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Abstract

The thesis explores the concept of sustainability, with a focus on the
role of maintenance, wear and tear, and end-of-life product recovery in
promoting sustainable practices, specifically in the context of Industry
4.0. Industry 4.0 is the fourth industrial revolution, characterized by the
integration of advanced technologies such as the Internet of Things (IoT),
Digital Twin (DT), and Cyber Physical System (CPS).

The research includes an analysis of current industry trends and best
practices in several areas. The study shows that Industry 4.0 technologies,
such as IoT-enabled predictive maintenance, can significantly improve the
efficiency of maintenance and repair programs, reducing downtime and
prolonging the life of equipment. Furthermore, the integration of DT and
CPS can enable more effective end-of-life product recovery systems, by pro-
viding insights into the most valuable components to recover and recycle.
For instance, IoT sensors can be used to monitor the condition of prod-
ucts and components in real-time, enabling the prediction of component
failures and reducing the need for inventory.

The Product 4.0 model is proposed as the fourth generation of product
innovation, characterised by the integration of advanced technologies such
as IoT, DT and CPS into the product design, development and manufac-
turing process. Furthermore, the Product 4.0 approach enables products
to be easily disassembled, repaired and recycled. It enables the integration
of smart sensors and connectivity into products to monitor wear and tear
and schedule maintenance and repair activities in real time.

Keywords: Industry 4.0, Sustainability, Maintenance, Tool wearing, End-
of-Life recovery process, Product 4.0.
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Chapter 1
Introduction
1.1 Industry 4.0

Industry 4.0, also known as the Fourth Industrial Revolution, refers
to the current trend of automation and data exchange in manufacturing
and other industries. It involves the use of advanced technologies such
as Artificial Intelligence (AI), the Internet of Things (IoT), and Cloud
Computing (CC) to improve the efficiency and flexibility of production
processes.

Manufacturing technology advancement has always been a result of
industrial evolution throughout history. The “1st Industrial Revolution
- Energy Generation” began with the invention of the mechanical loom
in 1784 and was marked by the mechanization of industrial processes as
well as the transportation and processing of goods (Cipolla 1965). With
the advent of the Fourth Industrial Revolution industrial production has
become more autonomous and “intelligent”.

As a result, the Fourth Industrial Revolution is currently in full swing,
and all manufacturing sectors around the world are searching for novel
approaches and techniques to implement the new paradigms that the In-
dustrial Revolution has brought to various production fields.

The evolution of these concepts in Korea, Germany, and the US was
emphasized by Kang et al. (2016). In fact, Manufacturing Innovation
3.0, Industrie 4.0, and Smart Manufacturing (SM) have all emerged in
Korea, Germany, and the United States, respectively. These philosophies
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are always being researched and developed, and they are in full evolution.
The most notable of the three paradigms is undoubtedly Industry 4.0

(I4.0). This innovative industrial idea is built on cutting-edge technology
tools that can enhance and boost the productivity of production processes.

The Internet of Things (IoT), Cloud Computing (CC), Big Data (BD),
Digital Twin (DT), Artificial Intelligence (AI), Machine Learning (ML),
Augmented Reality (AR), Virtual Reality (VR), and Human-Machine Co-
operation (HMC) are the most commonly used advanced technologies in
I4.0, according to a literature review.

Furthermore, Industry 4.0 is based on the use of Cyber-Physical Sys-
tems (CPS) production and the integration of heterogeneous data and
knowledge and its main features are: digitisation, automation, optimi-
sation, customisation and adaptation of production; Human-Machine In-
teraction (HMI); value-added services and businesses and automatic data
exchange and communication (Posada et al. 2015).

Internet of Things (IoT) devices are connected devices that can
collect and transmit data, allowing for real-time monitoring and control of
production processes.

Big Data Analytics: Advanced analytical tools are used to analyze
and interpret large amounts of data generated by IoT devices and other
sources, to gain insights into production processes and optimize them.

Artificial Intelligence (AI) and Machine Learning (ML) are used
to automate decision-making and control processes, as well as to analyze
data and identify patterns.

Cloud Computing (CC): Industry 4.0 systems often rely on cloud-
based platforms to store and process data, as well as to provide access to
software and other resources.

Robotics and Automation systems are used to perform tasks that
are dangerous or difficult for humans, as well as to improve the efficiency
and flexibility of production processes.

Cybersecurity: Industry 4.0 systems rely heavily on connectivity and
data sharing, so it’s crucial to have robust cybersecurity measures in place
to protect against cyber threats.

Augmented Reality (AR) and Virtual Reality (VR) are increas-
ingly being used for training, maintenance and repair, and remote assis-
tance in Industry 4.0
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Human-Machine Cooperation (HMC) refers to the integration of
advanced technologies such as robotics, automation, and Artificial Intelli-
gence (AI) into work environments, in order to improve efficiency and pro-
ductivity, while also enhancing the safety and well-being of human workers.

Industry 4.0 is expected to have a significant impact on several aspects
of manufacturing and other industries, including:

• Productivity and efficiency: Industry 4.0 technologies such as the
Internet of Things (IoT), Artificial Intelligence (AI), and automation
are expected to improve the efficiency and flexibility of production
processes, leading to increased productivity and lower costs.

• Customization and personalization: Industry 4.0 systems allow for
greater customization of products, enabling manufacturers to quickly
respond to changing market conditions and customer demands.

• Innovation: Industry 4.0 technologies can facilitate faster and more
efficient innovation, by allowing manufacturers to quickly test new
ideas and designs.

• Supply chain coordination: Industry 4.0 systems can help to improve
supply chain coordination, by providing real-time visibility into pro-
duction processes and inventory levels.

• Job displacement: Industry 4.0 technologies, particularly automation
and robotics, have the potential to displace jobs in certain sectors,
particularly in manufacturing. However, it may also create new jobs
in areas such as software development, data analytics, and mainte-
nance of the systems.

• Environmental impact: Industry 4.0 has the potential to reduce the
environmental impact of manufacturing, by increasing the efficiency
of production processes and reducing waste and emissions.

• Business model: Industry 4.0 is also expected to change the way
businesses operate, by creating new business models, such as on-
demand manufacturing, that rely on advanced technologies to quickly
respond to customer demands.
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• Security: As Industry 4.0 systems are highly connected, it’s impor-
tant to have robust cybersecurity measures in place to protect against
cyber threats.

Overall, Industry 4.0 is expected to bring about significant changes in
the way we manufacture and work, with the potential to improve efficiency,
productivity, and innovation. However, it also implies new challenges such
as job displacement and security threats, so it’s important to consider the
impacts of these changes and plan accordingly.

Examining how Industry 4.0 affects lean manufacturing systems is
doable; in fact, Wagner et al. (2017) work created a matrix of the impact
of Industry 4.0 on lean manufacturing systems and offered a framework to
start the design and development of integrated Industry 4.0 applications.

After identifying the capabilities of 12 advanced technologies, García &
García (2019) evaluated the potential impact that each technology could
have on maintenance management, returning a road map for businesses
that want to apply these tools in the maintenance area. Maintenance
management is another area where I4.0 tools can be used.

Environmental sustainability is another area where Industry 4.0 has
significant benefits. The goal of work of Bonilla et al. (2018) is to offer a
perspective on how Industry 4.0’s fundamental traits and the changes they
foster effect the flow of raw materials, energy, products, waste, goods, and
information, and how that transformation ultimately affects whether or not
the environment is sustainable. By assisting stakeholders and governments
in advancing technological and policy solutions to address the outcomes
that will follow from the widespread deployment of these technologies, our
effort can help us identify potential pathways towards more sustainable
societies.

More broadly, we might say that the idea of supply chain management
can encompass all of these factors. We can declare with certainty that
Industry 4.0 has a significant impact on the supply chain and the whole
management of the product life cycle. According to Fatorachian & Kazemi
(2021), Industry 4.0’s extensive integration and connectivity can enable a
supply chain management strategy and enhance performance. The main
advantages of Industry 4.0 and its enabling technologies can be realized at
the supply chain level primarily through greater integration, automation,
and digitization, which result in the development of innovative analytical
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capabilities and, as a result, performance enhancements at the level of
individual supply chain processes.

1.2 Sustainable practices and recovery options

Sustainability refers to the responsible management of the environmen-
tal, social and economic impact of the sourcing, production and logistic
of products. This includes minimising resource use, reducing waste and
emissions, ensuring fair labour practices and promoting community and
environmental well-being.

Environmental, social and economic aspects are brought together within
a model referred to as the Triple Bottom Line (TBL). It is a framework
that assesses the performance of a company or organisation in terms of
three key elements: economic, social and environmental.

The economic bottom line refers to the financial performance of
the organisation, including factors such as revenue, profit and return on
investment.

The social bottom line assesses the organisation’s impact on peo-
ple and communities, including factors such as employee welfare, workers’
rights and community engagement.

The environmental bottom line considers the organisation’s impact
on the environment, including factors such as resource use, waste genera-
tion and pollution.

The TBL framework is designed to provide a more comprehensive view
of organisational performance, as it takes into account not only the finan-
cial success, but also the social and environmental impact of an organi-
sation. It helps organisations assess their sustainability performance and
identify areas for improvement.

The triple bottom line is often used as a framework for measuring the
sustainability performance of organizations. It can be used to evaluate
the overall sustainability of an organization, as well as to identify areas
for improvement. Some organizations will use the TBL framework to set
sustainability targets and to track their progress over time.

One of the key benefits of using the TBL framework is that it helps
organizations to consider the potential trade-offs between economic, social,
and environmental goals. For example, an organization may need to invest
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in new equipment to reduce its environmental impact, but this may initially
increase costs and decrease profits. By considering the trade-offs between
economic, social, and environmental goals, organizations can make more
informed decisions that are better aligned with their overall sustainability
objectives.

Additionally, more and more companies are using TBL to report their
performance to stakeholders, such as investors, customers, employees, sup-
pliers, and regulators. This helps to increase transparency, accountability,
and trust. Overall, the triple bottom line is a powerful tool for orga-
nizations looking to improve their sustainability performance, providing a
framework for evaluating performance, setting goals, and tracking progress
over time.

The second aspect of sustainability is that the factory must have sus-
tainable production. In fact, sustainable production refers to the practice
of producing goods and services in a way that is environmentally friendly
and socially responsible, while also being economically efficient. This can
include using renewable energy, reducing waste and emissions, and im-
plementing fair labor practices. The goal of sustainable production is to
minimize the environmental impact of production activities, while also en-
suring that products are produced in a socially responsible way and that
they can be sold at a reasonable price.

There are many ways to achieve sustainable production. Some exam-
ples include:

• Implementing energy-efficient technologies and processes

• Using sustainable materials, such as recycled or biodegradable ma-
terials

• Reducing water usage

• Implementing closed-loop production systems that minimize waste
and pollution

• Implementing fair labor practices, such as safe working conditions
and fair wages

• Implementing sustainable packaging and transportation
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• Adopting sustainable business models, such as shared economy, cir-
cular economy, and collaborative consumption

• Creating closed-loop systems for product recovery and recycling

Sustainable production is important because it can help to minimize
the environmental impact of production activities, while also promoting
social and economic sustainability. This can lead to economic benefits,
such as cost savings from reduced resource use and increased efficiency, as
well as social and environmental benefits, such as reduced pollution and
improved working conditions.

Another element that characterises sustainability is logistics. Sustain-
able logistics refers to the practice of managing the transport and distri-
bution of goods in an environmentally friendly, socially responsible and
economically efficient manner. This may include using more fuel-efficient
vehicles and transport methods, reducing emissions and waste, and imple-
menting fair labour practices.

It is clear that sustainability is not limited to these areas but it ex-
tends to include also supply chain. In fact, Shekarian et al. (2022) created
a paradigm that emphasises the key factors of sustainability throughout
supply chain management. A literature analysis led to the identification
of a number of aspects of supply chain sustainability. Specifically, they
identified 11 main categories, each of which was reclassified in order to
create sub-categories for the elements with the most similarities.

These classifications were set based using common supply chain struc-
tures and principles. The first and second categories concerned with supply
chain beginning points, or activities connected to the production process.
The points that form a circle connecting the customer to the chain were
the focus of the third category (C). Based on the material supplied by
suppliers, the fourth category (D) was created. The software abilities re-
quired to manage the supply chain were found in the fifth category (E).
The measuring of quality in the context of sustainability was the subject
of the sixth category (F). The seventh category (G) dealt with safety and
risk considerations. The eighth category (H) looked into how to promote
sustainability through human relations. The eighth area, financial difficul-
ties, was taken into consideration (I). In categories J and K, respectively,
incentive techniques and supply chain management were covered. A total
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Figure 1.1. Suggested framework for sustainable practice of Shekarian et al.
(2022)

of 38 categories were used to summarize sustainable options (see Fig. 1.1).
In order to develop sustainable practices, we must not only pay atten-

tion to management policies but also to the elements that make up the
production line. This leads us to consider the product from the initial
processing of raw materials to delivery to the customer. Sustainability
must also integrate issues concerning: product design, manufacturing by-
products, by-products produced during product use, product life extension,
product end-of-life and end-of-life recovery processes (Linton et al. 2007).

Product life extension refers to the practice of extending the useful
life of a product through various means. This may include designing
more durable and repairable products, regular maintenance, upgrading
or retrofitting products, recycling or reusing products at the end of their
useful life. The objective of product life extension is to maximise the use
of resources by extending the useful life of products, reducing the need to
produce new ones and minimising waste. It thus becomes an important as-
pect of sustainable production and consumption, as it can help reduce the
environmental impact of product production and disposal. It also helps
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reduce costs and increase the efficiency of production operations.

1.2.1 Sustainable and Smart maintenance

Sustainable maintenance refers to the practice of maintaining buildings,
infrastructure, and equipment in a way that is environmentally friendly
and economically efficient, while also ensuring their continued functional-
ity and safety (Hami et al. 2020). This can include using energy-efficient
techniques and materials, practicing preventative maintenance, and incor-
porating green technologies. The goal of sustainable maintenance is to
minimize the environmental impact of maintenance activities, while also
reducing costs and ensuring that assets continue to function properly.

Following a review of the literature, Franciosi et al. (2020) develops
a framework that gives a comprehensive overview of all effects of mainte-
nance activities on sustainability aspects. It also develops clearly defined
performance indicators that assist in measuring and monitoring impacts
to spot potential discrepancies between the actual and desired sustainable
performance of maintenance and other company departments. By pointing
them in the direction of specific maintenance procedures and the reduction
of their impact in order to satisfy corporate objectives, this work may be
of interest to businesses that seek to close the gap between maintenance
and sustainability.

Instead, other authors consider how Industry 4.0 will impact mainte-
nance’s position in the manufacturing industry. Roda et al. (2018) fo-
cuses in particular on how maintenance may profit from new opportuni-
ties brought about by the continuous digitalization of industrial processes.
The analysis pinpointed the key problems that would define maintenance
in the Industry 4.0 paradigm going forward. Data and the human aspect
emerged as the two essential components for the successful digitalization of
maintenance activities. The study also attempted to collect empirical data
on how manufacturing firms are actually handling the maintenance phase
of digital transformation. Relevant problems also surface in this context,
including organizational and technological ones.

