
Università degli Studi di Napoli Federico II
Ph.D. Program in

Information Technology and Electrical Engineering
XXXV Cycle

Thesis for the Degree of Doctor of Philosophy

Reinforcement Learning for Control
by

Francesco De Lellis

Advisor: Prof. Mario di Bernardo

Co-advisor: Prof. Giovanni Russo

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

If a machine is expected to be infallible,
it cannot also be intelligent.
- Alan Turing, 1947

Reinforcement Learning for Control

Ph.D. Thesis presented
for the fulfillment of the Degree of Doctor of Philosophy
in Information Technology and Electrical Engineering

by

Francesco De Lellis

March 2023

Approved as to style and content by

Prof. Mario di Bernardo, Advisor

Prof. Giovanni Russo, Co-advisor

Università degli Studi di Napoli Federico II
Ph.D. Program in Information Technology and Electrical Engineering
XXXV cycle - Chairman: Prof. Stefano Russo

http://itee.dieti.unina.it

Giouei Ho

Candidate’s declaration

I hereby declare that this thesis submitted to obtain the academic degree
of Philosophiæ Doctor (Ph.D.) in Information Technology and Electrical
Engineering is my own unaided work, that I have not used other than the
sources indicated, and that all direct and indirect sources are
acknowledged as references.
Parts of this dissertation have been published in international journals
and/or conference articles (see list of the author’s publications at the end
of the thesis).

Napoli, March 9, 2023

Francesco De Lellis

Abstract

In this thesis, we go through the current state of the art reinforcement
learning for control applications. We analyze the pros and cons of the
methods provided in the literature. Then we establish a common frame-
work to describe both reinforcement learning and control problems and
we present four benchmark problems to analyze and compare reinforce-
ment learning algorithms. Also, we propose a novel solution, the minimal
performance Q-learning, capable of searching and guaranteeing a solution
that meets a desired level of performance in terms of steady-state error
and settling time. Moreover, we also present the control tutored reinforce-
ment learning, an architecture where a feedback controller derived from
an approximate model of the environment assists the learning process to
enhance its data efficiency. We apply this idea to the classical Q-learning,
in the form of a deterministic Control-Tutored Q-Learning (CTQL), that
defines the reward function so that a Boolean condition can be used to
determine when the control tutor policy is adopted. We also introduce a
probabilistic CTQL (pCTQL) that is instead based on executing calls to
the tutor with a certain probability during learning. Moreover, we also
develop a control tutored deep reinforcement learning the CT-DQN. All
the strategies proposed in this thesis are thoroughly analyzed and com-
pared with the literature via the set of metrics to evaluate learning and
control performances. Eventually, we discuss how control techniques can
be applied to face the global COVID-19 pandemic.

Keywords: Control Theory, Reinforcement Learning, Optimization, Deep
Learning

Sintesi in lingua italiana

Nella sua tesi, Francesco De Lellis affronta la tematica della sintesi e
validazione di nuovi algoritmi di controllo basati su Reinforcement Learn-
ing (RL). In particolare, egli propone nel suo elaborato un framework in-
novativo per la progettazione di leggi di controllo basate su Reinforce-
ment Learning che si propone di risolvere il problema dei lunghi tempi
di apprendimento di algoritmi RL guidando l’apprendimento attraverso
l’uso di controllori sintetizzati su modelli anche non sufficientemente ac-
curati del sistema. Questo metodo, detto Control-Tutored Reinforcement
Learning (CTRL), viene poi validato attraverso una attenta campagna di
simulazioni numeriche basate su Python per risolvere alcuni problemi di
benchmark scelti dalla libreria di OpenAI gym. La tesi mostra come il
CTRL riesca a migliorare le performance di base del controllore basato
su modello parziale addestrandolo tramite RL in tempi ridotti rispetto ad
approcci di apprendimento privi del controllore tutor. Nella tesi si pro-
pone, inoltre, una metodologia analitica di progettazione dello schema di
controllo basato su RL e per la scelta della funzione di reward in modo
da poter garantire livelli minimi di performance di controllo al termine
dell’addestramento. La tesi analizza in dettaglio sia da un punto di vista
analitico che teorico le proprietà della metodologia proposta verificandone
l’efficacia e l’applicabilità alla sintesi di controllori MIMO e SISO in un
ventaglio di applicazioni rappresentative. Infine, la tesi riporta lo sviluppo
e la validazione su dati di un modello a rete di diffusione dell’epidemia da
COVID-19 svolto durante la pandemia.

Parole chiave: Teoria del Controllo, Apprendimento per Rinforzo,
Ottimizzazione, Apprendimento Profondo.

Contents

Abstract . i
Sintesi in lingua italiana . ii
Acknowledgements . vi
List of Acronyms . viii
List of Figures . xiv
List of Tables . xvii

1 Introduction 1

1.1 Outline of the Thesis . 3

2 State of the Art 5

2.1 Reinforcement learning . 5
2.1.1 Model-free vs model-based 6

2.2 Deep reinforcement learning 8
2.3 Advances in reinforcement learning for control 9
2.4 Summary . 10

3 Testbed problems 13

3.1 Problem statement . 13
3.1.1 Notation . 13
3.1.2 Problem formulation 14

iii

3.2 Learning and control metrics 14
3.3 OpenAI Gym . 17

3.3.1 Pendulum . 17
3.3.2 Lunar lander . 19
3.3.3 Car racing . 19

3.4 The herding problem . 20
3.5 Summary . 24

4 Guarantee of performance via reward shaping 27

4.1 Control performance requirements 27
4.2 Infinite horizon problems . 28
4.3 Minimal performance Q-learning 33

4.3.1 Numerical results . 35
4.4 Summary . 36

5 Control Tutored Reinforcement Learning 39

5.1 Control tutored Q-learning 41
5.2 Probabilistic control tutored Q-learning 42
5.3 Control tutored deep Q-networks 43
5.4 Numerical simulations . 45

5.4.1 Herding scenario . 45
5.4.2 Inverted pendulum scenario 51
5.4.3 Lunar lander scenario 58
5.4.4 Car racing scenario 62

5.5 Summary . 66

6 COVID-19, modeling and control 67

6.1 Introduction . 67
6.2 COVID-19: modeling . 68
6.3 COVID-19: control via non-pharmaceutical interventions . . 74

iv

6.3.1 Implementation and design of national and regional
feedback intervention strategies 74

6.4 Summary . 75

7 Conclusions and Future Work 79

A Appendix 83

A.1 Parameters of deep architectures 83
A.2 Data fitting and sensitivity analysis in COVID-19 experiments 84

Bibliography 85

Author’s Publications 95

v

Acknowledgements

I deeply thank Mario di Bernardo, who wisely guided me during my
scientific research. He successfully pushed me towards my goals sharing
his precious years of experience making him the best mentor I could ask
for. I also thank Giovanni Russo and Mirco Musolesi for their valuable
collaboration during the development of this research. Their point of view
and knowledge has been a key element for the progress of this research.
They showed me different sides of the process of making scientific research
which I will always be grateful for. Also, I would like to thank Marco
Coraggio who supported and guided me during some of the toughest times
I encountered as a researcher. To them goes my unconditional respect and
admiration for their genuine efforts toward the development of a better
scientific community. Last but not least, I am profoundly grateful to my
family and all the loving people that supported me during these beautiful
years.

vi

List of Acronyms

The following acronyms are used throughout the thesis.

ML Machine Learning

RL Reinforcement Learning

MBRL Model Based Reinforcement Learning

DRL Deep Reinforcement Learning

TD Temporal Difference

QL Q-Learning

SARSA State Action Reward State Action

DQN Deep Q-Networks

CT Control Tutor

CTRL Control Tutored Reinforcement Learning

CTQL Control Tutored Q-Learning

pCTQL probabilistic Control Tutored Q-Learning

CT-DQN Control Tutored Deep Q-Networks

vii

mpQL Minimal Performance Q-Learning

DDPG Deep Deterministic Policy Gradient

A2C Advantage Actor Critic

A3C Asyncronous Advantage Actor Critic

NAF Normalized Advantage Function

TRPO Trust Region Policy Optimization

ME-TRPO Model Ensable Trust Region Policy Optimization

PPO Proximal Policy Optimization

viii

List of Figures

2.1 Taxonomy of reinforcement learning algorithms. We clas-
sify the algorithm-based on the model-free and model-based
property (see Sec. 2.1) as well as the type of learning archi-
tecture (value-based, policy-based, actor-critic). 12

3.1 Pendulum environment simulation [63]. The red bar repre-
sents the rod, while the arrow represents the torque 18

3.2 Lunar Lander environment simulation [64]. A spacecraft is
shown in purple while the red dots represent fuel expelled.
Moreover, the region of a safe landing is delimited by the
two yellow flags. 20

3.3 Car Racing environment simulation [62]. The figure shows
a red car running on a randomly generated circuit. On the
bottom, the following indicators are shown: step counter,
true speed in white, ABS sensors in blue, steering wheel
position in green, and gyroscope in red. 21

ix

4.1 Percentage of steps the ✏-greedy policy was used in each
episode by the minimal performance Q-learning algorithm.
The solid curves represent the mean of the results of S = 10

training sessions; shaded areas correspond to the mean plus
or minus the standard deviation. 37

4.2 Average (solid line) and two times the standard deviation
(shaded area) of the trajectory obtained by the S = 10

trained controllers. The results are expressed in terms of
distance from the goal regulation point as L2 norm. 38

5.1 Schematic of the Control-Tutored Reinforcement Learning
(CTRL) framework. 40

5.2 The graph shows the radial coordinate of the herder (black
line) and the target (red line). The green line represents the
circular goal region amplitude. The herder and the target
interact in a really close range due to the control law formu-
lation. By itself, the tutor control law is not effective since
the herder is not able to push the target inside the goal region. 47

5.3 The graph shows the radial coordinate of the herder (black
line) and the target (red line). The green line represents
the circular goal region amplitude. The agent is using a
tabular Q-learning which requires lots of episodes to reach
convergence. 48

5.4 The graph shows the radial coordinate of the herder (black
line) and the target (red line). The green line represents
the circular goal region amplitude. The herder and the tar-
get interact at a really close range. As can be seen, the
information provided by the control law is able to enhance
the learning process and the herder reaches the control goal
from the very first attempt. 49

x

5.5 The graph shows the radial coordinate of the herder (black
line) and the target (red line). The green line represents the
circular goal region amplitude. The herder and the target
interact at a really close range. After a number of E = 200

episodes, the herder considerably improves its performance
and takes less time to push the target inside the goal region. 50

5.6 Cumulative reward per episode J
⇡
e , obtained with reward

(3.8). The solid curves are the mean of the results of S =

10 sessions; for readability, the curves are averaged with a
moving average of 100 samples (taken on the right); shaded
areas correspond to the means plus or minus the standard
deviations. 53

5.7 Percentage of steps the control-tutor policy ⇡
c was used in

each episode, with reward (3.8). The solid curves are the
mean of the results of S = 10 sessions; for readability, the
curves are averaged with a moving average of 100 samples
(taken on the right); shaded areas correspond to the means
plus or minus the standard deviations. 54

5.8 Cumulative reward per episode J
⇡
e for the inverted pendu-

lum problem. The reward curves were averaged with a mov-
ing window of 10 samples taken on the left. Then mean
(solid curves) and standard deviations (shaded areas) are
taken across sessions. 56

5.9 (a) Trajectories of the lander obtained using only the control
tutor (uk = g(xk); solid line) and no control input at all
(dotted line). (b) Absolute value of the lander’s linear speed
obtained using only the control tutor (solid line) and no
control input at all (dotted line). Different colors correspond
to different initial linear velocities (while keeping the same
ground). 59

xi

5.10 Cumulative reward per episode J⇡
e for the lunar lander prob-

lem. The reward curves were averaged with a moving win-
dow of 100 samples taken on the left. Then mean (solid
curves) and standard deviations (shaded areas) are calcu-
lated across sessions. 60

5.11 Quantities used by the control tutor, when the car is on the
road (a) and off the road (b). 63

5.12 Cumulative reward per episode J
⇡
e of DQN and CT-DQN.

The curves were obtained using a moving average of 50 sam-
ples (taken on the left). 64

6.1 Schematic diagram of the network model structure and rep-
resentative regional parameters. (a). Representative graph
of the network model structure used in the paper. Only a
subset of all links is shown for the sake of clarity (see [19] for
the complete graphs). Solid lines represent proximity links,
dashed lines long distance transportation routes (air, train,
road), and dotted lines show major ferry routes between in-
sular regions and the Italian mainland. (b). Table of the
Italian region names and their positions in the graph. 69

6.2 Regional compartmental model structure adopted in our
study. Schematic structure of model described by equations
(6.1). Compartments describe the dynamics of susceptible
(Si), infected (Ii), quarantined (Qi), hospitalized (Hi), re-
covered (Ri), and deceased (Di). 70

xii

6.3 Intermittent regional measures. (a). Each of the 20 pan-
els shows the evolution in each region of the fraction in the
population of infected (blue), quarantined (magenta), and
hospitalized requiring ICUs (red) averaged over 10,000 sim-
ulations with parameters sampled using a Latin Hypercube
technique (see Appendix A.2 and [19]). Shaded bands corre-
spond to twice the standard deviation. Dashed black lines
represent line the fraction of the population that can be
treated in ICU (TH

i
/Ni) (b). National evolution of the frac-

tion in the population of infected (blue), quarantined (ma-
genta), and hospitalized requiring ICUs (red) was obtained
by summing those in each of the 20 regions adopting inter-
mittent regional measures. (c). National evolution when an
intermittent national lockdown is enforced with all regions
shutting down when the total number of occupied ICU beds
at the national level exceeds 20%. 76

xiii

6.4 National lockdown. (a). Regional and (b). national dy-
namics in the case where no region relaxes its containment
measures, while all regions restore the interregional fluxes
to their pre-lockdown level. Blue, magenta, red, green, and
black solid lines correspond to the fraction in the popula-
tion of infected, quarantined, hospitalized, recovered, and
deceased averaged over 10,000 simulations with parame-
ters sampled using a Latin Hypercube technique (see Ap-
pendix A.2) around their nominal values set as those esti-
mated in the last time window for each region (see [19]).
Shaded bands correspond to twice the standard deviation.
The black dashed line identifies the fraction of the popu-
lation that can be treated in ICU (TH

i
/Ni). The regions

identified with a red label are those where the total hospital
capacity is saturated. 77

xiv

List of Tables

5.1 Learning metrics (Def. 3.2.1) for the inverted pendulum
scenario, with reward (3.8) and nominal conditions. Means
and standard deviations across sessions are reported, when
S > 1. Values that are statistically significantly different
from those of QL are in bold (according to Welch’s t-test
with p-value less than 0.05 [99]). 53

5.2 Learning metrics (Def. 3.2.1) for the inverted pendulum
scenario, with reward (3.9) and nominal conditions. Means
and standard deviations across sessions are reported, when
S > 1. Values that are statistically significantly different
from those of QL are in bold (according to Welch’s t-test
with p-value less than 0.05 [99]). 54

5.3 Control metrics (Def. 3.2.2) for the inverted pendulum sce-
nario, with reward (3.8) and nominal conditions. Means
and standard deviations across sessions are reported, when
S > 1. Values that are statistically significantly different
from those of QL are in bold (according to Welch’s t-test
with p-value less than 0.05 [99]). 55

xv

5.4 Control metrics (Def. 3.2.2) for the inverted pendulum sce-
nario, with reward (3.9) and nominal conditions. Means
and standard deviations across sessions are reported, when
S > 1. Values that are statistically significantly different
from those of QL are in bold (according to Welch’s t-test
with p-value less than 0.05 [99]). 56

5.5 Learning metrics (Def. 3.2.1) for the inverted pendulum sce-
nario using DQN and CT-DQN. Means and standard devia-
tions across sessions are reported, when S > 1. Values that
are statistically significantly different from those of DQN
are in bold (according to Welch’s t-test with p-value less
than 0.05 [99]). 57

5.6 Control metrics (Def. 3.2.2) for the inverted pendulum sce-
nario using DQN and CT-DQN. Means and standard devia-
tions across sessions are reported, when S > 1. Values that
are statistically significantly different from those of DQN
are in bold (according to Welch’s t-test with p-value less
than 0.05 [99]). 57

5.7 Learning metrics (Def. 3.2.1) for the scenarios considered.
Means and standard deviations across sessions are reported,
when S > 1. Values that are statistically significantly dif-
ferent from those of DQN are in bold (according to Welch’s
t-test with p-value less than 0.05 [99]). 61

5.8 Control metrics (Def. 3.2.2) for the scenarios considered
using DQN and pCTDQN. Means and standard deviations
across sessions are reported, when S > 1. Values that are
statistically significantly different from those of DQN are in
bold (according to Welch’s t-test with p-value less than 0.05

[99]). 62

xvi

5.9 Learning metrics (Def. 3.2.1) for the car racing scenario.
Means and standard deviations across sessions are reported,
when S > 1. Values that are statistically significantly dif-
ferent from those of DQN are in bold (according to Welch’s
t-test with p-value less than 0.05 [99]). 65

5.10 Control metrics (Def. 3.2.2) for the car racing scenario using
DQN and CTDQN. Means and standard deviations across
sessions are reported, when S > 1. Values that are statis-
tically significantly different from those of DQN are in bold
(according to Welch’s t-test with p-value less than 0.05[99]). 65

6.1 Model parameter values; for a description of all parameters
see [19]. The values of TH

i
are reported from [2] 73

6.2 Comparison of the simulated scenarios. Metrics (calculated
according to [19, 14]) to evaluate the impact over 1 year
are reported showing the effectiveness of the intermittent
regional measures in avoiding any saturation of the regional
health systems while mitigating the impact of the epidemic.
Average values are shown ± standard deviation calculated
from 10, 000 repetitions with parameter values sampled us-
ing a Latin Hypercube (see Appendix A.2). 78

xvii

Chapter 1
Introduction

Modern day scientific developments generated a set of techniques, method-
ologies, and know-how for model-based control used in many different ap-
plications. In most cases, such applications are not amenable to empirical
models or derivations based on first principles. For this reason, the sci-
entific community has embraced more frequently data-driven approaches.
These new methods have been applied to solve a variety of problems in a
diverse range of complex systems applications, such as nuclear fusion [17],
the brain [52], epidemiology [81], finance [41], synthetic biology [92], social
networks [20], power grids [75], and robotics [84]. Such systems mani-
fest themselves as heavily nonlinear, multi-scale, and high-dimensional;
however, in most cases, scientists can extrapolate dominant underlying
patterns characterized and modeled for correct monitoring and control.
The rise of data-driven modern mathematical methods is fueled by the un-
precedented availability of data as well as computational resources and it
showed to be capable of achieving unprecedented, sometimes superhuman,
performance in a number of tasks [94, 59, 82, 43, 26]. In the literature
there exists several example of data-driven approaches such as the auto-
tuning techniques for PID controller which range from Ziegler and Nichols
methods [101] to genetic algorithms [42].

