
Università degli Studi di Napoli “Federico II”

Università di Camerino Consiglio Nazionale delle Ricerche

Optimal parent Hamiltonians for many-body
systems

Dottorato di ricerca in Quantum Technologies
Ciclo XXXV

Anni 2019/2022
Coordinatore: Prof. Francesco Tafuri

Settore scientifico disciplinare FIS/03

Dottorando:
Davide Rattacaso

Tutori:
Prof. Rosario Fazio

Prof. Procolo Lucignano

https://www.unina.it
http://www.unicam.it 
https://www.cnr.it


Optimal parent Hamiltonians for many-body systems, © January 2023

Author:
Davide Rattacaso

Supervisors:
Prof. Rosario Fazio

Prof. Procolo Lucignano

Institute:
Università di Napoli Federico II, Naples, Italy

ii



D E D I C AT I O N

To my parents

iii





C O N T E N T S

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivations and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 parent hamiltonians for many-body states . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Local and engineerable Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Do we really need full state tomography? . . . . . . . . . . . . . . . . . . . . . 9
2.4 Inverse problem and Hamiltonian learning . . . . . . . . . . . . . . . . . . . . 10
2.5 Time-independent inverse problem: reconstructing symmetries . . . . . . . . 11

2.5.1 Correlation functions and symmetries . . . . . . . . . . . . . . . . . . . 11
2.5.2 Local symmetries from local measurements . . . . . . . . . . . . . . . 13

2.6 Ground state inverse problem: reconstructing PPHs . . . . . . . . . . . . . . . 15
2.6.1 The thermodynamic approach . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 The Bisognano-Wichmann theorem . . . . . . . . . . . . . . . . . . . . 17
2.6.3 Frustration-free PPHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Dynamic inverse problem and Hamiltonian learning . . . . . . . . . . . . . . 19
2.7.1 Short-time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.2 Long-time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.3 Active Hamiltonian learning . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 An overall point of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 optimal generator for time-dependent states . . . . . . . . . . . . . . . 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Exact dynamics generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Optimal dynamics generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Definition of the cost functional . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Minimizing the cost functional . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Accessibility of the states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Driving the ground state of the Ising model in time-dependent transverse field 36

3.5.1 Exact generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Optimal local generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Driving the ground states of the p-spin model in time-dependent transverse
field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 Generating a path of ground states . . . . . . . . . . . . . . . . . . . . 42
3.6.2 Generating interpolations of ground states . . . . . . . . . . . . . . . . 44

v



3.7 Optimal Hamiltonian VS counterdiabatic driving . . . . . . . . . . . . . . . . 46
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 learning the hamiltonian of a time-dependent state . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Hamiltonian learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 The IPR as a measure of ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Information and IPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.1 Cross-resonance gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6.2 Random 2-body Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.3 IBM Q FakeAthens processor . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 inverse quantum annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 From quantum annealing to inverse quantum annealing . . . . . . . . . . . . 66
5.3 The inverse dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Implementing the IQA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 IQA with Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Transition to the adiabatic regime . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Adiabatic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Non-projected adiabatic dynamics . . . . . . . . . . . . . . . . . . . . . 79

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 non-stabilizerness dynamics in many-body systems . . . . . . . . . . . 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Non-stabilizerness of integrable spin chains . . . . . . . . . . . . . . . . . . . 84

6.2.1 Ground states non-stabilizerness . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Non-stabilizerness after a quantum quench . . . . . . . . . . . . . . . . 86

6.3 Loschmidt echo and entanglement dynamics . . . . . . . . . . . . . . . . . . . 87
6.4 T spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Non-stabilizerness dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1.2 Learnability of many-body systems . . . . . . . . . . . . . . . . . . . . 99
7.1.3 Implementing the IQA on a quantum computer . . . . . . . . . . . . . 100
7.1.4 Solving the quantum marginal problem through IQA . . . . . . . . . . 100

appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



a fubini-study and hilbert-schmidt metric and qcm . . . . . . . . . . . . 101

b details of uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . 103

c translationally invariant gaussian states . . . . . . . . . . . . . . . . . 107
c.1 Basis definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
c.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
c.3 Anderson pseudo-spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
c.4 Normalization of the basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
c.5 From quadratic fermions to non-interacting speudo-spins . . . . . . . . . . . 110
c.6 Commutator matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

d integrable spin chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
d.1 Basis definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
d.2 From interacting spins to non-interacting speudo-spins . . . . . . . . . . . . . 114
d.3 Pauli strings expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii





1
I N T R O D U C T I O N

1.1 motivations and goals

Given a quantum state, the inverse problem consists in the determination of a realistic
Hamiltonian, called parent Hamiltonian, that captures the physics of the system, i.e. a
Hamiltonian having such state as an eigenstate or ground state or, in the case of time-
dependent states, generating the observed time evolution. We call realistic a Hamiltonian
consisting in a superposition of a set of interactions fulfilling some constraint that depend
on the system under exam, such as being local or engineerable.

The search for efficient strategies for finding parent Hamiltonians represents an im-
portant step towards the development of novel quantum technologies, especially in this
noisy intermediate-scale quantum era. This search is indeed intimately related to quantum
state control, verification, and benchmarking of quantum devices, and design of annealing
schedules. More specifically, the ability to learn a Hamiltonian from the results of meas-
urements, and therefore from a total or partial knowledge of the system’s state, is a ne-
cessary skill for verifying the correct functioning of new quantum devices. Furthermore,
knowing which Hamiltonian is compatible with a given evolution allows us to tune the
control parameters of these devices to control their state. This allows for the implementa-
tion of states that serve as building blocks for quantum algorithms, such as graph states,
or that encode important characteristics of condensed matter systems, such as the Jastrow-
Gutzwiller wave functions.

In the context of many-body quantum systems, where the space of states increases ex-
ponentially in the system size while the space of realistic Hamiltonians increases polyno-
mially, defining new methods to build suitable parent Hamiltonians represents a major
challenge. The necessary effort to reach this goal is strictly related to stimulating theor-
etical questions in the context of quantum information. For example, it can help us to
understand the relationship between the information content of a given quantum state
(correlation length, entanglement, complexity...) and the system resources in terms of in-
teractions (range and weight of the interactions, size, and oscillations of the couplings...).

From a computational point of view, the need to reconstruct the system’s Hamiltonian is
faced with the exponential growth of the complexity of this task in the size of the systems
under examination. As a consequence, the greater the computational advantage we can
obtain through these quantum devices, the greater the difficulty we encounter in verifying
their correct functioning and controlling their state. For this reason, in this era of rapid de-
velopment of quantum technologies, it is necessary to increase efforts to develop optimal
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2 introduction

strategies for searching for parent Hamiltonians. In recent years, numerous optimization
strategies have been proposed that apply to different situations, from benchmarking to op-
timal control, from measurements on time-independent states to the study of the dynamics
of observables.

In this thesis, we propose optimal strategies to search for realistic parent Hamiltonians
for time-dependent states. As we will see, the possible applications of this approach range
from quantum state control to the selection of optimal strategies for learning. Further-
more, by considering the adiabatic limit of our strategy, we can dynamically obtain parent
Hamiltonians from their ground states, swapping the role of the Hamiltonian and the state
in quantum annealing.

We can divide our original contributions to the search for parent Hamiltonians in three
parts, corresponding to three different but strictly related points of view on this problem

• Finding an optimal generator for a time-dependent state.

We propose a method to define a realistic time-dependent Hamiltonian capable of
generating a target time-dependent state by minimizing a suitable cost functional
on a space of allowed interactions. This approach can be exploited to drive many-
body states in synthetic quantum systems and to define a geometric measure of the
accessibility of a path of states depending on the locality of allowed interactions. We
also show the direct relationship between our result and shortcuts to adiabaticity.

• Learning the Hamiltonian of a quantum device from a time-dependent state.

We extend the optimization approach to Hamiltonian learning of quantum devices,
showing how it is possible to reconstruct the unknown Hamiltonian couplings of a
synthetic quantum system from measurements on a single time-dependent quantum
state and proving that the ergodic behavior of time-evolution is a resource for
Hamiltonian learning.

• Adiabatic limit of the time-dependent inverse problem.

We consider the adiabatic limit of the time-dependent inverse problem: given a path
of many-body quantum states, we want to find a local Hamiltonian having the target
states as ground states, i.e., a proper parent Hamiltonian. This task generally is expo-
nentially hard in the system size. In analogy with standard adiabatic quantum com-
putation, we define evolution in the space of local Hamiltonians that, in the adiabatic
limit, generates an approximated proper parent Hamiltonians for the target states.
Remarkably, this evolution can be integrated in a polynomial amount of time in the
system size, allowing an efficient reconstruction of proper parent Hamiltonians.

An additional part of this thesis work, is dedicated to the evolution of non-stabilizerness
in integrable spin systems, with a focus on the transverse-field Ising model. This part is not
connected directly to the rest of the thesis. Non-stabilizerness is a resource for quantum
computation, encoding the inability to efficiently simulate a given evolution using a clas-
sical computer through the stabilizer formalism. It represents, along with entanglement, a
necessary ingredient for quantum speed-up. We estimate how non-stabilizerness evolves
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after a quantum quench in subsystems of a large quantum system. This allows to evalu-
ate the Hamiltonian’s ability to generate this resource, and to elaborate on the connection
between this ability and the integrable or chaotic behavior of the system. Finally, we study
how dynamics affects the additivity that characterizes non-stabilizerness. This additivity
seems to be connected to the presence of area-law entanglement, a property that disap-
pears ballistically during evolution. In this way, we examine the interplay between entan-
glement and non-stabilizerness, which seems to underlie the impossibility of efficiently
simulating quantum algorithms using classical computers.

1.2 thesis outline

The remaining part of this thesis is structured as follows:

In Chapter 2 , we define the many-body quantum inverse problem [1]. We introduce the
notion of realistic Hamiltonians and its connection with locality and engineerability.
Given a many-body quantum state, we introduce the space of symmetries, i.e. the
space of realistic Hamiltonians for which the state is an eigenstate, and the space of
proper parent Hamiltonians, having the state as a ground state. Finally, we survey
recent contribution in literature about the inverse problem, with a focus on the con-
struction of realistic parent Hamiltonians from eigenstates and from ground states.
Furthermore, we review some important contributions to the inverse problem for
time-dependent state and related topics, such as Hamiltonian learning and quantum
optimal control.

In Chapter 3 , we illustrate the first original contribution of this work. Following [2], we
define an engineerable time-dependent parent Hamiltonian capable of driving an ini-
tial state through a target time evolution. We analyze the problem from a geometric
point of view, introducing a measure for the accessibility of the target path of states
and showing connections with shortcuts to adiabaticity.

In Chapter 4 , we extend results from the previous chapter to Hamiltonian learning,
where the time-dependent state is actually implemented on a synthetic quantum
device and the goal is to reconstruct the system Hamiltonian. Following [3], we show
that the tentative of reconstructing the Hamiltonian is successful when the system
state ergodically explores the Hilbert space: ergodicity is a resource for Hamiltonian
learning.

In Chapter 5 , we face the reconstruction of local Hamiltonians from their ground state. To
reach this goal, we introduce a novel and efficient approach called inverse quantum
annealing [4], where the proper parent Hamiltonian is reconstructed through an
adiabatic dynamic in the space of local operators.

In Chapter 6 , we investigate the non-stabilizerness evolution in an integrable spin
chain [5]. In this way, we estimate the capability of the Hamiltonian of generating
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states that are a resource for quantum computation. We also argue on how this cap-
ability is connected with the integrability of the system. Finally, we introduce a meas-
ure of localization of non-stabilizerness and examine how locality is destroyed by
time evolution.

In Chapter 7 , the main results of this work are summarized, with a particular focus on
open questions and future perspectives.

1.3 contributions

The results of this thesis are based on the following original contributions:

• Davide Rattacaso, Patrizia Vitale, and Alioscia Hamma. Quantum geometric tensor
away from equilibrium. Journal of Physics Communications, 4(5). (2020) [[6]].

• Davide Rattacaso, Patrizia Vitale, and Alioscia Hamma. Towards a Geometrization
of Quantum Complexity and Chaos. In: Lecture Notes in Computer Science. Springer
International Publishing. (2021) [[7]].

• Davide Rattacaso, Gianluca Passarelli, Antonio Mezzacapo, Procolo Lucignano, and
Rosario Fazio. Optimal parent Hamiltonians for time-dependent states. Physical Re-
view A, 104(2). (2021) [[2]]. Discussed in Chapter 2.

• Davide Rattacaso, Gianluca Passarelli, Procolo Lucignano, and Rosario Fazio. Op-
timal Parent Hamiltonians for Many-Body States. In: Bayat, A., Bose, S., Johannesson,
H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. Springer,
Cham. (2022) [[1]]. Discussed in Chapter 3.

• Davide Rattacaso, Gianluca Passarelli, and Procolo Lucignano. High-accuracy
Hamiltonian learning via delocalized quantum state evolutions. Quantum, 7(905).
(2023) [[3]]. Discussed in Chapter 4.

• Davide Rattacaso, Gianluca Passarelli, Angelo Russomanno, Giuseppe Santoro, Pro-
colo Lucignano, and Rosario Fazio. Optimal parent Hamiltonians for time-dependent
states. Parent Hamiltonian searching by inverse quantum annealing. (In preparation) [[4]].
Discussed in Chapter 5.

• Davide Rattacaso, Lorenzo Leone, Salvatore F.E. Oliviero, Procolo Lucignano, Ros-
ario Fazio, Alioscia Hamma. Non-stabilizerness dynamics in quantum spin chains. (In
preparation) [[5]]. Discussed in Chapter 6.



2
PA R E N T H A M I LT O N I A N S F O R M A N Y- B O D Y
S TAT E S

2.1 introduction

Many-body quantum systems are characterized by fascinating emerging behaviors, such as
spontaneous symmetry breaking and long-range entanglement, that can not be efficiently
simulated by classical computers. The idea of using synthetic quantum systems to simulate
generic many-body quantum systems was proposed for the first time in a pioneering work
by Feynman [8]. At the same time, it has been shown that the computational complexity
of several problems can be exponentially reduced by implementing quantum algorithms
on synthetic quantum systems [9]. Motivated by this close connection between many-body
physics and quantum computation, a tremendous amount of work has been put forward
in recent years to produce increasingly tunable artificial quantum systems, where a variety
of observables can be measured and interaction couplings can be controlled with great
precision [10–13].

Some of the most promising quantum platforms are based on trapped ions [14–18] or
Rydberg atoms [19, 20]. These systems use electric and magnetic fields to confine and
manipulate atoms, which can be used to encode and process quantum information. Super-
conducting circuits are another promising platform for quantum devices [21–23]. These cir-
cuits use superconducting materials to create microwave cavities that can trap and control
individual photons. Superconducting circuits are often used to build quantum computers
and other quantum devices, such as quantum sensors and quantum communication sys-
tems. Finally, photonic systems use light to encode and process quantum information [24].
Photons can be transmitted over long distances without being absorbed or scattered, which
makes them an attractive choice for building quantum communication systems.

Once quantum devices are realized, we need to verify their proper functioning. This task
is called quantum verification [25–30] and is crucial in the field of quantum computing and
other quantum technologies, as quantum systems are prone to errors and can be difficult
to evaluate and control. There are several techniques that are involved in verification, such
as quantum state tomography, quantum process tomography, randomized benchmarking,
and Hamiltonian learning. This latter consists in inferring the Hamiltonian generating the
evolution of the systems from a collection of experiments on the systems, each of them
ends with the measurement of certain observables [31–37].

5



6 parent hamiltonians for many-body states

The capability of controlling the Hamiltonian of a quantum system does not directly
imply the ability to prepare and control an arbitrary quantum state with high precision.
This is an important problem in quantum computing and other quantum technologies, as
the performance of these systems depends on the ability to control their quantum state.
Moreover, there are several many-body states that one wants to realize because of their
properties, as for example Laughlin states[38], and would like to understand how to gen-
erate. In general, quantum state control can be obtained through adiabatic driving, or
through the application of suitable quantum gates and measurements. The task of find-
ing the control fields that will produce the desired evolution of the quantum state in the
shortest amount of time, or with the least amount of resources is called optimal quantum
control [39–51].

The need for controlling the state of these engineered systems through an optimal con-
trol strategy and the need for verifying their actual functioning by Hamiltonian learning
are both related to a fundamental problem, the so-called quantum inverse problem. The
inverse problem refers to the problem of reconstructing an unknown quantity from obser-
vations or measurements. In the context of quantum physics, the inverse problem consists
in reconstructing the parent Hamiltonian of a quantum system from measurements of
the system’s dynamics. This generally allows us to understand the underlying physical
mechanisms of a quantum system and to predict its behavior.

In this work, we deal with the search for parent Hamiltonians in many-body systems,
consisting of numerous interacting particles capable of exhibiting a wide range of behavi-
ors, including phase transitions and emergent collective phenomena. In this context, the
inverse problem can be more challenging to solve because of the complexity of the system,
which is reflected by the space of possible configurations whose dimension increases ex-
ponentially in the system size. At the same time, the amount of available resources, i.e.,
the size of the space of realistic Hamiltonians that can act on the system, increases poly-
nomially either due to fundamental constraints like locality or because of technological
limitations. As can be deduced from this premise, some fundamental aspect of many-body
quantum theory and quantum information can be investigated in close relation with the
inverse problem. Examples include whether a complete description of the system state
is required to determine the physical laws governing the system, how many models are
compatible with a set of measurements, whether a quantum system’s high energy beha-
vior may be deduced from its time-independent state or from its low energy behavior [52],
or which portion of the Hilbert space is actually accessible in a world governed by local
interactions [53]. All these questions are related to the search for parent Hamiltonians in
some form, and will have a pivotal role in this work.

We focus our attention only on the inverse problem for unitary evolutions, anyway
extensions to open quantum systems, consisting in the search for an unknown Lindbladian,
have been recently proposed [54, 55]. To assort the several recent papers that investigated
the problem with different methods and purposes, we can consider three statements of the
problem, corresponding to different physical situations.
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• In the first case, the system state is time-independent, being an eigenstate of the
unknown Hamiltonian. Therefore, one wants to reconstruct a realistic Hamiltonian
starting from one of its eigenstates [56–61]. We call this Hamiltonian symmetry of
the state. Finding symmetries is an important step towards Hamiltonian learning for
time-independent systems and a fundamental resource to perform quantum state
preparation through adiabatic processes.

• In the second case, one tries to reconstruct a local Hamiltonian from one of its ground
states [62–65]. We refer to this class of Hamiltonians as proper parent Hamiltonians
(PPH). In low-temperature systems the capability of reconstructing PPHs allows to
prepare target states [66–69] and to reconstruct system interactions.

• In the latter case, one tries to reconstruct the parent Hamiltonian for a time-
dependent state. The time-dependent state can be not an eigenstate of the parent
Hamiltonian, that can be thought as the generator of the evolution. In this form, the
inverse problem has been especially investigated because of its relation with Hamilto-
nian learning and quantum state control [2, 70, 71].

In the first sections of this chapter, we illustrate some preliminary aspects of the inverse
problem in many-body physics. The constraints that characterize realistic and engineer-
able Hamiltonians that are candidate parent Hamiltonians are described in Section 2.2. In
Section 2.3 we wonder if a complete description of the state of the system is necessary
to reconstruct its parent Hamiltonian. Finally, in Section 2.4 we analyze the relationship
between inverse problem and Hamiltonian learning. Successively, we briefly survey the re-
cent literature about the different forms of the problem. Section 2.5 is devoted to discussing
the search for local or engineerable symmetries, while techniques for the reconstruction of
PPHs are illustrated in Section 2.6. In Section 2.7 we focus on the search for generators
of quantum dynamics and its relation to Hamiltonian learning and quantum state control.
Based on the illustrated results, in Section 2.8 we propose an overall point of view on the
inverse problem as a constrained optimization problem.

2.2 local and engineerable hamiltonians

In large quantum systems, numerous constraints on possible interactions drastically limit
the set of Hermitian operators representing realistic Hamiltonians. Some of these con-
straints are general, being intimately related to fundamental physical properties such as
the principle of locality or the thermodynamic stability of matter[72]. Other constraints,
such as symmetries and interaction range, depend on the considered system and the fea-
tures of its constituents, for example, Rydberg atoms [19, 20] or superconducting trans-
mons [21–23]. In practice, effective Hamiltonians representing systems in condensed mat-
ter or engineerable quantum devices can be written as the span of a small set L of Her-
mitian operators representing some elementary interactions. Since the identity operator
only evolve a quantum system by a physically meaningless phase factor, from now on we
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will assume that the set L does not include the identity operator. This is equivalent to ask
that operators in L, and consequently any considered Hamiltonian, are traceless.

In condensed matter systems, along with the symmetries, locality represents the most
significant constraint: elementary interactions happen only between bodies within a finite
distance l, called interactions range, that does not depend on the number of bodies. If
bodies, as usually happens, are scattered in the space, this means that each of them can
only interact with a finite number of the other ones. In this way, the number of elementary
interactions remains linear in the system size.

Another ubiquitous constraint in many-body systems is the existence of finite interac-
tions weight w. An interaction has weight w if it can not be written as the linear superposi-
tion of n-bodies interactions with n < w. The vast majority of condensed matter Hamiltoni-
ans are low-energy effective Hamiltonians of electromagnetically interacting electrons and
protons Hamiltonians, where the interactions have weight 2. As a consequence, weight 2 in-
teractions are very common in condensed matter. Having a Hamiltonian where the weight
of elementary interactions scales with the system size, as it happens for a randomly chosen
Hermitian operator, is unrealistic. Due to constraints on interactions weight, the number
of elementary interactions is at most polynomial in the system size.

Figure 2.1: The Chimera graph that represents the qubit connectivity of D-Wave hardware. Each
circle represents a different qubit and each line represents an interaction between qubits.
Image from Ref. [73]

What about synthetic quantum systems, such as solid-state quantum circuits, trapped
ions and photonic or atomic systems? Each of these devices is characterized by a fixed
set of tunable interactions that can be used to simulate the effective Hamiltonians of con-
densed matter systems [14, 74, 75], to engineer quantum annealers capable of attaching NP-
hard problems [76–80], or to build the fundamental gates needed for universal quantum
computation [81]. In many cases, such as in quantum computers, all the interactions are
designed to have weight 2 and range 2, since adjacent qubits CNOT gates and single spin
gates are sufficient to arbitrarily approximate any unitary evolution [9]. In other cases, such



2.3 do we really need full state tomography? 9

as in quantum annealing, the capability to realize all-to-all long-range interactions is fun-
damental to achieving important goals, such as finding solutions to the traveler salesman
problem [80] or set covering problems [73]. In a large system, where realizing this kind
of interaction is impossible, a compromise is made by resorting to effective long-range
interactions [82] or to optimal device typologies such as the Chimera graph in D-Wave
devices [83], which is shown in Figure 2.1. At any rate, all these synthetic quantum sys-
tems are ultimately characterized by some tunable interactions that are polynomial in the
system size for large systems.

All these constraints can be taken into account considering a vector subspace of the
Hermitian operators, spanned by the realistic interactions in L, as the space of realistic
Hamiltonians in which parent Hamiltonians must be searched. Other constraints, that are
not taken into account in this work, can affect the couplings associated with the inter-
actions in L. The most important examples in this direction are the upper bounds on
the magnitude of the couplings and on the rate at which they can change in time. These
bounds reflect the experimental impossibility of generating signals with an arbitrarily large
amplitude or frequency. At the same time, the tunable Hamiltonians acting on synthetic
systems are effective Hamiltonians, that well approximate the device behavior only when
the control fields are in a suitable range.

2.3 do we really need full state tomography?

Although the original formulation of the inverse problem consists in reconstructing a par-
ent Hamiltonian from full knowledge of a quantum state, in most cases, one can collect and
manage only partial information about the system. In Hamiltonian learning, for example,
this is because performing a full reconstruction of the state, i.e., a state tomography, requires
measuring an exponential number of observables in the system size. This requirement re-
flects the exponential number of degrees of freedom that define a many-body quantum
state. Analogously, representing a generic quantum state on a classical computer requires
exponential memory. The characterization of the actual functioning of quantum devices
without resorting to a complete tomography is investigated in many cases in Ref. [53] and
represents a fundamental step towards the realization of these devices. For this reason, in
several applications, one aims to reconstruct the Hamiltonian without state tomography
or, in other words, without the full knowledge of the state.

The possibility of reconstructing the parent Hamiltonian(s) from partial knowledge of
the state is ultimately related to the locality (or to the engineerability) constraints that
make the space of realistic Hamiltonians polynomial in the system size. As a consequence,
a polynomial amount of information about the state determines the Hamiltonian. In some
cases, the knowledge of the expectation values of a polynomial set {Oi} of observables
is sufficient to identify the unknown Hamiltonian, even if this does not imply that we
are aware of this set in advance. However, since we often deal with local Hamiltonians,
the set of local observables is a good candidate for this aim. This choice gives different
results based on the specific inverse problem, i.e., the search for symmetries, PPHs, and
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generators. A more sophisticated approach to the search for an optimal set of observables
involves active learning strategies and will be introduced in the next section.

As argued in Refs. [60, 61], the possibility of reconstructing a time-independent parent
Hamiltonian, i.e., a symmetry or a PPH, from local expectation values seems to be related
to the existence of a unique solution for the quantum marginal problem [62, 84, 85], i.e. the
determination of a quantum state starting from its local expectation values. The stationary
behavior of a quantum state indeed implies the conservation of both local and non-local
expectation values. Hence, if non-local expectation values can be determined from the
local ones, the stationary behavior can be verified. As we are going to show in Section. 2.6,
this is always possible if the state is the non-degenerate ground state of some local PH.
Accordingly to this observation, in Refs. [60, 61] the authors observe that the capability of
reconstructing Hamiltonian from their time-independent state decreases when the energy
level of the state increases.

When the inverse problem has a unique solution, it is also possible in principle to re-
construct Hamiltonians from local expectation values of time-independent states. How-
ever, previous applications of this approach in the literature are characterized by strong
assumptions, such as the applicability of the Bisognano-Wichmann theorem [64, 65], or
by computationally hard tasks, such as the minimization of extremely complicated cost
functions [60, 61]. This behavior is consistent with the quantum marginal problem: even
if some states are completely determined by local expectation values, reconstructing these
states can be exponentially hard in the system size.

The situation changes drastically in the time-dependent inverse problem, in which one
aims to find the Hamiltonian that governs the observed evolution. In this setting, it has
been shown [86] that a polynomial number of expectation values, i.e., the local expectation
values, is generally sufficient to reconstruct a local Hamiltonian with arbitrary precision,
without resorting to a computationally hard data post-processing. This is ultimately due
to the Lieb-Robinson bound, showing that the evolution generated by local Hamiltoni-
ans propagates information at a finite velocity. Starting from this bound, the authors of
Ref. [86] have shown that the error committed when approximating the evolution of local
expectation values as a function only of other expectation values does not depend on the
system size. This happens even though the Hamiltonian norm depends on the system size.
As a consequence, the effect of a local Hamiltonian on the evolution of local operators
only depends on local operators and can be quantified by measuring the corresponding
observables to infer the system Hamiltonian.

2.4 inverse problem and hamiltonian learning

Hamiltonian learning inherits most features, challenges, and techniques from the inverse
problem, to the point that it can be considered as the secondary topic of this thesis. There-
fore, it is fundamental to clarify here the conceptual differences between these two research
fields and their main consequences.
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We presented the inverse problem as the reconstruction of the system Hamiltonian from
its state or, in some cases, from partial information about this state. In Hamiltonian learn-
ing instead, the source of information is not the system state, but an entire quantum device
whose dynamics is governed by the unknown Hamiltonian. This device can be seen as a
black box, on which some operations - state preparation, unitary operators, time evolution,
and measurements - can be performed to infer the internal mechanism. The experimenter
freely chose the functions to perform and collects information about the system. In other
words, he is an active agent.

The most straightforward consequence of this freedom is that one can prepare several
initial states, and solve the inverse problem simultaneously for all these states to collect
faster the information about the Hamiltonian. In this way, methods originally intended
as solutions to the inverse problem for a single state can be improved for Hamiltonian
learning [70, 71].

Besides the freedom in state preparation, if we consider also the freedom in evolution
time, unitary operations, and measurements, we end up with a vast collection of queries
that can be executed on the device to collect information. In this context, the choice of
the minimum set of queries capable of maximizing the amount of information becomes a
fundamental challenge both for the experimenter and the quantum information theorist.
Indeed, while in quantum experiments optimal management of resources is essential to
avoid the need for unrealistic execution times, in quantum information theory the search
for an optimal set of queries allows for the investigation of quantum advantage, as exem-
plified from Ref. [87] in Section 2.7.

2.5 time-independent inverse problem : reconstructing symmetries

In the field of Hamiltonian learning, a valuable goal is to reconstruct the system Hamilto-
nian from measurements on a time-independent state. At the same time, finding the
Hamiltonian that makes a given state time-independent is a fundamental step towards
implementation of such state. For pure quantum states, this is equivalent to the search for
symmetries: given a state |ψ⟩, we look for the realistic Hamiltonians for which |ψ⟩ is an
eigenstate.

In this section, we briefly summarize some important results in literature about this topic.
Firstly, we show that the space of symmetries can be efficiently and exactly reconstructed
starting from the knowledge of the correlation functions between the elementary interac-
tions in the Hamiltonian [56–58]. Finally, we show how symmetries can be approximately
reconstructed also using only local expectation values [59–61].

2.5.1 Correlation functions and symmetries

In the context of Hamiltonian learning, where the state is already implemented on the
quantum device, correlation functions can be efficiently measured. Other relevant cases in
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which correlation functions are easy to calculate are Gaussian states, where one can exploit
Wick’s theorem, and matrix product states [88].

The key point in reconstructing symmetries from correlations is that a realistic Hamilto-
nian H = ∑i hiLi, with Li ∈ L, is a symmetry for the state |ψ⟩ if and only if the variance of
H on |ψ⟩ is zero [56, 57]:

⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2 = 0.

Replacing H = ∑i hiLi in the latter equation, we obtain

∑
ij

hihjCij = 0, (2.1)

where
Cij := ⟨ψ|{Li, Lj}|ψ⟩ − 2⟨ψ|Li|ψ⟩⟨ψ|Lj|ψ⟩ (2.2)

is a semi-definite positive matrix. We call this matrix, which has a central role in the inverse
problem, quantum covariance matrix (QCM).

When the coefficients hi of a Hamiltonian are in the kernel of the QCM, the variance is
zero and, ultimately, the Hamiltonian is a symmetry. Being elements of a matrix kernel, the
symmetries form a vector space: linear combinations of symmetries are in turn symmetries.
We can easily define a basis for this vector space: given a basis n(k)

i for the kernel of the
QCM, each symmetry can be written as

S = ∑
k

skSk,

where Sk := ∑i n(k)
i Li are realistic Hamiltonians. Moreover, if the vectors n(k)

i are ortho-
gonal for the standard scalar product, {Sk} is an orthogonal basis for the Hilbert-Schmidt
product (A, B) ≡ Tr(AB):

Tr (SkSl) = ∑
ij

n(k)
i n(l)

j Tr
(︁

LiLj
)︁

∝ ∑
ij

n(k)
i n(l)

j δij ∝ δkl .

