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Chapter 1 

1 Introduction and Outline 

 

1.1 Motivations 

Recent progress in VLSI circuits has allowed the 

implementation of valuable devices related to healthcare by providing 

fully integrated solutions to continuously monitor a large variety of data 

obtained by biosensors. Continuous monitoring and processing of such 

data in vivo can be achieved by means of integrated and implantable 

devices, using wireless communication [Car12].  

A wide range of neurological and cardiovascular diseases that 

are not easily tackled with conventional medication techniques, have 

driven research and industry towards the development of such 

implantable, yet minimally invasive electronic devices [Baz12]. 

Implantable biochips could also reduce the need for expensive medical 

procedures. Millions of patients benefit from such instruments, like 

cardioverter defibrillators, cochlear implants, gastric and cardiac 

pacemakers, deep brain, nerve, bone, and spinal cord stimulators, etc.  

Long-term implants with in-vivo functionalities, are 

characterized by certain requirements, like a high-degree of integration, 

minimally invasive surgery, long-term biocompatibility, as well as 

security and privacy in data transmission. Other concerns include low 

energy consumption, small silicon area and weight, and reliable 

performance. Tasks like real time stimulation, data collection, 

processing, compression, and transmission, contribute to the overall 

power budget of the device which should remain as low as possible. 

A promising paradigm which refers to a set of methods that 

relax the constraint of exact equivalence between the specification and 

implementation of a computing system, has recently emerged to deliver 

energy efficient designs for cloud computing or embedded and mobile 
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digital systems [Han13]. Approximate computing (AC) exploits the 

ability of many systems and applications to tolerate a reasonable loss of 

quality in the calculated result. By allowing the possibility of inexact 

outputs, approximate computing can considerably improve power 

consumption, silicon area requirements, as well as the system’s critical 

delay. 

Although deviations from the exact result are generally 

unwanted, applications such as multimedia, signal processing, machine 

learning, pattern recognition, and data mining are tolerant to the 

occurrence of some errors [Liu20]. The error resilience may be 

attributed to: (a) perpetual limitations, as human for example may not 

be able to distinguish trivial details in a processed image, (b) 

redundancy in the processed data, as an algorithm might be able to 

withstand approximations and still derive the correct result, due to a 

sufficient flux of input data, (c) noisy inputs that can make rough 

estimations appropriate. 

The binary adder, which is a fundamental arithmetic unit, can 

serve as a great example for approximate computing applications, as it 

has already attracted great scientific interest [Gup11], [Seo20], [Seo21]. 

It is after all, an elementary block of the binary multiplier, which is a 

core element that contributes significantly to the overall power 

consumption in microprocessors and signal processing systems. 

 The half adder (HA) is the most basic combinational logic 

circuit that can return the sum of two bits, by generating two output bits, 

the carry, and the sum. As shown in Fig. 1.1.a, one XOR and one AND 

gate are required for the HA circuit. Unfortunately, XOR gates are 

known to be slow and bulky and so, avoiding them can be beneficial. A 

simple way to carefully approximate the HA, while relaxing the 

hardware requirements is shown in Fig. 1.1.b. The XOR gate is 

substituted by an OR gate, and the AND gate is discarded. As shown in 

the truth table (TT), this rather simple configuration results in an error 

when both inputs are high. In this case, the Error Distance (ED) is 1. 

The computed output is binary ‘01’, instead of ‘10’ and the result is 

underestimated by 1. In the three other cases, the inexact circuit returns 

the correct result. Given the appropriate application, the inexact HA can 

be an appealing solution, as it offers a significant hardware 

minimization. 
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The Full Adder (FA) is another logic circuit that has been 

extensively studied in order to derive simplifications. Fig. 1.2.a shows 

the conventional FA while the Boolean expressions of its outputs are:  

𝑆𝑢𝑚 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 (1.1) 

𝐶𝑎𝑟𝑟𝑦 = (𝐴 ∙ 𝐵) + ((𝐴 ⊕ 𝐵) ∙ 𝐶) (1.2) 

The authors in [Ram19] propose a gate level logic modification 

approach to approximate the FA circuit. The sum term of the 

conventional full adder is altered to reduce the hardware complexity by 

proposing a carry-based approximation adder (CBAA) and avoid the 

critical XOR operation. The conventional Full Adder, and the proposed 

approximate versions are shown in Fig. 1.2. The TTs and the error 

distances are summarized in Table 1.2. As shown in Fig. 1.2, in all the 

approximated versions of the FA, the Sum is the inverse of the 

corresponding carry, resulting in reduced complexity at gate level with 

respect to the conventional FA. The Boolean equations for the carries 

of the approximate FAs are: 

𝐶1 = (𝐴 ∙ 𝐵) + 𝐶 (1.3) 

𝐶2 = (𝐴 ∙ 𝐵) ⊕ 𝐶 (1.4) 

𝐶3 = (𝐴 ∙ 𝐵) + (𝐵 ∙ 𝐶) + (𝐶 ∙ 𝐴) (1.5) 

 
Fig. 1.1: (a) Exact Half Adder. Using one XOR and one AND gate, this circuit 

is always precise. (b) Approximate Half Adder. Using only one OR gate, this 

circuit returns inexact results when both inputs are high. 

 

 

Table 1.1: Exact Half Adder Truth Table (left) and Approximate Half Adder 

Truth Table with error distance (right). 

A B Carry Sum  A B Carry Sum ED 

0 0 0 0  0 0 0 0 0 

0 1 0 1  0 1 0 1 0 

1 0 0 1  1 0 0 1 0 

1 1 1 0  1 1 0 1 1 
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 Several proposals like the ones already mentioned for the Half 

and Full Adders, are developed in the literature. The most common 

circuits targeted for approximation, are adders of an arbitrary number 

of bits, signed and unsigned binary multipliers, squarers, and dividers. 

These solutions can be exploited in embedded and mobile devices, 

where energy, area, and speed constraints are important. 

The main research topic of this dissertation is approximate 

computing and ways to overcome the state of the art, while a health 

application benefitting from approximate computing is investigated in 

the final chapter. 

 
Fig. 1.2: (a) Exact Full Adder. Using two XOR, two AND, and one OR gate, 

this circuit is always precise. (b, c, d) Approximate Full Adder alternatives. 

 

 

Table 1.2: Exact Full Adder Truth Table (a) and Approximate Full Adder Truth 

Tables with error distance (b, c, d). 

 
Exact FA 

(a) 
(b) (c) (d) 

A B C Carry S C1 S1 ED C2 S2 ED C3 S3 ED 

0 0 0 0 0 0 1 1 0 1 1 0 1 1 

0 0 1 0 1 1 0 1 1 0 1 0 1 0 

0 1 0 0 1 0 1 0 0 1 0 0 1 0 

0 1 1 1 0 1 0 0 1 0 0 1 0 0 

1 0 0 0 1 0 1 0 0 1 0 0 1 0 

1 0 1 1 0 1 0 0 1 0 0 1 0 0 

1 1 0 1 0 1 0 0 1 0 0 1 0 0 

1 1 1 1 1 1 0 1 0 1 2 1 0 1 
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1.2 Thesis Outline 

 

The core of this manuscript is divided into the following 

chapters, each of which ends with a summary section to provide a quick 

reference to the corresponding main findings and results. 

Chapter 2 provides a scientific background including 

information on the state of the art of approximate computing and a brief 

overview of the error metrics that are used to measure the error 

performance of the various approximate circuits. 

In Chapter 3, a method to reduce the partial products of a 

binary multiplier, using approximate compressors is described. 

Different sizes of approximate multipliers are developed and tested 

against the state of the art. 

In Chapter 4, various approximate 4×4 multiplier blocks are 

developed and used recursively to scale up to higher order multipliers. 

The obtained designs are compared to numerous recursive architectures 

found in the literature. 

In Chapter 5, approximations in another fundamental 

arithmetic operation, are investigated. Approximate recursive squarers 

are developed and tested against the state of the art. 

In Chapter 6, a Machine Learning application to detect spikes 

in brain activity is developed. The obtained network is described and 

implemented in an integrated circuit to serve as a brain-machine 

interface. 

Finally, conclusions are drawn, and future goals are mentioned. 
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Chapter 2 

2 Scientific Background 

2.1 State of the Art 

In the last years, many contributions related to approximate 

computing have focused on arithmetic operations, such as binary 

addition, multiplication, and division [Soa19], [Gup13], [Che18]. 

Binary multipliers constitute a fundamental part of many digital 

processing systems, such as FFT/IFFT hardware implementation 

algorithms, and unfortunately are characterized by heavy silicon area, 

power, and timing requirements [Hor14]. Consequently, nowadays 

approximate binary multipliers are being studied thoroughly. A 

comprehensive survey of approximate arithmetic circuits, such as 

approximate adders, multipliers, and dividers is developed in [Jia20]. 

Several techniques providing efficient approximate multipliers 

have been studied in the literature. One such example is the 

approximate logarithmic multiplier [Liu18], [Kim19], [Lot21]. In this 

case, approximated versions of the logarithms of the input operands, are 

added. The result corresponds to the approximated value of the 

antilogarithm of the sum. These are low-power and high-speed designs, 

due to the low complexity in their architecture. However, they tend to 

be less accurate. Another approach is the static segmentation. In this 

technique, a part of each input operand is given as input to a small 

multiplier, whose shifted output is the result of the multiplication 

[Str22]. Static segmentation has been demonstrated to be useful when 

very low power is needed, and accuracy is not the main issue. In 

[Yan18] the authors propose an approximate multiplier that can 

dynamically control accuracy. The circuit can select the length of the 

carry propagation to effectively satisfy the desired accuracy 

requirements. 

Software-based approaches have been proposed, that merge the 

approximated multiplier design in the design flow of the circuit. They 
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automatically generate synthesizable hardware description code (HDL) 

for approximate arithmetic circuits based on the accuracy requirement 

of the design [Češ18], [Ull18], [Mra20], [Bal22]. Such techniques can 

prove useful when the targeted application does not have a uniform 

input distribution. 

The basic binary multiplication process can be divided into three 

parts: partial product generation, partial product reduction and carry-

propagate addition. Approximate computing can be introduced in all 

these steps. For instance, the first step can be approximated by 

truncating some of the least significant partial products (PPs) and then 

possibly employing a compensation strategy [Vah19], [Fru20]. 

The partial product reduction step is typically the main target for 

approximations in a binary multiplier. A common approach to reduce 

the partial product matrix (PPM) relies on the use of approximate 

compressors. Compressors are logic circuits that aim to minimize the 

number of operands in the final step, which is the addition of the 

reduced partial products, using tree-based logarithmic reduction 

schemes, such as Wallace [Wal64], Dadda [Dad83], or the Three-

Dimensional Method (TDM) [Okl96]. The compressors are XOR-rich 

circuits (thus slow and power hungry), that count the number of ones in 

the input. The most basic exact compressor is the Full Adder, that 

reduces three digits into two, maintaining the original information. As 

shown in the following, many research contributions have focused on 

the approximation of the PPM compression phase. Approximate 

compressors developed during this work, are discussed in chapter 3. 

In [Kel09] the authors acquire approximate compressors by 

truncating outputs of some exact compressors, while in [Cil14] and 

[Guo18], compressors with only 2-bit outputs are proposed. Lossy 

compression of the rows in the PPM based on bit significance, is 

investigated in [Qiq17]; the compression exploits approximate, OR-

based half adders. In [Esp17] simple OR gates serve as approximate 

compressors and two designs are proposed. The two designs are 

obtained using encoded partial products and approximate compressors, 

delivering different accuracy-electrical performance trade-off. Several 

solutions employing 3:2 and 4:2 compressors to generate approximated 

multipliers are presented in [Ans18], [Sab19], [StNa20], [StDe20]. A 

set of Single-Weight Approximate Compressors (SWACs) is employed 

in [Esp18], to construct approximate multipliers. Unlike the Full-Adder 
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that produces a sum and a carry, these designs compress input bits 

derived from a PPM column, into fewer output bits, maintaining the 

same initial weight. This allows a significant reduction of circuit 

complexity since less carry bits are generated and propagated. 

Maddisetty et al. [Mad19] present the training of a neural network to 

devise an efficient approximate 4:2 compressor. In [Eda20] two 4:2 

compressors are presented; a novel 4:2 architecture, and a modified 

design by substituting the AND / OR gates with NAND / NOR gates 

respectively. Although the boolean expression is changed, when the 

modified version targets multipliers, employing reduction steps in 

multiples of 2, the difference is nullified. Approximate 4:2 designs 

implemented in FinFET technology are presented in [Zak20], [Kha21]. 

In [Pei21] the number of outputs of the approximate 4:2 compressor is 

innovatively reduced to one; 3 such compressors are proposed, as well 

as an error-correcting module. 

Recursive multipliers are an interesting research area of the 

approximate computing field that aims to use small elementary 

approximate multiplier blocks, suitably assembled, to design larger 

multipliers, [Ans18], [Kul11], [Reh16], [GSK18], [Gil19], [War20], 

[Yan20], [War21]. The advantage of the recursive building of larger 

multipliers is that it avoids a dedicated design for every bit width and 

gains in terms of generality of the proposed approaches. As 

demonstrated in [Ans18], and in chapter 4 of this dissertation, four n×n 

building blocks can be utilized to scale up to a 2n×2n multiplier. Several 

authors have used 4×4 approximate multipliers to recursively generate 

several 8×8 multiplier alternatives. The authors of [Ans18] propose 

three 4:2 compressors, used to generate two 4×4 multipliers.  

Guo et al. [GSK18] propose a 4×4 approximate multiplier 

module. The corresponding 8×8 multiplier is made up from one 4×4 

multiplier featuring OR-based compressors with no carry propagation 

in the lower part, two of the proposed 4×4 modules in the middle part, 

and an exact 4×4 multiplier for the most significant part. Differently 

from the other designs, the four products are summed using an 

approximate adder. 

In [War20] the authors consider the probability distribution of 

the input operands to propose 4×4 multipliers, consisting of 

approximate NOR-based half adder and full adder designs. These 

elementary blocks are exploited to build approximate recursive 
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multipliers. In [Yan20] a 4×4 approximate multiplier featuring an error 

detection and correction system, is presented. 

Similarly, in [Kul11], [Reh16], [Gil19] and [War21] the authors 

propose 2×2 approximate sub-multipliers, suitably arranged, to form 

larger size multipliers. Sixteen 2×2 modules are needed to create an 8×8 

multiplier. Kulkarni et al. [Kul11] present a 2×2 inexact multiplier with 

tunable error characteristics. In [Reh16] the authors provide an 

exploration of the architectural space and propose their 2×2 module. 

The 2×2 approximate multiplier presented in [Gil19] has an internal 

self-healing strategy that does not require coupled modules, while the 

proposed larger multipliers derived from the 2×2 blocks produce near 

zero mean error. In [War21] two elementary multipliers are proposed 

that exhibit double-sided error distribution while the resulting 8×8 

design has the advantage of error compensation. 

Several attempts to outperform the state of the art in terms of 

power dissipation, silicon area, and critical delay, are described in the 

following chapters of this thesis. Approximate arithmetic circuits are 

developed exploiting novel approximate compressors and recursive 

architectures. The designs are then described in HDL and simulated, to 

derive their error performance. Finally, they are synthesized in a 

FinFET technology provided by Global Foundries. The targeted 

technology allows a minimum gate length of 14nm, while featuring two 

layers of metal. The typical DC supply voltage is 0.80 Volts, while the 

minimum and maximum limits are 0.54V and 0.95V, respectively. The 

same methodologies (including the technology) are used throughout 

this work for the proposed and competitive designs found in the 

literature, to ensure a fair comparison with the state of the art. 

 

 

2.2 Error Metrics 

To quantify the error performance of the different investigated 

approximate designs, several error metrics have been used throughout 

this work. These metrics are summarized in the following. 

Assuming that 𝐴 and 𝐵 are the two n-bit operands in an n×n 

binary multiplication operation, with:  
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𝐴 = ∑ 𝑎𝑖 ∙ 2𝑖
𝑛−1

𝑖=0
       , 𝐵 = ∑ 𝑏𝑗 ∙ 2𝑗

𝑛−1

𝑗=0
(2.1) 

a random partial product 𝑝𝑖𝑗, is given by: 

𝑝𝑖𝑗 = 𝑎𝑖𝑏𝑗 (2.2) 

If the input bits 𝑎𝑖 and 𝑏𝑗 are uniformly and independently distributed, 

the probability of each PP being high, is equal to: 

𝑃(𝑝𝑖𝑗) = 1 4⁄ (2.3) 

Let 𝑌𝐸_𝑘 be the exact result of the multiplication between the two 

n-bits operands 𝐴𝑘 and 𝐵𝑘 such that 𝑌𝐸_𝑘 = 𝐴𝑘𝐵𝑘 and let 𝑌𝐴_𝑘 be the 

approximated output returned by the investigated inexact multiplier. 

The error 𝐸𝑘, of each multiplication is given by: 
𝐸𝑘 = 𝑌𝐸_𝑘 − 𝑌𝐴_𝑘 (2.4) 

While the error distance 𝐸𝐷𝑘 is defined as: 

𝐸𝐷𝑘 = |𝑌𝐸_𝑘 − 𝑌𝐴_𝑘| (2.5) 

And the relative error distance 𝑅𝐸𝐷𝑘, as: 
𝑅𝐸𝐷𝑘 = 𝐸𝐷𝑘 𝑌𝐸_𝑘⁄   ∀   𝑌𝐸_𝑘 ≠ 0 (2.6) 

• The Mean Error, ME, is defined as the sum of errors, divided by the 

total amount of possible inputs 22n: 

𝑀𝐸 = (∑ 𝐸𝑘

22𝑛−1

0
) 22𝑛⁄ (2.7) 

• The Normalized Mean Error Distance, NMED, is defined as the 

average value of ED divided by the maximum possible value 

returned by the multiplier, which is: (2n-1)2. 

• The Mean Relative Error Distance, MRED, is given by the average 

value of RED. 
• The number of effective bits, NoEB, is defined as: 

𝑁𝑜𝐸𝐵 = 2𝑛 − 𝑙𝑜𝑔2(1 + √𝐸𝑚𝑠) (2.8) 

where 𝐸𝑚𝑠 is the means square error, given by the average value of 
𝐸2. 

• The error rate, ER, is defined as the number of erroneous 

multiplications (with 𝐸𝑘 ≠ 0) over the total amount of possible 

inputs 22n. 

 



18  Efstratios Zacharelos 

2.3 Summary 

In this chapter, a quick overview on the state of the art of 

approximate binary multipliers is given. Two main categories of 

multipliers are pointed out: those that exploit approximate compressors 

and those that benefit from recursive topologies. Then, the error metrics 

used throughout this work to measure the error performance, are 

presented.  
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Chapter 3 

3 Approximate Multipliers Based on 

Approximate Compressors 

As mentioned in chapter 2, the first objective of a binary 

multiplier is to generate the partial product matrix (PPM). Afterwards, 

the addition of the partial products in each column, takes place. At this 

stage, compressors can be used to reduce the size of the PPM. An exact 

compressor produces an output that is the sum of n selected input bits 

(usually of the same column, i.e., they have the same binary weight). 

The generated output bits are 𝑚 = ⌈𝑙𝑜𝑔2𝑛⌉, with different weights. 

A common example of exact compressors is the Full-Adder, 

having an input of three bits and reducing it to two bits: the sum, and 

the carry, with a double weight. Another useful circuit in the PPM 

reduction phase, is the Half-Adder, which encodes two input bits into 

two output bits, exactly like the Full-Adder. While it does not reduce 

the number of bits in the PPM, many times it proves useful as it 

rearranges the order of bits, keeping one bit in the column of interest 

(sum), and generating one for the next column (carry). 

An approximate compressor is typically a simpler circuit, liable 

to producing inexact results. As it will be shown in the following, two 

types of approximate compressors are presented in this chapter, that 

generate 𝑚 = ⌈𝑛 2⁄ ⌉ output bits, all of which hold the same weight as 

the input bits. Therefore, they all are single-weight approximate 

compressors (SWACs). The first class of compressors is meant to 

minimize the hardware requirements, while maintaining the introduced 

error at reasonable levels. On the other hand, the second class of 

approximate compressors are as accurate as possible. Therefore, if the 

input bits whose value is high are not exceeding the number of output 

bits, the exact result will be encoded in the output. Otherwise, the 

resulting approximate output will be as close to the exact one, as 

possible. Hence, these compressors are error optimal. 
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SWACs of both types are presented for various sizes, namely 

3:2, 4:2, 5:3, and 6:3. Higher order compressors are also employed, but 

they are derived as combinations of lower order compressors, as 

explained in section 3.3. All these designs are combined to form 

multipliers of different sizes. If suitably combined, they guarantee a 

great trade-off between outcome precision and electrical performances. 

Both types of compressors avoid the use of complex XOR gates. 

3.1 Hardware-Efficient Approximate 

Compressors 

In order to clarify the process used to produce hardware-

efficient (Type-A) single weight approximate compressors, that has 

been developed in [Esp18], let us start with compressing two partial 

products into one bit. As shown by eq. 2.2, each PP is generated by 

multiplying two input bits. Let us assume that the PP 𝑝0 is generated by 

the multiplication (AND gate) of the input bits 𝑥0 and 𝑦0, while the PP 

𝑝1 is generated by the multiplication of the input bits 𝑥1 and 𝑦1. 

Table 3.1: Multiplier inputs, corresponding partial products, logical AND and OR of 

the partial products. In only one out of the 16 cases the logical AND is relevant and 

can thus be neglected. 

