𝜕𝑡 − 𝑖𝜕𝑥 )𝑐𝜎−

]
, (5.4)

where 𝜎 labels the pseudo-spin fermion index. For any pair of indices 𝜎± and 𝑥 ≠ 𝑥′,{
𝑐 (𝑥), 𝑐†(𝑥′)

}
= {𝑐 (𝑥), 𝑐 (𝑥′)} =

{
𝑐†(𝑥), 𝑐†(𝑥′)

}
= 0. In the free case, right and left movers

are decoupled, and the second quantized Hamiltonian appears to be:

𝐻0 =
∑︁
𝜎=↑↓

∫
𝑑𝑥

[
𝑐
†
𝜎+(𝑥) (−𝑖𝜕𝑥 )𝑐𝜎+(𝑥) + 𝑐†𝜎−(𝑥) (𝑖𝜕𝑥 )𝑐𝜎−(𝑥)

]
. (5.5)

After Fourier transform, we obtain

𝐻0 =
∑︁
𝜎=↑↓

∫
𝑑𝑝

2𝜋

[
𝑐
†
𝜎+(𝑥) (𝑝)𝑐𝜎+(𝑥) + 𝑐†𝜎−(𝑥) (−𝑝)𝑐𝜎−(𝑥)

]
, (5.6)

which say us that right and left fermions have energies 𝐸 = ±𝑝 , respectively. Furthermore,
the V-like spectrum is linearized around 𝑝 = 0 and it is extended to all values of 𝑝 , leading
to an infinite number of negatives states. This is also a prerequisite of constructive
bosonization [47], even though it is not mandatory for using the technique itself. Negative
states can lead to not-well defined theory after bosonization and a momentum cutoff
could be necessary. In the next section, bosonization conduces to pseudo-spin and pseudo-
charge sectors separation (don’t confuse pseudo-spin sector with pseudo-spin fermion
index 𝜎), where we will have to restrict values of coupling 𝐽 in order to have a well defined
Hamiltonian.

Turning now to interactions, the interacting action 𝑆 𝐽 in terms of complex fermions
becomes:

𝑆 𝐽 = 𝐽

∫
𝑑2−→𝑥

∑︁
𝛼=±

(
𝑐
†
↑𝛼𝑐↑𝛼𝑐

†
↓𝛼𝑐↓𝛼 +𝑐

†
↑𝛼𝑐↑𝛼𝑐

†
↓−𝛼𝑐↓−𝛼 +𝑐

†
↑𝛼𝑐↑−𝛼𝑐

†
↓−𝛼𝑐↓𝛼 +𝑐

†
↑𝛼𝑐↑−𝛼𝑐

†
↓𝛼𝑐↓−𝛼

)
. (5.7)

The first process in the interaction 𝑐†↑𝛼𝑐↑𝛼𝑐
†
↓𝛼𝑐↓𝛼 just couples fermions on the same side of

the Fermi surface. The second process 𝑐†↑𝛼𝑐↑𝛼𝑐
†
↓−𝛼𝑐↓−𝛼 corresponds to a forward scattering,
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where fermions are coupled from each side of the Fermi surface but staying both of
them in the same side after interaction. Finally, the last two process correspond to a
backscattering where fermions exchange sides after interaction [48]. The interacting
action can be written in a more simplified form by defining 𝑐𝜎 = 𝑐𝜎− + 𝑐𝜎+:

𝑆 𝐽 = 𝐽

∫
𝑑2−→𝑥 𝑐†↑ (𝑥) 𝑐↑(𝑥) 𝑐

†
↓ (𝑥) 𝑐↓(𝑥). (5.8)

In the present form the problem is similar to the Tomonaga -Luttinger model solved by
Dzyaloshinski and Larkin [49, 50], but in the absence of a Fermi sea. The interaction
is Hubbard-like and the model can be completely related with the Hubbard model by
𝜂↑𝜂↓ = 𝑐

†
↑𝑐↑𝑐

†
↓𝑐↓. To see the connection, it is necessary to consider just conserved chirality

interaction from our model, and drop the rapidly oscillating factors from Hubbard model.
Even if the final result seems equal, as it was said, one essential difference is that our
model is unbounded from below.

Now, after all these considerations, the model can be bosonized according to

𝑐𝜎±(𝑡, 𝑥) =: 1
√

2𝜋𝛼
𝑒±𝑖

√
4𝜋𝜙𝜎± (𝑡,𝑥) : , 𝑐

†
𝜎±(𝑡, 𝑥) =: 1

√
2𝜋𝛼

𝑒∓𝑖
√

4𝜋𝜙𝜎± (𝑡,𝑥) :, (5.9)

where 𝜙𝜎±(𝑡, 𝑥) are bosonic fields satisfying the commutation relation

[𝜙𝜎𝛼 (𝑥), 𝜙𝜎 ′𝛼 ′ (𝑥′)] =
𝑖

4𝛿𝜎𝜎
′ 𝑠𝑔𝑛(𝑥 − 𝑥′) ; (𝛼 = 𝛼′) (5.10)

=
𝑖

4 ; (𝛼 ≠ 𝛼′) (5.11)

and : O : is the normal ordering of the operator O. Thus, we can obtain the following
normal ordered transformations (see Appendix B):

: 𝑐†𝜎±(𝑥)𝑐𝜎±(𝑥) := 1
√
𝜋
𝜕𝑥𝜙𝜎±(𝑥) ; −𝑖𝑐†𝜎±(𝑥)𝜕𝑥𝑐𝜎±(𝑥) =: [𝜕𝑥𝜙𝜎±(𝑥)]2 : . (5.12)

These transformations relate two complex fermions with the same chirality. Thereby, it
can be directly applied in the two first terms on the right side of the interacting action 𝑆 𝐽
(5.7). Note that they are proportional to the operator 𝜕𝑥𝜙𝜎± because the point splitting
was made in the 𝑥 direction [35]. Eqs. (5.9) and (5.12) correspond to our bosonization
dictionary.

Let us start deriving the bosonized part of the interaction. From Eq. (5.8), it is seen
that the Hubbard’s like interaction is proportional to

𝑐
†
↑𝑐↑𝑐

†
↓𝑐↓ = 𝑐

†
↑+𝑐↑+𝑐

†
↓+𝑐↓+ + 𝑐

†
↑−𝑐↑−𝑐

†
↓−𝑐↓−

+𝑐†↑+𝑐↑+𝑐
†
↓−𝑐↓− + 𝑐†↑−𝑐↑−𝑐

†
↓+𝑐↓+

+𝑐†↑+𝑐↑−𝑐
†
↓−𝑐↓+ + 𝑐

†
↑−𝑐↑+𝑐

†
↓+𝑐↓−

+𝑐†↑+𝑐↑−𝑐
†
↓+𝑐↓− + 𝑐†↑−𝑐↑+𝑐

†
↓−𝑐↓+ (5.13)



𝑐
†
↑𝑐↑𝑐

†
↓𝑐↓ ≡ 𝑗0↑ 𝑗0↓ + 𝑐†↑+𝑐↑−𝑐

†
↓−𝑐↓+ + 𝑐

†
↑−𝑐↑+𝑐

†
↓+𝑐↓− + 𝑐†↑+𝑐↑−𝑐

†
↓+𝑐↓− + 𝑐†↑−𝑐↑+𝑐

†
↓−𝑐↓+. (5.14)

Using the first equation of the bosonization dictionary (5.12), it is easy to see that, for
instance, 𝑐†↑+𝑐↑+𝑐

†
↓+𝑐↓+ = 1√

𝜋
𝜕𝑥𝜙↑+(𝑥) 1√

𝜋
𝜕𝑥𝜙↓+(𝑥). With this (and similarly for the others),

we have

𝑗0↑ 𝑗0↓ =
1
𝜋

(
𝜕𝑥𝜙↑+𝜕𝑥𝜙↓+ + 𝜕𝑥𝜙↑+𝜕𝑥𝜙↓− + 𝜕𝑥𝜙↑−𝜕𝑥𝜙↓+ + 𝜕𝑥𝜙↑−𝜕𝑥𝜙↓−

)
=

1
𝜋
𝜕𝑥𝜙↑𝜕𝑥𝜙↓ (5.15)

where 𝜙𝜎 = 𝜙𝜎+ + 𝜙𝜎− was considered. The others four last terms appearing in the
interaction are related with interactions like𝜓𝜓 which are proportional to 1

𝛼
cos𝜙 , with

the mean value of the composite operator being zero since they create and destroy different
right or left moving fermions. For simplicity, in the following we are going to omit the
constants in the bosonization dictionary (5.9) and put them back at the end. For the first
two backscattering process we have:

𝑐
†
↑+𝑐↑−𝑐

†
↓−𝑐↓+ + 𝑐

†
↑−𝑐↑+𝑐

†
↓+𝑐↓− = 𝑒−𝑖𝜙↑+𝑒−𝑖𝜙↑−𝑒𝑖𝜙↓−𝑒𝑖𝜙↓+ + 𝑒𝑖𝜙↑−𝑒𝑖𝜙↑+𝑒−𝑖𝜙↓+𝑒−𝑖𝜙↓−

= 𝑒−𝑖 (𝜙↑++𝜙↑−)𝑒−
1
2 [𝜙↑+,𝜙↑−]𝑒𝑖 (𝜙↓++𝜙↓−)𝑒

1
2 [𝜙↓+,𝜙↓−]

+𝑒𝑖 (𝜙↑++𝜙↑−)𝑒 1
2 [𝜙↑+,𝜙↑−]𝑒−𝑖 (𝜙↓++𝜙↓−)𝑒−

1
2 [𝜙↓+,𝜙↓−]

(5.16)

where it was used the relation 𝑒𝐴𝑒𝐵 = 𝑒𝐵𝑒𝐴𝑒 [𝐴,𝐵] = 𝑒𝐴+𝐵𝑒
1
2 [𝐴,𝐵] , which is valid if 𝐴 and

𝐵 commutes with [𝐴, 𝐵]. This is true since the bosonic commutator [𝐴, 𝐵] is zero if the
spins are different. On the other hand, it is also true for equal spins but different movers
+,−, since the bosonic commutator [𝐴, 𝐵] is again zero. Bosonic commutator is a constant
when spin and chirality are equal for both operators, but even with this, the constant does
not depend on the spin and the exponential with the commutator cancels in both terms
of the sum. Recalling that 𝜙𝜎+ + 𝜙𝜎− = 𝜙𝜎 we have

𝑐
†
↑+𝑐↑−𝑐

†
↓−𝑐↓+ + 𝑐

†
↑−𝑐↑+𝑐

†
↓+𝑐↓− = 𝑒−𝑖𝜙↑𝑒𝑖𝜙↓ + 𝑒𝑖𝜙↑𝑒−𝑖𝜙↓

= 𝑒−𝑖 (𝜙↑−𝜙↓)𝑒
1
2 [𝜙↑,𝜙↓] + 𝑒𝑖 (𝜙↑−𝜙↓)𝑒 1

2 [𝜙↑,𝜙↓]

= 2
(
𝑒−𝑖 (𝜙↑−𝜙↓) + 𝑒𝑖 (𝜙↑−𝜙↓)

2

)
𝑒

1
2 [𝜙↑,𝜙↓]

= 2 cos (𝜙↑ − 𝜙↓),

and recovering constants, we obtain:

𝑐
†
↑+𝑐↑−𝑐

†
↓−𝑐↓+ + 𝑐

†
↑−𝑐↑+𝑐

†
↓+𝑐↓− =

1
2𝜋2𝛼2 cos

√
4𝜋 (𝜙↑ − 𝜙↓) . (5.17)

In a similar way, for the other two backscattering process we obtain:

𝑐
†
↑+𝑐↑−𝑐

†
↓+𝑐↓− + 𝑐†↑−𝑐↑+𝑐

†
↓−𝑐↓+ =

1
2𝜋2𝛼2 cos

√
4𝜋 (𝜙↑ + 𝜙↓). (5.18)



Chapter 5 - The non-chiral 1+1 dimensional SYK model: N = 4 case 49

For the kinetic part, we found easier to apply bosonization technique by considering the
Hamiltonian form of the model and the second relation of Eq. (5.12). In this way we can
directly bosonize the Hamiltonian density as follows

H0 =
∑︁
𝜎=↑,↓

[
𝑐
†
𝜎+(−𝑖𝜕𝑥 )𝑐𝜎+ + 𝑐†𝜎−(𝑖𝜕𝑥 )𝑐𝜎−

]
=

∑︁
𝜎=↑,↓

[
(𝜕𝑥𝜙𝜎+)2 + (𝜕𝑥𝜙𝜎−)2] . (5.19)

Meanwhile the interaction part can be expressed as a combination of 𝜙𝜎+ and 𝜙𝜎−, the
kinetic part has them explicitly. In the free model both chiralities are independent and
nothing have to be diagonalized. It is because interaction when chiralities are mixed up.
One possible way is to attempt to separate them in the interacting part, but cosines make
the task difficult. The other possibility is to mix chiralities in the kinetic part and find an
unitary transformation that allows us to diagonalize the Hamiltonian. For instance, let us
consider that

H0 =
1
2

∑︁
𝜎=↑,↓

[
2(𝜕𝑥𝜙𝜎+)2 + 2(𝜕𝑥𝜙𝜎−)2 + 2𝜕𝑥𝜙𝜎+𝜕𝑥𝜙𝜎− − 2𝜕𝑥𝜙𝜎+𝜕𝑥𝜙𝜎−

]
=

1
2

∑︁
𝜎=↑,↓

[
(𝜕𝑥𝜙𝜎+ − 𝜕𝑥𝜙𝜎−)2 + (𝜕𝑥𝜙𝜎+ + 𝜕𝑥𝜙𝜎−)2] (5.20)

where, considering 𝜙𝜎 = 𝜙𝜎+ +𝜙𝜎−, the second term is clearly (𝜕𝑥𝜙𝜎 )2. For the first term it
is useful to take into account dual fields 𝜙𝜎 = 𝜙𝜎+ + 𝜙𝜎− and 𝜃𝜎 = 𝜙𝜎− − 𝜙𝜎+, obeying the
commutation relations (5.11) (and similar relation for 𝜃 ) and [𝜙 (𝑥1), 𝜃 (𝑥2)] = 𝑖

2𝑠𝑔𝑛(𝑥2−𝑥1).
Because each of 𝜙𝜎 and 𝜃𝜎 commutes with itself at any 𝑥 and 𝑦, we can define a canonical
momentum field conjugate to 𝜙𝜎 (𝑥)

Π𝜎 (𝑥) = 𝜕𝑥𝜃𝜎 (𝑥) = 𝜕𝑥 (𝜙𝜎− − 𝜙𝜎+), (5.21)

being possible in this way to recover the canonical form of the free boson kinetic part:

H0 =
1
2

∑︁
𝜎=↑,↓

[
(Π𝜎 )2 + (𝜕𝑥𝜙𝜎 )2] . (5.22)

The complete Hamiltonian of the model becomes

H =
1
2

∑︁
𝜎=↑,↓

𝑢0
[
(Π𝜎 )2 + (𝜕𝑥𝜙𝜎 )2]

+𝐽
(

1
𝜋
𝜕𝑥𝜙↑𝜕𝑥𝜙↓ +

1
2𝜋2𝛼2 cos

√
4𝜋 (𝜙↑ − 𝜙↓) +

1
2𝜋2𝛼2 cos

√
4𝜋 (𝜙↑ + 𝜙↓)

)
,

(5.23)



where free boson velocity 𝑢0 has been restored for dimensional reasons (considering the
dimensionless action 𝑆/ℏ). Again, we can see that free kinetic energy is just the sum
of both pseudo-spins, meanwhile the interaction introduces process which couples the
pseudo-spin ↑ with the pseudo-spin ↓.

5.2 Pseudo-charge and pseudo-spin sectors

Despite the backscattering process, the Hamiltonian (5.23) is quadratic in fields but it is
not diagonal in pseudo-spin index. In order to diagonalize the model, we can introduce
two boson fields, corresponding to the pseudo-charge 𝑐 and pseudo-spin 𝑠 sectors, by
defining

𝜙𝑐/𝑠 =
1
√

2
(𝜙↑ ± 𝜙↓) (5.24)

and a similar relation for dual fields 𝜃 , where the "+" sign corresponds to the 𝑐-sector and
the "−" sign to the 𝑠-sector. Naturally, the Hamiltonian is separated into pseudo-charge
and pseudo-spin sectors as follows:

H = H𝑐 + H𝑠, (5.25)

H𝑐 =
𝑢0
2

[
(Π𝑐)2 +

(
1 + 𝐽

𝜋𝑢0

)
(𝜕𝑥𝜙𝑐)2 + 𝐽

𝑢0𝜋2𝛼2 cos (
√

8𝜋𝜙𝑐)
]

(5.26)

H𝑠 =
𝑢0
2

[
(Π𝑠)2 +

(
1 − 𝐽

𝜋𝑢0

)
(𝜕𝑥𝜙𝑠)2 + 𝐽

𝑢0𝜋2𝛼2 cos (
√

8𝜋𝜙𝑠)
]
. (5.27)

Note that the pseudo-spin Hamiltonian H𝑠 signals an instability as H𝑠 is unbounded
from below when 𝐽/𝜋𝑢0 > 1. A similar situation can happen when electron-phonon
interaction is introduced in a low dimensional electronic system[50, 51]. This absence of
an underlying Fermi sea and the unbounded pseudo-spin Hamiltonian from below imply
that the bosonization mapping is only meaningful for 0 < 𝐽/𝜋𝑢0 < 1.

It could be also interesting manipulate a bit the Hamiltonian. Let us define the "re-
scaling factor" 𝐴𝜌 like

𝐴𝜌 =

(
1 ± 𝐽

𝜋𝑢0

) 1
2

(5.28)

where the upper sign is for 𝜌 = 𝑐 while the lower sign is for 𝜌 = 𝑠 . It is evident that
two different boson speeds 𝑢0𝐴𝑐/𝑠 appear in the model. This is a feature of spin-charge
separation where single-particle excitations in which charge and spin would be carried
together cannot exist. The Hamiltonian can then be rewritten in a condensed way as

H =
∑︁
𝜌=𝑐,𝑠

𝑢0
2

[
(Π𝜌)2 +𝐴2

𝜌 (𝜕𝑥𝜙𝜌)2 + 𝐽

𝑢0𝜋2𝛼2 cos (
√

8𝜋𝜙𝜌)
]
. (5.29)

We can observe that, unlike the not half-filled Hubbard model, the total Hamiltonian (5.29)
has a symmetric form between 𝑐 and 𝑠-sectors. According to [43], the symmetric form of
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Eq. (5.29) can tells us that the total Hamiltonian is characterized by 𝑆𝑈 (2)×𝑆𝑈 (2) ≈ 𝑆𝑂 (4)
symmetry. Due to the particle-hole symmetry of the half-filled band, the free 𝑐-sector𝑈 (1)
symmetry of the not half-filled case is restricted to 𝑆𝑈 (2) when backscattering process
(cosine term) is included. This is also the case of the half-filled Hubbard model, when both
coupling 𝑔𝑐 and 𝑔𝑠 are equal (indeed, we are considering just 𝐽 for both sectors). Half-filled
case implies that rapidly oscillating factors 𝑒±4𝑖𝑘𝐹 are not neglected, but simply equal to
unity. Therefore, those terms in the sine-Gordon model in which two right movers are
created and two left movers are destroyed (and vice versa) give play into umklapp process
with conserved lattice momentum equal to 2𝜋 [52, 53].