Studying the kernel of the QCM is not the only way to proceed. For example, in Ref.[58],
it has been shown how parent Hamiltonians can be recovered from the kernel of the non-
connected correlations matrix C′

ij := ⟨ψ|Hi Hj|ψ⟩. This is because that authors do not look
for a traceless Hamiltonian. Anyway, beyond this formal difference, the two methods are
practically equivalent.

One of the most successful aspects of these kernel-based approaches is that the size of the
involved matrices, depending on the number of operators in L, is polynomial in the system
size. As a consequence, also the reconstruction of kernels requires a polynomial amount
of time. This makes searching for symmetries very efficient once the local correlations are
known.

A non-empty kernel is a fine-tuning condition for any matrix, since a small arbitrary per-
turbation easily changes the eigenvalues of kernel elements. As a consequence, in practical
applications, the QCM is unlikely to have a non-empty kernel. In Hamiltonian learning in-
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deed, any small error in measuring correlation functions destroys the matrix kernel, while
in the artificial construction of local symmetries for the preparation of an arbitrary target
state the existence of this kernel is exceptional. In these cases, one can look for optimal
symmetries, which are the local Hamiltonians associated with the minimum eigenvalue of
the QCM. The meaning of this optimality depends on the context: in Hamiltonian learning,
this kind of solution is optimal for some likelihood estimation, while in state preparation
the obtained Hamiltonian is optimal because that it minimizes the state evolution. In both
cases, the optimal solution is the one that minimizes the infidelity between |ψ⟩ and the
infinitesimal time evolution |ψ + dtψ⟩ generated by the unknown Hamiltonian H.

To prove this unified point of view, we need to introduce a measure of the infinitesimal
infidelity between states. This is the so-called Fubini-Study length [89] of the difference
between states, defines as lFS(dtψ) ≡ ⟨dtψ|dtψ⟩ − ⟨dtψ|ψ⟩⟨ψ|dtψ⟩. The Fubini-Study length
and the corresponding metric have a pivotal role in quantum information theory and, as
we show in the following chapters, in the inverse problem. If we relate the time derivative
of the state to the Hamiltonian couplings as |dtψ⟩ = −i ∑i hiLi|ψ⟩, the Fubini-Study length
becomes

lFS(dtψ) = ∑
ij

Cijhihj

Hence, minimizing this length ultimately resort to looking for the minimum eigenvalues
eigenvectors of the QCM.

2.5.2 Local symmetries from local measurements

The previously illustrated methods are based on the knowledge of non-local expectation
values. However, one could ask if there is a way to reconstruct local symmetries from the
knowledge of local expectation values. A possible approach has been proposed in Ref. [59],
in which one starts from the Ehrenfest equation for the evolution of the expectation values
of a set of local operators {Ok} generated by the Hamiltonian H = ∑i hiLi:

∂t⟨ψ|Ok|ψ⟩ = i ∑
j

hj⟨ψ|[Lj, Ok]|ψ⟩.

Once we define the commutator matrix Kik = ⟨ψ| − i[Lj, Ok]|ψ⟩, this equation can be written
as

∂t⟨ψ|Ok|ψ⟩ = ∑
i

hiKik. (2.3)

When a state is time-independent for the Hamiltonian H, the expectation values of the
local operators Ok do not evolve and the LHS of the last equation becomes zero. There-
fore, the coefficients of each symmetry correspond to zero-eigenvalue eigenvectors of the
matrix K and optimal solutions can be obtained by looking at the minimum-eigenvalue
eigenvectors of the correlation matrix KTK. However, there is a caveat: Hamiltonians that
only affect non-local expectation values are in the kernel of the commutator matrix even
though they are not symmetries. We call these Hamiltonians false symmetries. Indeed, while
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the evolution generated by a symmetry does not change a quantum state, i.e., each expect-
ation value is conserved, the evolution generated by a false symmetry does not change the
state locally, i.e., local expectation values are conserved but non-local ones could change.
The existence of false symmetries depends on the fact that the evolution of non-local expect-
ation values generally is not a function only of the local expectation values.

However, the authors of Ref. [59] have shown for some relevant examples that, when the
set of measured observables Ok is sufficiently enlarged, this approach is able to effectively
distinguish real symmetries. This is equivalent to increment the number of constraints on
the Hamiltonians to eliminate false symmetries from the kernel.

What happens if we enlarge the set {Ok} until it becomes a basis of the Hermitian op-
erator space? In this case, Eq. 2.9 is equivalent to the Schrodinger equation, where the
density operator ρ = |ψ⟩⟨ψ| of the state is represented as a vector. The components of
this vector on the basis {Ok} are defined through the Hilbert-Schmidt product, hence they
coincide with the expectation values ⟨ψ|Ok|ψ⟩ = Tr(ρOk). In this case, the couplings in
the kernel of the commutator matrix K correspond to all the Hamiltonians that exactly
generate the target evolution. On the other side, the couplings in the kernel of the QCM
C correspond to all the Hamiltonians having the state as an eigenstate. To show the equi-
valence of these two definitions we prove that, when {Ok} is an orthonormal basis for the
Hermitian operators, the matrix KTK coincides with the QCM C:

(KTK)ij = ∑
k

KkiKkj = ∑
k
⟨ψ| − i[Li, Ok]|ψ⟩⟨ψ| − i⟨[Li, Ok]|ψ⟩

= ∑
k

Tr (−i[ρ, Li]Ok)Tr
(︁
−i[ρ, Lj]Ok

)︁
= −Tr

(︁
[ρ, Li][ρ, Lj]

)︁
= ⟨ψ|{Li, Lj}|ψ⟩ − 2⟨ψ|Li|ψ⟩⟨ψ|Lj|ψ⟩ = Cij,

where in the second line we exploited the cyclic property of the trace and the completeness
of the basis {Ok}. As a consequence of the last equality, the kernels of the QCM and the
commutator matrix coincide.

We have shown that local expectation values may contain sufficient information to re-
construct symmetries. The method of Ref. [59] is a clear example in this direction. At this
point, one could ask if more computationally sophisticated methods can be used to elim-
inate false symmetries without using non-local measurements. This was proposed and
analyzed in Refs. [60, 61]. As stressed by the authors, such an approach must be possible
if the marginal problem for the considered state has a unique solution. At the same time,
we know that finding this solution generally is a computationally hard task, hence we can
anticipate a similar behavior for the reconstruction of symmetries.

To reach their goal, authors of Refs. [60, 61] reduce the search for symmetries to the
search of proper parent Hamiltonians. Indeed, if H = ∑i hiLi is a symmetry for |ψ⟩, |ψ⟩ is
the ground state of the non-local Hamiltonian H̃2, with

H̃(h⃗) = H − ⟨ψ|H|ψ⟩1 = ∑
i

hi(Li − ⟨ψ|Li|ψ⟩1).
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Afterwards, they attach the PPH reconstruction problem by only knowing local expectation
values. For this reason, this approach is illustrated in the next section.

2.6 ground state inverse problem : reconstructing pphs

We have described the search for the local symmetries of a given quantum state. In some
cases, it is more desirable to find a local proper parent Hamiltonian (PPH) such that the
state |ψ⟩ is its ground state. Such a Hamiltonian, when it exists, can be a precious tool in
quantum state preparation. For example, t can be exploited to implement |ψ⟩ by cooling
down a device in which the PPH is implemented, or by adiabatically driving states by
implementing the corresponding PPHs. Analogously, the reconstruction of PPH allows
learning the Hamiltonian of a low-temperature system through measurements on its state.

Such as the search for symmetries, also the search for PPH does not generally have a
unique solution. For an interacting spins system, a trivial example is given by the product
state | ↑ . . . ↑⟩, whose PPH can either be the single-particle Hamiltonian H1 = −∑i σz

i or
the ferromagnetic Ising-like Hamiltonian H2 = −∑i σz

i σz
i+1. As symmetries form a vector

space, we can linearly combine many solutions of the inverse problem to obtain a new
solution. The question, here, is whether that can be done for PPHs. First of all, PPHs are
a subset of symmetries, thus the search for PPHs can be simplified by first reconstructing
the space of symmetries. In Ref. [57], the authors have identified PPH among symmetries
via exact diagonalization, an approach that requires a huge computational cost for large
systems. A major problem is that the set of PPH is not a vector space. As a simple example,
we may notice that if H is a PPH for |ψ⟩, the same does not hold for −H, which has |ψ⟩ as
the most excited eigenstate. As a consequence, we can not identify a vector basis for this
set. In particular, it can be shown that the set in exam is a convex cone, that is if H1 and H2

are PPHs, also
H(α, β) = α[βH1 + (1 − β)H2]

is a PPH for each α > 0 and β ∈ [0, 1]. The fact that the set of PPH is a convex cone
gives an important insight into the difficulty of its reconstruction: while the identification
of the space of symmetries is obtained by finding a finite number of vectors - a basis -, a
convex cone is identified by its extreme points, that can be infinite even if the cone lies in
a finite-dimensional space.

As briefly illustrated, the search for PPHs is harder than the search for symmetries,
and, while symmetries can be easily found by looking at the kernel of the QCM, checking
if a symmetry is a PPH in principle requires diagonalization. Since such an approach
is impractical for large systems, alternative methods have been proposed in the last few
years. In this section, we illustrate some of these methods. The first one [60, 61], designed
for arbitrary states, represents the state as a low-temperature Gibbs state of the unknown
Hamiltonian. This approach does not require strong assumptions on the state but can be
computationally hard in most cases. The second approach [64, 65] instead is more efficient,
being independent of the system size, but is based on a specific Ansatz - the applicability
of the Bisognano-Wichmann theorem - that holds only in some cases. The last approach
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illustrated in this section instead is based on the strong assumption that the unknown
Hamiltonian is frustration-free [62]. In recent work, we present a novel approach inspired
by adiabatic quantum computation, capable of finding a not frustration-free local PPH in
polynomial time for generic non-critical many-body states. This method is illustrated in
Chapter 5 of this thesis.

The different approaches to local PPH reconstruction share a common feature: they only
require the knowledge of local expectation values. In this case indeed, unlike that for sym-
metry reconstruction, one can easily prove that the marginal problem has a unique solution.
In particular, if some state is the non-degenerate ground state of a local Hamiltonian, it is
fully determined by its local expectation values. Indeed, if |ψ⟩ is the unique ground state
for some local Hamiltonian H = ∑i hiLi, it has to be the unique pure state for which the
expectation values of the Li’s are ⟨ψ|Li|ψ⟩, otherwise it will exist another state |ψ′⟩ with
the same energy, since ⟨ψ|Li|ψ⟩ = ⟨ψ′|Li|ψ′⟩. We can conclude that:

• Local expectation values of non-degenerate ground state fully determine its PPHs.

• States that can not be distinguished by local measurements are degenerate ground
states of the same PPHs. The GHZ states |GHZ⟩± = | ↑ . . . ↑⟩ ± | ↓ . . . ↓⟩ on
an N spins system are an example in this direction: one can easily check that all
the m-spins observables with m < N have the same expectation values for these
states. As a consequence, there is no local PPH having |GHZ⟩+ as the unique ground
state. Note that, |GHZ⟩+ and |GHZ⟩− can be degenerate ground states for the same
Hamiltonian, for example the Ising Hamiltonian ∑ σz

i σz
i+1.

2.6.1 The thermodynamic approach

The thermodynamic approach proposed in Ref. [60] is based on the fact that, if |ψ⟩ is the
unique ground state of some local Hamiltonian H = ∑i hiLi, one can define a thermal
density matrix that converges to |ψ⟩ for a sufficiently large inverse temperature β:

lim
β→∞

e−βH

Tr
(︁
e−βH

)︁ = |ψ⟩⟨ψ|. (2.4)

This equation relates the Hamiltonian couplings to the state. Since the free parameters of
the Hamiltonian are only the coefficients hi associated with local operators, the expectation
values of local operators on |ψ⟩ can be sufficient to determine H. In practice, one checks
the convergence of the Gibbs state to |ψ⟩⟨ψ| through the convergence of local expectation
values:

lim
β→∞

Tr
(︁

Lie−β ∑i hi Li
)︁

Tr
(︁
e−β ∑i hi Li

)︁ = ⟨Li⟩. (2.5)
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This condition can be interpreted as a constraint on the PPH couplings. Therefore, authors
of Ref. [60] define an optimal PPH as the minimum of the cost function

fβ(h⃗) ≡ ∑
i

⎛⎝⟨Li⟩ −
Tr
(︁

Lie−β ∑i hi Li
)︁

Tr
(︂

e−β ∑̃ ihi Li

)︂
⎞⎠2

+ Tr

(︄
∑i hiLie−β ∑̃ ihi Li

Tr
(︁
e−β ∑i hi Li

)︁ )︄ (2.6)

for large values of β, where the first term of fβ optimizes the condition in Eq. (2.5), while
the second term, ensures that the Gibbs state is the ground state of H.

The main obstacle in finding an optimal PPH through this method comes from the
evaluation of the cost function, which, depending on the exponential of the Hamiltonian,
can be exponentially hard in the system size. Supervised learning with a neural network
has also been adopted in Ref. [61] to improve the evaluation of the cost function. In this
work, the neural network is trained with randomly chosen coefficients hi for the PPH and
with the corresponding ground states expectation values of the operators Li. The authors
show that supervised learning can be exploited to select appropriate initial points for
minimization.

As anticipated in the previous section, these methods are originally implemented to
search symmetries. However, as shown in Ref. [61], the more excited the initial state |ψ⟩ is
for its symmetry H, the more difficult it to reconstruct H from local expectation values.

2.6.2 The Bisognano-Wichmann theorem

A promising approach to finding PPHs has been suggested in Refs. [64, 65]. Given a family
of trial Hamiltonians, the authors propose as an Ansatz the applicability of the Bisognano-
Wichmann (BW) theorem. This theorem allows writing the reduced density matrix of a
ground state as a function of the Hamiltonian in the corresponding reduced Hilbert space.
As a consequence, the complexity of estimating the reduced density matrix only depends
on the dimension of the reduced space, and not on the entire system size. At this point, an
optimal PPH can be easily calculated by minimizing the distance between this matrix and
the reduced density matrix of the input state |ψ⟩, that only depends on local expectation
values. Since the BW theorem holds in the context of relativistic quantum field theories,
this approach is particularly significant for trial Hamiltonians whose low-energy physics
is well described by a relativistic theory. Remarkably, some of these Hamiltonians gen-
erate physically relevant phenomena such as quantum criticality, topological matter, and
quantum ferromagnets [64].

In order to exploit the BW Ansatz for spin models, local operators {Li} are written as
{Or,α}, where r points to the lattice site and α labels the local spin operator - e.g. σx

r σx
r+1 or

σ
y
r σ

y
r+1-. The trial Hamiltonian is written as

H = ∑
r,α

hr,αOr,α.
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In short, the BW ansatz states that the reduced density matrix of the Hamiltonian H on
a half space - for example, the sites with r > 0 in a linear lattice - is

σBW(H) =
e−HBW

Tr (e−HBW)
,

with
HBW = β ∑

r>0,α
rhr,αOr,α, (2.7)

for some value of β called inverse entanglement temperature. This ansatz is very similar to
Gibbs representation of the state given in Eq. 2.4, where here β is an inverse entanglement
temperature. However, the state σBW is a reduced density matrix and it is related to the
Hamiltonian acting only on a given region of the lattice, as expressed in Eq. 2.7.

The inverse method consists in exploring the space of local Hamiltonians, defined by
their couplings hr,α, in order to minimize the relative entropy

f (h⃗) = Tr (ρ log (ρ))− Tr (ρ log (σBW(H)))

between the BW state σBW(H) and the reduced density matrix of the input state |ψ⟩ on
the half space. When this entropy vanishes, the reduced density matrix ρ of |ψ⟩ is equal to
σBW(H) and, if the BW ansatz holds, |ψ⟩ is a ground state for H. The minimization of f (h⃗)
can be performed via gradient descend, so one has to evaluate the derivatives ∂ f

∂hr,α
, which

only depend on the expectation values of the local operators for ρ and σBW(H).
One of the most promising aspects of this method is that in some cases [65] the BW

ansatz can be used to evaluate the density matrix of a sub-lattice whose extension does
not depend on the size of the entire system, instead of the density matrix of the half-
space. For these cases, the difficulty of performing the gradient descend on f (h⃗) does not
increases with the system size.

2.6.3 Frustration-free PPHs

Before concluding this section, let us briefly analyze the category of frustration-free (FF)
PPHs. An Hamiltonian is FF is it can be written as a sum of terms such that the ground
state of the full Hamiltonian is the ground state of each individual term. In other words,
the global ground states are also local ground states. Hence, there is no frustration (energy
increase) when all the terms in the Hamiltonian are combined.

A simple way to reconstruct FF PPHs is illustrated in Ref. [62]. The authors start by
reconstructing local PPH HX for the target state, such that HX is an operator that acts non-
trivially only on a finite-size subset X of the many-body lattice - for example, only on pairs
of neighboring spins. As we will see, constructing these PPHs is very simple both from a
conceptual and computational point of view. The main problem of the Hamiltonians HX

is that their ground states are exponentially degenerate in the system size. Since we know
that a convex combination of PPHs is a PPH, at this point we can define frustration-free
PPHs as the convex cone spanned by all the HX.
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The Hamiltonians HX for the state |ψ⟩ can be defined as the projectors on the null space
of the reduced density matrices of |ψ⟩ on X. This condition is equivalent to a system of
three equations for HX. First of all, one needs that HX acts non-trivially only on X, in
equations:

HX = TrX(HX)⊗ 1X,

where TrX is the partial trace with respect to the complement of X. Moreover, HX has to
be a projector, hence

H2
X = HX.

In this way, we can be sure that the eigenvalues of HX are 0 or 1. At this point, |ψ⟩ is a
ground state for HX only if

⟨ψ|HX|ψ⟩ = Tr (TrX(HX)TrX(|ψ⟩⟨ψ|)) = 0.

The conditions above can be checked in polynomial time also for a large quantum system
once one knows the local expectation values, which is equivalent to knowing the reduced
density matrices. At this point, all the FF PPHs are easily found as convex combinations
of the Hamiltonians HX.

Despite its simplicity, this approach has two important limitations. The first one is that
when a state is sufficiently entangled its reduced density matrices have all nonzero eigen-
values, so the null space of these matrices is empty and there are no FF PPHs. As a con-
sequence, this approach is suitable only for states with small entanglement such as MPSs,
for which an analogous method has been proposed [63]. The second limit is that many
physically significant local Hamiltonians, for example, the Ising Hamiltonian in transverse
field, are not FF proper PPHs for their ground states.

2.7 dynamic inverse problem and hamiltonian learning

The possibility of reconstructing a Hamiltonian from the evolution of the system state
opens beneficial perspectives on quantum state control and Hamiltonian learning. In the
first case, one wants to find an engineerable time-dependent parent Hamiltonian that can
drive a quantum state along a target evolution [2], while, in the second case, one wants to
know the Hamiltonian that is responsible for the dynamics of the system [70, 71, 87]. Ana-
logously, in benchmarking quantum analog devices [25–30], a possible problem consists
in verifying if the Hamiltonian that is effectively evolving the system corresponds to the
Hamiltonian that we are trying to implement.

In Hamiltonian learning a time-dependent state has been actually implemented in a
quantum system [70, 71, 87], hence an exact solution of the inverse problem always exists.
This is not true for a generic quantum state |ψ(t)⟩, whose evolution could be impossible
to generate through a local Hamiltonian. When this is the case, we look for an optimal
Hamiltonian, that is, a local Hamiltonian that generates an evolution as close as possible
to the target state |ψ(t)⟩ [2]. We focus on this problem in Chapter 3 of this thesis, while
this section is devoted to reviewing Hamiltonian learning techniques.
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Here, we present three different approaches aiming to reconstruct Hamiltonians from
measurements in evolving systems. Indeed, results of measurements can be arranged
to constrain the Hamiltonian couplings. All these methods suppose that the unknown
Hamiltonian is time-independent, hence measurements at different times can be exploited
as different constraints on the same Hamiltonian. Another shared feature of these ap-
proaches is the possibility of preparing, measuring, and evolving different initial states.
This freedom, which characterizes the Hamiltonian learning protocol, is exploited to fur-
ther increase the number of constraints on the unknown Hamiltonian.

2.7.1 Short-time evolution

In Ref. [70], the authors aim to learn the couplings of a time-independent Hamiltonian
H = ∑i hiLi by measuring the short-time evolution of a set of local observables {Ok}.
This approach can be seen as the time-dependent version of Ref. [59], where the authors
reconstruct symmetries of a time-independent state.

Measurements are repeated for a collection {|ψα⟩} of easy-to-implement initial states.
For each state, the short time evolution of local expectation values is governed by Eq. 2.3,
that defines a collection of constraint on the Hamiltonian corresponding to the different
observables Ok. Considering all the states, we have a large set of constraints expressed by
the system of equations

∂tokα = ∑
j

hjKj,kα, (2.8)

where ok,α = ⟨ψα|Ok|ψα⟩ and Kj,kα = ⟨ψα|i[Lj, Ok]ψα⟩. In experiments, this system of con-
straint has never an exact solution due to the statistical error that characterizes expecta-
tion values and to the error in calculating derivatives from expectation values at times 0
and dt. Therefore, one resorts to the least square methods, considering the minimum of
∥∂tok,α − ∑j hjKj,kα∥2 as the best guess for the unknown Hamiltonian.

The estimated Hamiltonian is affected by uncertainty, that depends on the system size
through the number of local operators Ok that one has to measure. The scaling of the error
with the system size is one of the most important figure of merit in Hamiltonian learning.
About this, through this approach, the authors prove two points that are significant for
the dynamical inverse problem in general. Firstly, if the initial states |ψα⟩ are separable,
local expectation values and local correlations are sufficient to solve the inverse problem.
Moreover, the number of initial separable states necessary to identify the Hamiltonian of
the system through this approach is independent of the system size.

Since the number of local observables {Ok} is polynomial in the system size, this is an
efficient approach that works also for large systems. As previously suggested in Ref. [86],
this depends on the Lieb-Robinson bounds [90] on spreading of information under local
Hamiltonians. Thanks to this bound indeed, the error that comes when approximating
derivatives with short-time evolutions does not depend on the Hamiltonian norm, that is
a function of the system size, but only on the so called Lieb-Robinson speed, independent
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on the system size. As a consequence, the time resolution dt necessary to approximate
derivatives does not decrease when the number of particles is increased.

2.7.2 Long-time evolution

In Ref. [59], short-time evolution is exploited to generate a set of constraints for the un-
known Hamiltonian that can be collected and solved in a polynomial amount of time.
Even if, in principle, observing the system for a longer time would allow for a smaller un-
certainty in Hamiltonian learning, this approach generally requires an exponential amount
of resources. This is because the expectation value of a local observable at time t generally
depends on the initial expectation values of all the non-local observables appearing in the
Dyson series. This situation drastically changes when some symmetry of the Hamiltonian
constraints the system evolution to a small region of the Hilbert space. In this case, the
long-time evolution of local observables can be measured and exploited to infer with high
precision the system Hamiltonian, as in Ref. [71].

In this paper, the authors develop a method to identify the Hamiltonian governing a
Google Sycamore chip. This device consists of a two-dimensional array of nearest-neighbor
coupled superconducting qubits. These physical qubits can be represented as non-linear
oscillators with bosonic excitations, which, for large values of the non-linearity parameter,
are well approximated by logical qubits.

The dynamics of the Google Sycamore chip can be described using the rotating-wave
approximation by the Bose-Hubbard Hamiltonian

HBH = −∑
ij

hija†
i aj + νia†

i a†
i aiai,

where a†
i and ai denote bosonic creation and annihilation operators at site i, νi is the

non-linear one-site interaction strength, and hij is an N ∗ N Hermitian parameter matrix.
Knowing the value of νi, the authors aim to reconstruct the unknown Hamiltonian coup-
lings hij.

When the initial state of the system is a single particle state, the interaction term of the
Hamiltonian vanishes, and νi can be considered to be null. The effective dynamics in this
case conserves the number of particles, leading to simple equations of motion.

Specifically, the authors propose to initialize the system in the single-particle states
|ψn(0)⟩ ≡

(︁
1 + a†

n
)︁
|0⟩⊗n, let the system evolve and estimate the local expectation val-

ues xmn(t) = ⟨ψn(t)|am + a†
m|ψn(t)⟩/2 and pmn(t) = ⟨ψn|am − a†

m|ψn(t)⟩/(2i) by averaging
results of the measurements of the X and Y Pauli operators. At this point, the function
amn(t) = xmn(t) + iymn(t) depends on the unknown Hamiltonian parameters as follows:

amn(t) =
1
2
(e−ith)ij.

Once a sufficient number of measurements have been performed on a discrete set of time
steps, the function amn(t) can be estimated and the couplings matrix hij can be inferred
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exploiting Fourier analysis. Since the matrices involved in the last equation are N × N
matrices, all these operations require a polynomial amount of resources. Thanks to this
approach, the authors managed to estimate the Hamiltonian implemented on a grid of 27
qubits.

2.7.3 Active Hamiltonian learning

We conclude this section by briefly illustrating the active Hamiltonian learning approach
proposed in Ref. [87]. Here, the freedom in the initial state preparation, evolution time,
and measurements is richly exploited by the authors to search for the optimal approach
that allows for a precise Hamiltonian reconstruction with the minimum possible number
of experiment repetitions. Here, the authors fix the system size and consider small systems
of two qubits.

The approach of Ref. [87] is paradigmatic, not only because it is an example of the
prolific interplay between quantum technology and machine learning, but also because it
allows for the application of an important result from quantum metrology to Hamiltonian
learning.

Due to the central limit theorem, standard Hamiltonian learning techniques require
O(ϵ−2) experiment shots to reconstruct the couplings with a precision ϵ. This limit is
known as standard quantum limit. However, using quantum resources, some techniques
in quantum metrology are capable of estimating parameters of a quantum system with
a number of experiment shots that scale as O(ϵ−1). This limit is called Heisenberg limit
and is known to be fundamental [91–95]. In Ref. [87], the authors wonder if the standard
quantum limit can be overcome through active learning techniques.

Let us schematically illustrate the active Hamiltonian learning approach. Each experi-
ment shot starts with the initialization of the system in the state |0 . . . 0⟩, followed by some
operation U from a set SU of unitary operators. Then, the system evolves for a time t
chosen in a given interval [0, T], and finally, it is rotated by some other unitary operator
M ∈ SM and measured on the computational basis obtaining some element |y⟩ of this basis.
Each set (U, t, M) defines a query that the experimenter executes on the system. Given a
query x = (U, t, M), the conditional probability py|x of measuring the state |y⟩ after the
experiment shot is

py|x(y|x, h⃗) = |⟨y|Me−it ∑i hi Li U†|0 . . . 0⟩|2,

that is a function of the Hamiltonian parameters hi.
At this point, we repeat the experiment, performing different queries {x(i)} and col-

lecting the corresponding measured states {y(i)}. Given a set {xi, yi} of queries and cor-
responding measured states, the optimal guess h∗i for the Hamiltonian can be obtained
through the maximum likelihood estimator as follows:

h∗i = Argminhi ∑
i
− log py|x(y

(i)|x(i), h⃗)
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The accuracy of the Hamiltonian couplings that we learn in this way will depend on the
set {xi, yi}, and therefore on the choice of the queries. Some collection of queries allows
for Hamiltonian learning with more precision. In information theory, this feature is called
informativeness and can be estimated through the inverse norm of the Fisher information
matrix [96]. For a single query q this matrix is defined as

I(x, h⃗)ij = ∑
y

log py|x(y
(i)|x(i), h⃗)

∂ log py|x(y(i)|x(i), h⃗)
∂hi

∂ log py|x(y(i)|x(i), h⃗)
∂hj

,

and for a collection of queries Q = {x} it is

I(Q, h⃗)ij = ∑
x∈Q

I(x, h⃗)ij.

The informativeness of Q is estimated through the inverse norm Tr
[︂

I(Q, h⃗)−1
]︂

of the
Fisher matrix, and depends on the unknown Hamiltonian. In particular, the most inform-
ative collection of queries is Q∗ = ArgminQ Tr

[︂
I(Q, h⃗)−1

]︂
.

How can we exploit the informativeness criteria without knowing the system Hamilto-
nian? Active learning is an effective answer to this problem [97, 98]. An active learner
starts from an arbitrary initial guess for the Hamiltonian couplings. Given this guess, it
selects the most informative collection of N queries, performs these queries on the system,
collects the answers, and infers a better guess for the Hamiltonian couplings through the
maximum likelihood principle. Then, the whole process is repeated until a target accuracy
is reached.

By applying this technique to Hamiltonian learning for learning the six parameters
of a two-qubit cross-resonance Hamiltonian on different superconducting IBM Quantum
devices, the authors of [87] obtain a 99.1% reduction of the number of experiment shots
required over the comparable non-adaptive learning algorithm. Moreover, with access to
prior information on a subset of Hamiltonian parameters, their approach can exceed the
standard quantum limit and achieve Heisenberg-limited convergence rates during learn-
ing.

The main limitation of this approach is related to the system size. For a large quantum
system, estimating and minimizing the Fisher information matrix is an impossible compu-
tational task, because the function py|x(y|x, h⃗) depends on the time evolution of the system
state. A possible solution is to reconstruct the Hamiltonian from short-time evolutions, as
in Ref. [59] and develop strategies to maximize the informativeness of this approach. We
analyzed this approach in Ref. [3], which is illustrated in detail in Chapter 4 of this thesis.

2.8 an overall point of view

The different formulations of the many-body inverse problem that we have presented in
this chapter share a similar mathematical structure. This structure also determines import-
ant features such as the existence and the number of solutions and the strategies to find
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these solutions. In particular, we are going to show that the inverse problem is a con-
strained optimization problem, in which one has to find the minimum of a suitable cost
function in a fixed space of Hermitian operators whose dimension is polynomial in the
system size.

Let us consider the time-dependent state of a closed quantum system, represented by
the density operator ρ(t). A Hamiltonian can be the solution of the inverse problem when
is compatible with the state evolution ρ(t), that is, the Schrödinger equation

∂tρ(t) = −i[H(t), ρ(t)]

holds, where we set h̄ = 1. This approach is valid both in the time-dependent and time-
independent inverse problem.

If we only require that the system Hamiltonian is a generic Hermitian operator, we
can choose a basis {Oα} for the Hermitian operators and write the Hamiltonian as H =

∑α hαOα. The Schrödinger equation becomes

∂tρ(t) = ∑
α

hα(t) (−i[Oα, ρ(t)]) .

