Sustainable Agricultural and Forestry Systems

and Food Security

XXXV Cycle

Recovery of hydrothermal liquefaction wastewater: potential valorisation for agronomic purpose

Wanda Gugliucci

Thesis Committee

Thesis supervisor

Dr.ssa Valeria Ventorino Researcher at the Dept. of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.

Thesis co-supervisors

Prof. Albino MaggioProfessor at the Dept. of Agricultural Sciences,Division of Plant Biology and Crop Science,University of Naples Federico II, Naples, Italy.

PhD program coordinator

Prof. Albino MaggioProfessor at the Dept. of Agricultural Sciences,Division of Plant Biology and Crop Science,University of Naples Federico II, Naples, Italy.

Table of Contents

1.	Intr	oduction	
2.	Bio	mass conversion strategies and water recovery	
2	2.1.	Introduction	
2	2.2.	Biomass conversion technologies	24
2	23	Hydrothermal liquefaction process	26
-			
2	2.4.	HIL products	
2	2.5.	Hydrothermal liquefaction wastewater (HTL-WW)	
2	2.6.	Biological valorisation of HTL-WW	
	2.6.	1. Anaerobic digestion	
	2.6.	2. Microalgae cultivation	
2	2.7.	Potential use of HTL-WW in agriculture	
3.	Use	of hydrothermal liquefaction wastewater in agriculture: effects on tobacco plant	s and
rhi	zosph	vere microbiota	
3	2.1	Introduction	11
•	.1.		
	3.2.	Material and methods	
	3.2.	1. HTL-WW analysis	
	3.2.	2. Experimental design and plant growth conditions	47
	3.2.	3. Soil and rhizosphere sampling	
	3.2.	4. Microbiological analysis	
	3.2.	5. PCR-DGGE analysis	
	3.2.	6. High-Throughput Sequencing (HTS)	
	3.2.	7. Bioinformatics and data analysis	50
	3.2.	8. Biometric and physiological measurements	
3	3.3.	Results	51
	3.3.	1. Phenotypic and physiological evaluation of Nicotiana tabacum L. plants	
	3.3.	2. PCR-DGGE	54
	3.3.	3. Microbial community diversity	57
	3.3.	4. Microbial taxonomic composition	61
3	3.4 .	Discussion	67

	3.5.	Сог	nclusion7	1
4.	Sin	nulta	neous application of hydrothermal liquefaction wastewater and a plant growth-	
pro	omoti	ing b	acteria consortium on castor bean plants in an open field experiment	3
4	i .1.	Int	roduction7	3
4	1.2.	Ma	terial and methods	6
	4.2	.1.	HTL-WW analysis	6
	4.2	.2.	Production of the plant growth-promoting bacterial strains	6
	4.2	.3.	Open field growth conditions, treatments, and experimental design	7
	4.2	.4.	Biometric and physiological measurements7	9
	4.2	.5.	Soil chemical analysis7	9
	4.2	.6.	Soil microbial enumeration	9
	4.2	.7.	Rhizosphere sampling and DNA extraction	0
	4.2	.8.	Amplicon sequencing library preparation	0
	4.2	.9.	Amplicon sequencing reads processing	2
	4.2	.10.	Statistical analysis	2
4	1.3.	Res	sults	3
	4.3	.1.	Biometric indices of castor bean plants	3
	4.3	.2.	Gas Exchanges and relative water content of castor bean plants	6
	4.3	.3.	Physical and chemical properties of soil	8
	4.3	.4.	Soil microbial counting	0
	4.3	.5.	Diversity of microbial communities in the rhizosphere of castor plants	1
	4.3	.6.	Dynamics of the bacterial rhizosphere-associated microbiota of castor plants 10	0
4	1.4.	Dis	cussion10	4
4	1.5.	Сог	nclusions	9
5.	Co	nclus	ion	1
6.	Ref	feren	ce11	4

List of tables

Table 1. Predominant compounds and pH detected in HTL-WW derived from lignocellulosic

 biomass processed at different HTL conditions.

Table 2. Predominant compounds and pH detected in HTL-WW derived from microalgae biomass

 processed at different HTL conditions.

Table 3. Predominant compounds and pH detected in HTL-WW derived from organic wastes

 processed at different HTL conditions.

Table 4. Comparison between the main parameters of HTL-WW from the *waste to fuel* process and the legislative limits (DM 2003/185) for wastewater use in agriculture.

Table 5. SPAD index of *Nicotiana tabacum* at different times after HTL-WW treatment (7, 14 and 21 days). Test-t (p<0.05) was performed to identify significant differences between the treatments (ns = not significant; *** = p<0.001).

Table 6. Fresh biomass accumulation of *Nicotiana tabacum* at different times after HTL-WW treatment (7, 14 and 21 days). Test-t (p<0.05) was performed to identify significant differences between the treatments (ns = not significant).

Table 7. Physical and chemical features of soils from Nicotiana tabacum pots before (T0) and after(T21) HTL-WW treatment.

Table 8. Effect of the application of HTL-WW, PGPR, and their combination on castor bean plants growth and yield parameters. Asterisks indicate significant differences according to ANOVA (p<0.05). ns = not significant; * = p<0.05; ** = p<0.01; *** = p<0.001). Different letters significant differences among means according to Duncan post-hoc test.

Table 9. Effect of the application of HTL-WW, PGPR, and their combination on castor bean gas exchanges and relative water content (RWC) at T1 (30 days after treatment) and T2 (60 days after treatment). Asterisks indicate significant differences according to ANOVA (p<0.05). ns = not

significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.001). Different letters significant differences among means according to Duncan post-hoc test.

Table 10. Physical and chemical features of bulk soils at the beginning (T0) and at the end of the experiment (T2). Treatments: WATER, soil irrigated with top water; WATER + PGPB: soil irrigated with top water and inoculated with PGPB; HTL-WW, soil irrigated with wastewater; HTL-WW + PGPB, soil irrigated with wastewater and inoculated with PGPB consortium (a). Soil texture and the proportions of sand, loam and clay size particle (b).

Table 11. Soil texture and the proportions of sand, loam and clay size particle

List of figures

Figure 1. Combined Drought Indicator (CDI) in Europe in the first ten days of August 2022. Provided by the Global Drought Observatory (GDO) of the Copernicus Emergency Management Service (CEMS) - <u>https://edo.jrc.ec.europa.eu/gdo</u>.

Figure 2. Graphical representation of hydrothermal liquefaction process and the main products.

Figure 3. Analysis of wastewater reuse solutions performed by Water Reuse Europe in 2017. Industrial use followed by irrigation (for agriculture and landscape) are still the largest European wastewater market (<u>www.water-reuse-europe.org</u>).

Figure 4. Schematic representation of Waste to fuel project developed by Eni S.p.A. (www.eni/wastetofuel.com).

Figure 5. Nicotiana tabacum L. plants treated (WW) and untreated (C) with wastewater deriving from Waste to Fuel industrial process after 7 (T7), 14 (T14) and 21 (T21) days of growth.

Figure 7. DGGE profiles and dendrogram showing the degree of similarity (%) of the Prokaryotes in rhizo-soil (A) and bulk-soil (B), and Eukaryotes in rhizo-soil (C) and bulk-soil (D). Samples: WW_T0, plants irrigated with ENI wastewater at time 0; WW_T7, plants irrigated with ENI wastewater after 7 days; WW_T14, plants irrigated with ENI wastewater after 14 days; WW_T21, plants irrigated with ENI wastewater after 21 days; C_T0, plants irrigated with spring water at time 0; C_T7, plants irrigated with spring water after 7 days; C_T21, plants irrigated with spring water after 7 days; C_T21, plants irrigated with spring water after 21 days; C_T14, plants irrigated with spring water after 14 days; C_T21, plants irrigated with spring water after 21 days; C_T14, plants irrigated with spring water after 21 days.

Figure 8. The box plots showing Shannon diversity, Faith's Phylogenetic Diversity, and Observed OTUs indices based on prokaryotic (a, b and c) and eukaryotic (d, e and f) communities in the rhizosphere samples irrigated with HTL-WW (WW) and spring water (C).

Figure 9. Principal Coordinates Analysis of weighted UniFrac distances of prokaryotic (a) and eukaryotic (b) communities of tobacco rhizosphere. WW_T0, plants irrigated with HTL-WW at time 0 (yellow); WW_T7, plants irrigated with HTL-WW after 7 days (grey); WW_T14, plants irrigated with HTL-WW after 14 days (turquoise); WW_T21, plants irrigated with HTL-WW after 21 days (pink); C_T0, plants irrigated with spring water at time 0 (red); C_T7, plants irrigated with spring water after 7 days (green); C_T14, plants irrigated with spring water after 14 days (blue); C_T21, plants irrigated with spring water after 21 days (orange); HTL-WW: wastewater derived from the industrial process "Waste to Fuel" (purple).

Figure 10. Relative incidence of bacterial (a) and fungal (b) phyla in the rhizosphere of Nicotiana tabacum L. plants treated (WW) and untreated (C) with wastewater deriving from the "Waste to Fuel" industrial process. Only ASVs with an incidence of 3% in at least one samples are shown in the legend. WW_T0, plants irrigated with HTL-WW at time 0; WW_T7, plants irrigated with HTL-WW after 7 days; WW_T14, plants irrigated with HTL-WW after 14 days; WW_T21, plants irrigated with HTL-WW after 21 days; C_T0, plants irrigated with spring water at time 0; C_T7, plants irrigated with spring water after 7 days; C_T14, plants irrigated with spring water after 14 days; C_T21, plants irrigated with spring water after 21 days; HTL-WW: wastewater derived from the industrial process "Waste to Fuel".

Figure 11. Relative incidence of bacterial (a) and fungal (b) families in the rhizosphere of Nicotiana tabacum L. plants treated (WW) and untreated (C) with wastewater deriving from the "Waste to Fuel" industrial process. Only ASVs with an incidence of 3% in at least one samples are shown in the legend. WW_T0, plants irrigated with HTL-WW at time 0; WW_T7, plants irrigated with HTL-WW after 7 days; WW_T14, plants irrigated with HTL-WW after 14 days; WW_T21, plants irrigated with HTL-WW after 21 days; C_T0, plants irrigated with spring water at time 0; C_T7, plants irrigated with spring water after 7 days; C_T14, plants irrigated with spring water after 14 days; C_T21, plants irrigated with spring water after 21 days; HTL-WW: wastewater derived from the industrial process

to

Figure 12. The castor plants 'experiment timeline.

Figure 13. Effect of the application of HTL-WW, PGPR, and their combination on castor bean Shoot fresh weight (FW;a), yield (b) and harvest index (c) at the end of the experiment. Different letters indicate significant differences among means according to Duncan post-hoc test.

Figure 14. Effect of the application of HTL-WW, PGPR, and their combination on castor bean CO2 assimilation (a) and leaf relative water content (RWC; b) at the end of the experiment. Different letters indicate significant differences among means according to Duncan post-hoc test.

Figure 15. Enumerations (log CFU mL⁻¹) of anaerobic bacteria (a), aerobic bacteria (b), actinomycetes (c) and fungi (d) in the rhizosphere of castor plants treated with only wastewater coming from hydrothermal liquefaction of organic wastes (HTL-WW), wastewater enriched with PGPB (HTL-WW+PGPB), water (WATER), and water enriched with PGPB (WATER+PGPB). ANOVA: effect of treatments on microbial growth over time. Differences are marked with lower case letters.

Figure 16. Box plots showing Shannon diversity index (a) and Principal Coordinates Analysis of Bray-Curtis distances (b) of the prokaryotic communities in the rhizosphere of castor plants irrigated with top water in blue (WATER); irrigated with top water and inoculated with PGPB consortium in green (WATER+PGPB); treated with wastewater in pink (HTL-WW); treated with simultaneous application of wastewater and PGPB inoculum in yellow (HTL-WW+PGPB). Square: samples collected at time 0 (T0); circle: samples collected after one month (T1); triangle: samples collected after two months (T2).

Figure 17. Alpha diversity of prokaryotic communities in the rhizosphere of castor plants based on the treatment and the time. The box plots showing Shannon diversity indices of the samples irrigated with top water (WATER) and inoculated with PGPB consortium (WATER+PGPB) (a); irrigated with

top water (WATER) and with wastewater (HTL-WW) (b); treated with simultaneous application of wastewater and PGPB inoculum (HTL-WW+PGPB) and with just PGPB inoculum (WATER+PGPB) (c); treated with just PGPB inoculum (WATER+PGPB) and irrigated with wastewater (HTL-WW) (d); with wastewater (HTL-WW) and treated with simultaneous application of wastewater and PGPB inoculum (HTL-WW+PGPB) (e).

Figure 18. Alpha diversity of prokaryotic communities in the rhizosphere of castor plants based on the treatment and the time. The box plots showing Observed OTUs diversity indices of the samples irrigated with top water (WATER) and inoculated with PGPB consortium (WATER+PGPB) (a); irrigated with top water (WATER) and with wastewater (HTL-WW) (b); treated with simultaneous application of wastewater and PGPB inoculum (HTL-WW+PGPB) and with just PGPB inoculum (WATER+PGPB) (c); treated with just PGPB inoculum (WATER+PGPB) and irrigated with wastewater (HTL-WW) (d); with wastewater (HTL-WW) and treated with simultaneous application of wastewater and PGPB inoculum (HTL-WW) (e).

Figure 19. The beta diversity of prokaryotic community in the rhizosphere of castor plants computed on the principal Coordinates Analysis of Bray-Curtis distances based on time (T0: square), (T1: circle) and (T2: triangle) and on treatment. Samples irrigated with top water and inoculated with PGPB consortium (WATER+PGPB) and not inoculated (WATER) (a); irrigated with top water (WATER) and with wastewater (HTL-WW) (b); treated with simultaneous application of wastewater and PGPB inoculum (HTL-WW+PGPB) and with just PGPB inoculum (WATER+PGPB) (c); treated with just PGPB inoculum (WATER+PGPB) and irrigated with wastewater (HTL-WW) (d); with wastewater (HTL-WW) and treated with simultaneous application of wastewater and PGPB inoculum (WATER+PGPB) (e).

