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Introduction

Light interacts with matter producing mechanical optical forces. Kepler conjec-
tured this for the first time observing how the tails of comets were always directed in
the opposite direction to their motion towards the Sun [1]. However, the theoretical
description of the momentum transfer that produces optical forces was formulated
only in the late nineteenth century within Maxwell’s theory of electromagnetism
[2]. Then, in 1901, Lebedev [3], Nichols and Hull [4] gave a first experimental proof
of this phenomenon by illuminating microscopic objects in vacuum. These exper-
iments, however, produced very small effects and, for this reason, were strongly
questioned.

Only in 1970, thanks to the advent of laser sources, Arthur Ashkin demon-
strated that laser light could affect the motion of illuminated micrometric particles
by optical levitation [5]. Few years later, Ashkin succeeded in the realisation of a
tridimensional trapping system by using highly focused laser beams. This system
is known as optical tweezers (OT) because it can manipulate micrometric particles
without any mechanical contact. After the pioneering work of Ashkin, OTs have be-
come a useful tool in many fields of scientific research, such as in biology, medicine,
chemistry, and physics. Indeed, OT generate forces of magnitude ranging from few
femtonewtons to tens of piconewton extending the range of applicability of already
existing techniques like Atomic Force Microscopes, which produce only forces with
magnitude larger than few tens of piconewtons. For example, OT allow to manipu-
late bacteria [6] and even single molecules [7, 8], to study in a new way statistical
mechanics phenomena such as colloidal crystals [9, 10] or Kramers’ transitions [11],
and to study quantum mechanics phenomena [12, 13]. In addition, optical tweezers
are also force transducers since, to a first approximation, its force is proportional
to the displacement from the trapping position like for a spring. In this way, the
trapped object can be used as a probe to measure external forces acting on it. This
technique is called photonic force microscopy [14, 15].

From Ashkin’s seminal work to the present day, OTs have been improved and
made more versatile for instance by using advanced beam-shaping techniques [16],
spectroscopic techniques [17, 18], and evanescent waves [19, 20]. Particularly in-
teresting are the experiments aimed at stabilising the position of the trapped par-
ticle using techniques based on feedback [21]. Indeed, feedback mechanisms are
widely used in science and technology, for example in haptic optical tweezers [22],
laser cooling of single atoms [23], cavity optomechanics [24], and laser cooling of
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2 INTRODUCTION

particles in vacuum [25]. These feedback mechanisms are typically implemented
by actively controlling the optical tweezers with external setups, such as acousto-
optics or electro-optics devices, while trapping the particle outside the laser cavity.
Therefore, the dynamics of the laser is independent from that of the Brownian
motion of the particle.

In this thesis a novel optical tweezers is studied: unlike conventional OT the
particle is trapped in an optical waist made inside the laser cavity itself. This
kind of optical trapping, called intracavity optical tweezers (IOT) and proposed and
realized by the group of G. Volpe [26], is the main object of this work. The basic
idea of IOT is the following. When the particle is in the beam waist inside the
laser cavity, it introduces additional losses caused by the particle scattering. This
leads to a decrease of the laser power which tends to release the particle. As the
particle moves away from the waist, the losses are reduced and the laser power
tends to return to its maximum value bringing the particle back to the focal point.
This mechanism represents an intrinsic feedback which, together with the optical
gradient, contributes to enhance the trapping efficiency.

In this thesis work, new intracavity trapping configurations are explored using
a ring fibre laser. Starting from the study of an IOT in which only one laser beam
oscillates in the laser cavity (single-beam configuration), the system is modified to
produce a two counter-propagating beams configuration [27]. In this configuration,
the intrinsic feedback effect correlates the power of the two beams that oscillate
simultaneously in the cavity. Then a particularly interesting case is studied where,
by introducing a small misalignment of the two beams, two traps separated by a
few micrometers are made. In this way, it is possible to study the transitions of the
trapped particle between the two traps, due to their competition, in the presence of
optical feedback.

An important aspect of cavity trapping concerns the Brownian motion which
animates the trapped particle, which is typically immersed in water. In this case,
the motion of the trapped particle is described by the Langevin equation of an
overdamped harmonic oscillator characterised by a timescale of the displacement
of the particle of some ms. This timescale is quite longer than the response time of
the laser system, which is typically of few ns, guaranteeing that the laser system is
always in its steady-state. In order to investigate the behaviour of the IOT when
these two times are comparable, it would be necessary to trap in vacuum, which
allows also to study quantum mechanics effects [12, 13]. In this thesis work, an
intermediate step towards this direction is realised developing an IOT that traps
particles in air. Compared to trapping in water, this has required a non-trivial
system for loading particles into the intracavity trap based on piezoelectric crystals.
When a piezoelectric crystal vibrates at the right frequency, the particles, which
are stuck on their supporting surface because of the Van der Waals force, can be
detached and loaded into the trap.

After introducing the theoretical basis of optical forces and the motion of a trapped
particle in chapters 1 and 2, the IOT theory is described in chapter 3, in which
a toy model is also studied that, in this work, is modified to overcome some of
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its limitations. In chapter 4 are described the experimental setups designed and
realised for this thesis. After introducing the data analysis in chapter 5, the results
for standard OT and IOT are presented in chapter 6.
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Chapter 1

Optical forces

Optical forces, described by Maxwell’s electromagnetic laws, stem from the light-
matter interaction and, in particular, from conservation of electromagnetic and me-
chanical momentum. Considering the interaction between a particle and an optical
field, the theoretical description of the optical forces depends on the ratio between
the characteristic linear dimension of the particle a and the light wavelength λ. It
is possible to distinguish three regimes: the geometric optics or ray optics regime,
valid if λ ≪ a; the dipole regime characterised by λ ≫ a; the intermediate regime
when λ ∼ a. These three regimes are discussed in the first three sections of this
chapter. The last section is a summary of the results obtained in order to highlight
the differences between the three regimes.

1.1 Ray optics regime
The geometric optics regime is valid when the linear dimension of the particle

is much larger than the wavelength of the light field, which can be consider as a set
of optical rays because the volume occupied by the particle encloses many spatial
periods of the optical field. In this picture, the light-matter interaction is described
by optical rays impinging on the separation surface between the particle and the
surrounding medium. According to Snell’s law ([28]), part of each ray is reflected
and part transmitted so that:

θr = θi (1.1)
nt sin θt = ni sin θi (1.2)

where ni and nt are the refractive indexes of the medium and of the particle, re-
spectively. Instead, θi is the angle of incidence, θr the angle of reflection, and θt the
angle of refraction as shown in Fig. 1.1. The intensity Ii of the incident ray is split
into the reflected ray, with intensity Ir, and the transmitted ray, with intensity It,
according to Fresnel’s laws ([28]), that give the expression of reflectance R = Ir/Ii

5



6 CHAPTER 1. OPTICAL FORCES

Figure 1.1: representation of an incidence ray impinging on a generic separation
surface between two medium where r⃗i, r⃗r, and r⃗t indicate the direction of the
incidence, reflected, and transmitted rays, respectively. The corresponding angles
are indicated by θi, θr, and θt. The red square indicates the impinging region that
is well approximated by a plane.

and transmittance T = It/Ii, i.e.

Rs =

∣∣∣∣ni cos θi − nt cos θt
ni cos θi + nt cos θt

∣∣∣∣2 Ts =
4nint cos θi cos θt

|ni cos θi+nt cos θt|2
(1.3)

Rp =

∣∣∣∣ni cos θt − nt cos θi
ni cos θt + nt cos θi

∣∣∣∣2 Tp =
4nint cos θi cos θt

|ni cos θt+nt cos θi|2
(1.4)

where the subscript s indicates a s-polarized wave (electric field orthogonal to inci-
dence plane), and p a p-polarized wave (magnetic field orthogonal to the incidence
plane).

In order to understand the origin of the optical forces, the simple situation of
an optical ray of power Pi impinging perpendicularly (θi = 0) on a mirror is consid-
ered. The incident ray is described as a flux of N = Piλ0/(hc) photons carrying a
momentum of

p⃗i = (h/λ0)û (1.5)
where h is the Planck constant, λ0 the wavelength in vacuum of the light field, and
c is the speed of light in vacuum. In this condition, a photon impinging on the
mirror is completely reflected back and its momentum changes from p⃗i to p⃗r = −p⃗i
implying a momentum variation per unit time of ∆tp⃗ = −2p⃗λ0. Consequently, the
mirror undergoes to a momentum variation per unit time of ∆tp⃗m = −∆tp⃗ = 2p⃗λ0
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for each photon and the recoil force on the mirror is

F⃗g = N∆tp⃗m = 2Np⃗λ0 =
2Pi

c
û (1.6)

This force depends only on the power of the optical field and, as expected, does not
depend on the wave nature of the light, i.e. the wavelength. Typically, the force of
equation (1.6) is very weak even for high values of the power. For example, if the
power is Pi = 15.0mW, the force acting on the mirror is

F⃗g =
2Pi

c
≃ 2 · 15.0W

3.00 · 108m
s ∼ 10−10N (1.7)

which would accelerate a reflecting disk of 1 g in vacuum by

|⃗ag| =

∣∣∣F⃗g

∣∣∣
m

∼ 10−7m

s2
(1.8)

explaining why the first experiments about optical forces on macroscopic objects
done by Lebedev, Nichols, and Hull were strongly questioned [3, 4]. Instead, the
optical forces have non-negligible effects interacting with micrometric particles.
Indeed, the same force of equation (1.7) accelerates a metallic micrometric particle
of radius 10µm of

|⃗ag| =

∣∣∣F⃗g

∣∣∣
m

∼ 1
m

s2
(1.9)

Furthermore, this condition gives the maximum force that an optical ray can pro-
duce because, when an optical ray of power Pi impinges with non-normal incidence,
the total force acting on the incidence point is given by the sum of the force produced
by the reflected and transmitted rays. Thus, generalizing equation (1.6), the force
is given by

F⃗g =
niPi

c

r⃗i
|r⃗i|

− niPr

c

r⃗r
|r⃗r|

− niPt

c

r⃗t
|r⃗t|

(1.10)

where the Minkowski’s definition of light momentum is employed1. This relation,
although more general than equation (1.6), does not take in account the finite size
of the object interacting with the light field.

When an optical ray impinges on a finite size object, multiple reflections and
transmissions can happen and the incidence angle depends on the position in which
the ray impinges on the object itself, which is typically a micrometric sphere. The
force can be calculated starting from the single ray interaction. Initially, the ray
travels along the direction r⃗i with powerPi and, when the ray impinges on the sphere

1The momentum of the light in a medium (not in vacuum) can be defined in two ways: Abraham,
observing that the photon momentum is proportional to its velocity, obtained p = h/(nλ0), because
the photon velocity is reduced to v = c/n; Minkowski, starting from the photon momentum definition
in vacuum p = h/λ0 and because in a medium the wavelength becomes λ = λ0/n, obtained p = h/λ =
hn/λ0. This is known as Abraham-Minkowski dilemma.
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~ri

~rt;0

~rt;1

~rr;1
~rr;0

Figure 1.2: multiple reflections inside a sphere, where the incidence ray travels
along r⃗i, the first reflected ray along r⃗r,0, the first transmitted ray inside the sphere
along r⃗t,0, the other rays travelling inside the sphere along r⃗r,j (j = 1, 2), and the
ones travelling outside the sphere along r⃗t,j.

(scattering event), its power is split between the reflected ray travelling along r⃗r,0
and the transmitted ray travelling along r⃗t,0 inside the sphere. The transmitted
ray travels until it impinges on the surface of the sphere, producing again two
rays: a reflected ray travelling along r⃗r,1 inside the sphere and a transmitted ray
travelling along r⃗t,1 outside the sphere, like in figure 1.2. The ray travelling along
r⃗r,1 will impinge on the surface of the sphere producing two more rays, and this
process continues until, after infinite iterations, all the light is transmitted outside
the sphere. Thus, the total force is calculated applying equation (1.10) for each
scattering event, giving

F⃗g =
niPi

c

r⃗i
|r⃗i|

− niPr

c

r⃗r,0
|r⃗r,0|

−
∞∑
j=1

niPt,j

c

r⃗t,j
|r⃗t,j|

(1.11)

This force lies in the incidence plane because it is defined by a converging series2

of vectors staying in the incidence plane. This allows to split the force along the
direction of r⃗i and along its perpendicular direction r⃗⊥, that is

F⃗g =
∣∣∣F⃗g,scat

∣∣∣ r⃗i|r⃗i|
+
∣∣∣F⃗g,grad

∣∣∣ r⃗⊥|r⃗⊥|
(1.12)

where the force along the incidence direction F⃗g,scat is called scattering force and
F⃗g,grad is called gradient force. Therefore, the gradient force is the force that can
trap stably the particle. The scattering and gradient forces of a circularly polarised

2The convergence of this series is assured by the energy conservation.
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Figure 1.3: (a) trapping efficiencies Q as function of the angle of incidence θi of the
optical ray for a particle of refractive index nt = 1.59 immersed in water, ni = 1.33;
(b) optical trap diagram in ray optics regime focusing a laser beam along the z axis
(solid black arrow).

ray on a sphere were derived by Ashkin [29]:

Fg,scat =
niPi

c

[
1 +R cos 2θi − T 2 cos(2θi − 2θr) +R cos 2θi

1 +R2 + 2R cos 2θr

]
(1.13)

Fg,grad =
niPi

c

[
R sin 2θi − T 2 sin(2θi − 2θr) +R sin 2θi

1 +R2 + 2R cos 2θr

]
(1.14)

To better understand the physical conditions that allows to trap a particle, the
trapping efficiencies are defined as

Qg,scat =
c

niPi

Fg,scat (1.15)

Qg,grad =
c

niPi

Fg,grad (1.16)

Qg =
√
Q2

g,scat +Q2
g,grad (1.17)

that are dimensionless quantities describing the way in which the momentum is
transferred from the optical ray to the particle. As shown in figure 1.3a, Qg,grad

grows faster than Qg,scat as function of the incidence angle θi indicating that the
trapping condition is due principally to the rays with high incidence angles.

Equation (1.11), as said, is relative to only one ray, but typically the particle
interacts with all the rays exiting from the wavefront point-by-point along r⃗m, as
schematically shown in figure 1.3b. Each of these rays produce a force according to
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Figure 1.4: Fx (blue solid line), Fy (orange solid line), and Fz (green solid line)
components of the trapping force F⃗d acting on a particle of radius 5µm and refractive
index np = 1.59 illuminated by a 1064 nm TEM00 laser beam and trapped in water if
(a) the particle is moving only along x with y = z = 0.05µm and (b) only along z and
with x = y = 0.05µm. These plots are obtained numerically with the MATLAB tool
Optical Tweezers in Geometrical Optics (OTGO) [30].

equation (1.11) and the total force acting on the mass centre of the particle is ([31],
chapter 2.5)

F⃗g =
∑
m

F⃗ (m)
g =

∑
m

niP
(m)
i

c

r⃗
(m)
i∣∣∣r⃗ (m)
i

∣∣∣ − niP
(m)
r

c

r⃗
(m)
r,0∣∣∣r⃗ (m)
r,0

∣∣∣ −
∞∑
j=1

niP
(m)
t,j

c

r⃗
(m)
t,j∣∣∣r⃗ (m)
t,j

∣∣∣
 (1.18)

that can be again divided into scattering and gradient forces. When the particle
interacts with a wavefront, therefore, its size is a fundamental parameter. Indeed,
if the particle is larger than the wavefront spot size on the particle surface, all
the rays have a small incidence angle and the gradient force is weaker than the
scattering one as shown previously. Instead, if the wavefront spot on the particle
is comparable with the particle size, the rays having a large incidence angle are
sufficient to produce a gradient force that overcome the scattering one (trapping
condition). The components of the trapping force acting on a particle of radius
5µm and of refractive index np = 1.59 illuminated by a 1064 nm TEM00 laser beam
travelling along the z direction are shown in figure 1.4a as function of the x direction
(y = z = 0.05µm) and in figure 1.4b as function of the z direction (x = y = 0.05µm).

If the incident rays converge to a point (strongly focused light beams) and the
particle has a suitable refractive index, equation (1.18) ([31], chapter 2.5) has an
equilibrium position (trapping position) and, for small displacement from the equi-
librium position, the force is

F⃗g = −k⃗g · (r⃗ − r⃗eq)r̂ (1.19)
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(a) (b)

Figure 1.5: (a) illustration of a particle considered like a pair of charged clouds;
(b) illustration of the same particle in the presence of an external electromagnetic
field. The blue cloud represents the negative charges and the red one the positive
charges, while the red circle represents the centre of the positive charges and the
blue circle the centre of the negative charges.

where k⃗g = (kg,x, kg,y, kg,z) is the trap stiffness along the three axis and r⃗eq is the
equilibrium position vector.

1.2 Dipole regime
The dipole regime occurs when the wavelength of the light field λ is much greater

than the particle size and, therefore, its volume encloses small fractions of a spatial
period of the light field. For this reason, the particle can be considered like a pair of
charged clouds, schematically reported in Figure 1.5a, that interact with the optical
field thorough the induced dipole phenomenon. Indeed, the electromagnetic field
separates the centre of positive and negative charges deforming the clouds, like in
figure 1.5b and, therefore, the particle behaves like a pair of point charges with
equal magnitude q and opposite sign, separated by a distance l, i.e. like a dipole.
If the electromagnetic fields E⃗i(t, r⃗) and B⃗i(t, r⃗) interact with the dipole, the total
force acting on its centre of mass, indicated by the vector r⃗d, is [31]

F⃗d(t, r⃗d) =
(
d⃗ · ∇⃗

)
E⃗i(t, r⃗d) +

dd⃗

dt
∧ B⃗i(t, r⃗d) +

dr⃗d
dt

∧
(
d⃗ · ∇⃗

)
B⃗i(t, r⃗d) (1.20)

where
d⃗ = q∆r⃗ (1.21)

is the dipole moment, ∆r⃗ ≡ r⃗+ − r⃗− = l with r⃗± the position of the two charged
particles forming the dipole. Assuming to work in the non-relativistic regime, using
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the Maxwell equations, equation (1.20) becomes

F⃗d(t, r⃗d) =
(
d⃗ · ∇⃗

)
E⃗i(t, r⃗d) +

d

dt

(
d⃗ ∧ B⃗i(t, r⃗d)

)
+ d⃗ ∧

(
∇⃗ ∧ E⃗i

)
(1.22)

Experimentally, the time average of equation (1.22) is the measured physical quan-
tity3 and it is

F⃗d(r⃗d) =
∑

j=x,y,z

〈
dj∇⃗Ei,j(t, r⃗d)

〉
(1.23)

being
〈

d
dt

(
d⃗ ∧ B⃗i(t, r⃗d)

)〉
= 0.4

In order to clarify the physical meaning of this equation, it useful to study the
simple case of a monochromatic optical field of frequency ν propagating in vacuum,
i.e.

E⃗i(t, r⃗) =
1

2

(
E⃗i(r⃗)e

i2πνt + c.c.
)

(1.24)

where c.c. indicates the complex conjugate and E⃗i is the wave phasor, and of a spher-
ical particle of radius a and volume V consisting of a homogeneous and uniform
material of permittivity ϵ = ϵrϵ0. In this case, the dipole moment is given by

d⃗(r⃗d) = αdE⃗i(r⃗d) =
αCM

1− ϵr−1
ϵr+2

[
(k0a)2 +

2
3
i(k0a)3

]E⃗i(r⃗d) = (α′
d + iα′′

d)E⃗i(r⃗d) (1.25)

where k0 = 2π/λ0 is the wavenumber, αCM = 3V ϵ0
ϵr−1
ϵr+2

is the Clausius-Mossotti
relation, α′

d and α′′
d are the real and imaginary part of αd respectively. All these

simplifications allow, after some mathematical manipulations, to extrapolate the
following force expression [31]

F⃗d(r⃗d) =
1

4
α′
d∇⃗

∣∣∣E⃗i

∣∣∣2 + σext,d
c

S⃗i −
1

2
σext,d∇⃗ ∧ s⃗ (1.26)

where σext,d ≡ k0α
′′
d/ϵ0 is the extinction cross section of the field describing the rate

at which the energy of the electromagnetic wave is dissipated by absorption and
scattering, S⃗ is the Poynting’s vector, and s⃗ is the spin density defined as

s⃗ =

∫
ϵ0E⃗⊥ ∧ A⃗ dV monochromatic wave−−−−−−−−−−−→ s⃗ = i

ϵ0
2ω
E⃗i ∧ E⃗∗

i (1.27)

with A⃗ the magnetic vector potential.
The first term of equation (1.26) is called gradient force, being related to the

gradient of the square of the electric field magnitude, and it can be rewritten for a
monochromatic field with intensity Ii = cϵ0

2

∣∣∣E⃗i

∣∣∣ as

F⃗d,grad(r⃗d) =
α′
d

2cϵ0
∇⃗ [Ii(r⃗d)]

2 (1.28)

3The responsiveness of common instruments is not sufficient to measure at optical frequencies,
typically between 1017 Hz and 1018 Hz, and therefore the measured quantities are time averaged.

4The time average of this total derivative is zero, because it is proportional to the difference
between d⃗∧ B⃗i(t, r⃗d) evaluated at t and at t+ T . From the definition of time average, therefore, this
term is zero.
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This force is a conservative force since it is due to the potential energy of the dipole
in the electric field and it can trap a particle if the optical field is strongly focused. In
this condition, the optical field gradient is directed towards the focal point (trapping
position) and produces a gradient force bigger than the other forces ensuring the
confinement of the particle.

The second term of equation (1.26) is

F⃗d,scatt =
σext,d
c

S⃗i (1.29)

and it is called scattering force, being defined by the extinction cross section and the
Poynting vector. This force has the same direction of the Poynting vector pushing
the particle away along the beam direction and it is non-conservative, because it
arises from the exchange of momentum due to scattering and absorption phenom-
ena5.