On the other side, the unconventional velocity in Eq. (5.29) can be fixed by re-scaling
the fields 𝜙𝜌 as follows 𝜙𝜌 → 1√

𝐴𝜌

𝜙𝜌 . However, it is mandatory to re-scale also the

conjugate momentum in an opposite way Π𝜌 →
√︁
𝐴𝜌Π𝜌 in such a way that commutation

relations [𝜙𝜌 ,Π𝜌] are not affected. This procedure set an overall factor 𝐴𝜌 that does not
concern us for the next analysis. Then, the Hamiltonian becomes

H =
𝑢0
2

∑︁
𝜌=𝑐,𝑠

𝐴𝜌

[
(Π𝜌)2 + (𝜕𝑥𝜙𝜌)2 + 𝐽

𝑢0𝜋2𝛼2𝐴𝜌
cos

(√︄
8𝜋
𝐴𝜌
𝜙𝜌

)]
. (5.30)

If we consider the cosine term as a perturbation of a bosonic theory with cos (𝛽𝜌𝜙𝜌) we
have that, according to what we discussed in Section 2.2.3, the spin case is gapless in
accordance with

𝐴𝑠 < 1 → 𝛽2
𝑠 > 8𝜋 (5.31)

while the charge case is gapped according to

𝐴𝑐 > 1 → 𝛽2
𝑐 < 8𝜋. (5.32)

The positive coupling 𝐽 , this is, the repulsive interaction, implies that there is a cost to
move one fermion from one site at the half-filling to another site where is another fermion.
Considering a negative 𝐽 would give the opposite case, with spin being gapped and charge
gapless. In this case, opposite spin attraction would form on-site single pairs that would
require some cost to break the pair and have a spin excitation [54]. In this work we just
going to consider positive 𝐽 .

Another useful and well know way to express the Hamiltonian is defining the next
quantities:

𝑢𝜌 = 𝑢0

(
1 ± 𝐽

𝜋𝑢0

)1/2
= 𝑢0𝐴𝜌 (5.33)

K𝜌 =

(
1

1 ± 𝐽

𝜋𝑢0

)1/2

=
1
𝐴𝜌

(5.34)

where 𝑢𝜌 is the renormalized velocity and K𝜌 a dimensionless parameter. Then, the
Hamiltonian can be rewritten as

H =
1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (Π𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 + 𝐽

𝜋2𝛼2 cos (
√

8𝜋𝜙𝜌)
]
. (5.35)



Finally, after a Legendre’s transform, we can obtain the Lagrangian density for the two
separate sectors:

L =
1
2

∑︁
𝜌=𝑐,𝑠

[
1

𝑢𝜌K𝜌

(𝜕𝑡𝜙𝜌)2 −
𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 − 𝐽

𝜋2𝛼2 cos (
√

8𝜋𝜙𝜌)
]
. (5.36)

The model is not considering interaction between parallel spins densities, but just opposite
spins. This is because in the 𝑁 = 4 case there is just one fixed coupling constant 𝐽1234 ≡
𝐽 and one way to order Majorana fermions. By construct the complex fermions and
bosonize them it just appears ⊥ process. In "g-ology" notation (see for instance [48]),
𝑔1⊥ = 𝑔2⊥ = 𝑔4⊥ = 𝐽⊥ = 𝐽 and 𝑔1| | = 𝑔2| | = 𝑔4| | = 𝐽| | = 0. The fact that parallel spins
process 𝑔| | are zero implies that for 𝐽 ≠ 0 the model is not spin rotation invariant between
x,y plane and z.

5.3 Some physical quantities
In this short section we explore some physical quantities in the bosonized version of the
theory for the 𝑁 = 4 case. We also get some hint about conformal invariance by studying
the trace of the energy-momentum tensor.

5.3.1 Energy-momentum tensor
Considering that the Lagrangian (5.36) is just a function of a set of fields 𝜙𝜌 and their
derivatives (not explicitly of any space-time coordinates), we can construct the energy-
momentum tensor by considering 𝜕L

𝜕𝑥𝜌
= 0. Developing this derivative, we have

𝜕L
𝜕𝑥𝜌

=
𝜕L

𝜕(𝜕𝜇𝜙𝜌)
𝜕(𝜕𝜇𝜙𝜌)
𝜕𝑥𝜈

+ 𝜕L
𝜕𝜙𝜌

𝜕𝜙𝜌

𝜕𝑥𝜈

=
𝜕L

𝜕(𝜕𝜇𝜙𝜌)
𝜕𝜇
𝜕𝜙𝜌

𝜕𝑥𝜈
+ 𝜕𝜇

(
𝜕L

𝜕(𝜕𝜇𝑥𝜌)

)
𝜕𝜙𝜌

𝜕𝑥𝜈

= 𝜕𝜇

(
𝜕L

𝜕(𝜕𝜇𝜙𝜌)
𝜕𝜙𝜌

𝜕𝑥𝜈

)
(5.37)

where in the last line we have used the Euler-Lagrange equations and the commutation
of the partial derivatives. On the other hand, considering a flat space, the last equation is
equal to 𝜕𝜇𝑔𝜇𝜈L, so it is possible to write the next expression

𝜕𝜇

(
𝜕L

𝜕(𝜕𝜇𝜙𝜌)
𝜕𝜙𝜌

𝜕𝑥𝜈
− 𝑔𝜇𝜈L

)
= 0. (5.38)

Finally, the energy-momentum tensor is defined as

𝑇 𝜇𝜈 =
𝜕L

𝜕(𝜕𝜇𝜙𝜌)
𝜕𝜈𝜙𝜌 − 𝑔𝜇𝜈L (5.39)
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which is a zero divergence tensor; this means that continuity equations can be obtained
from here. By looking its contravariant components, the energy-momentum tensor 𝑇 𝜇𝜈
already gives us information about energy density 𝑇 00, energy current 𝑇 𝑥0, momentum
density 𝑇 0𝑥 and pressure 𝑇 𝑥𝑥 . Using Eqs. (5.36) and (5.39) we obtain:

𝑇 00 =
1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (Π𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 + 𝐽

𝜋2𝛼2 cos
(√

8𝜋𝜙𝜌
)]

= H (5.40)

𝑇 𝑥0 = −
∑︁
𝜌=𝑐,𝑠

𝑢𝜌

K𝜌

𝜕𝑡𝜙𝜌𝜕𝑥𝜙𝜌 (5.41)

𝑇 0𝑥 = −
∑︁
𝜌=𝑐,𝑠

1
𝑢𝜌K𝜌

𝜕𝑡𝜙𝜌𝜕𝑥𝜙𝜌 (5.42)

𝑇 𝑥𝑥 =
1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (Π𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 − 𝐽

𝑢𝜌𝜋
2𝛼2 cos

(√︃
8𝜋K𝜌𝜙𝜌

)]
, (5.43)

where the conjugate momentum Π = 1
𝑢𝜌K𝜌

𝜕𝑡𝜙𝜌 was used. In the non-interacting case,
despite the dimensional factor, this becomes a symmetrical tensor. It is also interesting
study the trace of the tensor in order to know if the model has conformal symmetry.
According to this, traceless energy-momentum tensor implies conformal theory [55].
Lowering the 𝜈 index using the Minkowski metric, we have from Eq. (5.39) the following:

𝑇 0
0 =

1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (Π𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 + 𝐽

𝜋2𝛼2 cos
(√

8𝜋𝜙𝜌
)]

= H (5.44)

𝑇 𝑥 0 = −
∑︁
𝜌=𝑐,𝑠

𝑢𝜌

K𝜌

𝜕𝑡𝜙𝜌𝜕𝑥𝜙𝜌 (5.45)

𝑇 0
𝑥 =

∑︁
𝜌=𝑐,𝑠

1
𝑢𝜌K𝜌

𝜕𝑡𝜙𝜌𝜕𝑥𝜙𝜌 (5.46)

𝑇 𝑥𝑥 = −1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (Π𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2 − 𝐽

𝑢𝜌𝜋
2𝛼2 cos

(√︃
8𝜋K𝜌𝜙𝜌

)]
≠ −H . (5.47)

We can conclude that the 1 + 1 SYK model in the 𝑁 = 4 case is not conformal invariant.
However, even if traceless energy-momentum means conformal theory, the opposite
cannot be assured, i.e. conformal theory implying traceless tensor. In this context it could
be that, as in the 0 + 1 𝑑 case, an emergent approximate conformal limit can rises in the
large 𝑁 case. In fact, according to Chapter 3 for large 𝑁 case, an approximate conformal
limit emerges for low energies.



5.3.2 Finite temperature energy density and energy current
Following [35], we are going to compute the energy density and energy current at finite
temperature for the free-like case (by "free-like" case we mean that cosine interacting
part is omitted, but interactions still have an effect in the renormalized velocities. We
developed more about free-like case in Section 5.4):

𝜀 = ⟨𝑇 00⟩𝛽 = −1
2

∑︁
𝜌=𝑐,𝑠

[
1

𝑢𝜌K𝜌

𝜕2
𝑡 ⟨𝜙𝜌 (𝑥, 𝑡)𝜙𝜌 (0, 0)⟩𝛽

����
𝑡→0,𝑥→𝜖

+
𝑢𝜌

K𝜌

𝜕2
𝑥 ⟨𝜙𝜌 (𝑥, 𝑡)𝜙𝜌 (0, 0)⟩𝛽

����
𝑡→0,𝑥→𝜖

]
(5.48)

𝑗𝜀 = ⟨𝑇 𝑥0⟩𝛽 =
∑︁
𝜌=𝑐,𝑠

𝑢𝜌

K𝜌

𝜕𝑡 𝜕𝑥 ⟨𝜙𝜌 (𝑥, 𝑡)𝜙𝜌 (0, 0)⟩𝛽
����
𝑡→0,𝑥→𝜖

(5.49)

To reach this goal we will use the bosonic correlator at finite temperature and perform a
point splitting 𝜖 in the 𝑥 direction. After that, we will take the limit 𝜖 → 0. In order to
consider finite temperature, we can include the Bose function 𝑓𝐵 (𝑧) = 1

𝑒𝛽𝑧−1 to compute
the time-ordered Green function as follows:

⟨𝜙𝜌 (𝑥,𝜏)𝜙𝜌 (0,0) − 𝜙2
𝜌 (0,0)⟩

𝛽 ≡ G𝛽

𝜙𝜌𝜙𝜌
(𝑥, 𝜏) = 𝑔𝛽

𝜙𝜌
(𝑥, 𝜏) − 𝑔𝛽

𝜙𝜌
(0, 0) (5.50)

where

𝑔
𝛽

𝜙𝜌
(𝑥, 𝜏) =

∑︁
±

[
𝜃 (𝜏)⟨𝜙𝜌 (𝑥,𝑡)𝜙𝜌 (0,0)⟩ + 𝜃 (−𝜏)⟨𝜙𝜌 (0,0)𝜙𝜌 (𝑥,𝑡)⟩

]
=

∑︁
±

∫
𝑑𝑞

4𝜋

[
𝑒−𝑞(𝑢𝜌𝜏±𝑖𝑥)

1 − 𝑒−𝛽𝑞
+ 𝑒

𝑞(𝑢𝜌𝜏±𝑖𝑥)

𝑒𝛽𝑞 − 1

]
𝑒−𝛼𝑞

𝑞

= −
∑︁
±

K𝜌

4𝜋 ln
(
2𝛽
𝐿

sin
[
𝜋

𝛽
(𝑢𝜌𝜏 ± 𝑖𝑥 + 𝛼)

] )
, (5.51)

where the divergence because of the lower limit 𝑞 = 0 was regularized calculating the
principle-value of the integral. The Green function diverges as 𝐿 → ∞. This is not
a problem because we need to take the difference between two Green functions, i.e.
𝑔
𝛽

𝜙𝜌
(𝑥, 𝜏) − 𝑔𝛽

𝜙𝜌
(0, 0):

G𝛽

𝜙𝜌𝜙𝜌
(𝑥, 𝜏) = −

K𝜌

4𝜋

ln
©«

2𝛽
𝐿

sin
[
𝜋
𝛽
(𝑢𝜌𝜏 − 𝑖𝑥 + 𝛼)

]
2𝛽
𝐿

sin
[
𝜋
𝛽
𝛼

] ª®®¬ + ln
©«

2𝛽
𝐿

sin
[
𝜋
𝛽
(𝑢𝜌𝜏 + 𝑖𝑥 + 𝛼)

]
2𝛽
𝐿

sin
[
𝜋
𝛽
𝛼

] ª®®¬


= −
K𝜌

4𝜋 ln
©«

sin
[
𝜋
𝛽
(−𝑖𝑥 + 𝑢𝜌𝜏 + 𝛼)

]
sin

[
𝜋
𝛽
𝛼

] sin
[
𝜋
𝛽
(𝑖𝑥 + 𝑢𝜌𝜏 + 𝛼)

]
sin

[
𝜋
𝛽
𝛼

] ª®®¬. (5.52)

Similar results can be obtained by analytic continuation [56]. In order to compare with
zero temperature results (see Section 5.4), let us evaluate the limit 𝛽 → ∞ (𝑇 → 0). In



Chapter 5 - The non-chiral 1+1 dimensional SYK model: N = 4 case 55

that limit, the sine function approaches to the argument, and we can verify that

G𝑇=0
𝜙𝜌𝜙𝜌

(𝑥, 𝜏) = ⟨𝜙𝜌 (𝑥,𝜏)𝜙𝜌 (0,0) − 𝜙2
𝜌 (0,0)⟩ = −

K𝜌

4𝜋 ln
(
𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

𝛼2

)
, (5.53)

which corresponds identically with Eq. (5.74). The finite temperature G𝛽

𝜃𝜌𝜃𝜌
(𝑥, 𝜏) in the

free-like case for dual field is equal as for 𝜙 fields but changing K𝜌 → 1
K𝜌

. Because of
this, we can relate 1

𝑢𝜌K𝜌
𝜕2
𝑡 ⟨G

𝛽

𝜙𝜌𝜙𝜌
(𝑥, 𝜏)⟩𝛽 with 𝑢𝜌K𝜌𝜕

2
𝑥 ⟨G

𝛽

𝜃𝜌𝜃𝜌
(𝑥, 𝜏)⟩𝛽 , therefore, it is just

necessary to make derivatives with respect 𝑥 (at least for energy density). Finally, the
finite temperature energy density and energy current are:

𝜀 =
∑︁
𝜌=𝑐,𝑠

𝜋𝑢𝜌

6𝛽2 (5.54)

𝑗𝜀 =
𝜋

12𝛽2 (C+ − C−) (5.55)

where C± = ±∑
𝜌=𝑐,𝑠 𝑢

2
𝜌K𝜌 are the central charges for right and left movers. As you can

notice, there is an absent of the energy current which is signal of an equilibrium state.
Furthermore, it is also a signal that the model cannot flow to a Conformal Field Theory
with a non-zero (C+ − C−) [57].

For the full-interacting case (considering also the cosine term), we can make a rude
approximation by considering the interaction proportional to 𝜙2 but still using the finite
temperature correlator (5.52). In this case, a logarithmic correction which tends to zero
appears, leaving the same results.

5.3.3 Other physical observables
We can still use a bit more the results coming from energy-momentum tensor. For example,
the thermal Hall conductance is given by

𝜅𝑥𝑦± =
𝜕 𝑗𝜀±
𝜕(𝛽−1) =

𝜋

6𝛽 C± (5.56)

for each branch. For chiral models the latter does not vanish and becomes 𝜅𝑥𝑦± ∼ 𝜋
3𝛽 as

it is expected for a gapped system with four flavors of chiral Majorana fermions on the
edge [58]. Using now the energy density, we can obtain the entropy density to be:

S =
∑︁
𝜌=𝑐,𝑠

𝜋𝑢𝜌

3𝛽 . (5.57)

Finally, we are going to calculate compressibility and susceptibility of the system. The
compressibility is the response to

𝐻 = −𝜇
∫

𝑑𝑥
[
𝜌↑ + 𝜌↓

]
≡ −𝜇

∫
𝑑𝑥 𝜌 (5.58)



where 𝜌𝜎 = 1√
2 (𝜌𝑐 + 𝜌𝑠) is the density operator for spin 𝜎 =↑, ↓. The compressibility just

depends on the charge part 𝜌 = 𝜌↑ + 𝜌↓ =
√

2𝜌𝑐 which is in our case:

𝜌𝑐 =
1
√

2

∑︁
𝜎=↑,↓

∑︁
𝛼=±

𝜌𝜎𝛼 =
1

√
2𝜋

∑︁
𝜎=↑,↓

∑︁
𝛼=±

𝜕𝑥𝜙𝜎𝛼 =
1

√
2𝜋

∑︁
𝜎=↑,↓

𝜕𝑥𝜙𝜎 =
1
√
𝜋
𝜕𝑥𝜙𝑐, (5.59)

where it was used that 𝜙𝜎 = 𝜙𝜎+ + 𝜙𝜎−, the pseudo-charge boson 𝜙𝑐 = 1√
2 (𝜙↑ + 𝜙↓) and

the bosonization 𝜌𝜎± = 𝑐
†
𝜎±𝑐𝜎± = 1√

𝜋
𝜕𝑥𝜙𝜎±. To compute it we take the density-density

correlation ⟨𝜌 (𝑘,𝜔𝑛)𝜌 (−𝑘,−𝜔𝑛)⟩ that gives for the free-like case the following:

𝜅𝑐 = 2⟨𝜌𝑐 (𝑘,𝜔𝑛)𝜌𝑐 (−𝑘,−𝜔𝑛)⟩
����
𝜔𝑛,𝑘,𝑚→0

=
2𝑘2

𝜋
⟨ 𝜙𝑐 (𝑘,𝜔𝑛)𝜙𝑐 (−𝑘,−𝜔𝑛)⟩

����
𝜔𝑛,𝑘,𝑚→0

=
2K𝑐

𝜋𝑢𝑐
. (5.60)

By taking first the limit𝜔𝑛 → 0we have a static chemical potential to get a thermodynamic
response and then an uniform potential by taking 𝑘 → 0. In a similar way, the uniform
magnetic susceptibility is the response to

𝐻 = −h2

∫
𝑑𝑥

[
𝜌↑ − 𝜌↓

]
(5.61)

where h = 𝑔𝜇𝐵ℎ depends on the magnetic field ℎ, the Bohr magneton 𝜇𝐵 and the Lande
factor 𝑔. For the free-like case is given by

𝜅𝑠 =
K𝑠

2𝜋𝑢𝑠
. (5.62)

Even when cosine interacting part is neglected, having in this way the free-like case, the
interaction still has the effect of renormalize some physical quantities. This also applies to
other observables that we are not to see here but are easy to obtain from the model in this
limit like, for example, the specific heat, which is also renormalized by changing 𝑢0 → 𝑢𝜌 .

5.4 Correlation functions

In this section we compute some correlation functions. In the pseudo-charge and pseudo-
spin sectors separation context, the interaction has two main effects: renormalization of
the velocities, and the competition between dual fields for lock or not the field in one of
the minima of the cosine. We will explore the free-like case, the weak and strong coupling
limit and the triple-pairing operator.
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5.4.1 Free-like correlator
After bosonization and pseudocharge-pseudospin sectors separation, the interacting action
depends on the non-trivial cosine term. Contrary to the kinetic part that favors the field
𝜙𝜌 fluctuate, the cosine term tends to lock it in one of the minima of the cosine. There is
then a competence between kinetic and interacting part. Let us consider first the free-like
action, i.e. neglecting the cosine term. Omitting cosine does not mean that the theory is
completely free because the tendency of locking the field in one of the minima is not the
only effect of the interaction but also renormalize the boson velocity.