Smart maintenance, on the other hand, is a proactive approach to
maintenance that leverages Industry 4.0 technologies such as predictive
analytics, the Internet of Things (IoT), and Artificial Intelligence (AI) to
optimize maintenance tasks (Bokrantz et al. 2020). This approach helps
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to reduce downtime, extend the lifespan of equipment, and improve overall
efficiency. When combined, sustainable and smart maintenance can lead
to a more efficient and environmentally responsible approach to mainte-
nance. The integration of Industry 4.0 technologies can provide real-time
data and predictive insights to help companies identify potential mainte-
nance issues before they become problems, allowing for more proactive and
environmentally friendly maintenance practices.

Moreover, smart maintenance can also help to reduce the need for ex-
cessive spare parts and resources, as maintenance tasks can be performed
with greater accuracy and efficiency. This can lead to a reduction in waste,
as well as cost savings for the company. In addition, the use of sensors, IoT,
and AI in smart maintenance can also provide valuable data on equipment
usage and performance, which can be used to identify areas for improve-
ment and optimize maintenance schedules. This results in more informed
decision-making and helps to minimize the environmental impact of main-
tenance activities. Overall, sustainable and smart maintenance are comple-
mentary approaches that can help companies to minimize waste, conserve
resources, and reduce their negative impact on the environment, while also
improving efficiency and cost-effectiveness.

1.2.2 Preventive measures and useful life extension

One of the impacts of Industry 4.0 on predictive maintenance is the
use of technology to monitor tool wear and predict when tools will need
to be replaced, thus helping to further reduce the impact of tool wear.
For example, sensors can be used to collect tool usage data, which can be
analysed to identify wear patterns and trends. This can help manufacturers
identify the tools most prone to wear and take measures to reduce it.

This integration brings numerous benefits to the industry, including the
ability to extend the life of tools and machinery through predictive main-
tenance (Begüm et al. 2021). Constant monitoring of tool and machine
performance enables Industry 4.0 systems to detect signals of wear and
deterioration, prompting timely maintenance and repairs. This proactive
approach increases tool efficiency and ultimately results in cost savings for
manufacturers.

Preventive measures, including regular maintenance, proper use and
storage, timely repair of defects and damage, and upgrading equipment
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with new technologies, can help extend the life of tools and equipment.
The use of protective equipment can also reduce wear and tear. Regular
monitoring and inspection play an important role in identifying potential
problems before they develop into serious issues that reduce equipment life.
Predictive maintenance programs that collect and analyse data to predict
equipment failures can enable proactive maintenance and repair, further
extending the life of tools and equipment.

The implementation of Industry 4.0 technologies not only benefits the
manufacturing industry, but also contributes to a more environmentally
conscious society. Indeed, Industry 4.0 has the potential to increase effi-
ciency, cost savings and sustainability by extending the life of tools and
equipment (Aivaliotis et al. 2019). By reducing the need to frequently re-
place tools and machinery, the production process can produce fewer waste
materials, resulting in a reduction of industry’s overall carbon footprint.
In addition, the use of predictive maintenance can help reduce energy con-
sumption, as equipment that operates efficiently is less likely to consume
excess energy.

In conclusion, the integration of Industry 4.0 technologies into the man-
ufacturing process has the potential to significantly extend the lifespan of
tools and equipment, leading to greater efficiency, cost savings and sus-
tainability. By reducing waste and energy consumption, manufacturers
can contribute to a more sustainable and environmentally conscious soci-
ety.

1.2.3 End of Life product recovery options

Sustainable product recovery is an important aspect of product design
and refers to the practice of recovering value from products at the end of
their useful life in an environmentally responsible and socially just manner.
It includes recycling products, reusing product materials, reducing the
environmental impact of waste and conserving resources.

Product recovery can include the following steps:

• Collection: Products are collected from consumers and businesses,
either through organized recycling programs or through informal
means such as curbside pickup.
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• Transportation: The collected products are transported to a process-
ing facility where they will be sorted and prepared for recovery.

• Sorting and Processing: Products are sorted by type and processed
to remove any contaminants or hazardous materials.

• Recycling or Reuse: Recyclable products are processed further to
extract materials that can be used to make new products, while non-
recyclable products are sent to a landfill or incinerated.

• Final Disposition: Products that have been recycled or reused are
either used to make new products or are permanently removed from
the waste stream.

Several end-of-life product recovery options for a generic product exist
in the literature. Among the most relevant are reuse, remanufacturing,
recycling, cannibalisation and disposal (Ziout et al. 2014).

Reuse involves using a product again for its original intended purpose
or for a different purpose. In fact, it is considered to be an operation
whereby a few non-destructive improvements are made in order to bring the
product back to its initial state. Examples include refurbishing electronics,
reselling used clothing, and re-purposing building materials.

Remanufacturing involves fixing a product so it can be used again; it
is a more complex operation where the product is disassembled and worn
or broken components are replaced. This can include simple repairs such
as patching a hole in clothing or replacing a broken part, as well as more
complex repairs such as rebuilding an engine or repairing electronics.

Recycling involves processing products to extract materials that can
be used to make new products. This can include traditional recycling
methods such as paper, plastics, and metals, as well as more advanced
methods such as chemical recycling and mechanical recycling.

Cannibalization involves in a process in which parts products that
are still functional are removed and used as replacement parts in similar
products or equipment still in use. This is also known as “part harvest-
ing” or “part reuse” and is often used in industries such as automotive,
electronics and aerospace.

Disposal involves disposing of products that cannot be recycled or
otherwise recovered in a landfill; it is the last possible operation, where



1.3. Research outline and contributions

Figure 1.2. Relationship between the different articles submitted in different
years and the topics of the thesis

nothing can be recovered from the product and it is therefore thrown away.
The best end-of-life recovery option for a product will depend on a

variety of factors, including the product’s composition, the cost of recovery,
and the availability of recycling and recovery infrastructure.

1.3 Research outline and contributions

This thesis is structured in the form of a “three-paper” thesis, with
several published and forthcoming scientific papers in which I significantly
contributed. The work that guided this thesis was developed and submit-
ted over several years, as shown in Fig. 1.2.

The first paper (Chapter 2) is a research on a scheduling issue for flow
shops when machines aren’t always available and faults happen randomly
during periods of downtime. They undergo both corrective maintenance
and planned maintenance procedures because they are prone to malfunc-
tions in order to increase their availability. Therefore, the best plan takes
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into account both maintenance tasks and activities. Finding the best in-
tegrated maintenance work-planning sequence that reduces the makespan
and the early-delay penalty is the objective. In order to do this, we sug-
gest two novel meta-heuristic algorithms that were created by tweaking
the conventional Genetic Algorithm (GA) and Harmonic Search (HS).The
suggested Harmony Search algorithm and genetic algorithm are effective
in addressing the problem of integrated task scheduling and maintenance,
according to numerical findings from trials taking varied problem sizes and
configurations into account.

The second paper (Chapter 3) studies the field of intelligent produc-
tion from the complex optimisation problem Flexible Job-Shop Scheduling
Problem (FJSP), which seeks to allocate production jobs to machines at
particular times in order to minimise makespan. Despite major advance-
ments in this area, current methods do not sufficiently take into consider-
ation the issue of tool wear, which can result in higher costs and waste. In
this article, we suggest a novel method that takes tool wear into account
while optimizing scheduling. The method adjusts the extension rate by
taking into account the tool’s age and the length of time it has been in
use. By doing this, we hope to increase tool utilization, decrease scrap, and
eventually create production processes that are more effective and sustain-
able. Our studies’ findings demonstrate that our strategy performs better
than other approaches in terms of waste reduction and tool utilization.
Our strategy is also very adaptable and scalable, making it appropriate
for shifting consumer demands and manufacturing needs.

The third paper (Chapter 4) investigates whether and how it is possible
to better support product lifecycle management by exploiting the enhanced
product capabilities resulting from an I4.0 ecosystem. To this end, the
new concept of ‘Product 4.0’ (P4.0) is proposed, a product archetype that
combines the functionalities of an intelligent product with those enabled
by I4.0 technologies. Since Product 4.0 has the potential to benefit from
the various stages of the product life cycle, this paper also provides further
details on the end-of-life recovery options of this new product archetype,
through an explanatory case related to a laserjet printer. Next, the speed
at which new technology products are brought onto the market and old
ones are discarded was investigated. This is generating a twofold negative
effect: an exponential increase in electrical and electronic waste and an
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unsustainable exploitation of non-renewable natural resources. This situa-
tion may in turn have significant effects on the economic sustainability of
our societies, due to the rising costs of waste disposal and the increasingly
limited availability of raw materials. Therefore, the main variables at play
and their interconnections when considering smart products were investi-
gated. To analyse the effects of these variables, a Causal Loop Diagram
(CLD) is developed and discussed in detail. The proposed CLD highlights
the sustainability aspects of smart products. Furthermore, it highlights
how the introduction of the so-called ‘Product 4.0’ can be a solution to
improve the triple bottom line of sustainability.



Chapter 2
Metaheuristics for the flow
shop scheduling problem with
maintenance activities
integrated
2.1 Introduction

In the current competitive environment, production scheduling plays a
crucial role in the survival of a company in the market (Pinedo 2012). Since
the mid-twentieth century, planning problems have caught the interest of
many researchers (Ahmadizar 2012, Chen et al. 2012, Ekşioǧlu et al. 2008,
Laha & Gupta 2018, Saricicek & Celik 2011, Yuce et al. 2017). The flow
shop is a plant layout extensively studied in the literature. The Flow Shop
Scheduling Problem (FSSP) deals with the sequencing of a set of jobs that
visit a defined number of machines, always in the same order. In most
research about FSSP, it is assumed that machines are available during the
whole planning horizon. In a real environment, the machines are not always
available during the entire planning horizon (e.g., due to breakdown or
preventive maintenance). This availability problem may have a significant
impact on a variety of performance aspects such as productivity, reliability,
and profitability (Lee & Kim 2017).

The problem is that the maintenance planning is commonly not inte-
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grated with the production scheduling activities (Liu et al. 2018). Instead,
the production scheduling activity and the maintenance planning must
be done jointly to balance the utilisation and availability of the resource
(Wang & Liu 2014). To this extent, there are two research classes of the
problem within the literature. The first one assumes that preventive main-
tenance are performed periodically, ignoring unexpected failures. That is
the unavailable periods of the machine are known in advance and, there-
fore, it represents a deterministic problem. The second one assumes that
machines can fail randomly. This last class belongs to the stochastic pro-
gramming problem and is entirely different from the first class (Cui et al.
2018).

Most prior research - focused on the deterministic problem - can serve
as modelling tools for planned breaks such as lunch breaks, days off, hol-
idays etc (Kubzin & Strusevich 2006). Lee (1997) studied a two machine
FSSP under a deterministic environment in which the unavailability time
of the machine is known in advance. He develops a pseudo-polynomial dy-
namic programming algorithm to solve the problem optimally. Breit (2006)
and Wang & Cheng (2007) investigated a two-machine flow shop where the
first machine is not available for processing during a given time interval.
They propose a Polynomial-Time Approximation Scheme (PTAS) for this
problem. Hadda (2014) developed a PTAS to solve a particular case of two
machine FSSP with several availability constraints on the second machine
known in advance.

Regarding the second class of research, Kubzin & Strusevich (2006)
investigated a two-machine FSSP in which each machine must be serviced
exactly once during the scheduling period. The duration of the mainte-
nance interval depends on the start time. This means that the start time
and the duration of the maintenance interval are not fixed in polynomial
solvable by dynamic programming. Ruiz & Stützle (2007) have developed
three different policies to define when to carry out Preventive Maintenance
(PM) tasks in the FSSP. The first policy is based on the principle that the
PM tasks are processed at fixed time intervals, known in advance. The
second policy, instead, aims to maximise the machine’s availability, calcu-
lating the optimum period for PM. In the third policy, the criterion used is
to maintain a minimum reliability threshold for a given production period
t. The reliability of a machine is the probability that the machine will
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work during a certain period. Xiao et al. (2016) proposed a key-random
GA for the joint optimisation of the scheduling of jobs and machine group
preventive maintenance to minimise the sum of production, preventive
maintenance, minimal repair for unexpected failures and tardiness costs.

Assia et al. (2018) have discussed, analysed and developed the resolu-
tion of the joint scheduling of jobs and variable maintenance activities in
an FSSP scenario in their survey.

This paper belongs to the above-mentioned second FSSP research classes
and includes the maintenance planning activity taking into account a
stochastic environment. A flow shop production system made of not iden-
tical, failure-prone machines is considered. It is assumed that the time
to process a single job, the time to carry out a corrective or preventive
maintenance task, and setup times are deterministic. Machines are sup-
posed to fail randomly according to a Weibull distribution. Hence, the
time to process a given job-maintenance sequence on a certain machine is
random. We consider the problem of finding the job planned maintenance
sequence that minimizes the expected makespan or the expected earliness
tardiness penalties, evaluated taking into account the expected value of
job-maintenance sequence processing times on each machine.

This problem has been addressed similarly by Zammori et al. (2014).
However, while they dealt with the problem on a single machine, we pro-
pose a more general model valid for multimachine problems in flow shop
settings. To approach the problem, we propose two novel meta-heuristic
algorithms obtained by modifying a standard Genetic Algorithm (GA) and
Harmony Search (HS).

The rest of paper is organized as follow: Section 2.2 introduces the
basic notation, describing the problem statement. Section 2.3 and 2.4
present the proposed metaheuristic algorithm for finding a quasi-optimal
solution. Then, in Section 2.5, the proposed algorithms are evaluated. To
this aim, a comprehensive set of scheduling problems was generated and
benchmarked with the solution of an exhaustive search method. Lastly, in
Section 2.6 conclusions and directions for future works are given.
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2.2 Problem description

2.2.1 Notations

To facilitate the problem description and formulation, the notations
variables used in this paper are summarised below:

Indices
i (i = 1,2,. . . ,N) is the job indicator.
m (m = 1,2,. . . ,M) is the machine indicator.

Parameters
N denotes the number of jobs.
M denotes the number of machines.
pπi,m indicates the processing time of the ith job in a sequence (i =

1,2,. . . ,N) on the mth machine (m = 1,2,. . . ,M).
sπi−1,πi,m denotes the setup time between jobs on the machine m.
Rm time to perform a single corrective maintenance activity on the

machine m.
Vm time to perform a single planned maintenance activity on the ma-

chine m.
βm denotes the shape parameter of the Weibull probability distribution

on machine m (m = 1, 2,. . . ,M).
ηm denotes the scale parameter of a Weibull probability distribution

on machine m (m = 1, 2,. . . ,M).
dπi denotes the due date of job πi.

Decision variables
π is the vector that represents the jobs orders according to their pro-

cessing sequence.
πi (i = 1,2,. . . ,N) is the ith job order in a sequence.
Variables derived from decision variables
Zm is the number of maintenance actions for the mth machine.
Dm is the downtime of the mth machine.
µm (m = 1,2,. . . ,M) represents the vector whose generic element is the

job that precedes the generic jmth planned maintenance activity on the
mth machine: µm = µ1m, µ2m, ..., µjm, ..., µZm.
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δ(m,πi) is a binary variable δ(m,πi) =

{
1, ifπi ∈ µm

0, otherwise
I m

I ≡ {i ≤ I : δ(m,πi) = 1} (I = 2, 3, ...,N) (m = 1, 2, ...,M)

j(m, I) =

{
maxI m

I , ifI m
I ̸= ∅

1, ifI m
I = ∅

Cπi denotes the completion time of the ith job in a sequence (i =
1,2,. . . ,N).

