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Abstract 

Cell cultures are a fundamental model system widely used to study the 

mechanisms involved in promoting and regulating cell proliferation and 

movement. Here we use a quantitative approach to study the behaviour of 

cultured cells by using models which reduce complex experimental 

observations to simpler systems, in which the contribution of different players 

may be more easily evaluated.  

Following this approach, cell culture experiments were analysed by 

using a new motion model, developed to accurately evaluate cell migration 

features, such as randomness, persistence and directional bias, even when 

present in more complex combinations. The model was used to study the role 

of MAPK pathway in cell movement and to generate, within an in-house 

developed simulation tool, synthetic cell populations able to reproduce the 

same movement features. The simulation was later improved by pairing it with 

a biochemical simulator based on ordinary differential equations (ODE), which 

provided the ability to finely regulate the behaviour of synthetic cells according 

to the state of signalling pathways such as EGFR/ERK. In order to support the 

hour-long simulations needed to emulate cell cycle progression, several novel 

aspects had to be implemented, including synthesis and degradation of many 

proteins and a link between molecular pathways and cell mass and volume 

growth. To reproduce the delay, not easily obtained with ODEs, but typically 

introduced by gene transcription and mRNA translation, new modules were 

developed which attain this goal while maintaining a good balance between 

complexity and execution time, on one side, and manageability and accuracy, 

on the other. In its present state, the developed system reproduces different 

experimental situations and opens up future perspectives for further cell 

proliferation and movement studies. 



Background

1. Background 

1.1. Studying the behaviour of cultured cells with quantitative models 

Cell cultures are widely used in biomedical research and play a vital 

role in different research fields, such as biochemistry, cell and molecular 

biology, pharmacology, just to name a few. Biologists usually maintain cells as 

two-dimensional monolayer cultures, where populations composed of a single 

type or more complex mixtures are allowed to grow over a plastic or glass flat 

surface, submerged within a medium feeding the growing cells. Although 

conceptually simple and necessarily limited in their ability to reproduce the 

richer environment observed in vivo, cell cultures are widely regarded as 

extremely useful tools to understand cell biology, and have long been used to 

study cell movement, proliferation or growth in different experimental 

conditions, to investigate membrane, cytoskeleton or vesicular dynamics, to 

study the activation of molecular pathways and their influence on cell features 

and dynamics, just to name a few. Experiments performed on cultured cells are 

replicable, easily interpretable and considerably cheaper, when compared to 

other experimental systems, such as animal models, and in the last decades 

have been central to lots of findings as they reduce experimental complexity 

while keeping cells under tightly controlled experimental conditions that 

closely resemble their physiological environments.  

While cell cultures have been studied and analyzed for a long time 

through different approaches and methods, the availability in more recent times 

of advanced imaging techniques and sophisticated labelling methods allowed 

quantitative analysis and dynamic observation of cultures at different time 

points to evaluate cell structures in relation to the presence of specific 

molecules, genome structure, gene expression. Real-time imaging techniques 

allow to follow cells over time to understand how they behave in time, how a 
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particular status is reached and how cells react to drugs or inhibitors added to 

the culture to interfere with their behaviour. 

 

Research using cell cultures has always been coupled to qualitative or 

semiquantitative models representing cell behaviour and/or intracellular 

molecular pathways. More recently, parameters descriptive of specific aspects 

of cell morphology and behaviour have been analysed by coupling dynamic 

microscopy with quantitative and statistical data analysis, to understand how 

the behaviour of a cell population changes over time and reacts to perturbations 
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Figure 1. From qualitative to quantitative methods for studying cell culture 
behavior. Cell cultures, which are representations of a studied biological 
phenomenon, are used and studied with a variety of methods to reproduce easier 
environments to investigate and manipolate. From obtained data and observations, 
qualitative models are developed to describe observed dynamics and to formulate 
and verify hypotheses. Quantitative models allow to further reduce and dissect 
complexity of the studied phenomenon, in turn helping to increase detail in its 
knowledge.  
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(Figure 1). Mathematical models have often provided the opportunity to 

generate new insights, make testable predictions, verify gaps in knowledge, 

even test conditions that would be difficult to obtain with in vitro experiments 

on experimental cell cultures (Barh et al., 2020). 

1.2. Cell attachment and growth  

Cells seeded on a plate quickly attach and start growing. Cell adhesion 

depends on signals that also regulate differentiation, cell cycle, migration, and 

survival (Huang et al., 1999), and is essential in cell communication as well as 

development and maintenance of tissues. Changes in cell adhesion have been 

associated to a wide range of diseases including arthritis (Szekanecz et al., 

2000), cancer (Huang et al., 1999; Okegawa et al., 2004, Hirohashi et al., 

2003), osteoporosis (Perinpanayagam et al., 2001, Cho et al., 2006), and 

inflammatory diseases (Serhan et al., 2005; Simon et al., 2005). In vitro, when 

cells adhere to the surface of a culture flask or petri dish, they undergo 

morphologic alterations which imply deformation and reorganization of the 

cytoskeleton. The process is characterized by three stages: attachment to the 

substrate, flattening and spreading of the cell body, and organization of the 

actin skeleton with the formation of focal adhesions between cell and substrate 

(Khalili et al., 2015). Mammalian cells are often anchorage-dependent and 

attach firmly to the in vitro substrate (Sagvolden et al., 1999) and the better a 

cell sticks the greater is the number of chemical bonds with the substrate.  

A fully spread cell starts increasing and modifying its volume and 

synthesizes proteins and other cellular components. Mass or volume changes in 

a given time interval are the combined consequence of protein biosynthesis (via 

transcription and translation) and mechanisms that add or remove cell mass via 

endo or exocytosis (Son et al., 2015) or volume changes determined by import 

of water driven by osmotic balance, hydrostatic pressure, and membrane 
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turnover (Cadart et al., 2019). Variability in growth can thus result from 

variability in either mechanism. 

Typically, in mammalian cells, volume increase during the cell cycle 

shows little or no correlation to cell size at birth and different growth models 

have been proposed, exemplified by three simple limit cases: the sizer, the 

adder and the timer. In the first case, a size threshold (sizer) controls the entry 

into mitosis; this is the case, for example, of fission yeast, S. pombe, for which 

a perfect size control has been reported (Fantes et al., 1977). By contrast, an 

adder mechanism relies on the addition of a constant volume at each cell cycle 

that is independent of initial size, causing cells to converge on an average size 

after a few generations. This behavior has been also reported for several types 

of bacteria, cyanobacteria and in budding yeast (Campos et al., 2014; Taheri-

Araghi et al., 2015; Yu et al., 2017; Deforet et al., 2015; Soifer et al., 2016). 

Finally, in the case of a timer mechanism, growth depends only on time: cells 

linearly grow by the same amount at each time interval (growth), therefore 

specific mechanisms should be required to maintain size homeostasis, or 

alternatively large cells would grow more than smaller ones and sizes would 

rapidly diverge, if cells just keep growing exponentially. 

Mammalian cells have been hypothesized to control their size via a 

modulation of cell cycle duration. Specifically, an adaptation of G1 duration as 

a function of cell size has been proposed by a series of works (Dolznig et al., 

2004; Ginzberg et al., 2018; Varsano et al., 2017). In HeLa cells it was found 

that, during most of the cell cycle, volume growth is nearly exponential with 

higher rates in S-G2 than in G1 (Cadart et al., 2022). HeLa cells were also 

shown to grow at a faster-than-average growth rate in G1 if they were born 

smaller than the others (Cadart et al., 2018) supporting the observation that 

inhibition of cell cycle progression has antagonistic effects on mass-specific 
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growth rate and, in turn, inhibition of growth pathways antagonizes cell cycle 

progression (Ginzberg et al., 2018). 

1.3. Models for attachment and volumetric cell growth 

Various attempts have been made to model processes involved in 

determining cell adaptation and spreading. A simple model describes contact 

area as increasing linearly with time, within the first 30-40 minutes of cell 

attachment, and later more slowly, to finally stabilise on a quite constant area 

value (Pietuch et al., 2013; Norman et al., 2010; Gauthier et al., 2009). This 

process is associated to an increase of plasma membrane area which varies 

according to cell type (Traynor and Kay, 2007; Boucrot and Kirchhausen, 

2007; Gauthier et al., 2009).  

The development of high-throughput single live cell imaging has 

provided a wealth of measurements which, in turn, promoted the development 

of models, aimed to quantitative characterization of cell growth and control of 

cell size. A set of growing complexity models developed to predict the 

dynamics of the average population behaviour was proposed by Mantzaris et 

al., 2007. Cells of an isogenic cell population have different sizes and volumes 

according to amounts of DNA, mRNA, proteins or metabolites and phenotypic 

cell-to-cell variability may originates from fundamentally different sources: 

unequal partitioning of cellular material at cell division and stochastic 

fluctuations associated with intracellular reactions. Assuming that 

heterogeneity originates from unequal partitioning at cell division, a 

deterministic cell population balance (DCPB) model was built, which predicts 

the entire distribution of phenotypes. In addition, a fully stochastic model 

accommodating both sources of population heterogeneity was developed using 

a novel Stochastic Variable Number Monte Carlo (SVNMC) algorithm, which 

incorporates all information included in the DCPB model but, in addition, 

accounts for intrinsic noise at the single-cell level originating from small 
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number of molecules and slow operator fluctuations. This model framework 

enabled the quantitative decomposition of the effects of the different population 

heterogeneity sources on system behavior indicating the importance of cell 

population heterogeneity in accurately predicting even average population 

properties (Mantzaris et al., 2007). More recently, a model able to characterize 

the joint correction of size by timing and growth rate modulation was 

developed. The model is based on three parameters: λ describes how the total 

relative growth depends on volume at birth , if λ is equal 

1 the system behaves like a sizer, if it is 0.5 it is an adder and if it is 0 there is 

no size control at all; θ describes how cell cycle duration depends on volume at 

birth; γ describes the link between initial size and a variation in growth rate 

with respect to its mean value. By analyzing different cell types and different 

growth conditions, this model allowed to quantify the respective contributions 

of growth and time modulation to the effective size homeostasis behaviour 

allowing to highlight a common adder behaviour in cultured and primary cells 

(Cadart et al., 2018). 

1.4. Cell movement  

After attachment and spreading, typically a cell on culture dish is a 

dynamic entity, continuously changing its behaviour, position and shape, 

influenced by external stimuli and factors and itself influencing the 

surrounding environment. The movement of individual cells or cell groups 

from one location to another is referred to as cell migration and typically 

includes cell repolarization or reorientation in space, due to cytoskeletal 

reorganisation. Cell migration is involved in different fundamental processes, 

such as embryo development and organogenesis, organism growth and 

survival, and it can also be related to pathological conditions such as 

inflammation, atherosclerosis, tissue invasion by cancer cells and formation of 

tumor metastasis. On culture plates, cell movement depends on cell interaction 

(log(Vmitosis / Vbirth))
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either with substrate and with other cells. In absence of particular conditions, 

cells move over smaller or larger distances, depending on cell type, and in all 

possible directions. Often they show a sort of inertia in their movement: at each 

time, they tend, at different extents, to maintain the direction of the previous 

motion step, as each change in direction would involve a membrane and 

cytoskeletal reorganisation and thus it would cost energy. Both in vivo and in 

vitro, cells are exposed to external stimuli which can affect their speed and 

direction; examples are chemotaxis or motion in presence of an inhibitor, a 

nutrient source, or a wound. 

1.5. Mechanisms and molecules promoting cell movement 

Cell migration studies have shown that morphological events are 

associated with changes at the ultrastructural and molecular level. Cell 

movement is the result of a highly coordinated process associated with 

polarization of the cell body according to an axis, typically oriented along the 

displacement direction.  

The overall movement may be described as a cycle: a cell extends a 

protrusion at the leading edge; it establishes new adhesions with substratum at 

the front; then it performs a forward movement of its nucleus and body 

(traction); finally, it detaches the adhesions at the rear and retracts its tail.  

Different studies implicate cell-substratum adhesiveness as an 

important determinant of cell migration speed, with maximum migration 

demonstrated at intermediate cell-substratum adhesiveness (Huttenlocher et al., 

1996; DiMilla et al., 1993; Palecek et al., 1997). At lower substrate 

concentrations cell speed is apparently limited by the ability to form 

attachments at the cell front, whereas at high substrate concentrations cell 

speed tends to be limited by the rate of cell-substratum detachment. In fact, 

deadhesion/tail retraction may limit movement rate in strongly adhesive cells, 

such as cultured fibroblasts, which tend to have a strongly adherent, extended 
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tail and leave behind a trail of cytoplasmic fragments as they move. Instead, in 

weakly adhesive, fast moving cells such as amoebae and white blood cells, the 

tail is more rounded and this step is more efficient. 

Cell movement involves assembly, disassembly or reorganization of 

actin cytoskeleton, and must be coordinated both in space and time to generate 

productive movement (Pollard and Borisy 2003). Actin filaments are double 

helical polymers of globular subunits all arranged head-to-tail to give the 

filament a molecular polarity where one end is called the barbed end (fast 

growing, or plus ends) and the other is pointed end. This polarity is key for 

actin assembly in cells. The actin cytoskeleton is important to stabilize the 

asymmetric distribution of key components of the directional response 

apparatus. In fact, during early events in polarization, filamentous F-actin 

changes its distribution losing the circular symmetry, around the cell rim, to 

concentrate in specific regions in preparation of the extension of protrusive 

structures which in turn are highly dynamic. These actin filaments are 

organized with their barbed ends preferentially oriented in the direction of the 

protrusion. The simplest structure they form are filopodia, which are thin 

cylinders that can extend tens of microns. Lamellipodia, instead, are thin 

protrusive sheets that dominate the leading edges of cultured fibroblasts and 

other motile cells. The characteristic rufflings at the fibroblast leading edges is 

due to lamellipodia that lift up off the substrate and move backwards 

(Mitchison et al., 1996).  

Actin cytoskeleton, thanks also to a crosstalk with focal adhesion 

machinery, is involved in response to environmental cues. Focal adhesions are 

dot-like adhesion structures, located underneath the lamellipodium with the 

aim to sense the extracellular environment and thus affect their behaviour 

(Riveline et al., 2001). At the focal adhesion level, actin filaments can be linked 

to the cytoplasmic domains of integrin subunits through numerous anchoring 
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proteins, such as talin which is present at least in double copy connecting two 

integrin dimers with actin filaments (Geiger et al., 2009). These contacts are 

highly dynamic, in fact, during cell migration, both composition and 

morphology of the focal adhesion change: when a cell proceeds along its 

chosen path, a focal adhesion becomes progressively closer to the trailing edge 

and eventually must be dissolved to complete cell body translocation. 