𝒙𝟎 𝒚𝟎 𝒙𝟏 𝒚𝟏 𝒑𝟎 𝒑𝟏 𝒑𝟎𝒑𝟏 𝒑𝟎 + 𝒑𝟏 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 1 0 1 0 1 

0 1 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 0 0 0 0 0 

0 1 1 1 0 1 0 1 

1 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 

1 0 1 0 0 0 0 0 

1 0 1 1 0 1 0 1 

1 1 0 0 1 0 0 1 

1 1 0 1 1 0 0 1 

1 1 1 0 1 0 0 1 

1 1 1 1 1 1 1 1 
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As it can be observed in Table 3.1, the addition of two partial 

products, 𝑝0 and 𝑝1, can be recoded into the sum of the logical AND 

and the logical OR of the two partial products: 

𝑆 = ∑{𝑝0, 𝑝1} = ∑{𝑝0𝑝1, 𝑝0 + 𝑝1} (3.1) 

Consulting Table 3.1, we can derive the probabilities of each 

term being high: 

𝑃(𝑝0𝑝1) = 1 16⁄ (3.2) 

𝑃(𝑝0 + 𝑝1) = 7 16⁄ . (3.3) 

Considering these probabilities, and neglecting the term generated 

exploiting the AND gate, we get an approximated version of the 

summing process: 

𝑆𝐴𝑃𝑃 = ∑{𝑝0 + 𝑝1} . (3.4) 

The only case in which this approximated process results in an 

erroneous result, is when all the multiplier inputs in question are high, 

(𝑥0 = 𝑦0 = 𝑥1 = 𝑦1 = 1), and as such, the two partial products to be 

compressed are also high, (𝑝0 = 𝑝1 = 1). In this case, the approximated 

result is encoded in 1 bit and is equal to 1, instead of 2 which is the 

accurate result. 

 

3.1.1 Approximate Compressor 3:2 

An approximate 3:2 compressor reduces 3 partial products of 

the same column in the PPM, into 2 bits. Applying the same reasoning 

as in equation 3.1 twice: 

𝑆 = ∑{𝑝0, 𝑝1, 𝑝2} = ∑{𝑝0𝑝1𝑝2, 𝑝0𝑝1 + 𝑝2, 𝑝0 + 𝑝1} . (3.5) 

The first term in equation 3.5 is the logical AND of the three 

partial products and holds a very low probability of being high: 

𝑃(𝑝0𝑝1𝑝2) = 𝑃(𝑝0) ∙ 𝑃(𝑝1) ∙ 𝑃(𝑝2) =
1

4
∙
1

4
∙
1

4
= 1 64⁄ (3.6) 

Therefore, we can neglect this term, thus obtaining: 

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2, 𝑝0 + 𝑝1} . (3.7) 

In table 3.2, the input PPs, the compressor’s outputs, the exact 

and approximate sums, the error, and error probability, for all the 

possible partial product combinations are reported. We can observe that 
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the only erroneous case appears for 𝑝0 = 𝑝1 = 𝑝2 = 1, where the exact 

result is 3 and the approximated 2. Hence, the error probability and 

mean error of the 3:2 approximate compressor respectively, are: 

𝑃𝐸 = 1 64⁄ (3.8) 

𝐸𝑚𝑒𝑎𝑛 = 1 64⁄ (3.9) 

The schematic of the proposed 3:2 approximate compressor is 

shown in Fig. 3.1. It is a quite simple design, employing just AND, OR 

gates, and avoiding large XOR gates. Furthermore, it provides high 

accuracy results, as explained earlier, making it an attractive alternative, 

when compared to similar circuits. 

 

 

 

Table 3.2: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-A 3:2 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐 𝒘𝟎𝒘𝟏 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

000 00 0 0 0 - 

001 10 1 1 0 - 

010 01 1 1 0 - 

011 11 2 2 0 - 

100 01 1 1 0 - 

101 11 2 2 0 - 

110 11 2 2 0 - 

111 11 3 2 1 1/64 

 

 

 
 

Fig. 3.1: Schematic of the proposed Type-A 3:2 approximate compressor. 
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3.1.2 Approximate Compressor 4:2 

Applying three times the same recoding technique to four partial 

products, we can obtain: 

𝑆 = ∑{
(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝2𝑝3)(𝑝0 + 𝑝1),

(𝑝0𝑝1) + (𝑝2 + 𝑝3), (𝑝2𝑝3) + (𝑝0 + 𝑝1)
} (3.10) 

The probability of the first two terms being high is very low, so 

we can safely neglect them, thus obtaining the proposed 4:2 

approximate compressor logic equations: 

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝2𝑝3 + 𝑝0 + 𝑝1} (3.11) 

In table 3.3, we can observe the behavior of the proposed 

approximate compressor. There are five partial products combinations, 

out of the sixteen possibilities, that result in an error. In four of these 

cases, the approximated result is underestimated by one, while in the 

last, least probable case, it is underestimated by two. So, the error 

probability and mean error are: 

𝑃𝐸 = 13 256⁄ (3.12) 

𝐸𝑚𝑒𝑎𝑛 = 14 256⁄ (3.13) 

Fig. 3.2 shows the schematic of the proposed 4:2 approximate 

compressor. Again, a simple XOR-free design is enough to create a 

compressor with low error probability. 

 

Fig. 3.2: Schematic of the proposed Type-A 4:2 approximate compressor. 
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3.1.3 Approximate Compressor 5:3 

The usual recoding is applied four times accordingly to acquire 

the 5:3 approximate compressor. 

𝑆 = ∑{

(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝0𝑝1) + (𝑝2 + 𝑝3),
(𝑝2𝑝3)𝑝4, (𝑝2𝑝3) + 𝑝4,

(𝑝0 + 𝑝1)
} (3.14) 

Neglecting the two low probability terms, namely the ones 

comprised by the AND of three terms, we obtain: 

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝0 + 𝑝1, 𝑝2𝑝3 + 𝑝4} (3.15) 

The behavior of the proposed compressor (Fig. 3.3) is exhibited 

in table 3.4. Out of the thirty-two cases, there are nine that produce an 

underestimated result. In the unlikely event that all the partial products 

are high, the produced result is underestimated by two. Consulting table 

3.4, we can obtain: 

𝑃𝐸 = 43 1024⁄ (3.16) 

𝐸𝑚𝑒𝑎𝑛 = 44 1024⁄ (3.17) 

Table 3.3: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-A 4:2 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑 𝒘𝟎𝒘𝟏 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

0000 00 0 0 0 - 

0001 01 1 1 0 - 

0010 01 1 1 0 - 

0011 11 2 2 0 - 

0100 10 1 1 0 - 

0101 11 2 2 0 - 

0110 11 2 2 0 - 

0111 11 3 2 1 3/256 

1000 10 1 1 0 - 

1001 11 2 2 0 - 

1010 11 2 2 0 - 

1011 11 3 2 1 3/256 

1100 11 2 2 0 - 

1101 11 3 2 1 3/256 

1110 11 3 2 1 3/256 

1111 11 4 2 2 1/256 
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Table 3.4: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-A 5:3 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒 𝒘𝟎𝒘𝟏𝒘𝟐 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

00000 000 0 0 0 - 

00001 100 1 1 0 - 

00010 100 1 1 0 - 

00011 101 2 2 0 - 

00100 001 1 1 0 - 

00101 101 2 2 0 - 

00110 101 2 2 0 - 

00111 101 3 2 1 9/1024 

01000 001 1 1 0 - 

01001 101 2 2 0 - 

01010 101 2 2 0 - 

01011 101 3 2 1 9/1024 

01100 011 2 2 0 - 

01101 111 3 3 0 - 

01110 111 3 3 0 - 

01111 111 4 3 1 3/1024 

10000 010 1 1 0 - 

10001 110 2 2 0 - 

10010 110 2 2 0 - 

10011 111 3 3 0 - 

10100 011 2 2 0 - 

10101 111 3 3 0 - 

10110 111 3 3 0 - 

10111 111 4 3 1 3/1024 

11000 011 2 2 0 - 

11001 111 3 3 0 - 

11010 111 3 3 0 - 

11011 111 4 3 1 3/1024 

11100 011 3 2 1 9/1024 

11101 111 4 3 1 3/1024 

11110 111 4 3 1 3/1024 

11111 111 5 3 2 1/1024 

 

 
Fig. 3.3: Schematic of the proposed Type-A 5:3 approximate compressor 

 



26  Efstratios Zacharelos 

3.1.4 Approximate Compressor 6:3 

For the 6:3 compressor, the recoding is applied six times: 

𝑆 = ∑{

(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝0𝑝1) + (𝑝2 + 𝑝3),
(𝑝2𝑝3)(𝑝4 + 𝑝5), (𝑝2𝑝3) + (𝑝4 + 𝑝5),
(𝑝4𝑝5)(𝑝0 + 𝑝1), (𝑝4𝑝5) + (𝑝0 + 𝑝1)

} (3.18) 

By neglecting all the low probability terms that consist of the 

AND of three terms, we obtain: 

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝2𝑝3 + 𝑝4 + 𝑝5, 𝑝4𝑝5 + 𝑝0 + 𝑝1} (3.19) 

Table 3.5 reports only the partial products combinations 

resulting in an output error. According to this table, the error probability 

and mean error of the proposed approximate 6:3 compressor is:  

𝑃𝐸 = 316 4096⁄ (3.20) 

𝐸𝑚𝑒𝑎𝑛 = 336 4096⁄ (3.21) 

The schematic of the proposed Type-A 6:3 approximate 

compressor is shown in figure 3.4. 

 

 

 
 

Fig. 3.4: Schematic of the proposed Type-A 6:3 approximate compressor 
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Table 3.5: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-A 6:3 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒𝒑𝟓 𝒘𝟎𝒘𝟏𝒘𝟐 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

000111 011 3 2 1 27/4096 

001011 011 3 2 1 27/4096 

001111 111 4 3 1 9/4096 

010111 111 4 3 1 9/4096 

011011 111 4 3 1 9/4096 

011100 101 3 2 1 27/4096 

011101 111 4 3 1 9/4096 

011110 111 4 3 1 9/4096 

011111 111 5 3 2 3/4096 

100111 111 4 3 1 9/4096 

101011 111 4 3 1 9/4096 

101100 101 3 2 1 27/4096 

101101 111 4 3 1 9/4096 

101110 111 4 3 1 9/4096 

101111 111 5 3 2 3/4096 

110001 110 3 2 1 27/4096 

110010 110 3 2 1 27/4096 

110011 111 4 3 1 9/4096 

110101 111 4 3 1 9/4096 

110110 111 4 3 1 9/4096 

110111 111 5 3 2 3/4096 

111001 111 4 3 1 9/4096 

111010 111 4 3 1 9/4096 

111011 111 5 3 2 3/4096 

111100 111 4 3 1 9/4096 

111101 111 5 3 2 3/4096 

111110 111 5 3 2 3/4096 

111111 111 6 3 3 1/4096 

 



28  Efstratios Zacharelos 

3.2 Error-Optimal Approximate Compressors 

The novel compressors, shown in this section, are optimal in 

terms of error. In other words, they produce 𝑚 = ⌈𝑛 2⁄ ⌉ output bits as 

mentioned earlier, that when added, deliver, if possible, the exact result. 

In case the exact result cannot be described by the 𝑚 available output 

bits, the error is the minimum possible, i.e., the difference between the 

exact value, and the number of output bits. Unlike the simpler, in terms 

of hardware, designs shown in section 3.1, these compressors promise 

the lowest possible error, achieved by smart designs. 

Even though the lowest possible error for a compressor of a 

certain size, is fixed and analytically determined for each input 

combination, different configurations delivering the same resulting 

sum, may be proposed. Although indistinguishable in terms of outcome, 

these circuits have different output combinations and as such, 

correspond to different circuits, with different electrical performances. 

Therefore, in order to determine the circuit with the best electrical 

performances, among the SWACs with optimal error metrics, all 

circuits need to be synthesized and compared.  

The syntheses have been conducted using the ABC synthesis 

tool, and the freely available standard cell library “mcnc.genlib”. The 

use of a generic library is intended to provide results that are weakly 

technology dependent. The correlation between the targeted 14nm 

FinFET technology, and the ABC synthesis tool, has been determined 

by synthesizing a good number of compressors in each software and 

comparing the silicon area values. As it can be seen in Fig. 3.5, the two 

 
Fig. 3.5: Resulting area correlation of two different synthesizers. 
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technologies sufficiently follow the same trend, with a degree equal to 

70%. Nevertheless, it is not impossible, that two circuits with similar 

electrical performances, exhibit opposite behaviors when synthesized 

in different technologies. 

3.2.1 Approximate Compressor 3:2 

The output information of the Single-Weight Approximate 

Compressor is encoded into the sum of its output bits. Therefore, 

according to the cumulative property, changing the order of the output 

bits while trying to determine the optimal truth table (TT), does not 

affect the compressor’s result. A single “X” is used in table 3.6, to 

indicate that only one of the two output bits, is high. Notice that as 

previously mentioned, when possible, the output is correct. 

Given the fact that the TT contains three cases that can be 

expressed in two different ways, i.e., three “X” that can either be “01” 

or “10”, a total of 23=8 circuits can be proposed. All these 

configurations have been synthesized and tested. The best circuit is 

found to be the same as the one shown in Fig. 3.1. 

 

3.2.2 Approximate Compressor 4:2 

In the 4:2 approximate compressor, there are four cases in which 

the output needs to be defined as “01” or “10”. So, 24=16, different 

circuits can be proposed. Again, the sixteen circuits have been 

synthesized using both the ABC software and the genus 14nm library, 

Table 3.6: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-B 3:2 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐 
General 

𝒘𝟎𝒘𝟏 

Proposed 

𝒘𝟎𝒘𝟏 
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

000 00 00 0 0 0 - 

001 X 01 1 1 0 - 

010 X 01 1 1 0 - 

011 11 11 2 2 0 - 

100 X 10 1 1 0 - 

101 11 11 2 2 0 - 

110 11 11 2 2 0 - 

111 11 11 3 2 1 1/64 
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in order to derive the optimal circuit. The TT of the chosen compressor 

can be seen in Table 3.7. The resulting TT and circuit are the same as 

the ones shown in Table 3.3 and Fig. 3.2 respectively. 

 

3.2.3 Approximate Compressor 5:3 

The optimal 5:3 approximate compressor has fifteen cases that 

are not strictly defined in a unique a way. In particular, there are five 

cases in which the output can be defined in three different ways, “001”, 

“010”, and “100”, and ten cases, that can also be defined in three 

possible ways, “011”, “101”, and “110”. A single “X” is used in table 

3.8, to indicate that only one of the three output bits is high, while “XX”, 

is used to indicate that two output bits are high.  

Since there are fifteen possible outputs that can be expressed in 

three different ways, a total of 315≅14×106 different compressors can 

be proposed. Considering the immense number of possibilities, a 

random approach has been pursued. A subset of 20.000 random TTs 

has been synthesized and evaluated. While this subset is quite small 

with respect to the whole population, it is considered enough to provide 

a near-optimal, approximate compressor. 

Table 3.7: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-B 4:2 approximate compressor. 

𝑝0𝑝1𝑝2𝑝3 
General 

𝑤0𝑤1 

Proposed 

𝑤0𝑤1 
𝑆 𝑆𝐴𝑝𝑝 𝐸 𝑃𝐸  

0000 00 00 0 0 0 - 

0001 X 10 1 1 0 - 

0010 X 10 1 1 0 - 

0011 11 11 2 2 0 - 

0100 X 01 1 1 0 - 

0101 11 11 2 2 0 - 

0110 11 11 2 2 0 - 

0111 11 11 3 2 1 3/256 

1000 X 01 1 1 0 - 

1001 11 11 2 2 0 - 

1010 11 11 2 2 0 - 

1011 11 11 3 2 1 3/256 

1100 11 11 2 2 0 - 

1101 11 11 3 2 1 3/256 

1110 11 11 3 2 1 3/256 

1111 11 11 4 2 2 1/256 
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Some of the circuits found in the total population share 

symmetric TTs. Symmetric TTs are considered those that result in their 

counterpart, just by swapping the input or output bit names. 

Unfortunately, many electronic computer-aided design (ECAD) tools, 

including the ABC software, are unstable, thus producing different 

Table 3.8: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-B 5:3 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒 
General 

𝒘𝟎𝒘𝟏𝒘𝟐 

Proposed 

𝒘𝟎𝒘𝟏𝒘𝟐 
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

00000 000 000 0 0 0 - 

00001 X 100 1 1 0 - 

00010 X 001 1 1 0 - 

00011 XX 101 2 2 0 - 

00100 X 001 1 1 0 - 

00101 XX 101 2 2 0 - 

00110 XX 011 2 2 0 - 

00111 111 111 3 3 0 - 

01000 X 100 1 1 0 - 

01001 XX 110 2 2 0 - 

01010 XX 101 2 2 0 - 

01011 111 111 3 3 0 - 

01100 XX 101 2 2 0 - 

01101 111 111 3 3 0 - 

01110 111 111 3 3 0 - 

01111 111 111 4 3 1 3/1024 

10000 X 001 1 1 0 - 

10001 XX 101 2 2 0 - 

10010 XX 011 2 2 0 - 

10011 111 111 3 3 0 - 

10100 XX 011 2 2 0 - 

10101 111 111 3 3 0 - 

10110 111 111 3 3 0 - 

10111 111 111 4 3 1 3/1024 

11000 XX 101 2 2 0 - 

11001 111 111 3 3 0 - 

11010 111 111 3 3 0 - 

11011 111 111 4 3 1 3/1024 

11100 111 111 3 3 0 - 

11101 111 111 4 3 1 3/1024 

11110 111 111 4 3 1 3/1024 

11111 111 111 5 3 2 1/1024 
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circuits when only swapping the inputs of the adder (compressor). 

However, even though circuits with symmetric TTs differ a bit, their 

electrical performances tend to fall near. For that reason, the assessed 

subset does not contain symmetric TTs. After this analysis, the best 

performing circuit is shown in Fig. 3.6. 

 

 

3.2.4 Approximate Compressor 6:3 

In Table 3.9, all erroneous cases and non-uniquely defined 

outputs are reported. There are twenty-two cases in which S>3, thus 

resulting in an erroneous approximated result. The error probability of 

the proposed, optimal approximate compressor is 154/4096, while the 

error probability of the previous 6:3 compressor, mentioned in section 

3.1.4, is equal to 316/4096. 

Furthermore, there are six cases, in which the output can be 

defined as “001”, “010”, or “100”, and fifteen cases, that it can be 

defined as, “011”, “101”, and “110”. So, there are 321≅1010 different 

 

Fig. 3.6: Schematic of the proposed Type-B 5:3 approximate compressor 
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configurations. After taking into account symmetries and synthesizing 

millions of circuits, a high performing SWAC was determined. The 

preferred configuration is shown in Fig. 3.7. 

Table 3.9: Input partial products, compressor outputs, exact and approximated sum, 

Error and Error probability for the Type-B 5:3 approximate compressor. 

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒𝒑𝟓 
General 

𝒘𝟎𝒘𝟏𝒘𝟐 

Proposed 

𝒘𝟎𝒘𝟏𝒘𝟐 
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬 

000001 X 001 1 1 0 - 

000010 X 001 1 1 0 - 

000011 XX 101 2 2 0 - 

000100 X 001 1 1 0 - 

000101 XX 101 2 2 0 - 

000110 XX 011 2 2 0 - 

001000 X 001 1 1 0 - 

001001 XX 011 2 2 0 - 

001010 XX 101 2 2 0 - 

001100 XX 101 2 2 0 - 

001111 111 111 4 3 1 9/4096 

010000 X 001 1 1 0 - 

010001 XX 101 2 2 0 - 

010010 XX 101 2 2 0 - 

010100 XX 101 2 2 0 - 

010111 111 111 4 3 1 9/4096 

011000 XX 101 2 2 0 - 

011011 111 111 4 3 1 9/4096 

011101 111 111 4 3 1 9/4096 

011110 111 111 4 3 1 9/4096 

011111 111 111 5 3 2 3/4096 

100000 X 001 1 1 0 - 

100001 XX 101 2 2 0 - 

100010 XX 101 2 2 0 - 

100100 XX 101 2 2 0 - 

100111 111 111 4 3 1 9/4096 

101000 XX 101 2 2 0 - 

101011 111 111 4 3 1 9/4096 

101101 111 111 4 3 1 9/4096 

101110 111 111 4 3 1 9/4096 

101111 111 111 5 3 2 3/4096 

110000 XX 110 2 2 0 - 

110011 111 111 4 3 1 9/4096 

110101 111 111 4 3 1 9/4096 

110110 111 111 4 3 1 9/4096 

110111 111 111 5 3 2 3/4096 

111001 111 111 4 3 1 9/4096 

111010 111 111 4 3 1 9/4096 

111011 111 111 5 3 2 3/4096 

111100 111 111 4 3 1 9/4096 

111101 111 111 5 3 2 3/4096 

111110 111 111 5 3 2 3/4096 

111111 111 111 6 3 3 1/4096 
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Fig. 3.7: Schematic of the proposed Type-B 6:3 approximate compressor 

Table 3.10: Basic components used to create compressors of size 7 to 20. 

 

Desired 

Compressor 
Building Blocks 

7:4 4:2 3:2  

8:4 4:2 4:2  

9:5 4:2 5:3  

10:5 4:2 6:3  

11:6 4:2 4:2 3:2  

12:6 4:2 4:2 4:2  

13:7 4:2 4:2 5:3  

14:7 4:2 4:2 6:3  

15:8 4:2 4:2 4:2 3:2  

16:8 4:2 4:2 4:2 4:2  

17:9 4:2 4:2 4:2 5:3  

18:9 4:2 4:2 4:2 6:3  

19:10 4:2 4:2 4:2 4:2 3:2 

20:10 4:2 4:2 4:2 4:2 4:2 
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3.3 Higher Order Approximate Compressors 

In order to construct large approximate multipliers, higher order 

compressors than the ones already proposed, are required. To that end, 

the proposed compressors are used as building blocks for larger 

compressors, as summarized in Table 3.10. As it can be observed, the 

use of 4:2 compressors is generally preferred, since they provide a good 

trade-off between error and electrical performance. Moreover, it should 

be noted that, the building blocks might refer to Type-A or Type-B 

compressors, according to their position in the partial product matrix, 

as explained in the following section. 

