
0 Efstratios Zacharelos

INTEGRATED SPIKE DETECTION

USING

APPROXIMATE METHODS

Ph.D. Thesis presented

for the fulfillment of the Degree of Doctor of Philosophy

in Information Communication Technology for Health

by

EFSTRATIOS ZACHARELOS

Advisor: Prof. Ettore Napoli

March 2023

0 Efstratios Zacharelos

Introduction and Outline 1

Index of Contents

Index of contents

1 INTRODUCTION AND OUTLINE ... 6

1.1 MOTIVATIONS ... 6
1.2 THESIS OUTLINE .. 10
1.3 LIST OF PUBLICATIONS .. 11

2 SCIENTIFIC BACKGROUND .. 13

2.1 STATE OF THE ART .. 13
2.2 ERROR METRICS .. 16
2.3 SUMMARY .. 18

3 APPROXIMATE MULTIPLIERS BASED ON APPROXIMATE COMPRESSORS ... 19

3.1 HARDWARE-EFFICIENT APPROXIMATE COMPRESSORS 20
3.1.1 APPROXIMATE COMPRESSOR 3:2 .. 21
3.1.2 APPROXIMATE COMPRESSOR 4:2 .. 23
3.1.3 APPROXIMATE COMPRESSOR 5:3 .. 24
3.1.4 APPROXIMATE COMPRESSOR 6:3 .. 26
3.2 ERROR-OPTIMAL APPROXIMATE COMPRESSORS .. 28
3.2.1 APPROXIMATE COMPRESSOR 3:2 .. 29
3.2.2 APPROXIMATE COMPRESSOR 4:2 .. 29
3.2.3 APPROXIMATE COMPRESSOR 5:3 .. 30
3.2.4 APPROXIMATE COMPRESSOR 6:3 .. 32
3.3 HIGHER ORDER APPROXIMATE COMPRESSORS... 35
3.4 COMPRESSOR ALLOCATION STRATEGY .. 35
3.5 IMPLEMENTATION RESULTS .. 38
3.5.1 ELECTRICAL PERFORMANCE .. 38
3.5.2 ERROR PERFORMANCE .. 40
3.5.3 IMAGE SMOOTHING APPLICATION ... 41
3.6 SUMMARY .. 43

4 APPROXIMATE RECURSIVE MULTIPLIERS ... 45

4.1 4×4 MULTIPLIERS .. 45
4.1.1 4×4 EXACT MULTIPLIER .. 45
4.1.2 4×4 APPROXIMATE MULTIPLIER – OR-BASED ... 47
4.1.3 4×4 APPROXIMATE MULTIPLIER – T1 .. 47
4.1.4 4×4 APPROXIMATE MULTIPLIER – T2 .. 48
4.1.5 4×4 APPROXIMATE MULTIPLIER – T3 .. 49
4.1.6 4×4 APPROXIMATE MULTIPLIER – N1 ... 49

2 Efstratios Zacharelos

4.1.7 4×4 APPROXIMATE MULTIPLIER – N2 ... 51
4.2 8×8 APPROXIMATE RECURSIVE ARCHITECTURES .. 52
4.3 PERFORMANCES .. 55
4.3.1 4×4 APPROXIMATE MULTIPLIERS .. 56
4.3.2 8×8 APPROXIMATE MULTIPLIERS .. 58
4.3.3 16×16 APPROXIMATE MULTIPLIERS .. 62
4.3.4 32×32 APPROXIMATE MULTIPLIERS .. 63
4.4 APPLICATIONS ... 65
4.4.1 IMAGE SMOOTHING ... 65
4.4.2 IMAGE SHARPENING ... 68
4.4.3 IMAGE CLASSIFICATION ... 72
4.5 SUMMARY .. 74

5 APPROXIMATE RECURSIVE SQUARERS ... 76

5.1 RECURSIVE SQUARING METHODOLOGY .. 78
5.2 4-BIT SQUARERS .. 79
5.2.1 4-BIT EXACT SQUARER .. 79
5.2.2 4-BIT APPROXIMATE SQUARER S1 .. 79
5.2.3 4-BIT APPROXIMATE SQUARER S2 .. 80
5.2.4 4-BIT MODULES SUMMARY ... 81
5.3 PROPOSED APPROXIMATE 8-BIT SQUARERS .. 82
5.3.1 CONFIGURATIONS .. 82
5.3.2 PERFORMANCES .. 83
5.4 APPLICATIONS ... 86
5.4.1 AM DEMODULATION ... 86
5.4.2 IMAGE ENERGY .. 89
5.5 SUMMARY .. 90

6 SPIKE DETECTION IN BRAINWAVES .. 92

6.1 INTRODUCTION .. 92
6.1.1 GENERAL BACKGROUND .. 92
6.1.2 LITERATURE .. 93
6.1.3 OBJECTIVE - TRIVIAL PROBLEM? ... 95
6.2 DATASET - NEUROCUBE .. 97
6.3 NN ARCHITECTURES ... 100
6.4 HARDWARE IMPLEMENTATION ... 102
6.4.1 PROPOSED ARCHITECTURE ... 102
6.4.2 BINARY SIGNALS FIXED-WIDTH IMPLEMENTATION.. 105
6.4.3 APPROXIMATE COMPUTING AND PERFORMANCES .. 106
6.5 SUMMARY .. 108

7 CONCLUSIONS AND FUTURE WORK ... 111

8 LITERATURE.. 114

Introduction and Outline 3

4 Efstratios Zacharelos

List of Acronyms

List of abbreviations

AC Approximate Computing

HA Half Adder

TT Truth Table

FA Full Adder

CBAA Carry Based Approximation Adder

ED Error Distance

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

HDL Hardware Description Language

PP Partial Product

PPM Partial Product Matrix

SWAC Single-Weight Approximate Compressor

FET Field Effect Transistor

ED Error Distance

RED Relative Error Distance

ME Mean Error

NMED Normalized Mean Error Distance

MRED Mean Relative Error Distance

NoEB Number of Effective Bits

ER Error Rate

TDM Three-Dimensional Method

SWAC Single Weight Approximate Compressor

ECAD Electronic Computer-aided Design

SSIM Structural Similarity Index Method

PSNR Peak Signal to Noise Ratio

CNN Convolutional Neural Network

SD Standard Deviation

ReLU Rectified Linear Unit

MNIST
Modified National Institute of Standards and

Technology

SVHN Street View House Number

Introduction and Outline 5

MSB Most Significant Bit

LSB Least Significant Bit

DSP Digital Signal Processing

ADC Analog-to-Digital Converter

RMSE Root Mean Square Error

RMS Root Mean Square

ARMS Average Root Mean Square

BMI Brain-Machine Interface

EEG Electroencephalography

MEG Magnetoencephalography

ECoG Electrocorticography

fMRI functional Magnetic Resonance Imaging

fNIRS functional Near Infrared Spectroscopy

PET Positron Emission Tomography

MEA Microelectrode Arrays

MAC Multiply And Accumulate

LNA Low Noise Amplifier

LFP Local Field Potential

ADO Absolute Differential Operator

ASO Amplitude Slope Operator

6 Efstratios Zacharelos

Chapter 1

1 Introduction and Outline

1.1 Motivations

Recent progress in VLSI circuits has allowed the

implementation of valuable devices related to healthcare by providing

fully integrated solutions to continuously monitor a large variety of data

obtained by biosensors. Continuous monitoring and processing of such

data in vivo can be achieved by means of integrated and implantable

devices, using wireless communication [Car12].

A wide range of neurological and cardiovascular diseases that

are not easily tackled with conventional medication techniques, have

driven research and industry towards the development of such

implantable, yet minimally invasive electronic devices [Baz12].

Implantable biochips could also reduce the need for expensive medical

procedures. Millions of patients benefit from such instruments, like

cardioverter defibrillators, cochlear implants, gastric and cardiac

pacemakers, deep brain, nerve, bone, and spinal cord stimulators, etc.

Long-term implants with in-vivo functionalities, are

characterized by certain requirements, like a high-degree of integration,

minimally invasive surgery, long-term biocompatibility, as well as

security and privacy in data transmission. Other concerns include low

energy consumption, small silicon area and weight, and reliable

performance. Tasks like real time stimulation, data collection,

processing, compression, and transmission, contribute to the overall

power budget of the device which should remain as low as possible.

A promising paradigm which refers to a set of methods that

relax the constraint of exact equivalence between the specification and

implementation of a computing system, has recently emerged to deliver

energy efficient designs for cloud computing or embedded and mobile

Introduction and Outline 7

digital systems [Han13]. Approximate computing (AC) exploits the

ability of many systems and applications to tolerate a reasonable loss of

quality in the calculated result. By allowing the possibility of inexact

outputs, approximate computing can considerably improve power

consumption, silicon area requirements, as well as the system’s critical

delay.

Although deviations from the exact result are generally

unwanted, applications such as multimedia, signal processing, machine

learning, pattern recognition, and data mining are tolerant to the

occurrence of some errors [Liu20]. The error resilience may be

attributed to: (a) perpetual limitations, as human for example may not

be able to distinguish trivial details in a processed image, (b)

redundancy in the processed data, as an algorithm might be able to

withstand approximations and still derive the correct result, due to a

sufficient flux of input data, (c) noisy inputs that can make rough

estimations appropriate.

The binary adder, which is a fundamental arithmetic unit, can

serve as a great example for approximate computing applications, as it

has already attracted great scientific interest [Gup11], [Seo20], [Seo21].

It is after all, an elementary block of the binary multiplier, which is a

core element that contributes significantly to the overall power

consumption in microprocessors and signal processing systems.

 The half adder (HA) is the most basic combinational logic

circuit that can return the sum of two bits, by generating two output bits,

the carry, and the sum. As shown in Fig. 1.1.a, one XOR and one AND

gate are required for the HA circuit. Unfortunately, XOR gates are

known to be slow and bulky and so, avoiding them can be beneficial. A

simple way to carefully approximate the HA, while relaxing the

hardware requirements is shown in Fig. 1.1.b. The XOR gate is

substituted by an OR gate, and the AND gate is discarded. As shown in

the truth table (TT), this rather simple configuration results in an error

when both inputs are high. In this case, the Error Distance (ED) is 1.

The computed output is binary ‘01’, instead of ‘10’ and the result is

underestimated by 1. In the three other cases, the inexact circuit returns

the correct result. Given the appropriate application, the inexact HA can

be an appealing solution, as it offers a significant hardware

minimization.

8 Efstratios Zacharelos

The Full Adder (FA) is another logic circuit that has been

extensively studied in order to derive simplifications. Fig. 1.2.a shows

the conventional FA while the Boolean expressions of its outputs are:

𝑆𝑢𝑚 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 (1.1)

𝐶𝑎𝑟𝑟𝑦 = (𝐴 ∙ 𝐵) + ((𝐴 ⊕ 𝐵) ∙ 𝐶) (1.2)

The authors in [Ram19] propose a gate level logic modification

approach to approximate the FA circuit. The sum term of the

conventional full adder is altered to reduce the hardware complexity by

proposing a carry-based approximation adder (CBAA) and avoid the

critical XOR operation. The conventional Full Adder, and the proposed

approximate versions are shown in Fig. 1.2. The TTs and the error

distances are summarized in Table 1.2. As shown in Fig. 1.2, in all the

approximated versions of the FA, the Sum is the inverse of the

corresponding carry, resulting in reduced complexity at gate level with

respect to the conventional FA. The Boolean equations for the carries

of the approximate FAs are:

𝐶1 = (𝐴 ∙ 𝐵) + 𝐶 (1.3)

𝐶2 = (𝐴 ∙ 𝐵) ⊕ 𝐶 (1.4)

𝐶3 = (𝐴 ∙ 𝐵) + (𝐵 ∙ 𝐶) + (𝐶 ∙ 𝐴) (1.5)

Fig. 1.1: (a) Exact Half Adder. Using one XOR and one AND gate, this circuit

is always precise. (b) Approximate Half Adder. Using only one OR gate, this

circuit returns inexact results when both inputs are high.

Table 1.1: Exact Half Adder Truth Table (left) and Approximate Half Adder

Truth Table with error distance (right).

A B Carry Sum A B Carry Sum ED

0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1 0

1 1 1 0 1 1 0 1 1

Introduction and Outline 9

 Several proposals like the ones already mentioned for the Half

and Full Adders, are developed in the literature. The most common

circuits targeted for approximation, are adders of an arbitrary number

of bits, signed and unsigned binary multipliers, squarers, and dividers.

These solutions can be exploited in embedded and mobile devices,

where energy, area, and speed constraints are important.

The main research topic of this dissertation is approximate

computing and ways to overcome the state of the art, while a health

application benefitting from approximate computing is investigated in

the final chapter.

Fig. 1.2: (a) Exact Full Adder. Using two XOR, two AND, and one OR gate,

this circuit is always precise. (b, c, d) Approximate Full Adder alternatives.

Table 1.2: Exact Full Adder Truth Table (a) and Approximate Full Adder Truth

Tables with error distance (b, c, d).

Exact FA

(a)
(b) (c) (d)

A B C Carry S C1 S1 ED C2 S2 ED C3 S3 ED

0 0 0 0 0 0 1 1 0 1 1 0 1 1

0 0 1 0 1 1 0 1 1 0 1 0 1 0

0 1 0 0 1 0 1 0 0 1 0 0 1 0

0 1 1 1 0 1 0 0 1 0 0 1 0 0

1 0 0 0 1 0 1 0 0 1 0 0 1 0

1 0 1 1 0 1 0 0 1 0 0 1 0 0

1 1 0 1 0 1 0 0 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 1 2 1 0 1

10 Efstratios Zacharelos

1.2 Thesis Outline

The core of this manuscript is divided into the following

chapters, each of which ends with a summary section to provide a quick

reference to the corresponding main findings and results.

Chapter 2 provides a scientific background including

information on the state of the art of approximate computing and a brief

overview of the error metrics that are used to measure the error

performance of the various approximate circuits.

In Chapter 3, a method to reduce the partial products of a

binary multiplier, using approximate compressors is described.

Different sizes of approximate multipliers are developed and tested

against the state of the art.

In Chapter 4, various approximate 4×4 multiplier blocks are

developed and used recursively to scale up to higher order multipliers.

The obtained designs are compared to numerous recursive architectures

found in the literature.

In Chapter 5, approximations in another fundamental

arithmetic operation, are investigated. Approximate recursive squarers

are developed and tested against the state of the art.

In Chapter 6, a Machine Learning application to detect spikes

in brain activity is developed. The obtained network is described and

implemented in an integrated circuit to serve as a brain-machine

interface.

Finally, conclusions are drawn, and future goals are mentioned.

Introduction and Outline 11

1.3 List of Publications

▪ M. D’Arco, E. Napoli, E. Zacharelos, S. Saponara, and A. De

Gloria, "Digital Circuit for the Arbitrary Selection of Sample Rate

in Digital Storage Oscilloscopes," in Applications in Electronics

Pervading Industry, Environment and Society, 2020, doi:

10.1007/978-3-030-37277-4_21.

▪ M. D’Arco, E. Napoli, and E. Zacharelos, "Digital Circuit for

Seamless Resampling ADC Output Streams," in Sensors, vol. 20,

no. 6, 2020, doi: https://doi.org/10.3390/s20061619.

▪ E. Napoli, E. Zacharelos, M. D’Arco and A. G. M. Strollo, "Real-

Time Downsampling in Digital Storage Oscilloscopes With

Multichannel Architectures," in IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 68, no. 10, pp. 4142-4155, Oct.

2021, doi: 10.1109/TCSI.2021.3102386.

▪ M. D’Arco, E. Napoli, E. Zacharelos, L. Angrisani, and A. G. M.

Strollo, "Enabling Fine Sample Rate Settings in DSOs with Time-

Interleaved ADCs," in Sensors, vol 22, no. 1, 2022, doi:

https://doi.org/10.3390/s22010234.

▪ I. Nunziata, E. Zacharelos, G. Saggese, A. M. G. Strollo and E.

Napoli, "Approximate Recursive Multipliers Using Carry

Truncation and Error Compensation," 17th Conference on Ph.D

Research in Microelectronics and Electronics (PRIME),

Villasimius, SU, Italy, pp. 137-140, 2022, doi:

10.1109/PRIME55000.2022.9816787.

▪ G. Saggese, E. Zacharelos, and A. G. M. Strollo, "Low Power

Spike Detector for Brain-Silicon Interface using Differential

Amplitude Slope Operator," 17th Conference on Ph.D Research in

Microelectronics and Electronics (PRIME), Villasimius, SU, Italy,

2022, pp. 301-304, doi: 10.1109/PRIME55000.2022.9816758.

12 Efstratios Zacharelos

▪ E. Zacharelos, I. Nunziata, G. Saggese, A. G. M. Strollo and E.

Napoli, "Approximate Recursive Multipliers Using Low Power

Building Blocks," in IEEE Transactions on Emerging Topics in

Computing, vol. 10, no. 3, pp. 1315-1330, 1 July-Sept. 2022, doi:

10.1109/TETC.2022.3186240.

▪ E. Zacharelos, I. Nunziata, G. Saggese, A. G. M. Strollo and E.

Napoli, "Approximate Recursive Multipliers Using Low Power

Building Blocks," in 2022 IEEE 29th Symposium on Computer

Arithmetic (ARITH), vol. 10, no. 3, pp. 1315-1330, 1 July-Sept.

2022, doi: 10.1109/TETC.2022.3186240.

▪ E. Zacharelos, I. Nunziata, G. Saggese, A. G. M. Strollo and E.

Napoli, "Approximate Squaring circuits exploiting Recursive

Architectures," in Integration, the VLSI journal, Elsevier, 2023, doi:

https://doi.org/10.1016/j.vlsi.2023.02.007.

▪ E. Zacharelos, C. Scognamillo, E. Napoli, and G. Saggese " On-

Chip Spike Detection and Classification using Neural Networks and

Approximate Computing," 2023. [Currently Under Revision]

Scientific Background 13

Chapter 2

2 Scientific Background

2.1 State of the Art

In the last years, many contributions related to approximate

computing have focused on arithmetic operations, such as binary

addition, multiplication, and division [Soa19], [Gup13], [Che18].

Binary multipliers constitute a fundamental part of many digital

processing systems, such as FFT/IFFT hardware implementation

algorithms, and unfortunately are characterized by heavy silicon area,

power, and timing requirements [Hor14]. Consequently, nowadays

approximate binary multipliers are being studied thoroughly. A

comprehensive survey of approximate arithmetic circuits, such as

approximate adders, multipliers, and dividers is developed in [Jia20].

Several techniques providing efficient approximate multipliers

have been studied in the literature. One such example is the

approximate logarithmic multiplier [Liu18], [Kim19], [Lot21]. In this

case, approximated versions of the logarithms of the input operands, are

added. The result corresponds to the approximated value of the

antilogarithm of the sum. These are low-power and high-speed designs,

due to the low complexity in their architecture. However, they tend to

be less accurate. Another approach is the static segmentation. In this

technique, a part of each input operand is given as input to a small

multiplier, whose shifted output is the result of the multiplication

[Str22]. Static segmentation has been demonstrated to be useful when

very low power is needed, and accuracy is not the main issue. In

[Yan18] the authors propose an approximate multiplier that can

dynamically control accuracy. The circuit can select the length of the

carry propagation to effectively satisfy the desired accuracy

requirements.

Software-based approaches have been proposed, that merge the

approximated multiplier design in the design flow of the circuit. They

14 Efstratios Zacharelos

automatically generate synthesizable hardware description code (HDL)

for approximate arithmetic circuits based on the accuracy requirement

of the design [Češ18], [Ull18], [Mra20], [Bal22]. Such techniques can

prove useful when the targeted application does not have a uniform

input distribution.

The basic binary multiplication process can be divided into three

parts: partial product generation, partial product reduction and carry-

propagate addition. Approximate computing can be introduced in all

these steps. For instance, the first step can be approximated by

truncating some of the least significant partial products (PPs) and then

possibly employing a compensation strategy [Vah19], [Fru20].

The partial product reduction step is typically the main target for

approximations in a binary multiplier. A common approach to reduce

the partial product matrix (PPM) relies on the use of approximate

compressors. Compressors are logic circuits that aim to minimize the

number of operands in the final step, which is the addition of the

reduced partial products, using tree-based logarithmic reduction

schemes, such as Wallace [Wal64], Dadda [Dad83], or the Three-

Dimensional Method (TDM) [Okl96]. The compressors are XOR-rich

circuits (thus slow and power hungry), that count the number of ones in

the input. The most basic exact compressor is the Full Adder, that

reduces three digits into two, maintaining the original information. As

shown in the following, many research contributions have focused on

the approximation of the PPM compression phase. Approximate

compressors developed during this work, are discussed in chapter 3.

In [Kel09] the authors acquire approximate compressors by

truncating outputs of some exact compressors, while in [Cil14] and

[Guo18], compressors with only 2-bit outputs are proposed. Lossy

compression of the rows in the PPM based on bit significance, is

investigated in [Qiq17]; the compression exploits approximate, OR-

based half adders. In [Esp17] simple OR gates serve as approximate

compressors and two designs are proposed. The two designs are

obtained using encoded partial products and approximate compressors,

delivering different accuracy-electrical performance trade-off. Several

solutions employing 3:2 and 4:2 compressors to generate approximated

multipliers are presented in [Ans18], [Sab19], [StNa20], [StDe20]. A

set of Single-Weight Approximate Compressors (SWACs) is employed

in [Esp18], to construct approximate multipliers. Unlike the Full-Adder

Scientific Background 15

that produces a sum and a carry, these designs compress input bits

derived from a PPM column, into fewer output bits, maintaining the

same initial weight. This allows a significant reduction of circuit

complexity since less carry bits are generated and propagated.

Maddisetty et al. [Mad19] present the training of a neural network to

devise an efficient approximate 4:2 compressor. In [Eda20] two 4:2

compressors are presented; a novel 4:2 architecture, and a modified

design by substituting the AND / OR gates with NAND / NOR gates

respectively. Although the boolean expression is changed, when the

modified version targets multipliers, employing reduction steps in

multiples of 2, the difference is nullified. Approximate 4:2 designs

implemented in FinFET technology are presented in [Zak20], [Kha21].

In [Pei21] the number of outputs of the approximate 4:2 compressor is

innovatively reduced to one; 3 such compressors are proposed, as well

as an error-correcting module.

Recursive multipliers are an interesting research area of the

approximate computing field that aims to use small elementary

approximate multiplier blocks, suitably assembled, to design larger

multipliers, [Ans18], [Kul11], [Reh16], [GSK18], [Gil19], [War20],

[Yan20], [War21]. The advantage of the recursive building of larger

multipliers is that it avoids a dedicated design for every bit width and

gains in terms of generality of the proposed approaches. As

demonstrated in [Ans18], and in chapter 4 of this dissertation, four n×n

building blocks can be utilized to scale up to a 2n×2n multiplier. Several

authors have used 4×4 approximate multipliers to recursively generate

several 8×8 multiplier alternatives. The authors of [Ans18] propose

three 4:2 compressors, used to generate two 4×4 multipliers.

Guo et al. [GSK18] propose a 4×4 approximate multiplier

module. The corresponding 8×8 multiplier is made up from one 4×4

multiplier featuring OR-based compressors with no carry propagation

in the lower part, two of the proposed 4×4 modules in the middle part,

and an exact 4×4 multiplier for the most significant part. Differently

from the other designs, the four products are summed using an

approximate adder.

In [War20] the authors consider the probability distribution of

the input operands to propose 4×4 multipliers, consisting of

approximate NOR-based half adder and full adder designs. These

elementary blocks are exploited to build approximate recursive

16 Efstratios Zacharelos

multipliers. In [Yan20] a 4×4 approximate multiplier featuring an error

detection and correction system, is presented.

Similarly, in [Kul11], [Reh16], [Gil19] and [War21] the authors

propose 2×2 approximate sub-multipliers, suitably arranged, to form

larger size multipliers. Sixteen 2×2 modules are needed to create an 8×8

multiplier. Kulkarni et al. [Kul11] present a 2×2 inexact multiplier with

tunable error characteristics. In [Reh16] the authors provide an

exploration of the architectural space and propose their 2×2 module.

The 2×2 approximate multiplier presented in [Gil19] has an internal

self-healing strategy that does not require coupled modules, while the

proposed larger multipliers derived from the 2×2 blocks produce near

zero mean error. In [War21] two elementary multipliers are proposed

that exhibit double-sided error distribution while the resulting 8×8

design has the advantage of error compensation.

Several attempts to outperform the state of the art in terms of

power dissipation, silicon area, and critical delay, are described in the

following chapters of this thesis. Approximate arithmetic circuits are

developed exploiting novel approximate compressors and recursive

architectures. The designs are then described in HDL and simulated, to

derive their error performance. Finally, they are synthesized in a

FinFET technology provided by Global Foundries. The targeted

technology allows a minimum gate length of 14nm, while featuring two

layers of metal. The typical DC supply voltage is 0.80 Volts, while the

minimum and maximum limits are 0.54V and 0.95V, respectively. The

same methodologies (including the technology) are used throughout

this work for the proposed and competitive designs found in the

literature, to ensure a fair comparison with the state of the art.

2.2 Error Metrics

To quantify the error performance of the different investigated

approximate designs, several error metrics have been used throughout

this work. These metrics are summarized in the following.

Assuming that 𝐴 and 𝐵 are the two n-bit operands in an n×n

binary multiplication operation, with:

Scientific Background 17

𝐴 = ∑ 𝑎𝑖 ∙ 2𝑖
𝑛−1

𝑖=0
 , 𝐵 = ∑ 𝑏𝑗 ∙ 2𝑗

𝑛−1

𝑗=0
(2.1)

a random partial product 𝑝𝑖𝑗, is given by:

𝑝𝑖𝑗 = 𝑎𝑖𝑏𝑗 (2.2)

If the input bits 𝑎𝑖 and 𝑏𝑗 are uniformly and independently distributed,

the probability of each PP being high, is equal to:

𝑃(𝑝𝑖𝑗) = 1 4⁄ (2.3)

Let 𝑌𝐸_𝑘 be the exact result of the multiplication between the two

n-bits operands 𝐴𝑘 and 𝐵𝑘 such that 𝑌𝐸_𝑘 = 𝐴𝑘𝐵𝑘 and let 𝑌𝐴_𝑘 be the

approximated output returned by the investigated inexact multiplier.