The average Majorana femion two point function is

𝐺±(𝑟 ) =
1
4
∑︁
𝑖

⟨𝜓 𝑖±(𝑟 )𝜓 𝑖±(0)⟩. (5.63)

with 𝑟 = (𝑥, 𝜏). In the pseudocharge-pseudospin representation chiralities are not sep-
arated. In the following we showed that in the free-like case each chirality, evaluated
in the mentioned representation, provides the same correlator except by an overall sign.
Recalling the initial definition of complex fermions

𝑐↑± =
1
√

2
(𝜓 1

± + 𝑖𝜓 2
±) (5.64)

𝑐↓± =
1
√

2
(𝜓 3

± + 𝑖𝜓 4
±) (5.65)

it is possible to write

𝐺±(𝑟 ) =
1
4

∑︁
𝜎=↑,↓

⟨𝑐𝜎±(𝑟 )𝑐†𝜎±(0) + 𝑐†𝜎±(𝑟 )𝑐𝜎±(0)⟩.

It is convenient to express the bosonization dictionary in terms of dual fields 𝜙 and 𝜃
using the charge-spin separation:

𝑐𝜎±(𝑟 ) =: 1
√

2𝜋𝛼
𝑒𝑖
√

𝜋
2 [±𝜙𝑐 (𝑟 )−𝜃𝑐 (𝑟 )+𝜎 (±𝜙𝑠 (𝑟 )−𝜃𝑠 (𝑟 ))] : (5.66)

where 𝜎 in the exponential is +1 for ↑ and −1 for ↓. Our bosonization dictionary is now
extended to Eqs. (5.9), (5.12) and (5.66). The single particle Green function becomes:

𝐺±(𝑟 ) =
1

8𝜋𝛼 (⟨𝑒
𝑖
√

𝜋
2 [±𝜙𝑐 (𝑟 )−𝜃𝑐 (𝑟 )±𝜙𝑠 (𝑟 )−𝜃𝑠 (𝑟 )]𝑒−𝑖

√
𝜋
2 [±𝜙𝑐 (0)−𝜃𝑐 (0)±𝜙𝑠 (0)−𝜃𝑠 (0)]⟩

+⟨𝑒−𝑖
√

𝜋
2 [±𝜙𝑐 (𝑟 )−𝜃𝑐 (𝑟 )±𝜙𝑠 (𝑟 )−𝜃𝑠 (𝑟 )]𝑒𝑖

√
𝜋
2 [±𝜙𝑐 (0)−𝜃𝑐 (0)±𝜙𝑠 (0)−𝜃𝑠 (0)]⟩

+⟨𝑒𝑖
√

𝜋
2 [±𝜙𝑐 (𝑟 )−𝜃𝑐 (𝑟 )∓𝜙𝑠 (𝑟 )+𝜃𝑠 (𝑟 )]𝑒−𝑖

√
𝜋
2 [±𝜙𝑐 (0)−𝜃𝑐 (0)∓𝜙𝑠 (0)+𝜃𝑠 (0)]⟩

+⟨𝑒−𝑖
√

𝜋
2 [±𝜙𝑐 (𝑟 )−𝜃𝑐 (𝑟 )∓𝜙𝑠 (𝑟 )+𝜃𝑠 (𝑟 )]𝑒𝑖

√
𝜋
2 [±𝜙𝑐 (0)−𝜃𝑐 (0)∓𝜙𝑠 (0)+𝜃𝑠 (0)]⟩). (5.67)



We have to remind that pseudo-charge and pseudo-spin sectors can be completely separate,
while dual fields obey [𝜙 (𝑥1), 𝜃 (𝑥2)] = 𝑖

2𝑠𝑔𝑛(𝑥2 − 𝑥1). With these considerations and the
identity 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵𝑒−

1
2 [𝐴,𝐵] = 𝑒𝐵𝑒𝐴𝑒

1
2 [𝐴,𝐵] we have:

𝐺±(𝑟 ) = ± 𝑖

8𝜋𝛼

(
⟨𝑒±𝑖

√
𝜋
2 𝜙𝑐 (𝑟 )𝑒∓𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒−𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → 𝜙𝑠, 𝜃𝑐 → 𝜃𝑠)

+⟨𝑒∓𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒−𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → 𝜙𝑠, 𝜃𝑐 → 𝜃𝑠)

+⟨𝑒±𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒∓𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒−𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → −𝜙𝑠, 𝜃𝑐 → −𝜃𝑠)

+⟨𝑒∓𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒−𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → −𝜙𝑠, 𝜃𝑐 → −𝜃𝑠)

)
.

(5.68)

For the correlator to be non-zero, the sum of the factors multiplying fields in the expo-
nentials has to vanish. This is because the theory (the Hamiltonian of the massless scalar
field) is invariant under a constant shift in fields. To evaluate this correlator, we need the
following identity:

⟨𝑒𝐴 · 𝑒𝐵⟩ = ⟨: 𝑒𝐴+𝐵 :⟩𝑒 ⟨𝐴𝐵+𝐴2+𝐵2
2 ⟩ (5.69)

where the vacuum expectation value of a normal-ordered exponential operator is just 1.
All other terms in the series annihilate the vacuum state on the left or right or both. Then,
the correlator becomes:

𝐺±(𝑟 ) = ± 𝑖

2𝜋𝛼 (𝑒
𝜋
2 ⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0)−𝜙

2
𝑐 (0)⟩𝑒

𝜋
2 ⟨𝜃𝑐 (𝑟 )𝜃𝑐 (0)−𝜃

2
𝑐 (0)⟩𝑒

𝜋
2 ⟨𝜙𝑠 (𝑟 )𝜙𝑠 (0)−𝜙

2
𝑠 (0)⟩𝑒

𝜋
2 ⟨𝜃𝑠 (𝑟 )𝜃𝑠 (0)−𝜃

2
𝑠 (0)⟩).
(5.70)

Despite the overall sign, at this point we can already notice that any kind of difference
between "+" and "−" chiralities has disappeared, and chiralities behave as the same. It
is also important to mention that for operators, the average ⟨A⟩ means time-ordered
product, this is explicitly ⟨𝑇𝜏A⟩O where subindex "O" implies averages without time-
ordered product. For instance, we have

G𝜙𝜙 (𝑥, 𝜏) = −1
2 ⟨𝑇𝜏 [𝜙 (𝑥, 𝜏) − 𝜙 (0, 0)]

2⟩O
= 𝜖 (𝜏)⟨𝜙 (𝑥, 𝜏)𝜙 (0, 0)⟩O + 𝜖 (−𝜏)⟨𝜙 (0, 0)𝜙 (𝑥, 𝜏)⟩O − ⟨𝜙 (0, 0)𝜙 (0, 0)⟩O

(5.71)

and similar expressions for 𝜃 with 𝜖 (𝜏) being the step function. In general for this work
we are not going to write explicitly the the time-ordered product but it will be assumed.
The single-particle Green’s function becomes

𝐺±(𝑟 ) = ± 𝑖

2𝜋𝛼 (𝑒
− 𝜋

4 ⟨[𝜙𝑐 (𝑟 )−𝜙𝑐 (0)]
2⟩𝑒−

𝜋
4 ⟨[𝜃𝑐 (𝑟 )−𝜃𝑐 (0)]

2⟩𝑒−
𝜋
4 ⟨[𝜙𝑠 (𝑟 )−𝜙𝑠 (0)]

2⟩𝑒−
𝜋
4 ⟨[𝜃𝑠 (𝑟 )−𝜃𝑠 (0)]

2⟩).
(5.72)

In order to obtain the fermionic correlator it only remains to compute the bosonic corre-
lators ⟨[𝜙𝜌 (𝑟 ) − 𝜙𝜌 (0)]2⟩ and ⟨[𝜃𝜌 (𝑟 ) − 𝜃𝜌 (0)]2⟩ (or equivalent expressions according to
Eq. (5.71)).
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In the free-like case the cosine term is omitted and we just have a renormalized velocity.
Therefore, the Hamiltonian (or Lagrangian) density is quadratic, being convenient to
obtain correlation functions via functional integral

⟨𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)⟩ =
∫
D𝜙D𝜃𝑒−𝑆 [𝜙,𝜃 ]𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)∫

D𝜙D𝜃𝑒−𝑆 [𝜙,𝜃 ]
, (5.73)

where the action can be expressed as 𝑆 = 𝑆𝑐 +𝑆𝑠 . Since 𝑆 can also be put in terms of 𝜃 fields
(using the conjugate momentum), correlation functions like ⟨𝜙𝜃⟩ can be obtained as well.
Actually, a more general representation can be found by consider a matrix representation
with𝑀𝜃𝜃 ,𝑀𝜃𝜙 ,𝑀𝜙𝜃 and𝑀𝜙𝜙 elements, for pseudo-charge and pseudo-spin sectors. We
will explore this when we consider a relevant cosine interacting term. At the moment, we
are just interested in correlators like Eq. (5.71).

Performing calculations (see Appendix C), the desired correlator G𝜙𝜌𝜙𝜌 (𝑥, 𝜏) is found
to be:

⟨𝜙𝜌 (𝑥,𝜏)𝜙𝜌 (0,0) − 𝜙2
𝜌 (0,0)⟩ =

K𝜌

2𝜋 ln
(

𝛼√︁
𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

)
. (5.74)

Correlator G𝜃𝜌𝜃𝜌 (𝑥, 𝜏) for 𝜃 fields can be obtained in a similar way. We can also consider
the following: the conjugate momentum Π𝜌 = 1

𝑢𝜌K𝜌
𝜕𝑡𝜙𝜌 = ∇𝜃𝜌 allows us to write the

Hamiltonian in terms of dual fields 𝜃𝜌 like:

H =
1
2

∑︁
𝜌=𝑐,𝑠

[
𝑢𝜌K𝜌 (𝜕𝑥𝜃𝜌)2 +

𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2
]
. (5.75)

In this form, we can see that the Hamiltonian is invariant by 𝜙 → 𝜃 and K𝜌 → 1
K𝜌

and
we would obtain the same as Eq. (5.74) but with 1

K𝜌
:

⟨𝜃𝜌 (𝑥,𝜏)𝜃𝜌 (0,0) − 𝜃 2
𝜌 (0,0)⟩ =

1
2𝜋K𝜌

ln
(

𝛼√︁
𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

)
. (5.76)

Finally, plugging the last two equations in Eq. (5.70) we have:

𝐺±(𝑟 ) = ± 𝑖

2𝜋𝛼

(
𝛼√︁

𝑥2 + (𝑢𝑐𝜏 + 𝛼)2

) 1
4 (K𝑐+ 1

K𝑐 )
(

𝛼√︁
𝑥2 + (𝑢𝑠𝜏 + 𝛼)2

) 1
4 (K𝑠+ 1

K𝑠 )

. (5.77)

If we put 𝛼 → 0 and also turn off the interaction 𝐽 = 0, then K𝜌 → 1 and correlator
behaves as completly free fermions 𝐺± ∼ (𝑥2 + 𝑢2

0𝜏
2)−1/2 ∼ 1

𝑟
.

5.4.2 Weak coupling: small J limit
Let us us now briefly consider the effects of cosine interacting term by considering weak
coupling. Being 𝐽 small, the model is close to the free case but it is no longer quadratic



and cannot be solved exactly. However, the cosine term can be expanded and we can use
renormalization procedure to study the flows of the coupling. In the free-like case we
studied 𝐺±(𝑟 ) by considering correlators like

𝐺𝜙𝜌𝜙𝜌 (𝑟, 0) = ⟨𝑒∓𝑖
√

𝜋
2 𝜙𝜌 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝜌 (0)⟩ = 𝑒

𝜋
2 ⟨𝜙𝜌 (𝑟 )𝜙𝜌 (0)−𝜙

2
𝜌 (0)⟩ = 𝑒

𝜋
2 G𝜙𝜌𝜙𝜌 (𝑥,𝜏) (5.78)

which for quadratic Hamiltonian behaves as

⟨𝑒∓𝑖
√

𝜋
2 𝜙𝜌 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝜌 (0)⟩0 ∼

(
𝛼√︁

𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

) 1
4K𝜌

(5.79)

where the sub-index "0" was included to emphasize that is for free-like case. Expanding
cosine, correlator will be in terms of free-like averages, which we already know. At
second order expansion and defining the center of mass 𝑅 = 𝑟 ′+𝑟 ′′

2 and relative coordinates
𝑟 = 𝑟 ′ − 𝑟 ′′ we have:

𝐺𝜙𝜌𝜙𝜌 (𝑟1, 𝑟2) = 𝑒−
1
4K𝜌𝐹𝜌 (𝑟 )

[
1 + 𝐽 2

2(2𝜋𝛼)4𝑢𝜌

∑︁
𝜖=±

∫ ∫
𝑑2𝑅𝑑2𝑟𝑒−4K𝜌𝐹𝜌 (𝑟 )

(
𝑒

1
2𝜖K𝜌 [𝐹𝜌 (𝑟1−𝑟 ′)−𝐹𝜌 (𝑟1−𝑟 ′′)+𝐹𝜌 (𝑟2−𝑟 ′′)−𝐹𝜌 (𝑟2−𝑟 ′)] − 1

)]
, (5.80)

where 𝑟 = (𝑥,𝑢𝜌𝜏) and 𝐹𝜌 (𝑟 ) = 1
4𝜋 ln

(
𝑥2+(𝑢𝜌𝜏+𝛼)2

𝛼2

)
. For small distance 𝑟 we can expand

the exponential and thus, integrating by parts over 𝑅, we obtain

𝐺𝜙𝜌𝜙𝜌 (𝑟1, 𝑟2) = 𝑒−
1
4K𝜌𝐹𝜌 (𝑟 )

[
1 +

𝐽 2K2
𝜌𝐹𝜌 (𝑟 )

8𝜋2𝛼4𝑢2
𝜌

∫
𝑟>𝛼

𝑑𝑟 𝑟 3𝑒−4K𝜌𝐹𝜌 (𝑟 )
]
, (5.81)

where it was used the fact that (∇2
𝑥 + ∇2

𝑦) ln𝑅 = 2𝜋𝛿 (𝑅). Considering the definition of
𝐹𝜌 (𝑟 ), the latter is an expansion of exponential which is the same as Eq. (5.79) but with
the effective exponential

K𝑒 𝑓 𝑓
𝜌 = K𝜌 −

𝐽 2K2
𝜌

8𝜋2𝑢2
𝜌

∫ ∞

𝛼

𝑑𝑟

𝛼

( 𝑟
𝛼

)3−4K𝜌

. (5.82)

We can conclude that correlator tends to an asymptotic behavior with an effective exponent
K𝜌 → K𝑒 𝑓 𝑓

𝜌 :

⟨𝑒∓𝑖
√

2𝜋𝜙𝜌 (𝑟 )𝑒±𝑖
√

2𝜋𝜙𝜌 (0)⟩0 ∼
(

𝛼√︁
𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

) 1
4K

𝑒 𝑓 𝑓
𝜌

, (5.83)

however, we can not use results coming from renormalization picture because we do not
have Fermi sea, and renormalization helps us to understand what happens close to the
Fermi level. If we analyze the flow of the coupling starting from Eq. (5.82), we see that
when the coupling 𝐽 ∼ 𝑔| | = 0 (but still 𝐽 < 𝑔| |), the cosine term is irrelevant and the model
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is in a massless regime. However, when 𝐽 > 𝑔| | , the flows goes to strong coupling, and the
model goes to a massive regime. In our model 𝐽 is always positive, so that renormalization
procedure does not help to understand the small 𝐽 case due to it predicts a strong coupling
flow.

In this case, a better way to study the small 𝐽 limit is considering variational calculation.
It can gives you information about physics when the model goes to a massive regime
even though is not better than renormalization to obtain critical properties of the theory.
Following the standard variational method [59] it is observed that the self-consistent
equation for the gap is

Δ2 =
4𝐾𝜌𝑢2

𝜌 𝐽

𝜋𝛼2𝑢0

(
Δ

𝑢𝜌Λ

)2𝐾𝜌

(5.84)

where Λ is a large momentum cutoff. It is seen that 𝐾𝜌 > 1 is gapless: the theory behaves
as a free model and the cosine potential is irrelevant. Just in the 𝑠-sector, due to the
restriction 0 < 𝐽/𝜋𝑢0 < 1, it is found that 𝐾𝑠 > 1, with the pseudo-spin sector being
gapless. With these consideration, we have (zero temperature):

𝐺𝜙𝑠𝜙𝑠 (𝑟 ) = 𝑒−
𝜋
4 ⟨[𝜙𝑠 (𝑟 )−𝜙𝑠 (0)]

2⟩ =

(
𝛼√︁

(𝑢𝑠𝜏 + 𝛼)2 + 𝑥2

) 1
4K𝑠

(5.85)

and

𝐺𝜃𝑠𝜃𝑠 (𝑟 ) = 𝑒−
𝜋
4 ⟨[𝜃𝑠 (𝑟 )−𝜃𝑠 (0)]

2⟩ =

(
𝛼√︁

(𝑢𝑠𝜏 + 𝛼)2 + 𝑥2

) 1
4K𝑠

. (5.86)

On the other side, it is seen that 𝐾𝜌 < 1 is gapped: the theory goes to a massive regime,
the cosine potential is relevant and traps the 𝜙 field in one of its minima. Just in the charge
case 𝐾𝑐 < 1, the charge sector being gapped. In the context of trapped 𝜙 the situation is
analogous to have strong coupling. We are going to study this case in the next subsection.

5.4.3 Strong coupling: large J limit
In the pseudo-spin sector, due to the restriction 0 < 𝐽/𝜋𝑢0 < 1, large 𝐽 (i.e. 𝐽 ∼ 𝜋𝑢0)
implies that 𝑢𝑠 → 0. A small velocity in the pseudospin sector, 𝑢𝑠 << 𝑢0, gives rise to two
effects. On the one hand, fluctuations of the phase ⟨𝜙2

𝑠 ⟩0 grow enormously. On the other
hand, they renormalize the cosine interaction term which, by normal ordering is strongly
depressed as 𝐽

𝑢𝑠
cos (

√
8𝜋𝜙𝑠) → 𝐽

𝑢𝑠
𝑒−⟨𝜙

2
𝑠 ⟩0 : cos (

√
8𝜋𝜙𝑠) : by making it irrelevant. In this

limit, the action is quadratic in the 𝑠-sector and the correlator at large distances it takes
the same form as Eqs. (5.85) and (5.86) with 𝑢𝑠 << 1.