 

3.4 Compressor Allocation Strategy 

Let’s assume an n×n multiplier, n being an even number greater 

or equal to 8. The goal is to utilize Full-Adders, Half-Adders, 

approximate compressors, or leave PPs unaffected, in order to reduce 

the PPM, into half its original size, that is: 𝑚 = 𝑛 2⁄ . As a general, yet 

not exact rule, approximate compressors are placed only in the least 

significant half of the PPM. An example of a 12×12 multiplier, detailing 

the positions of the exact and approximate compressors, is shown in 

Fig. 3.8, while the provided pseudo-code explains all the steps. 

The height of the column i, h(i), is defined as the number of 

partial products in said column. The height of the same column, in the 

reduction stage, without accounting for any carries from adders in 

adjacent columns, is defined as new_h(i). Starting from the most 

significant partial product and moving rightwards, the number of Full-

Adders and Half-Adders is computed. Finally, information about the 

remaining PPs is determined, and new_h(i) is calculated to provide 

useful information for the next column. 

The first m-1 columns are left unaffected. In column m-1, 

new_h(m-1) = m-1 bits. Since the size of the PPM is reduced to a 

maximum of m, there is space for one more bit, that may be the carry 

from a Full-Adder placed in the next column. The next column has h(m) 

= m, and three of these bits are fed into the previously mentioned Full-

Adder, while the rest are left unaffected. So, in the reduced stage, the 
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same column has new_h(m) = m-2 bits. The remaining 2 bits, needed to 

fill the reduced matrix, are the carries of 2 Full-Adders, or 1 Full and 1 

Half Adders, depending on the size of the next column. 

If after placing all the available Full-Adders, PPs still remain, 

they may be moved unaffected to the reduced stage, provided their 

number does not exceed the available spots. If the remaining PPs are so 

many than the reduced stage ends up higher than expected, approximate 

compressors are employed. The compressors opted in this case, are the 

error optimal type-B compressors, so that minimum error is introduced 

to the Most Significant part of the matrix. Moreover, the size of the 

chosen compressor in this case, w:v, is as low as possible, allowing as 

many as possible, z bits, to pass unaffected to the reduced stage. 

Assuming that k bits need to be compressed into l spots, with l≤m, using 

the w:v SWAC, the following two equations with two unknown 

variables need to be solved to determine the desired configuration: 

𝑘 = 𝑧 + 𝑤 (3.22) 

𝑙 = 𝑧 + 𝑣 = 𝑧 + ⌈𝑤/2⌉ (3.23) 

An example is shown in the 11th column of the PPM of the multiplier 

shown in Fig. 3.8. This column has h(11) = 11 bits and the desired  

 

Fig. 3.8: 12x12 Approximate multiplier. Full-Adders, Half-Adders, and 

Approximate compressors allocation strategy. 



Approximate Multipliers Based on Approximate Compressors  37 

 
 Allocation of Exact and Approximate Compressors 

1. for i = 1:2n-1          /* left to right */ 

2. if  ( i < n/2 || i > 2n-3 ) 

3. FA(i) = 0; 

4. HA(i) = 0; 

5. Remaining PPs = unaffected; 

6. new_h(i) = h(i); 

7. else if ( i >= n/2 && i < n ) 

8. if ( h(i) >= 3*(m-new_h(i-1)) ) 

9. FA(i) = m-new_h(i-1); 

10. HA(i) = 0; 

11. if ( Remaining PPs <= m-FA(i) ) 

12. Remaining PPs = unaffected; 

13. new_h(i) = h(i)-2*FA(i); 

14. else 

15. Remaining PPs = unaffected / B-Compressors; 

16. new_h(i) = m; 

17. end if; 

18. else 

19. FA(i) = m-new_h(i-1)-1; 

20. if ( h(i) - 3*FA(i) == 2 ) 

21. HA(i) = 1; 

22. Remaining PPs = none; 

23. new_h(i) = h(i) - 2*FA(i) - 1*HA(i); 

24. else if ( h(i) - 3*FA(i) == 1 ) 

25. HA(i) = 0; 

26. Remaining PPs = unaffected; 

27. new_h(i) = h(i) - 2*FA(i); 

28. end if; 

29. end if; 

30. else if ( i == n ) 

31. FA(i) = 0; 

32. HA(i) = 0; 

33. Remaining PPs = B-Compressors; 

34. new_h(i) = ⌈ℎ(𝑖)/2⌉; 
35. else if ( i > n && i <= 2n-3 ) 

36. FA(i) = 0; 

37. HA(i) = 0; 

28. Remaining PPs = A-Compressors; 

29. new_h(i) = ⌈ℎ(𝑖)/2⌉; 
30. end if; 

31. end for; 
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new_h(11) = ⌈ℎ(11)/2⌉ = 6. The two Full Adders that are used in this 

column take a total of 6 input bits and generate 2 output bits in the same 

column. After that, the remaining bits 𝑘 = 11 − 6 = 5 need to be 

compressed in the remaining spots of the reduced stage, 𝑙 = 6 − 2 = 4. 

By solving equations 3.22 and 3.23 for 𝑘 = 5 and 𝑙 = 4, we obtain: 

𝑤 − 𝑣 = 1. Taking into account that 𝑣 = ⌈𝑤/2⌉, it is derived that a 3:2 

SWAC must be used, while 𝑧 = 2 bits will pass unaffected to the 

reduced stage. 

Approximate compressors are employed in the Least Significant 

part of the matrix, with a size equal to the height of each column, except 

for the last two columns that remain uncompressed. Optimal error, type-

B compressors are chosen for the most significant column, and simpler, 

type-A designs are placed in the rest of the columns. 

3.5 Implementation Results 

The multipliers developed in [Esp18] are used as a point of 

reference, as they showed great results when compared to the state-of-

the-art designs. The following comparisons target circuits that employ 

just one reduction stage and no truncation techniques, namely [Esp18], 

a close competitor [Qiq17], and the proposed approximate multipliers. 

The first step towards improving the results presented in [Esp18], was 

replacing the old compressors with the new ones, presented in section 

3.2. This effort resulted in an increase of the number of effective bits, 

as well as power dissipation. This was expected, since the novel designs 

are more accurate, at the expense of more hardware resources. Thus, an 

attempt to approach the “sweet spot” was followed, by placing the new, 

error-optimal compressors in the more significant PP columns, and the 

older, less power-hungry designs, in the rest of the columns, as 

explained in section 3.4. 

 

3.5.1 Electrical Performance 

The compressors were used to generate 8×8, 12×12, 16×16, and 

20×20 multipliers. All circuits were synthesized targeting a 14nm 

FinFET technology, using Cadence Genus. Power dissipation is 

computed by simulating the final netlist to obtain the switching activity 
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of each node. Silicon area and power dissipation are calculated for these 

timing constraints, that barely allow the corresponding exact multiplier 

to have a non-negative slack time. The minimum delay of each circuit 

is also reported in Table 3.11. Positive percentages indicate 

improvement with respect to the corresponding one from [Esp18]. From 

the electrical performance standpoint, most circuits tend to outperform 

the ones proposed in [Esp18].  

 

Table 3.11: Electrical performance of Exact and Approximate multipliers. All 

percentages are calculated with respect to [Esp18]. 

 

 Exact [Esp18]  Proposed 
[Qiq17] 

L=2 

[Qiq17] 

L=3 

[Qiq17] 

L=4 

8
×

8
 

Min delay 

(ps) 
220 202 

204 

-1% 

176 

13% 

153 

24% 

107 

47% 

Area (μm2) 

delay=220ps 
213 125 

115 

8% 

84 

33% 

48 

62% 

36 

71% 

Power 

(μW/MHz) 

delay=220ps 

2.79 1.36 
1.22 

10% 

0.77 

43% 

0.40 

71% 

0.25 

82% 

1
2
×

1
2
 

Min delay 

(ps) 
286 261 

266 

-2% 

228 

13% 

204 

22% 

178 

32% 

Area (μm2) 

delay=286ps 
510 232 

232 

0% 

189 

19% 

125 

46% 

96 

59% 

Power 

(μW/MHz) 

delay=286ps 

8.80 1.95 
1.89 

3% 

1.42 

27% 

0.89 

54% 

0.56 

71% 

1
6
×

1
6
 

Min delay 

(ps) 
335 304 

304 

0% 

275 

10% 

242 

20% 

217 

29% 

Area (μm2) 

delay=335ps 
850 496 

485 

2% 

362 

27% 

261 

47% 

187 

62% 

Power 

(μW/MHz) 

delay=335ps 

12.60 3.79 
3.79 

0% 

2.49 

34% 

1.62 

57% 

1.00 

74% 

2
0
×

2
0
 

Min delay 

(ps) 
371 341 

339 

0.6% 

312 

9% 

280 

18% 

246 

28% 

Area (μm2) 

delay=371ps 
1292 740 

753 

-2% 

560 

24% 

411 

44% 

306 

59% 

Power 

(μW/MHz) 

delay=371ps 

18.66 5.89 
5.73 

3% 

3.90 

34% 

2.63 

55% 

1.56 

74% 
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3.5.2 Error Performance 

The error performance of the investigated multipliers is shown 

in Table 3.12. All error metrics, for the 8×8 and 12×12 multipliers are 

calculated following an exhaustive approach. It should be noted that the 

mean error and the number of effective bits, for the multipliers proposed 

in this work or in [Esp18], can be calculated also analytically. Knowing 

the error and error probability of each erroneous case, of each 

compressor, placed in each column of the PPM, it is possible to derive 

both the ME and the NoEB, since each erroneous case contributes 

individually to the overall error performance of the multiplier. 

Table 3.12: Error performance of Approximate multipliers. All percentages are 

calculated with respect to [Esp18]. 

 [Esp18] Proposed 
[Qiq17] 

L=2 

[Qiq17] 

L=3 

[Qiq17] 

L=4 
8

×
8

 

ME 22.31 
22.31 

0% 

229.38 

928% 

654.938 

2836% 

2128 

9438% 

NoEB 9.93 
10.33 

4% 

7.03 

-29% 

5.70 

-43% 

4.06 

-59% 

ER 19.19 
16.49 

-14% 

49.11 

156% 

65.73 

243% 

77.57 

304% 

1
2

×
1

2
 

ME 645 
645 

0% 

15957 

2374% 

118903 

18335% 

365819 

56616% 

NoEB 13.34 
13.87 

4% 

8.98 

-33% 

6.23 

-53% 

4.74 

-64% 

ER 34.78 
34.78 

0% 

70.68 

103% 

87.65 

152% 

93.22 

168% 

1
6

×
1

6
 

ME 25429 
22837 

-10% 

1034405 

3968% 

7640754 

29947% 

48234449 

1895828% 

NoEB 16.31 
16.98 

4% 

10.98 

-33% 

8.24 

-49% 

5.72 

-65% 

ER 54.19 
54.19 

0% 

84.64 

56% 

94.82 

75% 

97.92 

81% 

2
0

×
2

0
 

ME 866133 
824661 

-5% 

67275029 

264460% 

667654387 

2625463% 

1321273162 

5195830% 

NoEB 19.31 
19.94 

3% 

12.96 

-21% 

9.90 

-39% 

9.25 

-43% 

ER 66.29 
65.70 

-1% 

89.08 

34% 

96.06 

45% 

98.34 

48% 
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On the other hand, exploiting each compressor’s probability to 

produce an error in order to calculate the overall Error Rate of the 

multiplier, is not possible as more than one compressor might 

contribute to an erroneous case at the same time. Since calculating the 

ER analytically results in an over-complicated statistical problem, a 

different approach is needed. For the 16×16 and 20×20 multipliers, the 

exhaustive approach is not feasible either, due to the immense number 

of inputs, 232 and 240 accordingly. Thus, an approximate approach was 

used to calculate the ER of all the 16×16 and 20×20 multipliers, as well 

as the ME and NoEB of the multipliers proposed in [Qiq17]. 

As it can be observed in Table 3.12, the proposed designs 

outperform the reference multipliers in all the error metrics. The circuits 

introduced in [Qiq17], exhibit a far worse behavior than either design. 

In Fig. 3.9, the electrical-error performance trade-off is summarized. 

 

3.5.3 Image Smoothing Application 

Image smoothing (blurring) is a processing technique, used to 

reduce the noise and create a less pixelated image. This is typically 

achieved by substituting each pixel with the weighted average value of 

all the neighboring pixels. The weight with which each pixel 

contributes, may be given by a gaussian kernel that moves through the 

image. Smoothing is an error resilient application, as the human eye is 

 

Fig. 3.9: Approximate multipliers compared. Power vs number of effective bits. 
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not able to detect trivial details, and it also requires numerous 

multiplications. Therefore, it is considered an appropriate application to 

test approximate multipliers. 

The two-dimensional gaussian kernel used for image smoothing 

in this work is a rotationally symmetric, 3×3, lowpass filter, with 

standard deviation equal to 1.5. The floating-point values of the kernel 

are multiplied by the constant 2n+2 and then rounded to integer values, 

thus providing the n×n multipliers, with appropriate input values. The 

original and adjusted kernels are presented in Table 3.13.  

The smoothed “Lena” test images, acquired exploiting each 

design, are shown in Fig. 3.10. Comparing these images with an image 

Table 3.13: Original (Left) and Reformed (Right) Gaussian Kernel 

 

0.095 0.118 0.095 
 

97 121 97 

0.118 0.148 0.118 
 

121 151 121 

0.095 0.118 0.095 
 

97 121 97 

 

Table 3.14: SSIM and PSNR values for gaussian smoothing with approximate 

multipliers compared to exact multipliers. All percentages are calculated with respect 

to [Esp18]. 

 [Esp18] Proposed 
[Qiq17]  

L=2 

[Qiq17]  

L=3 

[Qiq17]  

L=4 

8
×

8
 SSIM (%) 97.94 
97.94 

0% 

97.62 

-0.3% 

95.04 

-3% 

89.86 

-8.2% 

PSNR 42.91 
42.91 

0% 

39.30 

-8.4% 

31.11 

-27.5% 

23.15 

-46% 

1
2

×
1

2
 SSIM (%) 
97.95 

 

97.95 

0% 

97.62 

-0.3% 

93.78 

-4.3% 

89.86 

-8.3% 

PSNR 
42.95 

 

42.95 

0% 

39.29 

-8.5% 

29.29 

-31.8% 

23.14 

-46.1% 

1
6

×
1

6
 SSIM (%) 97.89 

97.92 

0% 

97.62 

-0.3% 

93.78 

-4.2% 

89.87 

-8.2% 

PSNR 42.41 
42.83 

1% 

39.29 

-7.4% 

29.29 

-30.9% 

23.14 

-45.4% 

2
0

×
2

0
 SSIM (%) 97.91 

97.93 

0% 

97.62 

-0.3% 

93.78 

-4.2% 

89.87 

-8.2% 

PSNR 42.82 
42.88 

0.1% 

39.29 

-8.2% 

29.29 

-31.6% 

23.14 

-46% 
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processed by exact multipliers, we obtain the structural similarity index 

(SSIM) and the peak signal to noise ratio (PSNR), which provide a 

numerical indication of the performance of the approximate multipliers. 

The obtained values are reported in Table 3.14. It can be observed that 

the proposed multipliers, yield significantly better SSIM and PSNR 

results compared to the multipliers proposed in [Qiq17], and 

sometimes, slightly better results than the designs proposed in [Esp18]. 

 

3.6 Summary 

In this chapter, the approximate compressors developed in 

[Esp18] have been presented. The simple, yet effective recoding shown 

in equation 3.1 is exploited, to generate four Type-A compressors, a 

 [Esp18]  Proposed 
[Qiq17] 

L=2 

[Qiq17]  

L=3 

[Qiq17]  

L=4 

8
×

8
 

     

1
2

×
1

2
 

     

1
6

×
1

6
 

     

2
0

×
2

0
 

     

Fig. 3.10: Image Smoothing with Approximate multipliers. 
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3:2, a 4:2, a 5:3, and a 6:3. These are very simple, XOR-less designs 

with great error-hardware performance trade off. 

The novel type-B approximate compressors of the same sizes 

have also been presented. They can reduce the size of the partial product 

matrix columns, while providing error-optimal results. When the high 

input bits to be compressed are fewer or equal than the number of the 

compressor outputs, the Type-B approximate compressors guarantee a 

correct result. Otherwise, the error is as low as possible. Of course, 

Type-B compressors tend to have greater hardware requirements with 

respect to Type-A compressors. 

The desired error-optimal truth tables resulted in various 

approximate Type-B compressors. When possible, namely in the cases 

of the 3:2 and the 4:2 compressors, all possible alternatives have been 

checked to derive the best performing circuits. For the higher order 

compressors (the 5:3 and the 6:3), due to the great number of 

possibilities, a random subset has been selected after discarding circuits 

with symmetric TTs, to study the electrical performance of the circuits, 

and derive the best one. 

Similarly, the error metrics are calculated analytically using 

MATLAB when possible, considering each compressor’s position, 

their errors and error probabilities. Otherwise, random methods are 

used. 

The novel Type-B compressors, along with the non-error-

optimal Type-A compressors, are used to form approximate multipliers 

of different sizes, exploiting the allocation strategy presented in section 

3.4. The multipliers exhibit competitive behavior when synthesized in 

a 14 nm FinFET technology and when tested in an error resilient 

application. 
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Chapter 4 

4 Approximate Recursive Multipliers 

Recursive multipliers use small elementary approximate 

multiplier blocks, suitably assembled to design larger multipliers, with 

a typical block size of 2×2, as in [War21] or 4×4, as in [Ans18]. 

In this work, approximate recursive multipliers based on novel 

4×4 multiplier blocks, are investigated. Five approximate 4×4 

multipliers, with different error vs hardware trade-off, that are obtained 

by carry truncation and error compensation, are proposed. The three 

“T” Multipliers were originally developed in [Nun22], while the two 

“N” Multipliers”, are a more recent, updated work, presented in 

[Zac22]. These designs, along with an OR-based and an exact 4×4 

multiplier, are used to generate 8×8, 16×16, and 32×32, approximate 

multipliers, following the strategy presented in section 4.2. 

The circuits proposed in this work as well as various previously 

proposed contributions, have been synthesized using a commercial 

14nm FinFET standard cell library. The performance of most designs 

has also been determined in image filtering applications and in the 

inference step of a pre-trained convolutional neural network. 

4.1 4×4 Multipliers 

4.1.1 4×4 Exact Multiplier 

Let us consider two 4-bit unsigned numbers 𝑎 = ∑ 𝑎𝑖2
𝑖3

𝑖=0  and 

𝑏 = ∑ 𝑏𝑗2
𝑗3

𝑗=0 . As already mentioned, the computation of their product, 

𝑦 = ∑ 𝑦𝑘2
𝑘7

𝑘=0 , consists of three steps. Firstly, the partial product 

matrix is generated using AND gates between all the input bits. There 

are various techniques to carry out the second and third steps that reduce 

and sum the entire PPM to obtain the final product, e.g., employing full 

adders, half adders or 4:2 compressors in Wallace or Dadda 

configurations. Fig. 4.1 shows the Wallace reduction tree for an exact 
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4×4 multiplier. Three half adders (dashed rectangles) and five full 

adders (rectangles) are employed to reduce the PPM. The sum and carry 

outputs produced by half and full adders are indicated in the figure as 

SN_x, CNM_x, where N and M indicate the origin and destination 

column, while x indicates the reduction stage. After two stages of 

reduction we obtain the three least-significant bits of the output 

Y[2]...Y[0] and two 4 bit values that are summed to obtain the most 

significant bits of the output, Y[7]...Y[3]. 

 

 

 

 

 

Fig. 4.1: 4x4 Exact Multiplier - Wallace. 

 

Fig. 4.2: 4x4 Approximate Multiplier - OR-based. 
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4.1.2 4×4 Approximate Multiplier – OR-Based 

A simple and fast way to approximate the product of two binary 

numbers is to use an approximate multiplier with OR compressors. In 

this case all the partial products in each column of the PPM are fed to 

OR gates as shown in Fig. 4.2. As it can be observed the most 

significant bit is always zero. This approximated design is a short of 

lower bound for circuit complexity, but as shown in section 4.3, it 

exhibits the worst error performance. 

 

4.1.3 4×4 Approximate Multiplier – T1 

As described earlier, the exact multiplier of Fig. 4.1 utilizes a 

total of eight full / half adders in the two reduction stages, thus 

generating a total of eight carries in the process. Using the exact circuit 

as an anchor point, a step-by-step truncation of the carries in the less-

significant columns has been performed. 

The first step is to truncate the carry C12_1, which is the rightmost 

carry in the multiplier. Note that by truncating C12_1, also the carry C23_2 

becomes zero, and can thus be discarded. The following steps are the 

consecutive truncations of C23_1, C34_2, and C34_1. 

Carry truncation results in an underestimation of the result. To 

balance the mean error out, a compensation method that overestimates 

 

Fig. 4.3: 4x4 Approximate Multiplier – T1. 
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the result, is introduced. To this purpose, the XOR gates that compute 

the sum of full and half adders are substituted with OR gates, [GSK18], 

in columns 1, 2, 3, and 4, as shown in Fig. 4.3, thus resulting in a lower 

absolute mean error, and in a significantly simpler and faster circuit. 

The red box in Fig. 4.3 shows that even though the sum of the full adder 

in column 4 is calculated with an OR gate, the carry is still computed 

as in the exact multiplier with a majority gate and fed to the next 

column. The resulting circuit, T1 of Fig. 4.3 is composed by four OR 

gates, a majority gate, a full adder and a half adder. 

 

4.1.4 4×4 Approximate Multiplier – T2 

In order to create a faster and less dissipative approximate 

multiplier than T1, the full adder in column 5 is discarded. In its place, 

a half adder driven by a3b2 and a2b3 is introduced, which calculates the 

sum S5_1 and carry, C56_1. The output Y[5] is set to 1 when S5_1 or the 

carry from column 4, C45_1, is high. The outputs Y[6] and Y[7] are 

calculated with a half-adder driven by a3b3 and C56_1. The sum is given 

by Y[6] = a3b3 ⨁ C56_1, while the carry is Y[7] = a3b3⋅ C56_1. The 

expression for Y[7] can be simplified, given that C56_1 = a3b2⋅ a2b3. One 

easily obtains: 
𝑌[7] = 𝑎3𝑏3 ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 = 𝐶56_1 (4.1) 

The final circuit is shown in Fig. 4.4 and will be called T2 in the 

following. It uses five OR gates, a majority gate, one half-adder and one 

2-inputs XOR. 