All the processes involved cell motility, including cell protrusion, cell 

retraction, cell-matrix adhesion, polarized exocytosis and polarized vesicle 

trafficking, are spatiotemporally controlled by various intracellular signalling 

pathways and by different intra/extra cellular factors.  

Rho family GTPases (Cdc42, Rac, and Rho) are central regulators of 

cell migration, funneling signals from the cell environment to downstream 

components that shape cell motility. Cdc42 and Rac promote F-actin assembly 

and cell edge protrusion, whereas Rho facilitates myosin light chain (MLC) 

phosphorylation, activating myosin-based cell contraction. Rho is also a Rac 

antagonist and promotes F-actin polymerization through formins (Kühn and 

Geyer, 2014). 

It is known that also calcium differential concentrations can 

modulated and influence cell migration. Interestingly, gradients in calcium 

concentrations with higher levels found at the cell rear have been seen in 

migrating cells and this asymmetry along with localized calcium fluctuations 

serves to regulate activation of different intracellular mediators, among which 

an attractive candidate for motion regulation is the calcium-dependent protease 

calpain. Calpain is a cysteine protease with two characterized isoforms, which 

localize to focal adhesions and cleave many focal adhesion related proteins 

including integrin receptors, talin, and focal adhesion kinase (Cooray et al., 

1996; Huttenlocher et al., 1997). The increases in calcium seen in migrating 

cells appear to be within the range to support activation of calpain suggesting 
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that a reduction in calpain activity could inhibit cell migration by decreasing 

the rate of cell detachment and stabilizing integrin-cytoskeletal linkages.  

Among the various intracellular signals that modulate cell motility 

processes, pathways downstream from Ras have been frequently involved, 

sometimes even cooperating with each other. Active PI3K has been implicated 

in the regulation of actin polymerization and formation of lamellipodia at the 

leading edge of the migrating cells, through its activity on the GTP-binding 

Rac protein. It was observed to be involved in controlling cell speed while 

directionality, more than speed, has been shown to be associated with MAPK 

pathway strictly depending on ERK phosphorylation (Sepe et al., 2013). ERK 

signalling, in fact, is considered one of the crucial regulators of cell movement, 

as supported also by findings that showed that the activated ERK localizes not 

only to the nucleus but also to cell protrusions and cell-matrix adhesion sites 

(Fincham et al., 2000; Stahle et al., 2003). Its role in the regulation of cell 

motility was initially revealed by experiments in which the activity or 

expression of MEK or ERK was modulated (Klemke et al., 1997; Krueger et 

al., 2001; Tanimura et al., 1998; Webb et al., 2000; Anand-Apte et al., 1997). 

On one hand, the role of ERK signalling in cell motility depends on its function 

in regulating gene expression. It promotes gene transcription of specific early 

and late responsive genes associated with lamellipodia extensions and tumor 

invasion and directly or indirectly modulates expression and function of 

SNAI2/Slug, TWIST1 and ZEB1/2, all factors driving epithelial to 

mesenchymal transition (EMT) reprogramming, thus inducing expression of 

pro-motile and pro-invasive genes (Chen et al., 2009; Hong et al., 2011; 

Ichikawa et al., 2015; Shin et al., 2010). On the other hand, ERK signalling 

regulates cell motility independently of its regulatory function on gene 

expression: ERK and RSK (a downstream kinase) directly phosphorylate 

various components that regulate cell protrusion and retraction, cell-matrix 
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adhesion and exocytosis necessary for coordinated cell motility. Among ERK 

substrates claimed to be responsible for ERK-induced peripheral effects, there 

are myosin light chain kinase (MLCK), involved in turnover of focal adhesions 

and extension of membrane protrusions (Klemke et al., 1997), and also Ca++-

activated proteolytic enzyme calpain (Glading et al., 2004). 

1.6. Methods and tools for studying cell migration 

1.6.1.Experimental procedures and tools 

Nowadays, a number of methods are used to evaluate the movement 

of cultured cells. The simpler approaches compare the final state or position 

with the initial, as for example in under agarose migration or Boyden chamber 

assays (Keenan et al., 2008; Pujic et al., 2009; Toetsch et al., 2009; Kim et al., 

2012). The first consists of a layer of agarose gel put between the cell 

population and a chemoattractant source allowing chemoattractant diffusing in 

the gel and inducing cell migration into agarose. This system, first described in 

1975 (Nelson et al., 1975), allows the use of multiple simultaneous chemotactic 

field. Variations to the method allow quantification of the number of cells 

migrating towards a particular chemoattractant: this was used to measure the 

number of migrating neutrophils in response to various manipulations (Heit et 

al., 2002). The Boyden chamber assay is commonly used as a migration assay, 

measuring the capacity of cells to move towards a chemoattractant gradient. 

The assay evaluates the movement of cells to the opposite side of a porous 

membrane also in response to chemoattractants (chemokines, growth factors, 

lipids or nucleotides) by quantifying the number of cells that appears in the 

lower chamber compared to the initial number in the upper chamber. Migration 

and invasion assays have been used, for example, to evaluate differential 

migratory ability following over-expression of a receptor (Castellone et al., 
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2011) or to identify cell migration regulators, like small GTPases belonging to 

the Rho family (Hall, 2009).  

Both methods do not allow direct observation of cell behaviour, so 

making it impossible to reliably discern between chemokinesis (general 

increase in migration in all directions) and directed migration of moving cells. 

The need for more in-depth characterization of the chemotactic response at the  

cellular and molecular level led to the development of assays for direct 

chemotaxis observation, also called bridge assays, such as Zigmond 

chemotaxis chamber (Zigmond et al., 1977) and its derivatives, Dunn (Zicha et 

al., 1991) and Insall chamber (Muinonen-Martin et al., 2010), or µ-Slide 

Chemotaxis (Zengel et al., 2011) that further improved the control and 

longevity of the gradient. These assays enable direct visualization of cells 

seeded in an observation area by forcing them through a bridge between two 

reservoirs filled with solutions of different chemoattractant concentration. Cells 

are exposed to gradients that are stable over 24 hours, thus meeting the 

requirements of studying chemotaxis of moving cells. 

Time lapse microscopy provides great support for observing and 

studying the behaviour of eukaryotic cell cultures grown on plates under 

different conditions. Cells can be simply put, for example, in a small region of 

the plate and then observed while moving and diffusing in the free area. In 

other types of experiments, instead, cells can also be induced to a directional 

migration by specific stimuli, such as in wound healing assay. This technique 

exists in different variants: the wound can be created by using either a culture 

insert (cell exclusion assay) or more traditional strategies like a pipette tip 

(scratch assay). These methods have been widely applied to study cell 

migration. A scratch assay was used, for example, to show that wounds induced 

in Madin-Darby Canine Kidney (MDCK) cell sheets are closed by a crawling 

behaviour involving Rac, phosphoinositides and active movement of multiple 

Page 12



Background

rows of cells (Fenteany et al., 2000). Wound healing assay has been also used 

to model the characteristic collective migration of L1 fibroblasts as a sheet 

migration and to identify the mechanisms that influence their spreading and 

migration as a group, while closing the empty area (Bindschadler et McGrath 

2007). Overall, the technique results to be effective in analyzing cell migration, 

with some advantages and disadvantages specific for each case: the pipette tip 

scratch is a much cheaper and faster method while the culture insert yield more 

reliable and accurate results allowing the user to increase reproducibility 

between replicates (Pijuan et al., 2019). 

1.6.2.Programs and tools for motion analysis

Computational methods and tools play an essential role in quantitative 

studies of cell migration by allowing to quickly analyze cell images or 

parameter files obtained from cell tracking. Several software packages have 

been developed, differently analysing cell motion parameters such as speed, 

motion persistence and directionality (Table 1) even though they often refer to 

them using different denominations and definitions.  

As cell migration is a dynamic process, time-lapse microscopy 

experiments are usually designed to acquire images of moving cells over 

several hours. Image sequences are used to determine numerical features that 

then are processed through further analyses to give an interpretation of the 

observed behaviour. Many software tools track fluorescently labeled cells, 

usually easier to detect in comparison to cells acquired with other methods 

such as phase-contrast microscopy (Masuzzo et al., 2016).  

Computational tools for cell motion analysis include commercial 

packages, like Imaris Track, MetaMorph and Image-Pro Plus (Web sites: 

Imaris Track; MetaMorph; Image-Pro Plus) as well as freely available tools.  

Some of them work as plugging within larger applications, such as in ImageJ: 

an example is MtrackJ (Web sites: MtrackJ), developed to facilitate manual 
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tracking of moving objects and used to evaluate cell displacement and velocity 

producing tracking data in a format that can also be read by other programs or 

Excel macros which typically allow the calculation of indices such as 

directional ratio, MSD (Mean Squared Displacement) and direction 

autocorrelation (Gorelik and Gautreau, 2014). iTrack4U is an automated cell 

tracking program, written in Java, which uses ImageJ as a library to track 

phase-contrast images (Debeir et al., 2005) and calculates total distance of 

migration, and the Euclidean distance between the start and end of the track 

and the persistence in cell movement direction (Cordelières et al., 2013). 

Another tool able to perform image analysis is DIAS (Dynamic image analysis 

system) which automatically detects the edge of the cells and computes the 

geometric centre (centroid) of each one at each time point. The position of the 

Method/Tool

Evaluated features

Displacement Speed Persistence Directionality

AveMap √ √ √

Cell_motility √ √

CellMissy single-cell module √ √ √ √

CellTrack √ √

CellTrackR √ √ √ √

DIAS √ √

Image-Pro Plus √

Imaris Track √ √

iTrack4U √ √ √

MetaMorph √ √

MotoCell √ √ √ √

Pathfinder √ √ √

Table 1. List of free and commercial software packages evaluating cell 
movement. The table compares a set of existing softwares for cell migration 
analysis and lists evaluated cell movement features (as assessed from the online 
documentation provided by the software authors).  
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cell centroid is then used to calculate parameters such as instantaneous 

velocity, direction of travel, direction change and the chemotactic index 

(Wessels et al., 2009). CellTrack is an integrated and extensible C++ software 

package for automated cell tracking and motility analysis (Sacan et al., 2008). 

A web application to study cell motility, MotoCell, has been developed in the 

hosting laboratory: it includes tools for image analyses, cell tracking and 

statistical analysis of cell behaviour that allow the evaluation of descriptive 

parameters calculated for the whole population as well as for each individual 

cell (Cantarella et al. 2009, Web sites: MotoCell). In the last decades, other 

image analysis tools were developed to analyze the movement of cells in 

particular experimental conditions. For example, TScratch is a freely available 

image analysis technique designed to automate the measurement of area 

progressively occupied by cells in wound healing assay (Geback et al., 2009). 

AveMap is a rapid, fully automated correlation-based method for cell migration 

analysis, compatible with standard video microscopy which, via an extensive 

dynamic mapping of cell displacements, allows for the computation of 

quantitative migration parameters, as cell motion velocity and persistence 

(Deforet et al. 2012).  

Among the tools that perform analyses directly from cell tracking data 

and not form images there is Cell_Motility, which is an open source Java 

application, providing the user the MSD analysis with either overlapping or 

non-overlapping time intervals, as well as persistence time (the average time 

cell tends to maintain motion direction, see Background under 1.7.2) and cell 

motion speed (Martens et al. 2006). Other programs, such as Pathfinder, focus 

on migration of groups or clusters of cells. Pathfinder is a software capable of 

simultaneously measuring the migration speed, migration direction, and 

changes in migration directions of thousands of cells both instantaneously and 

over long period of time from fluorescence microscopy data (Chapnick et al. 
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2013). More recently, a new single-cell analysis module for CellMissy for cell 

migration data management was developed. The tool provides a powerful and 

largely automated pipeline for high-throughput, single-cell migration 

experiments downstream of image processing. It supports multi-parametric 

(speed, directionality), multiscale (step, trajectory), and quality-controlled 

analyses and allows fast comparison across the different tested conditions 

providing data visualization and assisted data filtering (Masuzzo et al. 2017). 

Very recently, an R package, celltrackR, was released, containing diverse state-

of-the-art methods for both 2D and 3D cell tracks. It provides methods for data 

management, quality control, extracting and visualizing migration statistics, 

clustering tracks, and simulating cell migration. The package was specifically 

designed for immune cell migration data, but many of its methods can also be 

of use in other research areas dealing with moving objects. CelltrackR is 

compatible with migration data from any experiment using a standard format 

were the position of each cell is linked to the corresponding timepoint in time-

lapse images. CelltrackR contains a range of motility statistics designed to 

characterize cell speed, straightness, and directionality. To help users exploring 

long-term effects of migration patterns in silico, celltrackR also implements 

three methods for simulating tracks: bootstrapTrack for sampling turning 

angles and displacements directly from a dataset, brownianTrack for simulating 

simple random walks, and beaucheminTrack for a random walk variation 

designed specifically for T cells (Wortel et al., 2021). 

1.7. Models used to describe cell migration 

Cell migration may be described as individual paths, each one 

composed by a number of segments, in which cells move in a straight line, 

joined by turning angles, at which cells decide whether to change direction or 

not. This decision is influenced by the current status of the cell and information 

coming from the surrounding environment. Cell movement is usually described 
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by using numerical parameters and mathematical models provide powerful 

options to better understand cell behaviour and to test hypotheses. Many 

movement models for cell migration are based on extensions of the simple 

diffusive model reproducing the irregular motion of individual pollen particles, 

famously studied by the botanist Brown, now known as Brownian motion.  