The last term of equation (1.26) is

F⃗d,s−r(r⃗d) = −1

2
σext,d∇⃗ ∧ s⃗ (1.30)

is called spin-curl force arising from the polarization of the electromagnetic field.
Therefore, this force is present only if the field polarisation is non-homogeneous,
as can be demonstrated by developing the curl of s defined by (1.27), and it is non-
conservative.

Equation (1.26), obtained in vacuum, can be extended to the case of a particle
immersed in a medium interacting with the electromagnetic field. Indeed, consid-
ering a monochromatic field in a homogeneous and isotropic medium of permittivity
ϵm, equation (1.25) becomes

d⃗(r⃗d) = α̃dE⃗i(r⃗d) =
α̃CM

1− m2−1
m2+2

[
(k0a)2 +

2
3
i(k0a)3

]E⃗i(r⃗d) ≡ (α̃′
d + iα̃′′

d)E⃗i(r⃗d) (1.31)

with α̃CM = 3V ϵ0ϵm
m2−1
m2+2

, m2 ≡ ϵr/ϵm, and ([31], chapter 3.4)

α̃′
d =

α̃CM

1 +

(
k30α̃CM

6πϵ0

)2 ∼ α̃CM (1.32)

α̃′′
d =

k30α̃
2
CM

6πϵ0

1

1 +

(
k30α̃CM

6πϵ0

)2 ∼ k30α̃
2
CM

6πϵ0
(1.33)

being k0a≪ 1. These simplifications allow to deploy the dependence of the gradient
force on m, being

F⃗d,grad(r⃗d) ∼
1

4
α̃CM∇⃗

∣∣∣E⃗i(r⃗d)
∣∣∣2 = πa3ϵ0ϵm

m2 − 1

m2 + 2
∇⃗
∣∣∣E⃗i(r⃗d)

∣∣∣2 (1.34)

5To demonstrate that the scattering force is non-conservative, one can prove that its circulation
is non-zero.
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Figure 1.6: Fx (blue solid line), Fy (orange solid line), and Fz (green solid line)
components of the trapping force F⃗d acting on a particle of radius 0.1µm and of
refractive index np = 1.59 illuminated by a 1064 nm TEM00 laser beam and trapped
in water if (a) the particle is moving only along x with y = z = 0.05µm and (b) only
along z and with x = y = 0.05µm. This plot are obtained with numerical evaluation
performed with Optical Tweezers Software (OTS) [31].

and of the scattering force, being

F⃗d,scatt ∼
k40α̃

2
CM

√
ϵm

6πϵ20c
S⃗i =

8

3
π

√
ϵm
c

(k0
√
ϵm)

4a6
(
m2 − 1

m2 − 2

)2

S⃗i (1.35)

Immersion media and particle material are, hence, extremely important in the
light-matter interaction and can completely change the equations of motion. In-
deed, the gradient force changes its direction depending on the value of m, while
the scattering force does not. In particular, the gradient force attracts the particles
in the focal point of the light field if m > 1 and pushing the particle away if m < 1.

To conclude, the total optical force for monochromatic field with linear polariza-
tion is

F⃗d = πa3ϵ0ϵm
m2 − 1

m2 + 2
∇⃗

∣∣∣E⃗i(r⃗d)
∣∣∣2 + 8

3
π

√
ϵm
c

(k0
√
ϵm)

4a6
(
m2 − 1

m2 − 2

)2

S⃗i (1.36)

being the spin-curl force zero in this case. This expression clarifies the role of the
particle dimensions in the dipole regime being the scattering force proportional to a6
while the gradient one to a3. This means that, if the trapped sphere is small enough,
the scattering force will be much smaller than the gradient force and, therefore, the
trap is more stable.

The components of the trapping force acting on a particle of radius 0.1µm and of
refractive index np = 1.59 immersed in water and illuminated by a 1064 nm TEM00
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laser beam are shown in figure 1.6a as function of x and in 1.6b as function of z. Also
in the dipole regime, it is possible to demonstrate that equation (1.26) has, under
the right conditions, an equilibrium point and that, for small displacement around
it, the force can be written as the restoring force of a three-dimensional spring, i.e.

F⃗d = −k⃗d · (r⃗ − r⃗eq)r̂ (1.37)

where k⃗d = (kd,x, kd,y, kd,z) is the trap stiffness along the three axis and r⃗eq is the
equilibrium position vector.

1.3 Intermediate regime
The intermediate regime occurs when the wavelength of the light field λ is com-

parable to the linear dimension of the interacting object. In this case, the use of the
rigorous electrodynamic tensor theory can not be omitted because neither can the
object be consider a dipole nor can the wave nature of the electromagnetic field be
ignored.

A particle, from the point of view of the electromagnetic field, appears as a
distribution of charge density ρ = ρ(t, r⃗) and of current j⃗ = j⃗(t, r⃗) contained in a
volume V with border S = ∂V . The generalised Lorentz force allows to obtain the
force on the particle and it is equal to [32]

dP⃗m

dt
=

∫
V

[
ρE⃗ + j⃗ ∧ B⃗

]
dV (1.38)

where P⃗m is the mechanical momentum of the particle, E⃗ = E⃗(t, r⃗) the electric field,
and B⃗ = B⃗(t, r⃗) the magnetic field. Using the Maxwell’s equations in vacuum and
making the expression symmetric with some mathematical calculations, the force
is ([31], chapter 5.1)

dP⃗m

dt
=

∫
V

ϵ0

[
(∇⃗ · E⃗)E⃗ − E⃗ ∧

(
∇⃗ ∧ E⃗

)
− c2∇⃗(B⃗ · B⃗)− ∂E⃗ ∧ B⃗

∂t

]
dV (1.39)

The importance of having the symmetric equation (1.39) is to relate it to the
Maxwell stress tensor TM . Remembering the following relations{

f⃗rad =
d
dt

(
P⃗m + P⃗c

)
=

∫
V
∇⃗ · TMdV∫

ϵ0
∂E⃗∧B⃗

∂t
dV = d

dt

∫
V

S⃗
c2
dV = dP⃗c

dt

(1.40)

it is natural to manipulate (1.39) as below

dP⃗m

dt
+

∫
V

∂E⃗ ∧ B⃗

∂t
dV =

∫
V

ϵ0

[
(∇⃗ · E⃗)E⃗ − E⃗ ∧

(
∇⃗ ∧ E⃗

)
− c2∇⃗(B⃗ · B⃗)

]
dV (1.41)
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In this way, the first term of this equation is the force acting on the particle, indi-
cated as f⃗rad = d

dt

(
P⃗m + P⃗c

)
and, thus,

f⃗rad =
d
dt

(
P⃗m + P⃗c

)
=

∫
V
∇⃗ · TMdV =

∫
V
ϵ0

[
(∇⃗ · E⃗)E⃗ − E⃗ ∧

(
∇⃗ ∧ E⃗

)
− c2∇⃗(B⃗ · B⃗)

]
dV (1.42)

Introducing the dyadic product as ⊗ and using the the vector identities, the force
can be written as

f⃗rad =

∫
V

∇⃗ · TMdV =

∫
V

ϵ0∇⃗
[
E⃗ ⊗ E⃗ + c2B⃗⊗ B⃗− 1

2

(
E⃗ · E⃗ + c2B⃗ · B⃗

)
1

]
dV

⇓

TM = ϵ0

[
E⃗ ⊗ E⃗ + c2B⃗⊗ B⃗− 1

2

(
E⃗ · E⃗ + c2B⃗ · B⃗

)
1

]
(1.43)

that, thanks to the Ostrogradskij’s theorem and denoting by dS⃗ the vector with
magnitude equal to the infinitesimal surface dS and direction orthogonal to the
contour of V , can be written as

f⃗rad =

∮
∂V

TMdS⃗ (1.44)

whose average over time returns the average force applied by the electromagnetic
field on the particle, i.e.

F⃗rad =

∮
∂V

⟨T ⟩M dS⃗ (1.45)

where ⟨TM⟩ denotes the time average of the Maxwell stress tensor.
Equation (1.45) is very general and, for this reason, difficult to apply, but it can

be written in a simpler form for a sphere of radius r in a monochromatic field
E⃗i(t, r⃗) =

1

2

(
E⃗(r⃗)eiωt + c.c.

)
B⃗i(t, r⃗) =

1

2

(
B⃗(r⃗)eiωt + c.c.

) (1.46)

where E⃗i and B⃗i indicate the wave phasors. In this case, the time average of the
Maxwell stress tensor is [31]

⟨TM⟩ = 1

2
ϵi ℜ

[
E⃗ ⊗ E⃗∗ +

c2

n2
i

B⃗ ⊗ B⃗∗ − 1

2

(∣∣∣E⃗∣∣∣2 + c2

n2
i

∣∣∣B⃗∣∣∣2)1] (1.47)

and, therefore, the force of equation (1.45) becomes

F⃗rad =
1

2
ϵr2ℜ

{∮
∂V

[
E⃗ ⊗ E⃗∗ +

c2

n2
i

B⃗ ⊗ B⃗∗ − 1

2

(∣∣∣E⃗∣∣∣2 + c2

n2
i

∣∣∣B⃗∣∣∣2)1]·r⃗dS} (1.48)

where ϵ and ni are the permittivity and the refractive index, respectively, of the
medium in which the incident field propagates, and ℜ [·] indicates the real part of
its argument.
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To give an explicit expression of the optical force, it is necessary to use the
multipole expansion and the Mie theory, see appendix A, that returns an analyti-
cal expression of the field phasors when an electromagnetic wave interacts with a
sphere or a cylinder. Therefore, equation (1.48) can be written as

F⃗rad = −1

4
ϵir

2

∮
∂V

(∣∣∣E⃗s

∣∣∣2 + c2

n2
i

∣∣∣B⃗s

∣∣∣2 + 2ℜ
[
E⃗iE⃗

∗
s +

c2

n2
i

B⃗iB⃗
∗
s

])
r⃗dS (1.49)

where E⃗s are the phasors of the incident and the scattered electric field obtained
in equation (A.10), and B⃗i and B⃗s are the phasors of the incident and the scattered
magnetic field. Equation (1.49) tells us that the optical force acting is produced
by the scattered electromagnetic field, due to the term

∣∣∣E⃗s

∣∣∣2 + c2

n2
i

∣∣∣B⃗s

∣∣∣2, and by the

interference of the incident and scattered field, due to the term 2ℜ
[
E⃗iE⃗

∗
s +

c2

n2
i
B⃗iB⃗

∗
s

]
.

From the expressions of equation (A.12), which show the dependence of the
diffuse field on the refractive index of the sphere and its radius a, it is clear that the
optical force depends on both the geometrical-optical characteristics of the sphere
and the wave nature of the field, unlike the other two regimes.

As with the two previous regimes, the optical force can be written, for small
displacement from the equilibrium position, as

F⃗rad = −k⃗rad · (r⃗ − r⃗eq)r̂ (1.50)

where k⃗rad = (krad,x, krad,y, krad,z) is the trap stiffness along the three axis and r⃗eq is
the equilibrium position vector.

1.4 Comparison of the three regimes
To summarise the results obtained in this chapter and highlights the differences

of the three regimes, it is useful to compare the following expressions of the optical
forces obtained previously:

F⃗g =
∑
m

niP
(m)
i

c

r⃗
(m)
i∣∣∣r⃗ (m)
i

∣∣∣ − niP
(m)
r

c

r⃗
(m)
r,0∣∣∣r⃗ (m)
r,0

∣∣∣ −
∞∑
j=1

niP
(m)
t,j

c

r⃗
(m)
t,j∣∣∣r⃗ (m)
t,j

∣∣∣
 (1.51)

F⃗d = πa3ϵ0ϵm
m2 − 1

m2 + 2
∇⃗

∣∣∣E⃗i(r⃗d)
∣∣∣2 + 8

3
π

√
ϵm
c

(k0
√
ϵm)

4a6
(
m2 − 1

m2 − 2

)2

S⃗i (1.52)

F⃗rad = −1

4
ϵir

2

∮
∂V

(∣∣∣E⃗s

∣∣∣2 + c2

n2
i

∣∣∣B⃗s

∣∣∣2 + 2ℜ
[
E⃗iE⃗

∗
s +

c2

n2
i

B⃗iB⃗
∗
s

])
r⃗dS (1.53)

This direct comparison between the forces shows some important differences:

• the optical force in the geometric regime is higher if the particle size is com-
parable to the light beam spot size on the particle. Therefore, it decreases
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Figure 1.7: trap stiffness k as function of the particle radius a of a spherical particle
trapped by a laser beam with power 10mW and wavelength λ0 = 1064 nm focused
by a lens with numerical aperture NA = 1.20. The refractive index of the particle
is np = 1.50 and it is trapped in water with refractive index nm = 1.33. The blue
solid line represents the intermediate regime solution, the dotted green line the ray
optics regime solution and the dashed orange line the dipole regime solution. These
calculations are performed with the Optical Tweezers Software (OTS) [31].

increasing the particle size because, as shown in chapter 1.1, the trapping
condition is principally determined by the rays impinging on the sphere with
high incidence angles;

• the optical force in the dipole regime, instead, is strongly dependent on the
particle size and, being the scattering force proportional to particle volume
to the square (∝ a6 with a particle radius), the scattering force is very small
compared to the gradient one (proportional to the particle volume) for small
particles;

• the optical force in the intermediate regime is characterised by two contribu-
tions. The first is related to the scattered electromagnetic field only

(∣∣∣E⃗s

∣∣∣2 + c2

n2
i

∣∣∣B⃗s

∣∣∣2)
and the second on to the interference of the incident and scattered fields,
because of the term 2ℜ

[
E⃗iE⃗

∗
s +

c2

n2
i
B⃗iB⃗

∗
s

]
.

Furthermore, the optical force, despite the regime in which it is calculated, can
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be written for small displacement around the equilibrium position as

F⃗rad = −k⃗rad · (r⃗ − r⃗eq)r̂ (1.54)

where k⃗rad = (krad,x, krad,y, krad,z) is the trap stiffness along the three axis and r⃗eq is
the equilibrium position vector. Although it might appear from this analytical form
that the forces of the three regimes are identical in this condition, the differences
between the three regimes lie in the stiffnesses. Indeed, as can be seen from figure
1.7, the stiffness calculated for the three regimes as a function of the radius of the
sphere a is very different depending on the approximation considered.
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Chapter 2

Brownian motion of a trapped
particle

A particle immersed in a fluid undergoes thermal collisions from the molecules
of the fluid that lead to a random motion known as Brownian motion. Brownian
motion was discovered by Robert Brown who studied the random movement of
particles released by pollen grains in water. The theory of Brownian motion was
developed by Bachelier in his doctoral thesis [33], by Einstein in his 1905 paper [34],
by and Langevin in 1908 [35] and Smoluchowski in 1916 [36], but only in 1923 it was
formulated as a stochastic process by Wiener [37]. Hence, when a particle is trapped
with an optical tweezers, its motion is not only influenced by the optical forces, but
also by a random force that makes it oscillate around the trapping position. The
first section of this chapter deals with the Brownian motion of a free particle, while
the second and third ones with the equation of motion of a trapped particle and of
a particle in a double-well potential. In the last two sections, the case in which the
particle inertia is non-negligible is discussed.

2.1 Brownian motion
Brownian motion (or Brownian diffusion) of a particle of mass m immersed in a

homogeneous and isotropic fluid is caused by the multiple collisions of the particle
with the N − 1 constituents of the fluid, which are assumed to have size and mass
much smaller than the particle. The equation of motion is obtained by solving the
following Newton’s equations

mn
d2

dt2
r⃗n = F⃗n(r⃗1, ..., r⃗N) (2.1)

where n = 1, ..., N is an index specifying both the particle and the fluid constituents,
r⃗n the position of all particles in the system, mn their mass and F⃗n(r⃗1, ..., r⃗N) the
overall force acting on the n-th particle.

21
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Figure 2.1: (a) x position as function of time t and (b) y position as function of x of
an experimental trajectory of a silica particle of 3.16µm diameter that is moving in
water with Brownian motion.

Equation (2.1) is deterministic but, in practice, Brownian motion is unpredictable
since N is of the order of magnitude of Avogadro’s number. Therefore, it becomes
necessary to study Brownian motion as a stochastic process observing that:

• the particle is on average stationary around its initial position, due to the
isotropy and homogeneity of the fluid;

• the collisions at time t1 are independent of those at time t2, since the particle
has a very large mass compared to that of the fluid constituents, i.e. there is
a diffusion process without memory;

• the motion is continuous since the number of constituents is very high and
the collisions very frequent, which makes it possible to state that the dis-
placements distribution tends to be Gaussian according to the central limit
theorem.

This stochastic process, indicated as W , is called Wiener process and it is defined by
the properties:

• this process is zero for t = 0, i.e. W (t = 0) = 0;

• W has Gaussian increments: W (t + u) −W (t), u ≥ 0 is normally distributed
with zero mean and variance u;

• W has independent increments;

• W has only continuous path, i.e. W (t) is continuous in t with probability 1.
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A typical trajectory of a particle that undergoes Brownian motion is shown in figure
2.1a and 2.1b. Brownian motion can be studied using: the Langevin equation
[35] that is based on considering in Newton’s equation of motion a random force
term, the free diffusion equation [34] that studies Brownian motion in its ensemble
properties, or the Fokker-Planck equation [38] that generalise the free diffusion
equation. Throughout this chapter, the one-dimensional case is considered being
the n-dimensional generalisation straightforward.

2.1.1 Langevin equation
Langevin in 1908 [35] proposed a formalisation of the Brownian motion by in-

troducing a random noise contribution into the Newton equation of motion of the
particle. For a particle of mass m moving in a fluid with a viscosity coefficient η,
the Langevin equation is given by

dr(t)

dt
= v(t)

dv(t)

dt
= − γ

m
v(t) +

1

m
ξ(t)

(2.2)

where ξ(t) is the random force and γ = 6πηa is the particle friction coefficient defined,
for a sphere of radius a, by Stokes’ law [39].

The random force ξ(t) allows to explain the equilibrium properties of the system.
Indeed, by exploiting the energy equipartition theorem, the expected value of v2 is

E[v2(t)]eq =
kBT

m
(2.3)

which can not be obtained without the term ξ(t), since the equation (2.2) with
ξ(t) = 0 has the solution

v(t) = e−t/τBv(0) ⇒ E[v2(t)]eq = e−2t/τBE[v2(0)]eq −−−→
t→∞

0 (2.4)

where τB = m/γ. The random force ξ(t) is a white noise and it has two important
properties:

• the average value over all possible realisations of the noise, which is defined as
E[ξ(t)]ξ, is zero since the particle on average stays around the initial position
due to the homogeneity and isotropy of the fluid;

• the motion has no memory effects, i.e. the autocorrelation of the motion is

E[ξ(t1)ξ(t2)]ξ = gδ(t1 − t2) (2.5)

where g is called the correlation weight. As written above, the particle has
a very large mass with respect to the mass of the fluid constituents and,
therefore, the collisions at time t1 are independent of those at time t2.
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These properties ensure that the Langevin equation describes a Wiener process
satisfying all the definitions given previously.

As shown in appendix B, the correlation weight is

g = 2kBTγ (2.6)

and the random force ξ(t) can be rewritten as

ξ(t) =
√

2γkBTΞ(t) (2.7)

where Ξ(t) is a white noise random variable that satisfies the relations E[Ξ(t)]Ξ = 0
and E[Ξ(t1)Ξ(t2)]Ξ = δ(t1 − t2). Therefore, the Langevin equation can be rewritten
as 

dr(t)

dt
= v(t)

dv(t)

dt
= − γ

m
v(t) +

√
2γkBT

m
Ξ(t)

(2.8)

Following the calculations done in appendix B, the solution of this equation with
its derivative is given by:

r(t) = r0 +
mv0
γ

(
1− e−

γ
m
t
)
+

√
2kBT

γ

(∫ t

0

Ξ(τ) dτ −
∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t

)

v(t) = v0e
− γ

m
t +

γ

m

√
2kBT

γ

∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t

(2.9)

where r0 and v0 are the initial conditions of the particle position and velocity. As
shown in appendix B, equation (2.9) assures that E[v2(t)]eq is

E[v(t)2]eq −−−→
t→∞

kBT

m
(2.10)

in agreement with the energy equipartition theorem.
Studying diffusion processes, it is useful to evaluate the expected value on all

the realisations of the noise Ξ of the particle position E[r(t)]Ξ and the mean squared
displacement MSD(τ) = Var[∆r(τ)]. Because in the experiments the initial position
r0 and the initial velocity v0 are unknown and because of the properties of Brownian
motion discussed before, r0 and v0 can be chosen as r0 = 0 and v0 =

√
kBT/m.

Therefore, the expected value of r(t), following the calculation of appendix B, is

E[r(t)]Ξ =

√
kBT

m

m

γ

(
1− e−

γ
m
t
)

(2.11)

and the MSD is
MSD(τ) =

2kBT

γ
τ +

2kBTm

γ2

[
e−

γ
m
τ − 1

]
(2.12)
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where τ is called lag time. Very often, the systems under analysis show a predomi-
nance of viscosity over inertia, i.e. mdv(t)

dt
≪ γv(t) and, thus, the Langevin equation

is
γv(t) = ξ(t) (2.13)

In this case, the MSD is
E[r2(τ)]Ξ =

2kBT

γ
τ (2.14)

and it increases linearly in time.