Figure 20. Relative abundance of bacterial phyla (a) and families (b) in the rhizosphere of *Ricinus communis* L. plants. Only ASVs with an incidence of > 1 % in at least one samples are shown in the legend. WATER.T0, plants irrigated with top water at time 0; WATER.T1, plants irrigated with top

water at time 0 after one month; WATER.T2, plants irrigated with top water at time 2 after two month; WATER+PGPB.T0, plants irrigated with top water and treated with PGPB inoculum at time 0; WATER+PGPB.T1, plants irrigated with top water and treated with PGPB inoculum at time 0 after one month; WATER+PGPB.T2, plants irrigated with top water and treated with PGPB inoculum at time 2 after two month; HTL-WW.T1, plants irrigated with wastewater at after one month T1; HTL-WW.T2, plants irrigated with wastewater at after one month T2; HTL-WW+PGPB.T1, plants irrigated with wastewater and treated with PGPB inoculum after one month T1; HTL-WW+PGPB.T2, plants irrigated with wastewater treated with PGPB inoculum after one month T2; HTL-

Thesis abstract

The competition for fresh water among industry, agriculture, and public utilities is increasing due to population growth and climate change. On average, 40% of total water abstraction in Europe is used for industry and energy production, 15% for public water supply and 44% for agriculture. Agriculture is therefore the major user of freshwater. At the same time, agriculture is the sector most affected by water scarcity, especially in Mediterranean countries due to an aggravation of arid climatic conditions. In this scenario, the key to ensure water security, sustainability, and resilience is the "water reuse", also commonly known as water recycling or water reclamation. Water reuse reclaims water from a variety of sources that include municipal and industrial wastewater, stormwater, agriculture runoff and return flows

Industrial wastewater obtained from hydrothermal liquefaction (HTL-WW) of food wastes for biofuels production could represent a source of crop nutrients since it is characterized by a high amount of organic and inorganic substances. Therefore, in the present PhD thesis the potential valorisation of HTL-WW for agronomic purpose was assessed. In particular, an overview of the main biomass conversion strategies with a particular emphasis on hydrothermal liquefaction process was discussed in the first chapter. HTL is an innovative eco-friendly technology for bioenergy production that utilises water at high temperature and high pressure to break down the bonds of macromolecules contained in the biomass. The main products are bio-oil (15%), biochar (15%) and wastewater (70%). Considering the great concentration of this wastewater released during each production cycle, it is necessary to evaluate various valorisation strategies. Based on its composition, HTL-WW could be recycled in different biological processes such as anaerobic digestion or microalgae cultivation. However, the HTL-WW obtained from the organic fraction of urban wastes, is characterised by a neutral pH, a high content of nutrients and minerals and organic matter as well as it is free of human pathogens and hazardous chemicals. Because of these features, the HTL-WW from organic wastes could be a good candidate as water irrigation. In fact, The HTL-WW from organic wastes, is rich in nitrogen, phosphorus, potassium, organic carbon and minerals. However, the concentration of some chemical elements, such as electrical conductivity, chemical oxygen demand or ammonia were beyond the official threshold values (DM183/2003).

Therefore, in the second chapter, the feasibility of the use of HTL-WW, deriving from the "Waste to fuel" technology employed by Eni S.p.A., was assessed in agriculture as irrigation water using *Nicotiana tabacum* L. as a model plant. Its impact on root-associated microbiota was determined and described evaluating the diversity and richness of prokaryotic and eukaryotic communities occurring following HTL-WW treatment. In detail, tobacco plants were grown in a greenhouse under controlled conditions and daily irrigated with diluted HTL-WW. Rhizosphere and plants were weekly sampled to evaluate, over time, the effect of wastewater irrigation both on soil microbiota, through culture-independent methods, as well as on the tobacco plants development, through the measurement of different biometric indices. The total genomic DNA was extracted from rhizosphere and bulk soil samples and preliminarily analysed by Denaturing Gradient Gel Electrophoresis (PCR-DGGE) to determine the prokaryotic and eukaryotic communities' structure. Amplicon based metagenomic sequencing was also employed to describe differences in microbial composition among treated and non-treated tobacco rhizosphere. The sequences were analysed with QIIME2 software. Taxonomic assignment was obtained by the RDP classifier and the Greengenes or UNITE database for bacterial 16S rRNA and fungal ITS sequences.

Based on the obtained results, a second experiment was carried out in open field conditions using *Ricinus communis* L. plants, which is currently a key species for bioenergy production, as described in the third chapter. Moreover, to improve crops development, a selected plant growth-promoting bacteria (PGPB) consortium was also inoculated to the plants, individually or in combination with HTL-WW. Therefore, the experimental design consisted of four different conditions as follows: 1) plants irrigated with tap water; 2) plants inoculated with PGPB consortium and irrigated with tap water; 3) plants irrigated with HTL-WW; 4) plants inoculated with PGPB consortium and irrigated with HTL-WW. Biometric indices and gas exchanges measurements as well as soil chemical analysis

were performed. The composition of the rhizosphere-associated microbiota was also assessed by high-throughput sequencing. Data analysis of quality filtered reads was performed using R v4.0.1. Taxonomy assignment was performed using the RDP naive Bayesian classifier through the dada2 method with the SILVA database for prokaryotes.

At last, in the **final chapter**, a conclusion of the entire PhD project was reported.

Objectives

- Assess the feasibility of the use of HTL-WW as irrigation water in agriculture using *Nicotiana tabacum* L. and *Ricinus communis* L. plants.
- Evaluate the response of the root-associated microbiota and plant to HTL-WW treatment as well as changes in soil properties.
- Investigate the effect of the simultaneous application of a selected plant growth-promoting bacterial consortium and hydrothermal liquefaction wastewater to *Ricinus communis* L. on autochthonous soil microbiota and plants.

Experimental design

ſ

Field: 10 x 10 m ²
Timeline: April- August
Soil: sandy-clay
Plants: 180
Replicate: 5
Sampling times: 0, 1, 2 months
PGPB application: 2

Analysis

Microbiological: evaluation of microbial diversity and taxonomic identification by amplicon-based metagenomic sequencing.

Physiological: biometric indices measurements (SPAD, fresh weight, seeds yield) and gas exchanges

Chemical: soil pH, chemical conductivity, organic matter, nitrogen phosphorus and potassium content

1. Introduction

In 2021 Italy held the Presidency of the G20, the international forum that brings together the world's major economies to face up the great challenges of today such as climate change, land degradation, biodiversity loss and freshwater shortage. The Earth's freshwater shortage due to consumption and pollution of resources drawing serious concerns, also because only a small percentage of water is available for human use. Indeed, about 96-97.5% of the Earth's water is found in the ocean as salt water, while the remaining 2.5-4% is freshwater. This latter is additionally subdivided into ice and snow (2-3% of globally available water) and surface water as well as groundwater (0.5-1%) (Filimonau and Barth, 2016). The most important uses, in terms of total abstraction, have been identified as urban (households and industry connected to the public water supply system), industry, agriculture and energy (cooling in power plants). On average, 40% of total water abstraction in Europe is used for industry and energy production (cooling in power plants), 15% for public water supply and 44% for agriculture. Nowadays, agriculture is the major user of freshwater; farming affects both the quantity (accounting for 70% of global freshwater withdrawals for irrigation) and quality (e.g. through fertiliser/pesticide pollution) of freshwater resources (Safe water, 2022). At the same time, agriculture is one of the first sectors to be affected of water scarcity, especially in Mediterranean basin countries due to an aggravation of arid climatic conditions (Figure 1) (Sofroniou and Bishop, 2014). The Mediterranean Basin is a region particularly prone to the effects of climate change and it was characterized as one of the hot-spots areas of the 21st century. Future warming rates in the Mediterranean area are expected to be 20% higher than globally in summer even up to 50% and increasing inter-annual variability in the warm season is projected (Vogel et al., 2021). The rise of temperatures is combined with precipitation and snow decreasing, that is crucial to sustaining the river flow, accounting for nearly a third of Italy's agricultural production. In fact, the drought in Italy has caused serious problems and an economic loss of 1.4 billion \in in the last few years (Villani et al., 2022).

The foreseen increased number of people to feed (more than 2 billion) implies to produce 60% more food, because of which total global water withdrawals for irrigation are projected to increase at 20-30% by 2050 (Zucchinelli et al., 2021). The key for water security, sustainability, and resilience is the "water reuse", also commonly known as water recycling or water reclamation. Water reuse reclaims water from a variety of sources that include municipal and industrial wastewater, stormwater, agriculture runoff and return flows (EPA,2021). About 380 billion m³ of water can be recovered from the annual volumes of wastewater produced. This type of water recovery is expected to reach 470 billion m³ by 2030 and 574 billion m³ by 2050 (Unesdoc.unesco.org., 2022). The use of wastewater in agriculture offers a lot of benefits that include: a solution to irrigation water scarcity; the availability of large amounts throughout the year; the possibility of reserving better-quality water for human consumption; a potential reduction of fertilizers needed due to the nutrients contained in some wastewaters; protection of the environment; the reduction of effluent waters in the surrounding area; avoid the overexploitation of marine water in coastal areas. The wastewater recycling not only offers an alternative source for crop irrigation, but also the opportunity to recover fertilizing elements, such as nitrogen (N), phosphorous (P), potassium (K), organic matter, minerals, and micronutrients into agricultural soils. Nevertheless, in Europe only 2.4% of wastewater (700 Mm³/year) is used, mostly in Spain, and this is clearly not enough (Petousi et al., 2019). Until 2020, the major barriers preventing a wider spreading of this practice in EU were the limited awareness of potential benefits among stakeholders, and the lack of a supportive and coherent framework for water reuse. According to Directive 91/271/EEC - Article 12, "treated wastewater must be reused whenever appropriate and disposal routes must minimize any adverse effects on the environment". However, the document does not specify the minimum standards for wastewater reuse (Petousi et al., 2019). Recently, the EU commission approved a new regulation on minimum requirements for water reuse in agricultural

irrigation (EU 2020/741) that will be applied from 26 June 2023. This will eventually encourage and facilitate water reuse across Europe.

In Italy, the agricultural use of wastewater is currently regulated by Ministerial Decree no.185/2003, which regards only the municipal and agro-industrial effluents. However, nowadays, there so many innovative technologies for biomass conversion and energy production, which allow the recovery of wastewater with better and safer features than the municipal effluents.

Figure 1. Combined Drought Indicator (CDI) in Europe in the first ten days of August 2022. Provided by the Global Drought Observatory (GDO) of the Copernicus Emergency Management Service (CEMS) - https://edo.jrc.ec.europa.eu/gdo.

2. Biomass conversion strategies and water recovery

2.1. Introduction

The twenty-first century is affected by one of the worst environmental crises in history, which have the potential to alter the natural course of life on this planet. Pollution, climate change, global warming, waste disposal and natural resource reduction are frightening challenges that may threaten next generations' future if governments, industrialists, and scientist do not face up to them promptly. These global problems are predominately related to the energy, since up today serious impacts on environment resulting from production, transport, and consumption of energy. According to International Energy Agency (IEA, 2017), over 60% of power production derived from fossil-based resources, such as oil, coal, and natural gas, which consists of hydrocarbon compounds situated under the earth's crust. The extensive exploitation of these elements and all the handling operations, negatively impact the quality of soil, air, and water. For instance, the coal mining led to dramatic degradation of soil by excavating, blasting, drilling rocks, and further resealing high quantity of toxic substances and heavy metals (Kumar and Singh, 2016). More dangerous is the water pollution, called acid mine drainage, which occurs when sulphide-rich rocks that contain target ores like gold and copper are exposed to water. The sulphides form sulfuric acid, which dissolves surrounding rock, releasing harmful metalloids into the groundwater near the mine. This pollution can spread through streams and rivers contaminating drinking water sources (Perera, 2017). Moreover, during the petroleum extraction process could occur oil spills, thus exposing wildlife and marine life to toxic hydrocarbons. This phenomenon not only causes the death of thousands of species but introducing these harmful elements into the food chain exposing human population to serious health risks (Horn, 2021). Furthermore, the electricity and heat consumption from fossil source, leads to the emission of carbon dioxide nitrogen oxides and sulphur dioxide which are responsible for acid rains, damaging vegetation and aquatic ecosystems (Gralla et al., 2017). Nevertheless, the transport sector (including road, aviation, and shipping) accounting for almost 96% of oil supply, remains the major source of environmental pressures in Europe (EEA, 2019). In fact, the fossil fuel combustion releases high concentration of gases that trap heat in the atmosphere, called greenhouse gases (GHGs), which are composed by 79% of carbon dioxide (CO₂), 11% of methane (CH₄), 7% of nitrous oxide (N₂O) and 3% of fluorinated gases. GHGs occur naturally and are part of our atmosphere keeping the planet at a habitable temperature of about 15°C (59 °F) on overage. Despite that, the increased concentration of these heating-trap gases leads to temperature of Earth's air and oceans rise, in the range of 1 to 1.2°C since 1850 (US EPA, 2022). Besides these catastrophic environmental effects, the fossil energy sources are also non-renewable and unevenly distributed around the world, further, the globally reserves are rapidly depleting (Martins et al., 2019).

The constant increasing population together with the increasing energy demand, lead to an unreasonable rise price. Hence, to mitigate market instability and environmental threats, in December 2019 the European Union introduced the European Green Deal, a set of policy initiatives to foster the transition towards the climate-neutral economy by reducing GHGs emissions towards 55% by 2030 and achieving carbon neutrality by 2050 (Sikora, 2021). Part of this package is the Renewable Energy Directive (EU 2018/2001), aimed to increase the shares of renewable energy sources in an integrated energy system.

Furthermore, the recent surge in demand due to COVID-19 pandemic and the war in Ukraine, caused a 60% and 400% price rises of oil and natural gas, respectively, prompted the European Commission to revise the Renewable Energy Directive increasing the use of energy from renewable sources up to 40% by 2030 (Butler, 2022). Thus, the European Commission is driving the UE State Members for constructing a new renewable-based energy system financing an unprecedented level of investment to promote the Energy Transition. As mentioned before, the aim of Energy Transition is to increase the diffusion of renewable energy into the energy supply mix, gradually replacing the oil, natural gas and coal with clean energy resources like biomasses, wind, solar, as well as lithium-ion batteries (Europe Bioenergy, 2022).

The circular bioeconomy is a promising approach to achieving the change required by the European Green Deal and decoupling economic growth from resource use. Indeed, a recent study estimates that applying circular bioeconomy principles has the potential to increase the EU total value of all goods and services produced (gross domestic product or GDP) by an additional 0.5% by 2030 and creating around 700 000 new jobs (Mhatre et al., 2021). The concept of "circular bioeconomy" combined the circular economy principles (reusing, repairing, and recycling) with the bioeconomy, which utilizes renewable biological resources to produce energy (Tan et al., 2021). Further, the circular bioeconomy goes beyond simply switching fossil resources with renewable, biological resources. It requires low-carbon energy inputs, sustainable supply chains, and promising disruptive conversion technologies for the sustainable transformation of renewable bioresources to high-value bio-based products (Giampietro, 2019).

