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Abstract

Cyber security threats and real-life phenomena (e.g., COVID-19 pan-
demic) are increasingly reflected over the Internet. Hackers usually scan
a network to discover active and vulnerable network devices prior to initi-
ating a malicious activity. This is also the approach adopted by botnets,
one of the most important, current cyber security threats. These malicious
networks of bots more and more use the Domain Name System (DNS) as
a tool for their operations.
This thesis provides twofold contributions. The first one addresses the
problem of detecting port and net scans in high-speed networks. Big Data
analysis techniques are applied to cope with the large volume of data to be
processed. Mirai botnet scan is also investigated. Scrutinizing its signa-
ture over a six-year period from real Internet traffic reveals the evolution
of such botnet and its variants.
The second contribution focuses on DNS as a good observation lens for
monitoring the proper operation of the Internet. It focuses on how In-
ternet Service Providers and public DNS resolvers protect users accessing
domains associated with such activities. It also shows how the lifetime of
malicious domain names may be shorter than the one of benign domains
due to take-down efforts of registries. Finally, two case studies on how
DNS data can be used to analyze prominent and global real-life events
are reported. First, the effect of the COVID-19 pandemic restrictions on
network utilization is explored, providing insights into the usage of Inter-
net applications during this period. Second, the impact of the Ukraine
conflict on Russian domain infrastructure is presented, investigating its
changes before and after the start of this event.

Keywords: Botnet, Cyber Threats, Domain Names, DNS, COVID-19
Pandemic, Russia-Ukraine Conflict



Sintesi in lingua italiana

Le minacce informatiche e gli eventi che hanno un forte impatto sulla
società (es. pandemia COVID-19) si riflettono sempre di più sulla rete
Internet. In genere, un hacker, prima di effettuare un attacco informatico,
scansiona una rete al fine di individuare dispositivi vulnerabili. Questo
approccio è adottato anche dalle botnet, che rappresentano una minaccia
emergente alla sicurezza informatica. Le botnet utilizzano sempre di più il
Domain Name System (DNS) per le loro operazioni di comando e controllo.

Il presente lavoro di tesi fornisce due contributi significativi. Il primo
ha l’obiettivo di affrontare il problema del rilevamento delle attività di
port e net scan nelle reti ad elevata velocità. A tale scopo, vengono utiliz-
zate tecniche di Big Data per gestire il grande volume di dati da elaborare.
Inoltre, si analizzano le scansioni della botnet Mirai. L’analisi della sua sig-
nature nel corso di sei anni evidenzia l’evoluzione di tale botnet e delle sue
varianti. Il secondo contributo fornito in questa tesi utilizza il DNS come
possibile strumento per monitorare il corretto funzionamento di Internet.
In primo luogo, si esamina la protezione offerta dai fornitori di servizi
Internet e dai resolver DNS pubblici contro i domini malevoli. Successi-
vamente, si mostra come la durata dei domini malevoli sia generalmente
inferiore rispetto a quella dei domini benevoli, a causa delle operazioni
di rimozione effettuate dai registry. Infine, vengono esaminati due eventi
di rilievo per la società attraverso l’analisi dei dati DNS. In particolare,
questa tesi tratta l’effetto della pandemia COVID-19 sulla rete Internet,
fornendo approfondimenti sull’uso delle applicazioni da parte degli utenti
durante tale periodo. Inoltre, viene presentato l’impatto del conflitto in
Ucraina sull’infrastruttura di dominio russa, analizzando le sue variazioni
prima e dopo l’inizio di questo evento.

Parole chiave: Botnet, Minacce Informatiche, Nomi di Dominio, Pan-
demia COVID-19, Conflitto Russia-Ucraina
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Chapter 1
Introduction

In the last decade, Internet has been essential for many aspects of
daily life, leading users to own more and more various types of devices.
Due to the wide volume and variety of devices connected to the network,
the Internet has become crucial, especially in terms of security and data
privacy. These concerns have intensified mainly with the advent of Internet
of Things (IoT) technology. The IoT devices, indeed, generally have lim-
ited resources and lack relevant security features, making them targets for
cybercriminals [5, 6]. This evolution has caused networks to become in-
creasingly susceptible to malicious activities and massive cyber attacks.
The Distributed Denial of Service (DDoS), for example, is one of the com-
mon and dangerous network attacks [7]. It involves exploiting plenty of
hijacked devices to make a specific network resource inaccessible and un-
available to legitimate users. The identification of these kinds of malicious
anomalies is generally entrusted to an Intrusion Detection System (IDS).
These systems constantly monitor networks with the aim of identifying
malicious threats or intrusion attempts. However, although these tools
adopt multiple methods for their detection, they have limited effective-
ness in catching newer anomalies [8]. Furthermore, the identification of
malicious activities in high-speed networks is also challenging. They are
characterized by a huge volume and variety of data to be analyzed, pro-
duced by numerous kinds of network devices [9].
Societal, large-scale events are also having a growing impact on the Inter-
net. Two recent episodes, also covered in this thesis, are the COVID-19
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pandemic and the Ukraine conflict. On the one hand, these events have led
cybercriminals to implement more and more cyber threats. For example,
there is evidence of a significant increase in malware during the COVID-
19 pandemic and phishing during the Russia-Ukraine conflict [10]. On the
other hand, these events have a major impact on the performance of the
network itself. In particular, COVID-19 restrictions imposed by govern-
ments around the world to stay at home for several months have encour-
aged people to use the network for various purposes. Some examples are
online lessons, remote working, entertainment, and staying in touch with
friends and family. However, this increased use of the Internet resulted
in network overload, especially for applications that had to handle a large
number of users. Regarding the Russia-Ukraine conflict, on March 2022,
the Russian government mandated that all websites and network services
come under the control of national hosting providers [11]. In addition,
some social media were banned, restricting communication, and news dis-
semination and bringing people to use a Virtual Private Network (VPN)
to circumvent the bans [12].

Based on the previous discussion, the primary objectives of this thesis
are twofold: first, the analysis of malicious cyber activities at large scale
on the Internet; second, the evaluation of the impact of large-scale real-life
events on the network. Initially, we address the problem of how to prevent
massive network attacks by analyzing scanning activities (e.g., port and
network scans). The latter refers to the process of identifying vulnerable
hosts on a network and constitutes the preliminary step before an attack.
Numerous studies have been published over the years describing various
techniques for detecting such network anomalies. Some of these works date
back many years (e.g., around the early 2000s [13, 14, 15]) and present ap-
proaches that are not suitable for high-speed networks. Other works mainly
rely on advanced and new techniques [16, 17]. Our approach, instead, in-
corporates elements of both categories, implementing an algorithm based
on a traditional, statistical method repurposed for Big Data technologies.
Together with flow-level analysis of network traffic, this choice addresses
the challenge of processing large volumes of data to analyze. This method,
used on real network traffic traces, achieves good performance in both de-
tection and execution time. It also allowed us to detect a larger number of
anomalies than a reference technique. Another open issue in the detection
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of scanning activities is related to botnet scans, a kind of port scan that
has become popular with the advent of botnets. A botnet is a collection
of network devices (i.e., bots) infected with malware, enabling an attacker
(i.e., botmaster) to control them remotely. In the initial injection phase,
the botnet scans are carried out using a network of compromised devices,
aiming to infect as many devices as possible. In this thesis, we focus on Mi-
rai, one of the popular botnets, and we examine the scanning activities of
this botnet over a six-year period. The proposed approach consists of an-
alyzing the TCP SYN packets, included in real network traffic traces, that
verify the Mirai signature. Namely, to minimize memory consumption,
the cybercriminals set the destination address equal to the TCP sequence
number (TCP.seq==IP.dst). We prove how the Mirai signature is nowa-
days still implemented in botnet scanning activities. In addition, we show
that other ports, besides telnet and ssh ones, have been targeted over the
years, identifying new variants.
Botnets, like almost all Internet applications, increasingly rely on Domain
Name System (DNS) for their operations [18]. For this reason, in this the-
sis, we use the DNS as a possible lens to observe potential malicious cyber
activities. We first analyze malicious domain names (e.g., malware, phish-
ing), focusing on two aspects of the DNS. The first aspect involves inves-
tigating how local resolvers - provided by Internet Service Provider (ISP)s
- and the public ones - provided by Google and OpenDNS - protect users
to access domain names associated with malicious activities. We explore
both the traditional DNS queries and the encrypted ones over HTTPS (i.e.,
DNS over HTTPS (DoH)). The proposed approach reveals that both local
and public DNS resolvers achieve a similar level of security. We also in-
spect the response times of the two categories of resolvers. We show that
local resolvers are much faster than public resolvers, even when not consid-
ering already cached domains. As a consequence, we prove that we do not
have to trade off security and performance. Finally, we show that there are
no significant differences between DNS and DoH queries both in response
time and code. The second approach we applied to explore malicious do-
main names is the analysis of the domain name lifetimes. We perform this
analysis among the ten largest Top-Level Domain (TLD)s over a ten-year
period. In particular, we evaluate the lifetime as a difference between the
first and last time that a domain is seen in the zone file. However, there
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may be cases where the domain name is parked or in a grace period and,
consequently, is not present in the zone file. To account for this limitation,
we allow gaps of 90 days before considering a lifetime closed (i.e., 80 days
as the sum of all the removal stages of a domain name, plus 10 days of
margin). The proposed approach reveals that a significant proportion of
domain lifetimes expire before 365 days (minimum registration term). To
further explore the possible causes of this duration, we evaluate how many
of them are malicious, matching them with those included in the DBL
blocklist. As a result, we show that a fraction of malicious domain names
is removed from the zone files a few days after appearing in the blocklist.
This result is mostly true for some TLDs. Others let the domain names
expire naturally. Additionally, by looking at the features of the WHOIS
data, we see evidence of bulk registrations related to malicious domain
names.
Finally, in this thesis, we examine the effects of the impact of large-scale
real-life events on the Internet by looking at DNS data. As mentioned
above, two significant events that had a global impact and lasting relevance
in the past three years are the spread of the COVID-19 pandemic and the
conflict Russia-Ukraine. Regarding the COVID-19 pandemic, we analyze
changes in the trends of the most widely used Internet applications before
and during the COVID-19 pandemic. We look at several categories (i.e.,
video, social media, messaging, and collaboration tools) to cover various
ways in which the network was used during that period. For this purpose,
we use the top 1 million lists provided by Alexa and Cisco Umbrella. Fur-
thermore, the different methods they use to collect data give the ability to
understand what type of resource that app was used by (e.g., via browser,
mobile phone or television). We implement an algorithm that analyzes
the 10K most and least popular domain names of each top 1 million files,
covering a period from three months prior to the start of restrictions (i.e.,
March through April). The proposed approach shows that users primarily
access Youtube via browser, and Netflix via other types of network devices
(e.g., mobile phones, and TV). Regarding collaboration tools, during the
first months of the restrictions, Skype and Microsoft Teams were the most
used, followed by Zoom and Webex.
The last event analyzed is related to the regulations of the Russian govern-
ment to move all the Russian websites and network services inside Russia.
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The first regulations, which included the implementation of a Russian na-
tional DNS, were enacted in 2019 and implemented by January 2021 [19].
With the invasion of Ukraine, these regulations have become more strin-
gent [20]. Regarding this topic, we inspect the zone files of .ru and .рф
over a five-year period (i.e., June 2017 - March 2022) and the Certificate
Transparency (CT) logs. Our analysis shows that, already in 2018, almost
70% of domain names were fully hosted in Russia. Beginning in Febru-
ary 2022, with the invasion of Ukraine, only a small percentage of domain
names moved fully within Russia. Afterwards, we see evidence that some
US companies still sell services to Russian customers. Finally, we show
how Certificate Authority (CA)s have reacted to the conflict, finding that
the American Let’s Encrypt manages a great portion of Russian domain
names.

1.1 Thesis Outline

The thesis is structured as follows.
Chapter 2 first introduces the concepts of network anomalies, both

malicious and benign. It focuses on the scanning activities (e.g., port,
network and botnet scans), and it describes the most common disruptive
forms of attack. In addition, this chapter provides an overview of the DNS
and its features. Concepts related to the DNS namespace, the domain
name resolution and life-cycle, blocklists and early take-down actions are
discussed.

Chapter 3 addresses the problem of identifying the port and network
scans in high-speed networks. Specifically, a system that utilizes a flow-
level approach and Big Data technologies is designed and developed. Ex-
perimental results confirm the effectiveness of the proposed system, indi-
cating that it achieves better performance than other ground truths, based
on complex algorithms. Furthermore, the execution times of this system
are short, making it a promising application for a real-time scenario.

Chapter 4 focuses on the analysis of a particular class of port scans:
the botnet scans. An overview of six-year of Mirai botnet scans in real
traffic traces is presented, examining the features of the TCP SYN pack-
ets that verify the Mirai signature. The proposed approach reveals some
attempts prior to the first Mirai large-scale attack. It also shows that the
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Mirai signature is still being implemented by cybercriminals today to de-
tect vulnerable devices. In addition, this chapter provides insights into the
evolution of ports probed over the years, resulting in the discovery of new
variants of Mirai.

Chapter 5 explores the local (provided by the ISP) and the public
DNS resolvers. Their capabilities to protect users by detecting malicious
domain names and the timing performance are investigated. The proposed
approach consists of querying a consistent number of benign and malicious
domain names at selected resolvers, using both traditional DNS and DoH.
Experimental results illustrate that local DNS resolvers are usually faster
than public ones. In addition, the protection levels of both categories of
DNS resolvers are largely equivalent.

Chapter 6 analyzes the domain name lifetimes of the largest TLDs
over a ten-year period. It shows that a significant number of lifetimes is
shorter than the minimum registration term (i.e., one year). To further
investigate the possible reasons for such short lifetimes, an evaluation of
malicious domain names is conducted using blocklist data. Results reveal
that a considerable fraction of malicious domains has lifetimes shorter than
one year. This chapter also presents evidence that short-lived malicious
domains are taken down and removed from the zone files after appearing on
the blocklist. Furthermore, an analysis of malicious registration campaigns
is reported.

Chapter 7 deals with understanding the impact of the lockdown re-
strictions, implemented during the COVID-19 pandemic, on the Internet.
An algorithm is implemented to analyze changes in domain name usage
trends related to widely-used Internet applications belonging to various
categories (i.e., video, social media, messaging and collaboration tools).
The proposed approach covers a six-month period, including some months
prior to and during the COVID-19 restrictions. Experimental results con-
firm how people found entertainment and work benefits in some Internet
applications.

Chapter 8 covers the issue of exploring the impact of the Ukraine con-
flict on Russian Internet infrastructure. We present an overview of changes
in the Russian Internet infrastructure by examining zone files related to
.ru and .рф and certificate issuance data for the past five years. Results
show that a large majority of Russian websites (≈70% ) were fully hosted
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in Russia even before the conflict. In addition, at the beginning of the war,
there is only a slight increase in domain names that moved into Russian in-
frastructure. Furthermore, an analysis related to the TLDs dependencies
is reported, highlighting that Russian domains still rely on non-Russian
TLDs. Afterwards, an inspection of Western providers is presented, re-
vealing that some companies continue to provide services to Russian cus-
tomers. Finally, the chapter reports the behavior of CAs regarding the
authorization of certificates for Russian domains in response to conflict
and sanctions.

Chapter 9 summarizes the thesis contributions.





Chapter 2
Background

In this Chapter, we first introduce the concepts of network anoma-
lies, paying particular attention to malicious ones. More in detail, in
Section 2.1, we provide an overview of the most popular cyber threats,
and scanning activities (i.e., port and network scans). In Section 2.2, we
present the Mirai botnet, its workflow and architecture. Afterwards, we
outline the theoretical concepts and definitions related to the DNS in Sec-
tion 2.3.

2.1 Network Anomalies

In the past several decades, research on anomaly detection has been
predominant in a wide variety of applications. The term anomaly refers to
a pattern in data that deviates from a normal or an expected behavior [21].
In the context of computer networks, the normality concept should be de-
fined based on different factors related to a network. Network anomalies
may be categorized into benign and malicious. A benign network anomaly
may occur for several reasons, such as device failure, overload of a network,
or configuration errors. On the other hand, a malicious network anomaly
or intrusion, is an activity carried out by an attacker with the goal of cor-
rupting the network or its hosts. Specifically, an intrusion is a voluntary
attempt by unauthorized users to access or manipulate information, as
well as to deny service to legitimate users or make a system unavailable.
Malicious anomalies differ from benign ones because their main goal is to
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undermine the three pillars of data security: availability (data availabil-
ity), confidentiality (data secrecy), and integrity (data not degraded or
tampered with).

2.1.1 An Overview of Network Anomalies

In recent years, a significant number of network anomalies, both benign
and malicious, have been identified. One of the most famous attacks is the
Denial of Service (DoS), which consists of attempts to block legitimate
users from accessing the system by making it unreachable [22]. Generally,
a DoS attack targets different kinds of network resources (i.e., servers, web-
sites or entire networks) and it may occur in several forms. Two examples
are TCP SYN Flooding and Internet Control Message Protocol (ICMP)
Flooding. More in detail, a TCP SYN Flooding takes advantage of the
three-way handshake, in which an attacker forwards a substantial num-
ber of TCP SYN requests to a server, making it overloaded and unable
to process these legitimate requests. Similarly, an ICMP Flooding attack
occurs when an attacker overloads his victim by sending it a high number
of ICMP packets. In both scenarios, the goal is to make the servers unre-
sponsive and unavailable to legitimate users.

In addition, another form of DoS attack is the DDoS. It involves mul-
tiple compromised network devices to conduct a DoS attack amplifying its
effect. As we will explain in Subsection 2.2, these network devices (i.e.,
bots or zombies) are infected with malware software that allows them to
be remotely controlled by a malicious actor (i.e., botmaster).

An example of benign anomaly is instead represented by Flash Crowd,
easily confused with a DoS attack. It consists of an unexpected increase
in traffic to a Web site or a network resource. This increase may be,
for example, due to important breaking news or the release of certain
products [23].

Port and Network Scans

Two typical malicious activities that attackers perform to find vulner-
able hosts are port and network scans, also known as scanning activities.
Detecting these types of anomalies is an important step in avoiding a larger
attack, and protecting a network and its resources.
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More in detail, a Network scan, also referred to as net scan, is an ac-
tivity prior to an attack with the purpose of identifying active hosts within
a network. Specifically, it consists of sending packets to a huge number
of IP addresses that can be generated automatically through special tools.
The hosts that answer are considered the active ones.

A Port scan is an activity that an attacker performs to check all the
active services and discover possible vulnerabilities on a host. It involves
sending a considerable number of packets to a range of ports of one or a
few hosts. The responses help to understand the status of the ports and
identify the vulnerabilities of that specific host. There are different kinds
of port scans [24, 25]. Some examples are given below:

• TCP Connect scan: relies on the three-way handshake to identify
which ports are open on a victim host.

• TCP SYN scan: consists of initiating the three-way handshake with-
out completing it. More specifically, the attacker sends an SYN seg-
ment to a specific port on a host. If an RST is received, then the
port is closed. If an SYN-ACK is received, it implies the target port
is listening.

• TCP ACK scan: is useful to establish the presence of a firewall.
Specifically, the attacker sends a packet with the ACK flag set. If
an RST packet is received, it means that the port is unfiltered and
potentially open. Otherwise, if no responses are received, it implies
that the port is filtered.

• TCP FIN scan: involves sending a packet with the FIN flag set. If
an RST is received, it means that the port is closed. If it is not
closed, the victim host is not expected to respond, so it may be open
or filtered.

• TCP XMAS scan: is similar to the TCP FIN scan except that, in
this case, also URG, and PSH are set in the packets.

• TCP Null scan: consists in sending a packet without setting any flag.

• UDP scan: involves sending an UDP packet. If a "port unreachable"
is received, it means that no there is no service listening on that port.
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2.2 Understanding Botnets: Workflow and Archi-
tecture

In the last years, botnets are becoming increasingly prevalent. They
constitute a new type of network anomaly, aiming to launch a large-scale
cyber attack, e.g., DDoS attack or spam emails. More in detail, a botnet
is a collection of internet-connected devices infected with malware that
allows an attacker to control them remotely. The infected devices (e.g.,
personal computers, IoT devices, mobile devices) and the attacker are re-
ferred to as bot and botmaster, respectively. Botnets usually are designed
for malicious activities, including sending spam, stealing data, or perform-
ing DDoS attacks. The term bot (short for robot) derives from its ability
to automatically execute commands forwarded by the botmaster through
a Command and Control (C&C) server, unaware of the device owner.

The life cycle of a botnet typically involves five stages [26]. In the
first stage, also known as the initial injection, the botmaster seeks to com-
promise vulnerable devices and expand the botnet by spreading malicious
software through methods such as malicious websites, and email attach-
ments. Once the device is infected, the second stage, the secondary injec-
tion, starts. Specifically, the botmaster executes a shellcode, delivered to
the devices by the malware, allowing the attacker to take control of it and
add it to the botnet. In the third stage, the connection, the infected devices
create communication channels with the C&C server. In the fourth phase,
the malicious command and control, the botmaster sends commands via
the C&C channel to the bots, providing instructions to perform a variety
of attacks. Finally, in the maintenance and update stage, the botmaster
constantly updates the attack patterns and IP addresses of the bots to
keep a long-lived botnet [27, 28, 29, 26].
Based on the C&C infrastructure, there are typologies of botnets: cen-

tralised, decentralised and hybrid [28, 30].
In a centralized structure, shown in Figure 2.1, the botmaster generally
communicates with the bots via a single C&C channel [31]. This typology
of botnet benefits from the simplicity and speed of communication between
the C&C server and the bots. However, only a single point of failure is a
major disadvantage. Indeed, if the C&C server is detected and taken down,
the entire botnet is rendered unusable. Generally, the two protocols most
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Figure 2.1. Centralized botnet architecture

adopted in a centralized architecture are IRC, HTTP and POP3 [28, 32] 1.
Botnets adopting peer-to-peer (P2P) solutions, also referred to as decen-
tralized architecture, have emerged to overcome the limitations of a single
C&C channel [35]. In this case, each bot holds multiple connections with
other bots and there are multiple C&C servers geographically spread. How-
ever, the disadvantage is the major complexity of botnet implementation.
The hybrid structure, instead, overcomes the P2P typology, diversifying
bots into layers based on their role and limiting interactions among them.
Each device maintains a fixed list of peers, a few can execute commands
to check the situation of the botnet, and others wait for commands from
the equivalents to whom they are connected [32, 36].

2.2.1 Mirai Botnet

The number of malicious attacks has intensified with the rapid spread of
IoT devices, specifically targeting networked devices and sensors [37]. Most
of these devices have limited hardware resources, and lightweight operating
systems, and are exempt from regular security updates. Moreover, they
are released with vulnerable settings (identical factory credentials for the

1The most powerful IRC botnets detected are Spybot, SDBot, and Agobot. Well-
known ones that have HTTP-based C&C channels are Spyeye and Zeus [33, 34].
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same brand) and easy prey for new botnets. The most famous botnet of
recent years, Mirai, has been able to exploit this army of dumb devices to
pull off huge DDoS attacks. Mirai was first identified in August 2016 by
the white-hat research group [38]. Its main feature is the ability to infect
a considerable number of hosts in a short time, conducting attacks with
unprecedented volumes of traffic.

Mirai’s architecture is decentralized, see Section 2.2. Specifically, it
consists of three servers between the bots and the botmaster to establish
multiple C&C channels [39]:

• Command and Control (C&C) Server. It acts as a bridge be-
tween the botmaster and the botnet. This element generally uses
two TCP sockets, one on port 23 and the other on port 101 to send
instructions to bots for attacks.

• The Report Server. It manages a database, which it updates when
new bots are added, and it constantly and directly communicates
with all members of the botnet.

• The Loader receives from the bot the coordinates of the victim
device (IP and port) and the credentials to access, download and
install the malware.

Figure 2.2 shows Mirai’s workflow, which consists of seven phases [2,
3, 1]. In the first phase, referred to as brute force, the bots search for
new devices to infect. In particular, the bots probe to pseudorandom IPv4
addresses on Telnet ports 23 and 2323. However, with the advent of new
Mirai variants, many other TCP ports appeared as targets including 22,
7547, 8000, 8080, 2222, 23231, 37777, 6789, 5555 [40]. The botmaster
also provides a blocklist of IP addresses not to be contacted. This list
includes multicast addresses and other IPs such as the Internet Assigned
Numbers Authority (IANA), the U.S. Department of Defense, and many
others [41]. When the bots detect vulnerable devices, they try to bypass
their security by applying a dictionary attack 2. More in detail, each bot
has a list of 62 predefined user/password pairs to guess the credentials and
gain access to the device. Successful access to the device initiates phase 2.

2A dictionary attack is a method to guess passwords by entering every word in a
dictionary as a password.
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In this phase, the bots notify the victim’s address, port, and credentials
to the report server. During phase 3, the botmaster, via the C&C server,
periodically queries the "Report Server" to retrieve statistics on the status
of the botnet. Phase 4 consists of initiating the infection of the detected
victim devices. Specifically, loaders log into the devices and instruct them
to download the Mirai malware [42].