This is a liner equation for the Hamiltonian couplings hα(t), whose solutions correspond to
all the Hamiltonians that are compatible with the system dynamics. In the rest of this thesis
and in the previously illustrated works, we focus on pure states ρ(t) = |ψ(t)⟩⟨ψ(t)|. Hence,
the last equation has got multiple solutions. These can be written as the sum of a generic
solution, such as the Berry potential H(t) = i|∂tψ⟩⟨ψ|+h.c., plus an arbitrary Hamiltonian
commuting with ρ(t). If the dimension of the Hilbert space is n, the dimension of the space
of Hermitian operators commuting with a pure state is (n − 1)2. Indeed, these are indeed
all the Hermitian block-matrices with an 1 × 1 block acting on the space spanned by ρ(t)
and an (n − 1)× (n − 1) arbitrary Hermitian block. Therefore, the solutions to the inverse
Schrödinger equation form a manifold with dimension (n − 1)2.

As previously seen, when we consider real world many-body systems, this situation
drastically changes. In this case, the dimension of the space of realistic Hamiltonians, that
is spanned by some set of Hermitian operators L = {Li}, is polynomial in the number of
particles N, because of physical and engineering constraints. Now, the previous equation
reads:

∂tρ(t) = ∑
α

hi(t) (−i[Li, ρ(t)]) . (2.9)

Remarkably, by projecting this equation on a set of observables {Ok} we obtain Eq. (2.3),
exploited in Sections 2.5 and 2.7 to reconstruct symmetries of a steady state and generators
of a time-dependent state. Moreover, the corresponding imaginary evolution leads to the
cost function introduced in 2.6 to attack the ground state inverse problem.

While the dimension of the space of Hamiltonians increases polynomially in N, the space
of states with their infinitesimal evolutions increases exponentially. As a consequence, it
could be impossible to find any solution to Eq. (2.9), that is a realistic solution to the
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inverse problem. In practice, this restriction can be an advantage or an obstacle based on
the specific problem setting. In quantum state control, we want to find which Hamiltonian
has to be implemented to generate a target evolution in an engineered device. In this
case, the absence of exact solutions means that we have to accept an approximate solution,
that will generate the target evolution only approximately. Instead, if we want to learn
the Hamiltonian from the observed evolution, knowing some restriction on the space of
possible Hamiltonians allow rejecting unrealistic solutions. However, even in the latter
case, we have to look for approximate solutions that take into account the experimental
uncertainty on the system state.

We can conclude that, regardless of the application, the inverse problem consists in
finding an approximate solution of Eq. 2.9 in a space of realistic Hamiltonians. This ap-
proximate solution is usually defined as the minimum of some suitable cost function. The
computational effort needed to evaluate this function and find its minimum for the system
of size N determines the computational complexity of a given approach to the inverse
problem. As we have seen, in some cases such as the search for local symmetries, it is easy
to define polynomially complex methods. These methods are often based on the minimiz-
ation of a quadratic lower-bounded function or, equivalently, on the search for the ground
states of a semi-definite positive matrix, for example the QCM. In other cases, for example
in the search for PPH, the inverse problem seems to be exponentially hard for a classical
computer, and it is necessary to define sophisticated approaches to efficiently generate
approximate solutions.





3
O P T I M A L G E N E R AT O R F O R T I M E - D E P E N D E N T
S TAT E S

3.1 introduction

The time-dependent inverse problem consists in reconstructing the local (or engineerable)
Hamiltonian that generates the evolution of a given state ρ(t). The interaction couplings
that identify this parent Hamiltonian can be inferred from the realized state evolution and
from the knowledge of the physical restrictions that characterize the system under exam.
This is a dynamical approach to Hamiltonian learning, and we have presented some major
contributions to this topic [70, 71, 87] in Sec. 2.7. In this chapter instead, we suppose that
the state ρ(t) is a target time-dependent state, which we want to implement on a device.
Hypothesizing that the device Hamiltonian is time-dependent, with tunable couplings
hi(t), we look for the optimal tuning capable of generating an evolution as close as possible
to the target state. With two key changes, this question differs from a quantum optimal
control problem [43–51]: here, the desired state is defined at each time rather than only
at the end, and the Hamiltonian is constrained in a large space of local or engeenerable
interactions.

As mentioned in the previous chapter, in many-body systems an exact generator for
generic quantum dynamics usually does not satisfy the unavoidable constraints on the
engineerable interactions. Hence, we will look for an optimal generator as the minimum of
a suitable cost functional. This functional goes to zero when the fidelity between the target
state and the state generated via the driving with a Hamiltonian goes to one, ensuring that
a “low-cost” solution can be useful for quantum driving. We evaluated the extension of
this approach to Hamiltonian learning in Ref. [3], to which the next chapter is dedicated.
Remarkably, we also show that the proposed cost functional can be used to estimate if a
target path of state can be accessed through realistic interactions.

A further result arising from the design of an optimal pare Hamiltonian is the connec-
tion with adiabatic and counterdiabatic quantum state driving. Adiabatic quantum state
driving refers to the process of slowly changing the parameters of a quantum system in
such a way that the system remains in its instantaneous eigenstate [76–79]. This is a use-
ful technique for preparing and manipulating quantum states. Counterdiabatic quantum
state driving is a method for speeding up adiabatic driving by adding a term to the sys-
tem’s Hamiltonian [99]. This additional term counteracts the non-adiabatic transitions that
would otherwise occur during the adiabatic evolution, resulting in a faster and more effi-

27
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cient quantum state driving process. We will show that solutions to the inverse problem
have the structure of a counterdiabatic driving.

This chapter is organized as follows. Section 3.2 is devoted to the search for exact solu-
tions to the time-dependent inverse problem. In Section 3.3, we take into account the
constraints on the space of realistic Hamiltonians, and we define the optimal generator
for the target evolution. In Section 3.4, we consider the cost associated with the optimal
generator of a time-dependent state, as a geometric measure of our ability to generate its
evolution by exploiting only the available interactions. Sections 3.5 and 3.6 are devoted to
exemplifying applications of our method in some paradigmatic cases, i.e., time-dependent
ground states of the Ising and p-spin models in transverse field. Through these examples,
we also see how the optimal Hamiltonian can generate shortcuts to adiabaticity [100–109],
similarly to the so-called counterdiabatic potential [99, 110]. The link between optimal
Hamiltonian and counterdiabatic driving is analyzed in Section 3.7. The last section of the
chapter summarizes our results and the related future perspectives.

3.2 exact dynamics generator

The problem of determining the exact and realistic generator H(t) = ∑i hi(t)Li associated
with a time-dependent quantum state can be easily posed. Given a pure time-dependent
state ρ(t) = |ψ(t)⟩⟨ψ(t)| of a (possibly many-body) quantum system in the time inter-
val [0, T], the evolution of this state is related to the generator couplings hi(t) via the
Schrödinger equation, that can be written as a set of constraints on these couplings:

∂tρ(t) = ∑
i

hi(t) (−i[Li, ρ(t)]) .

As anticipated, in small quantum systems this equation can have many solutions, while in
many-body systems the absence of solutions is very common and one looks for an optimal
solution. Before focusing on the latter case, in this section, we show how Eq. (2.9) can be
exactly solved. To this aim, we exploit the Schmidt scalar product (A, B) ≡ Tr(AB) on
the space of Hermitian operators. Endowed with this product, Hermitian operators form
a Euclidean vector space where some concepts and tools from Euclidean geometry, such
as orthonormal basis, Euclidean distances, and projections, can be exploited.

Firstly, we can fix an orthonormal basis {Oα} for this space. As an example, an orthonor-
mal basis for the Hermitian operators acting on an N-spins Hilbert space is given by all
the tensor product operators Oα = 1√

2N

(︁
σ

µα

1 ⊗ σνα
2 ⊗ ... ⊗ στα

N
)︁
, where σ

µ
i is the µth Pauli

matrix describing the ith spin (σ0
i is the identity 1 acting on the ith spin). Using this basis,

the quantum state ρ can be written as

ρ(t) = ∑
α

oα(t)Oα,

where oα(t) = Tr(ρ(t)Oα) is the expectation value of Oα.
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At this point, we can project Eq. (2.9) on each element of the orthonormal basis {Oα}
through the Hilbert-Schmidt scalar product, obtaining a vector representation of this equa-
tion:

∂toα(t) = Tr

(︄
−i

[︄
∑

i
hi(t)Li, ρ(t)

]︄
Oα

)︄
= −∑

i
hiKα,i(ρ(t)), (3.1)

where

Kα,i(ρ(t)) ≡ Tr(−i[Li, ρ(t)]Oα) = ⟨ψ(t)| − i[Oα, Li|ψ(t)⟩

is the commutator matrix introduced in Ref. [59] and presented in the previous chapter.
At each time t, the exact generator couplings correspond to a solution to this system

of inhomogeneous equations. The kernel Ker(K) of the commutator matrix contains the
symmetries of the state ρ(t), that is, all Hamiltonians that do not generate any evolution
acting on this state. As a consequence of Eq. (3.1), the exact generators, which form a vector
space, differ from each other in terms of the elements of Ker(K). These are solutions for
the time-independent inverse problem. We will demonstrate in the next section how the
behavior of the optimal generator is similarly influenced by the QCM.

Let us consider the reconstruction of the generator for a generic time-dependent spin-
1/2 system as a straightforward instance of what we have covered thus far. In this case,
the local operators in L are σx, σy and σz and the unknown dynamics generator is H(t) =
hx(t)σx + hy(t)σy + hz(t)σz.

In the Bloch sphere, the evolution of a pure state is expressed in the orthonormal basis
defined by the Pauli operators {1/

√
2, σx/

√
2, σy/

√
2, σz/

√
2} as

ρ(t) = (v⃗ · σ⃗ + 1) /2,

where
v⃗ = (sin(θ(t)) cos(ϕ(t)), sin(θ(t)) sin(ϕ(t)), cos(θ(t))) .

In this case, Eq. (3.1) reads⎛⎜⎜⎜⎜⎜⎜⎝
0

d
dt vx/

√
2

d
dt vy/

√
2

d
dt vz/

√
2

⎞⎟⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0

0 vz −vy

−vz 0 vx

vy −vx 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

hx

hy

hz

⎞⎟⎟⎟⎠

and the generator for this evolution is

H(t) =
(︁
−v̇⃗ × v⃗

)︁
2

· σ⃗ + f (t)v⃗ · σ⃗ (3.2)

with f (t) arbitrary function of time. The first term in this equation determines how the
system evolves. The second term corresponds to the unique symmetry for the steady state
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ρ(t) at each time, it is an element of the commutator matrix’s kernel and does not generate
any evolution.

The above example highlights the connection between the inverse problem, the adiabatic
theorem, and the search for shortcuts to adiabaticity. From this perspective, the second
term f (t)v⃗ · σ⃗ can be interpreted as the adiabatic Hamiltonian having ρ(t) as an eigenstate.
Thus, the first term is the counterdiabatic potential[99] correcting the Landau-Zener trans-
itions between different eigenstates of f (t)v⃗ · σ⃗. In the adiabatic limit λ̇ → 0, this term
vanishes and f (t)v⃗ · σ⃗ is the only responsible for the system evolution.

3.3 optimal dynamics generator

In the previous section, we exploited Eq. (3.1) to select all the realistic Hamiltonians that
generate the target evolution ρ(t). Equation Eq. (3.1) represents a set of constraints on
the Hamiltonian couplings, each of which expresses the evolution of an expectation value
ok(t). The number of these expectation values increases exponentially with the system size.
At the same time, the space of physically relevant systems is described by linear superpos-
itions of operators in L, which contains a polynomial number of elements. Therefore, for
an arbitrary time-dependent state, we cannot expect that an exact and realistic generator
exists. In this section, we resort to an optimization method to construct an approximate
generator using only a limited number of physically relevant interactions.

3.3.1 Definition of the cost functional

A suitable cost functional F [H] for the optimal generator measures how far the dynamics

ρ′H(t) =
(︂
T e−i

∫︁ t
0 H(t′)dt′

)︂
ρ(0)

(︂
T e−i

∫︁ t
0 H(t′)dt′

)︂†

generated by H is from the target dynamics ρ(t), whose minimum indicates that
ρ′(t) is the closets possible evolution to ρ(t). This is implemented by the distance√︂∫︁ t

0 dt′ Tr[(ρ(t′)− ρ′H(t′))2]. However, minimizing this distance is impractical in large
many-body systems, because it requires the time integration of any candidate Hamilto-
nian H(t).

A simpler approach consists in defining a cost functional that is easy-to-minimize and
upper-bounds the Frobenius distance ∥ρ(t) − ρ′H(t)∥ ≡

√︂
Tr[(ρ(t)− ρ′H(t))2]. When the

cost goes to zero also the distance goes to zero, signaling that the generated state ρ′H(t)
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exactly follows the target evolution ρ(t). To reach this goal, we start from the chain of
inequalities:

∥ρ(T)− ρ′H(T)∥ =
⃦⃦⃦ ∫︂ T

0
dt ∂t

(︁
ρ(t)− ρ′H(t)

)︁ ⃦⃦⃦
(3.3)

≤
∫︂ T

0
dt
⃦⃦

∂t
(︁
ρ(t)− ρ′H(t)

)︁ ⃦⃦
≤
∫︂ T

0
dt
⃓⃓
∂t∥ρ(t)− ρ′H(t)∥

⃓⃓
=
∫︂ T

0
dt

⃓⃓
∂t∥ρ(t)− ρ′H(t)∥2

⃓⃓
2∥ρ(t)− ρ′H(t)∥

,

where, in the last line, we take into account that
⃓⃓
∂t∥ρ(t)− ρ′H(t)∥2

⃓⃓
=

2
⃓⃓
∂t∥ρ(t)− ρ′H(t)∥

⃓⃓
∥ρ(t)− ρ′H(t)∥.

We want to upper-bound
⃓⃓
∂t∥ρ(t)− ρ′H(t)∥2

⃓⃓
with a simple-to-minimize quadratic func-

tion of the trial Hamiltonian H(t). Exploiting the Leibniz rule and considering that
∂tρ

′
H = −i[H, ρ′H ], the derivative in exam can be simplified as

∂t∥ρ − ρ′H∥2 = 2 Tr
[︁
(ρ − ρ′H)∂t(ρ − ρ′H)

]︁
= 2 Tr

[︁
(ρ − ρ′H)(∂tρ + i[H, ρ]− i[H, ρ − ρ′H ])]

= 2 Tr
[︁
(ρ − ρ′H)(∂tρ + i[H, ρ])

]︁
,

where, in the last line, we have taken into account that Tr(A, [A, B]) = 0 for any A and B.
Finally, we apply the Cauchy-Schwartz inequality to obtain⃓⃓

∂t∥ρ − ρ′H∥2 ⃓⃓ ≤ 2∥ρ − ρ′H∥∥∂tρ + i[H, ρ]∥,

and, replacing the latter in Eq. (3.3), we derive the bound

∥ρ(T)− ρ′H(T)∥ ≤ F [H] (3.4)

where
F [H] ≡

∫︂ T

0
dt f (H, t) =

∫︂ T

0
dt∥∂tρ(t) + i[H(t), ρ(t)]∥ . (3.5)

Remarkably, the argument of the last integral is the Frobenius norm of the difference
between the RHS and the LHS of the Schrödinger equation. Hence, this is a measure of
the error done in approximating the exact infinitesimal evolution ∂tρ(t) of the state with
the evolution −i[H(t), ρ(t)] generated by the candidate Hamiltonian H(t).

As illustrated in Figure 3.1, inequality (3.4) means that the state ρ′H(t), during its evol-
ution, remains in a sphere of radius F [H, t] =

∫︁ t
0 f (Hopt, t′)dt′ with center in ρ(t). The

Hamiltonian

H(t)opt = ArgminH=∑i hi(t)Li
F [H]

is optimal because, minimizing the functional F , it constrains the evolution near to the
target state ρ(t).
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ρ(t
)

ρ
′
H
(t)

F
[H
]

ρ(0)

Figure 3.1: At each time t, the state ρ(t) generated by the Hamiltonian H(t) lies inside a sphere of
radius F [H, t] centered on the target state ρ(t).

In the context of quantum control, a figure of merit of the optimal Hamiltonian is the

squared fidelity F ≡
(︃

Tr
√︂√︁

ρ(t)ρ′H(t)
√︁

ρ(t)
)︃2

between the generated evolution and the

target evolution, which measures how much the state ρ′H(t) is experimentally indistin-
guishable from the state ρ(t). To write inequality (3.4) as a function of the fidelity, we
consider that, for pure states, ∥ρ(T)− ρ′H(T)∥ = 2(1 − F(ρ(T), ρ′H(T))), and we obtain

1 ≥ F(ρ(T), ρ′H(T)) ≥ 1 − 1
2
F [H, T]2. (3.6)

While Eq. (3.5) assures that the cost functional F [H] is minimized when H(t) generates an
infinitesimal evolution as close as possible to ∂tρ(t), this last inequality only implies that
a sufficiently low-cost minimum of F generates a high-fidelity driving of the initial state.
However, that does not imply that the minimum of F also maximizes the fidelity with the
target evolution: it is possible that certain Hamiltonians exist with a higher cost but also
higher fidelity. This is the price that we pay to use an easy-to-minimize cost functional.

3.3.2 Minimizing the cost functional

We have defined the optimal generator as the minimum of the functional F [H] in Eq. (3.5).
The integrand f (H, t) in this functional does not depend on the derivative of the Hamilto-
nian, therefore a minimum for F [H] can be obtained as the time-dependent minimum of
f (H, t), recasting our problem from a global to a local form. In this way, as in an adiabatic
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system, the Hamiltonian evolves with time while remaining in the minimum of a time-
dependent potential. This potential depends on the target state ρ(t) and its derivative.

The cost f (H, t) has a direct geometric meaning, which is illustrated in Figure 3.2. The
time-derivative ∂tρ of the state ρ(t) is a vector in the tangent space Tρ(t) for the state
ρ(t). This is the space of all the infinitesimal unitary evolutions and is spanned by the
vectors {−i[Oα, ρ(t)]}. Also the operator i[H, ρ(t)] is a vector of this tangent space, but,
since H is spanned only by the engineerable interactions in L, it is constrained in the
subspace of TLρ(t), spanned by the vectors li(t) = −i[Li, ρ(t)]. We call TLρ(t) engineerable
tangent space, since this is the space of infinitesimal evolutions that can be generated by
engineerable operators. f (H, t) is the therefore the distance between the vectors ∂tρ(t) ∈
Tρ(t) an arbitrary vector ∑i hi(t)li(t) ∈ TLρ(t).

TLρ(t)

−i[Hopt(t), ρ(t)]

∂tρ(t)

ρ(t)

θacc(t)
l1(t)

l2(t)

f (Hopt, t)

Figure 3.2: The commutator −i[Hopt(t), ρ(t)] has to be the projection of ∂tρ(t) on the space spanned
by the vectors li(t).

The minimization of this distance results in an “inverse” time-deponent variational prin-
ciple [111, 112], and is obtained by imposing that −i[Hopt(t), ρ(t)] is the Euclidean projec-
tion of ∂tρ(t) on TLρ(t). In equations, we have

Tr(li(t)∂tρ(t)) = −i Tr(li(t)[Hopt(t), ρ(t)]) (3.7)

for each li. If we replace the expression Hopt(t) = ∑i hopt,i(t)Li of the optimal generator in
terms of the couplings in Eq. (3.7), it becomes

Tr(lj(t)∂tρ(t)) = ∑
i

Tr(li(t)lj(t))hopt,j(t) (3.8)
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where the Gram matrix Tr(li(t)lj(t)) corresponds to the QCM

Vij(t) = ⟨ψ(t)|{Li, Lj}|ψ(t)⟩ − 2⟨ψ(t)|Li|ψ(t)⟩⟨ψ(t)|Lj|ψ(t)⟩

introduced in [57]. Typically, this is a singular matrix because the vectors li are linearly
dependent. The kernel of this matrix, as demonstrated in Section 2.5, contains all the
symmetries of the quantum state at a particular time.

Eq. (3.8) defines a linear inhomogeneous system with several solutions, that are the
minima of the cost function f (H, t) at time t. The temporal evolution produced by each of
these solutions generates a different fidelity between the evolved state and the target state,
even if they all have the same cost f . In the rest of this chapter, we will focus our attention
on the solution that does not include the instantaneous symmetries from the kernel of the

QCM. Since this solution minimizes the norm
√︂

∑i h2
i , this approach reduces the number

and the magnitude of non-null coupling exploited to drive the state. Moreover, with this
particular choice of the optimal generator, the fidelity between ρ(t) and ρ′H(t) does not
depend on the schedule of the evolution: evolving the state ρ(0) with the Hamiltonian
τ̇(t)Hopt(t(τ)), where τ(t) is an arbitrary monotonous function, we will obtain ρ′H(τ), that
is the same evolution but with different velocity. This is because the solution to Eq. (3.8)
that does not include the instantaneous symmetries is proportional to the time derivative
of the state: Hopt(t) = λ̇(t)A(λ) for some Hermitian operator A(λ). As a consequence, the
generated unitary evolution

U(t) = T exp
(︃
−i
∫︂ t

0
λ̇(t′)A(λ)dt′

)︃
only depends on λ(0) and λ(t). This is no more the case if we include an element of the
kernel of the QCM in the optimal Hamiltonian.

The selection of other solutions to Eq. (3.8), which includes components from the QCM
kernel, can produce some intriguing perspectives. To make the experimental implementa-
tion of the Hamiltonian simpler, one may, for instance, use kernel components to reduce
the time fluctuations of the couplings. Furthermore, it may be possible to use the final
fidelity’s dependence on evolution’s rate to improve driving precision by increasing the
total evolution time. Finally, one may look into how an evolution produced by a solution
with an intriguing spectrum, such level repulsion [113], behaves.

3.4 accessibility of the states

The cost F [Hopt(t)] associated with the optimal generator Hopt measures how accurately
we can follow the state ρ(t) through the engineerable interactions in L.
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Here, we show that F [Hopt(t)] only depends on the path of states |ψ(λ⃗(t))⟩ defined by
ρ(t) = |ψ(λ⃗(t)⟩⟨ψ(λ⃗(t))|, where λ⃗ are coordinates in the space of states. As a consequence,
we define the accessibility A[ψ(λ⃗)] of |ψ(λ⃗(t))⟩ through the optimal cost as follows:

A[ψ(λ⃗)] ≡ −F [Hopt(t)].

The accessibility of a path of states, that estimates the error committed while trying to
generate the path with limited available resources, can be an important figure of merit
in the context of quantum state control. Indeed, one could select the most suitable path
of states to prepare a given final quantum state by maximizing the accessibility over all
the possible paths. Moreover, the time necessary to prepare a quantum state with a finite
amount of resources, i.e., its quantum complexity, could be related to the accessibility of
the paths towards the state. Therefore, we believe that accessibility may play a key role in
the geometrization of quantum complexity [114–116].

To reach our goal, firstly we note that the optimal cost is proportional to the Frobenius
length of the infinitesimal evolution ∂tρ through the sine of the accessibility angle θacc

between the vectors ∂tρ and its projection on the engineerable tangent space, as illustrated
in Figure 3.2. This angle does not depend on the schedule of the evolution, but only on the
path of states. Analogously, the Frobenius length ∥∂tρ∥ depends on the Hilbert-Schmidt
metric Vµν ≡ Tr

(︂
∂ρ

∂λµ

∂ρ
∂λν

)︂
as ∥∂tρ∥ =

√︂
∑µν Vµνλ̇µλ̇ν. We can therefore write:

A[ψ(λ⃗)] ≡ −F [Hopt(t)] = −
∫︂ T

0
dt
√︄

∑
µν

Vµν(λ⃗)λ̇µλ̇ν sin(θ(|ψ(λ)⟩, ∑
µ

λ̇µ∇µ|ψ(λ)⟩)),

that is invariant for any reparametrization t → τ(t).
As shown in Appendix A, the Hilbert-Schmidt metric for pure states is equal to twice the

Fubini-Study metric gµν = Re(⟨∂µψ|∂νψ⟩ − ⟨ψ|∂µψ⟩⟨∂νψ|ψ⟩), whose key role in quantum
information and many-body theory has been deeply investigated [6, 89, 117–120]. There-
fore, we can write

A[ψ(λ⃗)] = −
∫︂ T

0
dt
√︄

2 ∑
µν

gµν(λ⃗)λ̇µλ̇ν sin(θ(|ψ(λ)⟩, ∑
µ

λ̇µ∇µ|ψ(λ)⟩)). (3.9)

As can be seen, only the accessibility angle depends on the available interactions. As a con-
sequence, this angle controls how well the available interactions can generate the desired
evolution. The closer the accessibility angle is to π/2 during the evolution, the harder it is
to access the goal, resulting in a larger cost of the optimal solution.

The other contribution to Eq. 3.9, i.e., Fubini-Study metric on the path, does not depend
on the interactions, hence it is an absolute measure of how difficult is to follow the path.
Considering that the sine is bounded by one, the Fubini-Study length of the path of states
determines the minimum possible values for the accessibility. When the fluctuations of the
accessibility angle are negligible, the maximization of this A is reduced to the search for the
Fubini-Study geodesic. These features help us understand to what extent it is possible to
exploit the geodesics of this metric in the context of quantum state preparation, as shown in
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Refs. [121, 122]. Moreover, considering the critical scaling of this metric at quantum phase
transitions [117–120], Eq. 3.9 also explains the drop of fidelity that affects adiabatic [123]
and local counterdiabatic [110] state driving at phase transitions.

3.5 driving the ground state of the ising model in time-dependent

transverse field

3.5.1 Exact generator

As a first example of the methods depicted in the previous sections, we want to find an
exact generator and an optimal local generator for the time evolution ρ(t) = |ψ(t)⟩⟨ψ(t)|,
where |ψ(t)⟩ is the instantaneous ground state of the one-dimensional Ising model in a
time-dependent transverse field, i.e.,

HI(λ(t)) = −J
L

∑
i=1

σx
i σx

i+1 − λ(t)J
L

∑
i=1

σz
i . (3.10)

Here, J > 0 is an arbitrary energy scale that we set J = 1. We consider periodic boundary
conditions σL+1,µ = σ1,µ and even number of sites L. Here, as well as in the following
examples, λ(t) is a monotonous smooth function of time. It is crucial to note that the
Hamiltonian HI is not involved in the definition of the time-dependent generator; rather,
it merely sets the state ρ(t) for which we will solve the inverse problem.

Firstly, we represent the Hamiltonian HI(λ) as a system of non-interacting particles [124].
As illustrated in Appendix D, this representation is possible for a large class of spin sys-
tems. Indeed, several many-spin interactions on one-dimensional lattices can be represen-
ted as free-fermions Hamiltonians through the Jordan-Wigner transformations [125, 126].
Moreover, in presence of a lattice reflection and rotation symmetry, all the resulting inter-
actions can be rearranged into operators that obey the algebra of Pauli matrices σ̃

µ
k acting

on different sites, each of them is labeled by a momentum index k. We call these operators
pseudo-spins.

Before proceeding, we remark that the free-fermions Hamiltonians obtained through
the Jordan-Wigner transformations act differently on the two eigenspaces of the symmetry
operator Q = ∏L

i=1 σi,z. Since the ground states in exams lie in the even parity sector for
Q [124], from now on we will refer to HI as the action of the Ising Hamiltonian on this
sector. Analogously, we will represent only the action on the even parity sector of the Pauli
strings involved in the following discussions. The Hamiltonian acting on the odd parity
sector, only differs for a boundary term [80].

In the pseudo-spin formalism, the Ising Hamiltonian in transverse field reads (see Ap-
pendix D for details):

HI = − ∑
k∈K+

ϵk
(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k
)︁

, (3.11)
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where

K+ ≡
{︂

k =
(2n + 1)π

L
, with n ∈ {0, . . . , L/2 − 1}

}︂
, (3.12)

and

ϵk = 2
√︂

sin2(k) + (cos(k)− λ)2

vx
k = sin(k)/ϵk

vy
k = 0

vz
k = (cos(k)− λ) /ϵk. (3.13)

The pseudo-spin operators {σ̃
µ
k } can be written as superpositions of Pauli strings, and

vice-versa, as follows:

σ̃
µ
k =

2
L ∑

0≤m≤L/2
Fµ(mk)Sµ

m Sµ
m = 2 ∑

k∈K+

Fµ(mk)σ̃µ
k (3.14)

where Fµ(x) ≡ (sin(x), sin(x), cos(x)) and

SZ
0 = −

L

∑
n

σz
n

SX
m =

1
2

L

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m − σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
SY

m = −1
2

L

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σ
y
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σx

n+m
)︁

SZ
m =

1
2

L

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
.

Here the dots represent a string of σz
i operators.

In this representation, ground states are factorized as follows:

ρ(λ(t)) =
⨂︂

k∈K+

(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k + 1

)︁
/2. (3.15)

In Eq. (3.2), we have shown how to apply our method to reconstruct the exact generator
for a single spin. We can generalize that result to ρ(λ(t)), finding the exact generator for
the dynamics in exam:

HE(t) =
1
2

λ̇ ∑
k∈K+

(∂λθk) σ̃
y
k + f (t) ∑

k∈K+

ϵk (cos(θk)σ̃
z
k + sin(θk)σ̃

x
k ) . (3.16)

In terms of spin strings, this reads

HE(t) = − λ̇

2L

L

∑
n

∑
k∈K+

∑
1≤m≤L/2

(∂λθk) sin(mk)
(︁
σx

n σz
n+1 . . . σz

n+m−1σ
y
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σx

n+m
)︁

+ f (t)HI(λ(t)).
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This generator coincides with the Ising Hamiltonian plus the related Berry counterdiabatic
potential [127]. This remarks the connection between optimal generator and shortcuts to
adiabaticity. We can also observe that the exact generator is non-local, involving interac-
tions whose weight and magnitude scale linearly with the system size.

3.5.2 Optimal local generator

So far, our approach allows for an exact solution in terms of arbitrary long strings of
spin operators. Now, we look for an approximate local solution to the inverse problem.
In particular, we look for an optimal generator for ρ(t) spanned by one- and two-spin
translationally invariant interactions of the set L = {SZ

0 , SX
1 , SY

1 , SZ
1 }.