The error 𝐸𝑘, of each multiplication is given by:
𝐸𝑘 = 𝑌𝐸_𝑘 − 𝑌𝐴_𝑘 (2.4)

While the error distance 𝐸𝐷𝑘 is defined as:

𝐸𝐷𝑘 = |𝑌𝐸_𝑘 − 𝑌𝐴_𝑘| (2.5)

And the relative error distance 𝑅𝐸𝐷𝑘, as:
𝑅𝐸𝐷𝑘 = 𝐸𝐷𝑘 𝑌𝐸_𝑘⁄ ∀ 𝑌𝐸_𝑘 ≠ 0 (2.6)

• The Mean Error, ME, is defined as the sum of errors, divided by the

total amount of possible inputs 22n:

𝑀𝐸 = (∑ 𝐸𝑘

22𝑛−1

0
) 22𝑛⁄ (2.7)

• The Normalized Mean Error Distance, NMED, is defined as the

average value of ED divided by the maximum possible value

returned by the multiplier, which is: (2n-1)2.

• The Mean Relative Error Distance, MRED, is given by the average

value of RED.
• The number of effective bits, NoEB, is defined as:

𝑁𝑜𝐸𝐵 = 2𝑛 − 𝑙𝑜𝑔2(1 + √𝐸𝑚𝑠) (2.8)

where 𝐸𝑚𝑠 is the means square error, given by the average value of
𝐸2.

• The error rate, ER, is defined as the number of erroneous

multiplications (with 𝐸𝑘 ≠ 0) over the total amount of possible

inputs 22n.

18 Efstratios Zacharelos

2.3 Summary

In this chapter, a quick overview on the state of the art of

approximate binary multipliers is given. Two main categories of

multipliers are pointed out: those that exploit approximate compressors

and those that benefit from recursive topologies. Then, the error metrics

used throughout this work to measure the error performance, are

presented.

Approximate Multipliers Based on Approximate Compressors 19

Chapter 3

3 Approximate Multipliers Based on

Approximate Compressors

As mentioned in chapter 2, the first objective of a binary

multiplier is to generate the partial product matrix (PPM). Afterwards,

the addition of the partial products in each column, takes place. At this

stage, compressors can be used to reduce the size of the PPM. An exact

compressor produces an output that is the sum of n selected input bits

(usually of the same column, i.e., they have the same binary weight).

The generated output bits are 𝑚 = ⌈𝑙𝑜𝑔2𝑛⌉, with different weights.

A common example of exact compressors is the Full-Adder,

having an input of three bits and reducing it to two bits: the sum, and

the carry, with a double weight. Another useful circuit in the PPM

reduction phase, is the Half-Adder, which encodes two input bits into

two output bits, exactly like the Full-Adder. While it does not reduce

the number of bits in the PPM, many times it proves useful as it

rearranges the order of bits, keeping one bit in the column of interest

(sum), and generating one for the next column (carry).

An approximate compressor is typically a simpler circuit, liable

to producing inexact results. As it will be shown in the following, two

types of approximate compressors are presented in this chapter, that

generate 𝑚 = ⌈𝑛 2⁄ ⌉ output bits, all of which hold the same weight as

the input bits. Therefore, they all are single-weight approximate

compressors (SWACs). The first class of compressors is meant to

minimize the hardware requirements, while maintaining the introduced

error at reasonable levels. On the other hand, the second class of

approximate compressors are as accurate as possible. Therefore, if the

input bits whose value is high are not exceeding the number of output

bits, the exact result will be encoded in the output. Otherwise, the

resulting approximate output will be as close to the exact one, as

possible. Hence, these compressors are error optimal.

20 Efstratios Zacharelos

SWACs of both types are presented for various sizes, namely

3:2, 4:2, 5:3, and 6:3. Higher order compressors are also employed, but

they are derived as combinations of lower order compressors, as

explained in section 3.3. All these designs are combined to form

multipliers of different sizes. If suitably combined, they guarantee a

great trade-off between outcome precision and electrical performances.

Both types of compressors avoid the use of complex XOR gates.

3.1 Hardware-Efficient Approximate

Compressors

In order to clarify the process used to produce hardware-

efficient (Type-A) single weight approximate compressors, that has

been developed in [Esp18], let us start with compressing two partial

products into one bit. As shown by eq. 2.2, each PP is generated by

multiplying two input bits. Let us assume that the PP 𝑝0 is generated by

the multiplication (AND gate) of the input bits 𝑥0 and 𝑦0, while the PP

𝑝1 is generated by the multiplication of the input bits 𝑥1 and 𝑦1.

Table 3.1: Multiplier inputs, corresponding partial products, logical AND and OR of

the partial products. In only one out of the 16 cases the logical AND is relevant and

can thus be neglected.

𝒙𝟎 𝒚𝟎 𝒙𝟏 𝒚𝟏 𝒑𝟎 𝒑𝟏 𝒑𝟎𝒑𝟏 𝒑𝟎 + 𝒑𝟏

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 1 0 1 0 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 1

1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1

1 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1

Approximate Multipliers Based on Approximate Compressors 21

As it can be observed in Table 3.1, the addition of two partial

products, 𝑝0 and 𝑝1, can be recoded into the sum of the logical AND

and the logical OR of the two partial products:

𝑆 = ∑{𝑝0, 𝑝1} = ∑{𝑝0𝑝1, 𝑝0 + 𝑝1} (3.1)

Consulting Table 3.1, we can derive the probabilities of each

term being high:

𝑃(𝑝0𝑝1) = 1 16⁄ (3.2)

𝑃(𝑝0 + 𝑝1) = 7 16⁄ . (3.3)

Considering these probabilities, and neglecting the term generated

exploiting the AND gate, we get an approximated version of the

summing process:

𝑆𝐴𝑃𝑃 = ∑{𝑝0 + 𝑝1} . (3.4)

The only case in which this approximated process results in an

erroneous result, is when all the multiplier inputs in question are high,

(𝑥0 = 𝑦0 = 𝑥1 = 𝑦1 = 1), and as such, the two partial products to be

compressed are also high, (𝑝0 = 𝑝1 = 1). In this case, the approximated

result is encoded in 1 bit and is equal to 1, instead of 2 which is the

accurate result.

3.1.1 Approximate Compressor 3:2

An approximate 3:2 compressor reduces 3 partial products of

the same column in the PPM, into 2 bits. Applying the same reasoning

as in equation 3.1 twice:

𝑆 = ∑{𝑝0, 𝑝1, 𝑝2} = ∑{𝑝0𝑝1𝑝2, 𝑝0𝑝1 + 𝑝2, 𝑝0 + 𝑝1} . (3.5)

The first term in equation 3.5 is the logical AND of the three

partial products and holds a very low probability of being high:

𝑃(𝑝0𝑝1𝑝2) = 𝑃(𝑝0) ∙ 𝑃(𝑝1) ∙ 𝑃(𝑝2) =
1

4
∙
1

4
∙
1

4
= 1 64⁄ (3.6)

Therefore, we can neglect this term, thus obtaining:

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2, 𝑝0 + 𝑝1} . (3.7)

In table 3.2, the input PPs, the compressor’s outputs, the exact

and approximate sums, the error, and error probability, for all the

possible partial product combinations are reported. We can observe that

22 Efstratios Zacharelos

the only erroneous case appears for 𝑝0 = 𝑝1 = 𝑝2 = 1, where the exact

result is 3 and the approximated 2. Hence, the error probability and

mean error of the 3:2 approximate compressor respectively, are:

𝑃𝐸 = 1 64⁄ (3.8)

𝐸𝑚𝑒𝑎𝑛 = 1 64⁄ (3.9)

The schematic of the proposed 3:2 approximate compressor is

shown in Fig. 3.1. It is a quite simple design, employing just AND, OR

gates, and avoiding large XOR gates. Furthermore, it provides high

accuracy results, as explained earlier, making it an attractive alternative,

when compared to similar circuits.

Table 3.2: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-A 3:2 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐 𝒘𝟎𝒘𝟏 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

000 00 0 0 0 -

001 10 1 1 0 -

010 01 1 1 0 -

011 11 2 2 0 -

100 01 1 1 0 -

101 11 2 2 0 -

110 11 2 2 0 -

111 11 3 2 1 1/64

Fig. 3.1: Schematic of the proposed Type-A 3:2 approximate compressor.

Approximate Multipliers Based on Approximate Compressors 23

3.1.2 Approximate Compressor 4:2

Applying three times the same recoding technique to four partial

products, we can obtain:

𝑆 = ∑{
(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝2𝑝3)(𝑝0 + 𝑝1),

(𝑝0𝑝1) + (𝑝2 + 𝑝3), (𝑝2𝑝3) + (𝑝0 + 𝑝1)
} (3.10)

The probability of the first two terms being high is very low, so

we can safely neglect them, thus obtaining the proposed 4:2

approximate compressor logic equations:

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝2𝑝3 + 𝑝0 + 𝑝1} (3.11)

In table 3.3, we can observe the behavior of the proposed

approximate compressor. There are five partial products combinations,

out of the sixteen possibilities, that result in an error. In four of these

cases, the approximated result is underestimated by one, while in the

last, least probable case, it is underestimated by two. So, the error

probability and mean error are:

𝑃𝐸 = 13 256⁄ (3.12)

𝐸𝑚𝑒𝑎𝑛 = 14 256⁄ (3.13)

Fig. 3.2 shows the schematic of the proposed 4:2 approximate

compressor. Again, a simple XOR-free design is enough to create a

compressor with low error probability.

Fig. 3.2: Schematic of the proposed Type-A 4:2 approximate compressor.

24 Efstratios Zacharelos

3.1.3 Approximate Compressor 5:3

The usual recoding is applied four times accordingly to acquire

the 5:3 approximate compressor.

𝑆 = ∑{

(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝0𝑝1) + (𝑝2 + 𝑝3),
(𝑝2𝑝3)𝑝4, (𝑝2𝑝3) + 𝑝4,

(𝑝0 + 𝑝1)
} (3.14)

Neglecting the two low probability terms, namely the ones

comprised by the AND of three terms, we obtain:

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝0 + 𝑝1, 𝑝2𝑝3 + 𝑝4} (3.15)

The behavior of the proposed compressor (Fig. 3.3) is exhibited

in table 3.4. Out of the thirty-two cases, there are nine that produce an

underestimated result. In the unlikely event that all the partial products

are high, the produced result is underestimated by two. Consulting table

3.4, we can obtain:

𝑃𝐸 = 43 1024⁄ (3.16)

𝐸𝑚𝑒𝑎𝑛 = 44 1024⁄ (3.17)

Table 3.3: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-A 4:2 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑 𝒘𝟎𝒘𝟏 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

0000 00 0 0 0 -

0001 01 1 1 0 -

0010 01 1 1 0 -

0011 11 2 2 0 -

0100 10 1 1 0 -

0101 11 2 2 0 -

0110 11 2 2 0 -

0111 11 3 2 1 3/256

1000 10 1 1 0 -

1001 11 2 2 0 -

1010 11 2 2 0 -

1011 11 3 2 1 3/256

1100 11 2 2 0 -

1101 11 3 2 1 3/256

1110 11 3 2 1 3/256

1111 11 4 2 2 1/256

Approximate Multipliers Based on Approximate Compressors 25

Table 3.4: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-A 5:3 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒 𝒘𝟎𝒘𝟏𝒘𝟐 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

00000 000 0 0 0 -

00001 100 1 1 0 -

00010 100 1 1 0 -

00011 101 2 2 0 -

00100 001 1 1 0 -

00101 101 2 2 0 -

00110 101 2 2 0 -

00111 101 3 2 1 9/1024

01000 001 1 1 0 -

01001 101 2 2 0 -

01010 101 2 2 0 -

01011 101 3 2 1 9/1024

01100 011 2 2 0 -

01101 111 3 3 0 -

01110 111 3 3 0 -

01111 111 4 3 1 3/1024

10000 010 1 1 0 -

10001 110 2 2 0 -

10010 110 2 2 0 -

10011 111 3 3 0 -

10100 011 2 2 0 -

10101 111 3 3 0 -

10110 111 3 3 0 -

10111 111 4 3 1 3/1024

11000 011 2 2 0 -

11001 111 3 3 0 -

11010 111 3 3 0 -

11011 111 4 3 1 3/1024

11100 011 3 2 1 9/1024

11101 111 4 3 1 3/1024

11110 111 4 3 1 3/1024

11111 111 5 3 2 1/1024

Fig. 3.3: Schematic of the proposed Type-A 5:3 approximate compressor

26 Efstratios Zacharelos

3.1.4 Approximate Compressor 6:3

For the 6:3 compressor, the recoding is applied six times:

𝑆 = ∑{

(𝑝0𝑝1)(𝑝2 + 𝑝3), (𝑝0𝑝1) + (𝑝2 + 𝑝3),
(𝑝2𝑝3)(𝑝4 + 𝑝5), (𝑝2𝑝3) + (𝑝4 + 𝑝5),
(𝑝4𝑝5)(𝑝0 + 𝑝1), (𝑝4𝑝5) + (𝑝0 + 𝑝1)

} (3.18)

By neglecting all the low probability terms that consist of the

AND of three terms, we obtain:

𝑆𝐴𝑃𝑃 = ∑{𝑝0𝑝1 + 𝑝2 + 𝑝3, 𝑝2𝑝3 + 𝑝4 + 𝑝5, 𝑝4𝑝5 + 𝑝0 + 𝑝1} (3.19)

Table 3.5 reports only the partial products combinations

resulting in an output error. According to this table, the error probability

and mean error of the proposed approximate 6:3 compressor is:

𝑃𝐸 = 316 4096⁄ (3.20)

𝐸𝑚𝑒𝑎𝑛 = 336 4096⁄ (3.21)

The schematic of the proposed Type-A 6:3 approximate

compressor is shown in figure 3.4.

Fig. 3.4: Schematic of the proposed Type-A 6:3 approximate compressor

Approximate Multipliers Based on Approximate Compressors 27

Table 3.5: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-A 6:3 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒𝒑𝟓 𝒘𝟎𝒘𝟏𝒘𝟐 𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

000111 011 3 2 1 27/4096

001011 011 3 2 1 27/4096

001111 111 4 3 1 9/4096

010111 111 4 3 1 9/4096

011011 111 4 3 1 9/4096

011100 101 3 2 1 27/4096

011101 111 4 3 1 9/4096

011110 111 4 3 1 9/4096

011111 111 5 3 2 3/4096

100111 111 4 3 1 9/4096

101011 111 4 3 1 9/4096

101100 101 3 2 1 27/4096

101101 111 4 3 1 9/4096

101110 111 4 3 1 9/4096

101111 111 5 3 2 3/4096

110001 110 3 2 1 27/4096

110010 110 3 2 1 27/4096

110011 111 4 3 1 9/4096

110101 111 4 3 1 9/4096

110110 111 4 3 1 9/4096

110111 111 5 3 2 3/4096

111001 111 4 3 1 9/4096

111010 111 4 3 1 9/4096

111011 111 5 3 2 3/4096

111100 111 4 3 1 9/4096

111101 111 5 3 2 3/4096

111110 111 5 3 2 3/4096

111111 111 6 3 3 1/4096

28 Efstratios Zacharelos

3.2 Error-Optimal Approximate Compressors

The novel compressors, shown in this section, are optimal in

terms of error. In other words, they produce 𝑚 = ⌈𝑛 2⁄ ⌉ output bits as

mentioned earlier, that when added, deliver, if possible, the exact result.

In case the exact result cannot be described by the 𝑚 available output

bits, the error is the minimum possible, i.e., the difference between the

exact value, and the number of output bits. Unlike the simpler, in terms

of hardware, designs shown in section 3.1, these compressors promise

the lowest possible error, achieved by smart designs.

Even though the lowest possible error for a compressor of a

certain size, is fixed and analytically determined for each input

combination, different configurations delivering the same resulting

sum, may be proposed. Although indistinguishable in terms of outcome,

these circuits have different output combinations and as such,

correspond to different circuits, with different electrical performances.

Therefore, in order to determine the circuit with the best electrical

performances, among the SWACs with optimal error metrics, all

circuits need to be synthesized and compared.

The syntheses have been conducted using the ABC synthesis

tool, and the freely available standard cell library “mcnc.genlib”. The

use of a generic library is intended to provide results that are weakly

technology dependent. The correlation between the targeted 14nm

FinFET technology, and the ABC synthesis tool, has been determined

by synthesizing a good number of compressors in each software and

comparing the silicon area values. As it can be seen in Fig. 3.5, the two

Fig. 3.5: Resulting area correlation of two different synthesizers.

Approximate Multipliers Based on Approximate Compressors 29

technologies sufficiently follow the same trend, with a degree equal to

70%. Nevertheless, it is not impossible, that two circuits with similar

electrical performances, exhibit opposite behaviors when synthesized

in different technologies.

3.2.1 Approximate Compressor 3:2

The output information of the Single-Weight Approximate

Compressor is encoded into the sum of its output bits. Therefore,

according to the cumulative property, changing the order of the output

bits while trying to determine the optimal truth table (TT), does not

affect the compressor’s result. A single “X” is used in table 3.6, to

indicate that only one of the two output bits, is high. Notice that as

previously mentioned, when possible, the output is correct.

Given the fact that the TT contains three cases that can be

expressed in two different ways, i.e., three “X” that can either be “01”

or “10”, a total of 23=8 circuits can be proposed. All these

configurations have been synthesized and tested. The best circuit is

found to be the same as the one shown in Fig. 3.1.

3.2.2 Approximate Compressor 4:2

In the 4:2 approximate compressor, there are four cases in which

the output needs to be defined as “01” or “10”. So, 24=16, different

circuits can be proposed. Again, the sixteen circuits have been

synthesized using both the ABC software and the genus 14nm library,

Table 3.6: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-B 3:2 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐
General

𝒘𝟎𝒘𝟏

Proposed

𝒘𝟎𝒘𝟏
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

000 00 00 0 0 0 -

001 X 01 1 1 0 -

010 X 01 1 1 0 -

011 11 11 2 2 0 -

100 X 10 1 1 0 -

101 11 11 2 2 0 -

110 11 11 2 2 0 -

111 11 11 3 2 1 1/64

30 Efstratios Zacharelos

in order to derive the optimal circuit. The TT of the chosen compressor

can be seen in Table 3.7. The resulting TT and circuit are the same as

the ones shown in Table 3.3 and Fig. 3.2 respectively.

3.2.3 Approximate Compressor 5:3

The optimal 5:3 approximate compressor has fifteen cases that

are not strictly defined in a unique a way. In particular, there are five

cases in which the output can be defined in three different ways, “001”,

“010”, and “100”, and ten cases, that can also be defined in three

possible ways, “011”, “101”, and “110”. A single “X” is used in table

3.8, to indicate that only one of the three output bits is high, while “XX”,

is used to indicate that two output bits are high.

Since there are fifteen possible outputs that can be expressed in

three different ways, a total of 315≅14×106 different compressors can

be proposed. Considering the immense number of possibilities, a

random approach has been pursued. A subset of 20.000 random TTs

has been synthesized and evaluated. While this subset is quite small

with respect to the whole population, it is considered enough to provide

a near-optimal, approximate compressor.

Table 3.7: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-B 4:2 approximate compressor.

𝑝0𝑝1𝑝2𝑝3
General

𝑤0𝑤1

Proposed

𝑤0𝑤1
𝑆 𝑆𝐴𝑝𝑝 𝐸 𝑃𝐸

0000 00 00 0 0 0 -

0001 X 10 1 1 0 -

0010 X 10 1 1 0 -

0011 11 11 2 2 0 -

0100 X 01 1 1 0 -

0101 11 11 2 2 0 -

0110 11 11 2 2 0 -

0111 11 11 3 2 1 3/256

1000 X 01 1 1 0 -

1001 11 11 2 2 0 -

1010 11 11 2 2 0 -

1011 11 11 3 2 1 3/256

1100 11 11 2 2 0 -

1101 11 11 3 2 1 3/256

1110 11 11 3 2 1 3/256

1111 11 11 4 2 2 1/256

Approximate Multipliers Based on Approximate Compressors 31

Some of the circuits found in the total population share

symmetric TTs. Symmetric TTs are considered those that result in their

counterpart, just by swapping the input or output bit names.

Unfortunately, many electronic computer-aided design (ECAD) tools,

including the ABC software, are unstable, thus producing different

Table 3.8: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-B 5:3 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒
General

𝒘𝟎𝒘𝟏𝒘𝟐

Proposed

𝒘𝟎𝒘𝟏𝒘𝟐
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

00000 000 000 0 0 0 -

00001 X 100 1 1 0 -

00010 X 001 1 1 0 -

00011 XX 101 2 2 0 -

00100 X 001 1 1 0 -

00101 XX 101 2 2 0 -

00110 XX 011 2 2 0 -

00111 111 111 3 3 0 -

01000 X 100 1 1 0 -

01001 XX 110 2 2 0 -

01010 XX 101 2 2 0 -

01011 111 111 3 3 0 -

01100 XX 101 2 2 0 -

01101 111 111 3 3 0 -

01110 111 111 3 3 0 -

01111 111 111 4 3 1 3/1024

10000 X 001 1 1 0 -

10001 XX 101 2 2 0 -

10010 XX 011 2 2 0 -

10011 111 111 3 3 0 -

10100 XX 011 2 2 0 -

10101 111 111 3 3 0 -

10110 111 111 3 3 0 -

10111 111 111 4 3 1 3/1024

11000 XX 101 2 2 0 -

11001 111 111 3 3 0 -

11010 111 111 3 3 0 -

11011 111 111 4 3 1 3/1024

11100 111 111 3 3 0 -

11101 111 111 4 3 1 3/1024

11110 111 111 4 3 1 3/1024

11111 111 111 5 3 2 1/1024

32 Efstratios Zacharelos

circuits when only swapping the inputs of the adder (compressor).

However, even though circuits with symmetric TTs differ a bit, their

electrical performances tend to fall near. For that reason, the assessed

subset does not contain symmetric TTs. After this analysis, the best

performing circuit is shown in Fig. 3.6.

3.2.4 Approximate Compressor 6:3

In Table 3.9, all erroneous cases and non-uniquely defined

outputs are reported. There are twenty-two cases in which S>3, thus

resulting in an erroneous approximated result. The error probability of

the proposed, optimal approximate compressor is 154/4096, while the

error probability of the previous 6:3 compressor, mentioned in section

3.1.4, is equal to 316/4096.

Furthermore, there are six cases, in which the output can be

defined as “001”, “010”, or “100”, and fifteen cases, that it can be

defined as, “011”, “101”, and “110”. So, there are 321≅1010 different

Fig. 3.6: Schematic of the proposed Type-B 5:3 approximate compressor

Approximate Multipliers Based on Approximate Compressors 33

configurations. After taking into account symmetries and synthesizing

millions of circuits, a high performing SWAC was determined. The

preferred configuration is shown in Fig. 3.7.

Table 3.9: Input partial products, compressor outputs, exact and approximated sum,

Error and Error probability for the Type-B 5:3 approximate compressor.

𝒑𝟎𝒑𝟏𝒑𝟐𝒑𝟑𝒑𝟒𝒑𝟓
General

𝒘𝟎𝒘𝟏𝒘𝟐

Proposed

𝒘𝟎𝒘𝟏𝒘𝟐
𝑺 𝑺𝑨𝒑𝒑 𝑬 𝑷𝑬

000001 X 001 1 1 0 -

000010 X 001 1 1 0 -

000011 XX 101 2 2 0 -

000100 X 001 1 1 0 -

000101 XX 101 2 2 0 -

000110 XX 011 2 2 0 -

001000 X 001 1 1 0 -

001001 XX 011 2 2 0 -

001010 XX 101 2 2 0 -

001100 XX 101 2 2 0 -

001111 111 111 4 3 1 9/4096

010000 X 001 1 1 0 -

010001 XX 101 2 2 0 -

010010 XX 101 2 2 0 -

010100 XX 101 2 2 0 -

010111 111 111 4 3 1 9/4096

011000 XX 101 2 2 0 -

011011 111 111 4 3 1 9/4096

011101 111 111 4 3 1 9/4096

011110 111 111 4 3 1 9/4096

011111 111 111 5 3 2 3/4096

100000 X 001 1 1 0 -

100001 XX 101 2 2 0 -

100010 XX 101 2 2 0 -

100100 XX 101 2 2 0 -

100111 111 111 4 3 1 9/4096

101000 XX 101 2 2 0 -

101011 111 111 4 3 1 9/4096

101101 111 111 4 3 1 9/4096

101110 111 111 4 3 1 9/4096

101111 111 111 5 3 2 3/4096

110000 XX 110 2 2 0 -

110011 111 111 4 3 1 9/4096

110101 111 111 4 3 1 9/4096

110110 111 111 4 3 1 9/4096

110111 111 111 5 3 2 3/4096

111001 111 111 4 3 1 9/4096

111010 111 111 4 3 1 9/4096

111011 111 111 5 3 2 3/4096

111100 111 111 4 3 1 9/4096

111101 111 111 5 3 2 3/4096

111110 111 111 5 3 2 3/4096

111111 111 111 6 3 3 1/4096

34 Efstratios Zacharelos

Fig. 3.7: Schematic of the proposed Type-B 6:3 approximate compressor

Table 3.10: Basic components used to create compressors of size 7 to 20.

Desired

Compressor
Building Blocks

7:4 4:2 3:2

8:4 4:2 4:2

9:5 4:2 5:3

10:5 4:2 6:3

11:6 4:2 4:2 3:2

12:6 4:2 4:2 4:2

13:7 4:2 4:2 5:3

14:7 4:2 4:2 6:3

15:8 4:2 4:2 4:2 3:2

16:8 4:2 4:2 4:2 4:2

17:9 4:2 4:2 4:2 5:3

18:9 4:2 4:2 4:2 6:3

19:10 4:2 4:2 4:2 4:2 3:2

20:10 4:2 4:2 4:2 4:2 4:2

Approximate Multipliers Based on Approximate Compressors 35

3.3 Higher Order Approximate Compressors

In order to construct large approximate multipliers, higher order

compressors than the ones already proposed, are required. To that end,

the proposed compressors are used as building blocks for larger

compressors, as summarized in Table 3.10. As it can be observed, the

use of 4:2 compressors is generally preferred, since they provide a good

trade-off between error and electrical performance. Moreover, it should

be noted that, the building blocks might refer to Type-A or Type-B

compressors, according to their position in the partial product matrix,

as explained in the following section.