2.1.2 Free diffusion equation
The free diffusion equation arises when Brownian motion is studied in its en-

semble properties. Assuming that the inertial effects are negligible, an ensemble
of Brownian particles is characterised by the probability density function ρ(t, r). To
describe the time evolution of the ensemble it is necessary to study the distribution
ρ(t, r) when the time t increases by ∆t, ρ(t + ∆t, r), and to define the probability
pξ(ξ) that a particle, during the time interval ∆t, travels a distance ξ from the point
r − ξ to the point r . Once these concepts are introduced, the probability density
distribution pξ(ξ) for the ensemble is given by the relation [34]

ρ(t+∆t, r) =

∫ +∞

−∞
ρ(t, r − ξ)pξ(ξ)dξ (2.15)

Expanding in Taylor series at ∆t = 0 and ξ = 0, this equation becomes (at the first
non-zero order)

∂ρ

∂t
= D

∂2ρ

∂r2
(2.16)

defined as free diffusion equation, where D, the diffusion coefficient, is

D =

∫ +∞

−∞
ξ2pξ(ξ)dξ (2.17)

It is easily demonstrated that if ρ(r, 0) = δ(r), then

ρ(t, r) =
1√
4πDt

e−
r2

4Dt (2.18)

and that
MSD =

∫ ∞

−∞
r2ρ(t, r)dr = 2Dt (2.19)

obtained using the properties of the Gamma function [40].
On average, Brownian particles tend to migrate to less populated regions caus-

ing a particle current Jdiff(t, r). Assuming that the number of particles is conserved,
the following continuity relation is obtained

∂ρ

∂t
(t, r) = −∂Jdiff

∂r
(t, r) (2.20)
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which once compared to the equation (2.16) gives the equation describing the link
between Jdiff and D, i.e.

Jdiff(t, r) = −D∂ρ
∂r

(t, r) (2.21)

called Fick’s law.

2.1.3 Fokker-Planck equation
The free diffusion equation describes the motion of an ensemble of free Brownian

particles, but often these particles interacts with an external field. To take this
into account, equation (2.16) is generalizable to the case where an external force
F (r) = −dU

dr
(r) acts on the particles supposing that inertial effects are negligible. An

external force produces a drift velocity vD(t, r) = F (t, r)/γ that changes the particle
current

Jdiff(t, r) → J(t, r) = Jdiff(t, r) + JD(t, r) (2.22)
where, by definition of current,

JD(t, r) = vD(t, r)ρ(t, r) (2.23)

This leads to a modification of equation (2.20) using J instead of Jdiff , i.e.

∂ρ

∂t
(t, r) = −∂J

∂r
(t, r) = D

∂2ρ

∂r2
(t, r)− 1

γ

∂ [F (t, r)ρ(t, r)]

∂r
(2.24)

called Fokker-Planck equation. In the case of a system at thermal equilibrium, the
distribution ρ(t, r) is given by the Maxwell-Boltzmann distribution,

ρ(r) = ρ0 exp

[
−U(r)
kBT

]
(2.25)

with ρ0 a normalization factor, and the total diffusion is J(t, r) = 0, i.e.

Jdiff(t, r) = −JD(t, r) ⇒ vD(r)ρ(r) = D
∂ρ

∂r
(r) (2.26)

Substituting into this equation the expression vD(r) = F (r)/γ and the derivative of
the Maxwell-Boltzmann distribution ∂ρ

∂r
= F (r)

kBT
ρ(r), the equation becomes

F (r)

γ
ρ(r) = D

F (r)

kBT
ρ(r) (2.27)

giving
D =

kBT

γ
(2.28)

known as the Stokes-Einstein relation. Therefore the diffusion of a particle in-
creases as the temperature of the thermal bath increases (the collisions between
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the particle and constituents of the fluid are more energetic) while decreases as the
particle friction coefficient increases, which depends on the geometrical properties
of the particle and the fluid viscosity.

The Fokker-Planck equation (2.24) is derived from the free diffusion equation
obtained assuming that the inertial effects are negligible. To take into account the
inertial effects and without going into the details of how to derive the Fokker-Planck
equation for the general case, consider the n-dimensional stochastic process X that
satisfies the stochastic differential equation

dX⃗ = g⃗(t, X⃗)dt+h(t, X⃗)dW⃗ (2.29)

where W⃗ is a m-dimensional Wiener process, g⃗(t, X⃗) is the n-dimensional drift
vector, and h(t, X⃗) is a n × m matrix that defines the diffusion coefficient matrix
through the relation D⃗ = 1

2
h ·hT , in which · indicates the matrix multiplication and

hT is the transpose of h. Under these assumptions, it is possible to demonstrate
that the probability density function ρ(t, x⃗) of the stochastic process X satisfies the
equation [38, 41, 42]

∂ρ

∂t
(t, x⃗) = −

n∑
l=1

∂

∂xl
[gl(t, x⃗)ρ(t, x⃗)] +

n∑
l=1

n∑
j=1

∂2

∂xl∂xj
[Di,j(t, x⃗)ρ(t, x⃗)] (2.30)

called Fokker-Planck equation, with x⃗ = (x1, ..., xn) the vector of the n independent
variables. For Brownian motion, the stochastic differential equation is defined by
the differential form of the Langevin equation (2.2), i.e.

dv = − γ

m
v(t)dt+

√
2γkBT

m
ξ(t)dt (2.31)

which implies 

dX⃗ = dv

g = − γ

m
v(t)

h =

√
2γkBT

m

dW⃗ = Ξdt

(2.32)

Therefore, the Fokker-Planck equation for Brownian motion is
∂ρ

∂t
=

γ

m

∂

∂v
(vρ) +

γkBT

m2

∂2ρ

∂v2
(2.33)

Imposing the initial condition ρ(t = 0) = δ(v−v0), which is valid because the particle
at the initial time has velocity v0, and performing the Fourier transform of (2.33), it
is possible to demonstrate that the solution of the Fokker-Planck equation is [43, 44]

ρ(t, v) =

√
m

2πkBT

e
− m

2kBT

(
v−v0e

− γ
mt

)2

1−e
−2

γ
mt√

1− e−2 γ
m
t

(2.34)
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Figure 2.2: (a) x position as function of time t and (b) y position as function of x of
an experimental trajectory of a silica particle of 3.16µm diameter trapped in water.

that, when the particle reaches the equilibrium (t → ∞), becomes the Maxwell-
Boltzmann distribution, as it is easily demonstrated by direct calculation

ρ(v) = lim
t→∞

ρ(t, v) =

√
m

2πkBT
e
− mv2

2kBT (2.35)

2.2 Trapped particle motion
An optically trapped particle in a fluid jiggles around its equilibrium position

due to Brownian motion and, in order to describe its motion, it is necessary to
add optical forces to the Langevin equation. The optical forces, therefore, confine
the particle around the optical focus of the system, as shown in figure 2.2a and
2.2b. In chapter 1, the optical force is written, for small displacement around the
equilibrium position, as a restoring force characterised by a spring constants called
trap stiffness. The trap stiffness, the fluid viscosity, and the particle radius can
be estimated from the particle trajectory using the following techniques: power
spectrum analysis, mean squared displacement analysis, autocorrelation function
analysis, potential analysis, and equipartition method.

To describe these techniques, the main step is to write the Langevin equation
d2r

dt2
(t) = − γ

m

dr

dt
(t) +

Ftrap

m
+

√
2γkBT

m
Ξ(t) (2.36)
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with the trap force Ftrap(t) = −kr(t) where k is the trap stiffness. This implies that
the Langevin equation can be rewritten as

d2r

dt2
(t) = − γ

m

dr

dt
(t)− k

m
r(t) +

√
2γkBT

m
Ξ(t) (2.37)

where the reference frame has its origin in the equilibrium position. Under these
assumptions, the particle motion has two characteristics times: the relaxation time
τm = m/γ, which indicates the time scale at which the inertial effects decay, and the
diffusion time τD = a2/D, which is the time the particle have diffused its own radius.
When the relaxation time τm is much smaller than the typical diffusion time τD,
the inertial effects are negligible and mdv(t)

dt
≪ γv(t) (overdamped conditions). For

example, micrometric particles trapped in water are characterised by τm ∼ 10−7 s
and τD ∼ 1 s and inertial effects are negligible. In overdamped conditions, equation
(2.37) becomes

dr

dt
(t) =

√
2kBT

γ
Ξ(t)− k

γ
r(t) (2.38)

By mathematically manipulating these equations (2.36) and (2.38), it is possible
to make predictions for measurable quantities of interest.

2.2.1 Power spectrum analysis
This technique is the most reliable for a spherical particle because, working in

the frequency domain, it minimises some sources of noise such as slow mechanical
drift. The first step is to evaluate the Fourier transform of equation (2.37) that is

−ω2r̃ = −i γ
m
ωr̃ − k

m
r̃ +

√
2γkBT

m
Ξ̃ ⇒ r̃ =

1

m

√
2γkBT Ξ̃(

k
m
− ω2

)
+ i γ

m
ω

(2.39)

where r̃ ≡ r̃(ω) =
∫ +∞
−∞ r(t)eiωt dt indicates the Fourier transform1 of r and the

differentiation theorem for the Fourier transform is used. The square modulus of
r̃(ω) defines the energy spectral density, which in this case is

Er,Ξ(ω) = |r̃|2 = 2γkBT

m2

∣∣∣Ξ̃∣∣∣2(
k
m
− ω2

)2
+ γ2

m2ω2
(2.40)

To estiamte the Fourier transform of the white noise, Ξ̃, it is useful to evaluate the
power spectral density (PSD) defined as

Sr(ω) = lim
t→∞

1

t
|r̃t(ω)|2 = lim

t→∞

1

t

∣∣∣r̃(ω)Ĩt0(T )∣∣∣2 = |r̃|2 (2.41)

where t0 is an arbitrary time and Ĩt0(t) is the Fourier transform of the indicator
function of the set [t0 − t/2, t0 + t/2]. Observing that lim

T→∞
1
T

∣∣∣Ξ̃∣∣∣2 = 1, the power

1The inverse Fourier transform is defined as r(t) = 1√
2π

∫ +∞
−∞ r̃(ω)e−iωt dω.
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Figure 2.3: (a) PSD, Sr(ω), of equation (2.43) over SΩ = Sr(Ω) as function of ω/Ω for
different values of the ratio Γ0/Ω considering a silica particle of diameter 3.16µm
and density 1850 kg/m3 trapped in air; (b) comparison between the PSD of a particle
trapped in air (violet line) and in water (blue line) as function of the frequency f = ω

2π

for Γ0/Ω = 0.5. For this numerical evaluation, the temperature of the thermal bath
is 298.15K, the air viscosity is 1.8·10−5 Pa · s, and the water viscosity is 8.9·10−4 Pa · s.

spectral density is
Sr(ω) =

2γkBT

m2

1(
k
m
− ω2

)2
+ γ2

m2ω2
(2.42)

To explain the physical meaning of this equation, it is useful to define the frequen-
cies Ω =

√
k/m and Γ0 = γ/m and to rewrite equation (2.42) as

Sr(ω) =
2kBT

k

Γ0Ω
2

(Ω2 − ω2)2 + Γ2
0ω

2
(2.43)

which gives the value Sr → 2kBTγ
k2

for ω → 0. The PSD of experimental data,
therefore, gives important information about the trap stiffness, the fluid viscosity,
and the particle mass. The behaviour of equation (2.43) is shown in Figure 2.3a
and is characterised by a peak for ω = Ω representing a resonance condition.

Instead, in overdamped conditions, the power spectrum analysis is obtained by
performing the Fourier transform of equation (2.38), i.e.

iωr̃ =

√
2kBT

γ
Ξ̃− k

γ
r̃ ⇒ r̃ =

√
2kBT

γ

Ξ̃

iω + k
γ

≡

√
2kBT

γ

Ξ̃

iω + ωc

(2.44)

with ωc = k/γ and, consequently, fc = k/(2πγ) called corner frequency. As before,
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Figure 2.4: (a) MSD of equation (2.46) as function of the time t for different values of
the trapping stiffness k considering a silica particle of diameter 3.16µm and density
1850 kg/m3 trapped in air; (b) comparison between the MSD of the same particle
trapped in air (violet line) and in water (blue line) as function of the time t for k =
3.97 · 10−5N/m. For this numerical evaluation, the temperature of the thermal bath
is 298.15K, the air viscosity is 1.8·10−5 Pa · s, and the water viscosity is 8.9·10−4 Pa · s.

this equation gives the PSD

Sr(ω) =
2kBT

γ

1

ω2 + ω2
c

(2.45)

that is a Lorentzian curve with a maximum value of Sr(ωmax = 0) = 2kBT
γ
k2

from
which it follows that fc is the corner frequency because Sr(ωc) = Sr(ωmax)/2 when
f = fc. By evaluating the corner frequency and assuming the fluid viscosity known
the trap stiffness can be measured.

As displayed in figure 2.3b, the PSD has large values at low frequencies in over-
damped conditions (equation (2.45)) and large values at the resonant frequency
when inertial effects are not negligible (equation (2.42)). In addition, the inertia
affects the PSD introducing a not-Lorentzian shape of the function characterised by
the resonant frequency at Ω.

2.2.2 Mean squared displacement analysis

This technique is based on the evaluation of MSD, which quantifies the deviation
of the position of the particle from its initial position. For example, the MSD is
linear in time for Brownian motion (equation (2.19)), quadratic in time for ballistic
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motion2, constant in time for a trapped particle. These behaviours are observable
at different time scales and, therefore, can coexist and can be studied together with
a single measurement. The MSD for a trapped particle, following the calculations
of appendix C, is

MSD(τ) =
2kBT

k
− 2kBT

k

[
cosh

(
Ω1

2
τ

)
+

Γ0

Ω1

sinh

(
Ω1

2
τ

)]
e−Γ0τ/2 (2.46)

where τ is called lag time. In this expression there are two angular frequencies
contributions: Ω =

√
k/m, that is the angular frequency of the trapped particle

without damping; Ω1 =
√

γ2

m2 − 4 k
m

=
√

Γ2
0 − 4Ω2, that is the cyclic frequency of the

damped oscillator in which Γ0 =
γ
m

is the damping coefficient. The MSD, for τ → ∞,
has the limit value of

lim
τ→∞

MSD(τ) =
2kBT

k
(2.47)

from which it is possible to evaluate the trap stiffness k assuming the temperature
T known. Evaluated k, the particle mass can be obtained from Ω and the damping
coefficient from Γ0. The MSD behaviour of figure 2.4a clearly shows that, for high
stiffnesses3 (k > 5 · 10−4 N

m
), the MSD reaches the plateau 2kBT

k
quickly, but with

very strong oscillations. Instead, for common stiffnesses obtained with laser powers
between 10mW and 1000mW (5 · 10−7 N

m
k < 5 · 10−5 N

m
), the MSD reaches the plateau

almost at the same time, but with less strong oscillations. For low stiffnesses
(k < 5 · 10−7 N

m
), the oscillations totally disappear and the plateau is reached at a

higher time.
In overdamped conditions, the MSD is

MSD(τ) =
2kBT

k

(
1− e−

k
γ
τ
)

(2.48)

obtained in a way similar to the previous one. Without inertial effects, the oscilla-
tions before the plateau at 2kBT

k
are totally absent for any stiffness value, as clearly

visible in figure 2.4b. Assuming the temperature T is known, the stiffness k can be
evaluated by the plateau and the viscosity γ by the characteristic time γ/k of the
exponential.

2.2.3 Autocorrelation function analysis
The autocorrelation function analysis is based on the autocorrelation function

(ACF) evaluation of the trajectory, Cr(τ), defined as

Cr(τ) = E[r(t+ τ)r(t)] (2.49)
2Ballistic motion of a trapped particle is observable when the acquisition frequency is high enough

to distinguish individual collisions between the constituents and the particle.
3In this theoretical chapter, very high stiffnesses have been shown only to emphasise the

theoretical properties, but optical tweezers can give stiffnesses only up to 10−5 N
m ÷ 10−4 N

m .
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Figure 2.5: (a) ACF, Cr, of equation (2.51) over C0 = Cr(0) as function of τ for different
values of the trapping stiffness k considering a silica particle of diameter 3.16µm
and density 1850 kg/m3 trapped in air; (b) comparison between the Cr/C0 of the same
particle trapped in air (violet line) and in water (blue line) as function of τ for k =
3.97 · 10−5N/m. For this numerical evaluation, the temperature of the thermal bath
is 298.15K, the air viscosity is 1.8·10−5 Pa · s, and the water viscosity is 8.9·10−4 Pa · s.

The evaluation of the ACF can be done by direct calculation from equation (C.12),
but a simple way is to use the Wiener–Khinchin theorem that relates the ACF to
the PSD via the Fourier transform. Observing that the PSD of equations (2.43) and
(2.45) is an even function, the Wiener-Khinchin theorem can be written as

Cr(τ) =
1

2π

∫ +∞

−∞
Sr(ω)e

iωτ dω =
1

π

∫ +∞

0

Sr(ω) cosωτ dω (2.50)

which gives for equation (2.43), i.e. when inertia is not negligible,

Cr(τ) =
kBT

k

[
cosh

(
Ω1

2
τ

)
+

Γ0

Ω1

sinh

(
Ω1

2
τ

)]
e−

Γ0
2
τ =

=
kBT

k

cosh

√

γ2

m2 − 4 k
m

2
τ

+
γ/m√
γ2

m2 − 4 k
m

sinh


√

γ2

m2 − 4 k
m

2
τ

 e− γ
2m

τ

(2.51)

The ACF behaviour of figure 2.5a has the same properties of the MSD of figure 2.4a.
Indeed, for high stiffnesses (k > 5 · 10−4 N

m
), the ACF deviates from the initial value

Cr(t = 0) = kBT
k

quickly, but with very strong oscillations. For common stiffnesses
(k < 5 · 10−5 N

m
), the ACF deviates from kBT

k
the later the higher the value of the

stiffness and it reaches zero (limt→∞ Cr(t) = 0) oscillating at a lower frequency the
higher the value of stiffness. In addition, before reaching the plateau value, the
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ACF shows that the particle is anti-correlated with itself due to resonant effects.
From the ACF as for the PSD, assuming the particle mass known, it is possible to
evaluate from Ω the trap stiffness and from Γ0 the fluid viscosity.

Following the same procedure, the ACF in overdamped conditions is

Cr(τ) =
kBT

k
e−

k
γ
τ (2.52)

whose initial value, kBT
k

, gives the stiffness of the trap knowing the temperature
T , while the way it tends to zero gives the viscosity of the fluid because of the
exponential term e−

k
γ
τ .

As for the MSD, the oscillations are totally absent in overdamped conditions,
as can be clearly seen from equation (2.52) and figure 2.5b. In addition, the ACF
deviates earlier from the initial value and reaches zero sooner than the ACF defined
by equation (2.51).

2.2.4 Potential analysis and equipartition method
These two techniques are based on the possibility to extract information about

the trapping force from the probability density function. The probability density
function can be obtained from the Fokker-Planck equation, which, for a trapped
particle, is defined by the stochastic differential equations{

dr = vdt

dv = − γ
m
vdt− k

m
rdt+

√
2γkBT
m

Ξdt
(2.53)

that give the following Fokker-Planck equation

∂ρ

∂t
= −v∂ρ

∂r
+

∂

∂v

[(
γ

m
v +

k

m
r

)
ρ

]
+
kBTγ

m2

∂2ρ

∂v2
(2.54)

obtained using equations (2.29) and (2.30), where

dX⃗ =

(
dr
dv

)
g =

(
v

− γ
m
v − k

m
r

)
h =

(
0 0

0
√
2γkBT
m

)
dW⃗ =

(
0

Ξdt

)
(2.55)

By introducing the following independent variables

z1 = v + φ1r z2 = v + φ2r (2.56)
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with φ1 =
1
2
γ
m
− 1

2

√
γ2

m2 − 4 k
m

and φ2 =
1
2
γ
m
+ 1

2

√
γ2

m2 − 4 k
m

, the Fokker-Planck equation
(2.54) assumes the symmetrical expression [44]

∂ρ

∂t
= φ2

∂

∂z1
(z1ρ) + φ1

∂

∂z2
(z2ρ) +

kBTγ

m2

(
∂

∂z1
+

∂

∂z2

)2

ρ (2.57)

that has as solution the inverse Fourier transform of the function

FT[ρ(t, z1, z2)]χ1,χ2 = exp

[
−iz10e−φ2t χ1 − iz20e

−φ1t χ2 −
1

2

kBTγ

m2

χ2
1

φ2

(1− e−2φ2t)+

−2
kBTγ

m2

χ1χ2

φ1 − φ2

(1− e−(φ1+φ2)t)− 1

2

kBTγ

m2

χ2
2

φ1

(1− e−2φ1t)

] (2.58)

where χ1 and χ2 are the variable of the Fourier space relative to z1 and z2. The
inverse Fourier transform of this equation is a 2-D Gaussian function in the variable
z1 and z2, in which the time variable t is only present in the terms e−2φ1t, e−2φ2t, and
e−(φ1+φ2)t. It is possible to demonstrate that, when the particle has reached the
thermal equilibrium with the thermal bath (t → ∞), the ρeq(t, r, v) is the following
Maxwell-Boltzmann distribution

ρeq(r, v) =

√
k

2πkBT

√
m

2πkBT
e
−

1
2 kr2+1

2mv2

kBT = ρr,eq(r)ρv,eq(v) (2.59)

so that, if the particle velocity is unknown, the distribution describing this system
is, i.e.