However, a remarkable example of a data-driven approach is Reinforce-
ment (RL). It is one of the main paradigms of Machine Learning (ML) and
its key feature is to create artificial agents capable of solving a given control
task without, in principle, assuming any knowledge about the underlying

2 Chapter 1. Introduction

dynamics. This type of learning process is rooted in animal psychology.
With the Law of Effect, in 1898, Edward Thorndike advanced the idea
that animals, as well as humans, use a trial-error process to learn and
understand their physical environment [91]. This idea was opposed to
the previous, state of the art, work by George Romanes, who, instead,
supported the idea that animals and humans think things through when
dealing with a new environment or situation and a trial-error process is
not involved to learn from such situations [76]. These findings posed the
grounds for modern day data-driven methods and, more in general, arti-
ficial intelligence, and we are now able to train artificial agents using a
trial-error process via reinforcement learning. Specifically, we are able to
train control systems by giving positive or negative reinforcements every
time they interact with the environment, eventually achieving the objec-
tive that such reinforcements represent.

Although partially replaced, the ideas of George Romanes can be easily
associated with Classic Control Theory. Given a mathematical description
of the system of interest, a controller can drive the behavior of such a sys-
tem; in the same way, a human can deeply think about its action provided
that she/he holds sufficient knowledge about the environment. There are
more analogies between control theory and reinforcement learning. A no-
table example is the Markov Decision Process formalism, introduced in
1957 by Richard Bellman [6], which jumpstarted the development of rein-
forcement learning algorithms that we now know today.

In this thesis, I try to answer the question of whether modern day
reinforcement learning can benefit from control theory, and vice versa,
whether control theory can benefit from reinforcement learning. In partic-
ular, I show how merging a controller with a reinforcement learning algo-
rithm can be crucial in the learning process to build better reinforcement
learning algorithms. Also, I show how learning processes can be leveraged
to enhance performance, stability, and robustness of a given control law.
Also, I show how learning processes in combination with modeling and
control can deal with complex tasks.

Differently from other attempts in the literature, I show how trial and
error approach can be embedded with modeling and planning in the sense
of control theory and coexist in one algorithm. Furthermore, I also show
how control theoretic arguments can be leveraged to certify the perfor-

1.1. Outline of the Thesis 3

mance of learning algorithms.
Lastly, I discuss how control can be applied to real world problems like

COVID-19 to synthesize effective non-pharmaceutical strategies. I propose
a compartmental model of Italy as a network of 20 interconnected regions
and propose a decentralized control strategy.

1.1 Outline of the Thesis

The rest of this thesis is organized as follows:

1. State of the art: Here the ground foundation of RL is showcased
with a list of algorithms. We go through them and analyze the pros
and cons of the main solution used in the literature;

2. Testbed problems: We provide a mathematical formulation for
bot reinforcement learning and control. Also, we define a set of
metrics to perform quantitative analysis. Eventually, we introduce a
few control problems to test the algorithm proposed.

3. Guarantee of performance via reward shaping: We provide a
design pipeline for reinforcement learning to design artificial agents
capable of guaranteeing a minimum level of performance.

4. Control tutored reinforcement learning: In this section we for-
malize the RL problem and propose the Control Tutored Reinforce-
ment Learning (CTRL). This idea deals with the creation of an extra
tutoring unit able to improve existing RL algorithms. Such a tutor
figure is designed in the form of control laws based on a rough esti-
mate of the environment dynamics. The main objective of such so-
lutions is to improve data efficiency and learning times which many
state of the art algorithm struggle with;

5. COVID-19, modeling and control: We model the COVID-19
Italian epidemic as a network of interconnected region. We analyze
the network and develop a controller to limit the epidemic spread
while reducing economic costs.

6. Conclusions: Final remarks are discussed and a proposal for the
next steps of this research is highlighted.

Chapter 2
State of the Art

In this chapter, we review the current state of the art techniques in
reinforcement learning. We also go through the key works in the literature
about deep reinforcement learning and mixed strategies which make use
of control techniques as well as reinforcement learning.

2.1 Reinforcement learning

Reinforcement Learning (RL) [87, 8] is increasingly used to learn con-
trol policies from real world or computer generated data in a number of
different applications [44, 28, 13]. Despite the advantage of the possibility
of learning effective control policies without the need for a mathematical
model, one of its key drawbacks is the requirement of performing typically
long training sessions to explore and learn a sub-optimal control policy for
the dynamics of interest.

In particular, in RL, the optimal policy is found by combining explo-
rative and greedy actions, thus accepting possible failures in the train-
ing phase during which the agents are learning an optimal policy. Un-
fortunately, in control applications like autonomous driving, multi-joint
robotics, and complex systems, long training phases are often unaccept-
able and failures while learning might lead to unsafe situations [97, 11, 34].

Moreover, these applications are often characterized by continuous
state space and using RL as is, requires a dense discretization of the sys-
tem state space or a function approximation that is also subject to the

6 Chapter 2. State of the Art

learning process [87]. This limitation generated a set of algorithms called
Deep Reinforcement Learning (DRL) to solve the issue of discrete spaces
that we will discuss later [59, 50].

In the current literature, several different algorithms exist which could
be classified in different ways (e.g. the one proposed in [22, 29]). We
propose a classification as proposed in Fig. 2.1 in which a key feature to
discriminate between different RL algorithms is the use of a direct math-
ematical description also subject to learning. In particular, we refer to an
algorithm that does not assume anything about the system dynamics as
model-free and the ones that leverage a mathematical model (also subject
to learning) as model-based.

Another important factor to take into account is the specific task the
RL algorithm is trying to learn. As shown in Fig. 2.1, there exists in
the literature algorithms which try to learn the relationship between the
objective function and the state space (or the couple action-state space)
that we refer to as value-based [87, 22, 98]. Moreover, some algorithms fix
the structure of the control policy and try to learn the optimal value of
their parameters which we call policy-based [87, 22, 80].

Finally, a set of algorithms that tries to combine both the learning pro-
cess of value-based and policy-based giving birth to actor-critic methods
[50, 57, 35]. As a matter of fact, the critic is in principle the value of the
current policy while the actor is, in general, a policy-based algorithm. The
two entities coexist and in particular, the actor tries to find the optimal
values of the parameters based also on the feedback of the critic.

2.1.1 Model-free vs model-based

Model-free algorithms do not use an explicit mathematical model to
learn, however, they use different functions (subject to learning) to ac-
tively learn control solutions. A popular value-based algorithm of this
kind is Q-learning [98, 66]. This algorithm uses a tabular representation
of the state-action value function, often referred to as the Q-function (for
"quality"; a tool to learn the relationship between the cost function and the
couple action-space). In its classical version, Q-learning is typically tabular
and often refers to discrete spaces [87, 98]. In this algorithm an artificial
agents aims at learning the Q-function during its exploration of the state
space. The data collected is then used to update the approximation of the

2.1. Reinforcement learning 7

future objective contained in the Q-function via an iterative update rule
[98]. Q-learning leverages the stochastic Robbins-Monro approximation to
prove its convergence to the optimal Q-values with probability 1 [8, 74].
An interesting yet important property of Q-learning is the capability of
learning optimal values of the Q-values with respect to a greedy policy
which always selects the action according to the maximum Q-value. This
happens regardless of the policy used for exploration and makes this algo-
rithm an off-policy method. The implication of such property is that we
can freely formulate exploration policies to learn the Q-values of a fixed
policy (the greedy policy) which optimizes a given objective in the form
of a sum of rewards. We further discuss how we can define exploration
policies for Q-learning and leverage the off-policy property in Chapters 4
and 5. Another algorithm which tries to approximate the objective via the
Q-function is SARSA which is the on-policy counterpart of the Q-learning.
As a matter of fact, the objective of SARSA is to learn the Q-values asso-
ciated to the exploration policy which is used for exploration but also as
its target [87].

Policy-based RL, aim at defining a policy and then tuning its parame-
ters according to the experience gathered so far [80, 79, 35]. An example of
this is REINFORCE. This algorithm maximizes a given objective function
by searching the parameters of its policy using a gradient ascent algorithm
[87]. Given their nature, policy-based algorithms are mostly DRL algo-
rithms that use Neural Networks [39] as policy structure; we will discuss
these algorithms in greater detail later in this chapter.

As anticipated, the learning process may be completely model-free
or not. In particular, there exists a number of model-based approaches
(MBRL) that aim at learning the model of the environment [18, 85, 47].
More in general, model-based RL techniques have been developed to learn
the system dynamics; the model is then used to perform simulated roll-
outs, which generate new synthetic data for learning. This technique was
first introduced in [86] and used for further different implementations of
the model inside the RL architecture.

An example of a very effective MBRL algorithm is PILCO [18]. This
algorithm fits data gathered via the interaction with the dynamics via
Gaussian processes. Therefore, PILCO is capable of drastically reducing
learning times, however, it exhibits poor performances when used to deal

8 Chapter 2. State of the Art

with large state spaces and exhibits instability between different random
seeds [95].

MBRL techniques tend to be effective, however, they may introduce
biases in the learning process as part of the data used is not generated by
the actual dynamics.

2.2 Deep reinforcement learning

Recent developments of nonlinear approximators, such as Neural Net-
works (NN) [39, 32], opened the possibility to extend the application of
RL algorithms to continuous spaces. The main goal of Deep Reinforce-
ment Learning [22, 58] is to leverage the scalability of Neural Networks in
continuous spaces [32].

In [59] the Deep Q-Networks (DQN) algorithm is proposed. DQN, a
value-based algorithm, uses Neural Networks to iteratively approximate
the Q-function; it is among the most popular implementations of DRL
and can be used also for continuous state spaces. Differently from tabular
Q-learning [98], there are currently no guarantees of convergence towards
the optimal policy for DQN [25], although its effectiveness is supported by
strong empirical evidence [59, 58].

In [79] a policy-based method is proposed and named as Trust Region
Policy Optimization (TRPO). This algorithm is used to optimize large
nonlinear functions (such as neural networks) which are used as policy.
Further improvements were made with the Proximal Policy Optimization
(PPO) which simplifies the TRPO algorithm without degrading its perfor-
mance [80].

Another notable example present in the literature is the approach pre-
sented in [50]. In this work, an actor critic architecture is proposed, the
Deep Deterministic Policy Gradient Algorithm (DDPG), capable of acting
in a continuous action space. DDPG uses two NNs to learn the Q-function
and the policy and can be seen as an extension of DQN for continuous
action spaces. A comprehensive analysis in terms of learning performance
and sensitivity to parameter tuning of DRL algorithms has been made in
[23].

Control algorithms-based on DRL have shown impressive performance
in different application fields, including the control of plasma in nuclear

2.3. Advances in reinforcement learning for control 9

fusion [17] and that of microbial cultures in bioreactors [92]. However, a
crucial challenge for these algorithms is that, depending on the state space
and action space dimensions, they typically require extensive training and
the results are very sensitive with respect to parameter variations such as
reward scaling factors, neural network hyperparameters, learning rate and
discount factor [23].

2.3 Advances in reinforcement learning for control

RL and DRL cannot ensure data efficiency, learning stability, and scal-
ability to large scale and multi-agent systems [22, 23]. State-of-the-art
algorithms require large data sets that need to be acquired via multiple
interactions with the environment. This results in different data efficiency
characteristics that usually require long training times.

Several attempts exist in the literature to solve this issue, mainly us-
ing MBRL [95]. One of the first to be proposed as such is the DYNA-Q
framework [86]. The PILCO algorithm, modeling the environment using
Gaussian processes, is also an MBRL algorithm that is particularly ef-
fective with low dimensional state spaces [18]. Moreover, there are also
attempts in extending existing model-free algorithms to leverage informa-
tion from a learned model like the DQN with model-based acceleration [33]
and the ME-TRPO [45].

However, DRL leverages some other techniques to improve data effi-
ciency like the replay buffer which has been applied in DRL algorithms
such as DQN and DDPG [4, 59].

RL algorithms often express high sensitivity to parameter variation
exhibiting poor stability of the learning process and requiring longer train-
ing times depending on the values selected by the programmer [23]. An
example of such behavior can be seen in DDPG and TRPO algorithms
[50, 79, 23]. Eventually, RL algorithms tend to have problems in finding a
policy that solves the control problem when the state space dimensionality
increases as, for example, in multi-agent reinforcement learning [10, 88].

To further address these issues related to RL algorithms, new ap-
proaches are being developed to leverage control theoretic methods. In
[53, 73] a formalization of the RL problem is proposed as an optimization
problem. Also, in recent years, classical control theoretical tools and RL

10 Chapter 2. State of the Art

have been intertwined in a number of ways. For example, in [72], Model
Predictive Control (MPC) was used in state-space regions where a model
of the dynamics is available, while tabular Q-learning was used in the other
regions.

Instead in [100], an RL algorithm is used to vary the parameters of the
model and the objective function used by an MPC. In [33], a variant of the
Q-learning algorithm (normalized advantage functions) is discussed; the
authors show that their solution is able to accelerate the learning process
by using local linear models fitted iteratively with exploration data.

Other solutions combining control strategies with RL include those in
[1], where a policy gradient algorithm is adopted which uses preexisting
knowledge of the system dynamics in the form of an approximate Markov
decision process; and in [48], where a reference action governor is used
to enforce safety constraints (in the sense of restricting the state space to
admissible regions). In so doing, the action is decided via an optimiza-
tion problem that penalizes deviations from the action suggested by an
RL strategy, making these approaches a valuable solution to achieve safe
RL.

Despite the many remarkable successes of current state-of-the-art RL
[61], two key problems remain to be solved: (i) potentially long learning
times and (ii) the lack of convergence or performance guarantees (impor-
tant for example in safety-critical applications) during learning [7, 68]. To
address these issues, in this thesis, we formulate an alternative approach,
the Control-Tutored Reinforcement Learning (CTRL) algorithm which re-
lies on the introduction of a beneficial bias, based on the use of control
laws, in the exploration process to speed up learning, which we discuss
in Chapter 5. Furthermore, to move our first steps towards a reliable set
of algorithms capable of guaranteeing a minimum level of performance,
we also present a principle design of a reinforcement learning solution in
Chapter 4.

2.4 Summary

State of the art reinforcement learning offers a wide variety of algo-
rithms to solve complex control tasks. The recent rise of Deep Learning in

2.4. Summary 11

combination with Reinforcement Learning boosted the performance that
such algorithms can gain. However, they require intensive training hence
long learning times and a huge amount of data. Moreover, artificial agents
are not capable of guaranteeing final performances due to high parameters
sensitivity.

In what follows, we use control theoretic arguments to develop artifi-
cial agents capable of autodetecting and guaranteeing a minimum level of
performance required on a given task. Moreover, we develop an original
framework for RL, the control tutored reinforcement learning. This class
of algorithms is capable of leveraging partial information about the system
dynamics, in the form of control laws, to drive the exploration process and
reduce learning times.

12 Chapter 2. State of the Art

Reinforcement
learning

Model
-based

Actor
critic MLAC-GPA [95]

GAN + DRL [95]

Policy
-based ME-TRPO [45]

PILCO [18]

Value
-based DYNA-Q [86]

DQN with NAF [33]

Model
-free

Actor
critic

A2C
A3C [57]

SAC [35]

DDPG[50]

Policy
-based

REINFORCE [87]

TRPO [79]

PPO [80]

Value
-based

Q-Learning
SARSA [87, 98]

TD(�) GQ(�) [87]

DQN [59]

Figure 2.1. Taxonomy of reinforcement learning algorithms. We classify
the algorithm-based on the model-free and model-based property (see Sec. 2.1)
as well as the type of learning architecture (value-based, policy-based, actor-

critic).

Chapter 3
Testbed problems

In this chapter, we state the control problem using an optimization
framework. Also, we introduce and describe the programming tools used
for numerical validation (e.g. the OpenAI Gym suite [65], which provides
a set of environments to test Reinforcement Learning algorithms). Finally,
we introduce two sets of metrics used to benchmark performance and con-
trol performance, respectively.

3.1 Problem statement

3.1.1 Notation

Sets are denoted by calligraphic capital characters, random variables
are denoted by capital letters e.g. X, and their realization by e.g. x.
The probability density (mass) function of a continuous (discrete) random
variable X is denoted by p(x) and we use the notation x ⇠ p(x) to denote
the sampling of a random variable from its probability function.

For both continuous and discrete random variables, we often consider
the situation where the support of p(x) is compact; rand(A) denotes the
uniform distribution over the set A . The expectation of a function, say
h(·), of X is defined as Ep[h(X)] :=

R
h(X)p(x)dx, when continuous; if

X and as Ep[h(X)] :=
P

h(x)p(x) if X is discrete. In both cases, the
integral/sum is taken on the support of p(x), and we might omit p in Ep

when there is no ambiguity. We denote by k·k the Euclidean norm.

14 Chapter 3. Testbed problems

3.1.2 Problem formulation

We consider a discrete time dynamical system affected by noise, of the
form

Xk+1 = fk(Xk, Uk,Wk), x0 = x̃0, (3.1)

where k 2 N�0 is discrete time, Xk 2X is the state of the system at time
k, with X being the state space, x̃0 2X is the initial condition, Uk 2 U
is the control input (or action) and U is the set of feasible inputs. Also,
Wk is a random variable representing noise and fk : X ⇥U ⇥W !X is
the system’s dynamics.

Following e.g. [53, 73], given this set-up, we consider the problem of
learning a plan of actions ⇡1, . . . ,⇡N�1 to solve the following finite-horizon
optimization problem:

max
⇡1,...,⇡N�1

E[J ⇡̄], (3.2a)

s.t. Xk+1 = fk(Xk, Uk,Wk), k 2 {1, . . . , N � 1}, (3.2b)
Uk = ⇡k(Xk), k 2 {0, . . . , N � 1}, (3.2c)
x0 given, (3.2d)

where the time horizon is between 0 and N . In (3.2) the cost is set as the
expectation of the objective function

J
⇡̄ = rN (XN) +

NX

k=1

�
k
rk(Xk, Xk�1, Uk�1), (3.3)

with rk : X ⇥X ⇥U ! R and rN : X ! R being the reward received
by the agent at each k and � 2 (0, 1] being the discount factor.