3.4 Compressor Allocation Strategy

Let’s assume an n×n multiplier, n being an even number greater

or equal to 8. The goal is to utilize Full-Adders, Half-Adders,

approximate compressors, or leave PPs unaffected, in order to reduce

the PPM, into half its original size, that is: 𝑚 = 𝑛 2⁄ . As a general, yet

not exact rule, approximate compressors are placed only in the least

significant half of the PPM. An example of a 12×12 multiplier, detailing

the positions of the exact and approximate compressors, is shown in

Fig. 3.8, while the provided pseudo-code explains all the steps.

The height of the column i, h(i), is defined as the number of

partial products in said column. The height of the same column, in the

reduction stage, without accounting for any carries from adders in

adjacent columns, is defined as new_h(i). Starting from the most

significant partial product and moving rightwards, the number of Full-

Adders and Half-Adders is computed. Finally, information about the

remaining PPs is determined, and new_h(i) is calculated to provide

useful information for the next column.

The first m-1 columns are left unaffected. In column m-1,

new_h(m-1) = m-1 bits. Since the size of the PPM is reduced to a

maximum of m, there is space for one more bit, that may be the carry

from a Full-Adder placed in the next column. The next column has h(m)

= m, and three of these bits are fed into the previously mentioned Full-

Adder, while the rest are left unaffected. So, in the reduced stage, the

36 Efstratios Zacharelos

same column has new_h(m) = m-2 bits. The remaining 2 bits, needed to

fill the reduced matrix, are the carries of 2 Full-Adders, or 1 Full and 1

Half Adders, depending on the size of the next column.

If after placing all the available Full-Adders, PPs still remain,

they may be moved unaffected to the reduced stage, provided their

number does not exceed the available spots. If the remaining PPs are so

many than the reduced stage ends up higher than expected, approximate

compressors are employed. The compressors opted in this case, are the

error optimal type-B compressors, so that minimum error is introduced

to the Most Significant part of the matrix. Moreover, the size of the

chosen compressor in this case, w:v, is as low as possible, allowing as

many as possible, z bits, to pass unaffected to the reduced stage.

Assuming that k bits need to be compressed into l spots, with l≤m, using

the w:v SWAC, the following two equations with two unknown

variables need to be solved to determine the desired configuration:

𝑘 = 𝑧 + 𝑤 (3.22)

𝑙 = 𝑧 + 𝑣 = 𝑧 + ⌈𝑤/2⌉ (3.23)

An example is shown in the 11th column of the PPM of the multiplier

shown in Fig. 3.8. This column has h(11) = 11 bits and the desired

Fig. 3.8: 12x12 Approximate multiplier. Full-Adders, Half-Adders, and

Approximate compressors allocation strategy.

Approximate Multipliers Based on Approximate Compressors 37

 Allocation of Exact and Approximate Compressors

1. for i = 1:2n-1 /* left to right */

2. if (i < n/2 || i > 2n-3)

3. FA(i) = 0;

4. HA(i) = 0;

5. Remaining PPs = unaffected;

6. new_h(i) = h(i);

7. else if (i >= n/2 && i < n)

8. if (h(i) >= 3*(m-new_h(i-1)))

9. FA(i) = m-new_h(i-1);

10. HA(i) = 0;

11. if (Remaining PPs <= m-FA(i))

12. Remaining PPs = unaffected;

13. new_h(i) = h(i)-2*FA(i);

14. else

15. Remaining PPs = unaffected / B-Compressors;

16. new_h(i) = m;

17. end if;

18. else

19. FA(i) = m-new_h(i-1)-1;

20. if (h(i) - 3*FA(i) == 2)

21. HA(i) = 1;

22. Remaining PPs = none;

23. new_h(i) = h(i) - 2*FA(i) - 1*HA(i);

24. else if (h(i) - 3*FA(i) == 1)

25. HA(i) = 0;

26. Remaining PPs = unaffected;

27. new_h(i) = h(i) - 2*FA(i);

28. end if;

29. end if;

30. else if (i == n)

31. FA(i) = 0;

32. HA(i) = 0;

33. Remaining PPs = B-Compressors;

34. new_h(i) = ⌈ℎ(𝑖)/2⌉;
35. else if (i > n && i <= 2n-3)

36. FA(i) = 0;

37. HA(i) = 0;

28. Remaining PPs = A-Compressors;

29. new_h(i) = ⌈ℎ(𝑖)/2⌉;
30. end if;

31. end for;

38 Efstratios Zacharelos

new_h(11) = ⌈ℎ(11)/2⌉ = 6. The two Full Adders that are used in this

column take a total of 6 input bits and generate 2 output bits in the same

column. After that, the remaining bits 𝑘 = 11 − 6 = 5 need to be

compressed in the remaining spots of the reduced stage, 𝑙 = 6 − 2 = 4.

By solving equations 3.22 and 3.23 for 𝑘 = 5 and 𝑙 = 4, we obtain:

𝑤 − 𝑣 = 1. Taking into account that 𝑣 = ⌈𝑤/2⌉, it is derived that a 3:2

SWAC must be used, while 𝑧 = 2 bits will pass unaffected to the

reduced stage.

Approximate compressors are employed in the Least Significant

part of the matrix, with a size equal to the height of each column, except

for the last two columns that remain uncompressed. Optimal error, type-

B compressors are chosen for the most significant column, and simpler,

type-A designs are placed in the rest of the columns.

3.5 Implementation Results

The multipliers developed in [Esp18] are used as a point of

reference, as they showed great results when compared to the state-of-

the-art designs. The following comparisons target circuits that employ

just one reduction stage and no truncation techniques, namely [Esp18],

a close competitor [Qiq17], and the proposed approximate multipliers.

The first step towards improving the results presented in [Esp18], was

replacing the old compressors with the new ones, presented in section

3.2. This effort resulted in an increase of the number of effective bits,

as well as power dissipation. This was expected, since the novel designs

are more accurate, at the expense of more hardware resources. Thus, an

attempt to approach the “sweet spot” was followed, by placing the new,

error-optimal compressors in the more significant PP columns, and the

older, less power-hungry designs, in the rest of the columns, as

explained in section 3.4.

3.5.1 Electrical Performance

The compressors were used to generate 8×8, 12×12, 16×16, and

20×20 multipliers. All circuits were synthesized targeting a 14nm

FinFET technology, using Cadence Genus. Power dissipation is

computed by simulating the final netlist to obtain the switching activity

Approximate Multipliers Based on Approximate Compressors 39

of each node. Silicon area and power dissipation are calculated for these

timing constraints, that barely allow the corresponding exact multiplier

to have a non-negative slack time. The minimum delay of each circuit

is also reported in Table 3.11. Positive percentages indicate

improvement with respect to the corresponding one from [Esp18]. From

the electrical performance standpoint, most circuits tend to outperform

the ones proposed in [Esp18].

Table 3.11: Electrical performance of Exact and Approximate multipliers. All

percentages are calculated with respect to [Esp18].

 Exact [Esp18] Proposed
[Qiq17]

L=2

[Qiq17]

L=3

[Qiq17]

L=4

8
×

8

Min delay

(ps)
220 202

204

-1%

176

13%

153

24%

107

47%

Area (μm2)

delay=220ps
213 125

115

8%

84

33%

48

62%

36

71%

Power

(μW/MHz)

delay=220ps

2.79 1.36
1.22

10%

0.77

43%

0.40

71%

0.25

82%

1
2
×

1
2

Min delay

(ps)
286 261

266

-2%

228

13%

204

22%

178

32%

Area (μm2)

delay=286ps
510 232

232

0%

189

19%

125

46%

96

59%

Power

(μW/MHz)

delay=286ps

8.80 1.95
1.89

3%

1.42

27%

0.89

54%

0.56

71%

1
6
×

1
6

Min delay

(ps)
335 304

304

0%

275

10%

242

20%

217

29%

Area (μm2)

delay=335ps
850 496

485

2%

362

27%

261

47%

187

62%

Power

(μW/MHz)

delay=335ps

12.60 3.79
3.79

0%

2.49

34%

1.62

57%

1.00

74%

2
0
×

2
0

Min delay

(ps)
371 341

339

0.6%

312

9%

280

18%

246

28%

Area (μm2)

delay=371ps
1292 740

753

-2%

560

24%

411

44%

306

59%

Power

(μW/MHz)

delay=371ps

18.66 5.89
5.73

3%

3.90

34%

2.63

55%

1.56

74%

40 Efstratios Zacharelos

3.5.2 Error Performance

The error performance of the investigated multipliers is shown

in Table 3.12. All error metrics, for the 8×8 and 12×12 multipliers are

calculated following an exhaustive approach. It should be noted that the

mean error and the number of effective bits, for the multipliers proposed

in this work or in [Esp18], can be calculated also analytically. Knowing

the error and error probability of each erroneous case, of each

compressor, placed in each column of the PPM, it is possible to derive

both the ME and the NoEB, since each erroneous case contributes

individually to the overall error performance of the multiplier.

Table 3.12: Error performance of Approximate multipliers. All percentages are

calculated with respect to [Esp18].

 [Esp18] Proposed
[Qiq17]

L=2

[Qiq17]

L=3

[Qiq17]

L=4
8

×
8

ME 22.31
22.31

0%

229.38

928%

654.938

2836%

2128

9438%

NoEB 9.93
10.33

4%

7.03

-29%

5.70

-43%

4.06

-59%

ER 19.19
16.49

-14%

49.11

156%

65.73

243%

77.57

304%

1
2

×
1

2

ME 645
645

0%

15957

2374%

118903

18335%

365819

56616%

NoEB 13.34
13.87

4%

8.98

-33%

6.23

-53%

4.74

-64%

ER 34.78
34.78

0%

70.68

103%

87.65

152%

93.22

168%

1
6

×
1

6

ME 25429
22837

-10%

1034405

3968%

7640754

29947%

48234449

1895828%

NoEB 16.31
16.98

4%

10.98

-33%

8.24

-49%

5.72

-65%

ER 54.19
54.19

0%

84.64

56%

94.82

75%

97.92

81%

2
0

×
2

0

ME 866133
824661

-5%

67275029

264460%

667654387

2625463%

1321273162

5195830%

NoEB 19.31
19.94

3%

12.96

-21%

9.90

-39%

9.25

-43%

ER 66.29
65.70

-1%

89.08

34%

96.06

45%

98.34

48%

Approximate Multipliers Based on Approximate Compressors 41

On the other hand, exploiting each compressor’s probability to

produce an error in order to calculate the overall Error Rate of the

multiplier, is not possible as more than one compressor might

contribute to an erroneous case at the same time. Since calculating the

ER analytically results in an over-complicated statistical problem, a

different approach is needed. For the 16×16 and 20×20 multipliers, the

exhaustive approach is not feasible either, due to the immense number

of inputs, 232 and 240 accordingly. Thus, an approximate approach was

used to calculate the ER of all the 16×16 and 20×20 multipliers, as well

as the ME and NoEB of the multipliers proposed in [Qiq17].

As it can be observed in Table 3.12, the proposed designs

outperform the reference multipliers in all the error metrics. The circuits

introduced in [Qiq17], exhibit a far worse behavior than either design.

In Fig. 3.9, the electrical-error performance trade-off is summarized.

3.5.3 Image Smoothing Application

Image smoothing (blurring) is a processing technique, used to

reduce the noise and create a less pixelated image. This is typically

achieved by substituting each pixel with the weighted average value of

all the neighboring pixels. The weight with which each pixel

contributes, may be given by a gaussian kernel that moves through the

image. Smoothing is an error resilient application, as the human eye is

Fig. 3.9: Approximate multipliers compared. Power vs number of effective bits.

42 Efstratios Zacharelos

not able to detect trivial details, and it also requires numerous

multiplications. Therefore, it is considered an appropriate application to

test approximate multipliers.

The two-dimensional gaussian kernel used for image smoothing

in this work is a rotationally symmetric, 3×3, lowpass filter, with

standard deviation equal to 1.5. The floating-point values of the kernel

are multiplied by the constant 2n+2 and then rounded to integer values,

thus providing the n×n multipliers, with appropriate input values. The

original and adjusted kernels are presented in Table 3.13.

The smoothed “Lena” test images, acquired exploiting each

design, are shown in Fig. 3.10. Comparing these images with an image

Table 3.13: Original (Left) and Reformed (Right) Gaussian Kernel

0.095 0.118 0.095

97 121 97

0.118 0.148 0.118

121 151 121

0.095 0.118 0.095

97 121 97

Table 3.14: SSIM and PSNR values for gaussian smoothing with approximate

multipliers compared to exact multipliers. All percentages are calculated with respect

to [Esp18].

 [Esp18] Proposed
[Qiq17]

L=2

[Qiq17]

L=3

[Qiq17]

L=4

8
×

8
 SSIM (%) 97.94
97.94

0%

97.62

-0.3%

95.04

-3%

89.86

-8.2%

PSNR 42.91
42.91

0%

39.30

-8.4%

31.11

-27.5%

23.15

-46%

1
2

×
1

2
 SSIM (%)
97.95

97.95

0%

97.62

-0.3%

93.78

-4.3%

89.86

-8.3%

PSNR
42.95

42.95

0%

39.29

-8.5%

29.29

-31.8%

23.14

-46.1%

1
6

×
1

6
 SSIM (%) 97.89

97.92

0%

97.62

-0.3%

93.78

-4.2%

89.87

-8.2%

PSNR 42.41
42.83

1%

39.29

-7.4%

29.29

-30.9%

23.14

-45.4%

2
0

×
2

0
 SSIM (%) 97.91

97.93

0%

97.62

-0.3%

93.78

-4.2%

89.87

-8.2%

PSNR 42.82
42.88

0.1%

39.29

-8.2%

29.29

-31.6%

23.14

-46%

Approximate Multipliers Based on Approximate Compressors 43

processed by exact multipliers, we obtain the structural similarity index

(SSIM) and the peak signal to noise ratio (PSNR), which provide a

numerical indication of the performance of the approximate multipliers.

The obtained values are reported in Table 3.14. It can be observed that

the proposed multipliers, yield significantly better SSIM and PSNR

results compared to the multipliers proposed in [Qiq17], and

sometimes, slightly better results than the designs proposed in [Esp18].

3.6 Summary

In this chapter, the approximate compressors developed in

[Esp18] have been presented. The simple, yet effective recoding shown

in equation 3.1 is exploited, to generate four Type-A compressors, a

 [Esp18] Proposed
[Qiq17]

L=2

[Qiq17]

L=3

[Qiq17]

L=4

8
×

8

1
2

×
1

2

1
6

×
1

6

2
0

×
2

0

Fig. 3.10: Image Smoothing with Approximate multipliers.

44 Efstratios Zacharelos

3:2, a 4:2, a 5:3, and a 6:3. These are very simple, XOR-less designs

with great error-hardware performance trade off.

The novel type-B approximate compressors of the same sizes

have also been presented. They can reduce the size of the partial product

matrix columns, while providing error-optimal results. When the high

input bits to be compressed are fewer or equal than the number of the

compressor outputs, the Type-B approximate compressors guarantee a

correct result. Otherwise, the error is as low as possible. Of course,

Type-B compressors tend to have greater hardware requirements with

respect to Type-A compressors.

The desired error-optimal truth tables resulted in various

approximate Type-B compressors. When possible, namely in the cases

of the 3:2 and the 4:2 compressors, all possible alternatives have been

checked to derive the best performing circuits. For the higher order

compressors (the 5:3 and the 6:3), due to the great number of

possibilities, a random subset has been selected after discarding circuits

with symmetric TTs, to study the electrical performance of the circuits,

and derive the best one.

Similarly, the error metrics are calculated analytically using

MATLAB when possible, considering each compressor’s position,

their errors and error probabilities. Otherwise, random methods are

used.

The novel Type-B compressors, along with the non-error-

optimal Type-A compressors, are used to form approximate multipliers

of different sizes, exploiting the allocation strategy presented in section

3.4. The multipliers exhibit competitive behavior when synthesized in

a 14 nm FinFET technology and when tested in an error resilient

application.

Approximate Recursive Multipliers 45

Chapter 4

4 Approximate Recursive Multipliers

Recursive multipliers use small elementary approximate

multiplier blocks, suitably assembled to design larger multipliers, with

a typical block size of 2×2, as in [War21] or 4×4, as in [Ans18].

In this work, approximate recursive multipliers based on novel

4×4 multiplier blocks, are investigated. Five approximate 4×4

multipliers, with different error vs hardware trade-off, that are obtained

by carry truncation and error compensation, are proposed. The three

“T” Multipliers were originally developed in [Nun22], while the two

“N” Multipliers”, are a more recent, updated work, presented in

[Zac22]. These designs, along with an OR-based and an exact 4×4

multiplier, are used to generate 8×8, 16×16, and 32×32, approximate

multipliers, following the strategy presented in section 4.2.

The circuits proposed in this work as well as various previously

proposed contributions, have been synthesized using a commercial

14nm FinFET standard cell library. The performance of most designs

has also been determined in image filtering applications and in the

inference step of a pre-trained convolutional neural network.

4.1 4×4 Multipliers

4.1.1 4×4 Exact Multiplier

Let us consider two 4-bit unsigned numbers 𝑎 = ∑ 𝑎𝑖2
𝑖3

𝑖=0 and

𝑏 = ∑ 𝑏𝑗2
𝑗3

𝑗=0 . As already mentioned, the computation of their product,

𝑦 = ∑ 𝑦𝑘2
𝑘7

𝑘=0 , consists of three steps. Firstly, the partial product

matrix is generated using AND gates between all the input bits. There

are various techniques to carry out the second and third steps that reduce

and sum the entire PPM to obtain the final product, e.g., employing full

adders, half adders or 4:2 compressors in Wallace or Dadda

configurations. Fig. 4.1 shows the Wallace reduction tree for an exact

46 Efstratios Zacharelos

4×4 multiplier. Three half adders (dashed rectangles) and five full

adders (rectangles) are employed to reduce the PPM. The sum and carry

outputs produced by half and full adders are indicated in the figure as

SN_x, CNM_x, where N and M indicate the origin and destination

column, while x indicates the reduction stage. After two stages of

reduction we obtain the three least-significant bits of the output

Y[2]...Y[0] and two 4 bit values that are summed to obtain the most

significant bits of the output, Y[7]...Y[3].

Fig. 4.1: 4x4 Exact Multiplier - Wallace.

Fig. 4.2: 4x4 Approximate Multiplier - OR-based.

Approximate Recursive Multipliers 47

4.1.2 4×4 Approximate Multiplier – OR-Based

A simple and fast way to approximate the product of two binary

numbers is to use an approximate multiplier with OR compressors. In

this case all the partial products in each column of the PPM are fed to

OR gates as shown in Fig. 4.2. As it can be observed the most

significant bit is always zero. This approximated design is a short of

lower bound for circuit complexity, but as shown in section 4.3, it

exhibits the worst error performance.

4.1.3 4×4 Approximate Multiplier – T1

As described earlier, the exact multiplier of Fig. 4.1 utilizes a

total of eight full / half adders in the two reduction stages, thus

generating a total of eight carries in the process. Using the exact circuit

as an anchor point, a step-by-step truncation of the carries in the less-

significant columns has been performed.

The first step is to truncate the carry C12_1, which is the rightmost

carry in the multiplier. Note that by truncating C12_1, also the carry C23_2

becomes zero, and can thus be discarded. The following steps are the

consecutive truncations of C23_1, C34_2, and C34_1.

Carry truncation results in an underestimation of the result. To

balance the mean error out, a compensation method that overestimates

Fig. 4.3: 4x4 Approximate Multiplier – T1.

48 Efstratios Zacharelos

the result, is introduced. To this purpose, the XOR gates that compute

the sum of full and half adders are substituted with OR gates, [GSK18],

in columns 1, 2, 3, and 4, as shown in Fig. 4.3, thus resulting in a lower

absolute mean error, and in a significantly simpler and faster circuit.

The red box in Fig. 4.3 shows that even though the sum of the full adder

in column 4 is calculated with an OR gate, the carry is still computed

as in the exact multiplier with a majority gate and fed to the next

column. The resulting circuit, T1 of Fig. 4.3 is composed by four OR

gates, a majority gate, a full adder and a half adder.

4.1.4 4×4 Approximate Multiplier – T2

In order to create a faster and less dissipative approximate

multiplier than T1, the full adder in column 5 is discarded. In its place,

a half adder driven by a3b2 and a2b3 is introduced, which calculates the

sum S5_1 and carry, C56_1. The output Y[5] is set to 1 when S5_1 or the

carry from column 4, C45_1, is high. The outputs Y[6] and Y[7] are

calculated with a half-adder driven by a3b3 and C56_1. The sum is given

by Y[6] = a3b3 ⨁ C56_1, while the carry is Y[7] = a3b3⋅ C56_1. The

expression for Y[7] can be simplified, given that C56_1 = a3b2⋅ a2b3. One

easily obtains:
𝑌[7] = 𝑎3𝑏3 ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 = 𝐶56_1 (4.1)

The final circuit is shown in Fig. 4.4 and will be called T2 in the

following. It uses five OR gates, a majority gate, one half-adder and one

2-inputs XOR.

Fig. 4.4: 4x4 Approximate Multiplier – T2.

Approximate Recursive Multipliers 49

4.1.5 4×4 Approximate Multiplier – T3

An even more aggressive approach consists in discarding the

carry from column 4. In this case, Y[5] is sum of the half adder in

column 5, while Y[6] and Y[7] are computed as in T2. The resulting

circuit is named T3 and shown in Fig. 4.5. This simple approximate

multiplier uses only one half-adder, one XOR and four OR gates.

4.1.6 4×4 Approximate Multiplier – N1

In the circuit shown in Fig. 4.2, the sums of the partial products

are approximated using OR gates. As a more accurate base point, we

can assume an approximate multiplier that uses OR gates to sum the

lower half of the matrix of partial products, and full or half adders for

the higher part, as shown in Fig. 4.6. Note that the approximated

multiplier in Fig. 4.6 requires three compression stages, while the OR

based in Fig. 4.2 obtains the result with a fast single stage.

The design in Fig. 4.6 contains three XOR gates that are known

to be bulky and slow, and thus, an attempt to simplify it has been made.

The first step is to substitute the XOR gate in column 4 with a simpler

OR gate:

𝑌[4] = 𝑎3𝑏1 + 𝑎2𝑏2 + 𝑎1𝑏3 (4.2)

The next step is the manipulation of the carry of the same Full Adder:
𝐶45_1 = 𝑎3𝑏1 ∙ 𝑎2𝑏2 + 𝑎1𝑏3 ∙ 𝑎2𝑏2 + 𝑎3𝑏1 ∙ 𝑎1𝑏3 (4.3)

Let us simplify the expression by neglecting the last term:
𝐶45_1

∗ = 𝑎2𝑏2 ∙ (𝑎1𝑏3 + 𝑎3𝑏1) (4.4)

Fig. 4.5: 4x4 Approximate Multiplier – T3.

50 Efstratios Zacharelos

A customized Full Adder is employed in column 5 to add the

three terms. The sum is exact and uses a XOR gate:
𝑌[5] = 𝑎3𝑏2 ⊕ 𝑎2𝑏3 ⊕ 𝐶45_1

∗ (4.5)

The carry can be significantly simplified:
𝐶56_2 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 + 𝑎3𝑏2 ∙ 𝐶45_1

∗ + 𝑎2𝑏3 ∙ 𝐶45_1
∗ =

 = 𝑎2𝑏2 ∙ (𝑎3𝑏3 + 𝑎3𝑏3𝑎1 + 𝑎3𝑏3𝑏1 + 𝑎3𝑏1 + 𝑎1𝑏3) (4.6)

By neglecting the terms that are a product of three literals (they have a

lower probability of being ‘1’) we get:
𝐶56_2

∗ = 𝑎2𝑏2 ∙ (𝑎3𝑏3 + 𝑎3𝑏1 + 𝑎1𝑏3) (4.7)

Fig. 4.6: 4x4 Approximate Multiplier – Half OR-based. The starting architecture for

the proposed N1 design.

Fig. 4.7: 4x4 Approximate Multiplier – N1.

Approximate Recursive Multipliers 51

The two terms in column 6 are fed into a customized half adder.

The sum is the XOR of the two inputs:

𝑌[6] = 𝑎3𝑏3 ⊕ 𝐶56_2
∗ = 𝑎3𝑏3 ∙ 𝐶56_2

∗̅̅ ̅̅ ̅̅ + 𝑎3𝑏3
̅̅ ̅̅ ̅̅ ∙ 𝐶56_2

∗ ⇒

𝑌[6] ≅ 𝑎3𝑏3 ∙ 𝑎2𝑏2
̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝑎2𝑏2 ∙ (𝑎3𝑏1 + 𝑎1𝑏3) (4.8)

Finally, the carry of the Half Adder is approximated as:
𝑌[7] = 𝐶56_2

∗ ∙ 𝑎3𝑏3 ≅ 𝑎2𝑏2 ∙ 𝑎3𝑏3 (4.9)

The resulting design is named N1 and is shown in Fig. 4.7. N1

uses three stages to reach the result and uses six OR gates, four AND

gates, and one XOR gate. Compared to the exact Wallace 4×4

multiplier, it shows a vast improvement in terms of both power and

speed. In fact, in the exact design the third stage consists of cascaded

half and full adders, resulting in three sub-stages, all of them containing

at least one XOR gate. Namely, 28 AND gates, 8 OR gates and 12 XOR

gates are used in the exact design. Obviously, the proposed design

provides an inexact result. The error characteristics of the proposed

blocks are discussed in section 4.3.

4.1.7 4×4 Approximate Multiplier – N2

Let us now start from a less accurate circuit, which is T3. In this

circuit, shown in Fig. 4.5, all the terms from Y[0] to Y[4] are computed

as the output of OR gates, while the remaining bits are computed

without approximations. As shown in Fig. 4.5, two half adders are

needed together with the OR gates to complete the design of the

multiplier. The proposed architecture takes the circuit in Fig. 4.5 as a

starting point for further simplification.