In the pseudo-charge sector, large 𝐽 imposes that 𝜙𝑐 is locked into one of the minima
of the cosine and the model goes to a massive regime. The gapped pseudo-charge degree
of freedom can be approached quadratically with the Hamiltonian density

H =
1
2

[
𝑢𝑐K𝑐 (Π𝑐)2 + 𝑢𝑐

K𝑐

(𝜕𝑥𝜙𝑐)2 + 4𝐽
𝜋𝛼2𝜙

2
𝑐

]
(5.87)



where the conjugate momentum Π𝑐 =
1

𝑢𝑐K𝑐
𝜕𝑡𝜙𝜌 = ∇𝜃𝑐 includes the dual field. Writing the

action in terms of dual field 𝜃𝑐 (and imaginary time), we have:

−𝑆 =

∫
𝑑𝜏𝑑𝑥

(
𝑖∇𝜃𝑐𝜕𝑡𝜙𝑐 −

1
2

[
𝑢𝑐K𝑐 (∇𝜃𝑐)2 + 𝑢𝑐

K𝑐

(∇𝜙𝑐)2 + 4𝐽
𝜋𝛼2𝜙

2
𝑐

] )
. (5.88)

In Fourier space:

−𝑆 =
1

2𝛽Ω
∑︁
𝑞

(
2𝑖𝑘𝜔𝑛𝜙𝑐 (q)𝜃𝑐 (−q) − 𝑢𝑐K𝑐𝑘

2𝜃𝑐 (q)𝜃𝜌 (−q)

− 𝑢𝑐K𝑐

𝑘2𝜙𝑐 (q)𝜙𝑐 (−q) −
4𝐽
𝜋𝛼2𝜙𝑐 (q)𝜙𝑐 (−q)

)
(5.89)

which can be written as a matrix like:

𝑆 =
1

2𝛽Ω
∑︁
𝑞

(𝜃𝑐 (−q) 𝜙𝑐 (−q))
(
𝑢𝑐K𝑐𝑘

2 −𝑖𝑘𝜔𝑛
−𝑖𝑘𝜔𝑛 𝑢𝑐

K𝑐
𝑘2 + 4𝐽

𝜋𝛼2

) (
𝜃𝑐 (q)
𝜙𝑐 (q)

)
. (5.90)

From here, we can obtain the matrix 𝐴(𝑞) which is related in the path integral with the
correlator

⟨𝑢 ∗ (𝑞1)𝑢 (𝑞2)⟩ =
∫
D𝑢 [𝑞]𝑢 ∗ (𝑞1)𝑢 (𝑞2)𝑒−

1
2
∑

𝑞 𝐴(𝑞)𝑢∗(𝑞1)𝑢 (𝑞2)∫
D𝑢 [𝑞]𝑒− 1

2
∑

𝑞 𝐴(𝑞)𝑢∗(𝑞1)𝑢 (𝑞2)
= 𝐴−1(𝑞1)𝛿𝑞1,𝑞2 (5.91)

to be
𝐴(𝑞) =

(
𝑢𝑐K𝑐𝑘

2 𝑖𝑘𝜔𝑛

𝑖𝑘𝜔𝑛
𝑢𝑐
K𝑐
𝑘2 + 4𝐽

𝜋𝛼2

)
(5.92)

and its inverse

𝐴−1(𝑞) = 1
𝑘2(𝑢2

𝑐𝑘
2 + 𝑢2

𝑐𝑚
2 + 𝜔2

𝑛)

( 𝑢𝑐
K𝑐

(𝑘2 +𝑚2) −𝑖𝑘𝜔𝑛
−𝑖𝑘𝜔𝑛 𝑢𝑐K𝑐𝑘

2

)
(5.93)

where it was defined the mass term𝑚2 = 4𝐽
𝜋𝛼2

K𝑐

𝑢𝑐
≡ Δ2

𝐿2 . The mass scales as 1/[𝐿] and its
specific form is

Δ

𝐿
=

2
𝛼

√︄
K−2
𝑐 − 1
K2
𝑐

(5.94)

with 𝐿/𝛼 = 𝑁 a finite number. As it is expected, in the free caseK𝑐 = 1, the gap disappears
and the two chiralities are separated in the ⟨𝜃𝑐𝜃𝑐⟩ correlator. In the other side, when
interaction is turn on the two chiralities cannot be separated in the ⟨𝜃𝑐𝜃𝑐⟩ correlator due
to the presence of a gap Δ =𝑚 𝐿.

We are looking for bosonic correlators to be used in fermionic correlators like (5.70)
or others like the triple pairing operator:

⟨O𝑧†
𝑇𝑆
(𝑟 )O𝑧

𝑇𝑆 (𝑟
′)⟩ = 1

𝜋2𝛼2 ⟨𝑒
𝑖
√

2𝜋𝜃𝑐 (𝑟 )𝑒−𝑖
√

2𝜋𝜃𝑐 (𝑟 ′)⟩⟨𝑒𝑖
√

2𝜋𝜃𝑠 (𝑟 )𝑒−𝑖
√

2𝜋𝜃𝑠 (𝑟 ′)⟩. (5.95)
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Assuming the identity (5.69) is still valid what we need at the end is, in general, the
correlators 〈

𝜙𝑐 (𝑟1)𝜙𝑐 (𝑟2) −
𝜙2
𝑐 (𝑟1) + 𝜙2

𝑐 (𝑟2)
2

〉
(5.96)

and 〈
𝜃𝑐 (𝑟1)𝜃𝑐 (𝑟2) −

𝜃 2
𝑐 (𝑟1) + 𝜃 2

𝑐 (𝑟2)
2

〉
, (5.97)

i.e. G𝜙𝑐𝜙𝑐 (𝑟 ) and G𝜃𝑐𝜃𝑐 (𝑟 ). In Appendix C it is found the explicit computation of these
correlators, which are required to be used in objects like (5.70). They are:

G𝜙𝑐𝜙𝑐 (𝑟 ) = −K𝑐

4𝜋

[∫ 𝑖 𝑥+𝑢𝑐𝜏

0

Δ

𝐿

√︂
−2𝑖 𝑥
𝑧 + 𝛼 𝐾1

(
Δ

𝐿

√
−2𝑖 𝑥

√
𝑧 + 𝛼

)
𝑑𝑧 + ln (𝛼2) + 𝑐.𝑐 .

]
(5.98)

G𝜃𝑐𝜃𝑐 (𝑟 ) =
1

4𝜋K𝑐

ln

𝑒
4𝜋
K𝑐𝐺𝜙𝑐𝜙𝑐 (𝑟 )

∏
±
𝑒
Δ

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︂
±𝑖 𝑥
2𝜋𝐿 Γ

(
±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

]Δ𝑒− Δ𝑢𝑐𝜏
𝐿 
(5.99)

where terms proportional to O(𝑚4) have been neglected. The two correlators are non
chiral and have been approximated in such a way that they reproduce the free-like result
leading to Eq. (5.77) in the limit Δ → 0.

The final form of the diagonal correlator in the gapped pseudo-charge sector to be
plugged in Eq. (5.70) is:

𝐺±(𝑟 ) = ± 𝑖

2𝜋𝛼 (𝑒
𝜋
2 G𝜙𝑐𝜙𝑐 (𝑟 )𝑒

𝜋
2 G𝜃𝑐𝜃𝑐 (𝑟 )𝑒

𝜋
2 G𝜙𝑠𝜙𝑠 (𝑟 )𝑒

𝜋
2 G𝜃𝑠𝜃𝑠 (𝑟 ))

=
±𝑖

2𝜋𝛼

(
𝛼√︁

(𝑢𝑠𝜏 + 𝛼)2 + 𝑥2

) 1
4

(
K𝑠+ 1

K𝑠

)
𝑒
− 1

8

(
K𝑐+ 1

K𝑐

) [∫ 𝑖 𝑥+𝑢𝑐𝜏
0

Δ
𝐿

√
−2𝑖 𝑥
𝑧+𝛼 𝐾1( Δ

𝐿

√
−2𝑖 𝑥

√
𝑧+𝛼)𝑑𝑧+𝑐.𝑐 .

]

×
∏
±
𝑒

Δ
8K𝑐

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︂
±𝑖 𝑥
2𝜋𝐿 Γ

(
±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

] Δ
8K𝑐 𝑒

− Δ𝑢𝑐𝜏
𝐿

. (5.100)

Naturally, it also reproduce the free-like result in the limit Δ → 0. For the gapped limit,
numerical solutions can be performed.

It can be proved that the off-diagonal correlators vanish identically in the bosonized
𝑁 = 4 model (Appendix C). For the correlator to be non-zero, the sum of the factors
multiplying fields in the exponentials has to vanish. In the 𝜙 sector this does not happen
and off-diagonal correlators vanish. On the contrary, in the 𝜃 sector we have signs that
non-zero correlators involving cross-chirality fermions can occur. We will deepen on it in
the next subsection.



5.4.4 Triple-pairing operator
These operators describe pairing with zero total momentum. Let us define them as:

O𝑥
𝑇𝑆 (𝑟 ) = 𝑐

†
↑+(𝑟 )𝑐

†
↑−(𝑟 ) + 𝑐

†
↓+(𝑟 )𝑐

†
↓−(𝑟 ) =

1
𝜋𝛼
𝑒−𝑖

√
2𝜋𝜃𝑐 (𝑟 ) cos (

√
2𝜋𝜃𝑠 (𝑟 )) (5.101)

O𝑦

𝑇𝑆
(𝑟 ) = −𝑖

[
𝑐
†
↑+(𝑟 )𝑐

†
↑−(𝑟 ) − 𝑐

†
↓+(𝑟 )𝑐

†
↓−(𝑟 )

]
= − 1

𝜋𝛼
𝑒−𝑖

√
2𝜋𝜃𝑐 (𝑟 ) sin (

√
2𝜋𝜃𝑠 (𝑟 )), (5.102)

where it was used the bosonization dictionary (5.66). At this point, it is worthy to
mention the Klein factors 𝑈 †

𝜂 and 𝑈𝜂 which ensure that fermion fields of different species
anticommute. In this way by making a permutation in complex fermions in the left side, it
still appears the correct sign in front of cosine in the right side of the previous equations,
otherwise there are not way to obtain a change of sing by permuting bosonic fields. In
general, for models where each separate number of fermion’s species is conserved, Klein
factors are omitted. They do not contribute in space-time decay of correlator function
because they do not have any dependence on coordinates, and we just have to be careful
to track the correct sign. For further discussion you can consult [60].

Turning back to our discussion, now we can define:

O𝑧
𝑇𝑆 (𝑟 ) = O𝑥

𝑇𝑆 (𝑟 ) + 𝑖O
𝑦

𝑇𝑆
(𝑟 ) = 1

𝜋𝛼
𝑒−𝑖

√
2𝜋𝜃𝑐 (𝑟 )𝑒−𝑖

√
2𝜋𝜃𝑠 (𝑟 ) . (5.103)

The model is "charge" conserving (not really but number conserving), so that for the same
reason correlators stemming from the operator lim𝑧′→𝑧 O𝑧

𝑇𝑆
(𝑧, 𝑧′) = 1

𝜋𝛼
𝑒−𝑖

√
2𝜋𝜃𝑐 (𝑧)𝑒−𝑖

√
2𝜋𝜃𝑠 (𝑧)

vanish as well. There is no true superconducting order due to the impossibility to break
a continuous symmetry in one spatial dimension [48]. On the other side, the number
conserving operator ⟨O𝑧†

𝑇𝑆
(𝑟 )O𝑧

𝑇𝑆
(𝑟 ′)⟩ provides a non zero result:

⟨O𝑧†
𝑇𝑆
(𝑟 )O𝑧

𝑇𝑆 (0)⟩ =
1

𝜋2𝛼2𝑒
2𝜋 ⟨𝜃𝑐 (𝑟 )𝜃𝑐 (0)−𝜃2

𝑐 (0)⟩𝑒2𝜋 ⟨𝜃𝑠 (𝑟 )𝜃𝑠 (0)−𝜃2
𝑠 (0)⟩

=
1

𝜋2𝛼2

(
𝛼√︁

(𝑢𝑠𝜏 + 𝛼)2 + 𝑥2

) 1
K𝑠

𝑒
− 1

2K𝑐

[∫ 𝑖 𝑥+𝑢𝑐𝜏
0

Δ
𝐿

√
−2𝑖 𝑥
𝑧+𝛼 𝐾1( Δ

𝐿

√
−2𝑖 𝑥

√
𝑧+𝛼)𝑑𝑧+ln (𝛼2)+𝑐.𝑐 .

]

×
∏
±
𝑒

Δ
2K𝑐

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︂
±𝑖 𝑥
2𝜋𝐿 Γ

(
±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

] Δ
2K𝑐 𝑒

− Δ𝑢𝑐𝜏
𝐿

. (5.104)

We adopt ⟨O𝑧†
𝑇𝑆
(𝑧, 𝑧)O𝑧

𝑇𝑆
(0, 0)⟩ of Eq.(5.104) as a suggestion for 𝑔∩(𝑧, 𝑧)𝑔∪(𝑧, 𝑧) in the large

𝑁 case (see Chapter 3).



–6–
Discussions

We have proposed an extended 1 + 1 dimensional non-chiral SYK model described by
Majorana fermions with many fermionic degrees of freedom, where it was included
cross-chirality interactions. As in the original SYK model, 𝑁 Majorana fermions have
all-to-all fermion random interactions where two sets of random Gaussian couplings 𝐽𝑖 𝑗𝑘𝑙
and 𝑄𝑖 𝑗𝑘𝑙 mediate the interactions between fermions of the same and different chirality
branches, respectively. For the large 𝑁 case it is seen that the model behaves as the
Random Thirring model [37] when 𝐽 = 0, while if 𝑄 = 0, the model becomes in two
decoupled left/right-movers SYK chiral systems.

In the original 0 + 1 dimensional case, the model presents an emergent approximate
conformal symmetry at low energies, where the reparametrization symmetry is spon-
taneously broken down to a 𝑆𝐿(2,R) subgroup. Goldstone soft modes appear in the
excitation spectrum. These gapless excitations become gapped when the approximate
conformal symmetry is explicitly broken by reintroducing the derivative term of the
Lagrangian as an ultraviolet correction. We set out to study if gapped excitations are
still present in higher dimensions for the non-chiral 1 + 1 𝑑 case. In our extended non-
chiral 1 + 1 𝑑 SYK model, the theory requires a regulator to be included already in the
action, which breaks conformal invariance explicitly and makes the theory not strictly
Lorentz invariant. However, we speak of "quasi" Lorentz invariance at IR. In this limit,
when an UV cutoff Λ is introduced in real time-space by regularising the singularity at
small arguments with a logarithmic factor, the disorder average of the model provides a
Schwinger-Dyson equation in the 1/𝑁 → 0 limit that can be solved without breaking
the conformal symmetry and the model is found to be still critical. Then, unlike the
0+ 1𝑑 case, the emergent approximate conformal symmetry present at low energies is not
broken spontaneously by the conformal correlator. This does not give us any hint about
excitations being gapped: they all could be gapless if the system remains critical. Thus,
we seek for solutions from the case 𝑁 = 4. In this limit, the model is non symmetrical
(non Lorentz invariant) and non traceless (non conformal invariant), however, it can
be solved exactly by bosonization. For 𝑁 = 4 there are just two independent coupling
parameters 𝐽1234 ≡ 𝐽 and 𝑄1234 ≡ 𝑄 , where we have limited the analysis to the simpler
case 𝐽 = 𝑄 . The two-point correlation functions have been obtained, indicating that
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both gapless and gapped excitations are present. These two branches exist due to the
separation of the model into the "pseudo-charge" and "pseudo-spin" sectors, characterized
by the corresponding velocities 𝑢𝑐,𝑠 = 𝑢0

√︃
1 ± 𝐽

𝜋𝑢0
, where 𝑢0 is a velocity scale. We have

assumed that this behavior remains for large 𝑁 case based in the following arguments:
from the 1 + 1 𝑑 chiral SYK model [35], it is shown that the functional form of the two-
point correlator for 𝑁 = 4 and large 𝑁 are equal (beyond the fact that the meaning of
the coupling is not strictly the same in both cases) and the model remains critical with
gapless excitations. On the other side, from the non-chiral case, the model is still critical
in the infrared, as it is shown by the powerlaw behavior of the correlator. However, for
the strong coupling limit, it can be seen by variational arguments that a non zero gap
is present. Therefore, we have assumed heuristically analytic correlators suggested by
the 𝑁 = 4 case to study the model in the large 𝑁 case, and we surmise that the large 𝑁
limit is characterized by the disorder averaged interaction coupling 𝐽 , and by a gap Δ of
the gapped branch of the spectrum. We use the leading term of the gapped correlators,
which leads to the free-like case when the gap goes to zero, to evaluate an approximated
free energy in the temperature limit 𝑇 = 0 at the lowest 1/𝑁 order, which has to be
minimized with respect to the parameter Δ. We find that there is a range of small 𝐽 values
in which Δ ≠ 0 does not correspond to a minimum of the energy, confirming, also in
this approximate approach to the problem that the gapped branch only arises at large
interaction coupling. However, our approach seem to be justified only at intermediate
𝐽 couplings and fails at 𝐽 → 0 and 𝐽

𝜋𝑢0
≲ 1. Correlator functions tend to the "free-like"

when 𝐽/𝜋𝑢0 is small and Δ → 0, in the conformal symmetry limit. This limiting form is
in contrast with the fact that the derivation of the pseudo-charge correlators in the 𝑁 = 4
case requires Δ and 𝐽/𝜋𝑢0 to be sizeable. Finally, it was shown that a critical powerlaw
decay of the correlators at large distance with non free-like exponent Γ ≠ 1 can also be
obtained from the conformal symmetry limit, for intermediate values of the couplings. By
using linearization in approximating the self-energy obtained from the Schwinger-Dyson
equations, we have found a correlation function with exponent Γ = 1.3 for a fixed coupling
𝐽 . In Fourier space, the correlation function is proportional to 𝑔(𝑝) ∼ 𝑝𝜆 , with 0 < 𝜆 < 1,
confirming the non-Fermi-Liquid nature of the excitations.

By analyzing the superficial degree of divergence, the model appears to be renor-
malizable, with interactions being marginal. Non-chiral 1 + 1 dimensional models are
statistically marginal irrelevant [37], in the sense that after averaging over disorder and
using conformal perturbation theory, the 𝛽 function is positive. However, there are rele-
vant and irrelevant operators that will grow or decrease as we flow into the infrared. Since
all these contributions are screened by the net effect of the average over disorder, added
to the fact that the model is not truly conformal symmetric, we found that the theory
can be studied as an effective model in a range of couplings 𝐽 determined by the physical
bound 0 < 𝐽/𝑢0𝜋 < 1, coming from the gapless pseudo-spin sector. For this, we use the
dual sine-Gordon version of the model, which can be solved exactly by bosonization, as
an approximation to infer the features of the system.

With these discussions, we have answered the open questions that motivated this
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work. We have found an approximation which makes the model solvable and a physical
bound where the theory can be studied safely. Gapped excitations were found in the
extended 1+ 1 dimensional SYK model, in our approximate approach, for large interaction
coupling regime. Nonetheless, our model cannot reproduce the large 𝑁 results in the
entire physical bound, therefor, it is restricted to an intermediate range of values of
coupling constant 𝐽 . Accordingly, there are some aspects of the theory that can be studied
further: as our approach seem to be valid only for a specific range of the physical bound,
a complete description is desirable. Also, similarity of the functional form of correlators,
for the 𝑁 = 4 and large 𝑁 cases, is only valid for the two-point functions. Therefore,
our approach is not able to infer four-point correlators in the large 𝑁 limit. Finally, it
remains to explore how the model can be studied as a holographic dual for gravity, and
also explore in depth the non-Fermi-Liquid behavior of the model.
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Appendix A
Fourier transforms

In this appendix we provide the Fourier transforms of the two-point function 𝑔(𝑧, 𝑧) and
the self-energy Σ(𝑧, 𝑧) for the solution of the SD equations in the large 𝑁 case (Chapter
3).