In some of the results proposed, we also consider the infinite horizon
problem defined as in (3.2) but considering N !1.

3.2 Learning and control metrics

In all scenarios we consider, each study is repeated in S independent
sessions, each composed of E episodes, which are simulations lasting N

time steps.

3.2. Learning and control metrics 15

Depending on the algorithm considered, the learning parameters are
carried over from one episode to the next, and re-initialized at each session.
An episode can end earlier if a (scenario-specific) terminal condition is met,
and we denote by J

⇡
e the cumulative reward in episode e and obtained via

(3.3).
As usual, maximizing J

⇡ amounts to fulfilling some problem-specific
goal : we define the goal condition cg as a Boolean variable that is true
if and only if the goal is achieved in an episode. Next, we define three
metrics to assess learning performance.

Definition 3.2.1 (Learning metrics). To evaluate the learning perfor-
mance we use the following metrics:

• The average cumulative reward is

J
⇡

avg :=
1

E

EX

e=1

J
⇡

e . (3.4)

• The terminal episode Et is the smallest episode such that cg is true
for all e 2 {Et � 10, . . . , Et}.

• The average cumulative reward after terminal episode is

J
⇡

avg,t :=
1

Et

EX

e=Et

J
⇡

e . (3.5)

J
⇡
avg is often used in RL as a measure of performance during the

training[23, 95]; Et is used to assess the effective duration of the learn-
ing phase, and consequently, data efficiency; J⇡

avg,t quantifies the quality
of the controller, once the learning phase is completed.

Next, we define three metrics inspired by those commonly used in con-
trol theory, to assess transient and steady-state performance. Moreover,
when the goal is (or entails) achieving some goal state x

⇤ 2 X (or region
containing x

⇤), we say the goal is a regulation problem. considering that
the greedy policy is defined as follows:

⇡g(x) = argmax
u2U

Q(x, u) (3.6)

16 Chapter 3. Testbed problems

where Q : X ⇥ U ! R is the state-action value function approximated
by a learning algorithm [98].

Definition 3.2.2 (Control metrics). To evaluate the control performance
we use the following metrics:

• The cumulative reward (see § 3.1) obtained following ⇡g is J
⇡g ;

• in an episode, the settling time ks is a time instant such that the goal
is achieved or a related task is completed (defined uniquely in each
scenario, when possible);

• in regulation problems, the steady state error is

es :=
1

N � ks + 1

NX

k=ks

kx� x
⇤k . (3.7)

3.3. OpenAI Gym 17

3.3 OpenAI Gym

Gym is an Application Programming Interface (API) developed by
OpenAI and widely used in the literature to test reinforcement learning
algorithms [23, 95]; it can be used as a python library to access a collec-
tion of reference environments. In particular, from the Gym library, we
use the Pendulum, Lunar Lander, and Car Racing environments; further
information about the full Gym suite is provided in [65].

We selected these environments for the following reasons. The Pendu-
lum is a classical nonlinear benchmark problem in control theory. Lunar
Lander represents a harder control problem with multiple inputs and out-
puts (MIMO) in which certain regions of the state space must be avoided.
Finally, Car Racing was selected as it is a tracking problem where the state
is observable as a matrix of pixels, rather than measured physical quan-
tities. Also, in this environment, the state-action space is larger, which
typically makes it more difficult the process of learning a policy.

3.3.1 Pendulum

In this environment, a pendulum is modeled as a rigid rod of length
l = 1 m, with a homogeneous distribution of mass m = 1 kg; its moment
of inertia is I = ml

2
/3 and it is affected by gravity, with acceleration g. A

snapshot of the output of this simulator is shown in Fig. 3.1.
We let xk := [x1,k x2,k]T, where x1,k and x2,k are the angular position

and angular velocity of the pendulum, respectively; x1,k = 0 corresponds
to the unstable vertical position. The control input uk is a torque applied
to the pendulum.

In this environment, the objective is to stabilize the pendulum in its
upward position, x

⇤ = [0 0]T. For this reason, we say that the goal
condition is met if kxkk < 0.6, 8k 2 [N � N̂,N]. By doing so, we say
that the goal condition is met if the rod stayed in a neighborhood of the
unstable vertical position in the last N̂ steps of an episode.

To train the artificial agent we consider two reward functions, the for-
mer:

r
a(xk, xk�1, uk�1) = d(xk�1)� d(xk) + ⇢(xk), (3.8)

where d(x) := x
2
1 + 0.1x22, and ⇢ is a prize function as in (5.6) that is

18 Chapter 3. Testbed problems

Figure 3.1. Pendulum environment simulation [63]. The red bar represents
the rod, while the arrow represents the torque

going to be discussed further discussed. While the latter is defined as the
standard Gym reward:

r
g(xk, xk�1, uk�1) = �x21,k � 0.1x22,k � 0.001u2

k�1. (3.9)

Whenever we have to, we apply a discretization of the action and state
spaces as follows. The spaces for states and control variables are bounded,
so that xk 2 [�⇡,⇡]⇥ [�8, 8], and uk 2 [�2, 2]. Both spaces are discretized
non-uniformly, employing a finer discretization close to the origin of the
state space and for small control actions. We verified that this allows us
to select values more precisely when close to the regulation point, reducing
regulation error and control energy; on the other hand, a coarser discretiza-
tion far from the regulation point yields a shorter learning time.

Concerning x1,k, the interval
⇥
�⇡,�⇡

9

⇤
is discretized into 8 equally

spaced values,
�
�⇡

9 ,�
⇡

36

⇤
into 7 values, and

�
� ⇡

36 , 0
⇤

into 5 values; [0,⇡] is
discretized in an analogous fashion. Concerning x2,k, [�8,�1] is discretized
into 10 values, and (�1, 0] into 9 values (analogously for [0, 8]).

Concerning uk, [�2,�0.2] is discretized into 9 values, and (�0.2, 0] into
4 values (analogously for [0, 2].

3.3. OpenAI Gym 19

3.3.2 Lunar lander

In a 2-D space, a spaceship subject to gravity, in the absence of friction,
must use its thrusters to land with small velocity on a landing pad.

The states are the coordinates and orientation of the lander, the corre-
sponding velocities, and two Boolean variables to determine the contact of
the two legs with the ground. The lander has three thrusters, on the left,
on the right, and on the bottom (main) of the spacecraft. The possible
(four) control inputs are the following: use only the left thruster, only the
right one, the main one, or no activation of any thruster.

The position of the landing pad and the initial position and orientation
of the lander are fixed, while the initial linear speed is random, as well as
the terrain topography aside from the landing pad. The spacecraft lands
correctly if it impacts on the pad with its legs at a moderate velocity, while
it crashes if its body touches the ground or lands with a velocity that is
too high. Further detail can be found in [64].

The agent obtains a high reward for landing correctly, a largely negative
one for crashing, and a small negative one for consuming fuel. Following
[64], we set the goal condition as achieving J

⇡ � 200 (i.e., cg true if
J
⇡ � 200).

It is worth noting that this might also be seen as a regulation problem,
with the objective of reaching the center of the pad (x⇤), in the origin of the
reference frame. Thus, we define the settling time ks as the instant when
the spacecraft lands correctly if it happens. An episode ends immediately
if the lander lands correctly or if it crashes.

3.3.3 Car racing

Car Racing considers a 2-D space where a car must complete a random
track as fast as possible.

The state is composed of the pixel matrices of three consecutive image
frames. The actions are the possible combinations of “steer left/right”,
“accelerate”, and “brake”, all by a fixed amount.

The agent is rewarded positively each time it visits a new bit of road,
and receives a small negative reward when time steps pass. Further details
are reported in Section 3.3.3 and in [62].

In this problem, rather than defining a specific goal that can or cannot

20 Chapter 3. Testbed problems

Figure 3.2. Lunar Lander environment simulation [64]. A spacecraft is shown
in purple while the red dots represent fuel expelled. Moreover, the region of a
safe landing is delimited by the two yellow flags.

be satisfied in an episode, we deem it more natural to consider the task just
as that of maximizing the reward; therefore, the only metric we consider
is the cumulative rewards J

⇡
avg and J

⇡greedy
avg .

Eventually, an episode can end earlier if the car gets too far from the
track or visits 95% of the track.

3.4 The herding problem

We consider the problem of controlling one or more mobile agents (the
herders) that have the task of influencing the motion of a group of au-
tonomous agents (the targets) in the plane. Under the assumption that
the herders only possess very limited knowledge of the dynamics of the
targets, this problem is used as an application example for the CTQL ap-
proach.

Given N mobile target agents in the plane, described by:

ẋ
i

t(t) = f
i(xit, t) 8i = 1, ..., N (3.10)

where xit 2 R2 is the position of the i-th target position, f i : R2⇥1 �! R2 is

3.4. The herding problem 21

Figure 3.3. Car Racing environment simulation [62]. The figure shows a red
car running on a randomly generated circuit. On the bottom, the following
indicators are shown: step counter, true speed in white, ABS sensors in blue,
steering wheel position in green, and gyroscope in red.

the i-th target dynamics, and given M herder agents in the plane, described
by:

ẋ
j

h
(t) = u

j(t) 8j = 1, ...,M (3.11)

where x
j

h
2 R2 is the position of the j-th herder position, uj is the control

input of the j-th herder agent, the control objective is to design the input
vector u = [u1, ..., uM] able to force targets to reach and remain in the
circular goal region G := {x 2 R2 : kx � xgk < ⇢g} of center xg = 0 and
radius ⇢g = 5m. That is, to achieve the goal:

lim
t!1
kxit(t)� xgk < ⇢g 8i = 1, ..., N (3.12)

Note that the goal region G is a region of stability for the targets’ dynamics
and that the design of the control inputs uj will need to take into account
the coupling between the targets and the herders. As done in [49] and [70]
we consider a purely kinematic model for the herder dynamics assuming,
for the sake of simplicity, that their inertia can be neglected.

We assume the dynamics of the target agents f
i to be composed of

22 Chapter 3. Testbed problems

two terms; a deterministic term f
i

1, related to the interaction with the
herder, and a stochastic term f

i

2 that models some uncertainty in the
target motion.

More specifically, following the arguments of [69], we assume the i-th
target is repelled by the j-th herder through the term modeled using the
artificial potentials [40] as follows:

f
i

1 = µ
x
i
t � x

j

h

kxi
t
� x

j

h
k3

U(xit, x
j

h
, ⇢t) (3.13)

where µ = 1 is a constant gain modeling the intensity of the coupling with
the herder and U(xt, xh, ⇢t) is an interaction function defined as:

U(xt, xh, ⇢t) =

(
1, kxt � xhk < ⇢t

0, otherwise
(3.14)

that ensures that the coupling between the target and herder agents is
active only if their relative position is smaller than some target’s influence
radius ⇢t = 3m.

The target’s own random dynamics is modeled as:

f
i

2(t) = �(t)e|✓(t) (3.15)

where �(t) and ✓(t) are updated every �t seconds from the uniform dis-
tributions U (0,�max) and U (0, 2⇡), respectively.

To make the dynamics more realistic, the maximum speed of the target
agent has been upper bounded as follows:

ẋt =

(
f1 + f2, kf1 + f2k < vt,max

vt,maxe
| f1 + f2, otherwise

(3.16)

with vt,max = 9ms�1 being the maximum admissible speed of the target
agents.

The herders are assumed to be able to adjust their velocities almost
instantaneously, as done for example in [3]. Their speed, as for the targets,
is saturated to a maximum fixed value, vh,max = 14ms�1 so that their

3.4. The herding problem 23

dynamics can be written as:

ẋ
j

h
=

(
u
j
, kujk < vh,max

vh,maxe
| u

j

, otherwise
(3.17)

The state space X is defined, for each herder, in terms of the possible
discretized values of:

1. the relative distance between the herder and the target chased by it,

2. the angular position of the herder,

3. the speed of the chased target.

These quantities are defined in the region, between herders and tar-
gets, in which the latter is influenced by the presence of the former. In
particular, we will assume that this is a circle of fixed radius ⇢er around
the target, which is only an estimate of the actual influence region ⇢t in
their dynamics, and that the learning process will be active only if such a
region exists.

The discretization is obtained by reducing the sampling the range [0, ⇢̂⌧]
of relative distances with stepsize Tm,d = ⇢̂⌧

10m and the range of angles
[0,2⇡] with Ta,d = 2⇡

10 rad. The angular position of the herder was dis-
cretized in the range [0,⇡2] with stepsize Ta,h = ⇡

10rad. The target speed
was discretized in the range [0, vmax

h
] with stepsize Tm,v⌧ =

v
max
h
50 ms�1. ,

and the range of angles [0,2⇡] with Ta,v⌧ = 2⇡
20 rad

The action space U is chosen to be the set of possible values of the
input vector u

j to the herder dynamics given by (3.11), whose norm is
bounded by the herder maximum speed vh,max. The action space consisted
of possible herder velocities discretized in the range [0,vmax

h
] with stepsize

Tm,vh =
v
max
h
10 ms�1 and possible angular orientation in the range [0, 2⇡]

with Ta,vh = 2⇡
20 rad.

With this choice, each herder decides its next action by evaluating how
close to the goal the chased target is (R1), how close itself is to the chased
target (R2), and if the herder is inside the goal region after the action is
taken (R3).

Using xt (xh) to indicate the position of a generic target (herder) agent
at a fixed time instant and x

0
t (x0

h
) to indicate the position of the same

24 Chapter 3. Testbed problems

agent at the following time instant and assuming the goal region centered
in the origin, we propose to choose as reward function the sum of three
contributions:

R = k1R1 + k2R2 + k3R3 (3.18)

where

R1 = (|xt|� |x0t|) (3.19)
R2 = �(k̄(|x0t|� ⇢g))(|xt � xh|� |x0t � x

0
h
|) (3.20)

R3 = �(k̄(⇢g � |x0
h
|)). (3.21)

with k1, k2, k3 and k̄ being positive constant gains. Here �(·) is the sigmoid
function defined as:

�(z) =
1

(1� e�z)
(3.22)

that decays exponentially as a function of the argument so that term R1

dominates as R2 and R3 decay as a function of their arguments.

3.5 Summary

We adopt the optimal control formalism to formulate the reinforcement
learning problem as done in Section 3.1. By doing so we can differentiate
between the learning process and the design elements (e.g. reward, con-
trol policy). Moreover, Section 3.2 we define a set of learning metrics to
evaluate data efficiency of RL algorithm. Also, we define a set of control
metrics to evaluate the final control performance of the artificial agents
after the training phase has ended. Finally, we introduce a set of testbed
problems that we use to validate and compare the RL algorithms proposed.
In particular, we select four different control problems to evaluate control
performances in different contexts.

In what follows, we will define and test the minimal performance Q-
learning algorithm on the problem of stabilizing an inverted pendulum as
posed in Section 3.3.1. We show how the algorithm is capable of autoregu-
late exploration to stop the learning process autonomously and guarantee
a minimum level of performance on the task (in terms of steady-state error

3.5. Summary 25

and settling time). Also, will use the metric of Section 3.2 to make a quan-
titative comparison of control tutored strategies with respect to classical
RL. For the sake of the state space dimension, we will test the tabular
strategy only on the inverted pendulum and the herding problem. We will
also test deep architectures on the problem of landing a spacecraft as posed
in Section 3.3.2 and train tutored and untutored algorithms directly from
pixels generated by the car racing simulator introduced in Section 5.4.4.
We will show how the control tutored reinforcement learning algorithms
proposed are capable of shrinking learning times and improving final con-
trol performances using only control laws generated by partial modeling of
the system dynamics.

Chapter 4
Guarantee of performance via

reward shaping

In what follows, for the case of regulation problems, we propose a
reward design strategy to induce recognizable properties in the objective
function (3.3) By doing so, we can synthesize feedback control policies
aware of minimal requirements in performance encoded in the objective
function. To give an intuition, our goal is to design a reward function such
that the optimization process will find a solution with "good enough" final
control performances providing stability certification for the final learned
solution.

4.1 Control performance requirements

Let x
⇤ 2 X be a goal state. Then, we assume the state space X is

measurable, and let d : X ! R�0 be a distance function of a point in
X with respect to x

⇤. Let ✓ 2 R>0, and define the goal region G :=
{x 2 X | d(x) < ✓}. We denote by trajectory a sequence of states ⇠ =
{xk}k2[0,+1) 2 x

1.

Remark 4.1.1. Any ⇠ 2 T is simply a sequence of states. In general,
given some ⇠ 2 T with first state x̃0, there is no guarantee that there exists
a sequence of control inputs {uk}k2[0,1) such that a system with dynamics
(3.1), starting in x0, will have a trajectory that is equal to ⇠.

28 Chapter 4. Guarantee of performance via reward shaping

Moreover, given any trajectory ⇠, let us define kexit(⇠) 2 N>0 as the
smallest time instant such that xkexit(⇠)�1 2 G and xkexit(⇠) 62 G ; if this
condition never occurs for the trajectory ⇠, we say that kexit(⇠) =1. Let
us select two design parameters ks, kp 2 N>0; the former has the meaning
of a settling time, whereas the latter is a guaranteed time of presence in
the goal region.

Given such parameters, we define the set of trajectories that satisfy the
minimum control performance requirements.
Definition 4.1.2 (Reference trajectories). The set of reference trajectories
which meet the control performance requirements is denoted by T ✓ X 1

and any of its trajectories, say ⇠ = {xk}k2[0,+1) 2 T , fulfills the following
conditions:

1. the agent is in G before ks, i.e.,

9k  ks : xk 2 G . (4.1)

2. the agent does not leave G before kp, i.e.,

kexit(⇠) > kp. (4.2)

In this chapter, the Definition 4.1.2 represent a set of sub-optimal tra-
jectories which meet a minimum level of performance required for the task
at hand.