E [Cπi ] denotes the expected completion time of the ith job in a se-
quence (i = 1,2,. . . ,N).

2.2.2 Problem assumptions

Main assumptions of the problem can be described as:

• When the machine begins processing a job, it cannot be interrupted.
If a failure occurs, consider a longer job order processing time. This
includes the time needed to restore the machine, reset the machine,
and complete the machining;

• Setup times are deterministic and dependent of the job sequence;

• When calculating the number of planned maintenance activities, it
is considered that each of these requires a fixed and constant time
value (may be different for each machine);

• The planned maintenance operations cannot be at the beginning or
at the end of a certain sequence of jobs. If q* is the optimal number
of scheduled maintenance operations and P is the total time required
to process all the jobs in the sequence, it is possible to demonstrate
that the optimal positioning of planned maintenance interventions,
to minimise the expected number of breakdowns, is one every (see
Zammori et al. (2014)):

P

q∗ + 1
(2.1)

• The processing time of each job on a certain machine is deterministic
and may be different from the one needed on another machine;
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• Machine failures occur randomly and according to a Weibull distri-
bution. The failure rate of a given machine may differ from that of
the others;

• We consider an average time to carry out a corrective or a preventive
maintenance tasks (i.e., this time is supposed to be deterministic)
and its value may vary among the various machines;

• Planned and corrective maintenance are carried out when the ma-
chine is not operating. Planned maintenance has to be carried out-
with no order job on the machine, i.e., planned maintenance is con-
sidered as a maintenance job to be scheduled among order jobs. On
the contrary, corrective maintenance can be performed with an order
job on the machine;

• Corrective maintenance and preventive maintenance interventions
follow the minimal repair and perfect repair approach, respectively;

• When the job leaves machine m and machine m + 1 is busy, the job
is hosted in a buffer of unlimited amplitude;

• All jobs are independent and available for their process at time 0;

• Each machine m can process only one job j at the time;

• Each job j can be processed only in one machine m at the time;

• The transportation time to move a job between two consecutive ma-
chines is neglected.

2.2.3 Problem description

Initially, we consider the problem in which the machines do not fail,
then we will consider the case in which the machines are subject to break-
downs, and we will see how the equations are modified. In this problem,
we want to find the best sequence for n jobs that must be processed in
a set of M machines that minimises the objective function. Each job re-
quires a deterministic processing time on each machine m. N jobs must be
processed on M machines in the same order. The objective of scheduling
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is to find a production sequence of the jobs in the machines so that an es-
tablished criterion is optimised. The most common optimisation criterion
are the minimisation of the total manufacturing time, called makespan or
Cmax, and the minimisation of the Earliness Tardiness Penalties (ETP).

The makespan is defined as the maximum job completion time:

CMAX = max
i
{Cπi} (2.2)

Similarly to Zammori et al. (2014), who consider more general, not
strictly complementary cost factors aπi and bπi weighting the importance
of earliness and tardiness, respectively, the ETP criterion is:

ETP =
∑
i

(aπiEπi + bπiTπi) (2.3)

where
Eπi = |min{0, Cπi − dπi}| (2.4)

represents the advance of the job, being his due dates;

Tπi = max{0, Cπi − dπi} (2.5)

represents the job delay. Note that the above defined objective func-
tions are deterministic, as job processing times are deterministic by as-
sumption and machines are supposed to be completely failure-free.

The completion time of each job on the m-th machine is obtained by
solving a series of recursive equations.

If we consider the machine 1:

Cπ1,1 = pπ1,1 (2.6)

Cπi,1 = Cπi−1,1 + pπi,1 + sπi−1,πi,1; i = 2, ..., N (2.7)

for the generic machine m:

Cπ1,m = Cπ1,m−1 + pπ1,m; m = 2, ...,M (2.8)
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Cπi,m = max{Cπi,m−1, Cπi−1,m + sπi−1,πi,m}+ pπi,m;

i = 2, ..., N ;m = 2, ...,M
(2.9)

If the goal is the minimisation of the makespan, being a flow shop the
machines arranged in series, and therefore the maximum completion time
of the jobs coincides with the completion time of the last job on the last
machine. So, the goal is to minimise CπN ,M .

2.2.4 Integrated maintenance planning

We now consider the case in which machines are prone to fail according
to a Weibull distribution. The failure rate of the mth machine, λm, is thus
expressed as follows

λm(t) = βmη−βm
m tβm−1 (2.10)

The failure rate λm(t) is decreasing when β < 1, constant when β = 1,
and increasing when β > 1. In this paper, we consider the case in which
the failure rate is increasing (i.e., β > 1). Given the failure rate λm(t), the
expected number of failures in [0, t] for the mth machines is

Λm(t) =

∫ t

0
λm(τ)dτ =

(
t

ηm

)βm

(2.11)

If we regard a generic machine m, with m = 1, 2, . . . , M, the criterion
for determining the optimal number of planned maintenance operations
for each machine is that of minimising the expected downtime. Let Pm =∑

i pπi,m, Zm be the number of planned maintenance tasks on the mth
machine and Dm be the downtime of the mth machine. Then, using the
rational policy of placing planned maintenance activities every Pm

Zm+1 time
units after the beginning of the job processing sequence (placing a planned
maintenance activity before the first job in the sequence is clearly not
appropriate), the expected downtime of machine m is given by

E [Dm] = ZmVm+Rm(Zm+1)Λm

(
Pm

Zm + 1

)
= ZmVm+vm(Zm+1)1−βm (2.12)
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where

vm ≡ Rm

(
Pm

ηm

)βm

(2.13)

is the average time to make corrections to failure between two planned
maintenance operations.

Since the expression of E [Dm] is convex in Zm, the optimal number of
planned maintenance operations for the machine m can be calculated by
solving the equation:

d

dZm
E [Dm] = Vm − vm

βm − 1

(Zm + 1)βm
= 0 (2.14)

From which it is obtained:

Z∗
m =

[
vm(βm − 1)

Vm

] 1
βm

− 1 (2.15)

Since Z∗
m must be an integer, it is necessary to take the integer closer

to Z∗
m (greater or less than Z∗

m) which minimizes E [Dm].
Since we are now considering machine breakdowns (which is the only

source of randomness considered in our model), the time to complete a job-
planned maintenance sequence is not deterministic, but random. Hence,
the optimization criteria introduced in Section 2.2.3 (i.e., Eqs. 2.2 and 2.3)
are random as well. Similarly to Zammori et al. (2014), we consider the
expected value of the time to process a job-planned maintenance sequence.
We can therefore extend the formulas presented in Section 2.2.3 to the case
of failure-prone machines as follows:

CMAX = max
i
{E [Cπi ]} (2.16)

Eπi = |min{0, E [Cπi ]− dπi}| (2.17)

Tπi = max{0, E [Cπi ]− dπi} (2.18)

E [Cπ1,1] = pπ1,1 +R1Λ1(pπ1,1) (2.19)
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E [Cπi,1] = E
[
Cπi−1,1

]
+ V1δ(1, πi−1) + pπi,1+

R1

(
Λ1

( i∑
k=j(1,i)

pπk,1

)
− Λ1

( i−1∑
k=j(1,i)

pπk,1

))
+ sπi−1,πi,1; i = 2, ..., N

(2.20)

E [Cπ1,m] = E [Cπ1,m−1] + +pπ1,m +RmΛm(pπ1,m); m = 2, ...,M
(2.21)

E [Cπi,m] = max{E [Cπi,m−1] , E
[
Cπi−1,m

]
+ Vmδ(m,πi−1) + sπi−1,πi,m}+ pπi,m

+Rm

(
Λm

( i∑
k=j(m,i)

pπk,m

)
− Λm

( i−1∑
k=j(m,i)

pπk,m

))
; i = 2, ..., N ;m = 2, ...,M

(2.22)

The previous expressions permit us to calculate the expected comple-
tion time of a given job-planned maintenance sequence in a flow shop pro-
duction system, and hence the expected makespan and earliness tardiness
penalties as well. Our objective is to find the job-planned maintenance
sequence that minimizes the expected makespan or the expected earliness
tardiness penalties. To this aim, we adopt two well-known metaheuristic
algorithms, a genetic algorithm and a harmony search algorithm, whose
features will be presented in the next sections.

2.3 Genetic algorithm

In order to solve the scheduling problem in the flow shop environment,
a Genetic Algorithm (GA) has been developed. This type of algorithm is
based on the Darwinian principle according to which the individuals who
are better suited to the environment have a greater chance of surviving
and passing on their characteristics to their successors. The population
of individuals evolves from generation to generation through mechanisms
very similar to sexual reproduction and gene mutation.

The GA was implemented using Optimization Toolbox in Matlab®.
The steps of the developed GA can be summarized in the diagram in
Fig. 2.1.
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Figure 2.1. Flow chart of Genetic Algorithm
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Table 2.1. Fine-tuned parameters of GA

GA Parameters Value
Population Size 50
Crossover rate 0.8
Mutation rate 0.15
Elite count 0.05*Population Size
Number of seconds without improving the best solution 900

For the choice of the parameters used in Table 2.1, we started from the
values used by Wang & Liu (2016) and then modified them to adapt them
to our algorithm. In particular, they apply the mutation and the crossover
on the same chromosomes, instead we apply one or the other exclusively. In
the proposed algorithm, some chromosomes of the current population that
have the best fitness are chosen as elite. These elite individuals are passed
to the next population. Then we select from the previous population the
chromosomes (parents) according to the crossover rate. We generate chil-
dren from the parents. Children are produced either by making random
changes to a single parent (mutation), according to the mutation rate, or
by combining the vector entries of a pair of parents (crossover) (Goldberg
1989).

2.3.1 Representation of the solutions

The solution representation is a key factor for the algorithm efficiency.
Each chromosome X represents a possible solution to the problem and
to each chromosome corresponds value of the objective function. The
Xi takes value in [1:N] if it is a job order, otherwise it takes value in
[N + 1 : N +

∑
m Zm] if it is maintenance job. So, if we consider a prob-

lem with 5 job orders, 2 machines, and 2 maintenance operations on each
machine, then the jobs orders will be: X1 = 3, X4 = 1, X5 = 4, X7 = 5,
X9 = 2; maintenance on first machine are: X2 = 6, X8 = 7; maintenance
on the second machine are: X3 = 8, X6 = 9 (see Figs. 2.2 and 2.3).
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Figure 2.2. Coding solution

Figure 2.3. Solution Gantt chart

2.3.2 New solutions generation

An initial population of 50 individuals is set, and this dimension is
assumed to remain constant with each generation. The individuals that
will give life to the new generation are selected with the roulette method
that selects individuals with a probability proportional to their fitness,
according to the law of natural evolution.

The GA implemented creates three types of children for the next gen-
eration:

• Elite children are individuals in the current generation with the best
fitness values. These individuals automatically survive to the next
generation. They compose 5% of the next population. The elitism
allows to emphasize the currently best solutions in subsequent gen-
erations. In this way, the good solutions previously found have the
possibility of moving on to subsequent generations (Alexandre et al.
2015).

• Crossover children are created by combining the vectors of a couple
of parents through the PMX rule (Fig. 2.4). These children compose
80% of the next population.
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Figure 2.4. Partially matched crossover

Figure 2.5. Swap mutation

• Mutation children are created by introducing mutations in a single
parent and they will be the remaining part of the population. As a
mutation operator, the swap mutation was chosen (Fig. 2.5).

Crossover operator

The crossover operator couples two parents, to generate two children
presenting a genetic heritage deduced from that of their parents. The
crossover operator is applied with a probability equal to Pc, whose value
is generally very high (Pc ≥ 0.80). Since the solution is represented by
permutations, we have chosen to use Partially Matched Crossover (PMX).
In the PMX the values of the genes are not crossed but the order in which
they appear is crossed, this eliminates the generation of children who vio-
late the constraints of the problem.
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Mutation operator

The mutation operator randomly modifies the value of an allele within
a string. The mutation helps to prevent the algorithm from being trapped
in a local minimum, and it is responsible for recovering lost genetic in-
formation. It is an operator used to maintain genetic diversity in the
population.

2.4 Harmony Search

Harmony Search (HS) is a meta-heuristic algorithm proposed by Geem
et al. (2001). It is inspired by the improvisation process that musicians
follow to create new melody with their instruments and to collectively
achieve the correct harmony or the state of equilibrium of the system. Just
like the musical harmonies that are improved by the comparison and the
improvisation of the single musicians creating each time new harmonies to
improve the melodies, similarly the solutions to the problem become even
better iteration after iteration.

2.4.1 Proposed changes

To explore the more significant parts of the solution space, the tradi-
tional HS has been modified, introducing additional features inspired by
human nature. Specifically, we decided not to use the classic pitch adjust-
ing which perturbs the generic elements Xi (the single allele of the string)
of a certain quantity, as done by Zammori et al. (2014) and Wang et al.
(2010) for similar problems, but we use the pitch adjusting rule used by
Maythaisong & Songpan (2018) in the mutation-based harmony search al-
gorithm (MBHS) to solve a different type of problem. With this method,
we apply the mutation operator to the whole string.

In Fig. 2.6 the New Candidate Harmony Vector (NCHV) is the new
solution that is created with each iteration of the algorithm. The Harmony
Memory (HM) is a memory location where all the solution vectors are
stored. This HM is similar to the population in the GA (Geem et al. 2002)
(see Fig. 2.7).

For the calculation of PAR we used the formula of Mahdavi et al.
(2007):
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Figure 2.6. Flow chart of harmony search
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Figure 2.7. Pitch adjusting
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Table 2.2. Fine-tuned parameters of HS

HS Parameters Value
Harmony Memory Size Same as the GA
Harmony Memory Consideration Rate 0.9
Minimum Pitch Adjusting Rate 0.4
Pitch Adjustment Rate (PAR) 0.4
Pitch Adjustment Number (PAN) Random within {1,2,3}
Number of seconds without improving the best solution Same as the GA

PAR(Iteration) = PARmax−PARmin
MaxItr ∗ Iteration+ PARmin

In our case, the maximum number of iterations is infinite since we
impose a maximum stall time of 15 min as a stop condition (i.e., if the
solution does not improve for 15 consecutive minutes, then the algorithm
will stop). Consequently PAR = PARmin.

For the choice of the parameters in Table 2.2 we started from the
values used by Zammori et al. (2014) and we modified them since in our
problem the maximum number of iterations is infinite and therefore PAR
is constantly equal to PARmin and does not increase. So we chose a higher
PARmin value.

Following, once all the elements Xi of the new harmony have been
obtained, a random number is extracted between 0 and 1 and, if this
number is less than PAR for a number of times equal to PAN, the harmony
vector is modified according to the following rule:

A new integer value is extracted between 1 and 3,

• If the value extracted is equal to 1, then the Swap Mutation is carried
out: two genes are selected, and their alleles are simply exchanged
(Fig. 2.8 (a));

• If the value extracted is equal to 2, then the Insert Mutation is
performed: two genes are selected, and one of them is moved to be
adjacent to the other moving the others accordingly (Fig. 2.8 (b));

• If the value extracted is equal to 3, then the Scramble Mutation
is performed: in this case, a portion of the chromosome chosen at
random sees its genes scrambled (Fig. 2.8 (c)).
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Figure 2.8. Mutation operator

Therefore the main difference between the Insert Mutation and the
Scramble Mutation is that in the former after the displacement of an adja-
cent gene to another the rest of the genes keep the same order, in the latter
the selection of the two genes identifies a portion of chromosome that is
shuffled.