 

Fig. 4.4: 4x4 Approximate Multiplier – T2. 
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4.1.5 4×4 Approximate Multiplier – T3 

An even more aggressive approach consists in discarding the 

carry from column 4. In this case, Y[5] is sum of the half adder in 

column 5, while Y[6] and Y[7] are computed as in T2. The resulting 

circuit is named T3 and shown in Fig. 4.5. This simple approximate 

multiplier uses only one half-adder, one XOR and four OR gates. 

 

4.1.6 4×4 Approximate Multiplier – N1 

In the circuit shown in Fig. 4.2, the sums of the partial products 

are approximated using OR gates. As a more accurate base point, we 

can assume an approximate multiplier that uses OR gates to sum the 

lower half of the matrix of partial products, and full or half adders for 

the higher part, as shown in Fig. 4.6. Note that the approximated 

multiplier in Fig. 4.6 requires three compression stages, while the OR 

based in Fig. 4.2 obtains the result with a fast single stage. 

The design in Fig. 4.6 contains three XOR gates that are known 

to be bulky and slow, and thus, an attempt to simplify it has been made. 

The first step is to substitute the XOR gate in column 4 with a simpler 

OR gate: 

𝑌[4] = 𝑎3𝑏1 + 𝑎2𝑏2 + 𝑎1𝑏3 (4.2) 

The next step is the manipulation of the carry of the same Full Adder: 
𝐶45_1 = 𝑎3𝑏1 ∙ 𝑎2𝑏2 + 𝑎1𝑏3 ∙ 𝑎2𝑏2 + 𝑎3𝑏1 ∙ 𝑎1𝑏3 (4.3) 

Let us simplify the expression by neglecting the last term: 
𝐶45_1

∗ = 𝑎2𝑏2 ∙ (𝑎1𝑏3 + 𝑎3𝑏1) (4.4) 

 

Fig. 4.5: 4x4 Approximate Multiplier – T3. 
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A customized Full Adder is employed in column 5 to add the 

three terms. The sum is exact and uses a XOR gate: 
𝑌[5] = 𝑎3𝑏2 ⊕ 𝑎2𝑏3 ⊕ 𝐶45_1

∗ (4.5) 

The carry can be significantly simplified: 
𝐶56_2 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 + 𝑎3𝑏2 ∙ 𝐶45_1

∗ + 𝑎2𝑏3 ∙ 𝐶45_1
∗ =               

       = 𝑎2𝑏2 ∙ (𝑎3𝑏3 + 𝑎3𝑏3𝑎1 + 𝑎3𝑏3𝑏1 + 𝑎3𝑏1 + 𝑎1𝑏3) (4.6)
 

By neglecting the terms that are a product of three literals (they have a 

lower probability of being ‘1’) we get: 
𝐶56_2

∗ = 𝑎2𝑏2 ∙ (𝑎3𝑏3 + 𝑎3𝑏1 + 𝑎1𝑏3) (4.7) 

 

Fig. 4.6: 4x4 Approximate Multiplier – Half OR-based. The starting architecture for 

the proposed N1 design. 

 

 

 
Fig. 4.7: 4x4 Approximate Multiplier – N1. 
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The two terms in column 6 are fed into a customized half adder. 

The sum is the XOR of the two inputs: 

𝑌[6] = 𝑎3𝑏3 ⊕ 𝐶56_2
∗ = 𝑎3𝑏3 ∙ 𝐶56_2

∗̅̅ ̅̅ ̅̅ + 𝑎3𝑏3
̅̅ ̅̅ ̅̅ ∙ 𝐶56_2

∗ ⇒

𝑌[6] ≅ 𝑎3𝑏3 ∙ 𝑎2𝑏2
̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝑎2𝑏2 ∙ (𝑎3𝑏1 + 𝑎1𝑏3)        (4.8)
 

Finally, the carry of the Half Adder is approximated as: 
𝑌[7] = 𝐶56_2

∗ ∙ 𝑎3𝑏3 ≅ 𝑎2𝑏2 ∙ 𝑎3𝑏3 (4.9) 

The resulting design is named N1 and is shown in Fig. 4.7. N1 

uses three stages to reach the result and uses six OR gates, four AND 

gates, and one XOR gate. Compared to the exact Wallace 4×4 

multiplier, it shows a vast improvement in terms of both power and 

speed. In fact, in the exact design the third stage consists of cascaded 

half and full adders, resulting in three sub-stages, all of them containing 

at least one XOR gate. Namely, 28 AND gates, 8 OR gates and 12 XOR 

gates are used in the exact design. Obviously, the proposed design 

provides an inexact result. The error characteristics of the proposed 

blocks are discussed in section 4.3. 

4.1.7 4×4 Approximate Multiplier – N2 

Let us now start from a less accurate circuit, which is T3. In this 

circuit, shown in Fig. 4.5, all the terms from Y[0] to Y[4] are computed 

as the output of OR gates, while the remaining bits are computed 

without approximations. As shown in Fig. 4.5, two half adders are 

needed together with the OR gates to complete the design of the 

multiplier. The proposed architecture takes the circuit in Fig. 4.5 as a 

starting point for further simplification.  

The first step is to substitute the XOR gate of the half adder in 

column 5, with an OR gate: 

𝑌[5] = 𝑎3𝑏2 + 𝑎2𝑏3 (4.10) 

The carry of the same half adder is: 
𝐶56_1 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 (4.11) 

The sum of the last half adder is: 

𝑆6 = 𝑎3𝑏3 ⊕ 𝐶56_1 = 𝑎3𝑏3 ∙ 𝐶56_1
̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝐶56_1 =

= 𝑎3𝑏3 ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3       (4.12)
 

By neglecting the second term: 

𝑆6
∗ = 𝑎3𝑏3 ∙ 𝑎3𝑏2𝑎2𝑏3

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑎3𝑏3 ∙ (𝑎3𝑏3
̅̅ ̅̅ ̅̅ + 𝑎2𝑏2

̅̅ ̅̅ ̅̅ ) (4.13) 

With a final approximation: 
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𝑌[6] = 𝑎3𝑏3 ∙ 𝑎2𝑏2
̅̅ ̅̅ ̅̅ (4.14) 

The carry of the last Half Adder is: 
𝑌[7] = 𝐶56_1 ∙ 𝑎3𝑏3 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 ∙ 𝑎3𝑏3 =

= 𝑎3𝑏3 ∙ 𝑎2𝑏2                                   (4.15)
 

The resulting design is named N2 and shown in Fig. 4.8. This 

rather simple design has only two additional AND gates with respect to 

the OR-based design shown in Fig. 4.2. However, the performances of 

the proposed design are considerably better as will be discussed in 

section 4.3, making this design useful for higher order multipliers. 

4.2 8×8 Approximate Recursive Architectures 

State-of-the-art designs found in the literature have been used 

for comparison: [Str22], [Yan18], [Fru20], [Ans18], [Kul11], [Reh16], 

[GSK18], [Gil19], [War20], and [War21]. These are mostly 

approximate recursive proposals, but contributions from other fields are 

also considered. In [Str22], [Yan18], [Fru20], and [Gil19] no explicit 

4×4 designs are proposed. 

As mentioned in section 2.1, scaling up to a 2n×2n multiplier 

can be achieved by exploiting four n×n multipliers. The same technique 

can be used recursively to design even larger multipliers. For instance, 

four suitably placed 2×2 multipliers form a 4×4 multiplier, while 

sixteen 2×2 multipliers can be used to generate an 8×8 design. Note that 

the building blocks do not need to be the same, and different ones can 

be used, to obtain different electrical performance-accuracy trade-offs. 

As a rule of thumb, if uniform distribution is expected for the input 

operands, exact or high precision modules should occupy the most 

 
Fig. 4.8: 4x4 Approximate Multiplier – N2. 
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significant portion of the design. Moving towards the least significant 

part, modules that are less accurate, but also less demanding in terms of 

resources, might be used. 

Table 4.1: 8×8 Approximate Multiplier Compositions. Exact Sub-Products 

Addition. 

8×8 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳 

Proposed 

T8-1 T1 T1 T1 T3 

T8-2 T2 T2 T2 T3 

T8-3 Exact T1 T1 T1 

T8-4 Exact T2 T2 T2 

T8-5 Exact Exact Exact T1 

T8-6 Exact Exact Exact T2 

Proposed 
N8-5 Exact Exact Exact N1 

N8-6 Exact Exact Exact N2 

[Ans18] 

M8-1 M1 M1 M1 M1 

M8-2 M2 M2 M2 M2 

M8-3 Exact M1 M1 M1 

M8-4 Exact M2 M2 M2 

M8-5 Exact Exact Exact M1 

M8-6 Exact Exact Exact M2 

[Kul11] Kul8 Kul4 Kul4 Kul4 Kul4 

[Reh16] Reh8 Reh4 Reh4 Reh4 Reh4 

[War20] 

Ax8_1 Exact Exact Exact MxA 

Ax8_2 Exact Exact LxA MxA 

Ax8_3 Exact LxA LxA MxA 

[War21] 

AxRM1 Exact Exact Exact mul2b4 

AxRM2 Exact Exact mul2b4 mul2b4 

AxRM3 Exact mul2a4 mul2b4 mul2b4 

 

 
   aH aL  

   bH bL  

   aL  bL  

  aH  bL   

  aL  bH   

+ aH  bH    

 Product  

Fig. 4.9: Recursive Multiplier using four building blocks. 
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Consider two 8-bit unsigned numbers 𝑎 = ∑ 𝑎𝑖2
𝑖7

𝑖=0  and 𝑏 =
∑ 𝑏𝑗2

𝑗7
𝑗=0 . In order to exploit recursive 4×4 multipliers to calculate the 

product 𝑦 = ∑ 𝑦𝑘2
𝑘15

𝑘=0 , each number is divided into two 4-bit parts: 

𝑎𝐿 = ∑ 𝑎𝑖2
𝑖3

𝑖=0 , 𝑎𝐻 = ∑ 𝑎𝑖2
𝑖7

𝑖=4 , 𝑏𝐿 = ∑ 𝑏𝑖2
𝑖3

𝑖=0  and 𝑏𝐻 = ∑ 𝑏𝑖2
𝑖7

𝑖=4  

and the multiplications 𝑎𝐿𝑏𝐿, 𝑎𝐻𝑏𝐿, 𝑎𝐿𝑏𝐻, and 𝑎𝐻𝑏𝐻  are performed 

exploiting the corresponding blocks. Finally, the four sub-products 

need to be added. As shown in Fig. 4.9, the four sub-products are added 

employing an exact adder. 

Table 4.1 shows the circuits considered for comparison that 

apply this design methodology, the corresponding 4×4 building blocks, 

and how they are used to build larger multipliers. Note that the 4×4 

approximate modules used in [War21], namely mul2a4 and mul2b4, are 

also recursive multipliers made up by 2×2 blocks.  

Table 4.1 also shows the composition of six 8×8 multipliers 

proposed in this work, namely T8-1 to T8-6, N8-5, and N8-6. They use 

the proposed T1, T2, T3, N1, and N2 blocks and show competitive 

results or even overcome the state-of-the-art. 

 

Table 4.2: 8×8 Approximate Multiplier Compositions. Approximate Sub-Products 

Addition. 

8×8 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳 

Proposed 
N8-L1 Exact N1 N1 OR-based 

N8-L2 Exact N2 N2 OR-based 

[GSK18] LOAM Exact guo4 guo4 OR-based 

 

 

 
Fig. 4.10: Proposed 8x8 Approximate Multiplier Architecture. Red bits are added 

with OR gates, black bits with exact adders. 
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An alternative way to add the sub-products is proposed in 

[GSK18] and used also in this work. The utilized building blocks and 

their positions are shown in Table 4.2. Differently from Fig. 4.9, the 

final product is not the exact addition of the four sub-products, but an 

approximated version of it. As it can be seen in Fig. 4.10, the seven least 

significant columns of the sub-products are marked with red color, 

indicating that they are summed using an approximate adder that uses 

one OR gate in every column. However, the nine most significant 

columns are added with an exact adder. Note that the first sub-product 

has only seven output bits as shown in Fig. 4.2, for the OR-based 4×4 

multiplier. 

4.3 Performances 

 The proposed and reference circuits are all synthesized in a 

14nm FinFET technology, using Cadence Genus and imposing proper 

timing constraints. Power dissipation is computed by simulating the 

final netlist with random inputs, to obtain the switching activity of each 

node. The input vector array is identical for all designs with the same 

input bit width. In the following tables “Min delay” refers to the strictest 

timing constraint, at which each circuit can be synthesized with non-

negative slack and provides information regarding the maximum 

working speed of each design. 

Area, power, and delay are compared against the results of the 

corresponding (4×4, 8×8, 16×16, or 32×32) exact multiplier. The exact 

design is obtained by describing the circuit in HDL (Verilog) with the 

multiplication operator and letting the synthesizer choose the near-

optimal topology for the given constraint. Therefore, the electrical 

performances are sometimes slightly worse than those presented in the 

literature that compare with a fixed exact design.  

Error performance is obtained by an exhaustive simulation, for 

both 4×4 and 8×8 multiplier designs. For 16×16 and 32×32 designs the 

error performances are computed using a random set of uniformly 

distributed test vectors. The number of test vectors is 105 and 106 for 

16- and 32-bit multipliers, respectively. 
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4.3.1 4×4 Approximate Multipliers 

The electrical and error performances of the considered 4×4 

approximate multipliers are summarized in Table 4.3. To ensure a fair 

comparison between the circuits, avoid biased optimizations by the 

synthesizing tool, and emphasize the low power performance of the 

structures, the circuits have been synthesized with the timing constraint 

of 250ps to obtain the area and power metrics. The circuits are 

simulated applying a uniformly distributed random set of 2∙104 test 

vectors to gather the switching activity. The total power reported in the 

table is computed for a clock frequency of 1GHz. It is worth noting that 

the circuits proposed in this work are for general purpose applications 

thus a uniform distribution of the input is considered. However, 

automated designs [Češ18], [Ull18], [Mra20], [Bal22] or dedicated 

circuits previously presented in the literature, could provide better 

performances for a specific distribution of the input vectors. 

Table 4.3: Performances of 4×4 Approximate Multipliers. 

4×4 Design 

Area

* 

[μm2] 

Power 

Reduction 

[%] 

Min 

Delay* 

[ps] 

Error 

Rate 

[%] 

NMED 

(×10-2) 

MRED 

(×10-2) 
NoEB 

 Exact 17.27 - 115 - - - 8 

 
OR-

Based 
3.90 69.56 19 37.11 3.60 8.78 3.74 

Proposed 

T1 6.41 57.44 45 35.93 1.48 5.09 5.12 

T2 5.58 64.62 30 35.94 2.26 6.94 4.53 

T3 4.72 66.73 24 35.94 2.41 7.51 4.22 

Proposed 
N1 5.42 63.91 42 35.94 1.76 5.57 4.83 

N2 4.54 68.44 19 37.71 2.44 7.24 4.42 

[Ans18] 
M1 8.85 44.44 51 35.94 1.75 6.08 4.88 

M2 6.01 61.90 24 35.94 2.76 7.87 4.20 

[Kul11] Kul4 11.87 21.27 92 19.14 1.39 2.97 4.61 

[Reh16] Reh4 16.69 12.06 105 46.48 2.08 15.90 4.71 

[GSK18] guo4 9.57 29.03 72 28.52 1.89 4.57 4.46 

[War20] 
MxA 6.36 62.09 30 53.91 6.99 22.80 3.16 

LxA 6.61 59.64 35 53.91 9.81 27.20 2.65 

[War21]  
mul2a 9.77 22.81 95 64.45 3.72 29.98 4.15 

mul2b 10.79 27.13 81 75.00 7.46 51.38 3.36 

*Area and power are reported for the circuits synthesized with a timing constraint of 250ps. Min Delay 

is the minimum timing at which the circuit can be synthesized with a non-negative slack. 
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As it can be observed in Table 4.3, the proposed circuits are very 

small and come second only to the OR-based design, with the exception 

of T1, which is still one of the smallest designs. The same can be stated 

also for power dissipation, with N2 having an unquestionable 

advantage. When it comes to speed, N2 is the fastest design, T3 and M2 

from [Ans18] hold the second position, and T2 comes third with MxA 

from [War20]. The proposed multipliers exhibit competitive NMED, 

MRED and NoEB with respect to the state-of-the-art. The relative 

reduction in power dissipation with respect to the exact design vs NoEB 

is shown in Fig. 4.11. The proposed design N2 dissipates 18% less 

power than the least energy-hungry architectures up to date, M2 and 

MxA proposed in [Ans18] and [War20] respectively, while still 

providing a smaller approximation error. 

 

 
Fig. 4.11: Power reduction of the considered 4×4 Approximate Multipliers with 

respect to the exact one vs Number of Effective Bits. The proposed circuits have 

lower power for the same NoEB. The exact design would have NoEB=8 and zero 

power reduction. 
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4.3.2 8×8 Approximate Multipliers 

The results of the 8×8 approximate multipliers are shown in 

Table 4.4. Recursive designs are reported in Table 4.4.a, while selected 

approximate designs following different methodologies, are shown in 

in Table 4.4.b. Power reduction against number of effective bits for all 

designs is displayed in Fig. 4.12. Non-filled shapes in the figure 

correspond to non-recursive designs. 

All circuits are synthesized for a 1000ps timing constraint and 

simulated with same set of 2∙104 uniformly distributed random vectors. 

The total power reported in the table is computed for a clock frequency 

equal to 1GHz.  

The designs presented in [Str22] employ a smaller, segmented 

multiplier. Specifically, instead of an 8-bit multiplier, a 4-bit multiplier 

with or without error correction respectively, is used. The product is 

then shifted accordingly. In this simple circuit, hardware resources and 

power consumption are kept to significantly low levels, while the error 

metrics are still competitive. 

Note that the entries of [Yan18] and [Fru20] exhibit identical 

electrical performances respectively, since they refer to the same 

circuits with different settings (both designs allow for configurable 

accuracy). While the range of chosen accuracy in [Yan18] is limited 

and the innate flexibility results in increased area requirements, the 

circuit is very fast, overcoming all the investigated contributions except 

for T8-2. As it can be observed in Table 4.4, the minimum accuracy of 

this design, is still greater than that of the design M8-2 proposed in 

[Ans18], while power reductions are similar.  

The circuit presented in [Fru20] offers dynamic truncation at 

runtime, by enabling or disabling AND gates that form specific partial 

products. “DT0” refers to the case where all the AND gates are enabled, 

resulting in an exact multiplier. However, the additional hardware 

resources result in a greater power consumption with respect to the 

exact design (hence the negative power reduction). “DT8” refers to the 

maximum possible truncation where a 43.62% power reduction is 

achieved. The numbers in the names indicate the level of truncation. 

The authors in [Ans18], offer a number of circuits covering a 

wide range of accuracy. Designs M8-5 and M8-6 are the most precise 

ones, using one approximate and three exact 4-bit multipliers. While 
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the synthesized circuits are slightly slower than the exact multiplier, 

they offer some power reduction at a relatively small expense in 

accuracy. 

Designs Ax8_1 and AxRM1 presented in [War20] and [War21] 

respectively, employ three exact and one approximate module. While 

these are the most accurate designs presented in the respective papers, 

they are still less accurate than M8-6 and M8-5 of [Ans18], and even 

less accurate than the proposed T8-5, T8-6, N8-5, and N8-6. At the 

same time, the circuits are quite large, and slower than the exact 

multiplier. This behavior follows the pattern presented in Fig. 4.11, for 

the 4×4 building blocks. For the less accurate designs, Ax8_3 with one 

accurate module, manages to surpass M8-1 that uses no accurate 

modules, both in accuracy and in power reduction. However, it is 

slightly larger and slower. 

An interesting architecture is proposed in [GSK18]. It uses one 

exact multiplier, two custom modules, and an OR-based 4×4 

approximate multiplier for the least significant part. This relatively 

small design, in terms of accuracy performs similarly to the proposed 

design N8-L1, as well as to M8-3 and M8-4. It achieves a significant 

power reduction with respect to M8-3 and M8-4 but N8-L1 leads. 

Among circuits with a similar power reduction percentage, M8-2 and 

Yang_7’b1, it exhibits a far more accurate behavior.  

As it can be seen in Table 4.4.a, among the recursive topologies, 

the proposed circuits T8-2, N8 L1 and N8-L2 occupy the smallest area 

and achieve the biggest reduction in power consumption. Moreover, 

they are among the fastest circuits. At the same time, they exhibit 

competitive behavior in terms of accuracy. As it can be observed in Fig. 

4.12, even though there are more precise circuits in the literature, the 

proposed designs provide a certain level of accuracy at a very low cost. 

On the other hand, proposals T8-5, T8-6, N8-5, and N8-6, are 

very accurate circuits, exploiting three exact, and one proposed 4×4 

multipliers. They offer a very high number of effective bits, matched 

only by the designs, M8-5 and M8-6 [Ans18]. However, exploiting the 

proposed 4×4 building blocks, T8-5, T8-6, N8-5, and N8-6, achieve a 

greater power reduction, as it can be observed in Fig. 4.12 and Table 

4.4. 
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Table 4.4.a: Performances of 8×8 Approximate Recursive Multipliers. 