4.2 Infinite horizon problems

In this section, given the problem formulation (3.2) with Assumption
4.2.1, we seek to find conditions on the cost function J(⇠) associated with
a generic trajectory ⇠ that ensure that ⇠ 2 T (c.f. Definition 4.1.2).
Moreover, we consider the case where the discount factor � 2 (0, 1) is not
equal to the unit since, for practical applications, undiscounted objective
are cause of instability for many RL algorithm, Q-learning included [8].
Assumption 4.2.1 (Reward structure). We assume the reward has the
following structure:

rk(xk, xk�1, uk�1) = r
b
k
(xk, xk�1, uk�1) + c(xk, xk�1), (4.3)

4.2. Infinite horizon problems 29

where

• r
b
k
: X ⇥ X ⇥ U ! R is a bounded reward term, i.e., with real

scalars Uout, Uin, Lin such that

sup
k2N�0, xk2X \G , xk�12X , uk2U

r
b
k
(xk, xk�1, uk�1) = Uout, (4.4a)

sup
k2N�0, xk2G , xk�12X , uk2U

r
b
k
(xk, xk�1, uk�1) = Uin, (4.4b)

inf
k2N�0, xk2G , xk�12X , uk2U

r
b
k
(xk, xk�1, uk�1) = Lin. (4.4c)

• c : X ⇥X ! R is a correction term given by

c(xk, xk�1) =

8
><

>:

cin, if xk 2 G ,

cexit, if xk�1 2 G and xk 62 G ,

0, otherwise,
(4.5)

with cin > 0 and cexit < 0. Moreover, it holds that

cin � Uout � Lin. (4.6)

Note that Assumption 4.2.1 is not particularly restrictive in general.
Indeed, if in some problem we want to use a preexisting reward, this can be
done provided that the reward is bounded (see (4.4)); then the additional
correction term c can be added to the preexisting reward.

Proposition 4.2.2 (Large cost function implies trajectory as in Definition
4.1.2). Let Assumption 4.2.1 hold. Let � 2 R such that

� � Uout

1� � . (4.7)

Assume that

cin  �Uin � Uout
1� �ks
�ks

+ �
1� �
�ks

, (4.8)

30 Chapter 4. Guarantee of performance via reward shaping

cexit  �
1

�kp�1


(Uin + cin)

1� �kp+1 + �
kp

1� � + �

�
, (4.9)

Then, given a trajectory ⇠ = {xk}k2[0,+1), it holds that

J
⇡(⇠) > �) ⇠ 2 T . (4.10)

Proof. We will show that ⇠ 62 T) J
⇡(⇠)  �. Then, the thesis is

obtained by noting that given two logical propositions A and B, A) B

is equivalent to ¬B) ¬A.
Consider the case that ⇠ 62 T ; this can happen for three reasons:

1. the agent never finds itself in the goal region G ;

2. the agent is in G for the first time at a time later than ks;

3. the agent exits from G at an instant kexit(⇠)  kp.

We now consider the three cases one by one and show that in all of them,
it must hold that J

⇡(⇠)  �.
Case 1. Formally, in this case, we have that 8k 2 [0,1), xk 62 G .

Therefore, from (4.5), we have c(xk, xk�1) = 0 for all k. From (3.3),
exploiting in order (4.3), (4.4a), and (4.7), we have

J
⇡(⇠) :=

+1X

k=1

�
k�1

rk(xk, xk�1, uk�1) =

=
+1X

k=1

�
k�1

r
b
k
(xk, xk�1, uk�1) 

 Uout

+1X

k=1

�
k�1 =

Uout

1� �  �,

(4.11)

Case 2. In this case, defining kenter := (min k s.t. xk 2 G), we have
that kenter > ks. For the sake of simplicity and without loss of generality,
assume that the agent never leaves the region G after kenter (i.e. xk 2

4.2. Infinite horizon problems 31

G , 8k � kenter).1 From (3.3), (4.3), and (4.5), we have

J
⇡(⇠) :=

+1X

k=1

�
k�1

rk(xk, xk�1, uk�1)

=
kenter�1X

k=1

�
k�1

r
b
k
(xk, xk�1, uk�1)+

+
+1X

k=kenter

�
k�1[rb

k
(xk, xk�1, uk�1) + cin].

(4.12)

Exploiting (4.6), and recalling that kenter > ks from (4.12), we have 2

J
⇡(⇠) 

ksX

k=1

�
k�1

r
b
k
(xk, xk�1, uk�1)+

+
+1X

k=ks+1

�
k�1[rb

k
(xk, xk�1, uk�1) + cin];

(4.13)

Then, from (4.13) and exploiting (4.4), we have

J
⇡(⇠)  Uout

ksX

k=1

�
k�1 + (Uin + cin)

1X

ks+1

�
k�1

= Uout

ks�1X

k=0

�
k + (Uin + cin)�

ks

+1X

k=0

�
k

= Uout
1� �ks
1� � + (Uin + cin)

�
ks

1� �  �

(4.14)

Exploiting (4.8), it is immediate to see that J
⇡  �.

Case 3. By definition of kexit (see first paragraph of Section 4.1) , we

1
This assumption does not make us lose generality because we are interested in upper

bounding J⇡(⇠) with � and the assumption makes J⇡(⇠) the largest possible, because

the smallest reward obtainable inside G (i.e. cin + Lin) is at least equal to the largest

reward obtainable outside G (4.6).
2
On the right hand side we would have obtained if the agent entered G at time ks+1

32 Chapter 4. Guarantee of performance via reward shaping

have that xkexit(⇠)�1 2 G and xkexit(⇠) 62 G . From (4.6), the largest J⇡(⇠) is
obtained if ⇠ is such that the agent has been in G since k = 1, leaves G at
kexit(⇠) = kp and enters again at time kp + 1. Therefore, without loss of
generality, we assume the above is the case. Then, we have the inequality

J
⇡(⇠) 

kp�1X

k=1

�
k�1[rb

k
(xk, xk�1, uk�1) + cin] + �

kp�1
cexit+

+
1X

k=kp+1

�
k�1[rb

k
(xk, xk�1, uk�1) + cin] 

 (Uin + cin)

2

4
kp�2X

k=0

�
k + �

kp

1X

k=0

�
k

3

5+ �
kp�1

cexit =

= (Uin + cin)
1� �kp+1 + �

kp

1� � + �
kp�1

cexit.

(4.15)

Exploiting hypothesis (4.9), we immediately verify that J
⇡  �.

Note that Proposition 4.2.2 does not guarantee that there exist a ⇠ 2 T
such that J⇡(⇠) > �. This is outlined in the next Proposition, which states
that cin cannot be selected too low.

Corollary 4.2.3. Let assumption 4.2.1 hold. If

cin  �(1� �)� Uin, (4.16)

then, 6 9⇠ 2 T such that J⇡(⇠) > �.

Proof. From (4.6), the theoretical largest possible value of J⇡(⇠) is given
as follows (see also (3.3)):

J
⇡(⇠)  (Uin + cin)

1

1� � (4.17)

then since (4.16) holds, we obtain J
⇡(⇠)  �, 8⇠, proving the thesis.

4.3. Minimal performance Q-learning 33

4.3 Minimal performance Q-learning

Proposition 4.2.2 and Corollary 4.2.3 are particularly relevant since
they allow the detection of good trajectories by just looking at the cu-
mulative objective J

⇡. The key idea is to use the Q-learning algorithm
to approximate J

⇡ and build an artificial agent capable of auto-detecting
whether the learned solution meets the performance requirements. To do
so, we recall the greedy policy introduced in (3.6), given a state-action
value function Q, as follows:

⇡
Q

g (x) = argmax
u2U

Q(x, u). (4.18)

Also, we refer to a ✏-greedy policy as a probabilistic switching policy which
introduces a chance of taking a random action with probability ✏ 2 (0, 1)
or an action according to ⇡Qg .

Definition 4.3.1 (Greedy policy generated trajectories). Given a state
x 2 X , the greedy policy generated trajectories �Q(x) 2 X 1 are defined
as an infinite set of states generated by starting from x and applying policy
⇡
Q
g , according to dynamics (3.1).

Moreover, considering the set of trajectories defined in Definition 4.3.1,
we state the following result

Theorem 4.3.2. Consider a state xk 2 X at time k, and let xk+1 =
fk(xk,⇡

Q
g (xk), wk). Assume that

1. process noise is absent, i.e., wk = 0, 8k 2 [0,+1);

2. the assumptions of Proposition 4.2.2 hold;

3. it holds that

sign

✓
max
u2U

Q(xk, u)� �
◆

= sign
⇣
J
⇡
Q
g (�Q(xk+1))� �

⌘
. (4.19)

Then, if max
u2U

Q(xk, u) > �, the following hold:

a. By following policy ⇡Qg , the agent will find itself in G at least once
before ks+1 time instants have passed, i.e., 9k0 2 [k+1, k+1+ks] :
x
0
k
2 G .

34 Chapter 4. Guarantee of performance via reward shaping

b. By following policy ⇡Qg , the agent will not leave G before kp +1 time
instants have passed, i.e., 6 9kexit 2 [k + 2, k + 1 + kp] : xkexit�1 2
G , xkexit 62 G .

Proof. First, note that, since ⇡Qg is deterministic and we assumed the ab-
sence of process noise (hypothesis (1)), �Q(xk+1) is deterministic, and so is
J
⇡
Q
g (�Q(xk+1)). Exploiting the hypothesis (3), the fact that max

u2U
Q(xk, u) >

� implies that J
⇡
Q
g (�Q(xk+1)) > �.

Thus it is immediate to apply Proposition 4.2.2, and obtain the thesis
(thanks to hypothesis (2)).

Remark 4.3.3. Normally, given some policy ⇡, through policy evaluation
[87], it is possible to compute iteratively a state-value function Q so that
Q(xk,⇡(xk)) approximates J⇡(f(xk,⇡(xk), wk)). Therefore, if the policy is
selected as ⇡Qg (see (4.18)), and Q is well approximating J

⇡
Q
g in the sense

described above, then we should have

Q(xk,⇡
Q

g) = max
u2U

Q(xk, u) ⇡ J
⇡
Q
g (�Q(xk+1)) (4.20)

which satisfies to hypothesis (4.19).

We now proceed to develop an algorithm capable of autodetecting a
minimum level of performance by leveraging results from Theorem 4.3.2.
The key idea is to use the approximation of J⇡ contained in the Q-table to
decide whether the agent should keep exploring the state action space or
just use the greedy policy. In Algorithm 1, we have a switching policy that
uses the current approximation of J⇡ to decide when exploration should be
used. In particular, the algorithm compares Q-values with the threshold �
(see (4.7)) to decide when the artificial agent should end the training and
halt exploration.

Note that it is possible that the approximation of J⇡ contained in the
Q-value is overestimated, in the sense that Q > �, but J ⇧ �. In this case,
the agent will use the greedy policy even if it should be exploring because
� 62 T (see Definition 4.1.2). However, in [24] the authors proved that, if
Q is overestimating the objective, the Q- learning algorithm still converges
using the greedy policy. In our case, this mechanism will make the Q-

4.3. Minimal performance Q-learning 35

Algorithm 1: minimal performance Q-learning
Initialize Q(x, u) arbitrarily;
Set reward function according to Assumption 4.2.1;
Select cin, cexit,� according to Proposition 4.2.2 ;
Set e = 0, k = 0;
while e < E do

Initialize x0 ;
while k < N do

if argmaxuQ(xk, u)  � then

choose action uk using an exploration policy;
else

choose action uk using the greedy policy;
end

Take action uk and observe next state xk+1 and reward rk;
Q(xk, uk)
Q(xk, uk) + ↵[rk + � argmaxuQ(xk+1, u)�Q(xk, uk)];
k ++;

end

e++;
end

values converge during the process even when Q-values are overestimating
J
⇡.

4.3.1 Numerical results

We test our algorithm on the problem of stabilizing the inverted pendu-
lum described in Section 3.3 by running S = 10 training sets of E = 1000
episodes of simulations made by N = 1500 steps.

To apply our algorithm we perform a state and action discretization as
presented in Section 3.3.1

Assuming reward (3.9), we derive the quantities defined in (4.4) as:

• Uout = �0.1 · d̄2 ,

36 Chapter 4. Guarantee of performance via reward shaping

• Uin = 0 ,

• Lout = �⇡2 � 0.1 · 82 � 0.001 · 22 ,

where d̄ a desired distance from the goal point (defined as d(x) = kx� x
⇤k)

at steady state , with x
⇤ = [⇡, 0], that we use as steady state error.

To train the agent, We also set S = 5, E = 1000, N = 1500, kp = 1000
and the desired settling time as ks = 500 steps. Selecting an arbitrary
threshold � = 1000 we derive the correction terms in (4.5) according to
Proposition 4.2.2, obtaining:

1. cin = �Uin � Uout
1��

ks

�ks + �
1��

�ks ,

2. cexit = � 1
�
kp�1

h
(Uin + cin)

1��
kp+1+�

kp

1��
+ �

i
,

with � = 0.99, also, When the agent is allowed to explore, it uses an ✏-
greedy policy with ✏ = 0.05. We also set the learning rate ↵ = 0.8.

Simulation results depicted in Fig. 4.1, show a decay in exploration
calculated as a percentage over the total step of an episode.

As each of the sessions reaches its end, we observe that the artificial
agent is no longer exploring. Moreover, after training, we test the final
policy of each of the independent sessions obtaining the state trajectory in
terms of distance from the origin depicted in Fig. 4.2. In this graph, we can
appreciate how the agents have learned solutions capable of guaranteeing
the control specifications, in terms of steady-state error and settling time.

As a matter of fact, all the agents are capable of guaranteeing a steady
state error less than the goal distance d̄ in less than ks = 500 steps.

4.4 Summary

In Section 4.1, we define the set of trajectories of a system dynam-
ics which fulfill minimal performance requirements. Then, in Section 4.2
we establish an analytical criterion to link properties in the RL objec-
tive function with such a set of trajectories in deterministic scenarios. In
Section 4.3 particular, we leverage such analytical results to formulate the
minimal performance Q-learning. In this algorithm, the learning agent can

4.4. Summary 37

0 200 400 600 800 1000

0

20

40

60

80

100

Episode number

U
sa

ge
of
✏
-g

re
ed

y
po

lic
y

(%
)

Figure 4.1. Percentage of steps the ✏-greedy policy was used in each episode
by the minimal performance Q-learning algorithm. The solid curves represent
the mean of the results of S = 10 training sessions; shaded areas correspond
to the mean plus or minus the standard deviation.

38 Chapter 4. Guarantee of performance via reward shaping

0 500 1000 1500
0

1

2

3

4

5

6

Time (steps)

A
ge

nt
’s

tr
aj

ec
to

ry

Figure 4.2. Average (solid line) and two times the standard deviation (shaded
area) of the trajectory obtained by the S = 10 trained controllers. The results
are expressed in terms of distance from the goal regulation point as L2 norm.

evaluate whether its control policy will generate trajectories, which fulfill
minimal performance requirements (e.g. steady-state error and settling
time) by evaluating the approximation of the cost function in the form of
Q-values.

Finally, in Section 4.3.1 we tested our algorithm on the problem of
stabilizing an inverted pendulum (see Section 3.3.1) showing that our
algorithm can autoregulate exploration and converge to a solution that
fulfills the performance requirement of the set of trajectories defined in
Section 4.1. The work presented in this chapter represents an original
contribution towards the solution of the exploration-exploitation dilemma
[87]. Indeed, minimal performance Q-learning showed to be capable of au-
tonomously determining, in an adaptive way, when and how the artificial
agent should be exploring the state space.

Chapter 5
Control Tutored

Reinforcement Learning

Considering the problem introduced in Section 3.1, we observe that
in many RL scenarios, even if the system dynamics f (see (3.1)) is not
perfectly known, some partial knowledge about the plant (from e.g. first-
principles) might be available.

We propose that this limited information can be exploited to design a
feedback control law (or control tutor) that can be used to assist and drive
the learning process towards the solution of a control problem of interest,
reducing the learning times and improving the control performance.

In particular, the control tutor can be invoked under certain circum-
stances during the learning stage to suggest actions that the agent can take
as an alternative to those computed using a more traditional approach, e.g.,
obtained by using a tabular learning strategy.

To proceed with our approach, we start by assuming that we have an
estimate of f , say f̂ : X ⇥U !X , so that the dynamics of system (3.1)
is rewritten as f(x, u, w) = f̂(x, u)+�(x, u, w), 8x 2X , 8u 2 U , 8w 2 W ,
where � : X ⇥U ⇥W !X describes the effect of unknown terms in the
dynamics and/or of noise on the system’s dynamics. We term the policy
based on the use of a control law synthesized by considering only f̂ as the
control tutor policy and denote it by ⇡c : X ! U .

The architecture of the Control Tutored Reinforcement Learning (CTRL)
strategy [16] is schematically shown in Figure 5.1. Such a scheme high-

40 Chapter 5. Control Tutored Reinforcement Learning

System

RL policy

Control tutor

uk

⇣

xk

⇡c

⇡rl

Switching condition

CTRL

Figure 5.1. Schematic of the Control-Tutored Reinforcement Learning
(CTRL) framework.

lights the presence of a switching condition ⇣ that orchestrates, at each k,
the use of either a policy coming from an RL algorithm or the control tutor
policy.

Therefore, the result is a switching policy used during the learning and
defined as follows:

⇡(x) =

(
⇡
rl(x), if ⇣ is true,
⇡
c(x), otherwise,

(5.1)

where ⇣ is a Boolean function (that might depend on time, previous states,
etc.) and ⇡rl is the policy of an RL algorithm.

To select the control tutor policy ⇡
c in (5.1), we assume to have a

feedback controller g : X ! U , designed with limited information. Then,
letting ✏c 2 (0, 1), we select

⇡
c(x) =

⇢
g(x), with probability 1� ✏c, (5.2a)
u ⇠ rand(U), with probability ✏c. (5.2b)

In this policy, ✏c represents the probability of taking a random action with
the control tutor policy. Moreover, g represents a control law synthesized
on the dynamics available f̂ and it may not be defined over the same action
space U (for example, as a consequence of the discretization of the control
actions).

5.1. Control tutored Q-learning 41

On the other hand, the reinforcement learning policy ⇡
rl in (5.1) is

specific to the RL algorithm in use. For example, considering a Q-learning,
we can adopt an ✏-greedy Q-learning solution, i.e.,

⇡
rl(xk) =

(
argmax

u2U
Qk(xk, u), with probability 1� ✏rl, (5.3a)

u ⇠ rand(U), with probability ✏rl, (5.3b)

where ✏rl 2 (0, 1) and Qk : X ⇥U ! R is the state-action value function
[87, 8] at time k.

The remaining term to be defined in (5.1) is ⇣. In what follows, we
present two alternative choices for ⇣ that result in two different algorithms.
However, at time k, once an action is selected from either ⇡rl or ⇡c, the
corresponding reward is obtained and used to perform the learning update.