The same encoding used for GA is used to represent the solution in
HS.

The following pseudo-code gives a better understanding of how the
algorithm works.
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HS PSEUDO-CODE
1. Begin
2. Define objective function
3. {*Initialization of constant parameters*}
4. Define HMCR Harmony Memory Consideration Rate
5. Define HMS Harmony Memory Size
6. Define PARmin minimum pitch adjusting rate
7. Define PARmax maximum pitch adjusting rate
8. Define NVAR number of variables
9. {*Variables and matrices population*}
10. Termination_condition = false
11. Generate the initial Harmony Memory
12. {*Execution of Harmony Search*}
13. While (Termination_condition = false)
14. For (i = 1:NVAR)
15. If (rand(0,1) < HMCR) then
16. Perform Harmony Memory Consideration to generate Xi;
17. Else
18. Perform Random Selection to generate Xi;
19. end if
20. end for
21. If (rand(0,1) < PAR) then
22. PAN = Random(1,2,3);
23. For (i = 1:PAN)
24. Mutation operator: Random(Swap, Insert, Scamble);
25. Xnew ← Mutation operator;
26. End for
27. End if
28. If (fitness Xnew < fitness Xworst) then
29. Xworst = Xnew ;
30. Update Worst, Best;
31. End if
32. End while
33. Return Xbest = the best solution in Harmony Memory
34. End
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2.5 Computational experiments

In order to compare the performance of a Genetic Algorithm (GA) and
Harmony Search (HS), an extensive set of planning problems was exam-
ined. First of all, for small problems, the two heuristics were evaluated
by comparing them with an exhaustive search method able to find the
optimal solution for relatively small problems in a reasonable time. Sub-
sequently, for more significant problems, the two heuristics were compared
considering different scheduling scenarios created according to different
optimization and problem generation criteria.

2.5.1 Proposed generation

The problems are generated using the following rules used by Zammori
et al. (2014):

• Job processing time is distributed according to a normal distribution
with a mean of 100 and standard deviation 25.

• The setup times are uniformly distributed between 0 and 19.

• Weibull eta (η) is set at 100.

• The average time required to carry out corrective maintenance is
evenly distributed between 15 and 25.

• The average time required to carry out the planned maintenance is
evenly distributed between 30 and 50.

For the problems related to the minimisation of the ETP, these addi-
tional parameters are defined:

• Earliness penalty (a): equal to 1.

• Lateness penalty (b): equal to 8.

• Tardiness factor (TF): uniformly distributed between 0.3 and 0.6.

• Relative two date range (RD): equal to 0.4.
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Table 2.3. Simulated scenario

Problem
dimension

Job
number (N)

Machine
number (M)

Maintenance’s
number (PM)

Problem size
(CL = N + PM) β

Schedule
complexity

Problem
ID

Small 8 5 3 11 1.3 Low SL1
Small 8 5 5 13 1.4 High SH1

For the generation of due dates in a scheduling problem on a single
machine the rule proposed by Tan et al. (2000) has been modified to be
adapted to the scheduling problem with multiple machines:

µDD =
p

N
∗M ∗N ∗ (1− TF ) (2.23)

RDD =
p

N
∗M ∗N ∗RD (2.24)

Due dates are uniformly distributed with average µDD and range
RDD.

Hence, the value of these parameters in individual problems are deter-
ministic. To create various different problems (each relating to machines
and jobs characterized by different parameters), the aforementioned ran-
dom procedures have been adopted.

2.5.2 Comparison with the exhaustive search method

To evaluate the performance of the proposed meta-heuristic algorithms
in terms of solution quality only for the problems concerning makespan
minimization, two experiments have been carried out: a first one in which
the machines are more reliable (i.e., they require fewer maintenance activ-
ities resulting in a low scheduling complexity), and a second one in which
machines are less reliable (i.e., they fail more easily and require more main-
tenance resulting in a high scheduling complexity). The parameter that
distinguishes the two cases is β, i.e., the shape parameter of the Weibull
distribution. Since the exhaustive search method requires very high calcu-
lation times, the size of the problems considered is relatively limited (see
Table 2.3).
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We solved the proposed problems exhaustively on a Google Cloud vir-
tual instance with the following features: 72vCPU Intel Skylake and 270
GB of memory. The same has been done for the two heuristic algorithms
on a different virtual instance with the following features: 4vCPU Intel
Skylake and 15 GB of memory.

The Stop condition in both heuristic methods has been set at 15 min of
stall time (i.e., if the solution does not improve for 15 consecutive minutes,
then the algorithm will stop).

In Table 2.4, the computation results of the proposed heuristics versus
the exhaustive one are shown. The execution times of the exhaustive
algorithm have been multiplied by 72 to make the times of the exhaustive
comparable with the heuristic times. This calculation is justified by the
fact that, while the exhaustive method exploits the parallel calculation,
the meta-heuristic algorithms work with one core at a time. As revealed,
increasing β from 1.3 to 1.4 provides a negative effect on the performance
of the algorithms.

Table 2.4 shows that the result of HS has an average error, compared
to the solution found with the exhaustive algorithm, which is lower than
the GA. The performance of HS, in terms of average percentage error, is
more significant in SH1 type problems, while we can consider it limited
for SL1 type problems. In any case, both heuristics (HS and GA) have
an average error lower than 0.2% and therefore provide a good result for
these types of problems. Finally, in terms of computational time, Table
2.4 shows that HS, in SL1 problems, takes significantly less time to find
the solution than GA (about 35% less time). While GA, in SH1 problems,
takes slightly less time than HS (about 7% less time). In any case, both
heuristics (HS and GA) have significantly less computational time than
the time spent by the comprehensive algorithm. It is even more relevant
in SH1 type problems.

2.5.3 Comparison of meta-heuristics

Six classes of problems were solved for each objective function (Makespan
minimisation and ETP minimisation) to compare the performances of GA
and HS: three with a low scheduling complexity and three with a high
scheduling complexity. For each class, 100 problems were solved for a
total of 600 × 2 × 2 = 2400 experiments. For the classification of the
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Table 2.4. Computational results of GA and HS algorithms on small-sized
test instances

Problem Exhaustive
Algorithm Genetic Algorithm Harmony Search

ID Size Average
time [s]

Average
time [s]

Average
error [%]

Average
time [s]

Average
error [%]

SL1 11 6, 86x103 121,53 0,05 79,43 0,03
SH1 13 9, 18x105 146,8 0,16 157,61 0,04

Table 2.5. Simulated scenario

Problem
dimension

Job
number (N)

Machine
number (M)

Maintenance’s
number (PM)

Problem size
(CL = N + PM) β

Schedule
complexity

Problem
ID

Medium 20 5 5 25 1,15 Low ML1
Large 40 5 10 50 1,15 Low LL1
Large 45 5 12 57 1,15 Low LL2
Medium 20 5 10 30 1,2 High MH1
Large 40 5 20 60 1,2 High LH1
Large 45 5 24 69 1,2 High LH2

problems in Table 2.5 we have chosen the same notation and definitions
used by Zammori et al. (2014).

To evaluate the performances of GA and HS, we have used the relative
percentage deviation (RPD) over the best solution found in the experiment:

relative percentage deviation (RPD) =
Algsol −Minsol

Minsol
x100 (2.25)

where Algsol is the Cmax obtained for a given algorithm and instance,
and Minsol is the best solution obtained for each instance by any of the
algorithms. The ARPD is the average RPD obtained on one hundred
problems. Table 2.6 and Table 2.7 show the computational results of GA
and HS for solving the six classes of problems.

In particular, the showed average times have been obtained by con-
sidering and subtracting the stall time (equal to 15 min in the considered
scenario). As revealed from Table 2.6, the meta-heuristics show very sim-
ilar results in terms of Average RPD, whereas the average time is doubled
for the HS. Only for the simplest case ML1, the execution times are com-
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Table 2.6. Obtained results in case of makespan objective

Problem Genetic Algorithm Harmony Search Draws (%)

ID Size Average
time [s] Wins (%) Average

RPD (%)
Average
time [s] Wins (%) Average

RPD (%)
ML1 25 725,73 38 0,12 963,45 59 0,05 3
LL1 50 856,35 92 0,01 1577,39 8 0,46 0
LL2 57 785,8 94 0,01 1523,99 6 0,66 0
MH1 30 825,75 37 0,17 1635,42 63 0,14 0
LH1 60 799,72 100 0,00 1360,42 0 1,08 0
LH2 69 978,74 97 0,01 1323,89 3 1,19 0

Table 2.7. Obtained results in case of ETP objective

Problem Genetic Algorithm Harmony Search Draws (%)

ID Size Average
time [s] Wins (%) ARPD (%) Average

time [s] Wins (%) ARPD (%)

ML1 25 442,14 19 0,06 654,26 80 0,01 1
LL1 50 1265,7 62 0,05 1803,06 38 0,07 0
LL2 57 2368,75 70 0,03 2081,42 30 0,11 0
MH1 30 443,81 15 0,09 1397,11 84 0,01 1
LH1 60 2978,53 72 0,03 3011,56 28 0,12 0
LH2 69 5497,91 85 0,01 3501,62 15 0,18 0

parable. We may, therefore, conclude that, for this type of problem, which
aims at minimising the makespan, the GA seems to perform better when
the problem size increases.

For the ETP minimisation problem, the Table 2.7 reveals that, only in
the case of medium-sized problems, the GA takes less time than the HS.
For large problems, instead, the execution times of the meta-heuristics are
comparable whereas both algorithms almost have no percentage deviation.

2.5.4 Impact of problem size on the heuristics

To further analyse the performance of GA and HS, concerning different
problem sizes, Fig.2.9 depicts the ARPD yielded by GA and HS on all test
instances. Specifically, the problem size is given by the sum of the number
of machines, the number of jobs and the number of maintenances. Note
that, as the problem size increases, ARPD values of GA decrease gradually,
and the values of HS increase.
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Figure 2.9. Performance of GA and HS with respect to different values of
problem size. (a) Makespan objective. (b) ETP objective

2.5.5 Trend of heuristics over time

The graphs in Fig.2.10 shows the trend over time of the two heuristics:
both for medium-sized problems than for large problems, GA tends first to
the optimal compared to the HS. As time increases, the area between the
two curves decreases in accordance with the results of Table 2.6 in which
it is seen that the two heuristics give very similar results.

If we compare the graphs obtained aiming at minimizing the makespan
(Fig.2.10) with those obtained aiming at the minimisation of the ETP
(Fig.2.11) it is possible to see that in this last case the area between the
two curves is smaller. Moreover, it is possible to observe that HS tends
first to the optimal solution than GA.

2.6 Conclusions and future research

This work has investigated a Flow Shop Scheduling Problem (FSSP)
integrated with preventive maintenance and stochastic breakdown. The
time to failure of each machine is subject to a Weibull distribution with
β > 1, i.e. the machines are characterised by a time increasing failure rate,
considering both reactive and planned maintenance tasks.

The paper solves two minimisation problems separately: (i) the min-
imisation of makespan; (ii) the minimisation of the ETP. Considering the
practical relevance of the problem and its complexity, we developed and
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Figure 2.10. Average fitness on 100 problems in function of time

Figure 2.11. Average fitness on 100 problems in function of time
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tested two meta-heuristic algorithms for solving the FSSP in a reasonable
time, finding practicable and fulfilling schedules in industrial applications.
Specifically, we have modified two widespread metaheuristics: GA and HS.
To evaluate the performance of the proposed algorithms, we performed a
series of computational experiments. For small problems, we have com-
pared the two heuristics with an exhaustive search method, which can
find the optimal solution. The computational results show the time ben-
efits of using these heuristics. Moreover, to make a comparison between
the proposed meta-heuristic algorithms, we have considered scenarios with
different scheduling complexities and instance sizes. The results recorded
show that, as the size of the problem increases, GA tends to perform better
than HS.

For future research, it could be interesting to study the considered
problem in the hypothesis of absent buffers. An additional exciting line of
investigation would be to improve the proposed HS going to guide memory
consideration to prefer solutions within harmony memory that have better
fitness.



Chapter 3
Optimizing Scheduling in
Flexible Job-Shop
Manufacturing with Tool
Wearing Effect
3.1 Introduction

In recent years, there has been a shift in the manufacturing industry
towards more flexible and efficient production systems, and the Flexible
Manufacturing System (FMS) has emerged as the leading solution. FMSs
have grown in importance in the aerospace, automotive, and electronics
industries as a result of their capacity to produce multiple products simul-
taneously and quickly adapt to production changes (Liaqait et al. 2021).
These systems are composed of interconnected workstations, automated
material handling and storage systems, and an integrated computer sys-
tem for control and coordination (Shivanand et al. 2006, Kostal & Velisek
2017). This enables FMSs to adapt to changing market demands and
production requirements, ultimately leading to increased efficiency and
competitiveness in the manufacturing industry.

FMSs can be divided into three main categories based on their job pro-
cessing orders: open shops, flow shops, and job shops (Haupt 1989). The
job shop system is the most commonly used FMS due to its flexibility and
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adaptability, where each job is processed on available machines within a
specified processing time, with the constraint that each machine can only
process one operation per job. This system is known as the Job Shop
Flexible Manufacturing System (JS-FMS), and it requires more complex
scheduling algorithms to handle the flexibility and variety of jobs involved.
This problem is known in the literature as the Job Shop Scheduling Prob-
lem (JSP), which seeks to assign production jobs to machines at particular
times to optimize multiple objectives such as makespan, flow time, tardi-
ness, etc. (Meilanitasari & Shin 2021, Dornhöfer et al. 2020). As a classic
problem in operational research, the JSP is known to be NP-hard, and
this means that it is computationally difficult to solve, requiring advanced
algorithms and techniques to find efficient solutions (Zhang et al. 2019).

To address the complexity of scheduling JS-FMSs, researchers have
proposed different optimization techniques to solve the JSP, both with ex-
act methods (e.g. mixed-integer models) and approximate methods (e.g.,
simulation, neural networks, genetic algorithms, simulated annealing, etc.)
(Xie et al. 2019, Mohan et al. 2019). One critical issue in the scheduling of
an FMS is tool deterioration that has been widely addessed from the sci-
entific literature (Xu & Randhawa 1998, Altumi & Taboun 2001, Braglia
& Zavanella 1999, Liu et al. 2001, Tian et al. 2023). For example, Hirviko-
rpi et al. (2007) developed a genetic algorithm to solve the Job Schedul-
ing with Stochastic Tool Lifetime (JSSTL) problem and showed that the
proposed algorithm outperformed the traditional Short Processing Time
(SPT) method. On the other hand, Xiuli et al. (2019) proposed a Multi-
Objective Hybrid Pigeon-Inspired Optimization and Simulated Annealing
(MOHPIOSA) algorithm to tackle the FJSP by simultaneously consider-
ing the effects of tool deterioration and energy consumption. In recent
work, Salama & Srinivas (2021) proposed a similar sustainability-oriented
approach to scheduling with tool deterioration in order to minimize the
weighted costs of energy consumption, integrating the information about
tool costs and production delays.