1.7.1.Diffusive models

Eukaryotic cells growing on culture plates in standard conditions 

move in all possible directions travelling smaller or larger distances, depending 

on cell type. The diffusive model is possibly the simplest model used to 

describe cell movement and is based on the assumption that cells move freely 

without a preferential direction and the probability of changing direction is the 

same at each time. The diffusive model also implies that each movement is 

independent from that of the previous time steps, and that mean squared 

displacement (MSD) is proportional to elapsed time, according to a diffusion 

coefficient (D). This model is mostly accurate when suitably long observation 

times are used (Dunn and Brown, 1987; Gail and Boone, 1970). The diffusive 

model may be extended to include additional motion patterns by introducing 

new parameters according to the formula: 

 (1) 

where the α exponent is equal to 1 for a purely diffusive movement and the k 

parameter assumes different meanings for different α values, specifically for 

α=1 k=2dD, where d is the number of dimensions, while for α=2 k=v2 as in 

uniform linear motion, where v represents the speed.  

A diffusive behaviour can be obtained through a simple random walk 

(SRW) model. In a SRW, if we consider a one-dimensional movement, the 

probability density function (PDF) for the location of the walker after a time t 

is given by a Gaussian distribution:  

MSD = k tα

Page 17



Background

 (2) 

where x is the walker position and D is the diffusion coefficient (Codling at al. 

2008). In fact, if we suppose that the walker starts at the origin (x=0), after a 

time t it can move a distance d towards either left or right with a probability of 

1/2 each. After a second time interval, the walker can be at a distance 2d to the 

left or right of the origin with a probability of 1/4 each, or it can be in the 

origin with a probability of 1/2. For large intervals, this converges to a normal 

distribution with a mean equal to 0.  

The diffusive model has been found to well describe cell migration in 

conditions of loss of directionality induced by extracellular factors, such as the 

addition on plate of arachidonic acid. Arachidonic acid is an amphiphilic 

compound which goes into the cellular membrane, altering its composition and 

properties, and causing endothelial cells to lose their sense of direction and 

move having a diffusive behaviour. Arachidonic acid does not affect 

instantaneous speed of individual cells, but leads to a loss of ability for directed 

migration, in this case the mean squared displacement is found to be linearly 

related to time with a value of parameter α close to 1 (Rossen et al. 2011).  

However, biological systems frequently exhibit a more complex 

behaviour. Many cell types move according to a model that is not simply 

diffusive, with MSD showing a non linear power-law relationship with time. 

Such situations are classified according to the value of α in the equation (1): for 

α<1 we talk about subdiffusive movement, for α>1 we refer to a superdiffusive 

movement, for α=2 we have a ballistic diffusion, equivalent to moving in a 

straight line. Subdiffusive models accurately describe behaviour of migration 

paths in which the mean squared displacements increase more slowly than in a 

pure diffusive movement. This condition is a common feature of cells moving 

in confined environments, such as three-dimensional (3D) porous scaffolds, 

p(x, t) = 1
4πDt

e
−x2
4Dt

Page 18



Background

hydrogel networks, and in vivo tissues. It has been found that movement of 

different cell lines in engineered biomaterial environments are well described 

by a subdiffusive model (Luzhansky et al. 2018). Conversely, cell migration on 

two-dimensional (2D) substrates, for example movement of cells cultured in a 

plate or cells living in unconstrained environments, is better described by 

superdiffusive models, among which we can find the persistent and biased 

models. 

1.7.2.The persistence model 

Cells do not move completely random but often follow persistent 

migration patterns, such as those produced by limiting the direction change in a 

random walk (Codling et al., 2008). This was observed in cultured cells in the 

seventies, when mouse fibroblasts were found to persist in their direction for 

about 2-3 hours (Gail and Boone, 1970). Years later, Selmeczi et al., by 

evaluating the parameters obtained from the model for both human fibroblasts 

and keratinocytes, proved that these cells appear to maintain memory of past 

movements (Selmeczi et al., 2005). Persistence is especially observed when 

movement is sampled at relatively short time periods, and appears as a sort of 

resistance to directional changes, possibly reflecting the need for membrane/

cytoskeletal reorganisation. Persistence seas not affect global direction of the 

movement, meaning that there is no overall preferred direction if movement is 

not otherwise biased. This feature, represented as a tendency to maintain, at 

each time step, the previous direction, has been variably referred to as 

persistence, linearity or sometimes also directionality, and differently measured 

in time units, i.e. how long the current direction influences the movement in 

subsequent time periods, or in terms of ratio between net displacement and 

length of the followed path (Deforet et al., 2012; Cordelières et al., 2013). 

There are, in fact, differences in the ways the different tools use to express and 

calculate parameters: what is called persistence within cAveMap (Deforet et al. 
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2012) and iTrack4U (Cordelières et al. 2013) in MotoCell (Cantarella et al. 

2009) and CellMissy single-cell module (Masuzzo et al. 2017) is named 

linearity and end-point directionality ratio, respectively. Pathfinder (Chapnick 

et al. 2013) describes persistence in terms of the absolute angle of deflection, 

while in Cell_motility (Martens et al. 2006) and MotoCell persistence is 

expressed in time units and is calculated by fitting the model initially proposed 

by Fürth et al. in 1920 (Fürth et al., 1920) and described by Alt et al. in 1990 

(Alt et al., 1990), where the relation between MDS and time (t) is given by the 

following equation: 

 (3) 

where S is the root mean squared speed and P is the directional persistence 

time, i.e. the time in which cell movement tends to persist in the same 

direction. For t << P, the displacement is determined by purely unidirectional 

motion and MSD ~ S2t2; whereas for t >> P, the movement is described by a 

normal diffusion and MSD ~ 2S2Pt (Dickinson and Tranquillo, 1993). This 

model is particularly effective in interpreting a wide range of superdiffusive 

motion patterns, starting from purely diffusive movement, with MSD 

proportional to time, up to movement along an almost straight line with MSD 

proportional to squared time as for uniform linear motion. 

A persistent movement may be produced by correlated random walk 

(CRW), in which, at each time step t, each individual either changes direction 

and moves a distance d in this new direction, with a probability p=λt, or moves 

a distance d in the previous direction, with a probability q=1-λt. Hence, turning 

events occur as a Poisson process with rate λ (Codling at al. 2008). 

1.7.3.Models for studying directionally biased cell migration 

A superdiffusive movement may be also the effect of a superimposed 

directional bias, as, for example, in presence of a molecular gradient, generated 

MSD = 2S2P [t − P (1 − e
−t
P )]
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by a nutrient source, a chemical attractant, or even a wound inflicted to the cell 

layer. It may be modelled (Codling et al., 2008) as a factor altering diffusive 

movement by using the equation: 

  (4) 

where u is the speed increase over the purely random movement. In the case of 

biased movement, the walker has a higher probability of moving in the bias 

direction or close to it. This type of motion can be well described by the biased 

random walk (BRW). If we consider a one-dimensional movement, the 

probability density function for the location of the walker, performing a biased 

movement, after a time t is given by:  

 (5) 

where x is the walker position, D is the diffusion coefficient ad u is the velocity 

drift. This equation is similar to (2), except for drift term which shifts the 

centre of the Gaussian distribution from x=0 to x=ut. This distribution for a 

biased random walk in N dimensions becomes (Codling at al. 2008):  

 (6) 

A feature of the biased model is the presence of a directional bias that 

may be estimated by analysing the probability distribution of movement 

directions in a circular plot. When the distribution is uniform, net 

displacements are distributed with equal probability F(θ) around the unit cycle. 

Instead the concentration of directions around a preferred one is well described 

by the Von Mises distribution: 

  (7) 

MSD = u2t2 + 2NDt

p(x, t) = 1
4πDt

e
−(x − ut)2

4Dt

p(x, t) = 1
(4πDt)N/2 e

− | x − ut |2
4Dt

f (θ ; μ; κ) = ekcos(θ−μ)

2π I0(κ)
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where the parameter µ is the mean angle and the parameter k is the 

concentration parameter, where k>=0. The distribution is unimodal and 

symmetrical around θ=µ (Bentley, 2006). 

Despite the numerous tools available (Table 1), the calculation of 

persistence and directionality still creates problems when motion is affected by 

both, as for the eukaryotic cells moving under a directional stimulus: in this 

case the directional cell response affects the calculation, possibly generating 

wrong quantifications leading to misinterpretations of cells behaviour. This 

apparent confusion reflects the tight connection between directional persistence 

and directional bias: as both increase path linearity and each may influence the 

evaluation of the other one, wrong quantifications and misinterpretation of cell 

behaviour may easily occur (see also Table 2 in Results section) when, for 

example, cells move under a strong directional stimulus and both movement 

features are present at the same time. 

1.8. Methods and procedures for studying cell proliferation 

Cells on culture typically move and grow until they reach a particular 

moment of their life cycle when a mother cell proliferates giving rise to two 

daughter cells. Cell proliferation is involved in different fundamental 

processes, such as embryo development and organogenesis, or mechanisms of 

tissue repair and wound healing. This process is tightly controlled by genes and 

growth factors and typically is in equilibrium with mechanisms of cell death. 

When this equilibrium is altered or disrupted pathological situations can arise: 

an excessive and disordered of cell number characterizes neoplasia, while a 

slowdown in cell proliferation causes other types of diseases like degenerative 

diseases (Alzheimer or Parkinson disease). 

Determination of cellular proliferation and population turnover is an 

important step for research on cell functions and is fundamental for 

understanding cell population dynamics and homeostasis. Historically this 
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study has been done by directly measuring DNA synthesis. Early studies 

employed incorporation of radiolabeled thymidine followed by 

autoradiography (Darzynkiewicz et al., 2011). Drawbacks of this method is 

obviously the use of radioactive substances and their disposal and its 

laboriousness and difficulty as an analysis of an high number of cells is 

required. Other methods which are routinely used for measuring cell 

proliferation include the use of BrdU (5-bromo-2-deoxyuridine), a halogenated 

thymidine analog labelling of newly formed DNA, which can be measured by 

flow cytometry detection using anti-BrdU antibodies (Dolbeare et al., 1983). 

An advantage of this method is that flow cytometry can be used to obtain both 

cell number as well as cell cycle information, however this method requires 

additional time and steps, expensive reagents and increased user-trained skills 

in order to operate the flow cytometer and analyze the resulting data. With 

some modifications, this approach has been used for the last 40 years to study 

proliferation dynamics of cell populations (Darzynkiewicz et al., 2011; 

Dolbeare et al., 1983). The method and timing of labeling depends on the 

experimental goals. For example, short term labeling identifies the proportion 

of cells actively replicating DNA during that period. When this approach is 

coupled with DNA content analysis, it provides a rich source of information 

about cellular proliferation. For example, the distribution of cells actively 

dividing according to their distribution in cell cycle phases or the number of 

resting cells can be easily calculated or information about the duration of DNA 

synthesis, doubling time, and cell cycle dynamics can be obtained. In spite of 

the widespread use of BrdU to measure DNA synthesis, this procedure includes 

relatively harsh fixation procedures and requires opening of the DNA using 

heat, acid or DNase to expose the BrdU epitope and allow access for anti-BrdU 

antibodies. These factors limit phenotypic analysis using antibodies directed to 

specific proteins due to destruction of epitopes and, additionally, variable 
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signal-to-noise ratios can also result from inconsistency in achieving exposure 

of the incorporated BrdU. To overcame these limits, a new flow cytometric 

method to label and detect nascent DNA using EdU (5-Ethynyl-2-

deoxyuridine) has been developed and made commercially available (Salic et 

al., 2008). EdU, is a nucleoside analog of thymidine that is incorporated into 

DNA during S-phase just like BrdU and is not reactive in biological systems 

(Buck et al., 2008). EdU detection is based on an easily performed chemical 

reaction that does not require DNA denaturation, is quick and reproducible, and 

has a superior signal-to-noise ratio. This technique offers a wide range of 

opportunities to analyze cellular proliferation and population homeostasis 

(Flomerfelt and Gress, 2016). 

However, there are also a range of other assays available for 

estimating dividing cells, each with varying levels of sensitivity, reproducibility 

and compatibility with high-throughput formatting. There are many direct and 

indirect methods of measuring cell proliferation of cultured cells in vitro which 

can be performed either as continuous measurements over time, or as endpoint 

assays. Among assays able to perform an indirect measure of proliferation there 

are methods which measure cell number (hemocytometer, cell imaging), or 

metabolic activity (luminescence-based assay). Conventional methods, as cell 

counting using a hemocytometer, are still useful. This assay is a low cost 

measure of the cell number; it quantitates an absolute cell count in cells/ml, 

requiring very little additional reagents or effort to prepare and run. However, 

there are serious disadvantages, which include the time consuming nature of 

the cell counting, high error rates that results in large standard deviations 

between counts, and the fact that a high range of cell numbers are necessary for 

accurate cell counts. These disadvantages make this method useful for cell 

counting of a small number of samples, and inadequate for larger high 
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throughput measurements where smaller plate sizes and lower seeding 

densities are required. 

The need to perform measurements compatible with high-throughput 

formats has led to the development of multiwell-plate assays. The 

luminescence-based assays measure cell numbers based on a luminescent 

signal, by measuring the amount of ATP, which is proportional to the number 

of metabolically active cells. This is an endpoint measurement and once the 

reagent is added to the cells, the plate can only be quantified once. This simple 

method quantitates cell proliferation as a relative luminescence unit (RLU) 

using a reader plate. However, the reagent for this procedure have high cost 

and additionally the measurement is highly dependent on the metabolic activity 

of the cells. Various cell culture conditions, in fact, such as temperature or cell 

cycle time points, can readily affect the amount of ATP produced by the cells 

(Quent et al., 2010). Therefore, before starting with the measurements, it is 

important to control if the conditions of the experiment could interfere with the 

metabolic activity of the cells and potentially impede the relative luminescent 

signal generated by the cells.  

Recently, the introduction of advanced cell imaging platforms has 

allowed for new tools which monitor cell proliferation while providing 

quantitative and qualitative phenotypic data collection. Thanks to these 

methods based on observations of cell cultures with microscopes, mitotic cells 

can be identified by simply counting cytokineses or by using particular 

antibodies and staining. Fluorescent molecules able to bind DNA are typically 

used and can reveal chromosome condensation state; alternatively antibodies 

specifically recognizing microtubules are used to reveal mitotic spindle 

formation. Imaging methods provide avenues to measure cell proliferation, 

either by continuous measurement or endpoint assays. It has high-throughput 

capabilities as it can be automated to capture multiple images for each well, in 
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real-time along with temperature control, using the same cells over the duration 

of the assay. The software accompanying the cell imaging devices allow for the 

quantitation of cell counts using the different parameters even though 

sometimes they are limited in the ability to split touching objects. Overall, 

these methods are a significant improvement on the conventional 

hemocytometer cell counting method and are a more cost effective option to 

the luminescence-based assay (Morten et al., 2016). 