Figure 2.2. Mirai Botnet workflow [1, 2, 3]

In phase 5, the bots download and run the malware according to the
instructions provided in the previous stage. During this process, the mal-
ware shuts down ssh and Telnet services to protect itself from other pos-
sible infections. It also starts interacting with the C&C server to receive
instructions. Phases 6 and 7 involve botnet attacks against one or more
targets. In particular, in phase 6, the C&C server provides information to
the bots about the type of attack and its duration. In the last phase, how-
ever, all "firepower" is concentrated against one or more targets, usually
using DDoS-type attacks [1].
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2.2.2 Mirai Scanner Signature

According to RFC 793, a TCP SYN packet is sent when a new TCP
connection is created, including a 32-bit random value in the TCP se-
quence number field [43]. Nevertheless, during the scanning phase of
the Mirai workflow, bots send SYN packets to random IP addresses by
setting the TCP sequence number equal to the destination address (i.e.,
TCP.seq==IP.dst). The reason for this behaviour is that Mirai bots are
typically IoT devices with limited resources. Thus, to minimize the mem-
ory consumption, the association between the IP address contacted and
the TCP sequence number is not stored in memory, just because the des-
tination IP is used as TCP sequence number [44, 45, 46].

2.2.3 Variants Using Mirai Scanner Signature

Mirai was first detected in August 2016: since then, the Mirai botnet
has performed its initial scans primarily on service-related ports as Telnet
(9 out of 10 requests directed to port 23, 1 out of 10 directed to port 2323)
to exploit accesses that are not carefully protected by device manufactur-
ers [38].

From August 2016 to February 2017, the Mirai botnet was capable of
infecting more than 600K agents at its peak, mostly IoT devices, with a
doubling time of 75 minutes [39] and 15K DDoS attacks have already been
associated with Mirai. Among the most famous, we find the attack on a
well-known cybersecurity blog by journalist Brian Krebs, which reached a
traffic volume of 623 Gbps, an amount of data never recorded before (or
never publicly announced) for a DDoS attack [47]. Other ports were then
added to the scan pool by new emerging botnets based on the Mirai source
code. On September 30th, 2016, the source code of Mirai was first released
to the public. As a consequence, many other large DDoS have occurred,
such as one towards the French web host OVH equal (1Tbps) [48], or to
Dyn on 21st October 2016, DNS providers of high traffic web services such
as Twitter, Spotify, Netflix, Reddit, and GitHub [49]. At the end of 2016, a
Mirai variant exploit a vulnerability in the CPE WAN Management Proto-
col (CWMP) implemented in two models of Deutsche Telekom’s customer
routers interesting nearly a million users [50].

By 2017 Radware discovered that even ports related to SSH service
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started to be probed by a botnet called Brickerbot [51]. In September
2017, some articles noted a very dense group of ports contacted by Mirai
turns out. This set appears to be a target of a botnet called Reaper that
borrows part of the code from Mirai but only focuses on exploiting known
vulnerabilities [52, 53]. The Reaper variants do not leverage Telnet brute
force with default credentials anymore, but rather leverage HTTP-based
exploits of known vulnerabilities in IoT [54]. The reaper variant also uses
a combination of nine attacks targeting known IoT vulnerabilities. These
attacks affect many popular router brands as well as IP cameras, Network
Attached Storage devices, and servers [55].
In November 2017, a new variant of Mirai emerged, Satori, whose peculiar-
ity lies in the way the spreading malware, making it more worm-like [56].
The bot, in fact, was not relying on the loader-scanner mechanism to per-
form remote planting [57]. Satori adds ports 37215 and 52869 in the scan
and drives infected devices to download themselves from the same origi-
nal URL. The two main vulnerabilities used by Satori, concern one known
since 2014 (CVE-2014-8361) [58] for port 52869, and one discovered in
December 2017 (CVE-2017-17215) [59]. In addition to the ports related
to Telnet service, other ports in the pool of ports contacted by Mirai are
those related to HTTP service (80, 8080, 88, 81, and 8000). Edwards et
al study and describe the behaviour of a variant of Mirai attacking these
ports, Hajime [60].
On May 1, 2018, VPN Mentor disclosed two vulnerabilities against GPON
home routers [61]. Also in 2018, the WICKED bot was involved and ac-
tively scanning on ports 8080, 8443, 80, and 81 [62]. Since then, at least 5
different botnet families have started to include new exploits based on two
vulnerabilities (CVE-2018-10561), (CVE2018-10562) related to HTTP ser-
vice authentication [63]. Another port that emerges in a new pool of ports
of attention from the new Mirai variants Moobot is the ADB port [64].
In this set of ports, we have TCP 34567 of the DVRIP protocol still used
to carry out high-profile DDoS attacks, with an average of one hundred
attacks per day [65]. Moobot is a new botnet family based on Mirai. Re-
cently it has made quite many releases, according to their C2 protocols and
programming languages, we can roughly divide them into moobot.socks5,
moobot.tor, moobot.tor.b, moobot.go, moobot.go.tor, moobot.c, etc. Not ev-
ery moobot variant uses this 185 netblock, but we do notice the moobot.c
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sample uses 185.244.25.219 as the Downloader [66]

2.3 Domain Name System

The DNS represents an important observation point to study the main
issues of current networks, including performance and security. It plays an
important role in Internet services. If DNS is disrupted, most communi-
cation on the Internet is actually stopped. Its main function is to convert
human-readable names (ex: example.com) into their corresponding IP ad-
dresses (ex: 93.184.216,34), and so it is considered the phonebook of the
Internet. This conversion is accomplished by retrieving information from
the corresponding DNS record.

Specifically, a DNS record is a set of information useful to map a domain
name to its IP address. The following are the major DNS record types:

• A record : maps a domain name to the corresponding IPv4 address.

• AAAA record : maps a domain name to the corresponding IPv6 ad-
dress.

• MX record : maps a domain name to the hostname of a server that
handles its e-mail.

• NS record : includes a list of authoritative nameservers of a domain
name.

• CNAME record : maps an alias name to a real or canonical domain
name.

• TXT record : provides text information related to a domain name.

Zone Files

The DNS records are classified in zones, each managed by a specific
organization [67]. A DNS zone file is a text file that includes all the DNS
records of a specific zone, according to a format specified in the RFC 1034
and 1035 [68, 69].

Specifically, at the top of the zone file, there are three main direc-
tives [70]:
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Figure 2.3. A visualization of the life-cycle of a domain, along with all
possible states

• TTL: Time to Live that corresponds to the time in seconds of the
validity of a zone resource record.

• ORIGIN: used to define a base name for domain names without a
terminating dot.

• INCLUDE: include an external file with additional directives.

These directives are followed by the Start of Authority (SOA) record.
It is always included in each zone file and it provides significant details
regarding the zone. More in detail, it includes the name of the zone, the
hostmaster email, the primary nameserver, and the zone serial number. In
addition, some timing metrics are provided, such as the time to refresh,
retry, expire and the minimum TTL.

2.3.1 DNS Namespace: Top Level Domains

The DNS namespace, first defined in RFC 1034 [69], is a hierarchical
inverted tree structure. The root of this inverted tree structure is referred
to as the DNS Root. The DNS Root explicitly delegates each individual
zone under it, typically referred to as a TLD (e.g., .com or .nl) to or-
ganizations, called registries, who are responsible for that branch of the
namespace, i.e., the TLD zone. Registries are typically responsible for
administering authoritative nameservers which provide nameservice for all
zones under the TLD. For instance, the registry for .com, Verisign, oper-
ates authoritative nameservers which provide nameserver delegations for
example.com (typically referred to as a second-level domain (SLD) or reg-
istered domain). Those nameservers have authority over all zones under
example.com (e.g., www.example.com). Each of these zones can further
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sub-delegate specific branches of the namespace under it.
The TLDs are typically categorized into two types: generic TLDs (Generic
Top-Level Domain (gTLD)s) and country-code TLDs (ccTLDs! (ccTLDs!)).
The gTLDs are further divided into two categories: legacy gTLDs (e.g.,
.com, .org, .net), and new gTLDs (New Generic Top-Level Domain
(ngTLD)s) (e.g., .xyz, .loan) introduced by ICANN in 2012 under the
new gTLD program [71, 72, 73]. On the other hand, ccTLDs!s are as-
signed to specific countries (e.g., .nl, .uk, .de). Since 2012, ICANN
introduced the new gTLD programme, removing many restrictions on the
creation of gTLDs [71, 72, 73]. The second gTLD category concerns these
new gTLDs (e.g., .xyz, .loan) [72].

2.3.2 Domain Name Resolution

Figure 2.4 shows the typical workflow of a domain name resolution.
Specifically, the client sends the request to the recursive DNS resolver,
which first checks if its cache contains a copy of the DNS record for that
domain name. If it contains it, it returns the IP address, otherwise, it
forwards the request to the DNS root. Again, the DNS root checks if
it has a copy of the DNS record. If it has it, it sends the IP address,
otherwise, it responds with the IP address of the top-level domain DNS
server. The TLD server verifies its cache and, if it does not possess the DNS
record, it sends the IP address of the authoritative nameserver. Finally,
the authoritative nameserver responds with the IP address of the domain
name.

Encrypted DNS queries In the last few years, to overcome the prob-
lem of unencrypted DNS resolution traffic, DoH and DNS over TLS (DoT)
solutions have been implemented [74]. In the former case, the DNS query
is forwarded on port 853 after establishing a TLS connection. DoH proto-
col, on the other hand, relies on HTTPS to perform a secure DNS query
resolution.
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Figure 2.4. Domain Name Resolution

DNS Recursive Resolvers

Nowadays, almost all ISPs provide a DNS recursive resolver. 3 How-
ever, a huge number of public or open DNS resolvers are available on-
line and provided for free [75]. The main difference is that the local re-
solvers resolve domain names only of the users connected to that network.
The public resolvers process DNS queries of any user from any location.
Many public resolvers are maintained by large companies, such as Google,
OpenDNS, and Norton. However, a high number of open and untrusted
DNS resolvers are available online because anyone may operate one or
more of them. Due to the lack of security measures, open DNS resolvers
are usually targets for attacks, such as DDoS attacks and DNS cache poi-
soning [75].

3https :// www.quad9.net / news / blog / what - s - the - difference - between -
recursive-dns-and-authoritative-dns-2022/

https://www.quad9.net/news/blog/what-s-the-difference-between-recursive-dns-and-authoritative-dns-2022/
https://www.quad9.net/news/blog/what-s-the-difference-between-recursive-dns-and-authoritative-dns-2022/
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2.3.3 Registries and Registrars

The registry is the organization responsible for the administration of a
TLD. Typically, the administration of TLDs is delegated to a single orga-
nization under contract with ICANN [76]. As part of recent transparency
initiatives, ICANN now also mandates that the registries operating a TLD
make available via the ICANN Centralized Zone Data Service (CZDS) the
TLD zone file — which includes a list of domains under the TLD and their
corresponding nameserver delegations. The TLD zone files obtained from
ICANN CZDS and other sources (Section 6.4) are the basis of this work.

The registries contract with registrars to provision new domains. Reg-
istrars interface between users looking to obtain domains and the registry
administering the domain. A registrant looking to obtain a domain name
under .com would contract with a registrar (e.g., Enom) who in turn inter-
faces with the registry operating .com, Verisign, to query the availability of
the domain name and then claim it on behalf of the registrant. On success-
ful purchase of a domain, the registrar is then responsible for the domain
until it expires or is transferred by the registrant. In addition to contracts
with the registry, registrars also have to be accredited by ICANN [77].

2.3.4 Domain Name Life-Cycle

The ICANN registry agreement contract that delegates administration
of the TLD also lays out in detail the expected life-cycle of a domain,
which includes a number of different possible states. Figure 2.3 provides a
visualization of the life-cycle of a domain name in a generic TLD zone 4,
and illustrates the following states [78, 79]:

• Available: A registrant can use a registrar to find the domain names
available for registration;

• Registration: The registrant can purchase the available domain
name for a period of at least a year. The registration term may be
as long as 10 years. The registrant has a 5-day Add Grace period

4Since ccTLDs! registries have wider latitude in how they administer their zone,
the life-cycle for domain names in ccTLDs! zones may differ significantly.
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during which to undo the registration and receive a refund for the
registration fee;5

• Expiration and Renewal: At the end of the registration term,
when a registration is set to expire, the registrant can choose to re-
new the domain name. On renewal, the registration period (and
consequently the expiration date) is extended. The registrant is al-
lowed two grace periods that start after expiration. The first of these
grace periods is the Auto-Renew period, which ranges from 0 to 45
days. The Auto-Renew period allows the registrant to renew the do-
main name without incurring a penalty;

• Redemption Period: After the Auto-Renew grace period ends,
the Redemption grace period starts. In this state, the domain is
generally deleted by the registrar, but it still exists in the registry’s
database. This period, usually 30 days, allows the registrant to renew
the domain name with an additional redemption fee;

• Pending Delete: If the registrant chooses not to renew, the domain
will enter the Pending Delete state, which is usually 5 days long and
during which it is not possible to renew the domain name;

• Released After deletion and release, the name can be re-registered.
This state is equivalent to the available state.

At registration, a registrant procures a domain for a period of at least
one year. However, the registrant may choose a longer registration period
— anywhere from one to ten years (but always at the granularity of a
year). Note, a registrant may transfer a domain following an initial ICANN
policy mandated lock of 60 days, but such a transfer requires purchase of
at least an additional year of registration beyond the original registration
period [78, 81]. Thus, a domain with a lifetime that is not at a granularity
of a year (modulo the ICANN mandated grace periods) indicates an action
taken by either a registrar or a registry in response to some complaint.

5After 2009 a mechanism was introduced to limit abuse of this no-cost grace period,
effectively eliminating domain tasting abuse [80].
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2.3.5 Early Take Down of Domains

There are a variety of reasons why a domain may not last the one-year
duration in the TLD zone file. While there are legitimate reasons for a
domain to disappear from the zone files before one year (e.g., a registrant
choosing to withhold their domains from being listed), in most cases the
disappearance is indicative of take down in response to illegitimate activity.
This illegitimate activity can run the gamut from payment fraud to coor-
dinating botnet activity. These take downs can be roughly bucketed into
three categories. The first is the “early take down”: a registrar discovers an
irregularity with the domain registration and takes down the domain. For
example, a registrar may discover the registrant used a stolen credit card
to purchase the domain. These domains are predominantly taken down
before they are involved in malicious activity. The second category is “ma-
licious domain take down”: a registrar or registry takes a domain down in
response to abuse reports [82].6 In this case, the domains are taken down
after they are involved in malicious activity. The final category is “co-
coordinated legal action”: law enforcement and other organizations seize
large numbers of domains. For instance, in 2011, the US Federal Bureau of
Investigation (FBI) seized domains related to Coreflood [84, 85]. Typically,
these take downs are targeted at Domain Generating Algorithm (DGA)s
associated with malware and botnets. Recently, ICANN made efforts to
empower registrars and registries to unilaterally take down domains in-
volved in ongoing security incidents [86, 87]. In this case, some domains
may be taken down by registrars or registries preemptively before they are
involved in malicious activity.

While short-lived domains (domains lasting for less than a year) are
indicative of malicious activity, it is important to not use these solely as a
metric for malicious activity. The “early” and the “malicious” take downs
are highly dependent on registrars. While the registrars are required to
look into abuse as per their ICANN contract, registrars are routinely over-
whelmed, at times by false reporting, leading to long resolution times [83]
which may result in domains not being taken down. Consequently, our
analyses rely on blocklists as an indicator of malicious activity.

6Note, as per the ICANN Registrar Accreditation Agreement, a registrar must main-
tain an abuse contact to receive abuse reports involving domain names sponsored by
the registrar [82, 83]



Chapter 3
Detection of Scanning
Activities with Big Data
Analysis

In this chapter, we address the problem of detecting port and net scans
in high-speed networks. We focus on traditional approaches, previously
abandoned due to their limited speed. We rely on Big Data analysis tech-
niques to speed them up and cope with current high-speed networks. The
chapter describes our approach and presents an experimental analysis in
terms of the detection performance and execution time of a threshold-based
algorithm on Apache Spark. We use real traffic traces from the MAWI
archive and MAWILab anomaly detectors to compare with our results.
The experimental analysis shows that i) the threshold-based algorithm is
already able to achieve detection performance higher than MAWILab (in
95% of the considered cases with the best threshold value), currently con-
sidered the gold standard in the field; ii) the execution time can be as low
as 25 seconds for a 24h traffic trace collected over a 10Gbps link, which
makes it usable also in real-time. Moreover, we bridge an important gap in
literature providing the research community with a newly labelled dataset,
validated using MAWILab and extended with other anomalies not detected
by it.
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3.1 Motivation

The pervasive use of the Internet has led to a significant increase in
the amount of traffic that crosses the network every day. On the other
hand, network security and the related, necessary step of traffic analysis,
are becoming more and more important [88, 89, 90, 91]. However, the
amount of data that has to be analyzed is higher and higher, especially in
current high-speed networks. Two typical steps attackers perform to find
vulnerable hosts on the network are port and net scan. Such anomalous
events represent a good fraction of all the anomalies in current traffic 1.
Detecting them represents an important yet difficult task due to the high
volume of traffic to analyze.

Network traffic can be analyzed at several layers of the protocol stack:
packet, flow, application, etc. At the flow level, packets relating to the
same TCP or UDP communication (e.g., all packets related to an HTTP
communication from and to a single host and a web server) are aggregated,
and a summary of such group of packets is considered. These summaries
can now be provided directly by network devices such as switches and
routers, and standard protocols have been defined for this aim (e.g., In-
ternet Protocol Flow Information Export or IPFIX [92]). Working at the
flow level seems the most promising approach for coping with the high
speed of current and future networks. However, even at the flow level, the
analysis of traffic for the detection of anomalies in high-speed networks
requires huge computational power or data reduction techniques as flow
records still represent a huge quantity of data.

In this chapter, we analyze traffic from high-speed networks using a
flow-level approach. The aim is to detect two of the most spread network
anomalies i.e., port scan and network scan (or simply net scan). In the
former case, an attacker probes a host (the victim) on various TCP/UDP
ports to find active and vulnerable services. In the latter case, the attacker
scans a group of victim hosts on a single or a small number of ports. Such
scanning activities are also associated with worms and botnets [93].

Port and net scans generate a real specific pattern in network traffic.
One of the most popular methods for detecting scanning activity is based
on the fan-in fan-out proportion of the hosts, i.e., counting the number

1 Mawilab Documentation: http://www.fukuda-lab.org/mawilab/documentation

http://www.fukuda-lab.org/mawilab/documentation
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of incoming and outgoing flows, and comparing their ratio with a thresh-
old [15, 14]. With this approach, the performance in terms of detection
capacity can be high, but the performance in terms of execution times can
be very low [94, 15, 14]. Sampling is typically applied to solve this prob-
lem, but this involves a significant loss of information. To overcome this
problem, we have used Big Data analysis techniques to analyze the whole
volume of traffic with a threshold-based algorithm in the shortest possible
time. In particular, we use the Apache Spark framework (Spark in the
following), which is comparable to Hadoop Map/Reduce but it provides
faster results working entirely in the memory.

We concentrated on a simple threshold-based detection algorithm, im-
plemented it in Spark, and performed a large experimental evaluation of its
performance by using several real traces. Our results in terms of execution
time show that we achieve a processing rate down to 25 seconds for a 24h
traffic trace collected on a 10Gbps link, which makes the approach able to
easily run in real-time, also in much faster links. Comparing our detection
performance with MAWILab 1, we show that our approach achieves fewer
false negatives, which is to say that we can uncover more anomalies than
the gold standard. For this reason, we also provide an improved dataset
publicly on the web with labelled traffic traces, including more port and
net scan events than the ones from MAWILab.

The new dataset is updated daily on our project website http://
spada.comics.unina.it.

3.2 State of the Art on Scanning Activity Detec-
tion

Network analysis is a decisive aspect of security because it helps to
identify potential threats within a network [88, 89, 90, 91]. Ascertaining
that scanning anomalies are still predominant in these years, we moved on
to conduct a study of the literary works to identify approaches for their
detection.

Specifically, scientific literature has been focusing on network and port
scans for several years. Generally, these anomalies are examined consider-
ing that a source of scanning activity shows a very high number of outgoing
connections [94].

http://spada.comics.unina.it
http://spada.comics.unina.it
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Zhao et al. [15] proposed an approach based on this consideration.
They also proposed a standard hash-based flow sampling algorithm to
cope with high connection speeds (10-40 Gb/s). Dainotti et al. [95] used
wavelet to detect network anomalies and to precisely locate their position
inside the traffic, while Balram et al. [96] proposed a technique based on
packet count through neural networks. Sridharan et al. [97] compared the
performance of Snort and Bro on backbone traffic and proposed a new
approach based on sequential hypothesis testing. Kim et al. [14] described
a scanning activity in terms of traffic models, working at flow-level and
detecting the scanning anomalies through the analysis of variations in the
models. Chan et al. [16] proposed two machine learning methods, useful for
the construction of models detecting network anomalies starting from past
behaviour. The approach described by Wagner et al. [98] is based on prob-
abilistic measurement of entropy, used to indicate regularity in traffic of
network flows. Traffic models used in the three last works can be sensitive
to changes in the type of traffic and network. Threshold-based approaches
have been widely and successfully used in the literature [99]. In this work,
we want to update these approaches to the current transmission rates and
network technologies, and without linking the analysis to a specific point
in the network. MAWILab team proposed a system to detect attacks or
anomalous events, applying a combination of four detectors with differ-
ent theoretical backgrounds (see Sec. 3.3.1). They calculate a measure of
distance from normal traffic using a combination of four techniques, each
based on different theoretical backgrounds: Principal Component Analy-
sis (PCA), Gamma distribution, Kullback Leibler (KL) divergence, and
Hough transformation. They then use such distance to detect anomalies
in MAWI traffic traces, publishing the result of the anomaly detection ev-
ery day, together with the related traffic trace. This important dataset
is currently used as a gold standard in the literature [17]. Casas et al.
proposed the combined use of a Big Data framework and machine learning
algorithms to achieve high performance in terms of speed of execution and
detection performance. They analyzed five types of anomalies. We focus
on the entire class of port and net scans and use a much simpler detection
algorithm. Moreover, we uncover that MAWILab - the ground truth they,
as many other works in the literature, use - is incomplete. This clearly
jeopardizes the results obtained. Therefore, we also propose an improved
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dataset, obtained through a combination of MAWILab and our algorithm.

3.3 The SPADA Algorithm

To detect port and net scan activities, we rely on a traditional ap-
proach by applying Big Data techniques. Specifically, we implemented
an algorithm, the flow chart of which is shown in Fig. 3.1. Input data
are flow-level information. In particular, we focus on the timestamp, the
IP addresses, and the transport-layer ports of each flow. For our experi-
ments, we derived the flow-level information processing the packet traces
from MAWI with a tool named TIE (Traffic Identification Engine) 2. This
tool combines the packets into flows using five fields: Source IP Address,
Destination IP Address, Source Port, Destination Port, Protocol. Then,
our algorithm divides the flow-level trace into time intervals of custom du-
ration (e.g., 30 seconds). Afterwards, we use Spark SQL to calculate the
ratio between generated and received flows in each interval and from each
IP address. This proportion is then compared with a threshold value.
The IP addresses whose proportion is larger than the threshold are marked
as anomalous (see Fig. 3.1).
It is worth noting that, even if very simple, the algorithm is still quite
robust. For instance, it will not mark as anomalous hosts that generate a
large amount of, even unbalanced, flows (e.g., servers serving popular ap-
plications) because a few responses from the other hosts (e.g., the clients)
are sufficient to re-balance the equation. As we will see in Sec. 3.4, this
simple algorithm is able to detect port and net scan anomalies with high
precision and recall and in a very short execution time if run on Apache
Spark. It is also worth specifying that the algorithm cannot detect other
types of anomalies or more sophisticated attacks by design in its current
formulation. But 1) it does not require traffic sampling or modelling, and
2) it is able to detect all types of port and net scans, unlike others that
work only for a subset of them [17].

2Traffic Identification Engine http://tie.comics.unina.it

http://tie.comics.unina.it
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Figure 3.1. Flow chart of the threshold-based algorithm.
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Using Apache Spark as Big Data technology

Apache Spark is a platform for fast and efficient distributed processing
of Big Data which has almost substituted Hadoop 3. It is very fast both
in data storage and processing because it supports in-memory processing,
i.e., analyzing data directly in main memory without recurring to mass
memories [100].

Spark can work in two different ways: Batch and Streaming. Both
modes 4 have been used in this work. Apache Spark allows data storage
in three different types of data structures: Resilient Distributed Dataset
(RDD), Dataframe, and Dataset. In this work, the DataFrame structure
is used, which is basically equivalent to a table in a relational database.
In fact, it is also possible to execute SQL queries on DataFrames.

Apache Spark supports different programming languages, e.g., Java,
Python, and Scala. We used Scala for two main reasons: i) Apache Spark
is built on Scala and so debugging is easier; ii) Scala is about 10 times
faster than others (e.g., Python) to analyze and process data due to the
presence of Java Virtual Machine.