The first step is to substitute the XOR gate of the half adder in

column 5, with an OR gate:

𝑌[5] = 𝑎3𝑏2 + 𝑎2𝑏3 (4.10)

The carry of the same half adder is:
𝐶56_1 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 (4.11)

The sum of the last half adder is:

𝑆6 = 𝑎3𝑏3 ⊕ 𝐶56_1 = 𝑎3𝑏3 ∙ 𝐶56_1
̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝐶56_1 =

= 𝑎3𝑏3 ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑎3𝑏3

̅̅ ̅̅ ̅̅ ∙ 𝑎3𝑏2 ∙ 𝑎2𝑏3 (4.12)

By neglecting the second term:

𝑆6
∗ = 𝑎3𝑏3 ∙ 𝑎3𝑏2𝑎2𝑏3

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑎3𝑏3 ∙ (𝑎3𝑏3
̅̅ ̅̅ ̅̅ + 𝑎2𝑏2

̅̅ ̅̅ ̅̅) (4.13)

With a final approximation:

52 Efstratios Zacharelos

𝑌[6] = 𝑎3𝑏3 ∙ 𝑎2𝑏2
̅̅ ̅̅ ̅̅ (4.14)

The carry of the last Half Adder is:
𝑌[7] = 𝐶56_1 ∙ 𝑎3𝑏3 = 𝑎3𝑏2 ∙ 𝑎2𝑏3 ∙ 𝑎3𝑏3 =

= 𝑎3𝑏3 ∙ 𝑎2𝑏2 (4.15)

The resulting design is named N2 and shown in Fig. 4.8. This

rather simple design has only two additional AND gates with respect to

the OR-based design shown in Fig. 4.2. However, the performances of

the proposed design are considerably better as will be discussed in

section 4.3, making this design useful for higher order multipliers.

4.2 8×8 Approximate Recursive Architectures

State-of-the-art designs found in the literature have been used

for comparison: [Str22], [Yan18], [Fru20], [Ans18], [Kul11], [Reh16],

[GSK18], [Gil19], [War20], and [War21]. These are mostly

approximate recursive proposals, but contributions from other fields are

also considered. In [Str22], [Yan18], [Fru20], and [Gil19] no explicit

4×4 designs are proposed.

As mentioned in section 2.1, scaling up to a 2n×2n multiplier

can be achieved by exploiting four n×n multipliers. The same technique

can be used recursively to design even larger multipliers. For instance,

four suitably placed 2×2 multipliers form a 4×4 multiplier, while

sixteen 2×2 multipliers can be used to generate an 8×8 design. Note that

the building blocks do not need to be the same, and different ones can

be used, to obtain different electrical performance-accuracy trade-offs.

As a rule of thumb, if uniform distribution is expected for the input

operands, exact or high precision modules should occupy the most

Fig. 4.8: 4x4 Approximate Multiplier – N2.

Approximate Recursive Multipliers 53

significant portion of the design. Moving towards the least significant

part, modules that are less accurate, but also less demanding in terms of

resources, might be used.

Table 4.1: 8×8 Approximate Multiplier Compositions. Exact Sub-Products

Addition.

8×8 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳

Proposed

T8-1 T1 T1 T1 T3

T8-2 T2 T2 T2 T3

T8-3 Exact T1 T1 T1

T8-4 Exact T2 T2 T2

T8-5 Exact Exact Exact T1

T8-6 Exact Exact Exact T2

Proposed
N8-5 Exact Exact Exact N1

N8-6 Exact Exact Exact N2

[Ans18]

M8-1 M1 M1 M1 M1

M8-2 M2 M2 M2 M2

M8-3 Exact M1 M1 M1

M8-4 Exact M2 M2 M2

M8-5 Exact Exact Exact M1

M8-6 Exact Exact Exact M2

[Kul11] Kul8 Kul4 Kul4 Kul4 Kul4

[Reh16] Reh8 Reh4 Reh4 Reh4 Reh4

[War20]

Ax8_1 Exact Exact Exact MxA

Ax8_2 Exact Exact LxA MxA

Ax8_3 Exact LxA LxA MxA

[War21]

AxRM1 Exact Exact Exact mul2b4

AxRM2 Exact Exact mul2b4 mul2b4

AxRM3 Exact mul2a4 mul2b4 mul2b4

 aH aL

 bH bL

 aL  bL

 aH  bL

 aL  bH

+ aH  bH

 Product

Fig. 4.9: Recursive Multiplier using four building blocks.

54 Efstratios Zacharelos

Consider two 8-bit unsigned numbers 𝑎 = ∑ 𝑎𝑖2
𝑖7

𝑖=0 and 𝑏 =
∑ 𝑏𝑗2

𝑗7
𝑗=0 . In order to exploit recursive 4×4 multipliers to calculate the

product 𝑦 = ∑ 𝑦𝑘2
𝑘15

𝑘=0 , each number is divided into two 4-bit parts:

𝑎𝐿 = ∑ 𝑎𝑖2
𝑖3

𝑖=0 , 𝑎𝐻 = ∑ 𝑎𝑖2
𝑖7

𝑖=4 , 𝑏𝐿 = ∑ 𝑏𝑖2
𝑖3

𝑖=0 and 𝑏𝐻 = ∑ 𝑏𝑖2
𝑖7

𝑖=4

and the multiplications 𝑎𝐿𝑏𝐿, 𝑎𝐻𝑏𝐿, 𝑎𝐿𝑏𝐻, and 𝑎𝐻𝑏𝐻 are performed

exploiting the corresponding blocks. Finally, the four sub-products

need to be added. As shown in Fig. 4.9, the four sub-products are added

employing an exact adder.

Table 4.1 shows the circuits considered for comparison that

apply this design methodology, the corresponding 4×4 building blocks,

and how they are used to build larger multipliers. Note that the 4×4

approximate modules used in [War21], namely mul2a4 and mul2b4, are

also recursive multipliers made up by 2×2 blocks.

Table 4.1 also shows the composition of six 8×8 multipliers

proposed in this work, namely T8-1 to T8-6, N8-5, and N8-6. They use

the proposed T1, T2, T3, N1, and N2 blocks and show competitive

results or even overcome the state-of-the-art.

Table 4.2: 8×8 Approximate Multiplier Compositions. Approximate Sub-Products

Addition.

8×8 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳

Proposed
N8-L1 Exact N1 N1 OR-based

N8-L2 Exact N2 N2 OR-based

[GSK18] LOAM Exact guo4 guo4 OR-based

Fig. 4.10: Proposed 8x8 Approximate Multiplier Architecture. Red bits are added

with OR gates, black bits with exact adders.

Approximate Recursive Multipliers 55

An alternative way to add the sub-products is proposed in

[GSK18] and used also in this work. The utilized building blocks and

their positions are shown in Table 4.2. Differently from Fig. 4.9, the

final product is not the exact addition of the four sub-products, but an

approximated version of it. As it can be seen in Fig. 4.10, the seven least

significant columns of the sub-products are marked with red color,

indicating that they are summed using an approximate adder that uses

one OR gate in every column. However, the nine most significant

columns are added with an exact adder. Note that the first sub-product

has only seven output bits as shown in Fig. 4.2, for the OR-based 4×4

multiplier.

4.3 Performances

 The proposed and reference circuits are all synthesized in a

14nm FinFET technology, using Cadence Genus and imposing proper

timing constraints. Power dissipation is computed by simulating the

final netlist with random inputs, to obtain the switching activity of each

node. The input vector array is identical for all designs with the same

input bit width. In the following tables “Min delay” refers to the strictest

timing constraint, at which each circuit can be synthesized with non-

negative slack and provides information regarding the maximum

working speed of each design.

Area, power, and delay are compared against the results of the

corresponding (4×4, 8×8, 16×16, or 32×32) exact multiplier. The exact

design is obtained by describing the circuit in HDL (Verilog) with the

multiplication operator and letting the synthesizer choose the near-

optimal topology for the given constraint. Therefore, the electrical

performances are sometimes slightly worse than those presented in the

literature that compare with a fixed exact design.

Error performance is obtained by an exhaustive simulation, for

both 4×4 and 8×8 multiplier designs. For 16×16 and 32×32 designs the

error performances are computed using a random set of uniformly

distributed test vectors. The number of test vectors is 105 and 106 for

16- and 32-bit multipliers, respectively.

56 Efstratios Zacharelos

4.3.1 4×4 Approximate Multipliers

The electrical and error performances of the considered 4×4

approximate multipliers are summarized in Table 4.3. To ensure a fair

comparison between the circuits, avoid biased optimizations by the

synthesizing tool, and emphasize the low power performance of the

structures, the circuits have been synthesized with the timing constraint

of 250ps to obtain the area and power metrics. The circuits are

simulated applying a uniformly distributed random set of 2∙104 test

vectors to gather the switching activity. The total power reported in the

table is computed for a clock frequency of 1GHz. It is worth noting that

the circuits proposed in this work are for general purpose applications

thus a uniform distribution of the input is considered. However,

automated designs [Češ18], [Ull18], [Mra20], [Bal22] or dedicated

circuits previously presented in the literature, could provide better

performances for a specific distribution of the input vectors.

Table 4.3: Performances of 4×4 Approximate Multipliers.

4×4 Design

Area

*

[μm2]

Power

Reduction

[%]

Min

Delay*

[ps]

Error

Rate

[%]

NMED

(×10-2)

MRED

(×10-2)
NoEB

 Exact 17.27 - 115 - - - 8

OR-

Based
3.90 69.56 19 37.11 3.60 8.78 3.74

Proposed

T1 6.41 57.44 45 35.93 1.48 5.09 5.12

T2 5.58 64.62 30 35.94 2.26 6.94 4.53

T3 4.72 66.73 24 35.94 2.41 7.51 4.22

Proposed
N1 5.42 63.91 42 35.94 1.76 5.57 4.83

N2 4.54 68.44 19 37.71 2.44 7.24 4.42

[Ans18]
M1 8.85 44.44 51 35.94 1.75 6.08 4.88

M2 6.01 61.90 24 35.94 2.76 7.87 4.20

[Kul11] Kul4 11.87 21.27 92 19.14 1.39 2.97 4.61

[Reh16] Reh4 16.69 12.06 105 46.48 2.08 15.90 4.71

[GSK18] guo4 9.57 29.03 72 28.52 1.89 4.57 4.46

[War20]
MxA 6.36 62.09 30 53.91 6.99 22.80 3.16

LxA 6.61 59.64 35 53.91 9.81 27.20 2.65

[War21]
mul2a 9.77 22.81 95 64.45 3.72 29.98 4.15

mul2b 10.79 27.13 81 75.00 7.46 51.38 3.36

*Area and power are reported for the circuits synthesized with a timing constraint of 250ps. Min Delay

is the minimum timing at which the circuit can be synthesized with a non-negative slack.

Approximate Recursive Multipliers 57

As it can be observed in Table 4.3, the proposed circuits are very

small and come second only to the OR-based design, with the exception

of T1, which is still one of the smallest designs. The same can be stated

also for power dissipation, with N2 having an unquestionable

advantage. When it comes to speed, N2 is the fastest design, T3 and M2

from [Ans18] hold the second position, and T2 comes third with MxA

from [War20]. The proposed multipliers exhibit competitive NMED,

MRED and NoEB with respect to the state-of-the-art. The relative

reduction in power dissipation with respect to the exact design vs NoEB

is shown in Fig. 4.11. The proposed design N2 dissipates 18% less

power than the least energy-hungry architectures up to date, M2 and

MxA proposed in [Ans18] and [War20] respectively, while still

providing a smaller approximation error.

Fig. 4.11: Power reduction of the considered 4×4 Approximate Multipliers with

respect to the exact one vs Number of Effective Bits. The proposed circuits have

lower power for the same NoEB. The exact design would have NoEB=8 and zero

power reduction.

58 Efstratios Zacharelos

4.3.2 8×8 Approximate Multipliers

The results of the 8×8 approximate multipliers are shown in

Table 4.4. Recursive designs are reported in Table 4.4.a, while selected

approximate designs following different methodologies, are shown in

in Table 4.4.b. Power reduction against number of effective bits for all

designs is displayed in Fig. 4.12. Non-filled shapes in the figure

correspond to non-recursive designs.

All circuits are synthesized for a 1000ps timing constraint and

simulated with same set of 2∙104 uniformly distributed random vectors.

The total power reported in the table is computed for a clock frequency

equal to 1GHz.

The designs presented in [Str22] employ a smaller, segmented

multiplier. Specifically, instead of an 8-bit multiplier, a 4-bit multiplier

with or without error correction respectively, is used. The product is

then shifted accordingly. In this simple circuit, hardware resources and

power consumption are kept to significantly low levels, while the error

metrics are still competitive.

Note that the entries of [Yan18] and [Fru20] exhibit identical

electrical performances respectively, since they refer to the same

circuits with different settings (both designs allow for configurable

accuracy). While the range of chosen accuracy in [Yan18] is limited

and the innate flexibility results in increased area requirements, the

circuit is very fast, overcoming all the investigated contributions except

for T8-2. As it can be observed in Table 4.4, the minimum accuracy of

this design, is still greater than that of the design M8-2 proposed in

[Ans18], while power reductions are similar.

The circuit presented in [Fru20] offers dynamic truncation at

runtime, by enabling or disabling AND gates that form specific partial

products. “DT0” refers to the case where all the AND gates are enabled,

resulting in an exact multiplier. However, the additional hardware

resources result in a greater power consumption with respect to the

exact design (hence the negative power reduction). “DT8” refers to the

maximum possible truncation where a 43.62% power reduction is

achieved. The numbers in the names indicate the level of truncation.

The authors in [Ans18], offer a number of circuits covering a

wide range of accuracy. Designs M8-5 and M8-6 are the most precise

ones, using one approximate and three exact 4-bit multipliers. While

Approximate Recursive Multipliers 59

the synthesized circuits are slightly slower than the exact multiplier,

they offer some power reduction at a relatively small expense in

accuracy.

Designs Ax8_1 and AxRM1 presented in [War20] and [War21]

respectively, employ three exact and one approximate module. While

these are the most accurate designs presented in the respective papers,

they are still less accurate than M8-6 and M8-5 of [Ans18], and even

less accurate than the proposed T8-5, T8-6, N8-5, and N8-6. At the

same time, the circuits are quite large, and slower than the exact

multiplier. This behavior follows the pattern presented in Fig. 4.11, for

the 4×4 building blocks. For the less accurate designs, Ax8_3 with one

accurate module, manages to surpass M8-1 that uses no accurate

modules, both in accuracy and in power reduction. However, it is

slightly larger and slower.

An interesting architecture is proposed in [GSK18]. It uses one

exact multiplier, two custom modules, and an OR-based 4×4

approximate multiplier for the least significant part. This relatively

small design, in terms of accuracy performs similarly to the proposed

design N8-L1, as well as to M8-3 and M8-4. It achieves a significant

power reduction with respect to M8-3 and M8-4 but N8-L1 leads.

Among circuits with a similar power reduction percentage, M8-2 and

Yang_7’b1, it exhibits a far more accurate behavior.

As it can be seen in Table 4.4.a, among the recursive topologies,

the proposed circuits T8-2, N8 L1 and N8-L2 occupy the smallest area

and achieve the biggest reduction in power consumption. Moreover,

they are among the fastest circuits. At the same time, they exhibit

competitive behavior in terms of accuracy. As it can be observed in Fig.

4.12, even though there are more precise circuits in the literature, the

proposed designs provide a certain level of accuracy at a very low cost.

On the other hand, proposals T8-5, T8-6, N8-5, and N8-6, are

very accurate circuits, exploiting three exact, and one proposed 4×4

multipliers. They offer a very high number of effective bits, matched

only by the designs, M8-5 and M8-6 [Ans18]. However, exploiting the

proposed 4×4 building blocks, T8-5, T8-6, N8-5, and N8-6, achieve a

greater power reduction, as it can be observed in Fig. 4.12 and Table

4.4.

60 Efstratios Zacharelos

Table 4.4.a: Performances of 8×8 Approximate Recursive Multipliers.

8×8 Design
Area*

[μm2]

Power

Reduction

[%]

Min

Delay*

[ps]

Error

Rate

[%]

NMED MRED NoEB

 Exact 81.45 - 220 - - - 16

Proposed

T8-1 47.28 34.06 178 72.59 1.4×10-2 5.2×10-2 5.30

T8-2 44.31 41.20 160 72.60 2.2×10-2 7.3×10-2 4.58

T8-3 60.59 20.87 210 65.70 1.5×10-3 1.3×10-2 8.79

T8-4 57.23 26.61 184 65.88 2.4×10-3 1.9×10-2 8.13

T8-5 71.57 9.02 225 35.94 5.1×10-5 1.0×10-3 13.12

T8-6 69.97 13.49 225 35.94 7.7×10-5 1.5×10-3 12.53

Proposed

N8-L1 45.86 44.38 181 72.56 2.6×10-3 2.4×10-2 8.01

N8-L2 43.79 45.96 174 72.58 2.9×10-3 2.9×10-2 7.64

N8-5 70.68 13.14 229 65.63 6.1×10-5 1.2×10-3 12.83

N8-6 70.02 14.21 222 65.80 8.5×10-5 1.6×10-3 12.42

[Ans18]

M8-1 57.43 26.18 195 35.94 1.7×10-2 6.1×10-2 5.03

M8-2 47.56 37.08 165 35.94 2.8×10-2 8.4×10-2 4.22

M8-3 64.46 17.48 205 46.73 1.8×10-3 1.6×10-3 8.51

M8-4 57.52 26.09 186 81.44 3.1×10-3 2.2×10-2 7.63

M8-5 72.38 7.10 225 74.76 6.1×10-5 1.3×10-3 12.88

M8-6 70.94 12.73 226 46.73 9.6×10-5 1.8×10-3 12.20

[Kul11] Kul8 63.29 13.99 204 42.65 1.4×10-2 3.3×10-2 4.69

[Reh16] Reh8 84.27 2.81 240 53.91 2.1×10-2 1.5×10-1 4.76

[GSK18] LOAM 50.78 35.00 209 70.46 2.0×10-3 1.8×10-2 8.21

[Gil19]
ISH1 66.22 11.29 203 83.88 2.3×10-2 4.8×10-2 3.80

ISH2 76.84 4.76 216 75.00 1.2×10-2 2.8×10-2 4.85

[War20]

Ax8_1 71.20 12.48 225 89.36 2.4×10-4 4.7×10-3 11.16

Ax8_2 68.40 19.84 215 96.17 5.5×10-3 3.9×10-2 6.69

Ax8_3 60.46 27.61 199 97.85 1.1×10-2 7.4×10-2 6.00

[War21]

AxRM1 71.03 7.35 229 97.85 2.6×10-4 7.7×10-3 11.36

AxRM2 65.20 13.67 205 80.02 4.3×10-3 1.5×10-1 7.38

AxRM3 62.80 15.35 209 36.16 5.2×10-3 2.1×10-1 7.20

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min

Delay is the minimum timing at which the circuit can be synthesized with a non-negative slack.

Approximate Recursive Multipliers 61

Table 4.4.b: Performances of 8×8 Approximate Non-Recursive Multipliers.

8×8 Design
Area*

[μm2]

Power

Reduction

[%]

Min

Delay*

[ps]

Error

Rate

[%]

NMED MRED NoEB

[Str22]
SSM_m4 28.42 69.16 165 97.85 2.7×10-2 1.5×10-1 4.91

SSM_m4_u3 36.11 56.96 194 97.85 9.0×10-3 6.5×10-2 6.37

[Yan18]
Yang_7’b0 59.70 36.04 161 80.02 1.6×10-2 9.1×10-2 5.29

Yang_7’b1 59.70 24.18 161 36.16 2.5×10-3 8.5×10-3 6.93

[Fru20]

DT0 93.47 -5.87 249 0.00 0 0 16

DT2 93.47 -3.88 249 50.00 1.9×10-5 7.7×10-4 14.45

DT4 93.47 4.55 249 81.25 1.9×10-4 5.6×10-3 11.93

DT8 93.47 43.62 249 98.05 6.9×10-3 9.8×10-2 6.99

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min

Delay is the minimum timing at which the circuit can be synthesized with a non-negative slack.

Fig. 4.12: Power reduction of the considered 8×8 Approximate Multipliers with

respect to the exact one vs Number of Effective Bits. The proposed circuits have

lower power for the same NoEB. The exact design would have NoEB=16 and zero

power reduction.

62 Efstratios Zacharelos

4.3.3 16×16 Approximate Multipliers

The 8×8 designs, and the methodologies described above, can

be used to scale up to 16×16 multipliers. As already shown in section

4.2, two different approaches are used to generate selected 16×16

designs. Table 4.5 summarizes the architectures of the considered

designs. The circuits following the most straightforward approach

(exact sub-product addition) are presented at the top part of table 4.5,

while the ones using the technique presented in [GSK18] (approximate

sub-product addition), are at the bottom part.

The performances of 16×16 approximate recursive multipliers

are shown in Table 4.6. All 16×16 designs have been synthesized under

the same timing constraint: 1000ps. Furthermore, they have been

simulated with the same set of 105 uniformly distributed random

vectors, with an input switching frequency equal to 1GHz.

Table 4.5: 16×16 Approximate Multiplier Compositions. Exact Sub-Products

Addition.

16×16 Design 𝒂𝑯𝒃𝑯 𝒂𝑳𝒃𝑯 𝒂𝑯𝒃𝑳 𝒂𝑳𝒃𝑳

Proposed
N16-5 N8-5 N8-5 N8-5 N8-5

N16-6 N8-6 N8-6 N8-6 N8-6

[Ans18]

M16-1 M8-1 M8-1 M8-1 M8-1

M16-2 M8-2 M8-2 M8-2 M8-2

M16-3 M8-3 M8-3 M8-3 M8-3

M16-4 M8-4 M8-4 M8-4 M8-4

M16-5 M8-5 M8-5 M8-5 M8-5

M16-6 M8-6 M8-6 M8-6 M8-6

[Kul11] Kul16 Kul8 Kul8 Kul8 Kul8

[Reh16] Reh16 Reh8 Reh8 Reh8 Reh8

[War20]

Ax16_1 Ax8_1 Ax8_1 Ax8_1 Ax8_1

Ax16_2 Ax8_2 Ax8_2 Ax8_2 Ax8_2

Ax16_3 Ax8_3 Ax8_3 Ax8_3 Ax8_3

[War21]

AxRM16_1 AxRM1 AxRM1 AxRM1 AxRM1

AxRM16_2 AxRM2 AxRM2 AxRM2 AxRM2

AxRM16_3 AxRM3 AxRM3 AxRM3 AxRM3

Proposed
N16-L1 Exact N8-L1 N8-L1 OR-Based

N16-L2 Exact N8-L2 N8-L2 OR-Based

[GSK18] LOAM16 Exact LOAM LOAM OR-Based

Approximate Recursive Multipliers 63

The architecture proposed in [GSK18], results in designs that

significantly outperform other contributions. It should be noted that the

most straightforward approach from an algorithmic point of view,

followed by the circuits at the top part of Table 4.5, does not result in

optimal configurations. In fact, each 16×16 multiplier is composed by

four identical approximate 8×8 multipliers, that in turn may be

composed by some exact 4×4 multipliers. On the other hand, [GSK18]

employs a single exact 8×8 multiplier placed in the most significant

part, thus making an important impact on accuracy, despite the

approximate final addition.

Moreover, the non-recursive exact and OR-based 8×8

multipliers in the most and least significant parts respectively, as well

as the approximation in the final addition, allow this architecture to

exploit minimal hardware resources. Therefore, the three designs that

follow this approach are the smallest, fastest, and least-power hungry.

The circuit proposed in [GSK18], manages to outperform N16-L1 and

N16-L2 in accuracy, while N16-L2 slightly overcomes LOAM16 in

terms of power reduction. N16-L2 also occupies the smallest area.

Among the strictly recursive designs, N16-5 and N16-6 achieve a

higher power reduction than circuits with similar or even lower

accuracy.

4.3.4 32×32 Approximate Multipliers

The performances of the proposed 32×32 approximate

multipliers are shown in Table 4.7. The circuits have been synthesized

under a timing constraint of 1000ps and simulated with 106 uniformly

distributed random vectors, and an input switching frequency equal to

1GHz.

64 Efstratios Zacharelos

Table 4.6: Performances of 16×16 Approximate Recursive Multipliers.

16×16 Design
Area*

[μm2]

Power

Reduction

[%]

Min

Delay*

[ps]

Error

Rate

[%]

NMED MRED NoEB

 Exact 356.30 - 335 - - - 32

Proposed

N16-L1 226.35 66.38 355 99.31 2.7×10-5 7.4×10-4 14.91

N16-L2 224.88 66.70 346 99.34 3.3×10-5 8.8×10-4 14.61

N16-5 377.04 25.49 407 72.57 6.1×10-5 1.1×10-3 12.99

N16-6 357.09 32.26 405 73.67 8.5×10-5 1.5×10-3 12.54

[Ans18]

M16-1 305.02 36.76 359 96.67 1.6×10-2 6.1×10-2 5.03

M16-2 266.55 43.26 328 96.68 2.8×10-2 8.4×10-2 4.21

M16-3 359.28 32.26 367 94.61 1.8×10-3 1.5×10-2 8.52

M16-4 310.16 37.71 346 94.68 3.1×10-3 2.2×10-2 7.63

M16-5 393.73 22.99 410 72.55 6.1×10-5 1.2×10-3 13.05

M16-6 368.58 26.92 403 72.57 9.6×10-5 1.7×10-3 12.30

[Kul11] Kul16 351.65 23.93 391 81.05 1.4×10-2 3.3×10-2 4.69

[Reh16] Reh16 428.64 24.44 412 98.34 2.1×10-2 1.4×10-1 4.75

[GSK18] LOAM16 238.04 66.45 297 99.25 1.4×10-5 4.9×10-4 15.76

[War20]

Ax16_1 378.60 26.70 404 88.6 2.4×10-4 4.4×10-3 11.22

Ax16_2 352.17 32.21 393 95.18 5.5×10-3 3.9×10-2 6.69

Ax16_3 319.13 40.91 357 99.16 1.1×10-2 7.3×10-2 5.99

[War21]

AxRM16_1 395.49 19.19 401 97.85 2.6×10-4 1.2×10-2 11.42

AxRM16_2 363.25 22.10 390 99.52 4.3×10-3 2.2×10-1 7.39

AxRM16_3 350.54 23.52 391 99.97 5.2×10-3 3.4×10-1 7.20

Table 4.7: Performances of 32×32 Approximate Recursive Multipliers.