A.1 Diagonal first approximation

In the simpler approach where off-diagonal terms in matrix𝐺 are neglected, the integrals
that we need to solve are the following:

𝑔(𝑝, 𝑝) = 𝐶
∫

𝑑2𝑧

𝑧
ln(𝑧𝑧Λ2)𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 (A.1)

Σ(𝑝, 𝑝) = 𝐶3
(
𝐽 2

∫
𝑑2𝑧

𝑧3 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 +𝑄2
∫

𝑑2𝑧

𝑧𝑧2 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧
)
. (A.2)

We are going to start with the Fourier transforms of the Green function 𝑔(𝑧, 𝑧) and the 𝑄
part of the self-energy, let’s call it Σ𝑄 . For this task, we are going to use the following
integral [37]:

𝐹𝛽 ( |𝑝 |/Λ) ≡
∫

𝑑2𝑧

𝑧𝑧
ln(𝑧𝑧Λ2)𝛽𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 = 2𝛽+1𝜋

∫ ∞

0

𝑑𝑟

𝑟
ln𝛽 (Λ𝑟 ) 𝐽0( |𝑝 |𝑟 )

=
𝜋

𝛽 + 1 ln
(
Λ2

|𝑝 |2

)𝛽+1
, (A.3)

where |𝑝 |2 = 𝑝𝑝 . For 𝛽 = 𝛼 , we can note that

𝑔(𝑝, 𝑝) = −𝑖𝐶𝜕𝑝𝐹𝛼 ( |𝑝 |/Λ)

= 𝑖𝜋
𝐶

𝑝
ln

(
Λ2

|𝑝 |2

)𝛼
. (A.4)

On the other side, defining

Σ(𝑝, 𝑝) = Σ𝐽 (𝑝, 𝑝) + Σ𝑄 (𝑝, 𝑝), (A.5)
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where
Σ𝐽 (𝑝, 𝑝) ≡ 𝐶3𝐽 2

∫
𝑑2𝑧

𝑧3 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧 (A.6)

and
Σ𝑄 (𝑝, 𝑝) ≡ 𝐶3𝑄2

∫
𝑑2𝑧

𝑧𝑧2 ln(𝑧𝑧Λ2)3𝛼𝑒𝑖𝑝𝑧+𝑖𝑝𝑧, (A.7)

we can note that

𝜕𝑝Σ𝑄 = 𝑖𝐶3𝑄2𝐹3𝛼 ( |𝑝 |/Λ)

= 𝑖𝐶3𝑄2 𝜋

3𝛼 + 1 ln
(
Λ2

|𝑝 |2

)3𝛼+1
(A.8)

where, neglecting O
(
ln3𝛼 Λ2

|𝑝 |2
)
terms we obtain:

Σ𝑄 (𝑝, 𝑝) ≈ 𝑖𝑝𝐶3𝑄2 𝜋

3𝛼 + 1 ln
(
Λ2

|𝑝 |2

)3𝛼+1
. (A.9)

These are solution already know from Random-Thirring model where 𝑄 interactions
domain. However, in our case remains to obtain the self-energy coming from 𝐽 interacting
sector. From definition of Σ𝐽 (𝑝, 𝑝), we proceed as follows:

𝜕𝑝Σ𝐽 = 𝐶3𝐽 2𝑖

∫
𝑑2𝑧

𝑧2 ln
(
𝑧𝑧Λ2)3𝛼

𝑒𝑖 (𝑝𝑧+𝑝𝑧)

= 𝐶3𝐽 2𝑖

∫
𝑑𝑥 𝑑𝑦

𝑥2 − 𝑦2 − 2𝑖 𝑥𝑦
(𝑥2 + 𝑦2)2 ln

(
𝑧𝑧Λ2)3𝛼

𝑒𝑖 (𝑝𝑧+𝑝𝑧) . (A.10)

Note that (𝑝𝑧 + 𝑝𝑧) = ®𝑝 · ®𝑥 and 𝑒𝑖 𝑝𝑧+𝑝𝑧 = 𝑒𝑖 |𝑝 |𝑟 [cos𝛾 cos𝜃+sin𝛾 sin𝜃 ] = 𝑒𝑖 |𝑝 |𝑟 cos𝜂 with 𝜂 = 𝜃 −𝛾 .
Thus,

𝜕𝑝Σ𝐽 = −𝐶3𝐽 2𝑖

∫ ∞

0
𝑟 𝑑𝑟

∫ 𝜋

−𝜋
𝑑𝜃

cos 2𝜃 − 𝑖 sin 2𝜃
𝑟 2 ln

(
𝑟 2Λ2)3𝛼

𝑒𝑖 |𝑝 |𝑟 cos𝜂 . (A.11)

As cos 2𝜃 = cos 2𝜂 cos 2𝛾 − sin 2𝜂 sin 2𝛾 , we have

cos 2𝜃 − 𝑖 sin 2𝜃 = (cos 2𝜂 − 𝑖 sin 2𝜂) (cos 2𝛾 − 𝑖 sin 2𝛾) , (A.12)

also 𝑑𝜃 → 𝑑𝜂 and the extrema cover a period, anyhow. We drop sin 2𝜂 which is odd in
the integration to obtain:

𝜕𝑝Σ𝐽 = −𝐶3𝐽 2𝑖 (cos 2𝛾 − 𝑖 sin 2𝛾)
∫ ∞

0
𝑟 𝑑𝑟

∫ 𝜋

−𝜋
𝑑𝜂

cos 2𝜂
𝑟 2 ln

(
𝑟 2Λ2)3𝛼

𝑒𝑖 |𝑝 |𝑟 cos𝜂

= 2𝜋 𝐶3𝐽 2𝑖
𝑝

𝑝

∫ ∞

0

𝑑𝑟

𝑟
ln

(
𝑟 2Λ2)3𝛼

𝐽2( |𝑝 |𝑟 )

= 23𝛼+1𝜋 𝐶3𝐽 2𝑖
𝑝

𝑝

∫ ∞

0

𝑑𝑟

𝑟
ln3𝛼 (𝑟Λ) 𝐽2( |𝑝 |𝑟 )

= 𝐶3𝐽 2𝑖
𝑝

𝑝
𝐹
(𝐽 )
3𝛼 ( |𝑝 |/Λ), (A.13)
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where it was used that 𝑝
𝑝
∼ 𝑒−2𝑖𝛾 = (cos 2𝛾 − 𝑖 sin 2𝛾) and it was introduce the integral

𝐹
(𝐽 )
3𝛼 ( |𝑝 |/Λ) in the same spirit as the 𝑄 case. In a similar way, we define

𝐺
(𝐽 )
𝜖

(
|𝑝 |
Λ

)
=

∫ ∞

0

𝑑𝑟

𝑟
(Λ𝑟 )𝜖 ln (Λ𝑟 ) 𝐽2 ( |𝑝 |𝑟 ) (A.14)

in such a way that it’s observed:

𝐹
(𝐽 )
3𝛼+1( |𝑝 |/Λ) = 23𝛼+2𝜋 lim

𝜖→0
𝜕3𝛼
𝜖 𝐺

(𝐽 )
𝜖

(
|𝑝 |
Λ

)
or for general intenger

𝐹
(𝐽 )
𝑛+1( |𝑝 |/Λ) = 2𝑛+2𝜋 lim

𝜖→0
𝜕𝑛𝜖𝐺

(𝐽 )
𝜖

(
|𝑝 |
Λ

)
.

From [61] (Eq. 6.771 pg. 747) we have:∫ ∞

0
𝑥𝜖𝑥 𝜇+1/2 ln𝑥 𝐽𝜈 (𝑎𝑥) 𝑑𝑥 𝑎 = 0; −ℜ𝑒 𝜈 − 3

2 < ℜ𝑒 𝜇 + 𝜖 < 0 (A.15)

fulfilled by 𝜇 = −3/2, 𝜈 = 2 ⇒ − 7/2 < −3/2 + 𝜖 < 0.

𝐺
(𝐽 )
𝜖

(
|𝑝 |
Λ

)
=

1
22−𝜖

Γ
[
1 + 𝜖

2
]

Γ
[
2 − 𝜖

2
] (

Λ

|𝑝 |

)𝜖 [
𝜓

(
1 + 𝜖2

)
+𝜓

(
2 − 𝜖

2

)
+ 2 ln 2Λ

|𝑝 |

]
.

Expanding for small 𝜖 :

𝐺
(𝐽 )
𝜖

(
|𝑝 |
Λ

)
≈

(
Λ

|𝑝 |

)𝜖 1
4

[
𝛾 (𝛾 − 1) + 2 ln 2Λ

|𝑝 |

]
=

1
2

(
Λ

|𝑝 |

)𝜖
ln Λ

|𝑝 |

[
1 + O

(
1/ln Λ

|𝑝 |

)]
=

1
2

∞∑︁
𝑚=0

𝜖𝑚 ln𝑚+1( Λ
|𝑝 | )

𝑚!

[
1 + O

(
1/ln Λ

|𝑝 |

)]
. (A.16)

When it’s made the derivative with respect 𝜖 , the first term which survive is proportional
to𝑚(𝑚 − 1) (𝑚 − 2) · · · (𝑚 −𝑛 + 1) and it’s relevant just when𝑚 = 𝑛 (other terms vanishes
or are proportional to 𝜖 → 0). With these, 𝑛(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑛 + 1) cancels with 𝑛!
and we have:

𝐹
(𝐽 )
𝑛+1( |𝑝 |/Λ) = 2𝑛+2𝜋 lim

𝜖→0
𝜕𝑛𝜖𝐺

(𝐽 )
𝜖

(
|𝑝 |
Λ

)
≈ 2𝑛+1𝜋 ln𝑛+1(Λ/|𝑝 |)
= 𝜋 ln𝑛+1(Λ2/|𝑝 |2). (A.17)



Plugging the last equation in Eq. (A.13) and considering in this case 𝑛 + 1 = 3𝛼 , we found:

𝜕𝑝Σ𝐽 = 𝐶
3𝐽 2𝑖

𝑝

𝑝
𝜋 ln3𝛼 (Λ2/|𝑝 |2). (A.18)

Finally, by perform the integral on 𝑝 we reach the desired result:

Σ𝐽 (𝑝, 𝑝) = −𝐶3𝐽 2𝑖𝜋 𝑝

∫ 𝑝 𝑑𝑝

𝑝
ln

(
𝑝

Λ2𝑝

)3𝛼

=
𝐶3𝐽 2𝑖𝜋 𝑝

3𝛼 + 1 ln
(
Λ2

|𝑝 |2

)3𝛼+1
. (A.19)

In conclusion, the Fourier transforms in the large 𝐽 , 𝑄 limit are given by:

𝑔(𝑝, 𝑝) = 𝑖𝜋𝐶
𝑝

ln𝛼
(
Λ2

|𝑝 |2

)
, (A.20)

Σ(𝑝, 𝑝) ≈ 𝑖𝜋 𝑝 𝐶3 (𝐽 2 +𝑄2)
3𝛼 + 1 ln3𝛼+1

(
Λ2

|𝑝 |2

)
. (A.21)

A.2 Complete solution

Here we present the results for the complete solution, including the off-diagonal terms of
𝐺 . By reparametrization arguments, we assume that

𝑔+(𝑧, 𝑧) =
𝑎

𝑧
ln𝛼

(
|𝑧 |2Λ2) (A.22)

𝑔−(𝑧, 𝑧) =
𝑎

𝑧
ln𝛼

(
|𝑧 |2Λ2) (A.23)

𝑔∩ = 𝑔∪ =
𝑏

|𝑧 | ln𝛼
(
|𝑧 |2Λ2) , (A.24)

meanwhile, unitary condition allows us to write for self-energies

Σ+(𝑧, 𝑧) =
[
𝐽 2𝑎

3

𝑧3 +𝑄2
(
𝑎3

𝑧 |𝑧 |2 + 2 𝑏3

𝑧 |𝑧 |2

)]
ln3𝛼 (

|𝑧 |2Λ2) (A.25)

Σ−(𝑧, 𝑧) =
[
𝐽 2𝑎

3

𝑧3 +𝑄2
(
𝑎3

𝑧 |𝑧 |2 + 2 𝑏3

𝑧 |𝑧 |2

)]
ln3𝛼 (

|𝑧 |2Λ2) (A.26)

Σ∪(𝑧, 𝑧) = Σ∩(𝑧, 𝑧) =
[
𝐽 2 𝑎

3

|𝑧 |3 +𝑄2
(
𝑎3

|𝑧 |3 + 2 𝑏3

|𝑧 |3

)]
ln3𝛼 (

|𝑧 |2Λ2) , (A.27)
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where |𝑧 |2 = 𝑧𝑧 and 𝑎 and 𝑏 are two constant parameters. Unbroken parity implies that
𝑔+(𝑧, 𝑧) = 𝑔−(𝑧, 𝑧) ≡ 𝑔(𝑧, 𝑧) and Σ+(𝑧, 𝑧) = Σ−(𝑧, 𝑧) ≡ Σ(𝑧, 𝑧). Therefore, the Fourier
transforms for the diagonal terms in matrix 𝐺 are exactly the same as before, up to a
different constant, and are given by:

𝑔(𝑝, 𝑝) = 𝑖𝜋 𝑎
𝑝

ln𝛼
(
Λ2

|𝑝 |2

)
, (A.28)

Σ(𝑝, 𝑝) ≈ 𝑖𝜋 𝑝
(
𝑎3𝐽 2 + (𝑎3 + 2𝑏3)𝑄2)

3𝛼 + 1 ln3𝛼+1
(
Λ2

|𝑝 |2

)
. (A.29)

For the off-diagonal terms, the integrals that we need to solve are the following:

𝑔∩(𝑝, 𝑝) = 𝑔∪(𝑝, 𝑝) = 𝑏
∫

𝑑2𝑧

|𝑧 | ln( |𝑧 |2Λ2)𝛼𝑒𝑖 |𝑝 | |𝑧 | (A.30)

Σ∩(𝑝, 𝑝) = Σ∪(𝑝, 𝑝) =
(
𝑎3𝐽 2 + (𝑎3 + 2𝑏3)𝑄2) ∫ 𝑑2𝑧

|𝑧 |3 ln( |𝑧 |2Λ2)3𝛼𝑒𝑖 |𝑝 | |𝑧 | . (A.31)

In the same way as for the diagonal solution, we are going to compute the Fourier
transforms of the Green function 𝑔∩(𝑧, 𝑧) = 𝑔∪(𝑧, 𝑧) and the self-energy, Σ∩(𝑧, 𝑧) =

Σ∪(𝑧, 𝑧) by using the following integral [37]:

𝐹 ′
𝛽
( |𝑝 |/Λ) ≡ 1

2

∫
𝑑2𝑧

|𝑧 |2 ln( |𝑧 |2Λ2)𝛽𝑒𝑖 |𝑝 | |𝑧 |

=
1
2

𝜋

𝛽 + 1 ln
(
Λ2

|𝑝 |2

)𝛽+1
, (A.32)

where |𝑝 |2 = 𝑝𝑝 . For 𝛽 = 𝛼 , we can note that

𝑔∩(𝑧, 𝑧) = 𝑔∪(𝑧, 𝑧) = −𝑖𝑏𝜕|𝑝 |𝐹 ′𝛼 ( |𝑝 |/Λ)

= 𝑖𝜋
𝑏

|𝑝 | ln
(
Λ2

|𝑝 |2

)𝛼
. (A.33)

On the other side, we can note that

𝜕|𝑝 |Σ∩(𝑧, 𝑧) = 𝜕|𝑝 |Σ∪(𝑧, 𝑧) = 𝑖
(
𝑎3𝐽 2 + (𝑎3 + 2𝑏3)𝑄2) 𝐹 ′3𝛼 ( |𝑝 |/Λ)

= 𝑖
(
𝑎3𝐽 2 + (𝑎3 + 2𝑏3)𝑄2) 𝜋

3𝛼 + 1 ln
(
Λ2

|𝑝 |2

)3𝛼+1
(A.34)

where, neglecting O
(
ln3𝛼 Λ2

|𝑝 |2
)
terms we obtain:

Σ𝑄 (𝑝, 𝑝) ≈ 𝑖𝜋
(
𝑎3𝐽 2 + (𝑎3 + 2𝑏3)𝑄2)

3𝛼 + 1 |𝑝 | ln
(
Λ2

|𝑝 |2

)3𝛼+1
. (A.35)





Appendix B
Bosonization technique

In this appendix we show some hints in bosonization technique. In the usual lore,
bosonization can be perform by the "Field-Theoretical bosonization" and the "Constructive
bosonization". The first one propose an equivalence between fermions and bosons means
a bosonization dictionary in such a way that reproduce the same correlators as Fermi fields
[46, 62]. The other one naturally obtains the same results but actually also explains why
field-theoretical bosonization works and how bosonic fields and Klein factors naturally
appear from first principles. It also includes models where Hamiltonian doesn’t conserve
each separate total number of𝜓 † and𝜓 fermionic fields [47, 53, 63].

B.1 Field theoretical bosonization

Correlation functions of the Fermi fields can be reproduced by the correlator of the bosonic
operator given the follow bosonization dictionary:

𝜓±(𝑥) =
1

√
2𝜋𝛼

𝑒±𝑖
√

4𝜋𝜙± . (B.1)

We remarks that this is not an operator identity and it is just meaningful when correlation
function are computed in the Fermi (bosonic) vacuum with the same momentum cut-off
𝛼 .

In the Field-Theoretical’s spirit, we use the master formula (B.1) to reproduce any
interaction term made out of the Fermi field by the corresponding bosonic counterpart.
For instance, let’s consider the correlation of the massless Dirac fermion:

𝐺
(𝐹 )
+ (𝑥) = ⟨𝜓+(𝑥)𝜓 †

+ (0)⟩ =
1

2𝜋 (𝛼 − 𝑖𝑥) . (B.2)

Bosonization dictionary should relate it with the free massless scalar field correlator

𝐺
(𝐵)
+ (𝑥) = ⟨𝜙+(𝑥)𝜙+(0) − 𝜙2

+(0)⟩ =
1

4𝜋 ln 𝛼

(𝛼 − 𝑖𝑥) . (B.3)
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Indeed, by plugging Eq. (B.1) in Eq. (B.2), we obtain:

⟨𝜓+(𝑥)𝜓 †
+ (0)⟩ = ⟨ 1

√
2𝜋𝛼

𝑒𝑖
√

4𝜋𝜙+ 1
√

2𝜋𝛼
𝑒−𝑖

√
4𝜋𝜙+⟩ (B.4)

=
1

2𝜋𝛼 ⟨: 𝑒
𝑖
√

4𝜋𝜙+𝑒−𝑖
√

4𝜋𝜙+ :⟩𝑒4𝜋 ⟨𝜙+ (𝑥)𝜙+ (0)−𝜙2
+ (0)⟩

=
1

2𝜋𝛼 𝑒
4𝜋𝐺 (𝐵)

+ (𝑥)

=
1

2𝜋 (𝛼 − 𝑖𝑥) (B.5)

which correctly reproduces the massless Dirac correlator.