The use of biomass as a feedstock for valuable chemicals and biofuels is crucial for the conversion from the fossil-based economy into a bio-based economy. However, the biomass conversion technologies are not intrinsically sustainable just because it is based on renewable resources (Pfau et al., 2014; Gawel et al., 2019). In fact, a non-sustainable process can cause various environmentally conflicts. For example, an increase in biofuel demand will lead to an increase in biomass demand, which in turn will lead to competition for arable land use (i.e., land-grabbing for biomass feedstock production), freshwater consumption, and even food production (i.e., food *vs.* fuel), resulting in social unrest or social sustainability concerns (Tan et al., 2021). On the environmental sustainability aspect, there will also be negative impact due to the increase in land demand for biomass production, including more GHGs emission due to indirect land-use changes, such as deforestation for growing energy crops (Plevin et al., 2010). The sustainable bioeconomy is not just about substituting fossil resources with renewable resources; it will require sustainable biomass feedstock production, biomass conversion processes, and products. Therefore, the main goal is to improve bioprocesses utilising organic waste materials as primary, sustainable and low-cost feedstock.

Waste biorefining is one of the eco-friendly and economically strategies of the bio-circular economy, that closes the loop of organic wastes valorisation, water and nutrients recovery, production of various marketable products, carbon management and GHGs mitigation. Various kind of waste materials such as food waste, side stream from industries (e.g., paper and pulp industry, beer and wine industry, starch, and juice industry), agro-industrial by-product, forest and agricultural waste, lignocellulosic material as well as wastewater or sludge, have been efficiently valorised into biofuel and bioproducts (Rehan et al., 2019; Leong et al., 2021). The techniques for biomass conversion and valorisation are eco-friendly and at "zero wastes", because are the most efficient to regain the residues such as water fraction and organic residues which could be further utilized.

and therefore

l

Feedstock	HTL conditions	Predominant compounds	рН	References
		_		
			I	
			I	
			I.	
			I	

Feedstock	HTL conditions	Predominant compounds	pH	References
			I	
			I	
			I	
E				
Ŧ			-	
			•	
			-	
Ŧ				
			I	

Feedstock	HTL conditions	Predominant compounds	pH	References
	-		I	
	-			
				_
		-		
in greater quantities, with high disposal costs. Although, this effluent				
--	-------			
	-			
which regulates the agricultural use of wastew	ater,			
Ministerial Decree no				
Ministerial Decree no.				
Ministerial Decree no. transferred to HTL-WW in terms of	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			
Ministerial Decree no. transferred to HTL-WW in terms of high solubilities Gu et al., 2019). Thus,	their			

In another study, combined the use of HTL-WW and the biochar with compost
on basil plants grown in a greenhouse. The application rate of HTL-WW was determined by matching
NPK (10-10-10) rates of synthetic fertilizer used in the control media pots. Results suggested that the
HTL-WW was suitable for plant production and in combination with biochar
be used for soil amendments
as an alternative to synthetic
fertilizer can substitute the urea
as a valuable N fartilizar in a rational rate and meanwhile alow down the NIL webtilization flux
as a valuable in lettinger in a rational rate and meanwine slow down the INFI3 volatilization flux.
decreasing the NH ₄ ⁺ -N

concentration and pH in floodwater.

enables the study of the microbial ecology and taxonomic diversity at a high resolution

A thorough determination of the microbial diversity in soils irrigated with

HTL-WW can be fundamental to evaluating potential re-use of this wastewater in agriculture.

3. Use of hydrothermal liquefaction wastewater in agriculture: effects on tobacco plants and rhizosphere microbiota

3.1. Introduction

The competition for fresh water among industry, agriculture, and public utilities is increasing due to population growth and climate change (Zucchinelli, et al., 2021). Agriculture is therefore the major user of freshwater and the most affected sector by water scarcity. Thus, to ensure water source for fields irrigation is necessary resorting to the use of wastewater.

In Italy, the agricultural use of wastewater is currently regulated by Ministerial Decree no. 2003/185, which regards only the municipal and agro-industrial effluents. Most research on testing the use of wastewater in agriculture refers to treated municipal wastewater, olive mill wastewater, sewage sludges and digestates (FAO, 2022). However, there are additional industrial processes which deliver, as side products, high levels of liquid wastes that could be recovered and valorised for agricultural uses. In particular, the hydrothermal liquefaction is a high-performance and eco-sustainable thermochemical technology to produce bioenergy from organic biomass and wastes. This is a green and cost-effective process since it does not require high energy input to dry out the feedstock as in other thermochemical techniques (Gu et al., 2019). The hydrothermal liquefaction is also an environmentally friendly method because it does not require additional chemicals, since it relies on water as a reaction medium and it minimizes problems associated with waste disposal (Usman et al., 2019). The Eni's Renewable Energy and Environmental R&D Centre has recently developed a continuous pilot plant within the project Waste to Fuel (Figure 4) whose aim is to produce biofuel from organic wastes (https://www.eni.com/en-IT/operations/waste-to-fuel.html). This pilot plant can process about 700 kg of Organic Fraction of Municipal Solid Waste (OFMSW) per day and produce from 3% to 16% of bio-oil, which can be used directly as low sulphur fuel to be shipped or further

refined to create high-performance biofuels. The process generates also up to 95% of hydrothermal wastewater (HTL-WW) with high concentrations of organic and inorganic liquid compounds/elements. Therefore, the valorisation of this liquid co-product is a crucial step in hydrothermal liquefaction development since its discharge into civil wastewater treatment plants requires high extra-costs, making this process no longer economic viable (Posmanik et al., 2017). Moreover, HTL-WW may have some interesting properties as irrigation water, since it is rich in plant macro and micronutrients as well as organic carbon. The HTL-WW does not contain pathogens, pesticides and emerging contaminants including analgesics, antihypertensive drugs and antibiotics which may be found in municipal wastewater or sludge (Jaramillo and Restrepo, 2017). Nevertheless, the presence of organic and inorganic matter in wastewaters could affect the soil physic-chemical properties including the electrical conductivity (EC), hydrophobicity, heavy-metal concentrations, pH as well as organic carbon content, humus, nitrogen, phosphate and potassium levels and should be adequately monitored (Muamar et al., 2014). Moreover, wastewater applications are expected to alter the soil microbiota, because it is particularly sensitive to human-induced perturbations or environmental stress compared to higher organisms due to their close relations with the surroundings and because of higher surface area to volume ratio (Karimi et al., 2017). Investigating the soil microbiota composition and the interactions with plant systems could provide useful information on both crops and soils productivity and health status (Ventorino et al., 2018a). In this context, the aim of this study was to assess the feasibility of the use of HTL-WW as irrigation water in agriculture using Nicotiana tabacum L. as a model plant as well as to determine and describe the impact of HTL-WW on root-associated microbiota by evaluating diversity and richness variations of prokaryotic and eukaryotic communities. To the best of our knowledge, this is the first work reporting the use of wastewater deriving from hydrothermal liquefaction for crop irrigation purpose.

Figure 4. Schematic representation of Waste to fuel project developed by Eni S.p.A. (www.eni/wastetofuel.com).

		used									
		useu									
	Q of Eq	2.0 of	$7_{n} = 0.1$	of Ni 6	of Al	0.1 of 0	r and 0	1 of Mo	The elect	rical con	ductivity
	0.01.16	, 2.7 01	ZII, U.1	01 INI, U	ol Al,	0.4 UT C	i allu U.	1 01 1010.			aactivity
reache	d 12.9 n	nS/cm, c	directly r	elated to	the hig	h concer	trations	of Na ⁺ a	nd C1 ⁻ , 299	0 and 17	84

Ministerial Decree n.185/2003, which regulates the

agricultural use of wastewater (Table 4).

Figure 6. Flower fresh weight (FW) of *Nicotiana tabacum* irrigated with top water (C) and with HTL-WW (WW) at the end of the experiment (21 days). Test-t (p<0.05) was performed to identify significant differences between the treatments (*** = p<0.001).

TREATMENT

	_
	_

	nit	rogen, phosphorus,
and potassium as well as micro-nutrients such a	as sulphates, calcium, magnesium ar	nd silicon
		the
concentrations of heavy metals are under ha		

thresholds.	
4. Simultaneous application of hydrothermal liquefaction wastewater and a plant growth-promoting bacterial consortium on castor bean plants in an open field experiment

4.1. Introduction

Based on the results obtained on plants of *Nicotiana Tabacum* L. discussed in the previous chapter, a new experiment was set up to test the use of the wastewater coming from hydrothermal liquefaction of organic waste (HTL-WW) to irrigate plants of Ricinus communis L. In fact, today there is an increasing interest in the cultivation of castor bean plants for biofuel production to replace the palm oil which the EU has decided to phase out by 2030. In addition, the intensive cultivation of palm, rapeseed, and sunflower have raised many socio-economic and ecological concerns such as land competition with food crops and high water consuming (Demirbas et al., 2016). To mitigate these problems, the use of castor bean plant seems to be a valid alternative since it is one of the most promising non-edible oil and hardy plants which requires low fertilizer input, and it could be cultivated in marginal and degraded soils and it is also resistant to drought (Chatzakis et al., 2011). This plant belonged to the family Euphorbiaceae, reaching a seed and oil yield of about 1.100/1.800 kg and 500/600 L per hectare, respectively (Demirbas et al., 2016). The oil obtained is rich in ricinoleic fatty acid ($C_{18}H_{34}O_3$), which makes it suitable for industrially biodiesel production assuring low production costs (McKeon et al., 2016). The castor biodiesel is biodegradable, non-toxic, and renewable, and it can be also used alone and further, its production released the 80% less carbon dioxide emissions and less sulphur and hydrocarbons content compared with the convectional diesel production (Osorio-González et al., 2020). Thus, the castor plant cultivation is an attractive alternative

feedstock for this industrial process, and its global demand is rising constantly at 3–5% per annum. In fact, the ENI S.p.A. forged a partnership with Tunisian and Congolese governments for the large-scale production of castor bean plants on a pre-desert area, to provide feedstock for its biorefinery system.

Despite studies on the use of wastewater for castor plant cultivation are still limited, the results obtained are very encouraging. As reported by previous works, the municipal wastewater irrigation did not have any negative impact on castor growth, soil parameters and biodiesel quality (Tsoutsos et al., 2013; Barreto et al., 2013, Abbas et al., 2015; Pereira et al., 2016; Nasr et al., 2018).

Nevertheless, using the HTL-WW irrigation as the only source of nutrients may results in plant nutrient deficiency and ionic imbalance, reducing crop development and yields. Research has strongly focused on the use of eco-friendly principles to minimize potentially harmful chemical inputs and manage ecological relationships and biodiversity, as the use of plant growth-promoting microbes (PGPM). They are defined by the EU Regulation 2019/1009 as "products stimulating plant nutrition processes independently of the product's nutrient content with the sole aim of improving one or more of the following characteristics of the plant or the plant rhizosphere: nutrient use efficiency, tolerance to abiotic stress, quality traits, availability of confined nutrients in soil or rhizosphere" (Fusco et al., 2022). The inoculation of PGPM in agricultural crops is considered an environmental-friendly alternative to chemical fertilization and a win-win cost-effective strategy, since the global fertilizer prices are at near record levels and may remain elevated throughout the entire 2023 (Chojnacka et al., 2023). The price rises have been driven largely by global pressures including increased demand, the war in Ukraine and higher energy costs. According to the Agricultural Marketing Service (AMS), anhydrous ammonia prices have increased up to \$743 per ton, diammonium phosphate has increased of \$ 295 and potash fertilizer (potassium) has risen up to \$ 381 per ton (Schnitkey et al., 2022). Thus, the use of microbial inoculants to ensure crop yield and nutritional quality, by enhancing the availability of nutrients, the regulation of phytohormones, and by increasing plant tolerance against biotic and abiotic stresses (Lopes et al., 2021), seems to be a valid alternative. Moreover, the application of a microbial consortium could have a synergic effect on plant development.

In this context, the aim of this study was to determine and describe the impact of the use of HTL-WW as irrigation water on castor plant in a field experiment. A bacterial consortium consisting of four strains (Azotobacter chroococcum 76A, Kosakonia pseudosacchari TL13, Bacillus megaterium EL5, and *Methylobacterium populi* VP2) belonging to the microbial collection of the Division of Microbiology (Department of Agricultural Sciences, University of Naples Federico II) was also used. These strains were selected based on their plant growth-promotion activities. In detail, K. pseudosacchari TL13 had multiple plant growth promotion activities as production of indole-3-acetic acid (IAA), siderophores, ammonia, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase as well was able to solubilize phosphate and to exert antimicrobial activity against plant pathogens (Romano et al., 2020). A. chroococcum 76A is a free-living nitrogen fixer able to produce siderophores and phytohormones such as auxins (Viscardi et al., 2016). Moreover, this strain could colonize the rhizosphere successfully and enhance plant adaptation to drought and salt stress (Viscardi et al., 2016; Van Oosten ate al., 2018). M. populi VP2 was able to produce IAA and siderophores, solubilise phosphate, and produce a biofilm in the presence of polycyclic aromatic hydrocarbon (PHA) and alleviate PHA stress in seeds (Ventorino et al., 2014). At last, B. megaterium EL5 was capable to produce siderophores and to solubilise phosphate exhibiting its promotion activities also in contaminated environments (Ventorino et al., 2018).

Following HTL-WW irrigation and microbial inoculum application, the effect of the different treatments on root-associated microbiota were assessed evaluating the diversity and richness of prokaryotic community. Moreover, crop physiological parameters such as biometric indices, gas exchanges and water relative content, as well as physic-chemical properties of soil were also measured. To the best of our knowledge, this is the first work reporting the use of wastewater deriving from hydrothermal liquefaction in soil for irrigation of plants for energy purpose.