32×32 Design
Area*

[μm2]

Power

Reduction

[%]

Min

Delay*

[ps]

Error

Rate

[%]

NMED MRED NoEB

 Exact 1477.6 - 448 - - - 64

Proposed

N32-L1 1074.1 40.42 553 100.00 9.6×10-10 4.9×10-8 29.78

N32-L2 1073.1 36.80 540 100.00 1.1×10-9 5.5×10-8 29.53

N32-5 1933.6 -24.14 590 92.66 6.1×10-5 1.1×10-3 13.01

N32-6 1932.2 -26.20 590 92.97 8.4×10-5 1.5×10-3 12.54

*Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. Min Delay

is the minimum timing at which the circuit can be synthesized with a non-negative slack.

Approximate Recursive Multipliers 65

4.4 Applications

Image processing is one of the most considered error resilient

applications and many papers test the proposed circuits in this scenario.

In this work, two image processing applications are considered: image

blurring and image sharpening. The applications provide a more in

depth understanding of the applicability range of the proposed designs.

Additionally, the considered 8×8 designs are tested in an image

classification application using a convolutional neural network (CNN).

4.4.1 Image Smoothing

In image processing, low pass filtering (image smoothing),

effectively removes the high spatial frequency noise. As mentioned in

section 3.5, the low pass filter exploits a moving kernel that processes

one pixel at a time and modifies it considering the pixels in proximity.

The kernel considered for the smoothing is again the two

dimensional, rotationally symmetric, 3×3 Gaussian low-pass filter, with

a standard deviation equal to 1.5, as in [Esp18]. The floating-point

numbers of the kernel are multiplied by 210 and then rounded. In this

way, the kernel’s values are appropriate for the considered 8-bit input

multipliers. The original and modified kernels are shown in Table 4.8.

Image processing, exploiting the investigated multipliers, has

been performed aiming to blur a test image. The obtained images are

shown in Fig. 4.13. The same processing has been also performed with

exact multipliers to provide an effective comparison for all designs. The

structural similarity index (SSIM) and the peak signal to noise ratio

(PSNR) provide a numerical indication of each multiplier’s

performance in image smoothing.

The results are shown in Table 4.9. The recursive designs are in

the top part of the table, while the non-recursive ones occupy the bottom

part. The proposed circuits N8-5 and N8-6 share the best results with

Table 4.8: Gaussian Kernels with SD=1.5.

Original Modified

0.095 0.118 0.095 97 121 97

0.118 0.148 0.118 121 151 121

0.095 0.118 0.095 97 121 97

66 Efstratios Zacharelos

the designs M8-5 and M8-6 proposed in [Ans18] and Ax8_1 proposed

in [War20]. N8-L1 and N8-L2 follow close behind but still show a

competitive behavior while achieving the greatest power reduction, as

shown in Fig. 4.12.

Table 4.9: Performances of 8×8 Approximate Multipliers in Image Smoothing.

8×8 Design SSIM [%] PSNR [dB]

Proposed

N8-L1 97.85 41.7

N8-L2 97.66 39. 5

N8-5 97.98 43.0

N8-6 97.98 43.0

Proposed

T8_1 25.3 0.910

T8_2 24.3 0.911

T8_3 42.6 0.979

T8_4 40.8 0.977

T8_5 43.0 0.980

T8_6 43.0 0.980

[Ans18]

M8-1 90.86 28.8

M8-2 90.18 23.9

M8-3 97.93 42.2

M8-4 97.72 40.7

M8-5 97.98 43.0

M8-6 97.98 43.0

[Kul11] Kul8 97.81 41.0

[Reh16] Reh8 78.88 18.5

[GSK18] LOAM 97.90 42.4

[Gil19]
ISH1 97.38 39.8

ISH2 97.88 42.0

[War20]

Ax8_1 97.96 43.0

Ax8_2 97.85 39.2

Ax8_3 97.25 35.6

[War21]

AxRM1 97.97 43.0

AxRM2 97.90 41.5

AxRM3 97.85 41.2

[Str22]
SSM_m4 94.39 26.8

SSM_m4_u3 96.41 38.9

[Yan18]
Yang_7’b0 93.44 29.1

Yang_7’b1 97.44 38.9

[Fru20]

DT2 97.67 42.31

DT4 97.67 42.31

DT8 97.37 35.61

Approximate Recursive Multipliers 67

Original Exact T8-1 T8-2

T8-3 T8-4 T8-5 T8-6

N8-L1 N8-L2 N8-5 N8-6

[Ans18] M8-1 [Ans18] M8-2 [Ans18] M8-3 [Ans18] M8-4

[Ans18] M8-5 [Ans18] M8-6 [Kul11] Kul8 [Reh16] Reh8

Fig. 4.13.a: Gaussian smoothing of images obtained with different multipliers. The

circuits proposed in this work are highlighted in bold.

68 Efstratios Zacharelos

[War20] Ax8_1 [War20] Ax8_2 [War20] Ax8_3 [Gil19] ISH1

[War21] AxRM1 [War21] AxRM2 [War21] AxRM3 [Gil19] ISH2

[GSK18] LOAM [Fru20] DT2 [Fru20] DT4 [Fru20] DT8

[Yan18]

Yang_7’b0

[Yan18]

Yang_7’b1

[Str22]

SSM_m4

[Str22]

SSM_m4_u3

Fig. 4.13.b: Gaussian smoothing of images obtained with different multipliers.

4.4.2 Image Sharpening

Sharpening or high pass filtering aims to make fine details more

distinct and remove the blurring of a digital image, by enhancing

transitions in the spatial intensity of the image. High frequencies are

boosted while low frequencies are reduced. It should be noted that over-

sharpening might result in unwanted halo artifacts.

Approximate Recursive Multipliers 69

The image sharpening process is similar to the smoothing

process, but it uses a different kernel for the convolution. The authors

in [Yan18], [Vah19], [Guo18], [Kha21] performed image sharpening

exploiting the following 5×5 kernel:

𝑀𝑎𝑠𝑘 =

[

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1]

(4.16)

Table 4.10: Performances of 8×8 Approximate Multipliers in Image Sharpening

8×8 Design SSIM [%] PSNR [dB]

Proposed

N8-L1 99.47 38.2

N8-L2 99.41 37.4

N8-5 99.92 56.6

N8-6 99.88 53.9

[Ans18]

M8-1 99.77 48.9

M8-2 99.58 40.3

M8-3 99.77 48.9

M8-4 99.58 40.3

M8-5 99.96 60.7

M8-6 99.88 54.0

[Kul11] Kul8 99.97 56.9

[Reh16] Reh8 79.17 22.2

[GSK18] LOAM 99.53 44.0

[Gil19]
ISH1 99.97 56.6

ISH2 99.96 52.9

[War20]

Ax8_1 99.85 53.9

Ax8_2 97.67 22.7

Ax8_3 97.67 22.7

[War21]

AxRM1 99.59 49.3

AxRM2 98.32 26.4

AxRM3 80.78 28.3

[Str22]
SSM_m4 93.19 18.5

SSM_m4_u3 96.52 31.2

[Yan18]
Yang_7’b0 94.37 29.2

Yang_7’b1 99.92 51.3

[Fru20]

DT2 99.95 59.3

DT4 99.86 49.3

DT8 96.51 23.8

70 Efstratios Zacharelos

The output pixels of the sharpened image are given by:

𝑌(𝑖, 𝑗) = 2 ∙ 𝑋(𝑖, 𝑗) +

−
1

273
∑ ∑ [𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) × 𝑀𝑎𝑠𝑘(𝑚 + 3, 𝑛 + 3)]

2

𝑛=−2

2

𝑚=−2

(4.17)

In (4.17), 𝑋(𝑖, 𝑗) denotes a pixel from the input image, while

𝑌(𝑖, 𝑗) from the sharpened output.

The considered approximate multipliers, as well as an exact

multiplier have been used to sharpen an RGB test image. The results

are demonstrated in Fig. 4.14. SSIM and PSNR with respect to the

sharpened image by exact multipliers are reported in Table 4.10. All

proposed circuits have a high similarity ratio with the reference image.

Even though there are better performing multipliers for this application,

the proposed circuits exhibit reasonable behavior for such low-power

designs.

Original Exact

N8-L1 N8-L2 N8-5 N8-6

[Ans18] M8-1 [Ans18] M8-2 [Ans18] M8-3 [Ans18] M8-4

Fig. 4.14.a: Image sharpening obtained with different multipliers. The circuits

proposed in this work are highlighted in bold.

Approximate Recursive Multipliers 71

[Ans18] M8-5 [Ans18] M8-6 [Kul11] Kul8 [Reh16] Reh8

[War20] Ax8_1 [War20] Ax8_2 [War20] Ax8_3 [Gil19] ISH1

[War21] AxRM1 [War21] AxRM2 [War21] AxRM3 [Gil19] ISH2

[GSK18] LOAM [Fru20] DT2 [Fru20] DT4 [Fru20] DT8

[Yan18]

Yang_7’b0

[Yan18]

Yang_7’b1

[Str22]

SSM_m4

[Str22]

SSM_m4_u3

Fig. 4.14.b: Image sharpening obtained with different multipliers.

72 Efstratios Zacharelos

4.4.3 Image Classification

Convolutional Neural Networks (CNNs) play an increasingly

important role in machine learning, particularly for image recognition,

object identification and speech recognition tasks. CNNs are error-

tolerant and require a huge number of multiplications, therefore they

are ideal candidates for using approximate multipliers [Ans20].

Image recognition experiments have been performed with the

investigated approximate multipliers, using a simple CNN composed

by 9 layers, not counting the input one. The CNN includes two

convolutional layers, each one followed by batch normalization and

Rectified Linear Unit (ReLU) layers, a max pooling layer, a fully

connected layer and a final softmax layer. Two datasets have been

considered: MNIST and SVHN. The former is a dataset of handwritten

digits containing 70,000 28x28-pixel, greyscale images split into

60,000 training images and 10,000 testing images [LeC10]. The Street

View House Number (SVHN) dataset contains 100,000 32x32 RGB

images of house numbers obtained from Google Street View, divided

in 73,257 training and 26,032 test images [Net11]. In this work, SVHN

images have been converted into greyscale as the color has no

significance in classification [Ans20].

The training of the CNNs has been performed in MATLAB, by

using floating-point arithmetic. After training, quantization of the

convolutional and fully connected layers, requiring the vast majority of

calculations, has been performed, to allow the testing of the

approximate multipliers. We use test images to exercise the network

and collect the dynamic ranges of the inputs of convolutional and fully

connected layers. These inputs are positive values, due to the ReLU

layers, and are easily quantized as 8-bit unsigned numbers that can

directly feed the multipliers. The weights in the convolutional and fully

connected layers of the network, on the other hand, are learnt during

training and are signed numbers. Therefore, following [Ahm22], after

quantization converted the weights have been converted in sign-

magnitude representation to perform multiplications using the

investigated unsigned approximate multipliers.

Classification results are reported in Table 4.11. Column “Acc.

loss” refers to the reduction in classification accuracy (in percentage)

compared to the floating-point multiplier.

Approximate Recursive Multipliers 73

For the MNIST dataset, the considered CNN in floating-point

implementation shows a remarkable accuracy of more than 99%. The

accuracy remains almost unchanged by using exact 8-bit multiplier

after network quantization. The majority of investigated approximate

multipliers perform well with this simple dataset, with some exception

(Yang_7’b0, Ax8_2, Ax8_3, SSM_m4, Kul8, Reh8, AxRM3, ISH1).

Table 4.11: Image Classification results using 8×8 Approximate Multipliers

8×8 Design
MNIST SVHN

Accuracy Acc. loss Accuracy Acc. loss

 Floating Point 99.04% - 87.18% -

 8bit Exact 99.01% 0.03% 87.25% -0.07%

Proposed

N8-L1 98.40% 0.64% 76.71% 10.48%

N8-L2 97.43% 1.61% 70.82% 16.36%

N8-5 99.01% 0.03% 87.01% 0.17%

N8-6 99.00% 0.04% 86.88% 0.30%

[Ans18]

M8-1 98.46% 0.58% 50.93% 36.25%

M8-2 98.48% 0.56% 40.44% 46.74%

M8-3 98.92% 0.12% 83.54% 3.65%

M8-4 98.06% 0.98% 75.93% 11.25%

M8-5 99.00% 0.04% 87.08% 0.10%

M8-6 99.01% 0.03% 86.88% 0.30%

[Kul11] Kul8 89.62% 9.42% 77.56% 9.62%

[Reh16] Reh8 77.12% 21.92% 24.58% 62.60%

[GSK18] LOAM 99.02% 0.02% 83.66% 3.52%

[Gil19]
ISH1 68.75% 30.29% 77.67% 9.52%

ISH2 96.40% 2.64% 73.99% 13.20%

[War20]

Ax8_1 99.02% 0.02% 86.90% 0.28%

Ax8_2 68.47% 30.57% 22.12% 65.06%

Ax8_3 58.32% 40.72% 24.17% 63.01%

[War21]

AxRM1 99.00% 0.04% 86.56% 0.62%

AxRM2 96.98% 2.06% 56.20% 30.98%

AxRM3 49.50% 49.54% 20.77% 66.41%

[Str22]
SSM_m4 17.65% 81.39% 18.20% 68.98%

SSM_m4_u3 96.75% 2.29% 53.63% 33.55%

[Yan18]
Yang_7’b0 75.09% 23.95% 36.65% 50.53%

Yang_7’b1 98.68% 0.36% 83.84% 3.35%

[Fru20]

DT2 99.02% 0.02% 87.17% 0.01%

DT4 98.97% 0.07% 86.26% 0.92%

DT8 72.17% 26.87% 25.32% 61.86%

74 Efstratios Zacharelos

The proposed N8_L1 gives very good results, showing a mere 0.64%

reduction in accuracy, with more than 44% power saving.

For the SVHN dataset the CNN accuracy is about 87%. In this

case, network quantization yields a slight accuracy improvement, a

phenomenon already observed in literature [Ans20].

Several approximate multipliers yield a large accuracy

reduction in this more demanding application. The multipliers giving

an accuracy drop lower than 0.5% are: proposed N8_5 and N8_6, DT2

of [Fru20], M8_5 and M8_6 of [Ans18], Ax8_1 of [War20] and

AxRM1 [War21]. Among these, the proposed N8_6 gives the best

power reduction of more than 14%. Design Yang_7’b1 of [Yan18] also

performs well, with a reduction in accuracy of 3.3% and a power saving

of more than 24%.

4.5 Summary

In this chapter, five low-energy 4×4 approximate multipliers

have been presented. They are obtained by simplifying the sum and

carry expressions of the partial product matrix adders while avoiding

the bulky and slow XOR gates as much as possible. The proposed

designs exhibit a very good tradeoff between power reduction and

precision.

The proposed designs, an exact multiplier, and a multiplier that

performs the PPM addition by means of OR gates, are used recursively

scale up to 8×8, 16×16 and 32×32 approximate multipliers. Two

different methodologies are utilized to generate the higher order

multipliers. The first one, uses four n×n modules to perform the

following multiplications: 𝑎𝐿𝑏𝐿, 𝑎𝐻𝑏𝐿, 𝑎𝐿𝑏𝐻, and 𝑎𝐻𝑏𝐻. After that, an

exact adder is used to add the shifted sub-products according to Fig 4.9

and obtain the final product of the 2n-bit numbers, 𝑎 and 𝑏. The second

methodology uses four n×n building blocks as well and employs an

exact multiplier for the most significant bits (MSBs) and an OR-based

approximate multiplier for the least significant bits (LSBs). An

approximate adder is then used to add the four sub-products, as shown

in Fig. 4.10.

The second methodology is generally less accurate, especially

for low order multipliers, due to the low accuracy 4×4 module used for

the LSBs and the approximation in the addition process. However, it

Approximate Recursive Multipliers 75

uses considerably less resources than the strictly recursive architecture,

and still manages to generate useful circuits that fall on the Pareto front.

For higher order multipliers, the exact module used for the MSBs makes

up for the loss of accuracy, with respect to the strictly recursive

methodology, that might handle the MSBs with exact and approximate

sub-multipliers.

Ten 8×8 designs have been proposed that cover a wide range of

accuracy. Each 8×8 approximate multiplier consists of exact, proposed,

and/or OR-based, 4×4 designs. By exploiting the low power proposed

circuits, T1, T2, T3, N1, and N2, the 8×8 approximate multipliers

developed in this work, achieve great power reduction while still

exhibiting competitive error performance. Selected higher order

designs are also reported in this chapter.

The proposed 8×8 circuits are tested in image processing and

image classification using a convolutional neural network. It is

demonstrated that these designs can be fruitfully used to save power

without sacrificing the result in typical error resilient applications.

76 Efstratios Zacharelos

Chapter 5

5 Approximate Recursive Squarers

Many operations in digital signal processing require the square

of a signal [Gil18], [She02], [Lan06], [Man20], [Ans22], [Gar10],

[Sha15], and [Pet14], for polynomial evaluation [Noe89], computation

of Euclidean distances with the Viterbi [Vit67] or other algorithms,

signal demodulation [Xu16], [Chi13], [Ans20], [Avr14], vector

quantization [Sol89], etc.

Despite the fact that the squaring operation can be regarded as a

special multiplication case, it is often preferable to develop independent

squaring circuits to exploit possible architectural symmetries. A

dedicated design can exploit the inherent symmetries by folding the

partial product matrix, thus reducing the required resources

significantly. The folded PPM of a squared 4-bit number 𝐴 = ∑ 𝑎𝑖2
𝑖3

𝑖=0

is shown in Fig. 5.1.

Various approximate squaring circuits have been proposed in

literature. Some of the most prominent techniques are presented briefly

in the following. The authors in [Kol98] propose a scheme that

improves the critical delay by encoding the partial products along the

Fig. 5.1: Partial product matrix folding for a 4-bit squared number.

Approximate Recursive Squarers 77

diagonal, in the rest of the folded matrix. Boolean simplifications are

proposed in [Bui14] and [Das16] to reduce the folded PPM. A divide

and conquer method to produce optimal blocks has been presented in

[Yoo97]. The authors in [Car01] and [Str03] investigate the

combination of Booth-encoding and folding techniques to significantly

reduce the computational burden. Cellular logic arrays to compute the

squaring function are developed in [Dea69], [Sha91].

Numerous digital signal processing (DSP) applications handle

data acquired from noisy analog-to-digital converters (ADCs). The

innate error in such cases, along with the strict power, area, and timing

requirements, make approximate squaring an appealing solution. In

[Gil18] the authors propose an approximate squarer, comprised by a

pair of mirrored modules to average out the error. In [She02] and

[Lan06] simple Boolean expressions for the approximate computation

of the squaring function, for any bit-width, are presented. In [Man20]

the authors exploit approximate partial product generators and

accumulators to develop three radix-4 Booth squarers. In [Avr14] and

[Ans22] approximate logarithmic squaring circuits are proposed. The

first employs a compensation block to minimize the average error while

the latter uses double sided error distribution. In [Sha15] the authors

present a general model for array-based approximate arithmetic

computing and an error compensation unit. A class of truncated

squarers with smart rounding for error compensation is presented in

[Pet14].

In this work, novel approximate binary squarers, obtained by

recursively exploiting 4-bit approximate multipliers and smaller size

squarers are proposed. The final designs cover a wide range of

computing precision, providing the user with multiple choices of

different cost vs. accuracy trade-offs. The proposed circuits, as well as

competitive designs, are synthesized targeting a 14nm FinFET

technology to determine the electrical characteristics.

78 Efstratios Zacharelos

5.1 Recursive Squaring Methodology

Let’s assume we want to calculate the square of an unsigned 8-

bit number: 𝐴 = ∑ 𝑎𝑖2
𝑖7

𝑖=0 . We divide 𝐴 into two parts, the lower part:

𝐴𝐿 = ∑ 𝑎𝑖2
𝑖3

𝑖=0 , and the higher part: 𝐴𝐻 = ∑ 𝑎𝑖2
𝑖7

𝑖=4 , where 𝐴 = 𝐴𝐻 +
𝐴𝐿. The square of 𝐴 can be calculated as:

𝑌 = 𝐴2 = (𝐴𝐻 + 𝐴𝐿)
2 = 𝐴𝐻

2 + 2𝐴𝐿𝐴𝐻 + 𝐴𝐿
2 (5.1)

From equation 5.1, it is easily derived that an 8-bit squarer can

be implemented exploiting two 4-bit squarers and a 4×4 multiplier. As

shown in Fig. 5.2, the sub-product 2𝐴𝐿𝐴𝐻 can be implemented by one

multiplier with 𝐴𝐻 and 𝐴𝐿 as inputs, and an output shifted by 5 bits,

instead of 4. This technique manages to offer a certain flexibility to

approximate multipliers, at a small hardware cost, since every operation

in (5.1), including the additions, can be suitably approximated.

A detailed description of the 4-bit approximate squarers

exploited in this work, is reported in the following. Exact and

approximate 4-bit multipliers are also used as equation 5.1 suggests.

The 4×4 approximate multipliers used to generate higher-order

squaring circuits are N1 and N2, that are discussed in chapter 4.

Fig. 5.2: Recursive squaring 𝐴2 = (𝐴𝐻 + 𝐴𝐿)
2.

Approximate Recursive Squarers 79

5.2 4-Bit Squarers

5.2.1 4-Bit Exact Squarer

The squaring of 𝐴𝐻 and 𝐴𝐿 can be implemented with an exact

or an approximate squarer, depending on the desired precision. The 8-

bit output of the exact 4 bit squarer, after logic minimization, is given

by the Boolean equations reported below:

 𝑌[7] = 𝑎3𝑎2
𝑌[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎1
𝑌[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1 + 𝑎3𝑎2𝑎0
𝑌[4] = 𝑎3̅̅ ̅𝑎2𝑎0 + 𝑎3𝑎2̅̅ ̅𝑎0 + 𝑎2𝑎1̅̅ ̅𝑎0̅̅ ̅
𝑌[3] = 𝑎2̅̅ ̅𝑎1𝑎0 + 𝑎2𝑎1̅̅ ̅𝑎0
𝑌[2] = 𝑎1𝑎0̅̅ ̅
𝑌[1] = 0
𝑌[0] = 𝑎0

(5.2)

By neglecting specific terms from the exact 4-bit squarer, while

trying to account for error compensation, two approximate squarers

named S1 and S2, have been developed. The proposed approximate

squarers offer double sided error distribution with beneficial effects on

the precision of the results.

5.2.2 4-Bit Approximate Squarer S1

To obtain S1, let us observe column 2 of the folded partial

product matrix in Fig. 5.1, where the two terms 𝑎1, 𝑎1𝑎0 must be added.

Table 5.1 shows the sum and carry bits obtained by adding these terms.

As it can be seen, the addition can be simplified as 𝑌1[2] ≈ 𝑎1. This

simplified expression results in a single error case, underestimating the

exact result for 𝑎1 = 1, 𝑎0 = 1 while not providing any carry for the

next column of the PPM. Therefore (from Fig. 5.1) we immediately

obtain 𝑌1[3] = 𝑎2𝑎0.

Table 5.1: Approximate addition for 𝑌1[2].

𝒂𝟏 𝒂𝟎 𝒂𝟏𝒂𝟎 Carry Sum Sapp

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 1 1
1 1 1 1 0 1

80 Efstratios Zacharelos

The terms to be added in column 4 are: 𝑎3𝑎0, 𝑎2𝑎1, and 𝑎2.

Table 5.2 reports the Karnaugh map for the sum and carry obtained by

summing these terms. The red terms marked in bold, are inverted, to

obtain a simpler expression. The sum 𝑌1[4] can be approximated as:

𝑌1[4] ≈ 𝑎2𝑎0 + 𝑎3𝑎0 + 𝑎2𝑎1̅̅ ̅ with two errors in the Karnaugh map,

that result in an over-estimation of the result. The carry entering in

column 5 can also be approximated as: 𝑐5 = 𝑎2𝑎1, with a single error

in the Karnaugh map, under-estimating the exact result.

The terms to be added in column 5 are 𝑐5 and the partial product

𝑎3𝑎1. Thus, we can obtain: 𝑌1[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1. For 𝑌1[6] and

𝑌1[7] we use the exact equations, shown in equation 5.2.

The resulting expressions are summarized below:

 𝑌1[7] = 𝑎3𝑎2
𝑌1[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎1
𝑌1[5] = 𝑎3̅̅ ̅𝑎2𝑎1 + 𝑎3𝑎2̅̅ ̅𝑎1
𝑌1[4] = 𝑎2𝑎0 + 𝑎3𝑎0 + 𝑎2𝑎1̅̅ ̅
𝑌1[3] = 𝑎2𝑎0
𝑌1[2] = 𝑎1
𝑌1[1] = 0
𝑌1[0] = 𝑎0

(5.3)

5.2.3 4-Bit Approximate Squarer S2

To achieve additional hardware minimization while sacrificing

accuracy in the process, the calculation of signal 𝑌1[4] is further

simplified. Following [GSK18], an OR gate, whose hardware impact is

very small, is used to sum the partial products in column 4. The

resulting Boolean expression is: 𝑌2[4] ≈ 𝑎2 + 𝑎3𝑎0. As shown in Table

5.3, on the left, this approximation overestimates the exact result. To

mitigate this error, the carry generated in column 4 is underestimated,

which as shown in Table 5.3, is approximated as: 𝑐5 ≈ 𝑎3𝑎2𝑎1.

Table 5.2: Karnaugh Maps for 𝑌1[4] (left) and 𝑐5 (right). The values in bold red
are inverted in the S1 approximate squarer.