1.9. Models for cell proliferation 

Cell populations show different proliferation patterns according to cell 

type or different environmental conditions. There are several mathematical 

models that in the years have been developed for studying cell proliferation; 

some of them have been applied in the prediction of different biological 

phenomena, for example growth speed of a cancer mass and definition of an 

appropriate therapy.  

Under ideal conditions, a cell population typically grows following an 

exponential pattern. The exponential model of Malthus (Malthus, 1798) is one 

of the first models introduced for studying population growth; it is based on the 

fact that the increasing of number of entities in a time unit is proportional to 

population dimension at the start of each observation time. According to this 

model, the number of entities x(t) is given by the following formula:  

 (8) 

where xi is the starting number, t is the time, and a is the growth rate  

(  ) which in the Malthus models is assumed to be constant. The 

exponential model well describes different experimental conditions, but, being 

based on the assumption that the growth rate is constant in time, it produces 

non optimal results and is too restrictive for example in situations in which lags 

at the start and/or at the end of the observation time are present. 

x (t) = xieat

a = 1
x

d x
dt
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To overcome these limits and to allow an accurate description of a 

higher number of cases, other models have been introduced. Gompertz model 

(Gompertz, 1825) tries to overcome these limits by assuming that growth rate 

decreases exponentially with time; in this way, it is able to follow also 

situations in which are present environmental difficulties arising with 

population growth, like nutrients or space loss. In this models the number of 

entities x(t) as function of time t is given by the equation:  

 (9) 

where M indicates the maximum value or higher asymptote, and k is a constant 

that determines the curvature of the growth pattern and tm is the inflection point 

at which the growth rate reaches its maximum value. The equation (9) 

describes an asymmetric curve which predicts that at the time of inflection tm,  

x(t) is equal to M/e.  

The logistic model, introduced by Pierre F. Verhulst in 1838 (Verhulst, 

1838), instead, implies that the growth rate decreased in time according to 

population growth. In this case, the described curve is symmetric is given by 

the equation around the point of maximum growth (point at which x(t) 

becomes equal to M/2) and is given by the following equation:  

 (10) 

A generalization of the logistic model is the more flexible Richards 

model (Richards, 1959), which introduced a new parameter v in the equation to 

deal with asymmetrical growth: 

 (11) 

The need for a more flexible model, which could be successfully 

applied in a higher number of situations, leaded to the introduction of other 

curves, like that developed by Waloddi Weibull in 1951 (Weibull, 1951). This 

x (t) = M e−e−k(t−tm)

x (t) = M
1 + e−k(t−tm)

x (t) = M
(1 + v e−k(t−tm))1/v

Page 27



Background

curve, initially developed for describing file cycle of industrial products, well 

models situations in which the growth rate is proportional to time up to a factor 

indicating the shape of the curve k:  

  (12) 

where λ indicates the scale, which is the time at which the 63.2% of observed 

events have occurred. A k value equals to 1 reduces Weibull curve to an 

exponential one: in this sense, the exponential curve can be considered a 

particular case of Weibull curve.  

Function (12) can be also written including the asymptote M:  

 (13) 

where D is the difference between final and starting values and c is a constant 

(c = 1/ λ). These parameters give flexibility to the curve which becomes able to 

well describe the proliferative behaviour of different cell populations also in 

different experimental conditions. 

1.10. Cell cycle progression and regulation 

Cellular molecular mechanisms that rule cell proliferation and cell 

cycle progression are highly complex and their understanding has grown 

rapidly as, over the years, research groups around the world have deeply 

explored the intricate details of Cdks implicated in cell cycle and their 

associated activators and inhibitors (Bartek et al., 1996; Sherr, 1996; Sherr and 

Roberts, 1999; Cross and Roberts, 2001). 

Cell cycle consists of oscillating changes in protein concentrations and 

activities within the cell allowing for duplication of the genome and cell 

division. This process is highly regulated involving multiple cellular 

mechanisms including oscillating changes in protein expressions regulated at 

the transcriptional and post-transcriptional levels, changes in post-translational 

modifications and functional activities, and changes in protein-protein 

x (t) = 1 − e
t k
λ

x (t) = M − De−ct k
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interactions and subcellular localizations (Lindqvist et al., 2009; Pines et al., 

2011; Davey et al., 2016). Alteration in any one of these events can result in 

changes in the dynamics of each relationship, and ultimately in the cell cycle 

dysregulation, a hallmark of several diseases, like cancer or viral infections.  

Several control mechanisms ensure that each chromosomal DNA 

sequence is replicated once, and only once, during a specific time window, the 

S-phase. Following S-phase, replicated chromosomes separate during mitosis 

(M-phase) and segregate in two nuclei that are then endowed to two newborn 

cells at division. Two gap phases, called G1 and G2, separate cell birth from S-

phase and S-phase from M-phase, respectively. 

If growth factors are absent or low, cells which are in early G1 phase 

leave the cycle and enter a reversible resting/quiescent state referred to as G0 

(Coller et al., 2006; Iyer et al., 1999) while older cells finish the ongoing cycle 

and enter the resting state after mitosis. A relevant regulatory step is at G0/G1 

transition, a point called restriction (R) point where intracellular and 

extracellular signals are monitored and integrated (Pardee et al., 1974; Pardee, 

1989; Bartek et al., 1996; Planas-Silva and Weinberg, 1997). Upon growth 

factor refeeding, signal transduction pathways are activated, ultimately leading 

to S-phase onset. Quiescent cells, before reaching the R point, need continual 

feeding of nutrients, mitogens and survival factors; in contrast, past the R 

point, they are irrevocably committed to divide independently from the 

continuous presence of growth factors in the medium (Pardee et al., 1989). The 

restriction point R operates stringently in normal cells, but it is defective in 

cancer cells that accumulate mutations, typically in proto-oncogenes or tumor 

suppressor genes, resulting in constitutive mitogenic signaling and defective 

responses to anti-mitogenic signals that contribute to unscheduled proliferation 

(David-Pfeuty et al., 2006; Malumbres et al., 2004; Massagué et al. 2004).  

Page 29



Background

Growth factors bind to specific receptors in the plasma membrane, 

stimulating an intracellular signaling, like through the Ras–Raf–MAP kinase 

pathway, that activates a cell response. Among the genes whose expression is 

induced there are D-type cyclins (Sherr, 1995; Bartek et al., 1996) which, 

combined with Cdk4 and Cdk6, set in motion the cell-cycle engine that drives 

rounds of DNA replication, mitosis and cell division. CycD/Cdk4 stimulates 

cell growth and division by phosphorylating the retinoblastoma protein, Rb 

(Weinberg, 1995; Planas-Silva and Weinberg, 1997), which is a specific 

inhibitor of E2F, a transcription factor for the CycA and CycE genes (Bartek et 

al., 1996; DeGregori, 2002). Rb, once hyper-phosphorylated by CycE/Cdk2, 

releases its hold on E2F, which, in turn, stimulates synthesis of CycA and 

CycE. Because these cyclins, in combination with Cdk2, can phosphorylate Rb 

(Planas-Silva and Weinberg, 1997), CycA and CycE activate their own 

synthesis. Dephosphorylation of Rb is catalysed by a type-1 protein 

phosphatase (PP1), whose activity is inhibited by cyclin/Cdk complexes 

(Dohadwala et al., 1994; Kwon et al., 1997). PP1 phosphorylation is started by 

CycE/Cdk2, with CycA/Cdk2 and CycB/Cdk1 keeping PP1 phosphorylated 

until the end of mitosis (Mittnacht, 1998). Another role of Rb is to repress the 

transcription of housekeeping genes by inhibiting RNA polymerases I and III 

(White, 1997). By this mechanism, Rb interferes with general cell growth as 

well as the synthesis of E2F specific gene products. An inhibitor of cyclin 

activity is p27Kip1, which binds to CycA/Cdk2 and CycE/Cdk2 dimers to form 

inactive trimers (Sherr and Roberts, 1999). In turn, phosphorylation of Kip1, 

catalysed by Cdk complexed with CycA, CycE or CycB, promotes Kip1 

ubiquitination (Sheaff et al., 1997; Vlach et al., 1997) and degradation by a 

protein complex called the SCF (Amati and Vlach, 1999). Clearly, Kip1 and 

the CycA- and CycE-complexes are mutual antagonists: either Kip1 is 
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abundant and the cyclins are inactive, or Kip1 is absent and at least one of the 

cyclins is active.  

As CycA rises, it initiates DNA synthesis. Normal cell implements an 

advanced system which transduces DNA damage signal to a regulatory 

mechanism of the cell cycle and arrests the cell cycle progression (Dasika et 

al., 1999). According to this system, DNA damage activates tumor suppressor 

gene p53 which activates Mdm2 and p21 sequentially. The latter binds the 

binary complexes Cyc/CDK forming a trimeric complexes p21/Cyc/CDK 

which disturb the cell cycle progression. Moreover, p53 induces a repair 

mechanism of DNA damage activating other pathways related to conservation 

of genetic code (Shu et al., 2007), thus playing an important role in the 

protection system which maintains the stability of cell cycle. 

The end of DNA synthesis allows starting accumulation of CycB, so 

that the cell can be able to enter mitosis which is the final stage of the cell cycle 

resulting in cytokinesis and cell separation. This unidirectional process is 

centered upon activation and then inactivation of the CycB/CDK1 complex 

(Lindqvist et al., 2009). The complex formation is initiated in the G2 phase by 

increasing steady state levels of CycB, dynamic changing in phosphorylation 

status, and relocating numerous proteins. Modification by WEE1 proteins 

disrupts the complex kinase activity while dephosphorylation of the complex is 

mediated CDC25 proteins. Activities of both WEE1 and CDC25 enzymes are 

also tightly regulated. Their regulators include Polo-like kinase 1 (PLK1) and 

several phosphatases (PPase) such as Protein phosphatase 2A (PP2A) 

(Gheghiani et al., 2017; Ovejero et al., 2012; Potapova et al., 2011; Forester et 

al., 2007). Moreover, positive feedback by the active complex CycB/CDK 

contributes to further WEE1 inactivation and CDC25 activation. Upon 

reaching a threshold level, active complex initiates nuclear envelope 
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breakdown (NEBD), spindle formation, and chromatin condensation by 

phosphorylating diverse targets.  

Transition through mitosis involves activation of the E3 ubiquitin-

protein ligase complex known as Anaphase-promoting complex or cyclosome 

(APC/C) (Pines et al., 2011; Davey et al., 2016; Castro et al, 2005; de Boer et 

al., 2016) which initiates CycB degradation by ubiquitinating and targeting it 

for proteolysis by proteasomes (Morgan, 1999). APC-dependent degradation of 

mitotic cyclins is mediated by adaptors, Cdc20 and Cdh1 (Morgan, 1999; 

Zachariae and Nasmyth, 1999) which are regulated differently during the cell 

cycle thanks the phosphorylation by CycB/Cdk1, PLK1, MCC (Mitotic 

Checkpoint Complex) and dephosphorylation by PP2A. When APC/C:CDC20 

ubiquitin ligase complex becomes active, targets for degradation CycB and 

Securin, which prevents sister chromatid separation by the enzyme Separase. 

Upon activation of the APC/C:CDH1 ubiquitin ligase complex, mitotic exit is 

initiated by degradation of substrates including CDC20, PLK1, and any 

remaining CycB. 

1.11. Biochemical models of cell cycle progression  

Cell cycle has been the target of many molecular models which try to 

reproduce the cycle, in part or in full, by using ordinary differential equations 

for simulating small or large numbers of cell cycle reactions. Considering the 

large number of molecular species and reactions involved and the additional 

problem of expressing genes in a coordinated way, many of them tend to focus 

on specific events and/or checkpoints with different levels of detail. 

One of the first cell cycle models was developed by representing 

transitions between the cycle phases as first order processes in a system of 

ordinary nonlinear differential equations. The model also includes the resting 

state (G0) from which cells could reenter the reproductive cycle in response to a 

growth regulatory substance (Piantadosi et al., 1983). Similarly, very simple 
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models have been proposed in the following years, aimed to investigate the 

role of differs molecules on cell cycle progression. In 2012, a mathematical 

model was proposed, by connecting the dynamics of glucose and insulin with 

the β-cell cycle by using a system of ordinary differential equations. The model 

showed how glucose and insulin concentrations modify the transition rate from 

G1- to S-phase. Similarly to the previous model (Piantadosi et al., 1983), the 

evolution of cell cycle was simulated as very simple phase transitions. The 

model allowed representing different pathological scenarios (type 1 or type 2 

diabetes) and reproducing the behavior of the glucose-insulin regulatory 

system showed in biological experiments (Gallenberger et a., 2012).  