For example, in Q-learning, we proceed to update the Q-table according
to the law

Qk+1(xk, uk) = (1� ↵)Qk(xk, uk) + ↵[r(xk+1, xk, uk)+ (5.4)
+ �max

u2U
Qk(xk+1, u)], (5.5)

where ↵ 2 (0, 1] is the learning rate and � 2 (0, 1] is the discount factor.

5.1 Control tutored Q-learning

This first solution based on the CTRL framework is the Control-Tutored
Q-learning (CTQL), [16]. This algorithm is used to solve regulation prob-
lems and uses a reward with a specific structure.

In particular, letting x
⇤ 2 X be a goal state, ✓ 2 R>0, and ⇢̄ 2 R>0,

we define the prize function

⇢(x) =

(
⇢̄, if kx� x

⇤k < ✓,

0, otherwise.
(5.6)

Then, letting d : X ! R�0 be some distance of the argument with respect
to x

⇤, the reward rk in (3.3) is given as

r(Xk, Xk�1, Uk�1) = d(Xk�1)�d(Xk)+⇢(Xk), k = 1, . . . , N � 1, (5.7)

42 Chapter 5. Control Tutored Reinforcement Learning

with rN (XN) = 0. Note that, in (5.7), Uk�1 does not directly affect the
reward but its effect is propagated through the system dynamics.

Furthermore, the term d(Xk�1)� d(Xk) is positive when at time k the
agent gets closer to the goal state x⇤, and vice versa. The prize term ⇢(Xk)
gives a strong positive reinforcement when a small distance with respect
to the goal state is achieved.

The switching criterion ⇣ in (5.1) depends on the current state xk,
where

⇣ is

8
<

:
true, if max

u2U
Qk(xk, u) > 0,

false, otherwise.
(5.8)

Additionally, 8x 2 X , 8u 2 U , we initialize Q0(x, u) = 0. Thus, in the
first phase of learning, when limited information about the environment
is available, the control tutor policy ⇡c drives the learning process. Then,
gradually, as the values of the Q-table are updated using (5.4), the rein-
forcement learning policy ⇡rl is preferred.

5.2 Probabilistic control tutored Q-learning

Although we found the CTQL to have better performance with respect
to the classical Q-learning in certain scenarios (see Section 5.4.2), the re-
ward formulated as in (5.7) does not satisfy the hypotheses used in the
classical proof of convergence used for the Q-learning (see, e.g., [8]), as it
is not either non-negative or non-positive. Moreover, we verified that the
CTQL might fail when the reward function is not selected following the
structure given in (5.7). This might depend on the possibility that the
reward in (5.7) shapes a Q-table where state-action pairs that eventually
lead to the goal state (following policy ⇡rl) have positive values of Q.

Therefore, we propose next a simpler probabilistic-based choice for
the Boolean condition ⇣ in (5.1). We name the resulting algorithm as
probabilistic Control Tutored Q-learning (pCTQL); differently from CTQL
(cf. (5.7)), we do not use any specific structure for the reward function to
derive the switching condition between the two policies.

5.3. Control tutored deep Q-networks 43

In particular, letting � 2 [0, 1],

⇣ is

(
true, with probability �,
false, otherwise,

(5.9)

by combining (5.1), (5.3) and (5.9), we have that action (5.3a) is taken
with probability �(1 � ✏rl), action (5.2a) is taken with probability ! :=
(1� �)(1� ✏c) and the random action with probability �✏rl + (1� �)✏c.

Eventually, we obtain the pCTQL policy defined as

⇡(x) =

8
>><

>>:

argmax
u2U

Qk(x, u), with probability �(1� ✏rl),

g(x), with probability ! := (1� �)(1� ✏c),
u ⇠ rand(U), otherwise,

(5.10)
Note that it is also possible to introduce a dependency of the probability

� on the current state, time, or other quantities.

5.3 Control tutored deep Q-networks

In the Control-Tutored Deep Q-Networks (CT-DQN), we leverage a
Deep Q-Network (DQN) algorithm which uses Deep Neural Networks to
iteratively approximate the function Q; it is among the most popular im-
plementations of DRL and can be used also for continuous state spaces X
[59].

Differently from tabular Q-learning [98], there are currently no guar-
antees of convergence towards the optimal policy for DQN [25], although
its effectiveness is supported by strong empirical evidence [59, 58]. This
lack of theoretical guarantees are related to the introduction of a neural
approximator which needs to be tuned. In CT-DQN, during the learning
phase, we allow the agent to collect samples according to a tutored policy
defined as in (5.10). This minimal change in DQN allows us to run other
learning mechanisms (eg. target networks, experience replay [59]) in com-
bination with a tutored exploration process to improve data efficiency and
shows the simplicity of our approach to couple control-tutor policies with
state of the art RL algorithms.

44 Chapter 5. Control Tutored Reinforcement Learning

Next, we proceed to validate all the algorithms presented on some
benchmark problems provided in [65]. In particular, we test the CT-DQN
for the Pendulum, Lunar Lander and Car Racing problems to show dif-
ferent aspects of our approach related to the complexity of the different
scenarios considered.

5.4. Numerical simulations 45

5.4 Numerical simulations

We start by evaluating the performance of the CTQL and pCTQL
algorithms introduced in Sections 5.1 and 5.2 to solve the herding problem
of Section 3.4 and the stabilization of an inverted pendulum as defined in
Section 3.3.1.

Moreover, to test the CT-DQN of Section 5.3, we also consider the
problem of landing a spacecraft described in Section 3.3.2 and the problem
of driving a car on a given track described in Section 3.3.3.

5.4.1 Herding scenario

For this scenario, we apply the tabular approaches QL, CTQL, and
pCTQL.

Control tutor design

The design of the tutoring control law requires some model of the
expected dynamics of the targets. We assume that herders only possess a
very rough estimate of the target’s true dynamics.

Therefore, in determining their inputs the herders assume the following
target dynamics:

ẋt = �(xt � xh)U(xt, xh, ⇢er) (5.11)

where � = 1 stands for the intensity of the coupling with the herder, U(·)
is the step function defined in (3.14), with ⇢er = 1m being the expected
influence radius between targets and herders which is different from the
true influence radius ⇢t in (3.14).

Considering the following Lyapunov candidate function:

V =
1

2
x
T

t xt (5.12)

assuming the target’s dynamics as in (5.11), when herders and targets
interact so that kxt�xhk < ⇢er and choosing ↵ = 1 w.l.o.g., the derivative
of the Lyapunov function is:

V̇ = x
T

t ẋt = x
T

t (xt � xh) (5.13)

46 Chapter 5. Control Tutored Reinforcement Learning

Hence, choosing the control law:

v(xt, ẋt) = kẋt, k > 1 (5.14)

from (3.17) we have:
xh = kxt (5.15)

which assures the derivative V̇ in (5.13) is definite negative. That is, with
this choice of the herder dynamics, the relative distance between the herder
and the goal center would decay to zero if (5.11) were a good model of the
target dynamics.

Numerical results

For the herding problem, we test the CTQL algorithm and compared
its performance with Q-learning. We discretize the state and action spaces
as described in Section 3.4

Some very early stage learning performance is depicted in Figure 5.2.
As expected, when applied to control the "true" target, the herder driven
by (5.14) fails to achieve the desired goal.

Moreover, Figure 5.3 shows that after a number of episodes E = 5000,
the herder is still far from the control goal.

Instead, we now show that, by using (5.14) as a tutoring control law,
the CTQL algorithm can instead solve the problem that neither Q-learning
nor control could solve by themselves. As a matter of fact, considering the
case of one herder interacting with one target, the use of a CTQL approach
shows successful behavior from the very first attempt as shown in Figure
5.4.

The performance of the CTQL can be further improved via additional
learning trials. For example, after just E = 200 episodes, the herder
considerably improves its behavior as shown in Figure 5.5 attaining con-
vergence in less than 10s compared with the almost 68s of the very first
trial.

5.4. Numerical simulations 47

Time(s)

R
ad

ia
lT

ra
je

ct
or

y
(m

)

Figure 5.2. The graph shows the radial coordinate of the herder (black line)
and the target (red line). The green line represents the circular goal region
amplitude. The herder and the target interact in a really close range due to
the control law formulation. By itself, the tutor control law is not effective
since the herder is not able to push the target inside the goal region.

48 Chapter 5. Control Tutored Reinforcement Learning

Time(s)

R
ad

ia
lT

ra
je

ct
or

y
(m

)

Figure 5.3. The graph shows the radial coordinate of the herder (black line)
and the target (red line). The green line represents the circular goal region
amplitude. The agent is using a tabular Q-learning which requires lots of
episodes to reach convergence.

5.4. Numerical simulations 49

Time(s)

R
ad

ia
lT

ra
je

ct
or

y
(m

)

Figure 5.4. The graph shows the radial coordinate of the herder (black line)
and the target (red line). The green line represents the circular goal region
amplitude. The herder and the target interact at a really close range. As can
be seen, the information provided by the control law is able to enhance the
learning process and the herder reaches the control goal from the very first
attempt.

50 Chapter 5. Control Tutored Reinforcement Learning

Time(s)

R
ad

ia
lT

ra
je

ct
or

y
(m

)

Figure 5.5. The graph shows the radial coordinate of the herder (black line)
and the target (red line). The green line represents the circular goal region
amplitude. The herder and the target interact at a really close range. After a
number of E = 200 episodes, the herder considerably improves its performance
and takes less time to push the target inside the goal region.

5.4. Numerical simulations 51

5.4.2 Inverted pendulum scenario

For this scenario, we apply the tabular approaches QL, CTQL, and
pCTQL and the deep approaches DQN and CT-DQN. For the parameters
of DRL the architectures see Appendix A.1. Numerical experiments are
conducted considering S = 10 sets of training sessions with the same initial
condition made of E = 10000 episodes of N = 400 steps when we run
tabular approaches and of S = 3 sets of training sessions with the same
initial condition made of E = 100 episodes of N = 400 steps when we run
deep approaches.

Control tutor design

Here we propose the design of feedback control laws based on limited
information about the environment considered. We derive such control
laws for each of the environments considered in Chap. 3.

Assume we know the linearized dynamics of the pendulum, approx-
imating f in (3.1) close to the upward equilibrium position x

⇤, namely
f̂ (xk, vk) = Axk + Bvk, where A =

h
0 1+T

3Tg/2l 1

i
and B =

h
0

T/I

i
, with

T = 0.05 s being the sampling time, l = 1 m being the rod length and
I = ml

2
/3 being the moment of inertia of the rod. From this model, using

a pole placement technique, we synthesize the linear feedback controller
vk = �[5.83 1.83]xk, which can stabilize x

⇤ only locally.
Then g(x) in (5.2) is obtained by projecting vk 2 R in U (which is

discrete) as follows:
g(x) = arg min

u2U
kvk � uk (5.16)

In a nutshell, whenever it is entitled to, the control-tutor policy selects the
action closest to the one generated by the control vk from the set U . Note
that this controller, if used on its own, is unable to swing up the pendulum
from its downward asymptotically stable position.

Numerical results

Tabular Approaches. When we consider tabular approaches we use a
discretization of states and actions as described in Sec. 3.3.1. We compare
Q-learning, CTQL, and pCTQL with different values of !, when using

52 Chapter 5. Control Tutored Reinforcement Learning

reward (3.8) on the inverted pendulum problem described in Sec. 3.3.1
with parameters ⇢̄ = 5 and ✓ = 0.05.

The results obtained are reported in Figure 5.6 in terms of the cumula-
tive reward per episode J

⇡
e and the frequency with which the control tutor

is used. As shown, the objective J
⇡
e obtained by control tutored strategies

increases faster with respect to the classical Q-learning. Regarding the
CTQL algorithm, Fig. 5.7 shows how the frequency of action taken using
a control tutor decreases as the episodes increase until reaching a point
where it is not used anymore. This ultimately leads to an artificial agent
capable of leveraging control tutors to learn faster without introducing a
bias in the final learned controller.

Also, a quantitative comparison via the learning metrics is reported
in Tab. 5.1 and via the control metrics is reported in Tab. 5.3. For the
sake of clarity, in Figures, 5.6 and 5.7 the results of the pCTQL were only
plotted for ! = 0.01, as we found that value to give the best performance
overall. From Tab. 5.1, comparing CTQL and pCTQL to Q-learning, we
observe that Et—a measure of data efficiency—is smaller (by a statistically
significant margin) for the CTQL and for the pCTQL with ! = 0.05;
however, the presence of a constant bias from the control tutor in the
pCTQL worsens the overall performances which shows a decreasing trend
of J⇡

avg and J
⇡
avg,t as ! increases.

We also compared the performance of Q-learning and pCTQL when
using reward (3.9); from Tab. 5.2 we see that pCTQL with ! = 0.01
is comparable to Q-learning in terms of learning time (Et), yet obtains
a larger average reward (J⇡

avg) and average reward after terminal episode
(J⇡

avg,t), confirming the effectiveness of a control tutor-based architecture,
even when the reward has a structure different from (5.7).

5.4. Numerical simulations 53

QL CTQL pCTQL ω = 0.01

1500

1000

500

0

0 2000 4000 6000 8000

Episode number

J
⇡
e

Figure 5.6. Cumulative reward per episode J
⇡

e
, obtained with reward (3.8).

The solid curves are the mean of the results of S = 10 sessions; for readabil-
ity, the curves are averaged with a moving average of 100 samples (taken on
the right); shaded areas correspond to the means plus or minus the standard
deviations.

Algorithm Et J
⇡
avg J

⇡
avg,t

Inverted pendulum
QL 2726± 742 1110± 39 1332± 45
CTQL 2028± 241 1195± 58 1336± 38
pCTQL (! = 0.001) 2670± 562 1157± 45 1358± 40
pCTQL (! = 0.005) 2439± 823 1182± 30 1372± 45
pCTQL (! = 0.01) 2106± 507 1164± 57 1327± 51
pCTQL (! = 0.05) 1907± 493 1112± 16 1234± 15
pCTQL (! = 0.1) 2952± 739 992± 26 1152± 24

Table 5.1. Learning metrics (Def. 3.2.1) for the inverted pendulum scenario,
with reward (3.8) and nominal conditions. Means and standard deviations
across sessions are reported, when S > 1. Values that are statistically signifi-
cantly different from those of QL are in bold (according to Welch’s t-test with
p-value less than 0.05 [99]).

54 Chapter 5. Control Tutored Reinforcement Learning

CTQL pCTQL ω = 0.01

10.0

7.5

5.0

2,5

0
0 2000 4000 6000 8000

Time (steps)

U
sa

ge
of

tu
to

r
%

Figure 5.7. Percentage of steps the control-tutor policy ⇡c was used in each
episode, with reward (3.8). The solid curves are the mean of the results of
S = 10 sessions; for readability, the curves are averaged with a moving average
of 100 samples (taken on the right); shaded areas correspond to the means plus
or minus the standard deviations.

Algorithm Et J
⇡
avg J

⇡
avg,t

Inverted pendulum
QL 3207± 767 �1045± 18 �734± 25
pCTQL (! = 0.001) 3188± 692 �1035± 11 �723± 36
pCTQL (! = 0.005) 3711± 835 �1009± 11 �688± 29
pCTQL (! = 0.01) 3684± 539 �1010± 11 �692± 16
pCTQL (! = 0.05) 3684± 539 �1010± 11 �692± 16
pCTQL (! = 0.1) 4552± 1003 �1028± 11 �777± 23

Table 5.2. Learning metrics (Def. 3.2.1) for the inverted pendulum scenario,
with reward (3.9) and nominal conditions. Means and standard deviations
across sessions are reported, when S > 1. Values that are statistically signifi-
cantly different from those of QL are in bold (according to Welch’s t-test with
p-value less than 0.05 [99]).

5.4. Numerical simulations 55

Once the training process has finished, we compare QL, CTQL, and
pCTQL algorithms in terms of their control performance at the end of the
learning stage, using the metrics given in Definition 3.2.2.

The results, using both rewards (3.8) and (3.9) are reported in Ta-
bles 5.3 and 5.4 where we show that, as it is desirable, the differences in
settling time (kg) of pCTQL and CTQL with respect to Q-learning are not
statistically significant.

However, when using reward (3.8) we observed that the CTQL achieves
the best (lowest) steady-state error, whereas when using reward (3.9) the
smallest error is given by the pCTQL with ! = 0.01.

Algorithm kg eg/xmax

Inverted pendulum
QL 112± 20 2.6± 1
CTQL 118± 19 1.5± 0.6
pCTQL (! = 0.001) 125± 37 2.4± 1.4
pCTQL (! = 0.005) 120± 25 2.5± 1.5
pCTQL (! = 0.01) 110± 25 3.8± 1
pCTQL (! = 0.05) 111± 41 1.9± 0.8
pCTQL (! = 0.1) 105± 21 2.5± 0.8

Table 5.3. Control metrics (Def. 3.2.2) for the inverted pendulum scenario,
with reward (3.8) and nominal conditions. Means and standard deviations
across sessions are reported, when S > 1. Values that are statistically signifi-
cantly different from those of QL are in bold (according to Welch’s t-test with
p-value less than 0.05 [99]).

Deep approaches. Considering again the inverted pendulum problem,
we test DQN and CT-DQN considering only reward (3.9).

Fig. 5.8 shows that CT-DQN (with different values of the switching
probability !) and DQN have comparable performance during the learning
phase.

Indeed, in Tab. 5.5, a Welch’s t-test reveals no statistically significant
difference between the two algorithms.

In Tab. 5.6, we report the control metrics assessed after a training
process of 50 episodes (larger than Et for all cases, meaning learning is

56 Chapter 5. Control Tutored Reinforcement Learning

Algorithm kg eg/xmax

Inverted pendulum
QL 137± 78 1.5± 0.6
pCTQL (! = 0.001) 126± 40 0.9± 0.3
pCTQL (! = 0.005) 150± 76 1.4± 1.2
pCTQL (! = 0.01) 114± 33 0.8± 0.3
pCTQL (! = 0.05) 107± 20 1.2± 0.6
pCTQL (! = 0.1) 134± 27 1.2± 0.5

Table 5.4. Control metrics (Def. 3.2.2) for the inverted pendulum scenario,
with reward (3.9) and nominal conditions. Means and standard deviations
across sessions are reported, when S > 1. Values that are statistically signifi-
cantly different from those of QL are in bold (according to Welch’s t-test with
p-value less than 0.05 [99]).