3.3.1 Data Sources

We used several real traffic traces from the MAWI (Measurement and
Analysis of the Wide Internet) dataset, an archive of real traffic traces
provided by the MAWI Working Group 5.

Traces are captured since 2007, and they constitute a very rich dataset
that includes different applications and network conditions, and also com-
prise various known anomalies with global or local impact, periods of con-
gestion, and network reconfiguration. Traffic traces considered are cap-
tured on a transoceanic link between Japan and the United States of Amer-
ica. Each trace contains packets captured every day from 14:00 to 14:15 in
different locations inside the WIDE network. Traces of 24 and 48 hours are
also occasionally collected. A typical 15-minute trace contains 300k-500k
unique IP addresses [101]. We use traces captured at Samplepoint-F, a

3Welcome to Apache Hadoop!https://hadoop.apache.org
4Spark Streaming - Spark 2.3.0 Documentation. https://spark.apache.org/docs/

latest/streaming-programming-guide.html
5Mawi working group traffic archive. http://mawi.nezu.wide.ad.jp/mawi/

https://hadoop.apache.org
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://mawi.nezu.wide.ad.jp/mawi/
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link working at 1 Gbps with a current average load of 650 Mbps that has
largely increased in recent years [102].

The MAWI group also created the MAWILab project: a novel ap-
proach for network anomaly detection, also implemented in a system that
automatically runs every day on a traffic trace from the MAWI repository.
MAWILab defines a distance from normal traffic to recognize anomalies in
MAWI traffic traces. This distance is calculated through the combination
of four anomaly detectors based on different theoretical backgrounds: Prin-
cipal Component Analysis (PCA), Gamma distribution, Kullback Leibler
(KL) divergence, and Hough transformation. These detectors only work
on the IP header [103, 104].

The results of these detectors are combined to classify the anomalies
into four types:

• Anomalous - assigned to all abnormal traffic and should be identi-
fied by any efficient anomaly detector;

• Suspicious - assigned to all traffic that is probably anomalous but
not clearly identified by their method;

• Notice - assigned to all traffic that is not anomalous, but has been
reported by at least one detector;

• Benign - all the rest of the traffic where no detector has labelled it
as abnormal.

MAWILab provides the results of the analysis in two files, Anomalous
and Notice. After detecting anomalous behaviours, MAWILab applies a
heuristic to assign a label related to the type of anomaly. Possible labels
are represented in a tree-based taxonomy, where a root is a generic event
and nodes contain an anomaly label.

In the first part of this work, we used the MAWILab archive as a ground
truth [105] to validate our method (see Sec. 3.3.3). Afterwards, we verified
that many anomalies were not detected by MAWILab, and built a new
dataset on which we performed further analysis (see Sec. 3.4.2).

It is worth noting that the MAWILab database helped and still helps a
lot of researchers to evaluate the performance of novel anomaly detectors.
The availability of traffic traces is already scarce. Labelled traces, including
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an indication of anomalies inside them, are very very rare in our research
community, and this is a great obstacle to further studies on this topic.
For this reason, we decided to also evaluate MAWILab accuracy, and we
finally managed to improve it. In particular, our dataset [106] includes
a larger set of port and net scans not detected by MAWILab, which we
believe is an important contribution to the research community.

3.3.2 Scanning Activities Over Time

Our first question in this work was if net and port scan anomalies are
still actual today, so to justify further studies on this topic. To answer
this question, we have conducted a longitudinal analysis of the number of
anomalies detected by MAWILab over time. We collected and analyzed
data regarding the anomalies detected by MAWILab in the last years and
dissected them according to the type of anomaly. Fig. 3.2 shows the box
plot of the ratio of scanning anomalies over the total number of anomalies,
for the years from 2007 to 2017: the x-axis represents the year, and the y-
axis represents the percentage of port and net scans over the total number
of anomalies detected by MAWILab. The results are aggregated per year,
starting from the information available day by day. The graph presents a
growing trend, with a large increase in the ratio starting from 2014. This
result indicates that the scanning anomalies are increasingly present in the
traces, an increase that has been evident especially in recent years. This
behaviour motivates our choice to focus on these types of anomalies and
calls the research community for always updated data, techniques, and
tools for port and net scan detection.

3.3.3 Methodology

The execution of the anomaly detection algorithm, described in Sec. 3.3,
provides in the output the IP addresses that are sources of port or net
scans. In the first part of our experimentation we have used MAWILab
as ground truth, i.e., we have compared the addresses, detected by our
algorithm, with the ones in the Anomalous and Notice files provided by
MAWILab.

The IP addresses detected by our algorithm that are also in one of
these two files are considered true positives. The results of this analysis
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Figure 3.2. Ratio of scanning over all anomalous activities over time during
the last 11 years.

are reported in Sec. 3.4.1. We considered as false positives the ones de-
tected by us and not by MAWILab and false negatives the ones detected
by MAWILab and not by us. For our positives, besides comparing with
MAWILab, we also manually verified that such IP addresses are actually
the source of an anomaly. This analysis evidenced the limitations of MAW-
ILab: several anomalies we detected were not present in both MAWILab
files (i.e., were also not considered suspicious by MAWILab). As explained
in more detail in Sec. 3.4.2, we confirmed this result with several manual
inspections and automatic processing of the pcap files. Starting from this
important result, we constructed a new dataset extending MAWILab with
other anomalous flows and used such dataset as ground truth for another
experimental analysis, reported in Sec. 3.4.2.

The detection performance of our anomaly detector is evaluated using
two main metrics: Recall, also called True Positive Rate, and Precision.
Several traffic traces have been analyzed in our experimentation. Results
reported in the following refer to 60 traces, characterized by a duration of
15 minutes and collected from December 2017 to September 2018. Similar
results have been obtained on the other traces. We have carried out mul-
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tiple tests on different values of the threshold ranging from 20 to 200. A
sensitivity analysis for this important parameter is reported in Sec. 3.4.3.
Most of the following results are then presented for the three threshold
values that are more interesting: 50, 100, and 200.

3.4 Experimental Results

In this section, we present the experimental results of the proposed
approach. We start with a comparison of the detection capability of our
system with MAWILab. Next, we present a new dataset that includes the
MAWILab anomalies and those found by our approach. We also conduct
a threshold sensitivity analysis. Finally, we perform a speed analysis of
our system.

3.4.1 Using MAWILab as a Ground Truth

In this section, we analyze the results we obtained using MAWILab
as a ground truth. In particular, we used the Anomalous and Notice files
from MAWILab and considered only scanning anomalies, which are the
ones our detector has been designed for. All anomalies that are not part of
scanning activities have been removed from MAWILab results (e.g., nor-
mal events, Denial of Services, Distributed Denial of Services). Since the
aggregation of packets into flows does not work well for ICMP, due to
unbalanced reduction compared to TCP/UDP, ICMP anomalies are not
considered.
Fig. 3.3 shows the values of the Recall and Precision obtained. In par-

ticular, we report the box plot of the precision and recall obtained for all
the traces considered. Such figures illustrate the median value of the re-
call ranges from about 0.65 to about 0.4 increasing the threshold value.
The median value of the precision ranges from 0.3 to 0.65 increasing the
threshold value. Using a threshold value of 100 we can obtain about 0.55
for the recall and about 0.5 for the precision.

These results may seem to indicate that a threshold-based approach
does not allow to obtain satisfactory results and cannot be used to detect
such anomalies. We then analyzed the false positives in more detail to
validate this hypothesis. We performed a manual inspection of the pcap
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Figure 3.3. Recall and Precision of the threshold-based approach using
MAWILab as ground truth.

trace starting from the false positives. Such inspection revealed that most
parts of the false positives were actually a source of scanning activity and
MAWILab was unable to detect them. For example, we noticed that sev-
eral IP addresses generate flows with one or two packets, mostly with the
TCP SYN and ACK flags set, and they receive zero or a very small number
of answers. In addition, the number of useful bytes, i.e., bytes of the TCP
payload, is usually zero. These results have led to reconsider them as IP
addresses generating port and net scans.
We confirmed this result using several traces. An important implication
of this result is that we can not consider MAWILab as a ground truth as
done up to now in different works in the literature.
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3.4.2 Constructing and Using the New Ground Truth

We built a new dataset expanding MAWILab with the IP addresses
that have been found abnormal. In particular, based on the results of
the previous analysis, we implemented two heuristic rules to complement
MAWILab results for all the cases in which a source of the scanning activity
was not detected by MAWILab.

IP addresses that are false positives and trigger such rules are reinte-
grated into the true positives. The rules are the following: i) An IP address
is a generator of Net Scan if it generates at least 20 flows towards different
IPs of the same subnet; ii) An IP address is a generator of Port Scan if
it contacts the same destination IP address on more than 10 ports. Using
these rules on several traces, we have built a new dataset to evaluate the
performance of the threshold-based algorithm detector. This new dataset
is obtained by the union of MAWILab results and the list of IP addresses
that are considered a source of scanning activities after the application of
the rules implemented.

In the experiments described in the following, we compared MAWILab
with the threshold-based approach and used the new dataset as a ground
truth. Fig. 3.4 shows the difference between the recall of the threshold-
based algorithm and the one of MAWILab as a function of the different
traces analyzed. The figure shows that the recall of the former algorithm
is larger than the one of MAWILab in 95% of the cases when the threshold
value is 50 and in 33% of the case with a threshold value of 100. When
we increase the threshold value, MAWILab starts to obtain better perfor-
mance in terms of Recall.

The values of recall for the threshold-based algorithm are reported in
Fig. 3.5 (a). The precision of MAWILab is clearly equal to 1 because there
is no false positives.Fig. 3.5 (b) shows the precision of the threshold-based
algorithm. We can see that for the intermediate threshold value (i.e., 100)
the precision is larger than 0.85 in about 70% of the cases, and the median
value is about 0.88. Higher precision values can be obtained with higher
threshold values.

Comparing the results in Fig. 3.3 and Fig. 3.5 we can see the improve-
ment of the performance of the threshold-based approach with the new
dataset. Moreover, we can say that such a very simple approach achieves
very high performance, higher than MAWILab which uses a much more
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Figure 3.4. Difference between the Recall of the threshold-based approach
and the one of MAWILab using the new dataset as ground truth.

complicated and therefore less observable approach.
Summarizing, in this section, we have shown that a very simple detec-

tion algorithm can obtain an even better Recall than MAWILab (in 95%
of the cases with a threshold of 50 and in 33% of the cases with a threshold
of 100), and this is because MAWILAb is not able to detect all scanning
activities in MAWI traces.

3.4.3 Analysis of Sensitivity to the Threshold

Fig. 3.6 shows the average values of recall and precision obtained for
several threshold values ranging from 20 to 200 using the new dataset as
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Figure 3.5. Recall (a) and Precision (b) of the threshold-based approach
using the new dataset as ground truth.

a ground truth.
This figure shows that the best threshold value depends on which metric

you want to maximize. For example, if false positives are annoying for
human intervention in the security pipeline, a good threshold value is about
125. For such a value, an average precision of about 0.9 can be obtained.
On the other side, if false negatives are more of a problem, 50 is the best
threshold value to have a high recall without losing too much precision.
An optimal value for both metrics is 80, which allows obtaining an average
recall and precision of about 0.85.

3.4.4 Speed Analysis on Amazon EMR

We carried out several experiments on Amazon Elastic Map Reduce6

to analyze the execution time of the algorithm using various cluster con-
figurations and to understand the impact of the different variables under
our control (number of workers, resources per VM, availability zone) on
this important performance parameter.

For this analysis, we have chosen MAWI traffic traces that were cap-
tured for 24 hours on the Samplepoint-G, the main IX link of WIDE to
DIX-IE with a speed link of 10 Gbps. On Samplepoint-G, MAWI provides
two 24-hours traces (from the 9th of May 2018 and the 9th of April 2019),

6Amazon EMR – Amazon Web Services https://aws.amazon.com/it/emr/

https://aws.amazon.com/it/emr/


40 Chapter 3. Detection of Scanning Activities with Big Data Analysis

20 40 60 80 100 120 140 160 180 200
Threshold

0.5

0.6

0.7

0.8

0.9

Performance trend with different threshold values

Recall
Precision

Figure 3.6. Average Recall (blue) and Precision (red) using the new dataset
as ground truth for several threshold values.

where the first one is characterized by a smaller average bit rate with re-
spect to the second one.

Three Cloud Availability Zones have been considered: Ohio (US), Ire-
land (Europe), and Tokyo (Asia Pacific). We have instanced four configu-
rations in each of them as shown in Tab. 3.1. Fig. 3.7 and Fig. 3.8 show
the execution times obtained by analyzing the two 24-hour traces in each
configuration of the three availability zones.

Specifically, Fig. 3.7, related to the trace collected on the 9th of April
2019, shows that the two availability zones with the best execution times
in terms of average and variance are Ohio and Tokyo. Ireland, on the
other hand, has high average execution times and high variance. Moreover,
OHIO and Tokyo show a clear improvement in performance as computing
resources increase. Ohio has better results than Tokyo for this trace.

We can observe the opposite behaviour for the trace collected on the
9th of May 2018, which results are reported in Fig. 3.8. Also, in this case,
Ireland has low execution times in terms of both average and variance.
Like in the previous case, there is an improvement in performance when
computing resources increase, although less marked than in the previous
case. A significant result of this analysis is the best average time of execu-
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(a) Ohio - USA

(b) Ireland - Europe (c) Tokyo - Asia Pacific

Figure 3.7. Execution Time on Amazon EMR - first trace

tion of our algorithm on a 24-hour track, processed in about 25 seconds.
This average value is obtained in the second track in the Availability Zone
of Tokyo with the configuration m5.2xlarge.
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(a) Ohio - USA

(b) Ireland - Europe (c) Tokyo - Asia Pacific

Figure 3.8. Execution Time on Amazon EMR - second trace

Table 3.1. Configurations of EMR Clusters

Configuration #Master #Worker vcpu Memory (GiB)
1 m5.xlarge 1 2 4 16
2 m5.xlarge 1 4 4 16
3 m5.2xlarge 1 2 8 32
4 m5.2xlarge 1 4 8 32
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3.5 Concluding Remarks

In this chapter, we have first shown that port and net scans, which are
well-known malicious activities, are still increasingly spread in recent years.
Several research efforts are currently put into complex techniques for anomaly
detection, such as deep learning. These techniques can provide good detec-
tion performance, but their observability is limited. Our idea, instead, was
to recover traditional detection approaches and resort to novel computing
frameworks for obtaining the performance required by current network
traffic.
In particular, we used a threshold-based algorithm, working at flow-level.
The basic idea of this algorithm is to recognize malicious hosts looking
at the ratio of their fan-in and fan-out (i.e., the number of outgoing and
incoming flows). Though very simple, this approach can obtain good de-
tection performance, but it has scarce performance in terms of processing
time. To cope with this problem, exacerbated in high-speed networks, we
used Big Data Analytics and Apache Spark in particular. We conducted
an experimental analysis with several real traffic traces from the MAWI
archive. We also used MAWILab anomaly detection results as a ground
truth in the first part, and a comparison in the second one, after recogniz-
ing that MAWILab fails to detect several scans.
We first evaluated the precision and recall of the threshold-based algo-
rithm using MAWILab as a ground truth. Results were not satisfactory,
in particular in terms of false positives, and pushed us to investigate more
in deep. Through manual inspections of several traffic traces, we verified
that such positives were actually true rather than false. This drove us to
create a new dataset starting from MAWILab and complementing it with
several other anomalies identified through heuristic rules devised thanks
to the analyses described above.
We then evaluated the performance of the threshold-based algorithm us-
ing the new dataset as ground truth and compared obtained results with
the ones from MAWILab. This analysis shows that the simpler algorithm
can easily achieve higher recall than MAWILab, which is already based
on much more complex algorithms. We executed the algorithm also on
Amazon EMR to analyze the average execution time on three Availability
Zones (Ohio, Ireland, and Tokyo) and four different cluster configurations.
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We showed that the fastest availability zones are Ohio and Tokyo and that
our algorithm can process 24h of traffic collected over a 10Gbps link in
about 25 seconds in the Tokyo Availability Zone with an m5.2xlarge con-
figuration.
Finally, we also set up a system that processes the traces available from
MAWI every day and publishes a new dataset, including a comparison
with MAWILab [106].



Chapter 4
A Study of Mirai Botnet over
a Six-year Period

In this chapter, we investigate the botnet scan as a new form of port
scan that has become predominant on the Internet. As explained in Sec-
tion 2.2, botnet scans involve a network of hijacked network devices to
identify and compromise vulnerable devices. Specifically, we present a six-
year study of the Mirai botnet scans, one of the most popular botnets. To
this end, TCP SYN packets that verify the Mirai signature are analyzed.
The botnet master code, indeed, involves sending SYN packets to random
IP addresses by setting the TCP sequence number equal to the destina-
tion address (i.e., TCP.seq==IP.dst). In this chapter, we prove that the
Mirai signature is still implemented by malicious actors. The number of
hijacked devices involved in the scanning phase, as well as the number of
TCP SYN packets, has increased over time. We also show that cybercrim-
inals always target port 23, followed by port 2323, which receives fewer
requests. Instead, ssh trends decrease over time before increasing again in
2022. Finally, we identify some ports that were never contacted until 2019
but received a large number of Mirai-type TCP SYN packets in 2021 and
2022 (e.g., 9530, 5501, 7547, 5555, and so on), which were associated with
new variants of the Mirai botnet.
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4.1 Motivation

Nowadays, the number of devices connected to the network is contin-
uously growing, reaching a value higher than three times the global pop-
ulation by 2023 [107]. With the rapid spread of IoT devices, the number
of malicious attacks has increased, specifically targeting networked devices
and sensors [37]. Because of the heterogeneity and lack of prompt se-
curity updates of IoT devices, they are targeted by malicious actors for
creating large-scale botnets. The latter can be used to perpetrate DDoS
attacks [1], mine cryptocurrency [108], steal information and create Botnet-
as-a-Service [109] business models. Particularly, one of the most impactful
botnets is Mirai, detected for the first time in August, 2016 [1, 39, 110, 40].
It is a type of malware that infects IoT devices (e.g., routers, security cam-
eras) and turns them into bots that can be controlled remotely. The strik-
ing features of this botnet are its spreading speed and the huge amount of
traffic that may be generated during DDoS attacks [47, 111]. Mirai bots
send only TCP SYN packets without performing the 3-way handshake,
improving the speed and scalability of the scan [112]. Moreover, the Mi-
rai source code [44] reveals that cybercriminals implement a signature to
perform Mirai botnet scans. They set the TCP sequence number equal to
the IP destination address (i.e., TCP.seq == IP.dst).
A considerable amount of literature has been published on the detection of
the Mirai botnet. Most of them have focused on using data from passive
measurements as network telescopes [113, 114, 115] and machine learning
to examine activities of botnets [116, 117, 118].
In this chapter, we provide an overview of a botnet architecture, focusing
on the Mirai one, explaining its workflow and its features. We conduct an
in-depth state-of-the-art study to provide a broader view of the techniques
used over the years. Moreover, we explore the Mirai botnet evolution over
six year-period by looking at the features of the TCP SYN packets that
verify the Mirai signature (Mirai-type in the following). We analyze the
changes in the number of source hosts that initiate the scanning activities,
the TCP SYN packets they generate, and the relative destination ports.
The latter are significant to understand how Mirai has evolved its targets
over time and the occurrence of its variants.
In contrast to earlier findings [45] in the literature, we show that the Mirai
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signature is applied over years to perform scanning activities and detect
new possible victims. More in detail, by looking at the number of TCP
SYN packets and the related source IP addresses, we first detect a small
number of Mirai scan attemps in the months prior to the first detection.
Then, we show a decrease in the number of Mirai scans between the end of
2017 and March, 2020 and then get a further increase until 2022. We also
investigate the targeted destination ports, revealing that telnet port 23 is
the most contacted over the years. Nevertheless, we show also that Mirai
relies not only on telnet and ssh ports. We see evidence of new variants in
the network traffic traces we analyzed.

4.2 State of the Art on Botnets

Since 2000, botnets have been the source of the majority of security
failures on the Internet, and they have been used to hold the most infa-
mous types of cyber attacks such as spamming, phishing, and DDoS. A
comprehensive review broadly discusses the botnet problem, summarizes
the previously published studies and supplements these with a wide rang-
ing discussion of recent works and solution proposals spanning the entire
botnet research field [26]. In particular, previous research has found that
between 100 and 150 million computers were already compromised and
part of a botnet at the start of 2007 [119, 120]. Also, in the year 2000, the
first botnet to gain public attention was a spammer who sent 1.25 million
e-mails in less than a year [121]. Other botnets that had a significant im-
pact include:

- Hydra (2008), an open source botnet framework that aimed to in-
fect routers using a built-in list of passwords with the purpose of
performing DDoS attacks [122, 123].

- Aidra (2012), IRC-based mass router scanner exploits, also used to
mine cryptocurrencies, looking for telnet ports to test with default
credentials [124].

- BASHLITE (2014) is a malware that uses a bash vulnerability to
infect Linux-based IoT devices. Most of them were video recorders
(DVRs), cameras, routers and Linux servers [125].
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- Remaiten (2016) is an IRC Bot backdoor that combines the DDoS
attack of a Linux malware, Tsunami, and BASHLITE [126].

- Linux/IRCTelnet(2016) results from a combination of Aidra (root
code), Tsunami (IRC protocol), BASHLITE (infection techniques),
and Mirai (credential list) [127].

- Persirai (2017) adopts the Universal Plug and Play (UPnP) protocol
to spread the malware to other IP cameras [128].

A brief comparison of botnet detection techniques is provided in [29]:
in the following paragraph, we report studies that follow an approach using
data from passive measurements, darknets, network telescopes and com-
plex machine learning to examine the activities of botnets, in particular
Mirai.
A network telescope or darknet is an internet system that allows users to
observe various large-scale Internet events. Darknets or network telescopes
are specific sources of traffic data, specifically a monitoring system con-
nected to a network of IP addresses, most of which are unused [129].

Torabi et al [113] exposed a significant 26 thousand compromised IoT
devices "in the wild," with 40% being active in critical infrastructure.
Authors used the analysis of a Network Telescope to infer the type of ma-
licious activity carried out by more than 25k IoT devices obtained through
Shodan, a search engine for Internet-connected devices [130]. Pour et al.
[115] also presented correlated data coming from a Network Telescope and
further information through active measurements detecting more than 14K
malicious IoT devices and the attack vector characteristic of many Botnets.
Dainotti et al. [131] used the traffic monitored by a Network Telescope
correlating it with two other public data sources, to analyze a type of hor-
izontal scanning of a particular botnet. Fachka utilizes this kind of traffic
to create a model for inference and prediction of DDoS attacks [132]. Araki
[114] used a peculiar solution to obtain aggregated data and cluster bot-
nets by highlighting their characteristics in relation to the hosts that have
contacted. Gioacchini et al. studied network traffic to darknets and identi-
fied a methodology for grouping IP sources with related activities to detect
new attacks and scanning patterns [133].

Lastly, Network Telescope payloads can be analyzed using a custom
Deep Packet Inspection (DPI) technique to dissect and analyze the packets
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and machine learning to classify the sources behind the campaigns and
identify threat actors such as botnets, malicious attackers, or researchers,
and establish a methodology to rank campaigns to prioritize our analysis
[134].

Machine learning techniques in fact are often used as a detection method
for botnets:

- Nakip et al. have studied the Mirai botnet developing a detection
method using Neural Network to intercept SYN attacks [116]

- Cruz et al. proposed a solution to find Mirai in IoT with Machine
Learning [117]

- Shao et al. offered a near real-time solution to process traffic data
and detect malicious traffic through predictive algorithms[135]

- Alauthman et al. demonstrated a technique that combines reinforce-
ment learning and a traffic reduction method to create a malicious
traffic detection mechanism that constantly learns new features and
achieves detection rates above 98% [136]

- Wang et al. studied a methodology to detect traffic from existing
botnets and emerging ones using a detection model that performs a
hybrid traffic analysis based on machine learning algorithms [137]

- Almutairi et al. proposed a combined detection technique that blends
traffic flow and host activity analysis to detect emerging botnets by
distinguishing malicious from legitimate traffic [118]

- Karthik et al. designed an innovative algorithm to prevent high-rate
attacks by the Mirai botnet [138]

- Jaafar et al. presented a machine learning-based mechanism for de-
tecting infected IoT devices which analyzes the network traffic and
power consumption [139]

To perform early detection the aforementioned papers are mostly verifying
packet size, inter-transmission times of the packets and the total number of
packets that are transmitted in a time window of a certain duration. Few
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papers present solutions based on fingerprinting or early signature detec-
tion of Botnet as Mirai. Only one interesting work proposes an adaptive
network layer that uses characteristics of the malware behavior to scan
the Mirai botnet for their signature: TCP packets in fact appear to be
instantiated using the same value for the destination IP address and TCP
Sequence number. The network behavior of both Mirai and Bashlite sam-
ples were analyzed and scanned for botnet signature for a period of 24 h
[140].