ρr,eq(r) =

√
k

2πkBT
e
−

1
2 kr2

kBT ≡ ρr,eq(0)e
−

1
2 kr2

kBT (2.60)

being
∫∞
−∞ ρ(v)eq dv = 1. This result is generalisable to a conservative potential U(r)

for which
ρr,eq(r) = ρr,eq(0)e

−U(r)
kBT (2.61)

Potential analysis According to the major result of equation (2.61), the loga-
rithm of (2.60) gives the potential, because

ln

[
ρr,eq(r)

ρr,eq(0)

]
= −U(r)

kBT
(2.62)

For small displacements of the particle from the trapping position, the force term
is F (r) = −kr and, consequently, the potential is

U(r) =
kBT

2
k(r − r0)

2 + C (2.63)

with r0 the equilibrium position and C arbitrary constant. Therefore, equation
(2.62) gives the trap stiffness, i.e.

ln

[
ρr,eq(r)

ρr,eq(0)

]
= − 1

2kBT
k(r − r0)

2 + C ′ (2.64)

where C ′ = C/(kBT ). Under these assumptions, the potential analysis does not
differ between the general case and the low Reynolds number regime.
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Equipartition method This method is based on the relation between the vari-
ance of the distribution and the trap stiffness. Assuming the particle in thermal
equilibrium with the thermal bath and, thus, starting from equation (2.60), the
variance of the particle position is

Var[r] =

∫ +∞

−∞
(r − r0)

2ρr,eq(r) dr =
kBT

k
(2.65)

and, therefore,
k =

kBT

Var[r]
(2.66)

As for the potential analysis and under these assumptions, the equipartition method,
as described so far, can be used indiscriminately both in the general case and for
the low Reynolds number regime.
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Figure 2.6: (a) double-well potential with a = 2.0 · 104 J/m4, b = 4.0 · 10−3 J/m3, and
c = 2.9 · 10−8 J/m2 so that r+ = 1.3µm and r− = −1.1µm; (b) simulated trajectory
of a silica particle of diameter 1.00µm interacting with the double-well potential of
(a).

2.3 Double-well potential
When a particle in a fluid interacts with a double-well potential, it is possi-

ble to study the statistical properties of the particle transitions between the two
metastable states of the potential. These thermal driven transitions characterise
many physical, biological, and chemical processes, such as diffusion in solids, switch-
ing in superconducting junctions, chemical reactions, and protein folding. In these
conditions the overdamped Langevin equation4 is

dr

dt
(t) = −1

γ

dU

dr
(r) +

√
2γkBT

γ
Ξ(t) (2.67)

where U(r), for the purposes of this thesis, is the double-well potential described in
1 dimension by

U(r) =
a

4
r4 − b

3
r3 − c

2
r2 (2.68)

with a ≥ 0, b ≥ 0, and c ≥ 0. Its behaviour is shown in figure 2.6a. This potential is
characterised by two stable position r+ and r− where the potential has two minima.
Between the two stable position there is an intermediate unstable position rs where
the potential has a local maximum. For the potential (2.68), the two stable position
are

r± =
b

2a
±

√
b2 + 4ac

2a
⇒ U(r±) = −

(
b±

√
4ac+ b2

)2 (
b2 ± b

√
4ac+ b2 + 6ac

)
96a3

(2.69)

4For the purposes of this work, it is not of interest to study the general case where the term d2r
dt2

can not be neglected.
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while the unstable position is rs = 0 in which the potential is chosen to be zero. This
potential is characterised by the potential barriers

∆U± = U(rs)− U(r±) (2.70)

and, assuming that kBT ≪ ∆U±, the transition rates ψ± from the equilibrium
position are [45]

ψ± =
1

T±
=

1

2πγ

√∣∣∣∣d2Udr2 (r±)d2Udr2 (rs)
∣∣∣∣e−∆U±

kBT (2.71)

where T± is defined as transition time. This indicates that the particle is confined
around r+ or r−, but, due to the random force Ξ[t], occasionally transits from r+ to r−
or vice versa as shown in figure 2.6b. In these conditions, to evaluate the potential
experimentally it is very useful to use the potential method of equation (2.62), i.e.

U(r) = −kBT ln

[
ρr,eq(r)

ρr,eq(0)

]
(2.72)

2.3.1 Normalised autocorrelation function
The normalised autocorrelation function of a particle (or an ensemble of non-

interacting particles) interacting with a double-well potential can be evaluated if
the potential has a symmetrical form (b = 0 in equation (2.68)). Under these con-
ditions, the Fokker-Planck equation can be manipulated such that the normalized
auto-correlation function (NACF is characterised by C̄(0)r = 1) is (equation (6.3.12)
of [46])

C̄r(τ) ≃ ∆1e
−λ1τ + (1−∆1)e

− τ
τW (2.73)

In this equation, λ1 is the characteristic frequency of the process defined as the
smallest eigenvalue of the Fokker-Planck equation, that is (equation (6.3.3) of [46])

1

λ1(q)
= τ0

eq

1 + erf(
√
q)

+∞∫∫
0

e−(s−√
q)2−(t−√

q)2 erf(
√
2st)√
st

ds dt (2.74)

where q = c2/(4kBT a) and τ0 = γ/
√
2kBT a. Instead, τW is the characteristic time

of the fast relaxation processes in the well and ∆1 the population fraction of the
particles crossing over the well barrier (1 − ∆1 is the population fraction of the
particles in the deep well) 5, that are (equation (6.3.13) of [46])

τW (q) =
λ1Tc − 1

λ1 − 1/Tef
∆1 =

Tc/Tef − 1

λ1Tc − 2 + 1/(λ1Tef)
(2.75)

5This definition is valid both for an ensemble of particles and for a single particle. Indeed, for a
single particle, ∆1 is the population fraction of the crossing events over the well barrier.
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Figure 2.7: (a) normalized autocorrelation function C̄r(τ) of equation (2.73) for
different values of q and for τ0 = 0.65 s; (b) zoom of C̄r(τ) to emphasise the presence
of the two decay times λ−1

1 and τW with λ−1
1 > τW .

where Tc is the correlation time given by (equation (6.2.37) of [46])

Tc(q) = τ0
2

3
4 e

3
2
q

W− 3
2
(−

√
2q)

+∞∫∫
0

e−(s−√
q)2−(t−√

q)2 erf(
√
2st)√
s

ds dt (2.76)

and Tef is the effective correlation time (equation (6.3.9) of [46])

Tef(q) = τ0
W− 3

2
(−

√
2q)

W− 1
2
(−

√
2q)

(2.77)

In these expressions, Wν(x) are the Whittaker’s parabolic cylinder functions, de-
fined as

Wν(x) =
e−

x2

4

Γ(−ν)

∞∫
0

e−xu−u2

2 u−ν−1 du if ν < 0 (2.78)

where Γ is the Gamma function. Now being able to evaluate all terms of equation
(2.73), the trend of the NACF can be studied. This function is a decreasing function
characterised by two exponential decreases with characteristic times τW and λ−1

1 .
Figure 2.7a shows the trend of equation (2.73) for different values of q, while figure
2.7b emphasises its double exponential behaviour.

From the NACF, it is possible to evaluate the characteristic time of the fast
relaxation process τW , the characteristic frequency λ1, and the population fraction
∆1. Then, from these values and equations (2.75), the correlation time Tc and the
effective correlation time Tef can be evaluated.



40 CHAPTER 2. BROWNIAN MOTION OF A TRAPPED PARTICLE

10!5 10!4 10!310!3 10!210!2 10!110!1 100100 101

f [Hz]

10!4

10!310!3

10!210!2

10!110!1

100100

101101

102102

103

7Sr(f)

q=1

q=2

q=3

q=4

q=5

q=6

q=7

(a)

"161

62
1+!2

(1!"1)
=W

1+= 2
W

!2

"161

62
1+!2 + (1!"1)

=W
1+= 2

W
!2

10!5 10!4 10!310!3 10!210!2 10!110!1 100100 101

f [Hz]

10!4

10!310!3

10!210!2

10!110!1

100100

101101

102102

103

7Sr(f)

(b)

Figure 2.8: (a) normalized PSD function S̄r(ω) of equation (2.79) for different values
of q and for τ0 = 0.65 s; (b) S̄r(ω) (red solid line) for q = 7 as function of f where the
two Lorentzian behaviours are indicated with a dotted black line and a blue dashed
line.

2.3.2 Power spectral density
The Wiener-Khinchin theorem gives the PSD knowing the NACF being the PSD

the Fourier transform of the NACF, i.e.

S̄(ω) =
∫ +∞

0

C̄r(τ) cos(ωτ) dω =
∆1λ1
λ21 + ω2

+ (1−∆1)
τW

1 + τ 2Wω
2

(2.79)

Therefore, the PSD is the sum of two Lorentzian curve with characteristic frequen-
cies λ1 and τ−1

W and its behaviour for different values of q (∆1, λ1, and τW depend
on q = c2/(4kBT a)) is shown in figure 2.8a. Figure 2.8b explains the role of the
two Lorentzian curve of equation (2.79). As for the NACF, the PSD is useful to
evaluate the characteristic time of the fast relaxation process τW , the characteristic
frequency λ1, the population fraction ∆1, the correlation time Tc, and the effective
correlation time Tef .



Chapter 3

Intracavity optical tweezers theory

In this chapter, the mechanisms that regulate the trapping of particles inside
the ring fibre laser cavity realised for this work are discussed theoretically. When a
particle is trapped inside a fibre laser cavity, i.e. by an intracavity optical tweezers
(IOT), the particle becomes part of the laser system changing the cavity losses
according to its position and, therefore, the laser power. Thus, this phenomenon
is more complex that “standard” trapping being the trapping dependent on the par-
ticle position inside the cavity. Indeed, IOT combines three phenomena together:
laser dynamics1 depending on cavity losses, optical trapping due to optical forces,
and Brownian motion of the trapped particle.

Therefore, the first section of this chapter focuses on the basic principles of a
ring fibre laser. The second section describes the trapping dynamics of IOT for the
laser used in this work, i.e. a ring fibre laser, illustrating a toy model [26] that, in
this work, is modified to overcome some of its limitations.

3.1 Ring fibre laser dynamics
The laser used in this experiment is a diode-pumped Yb3+ ring fibre laser. This

laser is pumped by injecting into a doped fibre (active medium) a diode laser light
at λp = 976 nm that is efficiently absorbed by the Yb3+ bands as shown in figure
3.1a. In this way, the active medium generates laser light with wavelength 1030 nm
according to the band diagram of the Yb3+ shown in figure 3.1b.

Following the analytic work of A. Hardy about linear fibre laser [47, 48], this
laser is described as a quasi-three level system. When the laser condition is satis-
fied, two laser beams travelling in opposite directions, called signals, are produced
even if the system is pumped in only one direction. The signals are characterised by
their power density per unit wavelength λ, indicated as P±(t, r, λ), where ± indicate
the two directions, t the time and r the position inside the fibre ring laser. To
simplify the analytical model, the transition times of the non-radiative decays are

1Laser dynamics is the temporal evolution of quantities that characterise laser phenomena, such
as laser power and losses.

41
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Figure 3.1: (a) emission (blue solid line) and absorption (orange solid line) cross
sections of Yb3+ doped fibre as function of λ; (b) band diagram of Yb3+ where
λp = 976 nm is the pump wavelength and λ = 1030 nm is the emission wavelength.

assumed to be negligible compared to the lifetime of the laser upper level τ . Denot-
ing the power of the pump light at wavelength λp as Pp(t, r) and the upper lasing
level population density as N2(t, r), the time-dependent rate equations describing
the laser dynamics are:

∂N2(t, r)

∂t
=
λpΓp

Ahc
[σapN − (σep + σap)N2(t, r)]Pp(t, r)−

N2(t, r)

τ
+

+

∫
Γs(λ)

Ahc
{σa(λ)N − [σe(λ) + σa(λ)]N2(t, r)}

[
P+(t, r, λ) + P−(t, r, λ)

]
λdλ

(3.1)

±dP
±(t, r, λ)

dr
= Γs {[σe(λ) + σa(λ)]N2(t, r)− σa(λ)N}P±(t, r, λ)+

+ Γsσe(λ)N2(r)
2hc2

λ3
− α(r, λ)P±(t, r, λ)

(3.2)

dPp(t, r)

dr
= −Γp [σapN − (σep + σap)N2(t, r)]Pp(t, r)− αp(r)Pp(t, r) (3.3)

where the parameters Γp and Γs are the power filling factors for the pump and the
signals, α(r, λ) represents the scattering loss, αp(r) = α(r, λp), c is the speed of light
in vacuum, h is the Planck’s constant, A is the area of the fibre core cross section,
σa,e(λ) is the absorption (emission) cross section, σap,ep = σa,e(λp) is the absorption
(emission) cross section at the pump wavelength, andN the density of Yb3+ dopants
in the fibre (atoms per volume, typically of the order of magnitude of 0.01 nm−3).
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In these expressions, the total derivative respect to r can be expressed as partial
derivates through the relation d

dr
= ∂

∂r
± n

c
∂
∂t

where the ± is defined by the direction
of propagation of the beam.

Lasers are often used in steady-state conditions, for that the time derivative is
zero. In this condition, the steady-state rate equations are

N2(r)

N
=

λpΓp

Ahc
σapPp(r) +

∫ Γs(λ)
Ahc

σa(λ) [P+(r, λ) + P−(r, λ)]λdλ
1
τ
+ λpΓp

Ahc
(σep + σap)Pp(r) +

∫ Γs(λ)
Ahc

[σe(λ) + σa(λ)] [P+(r, λ) + P−(r, λ)]λdλ
(3.4)

±dP
±(r, λ)

dr
= Γs {[σe(λ) + σa(λ)]N2(r)− σa(λ)N}P±(r, λ)+

+ Γsσe(λ)N2(r)
2hc2

λ3
− α(r, λ)P±(r, λ)

(3.5)

dPp(r)

dr
= −Γp [σapN − (σep + σap)N2(r)]Pp(r)− αpPp(r) (3.6)

These differential equations system determines the quantities N2(r), Pp(r), and P±

only with some boundary conditions. For the pump power Pp(r), it is straightfor-
ward to choose Pp(0) = P0, i.e. the amount of pump power entering the system.
Instead, for the signals, it is important to figure out that, in a ring fibre laser, the
laser signal in the position r = 0 must be equal to the laser signal at r = L = 0,
where L is the length of the ring, minus an amount of power lost due to losses, i.e.{

P+(0, λ) = P+(L, λ)[1− l+(λ)]

P−(0, λ) = P+(L, λ)[1− l−(λ)]
(3.7)

To solve the rate equations of this system with these boundary conditions, numeric
evaluation is needed and an analytical form cannot be obtained without approxima-
tions. For this reason, it is useful to describe the laser dynamics with the simplified
model proposed by Haken [49], i.e.

dP

dt
(t, r) =

(
N0W − l

τR

)
P (t, r)− 2N0τW

hν
P 2(t, r) (3.8)

where N0 is the population of excited atoms without laser action at a fixed pump
power, W is the stimulated emission rate, τR the cavity round trip time, l the cavity
losses, τ is the relaxation time, h the Planck’s constant, and ν the optical frequency
of the laser light. This model will be used later in this chapter to introduce the toy
model.

3.2 Intracavity trapping of a particle
In an intracavity optical tweezers the trapped particle is part of the cavity it-

self. Hence, it introduces additional optical losses that change directly the laser
mechanism by scattering laser light outside the cavity. These losses depend on the
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(a) (b) (c)

Figure 3.2: schematic representation of the scattering process of a particle trapped
in a ring fibre laser, where the blue ellipsoids represent the trapping lenses and
the inset shows a zoom in which the trapped particle is visible. (a) the particle is
in the trapping region and scatters a substantial amount of light out of the cavity;
(b) the particle is above the focus and shifted relative to the optical axis, scattering
less laser light than in case (a); (c) the particle is far from the trapping position and
scatters an insignificant amount of laser light.

particle position as described by figures 3.2a, 3.2b, and 3.2c. In IOT, the parti-
cle is trapped using a couple of confocal lenses (blue ellipsoids in figure 3.2) that,
without any trapped particle, re-inject the laser light in the active medium with
no additional losses. When a particle is close to the system focus, the laser beam
is partially reflected back and partially deviated by the particle (figures 3.2a and
3.2b). Therefore, the laser beam is not completely re-injected in the active medium
increasing the cavity losses, which reduces the stimulated emission phenomena
decreasing the laser power of the trapping beam. In this condition, the laser beam
power is insufficient for trapping and the particle undergoes free diffusion. When
the particle moves away from the trapping position, the laser beam is gradually
less influenced by the particle and, consequently, the laser power increases trapping
again the particle, as shown in figure 3.2c. In this way, the laser increases its power
only when the particle is not trapped generating an intrinsic feedback effect, which
improves the trapping efficiency.

To quantitatively take into account the feedback effect, equation (3.2) needs to
be modified in order to take into account the losses due to the particle, i.e.

±dP
±(t, r, λ)

dr
= Γs {[σe(λ) + σa(λ)]N2(t, r)− σa(λ)N}P±(t, r, λ)+

+ Γsσe(λ)N2(r)
2hc2

λ3
− αtot(r, λ)P±(t, r, λ)

(3.9)

where αtot(r, λ) represents all the losses of the system including the ones introduced
by the particle when located in r.

Then, to describe the particle motion, the Langevin equation (2.36) for a trapped
particle needs to be written using the explicit expressions of the optical force ob-
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tained in chapter 1, in which the laser power changes according to the feedback
effect described in equation (3.9). Therefore, the particle motion is described by the
following system of equations

d2r

dt2
(t) = − γ

m

dr

dt
(t) +

Ftrap

m
(t, r, P+, P−) +

√
2γkBT

m
Ξ(t)

±dP
±(t, r, λ)

dr
= Γs {[σe(λ) + σa(λ)]N2(t, r)− σa(λ)N}P±(t, r, λ)+

+ Γsσe(λ)N2(r)
2hc2

λ3
− αtot(r, λ)P±(t, r, λ)

(3.10)

where γ is the particle friction coefficient, Ftrap the trapping force that depends on
the laser power, T the temperature of the thermal bath, Ξ(t) the random white
noise. These equations can be solved only by numerical evaluations and, in order
to study in a simple way what happens in IOT, the toy model, described in the next
part of this section, is introduced.

3.2.1 Toy model
This system can be described by a toy model [26] that avoids dealing with the

complex system of equations (3.10). This toy model is based on the assumption that
the trap stiffness is proportional to the laser power P (r) through the relation

k(r) = k̄P (r) (3.11)

where k̄ is a constant that depends on the properties of the trapping system. Being
the timescale for the displacement of the particle (milliseconds) much greater than
the response time of the laser (nanoseconds), the laser is consider to be always at
its steady state. Therefore, the laser dynamics can be described by the simplified
model of equation (3.8)

dP

dt
(t, r) =

(
N0W − l(r)

τR

)
P (t, r)− 2N0τW

hν
P 2(t, r) (3.12)

where the losses of the cavity l(r) now depends on the particle displacement r
respect to the trapping position. This dependency is assumed to be [26]:

l(r) = l0

(
1− r2

r2los

)
(3.13)

with rlos a characteristic length depending on several parameters, such as the par-
ticle radius, the refractive indexes of the particle and of the surrounding medium,
the losses due to absorption and scattering events. Therefore, the rate equation
for the power P (t, r) can be written as:

dP

dt
(t, r) =

[
N0W − l0

τR

(
1− r2

r2los

)]
P (t, r)− 2N0τW

hν
P 2(t, r) (3.14)
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Figure 3.3: power of the toy model P as function of r for (a) different values of P0 at
ron = 0.5µm and (b) different values of ron at P0 = 3mW.

that is an ordinary differential equation of the form
dP

dt
(t, r) = C1(r)P (t, r)−C2P

2(t, r)

C1(r) = N0W − l0
τR

(
1− r2

r2los

) (3.15)

with C2 =
2N0τW

hν
. The system of equations (3.15) has the solution

P (t, r) =
C1(r)

C2 + e−C1(r)(t+c0)
(3.16)

with c0 defined by the initial power P (0, r). The stationary value of the power is,
consequently, given by the infinity time limit, i.e.

P (r) =

0 C1(r) ≤ 0
C1(r)

C2

C1(r) > 0
(3.17)

where the ratio C1(r)/C2 can be written as

C1(r)

C2

=
hν

2N0τW

[
N0W − l0

τR

(
1− r2

r2los

)]
≡ P0

(
r2

r2on
− 1

)
(3.18)

having introduced ron = rlos

√
1
τR

− N0W
l0

as the minimum displacement of the particle

after that the laser turns on. Instead, the power P0 =
hν

2N0τW

(
l0
τR

−N0W
)

is the laser
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Figure 3.4: (a) toy model potential (blue solid line) of equation (3.21) and the corre-
sponding double-well potential (orange dash line) as function of r, (b) corresponding
force F (r) as function of r for the toy model (blue solid line) and the corresponding
double-well potential (blue dashed line). The parameters used to plot these curves
are P0 = 3.0mW, ron = 0.5µm, k̄ = 1 · 10−4N/(m ·W), and the temperature of the
thermal bath T = 298.15K.

power when the particle is far from the trapping position of r =
√
2ron. Therefore,

the toy model gives the following power for the trapping laser

P (r) = P0

(
r2

r2on
− 1

)
I|r|>ron(r) =


0 if |r| ≤ ron

P0

(
r2

r2on
− 1

)
if |r| > ron

(3.19)

where I is the indicator function of the set |r| > ron. Figures 3.3a and 3.3b show the
behaviour of the laser power as function of r for different values of P0 and ron. From
the laser power, it is possible to obtain the trap stiffness through equation (3.11)
and the equations of motion become

d2r

dt2
(t) = − γ

m

dr

dt
(t)− k(r)

m
r(t) +

√
2γkBT

m
Ξ(t)

k(t, r) = k̄P0

(
r(t)2

r2on
− 1

)
I|r(t)|>ron(r)

(3.20)

Even if the laser power corresponds to the stationary solution of equation (3.15),
it still depends on time through the particle position. Nevertheless, the toy model
equation is still valid because the laser dynamics (with characteristic time of ∼ ns)
is much faster than the particle one (with characteristic time in liquid of ∼ ms, in
gaseous media of ∼ 10µs).
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It is natural to compare the system of equations (3.20) with the Langevin equa-
tion for a particle in a double-well potential, because, except for the indicator func-
tion I|r(t)|>ron(r), they have the same mathematical expression. However, it is the
characteristic function itself that does not allow to apply the methods of section
2.3.1 to derive the ACF and thus the PSD. Instead, assuming the particle in thermal
equilibrium with the thermal bath, equation (2.61) is still valid and can be used to
evaluate experimentally the potential. In this toy model, the potential is related to
the force through the relation

U(r) = −
∫ r

0

[−k(r′)r′] dr′ = k̄P0

4r2on

(
r2 − r2on

)2
I|r|>ron(r) (3.21)

and, as said, it differs from the double-well potential only in the presence of I|r|>ron(r)
that cuts the double-well behaviour as shown in figure 3.4a. Indeed, the centres of
the two well of the corresponding double-well potential are ±ron, as it is clear from
the force behaviour of figure 3.4b.