8×8 Design 
Area* 

[μm2] 

Power 

Reduction 

[%] 

Min 

Delay* 

[ps] 

Error 

Rate 

[%] 

NMED MRED NoEB 

 Exact 81.45 - 220 - - - 16 

Proposed 

T8-1 47.28 34.06 178 72.59 1.4×10-2 5.2×10-2 5.30 

T8-2 44.31 41.20 160 72.60 2.2×10-2 7.3×10-2 4.58 

T8-3 60.59 20.87 210 65.70 1.5×10-3 1.3×10-2 8.79 

T8-4 57.23 26.61 184 65.88 2.4×10-3 1.9×10-2 8.13 

T8-5 71.57 9.02 225 35.94 5.1×10-5 1.0×10-3 13.12 

T8-6 69.97 13.49 225 35.94 7.7×10-5 1.5×10-3 12.53 

Proposed 

N8-L1 45.86 44.38 181 72.56 2.6×10-3 2.4×10-2 8.01 

N8-L2 43.79 45.96 174 72.58 2.9×10-3 2.9×10-2 7.64 

N8-5 70.68 13.14 229 65.63 6.1×10-5 1.2×10-3 12.83 

N8-6 70.02 14.21 222 65.80 8.5×10-5 1.6×10-3 12.42 

[Ans18] 

M8-1 57.43 26.18 195 35.94 1.7×10-2 6.1×10-2 5.03 

M8-2 47.56 37.08 165 35.94 2.8×10-2 8.4×10-2 4.22 

M8-3 64.46 17.48 205 46.73 1.8×10-3 1.6×10-3 8.51 

M8-4 57.52 26.09 186 81.44 3.1×10-3 2.2×10-2 7.63 

M8-5 72.38 7.10 225 74.76 6.1×10-5 1.3×10-3 12.88 

M8-6 70.94 12.73 226 46.73 9.6×10-5 1.8×10-3 12.20 

[Kul11] Kul8 63.29 13.99 204 42.65 1.4×10-2 3.3×10-2 4.69 

[Reh16] Reh8 84.27 2.81 240 53.91 2.1×10-2 1.5×10-1 4.76 

[GSK18] LOAM 50.78 35.00 209 70.46 2.0×10-3 1.8×10-2 8.21 

[Gil19] 
ISH1 66.22 11.29 203 83.88 2.3×10-2 4.8×10-2 3.80 

ISH2 76.84 4.76 216 75.00 1.2×10-2 2.8×10-2 4.85 

[War20] 

Ax8_1 71.20 12.48 225 89.36 2.4×10-4 4.7×10-3 11.16 

Ax8_2 68.40 19.84 215 96.17 5.5×10-3 3.9×10-2 6.69 

Ax8_3 60.46 27.61 199 97.85 1.1×10-2 7.4×10-2 6.00 

[War21]  

AxRM1 71.03 7.35 229 97.85 2.6×10-4 7.7×10-3 11.36 

AxRM2 65.20 13.67 205 80.02 4.3×10-3 1.5×10-1 7.38 

AxRM3 62.80 15.35 209 36.16 5.2×10-3 2.1×10-1 7.20 

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min 

Delay is the minimum timing at which the circuit can be synthesized with a non-negative slack. 
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Table 4.4.b: Performances of 8×8 Approximate Non-Recursive Multipliers. 

8×8 Design 
Area* 

[μm2] 

Power 

Reduction 

[%] 

Min 

Delay* 

[ps] 

Error 

Rate 

[%] 

NMED MRED NoEB 

[Str22] 
SSM_m4 28.42 69.16 165 97.85 2.7×10-2 1.5×10-1 4.91 

SSM_m4_u3 36.11 56.96 194 97.85 9.0×10-3 6.5×10-2 6.37 

[Yan18] 
Yang_7’b0 59.70 36.04 161 80.02 1.6×10-2 9.1×10-2 5.29 

Yang_7’b1 59.70 24.18 161 36.16 2.5×10-3 8.5×10-3 6.93 

[Fru20] 

DT0 93.47 -5.87 249 0.00 0 0 16 

DT2 93.47 -3.88 249 50.00 1.9×10-5 7.7×10-4 14.45 

DT4 93.47 4.55 249 81.25 1.9×10-4 5.6×10-3 11.93 

DT8 93.47 43.62 249 98.05 6.9×10-3 9.8×10-2 6.99 

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min 

Delay is the minimum timing at which the circuit can be synthesized with a non-negative slack. 

 
Fig. 4.12: Power reduction of the considered 8×8 Approximate Multipliers with 

respect to the exact one vs Number of Effective Bits. The proposed circuits have 

lower power for the same NoEB. The exact design would have NoEB=16 and zero 

power reduction. 
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4.3.3 16×16 Approximate Multipliers 

The 8×8 designs, and the methodologies described above, can 

be used to scale up to 16×16 multipliers. As already shown in section 

4.2, two different approaches are used to generate selected 16×16 

designs. Table 4.5 summarizes the architectures of the considered 

designs. The circuits following the most straightforward approach 

(exact sub-product addition) are presented at the top part of table 4.5, 

while the ones using the technique presented in [GSK18] (approximate 

sub-product addition), are at the bottom part. 

The performances of 16×16 approximate recursive multipliers 

are shown in Table 4.6. All 16×16 designs have been synthesized under 

the same timing constraint: 1000ps. Furthermore, they have been 

simulated with the same set of 105 uniformly distributed random 

vectors, with an input switching frequency equal to 1GHz. 

Table 4.5: 16×16 Approximate Multiplier Compositions. Exact Sub-Products 

Addition. 

16×16 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳 

Proposed 
N16-5 N8-5 N8-5 N8-5 N8-5 

N16-6 N8-6 N8-6 N8-6 N8-6 

[Ans18] 

M16-1 M8-1 M8-1 M8-1 M8-1 

M16-2 M8-2 M8-2 M8-2 M8-2 

M16-3 M8-3 M8-3 M8-3 M8-3 

M16-4 M8-4 M8-4 M8-4 M8-4 

M16-5 M8-5 M8-5 M8-5 M8-5 

M16-6 M8-6 M8-6 M8-6 M8-6 

[Kul11] Kul16 Kul8 Kul8 Kul8 Kul8 

[Reh16] Reh16 Reh8 Reh8 Reh8 Reh8 

[War20] 

Ax16_1 Ax8_1 Ax8_1 Ax8_1 Ax8_1 

Ax16_2 Ax8_2 Ax8_2 Ax8_2 Ax8_2 

Ax16_3 Ax8_3 Ax8_3 Ax8_3 Ax8_3 

[War21]  

AxRM16_1 AxRM1 AxRM1 AxRM1 AxRM1 

AxRM16_2 AxRM2 AxRM2 AxRM2 AxRM2 

AxRM16_3 AxRM3 AxRM3 AxRM3 AxRM3 

Proposed 
N16-L1 Exact N8-L1 N8-L1 OR-Based 

N16-L2 Exact N8-L2 N8-L2 OR-Based 

[GSK18] LOAM16 Exact LOAM LOAM OR-Based 
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The architecture proposed in [GSK18], results in designs that 

significantly outperform other contributions. It should be noted that the 

most straightforward approach from an algorithmic point of view, 

followed by the circuits at the top part of Table 4.5, does not result in 

optimal configurations. In fact, each 16×16 multiplier is composed by 

four identical approximate 8×8 multipliers, that in turn may be 

composed by some exact 4×4 multipliers. On the other hand, [GSK18] 

employs a single exact 8×8 multiplier placed in the most significant 

part, thus making an important impact on accuracy, despite the 

approximate final addition. 

Moreover, the non-recursive exact and OR-based 8×8 

multipliers in the most and least significant parts respectively, as well 

as the approximation in the final addition, allow this architecture to 

exploit minimal hardware resources. Therefore, the three designs that 

follow this approach are the smallest, fastest, and least-power hungry. 

The circuit proposed in [GSK18], manages to outperform N16-L1 and 

N16-L2 in accuracy, while N16-L2 slightly overcomes LOAM16 in 

terms of power reduction. N16-L2 also occupies the smallest area. 

Among the strictly recursive designs, N16-5 and N16-6 achieve a 

higher power reduction than circuits with similar or even lower 

accuracy. 

 

 

4.3.4 32×32 Approximate Multipliers 

The performances of the proposed 32×32 approximate 

multipliers are shown in Table 4.7. The circuits have been synthesized 

under a timing constraint of 1000ps and simulated with 106 uniformly 

distributed random vectors, and an input switching frequency equal to 

1GHz. 
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Table 4.6: Performances of 16×16 Approximate Recursive Multipliers. 

16×16 Design 
Area* 

[μm2] 

Power 

Reduction 

[%] 

Min 

Delay* 

[ps] 

Error 

Rate 

[%] 

NMED MRED NoEB 

 Exact 356.30 - 335 - - - 32 

Proposed 

N16-L1 226.35 66.38 355 99.31 2.7×10-5 7.4×10-4 14.91 

N16-L2 224.88 66.70 346 99.34 3.3×10-5 8.8×10-4 14.61 

N16-5 377.04 25.49 407 72.57 6.1×10-5 1.1×10-3 12.99 

N16-6 357.09 32.26 405 73.67 8.5×10-5 1.5×10-3 12.54 

[Ans18] 

M16-1 305.02 36.76 359 96.67 1.6×10-2 6.1×10-2 5.03 

M16-2 266.55 43.26 328 96.68 2.8×10-2 8.4×10-2 4.21 

M16-3 359.28 32.26 367 94.61 1.8×10-3 1.5×10-2 8.52 

M16-4 310.16 37.71 346 94.68 3.1×10-3 2.2×10-2 7.63 

M16-5 393.73 22.99 410 72.55 6.1×10-5 1.2×10-3 13.05 

M16-6 368.58 26.92 403 72.57 9.6×10-5 1.7×10-3 12.30 

[Kul11] Kul16 351.65 23.93 391 81.05 1.4×10-2 3.3×10-2 4.69 

[Reh16] Reh16 428.64 24.44 412 98.34 2.1×10-2 1.4×10-1 4.75 

[GSK18] LOAM16 238.04 66.45 297 99.25 1.4×10-5 4.9×10-4 15.76 

[War20] 

Ax16_1 378.60 26.70 404 88.6 2.4×10-4 4.4×10-3 11.22 

Ax16_2 352.17 32.21 393 95.18 5.5×10-3 3.9×10-2 6.69 

Ax16_3 319.13 40.91 357 99.16 1.1×10-2 7.3×10-2 5.99 

[War21]  

AxRM16_1 395.49 19.19 401 97.85 2.6×10-4 1.2×10-2 11.42 

AxRM16_2 363.25 22.10 390 99.52 4.3×10-3 2.2×10-1 7.39 

AxRM16_3 350.54 23.52 391 99.97 5.2×10-3 3.4×10-1 7.20 

 

 

 

 

Table 4.7: Performances of 32×32 Approximate Recursive Multipliers. 

32×32 Design 
Area* 

[μm2] 

Power 

Reduction 

[%] 

Min 

Delay* 

[ps] 

Error 

Rate 

[%] 

NMED MRED NoEB 

 Exact 1477.6 - 448 - - - 64 

Proposed 

N32-L1 1074.1 40.42 553 100.00 9.6×10-10 4.9×10-8 29.78 

N32-L2 1073.1 36.80 540 100.00 1.1×10-9 5.5×10-8 29.53 

N32-5 1933.6 -24.14 590 92.66 6.1×10-5 1.1×10-3 13.01 

N32-6 1932.2 -26.20 590 92.97 8.4×10-5 1.5×10-3 12.54 

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min Delay 

is the minimum timing at which the circuit can be synthesized with a non-negative slack. 
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4.4 Applications 

Image processing is one of the most considered error resilient 

applications and many papers test the proposed circuits in this scenario. 

In this work, two image processing applications are considered: image 

blurring and image sharpening. The applications provide a more in 

depth understanding of the applicability range of the proposed designs. 

Additionally, the considered 8×8 designs are tested in an image 

classification application using a convolutional neural network (CNN). 

4.4.1 Image Smoothing 

In image processing, low pass filtering (image smoothing), 

effectively removes the high spatial frequency noise. As mentioned in 

section 3.5, the low pass filter exploits a moving kernel that processes 

one pixel at a time and modifies it considering the pixels in proximity. 

The kernel considered for the smoothing is again the two 

dimensional, rotationally symmetric, 3×3 Gaussian low-pass filter, with 

a standard deviation equal to 1.5, as in [Esp18]. The floating-point 

numbers of the kernel are multiplied by 210 and then rounded. In this 

way, the kernel’s values are appropriate for the considered 8-bit input 

multipliers. The original and modified kernels are shown in Table 4.8.  

Image processing, exploiting the investigated multipliers, has 

been performed aiming to blur a test image. The obtained images are 

shown in Fig. 4.13. The same processing has been also performed with 

exact multipliers to provide an effective comparison for all designs. The 

structural similarity index (SSIM) and the peak signal to noise ratio 

(PSNR) provide a numerical indication of each multiplier’s 

performance in image smoothing. 

The results are shown in Table 4.9. The recursive designs are in 

the top part of the table, while the non-recursive ones occupy the bottom 

part. The proposed circuits N8-5 and N8-6 share the best results with 

Table 4.8: Gaussian Kernels with SD=1.5. 

Original Modified 

0.095 0.118 0.095 97 121 97 

0.118 0.148 0.118 121 151 121 

0.095 0.118 0.095 97 121 97 
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the designs M8-5 and M8-6 proposed in [Ans18] and Ax8_1 proposed 

in [War20]. N8-L1 and N8-L2 follow close behind but still show a 

competitive behavior while achieving the greatest power reduction, as 

shown in Fig. 4.12. 

Table 4.9: Performances of 8×8 Approximate Multipliers in Image Smoothing. 

8×8 Design SSIM [%] PSNR [dB]  

Proposed 

N8-L1 97.85 41.7 

N8-L2 97.66 39. 5 

N8-5 97.98 43.0 

N8-6 97.98 43.0 

Proposed 

T8_1 25.3 0.910 

T8_2 24.3 0.911 

T8_3 42.6 0.979 

T8_4 40.8 0.977 

T8_5 43.0 0.980 

T8_6 43.0 0.980 

[Ans18] 

M8-1 90.86 28.8 

M8-2 90.18 23.9 

M8-3 97.93 42.2 

M8-4 97.72 40.7 

M8-5 97.98 43.0 

M8-6 97.98 43.0 

[Kul11] Kul8 97.81 41.0 

[Reh16] Reh8 78.88 18.5 

[GSK18] LOAM 97.90 42.4 

[Gil19] 
ISH1 97.38 39.8 

ISH2 97.88 42.0 

[War20] 

Ax8_1 97.96 43.0 

Ax8_2 97.85 39.2 

Ax8_3 97.25 35.6 

[War21]  

AxRM1 97.97 43.0 

AxRM2 97.90 41.5 

AxRM3 97.85 41.2 

[Str22] 
SSM_m4 94.39 26.8 

SSM_m4_u3 96.41 38.9 

[Yan18] 
Yang_7’b0 93.44 29.1 

Yang_7’b1 97.44 38.9 

[Fru20] 

DT2 97.67 42.31 

DT4 97.67 42.31 

DT8 97.37 35.61 
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Original Exact T8-1 T8-2 

    
T8-3 T8-4 T8-5 T8-6 

    
N8-L1 N8-L2 N8-5 N8-6 

    
[Ans18] M8-1 [Ans18] M8-2 [Ans18] M8-3 [Ans18] M8-4 

    
[Ans18] M8-5 [Ans18] M8-6 [Kul11] Kul8 [Reh16] Reh8 

 

Fig. 4.13.a: Gaussian smoothing of images obtained with different multipliers. The 

circuits proposed in this work are highlighted in bold. 
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[War20] Ax8_1 [War20] Ax8_2 [War20] Ax8_3 [Gil19] ISH1 

    
[War21] AxRM1 [War21] AxRM2 [War21] AxRM3 [Gil19] ISH2 

    
[GSK18] LOAM [Fru20] DT2 [Fru20] DT4 [Fru20] DT8 

    
[Yan18] 

Yang_7’b0 

[Yan18] 

Yang_7’b1 

[Str22]  

SSM_m4 

[Str22] 

SSM_m4_u3 

Fig. 4.13.b: Gaussian smoothing of images obtained with different multipliers. 
 

4.4.2 Image Sharpening 

Sharpening or high pass filtering aims to make fine details more 

distinct and remove the blurring of a digital image, by enhancing 

transitions in the spatial intensity of the image. High frequencies are 

boosted while low frequencies are reduced. It should be noted that over-

sharpening might result in unwanted halo artifacts. 
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The image sharpening process is similar to the smoothing 

process, but it uses a different kernel for the convolution. The authors 

in [Yan18], [Vah19], [Guo18], [Kha21] performed image sharpening 

exploiting the following 5×5 kernel: 

𝑀𝑎𝑠𝑘 =

[
 
 
 
 
1     4     7     4     1
4   16   26   16   4
7   26   41   26   7
4   16   26   16   4
1     4     7     4     1]

 
 
 
 

(4.16) 

Table 4.10: Performances of 8×8 Approximate Multipliers in Image Sharpening 

8×8 Design SSIM [%] PSNR [dB]  

Proposed 

N8-L1 99.47 38.2 

N8-L2 99.41 37.4 

N8-5 99.92 56.6 

N8-6 99.88 53.9 

[Ans18] 

M8-1 99.77 48.9 

M8-2 99.58 40.3 

M8-3 99.77 48.9 

M8-4 99.58 40.3 

M8-5 99.96 60.7 

M8-6 99.88 54.0 

[Kul11] Kul8 99.97 56.9 

[Reh16] Reh8 79.17 22.2 

[GSK18] LOAM 99.53 44.0 

[Gil19] 
ISH1 99.97 56.6 

ISH2 99.96 52.9 

[War20] 

Ax8_1 99.85 53.9 

Ax8_2 97.67 22.7 

Ax8_3 97.67 22.7 

[War21]  

AxRM1 99.59 49.3 

AxRM2 98.32 26.4 

AxRM3 80.78 28.3 

[Str22] 
SSM_m4 93.19 18.5 

SSM_m4_u3 96.52 31.2 

[Yan18] 
Yang_7’b0 94.37 29.2 

Yang_7’b1 99.92 51.3 

[Fru20] 

DT2 99.95 59.3 

DT4 99.86 49.3 

DT8 96.51 23.8 
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The output pixels of the sharpened image are given by: 

𝑌(𝑖, 𝑗) = 2 ∙ 𝑋(𝑖, 𝑗) + 

−
1

273
∑ ∑ [𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) × 𝑀𝑎𝑠𝑘(𝑚 + 3, 𝑛 + 3)]

2

𝑛=−2

2

𝑚=−2

(4.17) 

In (4.17), 𝑋(𝑖, 𝑗) denotes a pixel from the input image, while 

𝑌(𝑖, 𝑗) from the sharpened output. 

The considered approximate multipliers, as well as an exact 

multiplier have been used to sharpen an RGB test image. The results 

are demonstrated in Fig. 4.14. SSIM and PSNR with respect to the 

sharpened image by exact multipliers are reported in Table 4.10. All 

proposed circuits have a high similarity ratio with the reference image. 

Even though there are better performing multipliers for this application, 

the proposed circuits exhibit reasonable behavior for such low-power 

designs. 

 

  
Original Exact 

    
N8-L1 N8-L2 N8-5 N8-6 

    
[Ans18] M8-1 [Ans18] M8-2 [Ans18] M8-3 [Ans18] M8-4 

 

Fig. 4.14.a: Image sharpening obtained with different multipliers. The circuits 

proposed in this work are highlighted in bold. 
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[Ans18] M8-5 [Ans18] M8-6 [Kul11] Kul8 [Reh16] Reh8 

    
[War20] Ax8_1 [War20] Ax8_2 [War20] Ax8_3 [Gil19] ISH1 

    
[War21] AxRM1 [War21] AxRM2 [War21] AxRM3 [Gil19] ISH2 

    
[GSK18] LOAM [Fru20] DT2 [Fru20] DT4 [Fru20] DT8 

    
[Yan18] 

Yang_7’b0 

[Yan18] 

Yang_7’b1 

[Str22]  

SSM_m4 

[Str22] 

SSM_m4_u3 

 

Fig. 4.14.b: Image sharpening obtained with different multipliers. 
 

 

 



72  Efstratios Zacharelos 

4.4.3 Image Classification 

Convolutional Neural Networks (CNNs) play an increasingly 

important role in machine learning, particularly for image recognition, 

object identification and speech recognition tasks. CNNs are error-

tolerant and require a huge number of multiplications, therefore they 

are ideal candidates for using approximate multipliers [Ans20].  

Image recognition experiments have been performed with the 

investigated approximate multipliers, using a simple CNN composed 

by 9 layers, not counting the input one. The CNN includes two 

convolutional layers, each one followed by batch normalization and 

Rectified Linear Unit (ReLU) layers, a max pooling layer, a fully 

connected layer and a final softmax layer. Two datasets have been 

considered: MNIST and SVHN. The former is a dataset of handwritten 

digits containing 70,000 28x28-pixel, greyscale images split into 

60,000 training images and 10,000 testing images [LeC10]. The Street 

View House Number (SVHN) dataset contains 100,000 32x32 RGB 

images of house numbers obtained from Google Street View, divided 

in 73,257 training and 26,032 test images [Net11]. In this work, SVHN 

images have been converted into greyscale as the color has no 

significance in classification [Ans20].  

The training of the CNNs has been performed in MATLAB, by 

using floating-point arithmetic. After training, quantization of the 

convolutional and fully connected layers, requiring the vast majority of 

calculations, has been performed, to allow the testing of the 

approximate multipliers. We use test images to exercise the network 

and collect the dynamic ranges of the inputs of convolutional and fully 

connected layers. These inputs are positive values, due to the ReLU 

layers, and are easily quantized as 8-bit unsigned numbers that can 

directly feed the multipliers. The weights in the convolutional and fully 

connected layers of the network, on the other hand, are learnt during 

training and are signed numbers. Therefore, following [Ahm22], after 

quantization converted the weights have been converted in sign-

magnitude representation to perform multiplications using the 

investigated unsigned approximate multipliers. 

Classification results are reported in Table 4.11. Column “Acc. 

loss” refers to the reduction in classification accuracy (in percentage) 

compared to the floating-point multiplier. 
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For the MNIST dataset, the considered CNN in floating-point 

implementation shows a remarkable accuracy of more than 99%. The 

accuracy remains almost unchanged by using exact 8-bit multiplier 

after network quantization. The majority of investigated approximate 

multipliers perform well with this simple dataset, with some exception 

(Yang_7’b0, Ax8_2, Ax8_3, SSM_m4, Kul8, Reh8, AxRM3, ISH1). 