4.3 Data Sources and Methodology

Data Sources We rely on real network traffic traces provided by MAWI
(Measurement and Analysis of the Wide Internet) Working Group1. As
for port and net scan analysis, Section 3.3.1, we select the traces captured
at Samplepoint-F, a link working at 1 Gbps with a current average load
of 650 Mbps that has vastly increased in recent years [102]. We analyze
the MAWI traces from March, 2016 (i.e., a few months before the first
Mirai detection [39]) until November, 2022. However, because of the large
number of traces to be analyzed over six years, we investigate two traffic
traces per month randomly. The idea was to have more variability in the
dataset, without being biased by a specific day of the week or month.

Methodology IP addresses of MAWI network traffic traces are anonymized
using applying Crypto-PAn algorithm [141]. Moreover, the mapping be-
tween the anonymized and original IP address is consistent only within
a single trace for daily traces. To overcome the problem of analyzing
anonymized IP addresses, we pre-process MAWI traces following the method-
ology presented by Blaise et al. [142]. The authors propose a solution to
detect botnets in the scanning and fingerprinting stages. The approach
consists of generating an anomaly detection system using an algorithm
based on a z-score measure. We rely on their solution to de-anonymise
IP addresses belonging to 9 subnets. Afterwards, we filter all the TCP
SYN packets that verify the Mirai signature (TCP.seq==IP.dst), in order
to extract all the relevant features for our analysis.

1https://mawi.wide.ad.jp/mawi/
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4.4 Mirai Botnet Evolution From 2016 Until 2022

In this section, we illustrate our experimental results. We start with an
overview regarding the evolution of the Mirai occurrences over a six-year
period (2016-2022) in the MAWI dataset. We inspect the TCP SYN pack-
ets that verify the Mirai signature, the relative source hosts that initiate
the Mirai scans and the destination ports involved in the scanning process.

As explained in Section 2.2.2, Mirai botnet scans can be identified by
checking if the destination IP address matches the sequence number in a
TCP SYN packet (i.e., TCP.seq == IP.dst). We investigate this pattern
in 159 traces of the MAWI dataset from 2016/03 to 2022/11. Specifically,
as described in Section 4.3, we analyze two traces per month to cope with
the problem of a large amount of data to be processed.
TCP SYN packets and source hosts. Figure 4.1 shows the source IP
Mirai-type addresses and TCP SYN packets rates over time.
The first interesting observation is related to the months prior to Mirai first
detection (i.e., August, 2016 [39]), where the rates of the SYN packets and
source IP addresses are approximated to zero. However, these low but not
negligible values (e.g., in March, 2016: 221 Mirai-type SYNs of 1.2M total
SYNs and 62 Mirai-type source hosts of 1.2K total source hosts), may in-
dicate a few Mirai scanning attempts before the first real attack. Another
possibility is due to TCP SYN packets that randomly have a TCP se-
quence number that starts as one of the subnets monitored by Mawi. The
first spike occurs in August, 2016 (e.g., 346K Mirai-type SYNs of 703K to-
tal SYNs, and 95K Mirai-type source hosts of 260K total source hosts on
08/15/2016), confirming the first detection of the Mirai botnet [39].The
spread of the Mirai botnet is rapid from August until December, 2016,
peaking in November with nearly 5.7M of 7.5M SYNs and 193K of 245K
source hosts. Proof of this, several articles report an increase in this mal-
ware in November, 2016 [143, 144]. Beginning in December, 2016, the
number of Mirai packets and the related source hosts gradually decrease
over time, reaching a near-steady trend from November, 2017 until March,
2020. The trend of the source Mirai-type hosts is also confirmed by Anton-
akakis et al. [39]. From March, 2020 (i.e., , 05/29/2020), the trends show
a marked decrease in the rate of SYN packets. Inspecting the dataset,
we notice that this decrease is due to an increase in the total number of
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SYN packets while the Mirai-type ones are roughly unchanged. Another
interesting finding is related to the increase of source IP addresses in that
period: a higher number of Mirai-type is involved in the Mirai botnet
scans with a lower amount of total ones. In addition, we observe that,
as of February, 2022, one of the subnets analyzed is no longer present in
MAWI’s traffic traces. Therefore, the number of malicious or infected in-
creases. Consequently, our findings show that in 2022 the number of Mirai
scans is higher.

In summary, we show that cybercriminals are still implementing the
Mirai signature in the scanning phase, in contrast with what other works
have reported [45]. In addition, we show how the number of hijacked
devices involved in the scanning phase has increased over time.
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Analysis of ports involved. To further investigate the scanning
patterns of the Mirai botnet, we look more in-depth at the TCP SYN
Mirai-type packets by examining the destination ports to which they are
directed.
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As described in Section 2.2.1, during the scanning phase of the Mi-
rai workflow, cybercriminals exploit vulnerabilities principally in ssh (22,
2222) and telnet (23,2323) ports. Figure 4.2 shows the number of TCP
SYN Mirai-type packets received on telnet and ssh ports over six-year pe-
riod. What is striking in this plot is that before and during the first Mirai
spread (i.e., August, 2016), port 23 is by far the most scanned, followed
only by port 22 with far fewer requests (around 10 requests) received on
only a few days. Since September, 2016, also the 2323 port has started to
be targeted as well. In particular, the trends of the two ports related to
telnet - 23, 2323 - follow almost the same pattern, except that port 2323
has a smaller order of magnitude of requests. This is because the scanner
module (scanner.c) of the Mirai source code is implemented to send an
SYN packet to a random address one time out of ten to port 2323, and
the remaining nine times to port 23.
Moreover, Figure 4.2 shows that the number of TCP SYN packets redi-
rected to the ssh - 22, 2222 - ports peaks in September, 2017. As for telnet
port trends, ssh ports follow almost the same pattern, except that port
2222 has fewer requests. In contrast to the telnet ports, from November,
2019 both ssh port trends started to decline rapidly over time, indicating
that the cybercriminals tested the vulnerability of other ports. However,
beginning in July, 2022, the two ports were targeted again, especially port
22. To inspect the reason behind the rapid decline in the trends related to
the ssh ports, we examine the number of destination ports of TCP SYN
packets, shown in 4.2. More specifically, we analyze ports that receive at
least two TCP SYN to exclude cases where randomly the TCP seq matches
the IP dst. The trend is in contrast to previous studies that claimed that
the Mirai botnet scans were targeted more to telnet and ssh ports [39].
Further on, as of November, 2018, the plot shows a peak and a subsequent
increase in ports receiving at least 2 TCP SYN packets. Fewer ports, in-
stead, using the Mirai signature are contacted as of January, 2021.
To further investigate the ports adopted in the scanning phase and the
increase in the number of ports contacted as of the end of 2018, we fo-
cus on the most 15 contacted ports per year. Confirming the trends in
Figure 4.2, the telnet ports 23, 2323 - are in the first three positions ev-
ery year. Another interesting observation is related to the considerable
increase in requests for ports 37215 and 52869 at the beginning of 2018,
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shown in Figure 4.4. Also, these two ports had never been contacted in
previous years in MAWI traces we have analyzed. These two ports may be
related to the evolution of Satori, which started its propagation at the end
of 2017 [57, 56]. In this plot, we show that, except for a decrease around
a few months in 2021, this variant is still active and adopts the Mirai sig-
nature. Moreover, we found that port 443, related to HTTPS services, is
the port most contacted in the months prior to the first Mirai detection
(August, 2016), also more than the telnet ports. To the best of our knowl-
edge, this analysis is the first to exhibit this outcome. In addition, we see
a significant increase in the TCP SYN Mirai-type packets for ports 80,
8080, 8081, and 8088 and other ports related to the HTTP services at the
beginning of 2018. This result is also confirmed by the evolution of Repair
and Wicked botnets, starting their propagation at the end of 2017[61, 62].
In our dataset, we see also evidence of the TR-069 and Android Debug
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Figure 4.2. Number of SYN Mirai-type packets on Telnet and SSH ports

Bridge Mirai variants [145], by looking at the ports 5555 2 and 75473. We
do not report their trends for brevity. More in detail, port 5555 receives

2Working port of ADB debugging interface on Android device.
3Port associated with TR-069 - application layer protocol for remote management

of end-user devices.
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a considerable number of TCP SYN Mirai-type over six years period. In-
stead, port 7547 records a decrease from 2017 and 2021 and a significant
increase in 2022. In the end, we find that ports 5501 and 9530 starts to be
targeted at the end of 2020, getting more and more requests in 2021 and
2022. The considerable number of TCP SYN packets to port 5501 may
be related to the scans carried out by Priority Threats actors reported by
Juniper Networks4. The huge number of scans to the 9530 port, instead,
may be related to the LeetHozer botnet5.

In summary, we show that Telnet port 23 is the most contacted one
over a six-year period. In addition, as of the end of 2018, multiple ports
have been targeted related to new variants of Mirai.
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4https://blogs.juniper.net/en-us/security/priority-threat-actors-adopt-
mirai-source-code.

5https://blog.netlab.360.com/the-leethozer-botnet-en/

https://blogs.juniper.net/en-us/security/priority-threat-actors-adopt-mirai-source-code.
https://blogs.juniper.net/en-us/security/priority-threat-actors-adopt-mirai-source-code.
https://blog.netlab.360.com/the-leethozer-botnet-en/
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4.5 Concluding Remarks and Limitations

In this chapter, we conducted a study of Mirai botnet scan detection
over a six-year period. Specifically, we inspected MAWI network traffic
traces by examining the Mirai signature (i.e., TCP.seq == IP.dst). We
showed that the Mirai signature is still implemented by malicious actors,
in contrast to what was reported by other works [45]. Particularly, we see
an increase over time in the number of hijacked devices involved in the
scanning phase as well as the number of TCP SYN packets. Sticking to
the Mirai code, we looked at the number of requests Mirai-type for telnet
(i.e., 23, 2323) and ssh (i.e., 22, 2222) ports. We show that port 23 is
always the most targeted by cybercriminals, followed by 2323 with fewer
requests. Trends in ssh, instead, decrease over time and increase later in
2022. In addition, we identified some ports that were never contacted until
2019 but with a large number of TCP SYN Mirai-type packets in 2021 and
2022 (i.e., 9530, 5501, 7547, 5555, etc.), related to new variants of Mirai
botnet.

The first limitation of our interference ability was that the IP addresses
of MAWI datasets were anonymized and, consequently, it was not possible
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to analyze how the IP addresses of hijacked devices change over time.
Another limitation is related to the possibility of analyzing only 9 subnets.
Indeed, as we explained in Section 4.3, to check the Mirai signature in the
TCP SYN packets, we performed the operation of de-anonymization by
applying the method used by Blaise et al. [142]. Finally, the duration of
the network traffic trace is only 15 minutes per day. Therefore, we showed
only a portion of Mirai’s traffic during the day. Nevertheless, we believe
that the investigation of Mirai scans by looking at the Mirai signature can
help network operators to reduce the number of harmful devices. Future
studies should aim to replicate results in a larger dataset, looking at how
malicious IP addresses change over time.





Chapter 5
Local and Public DNS
Resolvers: Timing and
Security Performance

In this chapter, we analyze the behaviour of DNS resolvers provided by
three main Italian ISPs and contrast them with open, public resolvers pro-
vided by Google and Cisco. We consider two aspects. The first one is the
time spent performing a query and obtaining a response from the resolvers,
which has a considerable impact on the performance of most applications
on the Internet. The second one is the capability to recognize domains asso-
ciated with malicious activities, blocking related requests to protect users.
The DNS response time is generally shorter for local resolvers since they
are closer to the users. On the other hand, public resolvers are typically
considered more efficient in detecting malicious domains. We performed a
large number of DNS queries towards the different resolvers, both local and
public, using different sets of domain names and different Internet access
networks from main Italian providers. Our results confirm that the re-
sponse time of local resolvers is shorter than that of public ones. However,
they also show that, unexpectedly, the protection level of local resolvers is
largely comparable with the one of public resolvers. Consequently, you do
not have to trade off security against performance. In addition, we study
the impact of DNS over HTTPS, and we unveil the different mechanisms
implemented to block users from accessing malicious domains and assess



60 Chapter 5. Local and Public DNS Resolvers: Timing and Security Performance

the impact of caching on the obtained results.

5.1 Motivation

Translating domain names into their associated IP addresses is the
main task of the DNS. This is an indispensable component of the Inter-
net, distributed over a global network of servers that are constantly in
communication with each other to bring users to their websites or network
resources [146]. DNS is an emerging topic in literature for its decisive im-
pact on the performance of almost all internet activities. Plenty of previous
work focused on the performance of DNS resolvers from several vantage
points, also obtaining contrasting results [147, 148, 149, 75, 150]. On the
other hand, millions of new domain names are registered every day, includ-
ing the ones used by attackers to redirect victims to malicious destinations
like malware, spam, phishing, and other insecure contents [151]. DNS
traffic contains several meaningful features to identify domain names asso-
ciated with such malicious activities. This is why DNS is more and more
used to protect users from possible threats [152], together with other tech-
niques based on e.g., machine learning and artificial intelligence [153, 106].

In this chapter, we study the behavior of resolvers provided by three
Italian commercial ISPs (TIM, Wind, and Fastweb) - and two public ones
offered by Google and OpenDNS. We collected a dataset performing a high
number of queries towards these resolvers, looking at domain names from
four different categories: Top 1 million, Command and Control (C&C),
Malware, and Phishing. We also considered encrypting DNS queries over
HTTPS, a.k.a. DoH [154, 155]. Our analysis focuses on two relevant as-
pects. The first one is related to the Response Time (RT), which is the
time required to get a DNS response after issuing the request. RT has
a strong impact on the performance of most Internet applications. The
second one concerns the Response Code (also RC or RCODE in the follow-
ing), included in the DNS response, useful to figure out if the DNS server
provides an IP address or not, e.g., to protect users from malicious host-
names. For example, an "NXDOMAIN" message can indicate either that
the domain name does not exist or that it is related to a malicious activity,
blocked by the resolver. Google and OpenDNS feature several strategically
located resolvers that rely on anycast. But their response time is typically
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higher than the local resolvers [149], which are closer to the users. On the
other hand, Google and OpenDNS are expected to detect more malicious
domain names because they have a wider view of the network traffic than
local resolvers. The results of the response time analysis provide many
interesting insights. First, we confirm that local DNS resolvers are faster
than public ones: Fastweb is up to 86ms faster than Google, and up to
129ms quicker than OpenDNS. Google is generally faster than OpenDNS,
contrary to what has been reported by other works [149, 156, 157]. Addi-
tionally, we uncover that there are no significant time differences between
DNS and DoH both for Google and OpenDNS. We also studied the effect
of the caching in the home router and saw that up to 40% of the domains
can be cached at a such router for up to 4 hours. The results related to
the response codes show that resolvers use different approaches to block
dangerous destinations, e.g., Fastweb, TIM, and Google return "NXDO-
MAIN", while Wind provides a "0" RC, but the IP address is related
to a courtesy page. Also, OpenDNS achieves slightly higher performance
with malware and phishing domains. This is somewhat expected as we
use domain names collected by Cisco Umbrella, the same company ow-
ing OpenDNS. Furthermore, we do not find significant differences between
DNS and DoH both for Google and OpenDNS. The most unexpected result
however is that all the resolvers considered protect from malicious domains
with comparable performance. That is to say that it is not necessary to
trade off performance and security, at least not anymore.
The contributions of this work can be summarized as follows: i) we per-
form an analysis on the DNS resolvers using a large dataset of domain
names, including most popular as well as malicious domains; ii) we show
that Italian local resolvers generally provide a comparable level of security
of open, public resolvers used from all over the world and deployed by large
companies like Google and Cisco; iii) we unveil the mechanisms employed
by the resolvers to protect users; iv) we show that using local resolvers can
save up to about 130ms on average for each DNS resolution; v) we contrast
previous findings in the literature (e.g., [149]); vi) we show the impact of
caching on obtained results.
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5.2 State of the Art on the Performance of DNS
Resolvers

In recent years, there has been an increasing number of works study-
ing DNS resolvers [147, 148] also with a focus on a comparison between
public and commercial ones [149, 75, 150]. An interesting analysis of the
response times and the addresses returned by the local resolvers against
Google and OpenDNS was conducted by Ager et al. [149]. They claim
that Google and OpenDNS, in some cases, outperform the local resolvers
in terms of the observed response times. This result is in contrast with
ours: local resolvers we consider in this work typically show response times
smaller than public resolvers. Moreover, we analyzed in much more de-
tail the capability of such resolvers to block dangerous domains. Current
literature pays particular attention to open DNS resolvers. Kuhrer et al.
performed a long-term, large-scale analysis in order to study the changes
over time and classify the resolvers according to several features like device
type and software version. They have also deepened the DNS responses
correctness querying the "A" record of 155 domains, divided into 13 cat-
egories, towards 22 million open DNS resolvers [75]. Dagon et al. carried
out a similar analysis, but they only analyzed some samples of the DNS
responses, and they did not provide detailed statistics except for Chinese
splash pages [158]. Another interesting analysis on open resolvers was con-
ducted by Park et al. [150], who compared their previous findings in 2013
showing that the number of resolvers providing incorrect responses is al-
most the same, those providing malicious responses have increased.
Companies have been focusing on comparing local and public resolvers.
They claimed that it is more convenient to use public DNS than local
ones, both for their response time and security protection [156, 157]. Our
results show that their protection level is largely comparable while local
resolvers are always faster than public ones. Google is generally faster
than OpenDNS from our vantage points, and this outcome is also con-
firmed by other works [156, 157]. DNSPerf, instead, shows the opposite
behavior: OpenDNS is faster than Google [159]. Different protocols have
been implemented to encrypt DNS queries. They provide security and pri-
vacy, and they allow clients to send DNS queries to public DNS resolvers,
preventing the ISP from seeing such queries [74]. Several works analyzed
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possible differences in performance between DNS and other encrypted DNS
protocols, like DoH. Some of them claimed that the DNS response times
are higher than those of DoH [74, 155]. Other works, instead, claim that
it is not simple to choose the best DNS protocol for all clients because
DoH response times can be both longer and shorter than the traditional
one [160]. We compare the performance of standard DNS (UDP port 53)
and DoH and do not observe significant differences.

5.3 Datasources and Methodology

In this section, we describe our experimental setup and the datasets we
used. We relied on the PyDig [161], a tool written in Python, to perform
queries towards DNS servers and exercise various existing and emerging
features of the DNS protocol. This tool features queries through DNS over
TLS and DNS over HTTPS. We queried a considerable number of domain
names, divided into two different categories. The first one is related to
Cisco’s Top 1 Million lists, while the second one contains malicious domains
collected by Cisco Umbrella analysts.

Concerning the first category, Cisco provides, every day, the list of the
first one million domains (Top 1 Million) most commonly queried from
all over the world to OpenDNS resolvers 1 [162]. We relied on this list
following the suggestions provided by Scheitle et al.2 [163]. To examine
more in-depth the performance achievable in a wide set of conditions, and,
consequently, for the purpose of having variability in our data, we created
the dataset as follows. We pulled out the first and last 10,000 rows from
the top 1 Million list, resulting in a dataset of 20,000 domains with the
most and least common ones. We suspected that the most popular domain
names might be benign with a higher probability, unlike the less popular
ones that might be benign with a lower probability. This assumption was
also derived from the work by Scheitle et al., stating that the Cisco Um-
brella list contains test domains or several domains with non-authorized
gTLDs [163]. In addition, the clients adopting OpenDNS are not only

1https://umbrella.cisco.com/blog/cisco-umbrella-1-million
2The authors observed that there is a high daily fluctuation in the Top1Million.

Therefore, it is important to specify the day on which we downloaded the Top1Million
file: 09/10/2020.

https://umbrella.cisco.com/blog/cisco-umbrella-1-million
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PCs but also mobile and IoT devices. To further investigate the nature of
the first and last 10k domain names included in the Top 1 Million. We rely
on the "Domain Status and Categorization" API. This API belongs to the
groups of APIs provided by Cisco Umbrella Investigate and used in several
works [164, 162]. It returns the domain status, indicating whether a do-
main has been flagged as malicious by the Cisco Security Labs team (score
of -1 for status), it is believed to be safe (score of 1), or it is still undecided
(score of 0)3. 78.5% of these domains is benign, a small percentage (0.1%)
of them is malicious, and the nature of the rest of the hostnames (21.4%)
is not further specified by Cisco Umbrella. In conclusion, the Top1Million
dataset mostly consists of benign hostnames. We will refer to this dataset
simply as TopCisco in the following.

The second category of the dataset is characterized by malicious host-
names collected by Cisco security analysts. Thanks to a collaboration with
Cisco, we had access to a wide list of malicious domain names blocked by
the Cisco Umbrella platform. The list is split into three different datasets,
containing different kinds of malicious activities: C&C - domains asso-
ciated with a Command & Control systems of botnets; Malware - do-
mains associated with malware threats; Phishing - domains associated
with phishing pages.

In summary, the datasets adopted for our analysis are four: TopCisco,
characterized by 20,000 domains, mostly benign; C&C, characterized by
16,021 domains associated with Command & Control activities of bot-
nets; Malware, characterized by 81,217 domains associated with malware
activities; Phishing, characterized by 658 domains, associated with phish-
ing pages. We expect that the OpenDNS resolver shows a higher protec-
tion level than the other ones because the datasets contain domain names
blocked by Cisco Umbrella, which is also the company owing OpenDNS.

5.3.1 DNS Resolvers Analyzed

We selected three commercial Italian ISPs and two public DNS re-
solvers by Google and OpenDNS. Google is a free, public, and open re-
solver adopted by a high number of users, available at 8.8.8.8 and 8.8.4.4

3https://docs.umbrella.com/investigate-api/docs/domain-status-and-
categorization-1

8.8.8.8
8.8.4.4
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Figure 5.1. Three scenarios of our system architecture

IP addresses. It provides two different DoH APIs [165]. We utilized
the one at endpoint https://dns.google/dns-query. OpenDNS is a
free, public, and open resolver, founded in 2005 and currently owned by
Cisco. It is available at 208.67.222.222, 208.67.220.220, 208.67.222.220,
208.67.220.222 IP addresses and it also provides DoH endpoints to im-
plement the DNS over HTTPS [166]. We used endpoint at https://
doh.opendns.com/dns-query. As local resolvers, we adopted the ones pro-
vided by TIM, Wind, and Fastweb, three of the major and most used
Internet Service Providers (ISPs) in Italy. We carried out tests in two
different cities - Naples and Rome. As reported by the Fair Internet Re-
port, https://fairinternetreport.com/Italy/Rome, in both cities TIM,
Wind, and Fastweb are three of the fastest providers in Italy. We conducted
all experiments under three residential fibre Internet access networks by
these operators.

Figure 5.1 shows how DNS queries have been performed from the same
ISP network to the different resolvers. In the first case (top diagram in
the figure), queries are issued towards the local resolver, i.e., the default

https://dns.google/dns-query
208.67.222.222
208.67.220.220
208.67.222.220
208.67.220.222
https://doh.opendns.com/dns-query
https://doh.opendns.com/dns-query
https://fairinternetreport.com/Italy/Rome
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resolver provided by the DHCP of the home router. We remark that for the
security analysis, it is not important to distinguish the responses arriving
from the Home Router (i.e., from the cache) from the responses arriving
from the ISP resolver because the former resolver gets information about
domain names from the ISP one. In the response time analysis, instead,
the time from the User PC to the Home Router, connected to each other
by a wi-fi connection, is typically smaller than the time between such PC
and the ISP resolver. In the second case, in Figure 5.1 (middle diagram
in the figure), the client sends DNS requests to Google resolver directly.
This scenario differs from the previous one because the Home and ISP
routers are crossed from the DNS request only at the IP level. Thus, they
are not involved in the dynamics of the application/DNS layer. The third
scenario is similar to the second one except that requests are issued to the
OpenDNS resolver.

The second and third scenarios were applied to both DNS and DoH
endpoints. The three scenarios were repeated under the three ISP net-
works: TIM, Wind, and Fastweb. In summary, under each ISP network,
the queries were sent to: local DNS, Google DNS and DoH, and OpenDNS
DNS and DoH. We performed the queries towards Google and OpenDNS
resolvers under three ISP networks, aiming to investigate the impact of
the network on the DNS resolvers.

5.4 Experimental Results

The DNS queries have been issued with Pydig specifying the DNS re-
solver address and the record type (e.g., pydig(www.example.com, 8.8.8.8,
A)). The responses obtained by this tool include information related to a
Resource Record In particular, it returns the following fields: Response
code - specifies the outcome of the response. There are some common
return codes that can be returned when issuing a DNS query (e.g., ’0’,
’3’, etc.) 4. Other rare codes can appear in a few circumstances [4]. IP -
contains one or more IP addresses associated with the requested domain
name. It may also be null or contain a CNAME field. Size - represents
the total size of the DNS response. TTL - specifies the Time To Live

4https://support.umbrella.com/hc/en-us/articles/232254248-Common-DNS-
return-codes-for-any-DNS-service-and-Umbrella-
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Table 5.1. Results of the equations 4.1, 4.2, 4.3, 4.4, 4.5. All values are
expressed in ms.

i j Min Median Mean Std_Dev 10th 25th 75th 90th
Fastweb Google DNS 82 83 86 104 90 89 76 116
Fastweb OpenDNS DNS 118 126 129 146 129 131 117 244
Google DNS OpenDNS DNS 36 42 43 425 38 42 40 127

(TTL) of how long a record is cached in a DNS server. Response time -
is the total amount of time to perform a query and receive the response.
Exception - is true if an exception occurs during the DNS request.