Unlike trapping with standard optical tweezers, in IOT the force pushing the
particle into the trapping position is non-linear also for small displacement and the
trap stiffness can not be defined. A good indicator of the particle confinement is
the trajectory variance, because it gives a measure of how far the particle deviates
quadratically from the equilibrium position2. In order to determine the trajectory
variance, the probability density function needs to be evaluated and, being the
potential defined by equation (3.21), it is

ρr(r) = ρr(0) exp

[(
−A

4
r4 +

C

2
r2 − C0

4

)
I|r|>ron(r)

]
(3.22)

where A = 1
kBT

k̄P0

r2on
, C = 1

kBT
k̄P0, and C0 = 1

kBT
k̄P0r

2
on. From this follows that the

expected value of rj is∫ +∞

−∞
rjρr(r) dr = ρr(0)

∫ +∞

−∞
rje(−

A
4
r4+C

2
r2−C0

4 )I|r|>ron (r) dr =

= ρr(0)
[
1 + (−1)j

] ∫ +∞

0

rje(−
A
4
r4+C

2
r2−C0

4 )I|r|>ron (r) dr =

= ρr(0)
[
1 + (−1)j

] [∫ ron

0

rj dr + e−
C0
4

∫ +∞

ron

rje−
A
4
r4+C

2
r2 dr

] (3.23)

with j > 0. Therefore, the mean value of the particle position r is zero, because the
expected value r2j+1 is zero for each value of j because of the term [1 + (−1)j] that is
zero for 2j + 1 being ρr(r) an even function3.

2For an harmonic potential (standard tweezers), this indicator (variance of the trajectory) is
proportional to the trap stiffness as shown in equation (2.66)

3This is manifestly expressed in equation (3.23).
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Figure 3.5: variance of intracavity trapped particle Var[r] as function of (a) ron at
different values of P0 and (b) of P0 at different values of ron.

In this expression, the first integral is trivially rj+1
on /(j + 1) and the second one,

developing in Maclaurin series the exponential exp
(
C
2
r2
)

and using the integration
theorem for the series, is∫ +∞

ron

rje−
A
4
r4+C

2
r2 dr =

+∞∑
n=0

2−nCn

n!

∫ +∞

ron

r2n+je−
A
4
r4 dr =

=
+∞∑
n=0

2−nCn

n!A

(
4

A

) j+2n−3
4

Γ

(
j + 2n+ 1

4
,
Ar4on
4

) (3.24)

where Γ indicates the incomplete Gamma function. Therefore, equation (3.23) be-
comes∫ +∞

−∞
r2jρr(r) dr = 2ρr(0)

[
r2j+1
on

2j + 1
+e−

C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

)2j+2n−3
4

Γ

(
2j + 2n+ 1

4
,
Ar4on
4

)]
(3.25)

In order to have a useful form of these integrals, the ρr(0) value needs to be evalu-
ated using the normalization condition

∫ +∞
−∞ ρr(r) dr = 1 that implies

ρr(0) =
1

2

{
ron + e−

C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

) 2n−3
4

Γ

(
2n+ 1

4
,
Ar4on
4

)}−1

(3.26)

From the general result (3.23), the variance of the intracavity trapped particle
is

Var[r] =

∫ +∞

−∞
r2ρr(r) dr =

r3on
3

+ e−
C0
4

∑+∞
n=0

2−nCn

n!A

(
4
A

) 2n−1
4 Γ

(
2n+3

4
, Ar4on

4

)
ron + e−

C0
4

∑+∞
n=0

2−nCn

n!A

(
4
A

) 2n−3
4 Γ

(
2n+1

4
, Ar4on

4

) (3.27)
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Figure 3.6: mean (a) and variance (b) of the intracavity laser power P (r) as function
of ron at different values of P0.

that has a non linear and non trivial behaviour as function of ron, while it is less
complex in function of P0, as figures 3.5a and 3.5b show.

As said, the peculiarity of intracavity optical tweezers is that the power of the
optical trap changes as the particle moves from the trapping position and, therefore,
also the power has statistical properties defined by the probability density function
ρr. Therefore, the power defined by equation (3.19) has an average value that leads
to an integral of the type of equation (3.24), being

E[P (r)] =

∫ +∞

−∞
P (r)ρr(r) dr = 2P0

∫ +∞

ron

(
r2

r2on
− 1

)
ρr(r) dr =

= P0

∑+∞
n=0

2−nCn

r2onn!A

(
4
A

) 2n−1
4 Γ

(
2n+3

4
, Ar4on

4

)
+
∑+∞

n=0
2−nCn

n!A

(
4
A

) 2n−3
4 Γ

(
2n+1

4
, Ar4on

4

)
e

C0
4 ron +

∑+∞
n=0

2−nCn

n!A

(
4
A

) 2n−3
4 Γ

(
2n+1

4
, Ar4on

4

) =

= P0

∑+∞
n=0

2−nCn

n!A

(
4
A

) 2n−3
4

[
1
r2on

√
4
A
Γ
(

2n+3
4
, Ar4on

4

)
+ Γ

(
2n+1

4
, Ar4on

4

)]
e

C0
4 ron +

∑+∞
n=0

2−nCn

n!A

(
4
A

) 2n−3
4 Γ

(
2n+1

4
, Ar4on

4

)
(3.28)

These results allow to evaluate also the power variance, that is

Var[P (r)] = E
[
P 2(r)− E[P (r)]2

]
= 2P 2

0

∫ +∞

rL

r4

r4L
ρr(r) dr − 2P 2

0

∫ +∞

rL

ρr(r) dr+

− 2P0E[P (r)]− 2 (E[P (r)])2
(3.29)

These two quantities in function of ron are plotted in figure 3.6a and 3.6b respec-
tively. In order to well understand the laser power behaviour, the ratio ϱ between
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Figure 3.7: ratio ϱ between the standard deviation and mean value of the laser
power as function of ron at different values of P0 in linear scale (a) and logarithmic
scale (b).

the standard deviation of the laser power Std[P (r)] =
√
Var[P (r)] and its average

value is evaluated as function of ron, as shown in figures 3.7a and 3.7a. The ratio ϱ
indicates how and to what extent the trapped particle alters the cavity losses:

• if it is less than 1, the standard deviation of the power is small, the power
fluctuates in a narrow range around the mean, and the feedback effect is weak
because the losses introduced by the particle are low;

• if it is greater than 1, the standard deviation can be bigger than the mean
value, the power fluctuates in a wide range, and the feedback effect is very
strong (the particle is able to power off completely the laser).

The threshold value of ron for that ϱ > 1 depends strongly on the power P0 and there
are different threshold values at the same laser power due to the fluctuations of ϱ
shown in figures 3.7a and 3.7a. Nevertheless, for ron < 0.08µm, all the curves are
stably under 1 well defining a region for that the feedback is weak, as figure 3.7b
shows.

This simple model, despite its limitations such as not considering a maximum
power value (the power can be infinite) and not considering the dynamics of the
laser system, returns an intuitive description of what in intracavity trapping by
helping to understand its operating principles.
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Figure 3.8: (a) power of the modified toy model (dashed orange line) as function of
r compared to the toy model (blue solid line); (b) potential of the modified toy model
(dashed orange line) as function of r compared to the toy model (blue solid line). For
(a) and (b) P0 = 3mW, Pmax = 40mW, and the temperature of the thermal bath is
298.15K, k̄ = 1 · 10−4N/(m ·W).

3.2.2 Modified toy model
In this section, a modified toy model is proposed to introduce the maximum

power value of the system and, therefore, a maximum force value. For this purpose,
the power of equation (3.19) is modified as

P (r) =



0 if |r| ≤ ron

P0

(
r2

r2on
− 1

)
if ron < |r| ≤ rmax

P0

(
r2max

r2on
− 1

)
if |r| > rmax

(3.30)

that can be written in a compact way with the indicator function, i.e.

P (r) = P0

(
r2

r2on
− 1

)
Iron<|r|≤rmax + PmaxI|r|>rmax (3.31)

with Pmax = P0

(
r2max

r2on
− 1

)
and rmax ≥ ron. In this way, when the particle is suffi-

ciently far away from the trapping region, the laser power saturates to the maxi-
mum value Pmax defining a maximum distance rmax after that the feedback effect
stops, as shown in figure 3.8a. Therefore, rmax depends on the particle properties
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(such as diameter, refractive index, geometrical shape) and on the trapping system
properties (such as numerical aperture, focal distance, and working distance of the
trapping lenses).

Assuming that Ftrap = −k̄P (r)r(t) like in the toy model, the trapping force is

Ftrap(t, r) =


0 if |r| ≤ ron

−k̄P0

(
r2(t)

r2on
− 1

)
r(t) if ron < |r| ≤ rmax

−k̄Pmaxr(t) if |r| > rmax

(3.32)

or
Ftrap = −k̄P0

(
r2

r2on
− 1

)
r Iron<|r|≤rmax − kmaxr I|r|>rmax (3.33)

where all the functional dependencies are hidden, even if still present, and the
maximum trapping force is given by Fmax = kmaxr = k̄Pmaxr. The potential is related
to the force by the relation U(r) = −

∫ r

0
Ftrap(r

′) dr′, i.e.

U(r) =
k̄P0

4r2on

(
r2 − r2on

)2
Iron<|r|≤rmax +

(
1

2
kmaxr

2 − kBTCmax

)
I|r|>rmax =

= kBT

[(
A

4
r4 − C

2
r2 +

C0

4

)
Iron<|r|≤rmax +

(
1

2
Kmaxr

2 − Cmax

)
I|r|>rmax

] (3.34)

where Cmax = 1
kBT

k̄P0

4r2on
(r4max − r4on), A = 1

kBT
k̄P0

r2on
, C = 1

kBT
k̄P0, C0 = 1

kBT
k̄P0r

2
on, and

Kmax = 1
kBT

kmax. This potential differs from the toy model potential of equation
(3.21) because, when the particle displacement |r| > rmax, the trapping force is linear
as in a standard optical tweezers with stiffness k̄Pmax (figure 3.8b). Following the
same procedure done for the toy model, the mean value of rj is∫ +∞

−∞
rjρr(r) dr = ρr(0)

∫ +∞

−∞
rje(−

A
4
r4+C

2
r2−C0

4 )Iron<|r|≤rmax−(
1
2
Kmaxr2−Cmax)I|r|>rmax dr =

=ρr(0)
[
1+(−1)j

][∫ ron

0

rj dr + e−
C0
4

∫ rmax

ron

rje−
A
4
r4+C

2
r2 dr + eCmax

∫ +∞

rmax

rje−
1
2
Kmaxr2 dr

] (3.35)

where the first and the third integrals are∫ ron

0

rj dr =
rj+1
on

j + 1
(3.36)

eCmax

∫ +∞

rmax

rje−
1
2
Kmaxr2 dr =

1

2
eCmax

(
Kmax

2

)− j+1
2

Γ

(
j + 1

2
,
Kmaxr

2
max

2

)
(3.37)

The second integral is resolvable developing in Maclaurin series the exponential
exp

(
C
2
r2
)

as done for (3.24), with the only difference that the integration interval is
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different, i.e.

e−
C0
4

∫ rmax

ron

rje−
A
4
r4+C

2
r2 dr = e−

C0
4

+∞∑
n=0

2−nCn

n!

∫ rmax

ron

r2n+je−
A
4
r4 dr =

= e−
C0
4

+∞∑
n=0

2−nCn

n!

[∫ ∞

ron

r2n+je−
A
4
r4 dr −

∫ ∞

rmax

r2n+je−
A
4
r4 dr

]

=e−
C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

) j+2n−3
4

[
Γ

(
j + 2n+ 1

4
,
Ar4on
4

)
− Γ

(
j + 2n+ 1

4
,
Ar4max

4

)]
(3.38)

Therefore, the mean value of rj is∫ +∞

−∞
rjρr(r) dr =ρr(0)

[
1+(−1)j

]{ rj+1
on

j + 1
+

+e−
C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

)j+2n−3
4

[
Γ

(
j + 2n+ 1

4
,
Ar4on
4

)
− Γ

(
j + 2n+ 1

4
,
Ar4max

4

)]
+

+
1

2
eCmax

(
Kmax

2

)− j+1
2

Γ

(
j + 1

2
,
Kmaxr

2
max

2

)} (3.39)

where the first term depends only on ron and the other two terms are dependent of
ron, rmax, P0, and k̄ directly or through the definition of A, C, C0, Cmax, and Kmax.
This result for j = 0 can be used to obtain ρr(0) from the normalization condition,
i.e.

ρr(0)=
1

2

{
ron
2

+e−
C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

)2n−3
4
[
Γ

(
2n+ 1

4
,
Ar4on
4

)
−Γ

(
2n+ 1

4
,
Ar4max

4

)]
+

+
1

2
eCmax

(
Kmax

2

)− j+1
2

Γ

(
j + 1

2
,
Kmaxr

2
max

2

)}−1 (3.40)

From these relations, it follows that

E[r] = 0 (3.41)

and that the variance is

Var[r] =

∫ +∞

−∞
r2ρr(r) dr =2ρr(0)

{
r3on
3

+
1

2
eCmax

(
Kmax

2

)− 3
2

Γ

(
3

2
,
Kmaxr

2
max

2

)
+

+e−
C0
4

+∞∑
n=0

2−nCn

n!A

(
4

A

)2n−1
4
[
Γ

(
2n+ 3

4
,
Ar4on
4

)
− Γ

(
2n+ 3

4
,
Ar4max

4

)]} (3.42)

The behaviour of the variance of the particle trajectory as function of ron is shown
in figure 3.9a and it is compared with the toy model variance of equation (3.27)
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Figure 3.9: (a) trajectory variance Var[r] as function of ron at different values of P0

for Pmax = 40mW, temperature of the thermal bath 298.15K, k̄ = 1 · 10−4N/(m ·W);
(b) comparison between Var[r] of equation (3.27) (dashed line) and equation (3.42)
(solid line) as function of ron for P0 = 3mW.

in figure 3.9b. The variance is almost constant for ron ∈ [1 · 10−2, 1.5 · 10−1]µm,
subsequently presenting peaks that decrease as P0 increases. The presence of a
maximum power means that the variance does not grow as in the case of the toy
model, although for ron values between 0.42µm and 0.62µm the two curves grow
equally, figure 3.9b.

The other quantity of interest is the mean power of the laser system E[P (r)]. In
this case, the expression of E[P (r)] is

E[P (r)]=
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] (3.43)

and it can be evaluated using equation (3.37) for j = 0 and equation (3.38) for
j = 1, 2. The mean value of the power is plotted as function ron in figure 3.10a and,
differently from the original toy model that for ron → 0 the power tends to infinity, it
reaches Pmax for ron → 0, as it can be seen in figure 3.10b. This prevents the model
from producing infinite energy like the toy model of the previous section.
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Figure 3.10: (a) mean power E[P (r)] as function of ron at different values of P0 using
the same parameters of figure 3.9a; (b) comparison between E[P (r)] of equation
(3.28) (dashed line) and (3.43) (solid line); (c) ratio ϱ as function of ron at different
values of P0 using the same parameters of figure 3.9a; (d) comparison between ϱ
obtained with toy model (dashed line) and with the modified toy model (solid line)
for P0 = 3mW.

To conclude this section, the variance of the power is

Var[P (r)]= E[P 2]− E[P ]2 = 2P 2
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(3.44)

and, as done for the toy model, the ratio ϱ between the standard deviation of the
laser power and its mean value is calculated as function of ron and it can be compared
with the toy model. The behaviour of ϱ in function of ron is shown in figure 3.10c
and compared to the toy model of figure 3.10d. The ratio ϱ not changes drastically
and, therefore, the same consideration can be done: for ron < 0.08µm, all the curves
are stably under 1 well defining a region for that the feedback is weak.



Chapter 4

Experimental setups

In this chapter, the optical trapping setups used in these experiments are de-
scribed: a standard single-beam optical tweezers (SBOT), used mainly for prelim-
inary experiments of particles trapping in water and in air, and an intracavity
optical tweezers (IOT), employed for the intracavity trapping. The SBOT uses an
infrared laser beam coupled with an optical homemade microscope that forms an
optical trap thanks to a high numerical aperture NA objective lens. Instead the
IOT consists of a fibre-air laser ring cavity in which it is built a trapping system.
Thanks to a removable optical isolator [27], the IOT can trap particles in single-
beam configuration (with the isolator) and in double-beam configuration (without
the isolator). Both systems are homemade, i.e. designed and realized specifically
for this work.

Furthermore, this chapter describes the homemade loading system realised for
particle loading in air based on a piezoelectric transducer (PZT).

Hence, the first and the second sections of this chapter describe how the SBOT
and the IOT are designed and realised respectively. The third section, instead, deals
with the sample preparation for trapping particles in water and how to load them
into the trap. The last section deals with how to trap particles in air and describes
the loading homemade system, introducing also the van der Waals force and the
basic principles of the piezoelectric effect.

4.1 Standard single-beam optical tweezers
The standard single-beam optical tweezers (SBOT) setup is made by coupling a

laser beam with an optical homemade microscope that use high numerical aperture
objective lenses (NA > 0.8) in order to achieve the trapping condition. Building the
SBOT, it is also very important to minimise all noise sources, like laser power in-
stabilities, mechanical vibrations, temperature and humidity fluctuations, because
they strongly affect the trapping performance.

The setup of SBOT is shown schematically in figure 4.1a and it is built following
the guidelines provided by Pesce et al. [50] . The laser source is a single frequency

57
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(a) (b)

Figure 4.1: (a) diagram of the single-beam optical tweezers experimental setup; (b)
picture of the homemade microscope.

continuous-wave solid-state laser (Innolight Mephisto 500) based on a monolithic
Nd:YAG crystal in non-planar ring oscillator configuration and it produces a TEM00

beam at 1064 nm with elliptical polarisation. Its polarisation is made linear by the
zero-order quarter-wave plate PLλ/4 placed after the laser source. To control the
laser power without affecting the laser beam quality1, the zero-order half-wave plate
PLλ/2 and the polarising beam splitter cube PBS are placed after PLλ/4. In this way,
by varying the polarisation direction of the beam with PLλ/2, the power of the beam
transmitted by the PBS can be finely tuning.

To maximise the trapping efficiency, the laser beam needs to be injected into
the homemade microscope with a beam size larger than the back aperture of the

1This laser source is pumped by a laser diode and its output power is defined by the injection
current of the pump diode laser. Thus, to change the output power, it is possible to change the
injection current, but this can alter the laser beam quality, appreciably lowering the optical trapping
efficiency.
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trapping lens. In this way, the focusing power2 is maximum and consequently the
optical gradient is the most uneven possible increasing the gradient trapping force.
Therefore, the laser beam is directed, thanks to the mirror M1, into a 10X telescope
made by the lenses L1 of focal length f = 25mm and L2 of f = 250mm.

Then, the laser beam is injected into the homemade microscope, see figure 4.1b,
with the mirrors M2 and M3 (Thorlabs PF20-03-M03). The microscope is built on a
stabilised optical table in AISI 316 stainless steel, characterised by low thermal
expansion coefficients and great rigidity, to make it as stable as possible. This
microscope has a three-level structure organised as follows:

• the first level is fixed on the optical table and contains the gold mirror M3
(Thorlabs PF20-03-M03), arranged at 45◦ reflecting the laser beam into the
second level;

• the second level is a breadboard fixed on eight columns and hosts the trap-
ping lens OB mounted vertically on a high-stability linear translation stage
(Physik Instrumente M-105.10), a two-axis manual translation stage (Newport
M406 with HR-13 actuators) and a three-axis piezoelectric automatic stage
(PhysikInstrumente, PI-517.3CL) both with a through-hole design to mount
them around OB. In this way, it is possible to move micrometrically the sam-
ple. These two stages are joined together to form a single stage hosting the
sample, that can be moved roughly with the manual micrometric stage and
finely with the piezoelectric stage3;

• the third level is placed above the second-level breadboard with four columns.
It hosts the illumination LED (Thorlabs MCWHL5 white led 6500K) with its
collimation aspheric lens L3, mounted together with modular optomechanics
components (Thorlabs cage system). This level hosts also the condenser objec-
tive lens CB, mounted vertically opposite OB on a five-axis stage that allows
fine alignment of CB with respect to OB.

The imaging system is formed by a LED light source and a CCD camera. The
LED light is focused on the sample by its collimation lens L3 and the condenser OC.
Its light is transmitted by the sample and, thanks to the mirror M3 and the dichroic
mirror M2 (STANDA 14DM-2-HR15-45-1)4, is reflected to the tube lens L4 by the
silver mirrors M4 and M5 (Thorlabs PF20-03-P01 mounted on precision kinematic
mirror mounts Thorlabs KS2)5. This lens focuses on the CCD camera (Mikrotron
MotionBLITZ EoSens Mini 1) the image of the sample6. In this way, images and
videos of the sample can be acquired with the computer, PC, connected to the CCD.