0 20 40 60 80 100

−3500

−3000

−2500

−2000

−1500

−1000

−500

DQN CT-DQN ω = 0.01 CT-DQN ω = 0.05 CT-DQN ω = 0.1

Episode number

J
⇡
e

Figure 5.8. Cumulative reward per episode J
⇡

e for the inverted pendulum
problem. The reward curves were averaged with a moving window of 10 sam-
ples taken on the left. Then mean (solid curves) and standard deviations
(shaded areas) are taken across sessions.

5.4. Numerical simulations 57

Algorithm Et J
⇡
avg J

⇡
avg,t

Inverted pendulum
DQN 38± 3 �837.8± 90.6 �422.8± 16.9
CT-DQN (! = 0.01) 40± 4 �906± 110.4 �397.3± 8.9
CT-DQN (! = 0.05) 39± 4 �856.5± 111.9 �403.1± 12.5
CT-DQN (! = 0.1) 38± 6 �858.9± 43.3 �507.1± 68.6

Table 5.5. Learning metrics (Def. 3.2.1) for the inverted pendulum scenario
using DQN and CT-DQN. Means and standard deviations across sessions are
reported, when S > 1. Values that are statistically significantly different from
those of DQN are in bold (according to Welch’s t-test with p-value less than
0.05 [99]).

considered complete), and observe similar control performance, without
statistically significant differences. Hence, in this scenario, under all met-
rics considered, CT-DQN and DQN have comparable performance.

We believe this happens because the state and action spaces are small,
and DQN is already able to learn quickly, not needing additional aid from
the tutor. However, this fact shows that the performance of our control
tutor, at worse, does not disrupt the performance of the underlying RL
algorithm, in this case, the DQN.

Algorithm ks es J
⇡g

Inverted pendulum
DQN 66± 3 0.11± 0.03 �366.6± 9.1
CT-DQN (! = 0.01) 75± 17 0.15± 0.03 �407.5± 65.3
CT-DQN (! = 0.05) 70± 3 0.16± 0.04 �370.3± 8.9
CT-DQN (! = 0.1) 66± 0.4 0.15± 0.04 �370.2± 1.2

Table 5.6. Control metrics (Def. 3.2.2) for the inverted pendulum scenario
using DQN and CT-DQN. Means and standard deviations across sessions are
reported, when S > 1. Values that are statistically significantly different from
those of DQN are in bold (according to Welch’s t-test with p-value less than
0.05 [99]).

58 Chapter 5. Control Tutored Reinforcement Learning

5.4.3 Lunar lander scenario

In this scenario, we test only deep approaches DQN and CT-DQN as
the state space is too big to consider a discretized one. For the parameters
of DRL the architectures see Appendix A.1. Numerical experiments are
conducted considering S = 3 sets of training sessions with the same initial
condition made of E = 1000 episodes of N = 1000 steps.

Control tutor design

In order to design the tutor, we assume the knowledge of simplified
dynamics of the center of mass of the lander, neglecting gravity (as its
magnitude might be unknown).

Namely, we approximate f in (3.2) with the reduced order model
f̂ (�k, vk) = A�k + Bvk, where �k 2 R4 is the vector containing posi-
tion and velocity on the x-axis followed by position and velocity on the
y-axis (in this given order); vk 2 R2 are the x- and y- components of the
force applied by a hypothetical swiveling thruster. Noting that � = 0 cor-
responds to the center of the landing pad, we exploit the state-feedback
control law defined as vk = �K�k to stabilize asymptotically the origin,
where K 2 R2⇥4.

The matrices of the reduced order model are defined as follows:

A =

2

664

1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

3

775 , (5.17)

B =

2

664

0 0
T/m 0
0 0
0 T/m

3

775 , (5.18)

K =


470 474.7 0 0
0 0 470 474.7

�
, (5.19)

where T = 0.02 is a sampling time and m = 10 kg is the mass of the
lander. To obtain the control tutor’s input g(xk) in (5.2) from vk(�k), we
proceed as follows.

5.4. Numerical simulations 59

If vy > 0 and |vy| � |vx| (the tutor mainly suggests moving upwards),
we use the thruster on the bottom; if |vx| > |vy| and |vx| > 0 (the tutor
mainly suggests moving right), we use the thruster on the left; if |vx| > |vy|
and |vx| < 0 (the tutor mainly suggests moving left), we use the thruster
on the right; in the other cases, we use no thruster.

Note that this control tutor, by itself, is unable to make the spacecraft
land correctly as it has access only to a very limited amount of information
on the system dynamics. However, it often helps the lander in getting
closer to the landing pad and decreasing landing velocity, as portrayed in
Fig. 5.9.

(a)

x center of mass

y
ce

nt
er

of
m

as
s

(b)

Time (steps)

Sp
ee

d
in

ab
so

lu
te

va
lu

es

Figure 5.9. (a) Trajectories of the lander obtained using only the control
tutor (uk = g(xk); solid line) and no control input at all (dotted line). (b)
Absolute value of the lander’s linear speed obtained using only the control tutor
(solid line) and no control input at all (dotted line). Different colors correspond
to different initial linear velocities (while keeping the same ground).

Numerical results

Regarding the Lunar Lander problem, Fig. 5.10 shows that CT-DQN
improves the learning performance with respect to DQN by reducing learn-
ing times. As a matter of fact, the control tutored strategies tested are
capable of reaching a higher level in the objective J

⇡ faster with respect
to the untutored DQN.

Notably, as reported in Tab. 5.7, CT-DQN with ! = 0.05 requires
about half as many episodes as DQN to consistently achieve the goal (see

60 Chapter 5. Control Tutored Reinforcement Learning

0 200 400 600 800 1000

−600

−400

−200

0

200

DQN CT-DQN ω = 0.01 CT-DQN ω = 0.05 CT-DQN ω = 0.1

Episode number

J
⇡
e

Figure 5.10. Cumulative reward per episode J⇡

e for the lunar lander problem.
The reward curves were averaged with a moving window of 100 samples taken
on the left. Then mean (solid curves) and standard deviations (shaded areas)
are calculated across sessions.

5.4. Numerical simulations 61

Et). Also, the average cumulative reward across all episodes J
⇡
avg of CT-

DQN is more than twice that of DQN, indicating a shorter learning time.
Then, after both algorithms reach their terminal episode Et, they ex-

hibit comparable average cumulative reward J
⇡
avg,t. Moreover, Tab. 5.7

shows that, for the case of ! = 0.1 the artificial agent is not capable of
reaching the terminal condition Et. This happens since the frequency of
calls to the control tutor policy is too high and results in an unstable learn-
ing process.

Algorithm Et J
⇡
avg J

⇡
avg,t

Lunar lander
DQN 665± 28 60.1± 1.9 231.6± 5.2
CT-DQN (! = 0.01) 456± 29 135.5± 25.4 232.5± 0.9
CT-DQN (! = 0.05) 324± 90 155.7± 25.9 230± 9.4
CT-DQN (! = 0.1) N.A. 100± 13.6 N.A.

Table 5.7. Learning metrics (Def. 3.2.1) for the scenarios considered. Means
and standard deviations across sessions are reported, when S > 1. Values that
are statistically significantly different from those of DQN are in bold (according
to Welch’s t-test with p-value less than 0.05 [99]).

In Tab. 5.8 we compare the control strategies obtained from CT-DQN
and DQN. To do so, we use the greedy policy (as defined in ⇡g (3.6))
obtained by halting the training at 500 episodes (after 500 episodes, CT-
DQN already converged, as its Et < 500, while DQN has not, as its Et >

500).
At this stage of training, the DQN agent could not learn how to land

yet but kept hovering over the landing pad, wasting fuel. This is captured
by the negative cumulative reward J

⇡g , coupled with a low steady state
error es, and the settling time ks being not available in Tab. 5.8.

On the other hand, the CT-DQN agent has already learned how to
land, even with different values of ! (introduced in Sec. 5.3), displaying a
positive J

⇡g , a finite ks, and a low es.
Overall, we note that, as the tutor is synthesized with only a partial

model of the system dynamics, performance might start to degrade when
the tutor is used too often. As evidence, see the asymptotic value of the

62 Chapter 5. Control Tutored Reinforcement Learning

Algorithm ks es J
⇡g

Lunar lander
DQN N.A. 0.18± 0.11 �82.5± 10.22
CT-DQN (! = 0.01) 431± 55 0.09± 0.01 180.2± 11.7
CT-DQN (! = 0.05) 311± 58 0.16± 0.07 189.8± 24.1
CT-DQN (! = 0.1) 529± 82 0.14± 0.09 156.7± 28.4

Table 5.8. Control metrics (Def. 3.2.2) for the scenarios considered using
DQN and pCTDQN. Means and standard deviations across sessions are re-
ported, when S > 1. Values that are statistically significantly different from
those of DQN are in bold (according to Welch’s t-test with p-value less than
0.05 [99]).

reward curves of CT-DQN with ! = 0.1 in Figs. 5.8 and 5.10.

5.4.4 Car racing scenario

In this scenario, we test only deep approaches DQN and CT-DQN as
the state space is too big to consider a discretized one. For the parameters
of DRL the architectures see Appendix A.1. Numerical experiments are
conducted considering S = 2 sets of training sessions with the same initial
condition made of E = 500 episodes of N = 1000 steps.

Control tutor design

The tutor regulates acceleration and steering separately.
Steering is regulated as follows. First, we note that the car is still in

each frame, is oriented upwards, and has its center of mass at position
pc = [xc yc]T = [0 0]T (in pixels) (Fig. 5.11). Moreover, we detect
the margins of the road by processing each image frame with a Roberts
operator [15].

Next, we consider a point in front of the car, with position ph =
[xh yh]T = [xc yc + lp]T, with lp 2 R>0 (see Fig. 5.11). We also consider
two horizontal lines at yh+�y and yh��y, where �y 2 R> 0. Normally,
these lines will intersect the margins of the road in four points (see again
Fig. 5.11), and we define vroad as the vector between the intersection points

5.4. Numerical simulations 63

on the side of the road closer to ph.
Let ✓ := \(vcar � vroad) be the angle of the road with respect to the

car. Then, to align the car with the road, if ✓ < 0 (resp. ✓ > 0), the tutor
suggests steering left (resp. right). However, if all the intersection points
are on one side with respect to xc, or if less than four intersection points
are found, it is inferred that the car is off the road, and vroad is defined
as the vector from pc to the closest intersection point, instead (see Fig.
5.11.(b)). 1

To regulate the speed s, first, we detect s by measuring an indicator
bar printed on the image frame. Then, setting some thresholds ⌘accspeed =

, ⌘
acc
angle, ⌘

brk
angle 2 R>0, the tutor suggests to accelerate if s < ⌘

acc
speed and

|✓| < ⌘
acc
angle; conversely, it suggests to brake if |✓| > ⌘

brk
angle.

In numerical simulations, we use the following representative values
lp = 10 pixels, �y = 2 pixels, ⌘accangle = 15�, ⌘brkangle = 50�, and ⌘accspeed as 40%
of the maximum possible speed.

vroad

vcar

lh

�y

ph

pc

✓(a)

vroad

(b)

Figure 5.11. Quantities used by the control tutor, when the car is on the
road (a) and off the road (b).

1
More complicated situations might exist, e.g., where less than four intersection

points are found, but the car is on the road; however, these are typically infrequent.

We also do not aim to build the best possible tutor, but a simple one that is able to

demonstrate the potential of the approach. Tutors that are able to provide the learning

process with more accurate suggestions will lead to better performance. In a sense, a

simple tutor can be considered a baseline over which improvements are possible.

64 Chapter 5. Control Tutored Reinforcement Learning

Numerical results

We start by recalling that we consider the task just as that of maxi-
mizing the reward, see Sec. 3.3.3.

Results obtained considering the Car Racing scenario, show generally
faster learning for CT-DQN in terms of growth of the cumulative reward
as shown in Fig. 5.12. This is also confirmed in Tab. 5.9 by the larger value
of J⇡

avg for CT-DQN.

0 20 40 60 80 100

−3500

−3000

−2500

−2000

−1500

−1000

−500

DQN CT-DQN ω = 0.05

Episode number

J
⇡
e

Figure 5.12. Cumulative reward per episode J
⇡

e
of DQN and CT-DQN. The

curves were obtained using a moving average of 50 samples (taken on the left).

To test control performance, we select the greedy policies obtained by
CT-DQN after training for 250 episodes, on 30 tracks generated randomly
(the same tracks for both algorithms). We find significantly higher rewards
(see J

⇡g in Tab. 5.10) for CT-DQN, showing, also for this other scenario,
the benefit of using the control tutor.

5.4. Numerical simulations 65

Algorithm Et J
⇡
avg J

⇡
avg,t

Car racing
DQN - 363.7± 13.7 -
CT-DQN (! = 0.05) - 451.7± 0.4 -

Table 5.9. Learning metrics (Def. 3.2.1) for the car racing scenario. Means
and standard deviations across sessions are reported, when S > 1. Values that
are statistically significantly different from those of DQN are in bold (according
to Welch’s t-test with p-value less than 0.05 [99]).

Algorithm ks es J
⇡g

Car racing
DQN - - 549.2± 290
CT-DQN (! = 0.05) - - 728± 294.5

Table 5.10. Control metrics (Def. 3.2.2) for the car racing scenario using
DQN and CTDQN. Means and standard deviations across sessions are re-
ported, when S > 1. Values that are statistically significantly different from
those of DQN are in bold (according to Welch’s t-test with p-value less than
0.05[99]).

66 Chapter 5. Control Tutored Reinforcement Learning

5.5 Summary

In this chapter, we introduced the control tutored reinforcement learn-
ing, a framework to develop reinforcement learning agents capable of ex-
ploring the state space using a control tutor policy. Such policy is generated
from a control law based on a very simple model of the system to control.
In Section 5.1 we derive the formulation of the CTQL algorithm capable
of adjusting the percentage of tutor usage based on the Q-values learned
by the agent itself. However, CTQL requires the reward function to be of
a specific form that could be prohibitive for some applications. To solve
the reward issue, in Section 5.2, we propose a probabilistic alternative to
CTQL that we name pCTQL. This algorithm introduces a fixed probabil-
ity of using actions suggested by the control tutor and does not assume
anything about the reward function. Following the same reasoning, in Sec-
tion 5.3, we also apply to the CTRL idea to more recent deep approaches
introducing the CT-DQN.

Eventually, in Section 5.4, we test our algorithms on the testbed prob-
lems of Chapter 3 and compare their performance, in both learning and
control performances, with their untutored counterparts. Our numerical
results suggest that CTRL can reduce learning times by leveraging con-
trol laws that on their own are not sufficient to solve the tasks considered.
Also, given their off-policy nature, the CTRL algorithms proposed show
to be capable of faster convergence without degrading the final control
performance.

Chapter 6
COVID-19, modeling and

control

During the year of my Ph.D., the COVID-19 pandemic hit the world’s
population, hence the scientific community shifted its attention to col-
laborating and finding solutions also via non-pharmaceutical intervention.
As part of my research, I worked on the development of a mathemat-
ical model of the COVID-19 pandemic and different control-based non-
pharmaceutical strategies to limit the effects of the pandemic in terms of
deaths and economic impact on the Italian nation.

6.1 Introduction

Regionalism is an integral part of the Italian constitution. Each of
Italy’s twenty administrative regions is independent of Health and over-
sees its own share of the Italian National Health Service. The regional
presidents and their councils can independently take their own actions,
strengthening or, at times, weakening national containment rules. Previ-
ous studies have modeled the spread of the epidemics and its evolution in
the country at the national level [31, 38, 60, 67], and some have looked
at the effects of different types of containment and mitigation strategies
[12, 9, 90, 89, 71]. Limited work [5, 27, 30, 37, 46, 54, 77, 78, 93, 96] has
taken into account the spatial dynamics of the epidemic but, to the best
of our knowledge, no previous paper in the literature has explicitly taken

68 Chapter 6. COVID-19, modeling and control

into consideration the pseudo-federalist nature of the Italian Republic and
its strong regional heterogeneity when it comes to health matters, hospital
capacity, economic costs of a lockdown and the presence of inter-regional
people’s flows.

The goal is to identify if and when measures taken by the Italian gov-
ernment had an effect at both the national, but most importantly, at the
regional level. Also, we want to uncover the effects of the epidemic spread
of regional heterogeneity and inter-regional flows of people and use con-
trol theoretic tools to propose and assess differentiated interventions at the
regional level to reopen the country and avoid future recurrent epidemic
outbreaks.

As aggregate models of the COVID-19 epidemic cannot capture these
effects, to carry out our study we derived and parameterized from real data
a network model of the epidemics in the country (see Figure 6.1), where
each of the 20 regions is a node and links model both proximity flows and
long-distance transportation routes (ferries, train, planes). The model is
first shown to possess the right level of granularity and complexity to cap-
ture the crucial elements needed to correctly predict and reproduce the
available data. Then, it is used to design and test differentiated feedback
interventions at the regional level to alleviate the epidemic impact. Using
the model and an ad hoc algorithm to parameterize it from real data, we
evaluate the effectiveness of the national lockdown strategy implemented
so far by the Italian government providing evidence of its efficacy across re-
gions. Also, we show that inter-regional fluxes must be carefully controlled
as they can have dramatic effects on recurrent epidemic waves. Finally,
we convincingly show that regional feedback interventions, where each of
the twenty regions strengthens or weakens local mitigating actions (social
distancing, inflow/outflow control) as a function of the saturation of their
hospital capacity, can be beneficial in mitigating possible outbreaks and
in avoiding recurrent epidemic waves while reducing the costs of a nation-
wide lockdown.

6.2 COVID-19: modeling

As a regional model of the COVID-19 epidemic spread we use the com-
partmental model shown in Figure 6.2 which we found from data analysis

6.2. COVID-19: modeling 69

(a)

1
2
3
4
5
6
7
8

9
10

Abruzzo
Aosta Valley
Apulia
Basilicata
Calabria
Campania
Emilia
Friuli - Venezia
Giulia
Lazio
Liguria

11
12
13
14
15
16
17
18

19
20

Lombardy
Marche
Molise
Piedmont
Sardinia
Sicily
Tuscany
Trentino - Alto
Adige
Umbria
Veneto

Index Region Index Region

(b)

Figure 6.1. Schematic diagram of the network model structure and represen-
tative regional parameters. (a). Representative graph of the network model
structure used in the paper. Only a subset of all links is shown for the sake
of clarity (see [19] for the complete graphs). Solid lines represent proximity
links, dashed lines long distance transportation routes (air, train, road), and
dotted lines show major ferry routes between insular regions and the Italian
mainland. (b). Table of the Italian region names and their positions in the
graph.