75

4.2. Material and methods

	I	

the significant differences among treatments were tes	ted by performing a one-way-analysis of
variance (ANOVA) and Tukey's post-hoc test ($p < 0.05$)	

	with PGPB	

rhizosphere of castor plants under all the different treatments reaching, on average, 38% of tota

bacterial biodiversity, followed by *Chloroflexi* (relative abundance of about 17%) and *Actinobacteria* (relative abundance of about 15%) (Figure 20a). Although, the relative abundance of *Proteobacteria* and *Actinobacteria* remained constant over time, a reduction in *Chloroflexi* concentration was observed at T2, decreasing from 18% to 11% and from 14% to 7% in the rhizosphere of castor plants irrigated with top water (WATER.T0 and WATER.T2) as well as in the rhizosphere of plants irrigated with top water and inoculated with PGPB (WATER+PGPB.T0 and WATER+PGPB.T2), respectively (Figure 20a). Whereas, the *Chloroflexi* frequency was similar over time in the rhizosphere of plants irrigated with HTL-WW (HTL-WW.T1 and HTL-WW.T2) as well as in HTL-WW treated-plants inoculated with PGPB (HTL-WW+PGPBT1 and HTL-WW+PGPB.T2) (Figure 20a).

With regard to the other phyla, the concentration of *Acidobacteria* enriched in control rhizosphere irrigated with top water and in plants irrigated with top water adding PGPB consortium, increasing from 6% before the microbial treatment (WATER.T0 and WATER+PGPB.T0) to 14% after two months (WATER.T2 and WATER+PGPB.T2); while the rhizosphere of plants treated with HTL-WW and with PGPB inoculum exhibited a similar relative frequency of this phylum over time (approximately 7%) (Figure 20a). Conversely, *Verrucomicrobia* decreased over time in all control treatments from 6% (WATER.T0 and WATER+PGPB.T0) to 1% (WATER.T2 and WATER+PGPB.T2). Finally, *Firmicutes* were mainly present in the rhizosphere of plants after the first treatment with HTL-WW (HTL-WW.T1), reaching a relative abundance of 11%, while their concentration was < 5% in all the other samples (Figure 20a).

The family-level taxonomic identification highlighted that the most abundant family in the rhizosphere of castor plant was the *Ktedonobacteraceae*, especially at the beginning of the experiment in the rhizosphere irrigated with top water (WATER.TO and WATER+PGPB.TO), constituting about 10% of the total bacterial biodiversity (Figure 20b). At the end of the experiment the concentration

(WATER.T2 and WATER+PGPB.T2). Hyphomicrobiaceae and Chitinophagaceae families were evenly distributed through all the samples 6%, respectively (Figure 20b). 1%) at the beginning of the experiment in the rhizosphere of all the plants and at T1 in the samples WATER+PGPB.T0, WATER.T1, and WATER+PGPB.T1); whereas its concentration increased at approximately 8% (HTL-WW.T1 and HTL-WW.T2) and with the simultaneous application of HTL-WW and PGPB inoculum (HTL-WW+PGPB.T1 and HTL-WW+PGPB.T2) (Figure 20b). the experiment (WATER.TO and WATER+PGPB.TO) to < 1% after two months (WATER.T2 and WATER+PGPB.T2) (Figure 20b). The bacterial family *Planococcaceae*, belonging to the *Firmicutes* phylum, is mainly present in samples where it was < 1%.

(<1%) (Figure 20b).

To assess the persistence of bacterial inoculum in the treated samples, the microbial diversity was also analysed at a deeper taxonomic level. The identification of ASVs at the genus level highlighted that only the genus *Kosakonia* genus was recovered with a relative abundance of > 1% in the rhizosphere of castor plants treated with the PGPB consortium (data not shown).

	that affecting dynamics of the microbes living
in the rhizosphere (
However, the	

	significantly increased	the harvest index
of castor bean plants, which is a highly desired agrou	omic trait since it demonstrat	ed the high yield
potential of crops. Other works demonstrated the feasi	bility of castor bean plants be	ing irrigated with
different wastewater. In fact, Souza et al. (2010) hig	ghlighted how the castor plai	its irrigated with
treated domestic sewage showed the highest product	tivity. Likewise, the applicat	ion of municipal
wastawatay offlyant arread his hay funch weight of yout	a aboota and laguas as well a	a south wield and
wastewater ernuent caused figher fresh weight of foot	s, shoots, and leaves, as well a	is seeds yield and
oil content in the treated castor plants than the non-tre	eated control (Chatzakis et al	., 2011; Tsoutsos
at al. 2013 : Abbas at al. 2015)		
et al., 2013, Abbas et al., 2013)		
		significantly
This result	could be due to selection pro-	essure exerted by

the positive effect exhibited by HTL-WW irri	igation on plant development could be due to
an increase in bacterial families able to promot	te plant growth such as <i>Rhizobiaceae</i> ,
Pseudomonadaceae and Micrococcaceae.	
	<i>Chloroflexi</i> phylum includes
heterotrophs, lithotrophs and phototrophs adapted to dif	ferent environments and extreme conditions

and to reduce the sulfates to sulfides, enhancing
the nutrients uptake by plants' roots (Nelson et al., 2010; Jung et al 2020).
As regarding fungal community, high throughout sequencing is actually in progress in collaboration
with the University of Dundee.
Howayar according to provious works (Al Dashidi at al. 2012, Annual at al. 2022) d
However, according to previous works (AI-Rasilia) et al., 2015; Animeri et al., 2023) the
concentration of viable aerobic and anaerobic bacteria increased following wastewater treatment.
Conversely, fungal concentration decreased in all conditions probably due to the presence of ricin, a
toxin that inhibits protein synthesis by acting mainly on eukaryotic ribosomes (Hamza et al., 2021).
Moreover, the application of HTL-WW on soil did not influence the soil parameters as confirmed also by previous works on short-term wastewater irrigation. Indeed, Chatzakis et al. (2011) as well as Farhadkhani et al. (2018) monitored the soil parameters under municipal wastewater effluent irrigation and no change in soil pH, soil organic matter (SOM), total nitrogen (TN) and soil salinity

The use of hydrothermal liquefaction wastewater to satisfy water requirements of could be a valuable tool for recycling and valorise this liquid byproduct following the closed-loop economy model. However, its use may critically affect the overall soil biological fertility and therefore its impact on soil using *Ricinus communis* L. bioenergy crop. Moreover,

to enhance the crops' growth and

productivity following sustainable agriculture principles.

5. Conclusion

This PhD thesis, taking into the account what was previously described in Chapter 1 about the freshwater depletion and the pressure on the agriculture, offers a new alternative resource for industrial crops irrigation. The wastewater reuse is one of the best strategies for water security, sustainability, and resilience. To date, the municipal wastewater was the most widely used in agriculture, however, nowadays there so many innovative technologies for biomass conversion and energy production, which allow the recovery of wastewater with better and safer features than the municipal effluents. As described in Chapter 2, among the biomass conversion strategies, the most cost effective and eco-friendly process is the hydrothermal liquefaction, which operates at high temperature and pressure to convert the biomasses into biofuel. This technology was exploited by ENI S.p.A. that are developing a new project, called *Waste to Fuel*, producing biofuel from organic fraction of municipal solid waste. During this process is also produced tons and tons of wastewater that carried all the organic compounds included in the feedstock. In fact, this hydrothermal liquefaction wastewater (HTL-WW) is rich in nitrogen, phosphorus and sulphur as well as micronutrients and minerals. This wastewater is already used as feedstock for anaerobic digestion or as substrate for microalgae cultivation. However, based on its chemical composition and on data obtained from literature, the HTL-WW showed a great potential as water irrigation for agricultural purpose. Moreover, the HTL-WW does not contain human pathogen and hazardous contaminants, although comparing the composition with the Italian Ministerial Decree about the wastewater application on field (185/2003) some elements such as chemical oxygen demand and electrical conductivity are higher than legislative limits. Thus, in Chapter 3, an optimal dilution at 10% was applied to the HTL-WW and used to daily irrigate the model plant of *Nicotiana tabacum* grown on greenhouse. Therefore, to evaluate the impact of diluted HTL-WW irrigation the effect on autochthonous microbiota as well as on plant development was analyzed. The diluted HTL-WW irrigation improved tobacco health state increasing the SPAD values and the flower biomass at the end of the experiment. Moreover, the wastewater irrigation improved the growth of several bacterial families as *Micrococcaceae, Nocardiaceae* and *Bacillaceae,* which are well-known halotolerant bacteria with a great potential for plant growth-promotion and also play a crucial ecological role in nature in the recycling of organic matter. Within the fungal families after HTL-WW an enrichment of and *Nectriaceae, Saccharomycetales-incertae-sedis* and *Trichosporonaceae* was observed. These families participate to the decomposition and mineralization of recalcitrant and labile compounds as well as to the bioremediation of nitrogen heavy metals.

Based on these encouraging results, in Chapter 4 was described a second experiment in which the use of WW-HTL was tested for the cultivation of the energy crop *Ricinus communis* L., in an open field experiment. Moreover, to enhance the crops' growth and productivity the PGPB inoculation strategy individually and in combination with HTL-WW was also tested. The plants treated with PGPB and irrigated with top water, showed the best effects on plant physiology also enriched the bacterial richness and evenness in the rhizosphere of castor plants. However, also the treatment with HTL-WW improved the shoot biomass and the CO₂ assimilation rate and transpiration compared to untreated plants. The yield of castor beans was higher in plants under HTL-WW and PGPB treatments. The HTL-WW application, individually or in combination with the bacterial inoculum, significantly affected the bacterial community, as demonstrated by the proliferation of *Rhizobiaceae*, *Pseumonodaceae* and *Micrococcaceae* bacterial families involved in nitrogen fixation, hormones production, phosphate solubilisation and bioremediation. Although, the biodiversity decreased in the rhizosphere of plants treated with HTL-WW, this effect was alleviated by PGPB inoculum.

The studies presented in this work, focused on wastewater valorisation in agronomic field following the principles of sustainable agriculture and closed business loop model. The agriculture sector in Mediterranean countries is facing the water shortage, and the wastewater reuse is the most promising solution to this problem. In this work was investigated the effectiveness of HTL-WW irrigation analysing the main component of agro-ecosystem such as rhizosphere-associated microbiota through metagenomic analysis, plants' growth and production through biometric indices and gas exchanges measurements, and soil physic-chemical parameters. Although the two crops used in this research, such as tobacco and castor bean, grown under different conditions they were positively influenced by the wastewater irrigation, individually or in combination with PGPB consortium, showing also higher production potential than control samples. Moreover, the HTL-WW irrigation exerted a selection pressure on indigenous microbiota leading to the establishment of a new microbial community promoting the growth of specific microorganism that rapidly adapted to the new environmental condition, taking over to the other microbial species. These microorganisms belong to bacterial and fungal families that include many microbial taxa involved in plant growth promotion, bioremediation and stress tolerance.

This work proposed a new strategy for industrial crop management suggesting the simultaneous application of wastewater derived from hydrothermal liquefaction and microbial bio-stimulants to decrease the input of chemical fertilizers and improving production, following the sustainable agriculture principles.

1 6. Reference

- 2 Mapviewer Global Drought Observatory JRC European Commission. Available at:
 3 https://edo.jrc.ec.europa.eu/gdo/php/index.php?id=2001 (Accessed: January 17, 2023).
- 4 Team, W.R.E. (2020) The state of the sector about water reuse, Water Reuse Europe. Available at:
 5 https://www.water-reuse-europe.org/the-state-of-the-sector/#page-content (Accessed: January 17, 2023).
- 6 European Commission European Commission. 2022. Safe water. [online] Available at:
 7 https://ec.europa.eu/info/food-farming-fisheries/sustainability/environmental-sustainability/natural-
- 8 resources/water_en> [Accessed 13 May 2022].
- 9 Zucchinelli, M., Spinelli, R., Corrado, S. and Lamastra, L., 2021. Evaluation of the influence on water
- consumption and water scarcity of different healthy diet scenarios. Journal of Environmental Management,
 291, p.112687.
- Mekonnen, M. and Gerbens-Leenes, W., 2020. The Water Footprint of Global Food Production. Water, 12(10),
 p.2696.
- 14 Nrcs.usda.gov. 2021. Water Management | NRCS. [online] Available at:
 15 https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/water/manage/ [Accessed 30 July 2021].
- 16 FAO. 2011. The state of the world's land and water resources for food and agriculture (SOLAW) Managing
- 17 systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.
- 18 Filimonau, V. and Barth, J., 2016. From Global to Local and Vice Versa: On the Importance of the
- 'Globalization' Agenda in Continental Groundwater Research and Policy-Making. Environmental
 Management, 58(3), pp.491-503.
- 2021. [online] Available at: https://www.epa.gov/waterreuse/basic-information-about-water-reuse#basics
 22 [Accessed 19 August 2021].
- Unesdoc.unesco.org. 2022. [online] Available at: https://unesdoc.unesco.org/ark:/48223/pf0000375751
 [Accessed 2 March 2022].
- Sofroniou, A. and Bishop, S., 2014. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water,
 6(10), pp.2898-2928.

- 27 Petousi, I., Daskalakis, G., Fountoulakis, M., Lydakis, D., Fletcher, L., Stentiford, E. and Manios, T., 2019.
- Effects of treated wastewater irrigation on the establishment of young grapevines. Science of The Total
 Environment, 658, pp.485-492.
- Gollakota, A., Kishore, N. and Gu, S., 2018. A review on hydrothermal liquefaction of biomass. Renewable
 and Sustainable Energy Reviews, 81, pp.1378-1392.
- 32 Elliott, D., Biller, P., Ross, A., Schmidt, A. and Jones, S., 2015. Hydrothermal liquefaction of biomass:
- 33 Developments from batch to continuous process. Bioresource Technology, 178, pp.147-156.
- 34 Peterson, A., Vogel, F., Lachance, R., Fröling, M., Antal, Jr., M. and Tester, J., 2008. Thermochemical biofuel
- 35 production in hydrothermal media: A review of sub- and supercritical water technologies. Energy &
- 36 Environmental Science, 1(1), p.32.
- 37 Savage, P.E.; Levine, R.B.; Huelsman, C.M.; Crocker, M.; Davis, B.H.; Schüth, F. Hydrothermal Processing
- 38 of Biomass. In Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals; Royal Society of
- 39 Chemistry: London, UK, 2010; Chapter 8; pp. 192–221; ISBN 1-84973-035-0.
- Toor, S., Rosendahl, L. and Rudolf, A., 2011. Hydrothermal liquefaction of biomass: A review of subcritical
 water technologies. Energy, 36(5), pp.2328-2342.
- 42 Hunter, S. and Savage, P., 2004. Recent advances in acid- and base-catalyzed organic synthesis in high-
- 43 temperature liquid water. Chemical Engineering Science, 59(22-23), pp.4903-4909.
- 44 Pielichowski, K. and Majka, T., n.d. Polymer Composites With Functionalized Nanoparticles.
- 45 Akhtar, J. and Amin, N., 2011. A review on process conditions for optimum bio-oil yield in hydrothermal
- 46 liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15(3), pp.1615-1624.
- 47 Usami, R., Fujii, K. and Fushimi, C., 2020. Improvement of Bio-Oil and Nitrogen Recovery from Microalgae
- 48 Using Two-Stage Hydrothermal Liquefaction with Solid Carbon and HCl Acid Catalysis. ACS Omega, 5(12),
- 49 pp.6684-6696.
- 50 Liu, H., Xie, X., Li, M. and Sun, R., 2012. Hydrothermal liquefaction of cypress: Effects of reaction conditions
- on 5-lump distribution and composition. Journal of Analytical and Applied Pyrolysis, 94, pp.177-183.
- 52 New Trends in Eco-efficient and Recycled Concrete 1st Edition Jorge de Brito Francisco Agrela Torrefaction
- 53 of Biomass for Energy Applications: From Fundamentals to Industrial Scale Leonel JR Nunes, Joao Carlos De
- 54 Oliveira Matias, Joao Paulo Da Silva Catalao.