We focused on the response code and the response time fields. The
response code has been selected to study the resolver’s capability to dis-
tinguish benign and malicious domains. The analysis of the response time
is aimed at understanding the timing performance of a DNS resolver.

5.4.1 Analysis of the Timing Performance

In this section, we focus on the response time of the DNS queries. Since
PyDig is written in Python, an interpreted language, we verified the impact
of the tool on the obtained values. We evaluated the difference between the
response time provided by the Tshark tool and the one provided by PyDig
on a sample of domain names. The average difference we observed in our
setup is about 0.002s. This value may be significant for some experiments.
However, it does not affect our analysis because we are using the same
tool for each experiment, and we are interested in comparing the different
resolvers. Figures 5.2, 5.3, 5.4, 5.5 show the comparison between local
ISPs, Google (DNS,DoH), and OpenDNS - DNS, DoH - resolvers under
the three ISP networks and for the four datasets.

We can make some interesting considerations. The first observation is
related to the response times of the local resolver, which are smaller than
those of public ones for each dataset and under the three networks. This
is in contrast with the results reported by other works [149, 156, 157]. An-
other interesting finding is related to the Google resolver speed compared
to that of OpenDNS. In all the figures mentioned above, Google-DNS and
Google-DoH have slightly smaller response times than OpenDNS-DNS and
OpenDNS-DoH. Besides that, under each network and for each dataset,
Google DNS and DoH present similar response times, as, for example,
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shown in the overlap between the curves representing them. This out-
come is in contrast with previous findings [74]. Similar behavior is shown
by OpenDNS DNS and DoH. Some exceptions are visible for OpenDNS
under the Wind network. In particular, Figures 5.3 (b), 5.4 (b), and 5.5
(b), show that OpenDNS-DNS is slower than OpenDNS-DoH in this case.
Based on these considerations, we can infer that local DNS resolvers are
faster than public ones, and, from our vantage points, Google is slightly
faster than OpenDNS.

We also evaluated the distance between the curves aiming to compare
response times between public and commercial resolvers to see how much
time we can save by using local resolvers instead of public ones. For the
sake of brevity, we report only the results related to Figure 5.4 (c). The
differences between the curves have been calculated with the (4.1), (4.2),
(4.3), (4.4), and (4.5), where F(RT)(t) is the response time function and i
and j represent the various adopted resolvers. In particular, we computed:
the difference between the minimum values from the two CDFs in (4.1),
between the median values in (4.2), the mean values in (4.3), the standard
deviation values in (4.4), and the 10-25-75-90th percentile values in (4.5).
The results related to the four equations are reported in Table 5.1.

RTi −RTj : F (RTi) = min(F (RT )) i ̸= j (4.1)
RTi −RTj : F (RTi) = median(F (RT )) i ̸= j (4.2)
RTi −RTj : F (RTi) = mean(F (RT )) i ̸= j (4.3)
RTi −RTj : F (RTi) = std_dev(F (RT )) i ̸= j (4.4)
RTi −RTj : F (RTi) = [10, 25, 75, 90]thF (RT ) i ̸= j (4.5)

An interesting aspect is related to the Min column (as shown in Ta-
ble 5.1) where, in the best case, the Fastweb client is 82ms faster than
Google DNS, 118ms faster than OpenDNS DNS, and Google is 36ms faster
than OpenDNS DNS. On average, Fastweb is quicker by 86ms and 129ms
than Google DNS and OpenDNS DNS, respectively. Google is 43ms faster
than OpenDNS DNS. We report only the results related to the DNS pro-
tocol because those obtained with DoH are similar in most cases and not
reported for brevity. We also looked at the impact of security on perfor-
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mance, analyzing the trend of the response times split by the four datasets
and the response codes. We have not found relevant differences in the
results obtained from this analysis.
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Figure 5.2. Malware - Comparison local DNS with Google and OpenDNS
for (a) TIM, (b) Wind, (c) Fastweb
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Figure 5.3. Phishing - Comparison local DNS with Google and OpenDNS
for (a) TIM, (b) Wind, (c) Fastweb

A further remaining issue relates to the impact of the DNS caching
mechanisms on the obtained results. DNS caching can occur at different
levels in a DNS lookup. The first two steps involve the operating system
and the browser, and so they are related to the client. The other levels are
associated with the resolver, root server and TLD server. To investigate
the DNS caching impact on our experiments, we extracted 100 domains
from the datasets, characterized by different TTL values, and therefore,
presumably, different caching times [167]. We executed queries at different
time intervals. In particular, the first execution took place after restarting
the home routers of the clients used for the experiments (time 0, called
baseline in the following). Then, we performed queries after 1 minute, 10
minutes, 1 hour, 4 hours and 24 hours. Figure 5.6 shows the CDFs of the



70 Chapter 5. Local and Public DNS Resolvers: Timing and Security Performance

10
-3

10
-2

10
-1

10
0

Response Time(s)

0

0.2

0.4

0.6

0.8

1
F

(R
e

s
p

o
n

s
e

 T
im

e
)

TopCisco-TIM

TIM

O-DNS

O-DoH

G-DNS

G-DoH

10
-3

10
-2

10
-1

10
0

Response Time(s)

0

0.2

0.4

0.6

0.8

1

F
(R

e
s
p

o
n

s
e

 T
im

e
)

TopCisco-WIND

WIND

O-DNS

O-DoH

G-DNS

G-DoH

10
-3

10
-2

10
-1

10
0

Response Time(s)

0

0.2

0.4

0.6

0.8

1

F
(R

e
s
p

o
n

s
e

 T
im

e
)

TopCisco-Fastweb

Fastweb

O-DNS

O-DoH

G-DNS

G-DoH

Figure 5.4. TopCisco - Comparison local DNS with Google and OpenDNS
for (a) TIM, (b) Wind, (c) Fastweb
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Figure 5.5. C&C - Comparison local DNS with Google and OpenDNS for
(a) TIM, (b) Wind, (c) Fastweb

response times obtained. The response times related to 1m, 10m, 1h, and
4h are larger than the baseline and 24h. The number of domains kept in
the cache is large for times up to one hour, decreases after 4 hours and
reaches almost zero after 24 hours. After manual analysis, we have also
reported a black dotted line in the plot to illustrate the DNS responses
coming from the home router (response time equal to 4ms). Excluding
domains cached in the router and comparing Figure 5.6 and Figure 5.4,
we can claim that the local resolver is still faster than the public ones
and considerations reported in the previous sections are still valid. Similar
experiments and comparisons were also performed with TIM and Wind
clients obtaining comparable considerations.

5.4.2 Analysis of Security Performance

The purpose of the response code analysis is to investigate the level
of security service provided by the resolvers, to study how much they can



5.4. Experimental Results 71

10
-3

10
-2

10
-1

10
0

Response Time (s)

0

0.2

0.4

0.6

0.8

1

F
(R

e
s
p

o
n

s
e

 T
im

e
)

0

1m

10m

1h

4h

24h

Figure 5.6. Caching

Table 5.2. Response codes identified in our experiments [4]

DNS RC Description Class
0 DNS Query completed successfully Positive
3 Domain Name does not exist Negative
5 The server refused to answer Negative
2 Server failed to process the query Negative
Null Other exceptions Negative
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protect users from possible threats.
Table 5.2 illustrates the DNS response codes obtained in our study. We
identified four types of response codes and other exceptions due to net-
work failures. The results differ from the ones shown by Park et al., who
claim that codes "0", "3", "5", and "2" decreased, and the remaining ones
increased in the last years [168]. In particular, the "0" label occurs when
the query is completed successfully [4]. In this label, we also included the
cases in which the DNS server does not know the IP address of a host, and
it returns another domain name through which the same destination can
be reached (CNAME). In addition, in the same label, we added the case
in which the response code is "0", but the DNS servers provide the SOA
record (Start of Authority). Since the label "0" implies that the query was
executed correctly and the DNS response has the IP addresses or informa-
tion useful to obtain them, it represents the positive class of the confusion
matrix. The latter is calculated to obtain a synthetic measure of the secu-
rity capability of the resolvers [169]. The other response codes, "3", "2",
"5", and "Null" are errors. Therefore, we classify them as belonging to the
negative class.
We summarize the occurrences of the response codes through bar plots
showing a graph for each resolver adopted (locals, Google, OpenDNS), as
depicted in Figures 5.7, 5.8, 5.9. There are four subplots in each figure
relating to the four datasets: TopCisco, C&C, Malware, and Phishing.
The bars in each subplot refer to a different network ISP: TIM, Wind and
Fastweb. Results obtained with DoH are the same as those obtained with
standard DNS and are not reported for brevity. Figures 5.7, 5.8, 5.9 show
that, for each provider, when the dataset is the TopCisco, the occurrences
of "0" are more than 10K; the number of "3" is above 1K; the amount of
"2", "5" and "None" differs for each resolver. The TopCisco results are in
line with the expected ones because this dataset is mainly characterized by
benign and existent hostnames. Therefore, we suspected that the number
of "0" codes, and thus the number of queries to legitimate clients, was
greater than the others. In addition, we can remark that, for the provider
Wind, the number of "3" codes is lower than the other two local providers
because there is a slightly higher amount of "0" and "Null". We point out
that the highest percentage of "0" codes in the Wind provider is related
to the courtesy page.
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Figure 5.7. Results obtained under three different ISP networks using the
resolvers provided by their ISPs (i.e., using the local resolver).

Figure 5.8. Results obtained under three different ISP networks using the
resolver provided by Google (i.e., using a public resolver).
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Figure 5.9. Results obtained under three different ISP networks using the
resolver provided by OpenDNS (i.e., using a public resolver).

Considering the C&C dataset, the plots illustrate that the Wind re-
solver has the highest number of "0" codes and zero occurrences of "3",
unlike TIM and Fastweb. The latter two are characterized, indeed, by a
lower value of "0" occurrences, and also include a significant value of "3"
occurrences.

Similar observations can be found regarding the Malware dataset. Look-
ing at the two datasets in Figure 5.8, we can mark that Google resolver
acts like TIM and Fastweb, returning a high number of "NXDOMAIN"
rather than "NOERROR". OpenDNS, instead, reported in Figure 5.9, re-
turns a high number of "3", but also a small percentage of "0" codes with
an IP address related to a courtesy page. When the dataset is Phishing,
the number of "0" codes is higher than the number of "3" codes in all of
the cases. In summary, all the DNS resolvers return the "NOERROR"
message when the domain name is benign. Instead, when the domain is
included in the C&C or Malware dataset, Wind returns the "NOERROR"
message with a courtesy page IP address, while the other DNS resolvers re-
turn the "NXDOMAIN". Lastly, when the domain is related to a phishing
client, all resolvers return a high number of "NOERROR" and a smaller
number of "NXDOMAIN". A "NOERROR" message in the response does
not always mean that everything is correct. For example, the code "0"
is even common when the DNS resolver returns the IP address of a cour-
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tesy/splash page to prevent the user from accessing a potentially dangerous
resource. We found that two DNS resolvers return a courtesy page in some
cases: Wind and OpenDNS. For the analysis performed, it is not needed
to distinguish between the two cases above because the "NXDOMAIN"
message still protects the user.

We further investigated the results about the "3" and "0" codes for
each dataset and provider. We obtained that OpenDNS detects Malware
and Phishing domain names better than Google. This behavior occurs
similarly for each residential network (Tim, Wind, and Fastweb). For the
sake of brevity and because it is the residential network with the fewest
failures, we report only the comparison results for the Fastweb network.
We filtered out the "0" code with a courtesy page address in the response.
Specifically, about the Malware dataset, Google presents 0.09% more than
OpenDNS for code "3", which presents 0.52% less than Google for code
"0". About the Phishing dataset, Google presents 13.68% more code "3"
than OpenDNS, which presents 53.5% less than Google for "0" code. We
also investigated the local DNS resolvers against Google and OpenDNS. We
obtained that local resolvers present higher performance than Google, as
confirmed also by other works [156, 157]. Therefore, they are performing
worse than OpenDNS, except for Wind provider, which shows a similar
behavior about the courtesy page.

F-Measure and Accuracy

In the following, we report additional information regarding the secu-
rity level of the resolvers. We calculated the F-score and accuracy as
measures of their capability to detect malicious domains. The first step in
calculating these two metrics consists in determining a confusion matrix
characterized by positive and negative classes. The column "Class" of Ta-
ble 5.2 summarizes the class of each RC received in our DNS responses.
More specifically, if we perform a query to a benign IP, we expect a "0"
code in the response. Conversely, with a malicious domain name, we should
get a non-"0" rcode in the response. This is why the code "0" belongs to
the positive class; the "3, 2, 5, Null" codes to the negative class. Since
the domain names of the TopCisco dataset are characterized mainly by
benign domains, the corresponding DNS responses include a large number
of "0" labels. Consequently, this dataset belongs to the "positive" class.
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The other three lists contain only malicious hostnames and, hence, the
corresponding DNS responses consist of a high amount of "3,2,5, Null"
codes. For this reason, they belong to the "negative class". Summarizing,
the elements of our confusion matrix are the following: True Positive
(TP): IP addresses obtained querying domains from the TopCisco dataset;
True Negative (TN): NXDomain obtained querying domains from the
C&C, Malware and Phishing lists; False Positive (FP): IP addresses
obtained querying domains from the C&C, Malware and Phishing list;
False Negative (FN): NXDomain obtained querying domains from the
TopCisco dataset. For Google and OpenDNS, we report only the results
obtained until the Fastweb network. We see that Google presents an F-
score equal to 71%; OpenDNS 73%, Fastweb 72%, Wind 28% and TIM
72%. Concerning the accuracy measure, TIM, Fastweb and Google reach
a percentage of 88.1%; OpenDNS has an accuracy of 87.7%; Wind is ac-
curate to about 17.5%. As mentioned before, the F-score and accuracy
values for the Wind resolver are lower than the others mainly because of
the huge amount of courtesy pages contained in the DNS response with a
"0" code. In addition, OpenDNS shows a lower accuracy value than the
other resolvers because it applies a hybrid approach.

Analyzing recurrent IP addresses

We also examined the IP addresses with a high number of occurrences.
We report those obtained with the Wind resolver related to the Malware
dataset: the IP address 40.68.249.35 occurs slightly less than 100.000
times, 86% of the times in our experiments. We checked that it corresponds
to the IP address of a courtesy page. Other interesting IP addresses are:
216.218.185.162, 64.70.19.203, 34.102.136.180, 35.102.136.180. These IPs
are consistently reported by all the resolvers. Querying the Whois tool, we
discovered that the first IP belongs to Hurricane Electric LLC. The second
one is related to CenturyLink Communications, LLC. The third and the
fourth ones belong to Google LLC. These IP addresses are obtained only
from the C&C and Malware datasets.

Hurricane Electric has already been traced back to malicious DNS ac-
tivities. Anyone could register for a free account with Hurricane Electric’s
hosted DNS service. It is possible to register a zone and create A records,
even causing the hijacking of legitimate domains because the provider does

40.68.249.35
216.218.185.162
64.70.19.203
34.102.136.180
35.102.136.180
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not check if zones created by their users have already been registered (e.g.,
see [170]).

Hurricane Electric the address is 216.218.185.162 and the hostname
is 216-218-185-162.sinkhole.shadowserver.org. Shadow server5 is a non-
profit security organization that gathers and analyzes data on malicious
Internet activity, including malware and botnet. They provide a sinkhole
service used for spoofing DNS requests to prevent the resolution of ma-
licious hostnames. It can be accomplished by configuring DNS resolvers
that return a sinkhole address for a specific domain name. One of the
nameservers of the Shadowserver operator is sinkhole.shadowserver.org
- 216.218.185.160/29, that we found in our results [171]. All domain names
have a .xyz top-level domain (TLD) and a TTL value equal to 21599.

CenturyLink Communication We have also investigated the IP ad-
dress related to Century Link Communication. We performed reverse DNS
lookup queries and got PTR records from IP addresses with the dig tool.
The domain name related to this IP address is mailrelay.203.website.ws,
useful to register a new .ws domain.

Google LLC The last two IP addresses belong to Google LLC. In more
detail, the first IP address 34.102.136.180 is related to the
180.136.102.34.bc.googleusercontent.com domain name. This domain is
adopted for multiple purposes, like cached copies of websites visited by the
Google search engine and storing static content including images [172].
In different cases, hackers hide malicious code inside image files that are
rarely scanned for malware [173].
In conclusion, we observed that OpenDNS is slightly slower than Google
and local resolvers. However, local resolvers are faster than public ones.
Moreover, all resolvers analyzed protect users from most malicious domain
names. OpenDNS provides a higher level of protection for Malware and
Phishing domain names than Google and local resolvers. Wind presents a
behavior similar to the one of OpenDNS.

5https://www.shadowserver.org/

sinkhole.shadowserver.org
216.218.185.160/29
mailrelay.203.website.ws
34.102.136.180
180.136.102.34.bc.googleusercontent.com
https://www.shadowserver.org/
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5.5 Concluding Remarks

In this chapter, we investigated the behaviour of different DNS re-
solvers. In particular, we evaluated their capability to recognize malicious
domains (i.e., to protect clients), and the response time between them and
their clients. We focused on two classes of resolvers: local DNS resolvers
from main Italian ISPs (TIM, Wind, and Fastweb), and public resolvers by
Google and OpenDNS. We based our analysis on the Response Time and
Response Code obtained from the queries. The first one has been used to
understand the speed of resolution of a domain name. The response code
has been used to study how much a DNS resolver can recognize a domain
name associated with malicious activity.
The results about the Response Time show that: (i) the local DNS re-
solvers are generally faster than public resolvers; (ii) Google is slightly
faster than OpenDNS; (iii) there are no significant differences between
DNS and DoH of both Google and OpenDNS. We have also computed the
time we can gain using a resolver in spite of another, obtaining that: (i)
Fastweb is 86ms faster than Google on average; (ii) Fastweb is 129ms faster
than OpenDNS on average; (iii) Google is 43ms faster than OpenDNS in
average. We also show that the increased speed of local DNS resolvers
against public ones is confirmed even if we exclude domains cached at the
home router.
The results about the Response Code show that some local DNS re-
solvers and Google return an "NXDOMAIN" message for malicious do-
mains. Other resolvers, instead, provide a "0" RCODE with a courtesy IP
address. OpenDNS behaves in a hybrid manner. The resolvers analyzed
achieve good security levels, protecting users from most malicious domain
names. In addition, OpenDNS achieves a slightly higher level than local
resolvers and Google with malware and phishing domain names. This out-
come is somewhat anticipated as we use domain names provided by Cisco
Umbrella, the same company owing OpenDNS. In addition, both the DNS
and DoH protocols tested with Google provide the same results in terms of
RCODE. The same behavior is also observed with the two protocols tested
with OpenDNS. We also examined security capabilities as a function of the
dataset and we obtained no significant differences.
We believe that our analysis is first and foremost useful for the scientific
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community and network operators to gain a better knowledge of the DNS
and how to improve it. In addition, our results may provide insights to
users in choosing the most appropriate DNS and, more generally, to the
community on how the DNS works, which is far beyond just translating
domains into IP addresses, as originally conceived.





Chapter 6
Lifetime of Benign and
Malicious Domain Names

In this Chapter, we explore domain name lifetimes at scale and over
a ten-year period. The DNS is essentially a hierarchical and distributed
database that involves – and is operated by – many independent parties
that fulfill various roles. Top-level domains such as .com and .co.uk are
run by registries. Registrants can register domain names, usually through
so-called registrars, but sometimes directly with the TLD registry. Domain
names go through a well-defined life-cycle and names that are only short-
lived in ways break expectations. Specifically, in this Chapter, we focus
on ten prominent TLDs and observe that under most, the vast majority
of lifetimes (95%) last exactly the minimum registration term of one year.
The exception to this is .com, which sees 40% of lifetimes renewed for at
least one more year. We also identify lifetimes that are suspiciously short-
lived (e.g., 80% under .xyz). Using blocklist data we confirm that about
25% are reportedly malicious and study indicators if names are taken down
and how quickly. Finally, we empirically study malicious name registration
campaigns and show that this involves registrars that offer bulk registration
options.



82 Chapter 6. Lifetime of Benign and Malicious Domain Names

6.1 Motivation

The Internet Corporation for Assigned Names and Numbers (ICANN)
determined a well-defined life-cycle for domain names that nominally leads
to domain name lifetimes of yearly granularity. In most cases, the lifetime
of a domain name is under the direction of its registrant, with whom rests
the decision whether or not to renew the registration. However, there
are other possible factors, notably if domain names are used for abusive
purposes and taken down.

While the DNS and domain abuse are extensively studied in the lit-
erature, the area of domain name lifetimes is arguably still dim. In this
work, we take steps towards closing this gap. We analyze domain name
lifetimes under the ten largest top-level domains in CAIDA’s DNS Zone
Database [174] across a time span of ten years. To empirically validate the
idea that shorter lifetimes can be the result of abuse take-down efforts, we
use a large blocklist feed of malicious names and demonstrate that many
short-lived names are indeed malicious.
We make the following contributions in this chapter:

• We perform an analysis of domain lifetimes among 10 of the largest
TLDs over a ten-year period, showing that one-year lifetimes pre-
dominate (∼95% of lifetimes last exactly one year) in most TLDs
except .com, where 40% of the domains have longer lifetimes;

• Using blocklist data, we evaluate the prevalence of malicious domain
names across the TLDs and reveal that a large fraction of mali-
cious names have shorter-lived lifetimes. We also show that mali-
cious names are substantially shorter-lived in some TLDs compared
to others (e.g., 80% of malicious .xyz names live shorter than the
minimum registration term of one year);

• We show signs that malicious names are acted upon and provide
insights into take-down times, while we also provide indications that
some malicious names are not acted upon and are left to linger;

• We identify a number of malicious registration campaigns and em-
pirically show that such campaigns can include registrars that offer
bulk registration options.
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All in all, our findings help shed light on domain registration practices
and the use of domain names and malicious behaviors. We also shed light
on operational practices by studying indicators of the presence (or absence)
of take-down efforts.

6.2 State of the Art on Domain Name Lifetimes

Domain name abuse is extensively discussed in the literature. For ma-
licious registration detection, several works go beyond blocklists to find
additional ways to detect malicious domain names. Sun et al. [175] pro-
pose a methodology named HinDom to detect malicious domain names
using a classification based on relationship between clients, domains and
IP addresses. Their methodology was able to detect a long-buried botnet
and several malicious domains in a real-world scenario. Using an Extreme
Learning Machine, Shi et al. built a malicious domain detector that uses
several features (e.g., length of domain, entropy, number of IP addresses)
and achieves an accuracy greater than 95% [176]. Hason et al. used similar
features to build a classifier of malicious domain names, also achieving an
accuracy of 95.2% [177].

Bilge et al. built a system to detect malicious names, adopting ma-
chine learning techniques based on passive DNS data [178]. Combining
15 behavioral features, their system identifies a large number of malicious
hosts. Vinayakumar et al. assessed the efficacy of using deep learning to
detect malicious domain names [179]. They applied CNN (Convolution
Neural Network) and RNN (Recurrent Neural Network) approaches to a
large volume of DNS logs.

Previous studies have also explored malicious campaigns registered in
bulk for large-scale attacks [180, 181, 182]. Cybercriminals register con-
siderable numbers of domains to quickly replace detected domains and
recover from take-down efforts [183]. Vissers et al. examined malicious
campaigns in the registration data related to the .eu TLD [184]. Looking
at domain names with the same registrant and registry information, they
found that 80.04% of short-lived domain names could be tied to 20 cam-
paigns. Furthermore, they claim that these campaigns differed in terms of
duration: from one month to a year and beyond. Their results are in line
with ours. Indeed, we detect several campaigns characterised by malicious
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names with overlaps in features. Contrary to their analysis of only the .eu
TLD, we investigate a selection of 10 TLDs that represent a sizable part
of the global namespace.
Regarding domain name lifetimes, Foremski et al. analyzed malicious
short-lived domain names, finding that 9.3% of new domains were deleted
in the first seven days, with a median lifetime of 4 hours and 16 min-
utes. Their study leverages the NOD (Newly Observed Domain) service
based on passive DNS observation and active DNS measurements [185]. In
addition, they inspected several possible causes of deletion, stating that
blocklisting is responsible for 6.7% of it. As with Foremski et al., we study
domain name lifetimes, focusing on the ten largest TLDs, and we use the
DBL blocklist to identify malicious domain names. Unlike this work, we
examine all domain name lifetimes (not only the newly observed domains
and malicious ones) included in CAIDA’s Zone Database over ten years. In
addition, to further investigate the causes of their short lifetime, we exam-
ine the presence and the lifetimes of malicious domain names in 2018-2021.
Barron et al. [186] show that early deletions of domain names are signif-
icantly correlated to potentially malicious activities, and we have similar
findings. The authors also show that short-lived malicious domain names
tend to be longer and more pronounceable or prone to typo-squatting. We
examine related characteristics of malicious domains and confirm largely
similar results.
Finally, Korczynski et al. [73] reveal that abuse activity shifted from legacy
gTLDs to newer gTLDs, in part due to registration prices. In our work,
we show also that legacy gTLDs still include a considerable number of ma-
licious domains. Lauinger et al. examined the WHOIS records of domains
about to be deleted in DNS zone files during the stages of the expiration
and re-registration [187]. They found that registrars implement different
cancellation techniques that are not always compatible with the life cycle
of domains. In contrast with our work, they analyze fewer TLDs and do
not inspect the expiration and re-registration of malicious domain names.
Finally, an interesting study regarding the new domain name registrations
related to COVID-19 domain names was conducted by ICANN [188]. They
found that these domains were also used for malicious purposes, around
1.8% being flagged.
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6.3 Methodology

Lifetime Inference. Central to this chapter is our ability to infer domain
lifetimes. We devised a relatively straightforward methodology that uses
zone files. Recall from Section 2.3 that for a domain name to functionally
exist, the parent zone (i.e., registry) typically delegates authority to a
name server of choice of the domain name owner (i.e., registrant). We
assume that if a domain name is “alive”, its nameserver delegations will
be present in the zone file. This assumption does not always hold. There
could be cases in which NS records are absent, for example when a domain
is parked or in a grace period. To account for these blind spots in zone files,
our methodology allows for gaps of at most 90 days before considering a
lifetime closed. We choose this value arguing that it is sufficient to capture
temporary disappearance, e.g., during one or both of the possible grace
periods, but not so long as to capture re-registration after release. The
90 -days threshold includes a margin of 10 days over the 80 days domain
removal scenario defined in subsection 2.3.4, to account for possible errors
in zone file collections.