B.1.1 Bosonization and point splitting

To apply bosonization in our model, we consider two Majorana fermion fields𝜓 𝑖± and𝜓 𝑗
±

(𝑖 ≠ 𝑗), being possible to define complex fermions 𝑐𝜎± as:

𝑐↑±(𝑡, 𝑥) =
1
√

2
(𝜓 1

±(𝑡, 𝑥) + 𝑖𝜓 2
±(𝑡, 𝑥)) (B.6)

𝑐↓±(𝑡, 𝑥) =
1
√

2
(𝜓 3

±(𝑡, 𝑥) + 𝑖𝜓 4
±(𝑡, 𝑥)) (B.7)

𝑐
†
↑±(𝑡, 𝑥) =

1
√

2
(𝜓 1

±(𝑡, 𝑥) − 𝑖𝜓 2
±(𝑡, 𝑥)) (B.8)

𝑐
†
↓±(𝑡, 𝑥) =

1
√

2
(𝜓 3

±(𝑡, 𝑥) − 𝑖𝜓 4
±(𝑡, 𝑥)) (B.9)

and its bosonization
𝑐𝜎±(𝑡, 𝑥) =: 1

√
2𝜋𝛼

𝑒±𝑖
√

4𝜋𝜙𝜎± (𝑡,𝑥) : (B.10)

𝑐
†
𝜎±(𝑡, 𝑥) =: 1

√
2𝜋𝛼

𝑒∓𝑖
√

4𝜋𝜙𝜎± (𝑡,𝑥) :, (B.11)

where 𝜎 is the index for pseudospin ↑ or ↓ for the fermion.
At the moment we show how bosonization works in correlators at different points

𝜓 (𝑥),𝜓 (𝑥′) (see Eq. B.5). However, it is not guaranteed that a product of two such well-
behaved operators at the same point is itself well behaved. Point-splitting prescription is
required to regularizing infinities. This is equivalent to the normal-ordering regularization
which is used in constructive bosonization [47]. Following [35], on the constant time slice,
the chiral Majorana fermions satisfy the anticommutation relation (omitting indices for
simplicity):{

𝑐 (𝑥), 𝑐†(𝑥′)
}
=

1
2

[{
𝜓𝑖 (𝑥),𝜓𝑖 (𝑥 ′)

}
+

{
𝜓 𝑗 (𝑥),𝜓 𝑗 (𝑥 ′)

}
+ 𝑖

{
𝜓𝑖 (𝑥 ′),𝜓 𝑗 (𝑥)

}
− 𝑖

{
𝜓𝑖 (𝑥),𝜓 𝑗 (𝑥 ′)

}]
(B.12)
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where considering that
{
𝜓𝑖 (𝑥),𝜓 𝑗 (𝑥 ′)

}
= 𝛿𝑖 𝑗𝛿 (𝑥−𝑥 ′) and 𝑥 ≠ 𝑥′, we have{

𝑐 (𝑥), 𝑐†(𝑥′)
}
= {𝑐 (𝑥), 𝑐 (𝑥′)} =

{
𝑐†(𝑥), 𝑐†(𝑥′)

}
= 0. (B.13)

This requires the boson commutation relation

[𝜙 (𝑥), 𝜙 (𝑥′)] = 𝑖

4𝑠𝑔𝑛(𝑥 − 𝑥′). (B.14)

Taking the derivative of the latter with respect x, and considering 𝑥 ≠ 𝑥′, we have

[𝜕𝑥𝜙 (𝑥), 𝜙 (𝑥′)] =
𝑖

4𝜕𝑥𝑠𝑔𝑛(𝑥 − 𝑥′)

=
𝑖

2𝛿 (𝑥 − 𝑥′). (B.15)

Each 𝜙± bosonic field can be separate into a sum of creation and destruction operators
that we will name

𝜙 (𝑥) = 𝜑 (𝑥) + 𝜑†(𝑥) (B.16)

satisfying
[𝜑†(𝑥), 𝜑†(𝑥′)] = [𝜑 (𝑥), 𝜑 (𝑥′)] = 0. (B.17)

The commutation relation can be written now as[
𝜕𝑥𝜑 (𝑥), 𝜑†(𝑥′)

]
+

[
𝜕𝑥𝜑

†(𝑥), 𝜑 (𝑥′)
]
=
𝑖

2𝛿 (𝑥 − 𝑥′). (B.18)

On the other hand, from the Sokhotsky’s formula, it’s possible to show that[
𝜕𝑥𝜑 (𝑥), 𝜑†(𝑥′)

]
=

1
𝑥′ − 𝑥 − 𝑖0+ (B.19)

[
𝜕𝑥𝜑

†(𝑥), 𝜑 (𝑥′)
]
=

1
𝑥 − 𝑥′ − 𝑖0+ (B.20)

and after integrating [
𝜑 (𝑥), 𝜑†(𝑥′)

]
= ln[4𝜋

𝑖𝛼
(𝑥 − 𝑥′ + 𝑖0+)] (B.21)

where 𝛼 plays the role of a short-distance cut-off. We can now calculate the operator
product expansion with a point splitting in the x direction. Considering the bilinear
𝑐†(𝑥)𝑐 (𝑥′) with small x direction separation 𝑥 − 𝑥′, we have

𝑐†(𝑥)𝑐 (𝑥′) =
1

2𝜋𝛼 : 𝑒−𝑖
√

4𝜋𝜙 (𝑥) :: 𝑒𝑖
√

4𝜋𝜙 (𝑥 ′) :

=
1

2𝜋𝛼 𝑒
−𝑖
√

4𝜋𝜑† (𝑥)𝑒−𝑖
√

4𝜋𝜑 (𝑥)𝑒𝑖
√

4𝜋𝜑† (𝑥 ′)𝑒𝑖
√

4𝜋𝜑 (𝑥 ′) (B.22)



Using the operator identity 𝑒𝐴𝑒𝐵 = 𝑒 [𝐴,𝐵]𝑒𝐵𝑒𝐴, the commutation relation for the creation
and destruction bosonic fields (Eq. B.21) and expanding the exponential, we can reach the
following operator at the same point:

𝑐†(𝑥)𝑐 (𝑥′) =
𝑖

2𝜋 (𝑥 − 𝑥′ + 𝑖0+)

[
1 − 𝑖

√
4𝜋 (𝑥 − 𝑥′) (𝜕𝑥𝜑† + 𝜕𝑥𝜑) +

(𝑥 − 𝑥′)2

2

(
4𝜋 (𝜕𝑥𝜑†)2 +

+4𝜋 (𝜕𝑥𝜑)2 + 𝑖
√

4𝜋𝜕2
𝑥 (𝜑† + 𝜑) + 8𝜋𝜕𝑥𝜑†𝜕𝑥𝜑

)
+𝑂 ((𝑥 − 𝑥′)3)

]
(B.23)

where the imaginary part reflects an infinite vacuum density due to the Dirac sea. Return-
ing to the previous bosonic field 𝜙 (𝑥) = 𝜑†(𝑥) + 𝜑 (𝑥), taking the normal ordered density
operator by the limit 𝑥 − 𝑥′ → 0, and considering indices again, we have

: 𝑐†𝜎±(𝑥)𝑐𝜎±(𝑥) := 1
√
𝜋
𝜕𝑥𝜙𝜎±(𝑥). (B.24)

The latter is useful for the interacting part. Next, we consider the kinetic term by point
splitting

− 𝑖2

[
𝜓 𝑖±(𝑥)𝜕𝑥𝜓 𝑖±(𝑥) +𝜓

𝑗
±(𝑥)𝜕𝑥𝜓

𝑗
±(𝑥)

]
= −𝑖𝑐†𝜎±(𝑥)𝜕𝑥𝑐𝜎±(𝑥) (B.25)

In order to have the bosonized version, we have to take in account the next expressions.
First, rewrite the previous equation by using the fact that in general 𝜕𝑥𝑐𝛽 (𝑥) ≈

𝑐𝛽 (𝑥)−𝑐𝛽 (𝑥 ′)
𝑥−𝑥 ′

and 𝑐†
𝛽
(𝑥) ≈

𝑐
†
𝛽
(𝑥)+𝑐†

𝛽
(𝑥 ′)

2 (considering that the limit 𝑥′ → 𝑥 it will be taken). After that,

use Eq. (B.23) and consider the expression 𝜕𝑥𝜙𝛽 (𝑥)−𝜕𝑥𝜙𝛽 (𝑥 ′)
𝑥−𝑥 ′ ≈ 𝜕2

𝑥𝜙𝛽 (𝑥). Finally, neglect the
vacuum term taking the limit 𝑥 − 𝑥′ → 0. The normal ordered kinetic term results to be

−𝑖𝑐†
𝛽
(𝑥)𝜕𝑥𝑐𝛽 (𝑥) =: [𝜕𝑥𝜙𝛽 (𝑥)]2 : . (B.26)

B.2 Klein factors
No combination of bosonic operators can raise or lower the total fermion number by one,
nor can they ensure the anti-commutation relation of different fermion fields species.
Therefore, it is needed to define the so-called Klein factors 𝐹 †𝜂 and 𝐹𝜂 (or 𝑈 and 𝑈 −1

according to [53]). They are defined as operators with the following properties [47]:

{𝐹 †𝜂 , 𝐹𝜂′} = 2𝛿𝜂𝜂′ ,𝑤𝑖𝑡ℎ 𝐹𝜂𝐹
†
𝜂 = 𝐹 †𝜂 𝐹𝜂 = 1 (B.27)

{𝐹 †𝜂 , 𝐹 †𝜂′} = {𝐹𝜂, 𝐹𝜂′} = 0. (B.28)
The bosonization dictionary becomes:

𝜓±(𝑥) =
𝐹𝜂√
2𝜋𝛼

𝑒±𝑖
√

4𝜋𝜙± . (B.29)



Appendix C
Correlators in the N = 4 case

In this appendix we compute the different correlators used in the main text for the case
𝑁 = 4 (Chapter 5).

C.1 Free-like correlators
In the free-like case is convenient to obtain correlation functions via functional integral

⟨𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)⟩ =
∫
D𝜙D𝜃𝑒−𝑆 [𝜙,𝜃 ]𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)∫

D𝜙D𝜃𝑒−𝑆 [𝜙,𝜃 ]
. (C.1)

Let’s start using the Lagrangian representation, with the free-like action

𝑆 =

∫
𝑑𝑡𝑑𝑥

1
2

∑︁
𝜌=𝑐,𝑠

[
1

𝑢𝜌K𝜌

(𝜕𝑡𝜙𝜌)2 −
𝑢𝜌

K𝜌

(𝜕𝑥𝜙𝜌)2
]
. (C.2)

In this case, all degrees of freedom of 𝜃 fields can be integrated by a Gaussian integral in
the functional integral. This implies that Eq.(5.73) becomes

⟨𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)⟩ =
∫
D𝜙𝑒−𝑆 [𝜙]𝜙𝜌 (𝑟1)𝜙𝜌 ′ (𝑟2)∫

D𝜙𝑒−𝑆 [𝜙]
. (C.3)

Similar treatment can be done with 𝜙𝑐 and 𝜙𝑠 fields in such a way to obtain an integral
depending just on the charge or spin part of the action, i.e. 𝜌 = 𝜌′ otherwise a 𝛿𝜌 ′𝜌 appears.
Naturally, the 𝜌 = 𝜌′ case is what interests us. In terms of the Fourier modes

𝜙𝜌 (𝑟 ) =
1
𝛽Ω

∑︁
𝑘,𝜔𝑛

𝑒𝑖 (𝑘𝑥−𝜔𝑛𝜏)𝜙𝜌 (𝑘,𝜔𝑛) (C.4)

the action can be expressed as

𝑆 [𝜙𝜌] =
1
𝛽Ω

∑︁
𝑘,𝜔𝑛

1
2𝑢𝜌K𝜌

[
𝜔2
𝑛 + 𝑢2

𝜌𝑘
2
]
𝜙𝜌 (𝑘,𝜔𝑛)𝜙∗

𝜌 (𝑘,𝜔𝑛) (C.5)

∼ 𝜙∗
𝜌 (𝑘,𝜔𝑛)

[
1
2𝐺

−1
]
𝜙𝜌 (𝑘,𝜔𝑛), (C.6)
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and we can find the average in momentum space to be

⟨𝜙𝜌 (𝑞1)𝜙𝜌 (𝑞2)⟩ = 𝑢𝜌K𝜌

𝛽Ω

𝜔2
𝑛 + 𝑢2

𝜌𝑘
2𝛿𝑞1,−𝑞2 (C.7)

where 𝑞 = (𝑘,𝜔𝑛) is a vector defined in such a way that 𝑒𝑖𝑞𝑟 = 𝑒𝑖 (𝑘𝑥−𝜔𝜏 ) and for real fields
𝜙∗(𝑞) = 𝜙 (−𝑞). Using the Fourier modes again, we can express the correlation function as

⟨𝜙𝜌 (𝑟1)𝜙𝜌 (𝑟2)⟩ =
1
𝛽Ω

∑︁
𝑞1,𝑞2

𝑢𝜌K𝜌

1
𝜔2
𝑛 + 𝑢2

𝜌𝑘
2 (𝑒

𝑖𝑞1𝑟1𝑒𝑖𝑞2𝑟2 + 𝑒𝑖𝑞1𝑟2𝑒𝑖𝑞2𝑟1)𝛿𝑞1,−𝑞2 . (C.8)

It is convenient to move coordinates by −𝑟2 and define 𝑟 = 𝑟1 − 𝑟2. By doing this, we
obtain

⟨𝜙𝜌 (𝑟 )𝜙𝜌 (0)⟩ =
1
𝛽Ω

∑︁
𝑞

𝑢𝜌K𝜌

1
𝜔2
𝑛 + 𝑢2

𝜌𝑘
2 (𝑒

𝑖𝑞𝑟 + 𝑒−𝑖𝑞𝑟 ). (C.9)

Let’s consider zero temperature and large size system. Sum can be changed according to

1
𝛽Ω

∑︁
𝑘,𝑛

→
∫

𝑑𝜔

2𝜋
𝑑𝑘

2𝜋 ,

and integration becomes

⟨𝜙𝜌 (𝑟 )𝜙𝜌 (0)⟩ =

∫
𝑑𝜔

2𝜋
𝑑𝑘

2𝜋𝑢𝜌K𝜌

1
𝜔2 + 𝑢2

𝜌𝑘
2 (𝑒

𝑖𝑞𝑟 + 𝑒−𝑖𝑞𝑟 )

=

∫
𝑑𝑘

4𝜋
K𝜌

𝑘
(𝑒−𝑘 (−𝑖𝑥+𝑢𝜌𝜏) + 𝑒−𝑘 (𝑖𝑥+𝑢𝜌𝜏))

(𝜕𝑦 + 𝜕𝑦)⟨𝜙𝜌 (𝑟 )𝜙𝜌 (0)⟩ = −
∫

𝑑𝑘

4𝜋K𝜌 (𝑒−𝑘𝑦 + 𝑒−𝑘𝑦)𝑒−𝛼𝑘

= −
K𝜌

4𝜋

(
1

𝑦 + 𝛼 + 1
𝑦 + 𝛼

)
. (C.10)

Performing the integration in 𝜔 we have two integrals like 𝑒−𝑘𝑦/𝑘 and 𝑒−𝑘𝑦/𝑘 , where
𝑦 = −𝑖𝑥 + 𝑢𝜌𝜏 and 𝑦 = 𝑖𝑥 + 𝑢𝜌𝜏 . Making the derivative with respect 𝑦 and 𝑦 it is possible
to eliminate 𝑘 in the denominator and perform the integral on 𝑘 . It was also included the
momentum cutoff 𝑒−𝛼𝑘 to ensure that integral over momentum does not diverge. Now we
have to integrate on 𝑦 and 𝑦 to obtain

⟨𝜙𝜌 (𝑥,𝜏)𝜙𝜌 (0,0)⟩ = −
K𝜌

4𝜋

[
ln

(
−𝑖𝑥 + 𝑢𝜌𝜏 + 𝛼

)
+ ln

(
𝑖𝑥 + 𝑢𝜌𝜏 + 𝛼

) ]
+𝐶. (C.11)

The constant 𝐶 can be chosen in such a way that we can obtain the desired correlator
G𝜙𝜌𝜙𝜌 (𝑥, 𝜏):

⟨𝜙𝜌 (𝑥,𝜏)𝜙𝜌 (0,0) − 𝜙2
𝜌 (0,0)⟩ =

K𝜌

2𝜋 ln
(

𝛼√︁
𝑥2 + (𝑢𝜌𝜏 + 𝛼)2

)
. (C.12)
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C.2 Strong coupling limit correlators

Let’s start with the 𝜙𝑐 −𝜙𝑐 component of the matrix (5.93). As it was done for the free-like
case we use the Fourier transform to obtain:〈
𝜙𝑐 (𝑟1)𝜙𝑐 (𝑟2) −

𝜙2
𝑐 (𝑟1) + 𝜙2

𝑐 (𝑟2)
2

〉
=

1
(𝛽Ω)2

∑︁
𝑞1,𝑞2

⟨𝜙𝑐 (𝑞1)𝜙𝑐 (𝑞2)⟩
(
𝑒𝑖𝑞1𝑟1𝑒𝑖𝑞2𝑟2 + 𝑒𝑖𝑞1𝑟2𝑒𝑖𝑞2𝑟1

−𝑒𝑖 (𝑞1+𝑞2)𝑟1 − 𝑒𝑖 (𝑞1+𝑞2)𝑟2

)
. (C.13)

Moving coordinates by −𝑟2 and defining 𝑟 = 𝑟1 − 𝑟2:〈
𝜙𝑐 (𝑟1)𝜙𝑐 (𝑟2) −

𝜙2
𝑐 (𝑟1) + 𝜙2

𝑐 (𝑟2)
2

〉
=

1
(𝛽Ω)2

∑︁
𝑞1,𝑞2

⟨𝜙𝑐 (𝑞1)𝜙𝑐 (𝑞2)⟩
(
𝑒𝑖𝑞1𝑟 +𝑒𝑖𝑞2𝑟 −𝑒𝑖 (𝑞1+𝑞2)𝑟1 − 1

)
.

(C.14)
Inserting now the matrix element coming from the path integral

⟨⟨𝜙𝑐 (𝑞1)𝜙𝑐 (𝑞2)⟩ = 𝛽Ω
𝑢𝑐K𝑐

𝑢2
𝑐𝑘

2
1 + 𝑢2

𝑐𝑚
2 + 𝜔2

𝑛

𝛿𝑞1,−𝑞2, (C.15)

we obtain:〈
𝜙𝑐 (𝑟1)𝜙𝑐 (𝑟2) −

𝜙2
𝑐 (𝑟1) + 𝜙2

𝑐 (𝑟2)
2

〉
=

1
𝛽Ω

∑︁
𝑞1

𝑢𝑐K𝑐

𝑢2
𝑐𝑘

2
1 + 𝑢2

𝑐𝑚
2 + 𝜔2

𝑛

(
𝑒𝑖 (𝑞1 (𝑟1−𝑟2)) + 𝑒−𝑖 (𝑞1 (𝑟1−𝑟2)) − 2

)
=

2
𝛽Ω

∑︁
𝑞1

𝑢𝑐K𝑐

𝑢2
𝑐𝑘

2
1 + 𝑢2

𝑐𝑚
2 + 𝜔2

𝑛

(
cos (𝑞1(𝑟1 − 𝑟2)) − 1

)
= ⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0) − 𝜙2

𝑐 (0)⟩. (C.16)

This can be simplified by defining generically ®𝑞 = (𝜔, 𝑘) and 𝑟 = (𝜏, 𝑥). Also define
𝑞 · 𝑟 ≡ 𝑞 · 𝑟 |+ = 𝜔𝜏 − 𝑘𝑥 and 𝑞 · 𝑟 |− = 𝜔𝜏 + 𝑘𝑥 , so that

⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0) − 𝜙2
𝑐 (0)⟩ =

1
𝛽Ω

∫ +∞

−∞

𝑑𝜔

2𝜋

∫ +∞

0

𝑑𝑘

2𝜋

[
⟨𝜙𝑐 (𝑞+)𝜙𝑐 (−𝑞+)⟩(𝑒𝑖𝜔𝜏−𝑖 𝑘𝑥 − 1)

+⟨𝜙𝑐 (𝑞−)𝜙𝑐 (−𝑞−)⟩(𝑒𝑖𝜔𝜏+𝑖 𝑘𝑥 − 1)
]
. (C.17)

Replacing again the matrix element, and redefining 𝜔 = 𝜔′𝑢𝑐 , where 𝜔′ now also scales
as 1/[𝐿], the integral can be rewritten as follow:

⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0)−𝜙2
𝑐 (0)⟩ = K𝑐

∫ +∞

−∞

𝑑𝜔′

2𝜋

∫ +∞

0

𝑑𝑘

2𝜋
1

𝑘2 +𝑚2 + 𝜔′2

(
𝑒𝑖𝑢𝑐𝜔

′𝜏+𝑖𝑘𝑥 + 𝑒𝑖𝑢𝑐𝜔 ′𝜏−𝑖𝑘𝑥 − 2
)
.