- 55 Rezaiyan, J. and Cheremisinoff, N.P. (2005) Gasification Technologies: A Primer for Engineers and Scientists,
- 56 Taylor & Francis, Boca Raton, FL.
- 57 Recycling of biomass ashes current technologies and future research needsBrigitte Amalia Knapp*1 and
- 58 Heribert Insam1 Benedetti, V., Ail, S., Patuzzi, F. and Baratieri, M., 2019. Valorization of Char From Biomass
- 59 Gasification as Catalyst Support in Dry Reforming of Methane. Frontiers in Chemistry, 7.
- 60 Hospido, A., Carballa, M., Moreira, M., Omil, F., Lema, J. and Feijoo, G., 2010. Environmental assessment
- of anaerobically digested sludge reuse in agriculture: Potential impacts of emerging micropollutants. Water
 Research, 44(10), pp.3225-3233.
- 63 Mayers, J., Ekman Nilsson, A., Albers, E. and Flynn, K., 2017. Nutrients from anaerobic digestion effluents
- 64 for cultivation of the microalga Nannochloropsis sp. Impact on growth, biochemical composition and the
- potential for cost and environmental impact savings. Algal Research, 26, pp.275-286.
- Hossain, N., Haji Zaini, J. and Mahlia, T., 2017. A Review of Bioethanol Production from Plant-based Waste
 Biomass by Yeast Fermentation. International Journal of Technology, 8(1), p.5.
- Qiu, C., Jia, X. and Wen, J., 2011. Purification of high strength wastewater originating from bioethanol
 production with simultaneous biogas production. World Journal of Microbiology and Biotechnology, 27(11),
 pp.2711-2722.
- 71 Liguori, R., Ventorino, V., Pepe, O. and Faraco, V., 2015. Bioreactors for lignocellulose conversion into
- fermentable sugars for production of high added value products. Applied Microbiology and Biotechnology,
 100(2), pp.597-611.
- A.V. Bridgwater Review of fast pyrolysis of biomass and product upgrading Biomass Bioenergy, 38 (2012),
 pp. 68-94
- 76 Tomasini, D., Cacciola, F., Rigano, F., Sciarrone, D., Donato, P., Beccaria, M., Caramão, E., Dugo, P. and
- 77 Mondello, L., 2014. Complementary Analytical Liquid Chromatography Methods for the Characterization of
- 78 Aqueous Phase from Pyrolysis of Lignocellulosic Biomasses. Analytical Chemistry, 86(22), pp.11255-11262.
- 79 Möller, M., Nilges, P., Harnisch, F. and Schröder, U., 2011. Subcritical Water as Reaction Environment:
- 80 Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 4(5), pp.566-579.

- 81 Beims, R., Hu, Y., Shui, H. and Xu, C., 2020. Hydrothermal liquefaction of biomass to fuels and value-added
- chemicals: Products applications and challenges to develop large-scale operations. Biomass and Bioenergy,
 135, p.105510.
- Anouti, S., Haarlemmer, G., Déniel, M. and Roubaud, A., 2015. Analysis of Physicochemical Properties of
 Bio-Oil from Hydrothermal Liquefaction of Blackcurrant Pomace. Energy & Fuels, 30(1), pp.398-406.
- Usman, M., Chen, H., Chen, K., Ren, S., Clark, J., Fan, J., Luo, G. and Zhang, S., 2019. Characterization and
 utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char
 production: a review. Green Chemistry, 21(7), pp.1553-1572.
- Leng, L. and Zhou, W., 2018. Chemical compositions and wastewater properties of aqueous phase
 (wastewater) produced from the hydrothermal treatment of wet biomass: A review. Energy Sources, Part A:
- 91 Recovery, Utilization, and Environmental Effects, 40(22), pp.2648-2659.
- 92 Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K. and Howe, D., 2016. Quantitative
- 93 Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry
- 94 Wastes, and Biomass Grown on Waste. ACS Sustainable Chemistry & Engineering, 5(3), pp.2205-2214.
- Pham, M., Schideman, L., Scott, J., Rajagopalan, N. and Plewa, M., 2013. Chemical and Biological
 Characterization of Wastewater Generated from Hydrothermal Liquefaction of Spirulina. Environmental
 Science & Technology, 47(4), pp.2131-2138.
- Panisko, E., Wietsma, T., Lemmon, T., Albrecht, K. and Howe, D., 2015. Characterization of the aqueous
 fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks. Biomass and
 Bioenergy, 74, pp.162-171.
- Zhu, Z., Rosendahl, L., Toor, S., Yu, D. and Chen, G., 2015. Hydrothermal liquefaction of barley straw to bio crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy, 137, pp.183-192.
- 103 Gai, C., Zhang, Y., Chen, W., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C. and Dong, Y., 2015.
- 104 Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource
 105 Technology, 184, pp.328-335.
- 106 Wu, K., Gao, Y., Zhu, G., Zhu, J., Yuan, Q., Chen, Y., Cai, M. and Feng, L., 2017. Characterization of dairy
- 107 manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different
- temperatures. Journal of Analytical and Applied Pyrolysis, 127, pp.335-342.

- 109 Valdez, P., Nelson, M., Wang, H., Lin, X. and Savage, P., 2012. Hydrothermal liquefaction of Nannochloropsis
- sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46,
 pp.317-331.
- Zhu, Z., Si, B., Lu, J., Watson, J., Zhang, Y. and Liu, Z., 2017. Elemental migration and characterization of
 products during hydrothermal liquefaction of cornstalk. Bioresource Technology, 243, pp.9-16.
- 114 René Bjerregaard Madsen, Elpiniki Lappa, Per Sigaard Christensen, Mads Mørk Jensen, Maika Klemmer,
- 115 Jacob Becker, Bo Brummerstedt Iversen, Marianne Glasius, 2016, Chemometric analysis of composition of
- 116 bio-crude and aqueous phase from hydrothermal liquefaction of thermally and chemically pretreated
- 117 Miscanthus x giganteus, Biomass and Bioenergy, Volume 95, Pages 137-145, ISSN 0961-9534.
- 118 Chen, H., Zhang, C., Rao, Y., Jing, Y., Luo, G., Zhang, S., 2017a. Methane potentials of wastewater generated
- from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and microbialcommunity compositions. Biotechnol. Biofuels 10, 1–16B.
- Jan Stemann, Anke Putschew, Felix Ziegler, Hydrothermal carbonization: Process water characterization and
 effects of water recirculation, Bioresource Technology, Volume 143, 2013, Pages 139-146.
- 123 López Barreiro, D., S. Riede, U. Hornung, et al. 2015b. Hydrothermal liquefaction of microalgae: Effect on
- the productyields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil.
- 125 Algal Researcher12:206–12. doi:10.1016/j.algal.2015.08.025
- 126 William Costanzo, Umakanta Jena, Roger Hilten, K.C. Das, James R. Kastner, Low temperature hydrothermal
- 127 pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams, Algal
- 128 Research, Volume 12, 2015, Pages 377-387, ISSN 2211-9264,
- P. Biller, A.B. Ross, S.C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley, C.A. Llewellyn,Nutrient
 recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process,Algal
 Research,Volume 1, Issue 1,2012,Pages 70-76,ISSN 2211-9264,
- 132 Peng, X., Ma, X. and Lin, Y., 2016. Investigation on Characteristics of Liquefied Products from Solvolysis
- Liquefaction of Chlorella pyrenoidosa in Ethanol–Water Systems. Energy & Fuels, 30(8), pp.6475-6485.
- 134 Wu, K., Gao, Y., Zhu, G., Zhu, J., Yuan, Q., Chen, Y., Cai, M. and Feng, L., 2017. Characterization of dairy
- 135 manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different
- temperatures. Journal of Analytical and Applied Pyrolysis, 127, pp.335-342.

- 137 Erdogan, E., Atila, B., Mumme, J., Reza, M., Toptas, A., Elibol, M. and Yanik, J., 2015. Characterization of
- products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process
 liquor. Bioresource Technology, 196, pp.35-42.
- Mau, V., Quance, J., Posmanik, R. and Gross, A., 2016. Phases' characteristics of poultry litter hydrothermal
 carbonization under a range of process parameters. Bioresource Technology, 219, pp.632-642.
- 142 Hardi, F., Mäkelä, M. and Yoshikawa, K., 2017. Non-catalytic hydrothermal liquefaction of pine sawdust
- using experimental design: Material balances and products analysis. Applied Energy, 204, pp.1026-1034.
- Halleraker, H. and Barth, T., 2020. Quantitative NMR analysis of the aqueous phase from hydrothermal
- liquefaction of lignin. Journal of Analytical and Applied Pyrolysis, 151, p.104919.
- Lin, P., manatchanok, T. and yoshikawa, K., 2016. Nutrition Characterization of Aqueous Phase Produced by
 the Hydrothermal Treatment of Microalgae. Journal of the Japan Institute of Energy, 95(4), pp.289-295.
- Conti, F., Toor, S., Pedersen, T., Seehar, T., Nielsen, A. and Rosendahl, L., 2020. Valorization of animal and
 human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of
 nutrients. Energy Conversion and Management, 216, p.112925.
- Gu, Y., Zhang, X., Deal, B. and Han, L., 2019. Biological systems for treatment and valorization of wastewater
 generated from hydrothermal liquefaction of biomass and systems thinking: A review. Bioresource
 Technology, 278, pp.329-345.
- Si, B., Yang, L., Zhou, X., Watson, J., Tommaso, G., Chen, W., Liao, Q., Duan, N., Liu, Z. and Zhang, Y.,
 2019. Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and
 intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 21(6), pp.1305-1318.
- Fernandez, S., Srinivas, K., Schmidt, A., Swita, M. and Ahring, B., 2018. Anaerobic digestion of organic
 fraction from hydrothermal liquefied algae wastewater byproduct. Bioresource Technology, 247, pp.250-258.
- Chen, H., Zhang, C., Rao, Y., Jing, Y., Luo, G. and Zhang, S., 2017. Methane potentials of wastewater
 generated from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and
 microbial community compositions. Biotechnology for Biofuels, 10(1).
- 162 Zhou, Y., Schideman, L., Zheng, M., Martin-Ryals, A., Li, P., Tommaso, G. and Zhang, Y., 2015. Anaerobic
- 163 digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal
- 164 bioenergy processes. Water Science and Technology, 72(12), pp.2139-2147.

- Wang, P., Sakhno, Y., Adhikari, S., Peng, H., Jaisi, D., Soneye, T., Higgins, B. and Wang, Q., 2021. Effect of
 ammonia removal and biochar detoxification on anaerobic digestion of aqueous phase from municipal sludge
 hydrothermal liquefaction. Bioresource Technology, 326, p.124730.
- 168 Posmanik, R., Labatut, R., Kim, A., Usack, J., Tester, J. and Angenent, L., 2017. Coupling hydrothermal
- 169 liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource
- 170 Technology, 233, pp.134-143.
- Garcia Alba, L., Torri, C., Fabbri, D., Kersten, S. and (Wim) Brilman, D., 2013. Microalgae growth on the
 aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228,
- 173 pp.214-223.
- Hognon, C., Delrue, F., Texier, J., Grateau, M., Thiery, S., Miller, H. and Roubaud, A., 2015. Comparison of
- pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. Growth studies on the recovered
 hydrothermal aqueous phase. Biomass and Bioenergy, 73, pp.23-31.
- Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., Liu, M., 2016. Nutrient recovery and biomass
 production by cultivating Chlorella vulgaris 1067 from four types of posthydrothermal liquefaction
 wastewater. J. Appl. Phycol. 28, 1031–1039.
- 180 Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Chaudhary, A. and Al-Jabri, H., 2020. A feasibility study of
- 181 utilizing hydrothermal liquefaction derived aqueous phase as nutrients for semi-continuous cultivation of
- 182 Tetraselmis sp. Bioresource Technology, 295, p.122310.
- 183 Vogel, J., Paton, E., Aich, V., & Bronstert, A. (2021). Increasing compound warm spells and droughts in the
- 184 Mediterranean Basin. Weather and Climate Extremes, 32, 100312.
- 185 Villani, L., Castelli, G., Piemontese, L., Penna, D., & Bresci, E. (2022). Drought risk assessment in
 186 Mediterranean agricultural watersheds: A case study in Central Italy.
- Agricultural Water Management, 271, 107748., H., & Younas, F. (2022). Wastewater Application in
 Agriculture-A Review. Water, Air, & Soil Pollution, 233(8), 1-28.
- Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review about its limitations and
 benefits. *Sustainability*, 9(10), 1734.
- 191 Vorotnikov, V. (2022) Have Fertilizer prices peaked?. World Grain RSS. World Grain. Available at:
- 192 https://www.world-grain.com/articles/17475-have-fertilizer-prices-peaked (Accessed: November 2, 2022).

- 193 Jesse, S. D., Zhang, Y., Margenot, A. J., & Davidson, P. C. (2019). Hydroponic lettuce production using treated
- 194 post-hydrothermal liquefaction wastewater (PHW). *Sustainability*, *11*(13), 3605.
- 195 Team, W.R.E. (2020) Water reuse milestone in Europe: Regulation (EU) 2020/741 on minimum requirements
- 196 for water reuse, Water Reuse Europe. Available at: https://www.water-reuse-europe.org/water-reuse-
- 197 milestone-in-europe-regulation-eu-2020-741-on-minimum-requirements-for-water-reuse/#page-content
- 198 (Accessed: November 2, 2022).
- Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water scarcity and wastewater reuse standards in
 Southern Europe: focus on agriculture. Water, Air, & Soil Pollution, 228(7), 1-12.