To reach our goal, we replace the derivative of the state ∂tρ in Eq. (3.8) with −i[HE, ρ],
obtaining:

Tr
[︁
(−i[HE, ρ])

(︁
−i[Sµ

m, ρ]
)︁]︁

= ∑
lν

hl,ν Tr
[︁(︁
−i[Sµ

m, ρ]
)︁
(−i[Sν

l , ρ])
]︁

,

with Sµ
m ∈ L. This equation can be easily solved in the pseudo-spin representation, where

the system state ρ is separable. In this representation, the involved commutators read:

−i[Sµ
m, ρ] = 2 ∑

k∈K+

f µ(mk)

⎛⎝⨂︂
k′ ̸=k

ρk′

⎞⎠⊗
(︁
−i[σ̃µ

k , ρk]
)︁

−i[HE, ρ] =
λ̇

2 ∑
k∈K+

(∂λθk)

⎛⎝⨂︂
k′ ̸=k

ρk′

⎞⎠⊗
(︁
−i[σ̃y

k , ρk]
)︁

,

and, exploiting the cyclic property and the Kronecker’s product property, traces can be
simplified as follows:

Tr
[︁
(−i[HE, ρ])

(︁
−i[Sµ

m, ρ]
)︁]︁

= λ̇ ∑
k∈K+

(∂λθk) f µ(mk)
(︁
δyν − 2vy

k vν
k
)︁

Tr
[︁(︁
−i[Sµ

m, ρ]
)︁
(−i[Sν

l , ρ])
]︁
= 4 ∑

k∈K+

f µ(mk) f ν(lk)
(︁
δµν − 2vµ

k vν
k
)︁

,

where we have taken into account that Tr
[︁(︁
−i[σ̃µ

k , ρk]
)︁
(−i[σ̃ν

k , ρk])
]︁
= δµν − 2vµ

k vν
k .

Now, since vy
k = 0 for each moment k, Eq. (3.8) assumes a simple block-matrix repres-

entation: ⎛⎜⎜⎜⎝
0⃗

λ̇ ∑k∈K+(∂λθk) sin(k)

0⃗

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A 0 B

0 4 ∑k∈K+ sin(k)2 0

BT 0 C

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

h⃗a

h1,Y

h⃗c

⎞⎟⎟⎟⎠ ,

where the matrices A, B, and C does not determine the solution with zero projection on
the kernel.
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The last equation has multiple solutions, however, the unique solution that has a null
projection on the kernel is:

Hopt(t) = h1,Y(t)SY
1 = h(t)

L

∑
n

(︁
σx

n σ
y
n+1 + σ

y
nσx

n+1
)︁

where explicit expression of the optimal coupling h(t) is

h(t) ≡ −1
2

h1,Y = −λ̇
∑k∈K+(∂λθk) sin(k)

8 ∑k∈K+ sin(k)2

As anticipated, this coupling depends on the time schedule only through λ(t) and its
time derivative.

Figure 3.3 illustrates the behavior of the renormalized coupling h(t)/λ̇ for various sys-
tem sizes L. As we can see, in synthetic quantum systems the optimal Hamiltonian can
be implemented in a scalable manner because the amplitude of the couplings does not
depend on L.
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Figure 3.3: Evolution of the (rescaled) optimal coupling h/λ̇ for different system sizes.

In Figure 3.4 we show the rescaled local cost f (Hopt, t)/(
√

Lλ̇) of the optimal solution,
which determines the accessibility of ρ(t) thought local interactions. For noncritical states,
the different curves converge for a sufficiently large system, signaling that f (Hopt, t) scales
with

√
L. For the critical states, instead, the rescaled cost diverges and finding a local

optimal generator becomes very hard. This scaling behavior is analogous to the Fubini-
Study metric on the target path of states [89, 117–120], as we argued in the previous
section.

The fidelity F(t) = Tr(ρ(t)ρopt(t)) between ρ(t) and the state ρopt(t) driven by the
optimal Hamiltonian assumes a simple form in the pseudo-spin representation of the
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Figure 3.4: Evolution of the (rescaled) optimal cost f (Hopt)/(
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Lλ̇) for different system sizes.
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Figure 3.5: Evolution of the fidelity between the target state and the state evolved through the
optimal generator for different system sizes.

Hilbert space, where defining the time-dependent angle αk(t) = 4 sin(k)
∫︁ t

t0
h(t′)dt′ +

θk(λ(t))−θk(λ(t0))
2 , we obtain

F(t) = ∏
k∈K+

cos(αk(t))2.

F(t) depends on time through λ but does not depend on the schedule. As we can see
in Figure 3.5, where F is shown for different system sizes, away from the critical coupling
λc = 1 the optimal generator drives the state with high fidelity. In correspondence to λc,
instead, a significant amount of fidelity is irreversibly lost. By the inequality (3.6), the cost
function’s shape in Figure 3.4 allows for the prediction of this behavior.
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Remarkably, the Lieb-Robinson bounds [90] can be used to explain the sharp drop of
the in fidelity in correspondence with the critical state. According to these bounds, the
correlation length grows under the influence of a local Hamiltonian at a velocity that
does not depend on the system size. As a result, if we want the correlation length to
diverge in the thermodynamic limit, as it does for critical states, we also require a diverging
magnitude of the couplings. This is because the Lieb-Robinson speed is proportional to the
magnitude of the interactions involved in the Hamiltonian. According to Figure 3.3, the
couplings do not grow with the size of the system in this case, making it impossible to
attain the critical state. This results in a drastic drop in fidelity.

3.6 driving the ground states of the p-spin model in time-dependent

transverse field

The time-dependent inverse problem for the ground state a p-spin Hamiltonian is another
paradigmatic example of the potential of our method. This Hamiltonian, which was presen-
ted in Ref. [128] to model spin glasses [129–131], consists in a spin system in which the
elementary interactions connect each set of p spins regardless of their distance. According
to a computational perspective, the non-local interactions in the p-spin Hamiltonian are
involved in the solution of several computationally challenging problems such as Grover’s
search [132]. Consequently, the ability to produce the dynamics generated by this type of
Hamiltonians by utilizing actual resources can provide an intriguing advance for the im-
plementation of quantum algorithms. Because of this, several studies have been published
recently that offer methods for implementing the p-spin Hamiltonian’s ground states, with
an emphasis on methods that involve shortcuts to adiabaticity [108, 109, 133–138]. The
search for an optimal generator can furnish a novel contribution to the debate on this
topic.

Let us consider the p-spin Hamiltonian in transverse field

Hp-spin(λ) = −Γ(1 − λ)Σx − λ
J

np−1 (Σz)
p (3.17)

where λ(t) is the time-dependent parameter and

Σµ = ∑
i

σ
µ
i .

Setting J = Γ = 1 and p = 3 in Hp-spin, the system exhibits a first-order phase trans-
ition [134]. The non-locality of the model comes from the interactions in the term (Σz)p,
which connect sites regardless of their mutual distance in the spin chain.

The p-spin Hamiltonian only involves the total spin of the system and its projection
along the z-axis, and its ground state is located in the space of maximum total spin Σ2.
For this reason, we can represent our target time-dependent state in the maximum spin
subspace, with dimension L + 1 [134]. We also look for the optimal generator in a space
spanned by operators that conserve the total spin, and can therefore be represented in the
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same subspace. This approach allow us to attack the inverse problem of Eq. (3.8) also for
a large number of spins.

In this section, we consider two time-dependent states ρ(t). In the first subsection, ρ(t)
is defined as the path of ground states for Hp-spin(λ(t)). Instead, in the second subsection
ρ(t) connects the ground states of Hp-spin(0) and Hp-spin(1) through a linear interpolation.
In both cases, since Hp-spin involves all-to-all interactions, we look for a non-local optimal
generator. However, we ask that the elementary interactions in L have maximum weight
equal to weight one, two, and three alternatively. Because of the symmetries inherited by
the state ρ(t), L contains only interactions that are invariant for an arbitrary permutation
of the chain sites and are the product of an odd number of Σy operators. Therefore, we
consider the following sets of Hermitian operators

L1 = {Σy},

L2 = L1 ∪ {Σxy, Σyz},

L3 = L2 ∪ {Σyyy, Σxyx, Σzyz, Σxxy, Σyzz, Γxxy, Γyzz, Σxyz, Σxzy, Σyxz, Γxyz, Γxzy, Γyxz},

where Σµ1,..,µn ≡ (Σµ1 . . . Σµn + h. c.)/2 and Γµ1,..,µn ≡ i(Σµ1 . . . Σµn − h. c.)/2.
By numerically solving Eq. (3.8) for L1, L2 and L3, we find the optimal generator for the

evolution with weight equal to one, two, and three respectively.

3.6.1 Generating a path of ground states

Here, we consider the optimal generator for the non-degenerate ground state ρ(t) of
Hp-spin(λ(t)). If we consider weight w = 2 interactions, it is

H(t) = λ̇
(︁
λY(t)Σy + λXY(t)Σxy + λYZ(t)Σyz

)︁
,

where the normalized couplings hY/λ̇, hXY/λ̇, and hYZ/λ̇ are depicted in Figure 3.6 for
different system sizes. In correspondence of noncritical states, optimal couplings converge
in the thermodynamic limit, this allows for a scalable implementation of Hamiltonian H(t).
Instead, the critical state is characterized by a coupling magnitude that increases with the
system size.

In Figure 3.7, we represent the local cost associated to the optimal solution f (Hopt, t)
of weight w = 2, which determines the accessibility of the state. This cost decreases and
converges to a minimum value for noncritical states when the system size is increased. This
feature determines the fidelity between the target state and the driven one in Figure 3.8 (a) :
larger p-spin noncritical states are easier to be driven. In contrast, in correspondence of the
critical states, when the cost of the optimal solution sharply rises with system size, there is
a rapid decline in fidelity. In conclusion, the optimal generator fails to generate a quantum
phase transition, as it happens in the Ising model. An analogous behavior characterizes
the cost function and the fidelity obtained through weight one and three Hamiltonians.

Let us consider now the fidelity for the final state of the evolution, for example for
λ(t) = 1 after the phase transition. This is shown in Figure 3.8 (b) for different system
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Figure 3.6: Evolution of the (rescaled) optimal coupling hi/λ̇ for different system sizes when the
available interactions have weight w = 2. The couplings shown in the figure respectively
correspond to the interactions Σy, Σxy and Σyz.
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Figure 3.7: Evolution of the (rescaled) optimal local cost f (Hopt)/λ̇ for different system sizes when
the available Hamiltonians have weight w = 2.

sizes weights of the Hamiltonian. Remarkably, we observe a drastic improvement of the
driving fidelity in correspondence of larger Hamiltonian weights.

As explained in Section 3.4, the accessibility angle measures the capability of the avail-
able interactions of generating the target evolution. This angle is plotted in Figure 3.9 for
different system sizes and operator weights w = 1 and w = 3. A peak in correspondence
with the critical states signals the impossibility of generating these states through finite
weight Hamiltonians. By contrasting the two panels in this figure, we can see how the ac-
cessibility can be significantly improved through weight three interactions, especially prior
to the phase transition.
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Figure 3.8: In panel (a) evolution of the fidelity between the target state and the state evolved
through the optimal generator of weight w = 2. In panel (b), fidelity between the target
state and the state generated by the optimal generator at λ = 1 as a function of the
system size and for different weights of the available interactions.

3.6.2 Generating interpolations of ground states

The inverse problem for a time-dependent state that follows the ground states of a certain
time-dependent Hamiltonian has been addressed in the preceding examples. However, our
strategy is appropriate for determining the optimal generator of arbitrary time-dependent
states. Here we consider a time-dependent linear interpolation of a pair of states. The
initial and final states are ground states of the p-spin Hamiltonian Hp-spin(λ) at λ = 0 and
λ = 1. This allows us to evaluate how well our strategy performs for various evolutions
having the same extremal points.

The target time-dependent state is

|ψ(t)⟩ = Z(t) [cos (λ(t)π/2) |ψ0⟩+ sin (λ(t)π/2) |ψ1⟩]

where |ψ0⟩ and |ψ1⟩ are the ground states of the Hamiltonian in Eq. (3.17) with λ = 0, 1,
respectively, and Z(t) is a normalization factor. λ(t) goes from 0 to 1 during the time
evolution. We construct an optimal generator with the operators of weight one, two and
three, respectively in L1, L2 and L3.

The solution to Eq. (3.8) in the space spanned by the operators of weight two leads to
the optimal couplings shown in Figure 3.10. Here, we can see that the coupling’s strength
declines with the size of the system and is greatest at the start and end of the evolution.
A similar behavior is shared by the local cost associated to the optimal Hamiltonian, in
Figure 3.11: it increases with the system size and is maximized at the initial and final times.
It is evident from the coupling and total cost behavior at extre times how challenging it is
to interpolate ground states with the available interactions.
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Figure 3.9: Evolution of accessibility angle associated to the optimal generator of weight w = 2 and
w = 3 for different system sizes.
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Figure 3.10: Evolution of the (rescaled) optimal coupling hi/λ̇ for different system sizes when the
available interactions have maximum weight w = 2. The couplings shown in the figure
respectively correspond to the interactions Σy, Σxy and Σyz.

Figure 3.12 (a) shows the fidelity between the target state and the evolution generated
by the optimal Hamiltonian, reflecting the behavior of the optimal cost function: larger
values of the local cost function are linked with a higher drop of the fidelity.

In Figure 3.12 (b), we represent the final fidelity between the target state and the driven
one at λ = 1, for different system sizes and interactions weights. As anticipated, it is clear
that a higher weight results in a larger final fidelity.

Both the time evolution examined here and the one examined in the previous subsection
begin at and terminate at the same state. However, for a fixed number of spins, the cost
function associated to the second evolution is greater, and the final fidelity is noticeably
lower. We can state that the path of states of the previous section is more accessible with the
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 Ĥ

op
t )

 / 
λ.

λ

L = 4
L = 6
L = 8

L = 10
L = 12
L = 14
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Figure 3.12: Panel (a): evolution of the fidelity between the target state and the state evolved
through the optimal generator of weight w = 2. Panel (b): fidelity between the tar-
get state and the state generated by the optimal generator at λ = 1 for different sizes
of the system and for different weights of the available interactions.

interactions in exam. Since creating interpolations of states appears to be more challenging
than creating ground states, we can hypothesize a correlation between the evolution of the
entanglement and the accessibility of the time-dependent state.

3.7 optimal hamiltonian vs counterdiabatic driving

Two examples from the previous sections have been devoted to the search for an optimal
generator for the time-dependent ground state of a Hamiltonian Ha(λ(t)). In this form,
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the inverse problem can be seen as a method to drive the ground state of Ha(λ(t)) in a
shorter time than that required by an adiabatic process.

The attempt to accelerate adiabatic processes, i.e., the search for shortcuts to adiabati-
city [100–109], is very common in the adiabatic quantum computation, where the long time
required for the validity of the adiabatic theorem is in contrast with the short coherence
time of actual quantum devices. To obtain such a shortcut, one can suppress Landau-
Zener transitions to the excited eigenstates, which naturally arise when the control para-
meters of the system rapidly change. This can be done through an additional Hamiltonian,
the so-called counterdiabatic potential [99], associated with Ha(λ(t)). Unfortunately, this
Hamiltonian involves a range of interactions that are extremely challenging to produce
in an experiment, thus one searches for an optimal potential that only includes a specific
set of interactions. Sels and Polkovnikov [110] proposed to approximate the counterdia-
batic potential as a local Hamiltonian by minimizing a cost functional. The obtained local
Hamiltonian could be exploited in real experiments to accelerate the adiabatic quantum
computation suppressing, in part, the Landau-Zener transitions. For example, recent works
have been devoted to the search for a counterdiabatic potential for the p-spin ground states
through the minimization of this cost functional [134, 135].

The conceptual difference between local counterdiabatic potential and the local gener-
ator of a time-dependent ground state is immediately evident, and it regards the inputs
and the goal of these two methods. The counterdiabatic potential, indeed, is a function
of the adiabatic Hamiltonian and helps generate its unknown ground state. Instead, the
optimal generator is a function of a known state and can be exploited to prepare that state.

In this section, we want to clarify the relationship between the local counterdiabatic po-
tential and the local generator of a time-dependent ground state in terms of the related
cost functionals. In particular, we want to show that, while the first is suited to simultan-
eously drive all the eigenstates of Ha, the second one exploits all the available resources to
drive only its ground state.

The optimal counterdiabatic potential in Ref. [110] is defined as the minimum A(t)∗ of
the functional

SHa [A(t)] =
∫︂ T

0
Tr
[︁
(∂tHa + i[A, Ha])

2]︁ dt,

where Ha(t) is the adiabatic Hamiltonian and A(t) is an engineerable time-dependent
Hamiltonian. As shown by in Ref. [110], the minima of the latter potential are also the
minima of

S′
Ha
[A(t)] =

∫︂ T

0
Tr
[︃(︂

∑
i

Ei
(︁
∂tρi + i[A, ρi]

)︁)︂2
]︃

dt.

where the Ei and the ρi are the eigenvalues and the eigenvectors of Ha respectively.
This functional does not depend on the derivative of the potential, hence its minimum

is the minimum of the integrand function at each time. Moreover, since the square is a
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monotonic function, here we can replace the integrand with its square root, obtaining
another equivalent functional

S′′
Ha
[A(t)] =

∫︂ T

0

⃦⃦⃦
∑

i
Ei
(︁
∂tρi + i[A, ρi]

)︁⃦⃦⃦
dt.

This last cost is related to cost Fρi [A(t)] associated to the inverse problems for the eigen-
states ρi(t) of Ha:

S′′
Ha
[A(t)] ≤ ∑

i
|Ei|Fρi [A(t)] (3.18)

Therefore, the minimum of SHa is suited to simultaneously driving all the eigenstates of
the adiabatic Hamiltonian. Indeed, the driving of each of these states ρi is obtained by
minimizing the inverse problem cost functional Fρi . When the Fρi have different minima,
the optimal solution is a compromise between the best driving of the different states, where
the optimization of states with higher energy is the favorite. As a consequence, a minimum
for the potential SHa is generally different from a minimum of F .

As an example, let us consider the transformation Ha → Ha + dHa for the Hamiltonian
Ha, where Ha = diag(E1, E2, E3) and

dHa = dtλ̇

⎛⎜⎜⎜⎝
0 (E2 − E1) 0

(E1 − E2) 0 2(E3 − E2)

0 2(E2 − E3) 0

⎞⎟⎟⎟⎠ i,

in which i is the imaginary unit. If we look for the minimum of the cost function SHa in
the space spanned by the operator

P =

⎛⎜⎜⎜⎝
0 1 0

1 0 1

0 1 0

⎞⎟⎟⎟⎠ ,

we obtain the counterdiabatic potential

HCD = −λ̇
(E1 − E2)2 + 2(E3 − E2)2

(E1 − E2)2 + (E3 − E2)2 P.

The optimal generator for the ground state of Ha instead corresponds to the minimum of
the associated cost functional F . This can be obtained by replacing E2 and E3 with zero in
the last expression. Now, the minimization leads to:

Hopt = −λ̇P.

As we can see, the optimal counterdiabatic potential is different from the optimal generator
for the target evolution.
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3.8 summary

In this chapter, we have shown how the parent Hamiltonian generating the system evol-
ution can be determined thourgh system of linear equations. By restricting the space of
Hamiltonians to a subset of realistic interactions, we have also defined an optimal solution
that can be engineered in a realistic device. This optimal solution not only allows us to re-
construct the time-dependent generator, but also causes the initial state to evolve towards
the target state with high fidelity. Hence, our techniques can be used for manipulating
quantum states and, as we show in the following chapter, extended to Hamiltonian learn-
ing. A significant aspect of our analysis is the geometric significance of the proposed cost
functional, which captures the geometry induced on the space of states by a set of permit-
ted interactions. By interpreting the cost function as a geometric object, we have obtained
an analytical expression for the optimal generator at each time as a function of the state
and its time derivative. The leading role of the QCM in this expression also highlights the
connection between symmetry reconstruction and optimization techniques in optimal con-
trol. We have demonstrated that our method can drive the time-dependent ground state of
the Ising model and of the p-spin model in a transverse field. Finally, we have investigated
connections and differences between the optimal generator for a time-dependent ground
state and the counterdiabatic shortcut to adiabaticity.

In Section 3.4, we have also defined a geometric measure of the difficulty of creating
a desired time-dependent state using local interactions, the accessibility functional. This
geometric notion can be used to identify the most efficient path to connect quantum states
by searching for geodesics of a related metric. Additionally, the physical meaning of this
object bears a close resemblance to the concept of a geometry of quantum complexity [114–
116] and the questions surrounding the accessibility of the Hilbert space [53]. In the future,
further investigation of these connections could have significant implications for quantum
state control and quantum information theory.





4
L E A R N I N G T H E H A M I LT O N I A N O F A
T I M E - D E P E N D E N T S TAT E

4.1 introduction

In the previous chapter, we showed how to reconstruct the time-dependent Hamiltonian
capable of generating a given temporal evolution. This was possible through Eq. (3.1),
which relates the coefficients of the Hamiltonian at a given instant to the infinitesimal evol-
ution of the expectation values. In this chapter, we show how to extend the same approach
to Hamiltonian learning, which consists of the inference of a realistic Hamiltonian model
from experimental data. This process has been essential for validating theoretical models
over the years, where the observation of the system’s evolution aims to characterize the
unknown model parameters and determine their plausibility. It is now gaining signific-
ant attention in the scientific community due to its importance for the verification and
benchmarking of quantum technologies.

Beyond the design of a specific algorithm for Hamiltonian learning, depicted in Section
4.2, and the estimation of its performances in terms of uncertainty, that is illustrated in
Section 4.3, the main result of this chapter regards quantum resource theory. We want to
figure out what feature of a time evolution determines the learnability of the Hamiltonian,
understood as the rate at which the accuracy of our reconstruction increases with the num-
ber of experiment iterations. After introducing the inverse participation ratio (IPR) [139–
141] as a measure of delocalization of the initial state in the Hamiltonian eigenstates, in
Section 4.5 we demonstrate through analytical arguments that effectiveness of the pro-
posed learning method depends on the state delocalization. Specifically, we prove that
there is an analytical relationship between the IPR of the initial state and the informa-
tion matrix, which reflects the amount of information gained during the learning pro-
cess. States that are equally weighted superpositions of the Hamiltonian eigenstates, and
therefore delocalized, provide the maximal information about the system Hamiltonian, as
shown in Figure 4.1. As a proof of concepts, in Section 4.6, we apply our method to learn
the Hamiltonian of systems of few superconducting qubits, highlighting its relevance to
gate-based quantum computation and confirming our predictions about the relationship
between IPR and accuracy. We conclude that delocalization can be considered a resource
for Hamiltonian learning. Remarkably, this offers a new perspective on the use of quantum
information theory in the study of out-of-equilibrium quantum systems [139, 142]. The last
section is devoted to summarize our results and the future perspectives.

51
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Figure 4.1: The larger is the capability of the state ρ(t) to explore the space of states S, the larger
is the amount of information obtained through the learning process, and, consequently,
the smaller is the uncertainty in reconstructing the Hamiltonian.

4.2 hamiltonian learning algorithm

Every Hamiltonian learning algorithm infers the system Hamiltonian from a collection of
measurements. As illustrated in Chapter 2, there are several proposals in recent literature
about how to optimize the choice of these measurements in many situations [70, 87]. Here,
we focus our attention on the investigation of the feature of a quantum state that makes
high-accuracy Hamiltonian learning possible. For this reason, we base our method on the
entire reconstruction of a quantum state at different times, obtained through a simple
approach to quantum tomography. More sophisticated approaches to tomography, as well
as other efficiency improvements that come with an accurate selection of the observables
to measure, are possible but would represent an unwanted complication in our analytical
investigation.

We collect information about the system evolution by performing tomographies of the
state at a collection of NT times {tn} ≡ {0, δt, . . . , (NT − 1)δt}. Hence, we need to estimate
how many resources, in terms of the number of experiment shots NS, are exploited in this
process. Each shot starts with the preparation of the initial state, then the system evolves
for a time tn with the unknown Hamiltonian, and finally, a set of commuting observables
is measured. As in section 3.2, we define an orthonormal basis B = {Oα} for the space of
Hermitian operators endowed with the Hilbert-Schmidt product. In this basis, the system
density matrix ρ(t) can be expanded as ρ(t) = ∑α oα(t)Oα where oα(t) ≡ Tr(Oαρ(t)), the
components of ρ(t) over B, are the expectation values of the observables Oα over the state
ρ(t). At each time tn, the state is completely reconstructed by measuring all the observables
in the set B = {Oα}, grouped in subsets of commuting operators. Finally, we have to take
into account that each expectation value oα(tn) that contributes to the definition of ρ(tn) is
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affected by statistical uncertainty. This is σ(oα(tn)) =
√︁

Tr(O2
αρ(tn))/NM, where NM is the

number of repeated measurements of Oα at time tn.
We consider superconducting quantum processing units of NQ qubits, where measure-

ments are always performed in the computational basis, i. e., in the basis of simultaneous
eigenstates of the single-qubit operators σz

i . Measuring any operator in basis B of all the
Pauli strings can be done by independently rotating any qubit around the axis x (σz → σy),
y (σz → σx) or z (σz → σz). With 3 rotations per qubit, we measure any possible observable
and we have full information about the system state. Indeed, in a single experiment shot,
a large set of Pauli strings is simultaneously measured. For example, after rotating each
qubit along the x axis, we simultaneously measure all the many-spins correlations of σ

y
i .

As a consequence, in a system of Nq qubits, the number of experiment shots needed for
the state tomography in this simple approach is NS = 3Nq NT NM.

The time-independent Hamiltonian of the system is H = ∑i hiLi, where the Li ∈ L
are Hermitian traceless operators that represent the relevant interactions between the con-
stituents of the system. We exploit the information collected in the tomography of the
time-dependent state of the system to learn the Hamiltonian couplings hi.

In the spirit of equation Eq. (3.1) we constrain the Hamiltonian couplings through the
short-time evolution of the state. However, in Hamiltonian learning, we need to take into
account the approximations due to the finite time-step δt: the system state at a time tn+1 is
related to ρ(tn) via the equation

ρ(tn+1)− ρ(tn)

δt
+ i ∑

i
hi[Li, ρ(tn)] = Rnδt, (4.1)

where Rn = −[H,[H,ρ(t∗)]]
2 is the remainder of the Taylor expansion at the first order of

ρ(tn+1), for some t∗ ∈ [tn, tn+1].
The best optimal guest h(opt)

i for the Hamiltonian couplings can be calculated taking into
account an ideal experiment, where δt could be made arbitrarily small and the statistical
uncertainty on the state tomography would vanish as well. In this case, the optimal coup-
lings are the ones that minimize the Frobenius norm of the LHS of Eq. (4.1) at each time,
that is:

f (h⃗) = C − 2 ∑
i

hiBi + ∑
ij

Vijhihj,

where
Vij = −∑

n
Tr
(︁
[Li, ρ(tn)][Lj, ρ(tn)]

)︁
, (4.2)

Bj = ∑n Tr
(︁
−i[Lj, ρ(tn)](ρ(tn+1)− ρ(tn))/δt

)︁
, and C = ∑n Tr

(︁
(ρ(tn+1)− ρ(tn))2/δt2)︁. We

call the matrix Vij the Total Quantum Covariance Matrix (TQCM).
The optimal couplings correspond to the argument that minimizes f (h⃗), and, since this

is a quadratic function, these can be found by imposing the nullity of the gradient

∂hi f (h⃗) = −2Bi + 2 ∑
j

Vijhj.
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When the TQCM is invertible, this leads to a unique solution:

h(opt)
i = ∑

j
(V−1)ijBj. (4.3)

Eq. (4.3) can serve our goal if the kernel of Vij is empty, otherwise, the experimental data
are insufficient to specify the system Hamiltonian, meaning that different Hamiltonians
can produce the same evolution. As we show in the next chapter, in this case, the uncer-
tainty on the Hamiltonian coupling diverges.

4.3 uncertainty estimation

The performance of a Hamiltonian learning algorithm is determined by the scaling of the
relative uncertainty of the reconstructed Hamiltonian as a function of the computational
effort required, here estimated in terms of the number NS of shots. The goal of this section
is to investigate this uncertainty, highlighting its dependence on the initial state in which
the system is prepared.

In our approach, the two main sources of uncertainty are the statistical uncertainty
σ(aγ(tm)) that affects the expectation values oα(tn) due to the finite number of measure-
ments MN , and the impossibility to reduce the time step δt to zero. The first one determ-
ines a discrepancy between the real system state and the state reconstructed in tomography,
while the second one, expressed by the reminder Rn, is a systematic source of error for the
derivatives (ρ(tn+1)− ρ(tn)) /δt. These contributions determine a total uncertainty δBi on
the vector Bi:

δBi =

⌜⃓⃓⎷∑
γ,m

(︃
∂Bi

∂aγ(tm)
σ(aγ(tm))

)︃2

+ ∑
m
|Tr (−i[Li, ρ(tm)]Rm)|,

where the first term on the RHS is the statistical uncertainty and the second one is the
systematic uncertainty. Remarkably, since we perform tomography even at the initial time,
state preparation errors do not directly affect the uncertainty of the reconstructed Hamilto-
nian.

In Appendix B, we show that δBi is upper-bounded by a function that does not depend
on the specific evolution of the system, but only on the Hamiltonian and Li operator norms,
the total number of repetitions NM, time steps NT and the number of qubits Nq:

δBi ≤
16∥H∥op∥L∥op√︁

2Nq NM

√︁
NT + 4δt∥L∥op∥H∥2

opNT.

The uncertainty on Bi is propagated to the Hamiltonian couplings hi, which are known
up to an uncertainty δhi. In other words, any Hamiltonian H = ∑i hiLi with |hi − h(opt)

i | <
δhi is compatible with the dynamics reconstructed by the tomography.
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Relating the uncertainty δBi to the uncertainty δhi through Eq. (4.3) and considering the
relationship between the vector norm of the exact couplings ∥h⃗∥ and the operator norm
∥H∥op, in Appendix B we obtain a bound for the relative error

ε ≡ ∥h⃗
(opt) − h⃗∥/∥h⃗∥

on the reconstructed Hamiltonian:

ε ≤

⌜⃓⃓⃓
⎷l Tr

⎡⎣(︄ Vij

∥L∥2
opNT

)︄−2
⎤⎦⎛⎝16

(3/2)
Nq
2

√
NS

+ 4∥H∥opδt

⎞⎠ , (4.4)

where l is the number of couplings of the Hamiltonian and, without loss of generality, we
suppose that ∥Li∥op = ∥L∥op.

In the RHS of inequality (4.4) we can individuate three main factors that determine the
final accuracy. The first factor in round parentheses represents the effect of statistical un-
certainty, which can be recognized since it scales as

√
NS

−1. The second factor in round
parentheses is the systematic source of error, related to the finite time steps δt. It is import-
ant to note that this error, that here scales with the system size through the Hamiltonian
norm, can be shown to be independent of this size for local Hamiltonians through the
Lieb-Robinson bounds [53]. These first two factors are independent of the state. Hence,
the upper bound on the relative error only depends on the system evolution through the
inverse norm

√︁
Tr(V−2) of the TQCM, determined by the eigenvalues. Indeed, the more

information about the system Hamiltonian we learn through studying the state evolution,
the greater these eigenvalues are. Conversely, when a given TQCM eigenvalue reaches
zero and the matrix cannot be inverted, the uncertainty diverges, indicating that there is
insufficient data from the experiment to sustain Hamiltonian learning. Hence, Eq. (4.4) is
analogous to a Cramer-Rao bound [87, 143] on the Hamiltonian uncertainty, where the
TQCM takes the role of an information matrix.