(C.18)



Following the same procedure, we obtain for the dual field 𝜃𝑐

⟨𝜃𝑐 (𝑟 )𝜃𝑐 (0)−𝜃 2
𝑐 (0)⟩ =

1
K𝑐

∫ +∞

−∞

𝑑𝜔′

2𝜋

∫ +∞

0

𝑑𝑘

2𝜋
(𝑘2 +𝑚2)

𝑘2(𝑘2 +𝑚2 + 𝜔′2)

(
𝑒𝑖𝑢𝑐𝜔

′𝜏+𝑖𝑘𝑥 + 𝑒𝑖𝑢𝑐𝜔 ′𝜏−𝑖𝑘𝑥 − 2
)
.

(C.19)
which naturally depends on K−1

𝑐 . However, the Hamiltonian is not invariant by 𝜙 → 𝜃

andK → 1
K as before, due to the presence of the gap, therefore we cannot assume results

for 𝜃 field by changingK coming from 𝜙 results. Turning back to the previous expressions
for correlators, basically we can obtain them by computing the next integrals:

𝐼1± ≡
∫ +∞

−∞

𝑑𝜔′

2𝜋 𝑒
𝑖𝑢𝑐𝜔

′𝜏
∫ +∞

0

𝑑𝑘

2𝜋 𝑒
±𝑖𝑘𝑥 1

𝑘2 +𝑚2 + 𝜔′2 (C.20)

𝐼2± ≡
∫ +∞

−∞

𝑑𝜔′

2𝜋 𝑒
𝑖𝑢𝑐𝜔

′𝜏
∫ +∞

0

𝑑𝑘

2𝜋 𝑒
±𝑖𝑘𝑥 𝑚2

(𝜔′2 +𝑚2) (𝑘2 +𝑚2 + 𝜔′2)
(C.21)

𝐼3± ≡𝑚2
∫ +∞

−∞

𝑑𝜔′

2𝜋
𝑒𝑖𝑢𝑐𝜔

′𝜏

(𝑚2 + 𝜔′2)

∫ +∞

0

𝑑𝑘

2𝜋
𝑒±𝑖𝑘𝑥

𝑘2 ≡ 𝐼3𝑎𝐼3𝑏± (C.22)

with the next relations:

G𝜙𝑐𝜙𝑐 (𝑟 ) = ⟨𝜙𝑐 (𝑟 )𝜙𝑐 (0) − 𝜙2
𝑐 (0)⟩ = K𝑐 [𝐼1(𝑟 ) − 𝐼1(0)] (C.23)

G𝜃𝑐𝜃𝑐 (𝑟 ) = ⟨𝜃𝑐 (𝑟 )𝜃𝑐 (0) − 𝜃 2
𝑐 (0)⟩ =

1
K𝑐

[𝐼1(𝑟 ) − 𝐼2(𝑟 ) + 𝐼3(𝑟 ) − (𝐼1(0) − 𝐼2(0) + 𝐼3(0))]
(C.24)

where 𝐼𝑛 = 𝐼𝑛+ + 𝐼𝑛−. The integral 𝐼1± is computed as follows:

𝐼1± =

∫ +∞

−∞

𝑑𝜔′

2𝜋

∫ +∞

0

𝑑𝑘

2𝜋
𝑒±𝑖𝑘𝑥𝑒𝑖𝜔

′𝑢𝑐𝜏

2𝑖
√
𝑘2 +𝑚2

(
1

𝜔′ − 𝑖
√
𝑘2 +𝑚2

− 1
𝜔′ + 𝑖

√
𝑘2 +𝑚2

)
=

∫ +∞

0

𝑑𝑘

4𝜋
𝑒±𝑖𝑘𝑥𝑒−𝑢𝑐𝜏

√
𝑘2+𝑚2

√
𝑘2 +𝑚2

(C.25)

where the circuit has been closed in the upper complex half plane. In the limit𝑚 → 0 we
want to go back to the free case result. To this end we derive the𝑚 = 0 case with respect
to (−𝑢𝑐𝜏 ± 𝑖 𝑥)

𝜕

𝜕(−𝑢𝑐𝜏 ± 𝑖 𝑥)
𝐼1±

����
𝑚=0

=

∫ +∞

0

𝑑𝑘′

4𝜋 𝑒−(𝑢𝑐𝜏∓𝑖 𝑥)𝑘
′
𝑒−𝛼𝑘

′
= − 1

4𝜋 (∓𝑖 𝑥 + 𝑢𝑐𝜏 + 𝛼)

⇒ 𝐼1± = − 1
4𝜋 ln (∓𝑖 𝑥 + 𝑢𝑐𝜏 + 𝛼) (C.26)

where the convergent factor 𝛼 has been added. The correlator for 𝜙𝑐 can be completely
determined by this integral by considering G𝜙𝑐𝜙𝑐 = K𝑐 (𝐼1+(𝑥, 𝜏) + 𝐼1−(𝑥, 𝜏) − 2𝐼1(0, 0)),
obtaining the free case result Eq. (5.74). We use this procedure as a prescription to get the
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correct limit when𝑚 → 0. In the limit of𝑚 << 1 the derivative 𝜕
𝜕(−𝑢𝑐𝜏±𝑖 𝑥) 𝐼1±, dropping

𝑚2 in the exponential, can take the form

𝜕

𝜕(−𝑢𝑐𝜏 ± 𝑖 𝑥)
𝐼1± ≈ ±𝑖

∫ +∞

𝑚

𝑑𝑧

4𝜋 𝑒
±𝑖 𝑥

√
𝑧2−𝑚2

𝑒−𝑢𝑐𝜏𝑧 (C.27)

with
√
𝑘2 +𝑚2 → 𝑧. Expanding

√
𝑧2 −𝑚2 → 𝑧

(
1 − 𝑚2

2𝑧2

)
and considering again the

convergent factor 𝛼 we obtain

𝜕

𝜕(−𝑢𝑐𝜏 ± 𝑖 𝑥)
𝐼1± ≈

∫ +∞

0

𝑑𝑧

4𝜋 𝑒
−(𝑢𝑐𝜏∓𝑖 𝑥)𝑧𝑒−(±2 𝑖 𝑥𝑚2) 1

4𝑧

= − 1
4𝜋

√︄
±2𝑖 𝑚2𝑥

∓𝑖 𝑥 + 𝑢𝑐𝜏 + 𝛼
𝐾1

(√
±2𝑖 𝑚2𝑥

√
∓𝑖 𝑥 + 𝑢𝑐𝜏 + 𝛼

)
(C.28)

where the integral can be obtained from tables [61]. The limit𝑚 → 0 is correct as the
Bessel function 𝐾1(𝑧) → 1

𝑧
at first order. Substituting this into the result gives:

𝜕

𝜕(−𝑢𝑐𝜏 ± 𝑖 𝑥)
𝐼1± = − 1

4𝜋 (∓𝑖 𝑥 + 𝑢𝑐𝜏 + 𝛼)
(C.29)

as it should be. We have added a spurious contribution 𝜁 = (𝑢𝑐𝜏 ∓ 𝑖 𝑥):����∫ 𝑚

0

𝑑𝑧

4𝜋 𝑒
−(𝑢𝑐𝜏∓𝑖 𝑥)𝑧𝑒−(±2 𝑖 𝑥𝑚2) 1

4𝑧

���� < ����∫ 𝑚

0

𝑑𝑧

4𝜋 𝑒
−𝜁𝑧 𝑒∓𝑖 𝑥

𝑚
2

����
=

����𝑒∓𝑖 𝑥𝑚
2

∫ 𝑚

0

𝑑𝑧

4𝜋 𝑒
−𝜁𝑧

���� = 1
4𝜋

����𝑒∓𝑖 𝑥𝑚
2
(1 − 𝑒−𝜁𝑚)

𝜁

���� = 1
4𝜋

����𝑒−𝑚𝑢𝑐 𝜏2𝑒−𝑚𝑢𝑐𝜏∓𝑖 𝑥
2

sin𝑚𝜁 /2
𝜁

���� .
(C.30)

We disregard this term, so that we get , for small𝑚, the non chiral result:

𝐼1± = −
∫ ∓𝑖 𝑥+𝑢𝑐𝜏

0

𝑑𝑧

4𝜋
Δ

𝐿

√︂
±2𝑖 𝑥
𝑧 + 𝛼 𝐾1

(
Δ

𝐿

√
±2𝑖 𝑥

√
𝑧 + 𝛼

)
. (C.31)

For the second pair of integrals 𝐼2± we are going to compute directly the sum 𝐼2. Using
the parametrization 1

𝑎2+𝑏2 =
∫ ∞

0 𝑒−𝑠 (𝑎
2+𝑏2)𝑑𝑠 and the generalized Gaussian’s integral, both

integral gives the same result and we can sum them, obtaining:

𝐼2 =𝑚
2
∫ +∞

−∞

𝑑𝜔′

2𝜋 𝑒
𝑖𝑢𝑐𝜔

′𝜏 𝑒−𝑥
√
𝜔 ′2+𝑚2

(𝜔′2 +𝑚2)3/2 . (C.32)

Obviously, in the limit𝑚 → 0 the integral vanishes. Of course we are interested in the
massive case and, as for integral 𝐼1, we are going to consider the limit𝑚 << 1. This limit
implies 𝐽 small, however this is not a contradictionwith the strong coupling limit due to the



physical restriction 0 < 𝐽/𝑢0𝜋 < 1, hence the strong coupling 𝐽 can be comparative small
with other factors. In this sense, let’s approximate 𝑒𝑖𝑢𝑐𝜔 ′𝜏𝑒−𝑥

√
𝜔 ′2+𝑚2 ≈ 𝑒−(𝑥−𝑖𝑢𝑐𝜏)

√
𝜔 ′2+𝑚2 .

Doing this, splitting the integral and changing the integration limits, we have:

𝐼2 =𝑚
2
∫ ∞

0

𝑑𝜔′

𝜋

𝑒−(𝑥−𝑖𝑢𝑐𝜏)
√
𝜔 ′2+𝑚2

(𝜔′2 +𝑚2)3/2 . (C.33)

Again, it is a not trivial integral but we can use a similar trick as before. Taking derivative
𝜕

𝜕(−𝑢𝑐𝜏±𝑖 𝑥) 𝐼2 twice, we obtain:

𝑚2
∫ ∞

0

𝑑𝜔′

𝜋

𝑒−(𝑥−𝑖𝑢𝑐𝜏)
√
𝜔 ′2+𝑚2

√
𝜔′2 +𝑚2

=
𝑚2

𝜋
𝐾0(𝑚(𝑥 − 𝑖𝑢𝑐𝜏)) . (C.34)

Turning back by integration, others Bessel 𝐾𝜈 [𝑧] and Struve 𝐿𝜈 [𝑧] functions appears.
Nevertheless, we can use the limit𝑚 << 1 to approximate the Bessel function before to
integrate. For small arguments |𝑧 | << 1 the Bessel function behaves as𝐾0(𝑧) ∼ − ln( 𝑧4 )−𝛾
and we finally obtain:

𝐼2 = −𝑚
4

4𝜋 (𝑖𝑥 + 𝑢𝑐𝜏)2
[
3 − 2 ln

(
𝑚𝑒𝛾

2 (𝑥 − 𝑖𝑢𝑐𝜏)
)]

(C.35)

with the correct limit for𝑚 → 0. For the last pair of integrals 𝐼3±, 𝜔′ and 𝑘 integrals can
be separated and we have two parts: the non-singular 𝐼3𝑎 and the singular integral 𝐼3𝑏±.
The first case is given by

𝐼3𝑎 = 𝑚2
∫ +∞

−∞

𝑑𝜔′

2𝜋
𝑒𝑖𝑢𝑐𝜔

′𝜏

(𝜔′2 +𝑚2)

= 𝑚2 𝑖

4𝜋𝑚 [𝑒𝑚𝑢𝑐𝜏𝐸𝑖 (𝑖𝑢𝑐𝜏𝜔 − 𝑢𝑐𝜏𝑚) − 𝑒−𝑚𝑢𝑐𝜏𝐸𝑖 (𝑖𝑢𝑐𝜏𝜔 + 𝑢𝑐𝜏𝑚)]
����+∞
−∞

=
𝑚

2 𝑒
−𝑚𝑢𝑐𝜏 , (C.36)

where 𝐸𝑖 (𝑧) is the exponential integral, with the following properties 𝐸𝑖 (𝑖∞) = 𝑖𝜋 and
𝐸𝑖 (−𝑖∞) = −𝑖𝜋 , and where just the decaying exponential part was considered. The
singular part for 𝐼3𝑏− is:

𝐼3𝑏± ≈
∫ +∞

1/𝐿
𝑑𝑘 lim

𝜖→0

𝑒−𝑖 𝑘𝑥

𝜖2 + 𝑘2

= 𝑥 lim
𝜖→0

∫
𝑑𝑦

𝑒−𝑖 𝑦

𝜖2 + 𝑦2 = 𝑥 lim
𝜖→0

𝑖

2𝜖 [𝑒𝜖𝐸1(𝜖 + 𝑖 𝑦) − 𝑒−𝜖𝐸1(−𝜖 + 𝑖 𝑦)]

= 𝑖 𝑥

[
𝑑𝐸1(𝑖 𝑦)
𝑑𝑦

+ 𝐸1(𝑖 𝑦)
]
= −𝑖 𝑥 [𝐸0(𝑖 𝑦) − 𝐸1(𝑖 𝑦)]

≡ −𝑖 𝑥
[
𝑒−𝑖𝑦

𝑖 𝑦
− 𝐸1(𝑖 𝑦)

]
→ −𝑖 𝑥

[
𝑒−𝑖𝑦

𝑖 𝑦
− 𝐸1(𝑖 𝑦)

] ����+∞
𝑥/𝐿

≈ 𝐿 𝑒−𝑖
𝑥
𝐿 + 𝑖 𝑥

[
𝛾 + ln 𝑖 𝑥

𝐿

]
(C.37)
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and similar for 𝐼3𝑏+, where the infinite limit lim𝑥→∞ 𝐸1 [𝑖 𝑥] = 0, while lim𝑥→∞ 𝑒−𝑖
𝑥
𝐿 is also

chosen as zero. The singular part 𝐼3± becomes:

𝑚2
∫

𝑑𝑘

2𝜋

∫
𝑑𝜔

2𝜋
𝑒𝑖 𝜔𝜏±𝑖 𝑘𝑥

𝑘2(𝜔2 +𝑚2) ≈ 𝑚𝐿

4𝜋

[
𝑒−(𝑚𝜏∓𝑖

𝑥
𝐿
) ∓ 𝑖 𝑒−𝑚𝜏 𝑥

𝐿

(
𝛾 + ln ∓𝑖 𝑥

𝐿

)]
. (C.38)

On the other side, as ln Γ(𝑧) =
(
𝑧 − 1

2
)

ln 𝑧 − 𝑧 + 1
2 ln 2𝜋 + O

( 1
𝑧

)
, we have

±𝑖 𝑥
𝐿

(
𝛾 + ln ±𝑖 𝑥

𝐿

)
= ln Γ

(
±𝑖 𝑥
𝐿

)
+ 1

2 ln ±𝑖 𝑥
2𝜋𝐿 + ±𝑖 𝑥

𝐿
(𝛾 + 1) (C.39)

and the final expression for 𝐼3± is

𝐼3± ≈ 𝑚𝐿

4𝜋 𝑒−𝑚𝜏
[
𝑒±𝑖

𝑥
𝐿 + ln

[√︂
∓𝑖 𝑥
2𝜋𝐿

]
Γ

(
∓𝑖 𝑥
𝐿

)
+ ∓𝑖 𝑥

𝐿
(𝛾 + 1)

]
. (C.40)

Finally, the correlators required to be used in objects like (5.70) are:

G𝜙𝑐𝜙𝑐 (𝑟 ) = −K𝑐

4𝜋

[∫ 𝑖 𝑥+𝑢𝑐𝜏

0

Δ

𝐿

√︂
−2𝑖 𝑥
𝑧 + 𝛼 𝐾1

(
Δ

𝐿

√
−2𝑖 𝑥

√
𝑧 + 𝛼

)
𝑑𝑧 + ln (𝛼2) + 𝑐.𝑐 .

]
(C.41)

G𝜃𝑐𝜃𝑐 (𝑟 ) =
1

4𝜋K𝑐

ln

𝑒
4𝜋
K𝑐𝐺𝜙𝑐𝜙𝑐 (𝑟 )

∏
±
𝑒
Δ

[
𝑒
− Δ𝑢𝑐𝜏±𝑖 𝑥

𝐿

] [√︂
±𝑖 𝑥
2𝜋𝐿 Γ

(
±𝑖 𝑥
𝐿

)
𝑒∓𝑖

𝑥
𝐿
(𝛾+1)

]Δ𝑒− Δ𝑢𝑐𝜏
𝐿 
(C.42)

where terms proportional to O(𝑚4) have been neglected.

C.3 Off-diagonal non-chiral conserving correlator
It can be proved that the off-diagonal correlators vanish identically in the bosonized 𝑁 = 4
model because they correspond to non-number conserving correlators which are absent
in the 𝑁 = 4 case. To see this, let’s start defining the average two point Majorana fermion
cross-chiral correlators

𝐺∩(𝑟 ) =
1
4
∑︁
𝑖

⟨𝜓 𝑖+(𝑟 )𝜓 𝑖−(0)⟩ (C.43)

and
𝐺∪(𝑟 ) =

1
4
∑︁
𝑖

⟨𝜓 𝑖−(𝑟 )𝜓 𝑖+(0)⟩. (C.44)

Recalling the initial definition of complex fermions it’s possible to write

𝐺∩/∪(𝑟 ) =
1
4

∑︁
𝜎=↑,↓

⟨𝑐𝜎±(𝑟 )𝑐†𝜎∓(0) + 𝑐†𝜎±(𝑟 )𝑐𝜎∓(0)⟩.