201 Jesse, S. D., & Davidson, P. C. (2019). Treatment of post-hydrothermal liquefaction wastewater (PHWW) for

heavy metals, nutrients, and indicator pathogens. Water, 11(4), 854.

- Englande Jr, A. J., Krenkel, P., & Shamas, J. (2015). Wastewater treatment &water reclamation. Reference
 module in earth systems and environmental sciences.
- Sayegh, A., Prakash, N. S., Pedersen, T. H., Horn, H., & Saravia, F. (2021). Treatment of hydrothermal
 liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia
- recovery. Journal of Water Process Engineering, 44, 102427.
- 208 Sayegh, A., Merkert, S., Zimmermann, J., Horn, H., & Saravia, F. (2022). Treatment of Hydrothermal-
- Liquefaction Wastewater with Crossflow UF for Oil and Particle Removal. Membranes, 12(3), 255.
- 210 Xia, R., Na, D., Zhang, Y., Baoming, L., Zhidan, L., & Haifeng, L. (2015). Nitrogen and phosphorous
- adsorption from post-hydrothermal liquefaction wastewater using three types of zeolites. International Journal
- of Agricultural and Biological Engineering, 8(5), 86-95.
- Li, D., Cheng, Y., Li, T., Sun, H., Xue, L., Cui, H., ... & Chu, Q. (2021). Co-application of biogas slurry and
- 214 hydrothermal carbonization aqueous phase substitutes urea as the nitrogen fertilizer and mitigates ammonia
- volatilization from paddy soil. Environmental Pollution, 287, 117340.
- 216 Creegan, E.F. et al. (2019) "hydrothermal liquefaction value-added products and compost applications for
- 217 plant and environmental enhancement," 2019 Boston, Massachusetts July 7- July 10, 2019 [Preprint].
- 218 Available at: <u>https://doi.org/10.13031/aim.201900636</u>.

- Zhou, Y., Schideman, L., Zheng, M., Martin-Ryals, A., Li, P., Tommaso, G. and Zhang, Y., 2015. Anaerobic
 digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal
 bioenergy processes. Water Science and Technology, 72(12), pp.2139-2147.
- Si, B., Yang, L., Zhou, X., Watson, J., Tommaso, G., Chen, W. T., ... & Zhang, Y. (2019). Anaerobic
 conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule
 activated carbon/ozone pretreatment. Green Chemistry, 21(6), 1305-1318.
- Ungureanu, N., Vlăduţ, V. and Voicu, G. (2020) "Water scarcity and wastewater reuse in crop irrigation," *Sustainability*, 12(21), p. 9055.
- Fao.org. (2022) Wastewater Treatment and Reuse in Agriculture | Land &
 Water | Food and Agriculture Organization of the United Nations | Land & Water |
 Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/landwater/water/water-management/wastewater/en/ (Accessed: November 27, 2022).
- European Commission European Commission. 2022. Safe water. [online] Available at:

- resources/water_en> [Accessed 13 May 2022].
- Sofroniou, A. and Bishop, S., 2014. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water,
 6(10), pp.2898-2928.
- 236 Zucchinelli, M., Spinelli, R., Corrado, S. and Lamastra, L., (2021). Evaluation of the influence on water
- consumption and water scarcity of different healthy diet scenarios. *Journal of Environmental Management*,
 291, p.112687.
- Unesdoc.unesco.org. 2022. [online] Available at: https://unesdoc.unesco.org/ark:/48223/pf0000375751
 [Accessed 2 March 2022].
- Petousi, I., Daskalakis, G., Fountoulakis, M., Lydakis, D., Fletcher, L., Stentiford, E. and Manios, T., (2019).
 Effects of treated wastewater irrigation on the establishment of young grapevines. Science of The Total
- **243** Environment, 658, pp.485-492.
- Gu, Y., Zhang, X., Deal, B. and Han, L., (2019). Biological systems for treatment and valorization of
- 245 wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. Bioresource
- 246 Technology, 278, pp.329-345.

- 247 Usman, M., Chen, H., Chen, K., Ren, S., Clark, J., Fan, J., Luo, G. and Zhang, S., (2019). Characterization
- and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char
 production: a review. Green Chemistry, 21(7), pp.1553-1572.
- 250 Eni.com. 2021. Waste to Fuel: biofuels from food waste. [online] Available at: <a href="https://www.eni.com/en-
- 251 IT/operations/waste-to-fuel.html> [Accessed 6 October 2021]
- 252 Jaramillo, M. and Restrepo, I., (2017). Wastewater Reuse in Agriculture: A Review about Its Limitations and
- 253 Benefits. Sustainability, 9(10), p.1734.
- Muamar, A., Tijane, M. H., Shawqi, E., El Housni, A., Zouahri, A., & Bouksaim, M. (2014). Assessment of
 the impact of wastewater use on soil properties. J. Mater. Environ. Sci, 5(3), 747-752.
- 256 Kjeldahl, C. (1883). A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366.
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., and Schulze-Lefert, P. (2013). Structure
 and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838.
- 259 Ventorino, V., Pascale, A., Adamo, P., Rocco, C., Fiorentino, N., Mori, M., Faraco, V., Pepe, O. and Fagnano,
- M., (2018a). Comparative assessment of autochthonous bacterial and fungal communities and microbial
 biomarkers of polluted agricultural soils of the Terra dei Fuochi. Scientific Reports, 8(1).
- 262 Romano I., Ventorino V., Pepe O., (2020a). Effectiveness of Plant Beneficial Microbes: Overview of the
- 263 Methodological Approaches for the Assessment of Root Colonization and Persistence. Front. Microbiol. 11:6.
- 264 Weisburg W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., (1991). 16S ribosomal DNA amplification for
- phylogenetic study. J. Bacteriol. 173, 697-703.
- 266 Romano, I., Ventorino, V., Ambrosino, P., Testa, A., Chouyia, F. E., Pepe, O. (2020b). Development and
- application of low-cost and eco-sustainable bio-stimulant containing a new plant growth-promoting strain
- 268 Kosakonia pseudosacchari TL13. Frontiers in Microbiology, 11, 2044.
- Kurtzman, C. and Robnett, C., (1998). Antonie van Leeuwenhoek, 73(4), pp.331-371.
- 270 Chouyia F.E., Romano I., Fechtali T., Fagnano M., Fiorentino N., Visconti D., Idbella M., Ventorino V., Pepe
- 271 O., (2020). P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits
- enhance barley development and regulate rhizosphere microbial population. Front. Plant Sci. 11:1137.
- 273 Cocolin, L., Bisson, L. F., and Mills, D. A., (2000). Direct profiling of the yeast dynamics in wine
- fermentations. FEMS microbiology letters, 189(1), 81-87.

- Di Mola I., Ventorino V., Cozzolino E., Ottaiano L., Romano I., Duri L.G., Pepe O., Mori M., (2021).
 Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and
 microbial community response to soil management. Appl. Soil Ecol. 163:103921.
- Muyzer, G., de Waal, E. and Uitterlinden, A., (1993). Profiling of complex microbial populations by
 denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S
- rRNA. Applied and Environmental Microbiology, 59(3), pp.695-700.
- Ventorino, V., Romano, I., Pagliano, G., Robertiello, A. and Pepe, O., (2018b). Pre-treatment and inoculum
 affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale
 biodigestion of municipal solid waste. Waste Management, 73, pp.69-77.
- Ventorino V., Parillo R., Testa A., Aliberti A., Pepe O., (2013). Chestnut biomass biodegradation for
 sustainable agriculture. BioResources, 8:4647-4658.
- Saitou, N. and Nei M., (1987). The neighbor-joining method: A new method for reconstructing phylogenetic
 trees. Mol. Biol. Evol., 4: 406-425.
- Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation
 of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity
 studies. Nucleic acids research, 41(1), e1-e1.
- 291 Bokulich, N.A., Mills, D.A., (2013). Improved selection of internal transcribed spacer specific primers enables
- quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–
 2526.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., and Caporaso, J.
- 295 G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature
- biotechnology, 37(8), 852-857.
- 297 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016).
- 298 DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
- Lozupone, C., Hamady, M., and Knight, R. (2006). UniFrac–an online tool for comparing microbial
 community diversity in a phylogenetic context. BMC bioinformatics, 7(1), 1-14.
- 301 Marschner, P., Kandeler, E., & Marschner, B. (2003). Structure and function of the soil microbial community
- in a long-term fertilizer experiment. Soil Biology and Biochemistry, 35(3), 453-461.

- Frenk, S., Hadar, Y. and Minz, D., (2013). Resilience of soil bacterial community to irrigation with water of
 different qualities under Mediterranean climate. *Environmental Microbiology*, 16(2), pp.559-569.
- Fagnano, M., Agrelli, D., Pascale, A., Adamo, P., Fiorentino, N., Rocco, C., and Ventorino, V., (2020). Copper
 accumulation in agricultural soils: Risks for the food chain and soil microbial populations. Science of the Total
 Environment, 734, 139434.
- Ventorino, V., Pascale, A., Fagnano, M., Adamo, P., Faraco, V., Rocco, C., and Pepe, O. (2019). Soil tillage
 and compost amendment promote bioremediation and biofertility of polluted area. Journal of cleaner
 production, 239, 118087.
- Caradonia, F., Battaglia, V., Righi, L., Pascali, G., La Torre, A., (2019). Plant biostimulant regulatory
 framework: prospects in Europe and current situation at international level. Journal of Plant Growth
 Regulation, 38(2), 438-448.
- Munoz-Ucros, J., Wilhelm, R. C., Buckley, D. H., & Bauerle, T. L., (2021). Drought legacy in rhizosphere
 bacterial communities alters subsequent plant performance. Plant and Soil, 471(1), 443-461.
- Xi, B., Yu, H., Li, Y., Dang, Q., Tan, W., Wang, Y. and Cui, D., (2021). Insights into the effects of heavy
 metal pressure driven by long-term treated wastewater irrigation on bacterial communities and nitrogentransforming genes along vertical soil profiles. Journal of Hazardous Materials, 403, p.123853.
- Wajid, A., (2021). Estimation of Genetic Component Responsible for High Salt Tolerance in Indigenous
 Desert Bacterial Strain (Doctoral dissertation, CAPITAL UNIVERSITY).
- 321 Yang, R., Liu, G., Chen, T., Li, S., An, L., Zhang, G., Li, G., Chang, S., Zhang, W., Chen, X., Wu, X. and
- 322 Zhang, B., (2019). Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-
- Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics, 111(3), pp.356-366.
- 324 Shaeyan, M., Tirandaz, H., Ghanbarpour, S., Seyedipour, N., Shavandi, M., & Dastgheib, S. M. M., 2018.
- 325 Bioremediation of a drilling waste-contaminated soil; biotreatability assessment and microcosm optimization
- for developing a field-scale remediation process. Iranian Journal of Biotechnology, 16(3), 193-199.
- 327 Ventorino, V., Chiurazzi, M., Aponte, M., Pepe, O., & Moschetti, G., 2007. Genetic diversity of a natural
- 328 population of Rhizobium leguminosarum by. viciae nodulating plants of Vicia faba in the Vesuvian area.
- 329 Current microbiology, 55(6), 512-517.

- Beneduzi, A., Ambrosini, A., & Passaglia, L. M., 2012. Plant growth-promoting rhizobacteria (PGPR): their
- potential as antagonists and biocontrol agents. Genetics and molecular biology, 35, 1044-1051.
- 332 Di Pasqua, R., Ventorino, V., Aliberti, A., Robertiello, A., Faraco, V., Viscardi, S., & Pepe, O., 2014. Influence
- of different lignocellulose sources on endo-1, $4-\beta$ -glucanase gene expression and enzymatic activity of Bacillus
- amyloliquefaciens B31C. Bioresources, 9(1), 1303-1310.
- Mark Ibekwe, A., Ors, S., Ferreira, J., Liu, X. and Suarez, D., 2017. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. *Science of The Total Environment*, 579, pp.1485-1495.
- 338 Révész, F., Farkas, M., Kriszt, B., Szoboszlay, S., Benedek, T., & Táncsics, A., (2020). Effect of oxygen
- limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia
- spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium:
 enrichment, isolation and whole-genome analysis. Environmental Science and Pollution Research, 27(25),
 31130-31142.
- Lüneberg, K., Schneider, D., Brinkmann, N., Siebe, C., Daniel, R., (2019). Land use change and water quality
 use for irrigation alters drylands soil fungal community in the Mezquital Valley, Mexico. Frontiers in
 microbiology, 10, 1220.
- Yang, S., Wu, H., Wang, Z., Semenov, M. V., Ye, J., Yin, L., Li, H., (2022). Linkages between the temperature
 sensitivity of soil respiration and microbial life strategy are dependent on sampling season. Soil Biology and
- 348 Biochemistry, 172, 108758.
- Chen, Y. L., Xu, T. L., Veresoglou, S. D., Hu, H. W., Hao, Z. P., Hu, Y. J., and Chen, B. D., (2017). Plant
 diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands
 in northern China. Soil Biology and Biochemistry, 110, 12-21.
- Cheng, H., Xu, A., Kumar Awasthi, M., Kong, D., Chen, J., Wang, Y., Xu, P., (2020). Aerobic denitrification
 performance and nitrate removal pathway analysis of a novel fungus Fusarium solani RADF-77. Bioresource
 Technology, 295, 122250.
- 355 Malikula, R., Kaonga, C., Mapoma, H., Thulu, F., Chiipa, P., (2022). Heavy Metals and Nutrients Loads in
- Water, Soil, and Crops Irrigated with Effluent from WWTPs in Blantyre City, Malawi. Water, 14(1), 121.