At any given fixed time, the spectrum of the QCM

Vij,n ≡ −Tr
(︁
[Li, ρ(tn)][Lj, ρ(tn)]

)︁
(4.5)

determines the amount of information about the Hamiltonian gained by observing the
short-time evolution, whereas the spectrum of the TQCM determines the total amount of
information about the Hamiltonian that we have learned from the state evolution. The
preparation of the starting state and the subsequent evolution affect both the QCM and
the TQCM. As a result, the choice of the initial quantum state is essential for the algorithm
to succeed, and the best initial states are those that maximize the amount of information
learned, reducing uncertainty in the reconstructed Hamiltonian.
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4.4 the ipr as a measure of ergodicity

In the previous section, we have shown how the accuracy of the reconstruction is influ-
enced by the system time-dependent state through the inverse norm of TQCM. In the
followings, we are going to identify the property of a quantum state that determines this
norm. We will focus our attention on pure states.

First of all, let us note that the TQCM is the sum over the different time steps of the
QCMs Vij,n. Following the definition of Eq. (4.5), eigenvalues of this matrix are either pos-
itive or null. During the time evolution, the more the system state changes, the more its
symmetries change. These are represented by the zero eigenvalues of the QCM, which ro-
tate during the evolution. As a consequence, the minimum eigenvalues of TQCM resulting
from this process rapidly increase. Contrarily, if the system state is stationary, symmetries
does not change in time and form a non-empty kernel for the TQCM. Based on this argu-
ment, we are going to show that the property of the evolution that determines the learning
accuracy is the ergodicity of the state evolution, understood as its capability of visiting all
possible states with equal probability.

To this aim, we need to introduce some measure of ergodicity. The inverse participation
ratio (IPR) is a good estimator of this property [139–141]. It is defined as the inverse of the
sum of the squares of the wave function amplitudes. In systems where the IPR is high, the
wave function is highly localized, and the system is less likely to visit all possible states.
This can lead to a lack of ergodicity, as the system may become stuck in a particular region
of state space. On the other hand, systems with low IPR tend to be more delocalized and
are more likely to visit a wider range of states, leading to a higher degree of ergodicity.

In our chase of study, where it is convenient for the state to explore the entire Hilbert
space, we consider the IPR of the initial state in the Hamiltonian eigenstates. If the system
Hamiltonian is H = ∑α Eα|α⟩⟨α| and the initial state of the system is |ψ⟩ = ∑α aα|α⟩, the
wave function amplitudes are |aα|2. Therefore, the IPR is defined as

IPR(ψ, H) = ∑
α

|aα|4.

Therefore, the IPR measures the spreading of the initial state in the Hamiltonian eigen-
states: the lower is the IPR, the more the initial state spreads out. To better understand the
link between IPR and the ergodic hypothesis, we can look at time average of observables.
Indeed, the long-time average of an observable A converges to

Ā = Tr(ρ̄A), (4.6)

where ρ̄ = ∑ |aα|2|α⟩⟨α| is the so-called dephased state. This happens for any not-fine tuned
Hamiltonians because of the vanishing oscillating terms in time evolution. When the IPR,
that can be written as the purity of the dephased state, is minimum (IPRmin = 1/2Nq ), all
the populations of ρ̄ are equal. Thus, the time average coincides with the equal weights
average on the energy eigenstates.
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4.5 information and ipr

In this section, our aim is to show that states with a small IPR are associated with large
eigenvalues of the TQCM and, due to Eq. (4.4), with a small error of the reconstructed
Hamiltonian.

We consider a system in a pure state, represented by the density matrix ρ(t) =

|ψ(t)⟩⟨ψ(t)|. At time zero, the expansion of the system state on the Hamiltonian eigensates
|α⟩ is |ψ(0)⟩ = ∑α aα|α⟩. We study the behavior of the eigenvalues ωi of the TQCM.
Given a basis a(i)j of normalized eigenvectors for this matrix, the ωi can be written as

ωi = ∑jj′ Vjj′a
(i)
j a(i)j′ . Defining the local operators Ai ≡ ∑j a(i)j Lj and exploiting the defin-

ition of the TQCM in Eq. (4.2), we can see that these eigenvalues are the sum of local
connected correlation functions:

ωi = −
NT

∑
n

Tr ([Ai, ρ(tn)][Ai, ρ(tn)]) = 2
NT

∑
n

(︁
⟨ψ(tn)|A2

i |ψ(tn)⟩ − ⟨ψ(tn)|Ai|ψ(tn)⟩2)︁ .

We approximate this sum to an integral by considering a small time-step δt, and we
make explicit the oscillating terms by writing the system state evolution in terms of the
Hamiltonian energy levels:

ωi ≈=
2NT

T

∫︂ T

0
dt
(︂

∑
αβ

aαa∗β⟨α|A2
i |β⟩e−it(Eα−Eβ) − ∑

αβγδ

aαa∗βaγa∗δ⟨α|Ai|β⟩⟨γ|Aj|δ⟩e−it(Eα−Eβ+Eγ−Eδ)
)︂

.

If we exclude fine-tuning situations, for the unknown Hamiltonian H we can assume that
Eα = Eβ if and only if α = β, and Eα − Eβ + Eγ − Eδ = 0 if and only if Eα = Eβ and Eγ = Eδ

or Eβ = Eγ and Eα − Eδ. These two conditions, which are also involved in the prof of
Eq. (4.6) as well as in important results about equilibration of quantum systems [144–146],
are respectively called non-degeneracy and non-resonance condition. Under these conditions,
after an equilibration time Te that scales as the inverse of the minimum energy gap or the
inverse of the minimum difference between energy gaps, the oscillating terms vanish and
the previous equation becomes

ωi ≈ 2NT

[︂
∑
α

|aα|2⟨α|A2
i |α⟩ − ∑

αβ

|aα|2|aβ|2
(︂
⟨α|Ai|α⟩⟨β|Ai|β⟩+ |⟨α|Ai|β⟩|2

)︂]︂
,

or, equivalently,
ωi ≈ 2NT[Tr(ρ̄A2

i )− (Tr2(ρ̄Ai) + Tr(ρ̄2A2
i ))]. (4.7)

We can see that after the equilibration transient, the TQCM eigenvalues become linear in
the number of time steps, with a coefficient ki ≡ [Tr(ρ̄A2

i )− (Tr2(ρ̄Ai) +Tr(ρ̄2A2
i ))]. Hence,

the uncertainty bound in Eq. (4.4) can be written as:

ε ≤ ∥L∥2
op

√︃
l ∑

i
k−2

i

⎛⎝16
(3/2)

Nq
2

√
NS

+ 4∥H∥opδt

⎞⎠ , (4.8)
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The ki measure the variance of the local operators Ai in the dephased state ρ̄. The positive
contribution to this variance comes from the term Tr(ρ̄A2

i ), while the negative contribu-
tions come from Tr2(ρ̄Ai) and Tr(ρ̄2A2

i ). When the IPR of the system state is minimized,
the dephased state is the totally mixed state and, since the Li’s are traceless, the term
Tr2(ρ̄Ai) vanishes. The remaining negative contribution also decreases in magnitude with
the IPR, that can be written as the purity Tr(ρ̄2) of the dephased state. As a consequence,
minimizing the IPR is a good strategy to generate larger eigenvalues ωi of the TQCM.

Now, we can understand inequality (4.8) as follows. In the initial transient, the state
explores a region of the Hilbert space whose extension is measured by the ki’s. The larger
are these values, the larger is the amount of information collected. After, the state evolves
near to its previous orbits, providing redundant constraints to the Hamiltonian: the error
depends on the number of time steps only through the number of experiment shots.

Before concluding this section, two remarks are in order. The first one regards the choice
of optimal initial states, minimizing the IPR and therefore optimizing the learning process.
The states can be written in terms of the Hamiltonian eigenstates as

|ψopt⟩ =
√︁

2−Nq ∑
α

eiϕα |α⟩ (4.9)

where the ϕα’s are arbitrary phases. It is important to note that, in order to define these
states, one needs to know the system Hamiltonian. This may sound odd, as the recon-
struction of the Hamiltonian is the goal of the learning process, while the knowledge of
optimal states should be exploited to accelerate this process. However, for practical applic-
ations, this problem could be addressed resorting to adaptive learning approaches as in
Ref. [87]. Starting from the optimal states associated to a guessed Hamiltonian, one can
obtain a better estimate of the target Hamiltonian and iterate this process until the result
converges.

The second remark regards the beneficial effect of delocalization. Since we have shown
that this is a resource for Hamiltonian learning, one could wonder if mixed states can also
be exploited to improve accuracy. At a first analysis, this seems not to be the case. Indeed,
the TQCM in Eq. (4.2) is related to the trace of ρ2, therefore states with small purity also
have a small TQCM.

4.6 simulations

To test our hypotheses about the error scaling in Eq. (4.4) and the connection between
the TQCM and IPR in Eq. (4.7), in this section we perform Hamiltonian learning on small
quantum systems with a few qubits. We start by examining a basic two-qubit problem,
then move on to a three-qubit model with randomly chosen couplings. Finally, we exploit
Qiskit [147] to demonstrate how to use our method on a real quantum computer.

To simulate our learning method, we first select a Hamiltonian H and compute the
evolution of the expectation values of the basis elements {Oα} by numerically solving
the Schrödinger equation. This process is repeated for a set of initial states that cor-
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respond to different initial configurations for the experiment, each with a different IPR.
To simulate the impact of statistical error, we add uniform random noise with an amp-
litude 1/

√︁
2Nq NM to each expectation value. Next, we infer the optimal Hamiltonian

H(opt) = ∑i h(opt)
i Li from our simulated evolutions.

We verify the effectiveness of the learning procedure by comparing H with H(opt). Spe-
cifically, we examine how the relative error ε and the TQCM behave for each initial state
and for different total observation times. We also investigate the relationship between the
IPR and the information content of the experiment, as measured by the eigenvalues of the
TQCM. Finally, we calculate the optimal initial state |ψopt⟩ for each Hamiltonian and use
it to achieve optimal learning.

4.6.1 Cross-resonance gate

As a paradigmatic example, here we simulate the learning of the Hamiltonian that gov-
erns a cross-resonance (CR) gate developed by IBM [148–151]. This gate is often used in
quantum computation to entangle two qubits and perform operations on them simultan-
eously. Moreover, it can be used to perform a controlled-NOT (CNOT) operation on one
qubit, with the other qubit as the control qubit. For this reason, implementing this gate
with high accuracy is a fundamental step toward universal quantum computation. In the
computational basis {| ↓↓⟩, | ↓↑⟩, | ↑↓⟩, | ↑↑⟩}, the CR gate is represented by the matrix

CR =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the device under exam, the gate is approximately realized by coupling two super-
conducting quantum circuits, called transmons, by a resonator. Each transmon acts like
an anharmonic oscillator, coupled with the other transmon and the environment through
an electromagnetic field. Thanks to the anharmonicity, under suitable conditions on the
external electromagnetic signal the whole system behaves as a pair of interacting qubits
governed by the effective Hamiltonian:

H = −1.5481⊗ σx − 0.0041⊗ σy + 0.0061⊗ σz + 9.578 σz ⊗ 1

+ 5.316 σz ⊗ σx − 0.225 σz ⊗ σy − 0.340 σz ⊗ σz, (4.10)

where the couplings are taken from Ref. [152] and the energies are expressed in MHz.
After simulating the system evolution, we aim to learn the Hamiltonian coupling, with

the hypotheses that the involved interactions are {Li} = {1⊗ σx,1⊗ σy,1⊗ σx, σz ⊗1, σz ⊗
σx, σz ⊗ σy, σz ⊗ σz}. This choice of the set {Li} is supported by first-principles studies [150].
To perform the Hamiltonian learning algorithm, we set the time step to δt = 0.01 and
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conduct a total of NM = 1000 measurement repetitions with NS = 3 × 106 shots. The
algorithm is run on several initial states that have varying IPRs.

The reconstructed Hamiltonian couplings after NS = 3 × 106 shots are shown in Table
4.1 for the following states: | ↑↑⟩ with IPR = 0.503, | →→⟩ ≡ (| ↑⟩+ | ↓⟩)⊗ (| ↑⟩+ | ↓
⟩)/2 with IPR = 0.498, |ψ+

Bell⟩ ≡ (| ↑↑⟩ + | ↓↓⟩)/
√

2 with IPR = 0.251, and the optimal
state |ψopt⟩ corresponding to the minimum IPR = 0.25. We can see that better results are
obtained when the initial state has a small IPR.

In Fig. 4.2 (a), we plot the relative error ε of the reconstructed couplings as a function
of the experiment shots NS. Since both the time step δt and the number of measurements
NM are fixed, NS is proportional to the total evolution time of the system. The curves in
the plot represent states with various IPR values. Our predictions are confirmed by the
numerical simulations: after an initial period in which the error decreases exponentially
with the number of time steps, the final error tends towards smaller values for states with
a smaller IPR. The optimal results are achieved when the initial state is |ψopt⟩.

To prove that this behavior is driven by the evolution of the eigenvalues of the TQCM,
in Fig. 4.2 (b), we plot the Frobenius norm of the inverse TQCM times the number of
time steps. We observe that this norm exponentially decreases during an initial equilib-
ration transient and eventually approaches the equilibrium behavior that is predicted in
Section 4.5. Specifically, the norm becomes linear in the evolution time, with the propor-
tionality coefficient decreasing as the IPR increases.

In Fig. 4.2 (c), repeating the learning simulation with a large set of the randomly chosen
initial state, we directly show the relationship between the IPR of the initial state and the
long-time inverse norm of the TQCM (for NT = 300). To obtain states with a sufficiently
uniform distribution of IPRs, random states are sampled as follows. In a basis {|α⟩} of
Hamiltonian eigenstates, we randomly choose the probability p1 of being in the first ei-
genstate |1⟩ from the uniform distribution in the interval [0, 1]. Then the probability p2 of
being in |2⟩ is randomly chosen in the interval [0, 1 − p1], and so on. Finally, the random
state is |ψ⟩ = ∑

√
pα|α⟩. Looking at the figure under the exam, we can confirm the pre-

dictions of the previous section: the IPR and the inverse norm of the TQCM are positively

Table 4.1: Estimated Hamiltonian coupling for different initial states with the corresponding IPR in
parentheses, with δt = 0.01, NM = 1000 and NS = 3 × 106.

Term Target | ↑↑⟩ | →→⟩ |ψ+
Bell⟩ |ψopt⟩

(IPR = 0.503) (IPR = 0.498) (IPR = 0.251) (IPR = 0.25)

1⊗ σx −1.548 2.142 −1.143 −1.543 −1.542
1⊗ σy −0.004 1.021 −0.024 −0.011 0.000
1⊗ σz 0.006 1.073 −0.017 −0.009 0.023
σz ⊗ 1 9.578 −1.418 9.748 9.556 9.553
σz ⊗ σx 5.316 1.627 5.089 5.301 5.295
σz ⊗ σy −0.225 −1.254 −0.218 −0.216 −0.237
σz ⊗ σz −0.340 −1.409 −0.328 −0.324 −0.357
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Figure 4.2: (a) relative reconstruction error and (b) Frobenius norm of the inverse TQCM multiplied
by NT , as a function of NS for the cross-resonance gate Hamiltonian in Eq. (4.10), with
δt = 0.01, NM = 1000 and NS = 9 × NM × NS, for different initial states with different
IPR. (c) IPR and Frobenius norm of the inverse TQCM for a collection of random states
at a large final time for the cross-resonance gate Hamiltonian, with NT = 300.

correlated for small values of the TQCM. In particular, the best learning performance in
terms of the information matrix corresponds to the states that minimize the IPR.

4.6.2 Random 2-body Hamiltonian

In this example, we seek to evaluate the effectiveness of our learning algorithm when
applied to a system governed by a randomly generated Hamiltonian of the form:

H = ∑
i

hiLi,

where couplings hi range from −5 to 5, and the Li represent all of the two-spin interactions
acting on a three-spin system. These interactions can be represented as tensor products of
two Pauli operators and the identity operator. In order to test the algorithm, we use a time
step of δt = 0.01, conduct NM = 1000 measurement repetitions, and run the algorithm for
a maximum of 370 time steps.

The relative error of the reconstruction and the behavior of the TQCM are depicted in
Figure 4.3, panels (a) and (b). In panel (c) of the same figure, we display the IPR (inverse
participation ratio) and the Frobenius norm of the inverse TQCM for a collection of random
states at a large final time. The validity of our theoretical predictions about the optimality
of low IPR states is particularly apparent in panels (b) and (c), where we have not taken
into account statistical and systematic contributions to uncertainty.
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Figure 4.3: (a) relative reconstruction error and (b) Frobenius norm of the inverse TQCM multiplied
by NT , as a function of NS, with δt = 0.01, NM = 1000. The initial states are: an equal
weighted superposition of two Hamiltonian eigenstates with IPR = 0.5, the GHZ state
with IPR ≈ 0.231, | ↑↑↑⟩ with IPR ≈ 0.234, and |ψopt⟩ with IPR = 0.125. (c) IPR and
Frobenius norm of the inverse TQCM for a collection of random states at large final
time, NT = 370.

4.6.3 IBM Q FakeAthens processor

In this subsection, we examine the performance of our learning algorithm on a simulated
quantum processor, the FakeAthens processor, using the Qiskit software [147]. This ap-
proach, which encompasses everything from state preparation to final measurements, can
be easily adapted to any quantum processor. The current simulator considers a two-qubit
system and takes into account errors in state preparation and measurements. It is worth
noting that due to preparation errors, the starting state is not a pure state; however, our
method can still be applied in this scenario.

To test the algorithm, we execute a time-dependent unitary gate that can be represented
in the computational basis as follows:

U(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
cos(4πt) −i sin(4πt) 0 0

−i sin(4πt) cos(4πt) 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We are aware that this gate is produced through the cross-resonance mechanism demon-
strated in our first example. As such, we consider a parent Hamiltonian that is spanned by
the same operators:

{Li} = {1⊗ σx,1⊗ σy,1⊗ σx, σz ⊗ 1, σz ⊗ σx, σz ⊗ σy, σz ⊗ σz}. (4.11)
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Figure 4.4: Panels (a) and (b): reconstructed Hamiltonian couplings at increasing number of shots,
corresponding to longer observation time, for NM = 1000, δt = 0.01. Panel (a): initial
state | ↓↓⟩, Panel (b): initial state |ψ+

Bell⟩. Panel (c): Frobenius norm of the inverse TQCM
multiplied by NT , as a function of NS for the two initial states.

In Figure 4.4 panels (a) and (b) we show the Hamiltonian couplings learned with dif-
ferent initial states as the total observation time increases with the number of experiment
shots. These initial states are | ↓↓⟩ and the Bell state |ψ+

Bell⟩, respectively. Since we do not
know the real system Hamiltonian in advance, in this case, we can not estimate the learn-
ing error directly. To select the most reliable Hamiltonian reconstruction, we can look again
at the inverse norm of the TQCM. By examining panel 4.4(c), we can see that this norm
is minimized when the initial state is the Bell state, which, as expected, has a smaller IPR.
We can conclude that the most accurate reconstruction for the couplings corresponds to
panel (b).

4.7 summary

In this chapter, we have investigated the possibility of reconstructing the Hamiltonian of a
system from a single time-dependent state. To this aim, we have defined a simple learning
algorithm based on time-dependent state tomography. This has allowed us to study which
characteristics of a temporal evolution determine the ability to reconstruct the Hamilto-
nian that generated it. We have shown that the information matrix that determines the
learning uncertainty is related to the IPR of the state in the eigenbasis of the Hamiltonian.
Ultimately, this demonstrates that the most ergodic evolutions are those that lead to the
best learning performance. To illustrate our findings, we reconstructed the Hamiltonians
of systems consisting of a small number of superconducting qubits, highlighting the sig-
nificance of our approach in the context of gate-based quantum computation. In these
examples, as our analytical investigation predicted, the reconstruction error exponentially
decreases during the initial equilibration transient. Afterward, the final accuracy improves
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as the IPR decreases. Our results show that delocalization can significantly enhance the
efficiency of Hamiltonian learning algorithms.

In this chapter, data have been collected through quantum state tomography, which re-
quires an exponential number of measures in the system size. In our case, the number
of required shots is scaled with 3NQ . This great effort in collecting expectation values is
partially rewarded if we look at the scaling of the reconstruction error in Eq. (4.4), where
the statistical contribution exponentially decreases in the system size. However, collecting
data through state tomography generally is not efficient, even if it allowed for the simple
uncertainty analysis of this chapter. This inefficiency can be understood by looking at
Eq. (4.3) as a system of constraints for the unknown Hamiltonian couplings, each of which
depends on the expected value of certain observables and their derivatives. In a quantum
state, expectation values are not independent and the evolution of some observables is
less influenced by the system Hamiltonian. For these reasons, some of these constraints
are redundant or less significant in determining the Hamiltonian. In other words, some
measurements are more informative than others. From the perspective of improving the
algorithm performance, one has to measure only the expectation values of a set of observ-
ables that optimizes the accuracy. These observables could be selected through adaptive
learning strategies, in analogy with Ref. [87], where the role of the TQCM is taken by the
Fisher Information Matrix.

Results of this work also open an interesting perspective on the interplay between in-
formation and learning theory and quantum many-body systems: the amount of informa-
tion contained in the system evolution, expressed by the TQCM, is related to the ergodic
behavior. Inspired by this situation, one could investigate other emerging features of a
many-body system that could influence the learning process, such as the strong sensit-
ivity to the control parameter that characterizes critical states [6, 117–120] and chaotic
systems [153, 154].



5
I N V E R S E Q U A N T U M A N N E A L I N G

5.1 introduction

In the previous chapters, we have studied the time-dependent inverse problem. We have
proposed an exact solution to the problem, and found an optimal local solution for many-
body systems. Finally, we have applied our results to the Hamiltonian learning, showing
their effectiveness in the case of ergodic evolutions. This chapter is dedicated to the re-
construction of local proper parent Hamiltonians (PPHs) for many-body states. This is
a fundamental step for many problems, such as inferring the high-energy behavior of a
physical system from the knowledge of its low-energy behavior [52]. The search for PPHs
has great impact in the realm of quantum technologies, where it could be used to prepare
target many-body states [66–69] or reconstruct the couplings of the system Hamiltonian
from low-temperature measurements.

As shown in Chapter 2, while symmetries can be exactly reconstructed from the know-
ledge of correlation functions [56–58], or approximately from local expectation values [59–
61], selecting the PPHs among symmetries is unfeasible for generic large systems. Indeed,
it requires Hamiltonian diagonalization to verify that the target state is a ground state for
each candidate PH [57]. More sophisticated methods proposed in the literature are based
on the minimization of a function that, in general, is exponentially complicated to evalu-
ate [60, 61]; or on some very stringent Ansatz on the system state [64, 65]. Ultimately, the
search for PPH is most of the times an exponentially hard task.

The search for approximate solutions for hard problems is not a novelty in many-body
physics. A common example is the search for the ground state of a given Hamiltonian.
In this context, several algorithms have been developed that give a good approximation
of the ground state. Some of these algorithms can be efficiently executed on a classical
computer, for example, simulated annealing [155–157] or algorithms based on the density
matrix renormalization group [158–161], while other ones need to be implemented on a
quantum computer, for example, QAOA [162–164] or quantum annealing [76–79]. This lat-
ter exploits the adiabatic theorem: the ground state of a simple Hamiltonian is prepared on
a quantum device, then this Hamiltonian is slowly changed towards the target Hamilto-
nian. In this way, the initial state adiabatically evolves towards the ground state of the
target Hamiltonian.

In this chapter, we explore the possibility of inverting quantum annealing to reconstruct
a PH: in other words, we propose a novel method to efficiently generate PPHs, called
inverse quantum annealing (IQA), that mimics quantum annealing but swaps the role of

65
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Figure 5.1: IQA consists in a dynamics for the Hamiltonian H, depending on a target path of states
|ψ(λ⃗)⟩, that in the adiabatic limit converges to a path of proper parent Hamiltonians
PH(λ) for the target states.

Hamiltonians and states (Figure 5.1). Initializing the system with a simple many-body
state with a known PPH, the procedure consists of slowly deforming the state towards
the target state. The PPH correspondingly evolves according to artificial dynamics, which
becomes adiabatic if the deformation is slow enough. We design these dynamics in a way
such that, in the adiabatic limit, the generated Hamiltonian is a local PPH for the target
state. Remarkably, the computational cost of our algorithm is polynomial in the system
size. Moreover, it allows finding local PPHs starting from the knowledge of only local
expectation values of the path that connects the initial state with the target state.

The chapter is structured as follows. Section 5.2 is devoted to briefly introducing the
(standard) quantum annealing, and then to defining the IQA technique in general. In
Section 5.3 we propose a possible artificial dynamics to realize this technique. An efficient
implementation of these dynamics on a classical computer is possible through a time-
dependent variational principle, illustrated in Section. 5.4. In Section 5.5 we exemplify
our method by reconstructing PPHs for a path of Gaussian states. Finally, Section 5.6 is
devoted to summarizing this chapter and further possible developments of the proposed
technique.

5.2 from quantum annealing to inverse quantum annealing

Before introducing our technique, we briefly explain what is quantum annealing and how
it works. Computational techniques based on annealing are useful to optimize functions in
large spaces, for example minimizing the energy in the space of states of a many-body sys-
tems [80] or solving a combinatorial optimization problem such as the traveling salesman
problem [80] or set covering problems [73].

These methods are inspired by thermal annealing, a metallurgical technique used to
improve a material’s structural purity and decrease imperfections. It is accomplished by
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first rapidly heating the material to a high temperature and then cooling it slowly. In this
way, atoms have time to reorganize themselves to more ordered, low-energy states for
each value of the temperature, until the low target temperature is reached. The high and
intermediate temperature state defines a privileged path that drives the state towards the
global minimum of energy, avoiding false minima.

A first example of an annealing-based computational technique is the simulated anneal-
ing, which mimics this process to find an approximate global optimum for a function with
numerous variables. The algorithm works by randomly generating a starting solution and
then iteratively making small changes to it, accepting the changes if they improve the solu-
tion or rejecting them if they make the solution worse. The probability of accepting a worse
solution is controlled by a fictitious temperature parameter, which is gradually decreased
during the optimization process. This allows the algorithm to explore a larger space of
possible solutions at the beginning and gradually focus on the most promising ones as the
temperature decreases.

Quantum annealing [76–80] is a variant of annealing that uses quantum mechanics to
search for the global minimum of a function. It is based on the idea that a quantum sys-
tem can simultaneously explore multiple states and can tunnel through energy barriers,
which allows it to escape local minima and find the global minimum more efficiently
than classical annealing algorithms. Quantum annealing can be implemented using syn-
thetic quantum systems called quantum annealers. These devices are initialized in the non-
generate ground state of an easy-to-minimize Hamiltonian H0. Then the system Hamilto-
nian H(t) is slowly changed from H0 to a target Hamiltonian H1 in the time interval [0, T]
as follows:

H(t) =
T − t

T
H0 +

t
T

H1.

If the ground state of H(t) remains a non-degenerate eigenstate, the adiabatic the-
orem [165] ensures that for a sufficiently large annealing time T the final state of the
system well approximates the ground state of the Hamiltonian H1. More precisely, the er-
ror generated through this approximation scales as O (1/(∆Min · T)), where T is the total
annealing time and ∆Min is the minimum first energy gap of H(t). This statement also
clarifies the main limit of quantum annealing: if the gap ∆Min becomes exponentially small
with the system size, this approach becomes inefficient. As a consequence, quantum phase
transitions represent a major difficulty in implementing quantum annealing [123].

As a last step before introducing inverse annealing, let us analyze the degenerate case
for the adiabatic theorem [166–168]. This will have a central role in our technique. The
adiabatic theorem ensures that, for a sufficiently slow evolution of the Hamiltonian H(t),
if the manifold Mi(t) of degenerate eigenstates associated with the energy level Ei(t) is
slowly deformed, an initial state of Mi(t) will evolve remaining in Mi(t). Moreover, as
predicted by Wilczek and Zee, for a large time the final system state converges to a well-
defined adiabatic limit, which generally depends on the path H(t) that connects H0 to H1.
This dependence is encoded in a non-Abelian phase called Wilczek-Zee phase [166].

We can finally introduce the scheme of IQA, described in Figure 5.1. It consists in swap-
ping the role of the state and the Hamiltonian in quantum annealing. Firstly, we select
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a path of quantum states |ψ(λ⃗(t))⟩, where λ⃗ is a vector of parameters. The initial state
|ψ(λ⃗(0))⟩ is chosen so that its (local) PPH is known. Then, we artificially define inverse
dynamics, in which the state of the system determines the evolution of the Hamiltonian.
These dynamics are chosen so that in the adiabatic limit, the initial PPH of |ψ(λ⃗(0))⟩
evolves, remaining the instantaneous PPH of the state |ψ(λ⃗(t))⟩. Thanks to IQA, one can
start from an easy-to-compute PPH for |ψ(λ⃗(0))⟩ and generate a hard-to-compute PPH
for the states of the path |ψ(λ⃗)⟩, in analogy to the conventional quantum annealing. In
the next sections, for the sake of simplicity, we choose a dynamics in which λ is a scalar
function of time.

5.3 the inverse dynamics

Since there are no real-world dynamics in which the evolution of local Hamiltonians de-
pends on the system state, in this section we are going to invent the inverse dynamics
involved in the QIA process. We will search for l-local PPHs, intended as Hamiltonians
with finite range l. Given a path of states, we will try to solve the inverse problem using
different values of this range, to check if the range l of the obtained Hamiltonian is in-
dependent of the system size N. If this is the case, we have found a local PPH, and our
method works. To this aim, we introduce the sets L(l) of l-local interactions L(l)

i . Clearly, if
l < l′ then L(l) ⊂ L(l′). For example, in a spin system L(l) can be defined as the set of all
the l-spins Pauli strings.

In Section 3.2, we have shown that it is possible to reconstruct the couplings of a time-
dependent l-local Hamiltonian by measuring the evolution of a set of l-local observables.
This is done by solving a system of linear equations:

∂t⟨ψ(λ(t)))|L(l)
i |ψ(λ(t)))⟩ = ∑

j
K(l)

ij hj(t),

where
Kij(ρ(t)) = ⟨ψ(t)| − i[L(l)

j , L(l)
i |ψ(t)⟩. (5.1)

is the commutator matrix introduced in Refs. [2, 59, 70]. At this point, it is natural to ask
whether the IQA can be obtained by taking the adiabatic limit of this system of equations.
Unfortunately, this approach is impossible, as the previous equation is not a differential
equation for the evolution of the Hamiltonian. If we consider the adiabatic limit λ̇⃗ → 0 of
the previous equation, we only obtain an arbitrary element from the kernel of the commut-
ator matrix for each time t. As illustrated in Chapters 2 and 3, these elements correspond
to the coupling of generic local symmetries, having the state |ψ(t)⟩ as an eigenstate [59],
but not as a ground state.