Table 4.11: Image Classification results using 8×8 Approximate Multipliers 

8×8 Design 
MNIST SVHN 

Accuracy Acc. loss Accuracy Acc. loss 

 Floating Point 99.04% - 87.18% - 

 8bit Exact 99.01% 0.03% 87.25% -0.07% 

Proposed 

N8-L1 98.40% 0.64% 76.71% 10.48% 

N8-L2 97.43% 1.61% 70.82% 16.36% 

N8-5 99.01% 0.03% 87.01% 0.17% 

N8-6 99.00% 0.04% 86.88% 0.30% 

[Ans18] 

M8-1 98.46% 0.58% 50.93% 36.25% 

M8-2 98.48% 0.56% 40.44% 46.74% 

M8-3 98.92% 0.12% 83.54% 3.65% 

M8-4 98.06% 0.98% 75.93% 11.25% 

M8-5 99.00% 0.04% 87.08% 0.10% 

M8-6 99.01% 0.03% 86.88% 0.30% 

[Kul11] Kul8 89.62% 9.42% 77.56% 9.62% 

[Reh16] Reh8 77.12% 21.92% 24.58% 62.60% 

[GSK18] LOAM 99.02% 0.02% 83.66% 3.52% 

[Gil19] 
ISH1 68.75% 30.29% 77.67% 9.52% 

ISH2 96.40% 2.64% 73.99% 13.20% 

[War20] 

Ax8_1 99.02% 0.02% 86.90% 0.28% 

Ax8_2 68.47% 30.57% 22.12% 65.06% 

Ax8_3 58.32% 40.72% 24.17% 63.01% 

[War21]  

AxRM1 99.00% 0.04% 86.56% 0.62% 

AxRM2 96.98% 2.06% 56.20% 30.98% 

AxRM3 49.50% 49.54% 20.77% 66.41% 

[Str22] 
SSM_m4 17.65% 81.39% 18.20% 68.98% 

SSM_m4_u3 96.75% 2.29% 53.63% 33.55% 

[Yan18] 
Yang_7’b0 75.09% 23.95% 36.65% 50.53% 

Yang_7’b1 98.68% 0.36% 83.84% 3.35% 

[Fru20] 

DT2 99.02% 0.02% 87.17% 0.01% 

DT4 98.97% 0.07% 86.26% 0.92% 

DT8 72.17% 26.87% 25.32% 61.86% 
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The proposed N8_L1 gives very good results, showing a mere 0.64% 

reduction in accuracy, with more than 44% power saving. 

For the SVHN dataset the CNN accuracy is about 87%. In this 

case, network quantization yields a slight accuracy improvement, a 

phenomenon already observed in literature [Ans20]. 

Several approximate multipliers yield a large accuracy 

reduction in this more demanding application. The multipliers giving 

an accuracy drop lower than 0.5% are:  proposed N8_5 and N8_6, DT2 

of [Fru20], M8_5 and M8_6 of [Ans18], Ax8_1 of [War20] and 

AxRM1 [War21]. Among these, the proposed N8_6 gives the best 

power reduction of more than 14%. Design Yang_7’b1 of [Yan18] also 

performs well, with a reduction in accuracy of 3.3% and a power saving 

of more than 24%. 

4.5 Summary 

In this chapter, five low-energy 4×4 approximate multipliers 

have been presented. They are obtained by simplifying the sum and 

carry expressions of the partial product matrix adders while avoiding 

the bulky and slow XOR gates as much as possible. The proposed 

designs exhibit a very good tradeoff between power reduction and 

precision.  

The proposed designs, an exact multiplier, and a multiplier that 

performs the PPM addition by means of OR gates, are used recursively 

scale up to 8×8, 16×16 and 32×32 approximate multipliers. Two 

different methodologies are utilized to generate the higher order 

multipliers. The first one, uses four n×n modules to perform the 

following multiplications: 𝑎𝐿𝑏𝐿, 𝑎𝐻𝑏𝐿, 𝑎𝐿𝑏𝐻, and 𝑎𝐻𝑏𝐻. After that, an 

exact adder is used to add the shifted sub-products according to Fig 4.9 

and obtain the final product of the 2n-bit numbers, 𝑎 and 𝑏. The second 

methodology uses four n×n building blocks as well and employs an 

exact multiplier for the most significant bits (MSBs) and an OR-based 

approximate multiplier for the least significant bits (LSBs). An 

approximate adder is then used to add the four sub-products, as shown 

in Fig. 4.10.  

The second methodology is generally less accurate, especially 

for low order multipliers, due to the low accuracy 4×4 module used for 

the LSBs and the approximation in the addition process. However, it 
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uses considerably less resources than the strictly recursive architecture, 

and still manages to generate useful circuits that fall on the Pareto front. 

For higher order multipliers, the exact module used for the MSBs makes 

up for the loss of accuracy, with respect to the strictly recursive 

methodology, that might handle the MSBs with exact and approximate 

sub-multipliers. 

Ten 8×8 designs have been proposed that cover a wide range of 

accuracy. Each 8×8 approximate multiplier consists of exact, proposed, 

and/or OR-based, 4×4 designs. By exploiting the low power proposed 

circuits, T1, T2, T3, N1, and N2, the 8×8 approximate multipliers 

developed in this work, achieve great power reduction while still 

exhibiting competitive error performance. Selected higher order 

designs are also reported in this chapter. 

The proposed 8×8 circuits are tested in image processing and 

image classification using a convolutional neural network. It is 

demonstrated that these designs can be fruitfully used to save power 

without sacrificing the result in typical error resilient applications. 
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Chapter 5 

5 Approximate Recursive Squarers 

Many operations in digital signal processing require the square 

of a signal [Gil18], [She02], [Lan06], [Man20], [Ans22], [Gar10], 

[Sha15], and [Pet14], for polynomial evaluation [Noe89], computation 

of Euclidean distances with the Viterbi [Vit67] or other algorithms, 

signal demodulation [Xu16], [Chi13], [Ans20], [Avr14], vector 

quantization [Sol89], etc.  

Despite the fact that the squaring operation can be regarded as a 

special multiplication case, it is often preferable to develop independent 

squaring circuits to exploit possible architectural symmetries. A 

dedicated design can exploit the inherent symmetries by folding the 

partial product matrix, thus reducing the required resources 

significantly. The folded PPM of a squared 4-bit number 𝐴 = ∑ 𝑎𝑖2
𝑖3

𝑖=0  

is shown in Fig. 5.1.  

Various approximate squaring circuits have been proposed in 

literature. Some of the most prominent techniques are presented briefly 

in the following. The authors in [Kol98] propose a scheme that 

improves the critical delay by encoding the partial products along the 

 
Fig. 5.1: Partial product matrix folding for a 4-bit squared number. 
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diagonal, in the rest of the folded matrix. Boolean simplifications are 

proposed in [Bui14] and [Das16] to reduce the folded PPM. A divide 

and conquer method to produce optimal blocks has been presented in 

[Yoo97]. The authors in [Car01] and [Str03] investigate the 

combination of Booth-encoding and folding techniques to significantly 

reduce the computational burden. Cellular logic arrays to compute the 

squaring function are developed in [Dea69], [Sha91]. 

Numerous digital signal processing (DSP) applications handle 

data acquired from noisy analog-to-digital converters (ADCs). The 

innate error in such cases, along with the strict power, area, and timing 

requirements, make approximate squaring an appealing solution. In 

[Gil18] the authors propose an approximate squarer, comprised by a 

pair of mirrored modules to average out the error. In [She02] and 

[Lan06] simple Boolean expressions for the approximate computation 

of the squaring function, for any bit-width, are presented. In [Man20] 

the authors exploit approximate partial product generators and 

accumulators to develop three radix-4 Booth squarers. In [Avr14] and 

[Ans22] approximate logarithmic squaring circuits are proposed. The 

first employs a compensation block to minimize the average error while 

the latter uses double sided error distribution. In [Sha15] the authors 

present a general model for array-based approximate arithmetic 

computing and an error compensation unit. A class of truncated 

squarers with smart rounding for error compensation is presented in 

[Pet14]. 

In this work, novel approximate binary squarers, obtained by 

recursively exploiting 4-bit approximate multipliers and smaller size 

squarers are proposed. The final designs cover a wide range of 

computing precision, providing the user with multiple choices of 

different cost vs. accuracy trade-offs. The proposed circuits, as well as 

competitive designs, are synthesized targeting a 14nm FinFET 

technology to determine the electrical characteristics.  
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5.1 Recursive Squaring Methodology 

Let’s assume we want to calculate the square of an unsigned 8-

bit number: 𝐴 = ∑ 𝑎𝑖2
𝑖7

𝑖=0 . We divide 𝐴 into two parts, the lower part: 

𝐴𝐿 = ∑ 𝑎𝑖2
𝑖3

𝑖=0 , and the higher part: 𝐴𝐻 = ∑ 𝑎𝑖2
𝑖7

𝑖=4 , where 𝐴 = 𝐴𝐻 +
𝐴𝐿. The square of 𝐴 can be calculated as: 

𝑌 = 𝐴2 = (𝐴𝐻 + 𝐴𝐿)
2 = 𝐴𝐻

2 + 2𝐴𝐿𝐴𝐻 + 𝐴𝐿
2 (5.1) 

From equation 5.1, it is easily derived that an 8-bit squarer can 

be implemented exploiting two 4-bit squarers and a 4×4 multiplier. As 

shown in Fig. 5.2, the sub-product 2𝐴𝐿𝐴𝐻 can be implemented by one 

multiplier with 𝐴𝐻 and 𝐴𝐿 as inputs, and an output shifted by 5 bits, 

instead of 4. This technique manages to offer a certain flexibility to 

approximate multipliers, at a small hardware cost, since every operation 

in (5.1), including the additions, can be suitably approximated. 

A detailed description of the 4-bit approximate squarers 

exploited in this work, is reported in the following. Exact and 

approximate 4-bit multipliers are also used as equation 5.1 suggests. 

The 4×4 approximate multipliers used to generate higher-order 

squaring circuits are N1 and N2, that are discussed in chapter 4.  

 

 

 

 

 
 

Fig. 5.2: Recursive squaring 𝐴2 = (𝐴𝐻 + 𝐴𝐿)
2. 
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5.2 4-Bit Squarers 

5.2.1 4-Bit Exact Squarer 

The squaring of 𝐴𝐻 and 𝐴𝐿 can be implemented with an exact 

or an approximate squarer, depending on the desired precision. The 8-

bit output of the exact 4 bit squarer, after logic minimization, is given 

by the Boolean equations reported below: 

 𝑌[7] = 𝑎3𝑎2 
𝑌[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎1 
𝑌[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1 + 𝑎3𝑎2𝑎0 
𝑌[4] = 𝑎3̅̅ ̅𝑎2𝑎0 + 𝑎3𝑎2̅̅ ̅𝑎0 + 𝑎2𝑎1̅̅ ̅𝑎0̅̅ ̅ 
𝑌[3] = 𝑎2̅̅ ̅𝑎1𝑎0 + 𝑎2𝑎1̅̅ ̅𝑎0 
𝑌[2] = 𝑎1𝑎0̅̅ ̅ 
𝑌[1] = 0 
𝑌[0] = 𝑎0 

(5.2) 

By neglecting specific terms from the exact 4-bit squarer, while 

trying to account for error compensation, two approximate squarers 

named S1 and S2, have been developed. The proposed approximate 

squarers offer double sided error distribution with beneficial effects on 

the precision of the results. 

 

5.2.2 4-Bit Approximate Squarer S1 

To obtain S1, let us observe column 2 of the folded partial 

product matrix in Fig. 5.1, where the two terms 𝑎1, 𝑎1𝑎0 must be added. 

Table 5.1 shows the sum and carry bits obtained by adding these terms. 

As it can be seen, the addition can be simplified as 𝑌1[2] ≈ 𝑎1. This 

simplified expression results in a single error case, underestimating the 

exact result for 𝑎1 = 1, 𝑎0 = 1 while not providing any carry for the 

next column of the PPM. Therefore (from Fig. 5.1) we immediately 

obtain 𝑌1[3] = 𝑎2𝑎0. 

Table 5.1: Approximate addition for 𝑌1[2]. 

𝒂𝟏 𝒂𝟎 𝒂𝟏𝒂𝟎 Carry Sum Sapp 

0 0 0 0 0 0 
0 1 0 0 0 0 
1 0 0 0 1 1 
1 1 1 1 0 1 
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The terms to be added in column 4 are: 𝑎3𝑎0, 𝑎2𝑎1, and 𝑎2. 

Table 5.2 reports the Karnaugh map for the sum and carry obtained by 

summing these terms. The red terms marked in bold, are inverted, to 

obtain a simpler expression. The sum 𝑌1[4] can be approximated as: 

𝑌1[4] ≈ 𝑎2𝑎0 + 𝑎3𝑎0 + 𝑎2𝑎1̅̅ ̅ with two errors in the Karnaugh map, 

that result in an over-estimation of the result. The carry entering in 

column 5 can also be approximated as: 𝑐5 = 𝑎2𝑎1, with a single error 

in the Karnaugh map, under-estimating the exact result. 

The terms to be added in column 5 are 𝑐5 and the partial product 

𝑎3𝑎1. Thus, we can obtain: 𝑌1[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1. For 𝑌1[6] and 

𝑌1[7] we use the exact equations, shown in equation 5.2. 

The resulting expressions are summarized below: 

 𝑌1[7] = 𝑎3𝑎2 
𝑌1[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎1 
𝑌1[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1 
𝑌1[4] = 𝑎2𝑎0 + 𝑎3𝑎0 + 𝑎2𝑎1̅̅ ̅ 
𝑌1[3] = 𝑎2𝑎0 
𝑌1[2] = 𝑎1 
𝑌1[1] = 0 
𝑌1[0] = 𝑎0 

(5.3) 

5.2.3 4-Bit Approximate Squarer S2 

To achieve additional hardware minimization while sacrificing 

accuracy in the process, the calculation of signal 𝑌1[4] is further 

simplified. Following [GSK18], an OR gate, whose hardware impact is 

very small, is used to sum the partial products in column 4. The 

resulting Boolean expression is: 𝑌2[4] ≈ 𝑎2 + 𝑎3𝑎0. As shown in Table 

5.3, on the left, this approximation overestimates the exact result. To 

mitigate this error, the carry generated in column 4 is underestimated, 

which as shown in Table 5.3, is approximated as: 𝑐5 ≈ 𝑎3𝑎2𝑎1. 

Table 5.2: Karnaugh Maps for 𝑌1[4] (left) and 𝑐5 (right). The values in bold red 
are inverted in the S1 approximate squarer. 

          𝑎3𝑎2 

𝑎1𝑎0 

0 0 1 1              𝑎3𝑎2 

𝑎1𝑎0 

0 0 1 1 

0 1 1 0   0 1 1 0 

0 0 0 1 1 0   0 0 0 0 0 0 

0 1 0 1 0 1   0 1 0 0 1 0 

1 1 0 0 1 1   1 1 0 1 1 0 

1 0 0 0 0 0   1 0 0 1 1 0 
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In this way, the output in column 5 is obtained as: 𝑌2[5] =
(𝑎3𝑎1) ⊕ (𝑎3𝑎2𝑎1) = 𝑎3𝑎2̅̅ ̅𝑎1. Moreover, a carry 𝑐6 = 𝑎3𝑎2𝑎1 is also 

generated in column 5. The XOR of 𝑐6 with the partial products in 

column 6 gives: 𝑌2[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎2𝑎1. For 𝑌2[7], the exact equation, 

given in (5.2) is used. 

The Boolean equations for S2 are summarized below: 

 𝑌2[7] = 𝑎3𝑎2 
𝑌2[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎2𝑎1 
𝑌2[5] = 𝑎3𝑎2̅̅ ̅𝑎1 
𝑌2[4] = 𝑎2 + 𝑎3𝑎0 
𝑌2[3] = 𝑎2𝑎0 
𝑌2[2] = 𝑎1 
𝑌2[1] = 0 
𝑌2[0] = 𝑎0 

(5.4) 

5.2.4 4-Bit Modules summary 

The performance improvement obtained by N1, N2, S1 and S2 

when compared to the corresponding exact designs is summarized in 

Table 5.4. The ER, NMED, MRED, and NoEB, are also reported. 

Table 5.3: Karnaugh Maps for 𝑌2[4] (left) and 𝑐5 (right). The values in bold red 
are inverted in the S2 approximate squarer. 

          𝑎3𝑎2 

𝑎1𝑎0 

0 0 1 1            𝑎3𝑎2 

𝑎1𝑎0 

0 0 1 1 

0 1 1 0   0 1 1 0 

0 0 0 1 1 0   0 0 0 0 0 0 

0 1 0 1 0 1   0 1 0 0 1 0 

1 1 0 0 1 1   1 1 0 1 1 0 

1 0 0 0 0 0   1 0 0 1 1 0 

 

Table 5.4: Electrical and error performances of the approximate 4-bit 
Multipliers and Squarers with respect to the exact designs. 

4-Bit Design 

Reduction in 

Error 

Rate 

[%] 

NMED 

(×10-2) 

MRED 

(×10-2) 

 

NoEB 

 

Area 

 

Power 

Min 

Delay 

[%] [%] [%] 

M
u

lt
. 

Exact - - - - - - 8.00 

N1 68.62 63.91 63.48 35.94 1.76 5.57 4.83 

N2 73.71 68.44 83.48 37.71 2.44 7.24 4.42 

S
q

u
a
r
. Exact - - - - - - 8.00 

S1 27.75 23.30 20.37 31.25 1.11 5.57 5.35 

S2 45.65 35.08 40.74 43.75 2.22 10.16 4.72 

 



82  Efstratios Zacharelos 

5.3 Proposed Approximate 8-Bit Squarers 

5.3.1 Configurations 

As already described, a binary squaring circuit can be 

implemented by exploiting modular building blocks as shown in (5.1). 

The desired approximation may be introduced by means of approximate 

components, and/or using approximate adders. Assuming a uniform 

input distribution, as is appropriate for general purpose applications, the 

utilized modules should be selected following a decreasing order of 

accuracy while moving towards the least significant bit of the result. In 

this way, high-precision components may be used to compute the most 

significant terms, while less demanding circuits in terms of hardware 

resources, will compute the least significant term(s). 

Aiming to effectively populate the pareto front of the design 

space many possible configurations have been considered. The best 

performing configurations are those summarized in Table 5.5. As 

shown in the last three columns, the instantiated squarers and 

multipliers may be the exact ones or one of the previously presented 

approximate circuits. 

The nomenclature of the designs is ‘S8_Num_Add’ where 

‘Num’ is an increasing number and ‘Add’ indicates the type of final 

adder that has been implemented, when the exact one is not chosen. 

Designs “S8_x” use an exact carry save adder to add the three terms 

produced by the sub-modules. “S8_x_OR” exploit OR gates to 

approximately add the three terms [GSK18], resulting in a significant 

Table 5.5: Configurations of proposed 8-bit Approximate Squarers. 

8-Bit Design Adder 𝒂𝑯
𝟐  𝒂𝑯𝒂𝑳 𝒂𝑳

𝟐 

S8_1 Exact Exact Exact S1 

S8_2 Exact Exact Exact S2 

S8_3 Exact Exact N1 S2 

S8_4 Exact Exact N2 S2 

S8_1_MIX Exact/OR Exact Exact S2 

S8_2_MIX Exact/OR Exact N1 S2 

S8_3_MIX Exact/OR Exact N2 S2 

S8_1_OR OR Exact N2 S2 

S8_2_OR OR S1 N2 S2 
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hardware usage minimization, as shown in Table 5.6. A fine 

compromise between the two previous architectures, is achieved by 

designs “S8_x_MIX”. In this case, the two most significant terms that 

correspond to 𝑎𝐻
2  and 𝑎𝐻𝑎𝐿, are added using an exact adder, while the 

least significant term, is summed approximately exploiting OR gates. 

5.3.2 Performances 

The proposed designs, as well as competitive squaring circuits 

found in the literature, have been synthesized, targeting a 14nm FinFET 

technology, using Cadence Genus. The power dissipation is derived by 

simulating the final netlist with a random set of inputs, that effectively 

trigger the switching activity of each node. The input vector array and 

the timing constraints are identical for all designs, thus ensuring a fair 

comparison between different designs. Specifically, the set of inputs 

consists of 105 uniformly distributed 8-bit numbers, and the 

synthesizing timing constraint, corresponds to 1ns. Moreover, the area 

requirements of each design are also extracted under the same timing 

constraint. “Min Delay” on the other hand, refers to the tightest timing 

constraint under which each design can be synthesized with a non-

negative slack time. Thus “Min Delay” represents the maximum 

working speed of each investigated circuit. 

In order to put the obtained area, power, and delay values for the 

considered designs into perspective, the exact 8-bit squarer is included 

in the comparison. The exact design is obtained by describing the circuit 

in HDL (Verilog), by means of the multiplication operator: 

𝑦 = 𝑎 ∗ 𝑎 (5.5) 

In this way, the synthesizer picks the optimal topology for the selected 

timing constraint. 

The error performance of the considered designs is gathered by 

performing exhaustive simulations, i.e., considering all 256 possible 

inputs.  

The electrical and error performance of the approximate and 

exact 8-bit squarers is summarized in Table 5.6. It should be noted that 

the total power reported in this table is computed for a clock frequency 

equal to 1GHz. Fig. 5.6 shows the normalized mean error distance in a 

logarithmic scale, with respect to power consumption. The optimal 

point in this graph is located at the bottom-left corner, where NMED 
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and power consumption are minimal. The number of effective bits with 

respect to power consumption is shown in Fig. 5.7. In this graph, the 

optimal spot is located at the bottom-right corner, where great accuracy 

and low power consumption are achieved. 

As shown in Fig. 5.6 and 5.7 the proposed circuits, along with 

[Pet14], form the Pareto front. By covering a wide range of precision 

and hardware cost, the proposed architectures can be extremely useful 

in approximate computing applications. 