- Ventorino, V., Sannino, F., Piccolo, A., Cafaro, V., Carotenuto, R., Pepe, O. (2014). Methylobacterium populi
 VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic
 hydrocarbon (PAH) biodegradation. The Scientific World Journal, 2014.
- Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. and Renella, G., 2016. Availability of
 different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize
 lines with different nitrogen use efficiency. *Applied Soil Ecology*, 98, pp.30-38.
- Krause, S., Dohrmann, A., Gillor, O., Christensen, B., Merbach, I. and Tebbe, C., (2020). Soil properties and
- habitats determine the response of bacterial communities to agricultural wastewater irrigation. *Pedosphere*,
 30(1), pp.146-158.
- Frenk, S., Hadar, Y., & Minz, D. (2014). Resilience of soil bacterial community to irrigation with water of
 different qualities under M editerranean climate. Environmental microbiology, 16(2), 559-569.
- Zhao, S., Liu, D., Ling, N., Chen, F., Fang, W. and Shen, Q., (2014). Bio-organic fertilizer application
 significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of
 watermelon Fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 50(5), pp.765-774.
- Li, J., Luo, C., Zhang, D., Cai, X., Jiang, L., Zhao, X. and Zhang, G., (2019). Diversity of the active
- phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. *Soil Biology and Biochemistry*, 128, pp.100-110.
- Ali, M., Walait, S., Farhan Ul Haque, M. and Mukhtar, S., (2021). Antimicrobial activity of bacteria associated
- 375 with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. Environmental Science and
- **376** Pollution Research, 28(48), pp.68846-68861.
- Iea, Energy efficiency 2017 analysis, IEA. Available at: https://www.iea.org/reports/energy-efficiency-2017
 (Accessed: January 27, 2023).
- Singh, A. K., & Kumar, J. (2016). Fugitive methane emissions from Indian coal mining and handling activities:
 estimates, mitigation and opportunities for its utilization to generate clean energy. Energy Procedia, 90, 336348.
- Pereira, G. M., Teinilä, K., Custódio, D., Gomes Santos, A., Xian, H., Hillamo, R., ... & de Castro
 Vasconcellos, P. (2017). Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the
- chemical composition and source apportionment. Atmospheric Chemistry and Physics, 17(19), 11943-11969.

- Horn, M. (2021, May). Using Oil Spill Modeling in Oil Spill Exercises and Drills. In International Oil Spill
 Conference (Vol. 2021, No. 1, p. 687970).
- Gralla, F., Abson, D. J., Møller, A. P., Lang, D. J., & von Wehrden, H. (2017). Energy transitions and national
 development indicators: A global review of nuclear energy production. Renewable and Sustainable Energy
 Reviews, 70, 1251-1265.
- 390 EEA, (2019) European Environment Agency. Available at: https://www.eea.europa.eu/data-and 391 maps/indicators/main-anthropogenic-air-pollutant-emissions/eea-2011 (Accessed: January 27, 2023).
- EPA. Environmental Protection Agency. Available at: https://www.epa.gov/climate-indicators/climate change-indicators-us-and-global-temperature (Accessed: January 27, 2023).
- 394 Martins, T., Barreto, A. C., Souza, F. M., & Souza, A. M. (2021). Fossil fuels consumption and carbon dioxide
- emissions in G7 countries: Empirical evidence from ARDL bounds testing approach. Environmental Pollution,
 291, 118093.
- Sikora, A. (2021). European Green Deal–legal and financial challenges of the climate change. In Era Forum
 (Vol. 21, No. 4, pp. 681-697). Berlin/Heidelberg: Springer Berlin Heidelberg.
- Rodriguez Franco, C. (2022). Forest biomass potential for wood pellets production in the United States of
 America for exportation: a review. Biofuels, 13(8), 983-994.
- 401 Haase, M., Wulf, C., Baumann, M., Ersoy, H., Koj, J. C., Harzendorf, F., & Mesa Estrada, L. S. (2022). Multi-
- 402 criteria decision analysis for prospective sustainability assessment of alternative technologies and fuels for
- 403 individual motorized transport. Clean Technologies and Environmental Policy, 1-27.
- 404 Norouzi, M., Chàfer, M., Cabeza, L. F., Jiménez, L., & Boer, D. (2021). Circular economy in the building and
 405 construction sector: A scientific evolution analysis. Journal of Building Engineering, 44, 102704.
- Tan, E. C., & Lamers, P. (2021). Circular bioeconomy concepts—a perspective. Frontiers in Sustainability, 2,
 701509.
- Giampietro, M. (2019). On the circular bioeconomy and decoupling: implications for sustainable growth.
 Ecological economics, 162, 143-156.
- 410 Pfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. (2014). Visions of sustainability in bioeconomy
- 411 research. Sustainability, 6(3), 1222-1249.

- 412 Plevin, R. J., Jones, A. D., Torn, M. S., & Gibbs, H. K. (2010). Greenhouse gas emissions from biofuels'
- 413 indirect land use change are uncertain but may be much greater than previously estimated.
- 414 Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., ... & Show, P. L. (2021). Waste
- biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels,
 14(1), 1-15.
- 417 Eni.com. 2022. Waste to Fuel: biocarburanti dagli scarti alimentari. [online] Available at:
 418 https://www.eni.com/it-IT/attivita/waste-to-fuel.html [Accessed 2 March 2022].
- 419 Posmanik, R., Labatut, R.A., Kim, A.H., Usack, J.G., Tester, J.W., Angenent, L.T., (2017). Coupling
- 420 hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.
- 421 Bioresour. Technol. 233, 134–143.
- 422 Chen, H., Yu, F. and Shi, W., (2016). Detection of N2O-producing fungi in environment using nitrite reductase
 423 gene (nirK)-targeting primers. Fungal Biology, 120(12), pp.1479-1492.
- Karimi, B., Maron, P., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D. and Ranjard, L., (2017).
 Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry
- 426 Letters, 15(2), pp.265-281.
- 427 Van Oosten, M. J., Di Stasio, E., Cirillo, V., Silletti, S., Ventorino, V., Pepe, O., and Maggio, A., (2018). Root
- 428 inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N
- 429 conditions. *BMC plant biology*, *18*(1), 1-12.
- 430 Bardgett, R. D., & Caruso, T. (2020). Soil microbial community responses to climate extremes: resistance,
- resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B, 375(1794),
 20190112.
- 433 Bulgarelli, D., Garrido-Oter, R., Münch, P. C., Weiman, A., Dröge, J., Pan, Y., Schulze-Lefert, P. (2015).
- 434 Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell host & microbe,
 435 17(3), 392-403.
- 436 Becerra-Castro, C., Lopes, A. R., Vaz-Moreira, I., Silva, E. F., Manaia, C. M., & Nunes, O. C. (2015).
- 437 Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and
- 438 environmental health. Environment international, 75, 117-135.
- 439 **Bibliografia castor plant**

- 440 Easa.europa.eu. 2022. Downloads | European Aviation Environmental Report. [online] Available at:
- 441 <https://www.easa.europa.eu/eaer/downloads> [Accessed 24 May 2022].
- Venkatesh, G., 2021. Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific
 Journal Publications from 2015 to 2021. Circular Economy and Sustainability, 2(1), pp.231-279.
- 444 Romano, I., Ventorino, V., & Pepe, O. (2020). Effectiveness of plant beneficial microbes: overview of the
- 445 methodological approaches for the assessment of root colonization and persistence. Frontiers in Plant
- 446 Science, 6.
- 447 Romano, I., Ventorino, V., Ambrosino, P., Testa, A., Chouyia, F. and Pepe, O., 2020. Development and
- 448 Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting
- 449 Strain Kosakonia pseudosacchari TL13. Frontiers in Microbiology, 11.
- 450 Ventorino, V., Caputo, R., De Pascale, S., Fagnano, M., Pepe, O., and Moschetti, G. (2012a). Response to
- 451 salinity stress of Rhizobium leguminosarum by. viciae strains in the presence of different legume host plants.
- 452 Ann. Microbiol. 62, 811–823. doi: 10.1007/s13213-011-0322-6.
- 453 Pepe, O., Ventorino, V., and Blaiotta, G. (2013). Dynamic of functional microbial groups during mesophilic
- 454 composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Manag. 33,
 455 1616–1625. doi: 10.1016/j.wasman.2013.03.025.
- 456 Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, et al. Assessment of plant growth
- promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in
 sustainable agriculture. J Soil Sci Plant Nutr. 2016;16:848–63.
- 459 Ventorino, V., Sannino, F., Piccolo, A., Cafaro, V., Carotenuto, R., & Pepe, O. (2014). Methylobacterium
- 460 populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic
- 461 aromatic hydrocarbon (PAH) biodegradation. The Scientific World Journal, 2014.
- Ventorino, V., Faraco, V., Romano, I., & Pepe, O. (2018). Responses of bacterial community structure and
 diversity to soil eco-friendly bioremediation treatments of two multi-contaminated fields. Ital. J. Agron,
- 464 13(1S), 53-8.
- Francis E. Clark. (1965) Agar-Plate Method for Total Microbial Count. Book Editor(s): A. G. Norman. First
 published: 01 January Book Series: Agronomy Monographs. https://doi.org/10.2134/agronmonogr9.2.c48
- 467 Jain, A., Sarsaiya, S., Kumar Awasthi, M., Singh, R., Rajput, R., Mishra, U., Chen, J. and Shi, J., 2022.
- 468 Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research
- trends, challenges, and future outlooks. Fuel, 307, p.121859.
- 470 Caradonia, F., Ronga, D., Catellani, M., Giaretta Azevedo, C. V., Terrazas, R. A., Robertson-Albertyn, S., ...
- 471 & Bulgarelli, D. (2019). Nitrogen fertilizers shape the composition and predicted functions of the microbiota
- 472 of field-grown tomato plants. Phytobiomes Journal, 3(4), 315-325.

- 473 Alegria Terrazas, R., Robertson-Albertyn, S., Corral, A. M., Escudero-Martinez, C., Kapadia, R., Balbirnie-
- 474 Cumming, K., ... & Bulgarelli, D. (2022). Defining Composition and Function of the Rhizosphere
- 475 Microbiota of Barley Genotypes Exposed to Growth-Limiting Nitrogen Supplies. Msystems, e00934-22.
- 476 Caetano, N., Xu, S., Banu, J., Sani, R. and Karthikeyan, O., 2022. Editorial: Biomass, Bioenergy and
- 477 Biofuels for Circular Bioeconomy. Frontiers in Energy Research, 10.
- 478 Leong, H., Chang, C., Khoo, K., Chew, K., Chia, S., Lim, J., Chang, J. and Show, P., 2021. Waste
- biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology forBiofuels, 14(1).
- 481 European Commission European Commission. 2022. Safe water. [online] Available at:
- 482 <a href="https://ec.europa.eu/info/food-farming-fisheries/sustainability/environmental-sustainability/natural-sustainability/natural-sustainability/natural-sustainability/environmental-sustainability/natural-sustainability/na
- 483 resources/water_en> [Accessed 13 May 2022].
- 484 Tonini, D., Albizzati, P. and Astrup, T., 2018. Environmental impacts of food waste: Learnings and
- 485 challenges from a case study on UK. Waste Management, 76, pp.744-766.
- 486 Cherubini, F., 2010. The biorefinery concept: Using biomass instead of oil for producing energy and
- 487 chemicals. Energy Conversion and Management, 51(7), pp.1412-1421.
- 488 Bhaskar, T., Pandey, A., Mohan, S., Lee, D. and Khanal, S., 2018. Waste Biorefinery. Amsterdam: Elsevier.
- 489 Aierzhati, A., Watson, J., Si, B., Stablein, M., Wang, T. and Zhang, Y., 2021. Development of a mobile, pilot
- 490 scale hydrothermal liquefaction reactor: Food waste conversion product analysis and techno-economic
- 491 assessment. Energy Conversion and Management: X, 10, p.100076.
- 492 Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Reddy, C. N., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016).
- Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives.Bioresource technology, 215, 2-12.
- 495 Singh, S. P. (2019). Hydrothermal Liquefaction: Biomass and waste to biofuels. Tel Aviv University.
- 496 Chan, Y., Yusup, S., Quitain, A., Tan, R., Sasaki, M., Lam, H. and Uemura, Y., 2015. Effect of process
- 497 parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle
- 498 assessment. Energy Conversion and Management, 104, pp.180-188.
- 499 Li, S., Jiang, Y., Snowden-Swan, L. J., Askander, J. A., Schmidt, A. J., & Billing, J. M. (2021). Techno-
- 500 economic uncertainty analysis of wet waste-to-biocrude via hydrothermal liquefaction. Applied Energy, 283,501 116340.
- 502 Eni.com. 2022. Waste to Fuel: biofuels from food waste. [online] Available at: https://www.eni.com/en-503 IT/operations/waste-to-fuel.html> [Accessed 2 June 2022].
- 504 Baldanzi, M., Myczkowski, M. L., Salvini, M., & Macchia, M. (2015). Description of 90 inbred lines of
- castor plant (Ricinus communis L.). Euphytica, 202(1), 13-33.

- 506 Demirbas, A., Bafail, A., Ahmad, W., & Sheikh, M. (2016). Biodiesel production from non-edible plant oils.
- 507 Energy Exploration & Exploitation, 34(2), 290–318. <u>https://www.jstor.org/stable/90007400</u>
- 508 Chatzakis, M., Tzanakakis, V., Mara, D. and Angelakis, A., 2011. Irrigation of Castor Bean (Ricinus
- 509 communis L.) and Sunflower (Helianthus annus L.) Plant Species with Municipal Wastewater Effluent:
- 510 Impacts on Soil Properties and Seed Yield. Water, 3(4), pp.1112-1127.
- 511 Paranychianakis, N.V.; Angelakis, A.N.; Leverenz, H.; Tchobanoglous, G. Treatment of wastewater with
- slow rate systems: A review of treatment process and plant functions. Crit. Rev. Environ. Sci. Technol. 2006,
 36, 1–73.
- 514 Tsoutsos, T., Chatzakis, M., Sarantopoulos, I., Nikologiannis, A., & Pasadakis, N. (2013). Effect of
- wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds. Renewableenergy, 57, 211-215.
- 517 Demirbas, A., Bafail, A., Ahmad, W. and Sheikh, M., 2016. Biodiesel production from non-edible plant oils.
- 518 Energy Exploration & amp; Exploitation, 34(2), pp.290-318.
- 519 Kiran, B. and Prasad, M., 2017. Ricinus communis L. (Castor bean), a potential multi-purpose environmental
- 520 crop for improved and integrated phytoremediation. The EuroBiotech Journal, 1(2), pp.101-116.
- 521 Nasr, F., El-Shafai, S., Abdelfadil, A., Ibrahim, H. and Hemdan, B., 2018. Potential use of treated domestic
- sewage for cultivation of biofuel crops in Egypt. International Journal of Environmental Science and
- 523 Technology, 16(11), pp.7433-7442.
- 524 Rodrigues, L., Nery, A., Fernandes, P., Beltrão, N. and Gheyi, H., 2009. Crescimento e produção de bagas da
- mamoneira irrigada com água residuária doméstica. Revista Brasileira de Engenharia Agrícola e Ambiental,
 12(mart), nr 825, 825
- 526 13(suppl), pp.825-835.
- 527 McKeon, T.A. Castor (Ricinus communis L.). In Industrial Oil Crops; Elsevier: Amsterdam, The
- 528 Netherlands, 2016; pp. 75–112. ISBN 978-1-893997-98-1.
- 529 A European Green Deal. (2022). Retrieved 19 October 2022, from
- 530 <u>https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en</u>
- 531 Robertson-Albertyn, S., Alegria Terrazas, R., Balbirnie, K., Blank, M., Janiak, A., Szarejko, I., ... &
- Bulgarelli, D. (2017). Root hair mutations displace the barley rhizosphere microbiota. Frontiers in plantscience, 8, 1094.
- 534 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., ... & Knight, R.
- 535 (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.
- 536 The ISME journal, 6(8), 1621-1624.