Because of the granularity of our data sources (Section 6.4), we consider
lifetimes in terms of multiple days. As we will show in Section 6.5.5,
WHOIS data for malicious domains validate that our assumptions provide
a good estimation of domain lifetimes. Note that the lifetimes that we
define and consider in this chapter are closed lifetimes. More specifically,
for a given domain, these are the lifetimes for which we are able to observe
the start and end, because the domain creation and expiration dates fall
within the boundaries of our data.

Malicious Domain Names. The other important part of our methodol-
ogy relates to how we consider and analyze malicious domain names. To
make a determination of maliciousness, we rely on a blocklist (Section 6.4)
as input. To characterize malicious names and study the presence and
properties of such names under various top-level domains, we consider the
registered domain name part. We extract the registered domains from
blocklisted names with Public Suffix List even though they may contain
additional labels. This puts the considered entries at the same level as the
names (technically, zones) in NS records in TLD zone files, which in most
cases do not contain deeper levels of nesting. We note that this choice
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could lead to classification errors for registered domain names that are in
the parent zone to both malicious and non-malicious names (consider, e.g.,
the shared suffix under Dynamic DNS service providers). Nevertheless, we
argue that the number of third-level domain hosting services compared
to the number of second-level domains is negligible. In fact, they are
managed by established companies that are not likely to have short-lived
domain names. We, however, consider registered names that expire, which
are less likely to introduce such classification errors.

6.4 Data Sources

We use two data sets for this analysis, together with supplementary
data. We obtain the primary data sets from two sources: zone file data
and malicious domain names.
Zone files. We use data from CAIDA’s DNS Zone Database (DZDB)[174],
which is built on a sizable collection of TLD zone files and captures the
history of domain names, name servers and IP address records. Following
the inception of ICANN’s Centralized Zone Data Service (CZDS), most of
the newer gTLDs were added to DZDB, which currently contains approxi-
mately 210 million names. Our analysis of the lifetime behaviors of domain
names involves a sizable part of the DZDB data. We consider a time pe-
riod of roughly ten years, starting at the earliest DZDB data (2011/04/11
– 2021/02/14).

For our analyses, we consider the Top 10 TLDs in DZDB in terms of
total size ranking since 2011. The Top 10 is representative (they cover 87%
of all the SLDs in our entire data set) and allow us to provide insights into
administration policies for individual TLDs. Table 6.1 shows the Top 10
TLDs, a summary of DZDB data available for them, and the number of
lifetimes that we infer. Taking .com as an example, we infer 169M lifetimes
throughout the ten-year period. Relative to the total of 157M unique .com
names, this shows that for some names we infer altogether new registration
(and another lifetime), as per our methodology (see Section 6.3).
Blocklists. As an indicator of malicious activity, we rely on the Domain
Block List (DBL) maintained by the Spamhaus project. Our data set con-
sists of daily snapshots of the DBL feed from 2018/01/01 to 2021/02/14.
While a single blocklist is a narrow window into malicious domain re-
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Table 6.1. Top 10 TLDs data set, showing CZDS start and end dates, the
number of lifetimes segments inferred per TLD, and the number of unique
domain names involved

TLD Start Date End Date # LT Segments # Names

.com 2011/04/11 2021/02/14 168.9M 156.5M

.net 2011/04/11 2021/02/14 20.6M 19.4M

.info 2011/06/06 2021/02/14 16.3M 15.7M

.org 2011/05/08 2021/02/14 12.7M 12.1M

.xyz 2014/03/31 2021/02/14 12.8M 12.2M

.top 2014/08/04 2021/02/14 12.1M 11.7M

.icu 2015/06/24 2021/02/14 5.6M 5.6M

.biz 2011/05/06 2021/02/14 4.9M 4.6M

.us 2011/05/06 2021/02/14 4.6M 4.4M

.loan 2015/03/30 2021/02/14 4.6M 4.6M

lated activity, we find this window illuminating. Since our DBL data set
starts in 2018, we only consider DZDB data from 2018 onwards for our
analysis in Section 6.5.2. However, a limitation of this data set is that it
does not include the type of malicious activity associated with the domain
name. Consequently, we cannot show the trends of the lifetimes by vary-
ing the malicious activity. To overcome this limitation, we relied on the
"Domain Status and Categorization" API provided by Cisco Umbrella In-
vestigate [189], but it did not give us enough data to support this analysis.

WHOIS data. We rely on data provided by Cisco Umbrella to investi-
gate malicious domain name registration campaigns (Section 6.5.5). Their
Investigate API gives a complete view of a domain name, IP address, ASN,
and malware file details to help identify misused infrastructure and predict
future threats [190]. Relevant to our work, the provided WHOIS data in-
cludes registration information for domain names, including creation date;
registrant organisation, city and country; and registrar name and IANA
ID.
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6.5 Experimental Results

In this section, we present our results. We start with an overview
of lifetimes for domains under the Top 10 most populous TLDs in our
data (Section 6.5.1). We then investigate malicious name lifetimes (Sec-
tion 6.5.2) and suspicious short-liveness (Section 6.5.3). Next, we look at
post-blocklist life and possible take down actions (Section 6.5.4). Finally,
we investigate malicious registration campaigns (Section 6.5.5).

6.5.1 Lifetime of Domain Names

As explained in Section 2.3.4, a domain name can go through five dif-
ferent life-cycle states, of varying lengths, which together form the lifetime
of a domain name. We expect most domain names to be visible in the zone
files while registered. This expectation allows us to evaluate the lifetime
of domain names as the time from when a domain is first and last seen
in the zone file. In our methodology (Section 6.3), we consider a lifetime
to have ended when, after appearing, it is absent from the zone file for 90
days or longer. We treat reappearance beyond this point as an altogether
new registration.

We infer domain name lifetimes for the Top 10 TLDs. Figure 6.1 shows
CDF plots for domain names under .com, .icu, .xyz, .loan, and .us. For
this analysis, we consider domain names in zone files that have valid first-
seen and last-seen values in the period 2011/01/01 through 2021/02/14,
capping the lifetime at roughly 3700 days. Therefore, our analysis does not
include domain names still active at the last collection time. For clarity,
we do not plot the other five TLDs, but they display similar trends as
we further detail below. The results show that a considerable number of
domain names are registered for lifetimes of one year in most TLDs, with
all TLDs showing a sharp increase around 410 days: one year plus the
Auto-Renew grace period of 45 days.1 Moreover, zones also see lifetimes
that are under the minimum registration term of one year, which may be
the result of take-down efforts (see Section 2.3.5).

For .com domains, 60% of their lifetimes are at most a year (101M
of 169M lifetimes in Table 6.1), and about 20% of .com names involve

1The edge is slightly slanted because registered names may take a few days to appear
in the zone file, as we will show in Section 6.5.5.
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Figure 6.1. Domain name lifetime in selected Top 10 TLDs under consider-
ation

lifetimes of three years or longer. The TLDs .org, .net, .info and .biz
all show similar trends (not plotted). These zones belong to the first set
of ICANN gTLDs, originally created between 1985 and 2001 [191]. A
comparable trend occurs for the domain names of the Country Code Top-
Level Domain (ccTLD)s .us. In this case, 78% of their lifetimes last at
most one year (3M of 4.6M lifetimes), and around 20% of .us lifetimes are
longer than three years. Moreover, .us includes roughly 20% of domain
names with a lifetime less than 70 days, in contrast with the .com and
the analogous TLDs where this value is significantly lower (0.08% of 169M
lifetimes). In contrast, for .xyz, about 93% of lifetimes (11.9M) are about
one year, 95% of at most about two years, and only a small percentage
of domains remain registered three years or longer. The .top TLD (not
plotted) presents a similar trend to .xyz. Indeed, around 2019, these were
the new gTLDs with the most number of registrations [192].

An interesting behavior seen relates to .icu. This TLD was created
in 2015, but the first domain names under it were registered around 2018.
Therefore, we have a three-year observation period for this TLD. The
trend that becomes apparent is that most lifetimes are one year. The
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same applies to .loan, except that .loan includes fewer domains with a
duration of less than 400 days than .icu. We have also evaluated the
number of domains still active at the end of the collection period, and
found that .com is still the TLD with the highest number of domains.

6.5.2 Malicious Domain Names

To better understand possible causes for patterns in lifetimes, and con-
sidering that lifetimes can be cut short as a result of take-down efforts (see
Section 2.3.5), we match domain names from the zone files with those in-
cluded in the Spamhaus DBL blocklist. Note that, for now, we consider
any malicious name, regardless of the duration of its lifetime. In a later
section, we will focus on short-lived names in particular.

Our overall lifetime analysis and Figure 6.1 capture a ten-year period.
As we obtained DBL data from Jan 1, 2018 onward, we can only match
domain names registered after this date against DBL inclusion. For this
reason, going forward we consider zone files data for 2018 and onward.

The lifetime of malicious domains is usually considerably shorter than
that of benign names [176, 193]. Malicious names are deactivated once
revealed or because hackers want to minimize blocklist interference. For
example, many spam domains are only active for one day, in an attempt
to avoid detection and from being added to blocklists [180, 184].

We calculate the percentages of malicious domains in the Top 10 TLD
data for 2018 and beyond and extract malicious lifetimes. Table 6.2 sum-
marizes the results. We show the total number of names and lifetimes
inferred as before (Table 6.1). The .biz TLD contains the highest per-
centage of malicious domain names (28.46% of 950K), followed by .top
and .us. While lower, .loan and .info are still above 10%. Under the
largest TLD .com, 7.5% of domains are malicious. Spamhaus estimates an
abuse score for each TLD based on the prevalence of malicious domains2.
Our findings are largely in line with these scores: the current Spamhaus
scores identify .biz, .top and .us as most-abused, and .org as least.

Figure 6.2 relates specifically to the lifetimes of malicious domain names.
We show only the CDFs related to .com, .xyz, .icu, .loan, .top, .biz.
Lifetimes for malicious names under the other TLDs show trends similar

2https://www.spamhaus.org/statistics/tlds/

https://www.spamhaus.org/statistics/tlds/
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Table 6.2. Top 10 TLDs data set with malicious names, showing the number
of lifetimes segments inferred and unique names in CZDS data for 2018+, as
well as the malicious figures

TLD # Total LT # Total # Malicious LT Malicious
Segments Names Segments Names (%)

.com 32.7M 32.2M 2.5M 7.53%

.net 2.6M 2.6M 201K 7.62%

.info 2.0M 2.0M 256K 12.41%

.org 1.7M 1.6M 51K 3.05%

.xyz 3.5M 3.4M 233K 6.62%

.top 6.2M 6.1M 1.3M 21.56%

.icu 5.7M 5.6M 244K 4.27%

.biz 928K 950K 270K 28.46%

.us 794K 790K 156K 19.67%

.loan 2.0M 2.0M 240K 12.20%

Figure 6.2. Domain name lifetime in various Top 10 TLDs under considera-
tion for names that are reportedly malicious
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to the counterparts of these TLDs we reported in Section 6.5.1. Malicious
domain names in .xyz generally have shorter lifetimes than those under
other TLDs. The TLD .icu is next in rank. The TLD .loan sees a con-
siderable number of malicious domain names that have a lifetime of around
one year, followed by.biz. The TLD .top includes a high percentage of
malicious domain names (e.g., 21.56%) with longer lifetimes than the other
TLDs (i.e., 12% of malicious .top domain lifetimes are shorter than 365
days). More specifically, 97–99% of malicious .xyz, .icu .loan, .top,
.biz domain lifetimes are shorter than 410 days. For .com it is 86%. The
.xyz TLD could stick out for multiple reasons. First, we see that malicious
.xyz domains are less likely to be renewed in general (Figure 6.1). Second,
as we show in Section 6.5.4, malicious .xyz names are acted upon quicker
compared to other TLDs.

6.5.3 Short-Lived Domain Names

We now focus on domain name lifetimes of 364 days or shorter. We
chose this threshold because it captures domain names that live less than
the minimum registration term, considering the minimum of 0 days under
grace (Section 2.3.4). For the overall DZDB data (i.e., starting in 2011),
6.19% of lifetimes are 364 days or shorter. For 2018 onward, which aligns
with the DBL data available to us, the percentage is 19.57%: 11.3M life-
times involving 11.0M unique domain names. We cannot make a strong
inference from the relative increase in percentages, but do note that anec-
dotal evidence suggests increases in domain name abuse [194]. In addition,
although the ICANN report shows an increase in the number of registra-
tions and a decrease in the number of abuses from 2017 to 2022, we see
a drop in the number of new registrations from 2018 to 2020 [195]. Fur-
thermore, the percentage of lifetimes less than 364 days is 15.5% in 2018
and 16.2% in 2019. We cannot estimate this percentage in 2020 because
our data set lasts until February 2021. Considering DBL data, we con-
firm that 24.27% of short-lived lifetimes involve malicious domain names.
These ∼1.3M lifetimes involve almost the same number of domain names,
and hence we rarely encounter malicious names for which we infer multiple
(short-lived) lifetimes.

We calculated the percentages within each Top 10 TLD to investigate
how they compare. We find that .biz has the highest percentage: 34%.
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Figure 6.3. Number of days elapsed between the insertion of malicious names
on the blocklist and their removal from the zone file

Recall from Section 6.5.2 that this TLD also sees the highest percentage of
malicious names. The .icu and .top TLDs contain the lowest percentages
of short-lived domain names. At the same time, however, if we consider
strictly malicious domain names in these TLDs, we see that many fit the
short-lived criterion (see Figure 6.2).

6.5.4 Post-Blocklist Life and Removal

We investigate how much longer domain names live after appearing on
the blocklist, noting that removal can be the result of take-down efforts.
To this end, we look at the number of days between DBL insertion and
removal from the zone file.

First, we consider any malicious name (i.e., not necessarily short-lived
ones), including names that naturally expire.

Figure 6.3 shows the resulting boxplots for the Top 10 TLDs. The
TLDs .com, .net, and .top see median deletion times of 379, 379, and
387 days, respectively. These values are close to 410 days (one year plus
the auto-renew grace period), which is the minimum lifetime of a domain
if it is not renewed. Therefore, this plot shows that these three TLDs
include most blocklisted names that may have naturally expired rather
than being acted upon (e.g., by registries or registrars). The TLD .xyz
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Figure 6.4. Number of days elapsed between the insertion of short-lived,
malicious names on the blocklist and their removal from the zone file

shows the opposite: a median of just 13 days. With the exception of .xyz,
the upper quartiles are close to the one-year mark, suggesting that a long
tail of names under most TLDs naturally expire. Finally, looking at 95-
percentiles, we see that there are malicious domains that live for multiple
years before expiring.

Second, we consider short-lived malicious names, postulating that ma-
licious names that do not live for the minimum registration term of one
year are likely to have been taken down. Figure 6.4 shows the resulting
boxplots. The .xyz TLD again shows the lowest median value (10 days
here), indicating that malicious domain names are removed from this zone
shortly after being blocklisted. The short boxplot for .xyz also suggests
that few malicious domains live anywhere near the minimum registration
term.
We observe different behavior for .top, which sees a high median value
of 131 days. Its relatively tall plot and upper quartile shows that some
malicious names live for a considerable amount of time after being block-
listed. Similar observations can be made for several other TLDs such as
.net and .us, although not as pronounced. With the exception of .top,
the results are comparable for the situation in which we considered any
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malicious name, regardless of whether they are short-lived. Considering
Figure 6.4, we conclude that, for suspected take down efforts, the median
removal time is largely between 0 and 2 months. Given that the 4k short-
lived malicious names represent only a tiny fraction of the malicious .loan
names (0.02%), we do not consider its results representative.3

As only 24.27% of the short-lived lifetimes involve malicious names in
DBL data, we consulted two parties — a ccTLDs registry and a large
global registrar — about other possible reasons for domains being short-
lived. The registry stated that the blocklist perspective only accounts for a
subset of short-lived domains, but what is missed is still due to abuse. The
registrar indicated that malicious domains can be re-registered with them
after being taken down and after the expiration of the redemption period.
Finally, we note that some registrars, such as Freenom, provide an API
to security researchers to immediately take-down free domains following
signs of abuse4. We do not know if such mechanisms are available for the
TLDs that we considered. However, it could help explain differences in
take-down timings.

6.5.5 Investigating Malicious Campaigns

Some cybercriminals register a considerable number of domain names
for malicious purposes at once [196, 184]. There are registrars that make
this possible by offering bulk registration options. To investigate, we study
malicious name registrations over time and look for signs of bulk registra-
tion. We cross-reference DZDB and DBL data and calculate how many
new malicious registrations occur every day. Figure 6.5 shows the results
for .com, which usually sees 1K – 10K malicious registrations daily and
also contains a pronounced spike on July 28, 2018. For other TLDs (not
plotted) we observe lower daily averages and also occasional spikes.

We investigate the suspicious spike, which involves 27k malicious names,
for possible causes. Related work has shown that maliciously registered
names in bulk can involve overlap in WHOIS features [184]. For this rea-
son, using Cisco Umbrella data, we look for overlap in: the registrant
organization, city, and country; and the registrar name and IANA ID.

3As we show in Section 6.5.2, the malicious names that we found in .loan are
typically longer lived. One possible reason is that it does not react to abuse notifications.

4https://www.freenom.com/en/antiabuse_api.html

https://www.freenom.com/en/antiabuse_api.html
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Figure 6.5. New Malicious Registrations in 2018 - .com TLD

This identifies a campaign characterized by 4362 domain names, which
can be tied to a single registrant organization in Malaysia, and the reg-
istrar GoDaddy. Furthermore, a considerable number of domains related
to this peak (around 17K) were registered by the registrar Alibaba. Both
registrars offer bulk registration. We looked for visually prominent spikes
for other Top 10 TLDs as well (not plotted). Two peaks occurred on
2018/03/01 and 2018/05/16, respectively, involving 83k and 52k malicious
domain name registrations, 93% and 97% of which are under .top. In both
cases, Alibaba was also the registrar used, and the names share a single
Chinese registrant. Consequently, all malicious spikes analyzed were trig-
gered by a significant number of registrations performed by the Alibaba
registrar.

We also looked beyond spikes and examined 12 “average” days of ma-
licious .com registrations, one per month, equally spaced over a year. Fig-
ure 6.5 marks the dates with dashed vertical lines. We identify several
smaller campaigns with an average of about 3k daily registrations. We find
registrar overlap for GoDaddy, GMO Internet, PDR Ltd. d/b/a, or Xin
Net Technology Corporation. Finally, we looked at the malicious names
to further confirm commonality. Using Levenshtein distances we observe
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that in some campaigns, names differ by only a few characters.
Lifetime inferences. We extracted from WHOIS data the creation dates
for domain names involved in the 12 snapshots and three peaks, and com-
pared them with the registration date that we infer from zone files. This
comparison reveals that 80% of domains were registered up to one day and
97% up to two days earlier. This shows that, in most cases, our zone file
approach to inferring the date on which a domain name’s lifetime starts
is reasonable. (Recall from Section 2.3.4 that domain name owners may
withhold names from the zone files.)

6.6 Concluding Remarks

In this chapter, we analyzed domain name lifetimes. We showed that
among a representative selection of TLDs, initial ICANN gTLDs (e.g.,
.com) exhibit a higher renewal rate than newer gTLDs (e.g., .icu). We
also see signs that a non-negligible number of domain names do not live as
long as the minimum registration term of one year. To investigate possible
causes, we examined the presence and lifetimes of malicious names. Half of
the TLDs considered involve substantial numbers of malicious names (i.e.,
12.20–28.46%). Moreover, malicious names in some TLDs live longer than
in others. We see indications that domains are subjected to take-down ef-
forts, finding also that in some TLDs this takes place quickly after domains
have appeared on a blocklist. Finally, we looked at malicious registration
campaigns. We empirically identified a number of them on the basis of
WHOIS feature overlap (e.g., registrant or registrar) and also found indi-
cators that some registrars are used regularly to this end. We believe that
the investigation of the malicious campaign may be applied also in the
threat intelligence or cybersecurity fields. Specifically, the security level of
a domain may be pre-estimated by observing its registration features and
also whether it belongs to a bulk registration. Future work can extend the
coverage of TLDs to less popular ones beyond the Top 10, and increase the
coverage of malicious names, e.g., considering other blocklists like Virus-
Total and Cisco Umbrella Domain status.





Chapter 7
Impact of COVID-19
Restrictions on Internet
Application Usage

In this Chapter, we analyze the impact of COVID-19 pandemic re-
strictions on the usage of Internet applications through DNS data. The
emergency related to the Coronavirus has impacted everyone’s life. From
the first weeks of 2020, in China, and for weeks later, in other countries
of the world, isolation and social distancing measures have been adopted
to avoid the spread of the virus, forcing people worldwide to isolate them-
selves in their homes.

We provide insights into the use of different categories of Internet ap-
plications. We use two complementary sources of information: the lists
from Alexa and Cisco Umbrella regarding the top 1 Million websites and
domains used worldwide. Our results show that, during the first lockdown
period, the most used applications have been Youtube followed by Netflix,
Facebook, Whatsapp and Skype. This shows how users have looked for
consolation in entertainment apps such as youtube, and Netflix, and in
social media like Facebook. App of messaging services and collaboration,
like WhatsApp and Skype, have been used to communicate with friends
and families while also used for smart working. Contrasting the results
from the two lists, we also uncover important differences in the usage of
different kinds of devices. We believe that the COVID-19 pandemic repre-
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sents a very interesting situation from the network utilization point of view
and we shed light on how such a situation impacted the use of Internet
applications.

7.1 Motivation

The global emergency related to Coronavirus (COVID-19), which spread
in the last few years, has changed the life of every person, leading to an
overload of Internet traffic as well. Schools of all grades have adopted dis-
tance learning, and any kind of office has started remote working. Lots of
calls and remote connections to the office devices were held. Besides, the
global pandemic and sequential lockdown have led to the high use of the
Internet and other online services also for leisure.

In this chapter, we analyze the changes in Internet usage by looking
at the most searched domains and accessed websites. We consider two
datasets: the first one is provided by Cisco Umbrella 1) and Alexa 2. Ev-
ery day, they provide a list of the top 1 million most popular domains and
websites according to their ranking. The two providers of the lists adopt
different methods for such ranking: the Umbrella list contains the most
queried domains based on passive DNS, and Alexa’s list contains the most
popular sites visited by people that use Alexa’s browser extensions. We
call the two lists simply Umbrella and Alexa in the following. We analyze
the last two months of the year 2019 and the first four of 2020, looking at
the trends of the most popular applications, divided by category, to spot
changes in application usage during the lockdown. This analysis was born
out to understand how users spent their time during a period when they
were forced to spend their time at home. For example, videoconferenc-
ing and messaging applications have been widely used for both business
and entertainment with friends and family. But also entertainment appli-
cations, included in the video and social media categories, have provided
moments of lightness and entertainment. Thus, the categories we consider
are video, social media, messaging, and collaboration.

Our results confirm some results covered by the press, but also show
interesting differences when contrasting Alexa and Umbrella. For exam-

1https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
2https://toplists.net.in.tum.de/archive/alexa/
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ple, we see that: 1) in the video category, youtube.com always occupies
position 2 in Alexa, higher than netflix.com, which, in turn, occupies a
higher position than youtube.com in Umbrella; 2) in the social media cat-
egory, the domain facebook.com occupies higher positions in the Alexa
with respect to Umbrella, where the most popular domain is twitter.com;
3) in the messaging category, telegram.org presents an interesting change
in Umbrella, where it scales different positions in the ranking. The do-
main whatsapp.com features an increase and a decrease respectively in
Alexa and Umbrella; 4) in the collaboration tool category, skype.com has
the best performance in Umbrella, followed by zoom.us and webex.com.
We believe that these results and the analysis presented represent unique
contributions that will be difficult in the future time. At least we hope
they will.