However, the analysed approaches still do not adequately take into ac-
count the phenomenon of tool wear from an operational point of view. As a
matter of fact, operators often change tools prematurely to avoid breaking
them during a shift, resulting in suboptimal tool utilization and increased
costs (Waydande et al. 2016). This is a significant problem especially in
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the production of high-value materials such as those in the aerospace sec-
tor that require costly tools, where optimization of their utilization is of
utmost importance to minimize production costs (Aamir et al. 2020, Barni
et al. 2020, Nabhani 2001). Additionally, in the production of small se-
ries products, reducing the makespan while improving tool utilization is
essential to meet customer demand and maintain competitiveness (Tan-
vir et al. 2020). Thus, there is a pressing need for advanced scheduling
algorithms that can optimize both the makespan and the tool utilization
concurrently. An optimal work sequence can improve tool utilization and
reduce the number of partially used tools, making scheduling an FMS a
challenge.

To fill this gap, the proposed approach takes into account the impact
of tool wearing on scheduling optimization. Specifically, the approach con-
siders the residual useful life of tools conservatively estimated by manufac-
turers. Using this information, the approach models and allocates a set of
jobs with specific processing times and tooling requirements on identical
parallel machines, taking decisions on job and tool assignment. Two met-
rics are introduced to evaluate these decisions and optimize the scheduling
process, with the goal of maximizing tool utilization and minimizing pro-
duction makespan. Balancing these objectives is challenging, as they often
conflict. This problem is then addressed by searching for a set of optimal
solutions on the Pareto front that offer the best possible balance between
the two objectives, resulting in a trade-off that achieves the optimal local
performance in terms of both makespan and tool utilization.

The proposed approach has been implemented with a customized ge-
netic algorithm and validated on a real case study from a company located
in Naples (Italy) and operating in the aerospace sector. The algorithm, as
it is conceived, provides practitioners with quantitative insights about the
optimal configuration of the FMS with respect to the management of the
tool warehouse, whether it should be centralized or decentralized, also sup-
porting the optimal scheduling process by both increasing tool utilization
and makespan reduction in JS-FMSs.

The remainder of the paper is organised as follow. Section 3.2 describes
the hypothesis on the problem under consideration; Section 3.3 introduces
the proposed genetic algorithm architecture; Section 3.4 presents the ex-
perimental scenario and the discussion of the results; Section 3.5 concludes
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the paper.

3.2 Problem Formulation

The optimization of production scheduling for flexible manufacturing
systems (FMS) is a crucial task in industrial settings, especially in highly
demanding industries like aerospace, automotive, and electronics (Yadav &
Jayswal 2018). The efficient allocation of jobs to parallel machines and the
management of tools are essential to ensure productivity, minimize costs,
and maintain competitiveness (Balogun & Popplewell 1999). As men-
tioned in Section 3.1, current approaches available in the literature do not
adequately consider the phenomenon of tool wear, leading to suboptimal
tool utilization, increased costs, and waste of tool residual life (Waydande
et al. 2016, Braglia & Zavanella 1999). The problem is even more pressing
when dealing with high-value materials, which require the use of costly
tools (Buyurgan et al. 2004). Therefore, there is a clear need for advanced
scheduling algorithms that can optimize both the makespan and the tool
utilization concurrently, while taking into account the phenomenon of tool
wear. Such an algorithm could potentially reduce costs, improve efficiency,
and increase competitiveness for industries that rely on FMS.

The Identical Parallel Machines Problem with Tooling Constraints is
the problem explored in this paper. The scenario involves different jobs,
each requiring specific tools for machining. Processing time varies for
each job and is not dependent on the machine they are performed on.
Each machine has a tool warehouse with limited capacity and automatic
tool changer, allowing it to process multiple jobs without significant setup
times, as long as the required tools are distinct. A constraint of this prob-
lem is that each machine can only process one operation at a time. If a
job requires multiple operations and different tools, these operations must
be performed in sequence on the same machine. However, interrupting an
operation is not feasible as the process cannot be resumed from its interrup-
tion point. The production system includes a double pallet that eliminates
the wait for setup times between operations on the same machine.

The goal is to find the best possible sequencing of jobs allocated to
different machines in order to (i) maximize the utilization of the tools use-
ful life and avoiding having tools that remain with a residual useful life



3.3. The proposed approach

that cannot be used for next operations, and (ii) keeping the makespan at
the minimum possible with respect to the production plan. The proposed
approach aims to solve this multi-objective optimization problem by min-
imizing the two target variables which measure the balancing of machines
and the effectiveness of tool utilization. To achieve this, a measure of the
two target variables and a genetic algorithm has been developed. It can
provide non-dominated optimal solutions on the Pareto front, allowing for
a better balance between the two proposed objectives.

The problem statement of this work is based on a real case of an
aerospace industry company that produces titanium parts using FMSs for
production. The company requires effective scheduling of production ma-
chines, particularly during unsupervised night shifts. Due to the high cost
of tooling and the risk of tool breakage during machining, the company
estimates the residual useful life of tools in a conservative manner, taking
the advised value from the tool manufacturer. The problem they face is
to optimally schedule jobs among different machines in the FMS station,
which all have independent automated tool warehouse. The proposed al-
gorithm aims to identify the optimal configuration of the considered FMS
with respect to the management of the tool warehouse, determining the
tool to be loaded on each machine for dealing with the scheduled job.

3.3 The proposed approach

The proposed approach considers two target variables to optimize: the
balancing of machines, the so-called “Smoothness Index” (SX), and the
“Effectiveness Utilization Tool” (EUT ). SX is a traditional measure of the
assembly line theory and represents a measure of the workload assigned
to the various machines. It assumes a value of zero when production is
perfectly balanced among FMS machines and the maximum value equal
to the sum of all jobs processing time when all machining time is concen-
trated on one machine. EUT is a dimensionless measure of how effective
the job allocation was in the use of the tools, and assumes a value of zero
for an ideal situation in which tools are not wasted and positive values
when tool residual life is wasted. Therefore, we understand that SX and
EUT are interrelated quantities. A solution that minimizes the value of
SX minimizes the umbalancing between the machines in terms of process-
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Figure 3.1. Machine Load Balance - Solution minimizing SX

ing time (as shown in Figure 3.1), resulting in a lower makespan for the
scheduled operations, but will result in higher tool waste due to subopti-
mal scheduling of the tools at the machines. On the other hand, a solution
that minimizes the value of EUT (as depicted in Fig. 3.2) leads to more
efficient tool utilization but creates a strong imbalance in the distribution
of machining times across the machines, increasing the overall makespan
value of the production system. This problem is a classic example of multi-
objective optimization.

Using Graham notation (α|β|γ), we can classify the problem considered
in this paper as follows:

α = P (3.1)

β = ∅ (3.2)

γ = SX,EUT (3.3)

Eq. 3.1 indicates that the problem involves parallel machines; Eq. 3.2
means that the jobs do not have any characteristics specified by Graham
(e.g. preemption is allowed, presence of limited resources, precedence re-
lations between jobs, release dates, processing time has a lower and upper
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Figure 3.2. Tool Utilization Efficiency - Solution minimizing EUT

bound); Eq. 3.3 indicates that the optimal criteria are the minimization
of the unbalancing of processing times between machines (SX) and the
efficient use of tools (EUT ).

Let us introduce the following notation:

• n is the number of jobs to be processed;

• mc is the number of parallel machines;

• t is the number of different types of tools required to produce the job
orders;

• ji is the i-th job, i = 1, . . . , n;

• mk is the k-th machine, k = 1, . . . ,m;

• Jmk
is the set of jobs assigned to the machine mk;

• Tv is the v-th type of tool, v = 1, . . . , t;

• ULv is the useful life of the v-th tool (in machining minutes);

• RULv is the residual useful life of the v-th tool (in machining min-
utes);
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• hi,b is the b-th tool required to process the job i;

• hi,b ∈ Hi ⊂ T , where Hi is the set of different types of tools required
to produce the job i and T is the set of different types of tools required
to produce all the jobs;

• pHi,i is the machining time (in minutes) of the job i using the set of
tools Hi;

• Pmk
is the total machining time of the jobs assigned to the machine

mk;

• P is the average machine processing time.

Given the introduced notation, it is possible to calculate SX as in
Eq. 3.4 and EUT as in Eq. 3.5.

SX =

√∑
mk

(Pmk
− P )2 ∀k ∈ {1..mc} (3.4)

EUT =
∑
v

EUTv (3.5)

where
EUTv =

∑
v

BestUTv − UTv ∀v ∈ {1..t}

where BestUTv (Eq. 3.6) is the utilization of the v-th tool type in the
best (ideal) solution.

Pmk
=

∑
pHi,i ∀i ∈ Jmk

: P =

∑mc
k=1 Pmk

mc

BestUTv =
∑
i

pi,v
ULv

∀i ∈ 1..n (3.6)

To address the introduced multi-objective optimization problem, we
propose a genetic algorithm that can generate optimal solutions to the
scheduling problem. The genetic algorithm follows the traditional struc-
ture of such algorithms, including the representation of solutions in the
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form of chromosomes, the crossover operator for generating offspring chro-
mosomes, and the mutation operator for introducing variation into the
population. This choice is motivated by genetic algorithm’s ability to effi-
ciently explore the solution space, find optimal or near-optimal solutions,
and handle multi-objective problems through the use of Pareto front anal-
ysis. In the following sections, we will describe each of these components
in detail and discuss how they are used in the proposed algorithm.

3.3.1 Chromosome

As the objective is to determine the optimal sequence of operations to
be performed on various machines, it is imperative that the chromosome
accurately represents this information. With this in mind, the chromosome
was designed to represent the sequence of operations scheduled on each
machine. It is worth noting that the allocation of jobs to machines and
the sequencing of those jobs on each machine are two important aspects
of the scheduling problem. These aspects are captured in the chromosome
through its positional encoding, where the position of each gene represents
the machine to which the job has been assigned, and the sequencing of
the job on that machine. The chromosome was designed with a fixed
length, which is determined by the number of machines, the number of
jobs, and the number of scheduling days considered in the problem. In the
example shown in Figure 3.3, the chromosome was designed to allocate a
maximum of 4 different jobs per day on the machines, and consider a total
of 2 scheduling days. As such, the first 4 allocations of the chromosome
represent the jobs assigned to the first machine on the first day, the next 4
represent the jobs assigned to the first machine on the second day, and so
on. It is also worth mentioning that, once the chromosome is defined, its
dimensionality cannot be changed during the execution of the algorithm.
To account for this, the presence of 0s was taken into consideration in
the chromosome design, allowing solutions to be identified even if not all
possible allocation slots are occupied. In this context, the 0s are simply
skipped, as shown in the example in Fig. 3.3.
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Figure 3.3. Example of Chromosome Representation in the Genetic Algo-
rithm Solution Space

3.3.2 Crossover operation

The Crossover operation in a genetic algorithm is the process of gener-
ating a child solution by combining the genetic information of two parent
solutions. The purpose of this operation is to create offspring that are fitter
and more diverse than their parents, thereby enriching the population with
better individuals. The crossover operator is modeled after biological re-
production, where genetic information is passed from one generation to the
next. In this study, the Partially Mapped Crossover (PMX) method has
been adopted to generate the child chromosome. This method is advanta-
geous as it preserves the order and interconnections within the chromosome
and ensures that the offspring respects the rules of permutation.

The process of PMX starts with the random selection of two parent
chromosomes (P1 and P2) and two crossover sites. As illustrated in Fig-
ure 3.4, the first parent (P1) segment between the two sites is directly
copied to the same position of the second child (O1). Then, the elements
that are present in the middle segment of the second parent (P2) but not
in P1 (elements 1, 9, 6 in the illustration) are placed in the corresponding
positions of the child chromosome. For instance, the element 9 in P2 is
positioned at 5 in O1, so the next step is to place the element 9 in the
available position from the previous 5 in P2. This process continues for
the elements 6 and 1 in a similar manner. Finally, the remaining elements
of parent P2 are copied to the corresponding positions of the child chromo-
some. This approach ensures that the offspring chromosome inherits traits
from both parents while maintaining the order and interconnections of the
solution. By doing so, the PMX method helps maintain the diversity of



3.4. Results and Discussion

Figure 3.4. Example of Partially Mapped Crossover (PMX) operation be-
tween two parent chromosomes to generate a child chromosome

the population and improves the chances of finding an optimal solution.

3.3.3 Mutation operation

The purpose of mutation in genetic algorithms is to introduce new ge-
netic information into the population, breaking away from the constraints
imposed by the current solutions. This helps the algorithm escape from
being trapped in a local minimum and aids in exploring the entire search
space. Mutation is crucial in maintaining the genetic diversity of the pop-
ulation, thereby increasing the chances of discovering better solutions. In
the present work, Random Resetting is used as the mutation method.
This method is equivalent to binary mutation, where each gene has a fixed
probability pm of being replaced by a random value, calculated within a
predetermined range. This approach ensures that the mutation rate is in-
dependent for each gene, allowing for a more nuanced exploration of the
search space.

3.4 Results and Discussion

The proposed approach for the Identical Parallel Machines Problem
with Tooling Constraints has been tested and validated in a real-world case
study of a manufacturing company in the aeronautical supply chain. As
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previously stated, the company must schedule production machines during
unsupervised shifts while efficiently using costly tools with conservative
estimates of their residual useful life. To assess the approach’s ability to
optimize machine balancing and tool utilization, a genetic algorithm was
implemented in Python, taking into account the chromosome configuration
and genetic operators described earlier. The experimental methodology
was designed to evaluate the approach’s effectiveness, with levels of the
considered factors based on their relevance to the company’s real-world
scenario.

In Section 3.4.1 the design used to evaluate the proposed approach
and the performance measures used to assess the solutions’ quality are ex-
plained, along with the rationale behind the selection of factors and their
levels. In Section 3.4.2, instead, the results of the experiments are an-
alyzed, and implications for practitioners are discussed. The discussion
section highlights the importance of considering tool residual life when
scheduling production machines and the potential impact of the proposed
approach in reducing tool-related costs and improving tool utilization in
similar real-world scenarios. Additionally, the results suggest that the op-
timal configuration of the FMS tool warehouse, whether centralized or
decentralized, may vary depending on the specific scenario being consid-
ered.

3.4.1 Experimental Methodology

The experimental methodology aims to evaluate the proposed approach
by testing it on a simulated scenario inspired by a real-world scenario from
the aerospace industry. The company’s production system is made up of
fully autonomous FMS units, equipped with an internal tool warehouse.
These machining operations require efficient scheduling, and the SX and
EUT parameters play a crucial role in understanding the type of solution
identified by the proposed approach. Minimizing the SX parameter re-
sults in a solution with the lowest makespan, where each of the plant’s
productive FMS unit has an equal distribution of work. This represents
the fastest solution to complete the scheduling, but with the use of tools
dispersed and replicated among the various machining units, leading to
higher EUT values. On the other hand, solutions that minimize the EUT
value result in a situation where some machining units are occupied for
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Table 3.1. Factorial scenario plan

Experimental Factor Levels Unit
Machines 3 [machine]

Job 200 [job]
Total Operation 1400 [operation]

Operation Time Distribution triangular(15, 391, 98) [minutes]
Type of Tool 56-75-94 [different tool]

Tool Type Distribution Scenario 00-03-06 []

much longer than others, with a unbalanced load between machines and a
longer overall makespan, saving the waste of tool life.