 𝑎3𝑎2

𝑎1𝑎0

0 0 1 1 𝑎3𝑎2

𝑎1𝑎0

0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 1 0

1 1 0 0 1 1 1 1 0 1 1 0

1 0 0 0 0 0 1 0 0 1 1 0

Approximate Recursive Squarers 81

In this way, the output in column 5 is obtained as: 𝑌2[5] =
(𝑎3𝑎1) ⊕ (𝑎3𝑎2𝑎1) = 𝑎3𝑎2̅̅ ̅𝑎1. Moreover, a carry 𝑐6 = 𝑎3𝑎2𝑎1 is also

generated in column 5. The XOR of 𝑐6 with the partial products in

column 6 gives: 𝑌2[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎2𝑎1. For 𝑌2[7], the exact equation,

given in (5.2) is used.

The Boolean equations for S2 are summarized below:

 𝑌2[7] = 𝑎3𝑎2
𝑌2[6] = 𝑎3𝑎2̅̅ ̅ + 𝑎3𝑎2𝑎1
𝑌2[5] = 𝑎3𝑎2̅̅ ̅𝑎1
𝑌2[4] = 𝑎2 + 𝑎3𝑎0
𝑌2[3] = 𝑎2𝑎0
𝑌2[2] = 𝑎1
𝑌2[1] = 0
𝑌2[0] = 𝑎0

(5.4)

5.2.4 4-Bit Modules summary

The performance improvement obtained by N1, N2, S1 and S2

when compared to the corresponding exact designs is summarized in

Table 5.4. The ER, NMED, MRED, and NoEB, are also reported.

Table 5.3: Karnaugh Maps for 𝑌2[4] (left) and 𝑐5 (right). The values in bold red
are inverted in the S2 approximate squarer.

 𝑎3𝑎2

𝑎1𝑎0

0 0 1 1 𝑎3𝑎2

𝑎1𝑎0

0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 1 0

1 1 0 0 1 1 1 1 0 1 1 0

1 0 0 0 0 0 1 0 0 1 1 0

Table 5.4: Electrical and error performances of the approximate 4-bit
Multipliers and Squarers with respect to the exact designs.

4-Bit Design

Reduction in

Error

Rate

[%]

NMED

(×10-2)

MRED

(×10-2)

NoEB

Area

Power

Min

Delay

[%] [%] [%]

M
u

lt
.

Exact - - - - - - 8.00

N1 68.62 63.91 63.48 35.94 1.76 5.57 4.83

N2 73.71 68.44 83.48 37.71 2.44 7.24 4.42

S
q

u
a
r
. Exact - - - - - - 8.00

S1 27.75 23.30 20.37 31.25 1.11 5.57 5.35

S2 45.65 35.08 40.74 43.75 2.22 10.16 4.72

82 Efstratios Zacharelos

5.3 Proposed Approximate 8-Bit Squarers

5.3.1 Configurations

As already described, a binary squaring circuit can be

implemented by exploiting modular building blocks as shown in (5.1).

The desired approximation may be introduced by means of approximate

components, and/or using approximate adders. Assuming a uniform

input distribution, as is appropriate for general purpose applications, the

utilized modules should be selected following a decreasing order of

accuracy while moving towards the least significant bit of the result. In

this way, high-precision components may be used to compute the most

significant terms, while less demanding circuits in terms of hardware

resources, will compute the least significant term(s).

Aiming to effectively populate the pareto front of the design

space many possible configurations have been considered. The best

performing configurations are those summarized in Table 5.5. As

shown in the last three columns, the instantiated squarers and

multipliers may be the exact ones or one of the previously presented

approximate circuits.

The nomenclature of the designs is ‘S8_Num_Add’ where

‘Num’ is an increasing number and ‘Add’ indicates the type of final

adder that has been implemented, when the exact one is not chosen.

Designs “S8_x” use an exact carry save adder to add the three terms

produced by the sub-modules. “S8_x_OR” exploit OR gates to

approximately add the three terms [GSK18], resulting in a significant

Table 5.5: Configurations of proposed 8-bit Approximate Squarers.

8-Bit Design Adder 𝒂𝑯
𝟐 𝒂𝑯𝒂𝑳 𝒂𝑳

𝟐

S8_1 Exact Exact Exact S1

S8_2 Exact Exact Exact S2

S8_3 Exact Exact N1 S2

S8_4 Exact Exact N2 S2

S8_1_MIX Exact/OR Exact Exact S2

S8_2_MIX Exact/OR Exact N1 S2

S8_3_MIX Exact/OR Exact N2 S2

S8_1_OR OR Exact N2 S2

S8_2_OR OR S1 N2 S2

Approximate Recursive Squarers 83

hardware usage minimization, as shown in Table 5.6. A fine

compromise between the two previous architectures, is achieved by

designs “S8_x_MIX”. In this case, the two most significant terms that

correspond to 𝑎𝐻
2 and 𝑎𝐻𝑎𝐿, are added using an exact adder, while the

least significant term, is summed approximately exploiting OR gates.

5.3.2 Performances

The proposed designs, as well as competitive squaring circuits

found in the literature, have been synthesized, targeting a 14nm FinFET

technology, using Cadence Genus. The power dissipation is derived by

simulating the final netlist with a random set of inputs, that effectively

trigger the switching activity of each node. The input vector array and

the timing constraints are identical for all designs, thus ensuring a fair

comparison between different designs. Specifically, the set of inputs

consists of 105 uniformly distributed 8-bit numbers, and the

synthesizing timing constraint, corresponds to 1ns. Moreover, the area

requirements of each design are also extracted under the same timing

constraint. “Min Delay” on the other hand, refers to the tightest timing

constraint under which each design can be synthesized with a non-

negative slack time. Thus “Min Delay” represents the maximum

working speed of each investigated circuit.

In order to put the obtained area, power, and delay values for the

considered designs into perspective, the exact 8-bit squarer is included

in the comparison. The exact design is obtained by describing the circuit

in HDL (Verilog), by means of the multiplication operator:

𝑦 = 𝑎 ∗ 𝑎 (5.5)

In this way, the synthesizer picks the optimal topology for the selected

timing constraint.

The error performance of the considered designs is gathered by

performing exhaustive simulations, i.e., considering all 256 possible

inputs.

The electrical and error performance of the approximate and

exact 8-bit squarers is summarized in Table 5.6. It should be noted that

the total power reported in this table is computed for a clock frequency

equal to 1GHz. Fig. 5.6 shows the normalized mean error distance in a

logarithmic scale, with respect to power consumption. The optimal

point in this graph is located at the bottom-left corner, where NMED

84 Efstratios Zacharelos

and power consumption are minimal. The number of effective bits with

respect to power consumption is shown in Fig. 5.7. In this graph, the

optimal spot is located at the bottom-right corner, where great accuracy

and low power consumption are achieved.

As shown in Fig. 5.6 and 5.7 the proposed circuits, along with

[Pet14], form the Pareto front. By covering a wide range of precision

and hardware cost, the proposed architectures can be extremely useful

in approximate computing applications.

The proposed circuits, as well as [Pet14], are the only available

for the lower error range (NoEB larger than 7 or NMED lower than

5×10-3). When the error is comparable with the state of the art

(S8_2_OR), the closest competitor (approx_1 from [Lan06]) dissipates

about 30% more power.

Table 5.6: Performances of 8-bit Approximate Squarers. Area and Power are

obtained for a timing constraint equal to 1ns and a simulation data rate equal to

1G test vectors per second. Error Performance is obtained by exhaustive

simulations.

8-Bit Design
Area

[μm2]

Power

[μW]

Min

Delay

[ps]

Error

Rate

[%]

NMED
MRED

(×10-2)
NoEB

 Exact 36.57 52.83 201 - - - 16.00

Proposed

S8_1 31.02 45.15 215 31.3 3.8×10-5 0.4 13.35

S8_2 31.56 43.99 234 43.8 7.7×10-5 0.7 12.72

S8_3 23.96 35.57 148 53.1 2.0×10-3 1.3 7.99

S8_4 21.52 33.03 128 53.9 2.8×10-3 1.5 7.53

S8_1_MIX 26.97 40.05 186 53.1 4.7×10-4 1.3 10.11

S8_2_MIX 18.22 28.18 144 58.2 2.4×10-3 2.0 7.78

S8_3_MIX 16.26 26.98 125 58.6 3.2×10-3 2.2 7.39

S8_1_OR 10.30 17.52 66 70.3 8.5×10-3 4.8 6.06

S8_2_OR 8.89 15.42 57 74.2 1.9×10-2 8.7 4.89

[Avr14]
BB 12.84 15.80 79 96.5 4.7×10-2 11.0 3.65

BB1ERC 41.36 50.62 188 85.5 6.6×10-3 1.4 6.14

[She02] fast_comp 8.42 20.40 61 59.4 1.7×10-2 3.8 4.87

[Lan06]
approx_1 11.57 20.34 66 81.3 1.9×10-2 5.4 5.16

approx_2 11.82 21.16 68 75.4 1.3×10-2 3.2 5.55

[Ans22]
LESF 35.95 54.47 249 98.4 9.2×10-3 3.7 6.11

LESF_t 33.95 55.15 241 98.4 1.7×10-2 3.0 3.52

[Pet14] Gar 23.53 37.93 213 93.75 1.3×10-3 8.4 9.30

Approximate Recursive Squarers 85

Fig 5.6: NMED vs Power for 8-bit squarers.

Fig 5.7: NoEB vs Power for 8-bit squarers.

86 Efstratios Zacharelos

5.4 Applications

To better evaluate the examined designs, two signal processing

applications have been considered. The merit of each squaring circuit

has been obtained by quantifying the degradation of the output signals,

after approximate squaring has taken place.

5.4.1 AM Demodulation

One application that requires a lot of squaring operations is the

square law detector [Avr14], [Ans22]. In the field of

telecommunications, it is well known that a signal needs to be

modulated to carry information over a band-pass channel. Amplitude

modulation (AM) is a simple modulation technique, in which the carrier

amplitude varies according to the value of the signal to be transmitted.

Let the carrier be:

𝑐(𝑡) = 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) (5.6)

with 𝐴𝑐 and 𝑓𝑐 being the amplitude and the frequency of the

carrier, respectively. Let us indicate as 𝑚(𝑡) the signal to be

transmitted, with |𝑚(𝑡)|<1. The modulated signal is given by:

 𝑠𝑚(𝑡) = (1 + 𝑚(𝑡)) 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) (5.7)

At the receiver side, the modulated signal 𝑠𝑚(𝑡) can be

demodulated by the square-law detector, to recover the message signal.

The first step is the squaring of the received signal:

𝑠𝑚
2 (𝑡) = 𝐴𝑐

2(1 + 𝑚(𝑡))
2 1 + 𝑐𝑜𝑠(4𝜋𝑓𝑚𝑡)

2
 (5.8)

Then a low-pass filter suppresses the high frequency term. Finally, the

message signal, 𝑚(𝑡), is extracted by applying the square root and by

dropping the DC terms.

In the following experiments, a 1kHz carrier signal has been

used. As 𝑚(𝑡), a 50Hz square and a 50Hz triangular wave have been

used. The low-pass filter has been implemented with the lowpass

MATLAB function, with a Finite Impulse Response (FIR) filter, of

order 48, and a pass-band frequency of 150 Hz.

All the investigated approximate squarers have been used in the

demodulation experiments. Table 5.7 reports the root mean square error

(RMSE) of the demodulated square and triangular signals, for all the

considered designs. In Fig. 5.8 and 5.9, the y-axis reports the power

Approximate Recursive Squarers 87

dissipation of the considered squarer circuits. The proposed squarers

perform very well in both applications providing a range of possibilities

to trade power versus accuracy of the results. The most accurate

proposals have very low RMSE values. So, for the triangular wave case

shown in Fig. 5.8, they are not represented in scale for visualization

purposes. The circuits considered as a refence do not overcome the

performances of the proposed squarers except for [Pet14] that, performs

well for the triangular waveform but less well for the square waveform.

Please note that [Pet14] belongs to the category of truncated circuits

that have a large mean relative error (see Table 5.6) and tend to exhibit

a somewhat inconsistent behaviour in several applications.

Table 5.7: Demodulation with 8-bit Approximate Squarers.

8-Bit Design

Power

[μW]

RMSE

Square

[%]

Triangular

[%]

 Exact 52.83 - -

Proposed

S8_1 45.15 0.00 0.20

S8_2 43.99 0.00 0.23

S8_3 35.57 0.91 3.63

S8_4 33.03 0.91 8.87

S8_1_MIX 40.05 0.00 1.40

S8_2_MIX 28.18 1.07 4.81

S8_3_MIX 26.98 1.07 9.51

S8_1_OR 17.52 3.16 14.97

S8_2_OR 15.42 6.65 7.61

[Avr14]
BB 15.80 42.00 44.42

BB1ERC 50.62 5.71 9.07

[She02] fast_comp 20.40 8.00 18.73

[Lan06]
approx_1 20.34 9.80 25.93

approx_2 21.16 6.80 17.29

[Ans22]
LESF 54.47 26.08 13.18

LESF_t 55.15 45.96 18.87

[Pet14] Gar 37.93 0.49 0.17

88 Efstratios Zacharelos

Fig 5.8: RMSE vs Power for a square-wave signal.

Fig 5.9: RMSE vs Power for a triangular-wave signal.

Approximate Recursive Squarers 89

5.4.2 Image Energy

Image energy may be useful in applications like segmentation, image

fusion, and classification [Avr14]. These applications (or other

applications that require a quality distance measurement), often require

the calculation of the Root Mean Square (RMS) (or of the energy) of

the image.

Assuming a gray-scale image with a total number of N pixels, the

RMS value is calculated as:

𝑅𝑀𝑆 =
1

𝑁 √∑𝑝2(𝑖, 𝑗)

𝑖,𝑗

(5.9)

where 𝑝(𝑖, 𝑗) is the value of the pixel i, j. Obviously, a great number of

squaring operations (as many as the image pixels) is required to obtain

the RMS value.

In the following experiment, a hundred images of different file

formats and dimensions, obtained from the image database DEMOS of

MATLAB have been considered for the evaluation of the RMS. Each

squaring circuit, including the exact squarer, has been used to calculate

the RMS of all images, following (5.9). After that, the Average Root

Mean Square (ARMS) has been calculated as the average of all the

RMS values computed by each squarer:

𝐴𝑅𝑀𝑆 =
1

𝑀
∑ 𝑅𝑀𝑆

𝑀

𝑘=1

(10)

where M is the number of the considered images.

Table 5.8 shows the ARMS value obtained by the various

squarers, and the error percentage compared to the exact squarer. The

power consumption of each squarer is also reported in this table. It is

easy to see that the proposed circuits offer the ARMS values closest to

the one obtained by the exact squarer. The two designs that exhibit

comparable accuracy, BB1ERC [Avr14] and LESF [Ans22], dissipate

significantly more power, while [Pet14] is placed in between S8_1MIX

and S8_3 both in terms of power and accuracy.

90 Efstratios Zacharelos

5.5 Summary

In this work, several 8-bit approximate squarers, made up by

exact or approximate novel 4-bit squarers and multipliers, have been

proposed. The two novel 4-bit approximate squaring circuits are

obtained by simplifying the expressions in the folded partial product

matrix, which is shown in Fig. 5.1, while the 4-bit multipliers are

developed in chapter 4. These elementary building blocks (4-bit

squarers and multipliers) can be used recursively to scale up to 4n-bit

squarers, with n∈N. Simple approximate accumulators are also

considered to add the obtained sub-products.

Table 5.8: ARMS for 8-bit Approximate Squarers.

8-Bit Design

Power

[μW]

ARMS

Absolute [%]

 Exact 52.83 117.91 -

Proposed

S8_1 45.15 117.90 0.01

S8_2 43.99 117.89 0.02

S8_3 35.57 117.57 0.29

S8_4 33.03 117.38 0.45

S8_1_MIX 40.05 117.77 0.12

S8_2_MIX 28.18 117.41 0.42

S8_3_MIX 26.98 117.22 0.59

S8_1_OR 17.52 116.15 1.49

S8_2_OR 15.42 115.11 2.37

[Avr14]
BB 15.80 110.25 6.50

BB1ERC 50.62 116.84 0.91

[She02] fast_comp 20.40 115.03 2.44

[Lan06]
approx_1 20.34 114.36 3.01

approx_2 21.16 115.57 1.98

[Ans22]
LESF 54.47 117.27 0.54

LESF_t 55.15 113.63 3.63

[Pet14] Gar 37.93 118.10 0.16

Approximate Recursive Squarers 91

The circuits developed in this paper, as well as state-of-the-art

designs gathered from the literature, have been synthesized using a

commercial 14nm FinFET standard cell library. Syntheses and error

analyses demonstrate that the proposed 8-bit approximate squarers

cover a wide range of precision and power requirements, thus providing

plenty of options to the user. At the same time, the proposed

architectures effectively populate the Pareto front, outperforming the

state-of-the-art in terms of power vs. precision, as shown in figures 5.6

and 5.7.

Compared to the exact 8-bit squarer, the least dissipative

proposed design, S8_2_OR, reduces silicon area by 76%, power

consumption by 71%, and critical delay by 72%. The same circuit

dissipates 2.4% less power than the least dissipative design found in

literature, while providing 34% more accurate results. As another

example, one of the proposed architectures, S8_3_MIX, allows to

obtain 49% power reduction and 38% speed increase (compared to the

exact squarer) with the low mean relative error of 2.2%.

The considered designs have been tested in signal

demodulation, and RMS calculation applications. The results confirm

that the proposed circuits are able to fruitfully populate the design

space, as demonstrated in tables 5.7 and 5.8 and in figures 5.8 and 5.9.

92 Efstratios Zacharelos

Chapter 6

6 Spike Detection in Brainwaves

6.1 Introduction

6.1.1 General Background

Research on Brain-Machine Interfaces (BMIs) has progressed at

a notable speed since the realization that devices directly controlled by

ensembles of cortical neurons are viable [Cha99]. After that milestone,

BMI related research has seen unyielding growth [Leb06].

There are several ways to observe the neural activity [Rap21]

and some of them include electroencephalography (EEG),

magnetoencephalography (MEG), electrocorticography (ECoG),

functional magnetic resonance imaging (fMRI), functional near

infrared spectroscopy (fNIRS), positron emission tomography (PET),

and others [Sah21]. Implantable approaches to electrically contact the

cortical tissue, like ECoG and penetrating microelectrode arrays

(MEAs), generally yield better results with respect to non-invasive

techniques, such as electrodes attached on the scalp, that have been

shown to represent the activity of the surface layer of the brain. That is

due to a significantly higher signal-to-noise ratio. Also, even though it

is possible to observe neural activity exploiting different means of

recording, like electrical, optical, and magnetic [Fra19], electrical

recording is the most used.

Low-power and low-noise implantable BMIs for the

observation of neural activity through an array of multiple channels, has

become possible with the progress in integrated circuit and

microsystem technologies. Furthermore, substantial research using

animal models has provided important insight for matters like electrode

types, target brain area, electronic architecture, and processing

strategies.

Spike Detection in Brainwaves 93

It should be noted, that effectively monitoring brain activity

with integrated implantable BMIs is still a very challenging problem.

Scalability and portability, electrode stability and yield, and

information transfer rate are main issues to be addressed.

The brain's electrical charge is maintained by billions of

neurons. Neurons are electrically charged by membrane transport

proteins that pump ions across their membranes. Ions of similar charge

repel each other, and when many ions are pushed out of many neurons

at the same time, they can push their neighbors in a wave, which is

known as volume conduction. When the wave of ions reaches the

electrodes on the scalp, they can push or pull electrons on the metal in

the electrodes. Since metal conducts the push and pull of electrons

easily, the difference in push or pull voltages between any two

electrodes can be measured by a voltmeter. Recording the voltage

fluctuations resulting from neural oscillations (brain waves), helps us

determine changes in brain activity that might be useful in diagnosing

brain disorders, especially epilepsy, or other seizure disorders. These

readings reflect the summation of the synchronous activity of millions

of neurons that have similar spatial orientation.

Progress in integrated circuits and microsystem technologies

has made implanting thousands of intracortical electrodes possible,

allowing researchers to investigate bigger neural ensembles. Of course,

transmitting massive data wirelessly for external post-processing poses

unrealistic bandwidth and power requirements [Shaer15], [Sag22],

[Sagge22]. Spike detection algorithms can mitigate the problem by

alleviating the need to stream the whole raw signal. Instead, the raw

signal is processed on-line, the spikes are detected and possibly sorted

into different categories, and only that information is transmitted off-

brain [Shaer15]. After that, verification and statistical post-processing

can be performed without heavy electrical constraints [Sag21].

6.1.2 Literature

An analog front-end for spike detection and sorting systems is

proposed in [Bar14]. A Low Noise Amplifier (LNA) is employed to

amplify the signals of the electrodes, from the sub-mV range to 10s of

mVs. A bandpass filter is then used to: a) reject the local field potential

(LFP) (high pass) and b) avoid aliasing (low pass). Finally, an Analog

94 Efstratios Zacharelos

to Digital Converter (ADC) provides the system with a digital signal.

Once the spikes exceed the LFP and background noise, they can be

detected using an amplitude threshold [Sag22], [Sagge22], [Bar14],

[Riz09], [Nav14], [Nie16], [Reh19]. In [Sag22] and [Sagge22], an

adaptive threshold is utilized, after two cascaded energy operators for

spike enhancement, specifically the Absolute Differential Operator

(ADO) and the Amplitude Slope Operator (ASO). A novel spike

extraction method, called spike detection by differences, is proposed in

[Tam21]. The power consumption and resources of this technique are

independent from the total channels count.

Different proximity and orientation with respect to detecting

electrodes, make neurons exhibit different spiking profiles. Suitable

feature extraction can be used to perform spike sorting. One of the most

common techniques followed in literature is template matching

[Bar14], [Riz09], [Nav14], [Nie16], [Fre16], which consists in

measuring the distance between a spike and a template as a similarity

index. The authors in [Cam19] propose an iterative Bayesian approach

to separate the LFP from the spiking activity, using prior information

about the power spectral density of the LFP. Other methods frequently

used for spike sorting are Principal Component Analysis, First and

Second Derivative Features Extraction [Bar14], K-means, and

Superparamagnetic Clustering. During the last years, machine learning

approaches have also been considered for spike detection and

classification [Reh19], [Rác20], [Reh21].

Table 6.1: Literature Review.
 Spike Detection Spike Sorting Implementation

[Sag22] Absolute Differential Operator

Amplitude Slope Operator
Adaptive thresholding

NO sorting ASIC 28nm
[Sagge22]

[Bar14]

Non-linear Energy Operator
Absolute Value Thresholding

Amplitude Threshold

Template Matching
Principal Component Analysis

1st/2nd Derivative Features

ASIC 0.18 μm

(front-end)

[Riz09] Amplitude Threshold Template Matching Chip / FPGA

[Nav14] Amplitude Threshold Template Matching Chip / Software

[Nie16] Amplitude Threshold Template Matching Software

[Reh19] Amplitude Threshold NO sorting Software

[Tam21] LFP filtering and “SDD” NO sorting Software

[Fre16] Both detection and sorting with Template Matching Software

[Cam19] HF thresholding Iterative Bayesian approach Software

[Rác20] Both detection and sorting wit Convolutional Neural Network Software

[Reh21] Both detection and sorting with K-means Software

Spike Detection in Brainwaves 95

Some of the proposed systems in the literature provide real-time

functionalities as they can detect and/or sort spikes at run time.

Moreover, authors have implemented their contributions in ASIC

technology, FPGAs, or developed software algorithms. Table 6.1

summarizes most of the aforementioned information.

6.1.3 Objective - Trivial Problem?

In this work, machine learning approaches are used to detect and

classify as Type A, B or C the spiking activity in simulated recordings

of brain activity. The trained network is described in Verilog and

synthesized in a 14nm FinFET technology. The innate error factor in

machine learning and the vast number of required multiplications allow

the fruitful introduction of approximate multiplying circuits [Str22],

[Zac22], [Esp18], to achieve significant reductions in silicon area and

power dissipation. Such approximate designs are frequently used in

embedded devices and error tolerant applications, aiming to improve

the electrical performances by reasonably allowing imprecise results.

In order to verify that using machine learning methods to detect

spikes in the synthesized data is not an overcomplicated solution for a

trivial problem, an alternative way initially investigated. Using

MATLAB, a “smart threshold” that adjusts itself according to the

considered recording, and thus, does not work on run-time, has been

developed. Allowing this approach the advantage of calibration

according to a specific recording, is meant to ensure that even better

results can be obtained using NNs.

In Fig. 6.1, a positive and a negative threshold have been chosen

in a way that ensures no false negatives for the considered recording. In

other words, all spikes (marked in red) are outside the area limited by

the two thresholds and can be easily detected. However, as shown in

Fig. 6.1, sometimes, also normal brain activity (marked in black)

overcomes the thresholds, resulting in false positives. The accuracy

achieved by this method (ensuring no false negatives) is obtained by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑛𝑑𝑜𝑤𝑠
) 6.1

96 Efstratios Zacharelos

Another attempt to utilize thresholds has been made, in a way

that returns no false positives, as shown in Fig. 6.2. In this way, the

normal brain activity (black signal) never overcomes the thresholds, but

certain spikes will remain undetected below the thresholds. The

accuracy achieved by this method is obtained by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑛𝑑𝑜𝑤𝑠
) 6.2

Depending on the level of noise embedded in the considered

dataset, both methods may offer accuracies ranging from 50% to almost

100%. The high accuracy values when there is no noise are anticipated,

as the spikes are clearly distinguished from normal brain activity.

However, a machine learning approach can be used to produce reliable

results also in more realistic scenarios, and even when the spikes are

buried beneath the noise. And in any case, the classification problem

remains unsolved when thresholds are employed, as the various types

of spikes do not differ in amplitude. As already mentioned, there are

various methods in the literature for spike detection, like template

matching [Jia22], [Hao21] or adaptive thresholds with differential

amplitude slope operators [Sag22].

Fig. 6.1: Thresholds ensuring no False Negatives.

Spike Detection in Brainwaves 97

6.2 Dataset - NeuroCube

NeuroCube, presented in [Cam13], is a freely available and

commonly used [Sag22], [Sag21], [Bar14], [Nav14], [Fre16], [Cam19],

method to generate realistic simulations of extra-cellular recordings.