Using the bosonization dictionary in terms of dual fields (5.66), the fact that pseudo-
charge and pseudo-spin sectors can be completely separate, the dual fields commutator
[𝜙 (𝑥1), 𝜃 (𝑥2)] = 𝑖

2𝑠𝑔𝑛(𝑥2 − 𝑥1) and the identity 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵𝑒−
1
2 [𝐴,𝐵] = 𝑒𝐵𝑒𝐴𝑒

1
2 [𝐴,𝐵] the

correlators become:

𝐺∩/∪(𝑟 ) = ± 𝑖

8𝜋𝛼

(
⟨𝑒±𝑖

√
𝜋
2 𝜙𝑐 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒−𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → 𝜙𝑠, 𝜃𝑐 → 𝜃𝑠)

+⟨𝑒∓𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒∓𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒−𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → 𝜙𝑠, 𝜃𝑐 → 𝜃𝑠)

+⟨𝑒±𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒±𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒−𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → −𝜙𝑠, 𝜃𝑐 → −𝜃𝑠)

+⟨𝑒∓𝑖
√

𝜋
2 𝜙𝑐 (𝑟 )𝑒∓𝑖

√
𝜋
2 𝜙𝑐 (0)⟩⟨𝑒𝑖

√
𝜋
2 𝜃𝑐 (𝑟 )𝑒−𝑖

√
𝜋
2 𝜃𝑐 (0)⟩ · (𝜙𝑐 → −𝜙𝑠, 𝜃𝑐 → −𝜃𝑠)

)
.

(C.45)

For the correlator to be non-zero, the sum of the factors multiplying fields in the expo-
nentials has to vanish. In the 𝜙 sector this doesn’t happens and off-diagonal correlators
vanish. On the contrary, in the 𝜃 sector we have signs that non-zero correlators involving
cross-chirality fermions can occur. We will deepen on it in the next subsection.

C.4 2d lattice approach: the Villain’s approximation

In the following, we present an alternative picture of the 𝑁 = 4 case, by considering
the model as a 2𝑑 lattice. In principle, physic bound 0 < 𝐽/𝜋𝑢0 implies that we have
different renormalized velocities, and therefore, different weights for kinetic part in time
and space. To fix this, we look for scaling time to obtain approximated correlators for
small 𝐽 pseudo-charge sector and for large 𝐽 pseudo-spin sector.

C.4.1 Motivation
In the XY-model, which describes two component classical spins interacting with their
nearest neighbours, the partition function is proportional to exp (𝛽∑

𝑖 𝑗 cos (𝑆𝑖 − 𝑆 𝑗 ))
where at low temperature alignment of spins is favored. When temperature is increased
(small 𝛽) a disordered phase appears and correlators decrease exponentially, while for
low temperature (large 𝛽) and ordered phase, correlator behaves like (𝑟0/|𝑥 |)1/𝛽 . In our
case, cosine interaction is proportional to the coupling 𝐽 being possible to infer that
similar correlator behavior occurs for strong coupling at least in the pseudo-spin sector.
In fact, if we forget the physical bound for coupling, we found that in the large 𝐽 limit the
pseudo-spin correlator (5.85) behaves like (𝛼/|𝑧 |)K𝑠 where K𝑠 ∼ 𝑖/𝐽 1/2. As alignment is
favored for large 𝐽 and 𝜙𝑠 = 1√

2 (𝜙↑ −𝜙↓), we can assume that disorder is favored for small
𝐽 and 𝜙𝑐 = 1√

2 (𝜙↑ +𝜙↓). In this context, we are going to study the SYK model in the 𝑁 = 4
case by considering the model as a 2𝑑 lattice and applying the Villain’s approximation
[64] for small 𝐽 in the pseudo-charge sector and large 𝐽 in the pseudo-spin sector.
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C.4.2 Time scaling
Before to proceed with the approximation, we have to notice that there are different
weights for the time and space derivatives in the action, depending on the strength of the
interaction mediated by 𝐽 . In order to perform the procedure, we are going to consider
the two cases independently with the actions:

𝑆𝑐 =

∫
𝑑𝑡𝑑𝑥

ℏ

2

[
1
𝑢0

(𝜕𝑡𝜙𝑐)2 − 𝑢0𝐴
2
𝑐 (𝜕𝑥𝜙𝑐)2

]
(C.46)

and
𝑆𝑠 =

∫
𝑑𝑡𝑑𝑥

ℏ

2

[
1
𝑢0

(𝜕𝑡𝜙𝑠)2 − 𝑢0𝐴
2
𝑠 (𝜕𝑥𝜙𝑠)2 − 𝐽

𝜋2𝛼2 cos (
√

8𝜋𝜙𝑠)
]
, (C.47)

where for the 𝑐-sector was neglected the cosine interaction as it was done for the free-like
case. In the following, we are going to focus in the 𝑠-sector and then we will infer the
pseudo-charge case. In the large 𝐽 limit, applying the Villanin’s approximation, the action
becomes

𝑆𝑠 =

∫
𝑑𝑡𝑑𝑥

ℏ

2

[
1
𝑢0

(𝜕𝑡𝜙𝑠)2 + 𝐽

𝜋
(𝜕𝑥𝜙𝑠)2 + 4𝐽

𝜋𝛼2𝜙
2
𝑠

]
(C.48)

It’s possible to re-scale time 𝑡 →
√︃
𝑢0 𝐽
𝜋
𝑡 which now behaves as a length and move to

imaginary time to obtain the re-scaled action for pseudo-spin sector

𝑖𝑆𝑠 =

∫
𝑑𝜏𝑑𝑥

ℏ

2

√︂
𝐽

𝜋𝑢0

[
−(𝜕𝜏𝜙𝑠)2 + (𝜕𝑥𝜙𝑠)2 + 4

𝜋𝛼2𝜙
2
𝑠

]
. (C.49)

In the 𝑠-sector the scaling factor
√︃

𝐽

𝜋𝑢0
is equal to 𝑢𝑠 = 𝑢0

K𝑠
when large 𝐽 limit is considered.

Therefore, it will be easy to track the scaling for pseudo-charge sector by considering the
scaled time as 𝑢𝑐𝑡 and the spatial derivative (𝜕𝑥𝜙𝑐)2 with a minus sign in front.

C.4.3 Lattice approach
The idea is obtain the inverse of the propagator by calculate the kernel of the quadratic
form

Z[0] =
∫

D𝜙D𝜙∗𝑒𝑥𝑝

(
−1

2𝜙
∗𝐺−1𝜙

)
(C.50)

and then follow [64] by considering the model like a 2𝑑 space-time lattice, where time is
now a length. After integrate by parts, and moving the model to a lattice, it’s seen that

𝑖𝑆𝑐

ℏ
=

∫
𝑑𝜏𝑑𝑥

1
2

√︂
𝐽

𝜋𝑢0

[
𝜙∗
𝑠 (𝜕2

𝜏 − 𝜕2
𝑥 )𝜙𝑠 +

4
𝛼2𝜙

2
𝑠

]
=

∑︁
𝑟

𝑢ℏ𝛽𝛼

𝑁

1
2

√︂
𝐽

𝜋𝑢0
𝜙∗
𝑠 (𝑟 )

[
𝜕2
𝜏 − 𝜕2

𝑥 +
4
𝛼2

]
𝜙𝑠 (𝑟 ) . (C.51)



where 𝑢ℏ𝛽𝛼

𝑁
is the lattice area. On the other side, we have that[
𝜕2
𝜏 + 𝜕2

𝑥

]
𝜙𝑐 (𝑖 . 𝑗) =

1
𝛼2

[
(𝜙𝑐 (𝑖+2. 𝑗) − 𝜙𝑐 (𝑖+1. 𝑗)) − (𝜙𝑐 (𝑖+1. 𝑗) − 𝜙𝑐 (𝑖 . 𝑗))

]
+ 1
𝛼2

[
(𝜙𝑐 (𝑖 . 𝑗+2) − 𝜙𝑐 (𝑖 . 𝑗+1)) − (𝜙𝑐 (𝑖 . 𝑗+1) − 𝜙𝑐 (𝑖 . 𝑗))

]
=

1
𝛼2

∫
𝑑2𝑞

(2𝜋)2𝑒
𝑖𝑞𝑟 [2(cos𝑞1 + cos𝑞2) − 4] 𝜙𝑐 (𝑞) (C.52)

and [
𝜕2
𝜏 − 𝜕2

𝑥

]
𝜙𝑠 (𝑖 . 𝑗) =

1
𝛼2

[
(𝜙𝑠 (𝑖+2. 𝑗) − 𝜙𝑠 (𝑖+1. 𝑗)) − (𝜙𝑠 (𝑖+1. 𝑗) − 𝜙𝑠 (𝑖 . 𝑗))

]
− 1
𝛼2

[
(𝜙𝑠 (𝑖 . 𝑗+2) − 𝜙𝑠 (𝑖 . 𝑗+1)) − (𝜙𝑠 (𝑖 . 𝑗+1) − 𝜙𝑠 (𝑖 . 𝑗))

]
=

1
𝛼2

∫
𝑑2𝑞

(2𝜋)2𝑒
𝑖𝑞𝑟 [2(cos𝑞1 − cos𝑞2)] 𝜙𝑠 (𝑞) . (C.53)

Defining 𝛾𝑠 = 𝑢ℏ𝛽

𝑁𝛼

√︃
𝐽

𝜋𝑢0
and 𝛾𝑐 = 𝑢ℏ𝛽

𝑁𝛼
1
K𝑐

we have that the kernel in the lattice approach is
proportional to 𝛾 [4 − 2(cos𝑞1 + cos𝑞2)] and the correlator is found to be

−2𝜋G𝜙𝜌𝜙𝜌 ≡ Γ𝜌 (𝑟 ) =
1
𝛾𝜌

∫
𝑑2𝑞

2𝜋
1 − 𝑒𝑖𝑞1𝑟

4 − 2(cos𝑞1 ± cos𝑞2)
(C.54)

where the plus sign is for 𝜌 = 𝑐 and the minus sign is for 𝜌 = 𝑠 . Here we can already
observe some signals of what we were discussing at the beginning of the section: large 𝐽
𝑠-sector behaves similar to small 𝐽 𝑐-sector, in concordance with what we observed for
strong coupling pseudo-spin and free-like pseudo-charge case in previous sections. Of
course, the power law parameter, in this case 𝛾𝜌 , changes.

Pseudo-charge sector

In the pseudo-charge case, it’s observed the combination 4 − 2(cos𝑞1 + cos𝑞2) in the
denominator. In the small momentum limit, this becomes 𝑞2

1 + 𝑞2
2, which is the modu-

lus square of the two-dimensional momentum (𝑞1, 𝑞2). Therefore, in the limit of small
momentum, the denominator is rotational invariant. This implies that the integral has
an isotropic behaviour at large distances (corresponding to small momenta). Since the
integral has an isotropic behaviour at large distances, i.e., it only depends on the modulus
of (𝑥1, 𝑥2), it is possible to select an arbitrary direction, let’s say 𝑥 direction, perform the
integral and then in final result replace 𝑥1 with the modulus of (𝑥1, 𝑥2). In this way the
correct result for the integral at large distances is obtained. In other words, if you are
looking for the behaviour of the integral at large distances, you can replace the cosines in
the denominators by their expansion to lowest order in q, because at large distance what
matters is the behaviour of the integrand a small momenta.
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With previous considerations, let’s calculated the integral for 𝑥 = (2𝑝, 0) for conve-
nience reasons:

Γ𝜌 (2𝑝, 0) =
1
𝛾𝜌

∫
𝑑2𝑞

2𝜋
1 − 𝑒2𝑖𝑞1𝑝

4 − 2(cos𝑞1 ± cos𝑞2)

=
1
𝛾𝜌

∫
𝑑𝑞1
2𝜋 (1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1)

∫
𝑑𝑞2

1
4 − 2(cos𝑞1 ± cos𝑞2)

=
1
𝛾𝜌

∫
𝑑𝑞1
2𝜋 (1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1)

𝜋

3 − cos𝑞1

√︄
3 − cos𝑞1
1 − cos𝑞1

=
1
𝛾𝜌

∫
𝑑𝑞1

2
1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1√︁
(1 − cos𝑞1) (3 − cos𝑞1)

(C.55)

In the pseudo-charge case, we have to consider the plus sign in the integration on 𝑞2.
However, it is interesting to see that the integration on 𝑞2 gives the same result also
for minus sign (pseudo-spin sector). Making a change of variable 𝑞1 = 2𝑞, and using
trigonometric identities, we can reach

Γ𝑐 (2𝑝, 0) =
1
𝛾𝑐

∫ 𝜋/2

0
𝑑𝑞

2 sin2 2𝑝𝑞
sin𝑞

√︁
1 + sin2 𝑞

(C.56)

where the odd integral coming from the imaginary part has been obtained equal to zero.
Now, we can split the integral by define

Γ0 = 2
∫ 𝜋/2

0
𝑑𝑞

sin2 2𝑝𝑞
sin𝑞 (C.57)

and

Γ1 = 2
∫ 𝜋/2

0
𝑑𝑞

sin2 2𝑝𝑞
sin𝑞

(
1√︁

1 + sin2 𝑞
− 1

)
. (C.58)

For the first one, expanding the sine function:

Γ0 = 2
2𝑝−1∑︁
𝑛=0

1
2𝑛 + 1 = −𝜓 (0) ( 1

2 ) +𝜓
(0) ( 1

2 + 2𝑝) (C.59)

where𝜓 (0) (𝑧) is the polygamma function of order zero. Expanding around 𝑝 = ∞we have

Γ0 ≈ ln 2𝑝 + 2 ln 2 + 𝛾 (C.60)

where 𝛾 is the Euler’s constant. On the other hand, in that limit of 𝑝 , the sin2 2𝑝𝑞 can be



replaced by its average

Γ1 ≈ 2
∫ 𝜋/2

0
𝑑𝑞

1
2 sin𝑞

(
1√︁

1 + sin2 𝑞
− 1

)
≈

∫ 𝜋/2

0
𝑑𝑞

1
sin𝑞

∞∑︁
𝑛=1

sin2𝑛 𝑞

𝑛!
Γ(1/2)

Γ(1/2 − 𝑛)

≈ −1
2 ln 2. (C.61)

With all of these, it’s obtained that

Γ𝑐 (2𝑝, 0) =
1
𝛾𝑐
(Γ0 + Γ1)

≈ 1
𝛾𝑐
(ln 2𝑝 + ln 2

√
2𝑒𝛾 )

≈ 1
𝛾𝑐

ln 2𝑝
𝑟0

(C.62)

where was defined 𝑟0 = 2
√

2𝑒𝛾 . Finally, we obtain the 𝐺𝜙𝑐𝜙𝑐 (𝑟 ) correlator in the lattice
approach by define 2𝑝 → 𝑟 and consider G𝜙𝑐𝜙𝑐 (𝑟 ) = − 1

2𝜋 Γ𝑐 (𝑟 ) to be:

𝐺𝜙𝑐𝜙𝑐 (𝑟 ) = 𝑒
𝜋
2 G𝜙𝑐𝜙𝑐 (𝑟 ) ≈ 𝑒−

1
4𝛾𝑐 ln |𝑟 |

𝑟0

≈
(
𝑟0
|𝑟 |

) 1
4𝛾𝑐
. (C.63)

The correlator is the same as the one computed from field theory. Of course we should
recover the scaling time by changing 𝑡 → 𝑢𝑐𝑡 in |𝑟 | =

√
𝑥2 + 𝑡2. Furthermore, in this

case the cutoff 𝛼 is replaced by the lattice spacing 𝑟0 and the non-universal power law
parameter K𝑐 is changed for 1

𝛾𝑐
. However, we should remember that 𝛾𝑐 = 𝑢ℏ𝛽

𝑁𝛼
1
K𝑐
, which

gives us a relation between physical parameters and implying that the ratio 𝑢ℏ𝛽

𝑁𝛼
should be

set equal one.

Pseudo-spin sector

In the case of pseudo-spin sector, the denominator of Γ𝑠 is 4 − 2(cos𝑞1 − cos𝑞2). Now,
looking for the behaviour of the integral at large distances, and expanding around
(𝑞1, 𝑞2) = (0, 0), you don’t find the modulus square of the momentum. As a conse-
quence, the integral is not isotropic, and it is not possible to compute it as in the case for
the charge. To go around this problem, one possibility is expand the denominator around
(𝑞1, 𝑞2) = (0, 𝜋) or (𝜋, 0). If this is done, it is necessary to keep track of the fact that now
the expansion is not around zero momentum. In fact, the meaning of this is that we are
looking at the staggered component of the Green function, i.e., at the part that oscillates
on the scale of the lattice constant.
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With previous considerations, let’s calculated the integral for shifted momentum
𝑞2 → 𝑞 + 𝜋 as follow:

Γ𝑠 (𝑥1, 𝑥2) =
1
𝛾𝑠

∫
𝑑2𝑞

2𝜋
1 − 𝑒𝑖 (𝑞1𝑥1+(𝑞2+𝜋)𝑥2)

4 − 2(cos𝑞1 + cos𝑞2)

=
1
𝛾𝑠

∫
𝑑2𝑞

2𝜋
1 − 𝑒𝑖 (𝑞1𝑥1+𝑞2𝑥2)𝑒𝑖𝜋𝑥2

4 − 2(cos𝑞1 + cos𝑞2)

→ Γ𝑠 (2𝑝1, 2𝑝2) =
1
𝛾𝑠

∫
𝑑2𝑞

2𝜋
1 − 𝑒𝑖 [𝑞1 (2𝑝1)+𝑞2 (2𝑝2)]𝑒𝑖𝜋 (2𝑝2)

4 − 2(cos𝑞1 + cos𝑞2)
, (C.64)

where we are considering half integer coordinates. Now, in the small momenta (large
distance) limit, we have again the modulus in the denominator. If we consider an arbitrary
direction (2𝑝1, 0), we obtain exactly the same limit as the charge case, and we can proceed
as before. On the other side, if we consider the arbitrary direction (0, 2𝑝2), the half integer
exponent ensure that, in the large distances limit, the exponential goes to exactly the
same as if you consider the other (2𝑝1, 0) direction. Taking the first case for simplicity,
and calling 2𝑝1 → 2𝑝 we have

Γ𝑠 (2𝑝, 0) =
1
𝛾𝑠

∫
𝑑2𝑞

2𝜋
1 − 𝑒𝑖 (2𝑝𝑞1)

4 − 2(cos𝑞1 + cos𝑞2)

=
1
𝛾𝑠

∫
𝑑𝑞1
2𝜋 (1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1)

∫
𝑑𝑞2

1
4 − 2(cos𝑞1 + cos𝑞2)

=
1
𝛾𝑠

∫
𝑑𝑞1
2𝜋 (1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1)

𝜋

3 − cos𝑞1

√︄
3 − cos𝑞1
1 − cos𝑞1

=
1
𝛾𝑠

∫
𝑑𝑞1

2
1 − cos 2𝑝𝑞1 − 𝑖 sin 2𝑝𝑞1√︁
(1 − cos𝑞1) (3 − cos𝑞1)

. (C.65)

Performing the same calculations as the charge case, we reach

𝐺𝜙𝑠𝜙𝑠 (𝑟 ) ≈
(
𝑟0
|𝑟 |

) 1
4𝛾𝑠
, (C.66)

where now 𝛾𝑠 =
𝑢ℏ𝛽

𝑁𝛼

√︃
𝐽

𝜋𝑢0
in the large 𝐽 context. The latter implies that K𝑠 →

√︃
𝜋𝑢0
𝐽
, i.e.

correlator behaves like (𝑟0/|𝑟 |)
K𝑠
4 as it was expected.

Finally, if we want to extend the previous results to𝐺𝜃𝜌𝜃𝜌 (𝑟 ) we just have to exchange
K𝜌 → 1

K𝜌
.
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