The proposed circuits, as well as [Pet14], are the only available 

for the lower error range (NoEB larger than 7 or NMED lower than 

5×10-3). When the error is comparable with the state of the art 

(S8_2_OR), the closest competitor (approx_1 from [Lan06]) dissipates 

about 30% more power. 

 

Table 5.6: Performances of 8-bit Approximate Squarers. Area and Power are 

obtained for a timing constraint equal to 1ns and a simulation data rate equal to 

1G test vectors per second. Error Performance is obtained by exhaustive 

simulations. 

8-Bit Design 
Area 

[μm2] 

Power  

[μW] 

Min 

Delay 

[ps] 

Error 

Rate 

[%] 

NMED 
MRED 

(×10-2) 
NoEB 

 Exact 36.57 52.83 201 - - - 16.00 

Proposed 

S8_1 31.02 45.15 215 31.3 3.8×10-5 0.4 13.35 

S8_2 31.56 43.99 234 43.8 7.7×10-5 0.7 12.72 

S8_3 23.96 35.57 148 53.1 2.0×10-3 1.3 7.99 

S8_4 21.52 33.03 128 53.9 2.8×10-3 1.5 7.53 

S8_1_MIX 26.97 40.05 186 53.1 4.7×10-4 1.3 10.11 

S8_2_MIX 18.22 28.18 144 58.2 2.4×10-3 2.0 7.78 

S8_3_MIX 16.26 26.98 125 58.6 3.2×10-3 2.2 7.39 

S8_1_OR 10.30 17.52 66 70.3 8.5×10-3 4.8 6.06 

S8_2_OR 8.89 15.42 57 74.2 1.9×10-2 8.7 4.89 

[Avr14] 
BB 12.84 15.80 79 96.5 4.7×10-2 11.0 3.65 

BB1ERC 41.36 50.62 188 85.5 6.6×10-3 1.4 6.14 

[She02] fast_comp 8.42 20.40 61 59.4 1.7×10-2 3.8 4.87 

[Lan06] 
approx_1 11.57 20.34 66 81.3 1.9×10-2 5.4 5.16 

approx_2 11.82 21.16 68 75.4 1.3×10-2 3.2 5.55 

[Ans22] 
LESF 35.95 54.47 249 98.4 9.2×10-3 3.7 6.11 

LESF_t 33.95 55.15 241 98.4 1.7×10-2 3.0 3.52 

[Pet14] Gar 23.53 37.93 213 93.75 1.3×10-3 8.4 9.30 
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Fig 5.6: NMED vs Power for 8-bit squarers.          
 

 

Fig 5.7: NoEB vs Power for 8-bit squarers. 
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5.4 Applications 

To better evaluate the examined designs, two signal processing 

applications have been considered. The merit of each squaring circuit 

has been obtained by quantifying the degradation of the output signals, 

after approximate squaring has taken place. 

5.4.1 AM Demodulation 

One application that requires a lot of squaring operations is the 

square law detector [Avr14], [Ans22]. In the field of 

telecommunications, it is well known that a signal needs to be 

modulated to carry information over a band-pass channel. Amplitude 

modulation (AM) is a simple modulation technique, in which the carrier 

amplitude varies according to the value of the signal to be transmitted. 

Let the carrier be: 

𝑐(𝑡) = 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) (5.6) 

with 𝐴𝑐 and 𝑓𝑐 being the amplitude and the frequency of the 

carrier, respectively. Let us indicate as 𝑚(𝑡) the signal to be 

transmitted, with |𝑚(𝑡)|<1. The modulated signal is given by: 

       𝑠𝑚(𝑡) = (1 + 𝑚(𝑡)) 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) (5.7) 

At the receiver side, the modulated signal  𝑠𝑚(𝑡) can be 

demodulated by the square-law detector, to recover the message signal. 

The first step is the squaring of the received signal: 

𝑠𝑚
2 (𝑡) = 𝐴𝑐

2(1 + 𝑚(𝑡))
2 1 + 𝑐𝑜𝑠(4𝜋𝑓𝑚𝑡)

2
 (5.8) 

Then a low-pass filter suppresses the high frequency term. Finally, the 

message signal, 𝑚(𝑡), is extracted by applying the square root and by 

dropping the DC terms. 

In the following experiments, a 1kHz carrier signal has been 

used. As 𝑚(𝑡), a 50Hz square and a 50Hz triangular wave have been 

used. The low-pass filter has been implemented with the lowpass 

MATLAB function, with a Finite Impulse Response (FIR) filter, of 

order 48, and a pass-band frequency of 150 Hz. 

All the investigated approximate squarers have been used in the 

demodulation experiments. Table 5.7 reports the root mean square error 

(RMSE) of the demodulated square and triangular signals, for all the 

considered designs. In Fig. 5.8 and 5.9, the y-axis reports the power 



Approximate Recursive Squarers  87 

dissipation of the considered squarer circuits. The proposed squarers 

perform very well in both applications providing a range of possibilities 

to trade power versus accuracy of the results. The most accurate 

proposals have very low RMSE values. So, for the triangular wave case 

shown in Fig. 5.8, they are not represented in scale for visualization 

purposes. The circuits considered as a refence do not overcome the 

performances of the proposed squarers except for [Pet14] that, performs 

well for the triangular waveform but less well for the square waveform. 

Please note that [Pet14] belongs to the category of truncated circuits 

that have a large mean relative error (see Table 5.6) and tend to exhibit 

a somewhat inconsistent behaviour in several applications. 

 

 

 

 

 

Table 5.7: Demodulation with 8-bit Approximate Squarers. 

 

8-Bit Design 

Power 

 

[μW] 

RMSE 

Square 

[%] 

Triangular 

[%] 

 Exact 52.83 - - 

Proposed 

S8_1 45.15 0.00 0.20 

S8_2 43.99 0.00 0.23 

S8_3 35.57 0.91 3.63 

S8_4 33.03 0.91 8.87 

S8_1_MIX 40.05 0.00 1.40 

S8_2_MIX 28.18 1.07 4.81 

S8_3_MIX 26.98 1.07 9.51 

S8_1_OR 17.52 3.16 14.97 

S8_2_OR 15.42 6.65 7.61 

[Avr14] 
BB 15.80 42.00 44.42 

BB1ERC 50.62 5.71 9.07 

[She02] fast_comp 20.40 8.00 18.73 

[Lan06] 
approx_1 20.34 9.80 25.93 

approx_2 21.16 6.80 17.29 

[Ans22] 
LESF 54.47 26.08 13.18 

LESF_t 55.15 45.96 18.87 

[Pet14] Gar 37.93 0.49 0.17 
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Fig 5.8: RMSE vs Power for a square-wave signal.          

 

 
Fig 5.9: RMSE vs Power for a triangular-wave signal. 
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5.4.2 Image Energy 

Image energy may be useful in applications like segmentation, image 

fusion, and classification [Avr14]. These applications (or other 

applications that require a quality distance measurement), often require 

the calculation of the Root Mean Square (RMS) (or of the energy) of 

the image. 

Assuming a gray-scale image with a total number of N pixels, the 

RMS value is calculated as: 

𝑅𝑀𝑆 =
1

𝑁 √∑𝑝2(𝑖, 𝑗)

𝑖,𝑗

(5.9) 

where 𝑝(𝑖, 𝑗) is the value of the pixel i, j. Obviously, a great number of 

squaring operations (as many as the image pixels) is required to obtain 

the RMS value. 

In the following experiment, a hundred images of different file 

formats and dimensions, obtained from the image database DEMOS of 

MATLAB have been considered for the evaluation of the RMS. Each 

squaring circuit, including the exact squarer, has been used to calculate 

the RMS of all images, following (5.9). After that, the Average Root 

Mean Square (ARMS) has been calculated as the average of all the 

RMS values computed by each squarer: 

𝐴𝑅𝑀𝑆 =
1

𝑀
∑ 𝑅𝑀𝑆

𝑀

𝑘=1

(10) 

where M is the number of the considered images. 

Table 5.8 shows the ARMS value obtained by the various 

squarers, and the error percentage compared to the exact squarer. The 

power consumption of each squarer is also reported in this table. It is 

easy to see that the proposed circuits offer the ARMS values closest to 

the one obtained by the exact squarer. The two designs that exhibit 

comparable accuracy, BB1ERC [Avr14] and LESF [Ans22], dissipate 

significantly more power, while [Pet14] is placed in between S8_1MIX 

and S8_3 both in terms of power and accuracy. 
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5.5 Summary 

 

In this work, several 8-bit approximate squarers, made up by 

exact or approximate novel 4-bit squarers and multipliers, have been 

proposed. The two novel 4-bit approximate squaring circuits are 

obtained by simplifying the expressions in the folded partial product 

matrix, which is shown in Fig. 5.1, while the 4-bit multipliers are 

developed in chapter 4. These elementary building blocks (4-bit 

squarers and multipliers) can be used recursively to scale up to 4n-bit 

squarers, with n∈N. Simple approximate accumulators are also 

considered to add the obtained sub-products. 

Table 5.8: ARMS for 8-bit Approximate Squarers. 

 

8-Bit Design 

Power 

 

[μW] 

ARMS 

Absolute [%] 

 Exact 52.83 117.91 - 

Proposed 

S8_1 45.15 117.90 0.01 

S8_2 43.99 117.89 0.02 

S8_3 35.57 117.57 0.29 

S8_4 33.03 117.38 0.45 

S8_1_MIX 40.05 117.77 0.12 

S8_2_MIX 28.18 117.41 0.42 

S8_3_MIX 26.98 117.22 0.59 

S8_1_OR 17.52 116.15 1.49 

S8_2_OR 15.42 115.11 2.37 

[Avr14] 
BB 15.80 110.25 6.50 

BB1ERC 50.62 116.84 0.91 

[She02] fast_comp 20.40 115.03 2.44 

[Lan06] 
approx_1 20.34 114.36 3.01 

approx_2 21.16 115.57 1.98 

[Ans22] 
LESF 54.47 117.27 0.54 

LESF_t 55.15 113.63 3.63 

[Pet14] Gar 37.93 118.10 0.16 
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The circuits developed in this paper, as well as state-of-the-art 

designs gathered from the literature, have been synthesized using a 

commercial 14nm FinFET standard cell library. Syntheses and error 

analyses demonstrate that the proposed 8-bit approximate squarers 

cover a wide range of precision and power requirements, thus providing 

plenty of options to the user. At the same time, the proposed 

architectures effectively populate the Pareto front, outperforming the 

state-of-the-art in terms of power vs. precision, as shown in figures 5.6 

and 5.7. 

Compared to the exact 8-bit squarer, the least dissipative 

proposed design, S8_2_OR, reduces silicon area by 76%, power 

consumption by 71%, and critical delay by 72%. The same circuit 

dissipates 2.4% less power than the least dissipative design found in 

literature, while providing 34% more accurate results. As another 

example, one of the proposed architectures, S8_3_MIX, allows to 

obtain 49% power reduction and 38% speed increase (compared to the 

exact squarer) with the low mean relative error of 2.2%. 

The considered designs have been tested in signal 

demodulation, and RMS calculation applications. The results confirm 

that the proposed circuits are able to fruitfully populate the design 

space, as demonstrated in tables 5.7 and 5.8 and in figures 5.8 and 5.9. 
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Chapter 6 

6 Spike Detection in Brainwaves 

6.1 Introduction 

6.1.1 General Background 

Research on Brain-Machine Interfaces (BMIs) has progressed at 

a notable speed since the realization that devices directly controlled by 

ensembles of cortical neurons are viable [Cha99]. After that milestone, 

BMI related research has seen unyielding growth [Leb06]. 

There are several ways to observe the neural activity [Rap21] 

and some of them include electroencephalography (EEG), 

magnetoencephalography (MEG), electrocorticography (ECoG), 

functional magnetic resonance imaging (fMRI), functional near 

infrared spectroscopy (fNIRS), positron emission tomography (PET), 

and others [Sah21]. Implantable approaches to electrically contact the 

cortical tissue, like ECoG and penetrating microelectrode arrays 

(MEAs), generally yield better results with respect to non-invasive 

techniques, such as electrodes attached on the scalp, that have been 

shown to represent the activity of the surface layer of the brain. That is 

due to a significantly higher signal-to-noise ratio. Also, even though it 

is possible to observe neural activity exploiting different means of 

recording, like electrical, optical, and magnetic [Fra19], electrical 

recording is the most used. 

Low-power and low-noise implantable BMIs for the 

observation of neural activity through an array of multiple channels, has 

become possible with the progress in integrated circuit and 

microsystem technologies. Furthermore, substantial research using 

animal models has provided important insight for matters like electrode 

types, target brain area, electronic architecture, and processing 

strategies. 
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It should be noted, that effectively monitoring brain activity 

with integrated implantable BMIs is still a very challenging problem. 

Scalability and portability, electrode stability and yield, and 

information transfer rate are main issues to be addressed. 

The brain's electrical charge is maintained by billions of 

neurons. Neurons are electrically charged by membrane transport 

proteins that pump ions across their membranes. Ions of similar charge 

repel each other, and when many ions are pushed out of many neurons 

at the same time, they can push their neighbors in a wave, which is 

known as volume conduction. When the wave of ions reaches the 

electrodes on the scalp, they can push or pull electrons on the metal in 

the electrodes. Since metal conducts the push and pull of electrons 

easily, the difference in push or pull voltages between any two 

electrodes can be measured by a voltmeter. Recording the voltage 

fluctuations resulting from neural oscillations (brain waves), helps us 

determine changes in brain activity that might be useful in diagnosing 

brain disorders, especially epilepsy, or other seizure disorders. These 

readings reflect the summation of the synchronous activity of millions 

of neurons that have similar spatial orientation.  

Progress in integrated circuits and microsystem technologies 

has made implanting thousands of intracortical electrodes possible, 

allowing researchers to investigate bigger neural ensembles. Of course, 

transmitting massive data wirelessly for external post-processing poses 

unrealistic bandwidth and power requirements [Shaer15], [Sag22], 

[Sagge22]. Spike detection algorithms can mitigate the problem by 

alleviating the need to stream the whole raw signal. Instead, the raw 

signal is processed on-line, the spikes are detected and possibly sorted 

into different categories, and only that information is transmitted off-

brain [Shaer15]. After that, verification and statistical post-processing 

can be performed without heavy electrical constraints [Sag21]. 

6.1.2 Literature 

An analog front-end for spike detection and sorting systems is 

proposed in [Bar14]. A Low Noise Amplifier (LNA) is employed to 

amplify the signals of the electrodes, from the sub-mV range to 10s of 

mVs. A bandpass filter is then used to: a) reject the local field potential 

(LFP) (high pass) and b) avoid aliasing (low pass). Finally, an Analog 
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to Digital Converter (ADC) provides the system with a digital signal. 

Once the spikes exceed the LFP and background noise, they can be 

detected using an amplitude threshold [Sag22], [Sagge22], [Bar14], 

[Riz09], [Nav14], [Nie16], [Reh19]. In [Sag22] and [Sagge22], an 

adaptive threshold is utilized, after two cascaded energy operators for 

spike enhancement, specifically the Absolute Differential Operator 

(ADO) and the Amplitude Slope Operator (ASO). A novel spike 

extraction method, called spike detection by differences, is proposed in 

[Tam21]. The power consumption and resources of this technique are 

independent from the total channels count. 

Different proximity and orientation with respect to detecting 

electrodes, make neurons exhibit different spiking profiles. Suitable 

feature extraction can be used to perform spike sorting. One of the most 

common techniques followed in literature is template matching 

[Bar14], [Riz09], [Nav14], [Nie16], [Fre16], which consists in 

measuring the distance between a spike and a template as a similarity 

index. The authors in [Cam19] propose an iterative Bayesian approach 

to separate the LFP from the spiking activity, using prior information 

about the power spectral density of the LFP. Other methods frequently 

used for spike sorting are Principal Component Analysis, First and 

Second Derivative Features Extraction [Bar14], K-means, and 

Superparamagnetic Clustering. During the last years, machine learning 

approaches have also been considered for spike detection and 

classification [Reh19], [Rác20], [Reh21].  

Table 6.1: Literature Review. 
 Spike Detection Spike Sorting Implementation 

[Sag22] Absolute Differential Operator 

Amplitude Slope Operator 
Adaptive thresholding 

NO sorting ASIC 28nm  
[Sagge22] 

[Bar14] 

Non-linear Energy Operator 
Absolute Value Thresholding 

Amplitude Threshold 

Template Matching 
Principal Component Analysis 

1st/2nd Derivative Features 

ASIC 0.18 μm  

(front-end) 

[Riz09] Amplitude Threshold Template Matching Chip / FPGA 

[Nav14] Amplitude Threshold Template Matching Chip / Software 

[Nie16] Amplitude Threshold Template Matching Software 

[Reh19] Amplitude Threshold NO sorting Software 

[Tam21] LFP filtering and “SDD” NO sorting Software 

[Fre16] Both detection and sorting with Template Matching Software 

[Cam19] HF thresholding Iterative Bayesian approach Software 

[Rác20] Both detection and sorting wit Convolutional Neural Network Software 

[Reh21] Both detection and sorting with K-means Software 
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Some of the proposed systems in the literature provide real-time 

functionalities as they can detect and/or sort spikes at run time. 

Moreover, authors have implemented their contributions in ASIC 

technology, FPGAs, or developed software algorithms. Table 6.1 

summarizes most of the aforementioned information. 

 

6.1.3 Objective - Trivial Problem? 

In this work, machine learning approaches are used to detect and 

classify as Type A, B or C the spiking activity in simulated recordings 

of brain activity. The trained network is described in Verilog and 

synthesized in a 14nm FinFET technology. The innate error factor in 

machine learning and the vast number of required multiplications allow 

the fruitful introduction of approximate multiplying circuits [Str22], 

[Zac22], [Esp18], to achieve significant reductions in silicon area and 

power dissipation. Such approximate designs are frequently used in 

embedded devices and error tolerant applications, aiming to improve 

the electrical performances by reasonably allowing imprecise results. 

In order to verify that using machine learning methods to detect 

spikes in the synthesized data is not an overcomplicated solution for a 

trivial problem, an alternative way initially investigated. Using 

MATLAB, a “smart threshold” that adjusts itself according to the 

considered recording, and thus, does not work on run-time, has been 

developed. Allowing this approach the advantage of calibration 

according to a specific recording, is meant to ensure that even better 

results can be obtained using NNs.  

In Fig. 6.1, a positive and a negative threshold have been chosen 

in a way that ensures no false negatives for the considered recording. In 

other words, all spikes (marked in red) are outside the area limited by 

the two thresholds and can be easily detected. However, as shown in 

Fig. 6.1, sometimes, also normal brain activity (marked in black) 

overcomes the thresholds, resulting in false positives. The accuracy 

achieved by this method (ensuring no false negatives) is obtained by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑛𝑑𝑜𝑤𝑠
) 6.1 
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Another attempt to utilize thresholds has been made, in a way 

that returns no false positives, as shown in Fig. 6.2. In this way, the 

normal brain activity (black signal) never overcomes the thresholds, but 

certain spikes will remain undetected below the thresholds. The 

accuracy achieved by this method is obtained by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑛𝑑𝑜𝑤𝑠
) 6.2 

Depending on the level of noise embedded in the considered 

dataset, both methods may offer accuracies ranging from 50% to almost 

100%.  The high accuracy values when there is no noise are anticipated, 

as the spikes are clearly distinguished from normal brain activity. 

However, a machine learning approach can be used to produce reliable 

results also in more realistic scenarios, and even when the spikes are 

buried beneath the noise. And in any case, the classification problem 

remains unsolved when thresholds are employed, as the various types 

of spikes do not differ in amplitude. As already mentioned, there are 

various methods in the literature for spike detection, like template 

matching [Jia22], [Hao21] or adaptive thresholds with differential 

amplitude slope operators [Sag22]. 

 
Fig. 6.1: Thresholds ensuring no False Negatives. 
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6.2 Dataset - NeuroCube 

NeuroCube, presented in [Cam13], is a freely available and 

commonly used [Sag22], [Sag21], [Bar14], [Nav14], [Fre16], [Cam19], 

method to generate realistic simulations of extra-cellular recordings. 

The simulations are obtained by superimposing the activity of neurons 

randomly placed in a cube of brain tissue recorded by a finite-size 

electrode. The obtained recordings have varying types and amount of 

noise and consist of labelled data that provide information relating to 

abnormal brain activity (from here on spikes). NeuroCube has been 

used in this work, including the analysis performed in section 6.1.3. 

The simulated data correspond to continuous samples. In the 

original dataset, obtained by Neurocube, each 64 continuous samples 

constitute a “window”. Windows containing a spike, are assigned 

information about the existence and type of spike. Specifically, this 

information is assigned to the first, out of the 64 samples that contain a 

spike. Using Neurocube, various datasets can be generated, containing 

simulated brain activity with different levels of noise. The spikes shown 

in Fig. 6.3 are taken from a dataset with low-level noise, and amplitude 

thresholding may be a viable option in those high-SNR waves. 

Fig. 6.2: Thresholds ensuring no False Negatives. 
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However, in more realistic recordings, such as the ones used 

during training, spikes often require a less trivial solution to be detected. 

The used sub-dataset contains approximately 1.5 million samples and 

is characterized by a quite low SNR, ensuring a more realistic behavior 

for the trained Neural Network. 

The energy of the spikes is contained in the middle of the 

corresponding windows. So, bearing in mind that the final goal is a low 

power integrated network, smaller windows were considered in this 

work, namely windows of 32 samples. Thus, as shown in Fig. 6.4, the 

aim is to create a NN with 32 input neurons to receive the incoming 

window, and 4 output neurons. The first one turns “high” to indicate 

that there is no spike. In the event of a spike however, one of the 

remaining three neurons turns high to indicate the type of spike. As 

mentioned in paragraph 6.1.3, NeuroCube defines three different types 

of spikes, and the windows are classified accordingly. 

 
Fig. 6.4: Spike Detection Architecture. 