To perform the IQA, one has to artificially define a differential equation for the evolution
of local Hamiltonians depending on the state |ψ(λ(t)))⟩, with t ∈ [0, T]. This equation must
satisfy the following condition: if hi(0) define a PPH for |ψ(λ(0))⟩, in the adiabatic limit
T → ∞ hi(λ) must be the couplings of a PPH for |ψ(λ)⟩. Any equation that satisfies these
requests is suitable for IQA.
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We propose the following evolution:

∂tH = −i[|ψ(λ(t))⟩⟨ψ(λ(t))|, H]. (5.2)

This is a Schrodinger-like equation where the role of the Hamiltonian and the state density
matrix have been swapped. This equation does not represent any physically realized evol-
ution, hence we can use dimensionless energy and time. We to study the adiabatic regime
of Eq. 5.2, showing that, if the initial Hamiltonian is a PPH for |ψ(λ(0))⟩, this dynamics
generates a Hermitian operator H(λ) having |ψ(λ)⟩ as a ground state. Moreover, when
|ψ(λ)⟩ has a correlation length that does not depend on the system size, H(λ) is a local
Hamiltonian.

The adiabatic solution of Eq, (5.2) also is stationary, implying that ∂tH has to be null.
The stationary solutions of Eq. (5.2) form a degenerate vector space, which contains all
the Hermitian operators having |ψ(λ)⟩ as an eigenstate. The space of stationary solutions
also is the degenerate kernel of the linear super-operator H → −i[|ψ(λ(t))⟩⟨ψ(λ(t))|, H]

that generates the evolution, therefore we must refer to the degenerate adiabatic theory. In
this setting, the existence of a well-defined adiabatic limit is ensured by the Wilczek-Zee
theory [166], which also shows that this limit depends on the path |ψ(λ)⟩.

Now, we investigate the adiabatic solution of Eq. (5.2) and its dependence on the chosen
path |ψ(λ)⟩. As prescribed by the IQA procedure, the initial Hamiltonian is chosen to
have |ψ(0)⟩ as the ground state. The evolution under exam is unitary, therefore H(t) is
isospectral to H(0), and each eigenstate |ψi(t)⟩ of H(t) changes in time evolved by the
“Hamiltonian”

Π(λ(t)) ≡ |ψ(λ(t))⟩⟨ψ(λ(t))|.

Consequently, the time-dependent Hamiltonian is

H(t) = ∑
i

EiT (e−i
∫︁ t

0 dt′Π(λ(t′)))|ψi(t)⟩⟨ψi(t)|T (e−i
∫︁ t

0 dt′Π(λ(t′)))†,

where the Ei’s are the eigenvalues of H(0) and |ψ0(0)⟩ = |ψ(λ(0))⟩. Hence, the ground
state of H(t) is T (e−i

∫︁ t
0 dt′Π(λ(t′)))|ψ(λ(0))⟩, and |ψ(λ(t))⟩ is a gapped eigenstate for

Π(λ(t)) with energy gap ∆ = 1. Therefore, for the adiabatic theorem, when λ changes
slowly in time,

T (e−i
∫︁ t

0 dt′Π(λ(t′)))|ψ(λ(0))⟩ = eiω(t)|ψ(λ)⟩+O(λ̇/∆), (5.3)

where ω(t) is a phase factor. In words, in the adiabatic regime, the ground state of the
Hermitian operator H(t) approximates the target state |ψ(λ)⟩ with an error that becomes
negligible when T >> ∆ = 1. This happens independently of the specific path of states
because |ψ(λ)⟩ is a non-degenerate eigenstate for Π(λ). Differently, since the other ei-
genstates of Π(λ) are degenerate, the excited states of H(λ) depend on the adiabatic
path. This dependence comes from the degeneracy of the kernel of the super-operator
H → −i[|ψ(λ(t))⟩⟨ψ(λ(t))|, H], and reflects the non-Abelian behavior of the Wilczek-Zee
phase.
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We have shown that, in the adiabatic limit, H(t) has |ψ(λ(t))⟩ as a ground state.
However, for H(t) to be a PPH, the adiabatic evolution generated by Eq. (5.2) has
to preserve locality. We are going to show that this request is satisfied depending
on the correlation length r of the states |ψ(λ(t))⟩. This is defined as the value such
that any connected correlation function of local observables ⟨ψ(λ(t))|AB|ψ(λ(t))⟩ −
⟨ψ(λ(t))|A|ψ(λ(t))⟩⟨ψ(λ(t))|B|ψ(λ(t))⟩ decays exponentially as e−d(AB)/r, where d(AB)
is the distance between the sites on which A and B act. The key fact here is that, exclud-
ing fine-tuned exceptions [169–172], the ground state correlation length of an effectively
l-local Hamiltonian is expected to be larger to or equal than l. We call effectively l-local a
Hamiltonian whose interactions decay as faster than or equal to e−|i−j|/l , and therefore is
well approximated by a l-local Hamiltonian. As |ψ(λ)⟩ is the ground state of the adiabatic
solution H(λ) of Eq. (5.2), the latter has to be a local Hamiltonian when |ψ(λ)⟩ has finite
correlation length. We can conclude that Eq. (5.2) is suitable for IQA, since it generates a
local PPH in the adiabatic limit, at least for states with finite correlation length.

5.4 implementing the iqa

To implement IQA, we need to solve Eq. (5.2) in the adiabatic limit. This equation is a
quantum evolution, involving operators on the Hilbert space that can be represented using
an exponentially large amount of (classical) memory. As a consequence, we are not capable
of exactly integrating it for large systems with a classical computer.

We propose a possible implementation of the IQA, which consists of approximating the
adiabatic solution of Eq. (5.2) through a time-dependent variational principle (TDVP) [111,
112]. Indeed, when |ψ(λ)⟩ does not include critical states, H(t) is local at each time t in
the adiabatic limit, and we can project the evolution on the space of l-local Hamiltonians.
This yields a negligible error until the range r of the non-projected evolution is less than l.

The TDVP consists of a dynamics for the couplings of the l-local Hamiltonian, obtained
by projecting the RSH of Eq. (5.2) on this space through the Hilbert-Schmidt product. This
is the natural Euclidean structure in the space of Hermitian operators, and allows defining
a notion of nearest approximation. In particular, we approximate Eq. (5.2) by projecting
the generated infinitesimal evolution on the closest infinitesimal evolution that preserves
locality. The latter is spanned by the elements of L(l) = {L(l)

i }, and we exploit the trace
distance d(A, B) ≡

√︁
Tr [(A − B)2] to define the closest vector.

The resulting evolution is

∂tH = P(−i[|ψ(λ(t))⟩⟨ψ(λ(t))|, H]), (5.4)

where the projector P(dH) is defined as

P(dH) = Argmin
dX=∑i di L

(l)
i

Tr
[︂
(dX − dH)2

]︂
.
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The explicit form of P(dH) can be can be found imposing the nullity of derivatives:

∂

∂di
Tr
[︂
(dX − dH)2

]︂
=

∂

∂di

[︁
∑
ij

didj Tr(L(l)
i L(l)

j )− 2 ∑
i

di Tr(L(l)
i dH) + Tr(dH2)

]︁
= 2 ∑

j
dj Tr(L(l)

i L(l)
j )− 2 Tr(L(l)

i dH)

= 0.

This leads to dMin
i = ∑ij[(Tr(L(l)

j L(l)
i )]−1 Tr(L(l)

j dH) and, therefore,

P(dH) = ∑
ij

dMin
i L(l)

i = ∑
i

(︂
Tr(L(l)

j L(l)
i )
)︂−1

Tr(L(l)
j dH)L(l)

i .

At this point, we impose without loss of generality that L(l) is an orthogonal basis normal-
ized to some constant Z, that is, Tr(L(l)

i L(l)
j ) = Zδij. Under this condition, the last equation

becomes

P(dH) = ∑
i

Tr(dHL(l)
i )

Z
L(l)

i . (5.5)

Replacing Eq. (5.5) in Eq. (5.4), we obtain

∂tH = ∑
i

Tr(−i[|ψ(λ(t))⟩⟨ψ(λ(t))|, H]L(l)
i )

Z
L(l)

i ,

and, considering H(t) = ∑i hi(t)L(l)
i , the corresponding equation for the Hamiltonian coup-

lings is

∂thi(t) = ∑
j

Tr(−i[|ψ(λ(t))⟩⟨ψ(λ(t))|, L(l)
j ]L(l)

i )

Z
hj(t)

= ∑
j

⟨ψ(λ(t))| − i[L(l)
j , L(l)

i ]|ψ(λ(t))⟩
Z

hj(t).

We are interested only in the adiabatic behavior of this equation. If we rescale the RHS
by removing the factor Z at the denominator, this limit does not change. Therefore, the
last equation is adiabatically equivalent to the following dynamics for the Hamiltonian
couplings:

∂thi(t) = ∑
j

Kij (ψ(λ(t))) hj(t), (5.6)

where, remarkably, K(l)
ij is the commutators matrix in Eq. (5.1). We call the adiabatic solution

of this equation adiabatic Hamiltonian.
Eq. (5.1) defines a suitable implementation of the inverse annealing. Indeed, when the

path of states |ψ(λ)⟩ does not cross any phase transition, the computational effort required
to integrate Eq. (5.6) does not depend on the system size. This is because the entries
of the commutator matrix are the expectation values of local observables, showing non-
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analyticities only at phase transitions and converging for large systems. Remarkably, this
also implies that the IQA allows to reconstruct a local PPH by knowing only the local
expectation values.

As shown in Chapter 2 of this thesis, the kernel of the commutator matrix has been ex-
ploited in previous literature to reconstruct local Hamiltonians from their eigenstates [59].
Indeed, it contains all the local symmetries of a state. The IQA, when implemented through
Eq. (5.6), selects an element from this kernel, whose features depend on the correlation
length r of the states of the path |ψ(λ)⟩. When the interaction range l is larger than r, the
TDVP provides a good approximation of Eq. (5.2) and the dynamics generated by K(l)

ij adia-
batically converges to a l-local PH. In other words, finding the adiabatic limit of Eq. (5.6) is
a way to select a PPH among the symmetries without explicit diagonalization. This is no
more the case if, for some values of λ = λc, l is smaller than r. In this case the TDVP fails
in approximating Eq. (5.2), and for any λ > λc we have a pathological regime in which
there is no guarantee of the adiabatic solution of being a PH.

5.5 iqa with gaussian states

In this section, we test the IQA through a practical example. To this aim, we select a path
of target states |Ψ(λ)⟩ and integrate Eq. 5.6 to the adiabatic limit to find the adiabatic
Hamiltonian H(λ). Then, we verify that the ground state of the adiabatic Hamiltonian
H(λ) well approximates the state |Ψ(λ)⟩. This verification requires the diagonalization
of H(λ). As a result, even if Eq. 5.6 can be integrated efficiently, in general verifying
the IQA is impractical for large systems. To overcome this obstacle, here we work with
quadratic Hamiltonians. Indeed, quadratic Hamiltonians can be efficiently represented
and diagonalized, and their ground states are Gaussian states. In a Gaussian state, all the
expectation values can be calculated from 2-bodies correlation functions thanks to the Wick
theorem, allowing for an efficient representation.

We indicate as c(†)n the creation operator of a spinless fermion on the lattice site n. For
simplicity, we consider a translationally invariant fermions chain with anti-periodic bound-
ary conditions. Imposing this constraint, a basis L(l) of l-local quadratic fermions interac-
tions is

L(l<N/2) ≡ {ΣZ
0 /

√
2, ΣX

1 , ΣY
1 , ΣZ

1 , . . . , ΣX
l−1, ΣY

l−1, ΣZ
l−1},

and

L(N/2) ≡ L(N/2−1) ∪ {ΣX
N/2/

√
2, ΣY

N/2/
√

2},
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Figure 5.2: Scaling of the rescaled susceptibility χ(λ)/
√

N on the states |Ψ(λ)⟩.

where

ΣX
m =

1
2

N

∑
n=1

(︂
c†

nc†
n+m − cncn+m

)︂
ΣY

m =
i
2

N

∑
n=1

(︂
c†

nc†
n+m + cncn+m

)︂
ΣZ

m =
1
2

N

∑
n=1

(︂
c†

ncn+m − cnc†
n+m

)︂
where the anti-periodic boundary conditions imply cN+m ≡ −cm. This is an orthogonal and
normalized basis, as shown in Appendix C. Note that the basis L(N/2) spans over the space
of all translation-invariant quadratic fermionic Hamiltonians with anti-periodic boundary
conditions. In this way, the evolution generated by Eq. (5.6) for l = N/2 is equivalent to the
non-projected evolution in Eq. (5.2). Given an interaction range l, the commutator matrix
that generates the IQA is explicitly calculated in Appendix C for an arbitrary Gaussian
state. In Appendix D we show that, thanks to the Jordan-Wigner transformations [124], all
the operators in L(l) are equivalent to a large set of spin strings, that spans over a large
space of Hamiltonians containing several important physical models such as the Ising
model in transverse field [125], the XY model [126] and some cluster Hamiltonians [173].
As a consequence, the approach and the results of this section can be extended identically
to a large class of spins systems.

As a paradigmatic example, here we consider the path of states |Ψ(λ)⟩ defined as the
ground states of the 1D Kiteav model [174].

HK(λ) = J
[︂

sin(λ)
N

∑
n=1

(︂
c†

nc†
n+1 + c†

ncn+1 + h.c.
)︂
+ cos(λ)

N

∑
n=1

(︂
c†

ncn − cnc†
n

)︂ ]︂
, (5.7)
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with anti-periodic boundary conditions cN+1 = −c1, where J is an energy unit. The Kitaev
model has a quantum phase transition from a topologically trivial phase to a topologic-
ally non-trivial phase at λ = λc = π/4. The topological phase is characterized by the
presence of Majorana zero modes, which are a type of quasiparticles that are their anti-
particles. It has potential applications in quantum computation: because of the presence of
Majorana zero modes in the topological phase of the Kitaev model, it has been proposed
as a platform for topological quantum computation, in which the Majorana zero modes
can be used as a basis for a fault-tolerant quantum-bit. It is important to note that the
Kitaev model is equivalent to the Ising model in transverse field, introduced in Chapter 3,
through the Jordan-Wigner transformations [80].

We choose the path of states described by |Ψ(λ)⟩ built as ground states of HK(λ) to be
sure that we know that (at least) a 2-local PPH for these states exists (i.e. the one given
by Eq. (5.7)). However, to perform the IQA we don’t keep any information about the
Kitaev Hamiltonian HK(λ), but we only consider its ground states, whose density matrix
is calculated in Appendix C in terms of the operators Σµ

m:

Ψ(λ) ≡
⨂︂

k∈K+

(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k + 1

)︁
/2, (5.8)

where

K+ ≡
{︂

k =
(2n + 1)π

N
, with n ∈ {0, N − 1}

}︂
vx

k = − sin(λ) sin(k)/
√︂

1 + 2 sin(λ) cos(λ) cos(k)

vy
k = 0

vz
k = − (cos(λ) + sin(λ) cos(k)) /

√︂
1 + 2 sin(λ) cos(λ) cos(k)

σ̃
µ
k = ∑

0≤m≤N/2
Fµ(mk)Σµ

m

Fµ(x) ≡ 2(sin(x), sin(x), cos(x))/N,

and the σ̃
µ
k are the pseudo-spin operators introduced in Chapter 3.

We perform the IQA by numerically integrating Eq. 5.6 on the path |Ψ(λ)⟩ to generate
l-local PPHs. The annealing schedule is

λ(t) =
t
T

π

2
,

where T is the final time so that the state interpolates between |Ψ(0)⟩ and |Ψ(π/2)⟩. These
are the initial and final state of the annealing process and belong respectively to two dif-
ferent quantum phases. We consider different annealing times T to study the convergence
to the adiabatic limit, and we analyze different ranges l of the interactions in L(l), and
different system sizes N.

As anticipated, the path |Ψ(λ)⟩ passes through a critical point at λc = π/4. Without
any reference to the spectral behavior of the Kitaev Hamiltonian, we can detect this phase
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Figure 5.3: Relative distance Edist = ∥H(n)(λ) − H(n−1)(λ)∥/∥H(n)(λ)∥ between solutions of Eq.
(5.6) with different annealing times, for a system of N = 50 sites and interaction range
of the Hamiltonian l = 4 in Panel (a), l = 6 in Panel (b).

transition from the scaling of the infinitesimal Fubini–Study metric along the path |Ψ(λ)⟩.
This metric, that for a single parameter λ reduces to a scalar called susceptibility:

χ(λ) = lim
dλ→0

|⟨ψ(λ)|ψ(λ + dλ)⟩|
dλ

It encodes the reaction of the system to a small variation of the control parameters. It has
been shown that for non-critical states, χ(λ) scales as

√
N, while for critical states it scales

linearly in the system size N due to the diverging correlation length [117, 118]. This scaling
captures the intuitive idea that, during a phase transition, a dramatic change occurs in the
system with a very small change in the control parameters.

The scaling behavior of the susceptibility is depicted in Figure 5.2 for the states |Ψ(λ)⟩,
where the Fubini-Study length can be easily calculated thanks to the pseudo-spin rep-
resentation in Eq. (C.22). Since at the critical point λc the correlation length of the state
diverges, we can test our previous statement about the interaction range of the adiabatic
Hamiltonian generated by Eq. 5.2 and about the regime in which the TDVP is a good
approximation.

5.5.1 Transition to the adiabatic regime

Increasing the final time T, it is always possible to find an adiabatic solution for Eq. 5.6. If
the approximations induced by the TDVP are negligible, the convergence to the adiabatic
Hamiltonian implies the convergence to a PH. We expect that, for the path |Ψ(λ)⟩, this is
the case when λ < λc. In this subsection, we investigate the convergence to the adiabatic
Hamiltonian, while the next subsection is devoted to highlighting the conditions in which
this Hamiltonian is a PH.

In non-degenerate quantum annealing, the convergence to the adiabatic limit is usually
investigated by looking at the fidelity between the evolved state and the ground state as
a function of the annealing time. However, the IQA is based on degenerate quantum an-
nealing. In this case, looking at the fidelity between the generated Hamiltonian and the
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Figure 5.4: Maximum value of NMaxλ (Edist), with interaction range of the Hamiltonian l = 6; α
and β coefficients refer to the fit ln(NMax(Edist)) = α + β ln(T).

Kernel of the matrix K(l)
ij does not ensure the convergence, since this kernel is degener-

ate. Therefore, to assess the adiabaticity of the process, we calculate the distance between
Hamiltonians Hn(λ) found by IQA, at different final times Tn, where the Tn increase expo-
nentially: Tn = 2Tn−1. In particular, we calculate the relative distance

Edist = ∥H(n)(λ)− H(n−1)(λ)∥/∥H(n)(λ)∥.

When the annealing time Tn is sufficiently large, the couplings {hi} converge to those of
the adiabatic solution Hamiltonian, and Edist goes to zero.

In Figure 5.3 (a) and (b), we show Edist as a function of λ for different annealing times
Tn for l = 4 and l = 6, respectively. We can see that the errors decrease by increasing Tn,
however, for all Tn’s a clear peak at the critical value of λ = λc occurs. This peak is more
pronounced for larger interaction range l.

In Figure 5.4 (c), we show the maximum value of Edist rescaled by the system size,
for different annealing times and system sizes. The functions N · Max(Edist) for different
values of N overlap and fit to

Max(Edist) ∝ Tβ/N,

where β ≈ −1: the error is inversely proportional to the annealing time, as we expect from
Eq. 5.3. The dependence on the system size is a consequence of the fact that the expectation
values corresponding to the entries of the matrix K(l)

ij are linear N. This is not a significant
physical effect, since it only depends on the definition of the basis L(l), which contains
extensive observables.

5.5.2 Adiabatic Hamiltonian

In this section, we analyze the adiabatic Hamiltonian obtained integrating Eq. (5.6) for
different interaction ranges l. Our goal is to demonstrate the effectiveness of this approach
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Figure 5.5: Fidelity between the target state |Ψ(λ)⟩ and the ground state of the adiabatic l-local
Hamiltonian, for a system of 50 sites.

in generating local PPHs. To ensure the adiabatic regime, we fix the annealing time at
Tadiab = 1024. From Figure 5.4, we see that this choice satisfies the empirical criterion
Max(Edist) << 1.

In Figure 5.5, we plot the fidelity F(λ) = |⟨ψGS(λ)|Ψ(λ)⟩|2 between the target state
|Ψ(λ)⟩ and the unique ground state |ψGS(λ)⟩ of the adiabatic l-local Hamiltonian H(λ)

obtained by IQA. We can observe two qualitatively different behaviors in the different
ranges of λ. When λ < λc = π/4, before crossing the phase transition, the fidelity F(λ)
is close to one also for small values of l. This means that our algorithm finds an optimal
l-local PPH for the target state.

The scenario drastically changes after the phase transition, when λ > λc. In this case,
the long-range correlations of the critical point λc are hardly grasped by the adiabatic
Hamiltonian, unless we include highly non-local interactions (corresponding to large val-
ues of l). As a consequence, for small values of l the fidelity F(λ) drops down, and in
order to recover a sizable fidelity, one has to resort to very large values of l. This happens
despite the fact that the Kitaev Hamiltonian is 2-local. This behavior is reminiscent to the
scaling of conventional quantum annealing that, as argued in Section 5.2, fails when a
phase transition emerges at large system sizes [123].

A more quantitative analysis is obtained by looking at the fidelity as a function of l for
different system sizes. If we restrict our target state to non-critical regions (i.e., λ < λc) the
fidelity is quite large, even at small values of l, and almost independent of l. This can be
clearly seen in Figure 5.6 (a), where the fidelity is calculated for a target state |ψ(λ−)⟩ close
(but approaching the critical state from the left) to the critical state |ψ(λc)⟩. By contrast,
in Figure 5.6 (b), the fidelity is shown for a target state |ψ⟩(λ+) close (but traversing the
critical state). In this case, the larger is l the better is the fidelity as expected.

Given target accuracy ϵ, we can say that the l-local adiabatic Hamiltonian Hl(λ) is an
optimal PPH for |ψ(λ)⟩ when the fidelity between |ψ(λ)⟩ and the ground state |ψ(l)

GS(λ)⟩ of
Hl(λ), Fl(λ) = |⟨ψ(λ)|ψ(l)

GS(λ)⟩|2 is larger than 1 − ϵ. This automatically defines a minimal
interaction range lϵ required to adiabatically find the PPH within the required accuracy ϵ.
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Figure 5.6: Fidelity as a function of the interaction range l, for different system sizes N; in Panel a)
at λ− = λc − λc/10, in Panel b) at λ+ = λc + λc/10.
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Figure 5.7: Panel (a): lϵ as a function of the system size, for different values of λ. Panel (b): lϵ as a
function of λ, for different system sizes.

In other words, for any given ϵ we can perform the IQA with larger and larger interaction
range l, until we find the value lϵ of l such that the fidelity is

Fl(λ) ≥ 1 − ϵ ∀l ≥ lϵ .

The length lϵ is represented in Figure 5.7 (a) for ϵ = 0.005 and different values of λ, before
and after λc. In the first panel, for λ < λc, lϵ weakly depends on the system size: IQA is
an efficient way to find a local PH. By contrast, after the critical point λ > λc, lϵ scales
almost linearly in the system size. In other words, even if it is possible to find an adiabatic
PPH, it is non-local and IQA fails in the thermodynamic limit. In Panel (b), we can observe
how lϵ becomes definitely linear in the system size when approaching the critical point, in
analogy with the correlation length of the states |Ψ(λ)⟩.

The behavior observed in this section is a direct consequence of the TDVP: as previously
argued, this approximation generates a negligible error until |Ψ(λ)⟩ has a finite correlation
length. In this case, the evolution in Eq. (5.2) preserves locality, as we show in the next
section.
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Figure 5.8: Norm of the adiabatic Hamiltonian couplings of different ranges r, for various values
of λ. In Panel (a) for N = 30 sites, and in Panel (b) for N = 60 sites.
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Figure 5.9: Panel (a): effective interaction range of the non-projected adiabatic Hamiltonian. Panel
(b): correlation range of K(N/2)

ij .

5.5.3 Non-projected adiabatic dynamics

We have previously argued that the Hamiltonian evolution in Eq. (5.2) is a good candidate
for IQA, since, in the adiabatic limit, it generates l-local PPHs for states with finite correl-
ation length. In general, we can not numerically simulate this dynamics for large systems,
and we resort to TDVP. This is not the case for Gaussian states. Hence, here we analyze its
adiabatic solution of Eq. (5.2), which we call non-projected adiabatic Hamiltonian.

The non-projected adiabatic Hamiltonian corresponds to equation Eq. (5.6) for l =

N/2. Indeed, Eq. (5.2) generates quadratic translation-invariant Hamiltonians. For these
Hamiltonians L(N/2) is a basis, and the projection of the TDVP acts as the identity. We
know from Figure 5.5 (l = N/2) that the ground state of the non-projected adiabatic
Hamiltonian exactly follows the target state |Ψ(λ)⟩.
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Here, we study the (effective) interaction range l of this Hamiltonian, to exemplify our
previous statement about its relation with the correlation length of |Ψ(λ)⟩. In Figure 5.8,
we plot the total norm

∥hr∥ =
√︄

∑
i:range(Ll

i)=r

h2
i

of the couplings of range r of this Hamiltonian at different values of λ, for a system of 30
and 60 sites. As predicted in Section 5.3, this norm exponentially decays with r for λ ̸= λc,
and the decay rate does not depend on the system size. We can confirm that Eq. (5.2)
generates a local PPH, but only for non-critical states.

We can define an effective interaction range as

ravg[h] ≡
(︄

∑
r

r∥hr∥
)︄

/

(︄
∑

r
∥hr∥

)︄
.

This range is represented in Figure 5.9 (a). We can see that, for sufficiently large N, it does
not depend on the system size for non-critical states. However, it diverges linearly with
the system size at λ = λc. This scaling is shared by the correlation length of |Ψ(λ)⟩, and
by the rescaled susceptibility in Figure 5.2.

To understand how the scaling behavior originated in the equation of motion, we look
at the commutator matrix K(N/2)

ij . We define a correlation range for this matrix

ravg[k] ≡
(︄

∑
i,j
|i − j||Kij|

)︄
/

(︄
∑
ij
|Kij|

)︄
,

which measures the eventual exponential decay of non-diagonal elements. It is depicted in
Figure 5.9 (b), and follows the same scaling behavior as the previously analyzed functions.
We can conclude that, when the correlation length of states is finite, the non-projected
dynamics weakly couples the local and non-local operators. Therefore, the Hamiltonian
does not delocalize, allowing us to exploit the TDVP.

5.6 summary

Quantum annealing represents one of the major examples of the computational potential of
quantum devices. Applications of this technique go far beyond condensed matter physics,
allowing for an efficient solution to a large class of combinatorial optimization problems
that are ubiquitous in everyday life, for example, the traveling salesman problem [80]. Ana-
logously, reversing the perspective of quantum annealing could contribute to an equally
large and important class of problems in science, mathematics, and engineering, i.e., the
inverse problems. The capability of solving this kind of problem is indispensable for the
inference of system parameters that can not be directly measured, and for the design of
devices capable of implementing target classical and quantum states.

In this chapter, we defined an inverse quantum annealing technique for the reconstruc-
tion of PPHs, a task that in general is exponentially hard in the system size. It is based on
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inverse dynamics for the Hamiltonian, generated by a path of target states, which in the
adiabatic limit follows the PPHs of the target states. These Hamiltonians are guaranteed to
be local for states with finite connected correlation lengths. The practical implementation
of our method, based on a TDVP, allows for reconstructing local PPHs with a computa-
tional cost that weakly depends on the system size. Analogously to conventional quantum
annealing, this approach fails at critical points.

In Section 5.5 we exemplified the functioning of the IQA on a path of Gaussian states.
To ensure the existence of a local PPH, these have been chosen as the ground states of the
Kitaev model. However, the extension to generic paths of Gaussian states is straightfor-
ward. In this context, we confirmed all the predictions about the strength and limits of our
method. In the future, the next step could be testing the IQA on Tensor Network states.

Remarkably, our method only relies on the knowledge of local expectation values. This
feature could be a precious ingredient for the application of IQA to the quantum marginal
problem [84, 85]. For example, starting from local expectation values, one could look for
PPHs through the IQA. Then, standard quantum annealing can be exploited to efficiently
generate the target state and measure non-local expectation values.

In perspective, IQA raises two relevant questions. The first one is whether it is possible to
design the path |ψ(λ)⟩ towards a target state in a way that minimizes correlation lengths.
Since the scaling Fubini-Study metrics are related to correlation lengths and quantum
phase transitions [6, 117–120], the geodesics of this metric are a candidate solution to this
problem. A second challenge consists of the direct implementation of Eq. 5.2 on a quantum
annealer. This will result in an implementation of IQA capable of overcoming failure due
to crossing critical states.
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N O N - S TA B I L I Z E R N E S S D Y N A M I C S I N
M A N Y- B O D Y S Y S T E M S

6.1 introduction

Entanglement plays a fundamental role in defining the difference between classical and
quantum systems at many levels. As shown by John Bell [175–178], entangled states are
characterized by stronger correlation than classical states. This difference is so marked and
significant that it has provided the basis for proving experimentally [179–181] that classical
theories are not compatible with what we observe in nature [182]. Moreover, entanglement
is a resource for quantum computational advantage, since it plays a fundamental role in
quantum algorithms [9, 19, 132, 183–187]. The possibility of efficiently simulating slightly
entangled systems through computational techniques such as Tensor Networks [88, 188]
provides a further example of how entanglement determines the difference between clas-
sical and quantum physics. For all these reasons, entanglement has been widely studied
in the context of many-body systems [189–191]. Also in the many-body inverse problem,
it plays a fundamental role. Firstly, as motivation: since entanglement is a computational
resource, being able to prepare PHs of entangled states helps us in quantum computation.
But also as an obstacle, since for states with high entanglement it is harder to find local a
PH, as seen in the Chapters 2 and 5.

Since we know that entanglement represents a fundamental resource for quantum
computation, the question remains whether it is the only ingredient of the speed-up of
quantum algorithms. One way to answer this question is to look at the simulatability of
systems and wonder if there are highly entangled systems that can be simulated classically.
The answer to this question is affirmative, and the key example is given by stabilizer states,
defined as the common +1 eigenvector of a set of commuting Pauli operators. The Clifford
group, generated by the Hadamard, S, and CNOT gates, transforms stabilizer states into
stabilizer states. Remarkably, even if this group can generate states with the same entan-
glement entropy as random states [192], all the operations involving stabilizer states can
be efficiently simulated [193]. Of course, the Clifford group cannot be used to generate
universal quantum computation. To achieve this goal, it is necessary to add T gates to the
group generators. In this sense, the number of T gates required to generate a state from
stabilizer states can be considered as the second resource required, in addition to entan-
glement, to gain a quantum advantage. This resource has been called non-stabilizerness, or
also magic [194–201].