The simulations are obtained by superimposing the activity of neurons

randomly placed in a cube of brain tissue recorded by a finite-size

electrode. The obtained recordings have varying types and amount of

noise and consist of labelled data that provide information relating to

abnormal brain activity (from here on spikes). NeuroCube has been

used in this work, including the analysis performed in section 6.1.3.

The simulated data correspond to continuous samples. In the

original dataset, obtained by Neurocube, each 64 continuous samples

constitute a “window”. Windows containing a spike, are assigned

information about the existence and type of spike. Specifically, this

information is assigned to the first, out of the 64 samples that contain a

spike. Using Neurocube, various datasets can be generated, containing

simulated brain activity with different levels of noise. The spikes shown

in Fig. 6.3 are taken from a dataset with low-level noise, and amplitude

thresholding may be a viable option in those high-SNR waves.

Fig. 6.2: Thresholds ensuring no False Negatives.

98 Efstratios Zacharelos

However, in more realistic recordings, such as the ones used

during training, spikes often require a less trivial solution to be detected.

The used sub-dataset contains approximately 1.5 million samples and

is characterized by a quite low SNR, ensuring a more realistic behavior

for the trained Neural Network.

The energy of the spikes is contained in the middle of the

corresponding windows. So, bearing in mind that the final goal is a low

power integrated network, smaller windows were considered in this

work, namely windows of 32 samples. Thus, as shown in Fig. 6.4, the

aim is to create a NN with 32 input neurons to receive the incoming

window, and 4 output neurons. The first one turns “high” to indicate

that there is no spike. In the event of a spike however, one of the

remaining three neurons turns high to indicate the type of spike. As

mentioned in paragraph 6.1.3, NeuroCube defines three different types

of spikes, and the windows are classified accordingly.

Fig. 6.4: Spike Detection Architecture.

Fig. 6.3: Low-Noise Spikes in synthesized brain activity.

Spike Detection in Brainwaves 99

Since the energy of the spikes is concentrated in the middle

samples, apart from opting for 32-sampled windows instead of 64-

sampled, shifting the spikes left and right has been used for data

augmentation. Specifically, as shown in Figure 6.5, six preceding, and

six succeeding windows have been considered as spikes, thus

generating (and adding to the dataset) 2×6 more versions of the same

spike to help train the networks.

On the other hand, spikes that are almost out of the processing

window, should be classified as normal brain activity. To ensure the

correct operation of the network, spikes that are almost out of the

processing window, “half-spikes”, were introduced to the training

dataset labelled as “non-spikes”. Inserting these confusing windows in

the training set, made the investigated networks exhibit a more robust

behavior.

Throughout the experimental phase, the chosen training datasets

have been processed accordingly to ensure a good balance. Namely, the

training data is made up by 25% normal brain activity, 25% spikes of

“Type-A”, 25% spikes of “Type-B”, and 25% spikes of “Type-C”.

Furthermore, the modified datasets have been divided into two sets.

75% of the windows were used for training and 25% for validation.

Fig. 6.5: Spike Replication for Data Augmentation.

100 Efstratios Zacharelos

6.3 NN Architectures

TensorFlow has been used to train and validate the NNs. The

considered models have been trained through 50 epochs, with a learning

rate equal to 0.001, and a batch size of 32. For the fully connected

layers, dropout has been considered to reduce interdependent learning

among neurons and avoid over-fitting. The chosen activation function

is the Rectified Linear Unit (ReLU) which proved efficient and easy to

model in hardware. As a loss function, the “categorical crossentropy”

has been used, which is ideal for multi-class classification models

where there are two or more output labels. A SoftMax layer has been

used as an output layer, to convert a vector of 4 real numbers into a

probability distribution of the 4 possible outcomes.

As already mentioned, the aim of this work is to embed the

trained NN into an ASIC. Thus, a model of reduced size, with

parameters that have a limited range, is desired. Parameters that are

tightly concentrated around a specific value can result in a better and

more “concise” binary representation, that will in turn, result in a

smaller quantization error, which will be introduced by the hardware

implementation of the NN. So, a regularization layer has been added

during training: more specifically, L2 regularization has been used in

TensorFlow by adding “tensorflow.keras.regularizers.l2” as a kernel

regularizer in the model. L2 regularization forces parameters to be

smaller but not exactly 0, by adding the “squared magnitude” of the

coefficient as a penalty term to the loss function. The effect of

regularization is shown in Fig. 6.6, where it is demonstrated that the

distribution of parameters after regularization, became significantly

more concentrated around 0.

Fig. 6.6: Parameters distribution before (left) and after (right) regularization.

Spike Detection in Brainwaves 101

Table 6.2 shows some of the architectures that have been tested

during the experimental phase. As expected, accuracy grows with the

number of trainable parameters. The architecture chosen to be

implemented in an ASIC, is the last one, that features two hidden layers,

with 24 and 16 neurons respectively. The validation accuracy is

obtained on a set of data that is not used during training, to effectively

test the generalization ability of the model. The lower training accuracy

can be attributed to the use of “dropout”.

In Fig. 6.7 the training and validation accuracies, over the

training epochs are shown, while in Fig. 6.8, a heat map is provided to

visualize the performance of the network for each type of spike. After

the training period, the network has achieved an excellent ability to

predict the type of input signal. As it can be observed from the

increasing tendency of the validation accuracy, after 50 epochs of

training, the generalization ability of the model is still intact, showing

no signs of over-fitting.

Table 6.2: Training accuracy, validation accuracy, and number of parameters for

different NN architectures.

Neurons in Training

Accuracy

[%]

Validation

Accuracy

[%]

Number of

Parameters
Input

Layer

Layer

1

Layer

2

Output

Layer

32 16 - 4 88 95 596

32 20 - 4 91 96 744

32 24 - 4 92 97 892

32 24 8 4 92 98 1028

32 24 16 4 94 98 1260

Fig. 6.7: Training and validation accuracies.

102 Efstratios Zacharelos

6.4 Hardware Implementation

6.4.1 Proposed Architecture

After training the network, with appropriate regularization to

keep the values of the trainable parameters well concentrated around 0,

the next step has been the implementation of the network in hardware.

To that end, the architecture of the fully connected and softmax layers

has been described in HDL.

The investigated network is shown in Fig. 6.9. It has 32 neurons

in the input layer to process the 32-sampled windows, 24 and 16

neurons in the two hidden layers, and 4 neurons in the output for the

classification task. Each neuron is responsible for adding the

corresponding bias and products, before moving this sum to the

activation function (in this case ReLU). For example, the output of

neuron 1 from hidden layer 1 (the signal before the activation function),

is the neuron’s bias plus all the 32 products (weight times corresponding

input), as shown in:

𝑦 = 𝑏𝑖𝑎𝑠 + ∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑖𝑛𝑝𝑢𝑡𝑖)

31

𝑖=0

6.3

Fig. 6.8: Training and validation accuracies.

Spike Detection in Brainwaves 103

As shown in eq. 6.3, the first neuron in the first hidden layer,

processes the value of each input neuron. In a realistic scenario, the last

sample of a given waveform (the one generated first timewise), is fed

to the system first. The next sample follows until the waveform is

completely processed by the system. Therefore, in the hardware

implementation, the 32-sampled window is read one sample at a time

and so, there is no need for a lot of parallel multiplications. Equation

6.3. is unfolded, and one addition is performed every clock cycle, as the

products get accumulated. This results in a hardware effective

implementation.

On the other hand, an increase in the critical delay is inevitable,

since for synchronization purposes, each layer takes 32 clock cycles to

produce an output. Fortunately, the achievable ASIC speeds are very

high with respect to the frequencies of brainwaves. Thus, capturing one

window every 32 samples, is considered enough to effectively measure

brain activity.

Fig. 6.9: Architecture of the proposed dense network.

104 Efstratios Zacharelos

Fig. 6.10 shows the implementation of an indicative hidden

layer with 2 neurons. A universal 5-bit counter (that is able to count

from 0 up to 31), informs the neurons as to which sample is processed

at a given clock cycle, by controlling a multiplexer that provides the

appropriate neuron with the corresponding weight. The chosen weight

and the incoming sample are multiplied to generate the product, pr.
𝑝𝑟𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑖𝑛𝑝𝑢𝑡𝑖 6.4

The accumulation of the products is performed by adding a feedback

signal to the current product:
𝑝𝑟_𝑎𝑐𝑐𝑖 = 𝑝𝑟𝑖 + 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 6.5

The accumulated product, 𝑝𝑟_𝑎𝑐𝑐𝑖, is stored in a register, and in the

next clock cycle, it appears as 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖:
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 = 𝑝𝑟_𝑎𝑐𝑐𝑖−1 6.6

Fig. 6.10: Hardware implementation of a 2-neurons hidden layer.

Spike Detection in Brainwaves 105

This stored signal, that represents the previous accumulated products,

is generally added to the current product. There is however one

exception. When the first sample is fed to the neuron, the counter signal

is “00000”, which triggers the enable signal, en:

𝑒𝑛 = 𝑐𝑛𝑡𝑟[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[4]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑐𝑛𝑡𝑟[5]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 6.7

Thus, instead of adding to the first product, the previous irrelevant value

that remained stored in the register, a multiplexer chooses to add the

neuron’s bias. The multiplexer controls the feedback’s value, as shown

in the following equation:

𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 = {
𝑏𝑖𝑎𝑠 𝑖𝑓 𝑒𝑛 = 1
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 𝑖𝑓 𝑒𝑛 = 0

6.8

The accumulated products, that are stored in the register, are constantly

fed to the activation function, which in this case is a simple ReLU. The

implementation of ReLU is quite simple, as it basically zeros a negative

argument, while leaving unaffected a positive one:

𝑅𝑒𝐿𝑈𝑖 = {
0 𝑖𝑓 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 < 0
𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 𝑖𝑓 𝑝𝑟_𝑎𝑐𝑐_𝑝𝑙𝑖 ≥ 0

6.9

The enable signal, en, is used one more time to help determine

the output of the neuron. As already mentioned, when the window is

being processed, en is low. During that time, a second multiplexer sets

the neuron’s output to zero. However, when the first sample of a

window, is being processed, en turns high. Apparently, at the same time

the previous window is fully processed and ready to move to the next

layer. So, as already mentioned, en turns high, and a shift register is

utilized to feed the layer’s output to the next layer, one sample at a time.

The last layer (after the 4-neurons output layer) is a custom

hardmax layer. Unlike the softmax layer, it employs a “hard” modifier,

as it sets to high the largest vector and to low all the rest.

6.4.2 Binary Signals Fixed-Width Implementation

The HDL is fully parameterized, thus enabling effortless

modifications. The representation of the binary vectors is a critical

issue, as it has a direct impact on the accuracy drop with respect to the

accuracy obtained by the original model (98%). Choosing a short bit-

width for the fractional part of the signals increases the quantization

error, as the floating-point parameters are heavily truncated. On the

106 Efstratios Zacharelos

other hand, opting for longer signals results in heavy hardware

requirements.

It has been shown that after the regularization, the integer part

of all the obtained parameters can be described by three bits, without

the risk of overflow. However, after exhaustive simulations,

intermediate signals exceeding the range offered by three bits in the

integer part, [-4,4), have been observed. Apart from aggressively

adding one more bit at the left part of the radix, to tackle the occasional

overflow problem, a more conservative solution has also been

investigated. An overflow-detection and saturation module has been

employed to single out the vectors that exceed the two limits. Once

detected, these vectors are rounded to -4 and 4 (with the highest

available precision) respectively.

Three different binary representations are considered in this

work. The first one uses overflow detection and saturation when

needed, as it has 3 bits before the radix point and 5 after. The second

and third versions have 4 bits for the integer part to avoid overflowing

signals, while for the fractional part, they use 6 and 8 bits respectively.

Clearly, the longer the bit-width, the higher is the achievable accuracy,

as the saturation and quantization errors are completely or partially

overcome.

6.4.3 Approximate Computing and Performances

Multiplying circuits consume a considerable amount of power

and chip area. Approximate computing provides a good compromise

between precision and hardware resources for error resilient and mobile

applications. Aiming at reducing the hardware requirements, the

methodologies from [Str22], [Zac22], and [Esp18] have been applied to

the multipliers for the NN. The best designs are presented in Table 6.3

and Fig. 6.11, while their configurations are shown in Table 6.4.

Designs 3.5_Ex, 4.6_Ex, and 4.8_Ex employ exact multipliers.

Designs 4.8_ssm-m8 and 4.8_ssm-m10 use approximate signed 12×12

multipliers proposed in [Str22] with a segment of 8 and 10 bits

respectively. The remaining designs use small 4×4 multiplying building

blocks proposed in [Zac22], to recursively generate the 8×8, 10×10, and

12×12 required multipliers. For the 10×10 multipliers, 4:2 approximate

compressors proposed in [Esp18] are also used.

Spike Detection in Brainwaves 107

 As shown in Fig. 6.11 and Table 6.3, the more bits used for

signal representation, the higher is the achievable accuracy, due to the

elimination of the overflow/saturation error and the moderation of the

quantization error. Of course, power and area requirements increase as

well. All circuits are synthesized for a 10ns timing constraint and

simulated with the same set of 90.000 windows for the calculation of

the power. It should be noted, that in this work the power is reported for

Table 6.3: Absolute accuracies and electrical performances for circuits using
different multipliers.

Multiplier Design
Accuracy

[%]

Power

[W]

Area

[μm2]

Min Delay

[ps]

8
b

it
s 3.5_Ex 89.6 121.80 3969 665

3.5_1 85.9 121.76 2987 599

1
0

b
it

s

4.6_Ex 95.5 153.80 5602 678

4.6_1 91.3 153.70 4520 620

4.6_2 87.0 153.67 3915 583

4.6_3 85.2 153.66 3849 582

1
2

b
it

s

4.8_Ex 97.0 185.88 8964 745

4.8_1 96.9 185.73 7638 725

4.8_2 95.6 185.64 5912 647

4.8_3 94.9 185.62 5534 642

4.8_4 94.6 185.62 5475 641

4.8_ssm-m8 96.2 185.68 6735 692

4.8_ssm-m10 96.5 185.73 7490 716

Fig. 6.11: Absolute Accuracy with respect to silicon area.

108 Efstratios Zacharelos

a single channel that receives a new window every 6 input samples, and

a sample rate of 5kHz. Minimum delay refers to the minimum timing

constraint at which the circuit can be synthesized with a non-negative

slack. The use of approximate computing results in significant silicon

area savings while power is mostly determined by the register and hence

by the bit width of the signals.

The proposed approach offers a variety of design choices that

favorably compare against the state of the art. As an example, design

4.8_2 achieves 95.6% accuracy and reduces silicon area by 34% with

respect to 4.8_Ex which is the most accurate, offering only 1.4% more

accuracy. The proposed circuits are more power hungry than [Sag22]

and [Sagge22] for example, but they provide both detection and sorting

in a single integrated solution.

6.5 Summary

Observing brain activity through low-power implantable BMIs

is not only possible nowadays, but these techniques provide also cleaner

results with respect to non-invasive methods, in terms of SNR. Spikes

in brainwaves may indicate seizure activity in patients with a

predisposition toward epilepsy. Thus, implantable spike detectors can

Table 6.4: Multiplier configurations for the best performing circuits.

Design

Partial Product Matrix part

High
Mid

High
Mid

Mid

Low
Low

8
b

it
s 3.5_Ex Exact

3.5_1 Custom Exact N2 Custom N1

1
0

b
it

s

4.6_Ex Exact

4.6_1 Custom Exact Exact Exact / 4:2 AC Not formed

4.6_2 Custom Exact N1 N1 / 4:2 AC Not formed

4.6_3 Custom Exact N2 N2 / 4:2 AC Not formed

1
2

b
it

s

4.8_Ex Exact

4.8_1 Custom Exact Exact Exact Exact Not formed

4.8_2 Custom Exact Exact N1 Or-Based Not formed

4.8_3 Custom Exact N1 N2 Or-Based Not formed

4.8_4 Custom Exact N2 Or-Based Or-Based Not formed

4.8_ssm-m8 12×12 SSM, m=8

4.8_ssm-m10 12×12 SSM, m=10

Spike Detection in Brainwaves 109

be employed to extract and transmit only the valuable neural

information needed, instead of the whole raw recording.

Machine Learning approaches have been employed, to detect

and categorize spikes in simulated brain activity. The network training

and testing data have been provided by NeuroCube, a tool presented in

[Cam13] that generates synthetic, yet realistic and labelled data with

different levels and types of noise. The same data has been checked

with a simpler threshold approach, exhibiting non-satisfying results in

high noise recordings.

The chosen network model has been developed for

implementation in an integrated circuit. Thus, a small architecture with

parameters that have a limited range, have been critical points in this

work. To that end, smaller 32-sampled input windows have been

generated, and parameters regularization has been performed.

A balanced dataset while training the network is essential.

Therefore, a dataset made up by 25% normal brain activity, 25% spikes

of “Type-A”, 25% spikes of “Type-B”, and 25% spikes of “Type-C”,

has been used. New spikes have been generated for data augmentation,

by moderately shifting the spike-windows. Finally, the whole dataset

has been divided into two sets: 75% for training and 25% for validation.

The considered networks have been trained using TensorFlow.

As an activation function, the ReLU has been proved to be efficient and

at the same time, easy to implement in hardware. The “categorical

crossentropy” has been used as a loss function for this multi-label

classification task.

As shown in Fig. 6.9, the chosen model has 32 neurons in the

input layer to process the 32 sampled windows, two hidden layers with

24 and 16 neurons respectively, and an output layer of 4 neurons, one

for each output label. That results in 1260 trainable parameters and an

accuracy equal to 98%.

In a real application, the data would arrive to the model

sequentially. Therefore, in the hardware implementation of the

network, each neuron is -simply put- a “multiply and accumulate” unit

(MAC). In each clock cycle, an input is multiplied by the corresponding

weight and all these products are accumulated. At the last clock cycle,

the accumulated products pass through the activation function to a shift

register, that is responsible of providing the next layer with one sample

at a time.

110 Efstratios Zacharelos

Choosing the most efficient data representation has been the

next challenge. It has been demonstrated, that after regularization, using

4 bits for the integer part of all vectors, is enough to avoid overflowing

numbers. Furthermore, as shown in table 6.3, using 8 bits for the

fractional part and exact multipliers, results in a very small (1.5%) drop

in accuracy, due to the inevitable quantization error. Approximate

multipliers manage to effectively mitigate the hardware burden and a

variety of circuits offering different precision-hardware cost tradeoff

have been presented. The different versions of the circuit reach an

accuracy range from 85% to 97%, while occupying 3000μm2 to

9000μm2 respectively.

Conclusions and future work 111

7 Conclusions and future work

The scope of this dissertation is the development of approximate

arithmetic circuits. A neural network aiming to detect and categorize

unusual behavior in synthesized brain activity is also presented. The

network has been described in hardware language in order to be

integrated in an ASIC. The innate error factor in machine learning and

the vast number of required multiplications in a NN, make introducing

approximate computing to this application, a viable option. In this way,

a significant reduction in silicon area and power dissipation can be

achieved. Producing minimally invasive and long-lasting implantable

devices are of course major concerns.

Two main categories of approximate binary multipliers are

highlighted: multipliers using approximate compressors and multipliers

using recursive architectures with smaller approximate modules.

Multipliers that use approximate compressors, act on the PPM

reduction phase, and aim to approximately encode the information in

less bits. Specifically, the compressors presented in chapter 3, encode

the information of 𝑛 bits of the same PPM column, in 𝑚 = ⌈𝑛 2⁄ ⌉ output

bits, again in the same column. For that reason, they are called single-

weight approximate compressors (SWACs). Two types of compressors

are presented: one aiming at the minimization of hardware resources

while introducing reasonable error, and another type that introduces the

minimum error possible, while trying to keep hardware resources as low

as possible. All circuits avoid the use of bulky and slow XOR gates.

The sizes of the developed compressors are 3:2, 4:2, 5:3, and 6:3.

Compressors of higher sizes are composed of smaller designs. The

presented compressors are used to form approximate multipliers of

various sizes, as dictated by the proposed compressor allocation

strategy. The proposed multipliers exhibit competitive error vs

hardware trade-off when synthesized in a 14 nm FinFET technology

and when tested in an error resilient application.

Recursive multipliers use small elementary approximate

multiplier blocks (2×2 or 4×4), suitably assembled to design larger

multipliers. In this work, five approximate 4×4 multipliers, with

112 Efstratios Zacharelos

different error vs hardware trade-off, are proposed. The smaller blocks

are obtained by a systematic simplification (or even truncation) of the

sum and carry terms, while attempting to partially compensate for the

introduced error, at the same time. As always, XOR gates are avoided

as much as possible. The proposed designs, an exact, and an OR-based

multiplier are used recursively scale up to 8×8, 16×16 and 32×32

approximate multipliers. The proposed multipliers and competitive

circuits found in the literature, have been synthesized using a

commercial 14nm FinFET standard cell library. The proposed designs

exhibit a great tradeoff between power reduction and precision, as is

also confirmed by image filtering applications and a pre-trained

convolutional neural network.

Binary squaring is often needed in digital signal processing.

Although it is nothing more than a special multiplication case, it is

demonstrated that the partial product matrix of a number multiplied by

itself, has inherent symmetries that can be exploited. The folded PPM

is considerably simpler, thus justifying the development of dedicated

squaring designs. Approximate 8-bit binary squarers, able to

outperform the state of the art, are proposed. They are obtained by

recursively exploiting 4-bit approximate multipliers and squarers. To

that end, two novel 4-bit approximate squaring circuits, obtained by

simplifying the expressions in the folded partial product matrix, are

developed. The electrical characteristics of the synthesized circuits, as

well as their error behavior, demonstrate that the proposed designs

overcome the state of the art in terms of power vs. precision. The two

considered applications, signal demodulation, and RMS calculation,

confirm these results.

Approximate computing can be effectively used in machine

learning applications. The innate probabilistic nature of ML, and the

huge number of multiplications in dense networks, make approximate

multipliers appropriate for the inference phase of a trained network. In

this way, a significant computational burden can be eliminated.

A dense network has been developed to detect and categorize

spikes in simulated brain activity. The aim of this work is to implement

the model in an ASIC and therefore, constraints like low number of

trainable parameters and well concentrated parameters have been taken

under consideration during the experimental phase. The final

architecture has 32 neurons in the input layer to receive the 32-sampled

Conclusions and future work 113

input windows, 24 and 16 neurons in two hidden layers, and 4 output

neurons, each of which corresponds to one of the four states: “Type-A

spike”, “Type-B spike”, “Type-C spike”, and “No spike”. After training

in TensorFlow the 1260 available parameters, the obtained accuracy is

98%. The model’s architecture has been described in hardware

language (Verilog). It has been demonstrated, that using 12 bits to

represent all the vectors in the circuit (4 before the radix point and 8

after), results in no overflowing numbers and a small quantization error,

that causes accuracy to drop from 98% to 97%.

Results demonstrate that approximate multipliers can be

effectively used instead of exact multipliers, without drastically

threatening the circuit’s prediction ability. As an example, design 4.8_2

achieves 34% reduction in silicon area, while sacrificing accuracy by

1.4% with respect to 4.8_Ex, which uses exact multipliers.

Future tasks include further testing of approximate designs, to

better investigate the sweet spot of power-area saving vs accuracy drop.

Moreover, quantization aware training techniques are intended for

investigation, hoping to achieve higher accuracies for lower bit-width

representations.

114 Efstratios Zacharelos

8 Literature

[Car12] S. Carrara, S.s. Ghoreishizadeh, J. Olivo, I. Taurino,

C. Baj-Rossi, A. Cavallini, M. O. Beeck, C. Dehollain,

W. Burleson, F. Moussy, A. Guiseppi-Elie, and G.

Micheli, "Fully Integrated Biochip Platforms for

Advanced Healthcare," Sensors (Basel, Switzerland),

vol. 12, Dec 2012, doi: 10.3390/s120811013.

[Baz12] K. Bazaka and M. Jacob, "Implantable Devices: Issues

and Challenges," Electronics. vol. 2, pp. 1-34, Mar

2012, doi: 10.3390/electronics2010001.

[Han13] J. Han and M. Orshansky, "Approximate computing:

An emerging paradigm for energy-efficient design,"

18th IEEE European Test Symposium (ETS), pp. 1-6,

May 2013, doi: 10.1109/ETS.2013.6569370.

[Liu20] W. Liu, F. Lombardi and M. Schulte, "Approximate

Computing: From Circuits to Applications [Scanning

the Issue]," in Proceedings of the IEEE, vol. 108, no.

12, pp. 2103-2107, Dec. 2020, doi:

10.1109/JPROC.2020.3033361.

[Gup11] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan

and K. Roy, "IMPACT: IMPrecise adders for low-

power approximate computing," IEEE/ACM

International Symposium on Low Power Electronics

and Design, Fukuoka, Japan, pp. 409-414, 2011, doi:

10.1109/ISLPED.2011.5993675.

[Seo20] H. Seo, Y.S. Yang and Y. Kim, "Design and Analysis

of an Approximate Adder with Hybrid Error

Reduction," Electronics. vol. 9, no. 471, 2020, doi:

https://doi.org/10.3390/electronics9030471.

[Seo21] H. Seo, J. Lee, H. Seok and Y. Kim, "Design of an

Accuracy Enhanced Imprecise Adder with Half Adder-

based Approximation," 18th International SoC Design

Conference (ISOCC), Jeju Island, Korea, pp. 153-154,

2021, doi: 10.1109/ISOCC53507.2021.9613888.

Literature 115

[Ram19] M. Ramasamy, G. Narmadha and S. Deivasigamani,

"Carry based approximate full adder for low power

approximate computing," 7th International Conference

on Smart Computing & Communications (ICSCC),

Sarawak, Malaysia, pp. 1-4, 2019, doi:

10.1109/ICSCC.2019.8843644.

[Soa19] L. B. Soares, M. M. A. da Rosa, C. M. Diniz, E. A. C.

da Costa and S. Bampi, "Design Methodology to

Explore Hybrid Approximate Adders for Energy-

Efficient Image and Video Processing Accelerators,"

in IEEE Trans. on Circuits and Systems I: Regular

Papers, vol. 66, no. 6, pp. 2137-2150, June 2019, doi:

10.1109/TCSI.2019.2892588.