 
Fig. 6.3: Low-Noise Spikes in synthesized brain activity. 
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Since the energy of the spikes is concentrated in the middle 

samples, apart from opting for 32-sampled windows instead of 64-

sampled, shifting the spikes left and right has been used for data 

augmentation. Specifically, as shown in Figure 6.5, six preceding, and 

six succeeding windows have been considered as spikes, thus 

generating (and adding to the dataset) 2×6 more versions of the same 

spike to help train the networks. 

On the other hand, spikes that are almost out of the processing 

window, should be classified as normal brain activity. To ensure the 

correct operation of the network, spikes that are almost out of the 

processing window, “half-spikes”, were introduced to the training 

dataset labelled as “non-spikes”. Inserting these confusing windows in 

the training set, made the investigated networks exhibit a more robust 

behavior. 

Throughout the experimental phase, the chosen training datasets 

have been processed accordingly to ensure a good balance. Namely, the 

training data is made up by 25% normal brain activity, 25% spikes of 

“Type-A”, 25% spikes of “Type-B”, and 25% spikes of “Type-C”. 

Furthermore, the modified datasets have been divided into two sets. 

75% of the windows were used for training and 25% for validation. 

 
Fig. 6.5: Spike Replication for Data Augmentation. 
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6.3 NN Architectures 

TensorFlow has been used to train and validate the NNs. The 

considered models have been trained through 50 epochs, with a learning 

rate equal to 0.001, and a batch size of 32. For the fully connected 

layers, dropout has been considered to reduce interdependent learning 

among neurons and avoid over-fitting. The chosen activation function 

is the Rectified Linear Unit (ReLU) which proved efficient and easy to 

model in hardware. As a loss function, the “categorical crossentropy” 

has been used, which is ideal for multi-class classification models 

where there are two or more output labels. A SoftMax layer has been 

used as an output layer, to convert a vector of 4 real numbers into a 

probability distribution of the 4 possible outcomes. 

As already mentioned, the aim of this work is to embed the 

trained NN into an ASIC. Thus, a model of reduced size, with 

parameters that have a limited range, is desired. Parameters that are 

tightly concentrated around a specific value can result in a better and 

more “concise” binary representation, that will in turn, result in a 

smaller quantization error, which will be introduced by the hardware 

implementation of the NN. So, a regularization layer has been added 

during training: more specifically, L2 regularization has been used in 

TensorFlow by adding “tensorflow.keras.regularizers.l2” as a kernel 

regularizer in the model. L2 regularization forces parameters to be 

smaller but not exactly 0, by adding the “squared magnitude” of the 

coefficient as a penalty term to the loss function. The effect of 

regularization is shown in Fig. 6.6, where it is demonstrated that the 

distribution of parameters after regularization, became significantly 

more concentrated around 0.  

Fig. 6.6: Parameters distribution before (left) and after (right) regularization. 
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Table 6.2 shows some of the architectures that have been tested 

during the experimental phase. As expected, accuracy grows with the 

number of trainable parameters. The architecture chosen to be 

implemented in an ASIC, is the last one, that features two hidden layers, 

with 24 and 16 neurons respectively. The validation accuracy is 

obtained on a set of data that is not used during training, to effectively 

test the generalization ability of the model. The lower training accuracy 

can be attributed to the use of “dropout”.  

In Fig. 6.7 the training and validation accuracies, over the 

training epochs are shown, while in Fig. 6.8, a heat map is provided to 

visualize the performance of the network for each type of spike. After 

the training period, the network has achieved an excellent ability to 

predict the type of input signal. As it can be observed from the 

increasing tendency of the validation accuracy, after 50 epochs of 

training, the generalization ability of the model is still intact, showing 

no signs of over-fitting. 

Table 6.2: Training accuracy, validation accuracy, and number of parameters for 

different NN architectures. 

Neurons in Training 

Accuracy 

[%] 

Validation 

Accuracy 

[%] 

Number of 

Parameters 
Input 

Layer 

Layer 

1 

Layer 

2 

Output 

Layer 

32 16 - 4 88 95 596 

32 20 - 4 91 96 744 

32 24 - 4 92 97 892 

32 24 8 4 92 98 1028 

32 24 16 4 94 98 1260 

 

 
Fig. 6.7: Training and validation accuracies. 
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6.4 Hardware Implementation 

6.4.1 Proposed Architecture 

After training the network, with appropriate regularization to 

keep the values of the trainable parameters well concentrated around 0, 

the next step has been the implementation of the network in hardware. 

To that end, the architecture of the fully connected and softmax layers 

has been described in HDL. 

The investigated network is shown in Fig. 6.9. It has 32 neurons 

in the input layer to process the 32-sampled windows, 24 and 16 

neurons in the two hidden layers, and 4 neurons in the output for the 

classification task. Each neuron is responsible for adding the 

corresponding bias and products, before moving this sum to the 

activation function (in this case ReLU). For example, the output of 

neuron 1 from hidden layer 1 (the signal before the activation function), 

is the neuron’s bias plus all the 32 products (weight times corresponding 

input), as shown in:  

𝑦 = 𝑏𝑖𝑎𝑠 + ∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑖𝑛𝑝𝑢𝑡𝑖)

31

𝑖=0

6.3 

 
Fig. 6.8: Training and validation accuracies. 



Spike Detection in Brainwaves  103 

As shown in eq. 6.3, the first neuron in the first hidden layer, 

processes the value of each input neuron. In a realistic scenario, the last 

sample of a given waveform (the one generated first timewise), is fed 

to the system first. The next sample follows until the waveform is 

completely processed by the system. Therefore, in the hardware 

implementation, the 32-sampled window is read one sample at a time 

and so, there is no need for a lot of parallel multiplications. Equation 

6.3. is unfolded, and one addition is performed every clock cycle, as the 

products get accumulated. This results in a hardware effective 

implementation.  

On the other hand, an increase in the critical delay is inevitable, 

since for synchronization purposes, each layer takes 32 clock cycles to 

produce an output. Fortunately, the achievable ASIC speeds are very 

high with respect to the frequencies of brainwaves. Thus, capturing one 

window every 32 samples, is considered enough to effectively measure 

brain activity. 

 
Fig. 6.9: Architecture of the proposed dense network. 
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Fig. 6.10 shows the implementation of an indicative hidden 

layer with 2 neurons. A universal 5-bit counter (that is able to count 

from 0 up to 31), informs the neurons as to which sample is processed 

at a given clock cycle, by controlling a multiplexer that provides the 

appropriate neuron with the corresponding weight. The chosen weight 

and the incoming sample are multiplied to generate the product, pr. 
𝑝𝑟𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑖𝑛𝑝𝑢𝑡𝑖 6.4 

The accumulation of the products is performed by adding a feedback 

signal to the current product: 
𝑝𝑟_𝑎𝑐𝑐𝑖 = 𝑝𝑟𝑖 + 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 6.5 

The accumulated product, 𝑝𝑟_𝑎𝑐𝑐𝑖, is stored in a register, and in the 

next clock cycle, it appears as 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖: 
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 = 𝑝𝑟_𝑎𝑐𝑐𝑖−1 6.6 

Fig. 6.10: Hardware implementation of a 2-neurons hidden layer. 
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This stored signal, that represents the previous accumulated products, 

is generally added to the current product. There is however one 

exception. When the first sample is fed to the neuron, the counter signal 

is “00000”, which triggers the enable signal, en: 

𝑒𝑛 = 𝑐𝑛𝑡𝑟[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[4]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[5]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 6.7 

Thus, instead of adding to the first product, the previous irrelevant value 

that remained stored in the register, a multiplexer chooses to add the 

neuron’s bias. The multiplexer controls the feedback’s value, as shown 

in the following equation: 

𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 = {
𝑏𝑖𝑎𝑠               𝑖𝑓 𝑒𝑛 = 1
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖    𝑖𝑓 𝑒𝑛 = 0

6.8 

The accumulated products, that are stored in the register, are constantly 

fed to the activation function, which in this case is a simple ReLU. The 

implementation of ReLU is quite simple, as it basically zeros a negative 

argument, while leaving unaffected a positive one:  

𝑅𝑒𝐿𝑈𝑖 = {
0                      𝑖𝑓 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 < 0
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖    𝑖𝑓 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 ≥ 0

6.9 

The enable signal, en, is used one more time to help determine 

the output of the neuron. As already mentioned, when the window is 

being processed, en is low. During that time, a second multiplexer sets 

the neuron’s output to zero. However, when the first sample of a 

window, is being processed, en turns high. Apparently, at the same time 

the previous window is fully processed and ready to move to the next 

layer. So, as already mentioned, en turns high, and a shift register is 

utilized to feed the layer’s output to the next layer, one sample at a time. 

The last layer (after the 4-neurons output layer) is a custom 

hardmax layer. Unlike the softmax layer, it employs a “hard” modifier, 

as it sets to high the largest vector and to low all the rest. 

6.4.2 Binary Signals Fixed-Width Implementation 

The HDL is fully parameterized, thus enabling effortless 

modifications. The representation of the binary vectors is a critical 

issue, as it has a direct impact on the accuracy drop with respect to the 

accuracy obtained by the original model (98%). Choosing a short bit-

width for the fractional part of the signals increases the quantization 

error, as the floating-point parameters are heavily truncated. On the 
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other hand, opting for longer signals results in heavy hardware 

requirements. 

It has been shown that after the regularization, the integer part 

of all the obtained parameters can be described by three bits, without 

the risk of overflow. However, after exhaustive simulations, 

intermediate signals exceeding the range offered by three bits in the 

integer part, [-4,4), have been observed. Apart from aggressively 

adding one more bit at the left part of the radix, to tackle the occasional 

overflow problem, a more conservative solution has also been 

investigated. An overflow-detection and saturation module has been 

employed to single out the vectors that exceed the two limits. Once 

detected, these vectors are rounded to -4 and 4 (with the highest 

available precision) respectively. 

Three different binary representations are considered in this 

work. The first one uses overflow detection and saturation when 

needed, as it has 3 bits before the radix point and 5 after. The second 

and third versions have 4 bits for the integer part to avoid overflowing 

signals, while for the fractional part, they use 6 and 8 bits respectively. 

Clearly, the longer the bit-width, the higher is the achievable accuracy, 

as the saturation and quantization errors are completely or partially 

overcome. 

6.4.3 Approximate Computing and Performances 

Multiplying circuits consume a considerable amount of power 

and chip area. Approximate computing provides a good compromise 

between precision and hardware resources for error resilient and mobile 

applications. Aiming at reducing the hardware requirements, the 

methodologies from [Str22], [Zac22], and [Esp18] have been applied to 

the multipliers for the NN. The best designs are presented in Table 6.3 

and Fig. 6.11, while their configurations are shown in Table 6.4. 

Designs 3.5_Ex, 4.6_Ex, and 4.8_Ex employ exact multipliers. 

Designs 4.8_ssm-m8 and 4.8_ssm-m10 use approximate signed 12×12 

multipliers proposed in [Str22] with a segment of 8 and 10 bits 

respectively. The remaining designs use small 4×4 multiplying building 

blocks proposed in [Zac22], to recursively generate the 8×8, 10×10, and 

12×12 required multipliers. For the 10×10 multipliers, 4:2 approximate 

compressors proposed in [Esp18] are also used. 
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 As shown in Fig. 6.11 and Table 6.3, the more bits used for 

signal representation, the higher is the achievable accuracy, due to the 

elimination of the overflow/saturation error and the moderation of the 

quantization error. Of course, power and area requirements increase as 

well. All circuits are synthesized for a 10ns timing constraint and 

simulated with the same set of 90.000 windows for the calculation of 

the power. It should be noted, that in this work the power is reported for 

Table 6.3: Absolute accuracies and electrical performances for circuits using 
different multipliers. 

Multiplier Design 
Accuracy 

[%] 

Power  

[W] 

Area 

[μm2] 

Min Delay 

[ps] 

8
b

it
s 3.5_Ex 89.6 121.80 3969 665 

3.5_1 85.9 121.76 2987 599 

1
0

b
it

s 

4.6_Ex 95.5 153.80 5602 678 

4.6_1 91.3 153.70 4520 620 

4.6_2 87.0 153.67 3915 583 

4.6_3 85.2 153.66 3849 582 

1
2

b
it

s 

4.8_Ex 97.0 185.88 8964 745 

4.8_1 96.9 185.73 7638 725 

4.8_2 95.6 185.64 5912 647 

4.8_3 94.9 185.62 5534 642 

4.8_4 94.6 185.62 5475 641 

4.8_ssm-m8 96.2 185.68 6735 692 

4.8_ssm-m10 96.5 185.73 7490 716 

 

Fig. 6.11: Absolute Accuracy with respect to silicon area. 
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a single channel that receives a new window every 6 input samples, and 

a sample rate of 5kHz. Minimum delay refers to the minimum timing 

constraint at which the circuit can be synthesized with a non-negative 

slack. The use of approximate computing results in significant silicon 

area savings while power is mostly determined by the register and hence 

by the bit width of the signals. 

The proposed approach offers a variety of design choices that 

favorably compare against the state of the art. As an example, design 

4.8_2 achieves 95.6% accuracy and reduces silicon area by 34% with 

respect to 4.8_Ex which is the most accurate, offering only 1.4% more 

accuracy. The proposed circuits are more power hungry than [Sag22] 

and [Sagge22] for example, but they provide both detection and sorting 

in a single integrated solution. 

6.5 Summary 

Observing brain activity through low-power implantable BMIs 

is not only possible nowadays, but these techniques provide also cleaner 

results with respect to non-invasive methods, in terms of SNR. Spikes 

in brainwaves may indicate seizure activity in patients with a 

predisposition toward epilepsy. Thus, implantable spike detectors can 

Table 6.4: Multiplier configurations for the best performing circuits. 

Design 

Partial Product Matrix part 

High 
Mid 

High 
Mid 

Mid  

Low 
Low 

8
b

it
s 3.5_Ex Exact 

3.5_1 Custom Exact  N2  Custom N1 

1
0

b
it

s 

4.6_Ex Exact 

4.6_1 Custom Exact Exact  Exact / 4:2 AC Not formed 

4.6_2 Custom Exact N1  N1 / 4:2 AC Not formed 

4.6_3 Custom Exact N2  N2 / 4:2 AC Not formed 

1
2

b
it

s 

4.8_Ex Exact 

4.8_1 Custom Exact Exact Exact Exact Not formed 

4.8_2 Custom Exact Exact N1 Or-Based Not formed 

4.8_3 Custom Exact N1 N2 Or-Based Not formed 

4.8_4 Custom Exact N2 Or-Based Or-Based Not formed 

4.8_ssm-m8 12×12 SSM, m=8 

4.8_ssm-m10 12×12 SSM, m=10 

 



Spike Detection in Brainwaves  109 

be employed to extract and transmit only the valuable neural 

information needed, instead of the whole raw recording. 

Machine Learning approaches have been employed, to detect 

and categorize spikes in simulated brain activity. The network training 

and testing data have been provided by NeuroCube, a tool presented in 

[Cam13] that generates synthetic, yet realistic and labelled data with 

different levels and types of noise. The same data has been checked 

with a simpler threshold approach, exhibiting non-satisfying results in 

high noise recordings. 

The chosen network model has been developed for 

implementation in an integrated circuit. Thus, a small architecture with 

parameters that have a limited range, have been critical points in this 

work. To that end, smaller 32-sampled input windows have been 

generated, and parameters regularization has been performed. 

A balanced dataset while training the network is essential. 

Therefore, a dataset made up by 25% normal brain activity, 25% spikes 

of “Type-A”, 25% spikes of “Type-B”, and 25% spikes of “Type-C”, 

has been used. New spikes have been generated for data augmentation, 

by moderately shifting the spike-windows. Finally, the whole dataset 

has been divided into two sets: 75% for training and 25% for validation.   

The considered networks have been trained using TensorFlow. 

As an activation function, the ReLU has been proved to be efficient and 

at the same time, easy to implement in hardware. The “categorical 

crossentropy” has been used as a loss function for this multi-label 

classification task. 

As shown in Fig. 6.9, the chosen model has 32 neurons in the 

input layer to process the 32 sampled windows, two hidden layers with 

24 and 16 neurons respectively, and an output layer of 4 neurons, one 

for each output label. That results in 1260 trainable parameters and an 

accuracy equal to 98%. 

In a real application, the data would arrive to the model 

sequentially. Therefore, in the hardware implementation of the 

network, each neuron is -simply put- a “multiply and accumulate” unit 

(MAC). In each clock cycle, an input is multiplied by the corresponding 

weight and all these products are accumulated. At the last clock cycle, 

the accumulated products pass through the activation function to a shift 

register, that is responsible of providing the next layer with one sample 

at a time. 
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Choosing the most efficient data representation has been the 

next challenge. It has been demonstrated, that after regularization, using 

4 bits for the integer part of all vectors, is enough to avoid overflowing 

numbers. Furthermore, as shown in table 6.3, using 8 bits for the 

fractional part and exact multipliers, results in a very small (1.5%) drop 

in accuracy, due to the inevitable quantization error. Approximate 

multipliers manage to effectively mitigate the hardware burden and a 

variety of circuits offering different precision-hardware cost tradeoff 

have been presented. The different versions of the circuit reach an 

accuracy range from 85% to 97%, while occupying 3000μm2 to 

9000μm2 respectively. 

 

 

  



Conclusions and future work  111 

7 Conclusions and future work 

The scope of this dissertation is the development of approximate 

arithmetic circuits. A neural network aiming to detect and categorize 

unusual behavior in synthesized brain activity is also presented. The 

network has been described in hardware language in order to be 

integrated in an ASIC. The innate error factor in machine learning and 

the vast number of required multiplications in a NN, make introducing 

approximate computing to this application, a viable option. In this way, 

a significant reduction in silicon area and power dissipation can be 

achieved. Producing minimally invasive and long-lasting implantable 

devices are of course major concerns. 

Two main categories of approximate binary multipliers are 

highlighted: multipliers using approximate compressors and multipliers 

using recursive architectures with smaller approximate modules. 

Multipliers that use approximate compressors, act on the PPM 

reduction phase, and aim to approximately encode the information in 

less bits. Specifically, the compressors presented in chapter 3, encode 

the information of 𝑛 bits of the same PPM column, in 𝑚 = ⌈𝑛 2⁄ ⌉ output 

bits, again in the same column. For that reason, they are called single-

weight approximate compressors (SWACs). Two types of compressors 

are presented: one aiming at the minimization of hardware resources 

while introducing reasonable error, and another type that introduces the 

minimum error possible, while trying to keep hardware resources as low 

as possible. All circuits avoid the use of bulky and slow XOR gates. 

The sizes of the developed compressors are 3:2, 4:2, 5:3, and 6:3. 

Compressors of higher sizes are composed of smaller designs. The 

presented compressors are used to form approximate multipliers of 

various sizes, as dictated by the proposed compressor allocation 

strategy. The proposed multipliers exhibit competitive error vs 

hardware trade-off when synthesized in a 14 nm FinFET technology 

and when tested in an error resilient application. 

Recursive multipliers use small elementary approximate 

multiplier blocks (2×2 or 4×4), suitably assembled to design larger 

multipliers. In this work, five approximate 4×4 multipliers, with 
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different error vs hardware trade-off, are proposed. The smaller blocks 

are obtained by a systematic simplification (or even truncation) of the 

sum and carry terms, while attempting to partially compensate for the 

introduced error, at the same time. As always, XOR gates are avoided 

as much as possible. The proposed designs, an exact, and an OR-based 

multiplier are used recursively scale up to 8×8, 16×16 and 32×32 

approximate multipliers. The proposed multipliers and competitive 

circuits found in the literature, have been synthesized using a 

commercial 14nm FinFET standard cell library. The proposed designs 

exhibit a great tradeoff between power reduction and precision, as is 

also confirmed by image filtering applications and a pre-trained 

convolutional neural network. 

Binary squaring is often needed in digital signal processing.  

Although it is nothing more than a special multiplication case, it is 

demonstrated that the partial product matrix of a number multiplied by 

itself, has inherent symmetries that can be exploited. The folded PPM 

is considerably simpler, thus justifying the development of dedicated 

squaring designs. Approximate 8-bit binary squarers, able to 

outperform the state of the art, are proposed. They are obtained by 

recursively exploiting 4-bit approximate multipliers and squarers. To 

that end, two novel 4-bit approximate squaring circuits, obtained by 

simplifying the expressions in the folded partial product matrix, are 

developed. The electrical characteristics of the synthesized circuits, as 

well as their error behavior, demonstrate that the proposed designs 

overcome the state of the art in terms of power vs. precision. The two 

considered applications, signal demodulation, and RMS calculation, 

confirm these results. 

Approximate computing can be effectively used in machine 

learning applications. The innate probabilistic nature of ML, and the 

huge number of multiplications in dense networks, make approximate 

multipliers appropriate for the inference phase of a trained network. In 

this way, a significant computational burden can be eliminated. 

A dense network has been developed to detect and categorize 

spikes in simulated brain activity. The aim of this work is to implement 

the model in an ASIC and therefore, constraints like low number of 

trainable parameters and well concentrated parameters have been taken 

under consideration during the experimental phase. The final 

architecture has 32 neurons in the input layer to receive the 32-sampled 
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input windows, 24 and 16 neurons in two hidden layers, and 4 output 

neurons, each of which corresponds to one of the four states: “Type-A 

spike”, “Type-B spike”, “Type-C spike”, and “No spike”. After training 

in TensorFlow the 1260 available parameters, the obtained accuracy is 

98%. The model’s architecture has been described in hardware 

language (Verilog). It has been demonstrated, that using 12 bits to 

represent all the vectors in the circuit (4 before the radix point and 8 

after), results in no overflowing numbers and a small quantization error, 

that causes accuracy to drop from 98% to 97%. 

Results demonstrate that approximate multipliers can be 

effectively used instead of exact multipliers, without drastically 

threatening the circuit’s prediction ability. As an example, design 4.8_2 

achieves 34% reduction in silicon area, while sacrificing accuracy by 

1.4% with respect to 4.8_Ex, which uses exact multipliers. 

Future tasks include further testing of approximate designs, to 

better investigate the sweet spot of power-area saving vs accuracy drop. 

Moreover, quantization aware training techniques are intended for 

investigation, hoping to achieve higher accuracies for lower bit-width 

representations.  
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