To validate the proposed algorithm, production scenarios of 200 total
jobs composed of 1400 operations were generated. The operation process-
ing times were extracted from a triangular distribution with a minimum
value of 15 minutes, a maximum value of 391, and a modal value of 98.
The experimental scenarios were generated varying two factors: the num-
ber of different tools used in the machining cycles and the distribution
of the different types of tools in the machining cycles. Table 3.1 shows
the three distinct values for the first factor, with the central value being
representative of the case study. These values simulate scenarios in which
56, 75, and 94 tool types are used in the machining cycles. Three levels
were also determined for the second factor, with the central value always
representative of the case study. The three values represent the frequency
distribution of the specific tool type within the generated processing cy-
cles. A value of 00 is representative of a situation in which the use of tools
within the machining cycles is uniform, meaning that the generated op-
erations technological cycle presents shared tool among them. Figure 3.5
depicts the frequency distribution probability, where the type of tool is
represented on the x-axis and the frequency distribution on the y-axis.
On the other hand, both the 03 and 06 values represent a damped expo-
nential tool frequency distribution. However, the 03 value indicates a less
pronounced damped exponential distribution, meaning that it is closer to
a uniform situation than the distribution represented by the 06 value, as
shown in Figure 3.6.

To ensure the robustness of the proposed approach, the experimental
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Figure 3.5. Uniform tool utilization distribution - Tool Type Distribution
Scenario 00

Figure 3.6. Unevenly increasing tool utilization distribution Tool Type Dis-
tribution Scenario 03
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Figure 3.7. Damped exponential tool utilization distribution - Tool Type
Distribution Scenario 06

methodology involved generating a sufficient number of problems for each
combination of factors. For the proposed factor and level, with a full
factorial experimental plan 9 different scenario are identified. Specifically,
a generation problem algorithm has been built for generating 10 different
problems for each combination, resulting in a total of 90 runs. To evaluate
the proposed approach, the genetic algorithm discussed in Section 3.3 was
applied to each of the resulting scenarios, and the solutions were analyzed
to gain insight into the algorithm’s performance in terms of distribution
and resilience.

3.4.2 Results and Discussion

In this section, we present the most relevant results obtained from our
experiment. The results are shown through scatter plots, with the x-axis
representing the value of the objective function EUT and the y-axis repre-
senting the value of the objective function SX. As a reminder, the goal of
the proposed genetic algorithm is to minimize the weighted sum of these
two objective functions, obtaining a Pareto front of optimal solutions that
allow the decision-maker to choose among them the appropriate solution
depending on the situation at hand. The results will be presented in two
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steps: first, the results obtained by keeping the distribution of the tool
type constant while allowing the number of tools to vary; second, the re-
sults obtained by keeping the number of tools constant while observing
what happens when the distribution of the tool type varies.

Figures 3.8, 3.9, 3.10 show the first three distinct scenarios, respec-
tively: Figure 3.8 represents scenarios where the tool type distribution in
technological cycles is uniform; Figure 3.9 represents scenarios where the
imbalance is depicted in Figure 3.6; and Figure 3.10 represents scenarios
where the imbalance is depicted in Figure 3.7. The results show that as
the number of tools type increases, with the same distribution of tools
among the technological cycles, the Pareto front rises and the slope of the
front increase. This trend is repeated in all the various distribution sce-
narios analyzed, although it should be noted that this impact is stronger
in the situation with uniform tool distribution and gradually decreases in
the situations with increasing imbalance. This means that with the same
SX, the respective EUT value increases, making it more difficult to opti-
mize tool utilization as the number of tools increases. Conversely, as the
EUT remains the same, the imbalance between the machines increases
significantly (the SX value identified by the optimal solution increases).

From these results, we can highlight a practical conclusion: as the num-
ber of tool types required for machining operations increases, it becomes
increasingly complex to optimize machining cycles while minimizing the
makespan and safeguarding the tool life wastage. In such scenarios, it may
be more convenient to organize the FMS unit to use central tool ware-
house rather than decentralized on-board machine warehouse, to allow for
combined optimizations with respect to both the makespan (SX) and the
residual useful life of the tools (EUT ). This consideration is not necessary
if the distribution of tools in the machining cycles is uneven, as the gain
from centralizing the tool warehouse becomes significantly reduced with
increasing imbalance and the number of tools.

Finally, we focus on the results obtained when the number of tools
type is fixed and the distribution of tool types vary. Figures 3.11, 3.12,
3.13 depict, respectively, the three distinct scenarios: Figure 3.11 depicts
a scenario in which the number of tool type is at its lowest value (56),
Figure 3.12 depicts a scenario in which the number of tool type is 75, and
Figure 3.13 depicts a scenario in which the number tool type is 94. The
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Figure 3.8. Domain Solution - Uniform Tool Distribution [00]

Figure 3.9. Domain Solution - Unbalanced Tool Distribution [03]
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Figure 3.10. Domain Solution - Unbalanced Tool Distribution [06]

results show that, with a fixed number of possible tools to be used, as the
distribution of the tools between the technological cycles changes, better
results are obtained in scenarios with a large number of tools and a uni-
form distribution between the machines (i.e. solutions with decentralised
tool warehouse). This consideration becomes less important as the number
of different tools increases and reverses in scenarios involving 94 distinct
types of tools. On a practical level, we can conclude that if a small number
of tools are predominantly used in the technological cycles, it is advanta-
geous to use on-machine warehouse, while a centralised warehouse is more
advantageous in the case where the number of tools is large.

3.5 Conclusion

In this paper, a novel approach to address the Job Shop Scheduling
Problem in the context of Job Shop Flexible Manufacturing Systems with
the consideration of tool wear has been presented. The proposed approach
takes into account the residual useful life of tools conservatively estimated
by manufacturers and allocates a set of jobs with specific processing times
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Figure 3.11. Domain Solution - Fixed Tool Type at 56

Figure 3.12. Domain Solution - Fixed Tool Type at 75
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Figure 3.13. Domain Solution - Fixed Tool Type at 94

and tooling requirements on identical parallel machines. We introduced
two metrics to evaluate the scheduling decisions and optimize the schedul-
ing process, with the goal of maximizing tool utilization and minimizing
production makespan. To address the trade-off between these two objec-
tives, the proposed approach searches for a set of optimal solutions on the
Pareto front that offers the best possible balance between them, achieving
optimal local performance in terms of both makespan and tool utilization.
We implemented this approach with a customized genetic algorithm and
validated it on a real case study from a company operating in the aerospace
sector, which confirmed the effectiveness of the approach in increasing tool
utilization and reducing the makespan.

The results obtained from the considered experiment show that, as the
number of tool types increases, it becomes increasingly complex to optimize
machining cycles while minimizing the makespan and safeguarding tool life
wastage. In such scenarios, it may be more convenient to organize the FMS
unit to use a central tool warehouse rather than a decentralized on-board
machine warehouse to allow for combined optimizations with respect to
both the makespan and the residual useful life of the tools. However,
if the distribution of tools in the machining cycles is uneven, the gain
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from centralizing the tool warehouse becomes significantly reduced with
increasing imbalance and the number of tools.

The proposed approach has significant practical implications for the
manufacturing industry, particularly in the production of high-value ma-
terials such as those in the aerospace sector that require costly tools. By
optimizing tool utilization, the proposed approach can help reduce produc-
tion costs, improve production efficiency, and maintain competitiveness.
Additionally, in the production of small series products, the proposed ap-
proach can help meet customer demand by reducing the makespan while
improving tool utilization. Moreover, the solutions found by the proposed
algorithm can be chosen by the production manager by selecting the so-
lution that best satisfies the contingent requirement of the moment, for
example by choosing the one with the lowest makespan in hectic contexts
or the others that preserve tool useful life waste.

Future research may focus on extending the proposed approach to in-
clude more complex scheduling scenarios, such as considering the stochastic
tool life and the uncertainty of processing times. Moreover, combining the
proposed approach with other optimization techniques may lead to more
advanced algorithms and better performance. Finally, applying the pro-
posed approach to other manufacturing sectors and scenarios may provide
further insights into the effectiveness and efficiency of the approach.



Chapter 4
Exploiting the full potential of
I4.0 Technologies for Products
EOL Recovery Process in the
triple bottom-line of
Sustainability
4.1 Introduction

The manufacturing sector’s environmental impact is steadily growing,
and ambient pressures related to waste and resource consumption are in-
creasingly being examined as a result of sustainability concerns (Yusup
et al. 2014, Kayikci 2018, Jamwal et al. 2021). Manufacturing still remains
one of the world’s largest sources of contamination, and manufacturers
have been working hard to reduce their environmental impact (Khan et al.
2021). To help with this transition, factories may take advantages from
the recent advancements of Industry 4.0 (I4.0). Under these conditions,
I4.0 technologies offer interesting opportunities to address the challenges
of sustainability at the factory and value chain level. I4.0 should also
contribute to the environmental dimension of manufacturing sustainabil-
ity by reducing waste in value creation activities and promoting cleaner
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energy and material resources (Machado et al. 2020). Regarding the so-
cial sustainability dimensions, Industry 4.0 is expected to improve working
conditions and customer experience and create new job opportunities (Sar-
tal et al. 2020). As a results, a connection between the three dimensions
of sustainability and smart manufacturing emerged (Bai et al. 2020).

In the scientific literature there are several works that investigates this
connection. The Triple Bottom Line (TBL) of sustainability represents
the most widely accepted dimensions of sustainable manufacturing among
industrial communities, consisting of three dimensions: Social, Environ-
mental and Economic (Jamwal et al. 2021). Among them, Nicoletti Junior
et al. (2018) proposed a conceptual model to associate sustainability and
performance in a manufacturing system, taking into account all of the cor-
relations between the TBL concept’s dimensions. From the other side,
Machado et al. (2020) refers to sustainable manufacturing as the integra-
tion of processes and systems that can produce high quality products and
services using less and more sustainable resources (energy and materials),
being safer for employees, customers and surrounding communities, and
being able to mitigate environmental and social impacts throughout its
life cycle. With the integration of sustainable processes and resources,
different strands of Sustainable Smart Manufacturing has been developed,
with applications in different areas, such as in the supply chain, innova-
tive products and, among other, on the Product Life Management (PLM)
(Manavalan & Jayakrishna 2019).

The potential of I4.0 technologies is apparent in various aspects of
industrial operations, such as sustainability, smart products, End of Life
(EoL) and remanufacturing.

Kamble et al. (2018) propose a sustainable I4.0 framework that in-
cludes three main components: I4.0 technologies, process integration and
sustainable outcomes. The authors also suggest future research devel-
opments investigating the implementation of I4.0 technologies for better
man-machine and machine-to-equipment integration through the use of
sensors. Another important impact of these technologies is on the de-
sign of efficient supply chains, which through information gathered from
products themselves, logistics and production operations and a seamless
integration between the physical and digital worlds could further improve
product’s lifecycle permitting also a more effective and efficient product
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recovery at its End of Use (EoU) and/or End of Life (EoL).
Nowadays products are not exclusively composed of mechanical and

electrical parts, they have become complex systems that combine hard-
ware, sensors, data storage, microprocessors, software and connectivity ca-
pabilities Porter & Heppelmann (2014). Classifying smart products allows
a clearer their definition and application. The Raff et al. (2020) archetypes
are an example of the classification of smart products according to their
features.

Kerin & Pham (2020) identify Remanufacturing as a key strategy for
the full achievement of Circular Economy, which, in turn, represents an im-
portant research area for many companies worldwide and for our societies
as a whole. This “smart remanufacturing” review focuses on the reman-
ufacturing industry and the sustainable application of I4.0 enablers. The
results are used to create a framework that links to the research agenda
needed to fully achieve smart remanufacturing. Other authors have tried
to define the types of intelligent recovery options. Alcayaga et al. (2019)
detailed the characteristics that intelligent reuse, intelligent remanufactur-
ing and intelligent recycling must have in relation to smart products.

In light of the above, there are a lack of articles dealing with these
topics in the current literature. Few authors deal with smart products as
aggregation systems of innovative technologies. Recovery options exploit-
ing I4.0 tools are little studied in the literature.

According to these premises and within the outlined context, the first
aim of this work is to propose the novel concept of “Product 4.0” (P4.0).
This concept builds upon product archetypes and explores the augmented
capabilities of an intelligent product in a I4.0 environment. In fact, we
highlighted the aspect of the smart product with the use of I4.0 tools.
Furthermore, this paper has the aim of investigating the possibilities that
arise when recovering an intelligent product, at its EoU or EoL, in a I4.0
environment.

A further aspect of this work is to assess the impact that the introduc-
tion of such a Product 4.0 may have on society, specifically on the TBL
of sustainability (in terms of advantages in environmental, economic and
social aspect). To that end, a Causal Loop Diagram (CLD) model that re-
lates sustainability aspects to increased product demand is here proposed
and discussed in depth.
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The remaining part of this paper is as follows. Section 4.2 presents the
literature review of the I4.0 tools and the recovery options. After defining
Product 4.0 in section 4.3, deals with the recovery options with respect to
Product 4.0 in section 4.4. Section 4.5 deals with the proposed CLD and
the implications of P4.0; the benefits of the model are discussed in Section
4.6; Finally, section 4.7 draws conclusions and future development.

4.2 Literature Review

In this section, the relevant literature is presented in two parts. The
first part describes the I4.0 tools that can be used in smart products, and
the second part will analyse aspects of the different recovery options.

A notable starting point when dealing with so called Smart Products
and their possible classification is represented by the work carried out by
Raff et al. (2020). The authors classify smart products according to 4
archetypes based on 16 criteria/characteristics of the products themselves.
The proposed archetypes are classified as follows: Digital Product, Con-
nected Product, Responsive Product, Intelligent Product.

The so called smart products are the most used technological products
today. The capabilities of these products can be expanded by the inte-
gration of more advanced I4.0 tools and with the aspects of the different
end-of-life recovery options.

4.2.1 Suitable Industry 4.0 Technologies

From a literature review, we identified those advanced technologies
that could be included as additional features to the archetypes proposed
by Raff et al. (2020) and briefly described above. In particular, we found
out that the main tools are: Internet of Thing (IoT), Cloud Computing
(CC), Big Data (BD), Digital Twin (DT), Machine Learning (ML) and
Human-Machine Cooperation (HMC). The previous innovative tools and
technologies were chosen because they are the most representative for an
innovative product. Although the IoT technology was swiftly mentioned by
Raff et al. (2020), any other of the above cited technologies was explicitly
considered in the proposed archetypes.

In order to proper ascribe to the various archetypes the different I4.0
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tools, we will start this discussion from their very definition. For the IoT,
we adopt the same definition as Xu et al. (2014) who argues that virtual
‘things’ have virtual identities, physical attributes and virtual personali-
ties.

The BD technology has been largely investigated in scientific literature
and, among its different definitions, we consider that provided by Hashem
et al. (2015) who argues that Big Data is a set of techniques and technolo-
gies that require new forms of integration to discover great hidden values
from large datasets.

According to Mell & Grance (2011), CC can be defined as “a model for
enabling ubiquitous, affordable, on-demand network access to a range of
configured computing resources”.