7.2 State of the Art on the Impact of COVID-19
Restrictions over the Internet

Scientific literature and several press and Internet companies have been
focusing on the changes in Internet usage with the emergence of the world
pandemic. There are works related to this topic, in different contexts,
made with different datasets, and with different methodologies.

An interesting analysis was made by App Annie, an important anal-
ysis society, demonstrating how some conference applications, including
Houseparty, Zoom, Hangouts Meet, and Microsoft Teams, recorded a high
number of downloads in the week of 14-21 March 2020 worldwide, i.e.,
62 million between IOS and Google Play [197]. The New York Times re-
ported an analysis of the usage of different applications by American users.
The analysis was conducted by SimilarWeb and Apptopia, two providers
of online data. They showed that Facebook, Netflix, and Youtube were
more used by websites than by phone apps. In fact, spending time at
home mostly at laptop computers, Americans are beginning to appreciate
large computer screens rather than small smartphone screens. SimilarWeb
and Apptopia have also registered a visible increment on those applica-
tions,i.e., Google, Duo, and Houseparty video chat, which allows groups
of friends to participate in a single video chat and play together. Increases
were also recorded for videoconferencing applications such as Meets, Mi-
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crosoft Teams and Zoom for smart working and virtual classrooms. One
application not impacted by the crisis was Tiktok, which continued its rise
even after the pandemic began [198]. Statista, a web portal for statistics
that collects a large amount of data on multiple topics, has shown the
ranking of the most downloaded apps in the Google Play store after the
coronavirus (Covid-19) outbreak in France as of April 3, 2020, by several
downloads [199]. They have demonstrated that the five applications most
downloaded in France during this period of lockdown were: Whatsapp,
Zoom, TikTok, Houseparty, and Skype, in this order. The analysis of
network traffic to know the needs of users in terms of application usage
is a topic already frequently covered in the scientific literature. Martino
et al. show a longitudinal view of Internet traffic in five years, relying
on data collected by a nationwide ISP infrastructure. Through this data,
they studied the evolution of the Internet in order to evaluate which ser-
vices became popular and which get abandoned [200]. They demonstrated
that video content drives the bandwidth demand and that users of social
messaging applications, like Instagram, consume more and more traffic.
In fact, the traffic of each Instagram user is already comparable to the
traffic of video-on-demand users, such as Netflix or YouTube. Authors
of [201] focused on the traffic of a year about three European countries
through five vantage points with different access technologies. Their scope
was to perform measurements of "What the user does with the Internet",
for example, they studied the popularity of the applications related to
different categories (streaming Services over HTTP, File Hosting, Social
Networking, Web and Peer-to-Peer). Favale et al. analyzed the impact of
the quarantine period on the Politecnico di Torino campus network, focus-
ing on collaboration and remote working platforms usage, remote teaching
adoption, and looking for changes in unsolicited/malicious traffic. They
have demonstrated that on the Polito campus there are no big problems.
They have encountered a few cases of poor performance, probably related
to people connected through 3G/4G operators [202].

7.3 Data and Methodology

In this work, we rely on two popularity lists provided every day by Cisco
Umbrella and Alexa: two different kinds of lists of the top 1 million most
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popular domains and websites. The two lists are created with different
processes, discussed in more detail in Section 7.3.1. The Cisco Umbrella
Top 1M, provided free of charge, is created through the DNS traffic to
OpenDNS 3, its DNS resolver characterized by 100 billion daily requests
from 65 million unique active users in more than 165 countries [203, 204].
The collection method of domains gathered by Cisco Umbrella consists of
capturing not only browser-based traffic, such as Alexa, but also keeping
track of internet activity on any port and not just port 80. The algorithm
adopted to build the popularity list is relying on the unique number of
IP clients visiting that domain compared to the sum of all requests to
all domains [204]. Alexa’s top sites is a list of websites ordered by
Alexa Traffic Rank [205], generally provided for a fee. We have obtained
these files through the project realized by Scheitle et al. [203], that they
share the code, data, and additional insights into the following website
https://toplists.github.io/.

The ranking provided by Alexa is generated by capturing data from
Alexa’s browser plugin on 25000 different browser extensions over the past
three months from millions of users [206, 207]. "Alexa’s Traffic Ranks are
based on the traffic data provided by Alexa’s global sample over a rolling
3-month period. Traffic Ranks are updated daily. A site’s ranking is based
on a combined measure of Unique Visitors and Pageviews. Unique Visitors
are determined by the number of unique Alexa users who visit a site on a
given day. Pageviews are the total number of Alexa user URL requests for
a site. However, multiple requests for the same URL on the same day by
the same user are counted as a single Pageview. The site with the highest
combination of unique visitors and pageviews is ranked #1. Additionally,
we employ data normalization to correct for biases that may occur in our
data" [208].

7.3.1 Alexa and Cisco Umbrella Top 1 Million

As mentioned in Section 7.3, These top lists are created with different
processes and data sources, generating different rankings. The first main
difference between the Top 1M’s lists is that the Umbrella list contains
subdomains (like hangouts.google.com) while the Alexa list includes only

3https://www.opendns.com/

https://toplists.github.io/
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the top domains (like "google.com"). For this reason, the Umbrella list
holds fewer main domains than the million main domains of the Alexa
list [209]. Furthermore, Alexa receives web browsing data from users who
have installed one of the many extensions of the Alexa browser. Cisco Um-
brella, instead, builds these statistics from DNS queries sent via OpenDNS.
Thus, Alexa analyzes data related to HTTP traffic from web browsers. On
the other hand, the Cisco Umbrella Top 1 Million lists are based on DNS
traffic data collected from various network devices, such as routers, fire-
walls, and endpoints. Studying both the Alexa and Cisco Umbrella Top
1 Million lists allows us to gain a comprehensive view of the usage of
these applications. Besides, Umbrella’s list contains several domains with
non-authorized gTLDs (.mail) or test domains (www.example.com), not
present in Alexa’s list [209]. In the scientific literature, several works focus
on the differences between the Top 1 million lists (e.g., Cisco Umbrella
and Alexa), helpful to understand the most used Internet domains.

Scheitle et al. studied the extent, nature and evolution of top lists used
by research communities. They focused on three different popular top lists
- Alexa, Cisco Umbrella and Majestic - and they evaluated their structure,
stability, significance, ranking mechanisms and the research result impact.
In particular, related to the difference between Cisco Umbrella and Alexa
lists, they specified that the clients using OpenDNS are not only PCs but
also mobile and IoT devices. Some clients that perform DNS queries to
OpenDNS may be bogus, and nonexistent, unlike Alexa which captures
data related to websites visited by users. But, in general, Umbrella’s list
can be useful to analyze DNS traffic while Alexa’s list can be interesting
for a study focused on the human web [203]. Le Pochat et al. [207] detected
a change in the way Alexa composes its lists: the data is averaged over a
single day, causing half the list to change every day. Instead, for the Cisco
Umbrella list, only 49% of domains respond with HTTP status code 200.

7.3.2 Our Approach

As mentioned in Section 7.3, we have analyzed two different lists of the
most popular domain names to observe the trend of the most used appli-
cations during the lockdown time. We retrieved Cisco Umbrella and Alexa
daily top 1 million lists of the final two months of 2019 (November and
December), as well as the initial four months of 2020 (January, February,
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March, and the first thirteen days of April).
The aim of this study was to investigate the utilization of applica-

tions across various categories (Section 7.4) by users before and during the
spread of COVID-19. We have analyzed only the first 10K domains of each
list, aiming to focus only on the most popular domains. As the beginning
of the COVID-19 pandemic in the world dates back to the first days of
January 4, we have fixed the last two months of 2019 as the baseline. Sub-
sequently, we compared each week of the first four months of 2020 with the
baseline in order to discern how the most popular domains evolved each
week in 2020 compared to the final months of 2019.

Algorithm 1 Create Result File
for i=0 to N do

Y ← Domain1i
SearchY inFile2
if Y inFile2 then

Position← Position1 + Position2

POP (Y inFile2)
else

Position = Position1 + 100K
end if

end for
for j=0 to M do

Y ← Domain2i
Position = Position2 + 100K

end for

Figure 7.1 summarizes the steps taken to obtain our results; the com-
parison component is zoomed in the pseudocode shown in Figure 1. We
have selected the domain names related to the most frequently used ap-
plications by users, divided into categories 7.4. To track the popularity of
these domains during the days of the week in 2020 and baseline months
(November and December), we calculated each domain’s mean position
and variance, using the approach shown in the pseudocode 1. This al-
lowed us to monitor the dispersion of the data around the mean position.
First, for each week of 2020 and 2019, the first two files related to the first
two days of the week are compared. The result of this comparison is com-

4https://www.nytimes.com/article/coronavirus-timeline.html
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Figure 7.1. Flow chart of our approach

pared with the third day of the week and so on until all the files of the week
are analyzed. The comparison between the two files, also reported by the
pseudo-code, is structured as follows: each analyzed domain is searched in
both the first and second files. If it is present in both files, the position in
the resulting file is given by the sum of the two positions. If the domain is
not present in a file, the final position will be equal to the position of the
domain reported in the file in which it is present + 100k. We assign the
position a value of "100K" because, in this way, we signal that the domain
is not included in the top ten thousand domains on that date. Then, we
performed a comparison between the resulting files of each week and those
of the baseline with a similar procedure.

7.4 Experimental Results

Starting from the resulting files, obtained by applying the approach
explained in 7.3.2, we have analyzed several domains related to different
categories of most used applications, both web and mobile applications.
We considered the following categories and related domains:

• Social Media: "facebook.com", "linkedin.com", "twitter.com",
"snapchat.com", "instagram.com", "tiktok.com";

• Video: "netflix.com", "youtube.com";

• Messaging: "whatsapp.net", "whatsapp.com", "telegram.org"
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• Collaboration Tool: "zoom.us", "teams.microsoft.com", "skype.com",
"webex.com", "hangouts.google.com".

We have chosen these categories to analyze the change in both entertain-
ment and leisure applications (i.e., video, social media, and messaging)
and collaboration applications, helpful for distance learning and the smart
working to which the whole world had to bend.

Table 7.1. Time Frames

Label Time Span
0 Nov - Dec 2019
1 1 Jan - 5 Jan 2020
2 6 Jan - 12 Jan 2020
3 13 Jan - 19 Jan 2020
4 20 Jan - 26 Jan 2020
5 27 Jan - 2 Feb 2020
6 3 Feb - 9 Feb 2020
7 10 Feb - 16 Feb 2020
8 17 Feb - 23 Feb 2020
9 24 Feb - 1 Mar 2020
10 2 Mar - 8 Mar 2020
11 9 Mar - 15 Mar 2020
12 16 Mar - 22 Mar 2020
13 23 Mar - 29 Mar 2020
14 30 Mar - 5 Apr 2020
15 6 Apr - 13 Apr 2020

We will analyze each category in detail in the following subsections.
For each domain, we have reported the error bar plot, where we plotted
the average position and the variance for each week. In particular, the x-
axis represents a specific time frame, whose order is listed in the table 7.1,
and the y-axis shows the average position in the logarithmic scale.

7.4.1 Video Applications

In the video section, we dwelt on Youtube and Netflix, both accessible
by both browsers and applications. There are a lot of domains related
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(a) "youtube.com" (b) "netflix.com"

Figure 7.2. Video Category

to them, but we have considered "youtube.com" and "netflix.com". Fig-
ure 7.2a shows the trend of the domain "youtube.com". In Alexa, this
domain presents a regular trend; in particular, it has a constant average
and zero variance. It always holds the second position on the list. Instead,
in Cisco Umbrella, this domain always occupies the first position until the
last week of January, then, later, lower positions in the ranking than the
Alexa list with a dispersion of data around the average value. After the
second week of February, this domain gains some positions. The "net-
flix.com" domain, 7.2b, occupies low positions in Alexa rather than Cisco
Umbrella, where the trend is constant in the two last months of 2019 and
in every week of January 2020, and then there is an increase in the next
weeks. Therefore, in the video category, the two domains analyzed have
opposite behaviour in the two datasets: for Alexa, the more popular do-
main is "youtube.com", for Umbrella, instead, is "netflix.com". The two
domains, related to video streaming, were highly searched during the lock-
down. In summary, "youtube.com" has been most searched by users via
browsers and not by other types of applications such as (mobile phones,
televisions and so on), in accordance with SimilarWeb and Apptopia [198].
We can observe the opposite behaviour in the "netflix.com" domain.

7.4.2 Social Media

In the social media category, we have analyzed the six domains re-
lated to the most known applications: "facebook.com", "instagram.com",
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"tiktok.com", "snapchat.com", "linkedin.com", "and twitter.com". In the
Top 1M files of Alexa, the domain "facebook.com" occupies the highest
position in the list, against to Cisco Umbrella dataset where the most
popular domain, in this category, is "twitter.com". Besides, the domains
"instagram.com", "linkedin.com", "twitter.com" and "tiktok.com" achieve
better positions in Alexa’s list and not in Cisco Umbrella’s dataset. In
contrast, "snapchat.com" occupies the upper position in Cisco Umbrella’s
list. Another significant aspect is related to the domain "facebook.com",
which holds better positions in Alexa except for an overlap in the weeks
of February and March. In all of the cases, there is an evident high value
of standard deviation.

During this period of lockdown, the social media that has evolved the
most has been "tiktok.com", with a decrease in the trend, and so rising
in the ranking, from the first weeks of February. This decrease is more
evident in Cisco Umbrella than in Alexa, probably because the greater use
was due to applications from different types of devices and not by browser.
In fact, different newspapers testify to the wide use of this application by
users [210]. Another interesting trend to observe is "facebook.com", which
shows how, during this lockdown period, this domain gained several po-
sitions in the Umbrella list between February and March. During the
same weeks, in Alexa’s list, this domain loses some positions in the rank-
ing. We justify this behaviour with the same motivation as "tiktok.com",
so more use by applications, through for example a mobile device, and
not by browser, in contrast with the analysis reported by the New York
Times [198].

7.4.3 Messaging Applications

In the messaging category, we have analyzed three domains: "what-
sapp.com", "telegram.org" and "whatsapp.net". The last domain is in the
top 1 million of Cisco Umbrella and not on Alexa’s list. Both for Umbrella
and Alexa, the messaging domain most popular during this period of the
pandemic is "whatsapp.com", followed by "telegram.org". More in detail,
both "whatsapp.com" and "telegram.org", figures 7.4 (a) (b), take lower
positions in the ranking in Alexa against Umbrella, probably for the same
motivation of the video category 7.4.1. Therefore, for these two domains,
the number of HTTP requests by the browser is greater than the number
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of queries to the OpenDNS server, which includes applications on differ-
ent port numbers. The "whatsapp.net" domain (Figure 7.7 (c)) presents
a high dispersion of data around the mean value, but the trend is fairly
constant. During the lockdown period, we notice a significant change in
telegram application usage, related to the "telegram.org" domain. This
change is featured in the Umbrella dataset where this domain wins many
positions in the rankings. Instead, for the "whatsapp.com" domain, there
is an increase and a decrease respectively in Alexa and Cisco Umbrella
lists. The "whatsapp.net" domain (Figure 7.7) has not undergone exces-
sive variations during the quarantine.

7.4.4 Collaboration Tools

In the collaboration category, we have analyzed five domains related
to the most popular platforms of collaboration: "skype.com", "zoom.us",
"webex.com", "teams.microsoft.com", "and hangouts.google.com". Among
these domains, only three are included in both datasets: "zoom.us", "skype.com",
"and webex.com". The two remaining ones, i.e., "teams.microsoft.com"
and "hangouts.google.com", are contained only in the Cisco Umbrella’s
list because in the files of the top 1 million of Alexa are not present sub-
domains 7.3.1. The collaboration domain with the best performance (Fig-
ure 7.5) is "skype.com" in the Umbrella’s dataset, followed by "zoom.us"
and "webex.com" where there is an overlap between the two lists. In
particular, we can notice a relevant aspect in the trend of zoom.us in cor-
respondence of week 12: March 16th - March 22nd. In this interval, the
domain acquired many positions in the rankings which may be justified
considering that, during the first two weeks of March, the beginning of
the use of this tool by companies, universities, and schools but also for
entertainment was recorded. Instead, among the two domains contained
only in Umbrella’s list, the one with the highest position in the ranking is
"teams.microsoft.com" (Fig. 7.6.
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(a) "facebook.com" (b) "instagram.com"

(c) "linkedin.com" (d) "twitter.com"

(e) "snapchat.com" (f) "tiktok.com"

Figure 7.3. Social Media Category
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(a) "whatsapp.com" (b) "telegram.org"

Figure 7.4. Messaging Category - common domains

(a) "zoom.us" (b) "skype.com"

(c) "webex.com"

Figure 7.5. Collaboration Tool Category - common domains
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(a) "hangouts.google.com" (b) "teams.microsoft.com"

Figure 7.6. Collaboration Tool Category - Umbrella’s domains

"whatsapp.net"

Figure 7.7. Messaging Category - Umbrella’s domain
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7.5 Concluding Remarks

Web and mobile applications played a significant role during the lock-
down period when the whole world was forced to hole up in their homes
and go out only for basic needs. Consequently, most employees were forced
to adopt smart working, while schools and universities embraced distance
learning, leading to the widespread use of video conferencing applications.
Not only for work and distance learning, but several applications have also
been essential in your free time and to keep in touch with friends and rel-
atives.

In this work, we have analyzed the trends of different applications,
belonging to different categories, i.e., video, social media, messaging and
collaboration tools. For this analysis, we have adopted two different, com-
plementary data sources: the top 1 Million lists provided every day by
Cisco Umbrella and Alexa, containing the most popular domains and web-
sites respectively. While confirming some results covered by the press, our
results also show interesting differences noticed contrasting Alexa and Um-
brella, e.g., youtube.com always occupies position 2 in Alexa’, higher than
netflix.com, which, in turn, occupies a higher position in Umbrella; face-
book.com occupies higher positions in the Alexa with respect to Umbrella,
where the most popular domain is twitter.com; whatsapp.com features an
increase and a decrease respectively in Alexa and Umbrella; skype.com has
the best performance in Umbrella, followed by zoom.us and webex.com.
These results are related to the use of different devices by the users, which
are differently captured by the two lists. In our ongoing work, we are look-
ing at the possibility to dissect the analysis at the Country level, as the lists
used do not provide such information. Moreover, we are using a system-
atic approach [211] to understand the performance of the network during
the lockdown. Preliminary results show that despite the major change in
network access, use and operation conditions, no significant impact on the
applications and network performance has been observed.



Chapter 8
Impact of Ukraine Conflict on
Russian Internet

In this Chapter, we investigate the impact of another global, societal
event through DNS data. The hostilities in Ukraine, indeed, have driven
unprecedented forces, both from third-party countries and Russia, to cre-
ate economic barriers. In the Internet, these manifest both as internal
pressures on Russian sites to (re-)patriate the infrastructure they depend
on (e.g., , naming and hosting) and external pressures arising from West-
ern providers disassociating from some or all Russian customers. While
quite a bit has been written about this both from a policy perspective and
anecdotally, this chapter places the question on an empirical footing and
directly measures longitudinal changes in the makeup of naming, hosting
and certificate issuance for domains in the Russian Federation.

8.1 Motivation

On February 24, 2022, Russian forces invaded Ukraine, leading to the
the largest refugee crisis in Europe since World War II. Unlike Russia’s
2014 annexation of Crimea or ongoing support for separatists in Ukraine’s
south-east, this escalation produced a strong global response — partic-
ularly from Western countries. In addition to providing military and fi-
nancial support for Ukraine, Western countries imposed broad economic
sanctions against Russian entities, including the Russian Central Bank,
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imposed export controls to deny Russia access to strategic material, seized
or froze property and assets held abroad, and imposed flight bans and
travel restrictions. In addition to these government actions, a broad array
of roughly 1,000 private sector companies independently restricted or ex-
ited the Russian market [212].

The Internet has not escaped this conflict. For example, the US Of-
fice of Foreign Asset Control (OFAC) started listing particular Russian
corporate Web sites on its Specially Designated Nationals (SDN) list of
sanctioned entities [213]. Independent of these particular sanctions, many
western Internet service companies have decided — for some combina-
tion of moral principle, reputational risk and/or economic volatility —
to broadly disengage from the Russian market. While some have sim-
ply halted new sales to Russian customers (e.g., , Amazon, Microsoft,
Google [214], GoDaddy [215]), others, such as Cogent, have stopped pro-
viding service to Russia entirely [216]. Ukraine has advocated for such
actions and on March 1st, 2022, their Deputy Prime-Minster formally re-
quested that ICANN revoke the .ru, .рф and .su domains, support the
revocation of all TLS certificates for those domains and shut down DNS
root servers located in the Russian Federation [20].

These actions have reinforced Russia’s long-held concerns about threats
to their “Internet sovereignty”, leading the government to take proactive
steps to repatriate key services.1 In March 2022, Russian authorities man-
dated that all state-owned websites and services switch exclusively to do-
mestic ISPs, DNS operators and hosting providers [11]. Similarly, the
Russian Ministry of Digital Development announced that it was stand-
ing up an independent state-operated CA whose root certificate would be
trusted by Russian browsers (VK Atom and Yandex.Browser).2 Russian
private sector operators have also started to anticipate third-party disen-
gagement: RU-CENTER, Russia’s leading registrar and hosting provider,
advised customers “operating in sectors subject to international sanctions”

1Russia has a long of history of trying to exert control over its domestic Internet,
including requirements for domestic data storage and surveillance [217] and the ability,
recently tested by communications regulator Roskomnadzor, to actively disconnect the
country from the global Internet if needed.

2The timing of this action appears to have been related to DigiCert’s revocation of
Russian Bank VTB’s TLS certificate — presumably in response to VTB’s sanctioning
by the US OFAC.
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to “purchase certificates by GlobalSign, a Japanese certification author-
ity” [218].

These internal re-patriation pressures from the Russian government,
combined with the risk of further shunning by Western service providers,
suggest an unprecedented environment for the Russian operators and their
enterprise customers. It would be entirely reasonable to hypothesize that
these forces are driving Russian sites to rapidly decouple from non-Russian
infrastructure. This chapter is an attempt to put this question on an
empirical footing.

In particular, we explore the longitudinal changes in the infrastructure
used by Russian sites — notably DNS, hosting, and TLS certificate is-
suance — before and after the invasion of Ukraine. Our analysis combines
five years of daily .ru and .рф zone transfer data, with contemporary ac-
tive measurements and historic certificate issuance data. We explore the
extent to which such sites have experienced significant patriation of their
infrastructure and, to the extent such changes exist, whether they can be
best explained by the actions of service providers outside Russia or by the
anticipatory decisions made by Russian site operators themselves.

8.2 State of the Art on Russia Internet Infrastruc-
ture

The relation between state political interests and Internet communi-
cation has become an important field of study, ranging from analyses
of global state censorship [219, 220] to the use of blocking, denial-of-
service attacks and wholesale closing of Internet access to control opposi-
tion forces [221, 222]. Specific to Russia, Moyakine et al. [223] explore the
2015 Yarovaya counter-terrorism law, which mandated extensive surveil-
lance requirements on Russian telecommunication providers and its impact
on the communication of vulnerable groups. Epifanova and Dietrich [217]
explore Russia’s contemporary goals for “digital sovereignty”, both for con-
trolling domestic communication and to reduce dependence on foreign IT
services. This goal is evident in empirical studies by Zembruzki et al. [224]
and Liu et al. [225], who analyze the centralization of hosting and e-mail
service with a small number of Western providers, but show that Russia
bucks this trend with a heavily centralized infrastructure. Ramesh et al.
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[226] analyze the centralized blocking policy dictated by Roskomnadzor to
characterize Russian content blocking and the differential experience be-
tween residential and business customers.

8.3 Data Sources

We use DNS measurement data of all domain names registered under
the Russian Federation country code top-level domains (ccTLDs!s) .ru
and .рф3 over a nearly five-year period (1803 days). The exact period
of our study is June 18, 2017 through May 25, 2022, meaning the data
extends years before Russia’s invasion of Ukraine on February 24, 2022,
and also extends 90 days forward of this point.

The DNS measurements were provided by the OpenINTEL project,
which uses daily zone file snapshots as seeds to actively query all registered
domain names under a TLD for a selection of DNS resource records [227].4

The collected data include each domain’s NS records (to investigate whether
name service is delegated outside .ru and .рф), as well as the A record
resolution for both their name servers and apex domain. We geolocate
each of the resulting IP addresses, using contemporaneous results from
the IP2location service [228], to provide a proxy for the physical hosting
of each domain’s DNS infrastructure and Web site, respectively.5 Our
dataset contains 11.7M unique Russian Federation domain names, and
13.3 k and 9.5 k unique networks (AS numbers) that, respectively, hosted
domain apexes or authoritative DNS infrastructure.