2The focusing power is the degree to which an optical system converges or diverges light.
3The piezoelectric stage, if necessary, can move the sample automatically and, also, following

movement patterns.
4The dichroic mirror reflects the 99.5% of the laser light and transmits almost completely the

LED light
5The precision kinematic mirror mounts helps to proper align the tube lens and the CCD.
6The tube lens needs to be aligned and placed properly in order to overlap the focal plane of
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The tube lens L4 determines, depending on its focal length, the magnification of
the microscope: the shorter the focal length, the lower the magnification and in
this setup it has a focal length of 500mm.

The entire setup is encapsulated in a protective box that insulates it from exter-
nal light sources and air flows, helps to stabilise the temperature, and protects lab
users from stray laser beams.

the imaging system with the trapping plane, i.e. the plane that contains the particle centre when
trapped. In addition, the alignment of the camera and the tube lens is decisive for minimising the
image distortions and, therefore, having a clear image.
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(a) (b)

Figure 4.2: (a) diagram of the experimental setup used to trap particles with
intracavity optical tweezers both with single-beam and double-beam configurations
thanks to the removable isolator ISO; (b) picture of the fibre path of the ring fibre
laser where device number 1, 3, 5, 6, and 8 are splice protectors, device number 2
is the fibre pump laser protector PLP, device number 4 is the wavelength division
multiplexing WDM, device number 7 is the fibre bandpass filter, BPF, and device
number 9 is the fibre optical coupler FOC.

4.2 Intracavity optical tweezers
A intracavity optical tweezers (IOT) setup is realised by modifying a ring fibre

laser in a hybrid laser cavity in which laser light travels both in fibre and in air. The
air part (free-space) of the cavity allows the trapping system to be built inside the
laser cavity. The setup diagram of the IOT used in this work is shown in figure 4.2a
and allows to trap particle in both single-beam and double-beam configurations.
The entire setup, which is encapsulated in a protective box, can be schematically
divided into a laser system7 and a trapping system [27].

Laser system The laser system consists of a Yb3+ ring fibre laser pumped by
a 976 nm butterfly fibre Bragg grating stabilised laser (Thorlabs BL976-SAG300)
coupled to a single mode fibre. To avoid damaging the pump with reversed laser
light, the fibre pump laser protector PLP (Optosun Pump Laser Protector 976 nm)
is used. This fibre component, characterised by one input and one output fibre
terminals, blocks the light directed towards the pump and it is spliced with the
fibre of the laser pump using a fusion splicer (Sumitomo TYPE-71C Direct Core

7The fibre laser system was designed and realised in collaboration with professor Parviz Elahi
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Figure 4.3: (a) calibration of PDB, where PPDB is the power of the laser beam
measured with the power meter, VPDB is the voltage of the photodiodePDBmeasured
with the oscilloscope, and βPDB = 5.13 · 10−3mW/mV is the measured calibration
factor; (b) reflectance of BS, where Pin is the power of the laser light that impinges
on BS, PR is the power of the laser beam reflected in direction of the photodiode
PDT, and RBS = 10% is the measured reflectance; (c) calibration of PDT, where
PPDT is the power of the laser beam, VPDT is the voltage of the photodiode PDT, and
βPDT = 7.19 · 10−3mW/mV is the measured calibration factor.

Monitoring Fusion Splicer).
The pump light is injected into the Yb3+ doped fibre (Coractive YB 406) splicing

the output fibre terminal of PLP with one of the two input terminals of the wave-
length division multiplexing WDM (Optosun WDM, 980 nm/1050 nm non PM hi1060
fiber). Indeed, the WDM is a fibre component with two input and one output fibre
terminals, which mixes the light from the two inputs into the output fibre. As said,
one input is spliced to the pump laser through PLP and the other to the fibre of the
cavity. Instead, the output terminal is spliced with the doped fibre. This ensures
that both the laser signal and the pump light are injected into the active medium
(Yb3+ doped fibre) making the laser mechanism possible.

Then, the active medium is spliced with the input terminal of the fibre bandpass
filter BPF (Optosun bandpass filter 1030± 2 nm) to prevent the light from the pump
at 976 nm reaching the sample. In order to monitor the laser light inside the cavity,
the output fibre terminal of BFP is spliced with the input fibre terminal of the fibre
optical coupler FOC (Optosun short wavelength coupler).

The FOC split the light of its input fibre terminal into two fibre output terminals
with a coupling ratio of 95%/5%. The 5% fibre output terminal is spliced with
a FC connector and connected with a photodiode PDB (Thorlabs FD11A), so that
the laser power can be measured and the feedback effect quantified. Indeed, the
PDB is connected to an oscilloscope and calibrated using a calibrated power meter
(Thorlabs PM100D with the power sensor Thorlabs S144C), see figure 4.3a.
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(a) (b)

Figure 4.4: (a) design and (b) realisation of trapping system for IOT.

The 95% fibre output terminal is spliced, instead, with the bottom collimator
BC (Oz optics LPC-04-1030-6/125-S-4.0-18AS-40-3S-1-1) that expels the laser light
from the fibre. This light is then recollected by a similar collimator that is spliced
with the second input of the WDM closing the cavity. This collimator is called top
collimator TC. Between the two collimators, a removable free-space optical isolator
ISO (Optics for Research IO-8-1064-VHP) is placed to choose between single-beam
IOT (SBIOT) or double-beam IOT (DBIOT). Without the ISO, two beams travel
inside the laser cavity (see chapter 3.1): one travelling from the bottom collimator
to the top collimator, called the bottom beam; the other travelling in the opposite
direction and called the top beam. Instead, mounting the isolator that suppresses
the top beam, the SBIOT is achieved.

Trapping system In the free-space part of the cavity, between the two collima-
tors, the trapping system is mounted. The whole trapping system and part of the
imaging system are mounted on a breadboard (Thorlabs MB3045U/M), figures 4.4a
and 4.4b. This breadboard is mounted vertically on two L-shape rods and, if needed,
the system can be mounted horizontally on the optical table. Before mounting the
trapping and imaging system, the bottom collimator BC and the top collimator TC
must be aligned with each other in order to close the cavity and, hence, to obtain
the lasing condition. For this reason, the bottom collimator BC and the top one
TC are mounted on kinematic mounts with tip, tilt, and optical axis adjustment
(Thorlabs POLARIS-K1T3). In this way, thanks also to the dichroic mirrors M1



64 CHAPTER 4. EXPERIMENTAL SETUPS

and M2 (STANDA 14DM-2-HR15-45-1), it is possible to align them together.

The trapping system consists of two objective lenses OB1 and OB2 (Olympus
PlanC N 10x with NA = 0.25 or Thorlabs C060TMD-B with f = 9.6mm and NA =
0.3) in confocal configuration, which form the optical trap by focusing the optical
field between them. At the same time, the confocal configuration does not alter
the laser beam properties outside them, allowing the laser beam to be completely
re-injected into the fibre 8. Therefore, the lenses are mounted on 5-axis locking
kinematic mounts (Thorlabs K5X1). The objective lens OB1 is also mounted on a
linear translation stage (Thorlabs XRN25P/M) that moves it precisely along the
optical axis in order to obtain the confocal configuration.

On the breadboard, the sample is placed between the two objective lenses on
a 3-axis compact flexure stage (Thorlabs MBT616D/M) to translate it micromet-
rically. The breadboard hosts also a pellicle beam splitter BS placed between M1
and M2. The BS reflects the 11% of the top beam power (see figure 4.3b for the
measurement of BS reflectance, RBS) on the photodiode PDT (Thorlabs FD11A),
which is connected to the oscilloscope and calibrated in the same way of PDB, see
figure 4.3c. This allows to monitor simultaneously the power of the two beams in
double-beam configuration.

Instead, the imaging system is mounted partially on the breadboard and par-
tially on a rail system (Newport X26-512) fixed on the optical table. The breadboard
hosts the red light LED (Thorlabs M625L4) with its collimation lens L1, whose
light is guided on the sample by the silver mirror M3 (Thorlabs PF20-03-P01) and
the longpass dichroic mirror M4 (Thorlabs DMLP1000), that reflects more than the
95% of the light with wavelength < 1000 nm and transmits about the 96% of the
laser light at 1030 nm. Between M3 and M4, there are two optical iris OI1 and OI2
(Thorlabs ID25) that decrease the size of the LED beam to avoid unwanted visible
reflections in the experimental apparatus. The visible light, therefore, is focused
on the sample by OB1 and defocused again by OB2. To have the best image of the
sample, the LED light is not perfectly collimated, but reaches OB1 with a slight
divergence. The transmitted light by the sample passes through the dichroic mirror
M1 and it is guided by the mirror M5 on the lens L2 with focal length 500mm. This
lens produces on the CCD camera (Mikrotron MotionBLITZ EoSens Mini 1) the
image of the sample. Instead, the rail system host the gold mirror M6 (Thorlabs
PFSQ20-03-M03) and the CCD camera. It is important to underline that, in order
to synchronise the photodiodes signals and the CCD camera video, the CCD camera
and the oscilloscope are connected both to the same function generator that works as
clock. This allows to study correlation phenomena between the particle trajectory
and the power of the two laser beams.

8As for the bottom and top collimators, the alignment between OB1 and OB2 is critical to close
the cavity.
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(a) (b)

Figure 4.5: (a) diagram of a sample to trap particles in water, in the inset (top of the
image) there is a sketch of particles floating in water; (b) experimental realisation
of a sample to trap particles in water.

4.3 Sample and loading in water
The sample chamber consists of two thin glass coverslips glued together to form a

channel, into which a solution of water and particles is injected. The glass coverslips
are approximately 150µm thick and are glued together with UV glue using parafilm
strips as a spacers. In this way, the chamber has an internal height that can be
varied between 50µm and 200µm. The solution of particles and water, on the other
hand, is made using commercial monodisperse micrometric sphere (microParticles
GmbH) diluted in milli-Q water that is not contaminated by unwanted particles or
bacteria. If necessary, a small percentage of Triton-X surfactant (0.01% or less) can
be added to the solution to increase the lifetime of the sample. Indeed, particles tend
to stick to the surface a few hours after the sample production due to van der Waals
and Coulomb forces and Triton-X reduces this phenomenon. The volume percentage
of the particles diluted in water is crucial because: if it is too high, there will be too
many particles in the sample and trapping a single particle can be very difficult
(other particles are trapped unintentionally during the experiment); if it is too low,
finding a particle is time-consuming and also frustrating. A good compromise is to
use a volume percentage of micrometric particles in water of about 0.01µl/ml or less
depending on the chamber volume. A diagram of the sample and its experimental
realisation are shown in figures 4.5a and 4.5b.

The particle loading, instead, is very simple. In water, micrometric particles
float for quite a long time, hours if the particles are less dense than water (like
polystyrene particles) and tens of minutes if denser (like silica particles). This time
is sufficient to locate a particle in the sample, move the sample using the micrometer
stages to get the particle into the trap region, and, therefore, trap the particle. Once
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trapped, the particle can virtually remain in the trap forever. It is important at this
point to check that the particle is not unintentionally in contact with, or extremely
close to, a chamber wall as this greatly alters the measurement results. This check
can be carried out by moving the particle (i.e. the sample) and, via real-time video,
verify whether the particle does not follow the trap as it should. For simplicity,
consider the optical axis to be the vertical direction: if the particle is far from a
wall, it always remains in the centre of the trap and in focus; if, on the other hand,
the particle touches the bottom or top of the chamber, its image becomes blurry
when the particle is moved vertically (along the optical axis); if the particle touches
one of the sides of the chamber, its position relative to the centre of the trap changes
when moving it horizontally (in the plane orthogonal to the optical axis).

4.4 Sample and loading in air
Trapping particle in air is not trivial because particles do not float like in water,

but they are stuck on the chamber wall by the van der Waals force. To load the par-
ticle, three different methods can be employed based on lasers pulses, nebulisers,
and piezoelectric transducer.

The first method is based on the high instantaneous power of nanoseconds pulsed
lasers, which produces forces on the stuck particle greater than the van der Waals
one. As a result, the particle is detached from the surface and can be trapped by
optical tweezers. This method can not be implemented easily in a trapping system,
in particular in an intracavity optical tweezer, because it requires an additional
optical path for the pulsed laser that overcomplicates the experimental setup. In
addition, it is an expensive method and, in general, much more complex than the
others.

The second method allows to trap particles in air by nebulising a solution of
a volatile fluid (such as propanol) and of the micrometric particles to trap near
the optical trap. By chance, a droplet of the fluid in which there is a particle can
be trapped by the optical tweezers and, after the fluid is completely evaporated,
the particle only is trapped. This method presents some major issues: the particle
diameter needs to be less than 2µm otherwise the probability that a droplet contains
a particle is very low; the nebulised solution settles on walls of the sample altering
the trapping laser beam; the trapping rate is very low (1 trapped particle after hours
of nebulisation); multiple particle can be trapped simultaneously.

The third method is based on the possibility to overcome the van der Waals force
and launch a particle close to the focus of the trapping laser beam by vibrating
the sample with a piezoelectric crystal. This method does not requires a complex
modification of the trapping setups and is not characterised by the problems of
nebulisation. For these reasons, the piezoelectric transducer loading method is used
in this work. In this work, the loading of particle in air is achieved by powering
with a high-frequency (> 100 kHz) and high-power (> 500W) oscillating signal a
piezoelectric crystal.
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To explain the particle loading, it is useful to introduce the van der Waals force
and the operating principles of piezoelectric crystals. Finally the homemade power
supply designed and realised for this work is described.

4.4.1 Van der Waals force
The van der Waals force[51] is an electrical force that attracts neutral molecules

towards each other and, therefore, it can be extended to the attraction between two
different solids, such as a particle and a flat surface. When two neutral objects
are close enough, an attractive interaction arises because of random fluctuations
of electron density in the their electron clouds. Indeed, these fluctuation form non-
zero temporary dipole moment into the two objects that are attracted together. This
force is called the London-van der Waals force and sticks a micrometric particle in
air with its supporting surface, such as a silica coverslip.

Without going into the details of the formulation of this force, the London-van
der Waals force can be calculated for two spheres of radius R1 and R2 using the
generalised Hamaker equation [52] for the energy U

U(d,R1, R2) = −A
6

[
2R1R2

(2R1+2R2+d)d
+ 2R1R2

(2R1+d)(2R2+d)
+ ln (2R1+2R2+d)d

(2R1+d)(2R2+d)

]
(4.1)

that produces simply this force
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where d is the distance between the two surfaces of the spheres and A is called
Hamaker constant that depends on the materials of the surfaces and of the medium
in which the spheres are located. To have the force between a plane surface and a
sphere, consider that one of the two surfaces has infinite curvature (R1 ≡ a and
R2 → ∞) so that:

FvdW(d, a) = lim
R2→∞

Fad(d, a,R2) =
2Aa3

3d2(d+ 2a)2
(4.3)

where d is the distance between the surface of the particle and the supporting plane
that for a micrometric particle placed on a coverslip is of the order of magnitude of
some nanometres. nm.

To quantify the force Fad(d,R1, R2) in order to design a suitable loading system,
the evaluation of Hamaker constant is significant. The best way to obtain the
Hamaker constant, which depends on the material of the two surfaces (plane and
sphere) and on the medium in which this two object are immersed (in this work
air), is by experimental measurement, e.g. using an atomic force microscope [53].
However, it is not always possible to find measurements of this constant in the
literature for every case study, but, without carrying out a complex measurement,
it is possible to evaluate the Hamaker constant A using Lifshitz’s theory [54]. If
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Figure 4.6: van der Waals force FvdW of equation (4.3) as function of (a) the particle
radius a, for different values of the distance d of the particle surface from the plane
surface, and (b) of d, for different values of the particle radius a. For this evaluation,
the Hamaker constant is A = 5.98 · 10−20 J.

two objects with dielectric permittivity ϵ1 and ϵ2 (i.e. with refractive indexes n1 and
n2) are immersed in a medium with dielectric permittivity ϵ3 (i.e. n3), the Hamaker
constant is

A ≃ 3

4
kBT

ϵ1 − ϵ3
ϵ1 + ϵ3
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+
3h

4π

∫ +∞

ν1

ϵ1(iν)− ϵ3(iν)

ϵ1(iν) + ϵ3(iν)

ϵ2(iν)− ϵ3(iν)

ϵ2(iν) + ϵ3(iν)
dν (4.4)

that can be rewritten in a simpler form [55, 56, 57]

A =
3h

8
√
2

(n2
1 − n2

3) (n
2
2 − n2

3) νe√
n2
1 + n2

3

√
n2
2 + n2

3

(√
n2
1 + n2

3 +
√
n2
2 + n2

3

) +
3kT

4

(ϵ1 − ϵ3) (ϵ2 − ϵ3)
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(4.5)

where h is the Plank constant, k is Boltzmann constant, and νe is the main electronic
absorption frequency of the medium. For example, considering a SiO2 micrometric
spherical particle and a SiO2 coverslip immersed in air, equation (4.5) gives

A = 5.98 · 10−20 J (4.6)

because ve = 3.2PHz, ϵ1 = 3.80, n1 = 1.42 , ϵ2 = 3.80, and n2 = 1.45. Instead, if the
particle is made of polystyrene, equation (4.5) gives

A = 8.90 · 10−20 J (4.7)

because ϵ1 = 2.55 and n1 = 1.68.
Now, the force of equation (4.3) can be evaluated as function of the particle

radius a for the case of interest: SiO2 or polystyrene micrometric spherical particle
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interacting with a SiO2 coverslip flat surface. In figure 4.6a, FvdW is evaluated as a
function of the particle radius a for different values of the distance of the particle
surface from the plane surface d. This force increases increasing the particle radius,
but decreases as the distance d increases, as shown in figure 4.6b. In addition, the
order of magnitude of FvdW varies between 10−3 nN and 104 nN and, for the specific
case of this work (d about 1 nm and a between 1µm and 5µm), 10 nN and 100 nN.
The magnitude of this force is 3 orders of magnitude greater than the other forces
involved in optical trapping: the trapping force is of the order of magnitude of
10pN, while the gravitational force of 1pN. Therefore, it is impossible to detach
micrometric particle from a plane surface in air with an optical tweezers or the
gravitational force, but this is possible by using piezoelectric crystals to vibrate the
surface of the plane enough to produce a force comparable to FvdW.

4.4.2 Piezoelectric crystals
Piezoelectric crystals consist of dielectric materials that can be polarised not only

by an electric field, but also by a mechanical force. The piezoelectric effect [58, 59]
is characterised by an interconnection between electrical and elastic phenomena:
some materials deform when an electric potential difference is applied to them
and, conversely, they exhibit macroscopic polarisation, i.e. the production of surface
electrical charges, when a mechanical force acts on them.

This phenomena can be understood with a simple molecular model [60]. When a
piezoelectric crystal is not exposed to an external force, the centres of the negative
and positive charges of its molecules coincide so that the material is electrically
neutral, figure 4.7a. Instead, in presence of an external mechanical force, the
positive and negative centres of the molecule are separated, figure 4.7b, generating
electric dipoles. Macroscopically, the crystal bulk is still neutral, while the external
surfaces of the crystal are electrically charged: all the dipoles induced by the me-
chanical force are arranged in a lattice so that they annihilate each other except on
the surface of the crystal, like figure 4.7c schematically shows. Conversely, when
an external field is applied to the piezoelectric crystal, the molecules forms electric
dipoles that change their shape inducing a deformation of the crystal.

Without going into the mathematical details of the piezoelectricity modelling,
the application of an electric field E⃗ to a piezoelectric crystal makes it expand or
contract along the axes x, y and z depending on the material properties [61]. For
simplicity, assuming a linear deformation of the piezoelectric crystal, the second-
rank strain tensor Sij is related to the applied electric field through the relation
[60, 61]

Sij = dkijEk (4.8)

where dkij is the third-rank piezoelectric tensor and Ek is the k-th component of the
electric field vector E⃗.

In this work, to load the particle into the optical trap, a ring piezoelectric crystal
is placed with its axis coincident to the optical axis z and a coverslip with particles
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(a) (b) (c)

Figure 4.7: (a) sketch of a piezoelectric crystal molecule not exposed to an external
force, where the grey shadow in the background indicates that the overall charge
of the molecule is zero, the red circle indicates a positive charge, and the blue
circle a negative charge; (b) sketch of a piezoelectric crystal molecule deformed
by an external force and, therefore, characterised by a separation of the charge
centres, where the shadow in the background fading from red to blue indicates
the charge distribution along the molecule; (c) piezoelectric crystal sketch under
external forces, where the solid line represents the outline of the crystal boundaries
and it changes colour according to the net charge.

is fixed on it orthogonally to z. In this way, the elongations and the contractions of
the ring height (along z) allows to detach the particle and lunch them into the trap.
Therefore, the applied electric field E⃗ is directed only along z and, for simplicity, it
is considered to be:

E = V · l (4.9)
with V the voltage applied to the piezoelectric ring crystal and l the height of the
ring. Under these conditions, the displacement along z is

∆z = l · S33 = d33V (4.10)

Therefore, if the voltage V ≡ V (t) oscillates periodically with frequency f , the
particle on the coverslip are subjected to the mechanical force

Fm = m
d2z

dt2
=

(
4

3
πa3ρ

)
∆z ω2 (4.11)

where m is the mass of the particle, a its radius, ρ its density, ∆z and ω = 2πf
the vibration amplitude and the angular frequency respectively. This force must be
greater than the London-van der Waals force of equation (4.3) in order to detach
the particle and load it in the trap, i.e.