83
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Recently, the stabilizer Rényi entropy has been proposed amenable way of computing
non-stabilizerness in many-body systems [198–201]. This quantity, based on the Rényi
entropy associated with the decomposition of a state in the Pauli basis, has been also
experimentally measured on a quantum processor [199]. The study of magic in many-
body systems represents a fundamental goal, because it allows us to elaborate on the
simulatability of these systems and their potential in the field of quantum computation,
but also to study the interplay between non-stabilizerness and entanglement. For similar
reasons to entanglement, non-stabilizerness also plays a fundamental role in the search for
PHs. Firstly, the ability to construct PHs for non-stabilizer states allows us to implement
them for quantum computation. Moreover, any stabilizer state is the unique ground state
of a Hamiltonian defined simply as the negative sum of its stabilizer generators [202].
In this sense, just like entanglement, non-stabilizerness is a source of complexity for the
inverse problem.

In this chapter, we study how non-stabilizerness evolves in many-body systems. Our
goal is to understand how the Hamiltonians of these systems can be used as resources
to dynamically generate non-stabilizerness, but also how this magic delocalizes over time.
Indeed, in Refs. [203, 204] it has been shown that ground state magic is additive: taken suf-
ficiently large subsystems, the total magic of the system is given by the sum of the magic of
the subsystems. We could define this property as localization of magic. Corrections to this
behavior characterize critical states, in analogy with corrections to area-law entanglement
entropy [205], providing a first hint of the interplay between magic and entanglement at
the origin of the unsimulability of quantum systems. During time evolution, entanglement
ballistically spreads [206, 207]: the area law entanglement only affects subsystems that
are larger than a size that increases linearly in time. We wonder if a similar delocalization
process affects magic and if a ballistic spreading characterizes this process.

To achieve our goal, we focus our attention on the evolution generated by a quench of
the transverse-field Ising model. However, our approach is suitable for the study of magic
in any integrable spin system. Preliminarily, in Section 6.3 we analyze the behavior of the
Loschmidt echo (LE) after a quench [208, 209], to be able to reconstruct the maximal group
velocity of quasiparticles [210]. We also analyze subsystems’ entropy and its time evolu-
tion, with particular attention to the ballistic growth of the entanglement length. At this
point, we focus our attention on the non-stabilizerness dynamics. Firstly, in Section 6.4, we
study how a T gate, responsible for non-stabilizerness, is delocalized after quenching the
Hamiltonian. In Section 6.5, we study the time evolution of non-stabilizerness. In particu-
lar, we investigate how non-stabilizerness delocalizes during time evolution. Section 6.6 is
devoted to summarizing our results.

6.2 non-stabilizerness of integrable spin chains

As we show in Appendix D, a large class of integrable spin systems can be exactly sim-
ulated through a pseudo-spin formalism. In this formalism, Hamiltonians are written as
non-interacting spins. As a consequence, their ground states are separable and the time-
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evolution is efficiently calculated. Moreover, thanks to Wick’s theorem, expectation values
of Pauli strings can be calculated efficiently. Details of these calculations are illustrated in
Appendix D. Once these expectation values are known, non-stabilizerness can be estim-
ated through the stabilizer two Rényi entropy introduced in Ref. [199]:

M2(ρ) = − log2
∑P∈P Tr(ρP)4

∑P∈P Tr(ρP)2 , (6.1)

where P contains all the Pauli strings {σ
µ1
1 ⊗ · · · ⊗ σ

µN
N } acting on the whole system.

Analogously, the non-stabilizerness of any subsystem of size L is found by only measur-
ing Pauli strings PL = {σ

µ1
1 ⊗ · · · ⊗ σ

µL
L } acting on the subsystem:

M2(ρL) = − log2
∑P∈PL

Tr(ρP)4

∑P∈PL
Tr(ρP)2 . (6.2)

Using this approach, magic can be evaluated for ground states of integrable spin chains,
but also for time-dependent states under integrable dynamics. The principal computa-
tional obstacle is that, even if any Pauli string expectation value is efficiently calculated,
the number of Pauli strings is exponential in the system size. In practice, this approach
allows for evaluating the magic of systems of a few dozen of spins.

6.2.1 Ground states non-stabilizerness

In Ref. [203], exact diagonalization has been exploited to obtain a first investigation of non-
stabilizerness in many-body systems. It consists of the study of two Rényi entropy of the
Ising model ground states and their connected subsystems.

The one-dimension transverse-field Ising Hamiltonian has been previously introduced
in Chapter 3 of this thesis. It reads:

HI(λ) = −∑
n
(σx

n σx
n+1 + λσz

n) . (6.3)

In pseudo-spin formalism, this Hamiltonian reads

HI(λ) = − ∑
K∈K+

ϵk(λ)v⃗k(λ) · σ⃗̃k (6.4)

where K+ :=
{︂

k = (2n+1)π
N , with n ∈ {0, . . . , N/2 − 1}

}︂
and

ϵk(λ) := 2
√︂

sin2(k) + (cos(k)− λ)2

sin(θk(λ)) := sin(k)/ϵk

cos(θk(λ)) := (cos(k)− λ)/ϵk

vµ
k (λ) := (sin(θk(λ)), 0, cos(θk(λ)).
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The ground states are the separable ground states of a non-interacting spins Hamiltonian:

ρ(λ) =
⨂︂

k∈K+

(︂
v⃗k(λ) · σ⃗̃k + 1

)︂
/2. (6.5)

The main result of Ref. [203] is that the ground state magic is additive for non-critical
states. Moreover, once the density of magic M2(ρL)/L has been introduced, the relative
error committed in approximating the non-stabilizerness density of a ground state as the
sum of the non-stabilizerness density of subsystems of length L scales as O(1) for non-
critical states, while it scales as O(L−1) for the critical state. This behavior suggests a link
between the non-stabilizerness additivity and the area-law entanglement, which is affected
by a logarithmic correction at critical states.

6.2.2 Non-stabilizerness after a quantum quench

There are two main reasons to study the dynamic properties of non-stabilizerness in many-
body systems. The first reason is to understand if the Hamiltonians of these systems can
be implemented to generate non-stabilizer states. Beyond the implications for the devel-
opment of quantum algorithms, this investigation also provides an additional perspective
on the study of quantum chaos. Indeed, in Refs. [198, 211, 212], it has been argued that
quantum circuits capable of simulating chaotic systems must have a number of T gates
larger than the system size N is the system size. Consequently, we expect that the study
of the density of magic generated by a Hamiltonian should be able to distinguish between
integrable systems and chaotic systems. In particular, integrable spin chains should gen-
erate a magic density M2(ρ)/N < 1, while non-integrable systems should produce more
non-stabilizerness. The second reason is to investigate how the additivity of magic changes
in time. This might also shed new light on the interplay between entanglement and magic,
which are the two ingredients of quantum computational advantage.

We study the non-stabilizerness dynamics generated by the Ising Hamiltonian HI(λ
′)

acting on the ground state ρ(λ) of HI(λ). The Hamiltonian generates a rotation for each
pseudo-spin as follows:

U(λ′, t) = e−iH(λ′)t =
⨂︂

K∈K+

eitϵk(λ
′)v⃗k(λ

′)·σ⃗̃. (6.6)

The effect of this rotation on the ground state ρ(λ) of HI(λ
′) can be calculated through the

Rodrigues’ rotation formula. This leads to the following evolution:

ρ(λ, λ′, t) = U(λ′, t)ρ(λ, λ′, 0)U(λ′,−t) =
⨂︂

K∈K+

(︂
v⃗k(λ, λ′, t) · σ⃗̃k + 1

)︂
/2 (6.7)
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where

vx
k (λ, λ′, t) = cos(2tϵ′k) sin(θk) + (1 − cos(2tϵ′k)) cos(θk − θ′k) sin(θ′k)

vy
k(λ, λ′, t) = sin(2tϵ′k) sin(θk − θ′k)

vz
k(λ, λ′, t) = cos(2tϵ′k) cos(θk) + (1 − cos(2tϵ′k)) cos(θk − θ′k) cos(θ′k)

Here, we consider as the initial state the ground state corresponding to λ → ∞. This is
the state | ↑ . . . ↑⟩ of the computational basis, in which quantum computers are usually
initialized. In the next sections, we study the evolution of this state after the Hamilto-
nian quench, with a focus on Loschmidt echo, subsystems’ entropy, and subsystems’ non-
stabilizerness of the state ρ(λ, λ′, t).

6.3 loschmidt echo and entanglement dynamics

Before starting the investigation of magic dynamics, here we analyze the time scales that
characterize evolution. Firstly, we look at the revival times. Revivals are brief detachments
from the average value observables, whose magnitude decays in time as the equilibration
process nears completion. During these detachments, the system state gets briefly closer to
the initial state. Therefore, revivals can be detected by looking at the LE, that is, the squared
fidelity between the evolved state and the initial state. The revival times are proportional
to the system size, being related to maximal group velocity vmax of quasiparticles [210].
As shown in Ref. [210], this relation is also present in non-integrable local systems, where
vmax generalizes into the Lieb-Robinson speed [213, 214]. We will see how this velocity
affects many processes, from entanglement dynamics to the spreading of T gate.

Exploiting the pseudo-spin formalism, calculating the LE is straightforward:

LE = Tr(ρ(λ, λ′, 0)ρ(λ, λ′, t)) = ∏
k∈K+

(︁
1 + v⃗k(λ, λ′, t) · v⃗k(λ, λ′, 0)

)︁
/2. (6.8)

In Figure 6.1 we plot the LE evolution as a function of the rescaled time t/N, when
the quench Hamiltonian HI(λ) evolves the initial state | ↑ . . . ↑⟩. We observe that the
revival time is Trev ≈ N/4 in the paramagnetic phase λ > 1, and Trev ≈ N/(λ4) in
the ferromagnetic phase λ < 1. Consequently, the associated velocity is vrev = 4 in the
paramagnetic phase λ > 1, and vrev = 4λ in the ferromagnetic phase λ < 1.

We can measure entanglement as the two Rényi entropy of entanglement S2(ρL) =

− log2 Tr(ρ2
L) of the L spins connected subsystems ρL [189]. Since the Pauli strings in P are

an orthogonal basis for the Hermitian operators and the purity Tr(ρ2
L) is the squared norm

of the operator ρ, the entanglement entropy can be written as a function of Pauli strings
expectation values just like the non-stabilizerness:

S2 = L − log2 ∑
P∈PL

Tr(ρP)2. (6.9)
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(a) (b) (c)

Figure 6.1: LE for a system of N = 100 spins and different values of the quench parameter. Panel
(a) ferromagnetic phase, Panel (b) at the phase transition, Panel (c) paramagnetic phase.

In Figure 6.2 we plot the entanglement entropy of subsystems as a function of the time t,
for a large number of spins (N = 10000). Different lines correspond to different subsystem
sizes L. As shown in Ref. [206, 215], entanglement entropy increases in time after the
quench until it reaches an equilibration value. Moreover, at any time t, we observe that a
certain length LS(t) exists such that entanglement is linear in the system size (volume law)
for subsystems smaller than LS(t), and independent of the system size (area law) for larger
subsystems. We call LS(t) the entanglement entropy length (EEL) of the state. Investigating
the dynamics of entanglement through the EEL is particularly convenient in our setting,
since we can exploit a similar approach to define and investigate the delocalization of
magic. The evolution of the EEL reflects the spreading of quantum correlations [90], since
the exponential decay of correlations implies the area-law for the entanglement [216].

We define the EEL as a function of an error tolerance ϵ. Given the error tolerance ϵ, the
state has EEL LS(ϵ) when

|S2(ρN/2)− S2(ρL)|
|S2(ρN/2)|

< ϵ, ∀L ≥ LS(ϵ). (6.10)

Remarkably, the length LS diverges for highly entangled states, whose subsystems density
matrices ρL are the maximally mixed state with entropy L.

Due to limited computational resources, we can access only the entanglement of sub-
systems up to 16 spins. Therefore, to study the evolution of EEL, we analyze the behavior
of the function |S2(L + 1)− S2(L)|. In Figure 6.3 we observe the exponential decay of this
function, which ensures the existence of a finite EEL. We estimate this length as the values
of L such that |S2(L + 1)− S2(L)| is definitively upper-bounded by a tolerance ϵ. In this
way, we can estimate how the EEL evolves with time for different values of the quench
parameter λ. This evolution is depicted in Figure 6.4, where we observe that length in-
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(a) (b) (c)

Figure 6.2: Evolution of the entanglement entropy of subsystems of sizes from L = 1 (purple lines)
to L = 16 (red lines), for a system of N = 10000 spins. In Panel (a) λ = 0.5, in Panel (b)
λ = 1, in Panel (c) λ = 1.5.

creases linearly in time as LS(t) ≈ v(λ)t. The speed v(λ) is compatible with the revivals’
velocity vrev(λ).

6.4 t spreading

As a first step towards the understanding of non-stabilizerness spreading, here we study
how a T gate spreads out when evolved by the Hamiltonian HI(λ).

We consider a T gate acting on the spin n = 0 of the chain. This gate can be easily
written in terms of pseudo-spins as follows:

Tn =
1 + eiπ/4

2
1+

1 − eiπ/4

2
σz

0 ,

σz
0 = 1− 2

1
N ∑

k
c†

k ck = − 2
N ∑

k∈K+

σ̃z
k.

Hence, the time evolution is

U†T0U =
1 + eiπ/4

2
1+

1 − eiπ/4

2
U†σz

0U, (6.11)

where
U†σz

0U = − 2
N ∑

k∈K+

U†σ̃z
kU = − 2

N ∑
k∈K+

v⃗k(−∞, λ, t) · σ⃗̃k. (6.12)
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(a) (b) (c)

Figure 6.3: Logarithmic difference between the entanglement entropy of subsystems of sizes L and
L+ 1, at different times for a system of N = 10000 spins. Time goes from 0 (purple lines)
to 3.8 (red lines). In Panel (a) λ = 0.5, in Panel (b) λ = 1, in Panel (c) λ = 1.5.

Figure 6.4: Evolution of the EEL for different values of the quench parameter λ, for a system of
N = 10000 spins.
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Figure 6.5: Weight of the Pauli strings of lenght m in the evolved T gate, for different values of the
quench parameter λ ∈ {0.16, 0.32, 0.51, 0.73, 1., 1.38, 1.96, 3.08]}, for a system of N = 200
spins.

Finally, exploiting the methods in Appendices C and D, we can write the pseudo-spins
in terms of spins. Finally, we obtain the evolution of the non-trivial part of the T gate:

U†σz
0U = − 2

N ∑
k∈K+

U†σ̃z
kU = − 2

N ∑
0≤m≤N/2

Sµ
m

(︄
∑

k∈K+

vµ
k (−∞, λ, t)Fµ(mk)

)︄
, (6.13)

where

SZ
0 = −1

2

N

∑
n

σz
n

SX
m =

1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m − σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
SY

m =
1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σ
y
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σx

n+m
)︁

SZ
m =

1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
. (6.14)
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(a) (b) (c) (d)

Figure 6.6: Evolution of the non-stabilizerness of subsystems of sizes from L = 1 (purple lines) to
L = 16 (red lines), for a system of N = 10000 spins. In Panel (a) λ = 0.5, in Panel (b)
λ = 1, in Panel (c) λ = 1.5, in Panel (d) λ = 2.

The evolved T gate is the sum of Pauli strings acting non-trivially on connected blocks
of n spins. For each value of n, we can look at the weight

d(n, t) = ∑
µ

⎡⎣(︄ ∑
k∈K+

vµ
k (−∞, λ, t)Fµ(nk)

)︄2
⎤⎦ (6.15)

of n-spins strings as a measure of delocalization of the T gate. The function d(n, t) is
depicted in Figure 6.5 for different values of λ. We observe that at each time strings of a
given m∗ length prevail in evolution. The function m∗(t) is linear in time, i.e. m∗(t) = vt.
The velocity v is compatible with the speed vrev that characterizes the revivals time and
the entanglement spreading.

6.5 non-stabilizerness dynamics

In this section, we investigate the evolution of non-stabilizerness of the initial state |ψ⟩ =
| ↑ . . . ↑⟩ with the quench Hamiltonian HI(λ). We consider a large system of N = 10000
spins, and analyze how the non-stabilizerness of subsystems up to 16 spins evolves for
different values of the quench parameters λ ∈ {0.5, 1, 1.5, 2}.

In Figure 6.6 we show the evolution of magic for the different subsystems. We can
observe that non-stabilzerness rapidly increases after the quench, and then it equilibrates
to a non-null value. The equilibrating time increases with the size of the subsystem under
exam. At the end of the process, the amount of non-stabilizerness is maximized when the
ferromagnetic contribution of the quench Hamiltonian prevails, that is, for small values of
the quench parameter λ. As expected from the integrability of the model under exam, the
density of magic remains smaller than one during the evolution, as depicted in Figure 6.7.
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(a) (b) (c) (d)

Figure 6.7: Evolution of the density of magic of subsystems of sizes from L = 1 (purple lines) to
L = 16 (red lines), for a system of N = 10000 spins. In Panel (a) λ = 0.5, in Panel (b)
λ = 1, in Panel (c) λ = 1.5, in Panel (d) λ = 2.

At a first look at Figues 6.6 and 6.7, the additivity seems to be preserved if we consider
subsystems of size L, in a time interval that increases with L. In particular, at each time,
the stabilizer Rényi entropy of the state is the sum of the stabilizer Rényi entropies of the
subsystems larger than a given size LM. We call this size non-stabilizerness length. Given an
arbitrary small tolerance ϵ, we define the non-stabilizerness length as the subsystems size
LM(ϵ) such that

|M2(ρ)/N −M2(ρL)/L|
|M2(ρ)/N| < ϵ, ∀L ≥ LM(ϵ), (6.16)

where M2(ρL) the two Rényi entropy of a connected subsystem ρL of L spins.
In Section 6.3 we have seen that when the system evolves with the Hamiltonian HI(λ),

the EEL increases as LS(λ, t) = v(λ)t, and v(λ) is the speed of revivals. Now, we investigate
the effect of time evolution on magic additivity. Looking at the non-stabilizerness length
LM(t), we want to understand how magic delocalizes in time. To this aim, we look at the
density of magic M2(ρL(t))/L. Indeed, based on Eq. 6.16, LM(t) can be defined as the
length such that the density of magic is approximately constant for L > LM(t). We can
apply the same approach of Section 6.3. Firstly, we look at the function |M2(ρL+1(t))/(L +

1)−M2(ρL(t))/L|, depicted in Figure 6.8. If this function decreases exponentially, magic
is additive. Then, in analogy with EEL, we estimate the non-stabilizerness length as the
values of L such that |M2(ρL+1(t))/(L + 1) −M2(ρL(t))/L| is definitely smaller than a
given tolerance ϵ.

Figure 6.8 suggests the expected exponential decrease for the function
|M2(ρL+1(t))/(L + 1) − M2(ρL(t))/L|, and therefore the robustness of magic addit-
ivity under time evolution. We also note that this decrease is slower than the one observed
in Figure 6.9. In other words, non-stabilizerness spreads out faster than entanglement.
As a consequence, estimating the behavior of LM(t) from small systems is harder. A first
estimate is shown in Figure 6.9, where we observe that magic delocalizes at a finite speed,



94 non-stabilizerness dynamics in many-body systems

(a) (b) (c)

Figure 6.8: Logarithmic difference between the density of magic of subsystems of sizes L and L + 1,
at different times, for a system of N = 10000 spins. Times go from 0 (purple lines) to 3.8
(red lines). In Panel (a) λ = 0.5, in Panel (b) λ = 1, in Panel (c) λ = 1.5.

Figure 6.9: Evolution of the non-stabilizerness length for different values of the quench parameter
λ, for a system of N = 10000 spins.

like entanglement. However, in both phases, this speed increases as the parameter λ

decreases and the ferromagnetic term prevails.

6.6 summary

This chapter has been devoted to the study of the non-stabilizerness dynamics of an in-
tegrable spin chain. This investigation offers a novel point of view on the computational
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power of many-body systems, and provides new tools for the investigation of the quantum
chaos and of the spreading of quantum information.

We have investigated the evolution of a T gate, which is the source of non-stabilizerness.
After the quantum quench, the T gate spreads over the system and is represented by the
overlap of an increasing number of Pauli strings. The size of the leading term in this
expansion increases linearly in time, and its speed is compatible with the maximum group
velocity of quasiparticles.

We have shown that, after a quantum quench, the non-stabilizerness of subsystems in-
creases towards a new equilibrium value, in analogy with entanglement entropy. During
its evolution, the density of magic remains upper-bounded by one in the transverse field
Ising model. This behavior is compatible with the integrability of the system, since a larger
density of magic characterizes random states and signals a chaotic behavior [198].

We have also investigated the effect of time evolution on the additivity of magic. To
analyze this effect, we have introduced a non-stabilizerness length, corresponding to the
length of a connected subsystem whose density of magic well approximates the density of
magic of the entire system. We have shown that the additivity of magic is preserved during
the evolution, with a non-stabilizerness length that increases in time. This phenomenon
is an example of magic delocalization. At a first analysis, the non-stabilizerness length
evolves ballistically such as the length associated with entanglement entropy. However,
the spreading of non-stabilizerness is faster than the spreading of entanglement.

The next step of this research consists in investigating the non-stabilizerness dynamics
of a non-integrable system, for example, the Ising model in longitudinal field. Here, the
production of a larger magic with respect to integrable spin chains would provide signific-
ant proof of the relationship between quantum chaos and non-stabilizerness [211] in the
context of many-body systems.





7
C O N C L U S I O N S

In this thesis, we have addressed the inverse problem in many-body quantum systems [1].
This consists in the reconstruction of a many-body Hamiltonian given a quantum state.
Such Hamiltonian must be realistic, i.e., it must satisfy the locality constraint, or has to be
engineerable on a real quantum device. After introducing recent literature on the subject,
we have focused our attention on our results about the inverse problem for time-dependent
states [2–4].

Following Ref. [2], we began by analyzing the problem in its simplest form, which is
finding a realistic generator for a given state evolution. We have shown how to seek an
exact solution to the problem. In many cases, this exact solution is unrealistic, so we have
introduced a cost function whose minimum defines an optimal generator for the target
evolution. Defining the cost function in a space of Hamiltonians that can be implemen-
ted on a real device, this approach can be used to perform quantum state driving and
Hamiltonian learning.

In this regard, we have analyzed how it is possible to perform Hamiltonian learning
from measurements made on a single time-dependent state [3]. We have also analyzed
the uncertainty that characterizes this reconstruction and its dependence on the evolution
of the system. This has allowed us to prove that states with a lower inverse participation
ratio in the eigenstates of the Hamiltonian minimize uncertainty in the inference process.
In other words, ergodicity represents a resource for Hamiltonian learning. This result goes
beyond our application to small-size systems and constitutes an important hint for the
design of Hamiltonian learning algorithms that exploit the typical properties of many-
body systems.

Finally, we have analyzed the adiabatic limit of the time-dependent inverse problem,
with the goal of reconstructing a proper parent Hamiltonian for a certain path of quantum
states [1]. To this end, we have defined an inverse quantum annealing process, swapping
the role of the Hamiltonian and the state of the system in conventional quantum annealing.
This new approach allows for an efficient reconstruction of the parent Hamiltonian for
paths of states with finite correlation length. The efficiency of the proposed method, whose
computational complexity weakly depends on the system size, allows its application to
large-size systems and represents an important step forward for the state of the art on the
inverse problem.

We have tested all the hypotheses and methods proposed through examples that are
relevant on a technological level and paradigmatic for the study of many-body systems.
Among these we have Hamiltonians describing realistic implementations of quantum
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gates [148–151], and systems of interacting spins or fermions that exhibit phase transitions,
such as the p-spin model [128–131], the Ising Hamiltonian in a transverse field [124], and
the Kitaev model [174].

A dense network of connections with previous literature on parent Hamiltonians has
been outlined, particularly regarding the role of the commutator matrix in the search for
symmetries [56–61], optimal generators [2, 70, 71], and, finally, in the definition of inverse
quantum annealing [4].

Our research has also intertwined with less directly related topics, such as the search
for shortcuts to adiabaticity [100–109], the geometry of quantum information [6, 89, 114–
120], and the quantum marginal problem [62, 84, 85]. We have shown how the search for
solutions to the inverse problem can yield results equivalent to the search for shortcuts
to adiabaticity through counterdiabatic potentials [110]. Additionally, we have seen that
the Fubini-Study metric [89] plays a fundamental role in defining the effectiveness of the
optimal generator in quantum state driving and that it may have a significant role in de-
termining optimal paths for IQA. Finally, we have seen how the possibility and difficulty of
reconstructing Hamiltonians from only local expectation values are related to the quantum
marginal problem.

The last chapter of this thesis has been devoted to investigating the non-stabilizerness
dynamics in the transverse field Ising model. We exploited the integrability of the model
to estimate non-stabilizerness of subsystems of a large spin chain. We have measured the
capability of the Hamiltonian under exam of generating this quantum resource, with a par-
ticular focus on how this capability is linked with the integrability of the model. We have
also investigated the spreading of non-stabilizerness during the time evolution, measuring
how T gate ballistically spread over larger spin strings, and how the additive behavior of
non-stabilizerness changes over time. In particular, to estimate the non-stabilizerness of the
entire system as the sum of non-stabilizerness of its subsystems, we have to consider in-
creasingly larger subsystems. The next step in this research is to extend our consideration
to a non-integrable spin chain. This would open a new perspective on the link between
quantum chaos and simulability in many body-systems [211].

7.1 future perspectives

In this work, we have had the opportunity to outline some future research perspectives.
Here, we briefly analyze those that seem the most significant and fruitful.

7.1.1 Accessibility

In Chapter 4, we have introduced the accessibility of a path of states. It quantifies the
error incurred when attempting to generate the path using limited resources, such as local
interactions. This idea could be further developed and applied to contexts such as optimal
control and the study of the accessible state space.
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Starting from a set of states considered as free-resources, such as the separable states,
the evolution that generates the target state with the highest accessibility can be identified.
In this operation, it is necessary to take into account that the time available to generate the
states is limited. Such approach allows defining the accessibility of a state.

The selection of the state path that maximizes accessibility represents a possible ap-
proach to optimal control, to be compared with other existing methods in order to establish
limits and strengths.

More generally, the investigation of state accessibility allows us to study which part of
the Hilbert space represents realistic states, as they can be realized through local interac-
tions and finite temporal resources [53]. Additionally, the accessibility of paths towards
a state may be linked to the quantum complexity, or the time required to access the state
with a finite amount of resources, thus playing a fundamental role in the geometrization
of quantum complexity [114–116].

7.1.2 Learnability of many-body systems

In Chapter 4, we have shown how ergodicity represents a resource for Hamiltonian learn-
ing, in the sense that the observation of ergodic systems allows reconstructing the Hamilto-
nian of a system more accurately. This phenomenon represents the first example of how
certain characteristics of many-body systems favor their learnability.

There are other important properties of many-body systems that could be useful in
this sense. Intuitively, the parameters of a system can be inferred with greater precision
when the system is more sensitive to changes in those parameters. This intuitive idea is
formalized in the Fisher information matrix presented in Section 2.7. There are behaviors of
many-body systems that consist of a strong sensitivity to the variation of some parameters.
In phase transitions, for example, the drastic response of the system to a change of the
parent Hamiltonian is encoded in the Fubini-Study metric, which represents a quantum
version of the Fisher information matrix.

Another example comes from the study of quantum chaos. It is the study of how
quantum systems behave when they are highly sensitive to initial conditions, similar to
how classical chaotic systems behave. An important indicator of quantum chaos is the
Loschmidt echo (LE)[208, 209], which measures the spreading of quantum information. In
a chaotic system, the LE decays exponentially with time, indicating a high degree of sens-
itivity to initial conditions. Out-of-time-ordered correlators (OTOCs) are other important
indicators and measure the scrambling of quantum information [217–220].

By designing learning queries that involve phase transitions or chaotic evolutions, one
could obtain an information matrix that is related to the Fubini-Study metric, or LE, or
OTOCs. This would lead to a reduction of the learning uncertainty as an emergent behavior
of many body systems.
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7.1.3 Implementing the IQA on a quantum computer

The IQA has been introduced in Chapter 5 as an efficient algorithm to adiabatically gener-
ate a local Hamiltonian having a target state as the ground state. This algorithm is based on
artificial inverse dynamics, where the role of the density matrix ρ(t) and the Hamiltonian
H(t) in the Schrödinger evolution are swapped.

To implement the IQA, one needs to integrate the inverse dynamics in the adiabatic
limit. Since we are dealing with a quantum evolution, this task is in general exponentially
hard for a classical computer. We have shown how an efficient classical implementation of
this dynamics is possible through a TDVP. However, if at some time the correlation length
of ρ(t) diverges, the TDVP fails to generate the correct parent Hamiltonian. This happens,
for example, when the selected path of states crosses a phase transition, or when it is a
linear interpolation of two states having finite correlation length.

To overcome this obstacle, one could try to simulate the IQA on a quantum computer,
i.e., to implement the artificial inverse dynamics in Eq. 5.2 on an actual quantum system.
To reach this goal, the first step is to map the Hamiltonian H(t) in the system state σ(t) ≡
(H(t) + E01)/ Tr(H(t) + E01). Then, the time-evolution generated by the density matrix
of the state ρ(t) can be implemented as a quantum circuit through the density matrix
exponentiation algorithm [221, 222]. At the end of the process when t = T, the couplings
of the Hamiltonian encoded in the state ρ(T) are measured as expectation values of the
local operators. The main obstacle to this implementation is that it requires the capability
to prepare the initial state σ(0) and the state ρ(t), which is involved in the density matrix
exponentiation algorithm. If we can overcome this obstacle, then we can perform a direct
quantum implementation of the IQA.

7.1.4 Solving the quantum marginal problem through IQA

The quantum marginal problem consists of the reconstruction of non-local expectation
values of a quantum state from only local expectation values.

In Chapter 5, we have shown that IQA allows to reconstruct the proper parent Hamilto-
nians of a given path of states knowing only the local expectation values of these states,
contained in the commutator matrices. At this point, it is natural to wonder if a combin-
ation of inverse and direct annealing can be used to efficiently solve the inverse problem.
Specifically, one could use IQA to construct engineerable PHs from the local expectation
values of an unknown state |ψ⟩, and then implement these proper parent Hamiltonians
on a quantum annealer to prepare the state |ψ⟩. At this point, the expectation values of
non-local observables can be simply measured.

The biggest obstacle in implementing such an algorithm is the selection of the path of
states, or more precisely, the path of commutator matrices suitable to generate the inverse
annealing. At the moment, this is a topic still unexplored.



A
F U B I N I - S T U D Y A N D H I L B E RT- S C H M I D T M E T R I C
A N D Q C M

In Chapter 3 we say that the Hilbert-Schmidt metric for pure states is equal to twice the
Fubini-Study metric. Here we prove this statement.