More complex models have been often based on simpler ones which 

simulate dynamics typical of simpler organisms like yeast. The main elements 

of signaling of the full cell cycle were included in a model in 2004, where a set 

of nonlinear differential equations was used to represent the physiological 

responses of mammalian cells to transient inhibition of growth (Novák and 

Tyson, 2004). The model relies on a previous work on the regulation of cyclin-

dependent protein kinases during the cell division cycle of yeast (Chen et al., 

2000) which was supplemented with equations describing the effects of 

retinoblastoma protein on cell growth and the synthesis of cyclins A and E, and 

with a representation of the signaling pathway that controls synthesis of cyclin 

D. The model emphasizes the deep similarities of the Cdk-regulatory systems 

in yeast and mammalian cells and was based on the idea that G1 events are 

driven by the switching properties of positive-feedback loops and antagonistic 

interactions. It was subsequently included, with other models, into a generic 

model for the regulation of DNA synthesis and mitosis with the aim of 

emphasizing the universality of the regulatory system among eukaryotic cells 

(budding yeast, fission yeast, frog eggs, and mammalian cells) (Csikasz-Nagy 

et al., 2006).  
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However, nowadays, most models are not intended to account for all 

aspects of the intricate regulation of the mammalian cell cycle: to reduce 

complexity and generate experimentally tractable predictions, they focus on a 

particular stage of cell cycle and on its regulation, without arriving to final cell 

division readout. Different mathematical models, specifically focusing on the 

G1 to S transition in the mammalian cells, have been reported (Aguda et al., 

1999; Qu et al., 2003; Swat et al., 2004; Haberichter et al., 2007; Kohn et al., 

1998) and each one uses a specific approach and/or focuses on specific 

components to simulate the cell cycle dynamics. These include models whose 

core module is the E2F-pRb complex (Kohn et al., 1998; Yao et al., 2008); 

restriction point models involving D-type and E-type cyclins, their kinases 

Cdk4 and Cdk2 and the inhibitors (Aguda et al., 1999); models considering 

multiple phosphorylation sites for the components involved in the regulation of 

the G1 to S transition (Qu et al., 2003); models considering only few 

components in the G1/S transition but aimed to identify the small feedback 

loops in the regulation process of the restriction point transition (Swat et al., 

2004); models based on the presence of metabolically responsive modifiers 

(Haberichter et al., 2007). In 2009, a mathematical model of the G1/S networks 

was developed by using, as in the previously described model (Novák and 

Tyson, 2004), a model representing the G1/S transition in budding yeast 

(Barberis et al., 2007). The major element of novelty of this new model was the 

inclusion of localization and compartmentalization of key cell cycle players, 

and the modeling of cytoplasmic/nuclear shuttling of cyclins, cyclin-dependent 

kinases, their inhibitor and complexes. The model was implemented using 

ordinary differential equations (ODE) and allowed to identify the molecular 

mechanism that underlies the restriction point, yielding specific predictions and 

giving new insights on the role that the availability of Cki would have on the 

entrance into S phase (Alfieri et al., 2009). An integration of a G1/S checkpoint 
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model (Tashima et al., 2004) with a signal transduction of DNA damage model 

(Lev Bar-Or et al., 2000) was proposed in 2008 (Iwamoto et al., 2008). It was 

represented by 28 ordinary differential equations including 75 kinetic 

parameters and simulated the interaction between Cyc/CDK and Rb/E2F cycle, 

the oscillation of p53, the delay of the cell cycle progression with occurring 

DNA-damage and the expression of p21 corresponding to the intensity of 

DNA-damage. 

Other models, instead, focus on representing the mitotic phase. The 

initial models on CycB/CDK kinase activation and feedback regulations by 

WEE1 and CDC25 (Goldbeter et al., 1991; Tyson et al., 1991; Novak et al., 

1993; Sible et al., 2007; Gerard et al., 2013; Verdugo et al., 2013) determined 

that the relationships act as a bistable on/off switch, committing cells to mitotic 

entry. More recently, by using a combination of previously published kinetic 

parameter values and analysis of qualitative and quantitative experimental data, 

a novel computational model of cell mitosis was developed for the purpose of 

generating new hypotheses and predicting new experiments designed to help 

understand complex diseases (Terhune et al., 2020). The new model is based on 

a hybrid framework combining Michaelis-Menten and mass action kinetics for 

the mitotic interacting reactions. The model starts at mitotic entry initiated by 

the activities of CDK1 and PLK1, simulates reactions involving APC/C bound 

to CDC20, and ends upon mitotic exit mediated by APC/C bound to CDH1. It 

includes syntheses and multiple mechanisms of degradations of the mitotic 

proteins. This newly constructed model was used to provide insights into the 

dysregulation and pseudo-cycle creation required for successful infection of a 

human herpesvirus, cytomegalovirus (HCMV). By simulating infection of the 

cytomegalovirus, the model was used to hypothesize that virus-mediated 

disruption of APC/C was necessary to establish a unique mitotic collapse with 

sustained CDK1 activity. This model was then extended including crosstalk 
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between Plk1, p53, and G2/M DNA damage checkpoint (Jung et al., 2021). The 

new developed model was used to analyze the cancer cell cycle progression 

under various gene perturbations including Plk1 depletion conditions. 

Mutations and perturbations in approximately 1800 different cell lines were 

analysed and the model was able to successfully explain phenotypes of the 

different cancer cell lines under different gene perturbations. While the Plk1 

and p53 pathways are often studied independently, this model allowed to study 

the crosstalk between these pathways and their individual and cooperative 

regulatory functions. 
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2. Aims 

The aim of this work was to understand physical and chemical rules 

and constrains affecting movement, growth and replication of cultured cells, 

observed at different levels including morphological changes, biochemical 

pathways and chemical reactions. Overall, this approach implied the dissection 

of complex experimental observations into more simple interacting systems 

where the contribution of different players are separately evaluated and 

modelled. 

It was chosen to use an approach based on analysing and reproducing 

the behaviour of laboratory cell cultures observed in time lapse microscopy,  in 

which cells from specific lineages are grown under different conditions. An 

important point was to take into account cell appearance as well as its 

biochemical and molecular status.  

In order to reach this goal, a basic requirement was the development 

of mathematical models able to describe movement and proliferation of 

individual cells grown as an experimental culture, to be used to extract features 

and parameters characterising the different processes. A central step in this plan 

was the set up of a simulator, which, by using such models, could be used to 

create novel cell populations in silico, which accurately reproduce the 

experimental population from which the model parameters were originally 

derived. A distinguishing feature was that biochemical models be used to 

control the simulations, by calculating molecular levels of activators or other 

regulatory proteins, according to cell condition, time and position and to use 

these levels to accordingly influence the stochastic simulation. 
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3. Material and Methods  

3.1. Cell culture 

Cells were grown in 100 mm diameter Petri plates in Dulbecco's 

Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), penicillin (10 U/ml), streptomycin (10 ng/ml) and L-Glutamine 

(2mM) and maintained in incubator at 37°C and with atmosphere made up to 

95% air and 5% CO2. Cell propagation was performed by detaching cells with 

a solution of trypsin/EDTA (trypsin 0.05% and 0.53 mM EDTA) and collecting 

them with complete culture medium. After centrifugation at 1200 rpm for 5 

minutes, pellets were suspended in fresh medium, properly diluted, and plated 

again.  

The cell lines used for time lapse acquisitions include murine 

fibroblasts NIH-3T3 (Todaro et al., 1963) and NIH-Ras produced by 

transfecting RasV12 into NIH-3T3 (Sepe et al., 2013), and human 

immortalized cell lines HeLa from cervical cancer (Gey et al., 1952), T24 from 

bladder carcinoma (Bubeník et al., 1973) and MDA-MB-231 from breast 

cancer (Cailleau et al., 1974). 

To investigate random movement ability, 25000 cells/well were 

seeded in 12 well plates and maintained in complete medium at 37°C in an 

incubator with 5% CO2. After 16-18 hours, the plate was placed in the 

incubator chamber of the microscope. For wound healing assays, cells were 

seeded in confluent monolayers by plating 250000 cell/well in 12 well plates in 

complete medium; 24 hours after plating the cell layer was scratched with 

sterile pipette tip.  

To study the role of specific molecules in the migration process, some 

of them have been targeted by using inhibitors. PD98059 (2’-Amino-3’-

methoxyflavone) was chosen as selective and cell-permeable inhibitor of MAP 

kinase kinase (MEK1/2); it is a non-ATP competitor that binds to the inactive 

Page 1



Material and Methods

form of MAPKK and prevents its activation by upstream activators and 

subsequent phosphorylation of downstream substrates. FR180204 (5-(2-

Phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-ylamine) 

was used to block ERK1/ERK2; it acts as a competitive inhibitor which 

interacts with ATP binding domain. Starting from stock solutions prepared by 

dissolving each inhibitor in DMSO, PD98059 was used at final concentration 

of 40 µM and FR180204 3mM.  

3.2. Data acquisition 

Phase contrast images (objective 10x) of different samples have been 

acquired every 10 minutes for 24 hours by using PhotoCell, a set of macro 

tools developed to manage time-lapse acquisitions (see Appendix, under 10.1), 

and by taking the advantages of Zeiss Cell Observer system composed by an 

inverted microscope (Axiovert 200M), an incubator chamber that maintains the 

temperature at 37°C and CO2 pressure at 5%, and a digital camera. A 

motorised stage along the three axes permits prolonged automatic acquisitions 

at different positions. For this work, digital frames were acquired as 8 bit 

images of 650x514 pixels. The pixel scale of the acquired images is 0.767 

pixel/µm, obtained by acquiring with the same system an image of a Burker 

chamber with known measures.  

Cell displacement was tracked by using a semi-automated procedure 

available within MotoCell (Cantarella et al. 2009). The tracking procedure 

allows to collect cell positions (in terms of x/y coordinates) at different times 

(frames) to construct the entire path of each cell that is characterised by an 

origin (start, newborn, found, gone in) and a destiny (split, dead, lost, gone 

out). The registered data are written and stored in a text file that can be read by 

MotoCell to perform the quantitative analysis. 
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3.3. Software and languages 

Computational tools developed for this work have been built by using 

different languages and systems. PHP (Web sites: php) is the main 

programming language used for the development of the different MotoCell 

modules. It is a scripting language tightly integrated with the Apache web 

server as it was originally designed for producing dynamic web pages; within 

this work, it is has been widely used to implement procedures and tools by 

taking advantage of its C-like syntax combined to rapid execution and testing 

and of the object-oriented programming (OOP) paradigm, which allows single 

program entities to interact with each other while keeping their own properties 

and functions separated. The OOP approach allowed the development of 

strongly modular programs, where different tools share the same objects and 

thus acquire common as well as specific features and behaviour.   

Most development was done within the environment provided by 

MotoCell (Cantarella et al. 2009), a PHP web application, which provided a 

easy development environment where to test new models and procedures while 

taking advantage of a large library of cell motility analysis tools, the ability to 

integrate new modules in the form of analyser objects and rapid production of 

complex plots thanks to its in-built interface with the R environment.   

Mathematical and statistical analyses have been carried out within the 

R environment (Web sites: R), mostly using the stats package from the basic 

configuration. Curve fitting by nls (non-linear least squared) was done either 

by using the provided models or others described by custom equations. 

Biochemical simulations were executed by using the SBMLR package provided 

by Bioconductor. It provides an R interface to ordinary differential equation 

based model solver and is compatible with SBML (Systems Biology Markup 

Language), a standard language used for the definition of systems biology 

models based on XML (eXtensible Markup Language), which allows the 
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sharing of models between different software tools. Graphics and stats 

packages from the basic configuration as well as the external package ggplot2 

(Web sites: ggplot2) were used to produce most graphics. The functions 

provided within the R environment were used either directly, through the 

RStudio development environment (Web sites: RStudio), or by accessing R 

through Rserve (Web sites: Rserve) within the MotoCell environment. 

Python (Web sites: python) is the programming language used for 

developing the PhotoCell macros operating within the Zen environment by 

Zeiss used for customised time-lapse image acquisitions and described in 

Appendix 10.1.   

3.4. Analysis of cell motility 

Diffusive behavior was quantified, within MotoCell, on the basis of 

mean squared displacement (MSD) and time, by using the “Diffusion” module 

which fits the function  to data, assigning to each value a weight 

proportional to the number of averaged squared displacements. Persistence 

analysis was carried out by using the “Persistence” module, based on formula 

(3). The mean squared displacements were calculated by collecting and 

squaring for each path the displacements corresponding to all time intervals 

between 40 minutes and the full path duration, and then by averaging the 

squared displacements for each interval. 

Time course analyses were performed by separately analyzing 

overlapping time windows of different length, each spanning a fraction of the 

total duration of the experiment. Most analyses were automated by writing PHP 

scripts and executing them within the MotoCell environment. 

3.5. Analysis of cell proliferation   

Proliferation analyses were curried out within MotoCell by using 

“Proliferation” module which relies on the nls method (available in R) to 

MSD = k tα
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determine Weibull parameters through curve fitting on fraction of not-divided 

cells as function of cell age. The Weibull equation used is reported hereafter:  

 (14) 

where asym represents the asymptote of the curve; shape is a 

parameter whose value is one if the Weibull reduces to an exponential curve, 

and becomes bigger as the distribution follows a more sigmoidal curve; lrc is a 

scale parameter that becomes bigger as the curve spreads out.  

3.6. Estimating initial protein concentrations  

Concentrations of most molecular species introduced in the different 

developed biochemical models have been taken from quantifications available 

on literature and were accessed through a database of concentrations 

representative of different cell types and experimental conditions developed in 

the laboratory, built by using a standardization method that calculates 

intracellular protein concentrations starting from data obtained by mass-

spectrometry of cell extracts or estimates them from RNAseq. 

3.7. Building reactions for developing biochemical model 

The biochemical reactions used for developing the ODE based models 

were modelled by using Michaelis-Menten and mass action laws. Each reaction 

was written for supporting also inclusion of an extra term introduced to 

simulate the effect on the reaction of activators and/or inhibitors.  

A new sigmoid function was introduced and used to support saturable 

processes such as transcription by multiple polymerase complexes along a 

gene: 

 (15) 

The max parameter indicates the maximum capacity of a gene of a given length 

to support multiple subsequent transcription complexes.  

F(x) = Asym − (Asym − 1)e−elrcxshape

ΔgeneBody.pol = v genePromoter.pol
ma x − geneBody.pol

ma x
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3.8. Generation of simulated cell populations 

Simulated datasets used to test the procedure for movement analyses 

based on the new model were generated by using SimulCell (see Results). The 

tool is accessed through a web application used to provide input data, including 

cell parameters and general features of the experiment, through a dialog box; 

output data are collected in a text file which records an “experiment” as the 

result of the simulation of each cell of a given “plate” at each time point. The 

simulation system mimics the behavior of a cell population by individually 

simulating each cell as a stochastic entity acting according to defined models 

representing the main cellular processes, such as growth, proliferation, 

migration and death. For each simulated moving population, a bias vector and/

or a persistence module are defined, thus producing cell migration patterns 

ranging between completely diffusive, persistent or biased, in various 

combinations. No directionally biased and zero persistence movement was 

obtained by zeroing the corresponding vector.  

3.9. Representation of simulated cell morphology  

Morphology of synthetic cell populations was represented by using an 

in-house developed module described elsewhere (in preparation) which 

supports the generation of cell shapes defined as Bezier curves dependent on 

cell volume and spreading degree and taking into account movement features. 
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4. Results  

4.1. A three component model for directional cell migration 

Although, when observed at relatively low sampling frequency, the 

movement of cultured eukaryotic cells can effectively be described by a simple 

diffusion model, at higher sampling rates more complex models, which include 

additional parameters such as persistence and directionality, are often necessary 

to obtain a good fit to experimental data. However sometimes difficulties arise 

as persistence evaluation is not always easy, especially when in presence of a 

directional bias, as the two parameters tend to interfere with each other with 

commonly used methods, as detailed below.  