70 Chapter 6. COVID-19, modeling and control

and identification trials to be the simplest model structure able to capture
the real [19]. The full model equations describe the dynamics of suscepti-

Figure 6.2. Regional compartmental model structure adopted in our study.
Schematic structure of model described by equations (6.1). Compartments
describe the dynamics of susceptible (Si), infected (Ii), quarantined (Qi), hos-
pitalized (Hi), recovered (Ri), and deceased (Di).

ble (Si), infected (Ii), quarantined (Qi), hospitalized (Hi), recovered (Ri)
and deceased (Di) and are given as:

S(t+ 1)i = �⇢i�
S(t)iI(t)i

Ni

(6.1)

I(t+ 1)i = ⇢i�
S(t)iI(t)i

Ni

� ↵iI(t)i � iI(t)i � �I(t)i (6.2)

Q(t+ 1)i = ↵iI(t)i � Hi Q(t)i � ⌘Qi Q(t)i + 
Q

i
H(t)i (6.3)

H(t+ 1)i = 
H

i Q(t)i + iI(t)i � ⌘Hi H(t)i � ⇣iH(t)i � Qi H(t)i (6.4)
D(t+ 1)i = ⇣iH(t)i (6.5)

R(t+ 1)i = �I(t)i + ⌘
Q

i
Q(t)i + ⌘

H

i H(t)i (6.6)

where � is the infection rate which will be assumed to be the same for all
regions since COVID-19 is transmitted from person to person and there

6.2. COVID-19: modeling 71

is no parasite vector or evidence of environmental parameters significantly
altering its infection rate, ⇢i 2 [0, 1] is a parameter modeling the effects
of social distancing measures in the i-th region, ↵i is the rate of infected
that are detected and quarantined, i is the rate of infected that needs
to be hospitalized, � is the recovery rate of the infected that is assumed
to be equal for all regions, ⌘Q

i
is the rate of quarantined who recover, ⌘K

i

is the fraction of hospitalized who recover, Q
i

is the rate of hospitalized
that is transferred to home isolation, H

i
is the rate of quarantined who

need to be hospitalized, and ⇣i is the mortality rate that was shown from
data analysis to be a function of the ratio between Hi and the maximum
number, say T

H

i
, of patients that can be treated in ICU at the hospitals in

i-th region. Ni is the actual population in the i-th region, i.e. the resident
population without those removed because quarantined, hospitalized, de-
ceased, or recovered.
Extending previous approaches for modeling Dengue fever in Brazil [83],
we obtain the national network model of the COVID-19 epidemic in Italy
as a network of twenty regions (see Figure 6.1) interconnected by links
modeling commuter flows and major transportation routes among them.
The dynamics of the disease in each region i 2 {1, . . . ,M} is captured
by a SIQHDR model, describing the discrete-time evolution of the num-
ber of susceptible (Si), (undetected) infected (Ii), quarantined (Qi), hos-
pitalized (Hi), deceased (Di), and recovered (Ri) as a function of time
t 2 N�0 (in days). We also define S := [S1 · · · SM]T, I := [I1 · · · IM]T,
Q := [Q1 · · · QM]T, H := [H1 · · · HM]T, D := [D1 · · · DM]T, R :=
[R1 · · · RM]T, and let x := [ST

I
T
Q

T
H

T
D

T
R

T]T 2 R6M
⌫0 . Moreover,

for each pair (i, j) of regions, �ij(t) 2 [0, 1] describes the fraction of people
in the region i that commute and interact with people in the region j,
returning to their region of origin at the end of each day t (see also [83]).

72 Chapter 6. COVID-19, modeling and control

The resulting network model is

Si(t+ 1) = Si(t)� �Si(t)
MX

j=1

⇢j(t)�ij(t)

N
p
j
(t)

MX

k=1

�kj(t)Ik(t), (6.7a)

Ii(t+ 1) = Ii(t) + �Si(t)
MX

j=1

⇢j(t)�ij(t)

N
p
j
(t)

MX

k=1

�kj(t)Ik(t)

� (� + ↵i(t) + i)Ii(t), (6.7b)

Qi(t+ 1) = Qi(t) + ↵i(t)Ii(t)� (Hi + ⌘
Q

i
)Qi(t) + 

Q

i
Hi(t), (6.7c)

Hi(t+ 1) = Hi(t) + 
H

i Qi(t) + iIi(t)

�
⇣
⌘
H

i + 
Q

i
+ ⇣ (Hi(t))

⌘
Hi(t), (6.7d)

Di(t+ 1) = Di(t) + ⇣ (Hi(t))Hi(t), (6.7e)

Ri(t+ 1) = Ri(t) + �Ii(t) + ⌘
Q

i
Qi(t) + ⌘

H

i Hi(t), (6.7f)

where

N
p
i
(t) =

MX

k=1

�ki(t) (Sk(t) + Ik(t) +Rk(t)), (6.8)

and the initial conditions are given at time t0 2 N�0 as x(t0) = x0 2 R6M
⌫0 .

In (6.7) the infection rate � and the recovery rate � are taken to be
equal for all the regions, as they have not been shown to strongly depend
on regional factors. The other parameters vary among different regions
to capture the heterogeneity of containment strategies, different regional
healthcare systems, etc. In particular, note that

� + ↵i(t) + i  1, 8i 2 {1, . . . ,M}, 8t 2 N�0, (6.9)

as in (6.7b) the number of people leaving compartment Ii can never be
greater than Ii. Moreover, as done in [19], we also estimate the number
of patients requiring treatment in intensive care as 10% of those who are
hospitalized. Thus, letting T

H

i
be the maximum number of beds in the

ICUs of the region i [56, 55], following [19] we express the mortality rate
as

⇣(Hi(t)) = ⇣
0 + ⇣

bmin

⇢
0.1Hi(t)

T
H

i

, 1

�
. (6.10)

6.2. COVID-19: modeling 73

Finally, Np
i
(t) is the population in the region i that is free-to-move at time

t, whereas Ni is the total population in the region i. All parameters’ values
are identified from data reported in [21] and are contained in Table 6.1.
See [19] for more details about the identification procedure.

Table 6.1. Model parameter values; for a description of all parameters see
[19]. The values of TH

i
are reported from [2]

Region ⇢i ⌘
Q

i
⌘
H

i
↵i i 

H

i

Q

i

Abruzzo 0, 321 0, 010 0, 000 0, 025 0, 049 0, 000 0, 087
Aosta 0, 122 0, 010 0, 260 0, 062 0, 000 0, 079 0, 000
Apulia 0, 590 0, 010 0, 000 0, 028 0, 047 0, 100 0, 100
Basilicata 0, 177 0, 010 0, 060 0, 037 0, 021 0, 025 0, 025
Calabria 0, 272 0, 015 0, 000 0, 042 0, 059 0, 005 0, 079
Campania 0, 467 0, 018 0, 000 0, 014 0, 064 0, 000 0, 100
Emilia 0, 400 0, 029 0, 000 0, 059 0, 062 0, 000 0, 045
Friuli 0, 202 0, 028 0, 049 0, 044 0, 007 0, 004 0, 000
Lazio 0, 483 0, 015 0, 012 0, 029 0, 076 0, 055 0, 100
Liguria 0, 398 0, 037 0, 010 0, 012 0, 092 0, 000 0, 100
Lombardy 0, 308 0, 022 0, 017 0, 017 0, 059 0, 000 0, 048
Marche 0, 133 0, 010 0, 007 0, 000 0, 057 0, 002 0, 068
Molise 0, 217 0, 013 0, 000 0, 06 0, 018 0, 000 0, 043
Piedmont 0, 363 0, 022 0, 014 0, 021 0, 071 0, 000 0, 100
Sardinia 0, 216 0, 013 0, 038 0, 066 0, 017 0, 015 0, 063
Sicliy 0, 293 0, 015 0, 000 0, 017 0, 068 0, 012 0, 100
Trentino 0, 226 0, 029 0, 035 0, 081 0, 006 0, 002 0, 000
Tuscany 0, 353 0, 012 0, 000 0, 046 0, 062 0, 000 0, 093
Umbria 0, 134 0, 010 0, 141 0, 089 0, 000 0, 052 0, 000
Veneto 0, 336 0, 031 0, 000 0, 054 0, 048 0, 002 0, 100

74 Chapter 6. COVID-19, modeling and control

6.3 COVID-19: control via non-pharmaceutical

interventions

A crucial open problem is to support decision makers in determin-
ing what form of interventions might be beneficial to avoid the onset of
future outbreaks while mitigating the cost of Draconian interventions at
the national level. To this aim, we compared the effects of national mea-
sures (e.g., general lockdown) against those of a regional feedback strategy
where social distancing measures are put in place or relaxed independently
by each region according to the ratio between hospitalized individuals and
the total capacity of the health system in that region.

6.3.1 Implementation and design of national and regional

feedback intervention strategies

We model the implementation of regional social distancing strategies
by capturing their effects as a variation of the social distancing parameters,
⇢i in (6.7), in each region. Specifically, we assume each region follows the
feedback control rule:

⇢i =

8
>><

>>:

¯
⇢i, if

0.1Hi

T
H

i

� 0.20

⇢̄i, if
0.1Hi

T
H

i

 0.05
(6.11)

where
¯
⇢i is set equal to the minimum estimated value in that region dur-

ing the national lockdown (see [19]) and ⇢i increased as a worst case to
min(1, 3

¯
⇢i) so as to simulate the effect of relaxing the lock-down measures

in each region.
Also, when a region is shut down, we assume all fluxes in and out of

that region are reduced to 70% of their original values to better simulate
the actual reduction in people’s movement observed during the lockdown
in Italy (for further details see [19]).

National lockdown measures are modeled by setting all ⇢i simultane-
ously to

¯
⇢i in all regions and reducing all fluxes by 70% while the national

reopening of all regions by setting all ⇢i simultaneously to ⇢̄i and restoring
interregional flows to their pre-lockdown level.

6.4. Summary 75

We assume each region implements a stricter lockdown when such a
ratio becomes greater or equal to 20% and relaxes the social distancing
rules when it is below 5% (see [19] for further details). Figure 6.3 confirms
the effectiveness of such a local strategy, where we see that a differentiated
strategy among the regions is more effective than a national lockdown in
avoiding future waves of the disease (Figure 6.4) but, most importantly,
also in guaranteeing that no region exceeds its own hospitals’ capacity.
Moreover, intermittent regional measures yield lower economic costs for
the country, as regional economies can be restarted and remain open for a
much longer time (Table 6.2).

6.4 Summary

In this chapter, we show the effort made during the COVID-19 pan-
demic to effectively synthesize non-pharmaceutical interventions. In Sec-
tion 6.2 we proposed an original formulation of the COVID-19 pandemic
compartmental model. We consider the case of Italy by considering a
network of 20 independent regions that exchange people with each other.
Furthermore, in Section 6.3 we propose a bang-bang strategy to control the
epidemic based on the level of hospitalization level of each region. Eventu-
ally, based on such information, the nodes of the network considered can
limit flows with the neighbor nodes as well as adjust its level of lockdown
measure.

With this study, we effectively demonstrated, that, with the same ini-
tial conditions, decentralized approaches can lower deaths and economic
costs with respect to national measures imposed on all regions. Finally, We
show these results via numerical simulation on multiple sets of parameters
to obtain reliable statistics (see Appendix A.2).

76 Chapter 6. COVID-19, modeling and control

(a) Intermittent regional measures

(b) Intermittent regional measures (c) Intermittent national measures

Figure 6.3. Intermittent regional measures. (a). Each of the 20 panels
shows the evolution in each region of the fraction in the population of infected
(blue), quarantined (magenta), and hospitalized requiring ICUs (red) averaged
over 10,000 simulations with parameters sampled using a Latin Hypercube
technique (see Appendix A.2 and [19]). Shaded bands correspond to twice
the standard deviation. Dashed black lines represent line the fraction of the
population that can be treated in ICU (TH

i
/Ni) (b). National evolution of

the fraction in the population of infected (blue), quarantined (magenta), and
hospitalized requiring ICUs (red) was obtained by summing those in each of the
20 regions adopting intermittent regional measures. (c). National evolution
when an intermittent national lockdown is enforced with all regions shutting
down when the total number of occupied ICU beds at the national level exceeds
20%.

6.4. Summary 77

(a) National Lockdown

(b)

Figure 6.4. National lockdown. (a). Regional and (b). national dynamics in
the case where no region relaxes its containment measures, while all regions
restore the interregional fluxes to their pre-lockdown level. Blue, magenta,
red, green, and black solid lines correspond to the fraction in the population
of infected, quarantined, hospitalized, recovered, and deceased averaged over
10,000 simulations with parameters sampled using a Latin Hypercube tech-
nique (see Appendix A.2) around their nominal values set as those estimated
in the last time window for each region (see [19]). Shaded bands correspond
to twice the standard deviation. The black dashed line identifies the fraction
of the population that can be treated in ICU (TH

i
/Ni). The regions identified

with a red label are those where the total hospital capacity is saturated.

78 Chapter 6. COVID-19, modeling and control

Table 6.2. Comparison of the simulated scenarios. Metrics (calculated ac-
cording to [19, 14]) to evaluate the impact over 1 year are reported showing the
effectiveness of the intermittent regional measures in avoiding any saturation of
the regional health systems while mitigating the impact of the epidemic. Aver-
age values are shown ± standard deviation calculated from 10, 000 repetitions
with parameter values sampled using a Latin Hypercube (see Appendix A.2).

Sim
ulation

Total
Total

M
axim

um
D

ays
R

egions
E

conom
ic

cases
deaths

hospitalized
over

over
cost

[M
€

]
x

hospital’s
hospital’s

capacity
capacity

Interm
ittent

2
,165

,229
154

,878
2
,927

±
183

0
±
0

0
470

,735
regional

±
83

,806
±
3
,008

±
6
,353

m
easures

(Fig.6.3.a,b)

Interm
ittent

2
,197

,076
176

,210
4
,794

±
309

0
±
0

3
532

,802
national

±
189

,948
±
8
,264

±
12
,474

m
easures

(Fig.6.3.c)

N
ational

345
,552

43
,705

1
,915

±
0

0
±
0

0
610

,480
±
0

lockdow
n

±
29

,841
±
1
,715

(Fig.6.4)

Chapter 7
Conclusions and Future Work

In Chapter 2, I reviewed the state of the art in reinforcement learning
for control applications. In particular, I found out that current control
solutions provided by reinforcement learning algorithms come with long
learning times, big sets of data, and no final performance guarantees.

To develop our algorithms, in Chapter 3, I introduced a problem formu-
lation in the sense of optimal control for reinforcement learning problems
establishing a link between the two disciplines. I also defined a set of met-
rics to quantify and compare our algorithms with the ones provided by the
literature. Moreover, I introduced a set of benchmark problems to analyze
and test the algorithms proposed in this thesis.

A set of analytical results have been proposed in Chapter 4 to drive
a pipeline for defining reinforcement learning problems capable of auto-
matically detecting when its performance has reached a minimum desired
level. In numerical simulations, described in Section 4.3.1, I showed how
the minimal performance Q-learning can autodetect and deliver a solution
that fulfills some desired properties (e.g. steady-state error and settling
time). Further steps in this direction would be to apply this procedure
to different architectures rather than Q-learning. Eventually, we would
like to also embed in the reward function safety so that the reinforcement
learning agent can freely learn and autodetect unsafe behavior.

In Chapter 5, I presented a deterministic and a probabilistic control
tutored Q-learning strategy for tabular approaches and a control tutored
deep Q-networks, that integrate a feedback control law synthesized on

80 Chapter 7. Conclusions and Future Work

a partial model of the plant within a Q-learning framework to render the
learning process faster and improve the performance of the learned policies
in achieving a control goal of interest.

I compared the control-tutored strategies with a classical Q-learning
and deep Q-networks approach using the inverted pendulum, lunar lander,
and car racing benchmark problems from OpenAI Gym as representative
control problems. Also, a solution to the single agent herding problem is
proposed. From numerical simulations of Section 5.4, I found that when
compared to Q-learning, CTQL requires fewer data samples and has a
larger average reward, while pCTQL yields higher rewards with a compa-
rable number of data samples; moreover, both CTQL and pCTQL yield
lower regulation errors when certain reward functions are used. More-
over, regarding CT-DQN, I have shown that the addition of control tutors
always proved to be non-pejorative (with the inverted pendulum) or sig-
nificantly beneficial (with the lunar lander and racing car) in terms of
shorter learning time. As a matter of fact, I observed that CT-DQN is
able to obtain better policies with respect to classical DQN in the same
number of episodes. Moreover, the better the tutor is at solving a problem
(according to case-specific metrics), the larger the improvement tends to
be. Our numerical results show that both from a learning and a control
viewpoint using a control-tutored learning approach might be beneficial.

Further work will be focused on the formal analysis of the design of the
tutor mechanism for Deep Reinforcement Learning, including the quantifi-
cation of information and definition of bounds (e.g., regret bounds). Also,
we wish to uncover and formally characterize the relationships among the
specific choice of the reward function, the performance of the algorithms,
and the approximate system dynamics needed to synthesize the control
tutor. Furthermore, we wish to emphasize that embedding a control tutor
in the loop could be used to render more efficient learning strategies other
than Q-learning. This will also be the subject of future investigation.

Finally, an event like the COVID-19 pandemic raised many issues in
current governmental organizations and society. However, it has been an
opportunity to develop and test state of the art control solutions. In
Chapter 6, I analyzed how the decentralization of governmental policy
can be beneficial in the administration of an emergency like the COVID-
19 pandemic. Moreover, as the next steps, I will keep working on the

definition of better data-driven approaches ready to use in new emergency
situations that may appear in the future.

Appendix A
Appendix

A.1 Parameters of deep architectures

During training, we use a target neural network [59] which is updated
at the end of every episode. We also introduce a replay buffer with size Nb,
which is used to randomly sample 64 data-points to update the network
parameters at every step. Moreover, we set learning rate ↵ = 0.001 and
the discount factor � = 0.99 [87].

With respect to the inverted pendulum of Section 5.4.2, for the neural
networks in DQN, we use 2 hidden layers with rectifier linear unit ac-
tivation functions (ReLu), with 128 and 64 nodes, respectively. We set
Nb = 1, 000, 000 and ✏rl = 0.02.