Fm =

(
4

3
πa3ρ

)
∆z ω2 > FvdW(a) =

2Aa3

3d2(d+ 2a)2
(4.12)
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Figure 4.8: comparison of the mechanical force Fm (solid line) and the van der Waals
force FvdW (black dotted line) as function of the particle radius a and for different
frequency f for (a) a SiO2 particle and (b) a polystyrene particle on a SiO2 surface.

and this condition shows that the two most effective parameters to detach the par-
ticle are its radius a, because Fm ∝ a3, and the oscillation frequency f , because
Fm ∝ f 2. Also the particle material is very important, as shown in figures 4.8a
and 4.8b. Indeed, the Hamaker constant A and the particle density ρ can change
drastically the detaching condition of equation (4.12). For example, a polystyrene
particle has an higher Hamaker constant (higher FvdW) and a lower density ρ (lower
Fm) than a SiO2 particle and it is much more difficult to detach.

Experimentally, it is necessary to find the right compromise between these two
parameters. The radius of the particle, for the purposes of this work, can be between
0.5µm and 3.0µm and, therefore, is not a limiting parameter. Instead, the frequency
f needs to be of the order of 105Hz and it is a stricter parameter. Indeed, the piezo-
electric ring crystal needs to be chosen in such a way that its resonant frequency fh
is of the order of 105Hz, its capacitance small enough to not integrate the oscillating
signal (C < 20 nF), and its mechanical quality factor9 high enough to produce a force
sufficient to detach the particle (Q > 1000). While Q is determined by the material
constituting the piezoelectric crystal, the resonant frequency fh and the capacitance
C depend on the geometrical properties of the piezoelectric ring crystal, being{

fh = Nt

h

C = ϵ33ϵ0π
d2o−d2i

h

(4.13)

where ϵ0 is the vacuum permittivity, ϵ33 is the relative permittivity in the polarisa-
9The mechanical quality factor Q is the amplification factor for strain and vibration in resonance

conditions. Instead, its inverse quantifies the energy lost per cycle.
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tion direction z of the piezoelectric ring crystal, Nt is the frequency coefficient, di, do
and h the inner diameter, the outer diameter and the height of the ring, respectively.

To satisfy all these conditions, the chosen piezoelectric ring crystal (Physik In-
strumente made of PIC181) has 

Q = 2000

fh = 351.7 kHz

C = 10.7 nF

(4.14)

being h = 6mm, di = 20mm, do = 50mm, Nt = 2110Hz · m, and ϵ33 = 1100. To
properly supply this piezoelectric ring crystal in order to detach the particle, the
power supply must produce an electric signal oscillating at least at 350 kHz with a
current of 4A and a voltage of 150V, i.e. with a power of at least 600W.

4.4.3 Loading system
To supply the piezoelectric ring crystal, a homemade system is designed, simu-

lated, and realised specifically for this work. This system is a low budget device to
produce electric signals up to 150V and 5A at oscillating frequencies up to 500 kHz.
The system is designed in three blocks: a high-power voltage supply, a high-power
periodic signal generator, and a piezoelectric transducer. Since this system has 3
“heads” and it is potentially dangerous (high power signals), it has been nicknamed
Cerbero (schematics in figure 4.9a) even though, in reality, it is equipped with safety
systems that minimise the danger of injury.

The high-power voltage supply, i.e. the first block, is designed to use two toroidal
transformers, TR1 and TR2, with a nominal power of 800VA (RS PRO 2x115V ac,
2x55V ac Toroidal Transformer, 800VA 2 Output, 123-4050). To have high current,
the two output of a transformer are wired together in series so that each transformer
generates a voltage of 110V and 50Hz. To have a current sufficient to supply the
piezoelectric ring crystal, the two transformer are wired in parallel so as to supply
twice as much current as the single transformer. The output of the two transformers
is rectified by the Graetz bridge B1 (Fagor FB 5004) and made DC by a 1000µF
capacitor C1 (BHC Aerovox 1000 µF, 415 VDC). In this way, the output voltage
of the high-power voltage supply is about 150V. The schematics of this block is
shown in figure 4.9a outlined by the blue dashed line and its realisation in figure
4.9b. For safety reasons, the system is designed to be completely unplugged from
the 220VAC main electricity when the key-switch S1 and the rocker toggle switch
S2 are set to OFF: the relay K1 disconnects completely the toroidal transformers,
therefore the whole system, from both phase and neutral thanks to its poles P2 and
P3. Switching S1, a transformer 220VAC-12VAC is connected to the main electricity
powering on only a voltmeter-amperemeter. Indeed, for additional safety, the two
toroidal transformers are connected to the main power supply only if first S1 and
then S2 are set to ON (starting sequence). After the starting sequence, the capacitor
starts to charge absorbing a limited amount of current (about 0.15A) thanks to R1.
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Figure 4.9: (a) schematics of Cerbero where F1 is a 0.5A fuse, F2 is a 5A fuse, S1 and
S2 are switches, K1 is a relay with three poles (P1 P2, and P3), K2 is a temporised
relay with one pole, R1 and R2 are 1 kΩ-50W resistors, B1 is the Graetz bridge, C1
the 1000µF-400V capacitor, R3 is a 3.3 kΩ resistor, R4 is a 1.5 kΩ resistor, R5 is a
150Ω-50W, R6 is a series of 8 resistors of 4Ω-100W, T1 is a NPN transistor, T2
a NPN Darlington transistor, Q1 and Q2 power MOSFETs; (b) realisation of the
high-power voltage supply (the schematic of this part is outlined by a blue dashed
line); (c) realisation of the high-power periodic signal generator (the schematic of
this part is outlined by a black dotted line).

Indeed, without R1, the capacitor charges itself absorbing a huge amount of current
damaging the transformers. This problem only occurs in the initial transient as
the high-capacity capacitor C1 is completely discharged, i.e. 5R1 ·C1 ≃ 5 s after the
start sequence. Thus, after this initial transient, R1 is short circuited to have the
full power of the system for supplying the piezoelectric transducer, thanks to the
temporised relay K2. Furthermore, it is important to emphasise that the capacitor
C1 stores a sufficiently large amount of energy to be dangerous and, for safety
reasons, it is mandatory to discharge the capacitor whenever the device is switched
OFF: the relay K1, in addition to disconnect completely the toroidal transformers
from the main electricity, grounds the capacitor C1 (pole P1) through the resistor
R2 ensuring the complete discharge about 5 seconds (R2 · C1 ∼ 1 s) after switching
off.
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(a) (b)

Figure 4.10: piezoelectric transducer (a) design and (b) realisation.

The high-power periodic signal generator, i.e. the second block, has one input
and one output. It supplies the first block with 150VDC, through the resistorR6: the
input is connected to a 10MHz low-power commercial function generator (Wavetek
model 29) that produces a low-voltage signal at frequency f ; the output is connected
to the piezoelectric transducer. The input enters in a two stage amplifier made with
a NPN transistor T1 (STMicroelectronics BD139) and a NPN Darlington transistor
T2 (STMicroelectronics TIP 121), which amplifies the signal in current10 in order to
drive two power MOSFETs (STMicroelectronics IRFP450), Q1 and Q2, in phase with
the input. These MOSFETs, connected in parallel to handle the high power, open
and close the circuit between the resistor R6 and the ground with opposite phase
with respect to the input. In this way they supplies the piezoelectric transducer
with a square-wave of frequency f , voltage that oscillates from 0V to about 150V
(the maximum voltage produced by the high-power voltage supply), and opposite
phase to the input. Therefore, no electrical power is absorbed by the second block
when no input signal is provided. The schematics of the high-power periodic signal
generator is shown in figure 4.9a outlined by the black dotted line. Its realisation
is shown in figure 4.9c.

The third block is the piezoelectric transducer, formed by a piezoelectric ring
crystal and a homemade chamber. The piezoelectric ring crystal is connected to the
output of the high-voltage periodic signal generator and, thanks to the piezoelectric
effect (chapter 4.4.2), converts the electrical signal energy in mechanical energy
by vibrating. To produce a piezoelectric transducer able to detach particles from
their supporting surface and load them into the optical trap, a homemade chamber
is needed to physically couple the piezoelectric ring crystal with the sample, see
figures 4.10a and 4.10b. This chamber is a hollow disc with a through-hole in the
centre allowing the optical trapping beam to illuminate the sample. The piezoelec-
tric crystal is placed in the chamber on a solid rubber O-ring which electrically
isolates the positive terminal of the high-power periodic signal generator from the
chamber floor avoiding short circuit fault. On the other side of the piezoelectric

10The Darlington transistor allows to amplify the signal in current.
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crystal, a coverslip is pressed onto it with a plate screwed into the chamber floor.
The chamber is closed by a lid also perforated in the centre to allow the LED visible
light to illuminate the sample.

The sample is made in a simple way: the coverslip is cleaned with a plasma
cleaner and grains of dry particles are placed on it, avoiding large clusters (linear
dimensions greater than 1mm). With this system, SiO2 particles with a diameter
greater than 2µm are successfully loaded into the optical trap.
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Chapter 5

Data analysis

This chapter is about the data analysis algorithms used to extract the trajectory
of the studied particle from the videos acquired with the experimental setups de-
scribed in the chapter 4, and to evaluate the physical quantities of interest. The
first section deals with the particle tracking algorithms used to extract the 2D or
the 3D trajectory from the videos in physical units. The 3D tracking algorithm
is based on holographic techniques that are computationally time-consuming. To
reduce the computational time, the convolutional neural network described in the
last part of the first section is developed specifically for this purpose. The second
section describes the trajectory analysis used to evaluate the physical parameters
of interest such as the trap stiffness, the fluid viscosity, the particle mass. These
parameters are extracted measuring the quantities theoretically described in chap-
ter 2 for different experimental conditions, i.e. the power spectral density (PSD),
the mean squared displacement (MSD), the autocorrelation function (ACF), the
potential, and the variance of the particle trajectory.

5.1 Particle tracking
In this work, the particle tracking is done in bright-field by recording a video of

the trapped particle with a CCD camera. The position of the particle is determined
analysing the video frame-by-frame with detection algorithms, which extract the
particle position in terms of pixels, and the particle trajectory reconstructed using
a linking algorithm. Consequently, the trajectory is measured in pixels and, per-
forming a CCD calibration procedure that quantifies the pixel/length conversion
factor βCCD, converted in physical units.

5.1.1 Calibration
The CCD camera calibration is achieved by imaging a calibration ruler (Pyser

Optics PS12) having a length of 100µm and reflective tick marks 2µm spaced from
each other. The tick marks have a line width of 1µm and are reflective so that they

77
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Figure 5.1: (a) acquired frame of the ruler with the SBOT setup where the cropping
region is delimited by the red rectangle. The first inset (middle of the image,
delimited by a red rectangle) contains the cropped frame and the second (the top
one) the black and white version of the cropped frame; (b) pixel intensity of the
black and white cropped frame Ipx(n̄,m) as function of the position x for the first
100 px; (c) physical distance between the tick marks xµm as function of the centre of
tick marks measured in pixel xpx (blue circles) and its best fit line (red solid line)
where βCCD = 0.116µm/px.

appear black in bright-field acquisition (see figure 5.1a). The acquired frame is
an 8-bit greyscale image Ipx(n,m), i.e. a matrix of dimensionless integers between
0 (black) and 255 (white), where n and m are the pixel row and column indexes
respectively. Therefore, the tick marks are represented by regions of the frame with
Ipx < Ith, where Ith is a threshold value. This threshold value, in proper illumination
conditions, is the mean value of the black regions and it is used for locating the
centre of each tick marks.

The calibration procedure is as follow: first, in order to enhance the accuracy
of the calibration, the frame is cropped to a 1 row image containing only the most
regular part of the tick marks, as shown in the inset (1) of figure 5.1a. Then the
frame is converted into a black and white image according to this transformation

Ĩpx =

{
0 Ipx ≤ Ith

255 Ipx > Ith
(5.1)

the result of which is shown in the second inset (2) of figure 5.1a.
The pixel intensity of this image Ĩpx(n̄,m) as function of the position x (see figure

5.1b) allows to extrapolate the centre of each tick marks xpx as the mean value of
each region with Ĩpx = 0. All the values xpx are collected into a vector x⃗px, with
dimension N equal to the number of tick marks in the frame, and then shifted to
have x⃗px(0) = 0. Since the distance between the tick marks is l = 2µm, the vector
x⃗µm = (0, l, ..., N · l) is proportional to x⃗px. The conversion factor βCCD is estimated
as the slope of the best fit line of xµm as function of xpx, see figure 5.1c.

In general, βCCD depends on the pixel size of the CCD sensor, the tube lens
used to focus the sample image on the sensor, and the objective lenses used to
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Figure 5.2: (a) frame of an acquired video of a trapped particle with a sampling
rate of 1500Hz, where the blue solid line represents the particle trajectory and in
the inset there is a magnification of the region delimited by the red square; (b)
centre position of the particle xp and yp as function of the time t.

observe the sample. Therefore, the conversion factors of the different setups used
in this work are: βCCD = 0.116µm/px for the single-beam optical tweezers (SBOT),
βCCD = 0.073µm/px for the single-beam intracavity optical tweezers (SIOT) used for
trapping in water, and βCCD = 0.508µm/px for the double-beam intracavity optical
tweezers (BIOT) used for trapping in water and the SIOT used for trapped in air.

5.1.2 2D tracking
The digital video microscopy tracks particles taking advantage of the particle

intensity profile that is Gaussian when the sample is illuminated with a proper
light intensity and contrast. Indeed, the particle appears as a circle brighter than
the background encircled by a dark ring 5.2a and its video is a set of frames acquired
at constant sampling rate ffps (i.e at sampling interval ∆t = 1/ffps). In this work, the
feature point detection technique [62] is used and implemented in MATLAB to mea-
sure the particle centre position frame-by-frame and to link these position forming
particle trajectory, as shown in figure 5.2b. Then, the trajectory is converted into
actual physical units of length thanks to the calibration procedure explained before.

5.1.3 3D holographic tracking
The holographic video microscopy technique tracks a particle 3-dimensionally

through a 2-dimensional image taking advantage of the interference between the
portion of the illumination beam scattered by the particle and the unscattered
portion of the same beam. Since, this interference happens only if the illumination
light has a proper coherence degree, a monochromatic LED is used in this work as
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Figure 5.3: (a) holographic image of a polystyrene particle of diameter 2.82µm; (b)
background image; (c) normalised holographic image obtained dividing the first
image with the background image; (d) best fist holographic prediction; (e) best fit
holographic prediction implementing a Gaussian filter in the fitting procedure.

light source of the imaging system. In this way, the interference pattern of figure
5.3a is obtained. A LED is used instead of a more coherent laser source to avoid
unwanted effects such as high noise in the image due to other particles or dust.
Following the method developed by [63, 64], the optical intensity I(r⃗) of a single
particle on the CCD camera is given by

I(r⃗) ≃ u20(r⃗) + 2ℜ [u0(r⃗)Es(r⃗, 0)] +
∣∣∣Es(r⃗, 0)

∣∣∣2 (5.2)

with
Es(r⃗, 0) = u0(r⃗p)fs(kr⃗ − kr⃗p) (5.3)

where u0(r⃗) is the amplitude of the illumination plane-wave and fs(kr⃗) defined by
Mie’s theory (see equations (A.11), (A.12) and (A.13)).

Equation (5.2) is valid if the height of the particle above the focal plane is greater
then its size. This condition is experimentally achieved defocusing on purpose the
image of the particle moving slightly the tube lens of the CCD. Often, the major
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Figure 5.4: (a) x, y, and z position of the centre of a particle in water which is pushed
by a laser beam as function of the time t; (b) z position as function of x position for
the same particle. The trajectory is obtained with the holographic 3D tracking.

source of noise in this technique is due to a background interference pattern due to
a non ideal illumination source, small imperfection of the imaging system, or dust
on the sample. To avoid this problem, a background image is acquired without any
particle in the field of view, as shown in figure 5.3b, and it is used to normalise the
acquired images of the tracked particle, as shown in figure 5.3c.

Evaluating numerically equation (5.2), it is possible to generate the prediction
images as function of r⃗. In this way, the acquired images can be fit using a best fit
algorithm, like the Levenberg-Marquardt, thus obtaining the particle position r⃗p.
In this work, the prediction images are generated using DeepTrack [65] or HoloPy
[66]. A prediction image, relative to the normalised acquired frame of 5.3c, is shown
in 5.3d. The predicted image has a very detailed intensity pattern compared to the
normalised image and, in order to help the fitting procedure, a Gaussian filter is
implemented in the fitting algorithm. The Gaussian filter parameters are also used
as fitting parameters and improving greatly the best fit image, see figure 5.3e.

Applying this procedure frame-by-frame, the 3D positions of the particle can be
extrapolated and the trajectory is then obtained with the linking criterion described
previously, see figure 5.4a. This fitting procedure is time-consuming due to the
complexity of the function fs(kr⃗ − kr⃗p). To evaluate 10000 frames of 35 px × 35 px,
the fitting procedure requires about 10hours. The particle positions are then linked
together forming the particle trajectory, figures 5.4b and 5.4a.
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Figure 5.5: convolutional neural network realised for 3-D holographic tracking. It
consists of a first 2D convolutional layer (red shape) that applies 32 filters 3×3, max
pooling layers with pool size 2×2 (blue shapes), other 2 convolution layers applying
64 filters 3 × 3, a flatten layer (grey shape), two dense layers with 64 neurons, and
the output dense layer.

5.1.4 Convolutional neural network for 3D tracking
To speed up the 3D tracking of a particle, the convolutional neural network

(CNN) [67] of figure 5.5 is realised, that performs a regression having as input
an N ×M matrix representing an acquired holographic image of the particle and
as output the array (x, y, z) of the 3D coordinates of its centre.

This result is achieved using 2D convolutional layers and maximum pooling
layers. The 2D convolutional layer multiplies a n × m matrix of weights, called
filter, to the input producing a new matrix of dimension (N − n+ 1)× (M −m+ 1),
called feature map. The goal of the filter is to extract features from the input
such as edges, shapes, high-intensity regions. To recognize different features, this
layer applies many different filters producing a stack of feature maps. Then, the
activation function is applied to the feature maps, i.e. the non-linear function
ReLu(x) = max(0, x). Instead, the maximum pooling layer extracts the maximum
values of np ×mp sub-matrices of its input. The input is the stack of nc ×mc feature
maps and its output are matrices with dimension no = nc/np and mo = mc/mp.
This improves the analysis eliminating parts of the input that are not significative
and reducing the data size while keeping the features. In this CNN, there are 3
convolutional layers followed by 2 pooling layers.

To extract the vector position from the last feature maps, a flatten layer reshapes
its input in a 1-dimensional vector that is given in input to the two dense layers that
follow. The neurons of the dense layers perform the scalar product between the input
and a vector of weights and, then, applies the ReLu(x) activation function.

Finally, the output layer is a dense layer with a number of neurons equal to
the dimension of the CNN output and a linear activation function. Its output
(prediction) is the particle position.

This CNN is trained through supervised learning, that finds the set of weights
solving the given problem. Because the training is supervised, the training dataset
is manually labelled. Specifically, the training dataset is a set of 10000 selected
frames from acquisitions characterised by different experimental conditions whose
particle position (labels) is determined with HoloPy. Instead, the test dataset con-
sists of 20000 frames from other experimental acquisitions than the training dataset



5.1. PARTICLE TRACKING 83

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
xH [7m]

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

xNN [7m]

-2.7 -1.8 -0.9 0.0 0.9 1.8 2.7
yH [7m]

2.7
1.8
0.9
0.0
-0.9
-1.8
-2.7

yNN [7m]

-45 -30 -15 0 15 30 45
zH [7m]

-45
-30
-15

0
15
30
45

zNN [7m]

(a)

0 25 50 75 100
xH [7m]

-1.3

-0.7

0.0

0.7

1.3

x [7m]

HoloPy CNN

0 25 50 75 100
t [s]

-2.7
-1.8
-0.9
0.0
0.9
1.8
2.7
y [7m]

HoloPy CNN

0 25 50 75 100
t [s]

-45
-30
-15

0
15
30
45
z [7m]

HoloPy

CNN

(b)

Figure 5.6: (a) neural network output (xNN , yNN , zNN) as functions of the training
dataset labels (xH , yH , zH); (b) comparison between particle position (x, y, z) as
function of time t measured with HoloPy (coloured semitransparent solid lines)
and with the convolutional neural network after training (black solid lines), i.e.
the application of the CNN on a subset of the test dataset.

and their corresponding particle positions (xH, yH, zH). Training on this dataset
requires about 3 hours, while the evaluation few seconds. To check the goodness
of the prediction, the trained CCN is applied to the test dataset and its predictions
(xNN, yNN, zNN) studied as function of the labels (xH, yH, zH), figure 5.6a. Good pre-
dictions depend linearly on the labels as a straight line passing through the origin
with slope 1.

In this way, it is possible to measure the centre position of a particle frame-by-
frame for an experimental acquisition in few seconds instead of dozens of hours with
a good accuracy. Then, applying the linking algorithm, it is possible to obtain the
trajectory, figure 5.6b.



84 CHAPTER 5. DATA ANALYSIS

10!2 10!110!1 100100 101101 102102 103

f [Hz]

10!6

10!510!5

10!4

10!310!3

10!210!2

10!110!1

100100

101101

102102

103
S [nm2=Hz]

(a)

10!2 10!110!1 100100 101101 102102 103

f [Hz]

10!2

10!110!1

100100

101101

102102

103

< Sk > [nm2=Hz]

(b)

Figure 5.7: (a) experimental power spectral density S (blue solid line) and the
average S evaluated by repeating the same experiment (orange solid line) as
function of the frequency f for a particle trapped in water by a SBOT; (b) S obtained
by blocking the average of S of figure (a) as function of f .