4.1.1.Persistence and bias interference in cell movement analysis 

To assess the effectiveness of commonly used models, the movement 

of five different cell lines was followed while grown under standard culture 

conditions as well as in wound healing experiments, i.e. while recovering from 

a wound inflicted to the cell layer. This is a condition usually associated with 

directional motion. The selected cell lines represent a spectrum of mammalian 

cell types including HeLa, MDA-MB-231 and T24, which are human 

transformed cell lines isolated from tumours with high metastatic power, 

NIH-3T3 an established untransformed cell line from murine embryonal 

fibroblasts and NIH-Ras, a cell line obtained by overexpressing in NIH-3T3 the 

same constitutively active form of Ras known to be present in T24 cell line. 

Images of each cell culture were acquired by using PhotoCell, a set of macro 

tools developed to manage time-lapse microscopy acquisitions (see Appendix, 

under 10.1).  

Cell movement was characterised by using standard procedures as 

described under Material and Methods: average distance per 40 minute 
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interval, diffusion parameters (α and k), persistence parameters (s and p) and 

directional raw bias vector module and angle are reported in Table 2.   

Average distance was determined by averaging the lengths of all cell 

displacements observed during each 40 minute interval and varies between 5 

and 18 µm according to cell type and experimental conditions. When tested for 

diffusive motion, all cell lines exhibited a superdiffusive behaviour, with an α 

coefficient well above 1, which becomes higher, often close to 2, in presence of 

a wound. The observed superdiffusive movement is typical of most adherent 

cell lines and it may usually be explained by a combination of directional 

persistence, related to focal contacts between cell and culture surface (Gail et 

cell population average 

distance 

(µm) per 

40’

diffusion persistence raw bias

condition line
k 

(µm2/minα) α
s  

(µm/min)

p  

(min)

module 

(µm)

δ 

(degrees)

random

NIH-3T3 11.3 5.8 ± 2.0 1.14 ± 0.06 0.42 ± 0.06 46 ± 14 0.4

-

NIH-Ras 14.8 4.6 ± 1.7 1.25 ± 0.04 0.47 ± 0.07 58 ± 20 1.6

T24 17.9 4.2 ± 0.7 1.32 ± 0.03 0.52 ± 0.05 65 ± 14 0.8

HeLa 6.8 0.4 ± 0.07 1.37 ± 0.03 0.23 ± 0.05 40 ± 19 0.4

MDA 5.3 0.2 ± 0.1 1.56 ± 0.09 0.22 ± 0.04 75 ± 36 0.4

wound

NIH-3T3 9.5 0.1 ± 0.0 1.81 ± 0.05 0.28 ± 0.02 307 ± 85 6.0 13

NIH-Ras 14.9 0.5 ± 0.1 1.76 ± 0.04 0.40 ± 0.01 479 ± 64 10.8 19

T24 9.7 0.4 ± 0.1 1.61 ± 0.04 0.33 ± 0.03 134 ± 33 6.0 11

HeLa 6.6 0.0 ± 0.0 2.00 ± 0.10 0.23 ± 0.05 133 ± 90 4.0 6

MDA 6.4 0.7 ± 0.1 1.33 ± 0.03 0.24 ± 0.03 55 ± 16 1.2 43

persistent

simulated 

NIH-3T3

11.8 4.8 ± 0.7 1.18 ± 0.02 0.37 ± 0.01 64 ± 3 1.2 -

biased 11.3 0.1 ± 0.0 1.88 ± 0.01 0.33 ± 0.05 143 ± 55 7.7 1

pers.+ 

biased 16.8 0.2 ± 0.0 1.94 ± 0.01 0.46 ± 0.04 641 ± 356 14.0 0

Table 2. Superdiffusion of different cell lines in different culture conditions. 
Five different cells lines (NIH-3T3, NIH-Ras, T24, HeLa and MDA-MB-231) are 
analysed under standard culture condition (random) and in wound healing 
experiments (wound) and different motion parameters are calculated: average 
distance, diffusion (α and k), persistence (s and p) and raw bias (module and δ) 
parameters. In the last three rows, three simulated NIH-3T3 populations differing for 
migratory behaviour are analysed and reported.
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al. 1970, ; Hartman et al., 2013; Wang et al., 2001), and a directional bias (raw 

bias), typical of wound healing experiments. Persistence analysis in Table 2 

shows that a degree of persistence (expressed in time units) is always present, 

with the highest values observed during wound healing. The raw bias, 

calculated by averaging all cell displacement vectors, has an almost null 

module in randomly moving populations which becomes much larger after a 

wound. In wounded populations, the raw bias direction is close to the expected 

one, as indicated in column δ, reporting the difference between the direction of 

the raw bias vector and the angle expected from the position of analyzed cells 

in relation to the wound (0 or 360 degrees for cells located on the left side of a 

vertically oriented wound, 180 degrees for cells on the right side of it); for 

randomly moving populations which do not have an expected angle, the δ 

angle was not calculated. Analysis of bias and persistence parameters in wound 

healing experiments shows that cell populations with high raw bias also had 

high persistence, suggesting a possible interference.  

To confirm or exclude this hypothesis, three datasets were produced 

from simulated cell populations corresponding to different experimental 

situations, where persistence and bias contributions to overall migration were 

set a priori. For each simulated population, cell paths were generated according 

to a purely diffusive pattern, modified by adding a fixed amount of persistence 

and/or directional bias. Under these conditions, the input values used to 

simulate movement, were assumed to be the expected values when examining 

the output results. To generate movement patterns in the same range as the 

experimental ones, the simulation was carried out using an MSD of 100 µm2, 

expected to produce an average displacement similar to that observed for 

NIH-3T3 fibroblasts, while the directional bias was set to 8 µm. Regarding 

persistence, an 8 µm value was chosen to produce, in directionally unbiased 

populations, a level of persistence corresponding to about 65 minutes, well 
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within the range of values observed for the experimental populations. The 

results are reported in the last three rows of Table 2: cells simulated with no 

directional bias (p =8 µm and b =0 µm, marked as persistent in the Table 2), 

showed, as expected, a persistence time (p) of 64 minutes and an almost null 

raw bias vector; for cells following zero persistence motion (p =0 µm and b =8 

µm, marked as biased), a raw bias vector was detectable as expected, but the 

obtained persistence time was much higher than the expected null value. For 

more complex movements, when both bias and persistence were present at the 

same time (line pers.+ biased, p =8 µm and b =8 µm), raw bias module and 

persistence time were both substantially higher than the expected 8 µm (bias) 

and 65 minutes (persistence). It appears that by following this approach, bias 

and persistence cannot always be clearly distinguished and, in the case of 

combined bias and persistence, both tend to be overestimated. 

4.1.2.A new combined model to study movement of cultured cells 

To address the previously presented issue, cell motion was modelled 

as a combination of three vectors: random (r), persistence (p) and bias (b), 

which, according to cell line and culture conditions, are present in different 

combinations and contribute to the overall migration (Fig 2). In random 

movement (Fig 2A), each displacement d consists of an unbiased random 

vector which can take any possible orientation. In the case of a purely 

persistent movement (Fig 2B), the displacement d also includes a persistence 

vector having the direction followed during previous movement (prev d). 

Similarly, a purely biased displacement is modelled as the sum of a random and 

a bias vector, assumed to be oriented along the bias direction, for example 

according to a gradient produced by an attractant or another directional 

stimulus (Fig 2C). In the general case of common experimental conditions, all 

three vectors are assumed to be present at the same time (Fig 2D): in this case, 

displacement (d) is the vectorial sum of the persistence (p), bias (b) and 
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random (r) vectors. Given two different displacements, d1 and d2, with the 

corresponding previous ones (prev d1 and prev d2), and a bias direction, for 

each of them, the displacement along the bias direction (db) is the sum of the 

whole bias module (b) and the random and persistence contributions (rb and 

pb), i.e., the projections of random and persistence vectors onto the bias 

direction. Random contributions (rb) to db differ among the steps of a path as 

well as among cells and can be considered as uniformly distributed and tending 

to zero for large number of displacements. Persistence contribution (pb) 

depends instead on the difference between bias and persistence angle (α angle) 

according to the formula: 

   (16) pb = p ⋅ cos(α)
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Fig 2. A three component model for single cell movement. In the case of purely 
diffusive motion (A), cell displacement is modelled as a random vector of radius r. 
Persistent and biased movement (B and C), respectively add a persistence (p) or bias 
(b) vector to the random one. In the general case of combined movement (D), 
displacements are a combination of the three vectors and the directional component 
(db) consists of the whole bias module with the addition of random and persistence 
contributions (respectively rb and pb). The persistence contribution depends on the 
difference between bias and persistence angle (α angle); its length increases, 
according to the cosine function, when the α angles decreases.
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which means that the smaller the α angle, the higher is the contribution of 

persistence to directionality. In Fig 2D, this relation is graphically explained, 

where displacements d1 and d2, projected on the bias direction, differ for pb1 and 

pb2 lengths that depend in turn on α1 and α2 angles. Thus, the directional 

component of cell movement as a function of persistence and bias has been 

defined according to the following function: 

  (17) 

According to the developed model, longer db values are obtained for α 

angles closer to zero, because they include a higher persistence portion. To test 

whether this relation may be detected in simulated cells, different pairs of p and 

b parameters were used to produce simulated populations and analysed by 

plotting, for all displacements, directional component lengths against α angles. 

Results in Fig 3 show that for random movement, obtained with p=0 µm and 

b=0 µm (Fig 3A), α angles are homogeneously distributed between -π and +π, 

while db values are symmetrically distributed around zero for all angle values. 

This is also observed when cell movement is simulated with no bias 

component, i.e. p=8 µm and b=0 µm (Fig 3B), but in this case db values appear 

to follow a cosine curve, with maximal values for α=0 and minimal ones for α= 

± π. When bias is present, with p=0 µm and b=8 µm (Fig 3C), displacement 

angles are concentrated around the bias direction (α=0) but, for all angles, db 

values are on average offset by a factor corresponding to the bias module. 

When both bias and persistence are added to the motion, p=8 µm and b=8 µm 

(Fig 3D), the effects are independently visible as db values follow the cosine 

function and are at the same time offset according to the bias. The previously 

described formula (17) was used to fit the data in all cases; the curves, reported 

as continuous lines in each graph, were produced by using the calculated 

persistence and bias parameters (shown on the top/left for each panel). 

db = b + p ⋅ cos(α)
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Results

 On the basis of these results, the proposed model was considered a 

good candidate to describe any migratory behaviour and the procedure 

schematically synthesized in Fig 4, was set up. First, the raw bias vector 

calculated as the vector sum of all displacement vectors observed in a given 

time interval is used to obtain the raw bias direction β. After that, for each 

displacement, the projection onto the raw bias direction (db) is determined, as 

well as the displacement to raw bias angle (α), i.e. the difference between 

previous displacement and bias direction. The previously defined model 

(formula 17) is used to fit the directional component lengths (db) as a function 

of α, to obtain bias (b) and persistence (p) modules. Finally, having defined 
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0-720 7.63 0.47 0.53 0.08 0.59 9.03

40-760 7.57 0.46 0.62 0.31 0.57 8.94

80-800 7.24 0.48 0.32 0.46 0.61 8.94

120-840 7.35 0.47 359.71 0.19 0.59 8.85

160-880 7.33 0.48 0.63 0.02 0.61 8.81

200-920 7.46 0.47 0.30 -0.17 0.59 8.82

240-960 7.58 0.47 0.10 -0.26 0.60 8.84

280-1000 7.59 0.48 359.75 -0.13 0.61 8.84

320-1040 7.75 0.48 359.40 -0.26 0.61 8.78

360-1080 7.78 0.49 359.29 -0.20 0.62 8.75

400-1120 8.03 0.49 0.09 -0.36 0.62 8.64

440-1160 8.39 0.50 0.74 -0.64 0.62 8.53

480-1200 8.24 0.51 1.51 -0.58 0.63 8.52

520-1240 8.33 0.51 0.37 -0.69 0.64 8.49

560-1280 8.78 0.51 2.00 -1.15 0.63 8.47

600-1320 8.83 0.53 2.67 -1.01 0.66 8.48

640-1360 8.67 0.52 3.06 -0.61 0.65 8.44

680-1400 8.96 0.54 3.90 -0.64 0.67 8.49

720-1440 9.12 0.56 3.68 -0.84 0.70 8.56
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0-720 160.80 100.90 102.06

40-760 160.14 100.85 100.09

80-800 161.29 101.97 100.65

120-840 157.46 100.20 98.76

160-880 153.23 98.68 97.26

200-920 150.19 96.42 97.06

240-960 154.12 98.47 97.12

280-1000 151.87 96.46 97.52

320-1040 155.07 97.01 96.39

360-1080 155.47 95.55 96.02

400-1120 155.00 94.77 93.66

440-1160 156.02 94.03 91.15

480-1200 154.27 91.15 90.36

520-1240 153.13 91.15 90.51

560-1280 153.11 91.39 90.08

600-1320 157.06 91.19 91.13

640-1360 158.78 90.64 90.26

680-1400 160.96 90.75 90.91

720-1440 164.60 91.89 92.00
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correlated MSD (um2) 95.44
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Contribution
%

Persistence
Contribution
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0-720 11.39 4.28 0.03 7.07 60.60 0.41