As far as the lunar lander in Section 5.4.3 is concerned, for the neural
networks in DQN, we used 2 hidden layers of 128 nodes with ReLu. More-
over, we set Nb = 1, 000, 000, ↵ = 0.0001, � = 0.99, and ✏rl = 0.1.

Finally for the car racing of Section 5.4.4, we use convolutional neural
networks. The input has dimension 94 ⇥ 94 ⇥ 3. A first hidden layer
convolves 6 filters of 7⇥ 7 with stride 3 with the input image, with ReLu.
A second hidden layer convolves 12 filters of 4 ⇥ 4 with stride 1, with
ReLu. A third hidden layer is present, with 216 nodes and ReLu. The
output layer is a fully-connected linear layer with a single output for each
possible action. Finally, we set Nb = 5, 000, ↵ = 0.001, � = 0.9999, and
✏
rl = 0.1.

83

84 Appendix A. Appendix

A.2 Data fitting and sensitivity analysis in COVID-
19 experiments

All computational analyses and the fitting of data were performed using
MATLAB and its optimization toolbox. To account for the inherent un-
certainty associated to the COVID-19 epidemic, each result reported in the
manuscript is the output of 10000 numerical simulations, where we varied
the values of the model parameters using the Latin Hypercube sampling
method[36, 51]. Specifically, the regional parameters αi, ψi, κ

Q
i , κ

H
i , η

Q
i , η

H
i

of the model (6.7), and the estimated initial condition at May 3rd 2020
I(f, i) were varied considering a maximum variation of ±20% from their
nominal values (see [19]).

Bibliography

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate mod-
els in reinforcement learning. In International Conference on Machine

Learning (ICML’06), pages 1–8, 2006.

[2] Agenzia Nazionale per i Servizi Sanitari Regionali. Ricoverati e posti letto
in area non critica e terapia intensiva, 2021.

[3] Giacomo Albi, Mattia Bongini, Emiliano Cristiani, and Dante Kalise. Invis-
ible control of self-organizing agents leaving unknown environments. SIAM

Journal on Applied Mathematics, 76(4):1683–1710, 2016.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and
Wojciech Zaremba. Hindsight experience replay. arXiv preprint

arXiv:1707.01495, 2017.

[5] Julien Arino and Pauline van den Driessche. A multi-city epidemic model.
Mathematical Population Studies, 10(3):175–193, 2003.

[6] Richard Bellman. A markovian decision process. Journal of Mathematics

and Mechanics, 6(5):679–684, 1957.

[7] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas
Krause. Safe model-based reinforcement learning with stability guaran-
tees. In Advances in Neural Information Processing Systems (NIPS’17),
volume 30. Curran Associates, Inc., 2017.

[8] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic Programming.
Athena Scientific, 1996.

[9] Michelangelo Bin, Peter Cheung, Emanuele Crisostomi, Pietro Ferraro,
Connor Myant, Thomas Parisini, and Robert Shorten. On fast multi-shot

85

86 Bibliography

epidemic interventions for post lock-down mitigation: Implications for sim-
ple covid-19 models. arXiv preprint arXiv:2003.09930, 1125, 2020.

[10] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent rein-
forcement learning: An overview. Innovations in multi-agent systems and

applications-1, pages 183–221, 2010.

[11] Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana
Palunko. Reinforcement learning for control: Performance, stability, and
deep approximators. Annual Reviews in Control, 46:8–28, 2018.

[12] Francesco Casella. Can the covid-19 epidemic be controlled on the basis of
daily test reports? IEEE Control Systems Letters, 5(3):1079–1084, 2020.

[13] Richard Cheng, Gábor Orosz, Richard M. Murray, and Joel W. Burdick.
End-to-end safe reinforcement learning through barrier functions for safety-
critical continuous control tasks. AAAI Press, 2019.

[14] Marco Coraggio, Shihao Xie, Francesco De Lellis, Giovanni Russo, and
Mario Di Bernardo. Intermittent non-pharmaceutical strategies to mitigate
the covid-19 epidemic in a network model of italy via constrained optimiza-
tion. In 2021 60th IEEE Conference on Decision and Control (CDC), pages
3538–3543. IEEE, 2021.

[15] Larry S. Davis. A survey of edge detection techniques. Computer Graphics

and Image Processing, 4(3):248–270, 1975.

[16] Francesco De Lellis, Giovanni Russo, and Mario Di Bernardo. Tutoring re-
inforcement learning via feedback control. In European Control Conference

(ECC’21), pages 580–585, 2021.

[17] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan
Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdol-
maleki, Diego de Las Casas, et al. Magnetic control of tokamak plasmas
through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

[18] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. International Conference on Machine

Learning (ICML’11), pages 465–472, 2011.

[19] Fabio Della Rossa, Davide Salzano, Anna Di Meglio, Francesco De Lellis,
Marco Coraggio, Carmela Calabrese, Agostino Guarino, Ricardo Cardona-
Rivera, Pietro De Lellis, Davide Liuzza, et al. A network model of italy
shows that intermittent regional strategies can alleviate the covid-19 epi-
demic. Nature communications, 11(1):5106, 2020.

Bibliography 87

[20] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and Zhao-
hui Wu. On deep learning for trust-aware recommendations in social
networks. IEEE transactions on neural networks and learning systems,
28(5):1164–1177, 2016.

[21] Dipartimento della Protezione Civile. Dipartimento della protezione civile–
presidenza del consiglio dei ministri official COVID-19 data repository,
2020.

[22] Hao Dong, Zihan Ding, Shanghang Zhang, and Chang. Deep Reinforcement

Learning. Springer, 2020.

[23] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. Inter-

national Conference on Machine Learning (ICML’16), pages 1329–1338,
2016.

[24] Eyal Even-dar and Yishay Mansour. Convergence of optimistic and incre-
mental q-learning. In Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2001.

[25] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoret-
ical analysis of deep q-learning. In Proceedings of the 2nd Conference on

Learning for Dynamics and Control (L4DC’20), volume 120 of Proceedings

of Machine Learning Research, pages 486–489, 2020.

[26] Qirui Fan, Gai Zhou, Tao Gui, Chao Lu, and Alan Pak Tao Lau. Advancing
theoretical understanding and practical performance of signal processing
for nonlinear optical communications through machine learning. Nature

Communications, 11(1):3694, 2020.

[27] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The effect of net-
work topology on the spread of epidemics. In Proceedings IEEE 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.,
volume 2, pages 1455–1466. IEEE, 2005.

[28] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research (JMLR),
16(1):1437–1480, 2015.

[29] Émiland Garrabé and Giovanni Russo. Probabilistic design of optimal
sequential decision-making algorithms in learning and control. Annual Re-

views in Control, 54:81–102, 2022.

[30] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Car-
raro, Renato Casagrandi, and Andrea Rinaldo. Spread and dynamics of

88 Bibliography

the covid-19 epidemic in italy: Effects of emergency containment mea-
sures. Proceedings of the National Academy of Sciences, 117(19):10484–
10491, 2020.

[31] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri,
Alessandro Di Filippo, Angela Di Matteo, and Marta Colaneri. Modelling
the covid-19 epidemic and implementation of population-wide interventions
in italy. Nature medicine, 26(6):855–860, 2020.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[33] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Con-
tinuous deep q-learning with model-based acceleration. In International

Conference on Machine Learning (ICML’16), pages 2829–2838, 2016.

[34] Vijaykumar Gullapalli. Reinforcement learning and its application to con-

trol. PhD thesis, University of Massachusetts at Amherst, 1992.

[35] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International Conference on Machine Learning

(ICML’18), pages 1861–1870. PMLR, 2018.

[36] Jon C Helton and Freddie Joe Davis. Latin hypercube sampling and the
propagation of uncertainty in analyses of complex systems. Reliability En-

gineering & System Safety, 81(1):23–69, 2003.

[37] Herbert W Hethcote. An immunization model for a heterogeneous popula-
tion. Theoretical population biology, 14(3):338–349, 1978.

[38] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review,
42(4):599–653, 2000.

[39] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–
366, 1989.

[40] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. Mobile sensor
network deployment using potential fields: A distributed, scalable solution
to the area coverage problem. In Distributed autonomous robotic systems

5, pages 299–308. Springer, 2002.

[41] Ronen Israel, Bryan T Kelly, and Tobias J Moskowitz. Can machines’
learn’finance? Journal of Investment Management, 2020.

[42] AH Jones and PB De Moura Oliveira. Genetic auto-tuning of pid con-
trollers. 1995.

Bibliography 89

[43] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

[44] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learn-
ing in robotics: A survey. International Journal of Robotics Research,
32(11):1238–1274, 2013.

[45] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter
Abbeel. Model-ensemble trust-region policy optimization. In International

Conference on Learning Representations (ICLR’18), 2018.

[46] Ana Lajmanovich and James A Yorke. A deterministic model for gonorrhea
in a nonhomogeneous population. Mathematical Biosciences, 28(3-4):221–
236, 1976.

[47] Sergey Levine and Vladlen Koltun. Guided policy search. In International

Conference on Machine Learning (ICML’13), pages 1–9. PMLR, 2013.

[48] Yutong Li, Nan Li, H Eric Tseng, Anouck Girard, Dimitar Filev, and Ilya
Kolmanovsky. Safe reinforcement learning using robust action governor. In
Learning for Dynamics and Control (L4DC’21), pages 1093–1104. PMLR,
2021.

[49] Ryan A Licitra, Zachary I Bell, Emily A Doucette, and Warren E Dixon.
Single agent indirect herding of multiple targets: A switched adaptive con-
trol approach. IEEE Control Systems Letters, 2:127–132, 2017.

[50] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint arXiv:1509.02971v6,
2019.

[51] Wei-Liem Loh. On latin hypercube sampling. The Annals of Statistics,
24(5):2058–2080, 1996.

[52] Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an
integration of deep learning and neuroscience. Frontiers in computational

neuroscience, page 94, 2016.

[53] Nikolai Matni, Alexandre Proutiere, Anders Rantzer, and Stephen Tu.
From self-tuning regulators to reinforcement learning and back again. In
Conference on Decision and Control (CDC’19), pages 3724–3740, 2019.

[54] Wenjun Mei, Shadi Mohagheghi, Sandro Zampieri, and Francesco Bullo. On
the dynamics of deterministic epidemic propagation over networks. Annual

Reviews in Control, 44:116–128, 2017.

90 Bibliography

[55] Ministero della Salute. Linee di indirizzo organizzative per il potenziamento
della rete ospedaliera per emergenza COVID-19, 2020.

[56] Ministero della Salute. Posti letto per regione e disciplina, 2020.

[57] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International

Conference on Machine Learning (ICML’16), pages 1928–1937, 2016.

[58] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
deep reinforcement learning. NIPS Deep Learning Workshop, 2013.

[59] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[60] Anna Mummert and Olusegun M Otunuga. Parameter identification for a
stochastic seirs epidemic model: case study influenza. Journal of mathe-

matical biology, 79:705–729, 2019.

[61] Rui Nian, Jinfeng Liu, and Biao Huang. A review on reinforcement learning:
Introduction and applications in industrial process control. Computers &

Chemical Engineering, 139:106886, 2020.

[62] OpenAI. OpenAI Gym Car Racing Online Documentation, 2022.

[63] OpenAI. OpenAI Gym Inverted Pendulum Online Documentation, 2022.

[64] OpenAI. OpenAI Gym Lunar Lander Online Documentation, 2022.

[65] OpenAI. OpenAI Gym online documentation, 2022.

[66] Jing Peng and Ronald J Williams. Incremental multi-step q-learning. Ma-

chine Learning, pages 226–232, 1994.

[67] Liangrong Peng, Wuyue Yang, Dongyan Zhang, Changjing Zhuge, and Liu
Hong. Epidemic analysis of covid-19 in china by dynamical modeling. arXiv

preprint arXiv:2002.06563, 2020.

[68] Mark Pfeiffer, Samarth Shukla, Matteo Turchetta, Cesar Cadena, Andreas
Krause, Roland Siegwart, and Juan Nieto. Reinforced imitation: Sample
efficient deep reinforcement learning for mapless navigation by leveraging
prior demonstrations. IEEE Robotics and Automation Letters, 3(4):4423–
4430, 2018.

Bibliography 91

[69] Alyssa Pierson and Mac Schwager. Bio-inspired non-cooperative multi-
robot herding. In International Conference on Robotics and Automation

(ICRA’15), pages 1843–1849, 2015.

[70] Alyssa Pierson and Mac Schwager. Controlling noncooperative herds with
robotic herders. IEEE Transactions on Robotics, 34:517–525, 2017.

[71] Eduardo Ramírez-Llanos and Sonia Martínez. A distributed dynamics for
virus-spread control. Automatica, 76:41–48, 2017.

[72] Meghana Rathi, Pietro Ferraro, and Giovanni Russo. Driving reinforcement
learning with models. In Intelligent Systems and Applications (ISWA’21),
pages 70–85, 2021.

[73] Benjamin Recht. A tour of reinforcement learning: The view from continu-
ous control. Annual Review of Control, Robotics, and Autonomous Systems,
2(1):253–279, 2019.

[74] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400–407, 1951.

[75] Roberto Rocchetta, Luca Bellani, Michele Compare, Enrico Zio, and
Edoardo Patelli. A reinforcement learning framework for optimal oper-
ation and maintenance of power grids. Applied energy, 241:291–301, 2019.

[76] George John Romanes. Animal intelligence, volume 44. D. Appleton, 1883.

[77] Lisa Sattenspiel and Klaus Dietz. A structured epidemic model incorporat-
ing geographic mobility among regions. Mathematical biosciences, 128(1-
2):71–91, 1995.

[78] Samuel V Scarpino and Giovanni Petri. On the predictability of infectious
disease outbreaks. Nature communications, 10(1):898, 2019.

[79] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. pages 1889–1897. PMLR, 2015.

[80] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[81] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Deep learning
applications for covid-19. Journal of big Data, 8(1):1–54, 2021.

[82] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

92 Bibliography

[83] Lucas M Stolerman, Daniel Coombs, and Stefanella Boatto. Sir-network
model and its application to dengue fever. SIAM Journal on Applied Math-

ematics, 75(6):2581–2609, 2015.

[84] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox,
Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael
Milford, et al. The limits and potentials of deep learning for robotics. The

International journal of robotics research, 37(4-5):405–420, 2018.

[85] Richard S. Sutton. Integrated architectures for learning, planning, and re-
acting based on approximating dynamic programming. In Machine Learn-

ing Proceedings, pages 216–224. Morgan Kaufmann, San Francisco (CA),
1990.

[86] Richard S Sutton. Dyna, an integrated architecture for learning, planning,
and reacting. ACM SIGART Bulletin, 2(4):160–163, 1991.

[87] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. The MIT Press, 2018.

[88] Ming Tan. Multi-agent reinforcement learning: Independent vs. coopera-
tive agents. In International Conference on Machine Learning (ICML’93),
pages 330–337, 1993.

[89] Imperial College COVID-19 Response Team. Report 13: Estimating the
number of infections and the impact of non-pharmaceutical interventions
on covid-19 in 11 european countries, 2020.

[90] Imperial College COVID-19 Response Team. Report 9: Impact of non-
pharmaceutical interventions (npis) to reduce covid-19 mortality and
healthcare demand, 2020.

[91] Edward L Thorndike. Animal intelligence: An experimental study of the
associative processes in animals. The Psychological Review: Monograph

Supplements, 2(4):i, 1898.

[92] Neythen J Treloar, Alex JH Fedorec, Brian Ingalls, and Chris P Barnes.
Deep reinforcement learning for the control of microbial co-cultures in biore-
actors. PLoS Computational Biology, 16(4):e1007783, 2020.

[93] Piet Van Mieghem, Jasmina Omic, and Robert Kooij. Virus spread in
networks. IEEE/ACM Transactions On Networking, 17(1):1–14, 2008.

[94] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Bibliography 93

[95] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen,
Eric Langlois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy
Ba. Benchmarking model-based reinforcement learning. arXiv preprint

arXiv, arXiv:1907.02057, 2019.

[96] Wendi Wang and Xiao-Qiang Zhao. An epidemic model in a patchy envi-
ronment. Mathematical biosciences, 190(1):97–112, 2004.

[97] Zhe Wang and Tianzhen Hong. Reinforcement learning for building con-
trols: The opportunities and challenges. Applied Energy, 269:115036, 2020.

[98] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

[99] Bernard L Welch. The generalization of ‘student’s’problem when several
different population varlances are involved. Biometrika, 34(1-2):28–35,
1947.

[100] Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust
MPC. IEEE Transactions on Automatic Control, 66:3638–3652, 2021.

[101] John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic
controllers. Transactions of the American society of mechanical engineers,
64(8):759–765, 1942.

Author’s Publications

The scientific results obtained during my Ph.D. period, and discussed in this
thesis, have been disseminated in the following publications:

• F. De Lellis, M. Coraggio, G. Russo, M. Musolesi, M. di Bernardo "Control-
Tutored Reinforcement Learning: Towards the Integration of Data-Driven
and Model Based Control", Learning for Dynamics and Control Conference

(L4DC), Proceedings of Machine Learning Research (PMLR), pp. 1048-
1059, 2022.

• M. Coraggio∗, S. Xie∗, F. De Lellis, G. Russo, M. di Bernardo, "Intermit-
tent non-pharmaceutical strategies to mitigate the COVID-19 epidemic in
a network model of Italy via constrained optimization", Conference on De-

cision and Control (CDC), pp. 3538-3543, 2021.

• F. De Lellis, F. Auletta, G. Russo, P. De Lellis, M. di Bernardo, "An
Application of Control-Tutored Reinforcement Learning to the Herding
Problem", International Workshop on Cellular Nanoscale Networks and

their Applications (CNNA), 2021.

• F. De Lellis, G. Russo, M. di Bernardo, "Tutoring Reinforcement Learning
via Feedback Control", European Control Conference (ECC), pp. 580-585,
2021.

• F. Della Rossa∗, D. Salzano∗, A. Di Meglio∗, F. De Lellis∗, M. Coraggio,
C. Calabrese, A. Guarino, R. Cardona-Rivera, P. De Lellis, D. Liuzza,
F. Lo Iudice, G. Russo, M. di Bernardo, "A network model of Italy shows
that intermittent regional strategies can alleviate the COVID-19 epidemic",
Nature Communications, 11, 5106, 2020.

∗
Authors who contributed equally to the development of the research