We also collected longitudinal certificate data for the .ru and .рф
domains using both historic certificate transparency logs, as well as ac-
tive scans by Censys [229] of Internet Web sites during the collection pe-
riod.6 Finally, we label 107 unique domains as being specifically sanctioned
based on their appearance on either US OFAC SDN [213] or UK sanctions

3.рф is the Cyrillic code for Russian Federation. The internationalized domain name
form of this ccTLDs! is .xn–p1ai.

4https://openintel.nl/coverage/
5We note that there is a small percentage of disagreement in country-level geoloca-

tion and inferences made regarding relocation may “lag behind,” in particular when IP
address (space) of hosting or DNS infrastructure is moved rather than changed.

6We consider a certificate to “match” if either its Common Name (CN) or Subject
Alternative Name (SAN) fields include a domain name under a .ru or .рф TLD.

https://openintel.nl/coverage/
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lists [230].7

8.4 Impact on DNS Ecosystem

In this section, we first provide historical context for the DNS infras-
tructure supporting .ru and .рф domains, and then focus on activity sur-
rounding the 2022 invasion for all Russian domains, sanctioned Russian
domains, and the actions taken by major Western providers.

8.4.1 Historical Context

For historical context, we start by characterizing the long-term loca-
tions of Russian domain hosting and name server infrastructure across our
full data set from June 18, 2017, to May 25, 2022. We label a domain
as fully Russian-hosted if all of its A records geolocate inside the Russian
Federation, partial if only a subset are in Russia, or non (Russian) if all
such records are located outside the Russian Federation. Name service is
similarly labeled based on geolocating the authoritative name servers for
the domain.

Historically, the fraction of domains hosted in Russian networks only
fluctuates mildly over our period of study. For example, on June 18, 2017,
71.0% of .ru and .рф names are fully hosted in Russia, 0.19% are partial,
and 28.81% are non Russian. This hosting breakdown does not change
significantly until the Ukrainian invasion in February 2022. At that point,
there is a slight increase in both fully and partial domains driven by flight
from the US and other Western countries to a combination of Russia and
the Netherlands.

The name server infrastructure for Russian domains is also relatively
stable over the long term, but shows a more pronounced change once the
conflict starts. Figure 8.1 shows this longitudinal name server breakdown
in more detail. For all domain names registered under .ru and .рф, it
displays whether their delegated name servers are fully, partially or alto-
gether not located inside Russia.8 The black curve shows the total number

7While the US OFAC subsequently issued license exceptions for a range of Internet
services on April 22, 2022 [231], we have not observed clear changes in certificate issuance
behavior in response to this modified policy.

8The dip on March 22, 2021 is a measurement outage.
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Figure 8.1. Country composition of DNS infrastructure of .ru and .рф
domain names. Full means the authoritative name servers fully geolocate to
Russia. Non means the servers altogether do not. Part means they partially
do.

of Russian domains (right ticks). As points of reference, we divide recent
months into three time periods: pre-conflict (before February 24, 2022),
post-sanctions (after March 26, 2022), and pre-sanctions (the period in-
between). We delineate these periods in the graphs with vertical dashed
lines.
On June 18, 2017, there are just under 5M registered domains, 67.0% of
which have name servers fully located in Russia. This breakdown, along
with the roughly equivalent levels of partial and non domains, is stable over
time, suggesting that internal patriation pressure in the years immediately
prior to the 2022 conflict have had little bearing in practice. Changes do
become apparent in February 2022, when many domains with name servers
partially outside Russia clearly transition towards fully Russian. However,
in historical context, these changes are minor. For our most recent data,
73.9% names are fully Russian, only a 6.9% change over the five-year pe-
riod.
One aspect of Russian domain infrastructure that becomes less Russian-

focused over time are the TLD dependencies of Russian domains. We
extract the TLD of each name server to which .ru and .рф domain names
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delegate authority. If all of a domain’s name servers are exclusively reg-
istered under the Russian Federation TLDs, we consider the TLD depen-
dency fully Russian. Similar to prior categorizations, if only a subset are
Russian TLDs, we consider it partial, otherwise we consider it non Rus-
sian.

Figure 8.2 shows the name server TLD composition breakdown over
time. Perhaps counter-intuitively, there is a slight downward trend in fully
Russian (a net reduction of 6.3% comparing extrema), and an increase in
partial (a net increase of 7.9% ). Over time, Russian domains increasingly
delegate to name servers whose names are in non-Russian TLDs, implicitly
increasing their dependence on external infrastructure, which could become
subject to Western sanctions. Figure 8.3 shows a longitudinal breakdown
of specific TLDs under which authoritatives of Russian domains are reg-
istered. We show the Top 5 TLDs (out of a total 270 ). Unsurprisingly,
most Russian domains delegate to name servers with a name in .ru: 78.3%
on May 25, 2022. Second is .com with 24.7% of Russian domains (a net
increase of 7.5% over the five-year period). Next in rank are: .pro (12.4%
up from 8.8% ), .org (9.2% up from 8.2% ), and .net (7.3% down from
9.1% ). The remaining TLDs see <1.0% each (on May 25).

TLD dependency trends also change at the start of the conflict. Both
fully and partial Russian compositions (Figure 8.2) increase very slightly
(by 0.2% and 0.5%, respectively). As a result, the small fraction of Russian
domains that changed from a non composition are less exposed to potential
Western interference. Those that remain could become unresolvable in case
the authoritatives stop providing service or Russia disconnects itself from
the global Internet.

8.4.2 Recent Activity

In the post-conflict period, Russian domains have experienced more
movement in their hosting networks, but the movement has almost entirely
been among networks outside of Russia. Figure 8.4 shows a selection of
providers networks that host .ru and .рф domain names. The Russian
ASNs have stable and consistent customer bases over time, together ac-
counting for 38% of Russian domains at the start and 39% at the end.
The other stable curve is Cloudflare, which accounts for nearly 7% of Rus-
sian domains throughout this period. The networks that do experience
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Figure 8.2. TLD dependency composition of .ru and .рф domain name
authoritatives. Full means the name servers are all registered under Russian
TLDs. Non means none are. Part means some but not all are.
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Figure 8.3. Top 5 TLDs used by authoritative name servers of .ru and .рф
domain names. The other 265 TLDs (not shown) see <1% each.
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Figure 8.4. Hosting networks of .ru and .рф domain names (Top ASNs).
The share of Russian domain names that each network hosts is shown. The ver-
tical dashed lines delineate the pre-conflict, pre-sanctions and post-sanctions
periods.

movement correspond to .ru and .рф domains that switch back and forth
between Amazon (US) and Sedo (Germany), and then ultimately move
to Serverel (Netherlands). This dynamic is, in part, driven by business
reactions to the conflict, which we discuss further in Section 8.4.4.

Russian domains have also experienced changes regarding where their
DNS infrastructure is hosted, with noticeable movement starting dur-
ing the pre-sanctions period and continuing post-sanctions. A significant
change involved Netnod, a Swedish DNS provider, and RU-CENTER, a
large Russian domain name registrar and (former) Netnod customer. Due
to IP address reconfigurations on March 3rd, Netnod stopped providing
service for 76 k Russian domains, which quickly changed from partial to
fully Russian DNS infrastructure (Figure 8.1). We observe other large
transitions at the end of March involving migration out of the networks
of Hetzner (Germany) and Linode (US). One non-Russian network that
hosts DNS infrastructure for a substantial number of Russian domains is
Cloudflare, and this network sees little change since the conflict started.
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8.4.3 Sanctioned Domain Names

We now focus on domain names specifically tied to Russian entities
that were sanctioned by the US and UK.

Note that the potential for impact on the hosting of these domains
is inherently slight as 101 of the 107 sanctioned domains (94.4% ) were
already hosted exclusively in Russian ASNs before the conflict on February
24, 2022. Three more became fully Russian hosted by May 25, 2022,9 and
the final three have remained fully hosted in Germany, Czech Republic,
and Estonia.

However, the name server infrastructure for these sanctioned domains
has experienced significant movement. Figure 8.5 shows the country com-
position of the authoritative name servers for these domains over time.
The three colored curves again distinguish among fully, partial and non
Russian composition, and the black curve shows the daily total number.

On February 24, 2022, 34.0% of sanctioned domains are partial and
5.2% non Russian. This situation drastically changes by March 4, 2022
when the vast majority (93.8% ) of the DNS infrastructure for the sanc-
tioned domains are strictly hosted in Russia. Note that for the partial
sanctioned domains that changed to full, nearly all of them had an author-
itative name server hosted by Netnod (in Sweden) until the change to full
Russian on March 4.

8.4.4 Actions taken by Providers

A number of Western providers publicly stated the business actions
their company would take in response to the conflict, either in voluntary
protest or for alignment with sanctions. Using our DNS data, we examine
the extent and effect of the business actions taken by four major Western
providers.

Amazon – On March 8, 2022, Amazon reported that it would no
longer be accepting new Russian or Belarusian AWS account registra-
tions [232]. Since that time, we see significant changes in the makeup
of .ru and .рф domains resolving to Amazon’s ASN (AS16509), including
the surprising appearance of newly hosted domains from these TLDs.

9These three domains were previously hosted exclusively in Germany or Poland.
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Figure 8.5. Country composition of DNS infrastructure authoritative for
sanctioned Russian domains, broken down in fully, partially, and not geolo-
cated to Russia. Significant movement is seen in the pre-sanctions period.

Figure 8.6 displays the movement of Russian domains that originally
resolved to Amazon’s ASN on March 8, 2022. By May 25, 2022, more than
half of these domains relocated to other ASNs, but we do not know whether
this reflects Amazon’s initiative or independent customer decisions. A little
under half (43% ) remained, but this set also includes 574 newly registered
.ru and .рф domain names (confirmed using Cisco’s Whois Domain API)
and 988 existing domains that relocated to Amazon. While this influx of
1.5 k .ru and .рф names appears inconsistent with Amazon’s statement,
it is possible that these domains are owned by existing customers.10

Sedo – On March 9, 2022, it was reported that Sedo was “pulling the
plug” on Russian domains [233]. Sedo followed through on its stated inten-
tion, although the plug was not pulled completely. Figure 8.7 shows the
significant movement of .ru and .рф name hosting from Sedo’s AS47846.
Starting on March 8, 2022, 164 k .ru and .рф domains resolved to Sedo’s
ASN (AS47846). By May 25, 2022, 160 k (98%) had relocated to a different

10Using Cisco’s Whois Domain API, we found registrant information for a sub-
set of these domains (≈1/6th). Manual inspection revealed that some registra-
tions were business-as-usual or defensive, by non-Russian, existing Amazon customers
(e.g., , Disney registered various brand names such as thorloveandthunder.ru and
blackpantherwakandaforever.ru).
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Figure 8.6. Russian domain name movement in Amazon’s AS16509 (com-
paring 2022-03-08 and 2022-05-25).

Figure 8.7. Russian domain name movement in Sedo’s AS47846 (comparing
2022-03-08 and 2022-05-25).

ASN, 2.7 k (1.6%) remained, and 311 external domains relocated to Sedo.
Cloudflare – Cloudflare wrote in a March 7, 2022, article that it was

complying with sanctions [234]. It also expressed that, in consultation with
government and civil society experts, the company would not terminate
Cloudflare’s services inside Russia. The domain resolutions confirm that
the company is doing business as usual. Starting March 7, 2022, nearly
315 k .ru and .рф names resolved to AS13335. On May 25, 2022, a little
over 296 k (94% of the original set) remain in Cloudflare’s AS, and 34 k
Russian domains newly appeared. This activity is consistent with the
sentiment expressed by Cloudflare’s CEO Matthew Prince, that “Russia
needs more Internet access, not less” [234].

Google – On Thursday, March 10, 2022, a Google spokesperson was
reported as saying that the company would stop accepting new customers
in Russia [235], but declined to comment if existing cloud customers in
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Table 8.1. Issuing activity of Certificate Authorities in the three-time periods
in 2022.

Pre-Conflict Pre-Sanctions Post-Sanctions
Issuer Org. # Certs (%) Issuer Org. # Certs (%) Issuer Org. # Certs (%)

Let’s Encrypt 6,586k 91.58% Let’s Encrypt 3,285k 98.06% Let’s Encrypt 5,458k 99.23%
DigiCert 244k 3.40% GlobalSign 25k 0.76% GlobalSign 28k 0.52%
cPanel 153k 2.13% cPanel 11k 0.34% Google 13k 0.24%

Other CAs 207k 2.89% Other CAs 28k 0.84% Other CAs 422 0.01%

Russia would see action taken. Starting on March 10, 2022, 17.7 k .ru
and .рф domains resolved to Google’s ASN (AS15169). By May 25, 2022,
57.1% (10.1 k) of these domains had relocated to a different ASN, but
most of these (75.2% ) had simply relocated to a different Google ASN
(AS396982).11 In this period, a small number of external Russian domains
(187 ) and newly registered domains (184 ) relocated to Google. As with
Amazon, while seemingly inconsistent with Google’s stated policy, it is
possible that this influx of domains was created by existing customers.

8.5 Impact on Web PKI Ecosystem

In the modern Web ecosystem, TLS certificates are crucial infrastruc-
ture for securing domains. In this section, we examine how Certificate
Authorities (CAs) have reacted to the conflict and sanctions in terms of
the certificates they authorize for Russian domains.
On the one hand, the conflict and sanctions have not significantly un-
dermined the number of certificates issued for .ru and .рф domains from
global CAs. For our three time periods in 2022, CAs issued 130 k cer-
tificates per day on average pre-conflict, 115 k certificates per day pre-
sanctions, and 115 k per day post-sanctions. However, individual CAs
have reacted very differently to the conflict, and in this section we charac-
terize the behavior of global CAs who issue and revoke certificates, as well
as the effect of the new Russian Trusted Root CA.

11Using OpenINTEL DNS measurement data of non Russian Federation domain
names, we observe significant relocation from AS15169 to AS396982 for names under
other TLDs too (around March 16). As such, we conclude that this intra-Google relo-
cation did not occur because the 8.5 k (75.2% of 10.1 k) domains are Russian.
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Figure 8.8. Timelines for CAs issuing new certificates for .ru and .рф do-
mains. A green dot indicates the CA issued at least one certificate on the day.

8.5.1 Shift in Certificate Issuance

We use the Certificate Transparency (CT) logs indexed by Censys [229]
to obtain the TLS certificates securing an .ru or .рф domain from January
1, 2022 to May 15, 2022. For each certificate, we extract the Issuer Orga-
nization term from the Issuer DN field to identify the CA responsible.
Figure 8.8 shows timelines for when the top 10 CAs issue new certifi-
cates for Russian domains. A green dot indicates that the CA issued at
least one certificate for a .ru or .рф domain on that day. Six of the ten
top CAs for Russian domains stopped issuing certificates altogether after
the conflict started or sanctions were imposed. The three CAs that con-
tinue issuing certificates are now the only major issuers for .ru and .рф
domains. Since CAs typically issue certificates under different Common
Names (CNs) (e.g., , DigiCert issues certificates under CNs RapidSSL and
GeoTrust), we suspect the isolated dots are likely a result of CAs not pre-
venting issuance from their lesser known CNs.
Table 8.1 shows the number of issued certificates in each of the three time
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Table 8.2. Revocation activity by the five CAs with the most revocations.

.ru and .рф
Domains

Sanctioned
Domains

Issuer Issued Revoked Issued Revoked

Let’s Encrypt 15M 10k (0.06%) 16k 196 (1.19%)
DigiCert 247k 2.1k (0.80%) 308 308 (100%)
GlobalSign 95k 1.6k (1.68%) 905 23 (2.54%)
Sectigo 96k 5.1k (5.15%) 164 164 (100%)
ZeroSSL 56k 165 (0.30%) 82 2 (2.43%)

periods for the top three issuing CAs in each period. Overall, the effect
of the conflict has been to further concentrate certificate activity to just
three CAs. While Let’s Encrypt already dominated the market before the
conflict, it increases its share to more than 99% afterwards. Pre-conflict
there was a long tail of CAs issuing certificates, but post-conflict only three
CAs effectively participate.

8.5.2 Revocation Activity

Issued certificates only paint half the story: not only have many CAs
stopped issuing new certificates, but some have responded by also fully
revoking sanctioned domains. Using the the Certificate Revocation Lists
(CRLs) and Online Certificate Status Protocol (OCSP) state as indexed
by Censys, we tallied the revocations for certificates securing .ru and .рф
domains across all CAs whose validity ended after February 25, 2022.
Table 8.2 shows the breakdown of domains issued and revoked by the
top five CAs with the most revocations. Significantly, both DigiCert and
Sectigo have revoked the certificates for all of the sanctioned domains that
they issued, apparently choosing to remove any risk of engagement. Al-
though we have no insight into individual CA policy decisions, we note
that all CAs have significantly higher revocation rates for sanctioned do-
mains than other .ru and .рф domains. We also suspect some revocation
activity may be initiated by the sanctioned domains themselves as they
navigate the sanctions by testing different CAs.
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8.5.3 Russian Trusted Root CA

The creation of the Russian Trusted Root CA by Russia’s Ministry
of Digital Development received significant attention when announced. In
addition to being a state-run CA, it does not record its issued certificates in
the CT logs and is not trusted by major browsers.12 To evaluate the initial
impact of this new Russian CA, we used the Censys Universal Internet
Data Set (CUIDS), which performs daily Internet-wide IP scans that index
all TLS certificates returned from responding IP addresses.13 Using these
results we identified all TLS certificates containing the Russian CA in their
certificate chain, between its inception and May 15, 2022.
The certificate scans show two trends. First, very few sites are offering
certificates from the Russian CA: only 170 unique certificates from the
Russian CA are seen in the CUIDS data. For context, all other CAs issued
more than 800 k certificates for Russian domains in the same time period.
While the metrics are not the same — far more certificates are issued
than are in active use — the small number of active certificates from the
Russian CA indicates it has yet to have a significant impact on the overall
Russian domain ecosystem. Second, as expected, the certificates all secure
Russian-related entities, many of which are sanctioned domains. The 170
certificates secure 130 .ru and 2 .рф domains while the remainder, in a long
tail of other TLDs, are affiliated with Russian sites. Based on the issuance
times, the certificates seem to be issued over a period of a few weeks. Of
the 170 certificates, 36 secure sanctioned domains (thus accounting for 34%
of the sanctioned domain list).

8.6 Concluding Remarks

The Russian government has long understood their potential expo-
sure to foreign-operated Internet services. Government efforts to establish
a “sovereign Internet” have included a range of regulatory requirements
on service providers, including requirements for domestic storage of data
on Russian citizens, the use of Russian-controlled DNS root instances, as

12Russian citizens were instructed to either use a state-approved browser or to con-
figure their browser to accept the new CA.

13Since active scans of certificates are likely a subset of issued certificates, the scans
represent a lower bound.
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well as increasing pressure to prefer the use of domestic information and
communications technology (ICT) services [217]. Perhaps most inflated is
Russia’s purportedly-tested capability to disconnect from the global Inter-
net. Thus, even though Russia may have underestimated the magnitude
of Western response to its invasion of Ukraine, it is clear that they under-
stood the Internet could be a potential pressure point.
Indeed, we have clear empirical evidence of this pressure, with many thou-
sands of Russian sites losing access to a range of Western service providers,
e.g., , Netnod for DNS hosting, Sedo for site hosting, and DigiCert and
Sectigo for certificate issuance. However, these issues have been far from
existential. First, Russia enjoys the benefits from high levels of pre-existing
domestic provisioning. The vast majority of Russian sites (≈70% ) were
fully hosted in Russia with entirely domestic name servers long before the
start of the conflict.14 Thus, while we see changes in single digit percent-
ages, when measured against the entirety of the Russian Internet, these
are modest effects. Second, for those Russian sites who have made use
of non-Russian infrastructure, there are many providers who continue to
service Russian customers, both within Russia and without. Thus, while
prominent Western providers chose to leave the Russian market, virtually
all of the impacted sites quickly found new providers. Moreover, we see
little evidence of spontaneous or anticipatory repatriation by Russian do-
main operators who have not been forced to act.
Finally, we note that certificate issuance represents the one area of signif-
icant exposure for Russia. The near-complete control Let’s Encrypt holds
in securing .ru and .рф sites is startling. While Let’s Encrypt has a public
interest mission that provides free CA service to all comers, it is also a US
entity and subject to US law and export control restrictions. Moreover,
Russia does not appear to have anticipated this issue by establishing do-
mestic CAs with similar capabilities and, most importantly, established
trust relationships with the major browsers.

14Our data extends back to 2017, so we cannot establish if this domestic Internet
service centralization represents Russia’s longer-term state of affairs.
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8.7 Ethics

In this chapter, we attempt to contextualize changes in underlying in-
frastructure of .ru and .рф domains as a result of push and pull from
competing forces (internal and external to Russia) and the vision of “cyber
sovereignty”. While this type of analysis — identifying trends in infras-
tructure — does not raise ethical objections, we accept the sensitivities
around the conflict and the implications of sanctions on the global Inter-
net may raise concerns. While we recognize these concerns, we believe full
transparency is the way ahead.



Chapter 9
Conclusions

This thesis provided two main contributions: the analysis of the cyber
threats and the impact of global societal events over the Internet, allowing
a better understanding and optimal operation of this fundamental network.

First, we have focused on how to prevent a network attack by iden-
tifying scanning activities (i.e., port and network scans) in high-speed
networks. To deal with the challenge of the large quantities of data to be
analyzed, we have designed and developed a system exploiting Big Data
techniques. This system is based on a statistical method and inspects
network traffic traces at the flow-level. It achieves good performance in
terms of precision and recall. We have also analyzed the execution time
on three Amazon EMR availability zones. We have found that this system
analyzes a 24-hour traffic trace in about 25 seconds, which is promising
for real-time deployment. Finally, our system has detected also a greater
number of scanning activities than a reference technique. Botnets also use
scanning activities in order to find vulnerable devices. In this thesis, we
have focused on the Mirai botnet that implements a particular signature
in TCP SYN packets (TCP sequence number sets as destination address,
TCP.seq==IP.dst). We have inspected the TCP SYN packets that verify
this signature, the hosts that initiate these scanning activities, and the
ports targeted. In contrast with the previous works, we have shown that
this signature is still implemented in the initial scanning phase. Further-
more, we have identified new variants that probe many vulnerable ports.

Second, we have analyzed malicious domain names and the effects of
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real-life events by studying a small fraction of Internet traffic: the DNS
and its features. We have investigated the security performance of local
DNS resolvers, provided by three main Italian ISPs, and two public ones,
provided by Google and Cisco Umbrella. Specifically, we have performed a
considerable number of DNS queries, using benign and malicious domain
names. We have conducted this experiment considering both traditional
DNS protocol and encrypted queries over HTTPS DoH. Our analysis
has shown that local and public resolvers achieve approximately the same
protection level. In addition, we have looked at the response times of these
resolvers. We have shown that local resolvers are faster than public ones,
also excluding cached domain names. Also, we have studied the domain
name lifetimes related to top 10 TLDs over a ten-year period. Specifically,
we have analyzed the last and first time a domain name was seen in the
TLD zone files, considering cases where the NS record is not present in
the file zone. With this approach, we have noticed that a noteworthy
percentage of domain names last less than the minimum registration term
(i.e., one year). To further investigate the possible causes of such a short
duration, we have compared these domain names with those included in the
DBL blocklist. We have found that a high number of short-lived domain
names are also used for malicious network activities. In addition, with
further analysis, we have shown that some TLDs quickly remove malicious,
short-lived domains from the zone files after appearing in a blocklist, while
others do not. Finally, we have identified some malicious campaigns by
looking at WHOIS data.
The last two issues addressed in this thesis are related to the study of the
impact of large-scale, real-life events on the Internet. We have focused on
understanding how the COVID-19 pandemic restrictions impacted several
categories of Internet applications: video, social media, messaging, and
collaboration tools. To this end, we have used the top 1 million lists
provided every day by Cisco Umbrella and Alexa. We have implemented a
system that re-evaluates every day the score of the domain names analyzed
taking into account previous scores. With this approach, we have shown
that, during the COVID-19 period, individuals used these applications for
several purposes (personal and work). Netflix and Youtube were the most
used, followed by Facebook and Skype. An interesting increase in the
ranking is also shown by Whatsapp, Zoom, and Webex.
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Regarding the Ukraine conflict, we have examined the regulations im-
posed by the Russian government in recent years, including the implemen-
tation of the Russian national DNS. To this end, we have analyzed the zone
files of .ru and .рф TLDs over a five-year period. We have shown that,
even before the announcement of these regulations (i.e., 2019), a large
percentage (almost 70%) of domain names were geolocated fully within
Russia. However, in February 2022, there was a slight increase in these
Russian domains. In contrast, we have also shown that there is a slight
decrease in the full Russian TLDs, highlighting their dependence on exter-
nal infrastructure. In addition, we have also examined the actions taken
by Western providers to not accept new Russian customers after the Rus-
sian invasion of Ukraine. However, we have found that some companies
accepted newly registered domains. In the end, by inspecting the CT logs,
we have demonstrated that the American society Let’s Encrypt manages
a large percentage of .ru and .рф domain names.

In summary, this thesis contributes to shed light on activities that sig-
nificantly impact the Internet, including recent, cyber security threats and
global societal events. The findings can be useful for network operators,
policymakers and researchers interested in better understanding today’s
Internet.
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