40-760 11.36 4.40 0.11 6.86 64.17 1.63

80-800 11.38 4.12 0.17 6.95 59.31 2.41

120-840 11.26 4.23 0.07 6.88 61.55 0.96

160-880 11.14 4.17 0.01 6.88 60.69 0.11

200-920 11.01 4.26 -0.06 6.88 61.97 0.83

240-960 11.18 4.33 -0.09 6.88 62.91 1.29

280-1000 11.11 4.40 -0.05 6.82 64.54 0.69

320-1040 11.22 4.55 -0.09 6.77 67.29 1.39

360-1080 11.28 4.63 -0.08 6.67 69.37 1.13

400-1120 11.25 4.89 -0.14 6.50 75.33 2.13

440-1160 11.30 5.23 -0.25 6.26 83.64 4.02

480-1200 11.18 5.09 -0.23 6.27 81.21 3.62

520-1240 11.16 5.18 -0.27 6.25 82.99 4.35

560-1280 11.16 5.58 -0.44 6.10 91.50 7.28

600-1320 11.29 5.64 -0.39 6.06 92.97 6.49

640-1360 11.33 5.63 -0.23 5.95 94.57 3.94

680-1400 11.43 5.90 -0.25 5.91 99.96 4.24

720-1440 11.59 5.96 -0.33 5.99 99.60 5.59

Popcontrtosteplength txt pdf

mean step (um) 11.26

bias contribution (um) 4.87

persistence contribution (um) -0.13

random contribution (um) 6.52

bias contribution % 75.48

persistence contribution % 2.76

The analysis quantifies three movement features (random, persistence and bias) and their contribution to overall migration over time.
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0-720 6.51 0.86 357.72 10.38 0.99 9.06

40-760 6.70 0.88 357.91 10.03 1.02 9.17

80-800 6.65 0.86 358.42 10.13 0.99 9.07

120-840 6.65 0.86 358.15 9.93 0.99 9.15

160-880 6.90 0.86 358.24 9.55 1.00 9.09

200-920 6.91 0.90 358.02 9.30 1.04 9.19

240-960 7.04 0.84 358.31 9.22 0.98 9.19

280-1000 7.07 0.81 359.17 8.98 0.94 9.16

320-1040 7.34 0.79 359.84 8.53 0.93 9.19

360-1080 7.81 0.81 0.40 7.87 0.94 9.06

400-1120 8.33 0.81 0.96 7.31 0.95 9.07

440-1160 8.33 0.82 1.48 7.31 0.96 9.05

480-1200 8.40 0.81 1.68 7.25 0.94 8.99

520-1240 8.47 0.84 2.13 7.12 0.97 9.02

560-1280 8.37 0.83 2.02 7.26 0.96 9.06

600-1320 8.68 0.80 2.14 7.01 0.93 8.98

640-1360 8.73 0.82 1.60 7.07 0.94 9.00

680-1400 8.71 0.81 1.44 7.03 0.93 8.96

720-1440 8.27 0.85 2.43 7.46 0.97 9.10
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0-720 349.03 198.71 103.50

40-760 346.58 192.59 105.80

80-800 344.61 191.85 104.26

120-840 343.33 191.59 105.41

160-880 342.43 187.15 104.09

200-920 336.62 184.79 106.58

240-960 332.91 181.30 106.91

280-1000 333.40 181.59 106.26

320-1040 327.25 174.40 105.87

360-1080 322.44 165.07 103.18

400-1120 318.80 154.39 103.02

440-1160 319.05 153.62 102.16

480-1200 320.64 153.95 100.20

520-1240 315.68 149.76 100.77

560-1280 316.01 150.86 101.48

600-1320 316.23 146.59 99.99

640-1360 323.55 149.29 100.03

680-1400 323.01 149.52 98.96

720-1440 323.09 156.11 102.18
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correlated MSD (um2) 169.11
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0-720 17.43 5.24 8.41 3.79 138.05 221.61

40-760 17.38 5.37 8.03 3.92 137.00 204.85

80-800 17.32 5.34 8.12 3.85 138.63 210.73

120-840 17.29 5.32 7.97 3.93 135.48 202.73

160-880 17.27 5.53 7.65 4.00 138.11 191.10

200-920 17.12 5.44 7.38 4.24 128.49 174.29

240-960 17.00 5.53 7.29 4.21 131.33 173.14

280-1000 17.00 5.51 7.01 4.37 126.17 160.42

320-1040 16.86 5.73 6.63 4.42 129.39 149.92

360-1080 16.76 6.11 6.05 4.50 135.78 134.50

400-1120 16.66 6.56 5.59 4.54 144.62 123.27

440-1160 16.69 6.57 5.59 4.51 145.71 123.89

480-1200 16.69 6.65 5.59 4.41 150.75 126.74

520-1240 16.57 6.70 5.47 4.44 150.87 123.14

560-1280 16.55 6.60 5.58 4.42 149.41 126.44

600-1320 16.60 6.87 5.40 4.42 155.54 122.16

640-1360 16.80 6.91 5.46 4.38 157.63 124.46

680-1400 16.78 6.94 5.48 4.28 162.10 127.95

720-1440 16.78 6.52 5.85 4.42 147.47 132.31
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random contribution (um) 4.27
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persistence contribution % 155.46

The analysis quantifies three movement features (random, persistence and bias) and their contribution to overall migration over time.
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0-720 0.22 0.32 158.69 8.18 0.45 8.79

40-760 0.37 0.32 189.49 7.62 0.46 8.95

80-800 0.44 0.32 199.75 7.67 0.46 8.94

120-840 0.43 0.33 203.77 7.64 0.46 8.95

160-880 0.61 0.32 193.80 7.85 0.46 8.95

200-920 0.54 0.33 195.64 7.65 0.47 9.04

240-960 0.43 0.32 188.41 7.43 0.46 8.86

280-1000 0.65 0.32 174.82 7.42 0.47 8.85

320-1040 0.78 0.32 185.05 7.24 0.47 8.81

360-1080 0.83 0.33 193.19 7.25 0.48 8.93

400-1120 0.92 0.33 198.14 7.51 0.48 8.86

440-1160 0.76 0.33 197.53 7.62 0.48 8.85

480-1200 0.79 0.33 193.78 7.63 0.48 8.84

520-1240 0.42 0.32 186.80 7.91 0.46 8.77

560-1280 0.40 0.32 187.45 8.12 0.47 8.79

600-1320 0.37 0.32 180.93 8.06 0.46 8.78

640-1360 0.42 0.32 176.25 8.22 0.46 8.82

680-1400 0.65 0.32 178.15 8.26 0.46 8.82

720-1440 0.51 0.32 178.03 8.26 0.46 8.73
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0-720 164.07 164.07 99.27

40-760 165.97 165.81 102.20

80-800 167.90 167.48 101.59

120-840 167.63 167.07 102.16

160-880 168.15 167.41 102.58

200-920 169.73 168.91 104.55

240-960 166.12 165.44 100.93

280-1000 163.33 162.37 100.42

320-1040 161.88 160.49 99.44

360-1080 162.92 161.23 102.36

400-1120 165.54 163.30 100.69

440-1160 164.50 162.43 99.63

480-1200 167.15 165.09 98.99

520-1240 166.00 164.89 97.28

560-1280 165.22 164.29 97.76

600-1320 163.18 162.41 97.09

640-1360 163.54 162.75 97.24

680-1400 166.82 165.48 97.53

720-1440 164.82 163.52 95.25
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0-720 11.60 0.01 5.02 6.60 0.08 76.16

40-760 11.66 0.02 4.64 7.04 0.22 65.82

80-800 11.71 0.02 4.67 7.00 0.33 66.77

120-840 11.70 0.02 4.73 6.99 0.36 67.60

160-880 11.73 0.04 4.81 6.88 0.64 69.81

200-920 11.75 0.04 4.64 7.03 0.60 65.98

240-960 11.62 0.03 4.55 6.90 0.48 65.95

280-1000 11.47 0.06 4.56 6.86 0.93 66.50

320-1040 11.41 0.08 4.46 6.85 1.23 65.10

360-1080 11.45 0.10 4.47 6.98 1.38 64.00

400-1120 11.54 0.12 4.66 6.74 1.73 69.12

440-1160 11.50 0.09 4.82 6.67 1.40 72.31

480-1200 11.60 0.10 4.79 6.65 1.55 72.06

520-1240 11.59 0.05 5.04 6.45 0.73 78.15

560-1280 11.55 0.04 5.18 6.29 0.63 82.38

600-1320 11.48 0.04 5.11 6.32 0.57 80.82

640-1360 11.51 0.04 5.26 6.30 0.71 83.45

680-1400 11.65 0.08 5.28 6.26 1.28 84.32

720-1440 11.60 0.07 5.30 6.19 1.06 85.62
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The analysis quantifies three movement features (random, persistence and bias) and their contribution to overall migration over time.
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Module(um)
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Random
Module(um)

0-720 0.64 0.44 291.86 0.76 0.63 12.30

40-760 0.65 0.44 285.83 0.98 0.63 12.41

80-800 0.75 0.44 294.83 0.93 0.63 12.26

120-840 0.73 0.44 296.48 0.60 0.62 12.18

160-880 0.53 0.44 293.73 0.46 0.62 12.23

200-920 0.43 0.45 299.96 0.48 0.63 12.32

240-960 0.34 0.45 281.46 0.98 0.65 12.41

280-1000 0.20 0.46 302.98 0.35 0.64 12.51

320-1040 0.19 0.45 281.33 0.92 0.66 12.54

360-1080 0.27 0.46 298.98 0.55 0.65 12.68

400-1120 0.41 0.46 300.54 0.38 0.65 12.74

440-1160 0.52 0.47 278.65 0.35 0.68 12.76

480-1200 0.53 0.47 278.38 0.65 0.68 12.62

520-1240 0.59 0.48 300.99 0.55 0.66 12.69

560-1280 0.38 0.48 309.73 0.82 0.66 12.58

600-1320 0.29 0.49 316.94 0.45 0.67 12.62

640-1360 0.26 0.49 296.83 0.22 0.68 12.75

680-1400 0.17 0.49 307.69 -0.13 0.68 12.74

720-1440 0.08 0.49 26.49 0.20 0.69 12.82
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TimeInt Biased MSD(um2) Correleted MSD(um2) Random MSD(um2)

0-720 196.01 195.57 192.54

40-760 193.54 193.06 195.41

80-800 194.02 193.38 191.60

120-840 191.26 190.87 189.12

160-880 189.85 189.41 190.95

200-920 196.76 196.56 195.99

240-960 197.07 196.99 198.35

280-1000 197.08 196.96 200.88

320-1040 200.41 200.37 200.18

360-1080 201.14 201.09 203.43

400-1120 204.30 204.24 204.50

440-1160 206.06 205.75 205.46

480-1200 204.70 204.57 202.87

520-1240 204.01 203.65 204.21

560-1280 203.76 203.49 201.77

600-1320 202.31 202.09 203.24

640-1360 202.54 202.42 206.57

680-1400 206.57 206.51 205.69

720-1440 207.38 207.38 207.56

Popmsds txt pdf
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correlated MSD (um2) 199.70

random MSD (um2) 200.02
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Contribution(um)
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Contribution
%
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0-720 12.42 0.03 0.00 12.27 0.26 0.04

40-760 12.34 0.03 0.01 12.36 0.25 0.11

80-800 12.35 0.04 0.01 12.22 0.35 0.04

120-840 12.26 0.04 0.00 12.16 0.34 0.02

160-880 12.21 0.02 0.00 12.22 0.18 0.02

200-920 12.33 0.01 0.00 12.31 0.12 0.03

240-960 12.38 0.01 0.02 12.38 0.05 0.18

280-1000 12.39 0.00 0.01 12.51 0.03 0.08

320-1040 12.52 0.00 0.02 12.52 0.01 0.17

360-1080 12.59 0.00 0.01 12.67 0.04 0.10

400-1120 12.74 0.01 0.01 12.73 0.08 0.09

440-1160 12.79 0.01 0.00 12.75 0.09 0.03

480-1200 12.68 0.02 0.01 12.60 0.12 0.10

520-1240 12.67 0.03 0.01 12.67 0.22 0.08

560-1280 12.68 0.01 0.02 12.56 0.11 0.12

600-1320 12.60 0.01 0.01 12.61 0.07 0.05

640-1360 12.64 0.00 0.00 12.75 0.03 0.01

680-1400 12.74 0.00 0.00 12.74 0.02 0.01

720-1440 12.82 0.00 -0.00 12.81 0.02 0.01
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mean step (um) 12.53

bias contribution (um) 0.02

persistence contribution (um) 0.01

random contribution (um) 12.52

bias contribution % 0.13

persistence contribution % 0.07

The analysis quantifies three movement features (random, persistence and bias) and their contribution to overall migration over time.
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Fig 3. Persistence and bias effect on directional component of cell movement. 
The directional components of cell displacements from cell populations are plotted 
(y axis) against their α angles (x axis); (A-D) correspond to populations generated by 
simulating random (p=0 µm; b=0 µm), persistent (p=8 µm; b=0 µm), biased (p=0 
µm; b=8 µm) and mixed movements (p=8 µm; b=8 µm). The continuous line 
corresponds to curves identified by fitting the described model to the data; the 
numerical parameters are shown on the top of each graph.



Results

bias and persistence modules, bias and persistence vectors are subtracted from 

each displacement, to obtain the random vectors. 

4.1.3.The new model can separately assess persistence and 
directional bias  

The described model and procedure were validated by analyzing cell 

displacements from datasets obtained from simulated cell populations produced 
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Fig 4. Schematic representation of the procedure for parameters evaluation. It 
is schematically reported the procedure that, starting from displacement vectors, 
leads to the calculation of the bias vector, the persistence module and the list of the 
random vectors deprived of bias and persistence components.



Results

by using different values of bias, persistence and random module. Each dataset 

includes the paths followed by 30 cells, generated by using bias and persistence 

values ranging between 0 and 16 µm, as indicated in the header row and 

column of Table 3, and a random module equal to 9 µm/40min. 

Bias (b) and persistence (p) values evaluated by the described procedure show 

that in the case of movement with zero persistence (first row) or no directional 

bias (first column) calculated bias and persistence modules are very close to the 

expected values. A similarly good correspondence between expected and 

measured values was also observed when persistence and bias vectors were 

both present in combination. The random vectors, calculated for each 

population, also produced an average module close to the expected value used 

to generate the simulation.   