Let {T̂n} be a set of Hermitian generators for the basis {|∂nψ⟩} of a tangent space for |ψ⟩,
that is, |∂nψ⟩ = i T̂n|ψ⟩ for each |∂nψ⟩. The derivative of a vector in an arbitrary direction
can be written as

|dψ⟩ = i δn|∂nψ⟩ = i δnT̂n|ψ⟩ (A.1)

where the δn are coordinates. The Fubini-Study metric is defined as

g(dψ, dψ) = Re(⟨dψ|dψ⟩ − ⟨ψ|dψ⟩⟨dψ|ψ⟩). (A.2)

In the basis defined above, the coordinate representation of the Fubini-Study metric is
the matrix gij such that

g(dψ, dψ) = δnδmgnm. (A.3)

We show that this matrix is proportional to the CQM Vnm of the operators {T̂n}:

δnδmgnm = Re(⟨dψ|dψ⟩ − ⟨ψ|dψ⟩⟨dψ|ψ⟩)
= δnδmRe(⟨ψ|T̂nT̂m|ψ⟩ − ⟨ψ|T̂n|ψ⟩⟨ψ|T̂m|ψ⟩)

=
δnδm

2
Re
(︁
⟨ψ|{T̂n, T̂m}|ψ⟩ − ⟨ψ|T̂n|ψ⟩⟨ψ|T̂m|ψ⟩

)︁
=

1
2

δnδmVnm. (A.4)

The CQM Vnm is also the metric associated to the Hilbert-Schmidt length of tangent
vectors:

∥dψ∥2 = Tr
[︁
(|dψ⟩⟨ψ|+ h. c.)2]︁

= Tr
[︁
(i δn[T̂n, ρ̂])2]︁

= −δnδm Tr
[︁
(T̂nρ̂ − ρ̂T̂n)(T̂mρ̂−ρ̂T̂m)

]︁
= δnδmVnm. (A.5)

Therefore, the Hilbert-Schmidt length of tangent vectors is twice the Fubini-Study length,
and the CQM associated to the operators T̂n is twice the Fubini-Study metric on the tangent
space with basis {i T̂n|ψ⟩}.

101





B
D E TA I L S O F U N C E RTA I N T Y E S T I M AT I O N

In Chapter 4, we analyzed the uncertainty generated by a hypothetical Hamiltonian learn-
ing algorithm based on a single state time evolution. This analysis has been based on the
bound in Eq. (4.4). Here, we illustrate the details of the derivation of this bound.

The uncertainty on Bi is

δBi =

⌜⃓⃓⎷∑
γ,m

(︃
∂Bi

∂rγ(tm)
σ(rγ(tm))

)︃2

+ ∑
m
|Tr (−i[Li, ρ(tm)]Rm)| (B.1)

We want to find an upper bound on this uncertainty that does not depend on the states
{ρ(tm)}.

The first term in the previous equation contains the statistical uncertainty. In a spin
system we can choose basis operators as normalized tensor products of Pauli operators,
hence O2

α = 1/2Nq and σ(rα(tn)) = 1/
√︁

2Nq NM. It follows that

δBi =
1√︁

2Nq NM

⌜⃓⃓⎷∑
γ,m

(︃
∂Bi

∂rγ(tm)

)︃2

+ ∑
m
|Tr (−i[Li, ρ(tm)]Rm)| (B.2)

Since
Bi = ∑

nαβ

Tr
(︁
−i[Li, Oα]Oβ

)︁
rα(tn)(rβ(tn+1)− rβ(tn))/δt, (B.3)

we can take the derivative to obtain

∑
γ,m

(︃
∂Bi

∂rγ(tm)

)︃2

= ∑
γ,m

(︄
∑
n,αβ

Tr(−i[Li, Oα]Oβ)
[︂
δαγδnm

rβ(tn+1)− rβ(tn)

δt
+ rβnδγα

δmn − δm,n+1

δt

]︂)︄2

= ∑
γ,m

(︄
∑
β

Tr(−i[Li, Oγ]Oβ)

[︃
rβ(tm+1)− rβ(tm)

δt
+

rβ(tm)− rβ(tm−1)

δt

]︃)︄2

+ o(NT)

≈ ∑
γ,m

(︄
∑
β

Tr(−i[Li, Oβ]Oγ)

[︃
rβ(tm+1)− rβ(tm−1)

δt

]︃)︄2

. (B.4)
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At this point we approximate the fraction with the derivative and exploit the fact that {Oα}
is an orthonormal basis:

∑
γ,m

(︃
∂Bi

∂rγ(tm)

)︃2

≈ 4 ∑
γ,m

(︄
∑
β

Tr(−i[Li, Oβ]Oγ)∂trβ(tm)

)︄2

= 4 ∑
γ,m

(Tr(−i[Li, ∂tρ(tm)]Oγ))
2

= 4 ∑
γ,m

(︂
Tr (−i[Li, ∂tρ(tm)])

2
)︂

. (B.5)

Replacing this estimate of the statistical uncertainty and the Taylor remainder Rn =
−[H,[H,ρ(t∗n)]]

2 in the total uncertainty δBi, we obtain

δBi ≈
2√︁

2Nq NM

√︄
∑
m

(︂
Tr (−i[Li, ∂tρ(tm)])

2
)︂
+

δt
2 ∑

m
|Tr [(−i[Li, ρ(tm)]) (−[H, [H, ρ(t∗m)]])]|,

(B.6)
where H is the system Hamiltonian.

Considering the Cauchy-Schwarz inequality |Tr(AB)| ≤
√︁

Tr(AA)Tr(BB), this last es-
timate can be bounded as

δBi ≤
2√︁

2Nq NM

√︄
∑
m

(︂
Tr (−i[Li,−i[H, ρ(tm)]])

2
)︂
+

δt
2 ∑

m

√︃
Tr
(︂
(i[Li, ρ(tm)])

2
)︂

Tr ([H, [H, ρ(t∗m)]]2),

(B.7)
where we have taken into account that ∂tρ(tm) = −i[H, ρ(tm)].

Now we need to understand how the commutator with an Hermitian operators changes
the Frobenius norm of a given operator. In particular, given a Hermitian operator A with
spectral decomposition A = ∑i ai|i⟩⟨i|, we define amin = min(ai), amax = max(ai), and
Aδ = A − amin1. Hence we can write

Tr[(−i[A, X])2] = Tr[(−i[Aδ, X])2]

= 2[Tr(XXAδ Aδ)− Tr(AδXAδX)]

= 2 ∑
ij
(ai − amin)(ai − aj)|⟨i|X|j⟩|2

≤ 2(amax − amin)
2 ∑

ij
|⟨i|X|j⟩|2

= 2∥Aδ∥2
op Tr(X2), (B.8)

where ∥Aδ∥op is the operator norm of Aδ.
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Replacing this bound in our estimate of the uncertainty δBi and considering that the
purity of the state ρ(t) is Tr(ρ(t)2) ≤ 1 for each value of t, we obtain

δBi ≤
2∥Li∥op√︁

2Nq NT

√︄
∑
m

2
(︂

Tr (−i[H, ρ(tm)])
2
)︂
+ ∥Li,δ∥op∥Hδ∥op ∑

m

√︃
Tr
(︂
(−i[H, ρ(t∗m)]δt)2

)︂
≤ 4∥Hδ∥op∥Li,δ∥op√︁

2Nq NM

√︁
NT + δt∥Li,δ∥op∥Hδ∥2

opNT, (B.9)

where ∥Li,δ∥op and ∥Hδ∥op are the difference between the maximum and the minimum
eigenvalues of H and Li, respectively.

For a traceless operator A = ∑i ai|i⟩⟨i| we have that the maximum eigenvalue is positive
and the minimum one is negative, therefore

∥Aδ∥op = amax − amin = |amax|+ |amin| ≤ 2max(|ai|) = 2∥A∥op. (B.10)

Hence, since both H and Li are traceless and since we can choose without loss of generality
∥Li∥op = ∥L∥op∀i, the last inequality becomes

δBi ≤
16∥H∥op∥L∥op√︁

2Nq NM

√︁
NT + 4δt∥L∥op∥H∥2

opNT. (B.11)

An analogous bound on the uncertainty about the Hamiltonian couplings can be calcu-
lated propagating the uncertainty about Bi. When ∥V−1∥ ≪ 1 we obtain

δhi = ∑
j
(V−1)ijδBj. (B.12)

and therefore

∥δ⃗h∥ ≤
√︂

Tr (V−2)∥L∥op

(︄
16∥H∥op

√︄
NT

2Nq NM
+ 4NT∥H∥2

opδt

)︄
. (B.13)

When ∥V−1∥ ≪ 1 does not hold, this estimate for the uncertainty fails, but this is the
case in which we have an uncertainty that is so large that finding the exact Hamiltonian is
impossible.

Now, we want to derive a bound on the relative uncertainty on the couplings. Taking
into account the triangular inequality and the relationship between p-norms, and defining
l as the number of Hamiltonian couplings, we can write

∥H∥op = ∥∑
i

hiLi∥op≤ ∑
i
|hi|∥Li∥op = ∥L∥op ∑

i
|hi| ≤

√
l∥L∥op∥h⃗∥, (B.14)

from which we finally obtain

∥δ⃗h∥
∥h⃗∥

≤
√︂

l Tr (V−2)∥L∥2
op

(︄
16

√︄
NT

2Nq NM
+ 4NT∥H∥opδt

)︄
. (B.15)





C
T R A N S L AT I O N A L LY I N VA R I A N T G A U S S I A N
S TAT E S

Quadratic fermionic Hamiltonians describe a wide range of systems, including interacting
electrons in solid-state materials and ultracold atoms in optical lattices. These Hamilto-
nians take the form of a quadratic polynomial in the fermionic creation and annihila-
tion operators and can be exactly diagonalized. The ground states of quadratic fermionic
Hamiltonians are Gaussian states. These states can be described by a polynomial amount
of information in the system size thanks to the Wick theorem, which allows for a simple
calculation of many-body correlations from 2-body correlations [80]. From this point of
view, Gaussian states are the simplest type of quantum state that can exhibit non-trivial
quantum correlations and quantum phase transitions.

Quadratic Hamiltonians and Gaussian states have been the perfect playground to test
some ideas of this thesis, such as inverse quantum annealing. In particular, we tested
the inverse quantum annealing on a particular class of translationally invariant Gaussian
states, that are described by separable pseudo-spin states. Following Refs. [80, 223], in this
appendix, we illustrate the details of this approach. Moreover, we explain some statements
exploited in Chapter 5, such as the choice of the basis L(l) and the form of the commutator
matrix.

c.1 basis definition

We define the basis L(l) of a space of translation and reflection invariant interactions of
range l as follows:

L(l<N/2) ≡ {ΣZ
0 /

√
2, ΣX

1 , ΣY
1 , ΣZ

1 , . . . , ΣX
l−1, ΣY

l−1, ΣZ
l−1}, (C.1)

and

L(N/2) ≡ L(N/2−1) ∪ {ΣX
N/2/

√
2, ΣY

N/2/
√

2}, (C.2)

where

ΣX
m = 1

2 ∑N
n=1

(︁
c†

nc†
n+m − cncn+m

)︁
ΣY

m = i
2 ∑N

n=1
(︁
c†

nc†
n+m + cncn+m

)︁
ΣZ

m = 1
2 ∑N

n=1
(︁
c†

ncn+m − cnc†
n+m

)︁
(C.3)
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with c†
n and cn fermionic creation and annihilation operators in the physical space, with

anti-periodic boundary conditions cN+m ≡ −cm.
Note that anti-periodic boundary conditions ensure that an eventual operator ΣZ

N/2 is
null, and eventual operators ΣX

0 and ΣY
0 are null because of fermions commutation rules.

c.2 fourier transform

Now, we introduce the fermionic operators c†
k and ck acting on the momenta space:

ck =
e−iπ/4
√

N

N

∑
n=1

e−ikncn,

cn =
eiπ/4
√

N
∑

k∈K
eiknck. (C.4)

The anti-periodic boundary condition cN+m = −cm implies that ∑k∈K eik(N+m)ck =

−∑k∈K eikmck, that is

k ∈ K ≡
{︂

k =
(2n + 1)π

N
, with n ∈ {−N, . . . , N − 1}

}︂
. (C.5)

The operators in L(l) can be written as :

ΣX
m = −i ∑

k∈K
(eimkc†

k c†
−k − e−imkc−kck)

ΣY
m = − ∑

k∈K
(eimkc†

k c†
−k + e−imkc−kck) (C.6)

ΣZ
m = ∑

k∈K
eimk(c†

k ck + c†
−kc−k − 1) (C.7)

The quadratic interactions in the latter equation respect the following symmetry rules:
c†

k ck + c†
−kc−k = c†

−kc−k + c†
k ck, c†

k c†
−k = −c†

−kc†
k , and ckc−k = −c−kck. Thanks to these rules,

we can simplify the previous equations:

ΣX
m = 2 ∑

k∈K+

sin(mk)(c†
k c†

−k + c−kck)

ΣY
m = −2i ∑

k∈K+

sin(mk)(c†
k c†

−k − c−kck)

ΣZ
m = 2 ∑

k∈K+

cos(mk)(c†
k ck + c†

−kc−k − 1), (C.8)

where K+ contains only the positive values of K. Now, each term in L(l) is block-diagonal,
and the Hilbert space is the sum of N non-interacting subspaces labeled by the momenta
k.



appendices 109

c.3 anderson pseudo-spins

At this point we note that the operators σ̃x
k := (c†

k c†
−k + c−kck), σ̃

y
k := −i(c†

k c†
−k − c−kck) and

σ̃z
k := (c†

k ck + c†
−kc−k − 1) follow the spin commutation rules [σ̃

µ
k , σ̃ν

k′ ] = 2iδkk′ ∑γ εµνγσ̃γ.
Hence we write

ΣX
m = 2 ∑

k∈K+

sin(mk)σ̃x
k

ΣY
m = 2 ∑

k∈K+

sin(mk)σ̃y
k

ΣZ
m = 2 ∑

k∈K+

cos(mk)σ̃z
k. (C.9)

These equations can be summarized as

ΣX
m = ∑

k∈K+

Fµσ̃x
k

Fµ(x) ≡ 2(sin(x), sin(x), cos(x)) (C.10)

We can see that all the Hamiltonians spanned by L(l) can be written as systems of non-
interacting spins, called pseudo-spins. The set L(l) and the set of all the single pseudo-spin
operators {σ̃

µ
k } are linked by a Fourier transform, therefore they are two bases for the same

space.
We can invert the Fourier transform as follows:

∑
0≤m≤N/2−1

cos(mk)Σz
m = 2 ∑

m
∑

k∈K+

cos(mk′) cos(mk)σ̃z
k′

= 2 ∑
m

cos2(mk)σ̃z
k

= 2 ∑
m

cos2(ik2πm/N + mπ/N)σ̃z
k

= 2
N
2π

∫︂ π

0
cos2[(ik + 1/2)x]σ̃z

k

=
N
2

σ̃z
k (C.11)

In this way, we obtain the inverse relations:

σ̃
µ
k =

1
N ∑

0≤m≤N/2
Fµ(mk)Σµ

m (C.12)

c.4 normalization of the basis

Here we show that the operators in L(N/2) are orthogonal and that they have the same
norm. This is needed to implement the inverse quantum annealing through Eq. 5.6.
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Firstly, let us remark that, since the σ̃
µ
k are pseudo-spin operators, Tr(σ̃µ

k σ̃ν
k′) =

Tr({σ̃
µ
k , σ̃ν

k′})/2 = Tr(1)δkk′δµν. Following Eq. (C.10), the scalar products of the operators
Σµ

m are

Tr
(︁
Σµ

mΣν
l
)︁
= ∑

k
∑
k′

Tr(σ̃µ
k σ̃ν

k′)Fµ(km)Fν(k′l) = δµν Tr(1)∑
k

Fµ(km)Fµ(kl), (C.13)

Considering the orthogonality of the Fourier basis, the latter equation becomes

Tr
(︁
Σµ

mΣν
l
)︁
= δµνδml

N
2

Tr(1) (C.14)

for 0 < m < N/2 and
Tr
(︁
Σµ

mΣν
l
)︁
= δµνδml N Tr(1) (C.15)

for m = 0 and m = N/2.
Therefore,

L(N/2) ≡ {ΣZ
0 /

√
2, ΣX

1 , ΣY
1 , ΣZ

1 , . . . , ΣX
N/2−1, ΣY

N/2−1, ΣZ
N/2−1, ΣX

N/2/
√

2, ΣY
N/2/

√
2}, (C.16)

is a set of orthogonal vectors with the same norm.

c.5 from quadratic fermions to non-interacting speudo-spins

Following the scheme of the previous sections, any arbitrary Hamiltonian spanned by the
interactions in L(l) can be diagonalized as a non-interacting pseudo-spins system. As an
example, here we diagonalize the Kitaev model exploited in Section. 5.5.

The Kitaev Hamiltonian is

HK(λ) = sin(λ)
N

∑
n=1

(︂
c†

nc†
n+1 + c†

ncn+1 + h.c.
)︂
+ cos(λ)

N

∑
n=1

(︂
c†

ncn − cnc†
n

)︂
. (C.17)

This Hamiltonian, in terms of the operators in L(l), reads

HK(λ) = 2 sin(λ)
(︂

ΣZ
1 + ΣZ

1

)︂
+ 2 cos(λ)ΣZ

0 . (C.18)

Exploiting Eq. (C.10), the last equation is written in terms of non-interacting pseudo-
spins as:

HK(λ) = 4 ∑
k∈K+

[cos(λ)σ̃z
k + sin(λ) (sin(k)σ̃x

k + cos(k)σ̃z
k)] , (C.19)

or, equivalently, as
HK(λ) = 4 ∑

k∈K+

ϵk
(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k
)︁

, (C.20)
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where

ϵk =
√︂

1 + 2 sin(λ) cos(λ) cos(k)

vx
k = − sin(λ) sin(k)/ϵk

vy
k = 0

vz
k = − (cos(λ) + sin(λ) cos(k)) /ϵk. (C.21)

In the same manner, any Hamiltonian spanned L(l) can be written in this form, with
different values of the vectors vk⃗ and of the energies ϵk. Writing the ground state density
matrix of these Hamiltonians is straightforward:

Ψgs ≡
⨂︂

k∈K+

(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k + 1

)︁
/2. (C.22)

c.6 commutator matrix

Here, we calculate commutator matrix K(l)
ij (Ψ) = ⟨Ψ| − i[Σµ

m, Σν
n]|Ψ⟩ = K(l)

{m,µ}{n,ν}(Ψ). The

entries of this matrix are the commutators expectation values of the operators in L(l) for
the arbitrary ground states |Ψ⟩ in Eq. C.22.

The commutator matrix is related to the pseudo-spins commutator matrix
K′
{k,α}{k′,α′}(Ψ) ≡ ⟨Ψ| − i[σ̃α

k , σ̃α′
k′ ]|Ψ⟩ as follows:

K(l)
{m,µ}{n,ν} = ⟨Ψ| − i[Σµ

m, Σν
n]|Ψ⟩

=
k∈K+,α∈{X,Y,Z}

∑
{k,α}

k′∈K+,α′∈{X,Y,Z}
∑

{k′,α′}
F(l)
{m,µ}{k,α}F(l)

{n,ν}{k′,α′}K′
{k,α}{k′,α′}, (C.23)

where matrix F is a Fourier transform matrix.
In particular, for l < N/2 we have:

F(l) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1/
√

2 0 0 1/
√

2 . . .

sin(1k1) 0 0 sin(1k2) 0 0 . . .

0 sin(1k1) 0 0 sin(1k2) 0 . . .

0 0 cos(1k1) 0 0 cos(1k2) . . .

. . . . . . . . . . . . . . . . . . . . .

sin(lk1) 0 0 sin(lk2) 0 0 . . .

0 sin(lk1) 0 0 sin(lk2) 0 . . .

0 0 cos(lk1) 0 0 cos(lk2) . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.24)
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and for l = N/2:

F(N/2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1/
√

2 . . .

sin(1k1) 0 0 . . .

0 sin(1k1) 0 . . .

0 0 cos(1k1) . . .

. . . . . . . . . . . .

sin(N
2 k1 − k1 0 0 . . .

0 sin(N
2 k1 − k1) 0 . . .

0 0 cos(N
2 k1 − k1) . . .

sin(Nk1/2)/
√

2 0 0 . . .

0 sin(Nk1/2)/
√

2 0 . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.25)

The last step consists in calculating the elements of the matrix K′(Ψ). Thanks to the
simple commutation rules between pseudo-spins, this is a block-diagonal matrix:

K′(Ψ) =

⎛⎜⎜⎜⎝
Kk1(Ψ) 0 . . .

0 Kk2(Ψ) . . .

. . . . . . . . .

⎞⎟⎟⎟⎠ , (C.26)

where the blocks are labeled by the elements of K+. Exploiting Eq. (C.22), we obtain the
explicit form of the submatrices:

Kk(Ψ) =

⎛⎜⎜⎜⎝
0 vz

k(Ψ) −vy
k(Ψ)

−vz
k(Ψ) 0 vx

k (Ψ)

vy
k(Ψ) −vx

k (Ψ) 0

⎞⎟⎟⎟⎠ (C.27)

note that K[w=0] is the commutator matrix for the basis L[w=0].
Now, the commutator matrix can be easily calculated through the Fourier transform of

K′(Ψ):
K(l)(Ψ) =

(︁
F(l))︁(︁K′(Ψ)

)︁(︁
F(l))︁T. (C.28)



D
I N T E G R A B L E S P I N C H A I N S

Numerous one-dimensional interacting spins systems can be exactly solved through map-
ping into the space of quadratic fermionic Hamiltonians. Examples of such models include
the Ising model in transverse field [125], the XY model [126], and some cluster Hamiltoni-
ans [173].

Here, we define a set S of translationally invariant spins interactions that, exploiting
the Jordan-Wigner transformations [124–126], are mapped to the basis {Σµ

m} studied in
Appendix C. This equivalence allows for diagonalizing all the Hamiltonians spanned by
S through a Jordan-Wigner transformation followed by the techniques of Appendix C.
Finally, we show how the Wick theorem can be exploited to efficiently calculate the ex-
pectation values of any string of Pauli operators for an arbitrary ground state of these
models.

d.1 basis definition

Let us define the operators S = {SZ
0 , SX

1 , SY
1 , SZ

1 , . . . , SX
N/2−1, SY

N/2−1, SZ
N/2−1, SX

N/2, SY
N/2} on

a system of N spins, where

SZ
0 = −1

2

N

∑
n

σz
n

SX
m =

1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m − σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
SY

m =
1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σ
y
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σx

n+m
)︁

SZ
m =

1
4

N

∑
n

(︁
σx

n σz
n+1 . . . σz

n+m−1σx
n+m + σ

y
nσz

n+1 . . . σz
n+m−1σ

y
n+m

)︁
. (D.1)

Here the dots represent a string of σz
i operators.

We consider an even number of spins and periodic boundary conditions σ
µ
i+N = σ

µ
i .

In this Appendix, we show that all these operators can be written as quadratic fermionic
operators thanks to the Jordan-Wigner transformations [80].
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Firstly, we consider the parity operator P ≡ ∏n σn,z. P commutes with each element of
L, so we can divide the whole Hilbert space into two parity sectors and write the Sµ

n an a
block diagonal form:

Sµ
n =

⎛⎝Sµ
n,0 0

0 Sµ
n,1

⎞⎠ , (D.2)

where the subscript index p ∈ {0, 1} is referred to the parity of the Hilbert subspace on
which the operator acts (0 even, 1 odd).

The Jordan-Wigner transformations are defined as

Kn =
n−1

∏
1
(1− 2c†

ncn)

σz
n = (1− 2c†

ncn)

σx
n = Kn(c†

n + cn)

σ
y
n = i Kn(c†

n − cn), (D.3)

where the c†
n’s and the cn’s are fermionic creation and annihilation operators in the pos-

itions space. Exploiting this mapping, one can write the elements of S as quadratic fer-
mionic Hamiltonians. The action of these Hamiltonians changes on the different parity
sectors of the Hilbert space [80]. In the even parity sector, which contains the ground
states of the Hamiltonians spanned by S , the representations of these elements coincide
with the operators ΣZ

µ introduced in Appendix C:

SZ
0,0 = ΣZ

0

SX
m,0 = ΣX

m

SY
m,0 = ΣY

m

SZ
m,0 = ΣZ

m. (D.4)

d.2 from interacting spins to non-interacting speudo-spins

All the Hamiltonians spanned by S can be diagonalized through a Jordan-Wigner trans-
formation followed by the techniques of Appendix C. As an example, let us consider the
Ising Hamiltonian in transverse field introduced in Chapter 3:

HI(λ) = −
L

∑
n=1

σx
n σx

n+1 − λ
L

∑
n=1

σz
n . (D.5)

In terms of the operators in S , this Hamiltonian is written as

HI(λ) = −2
L

∑
n=1

(ΣX
1 + ΣZ

1 ) + 2λ
L

∑
n=1

ΣZ
0 . (D.6)
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The Jordan-Wigner transformation Sµ
m → Σµ

m, maps this Hamiltonian in a Kiteav model
that is analogous to the one diagonalized in Appendix C. This leads to a pseudo-spin
representation of the Ising Hamiltonian in transverse field:

HI = − ∑
k∈K+

ϵk
(︁
vx

k σ̃x
k + vy

k σ̃
y
k + vz

kσ̃z
k
)︁

, (D.7)

where

K+ ≡
{︂

k =
(2n + 1)π

L
, with n ∈ {0, . . . , L/2 − 1}

}︂
, (D.8)

and

ϵk = 2
√︂

sin2(k) + (cos(k)− λ)2

vx
k = sin(k)/ϵk

vy
k = 0

vz
k = (cos(k)− λ) /ϵk. (D.9)

d.3 pauli strings expectation values

Let be |Ψ⟩ the non-degenerate ground state of any linear combination of the operators in S .
We want to calculate the expectation values in |Ψ⟩ of an arbitrary string of Pauli operators.

Let us define the operators

Aj =
⨂︂
i<j

σz
i σx

j

Bj =
⨂︂
i<j

σz
i σ

y
j . (D.10)

These are Majorana fermions, indeed

{Ai, Aj} = 2δij1

{Bi, Bj} = 2δij1

{Ai, Bj} = 0 (D.11)

As a consequence of the symmetries of the operators in S , any Pauli string that contains
a total odd number of σx and σy has a null expectation value in |Ψ⟩. Moreover, after some
algebra, one can show that all the other Pauli strings can be written as strings of Majorana
fermions with an even number of fermions, multiplied by a phase factor:

m = 0 m > 0 m < 0

Aj Aj+m = 1 −iσy
j
⨂︁

1≤i<m σz
j+iσ

x
j+m iσy

j−|m|
⨂︁

1≤i<|m| σz
j−|m|+iσ

x
j

BjBj+m = 1 iσx
j
⨂︁

1≤i<m σz
j+iσ

y
j+m −iσx

j−|m|
⨂︁

1≤i<|m| σz
j−|m|+iσ

y
j

AjBj+m = iσz
j −iσy

j
⨂︁

1≤i<m σz
j+iσ

y
j+m −iσx

j−|m|
⨂︁

1≤i<|m| σz
j−|m|+iσ

x
j
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At this point, we call

C({i}k, {j}l) ≡ ⟨Ψ|Ai1 , . . . , Aik , Bj1 , . . . , Bjl |Ψ⟩ (D.12)

the expectation value on |Ψ⟩ of an arbitrarily ordered product of Majorana fermions, where
{i}k ≡ {i1, . . . , ik|N > i1 > · · · > ik > 1} is a set of ordered indices ranging over all the
sites. Any non-zero expectation value of a Pauli string in the state |Ψ⟩ is equal to some
C({i}k, {j}l) multiplied by a phase factor. Since we are dealing with Gaussian states, the
computation of C({i}k, {j}l) can be done through the Wick theorem:

C({i}k, {j}l) = Pf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨Ai1 Ai1⟩ − 1 . . . ⟨Ai1 Aik⟩ ⟨Ai1 Bj1⟩ . . . ⟨Ai1 Bjl ⟩
. . . . . . . . . . . . . . . . . .

⟨Aik Ai1⟩ . . . ⟨Aik Aik⟩ − 1 ⟨Aik Bj1⟩ . . . ⟨Aik Bjl ⟩
⟨Bj1 Ai1⟩ . . . ⟨Bj1 Aik⟩ ⟨Bj1 Bj1⟩ − 1 . . . ⟨Bj1 Bjl ⟩

. . . . . . . . . . . . . . . . . .

⟨Bjl Ai1⟩ . . . ⟨Bjl Aik⟩ ⟨Bjl Bj1⟩ . . . ⟨Bjl Bjl ⟩ − 1,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D.13)
where Pf indicates the Pfaffian of the matrix.

If we define the matrices

γAA
j,j+m(Ψ) ≡ ⟨Ψ|Aj Aj+m|Ψ⟩ − δm0 = −⟨Ψ|BjBj+m|Ψ⟩+ δm0

γAB
j,j+m(Ψ) ≡ ⟨Ψ|AjBj+m|Ψ⟩, (D.14)

we can write

C({i}k, {j}l) = Pf

⎛⎝ γAA
{i}k{i}k

−γAB
{i}k{j}l

−
(︂

γAB
{i}k{j}l

)︂T
−γAA

{j}l{j}l
.

⎞⎠ (D.15)

In this way, once the two-point correlation functions that define the matrices γAA
j,j+m and

γAB
j,j+m have been calculated, any non-null Pauli string expectation values can be found in

polynomial time through the Pfaffian technique.
To estimate these matrices, we exploit the translational and reflection invariance. Firstly,

we note that due to the translation invariance γAA
j,j+m = ∑j γAA

j,j+m/N and γAB
j,j+m =

∑j γAB
1,1+m/N. Considering the definition of the operators in S , we obtain

γBB
m (Ψ) = −γAA

m (Ψ)

γAA
0 (Ψ) = 0

γAB
0 (Ψ) = −i⟨Ψ|SZ

0 |Ψ⟩/N

γAA
m>0(Ψ) = i⟨Ψ|SY

m|Ψ⟩/N

γAB
m>0(Ψ) = i⟨Ψ|SX

m − SZ
m|Ψ⟩/N

γAA
m<0(Ψ) = −i⟨Ψ|SY

|m||Ψ⟩/N

γAB
m<0(Ψ) = −i⟨Ψ|SX

|m| + SZ
|m||Ψ⟩/N
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These expectation values can be evaluated by exploiting the pseudo-spin representation
of the operators in S :

γAA
m (Ψ) = 2i ∑

k∈K+

⟨Ψ| sin(mk)σ̃y
k |Ψ⟩/N

γAB
m (Ψ) = 2i ∑

k∈K+

⟨Ψ| sin(mk)σ̃x
k − cos(mk)σ̃z

k|Ψ⟩/N. (D.16)

Similarly, we have shown that the ground states of integrable spin systems are represented
in pseudo-spins formalism through Eq. C.22. Finally, this leads to

γAA
m (Ψ) = 2i ∑

k∈K+

sin(mk)vy
k /N

γAB
m (Ψ) = 2i ∑

k∈K+

(sin(mk)vx
k − cos(mk)vz

k) /N. (D.17)
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