- 537 Quast, C., Pruesse, E., Yilmaz, P., et al., 2013. The SILVA ribosomal RNA gene database pro-ject:
- improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596.

539 <u>https://doi.org/10.1093/nar/gks1219</u>.

- 540 McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and
- 541 graphics of microbiome census data. PloS one, 8(4), e61217.
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-
- seq data with DESeq2. Genome biology, 15(12), 1-21.
- 544 Wickham, H. (2016). Data analysis. In ggplot2 (pp. 189-201). Springer, Cham.
- 545 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., ... & Oksanen, M. J.
- 546 (2013). Package 'vegan'. Community ecology package, version, 2(9), 1-295.
- 547 Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of statistical
 548 software, 80, 1-28.
- Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of
 constrained ordination for ecology. Ecology, 84(2), 511-525.
- Hereira-Pacheco, S. E., Navarro-Noya, Y. E., & Dendooven, L. (2021). The root endophytic bacterial
- community of Ricinus communis L. resembles the seeds community more than the rhizosphere bacteriaindependent of soil water content. Scientific reports, 11(1), 1-14.
- 554 Chen, L., Kang, W., Shen, M., Tao, H., Wang, C., Zheng, J., ... & Feng, T. (2022). Adaptation of rhizosphere
- and endosphere microbiome to heavy metal pollution in castor bean. Rhizosphere, 24, 100618.
- Beta diversity (2019) One Codex Docs. Available at: https://docs.onecodex.com/en/articles/4150649-betadiversity (Accessed: December 6, 2022).
- 558 Gervasio, F. R., Luiz, G. D. C., Joao, J. D. S. J., Pedro, C. N., & Antonio, C. F. (2016). Method and
- 559 phenological characterization of the stadiums and phases of the development of castor bean plants. African
- 560 Journal of Agricultural Research, 11(44), 4488-4497.
- Andrews, S. F., Krueger, F., Seconds-Pichon, A., Biggins, F., & Wingett, S. F. (2014). A quality control tool
- 562 for high throughput sequence data. Babraham Bioinform.
- 563 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016).
- 564 DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
- 565 , R. C. (2013). R: A language and environment for statistical computing. R Foundation for Statistical
- 566 Computing, Vienna, Austria. http://www. R-project. org/.
- 567 Callahan, B. J., Grinevich, D., Thakur, S., Balamotis, M. A., & Yehezkel, T. B. (2021). Ultra-accurate
- 568 microbial amplicon sequencing with synthetic long reads. Microbiome, 9(1), 1-13.

- 569 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... & Glöckner, F. O. (2012). The
- 570 SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids
- 571 research, 41(D1), D590-D596.
- 572 McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and
- 573 graphics of microbiome census data. PloS one, 8(4), e61217.
- 574 Kõljalg, U., Larsson, K. H., Abarenkov, K., Nilsson, R. H., Alexander, I. J., Eberhardt, U., ... & Ursing, B.
- 575 M. (2005). UNITE: a database providing web-based methods for the molecular identification of
- 576 ectomycorrhizal fungi. New Phytologist, 166(3), 1063-1068.
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. Genome biology, 15(12), 1-21.
- 579 Zuluaga, M. Y. A., Milani, K. M. L., Miras-Moreno, B., Lucini, L., Valentinuzzi, F., Mimmo, T., ... & de
- 580 Oliveira, A. L. M. (2021). Inoculation with plant growth-promoting bacteria alters the rhizosphere
- functioning of tomato plants. Applied Soil Ecology, 158, 103784.
- 582 Fusco, G. M., Nicastro, R., Rouphael, Y., & Carillo, P. (2022). The Effects of the Microbial Biostimulants
- 583 Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods, 11(17), 2656.
- 584 Chojnacka, K., Skrzypczak, D., Szopa, D., Izydorczyk, G., Moustakas, K., & Witek-Krowiak, A. (2023).
- 585 Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis.
- 586 Journal of Environmental Management, 326, 116602.
- 587 Schnitkey, G., K. Swanson, N. Paulson, C. Zulauf, J. Coppess and J. Baltz. "Nitrogen Fertilizer Outlook for
- 2023 Decisions." farmdoc daily (12):106, Department of Agricultural and Consumer Economics, University
 of Illinois at Urbana-Champaign, July 19, 2022.
- 590 Edwards, J. A., Santos-Medellín, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., ... & Sundaresan, V.
- (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in
 field-grown rice. PLoS biology, 16(2), e2003862.
- 593 Cangioli, L., Mancini, M., Baldi, A., Fagorzi, C., Orlandini, S., Vaccaro, F., & Mengoni, A. (2022). Effect of
- 594 Site and Phenological Status on the Potato Bacterial Rhizomicrobiota. Microorganisms, 10(9), 1743.
- 595 Rocha, R., Lopes, T., Fidalgo, C., Alves, A., Cardoso, P., & Figueira, E. (2022). Bacteria Associated with the
- 596Roots of Common Bean (Phaseolus vulgaris L.) at Different Development Stages: Diversity and Plant
- 597 Growth Promotion. Microorganisms, 11(1), 57.
- 598 Chen, C., Wang, M., Zhu, J., Tang, Y., Zhang, H., Zhao, Q., ... & Shen, Z. (2022). Long-term effect of
- 599 epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant
- 600 growth-promoting bacteria mediates promotion process. Microbiome, 10(1), 1-19.

- 601 Thoms, D., Liang, Y., & Haney, C. H. (2021). Maintaining symbiotic homeostasis: how do plants engage
- with beneficial microorganisms while at the same time restricting pathogens?. Molecular Plant-Microbe
- 603 Interactions, 34(5), 462-469.
- Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRC Crit Rev Plant Sci.
- 2020;39(1):72-100. doi: 10.1080/07352689.2020.1757829. Epub 2020 May 18. PMID: 33343063; PMCID:
 PMC7748258.
- Abbas, H., Farid, I., Soliman, S., Galal, Y., Ismail, M., Kotb, E., & Moslhy, S. (2015). Growth and some
 macronutrients uptake by castor bean irradiated with gamma ray and irrigated with wastewater under sandy
 soil condition. Journal of Soil Sciences and Agricultural Engineering, 6(4), 433-444.
- Souza, N. C. D., Mota, S. B., Bezerra, F. M., Aquino, B. F. D., & Santos, A. B. D. (2010). Productivity of
- castor bean irrigated with treated domestic sewage. Revista Brasileira de Engenharia Agrícola e Ambiental,
 14, 478-484.
- Wu, X. H., Zhang, H. S., Li, G., Liu, X. C., & Qin, P. (2012). Ameliorative effect of castor bean (Ricinus
 communis L.) planting on physico-chemical and biological properties of seashore saline soil. Ecological
- 615 Engineering, 38(1), 97-100.
- Liu, H., Wang, X., Song, X., Leng, P., Li, J., Rodrigues, J. L. M., ... & Dai, Z. (2022). Generalists and
 specialists decomposing labile and aromatic biochar compounds and sequestering carbon in soil. Geoderma,
 428, 116176.
- 619 Zhelezova, A., Chernov, T., Tkhakakhova, A., Xenofontova, N., Semenov, M., & Kutovaya, O. (2019).
- 620 Prokaryotic community shifts during soil formation on sands in the tundra zone. PloS one, 14(4), e0206777
- 621 Barbaccia, P., Dazzi, C., Franciosi, E., Di Gerlando, R., Settanni, L., & Lo Papa, G. (2022). Microbiological
- Analysis and Metagenomic Profiling of the Bacterial Community of an Anthropogenic Soil Modified from
- 623Typic Haploxererts. Land, 11(5), 748.
- 424 Yan, B., Guo, X., Liu, M., & Huang, Y. (2020). Ktedonosporobacter rubrisoli gen. nov., sp. nov., a novel
- representative of the class Ktedonobacteria, isolated from red soil, and proposal of Ktedonosporobacteraceae
 fam. nov. International Journal of Systematic and Evolutionary Microbiology, 70(2), 1015-1025.
- 627 Schlatter, D. C., Paul, N. C., Shah, D. H., Schillinger, W. F., Bary, A. I., Sharratt, B., & Paulitz, T. C. (2019).
- Biosolids and tillage practices influence soil bacterial communities in dryland wheat. Microbial ecology,
 78(3), 737-752.
- 630 Zhang, L., Yi, M., & Lu, P. (2022). Effects of pyrene on the structure and metabolic function of soil
- 631 microbial communities. Environmental Pollution, 305, 119301.
- 632 Cui, E., Fan, X., Li, Z., Liu, Y., Neal, A. L., Hu, C., & Gao, F. (2019). Variations in soil and plant-
- 633 microbiome composition with different quality irrigation waters and biochar supplementation. Applied Soil
- 634 Ecology, 142, 99-109.

- Guedes, P., Martins, C., Couto, N., Silva, J., Mateus, E. P., Ribeiro, A. B., & Pereira, C. S. (2022). Irrigation
- of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity.
- 637 Science of The Total Environment, 802, 149671.
- Liao, H., Ji, Y., & Sun, Y. (2022). Accurate strain-level microbiome composition analysis from short reads.
 bioRxiv.
- Kemnitz, D., Kolb, S., & Conrad, R. (2007). High abundance of Crenarchaeota in a temperate acidic forest
 soil. FEMS Microbiology Ecology, 60(3), 442-448.
- Nelson, D. M., Cann, I. K., & Mackie, R. I. (2010). Response of archaeal communities in the rhizosphere of
 maize and soybean to elevated atmospheric CO2 concentrations. PLoS One, 5(12), e15897.
- Jung, J., Kim, J. S., Taffner, J., Berg, G., & Ryu, C. M. (2020). Archaea, tiny helpers of land plants.
- 645 Computational and Structural Biotechnology Journal, 18, 2494-2500.
- 646 Wu, A. L., Jiao, X. Y., Wang, J. S., Dong, E. W., Guo, J., Wang, L. G., ... & Hu, H. W. (2021). Sorghum
- rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen
 stress. Science of The Total Environment, 770, 144742
- 649 Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021).
- Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yieldstability. Frontiers in microbiology, 12, 628379.
- 652 Senthilkumar, M., Pushpakanth, P., Arul Jose, P., Krishnamoorthy, R., & Anandham, R. (2021). Diversity
- and functional characterization of endophytic Methylobacterium isolated from banana cultivars of South
- India and its impact on early growth of tissue culture banana plantlets. Journal of Applied Microbiology,
- 655 131(5), 2448-2465.
- 656 Santoyo, G., Orozco-Mosqueda, M. D. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant
- growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol
 Science and Technology, 22(8), 855-872.
- Egamberdieva, D. (2012). Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth
 stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751-756.
- Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No.
 939). US Department of Agriculture.
- Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil
 analysis: Part 3 chemical methods, 5, 551-574.
- 665 Ortiz-Liébana, N.; Zotti, M.; Barquero, M.; González-Andrés, F. (2022) An Organic Fertilizer 'Doped' with
- a Bacillus Strain Improves Melon and Pepper Yield, Modifying the Rhizosphere Microbiome with

- 667 Negligible Changes in the Bulk Soil Microbiome. Agronomy, 12, 2620.
- 668 <u>https://doi.org/10.3390/agronomy12112620</u>
- 669 Suleiman, A. K., Gonzatto, R., Aita, C., Lupatini, M., Jacques, R. J., Kuramae, E. E., ... & Roesch, L. F.
- 670 (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine
- slurry and mineral fertilizers. Soil Biology and Biochemistry, 97, 71-82.
- Bastida, F., Torres, I. F., Romero-Trigueros, C., Baldrian, P., Větrovský, T., Bayona, J. M., ... & Nicolás, E.
- 673 (2017). Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus
- orchard under semi-arid conditions. Soil Biology and Biochemistry, 104, 226-237.
- Guedes, P., Martins, C., Couto, N., Silva, J., Mateus, E. P., Ribeiro, A. B., & Pereira, C. S. (2022). Irrigation
- of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity.
- 677 Science of the Total Environment, 802, 149671.
- 678 Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L., & Krishnamurthy, L.
- 679 (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5, 355-377.
- Roquigny, R., Novinscak, A., Biessy, A., & Filion, M. (2017). Pseudomonadaceae: from biocontrol to plant
 growth promotion. Rhizotrophs: Plant Growth Promotion to Bioremediation, 39-68
- 682 Farhadkhani, M., Nikaeen, M., Yadegarfar, G., Hatamzadeh, M., Pourmohammadbagher, H., Sahbaei, Z., &
- Rahmani, H. R. (2018). Effects of irrigation with secondary treated wastewater on physicochemical and
- microbial properties of soil and produce safety in a semi-arid area. Water research, 144, 356-364.
- 685 Ammeri, R. W., Hidri, Y., Souid, F., Simeone, G. D. R., Hajjaji, F., Moussa, M., ... & Eturki, S. (2023).
- 686 Improvement of degraded agricultural soil in an arid zone following short-and long-term treated municipal
- 687 wastewater application: A case study of Gabes perimeter, Tunisia. Applied Soil Ecology, 182, 104685.
- 688 Al-Rashidi, R., Rusan, M., & Obaid, K. (2013). Changes in plant nutrients, and microbial biomass in
- different soil depths after long-term surface application of secondary treated wastewater. Environmental and
 Climate Technologies, 11(2013), 28-33.
- 691 Hamza, A. H. A. (2021). Antifungal Activity of Raw Castor (Ricinus communis) Oil Against Aspergillus
- 692 niger and Penicillium digitatum (Doctoral dissertation, University of Gezira).
- 693 Kendra, D. U., & Mahendragarh, H. I. (2019). Effect of Ricinus communis L on Microorganisms:
- 694 Advantages and Disadvantages. Journal homepage: http://www. ijcmas. com, 8(04), 2019.
- 695 Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., ... & Smith, D. L. (2021). PGPR in
- agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food
- 697 Systems, 5, 667546.
- 698

699