The same combinations of persistence and bias vectors were also 

tested for other simulated sets of populations, characterized by different values 

of random modules, and also in these cases the obtained values show good 

correspondence with the expected ones, thus proving that the efficacy of the 
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9.1 7.8 
 ± 0.8

7.9 
 ± 0.9

9.1 12.0 
 ± 2.1

8.3 
 ± 2.3

8.7 13.3 
 ± 3.8

10.5 
 ± 4.1

8.8

12 0.0 
 ± 0.3

12.1 
 ± 0.5

9.3 6.5 
 ± 1.4

13.1 
 ± 1.6

8.9 15.3 
 ± 4.0

9.4 
 ± 4.0

8.8 16.7 
 ± 4.4

11.3 
 ± 4.6

8.7

16 0.2  
± 0.3

16.2 
 ± 0.4

8.6 8.2 
 ± 2.2

15.7 
 ± 2.4

9.0 11.8 
 ± 4.3

16.4 
 ± 4.5

9.0 15.4 
 ± 7.9

16.3 
 ± 8.1

9.1

Table 3. Bias, persistence and random estimated from simulated cell 
populations. The measured bias, persistence and random modules are compared 
with fixed input bias and persistence (respectively header row and header column) 
and with random input value (9 µm/40min) used to simulate the synthetic cell 
movement.
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analysis method is not impaired by changes in the random module (data not 

shown). 

In order to evaluate the performance of the model in relation to cell 

population size, the previous analysis was repeated using datasets of size 

ranging between 10 and 100 cells. The results (Fig 5) show that for both bias 

and persistence values, calculated/expected ratios are within ± 0.4 for datasets 

of 10 to 20 cells but quickly go down to smaller ones for 30-50 cells and are 

reduced to within ± 0.1 for bigger datasets (100 cells). This confirms that 

population sizes used in the evaluations (≥30 cells) are well within the range of 

acceptability in terms of balance between numerosity of datasets and variability 

of measured parameters.  

The present model uses, to express persistence, a vector which, 

combined with a random one, produces the final displacement. Working in this 

way, persistence depends on random module and may be difficult to evaluate in 

comparison with other methods which express persistence as a time. In order to 

facilitate comparison of the two methods, persistence values expressed as time 

and as vector module were plotted against each other, after normalization, 

obtained by dividing the persistence time by the time interval (40 minutes in 
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simulated datasets of size ranging between 10 and 100 cells the estimated parameters 
are reported as ratio between calculated and expected values, the latter are indicated 
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this case) and persistence vector module by the module of the calculated 

random vector: the produced values follow a quadratic trend (Fig 6A) which 

remains the same with simulated datasets of different numerosity and different 
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Fig 6. Relation between persistence evaluated as time or as vector length. 
Persistence values are compared by plotting, for each dataset, the resulting 
persistence times, normalized against the time interval (40 minutes), versus the 
persistence module, normalized against the corresponding random module. (A) 
Persistence values calculated for datasets containing 10 (circle), 20 (triangle), 30 
(plus), 50 (cross) or 100 (diamond) cells simulated at different persistence levels (0, 
4, 8, 12 and 16 µm) and reported in the plot as symbols of increasing sizes. For each 
persistence level, three replicated datasets were produced for each cell number. 
Fitting the indicated quadratic function to the data produced the “a” parameter value 
and the R2 determination coefficient reported at the top. The black line represents the 
curve defined by the calculated “a” parameter. (B) Persistence values calculated as in 
(A) from NIH-3T3 (red), NIH-Ras (blue), T24 (green), HeLa (violet) and MDA-
MB-231 (orange) cells moving in absence of a wound stimulus. The black line 
corresponds to the curve calculated by fitting the quadratic function to the 
experimental data as in (A). (C) Persistence values from the (B) plot reported using 
the same curve as in (A) as a reference; the bars indicate means and standard 
deviations of the values used to produce the curve. (D) Persistence values calculated 
for the same cell lines as in (B and C), moving under wound stimulus and plotted 
using the same reference curve as in (C).
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levels of persistence (0, 4, 8, 12, 16 µm). Using a simple quadratic equation for 

curve fitting, the resulting curve, closely follows the data points, as seen in Fig 

6A and confirmed by the determination coefficient R2, very close to 1. Similar 

results are shown in Fig 6B, where “time” vs “space” persistence values were 

calculated from experimental datasets and compared in the same way, after 

normalization: also in this case the relation produces a quadratic curve which 

remains very close to the one determined from the simulated data, and 

characterized by a second power coefficient very close to 2 as before, although 

with a lower R2 value. The values reported in Fig 6B, obtained from 

experimental data with cells moving in absence of directional stimuli, were 

compared (Fig 6C and 6D) to those obtained from wounded cells, in both cases 

using, as a reference, curve and standard deviations obtained from the 

simulated datasets of Fig 6A. While the data points from unstimulated 

populations are within or close to the range defined by one standard deviation, 

and represented by using horizontal and vertical traits, the corresponding data 

points obtained from wounded cells, tend to be located quite far from the 

quadratic curve, confirming the previous observation that the presence of a 

directional bias can influence the correct calculation of time persistence. 

4.2. Bias and persistence are separate features and play distinct roles 
in cell movement  

The three component model is able to distinguish the role played by 

each vector in cell movement. The procedure set up to evaluate the three 

components appears to be effective in independently assessing their values also 

in “difficult” situations, such as when both bias and persistence are present at 

the same time. Therefore it was decided to use it on experimental cell 

populations to better understand the relationship between bias and persistence 

in cells cultured on plate. 
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4.2.1.The three component model independently evaluates bias 
and persistence in experimental cell populations 

The experimental datasets initially used in Table 2 were re-analysed 

with the three component model to separately assess the bias and persistence 

movement components.  

The results are reported, in Table 4, as random, persistence and bias 

vector modules for a 40 minute time interval; for wound healing experiments, 

angle δ, i.e. the angle between bias vector and expected migration direction, is 

also reported. For all cell lines, in absence of wound stimulus, the detected bias 

has values close to zero and movement, as might be expected, is essentially 

determined by random and persistence module. Cells with larger average 

distances show correspondingly higher values for both random and persistence 

module. For all cell lines, the introduction of a wound stimulus results in a 

cell population
average 
distance 

(µm) 

per 40’

random 

module 
(µm)

persistence 

module 
(µm)

bias

condition line

module 
(µm)

δ 
(degrees)

random

NIH-3T3 11.3 10.4 4.9 ± 0.6 0.3 ± 0.4

-

NIH-Ras 14.8 13.2 8.2 ± 0.9 1.1 ± 0.7

T24 17.9 15.6 10.7 ± 1.2 1.1 ± 0.9

HeLa 6.8 6.7 1.6 ± 0.4 0.5 ± 0.2

MDA-MB-231 5.3 5.5 2.0 ± 0.5 0.0 ± 0.3

wound

NIH-3T3 9.5 7.8 1.5 ± 0.7 5.7 ± 0.6 22.47

NIH-Ras 14.9 11.1 7.0 ± 2.1 6.1 ± 1.8 19.21

T24 9.7 7.4 3.3 ± 0.7 4.3 ± 0.6 2.4

HeLa 6.6 5.9 1.5 ± 0.7 2.9 ± 0.6 5.68

MDA-MB-231 6.4 6.8 2.8 ± 0.4 1.4 ± 0.3 42.73

Table 4. Characterization of movement of different cell lines in different 
experimental conditions. The same five experimental cells lines (NIH-3T3, NIH-
Ras, T24, HeLa and MDA-MB-231) as in Table 2 are analysed under standard 
culture condition (random) and in wound healing experiments (wound) and average 
distance together with the three motion vectors are quantified and reported. 
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modified movement pattern, affected by a bias vector of higher module than 

that observed in absence of wound for the same cell lines and oriented along 

the expected direction, i.e. towards the empty space left by the wound, as 

indicated by δ angle values ranging between 2 and 43 degrees. 

To study movement trends in time and the evolution of its 

components, the proposed model was also used to analyze HeLa cell 

populations moving in standard cultures as well as after a wound stimulus. In 

absence of directional stimulus (Fig 7A-D), all values were essentially stable 

over time, with movement mainly characterized by random and persistence, 

while bias remains very low during the whole time. In presence of a wound, 

higher average distance values were observed (Fig 7E), especially in the time 

windows immediately following the wound stimulus. At later times, the 

observed distances tend to be reduced, probably because of the concomitant 

progressive closure of the wound space, clearly visible in the images acquired 

at different time points during the experiment (data not shown). The wounded 

populations showed strong bias, with the highest values at the beginning of the 

observation time; as time goes by, the bias module tends to be reduced 

following a trend similar to that observed for the average distance (Fig 7H); the 

random module does not appear to change accordingly (Fig 7F). Also in this 

case, the persistence component measured by the new procedure is also not 

affected by the wound stimulus, even in presence of an increased bias 

component, and remains within levels close to about half the random module, 

both in presence (Fig 7G) and in absence (Fig 7C) of wound; it is also not 

changed when, during the observation time, the wound starts to close. 

To comparatively study motion properties of HeLa cells as well as that 

of other cell lines, data from different populations of HeLa, NIH-3T3, NIH-

Ras, T24 and MDA-MB-231 cells were analysed with the presented method. 
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Fig 7. Movement components of HeLa populations over time. HeLa cell 
movement on a culture plate was evaluated both in absence (A-D) and in presence 
(E-H) of a wound stimulus. The line plots correspond to independent cell 
populations; for each of them, the plots report average displacements modules 
measured over 40 minute steps (A and E), as well as random (B and F) persistence 
(C and G), and bias (D and H) values, calculated from the observed displacements. 
Persistence and bias modules were normalized to the corresponding random module. 
All the values were evaluated at 40 minute intervals using the data from overlapping 
four hour windows.
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 In Fig 8, average distance (A) and random component (B) are 

separately reported for each cell population, as well as persistence (C) and bias 

(D). Random components vary between different cell lines, being higher for 

NIH-Ras and T24 cell populations which also show higher average cell 

displacement modules. All cell lines respond to the wound stimulus with 

movement characterized by a strong bias component, clearly higher than that 

observed in its absence; in contrast, persistence is always present with values 

ranging between 0.4 and 0.8 times the random module and is not significantly 

modified in presence of a wound stimulus. 
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Fig 8. Movement of different cell lines in wound healing experiments. NIH-3T3 
(orange), NIH-Ras (blue), HeLa (green), T24 (violet) and MDA-MB-231 (magenta) 
cell lines were grown on a culture plate and their movement was followed in both 
standard condition (no wound) and after stimulation (wound) by a wound inflicted to 
the cell layer. (A) Average distance and (B) random module, (C) persistence and (D) 
bias. Values reported in (C) and (D) have been normalized against the corresponding 
random modules. For each cell line, coloured points correspond to independent 
cultures analysed over a 4 hour time window, while their median value is reported as 
a small horizontal black trait.



………………………. 

This content will not be available during 2023. 

………………………. 



Discussion

5. Discussion 

………………………. 

This content will not be available during 2023. 

………………………. 

Page 1



Conclusions

6. Conclusions 

A novel modelling/simulation tool was set up to analyze and simulate 

cell movement. Crucial to this end was a new model describing movement in 

terms of three components, random motion, persistence and directional bias, 

which differently affect cell movement and may be independently controlled by 

different drugs. The model allowed to quantitatively analyse experimental cell 

populations and was used for stochastic simulation of cell movement, to 

generate synthetic cell populations within SimulCell, an in silico simulation 

tool developed in the laboratory. Synthetic cell populations produced in this 

way rely on stochastic models and are controlled by molecular simulation of 

the cell cycle and pathways signalling the presence of extracellular factors. To 

produce hour-long simulations, where proteins are degraded and synthesized in 

time, a dedicated ODE based module was set up to simulate de novo protein 

synthesis by gene transcription and mRNA translation. Following this 

approach, simulated cells grow and split according to a molecular model of cell 

cycle progression, driven by linking replication to cell mass and volumetric 

growth and regulated by a biochemical model of the EGFR/ERK pathway. In 

its present state, the developed system opens up new options for studying 

proliferation and movement and improving the comprehension of their 

regulation.  
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Appendix

10. Appendix 

10.1. PhotoCell: a set of macro tools developed to manage time-lapse 
acquisitions 

In order to support advanced time-lapse acquisitions of long-term cell 

cultures, PhotoCell, a new integrated image acquisition tool, was developed by 

using the macro programming environment available within Zen Blue software 

and integrated into it, in order to manage the acquisition of time-lapse image 

stacks through a Zeiss Cell Observer system, composed by an incubator 

chamber for maintaining temperature and CO2 levels, an inverted microscope 

(Axiovert 200M), and a digital camera attached to it (Fig 34).  

Page 1

Fig 34. Acquisition observer system. The system consists of Axiovert 
200M, an inverted microscope, an incubator chamber associated with systems 
able to control temperature and CO2 levels, a digital camera, a computer and 
a software tool.
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The tool introduced into the system, is able to manage the acquisition 

system and, at the same time, to communicate with a second workstation or a 

server, dedicated to remotely monitor and save the acquired images (Fig 35). 

This link allows safe storing and management of all acquisition images and 

metadata and also an additional way of remote monitoring and controlling the 

experiment.  

Photocell was organised as a set of macros, which, taken together, 

allow to plan customized experiments, control and optionally modify the 

acquisition settings, before or even while the acquisition is running. This 

feature is very welcome, as it allows the adjustment of some parameters in 

reply to changes occurring during the acquisition time, for example focus 

changes due to mechanical events or cell detachment/attachment. A satellite 
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Plan 
acquisition

Control 
acquisition

Run 
acquisition

PlateGPS 
Module

Observer system

PhotoCell

Server

Remote workstation

Fig 35. The integrated system for time-lapse acquisitions. PhotoCell macros were 
linked to the observer system, on one side, and a remote server, on the other one.
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module, named plateGPS, was also added to the system to introduce additional 

functionalities, such as the possibility of calculating and moving to user 

defined points of a multi-well plate; in this way PhotoCell can move the 

observation point to the centre of a particular well of a plate without manual 

intervention, even from a remote workstation where no view of the plate is 

available. The module also provides the ability to calculate and acquire 

adjacent positions that could be recomposed to produce a final much bigger 

image.  

PhotoCell allows the execution of complex acquisitions, ranging from 

simple time-lapse experiments to more complex ones lasting for very long 

times, and sporting high numbers of x-y and/or z-stack positions, essentially 

limited only by available disk space. It was used to acquire images from a large 

number of different samples for 24/48 hours or longer periods, and it appears to 

guarantee accurate time-lapse acquisitions, carefully programmed and in a 

predictable way, all features which are particularly important when the 

experiment is aimed to follow a cell culture for an extended period of time. It 

allows a finer control of the acquisition settings, logs the exact time of each 

snapshot, and can compensate the effects of a number of unwelcome events, 

including accidental interruptions due to power failures or network blocks, 

which would otherwise result in an impaired final acquisition or its loss. 
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