Bottani et al. (2017) define the DT as a simulation technology available
for use in the real system, allowing the equipment’s self-adaptive behaviour.
The machine can simulate the different environment, establishing the best
decision to make in a particular situation

ML is a subject that studies how to use computers to simulate human
learning activities and to study methods of self-improvement of computers
to obtain new knowledge and new skills, identify existing knowledge and
continuously improve performance and results Wang et al. (2009). From a
practical point of view, machine learning allows automatic data processing
and can be considered an advanced analysis tool for intelligent production.

We decided to include also HMC as another important advanced tech-
nology that features an I4.0 environment. According to Pacaux-Lemoine
et al. (2017), HMC is a technology that allows to incorporate more and
more decision-making capabilities in both material (e.g. machines, prod-
ucts) and immaterial (e.g. production orders) elements, transforming them
into efficient assistance systems to help human beings improve their per-
formance.

Finally, Cyber Physical System (CPS) can be seen as systems of sys-
tems, which emerge through complex networking, integration of embedded
systems, application systems and infrastructures, made possible by human-
machine interaction Thoben et al. (2017).
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4.2.2 EoL Recovery Options

Literature reports on several different EoL recovery options for a generic
product. Morseletto (2020) grouped these options into ten recovery strate-
gies, including Recovery, Recycle, Repurpose, Remanufacture, Refurbish,
Repair, Reuse, Rethink, Reduce. Lee et al. (2001) considered only seven
recovery options, while distinguishing for recycling between a primary and
a secondary type. Sitcharangsie et al. (2019) in their review of key re-
generation activities grouped the recovery options into Reconditioning,
Dismantling/Disassembly, Refurbishment, Repair, Salvage, Incineration,
Resale, Cannibalisation. In addition, the authors interestingly classified
extant research papers, according to the level of decision, i.e., whether
the recovery option is applied to the entire product or components. De-
sai & Mital (2003), while tackling the disassembly problem, identified five
options for product recovery, in particular they assigned to each level of
disassembly also which elements could be recovered from the product itself,
i.e. product, module, part and material level.

For the purpose of this research, we decided to focus only on the main
EoL options, i.e. reuse, remanufacturing, recycling, cannibalization and
disposal. In accordance with the relevant literature, we adopted the fol-
lowing definitions for the recovery options mentioned above. Reuse is con-
sidered to be an operation whereby a few non-destructive improvements
are made in order to bring the product back to its initial state. Remanufac-
turing, on the other hand, is a more complex operation where the product
is disassembled and worn or broken components are replaced. Recycling is
the operation where raw materials are recovered and a complete conversion
is carried out. Disposal is the last possible operation, where nothing can be
recovered from the product and it is therefore thrown away. Finally, can-
nibalisation is the operation that allows us to recover from a product only
the components that are still functional and then reuse them on another
product as replacement components.

4.3 Conceptualization of Product 4.0

In a I4.0 environment, we argue that the product, as a whole, along
with its parts and components can “interact” with the various resources it
encounters during its lifecycle. These interactions turn out to be greatly
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enhanced or augmented by the implementation of I4.0 technologies. Need-
less to say, that this enhancement strongly depends upon the embedded
capabilities of the product and its parts and components.

As a consequence of the previous considerations and according to the
tools of I4.0, we can extend the archetypes of product of Raff et al. (2020)
in a I4.0 perspective (see Fig. 4.1). Based on the definitions previously
given, we decided to suitably attribute the I4.0 tools among the different
archetypes. In fact, the possibility to make different decisions in different
situations makes DT a suitable element for the fourth archetype, i.e. Intel-
ligent product. Depending on the definition of IoT and taking into account
that most of current products are equipped with Radio Frequency Iden-
tification (RFID), sensors and communication technologies Ivanov et al.
(2013), the archetype that could exploit at most this advanced technology
is the second one, i.e., Connected product. By taking into account the
considerations made about BD, we expect that Responsive product is the
archetype that could have more advantages stemming from BD technol-
ogy. It is worth noting here that, although the first archetype, i.e. the
Digital product, already has data archiving capability, the BD technol-
ogy has not been linked to it as the data involved in this case are not
complex or various. Still according to the definitions given above, we can
attribute the tools of CC in the third archetype and ML and HMC in the
fourth archetype. Once defined, categorized and imputed to the appropri-
ate archetype the various I4.0 tools in a separated way, it can be argued
that all these technologies epitomize what literature defines as CPS. This
object turns out to be the union of different technological systems, for this
reason we decided to group all the I4.0 tools within the umbrella term of
CPS.

Fig. 4.1, turns out to be an extension of the image originally proposed
by Raff et al. (2020) to pictorially represent the various archetypes of prod-
ucts. We give a three-dimensional representation of the various archetypes
by adding an axis, labelled as I4.0 Technologies, along which the inno-
vative tools and technologies of I4.0 are shown in relation to the various
archetypes. By jointly considering the capabilities of the fourth archetype
proposed by Raff et al. (2020), i.e. the Intelligent product, along with
the new ones available in the so called CPS while interacting in an I4.0
environment, we could introduce the new concept of Products 4.0.
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Figure 4.1. Extension of Raff et al. (2020) archetypes with I4.0 technologies
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As a consequence of the previous definition, we can argue that the Prod-
uct 4.0 concept involves not only the product itself but also the ecosystem
where the product life cycle takes place. In fact, it includes a smart prod-
uct that can communicate with humans and objects as well, having basic
hardware and intrinsic characteristics (sensors, actuators and connections)
and implementing I4.0 technologies (IoT, CC, BD, DT, ML and HMC).

The enhanced capabilities of Product 4.0 have the potential to deliver
several benefits during the product lifecycle. It can also effectively support
logistic and production activities and, in general, all the activities involved
from product’s conception to its EoU or EoL.

In this perspective, P4.0 may represent the hinge upon which circular
economy models could rest. In fact, it would lead to a better investigation
of product recovery options. In the next section we will investigate and
discuss how a P4.0 prototype could be recovered at the end of its life cycle.

4.4 Enhanced Recovery Capabilities of P4.0

In this section we will show and discuss how the Product 4.0 archetype
may heavily revolutionize and streamline the recovery process of a generic
product at its end of life. In fact, many factors still prevent the remanu-
facturing business from reaching its full development Vogt Duberg et al.
(2020) and one of these factors is the cumbersome inspection activity re-
quired to diagnose the product’s health status also identified as product’s
quality in remanufacturing jargon Ridley et al. (2019).

Traditionally, recovery operations start when the collected product re-
turns to the factory Gaspari et al. (2017), King et al. (2007), Ma et al.
(2011).

In order to optimise the recovery of the product, it must necessarily
pass through several stages to analyse and investigate its possible problems.
These steps are typically: Inspection, Cleaning, Analysis and Verification.
Most of these activities are time-consuming for the company involved in
the recovery operation.

This recovery process takes place if it is not possible to exploit the
product’s capabilities inherent to I4.0 technologies. Fig. 4.2 shows a pos-
sible flow chart for product’s collection that fully take advantage of I4.0
technologies. Under a P4.0 scenario the use of I4.0 tools and technologies
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allow us, in general, to reduce and/or greatly simplify many steps of the
recovery process if compared to that of “traditional” products. With the
capabilities inherent to P4.0, a smart product that interact with a smart
environment, we can take advantage of available technologies to collect
detailed information about product’s health even before it returns to the
factory for recovery purposes.

In general, it is possible to gather and exploit two types of data. A
first set of information is that pertaining the various products belonging
to the installed base and sent by products themselves to a cloud platform.
This data usually refer to the average behaviour of the products of the
installed base. A second set of information is the product-specific data
collected once the product enters the factory and, therefore, it is able to
communicate with the Industry 4.0 system. Thanks to the combined use of
these data sets, the diagnostic phase of the recovery process is noticeably
simplified and sped up, in fact there is no need to carry out the various
levels of inspection and problem analysis as we already know in advance
the health and usage status of the product, which can then go straight to
the cleaning stage.

As a consequence, Inspection and Analysis phases may not appear in
the flowchart of the recovery process. In order to identify the more ap-
propriate recovery option for the specific product, it is possible to make
use of product’s status and use data. Depending on product’s “health
state” and “use” parameters, the different recovery options can be properly
chosen. Once defined the product category, it is crucial to identify the
“use” parameters and “health state” to better address recovery operations.
Specifically, in the case of intensive use of the product and a good health
state, it would be viable to first cannibalize the still valuable components,
then materials recovery from parts and components, and, finally, the dis-
posal of remaining parts. If the “use” parameters and “health state” are
appropriate, product could undergo the reuse option provided that minor
repairs and replacements are carried out. If, despite the low values of “use”
parameters, the “health state” is not adequate, the product could conve-
niently undergo the remanufacturing process where it is disassembled at
component level, and relevant parts of the product are replaced.

It is worth noting that, because of the augmented capabilities of P4.0,
it could perform by itself the verification phase that conclude the reman-
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Figure 4.2. Example of a flowchart diagram of a recovery process exploiting
I4.0 technologies
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ufacturing process.
In order to show the potential of P4.0 in terms of its recovery process,

we provide the readers with a simple but effective example. We considered
here the case of a consumer electronics product, that is, a multi-function
laser jet printer. This kind of products are usually capable of and actually
share many information on product use and product performance with
Original Equipment Manufacturer (OEM) on the basis of sharing agree-
ments. These agreements are usually framed within a win-win Product
Service System logic and are mainly intended to gather information on the
installed base in order to deliver more customer value during the product
use and, at the same time, to allow the OEM to sell secondary products
and ancillary services. In our use case, both the aggregated information
about the installed base and the product-specific data may be used to
support a more efficient and environmental friendly recovery process.

In fact, some data related to product’s operation (e.g., number of
printed pages, number of scans on the glass) as well as data coming from
product’s event log (e.g., document feeder jam, paper jam, supplies status,
double feed error) could be put into relation with the general health state
of the product and its main modules, parts and components in a cause-
effect logic. It is worth noting that, in general, this type of products is
made of two types of modules, parts and components: the first type, such
as toner cartridges, drums and fuser, are to be classified as “consumables”
as they are purchased recurrently during product’s lifecycle as part of its
regular maintenance. Another type of parts, such as scan unit, transfer
module, sheet feeder, edge guides, electric motors and gears, imaging unit
are those more likely to be recovered from discarded products provided
that a reliable assessment on their status can be performed.

For example, a malfunctioning of the printer’s transfer module may be
signalled by an abnormal consumption of electrical power of its motors,
that can be obtained by minor product’s design changes as well as cheap
additional sensors to collect those data. While the data related to the
“use” parameters (i.e., the number of printed pages, number of scans on
the glass) could be already exchanged via a cloud platform during product’s
life-cycle, when the printer returns to the factory to be recovered, it is also
able to exchange stored data of its components with its environment. By
jointly exploiting the data related to “use” parameters and those stored in
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the printer, it is possible to assess the health state of its components in
a more reliable manner, thus better supporting the identification of the
more appropriate recovery options.

4.5 The Implication of Product 4.0 on Sustain-
ability

In order to assess the impact that the introduction of the Product
4.0 may have on the triple bottom-line of Sustainability, a Causal Loop
Diagram, which features the main relationships between the system pa-
rameters, has been exploited. The choice of the CLD is not casual as it
represents a diagram that aids in visualizing how different variables in a
system are causally interrelated and here used to present a clearer view
of the underlying mechanisms and their impact of the Product 4.0 on the
different aspects of sustainability (Zamagni 2012). To this end, we started
from the work by Onat et al. (2016) in which the authors tried a similar
approach for identifying the impact of the electric vehicles on the triple
bottom-line of sustainability. The authors, in fact, identified the keywords
of the three aspects of sustainability and created relationships among them.
Having applied this methodology to them in the case of electric cars, which
differ from traditional cars, they exploited their CLD in another field of
application. In this regard, our work starts from the considerations made
by Onat et al. (2016) and, exploiting the keywords and relationships they
identified, to assess the impact of the Product 4.0 compared to a normal
product.

The proposed CLD is presented in Fig. 4.3 and includes the main sub-
models and the causal relationships between each variable or submodel.
It should be stressed that the CLD is an overview of the observed system
where complex relationships are explained in a simplified form. As known,
a typical CLD consists of loops that can be reinforcing (an increasing im-
pact of a cause on an effect is an increase) or balancing (an increasing
impact of a cause on an effect is a decrease), while the causal link is repre-
sented by arrows and has a polarity that can be, respectively, positive (+)
or negative (-) (Inghels 2020).

In the proposed model, 6 Balancing loops and 3 Reinforcing loops have
been identified. The reinforcement and balancing loops are briefly ex-
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plained as follows:
Balancing loop 1, 2, 3

(1) Increased Market Demand of Product – Waste – Non-Renewable
Resource Consumption – Climate Change – Human Health Status –
Population – Increased Market Demand of Product

(2) Increased Market Demand of Product – Waste – Non-Renewable
Resource Consumption – Climate Change – Human Health Status –
Public Welfare - Increased Market Demand of Product

(3) Increased Market Demand of Product – Waste – Non-Renewable
Resource Consumption – Climate Change – Human Health Status –
Public Welfare – Population – Increased Market Demand of Product

The demand for new products on the market leads to climate-related
disadvantages. The increase in the demand for new products creates a
high level of consumer interest, but this increases waste. Very often prod-
ucts that are still in good condition are thrown away. This creates a bal-
ancing loop that affects the consumption of non-renewable resources for
the creation of new products. Climate change suffers great damage from
the consumption of these resources, and this also leads to human health
impacts, which affects the population through life expectancy. Climate
change degrades public wellness which in turn affects sales of new prod-
ucts; in fact a population that has a good level of wellness is more inclined
to buy new products. A low level of human health status negatively affects
public welfare, which can lead to a decrease in birth rate and therefore to
a reduced sale of products.

Balancing loop 4, 5, 6

(4) Increased Market Demand of Product –No-Renewable Resource Con-
sumption – Gross Domestic Product (GDP) – Public Welfare – In-
creased Market Demand of Product

(5) Increased Market Demand of Product –No-Renewable Resource Con-
sumption – Gross Domestic Product (GDP) – Public Welfare – Pop-
ulation – Increased Market Demand of Product
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(6) Increased Market Demand of Product –No-Renewable Resource Con-
sumption – Gross Domestic Product (GDP) – Employment – Pur-
chase Power – Increased Market Demand of Product

As the demand for new products increases, the consumption of non-
renewable resources damages the economy by reducing the growth rate of
GDP. This loss can lead to two different consequences, i.e. there could be a
reduction in public welfare through a change in income that would cause a
decrease in population, or there could be a loss of jobs that would decrease
the purchasing power of individuals. In balancing loop 5, any change in
public welfare affects population through birth rates. This impact can be
either reinforcing or balancing depending on income level.

Reinforcing loop 1, 2, 3

(1) Increased Market Demand of Product – GDP – Public Welfare –
Increased Market Demand of Product

(2) Increased Market Demand of Product – GDP – Public Welfare –
Population – Increased Market Demand of Product

(3) Increased Market Demand of Product – GDP – Employment – Pur-
chase Power – Increased Market Demand of Product

With the increase of demand for products and the consecutive sale of
those products, aggregate expenditures also increase. Increased consump-
tion accelerates economic growth through the contribution of industries
associated with the production and operation of products. This growth
has a reinforcing effect. In fact, as productive activities increase there
is an increase in employment by workers which increases the purchasing
power of individuals. To this there is an increase in public welfare through
individual income and thus an increase in population. Both public welfare
and employment change people’s demand for new products.