[Gup13] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy,

"Low-Power Digital Signal Processing Using

Approximate Adders," in IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, vol.

32, no. 1, pp. 124-137, Jan. 2013, doi:

10.1109/TCAD.2012.2217962.

[Che18] L. Chen, J. Han, W. Liu, P. Montuschi and F.

Lombardi, "Design, Evaluation and Application of

Approximate High-Radix Dividers," in IEEE Trans. on

Multi-Scale Computing Systems, vol. 4, no. 3, pp. 299-

312, 2018, doi: 10.1109/TMSCS.2018.2817608.

[Hor14] M. Horowitz, "Computing’s energy problem (and what

we can do about it)", Proc. IEEE Int. Solid-State

Circuits Conf., pp. 10-14, Feb. 2014.

[Jia20] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu and J. Han,

"Approximate Arithmetic Circuits: A Survey,

Characterization, and Recent Applications," in Proc. of

the IEEE, vol. 108, no. 12, pp. 2108-2135, Dec. 2020,

doi: 10.1109/JPROC.2020.3006451.

[Liu18] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi and

F. Lombardi, "Design and Evaluation of Approximate

Logarithmic Multipliers for Low Power Error-Tolerant

Applications," in IEEE Trans. on Circuits and Systems

I: Regular Papers, vol. 65, no. 9, pp. 2856-2868, Sept.

2018, doi: 10.1109/TCSI.2018.2792902.

116 Efstratios Zacharelos

[Kim19] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida

and N. Bagherzadeh, "Efficient Mitchell’s

Approximate Log Multipliers for Convolutional

Neural Networks," in IEEE Trans. on Computers, vol.

68, no. 5, pp. 660-675, 1 May 2019, doi:

10.1109/TC.2018.2880742.

[Lot21] U. Lotrič, R. Pilipović and P. Bulić, “A Hybrid Radix-

4 and Approximate Logarithmic Multiplier for Energy

Efficient Image Processing,” in Electronics for Low-

Size Low-Power Sensors and Systems: From Custom

Design to Embedded Solutions, vol. 10, no. 10, May

2021, doi: 10.3390/electronics10101175.

[Str22] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G.

Saggese and G. Di Meo, "Approximate Multipliers

Using Static Segmentation: Error Analysis and

Improvements," in IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 69, no. 6, pp. 2449-

2462, June 2022, doi: 10.1109/TCSI.2022.3152921.

[Yan18] T. Yang, T. Ukezono and T. Sato, "A low-power high-

speed accuracy-controllable approximate multiplier

design," 2018 23rd Asia and South Pacific Design

Automation Conf. (ASP-DAC), 2018, pp. 605-610,

doi: 10.1109/ASPDAC.2018.8297389.

[Češ18] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z.

Vasicek and T. Vojnar, "ADAC: Automated Design of

Approximate Circuits," in Computer Aided

Verification. CAV 2018. Lecture Notes in Computer

Science, vol. 10981, July 2018, doi:

https://doi.org/10.1007/978-3-319-96145-3_35.

[Ull18] S. Ullah, S. S. Murthy and A. Kumar, "SMApproxLib:

Library of FPGA-based Approximate Multipliers,"

2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC), 2018, pp. 1-6, doi:

10.1109/DAC.2018.8465845.

[Mra20] V. Mrazek, L. Sekanina and Z. Vasicek, "Libraries of

Approximate Circuits: Automated Design and

Application in CNN Accelerators," in IEEE Journal on

Emerging and Selected Topics in Circuits and Systems,

Literature 117

vol. 10, no. 4, pp. 406-418, Dec. 2020, doi:

10.1109/JETCAS.2020.3032495.

[Bal22] P. Balasubramanian, R. Nayar, O. Min and D.L.

Maskell, "Approximator: A Software Tool for

Automatic Generation of Approximate Arithmetic

Circuits," in Computers, vol. 11, no. 1, Jan. 2022,

https://doi.org/10.3390/computers11010011.

[Vah19] S. Vahdat, M. Kamal, A. Afzali-Kusha and M. Pedram,

"TOSAM: An Energy-Efficient Truncation and

Rounding-Based Scalable Approximate Multiplier," in

IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 27, no. 5, pp. 1161-1173, May 2019, doi:

10.1109/TVLSI.2018.2890712.

[Fru20] F. Frustaci, S. Perri, P. Corsonello and M. Alioto,

"Approximate Multipliers with Dynamic Truncation

for Energy Reduction via Graceful Quality

Degradation," in IEEE Trans. on Circuits and Systems

II: Express Briefs, vol. 67, no. 12, pp. 3427-3431, Dec.

2020, doi: 10.1109/TCSII.2020.2999131.

[Wal64] C. S. Wallace, "A Suggestion for a Fast Multiplier," in

IEEE Transactions on Electronic Computers, vol. EC-

13, no. 1, pp. 14-17, Feb. 1964, doi:

10.1109/PGEC.1964.263830.

[Dad83] L. Dadda, "Some schemes for fast serial input

multipliers," 1983 IEEE 6th Symposium on Computer

Arithmetic (ARITH), 1983, pp. 52-59, doi:

10.1109/ARITH.1983.6158074.

[Okl96] V. G. Oklobdzija, D. Villeger and S. S. Liu, "A method

for speed optimized partial product reduction and

generation of fast parallel multipliers using an

algorithmic approach," in IEEE Transactions on

Computers, vol. 45, no. 3, pp. 294-306, March 1996,

doi: 10.1109/12.485568.

[Kel09] D. R. Kelly, B. J. Phillips and S. Al-Sarawi,

"Approximate signed binary integer multipliers for

arithmetic data value speculation", Proc. DASIP Conf.,

pp. 97-104, 2009.

118 Efstratios Zacharelos

[Cil14] A. Cilardo, D. De Caro, N. Petra, F. Caserta, N.

Mazzocca, E. Napoli, "High Speed Speculative

Multipliers Based on Speculative Carry-Save Tree," in

IEEE Trans. on Circuits and Systems I: Regular

Papers, vol. 61, no. 12, pp. 3426-3435, Dec. 2014, doi:

10.1109/TCSI.2014.2337231.

[Qiq17] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov and A.

Yakovlev, "Energy-efficient approximate multiplier

design using bit significance-driven logic

compression," Design, Automation & Test in Europe

Conf. & Exhibition (DATE), 2017, pp. 7-12, doi:

10.23919/DATE.2017.7926950.

[Esp17] D. Esposito, A. G. M. Strollo and M. Alioto, "Low-

power approximate MAC unit," 2017 13th Conf. on

Ph.D. Research in Microelectronics and Electronics

(PRIME), 2017, pp. 81-84, doi:

10.1109/PRIME.2017.7974112.

[Guo18] Y. Guo, H. Sun, L. Guo and S. Kimura, "Low-Cost

Approximate Multiplier Design using Probability-

Driven Inexact Compressors," 2018 IEEE Asia Pacific

Conf. on Circuits and Systems (APCCAS), 2018, pp.

291-294, doi: 10.1109/APCCAS.2018.8605570.

[Ans18] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han,

"Low-Power Approximate Multipliers Using Encoded

Partial Products and Approximate Compressors," in

IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 8, no. 3, pp. 404-416, Sept.

2018, doi: 10.1109/JETCAS.2018.2832204.

[Esp18] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro

and N. Petra, "Approximate Multipliers Based on New

Approximate Compressors," in IEEE Trans. on

Circuits and Systems I: Regular Papers, vol. 65, no. 12,

pp. 4169-4182, Dec. 2018, doi:

10.1109/TCSI.2018.2839266.

[Mad19] L. Maddisetty, R. K. Senapati, J. V. R. Ravindra

“Training Neural Network as Approximate 4:2

Compressor applying Machine Learning Algorithms

for Accuracy Comparison,” in Int. Journal of

Literature 119

Advanced Trends in Computer Science and Engi-

neering, vol 8, no. 2, pp. 211-215, 2019, doi:

10.30534/ijatcse/2019/17822019.

[Sab19] F. Sabetzadeh, M. H. Moaiyeri and M. Ahmadinejad,

"A Majority-Based Imprecise Multiplier for Ultra-

Efficient Approximate Image Multiplication," in IEEE

Trans. on Circuits and Systems I: Regular Papers, vol.

66, no. 11, pp. 4200-4208, Nov. 2019, doi:

10.1109/TCSI.2019.2918241.

[Eda20] P. J. Edavoor, S. Raveendran and A. D. Rahulkar,

"Approximate Multiplier Design Using Novel Dual-

Stage 4:2 Com-pressors," in IEEE Access, vol. 8, pp.

48337-48351, 2020, doi:

10.1109/ACCESS.2020.2978773.

[StNa20] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra and

G. D. Meo, "Comparison and Extension of

Approximate 4-2 Compressors for Low-Power

Approximate Multipliers," in IEEE Trans. on Circuits

and Systems I: Regular Papers, vol. 67, no. 9, pp. 3021-

3034, Sept. 2020, doi: 10.1109/TCSI.2020.2988353.

[StDe20] A. G. M. Strollo, D. De Caro, E. Napoli, N. Petra and

G. Di Meo, "Low-Power Approximate Multiplier with

Error Recovery using a New Approximate 4-2

Compressor," 2020 IEEE Int. Symp. on Circuits and

Systems (ISCAS), 2020, pp. 1-4, doi:

10.1109/ISCAS45731.2020.9180767.

[Zak20] P. Zakian, R. N. Asli, “An efficient design of low-

power and high-speed approximate compressor in

FinFET technology,” in Computers & Electrical

Engineering, vol. 86, Sept 2020, doi:

10.1016/j.compeleceng.2020.106651.

[Pei21] H. Pei, X. Yi, H. Zhou and Y. He, "Design of Ultra-

Low Power Consumption Approximate 4–2

Compressors Based on the Compensation

Characteristic," in IEEE Trans. on Circuits and

Systems II: Express Briefs, vol. 68, no. 1, pp. 461-465,

Jan. 2021, doi: 10.1109/TCSII.2020.3004929.

120 Efstratios Zacharelos

[Kha21] M. Khaleqi, M. Ahmadinejad, M. H. Moaiyeri,

“Ultraefficient imprecise multipliers based on

innovative 4:2 approximate compressors,” in Int.

Journal of Circuit Theory and Applications, vol. 49, no.

1, pp. 169-184, 2021, doi: 10.1002/cta.2876.

[Kul11] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading

Accuracy for Power with an Underdesigned Multiplier

Architecture," 2011 24th Int. Conf. on VLSI Design,

2011, pp. 346-351, doi: 10.1109/VLSID.2011.51.

[Reh16] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J.

Henkel and J. Henkel, "Architectural-space

exploration of approximate multipliers," 2016

IEEE/ACM Int. Conf. on Computer-Aided Design

(ICCAD), 2016, pp. 1-8, doi:

10.1145/2966986.2967005.

[GSK18] Y. Guo, H. Sun and S. Kimura, “Design of power and

area efficient lower-part-OR approximate multiplier,”

TENCON 2018 - IEEE Region 10 Conf., 2018, pp.

2110-2115, doi:10.1109/TENCON.2018.8650108.

[Gil19] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez,

M. Shafique and A. B. J. Kokkeler, "MACISH:

Designing Approximate MAC Accelerators with

Internal-Self-Healing," in IEEE Access, vol. 7, pp.

77142-77160, 2019, doi:

10.1109/ACCESS.2019.2920335.

[War20] H. Waris, C. Wang, W. Liu, J. Han and F. Lombardi,

“Hybrid partial product-based high-performance

approximate recursive multipliers,” in IEEE Trans. on

Emerging Topics in Computing, 2020,

doi:10.1109/TETC.2020.3013977.

[Yan20] Z. Yang, X. Li and J. Yang, "Power Efficient and High-

Accuracy Approximate Multiplier with Error

Correction," in Journal of Circuits, Systems and

Computers, vol. 29, no. 15, Dec. 2020, doi:

10.1142/S0218126620502412.

[War21] H. Waris, C. Wang, C. Xu and W. Liu, "AxRMs:

Approximate Recursive Multipliers using High-

Performance Building Blocks," in IEEE Trans. on

Literature 121

Emerging Topics in Computing, 2021, doi:

10.1109/TETC.2021.3096515.

[Nun22] I. Nunziata, E. Zacharelos, G. Saggese, A. M. G.

Strollo and E. Napoli, "Approximate Recursive

Multipliers Using Carry Truncation and Error

Compensation," 17th Conference on Ph.D Research in

Microelectronics and Electronics (PRIME),

Villasimius, SU, Italy, pp. 137-140, 2022, doi:

10.1109/PRIME55000.2022.9816787.

[Zac22] E. Zacharelos, I. Nunziata, G. Saggese, A. G. M.

Strollo and E. Napoli, "Approximate Recursive

Multipliers Using Low Power Building Blocks," in

IEEE Transactions on Emerging Topics in Computing,

vol. 10, no. 3, pp. 1315-1330, 1 July-Sept. 2022, doi:

10.1109/TETC.2022.3186240.

[Ans20] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina,

Z. Vasicek and J. Han, "Improving the Accuracy and

Hardware Efficiency of Neural Networks Using

Approximate Multipliers," in IEEE Trans. on Very

Large-Scale Integration (VLSI) Systems, vol. 28, no.

2, pp. 317-328, Feb. 2020, doi:

10.1109/TVLSI.2019.2940943.

[LeC10] Y. LeCun, C. Cortes, and C. Burges. (2010). MNIST

hand-written digit database. AT&T Labs. [Online].

Available: http://yann.lecun.com/exdb/mnist

[Net11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,

and A. Y. Ng, “Reading digits in natural images with

unsupervised feature learning,” in Proc. NIPS

Workshop Deep Learn. Un-supervised Feature Learn.,

2011, p. 5. Dataset available online:

http://ufldl.stanford.edu/housenumbers.

[Ahm22] M. Ahmadinejad, and M. Moaiyeri, "Energy- and

Quality-Efficient Approximate Multipliers for Neural

Network and Image Processing Applications" in IEEE

Transactions on Emerging Topics in Computing, vol.

10, no. 02, pp. 1105-1116, 2022, doi:

10.1109/TETC.2021.3072666

122 Efstratios Zacharelos

[Gil18] G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M.

Shafique and A. B. J. Kokkeler, "SquASH:

Approximate Square-Accumulate with Self-Healing,"

in IEEE Access, vol. 6, pp. 49112-49128, 2018, doi:

10.1109/ACCESS.2018.2868036.

[She02] M.H. Sheu and S.-Hon Lin, "Fast compensative design

approach for the approximate squaring function," in

IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp.

95-97, Jan. 2002, doi: 10.1109/4.974551.

[Lan06] J. M. P. Langlois and D. Al-Khalili, "Carry-free

approximate squaring functions with O(n) complexity

and O(1) delay," in IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 53, no. 5, pp. 374-378,

May 2006, doi: 10.1109/TCSII.2006.873364.

[Man20] K. Manikantta Reddy, M. H. Vasantha, Y. B. Nithin

Kumar and D. Dwivedi, "Design of Approximate

Booth Squarer for Error-Tolerant Computing," in IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 28, no. 5, pp. 1230-1241, May 2020, doi:

10.1109/TVLSI.2020.2976131.

[Ans22] M. S. Ansari, B. F. Cockburn and J. Han, "Low-Power

Approximate Logarithmic Squaring Circuit Design for

DSP Applications," in IEEE Transactions on Emerging

Topics in Computing, vol. 10, no. 1, pp. 500-506, 1

Jan.-March 2022, doi: 10.1109/TETC.2020.2989699.

[Gar10] V. Garofalo, M. Coppola, D. De Caro, E. Napoli, N.

Petra and A. G. M. Strollo, "A novel truncated squarer

with linear compensation function," Proceedings of

2010 IEEE International Symposium on Circuits and

Systems, 2010, pp. 4157-4160, doi:

10.1109/ISCAS.2010.5537591.

[Sha15] B. Shao and P. Li, "Array-Based Approximate

Arithmetic Computing: A General Model and

Applications to Multiplier and Squarer Design," in

IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 62, no. 4, pp. 1081-1090, April 2015, doi:

10.1109/TCSI.2015.2388839.

Literature 123

[Pet14] N. Petra, D. De Caro, V. Garofalo, E. Napoli, A. G.M.

Strollo, Truncated squarer with minimum mean-square

error, Microelectronics Journal, vol. 45, no. 6, 2014,

799-804, https://doi.org/10.1016/j.mejo.2014.02.018.

[Noe89] A. S. Noetzel, "An interpolating memory unit for

function evaluation: analysis and design," in IEEE

Transactions on Computers, vol. 38, no. 3, pp. 377-

384, March 1989, doi: 10.1109/12.21124.

[Vit67] A. Viterbi, "Error bounds for convolutional codes and

an asymptotically optimum decoding algorithm," in

IEEE Transactions on Information Theory, vol. 13, no.

2, pp. 260-269, April 1967, doi:

10.1109/TIT.1967.1054010.

[Xu16] Q. Xu, T. Mytkowicz and N. S. Kim, "Approximate

Computing: A Survey," in IEEE Design & Test, vol.

33, no. 1, pp. 8-22, Feb. 2016, doi:

10.1109/MDAT.2015.2505723

[Chi13] V. K. Chippa, S. T. Chakradhar, K. Roy and A.

Raghunathan, "Analysis and characterization of

inherent application resilience for approximate

computing," 2013 50th ACM/EDAC/IEEE Design

Automation Conf. (DAC), 2013, pp. 1-9, doi:

10.1145/2463209.2488873.

[Avr14] A. Avramović, Z. Babić, D. Raič, D. Strle, and P.

Bulić, “An approximate logarithmic squaring circuit

with error compensation for DSP applications,” in

Microelectronics Journal, vol 45, no 3, pp. 263-271,

2014, https:// doi.org/10.1016/j.mejo.2014.01.005.

[Sol89] M. R. Soleymani, and S. D. Morgera, "A fast MMSE

encoding technique for vector quantization," in IEEE

Transactions on Communications, vol. 37, no. 6, pp.

656-659, June 1989, doi: 10.1109/26.31152.

[Kol98] R. K. Kolagotla, W. R. Griesbach, H.R. Srinivas,

(1998). VLSI implementation of 350 MHz 0.35 /spl

mu/m 8 bit merged squarer. Electronics Letters, 34, pp.

47-48.

[Bui14] S. Bui and J. E. Stine, "Additional optimizations for

parallel squarer units," 2014 IEEE International

124 Efstratios Zacharelos

Symposium on Circuits and Systems (ISCAS), 2014,

pp. 361-364, doi: 10.1109/ISCAS.2014.6865140.

[Das16] D.K. Das, and A. Banerjee, "A New Squarer Design

with Reduced Area and Delay," in IET Computers &

Digital Techniques, 2016, doi: 10. 10.1049/iet-

cdt.2015.0170.

[Yoo97] J.-T. Yoo, K. F. Smith, and G. Gopalakrishnan,“A fast

parallel squarerbased on divide-and-conquer,” IEEE J.

Solid-State Circuits, vol. 32, no.6, pp. 909–912, Jun.

1997.

[Car01] D. De Caro, and A.G.M. Strollo, “Parallel squarer

using Booth-folding technique,” in Electronics Letters.

37, pp 346 – 347, 2001, doi: 10.1049/el:20010241

[Str03] A. G. M. Strollo and D. De Caro, "Booth folding

encoding for high performance squarer circuits," in

IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, vol. 50, no. 5, pp. 250-

254, May 2003, doi: 10.1109/TCSII.2003.810574.

[Dea69] K.J. Dean, “Cellular logical array for obtaining the

square of a binary number.” In Electronics Letters 5,

1969.

[Sha91] M. Shamanna, S. Whitaker, and J. Canaris. “Cellular

Logic Array for Computation of Squares”, in 3rd

NASA Symposium on VLSI Design, 1991.

[Cha99] J.K. Chapin, K.A. Moxon, R.S. Markowitz, and

M.A.L. Nicolelis. “Real-time control of a robot arm

using simultaneously recorded neurons in the motor

cortex”, in Nature Neuroscience, vol. 2, no. 7, pp. 664

- 670, July 1999, doi: 10.1038/10223.

[Leb06] M.A. Lebedev, and M.A. Nicolelis, “Brain-machine

interfaces: past, present and future”, in Trends in

neurosciences, vol. 29, no. 9, pp. 536 - 546, 2006, doi:

10.1016/j.tins.2006.07.004.

[Rap21] A. B. Rapeaux, and T. G. Constandinou, “Implantable

brain machine interfaces: first-in-human studies,

technology challenges and trends”, in Current Opinion

in Biotechnology, vol. 72, pp. 102-111, 2021, doi:

https://doi.org/10.1016/j.copbio.2021.10.001.

Literature 125

[Sah21] S. Saha, K.A. Mamun, K.I.U. Ahmed, R. Mostafa,

G.R. Naik, S. Darvishi, A.H. Khandoker, M. Baumert,

“Progress in brain computer interface: challenges and

potentials”, in Frontiers in Systems Neuroscience, vol.

15, p. 4, 2021, doi: 10.3389/fnsys.2021.578875

[Fra19] J.A. Frank, M.-J. Antonini, and P. Anikeeva, “Next-

generation interfaces for studying neural function”, in

Nature Biotechnology, vol 37, pp. 1013-1023, 2019,

doi: 10.1038/s41587-019-0198-8

[Shaer15] M.A. Shaeri and A. M. Sodagar, "A Method for

Compression of Intra-Cortically-Recorded Neural

Signals dedicated to Implantable Brain-Machine

Interfaces," in IEEE Trans. on Neural Systems and

Rehabilitation Engineering, vol. 23, no. 3, pp. 485-497,

May 2015, doi: 10.1109/TNSRE.2014.2355139.

[Sag22] G. Saggese, E. Zacharelos and A. G. M. Strollo, "Low

Power Spike Detector for Brain-Silicon Interface using

Differential Amplitude Slope Operator," 2022 17th

Conference on Ph.D Research in Microelectronics and

Electronics (PRIME), Villasimius, SU, Italy, 2022, pp.

301-304, doi: 10.1109/PRIME55000.2022.9816758.

[Sagge22] G. Saggese, A.G.M. Strollo, "Low-Power Energy-

Based Spike Detector ASIC for Implantable

Multichannel BMIs," in Electronics, vol. 11, 2022, doi:

https://doi.org/10.3390/electronics11182943.

[Sag21] G. Saggese et al., "Comparison of Sneo-Based Neural

Spike Detection Algorithms for Implantable Multi-

Transistor Array Biosensors," in Electronics, vol. 10,

pp. 410, 2021, doi: 10.3390/electronics10040410.

[Bar14] D. Y. Barsakcioglu et al., "An Analogue Front-End

Model for Developing Neural Spike Sorting Systems,"

in IEEE Trans. on Biomedical Circuits and Systems,

vol. 8, no. 2, April 2014.

[Riz09] M. Rizk et al, "A fully implantable 96-channel neural

data acquisition system," in Journal of Neural

Engineering, vol. 6, May 2009.

[Nav14] J. Navajas et al, "Minimum requirements for accurate

and efficient real-time on-chip spike sorting," in

126 Efstratios Zacharelos

Journal of Neuroscience Methods, vol. 230, Apr. 2014,

doi: https://doi.org/10.1016/j.jneumeth.2014.04.018.

[Nie16] J. Niediek, J. Bostrom, C.E. Elger, and F. Mormann,

"Reliable analysis of single-unit recordings from the

human brain under noisy conditions: tracking neurons

over hours," in PloS one, vol. 11, no. 12, Dec. 2016.

[Reh19] M. S. Rehman et al., "SpikeDeeptector: A deep-

learning based method for detection of neural spiking

activity," in Journal of Neural Engineering, vol 16, July

2019, doi: 10.1088/1741-2552/ab1e63.

[Tam21] M. Tambaro et al., "A scalable spike detection method

for implantable high-density multielectrode array,"

PRIME 2021, pp. 1-4, July 2021.

[Fre16] Z. Frehlick, I. Williams and T. G. Constandinou,

"Improving neural spike sorting performance using

template enhancement," in IEEE Biomedical Circuits

and Systems Conference (BioCAS), Shanghai, China,

pp. 524-527, Oct. 2016, doi:

10.1109/BioCAS.2016.7833847.

[Cam19] S. L. Cam, H. Tran, R. Ranta and V. Louis-Dorr, "A

Bayesian approach for Simultaneous Spike Extraction

and Sorting," in 2019 9th International IEEE/EMBS

Conference on Neural Engineering (NER), San

Francisco, CA, USA, 2019, doi:

10.1109/NER.2019.8716888.

[Rác20] M. Rácz et al., "Spike detection and sorting with deep

learning," in Journal of Neural Engineering, vol 17, no.

1, Jan. 2020.

[Reh21] M. S. Rehman et al., "SpikeDeep-Classifier: A deep-

learning based fully automatic offline spike sorting

algorithm," in Journal of Neural Engineering, vol 18,

Febr. 2021, doi: 10.1088/1741-2552/abc8d4.

[Cam13] M.L.A. Camuñas, and R. Q. Quiroga, “A detailed and

fast model of extracellular recordings”, in Neural

Computation, vol 25, no. 5, pp. 1191-1212, 2013, doi:

https://doi.org/10.1162/NECO_a_00433

[Jia22] T. Jiang, D. Wu, F. Gao, J. Cao, S. Dai, J. Liu, and Y.

Li, “Improved Spike Detection Algorithm Based on

Literature 127

Multi-Template Matching and Feature Extraction”, in

IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 69, no. 1, pp. 249-253, Jan. 2022, doi:

10.1109/TCSII.2021.3092141

[Hao21] H. Hao, J. Chen, A. G. Richardson, J. Van der Spiegel

and F. Aflatouni, “A 10.8 µW Neural Signal Recorder

and Processor With Unsupervised Analog Classifier

for Spike Sorting”, in IEEE Transactions on

Biomedical Circuits and Systems, vol. 15, no. 2, pp.

351-364, April 2021, doi:

10.1109/TBCAS.2021.3076147.