It is worth highlighting that the previous CLD represents the cause
effect relations for a generic product. In fact we want to analyze how the
increase in market demand for products influences and can be influenced
by the three aspects of sustainability. Once identified the relationships for
a generic product, this work aims to evaluate if and how these relationships
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are modified by the presence of new generation products, i.e. Product 4.0,
with enhanced inherent capabilities. Let us consider the previous CLD
with the addition of cutting-edge technologies: in fact, as we know from
the literature, smart products are becoming increasingly common in the
market, and their demand is growing by the day. This could result to an
increase of the demand for these products, which could be reflected in the
proposed CLD, affecting the proposed balance loops on the three aspects
of sustainability. In fact, Product 4.0 having the technologies and capabil-
ities would have a positive impact on the various aspects of sustainability
(economic, environmental and social benefits) that has to be investigated.
With sensors and data analysis capabilities that the Product 4.0 can do
throughout its useful life, it may helps us to analyze the product’s health
status while extending its useful life. The P4.0, in fact, has the potential
to monitor and keep track of its components and, then, to know if they
need repair, if they could be recycled or if they must be sent to land-
fill. This would greatly reduce technological waste that impacts climate
change. With the use of P4.0 we could go to recover even just the raw
materials of which it is composed, this leads us to have a reduction in the
consumption of non-renewable resources that impact on GDP. Having less
waste and less consumption of resources brings advantages both for the en-
vironment and the economy of the country. If there is less climate change
and GDP growth, public welfare increases, as people have better health
and more employment that allows them to have greater purchasing power
and therefore also increases the demand for new innovative products.

4.6 Discussion of CLD

Research shows that sustainability is a multifaceted problem. As al-
ready analysed, sustainability can be investigated on three main perspec-
tives: social, economic and environmental. As clearly stated in literature
and consistently represented in Fig 4.3, all the facets of sustainability are
strongly interacting either directly, by means of a direct link, or indirectly
by means of the identified loops. This latter type of interactions is the
more difficult to detect, but also the more important to investigate as they
may lead to unexpected dynamics of the system under consideration.

The complex interplay among the various variables involved in the sus-



4.6. Discussion of CLD

tainability concept suggested us to analyse the problem under a systemic
perspective, hence, it was decided to use a very effective graphical tool
that is essential for any System Dynamics analysis, that is, Causal Loop
Diagrams (Swanson 2002). In fact, the systemic analysis stemming from
the CLD of Fig 4.3 permits us to draw the readers’ attention on some
crucial aspects which are worth being discussed.

1. All the variables involved in one of the sustainability dimensions
can be interacting among each other and, more importantly, can
influence and be influenced by variables under the other dimensions.
This is the case, as an instance, of the environmental dimension that
has ‘Non-Renewable Resource Consumption’, ‘Climate Change’ and
‘Waste’ as its relevant variables. These variables clearly interfere but
have also not negligible impact on the economic dimension as well as
on the social dimension.

2. The presence of mutual influence among the various variables fea-
turing the sustainability aspects, allows us to identify several loops
which regulates the dynamics of the system as a whole. Unfortu-
nately, the final effect of these loops, without considering the effect
of new technologies like the analysed Product 4.0, is to: i) limit the
economic growth of our societies on the long period due to existing
balancing loops; ii) deteriorate the social dimension of sustainabil-
ity as a consequence of worst human health conditions, a diminishing
employment rate and cost cut on public welfare policies; and iii) pro-
duce irreversible damages to the natural environment mainly ascrib-
able to unrestrained waste generation and non-renewable resource
consumption.

3. The introduction of P4.0 in the proposed CLD is to be intended as a
sort of external variable which can be leveraged by the analyst while
performing scenario analysis. Hence, we assume that P4.0 can influ-
ence the dynamics of the system but not the other way around. In
this perspective, a future simulation model may be of help in devel-
oping what-if analysis in which the P4.0 variable can be used to play
different roles depending on the context. For example, the variable
P4.0 could be intended the amount of effort companies put into re-
design existing product families or designing new ones from scratch.
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In a similar fashion, the variable P4.0 could be used to represent the
economic incentive private companies or public institutions may give
to potential buyers on the market to purchase new generation prod-
ucts. P4.0, thanks to its positive effects on the three dimensions of
sustainability, may completely alter the dynamics of the system to-
wards more positive outcomes. In fact, P4.0, while permitting a more
environmental conscious life-cycle management, it does influence sus-
tainability also on the social and economic perspective. Beyond the
expected result of stimulating demand for new products, it can also
have an indirect effect by creating brand-new opportunities on the
job market related to new skills and professional figures. Moreover,
it can have a positive social impact by providing less affluent people
with access to new products and technologies, as in the case of con-
sumer electronics, through secondhand or secondary market options
as well as charitable organizations.

4.7 Conclusion

The first goal of this paper was to combine advanced industrial tech-
nologies with the product archetypes identified by Raff et al. (2020) in
order to propose the new concept of Product 4.0. To this aim, the tools
with the highest potential for implementation in smart products have been
analysed. This analysis identified as the main tools IoT, CC, BD, DT, ML
and HMC. The concept of Product 4.0 stems from the combination of the
I4.0 technologies with the fourth archetype proposed by Raff et al. (2020).

A second goal of this paper was to conduct an exploratory analysis
of product recovery scenarios in presence of a Product 4.0 prototype. In
particular, the most common product recovery options were presented.
We highlighted the potential advantages of recovering P4.0s in comparison
with those products not exploiting I4.0 technologies. An explanatory case
dealing with laser jet printer allow us to exemplify these benefits.

Finally, a graphical representation of the relationships that exist be-
tween sustainability aspects and increased product demand has been pro-
posed with the use of CLD technique. Aspects such as the importance of
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waste and consumption of non-renewable resources for the environmental
aspect, GDP for the economic, and public welfare for the social aspect
has been analysed. Within the proposed model, these elements are at the
centre of several hubs and we showed, how the demand for products is a
variable strongly influenced by the TBL of sustainability.

Following that, an innovative element that resulted in a variety of dif-
ferent balances has been added and discussed: the Product 4.0. In fact,
the addition of P4.0 may leads to a changes into the proposed relationships
that it may be useful to quantify. To this end, it should be noted that, as
such an innovative element as P4.0, with its inherent technological aspects
can bring about strong improvements, especially in the reduction of waste
and consumption of non-renewable resources. Reducing these aspects leads
to a double advantage, an increase in the welfare of the population and
an increase in global GDP. This benefit of allowing people to stay healthy
and have jobs translates into a further increase in demand for products,
probably innovative products.

Future development of this research could focus on the other phases
of Product Lifecycle Management, such as Beginning of Life (BoL) and
Middle of Life (MoL). With reference to the BoL, the main aspects of
product design, creation and verification could be analyzed. In fact, Prod-
uct 4.0, in order to deliver specified functionalities and to suitably interact
with its environment, has to be designed with proper hardware and soft-
ware features. A further aspect to investigate would be that of properly
addressing the design process in order to widen as much as possible the
recovery options to which Product 4.0 could undergo at its end of life.



Chapter 5
Conclusions

The technological advancement of the fourth Industrial Revolution
(I4.0) is bringing major changes to manufacturing and service industries
through the integration of advanced technologies, including Internet of
Things (IoT), Digital Twin (DT) and Cyber Physical Systems (CPSs).
The potential of I4.0 technologies is evident in various aspects of indus-
trial operations, involving all the facets of sustainability, with a special
focus on the role of maintenance, wear and tear and end-of-life product
recovery.

The possibility of leveraging Industry 4.0 technologies in different ar-
eas of production allows us to make better use of resources. For example,
IoT-enabled predictive maintenance can significantly improve the efficiency
of maintenance and repair programs, reducing downtime and extending
equipment life-cycle. Furthermore, the integration of DT and CPS can
enable more effective end-of-life product recovery systems, providing guid-
ance on the most valuable components to be recovered and/or recycled. As
an instance, IoT sensors can be used to monitor the condition of products
and their components (even in real time), anticipating component failures
or product malfunctioning and, therefore, permitting a better product’s life
cycle management as well as, for example, reducing the need for inventory.

All the above considerations led us to the analysis of 4.0 tools’ capa-
bilities, particularly in the area of maintenance. In fact, recognizing a
machine’s maintenance need before its imminent failure can assist in pre-
venting further damages to the machine and,as a consequence, in avoiding



to repair more substantial parts of the product. Additionally, it may be
helpful to eliminate or shorten the waiting period while the damaged por-
tion is being repaired.

In fact, the situation of a flow shop production system with N paral-
lel machines was analysed in Chapter 2, where a production system con-
sisting of non-identical, failure-prone machines was considered. It was
assumed that the time to process a single job, the time to carry out a
corrective or preventive maintenance task, and setup times were determin-
istic. Machines were supposed to fail randomly according to a Weibull
distribution. Hence, the time to process a given job-maintenance sequence
on a certain machine was random. We considered the problem of find-
ing the job-planned maintenance sequence that minimizes the expected
makespan or the expected earliness tardiness penalties, evaluated taking
into account the expected value of job-maintenance sequence processing
times on each machine. With this objective, a model was developed for
multi-machine problems for planning preventive maintenance taking into
account a stochastic environment. To address this problem, we proposed
two new meta-heuristic algorithms obtained by modifying a standard Ge-
netic Algorithm (GA) and Harmony Search (HS).

In this research we solved two minimisation problems separately: (i) the
minimisation of makespan; (ii) the minimisation of the ETP. Considering
the practical relevance of the problem and its complexity, we developed and
tested two meta-heuristic algorithms for solving the FSSP in a reasonable
time, finding practicable and fulfilling schedules in industrial applications.
Specifically, we modified two widespread meta-heuristics: GA and HS. To
evaluate the performance of the proposed algorithms, we performed a se-
ries of computational experiments. For small problems, we compared the
two heuristics with an exhaustive search method, which can find the opti-
mal solution. The computational results showed the time benefits of using
these heuristics. Moreover, to make a comparison between the proposed
meta-heuristic algorithms, we considered scenarios with different schedul-
ing complexities and instance sizes. The obtained results showed that, as
the size of the problem increases, GA tends to perform better than HS
(Branda et al. 2021).

After having planned maintenance activities of machines as if they
were jobs to be scheduled, the thesis work focused on a further aspect



of operation planning. Once extended the useful life of the machines by
appropriately planning their operations, we decided to adopt the same logic
to their components, particularly to those equipment and tools that are
worn out due to continuous use. In the literature, few researches addressed
the problem of tool wearing, nevertheless it is essential to analyse this
aspect, especially when the tools are expensive. The aim was to try to
extend tool life by determining the sequence of jobs to optimise tool useful
life. Better use of tools means determining a sequence of jobs having fewer
tools consumed almost completely (90% of tool life), rather than many
tools consumed partially.

In Chapter 3, we proposed an approach which took into account the age
of the tool and the duration of its operation to adjust the extension rate.
The problem addressed by this approach was the modelling and allocation
of a set of jobs with specific machining times and tooling requirements on
a set of identical parallel machines. Decisions to be made included the
allocation of jobs to machines and the allocation of tools on each machine.
The purpose of the proposed algorithm was to identify the best possible
sequencing of jobs allocated to different machines in order to maximise the
utilisation of the tools’ useful life, while avoiding having tools that remain
with a residual useful life that cannot be used for the next operation and
at the same time avoiding excessively increasing the overall makespan of
the scheduled production plan.

This is a typical multi-objective optimisation problem, which seeks to
minimise the wasted useful life of the tools (by shifting production to a
single machine that can sequence operations efficiently) and minimise the
overall production time of the batch (by temporally balancing the jobs on
all available parallel machines, without having to discard tools that could
still be partially used). To evaluate the effectiveness of the proposed ap-
proach, we conducted a series of experiments on a real-world dataset. The
results of these experiments showed that our approach outperforms exist-
ing methods in terms of tool utilisation and waste reduction. Furthermore,
our approach was able to adapt to changes in demand and production re-
quirements, making it highly flexible and scalable. In conclusion, the paper
aimed to find an optimal solution to the Identical Parallel Machines Prob-
lem with Tooling Constraints through the use of a genetic algorithm. The
algorithm aimed to minimize the two target variables which measure the



balancing of machines and the effectiveness of tool utilization respectively.
As said, this was a multi-objective optimization problem where the trade-
off between the two objectives will be analyzed through the Pareto front, a
set of optimal solutions that are non-dominated and offer a better balance
between the two objectives.

Both in the case of machine maintenance and tool wear, ‘solutions’
to prolong product’s useful life were evaluated. Preventive methods were
proposed to avoid or rather delay the end-of-life phase. However, sooner or
later, the product will approach its end of life which requires to implement
possible recovery options.

In fact, after having analysed two examples of useful life extension,
the thesis also aimed to explore the concept of a smart product, which,
by exploiting Industry 4.0 technologies, can gather information during the
use stage of its life cycle and, therefore, enhance recovery options (Chap-
ter 4). The research then focused on the development of a ‘Product 4.0’
model, which combines the concept of a smart product with typical I4.0
tools. This type of product can implement a monitoring system to opti-
mise the product’s recovery options. In fact, during the various phases of
the product life cycle, the information gathered could be exploited to un-
derstand the product’s ‘health’ status in real time. This information, both
at the end-of-life and during operational phases, will be used to extend the
product’s useful life and to improve its end-of-life recovery process.

The implementation of Product 4.0 brings about a significant shift in
the way products are managed at the end of their life. The traditional
recovery systems were found to be inefficient and often result in the waste
of valuable resources. This is why the study aimed to explore the impact
of the new technologies on the end-of-life recovery phases and to propose a
new and improved solution. The proposed flowchart took into account the
health status and level of use of the product to determine the best recov-
ery option. The health status was evaluated by examining the individual
components of the product and determining their functionality. The level
of use was analyzed to determine the extent to which the product has been
utilized and its overall wear and tear.

The new technologies integrated in Product 4.0 allowed us for the effi-
cient and accurate analysis of these parameters, leading to a more informed
decision on the type of recovery that should be pursued. This ensures that



the product is handled in a way that is sustainable and maximizes the
recovery of valuable resources. Whether the product is to be recovered,
recycled, reused or discarded, the new flowchart helps to ensure that the
right decision is made. Overall, the work highlights the importance of
implementing new technologies in product management and the positive
impact they can have on the environment and the efficient use of resources.

Finally, a further objective of this work was to assess the impact of
Product 4.0 on sustainability, using the Triple Bottom Line (TBL) con-
cept. To this end, we decided to use a Causal Loop Diagram (CLD) as an
analysis method. The CLD provides a visual representation of the inter-
connections between system variables and their impact on different aspects
of sustainability, allowing a clearer understanding of the mechanisms in-
volved in the introduction of smart products. The analysis focused on the
impact of technology products on the three main aspects of sustainabil-
ity, namely the economic, social and environmental dimensions. The CLD
helped us to demonstrate the relationship between the different variables,
such as increased efficiency, reduced waste and improved sustainability,
and their overall impact on TBL. In conclusion, after the CLD analysis,
it was shown how the inclusion of P4.0 within the sustainability stream
can benefit waste reduction, reduction of non-consumable resources while
increasing market demand for new products. The study thus provided
a comprehensive examination of the sustainability impact of technology
products, highlighting the importance of considering all three dimensions
of sustainability in the development and implementation of new products.
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