5.2 Trajectory analysis
To measure the parameters characterising the optical trapping, the techniques

described in chapter 2.2 are applied to the experimental particle trajectories. A
trajectory is a discrete and finite set of positions rj = r(tj) acquired at the sampling
times tj = j∆t and, because these techniques deals with continuos trajectories, they
needs to be discretised. For simplicity, the trajectory of the particle is assumed to
be 1-dimensional being the 3-dimensional extension straightforward1.

5.2.1 Power spectrum
The power spectrum analysis (chapter 2.2.1) is based on the Fourier transform

(chapter 2.2.1) of the trajectory. Therefore, the discrete Fourier transform of the
particle trajectory needs to be performed, defined as:

r̃k =
N∑
j=1

rje
−2πifktk =

N∑
j=1

rje
−2πi k

N
j (5.4)

where 1 ≤ k ≤ N and fk = k/Ts with Ts = N∆t total acquisition time. The power
spectral density (PSD) Sk is then obtained as

Sk =
∆t

N
|r̃k|2 (5.5)

1To extend these methods, the 1-dimensional results are simply applied on each direction of the
particle trajectory.
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and it requires strictly a time series of correlated particle positions (trajectory)
at regular time intervals. Figure 5.7a shows the experimental PSD for a particle
trapped in water with the single beam optical tweezers (SBOT).

To estimate the physical quantities of interest, Sk should be fitted to its theo-
retical expression by a least square fitting. Nevertheless, the best fit can not be
performed because the values of Sk are drawn from an exponential distribution2

[31]. Indeed, in order to apply a least square fitting procedure, the data points
need to follow a Gaussian distribution and to be statistically independent from
each other . To satisfy these conditions there are two possibilities: evaluate Sk

by repeating the experiment K times and averaging the resulting PSDs, and/or
replacing a block of nb consecutive data points with their average value placed at
their average position, called blocking procedure. When K and/or nb are sufficiently
large, the resulting data points have a Gaussian distribution (central limit theorem)
and the least square fitting can be performed. Therefore, when possible, these
two procedures are applied, figures 5.7a and 5.7b, and, then, least square fitting
performed. These two procedures, in addition, decrease data noise improving the
estimation accuracy.

5.2.2 Mean squared displacement and autocorrelation
The mean squared displacement and the autocorrelation procedure require a

time series of correlated particle positions rj = r(tj) at regular time intervals tj =
j∆t. As for the PSD, by performing these analyses multiple times on various rep-
etitions of the same experiment, the MSD and the ACF can be better estimated as
the mean value of the resulting MSDs and ACFs, while the uncertainty as their
standard deviation.

Mean squared displacement The MSD is defined as Var[r(τ)] (chapter 2) and,
for a discrete trajectory, is given by

MSDr,k =
1

N − k

N−k∑
j=1

[rj+k − rj]
2 (5.6)

where rj+k = r(j∆t + k∆t) and, therefore, the time lag τ is τk = k∆t. Performing
this operation on a finite trajectory, the MSDr,k becomes less reliable as the delay
time τk is increased, because it is evaluated on a progressively smaller set of points,
as shown in figure 5.8a. For this reason, the maximum delay time τK is typically
smaller than 20% of the acquisition time, τK < 0.2 ·N∆t, as indicated by the dashed
vertical line of figure 5.8a. The MSD of equation (5.6) allows to estimate physical
quantities of interest, such as the trap stiffness, with a least square fitting to its
theoretical expression.

2The PSD is proportional to the square modulus of the Gaussian random force of the Langevin
equation and, therefore, is distributed exponentially.
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Figure 5.8: (a) mean squared displacement MSDr, and (b) autocorrelation function
ACFr as function of the lag time τ for a particle trapped in water by a SBOT. The
vertical black dashed line indicates the maximum delay time τK = 0.2 ·N∆t.

Autocorrelation function The ACF of a discrete trajectory is

Cr,k =
1

N − k

N−k∑
j=1

rj+krj (5.7)

and it can be fitted to its theoretical expression by a least square fitting. Also for
ACF, the result of (5.7) becomes less reliable when the delay time τK is greater than
0.2 · N∆t. Figure 5.8b shows an experimental ACF for a particle trapped in water
with a SBOT.

5.2.3 Potential and equipartition method
Potential analysis This analysis is quite general and can be used to measure
even very complex potentials, not only harmonic ones. It does not require a time
series of correlated particle position, like the previous methods, but it only needs
a series of N independent particle positions ri. It is based on equation (2.62) that
relates the potential U(r) with the probability distribution of the particle ρ(r), i.e.

U(r) = −kBT log[ρ(r)] + U0 (5.8)

where r is the particle position, T is the temperature of the sample and U0 is a
constant.

To obtain ρ(r) experimentally, the positions ri are sorted into a series of equally
spaced bin of width m and their counts ϕm are evaluated. Then, ρm is obtained as

ρm =
ϕm

N ·m
(5.9)
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Figure 5.9: (a) experimental probability density function ρm and (b) the experimen-
tal potential Um/kBT as function of the particle position r.

that represents an approximation of ρ(r) which becomes progressively better as the
number of data N increases. An average value and a standard deviation of ϕm can
be obtained repeating this operation several times on different datasets of the same
experiment. Then, the logarithm of ϕm gives the potential through the relation

Um = −kBT ln [ϕm] + U0 (5.10)

This equation allows to estimate the physical parameters of the experimental po-
tential by performing a least square fitting of Um to its theoretical expression. Fig-
ure 5.9a shows the experimental ρ(r) and figure 5.9b its associated potential for a
trapped particle in water.

Equipartition method This method requires the evaluation of the position vari-
ance (chapter 2.2.4), that for a discrete trajectory is

Var[r] =
1

N

N∑
n=1

(xn − xeq)
2 (5.11)

with N the number of the trajectory elements and

xeq =
1

N

N∑
n=1

xn (5.12)
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the mean position of the particle. Therefore, if the particle is trapped by an har-
monic potential, the trap stiffness is

kr = kBT

[
1

N

N∑
n=1

(xn − xeq)
2

]−1

(5.13)

according to equation (2.66). By repeating the experiment N times, equation (5.11)
can be used to estimate the variance of each repetition, Var[r]n. In this way, a better
estimation of Var[r] is provided by the mean value of the set {Var[r]n}n=1,...,N , while
its uncertainty as the standard deviation of {Var[r]n}n=1,...,N .



Chapter 6

Results and discussion

This chapter deals with the experimental results obtained by trapping particles
with the setups described in chapter 4 and analysed by using the techniques de-
scribed in chapter 5. In the first section, the standard single-beam optical tweezers
(SBOT) is preliminary use to trap particles in water in order to optimise the func-
tioning of the experimental setup. Then, the SBOT is used to fine tune the loading
system for air trapping (chapter 4.4) to extend this techniques to the intracavity
optical tweezers setup (IOT).

The second section discusses the results of particles trapped with the IOT and
it is divided in five parts. The first part deals with the characterisation of the
laser system when no particle is trapped. The second part concerns the trapping
of particles in water with the single-beam IOT (SBIOT). The feedback effect is
quantified and the results are compared with the theoretical models of chapter
3. The third part describes the novel double-beam IOT (DBIOT) characterised by
two counter-propagating beams. Unlike the SBIOT, the DBIOT is characterised
by a stronger confinement of the particle that reduces the feedback effect during
trapping. The fourth part describes a novel DBIOT configuration in which the two
counter-propagating beams are slightly misaligned forming a double-trap configu-
ration: the two beams trigger a periodic motion of the particle between them produc-
ing regular periodic transitions that differ from the Kramers’ transition described
in chapter 2.3 because of the feedback effect. The last part deals with trapping
particles in air with SBIOT comparing it with the analogous case in water and
with the case of trapping in air with the standard optical tweezers.

6.1 Single-beam standard optical tweezers

In this section, the results obtained trapping particles with a SBOT are dis-
cussed. The first part deals with trapping in water, while the second part with
trapping in air.

89
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Figure 6.1: (a) image of a silica particle of diameter 3.16µm trapped in water
with SBOT with its trajectory that is visible more clearly in the inset; (b) x and
y component of the particle trajectory as function of time t.

6.1.1 Trapping in water
Trapping particles in water represents a preliminary step to check the perfor-

mances of the SBOT. The experiments are performed using 3.16µm silica particles
and a laser power of P = 24.86mW.

The particle trajectory is obtained applying the 2D tracking procedure described
in chapter 5.1.2 to 30 videos of 60000 frames acquired at 1500 frames per second (fps).
Figure 6.1a show a typical image of the trapped particle with its trajectory whose
components are shown in figure 6.1b as function of the acquisition time t.

Firstly, the trap stiffness is evaluated by using the equipartition method, that
gives 

keqx = (2.21± 0.05) · 10−6N

m

keqy = (2.15± 0.04) · 10−6N

m

(6.1)

where the temperature, measured during the whole experiments, is 298.1 ± 0.5K.
The stiffness along the x and the y directions are not discrepant denoting that the
trap is symmetric in the trapping plane.

Then the power spectral density method is applied calculating the experimental
PSDs (figure 6.2a). They present a Lorentzian shape according to the theoretical
expression of equation (2.45), i.e.

Sr(ω) =
2kBT

γ

1

ω2 + (k
γ
)2

(6.2)
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Figure 6.2: (a) experimental power spectral density S (dots with error bars) and
its best fit curve (solid line) as function of the frequency f along the x direction
(blue data) and the y direction (orange data); (b) experimental mean squared
displacement MSD (dots with error bars) and its best fit curve (solid line) as function
of the lag time τ along the x direction and the y direction.

This expression is used as fit function in order to estimate the stiffness k and the
friction coefficient γ. The best fit stiffnesses are

kSx = (2.34± 0.04) · 10−6N

m
;

kSy = (2.26± 0.06) · 10−6N

m
;

(6.3)

which are in not discrepant with the values obtained with the equipartition method,
equation (6.1). The friction coefficient γ of the fluid is obtained as mean value of the
two estimates along x and y directions resulting in

γS = (2.59± 0.07) · 10−8 N · s
m

(6.4)

that is not discrepant with the expected value of γth = (2.65±0.06)·10−8 N·s
m

evaluated
assuming known the water viscosity and the particle diameter.

Then the mean squared displacement is calculated following the procedure of
chapter 5.2.2, obtaining the experimental MSDs of figure 6.2b. These curves reach
the plateau value in about 0.15 s after a first exponential growth and follow the
theoretical expression of equation (2.48), i.e.

MSD(τ) =
2kBT

k

(
1− e−

k
γ
t
)

(6.5)
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Figure 6.3: (a) experimental autocorrelation function ACF (dots with error bars)
along the x direction (blue data) and the y direction (orange data) as function of the
lag time τ . The solid lines indicate the best fit curves; (b) experimental potential Ur

(dots with error bars) along the r = x direction (blue data) and the r = y direction
(orange data) as function of the x and y position of the particle, respectively. Its
best fit curve are indicates by the solid lines.

that is used as fit function with k and γ as fit parameters. The best fit curves are
shown in figure 6.2b as solid lines and the best fit estimations of the stiffnesses are

kMSD,(1)
x = (2.28± 0.21) · 10−6N

m

kMSD,(1)
y = (2.19± 0.22) · 10−6N

m

(6.6)

which agree, within their uncertainties, with the values shown above. Similarly,
the estimated friction coefficient γ is

γMSD = (2.2± 0.3) · 10−10 N · s
m

(6.7)

which agree, within the uncertainties, with the expected value γth.
A third approach to estimate these parameters is based on the autocorrelation

function ACF. The experimental ACFs, obtained following the procedure of chapter
5.2.2, are shown in figure 6.3a, which reflect the theoretical behaviour of equation
(2.52) that is used as fit function with k and γ as fitting parameters, i.e.

C(τ) = kBT

k
e−

k
γ
τ (6.8)
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The best fit estimations of these parameters are
kACF,(1)
x = (2.30± 0.03) · 10−6N

m

kACF,(1)
y = (2.11± 0.05) · 10−6N

m

γACF = (2.61± 0.05) · 10−10 N · s
m

(6.9)

and that agree, within their uncertainties, with the other methods.
Finally, the potential method is applied following the procedure described in

chapter 5.2.3. The experimental potential along the x and the y directions is ex-
tracted from the trajectories, see figure 6.3b, and it is fitted using equation (2.63),
that is

U(r)

kBT
=

1

2
k(r − r0)

2 + C (6.10)

with r = x, y, the stiffness k and the arbitrary constant C as fitting parameters. The
best fit curve are shown in figure 6.3b (solid lines) and they allows to extrapolate
the stiffnesses that are 

kU,(1)x = (2.39± 0.09) · 10−6N

m
;

kU,(1)y = (2.25± 0.07) · 10−6N

m
;

(6.11)

not discrepant with estimates from other methods.
To conclude, it is useful to evaluate the trap efficiency

ς2 = Var[r] · P (6.12)

with r = x, y. This quantity allows to compare the system trapping efficiency
with other systems regardless the power used to trap, like the intracavity optical
tweezers. For this SBOT, ς2 is

ς2SBOT = (41.2± 0.6)µm2 · µW (6.13)

and it is evaluated as the mean value along x and y directions.



94 CHAPTER 6. RESULTS AND DISCUSSION

(a)

-0.08

-0.04

0.00

0.04

0.08
x [7m]

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

-0.10

-0.05

0.00

0.05

0.10
y [7m]

(b)

Figure 6.4: (a) image of a silica particle of diameter 3.16µm trapped in air with
SBOT with its trajectory that is visible more clearly in the inset; (b) x and y
component of the particle trajectory as function of time t.

6.1.2 Trapping in air
When a particle is trapped in air the inertial effects are not negligible because

the relaxation time (τm = m/γ), which indicates the time scale at which the inertial
effects decay, is

τ airm ∼ 50µs (6.14)

while in water is
τwaterm ∼ 1µs (6.15)

Therefore, if the acquisition frequency is larger than 1/τwaterm , the experimental
trajectory is describe by the complete Langevin equation (2.37), which gives place to
different behaviours of the power spectral density, the mean squared displacement,
and the autocorrelation function.

The air experiment is done trapping silica particles of 3.16µm diameter using the
loading system described in chapter 4.4 and, to study inertial effects, the acquisition
frequency is increased to 30000 fps, i.e. the sampling time is ∆t ∼ 33µs < τ airm . The
400 acquired videos consist of 30000 frames for a duration of 1 s. The experiments are
done using three laser powers: P1 = 19.2mW, P2 = 20.5mW, and P3 = 23.7mW. The
corresponding measured quantities are indicated by the superscripts (1), (2), and
(3). A typical trajectory in the x-y plane is shown in figure 6.4a and its components
as functions of time t are shown in figure 6.4b. From the analysis of the trajectories,
it is possible to estimate the particle mass m, the particle diameter d, the fluid
viscosity η, and the trap stiffness k.

The simplest way to evaluate the trap stiffness is based on the equipartition
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Figure 6.5: experimental power spectral density S (dots with error bars) and its best
fit curve (solid line) as function of the frequency f for three different laser power
and along (a) the x direction and (b) the y direction.

method that provides the following results:
keq,(1)x = (9.24± 0.11) · 10−6N

m
; keq,(1)y = (9.11± 0.08) · 10−6N

m
;

keq,(2)x = (1.119± 0.013) · 10−5N

m
keq,(2)y = (1.136± 0.020) · 10−5N

m
;

keq,(3)x = (1.125± 0.011) · 10−5N

m
; keq,(3)y = (1.051± 0.007) · 10−5N

m

(6.16)

where the temperature is monitored during the whole experiments and remained
stable to the value 298.1± 0.5K.

Then, the PSD is calculated from the data and, unlike the case of trapping in
water, presents a non-Lorentzian behaviour characterised by a central peak at
around 2500Hz, see figures 6.5a and 6.5b. Therefore, the PSD expression of equation
(2.42) is used as fit function, i.e.

S(ω) = 2γkBT

m2

1(
k
m
− ω2

)2
+ γ2

m2ω2
(6.17)

where the fit parameters are the particle mass m, the friction coefficient γ, and the
stiffness k. The estimated k from the fitting procedure are

kS,(1)x = (9.6± 0.3) · 10−6N

m
; kS,(1)y = (9.5± 0.3) · 10−6N

m
;

kS,(2)x = (1.191± 0.020) · 10−5N

m
kS,(2)y = (1.120± 0.018) · 10−5N

m
;

kS,(3)x = (1.22± 0.03) · 10−5N

m
; kS,(3)y = (1.109± 0.020) · 10−5N

m

(6.18)
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Figure 6.6: experimental mean square displacement MSD along (a) the x direction
and (b) the y direction (dots with error bars) and its best fit curve (solid line) as
function of the lag time τ for three different laser power.

in agreement with the equipartition method estimations. Instead the other param-
eters, mass m and friction coefficient γ, are estimated as the average of their best
fit estimations obtained along x and y directions for each laser power, being them
independent on the laser power. Therefore, the mass m of the particle is estimated
to be

mS = (2.49± 0.09) · 10−14 kg (6.19)
From this value of m, the particle diameter is estimated and compared with its
nominal value assuming known the particle density, i.e. ρ = 1800 kg/m3, being

dS = 2 3

√
3

4πρ
m = (2.98± 0.03)µm (6.20)

which shows discrepancy from the nominal value of 3.16µm. Finally, the estimation
of γ is

γS = (6.54± 0.17) · 10−10 N · s
m

(6.21)

from that, once estimated the particle diameter, the fluid viscosity η results to be

ηS =
γ

3πd
= (2.33± 0.06) · 10−5 Pa · s (6.22)

that is discrepant with respect to the air viscosity measured at 1 atm and 298.1±0.5K
that is 1.84 · 10−5 Pa · s.

Also the mean squared displacement analysis, figures 6.6a and 6.6b, shows the
presence of inertial effects. Indeed, these curves reach a plateau value in about
0.6ms after a first exponential growth followed by some oscillations, as described in
chapter 2.2.2. Therefore, the theoretical expression of equation (2.46),
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(6.23)

is used as fit function, shown in figure 6.6a as solid lines, and the estimated stiff-
nesses are

kMSD,(1)
x = (9.54± 0.21) · 10−6N

m
; kMSD,(1)

y = (9.53± 0.18) · 10−6N

m
;

kMSD,(2)
x = (1.13± 0.03) · 10−5N

m
kMSD,(2)
y = (1.057± 0.019) · 10−5N

m
;

kMSD,(3)
x = (1.195± 0.016) · 10−5N

m
; kMSD,(3)

y = (1.034± 0.019) · 10−5N

m

(6.24)

while the mass m and the friction coefficient γ arem
MSD = (2.32± 0.07) · 10−14 kg

γMSD = (6.32± 0.11) · 10−10 N · s
m

(6.25)

From these estimation, it follows that{
dMSD = (2.91± 0.03)µm

ηMSD = (2.25± 0.04) · 10−5 Pa · s
(6.26)

in agreement with the measurement done with the PSD.
A third estimation of these parameters is done using the autocorrelation func-

tion method. The experimental ACF are shown in figure 6.7a and 6.7b and are char-
acterised by the typical anti-correlations due to the inertia, for lag times between
0.12ms and 0.31ms. Therefore, the experimental ACF is fitted with the theoretical
expression of equation (2.51), solid lines in figure 6.7a, that is

C(τ) = kBT

k

cosh

√

γ2

m2 − 4 k
m

2
τ

+
γ/m√
γ2

m2 − 4 k
m

sinh


√

γ2

m2 − 4 k
m

2
τ

 e− γ
2m

τ (6.27)

The best fitting procedure gives the following stiffnesses:
kACF,(1)
x = (9.41± 0.18) · 10−6N

m
; kACF,(1)

y = (9.57± 0.21) · 10−6N

m
;

kACF,(2)
x = (1.131± 0.017) · 10−5N

m
kACF,(2)
y = (1.023± 0.016) · 10−5N

m
;

kACF,(3)
x = (1.187± 0.016) · 10−5N

m
; kACF,(3)

y = (1.062± 0.014) · 10−5N

m

(6.28)
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Figure 6.7: experimental autocorrelation function ACF along (a) the x direction and
(b) the y direction (dots with error bars) and its best fit curve (solid line) as function
of the lag time τ for three different laser powers.

Instead, m and γ are m
ACF = (2.34± 0.45) · 10−14 kg

γACF = (6.4± 0.4) · 10−10 N · s
m

(6.29)

From this it follows {
dACF = (2.92± 0.20)µm

ηACF = (2.29± 0.16) · 10−5 Pa · s
(6.30)

in agreement with the measurement done with the other methods.
Finally, the potential method is applied resulting in the experimental potential

of figures 6.8a and 6.8b. This method is not able to distinguish the presence of
inertial effects, because it is based on the hypothesis that the particle is in thermal
equilibrium with the surrounding medium and, therefore, the distribution of the
particle position does not depend on the presence of inertial effects. The exper-
imental potential along the x direction and the y direction is extracted from the
trajectories, see figure 6.8a, and it is fitted using equation (2.63), that is

U(r)

kBT
=

1

2
k(r − r0)

2 + C (6.31)

with r = x, y. The stiffness k and the arbitrary constant C are used as fitting pa-
rameters. The best fit curve are shown in figure 6.8a and they allows to extrapolate
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Figure 6.8: experimental potential U along (a) the x direction and (b) the y direction
(dots with error bars) and its best fit curve (solid line) as function of the x and y
position of the particle, respectively, for three different laser power. The potential
are shifted of an arbitrary constant to make clearer the figure.

the stiffnesses that are
kU,(1)x = (9.10± 0.07) · 10−6N

m
; kU,(1)y = (9.01± 0.16) · 10−6N

m
;

kU,(2)x = (1.10± 0.03) · 10−5N

m
kU,(2)y = (1.119± 0.016) · 10−5N

m
;

kU,(3)x = (1.108± 0.005) · 10−5N

m
; kU,(3)y = (1.054± 0.015) · 10−5N

m

(6.32)

in agreement with the previous measurements.
To conclude this section, it is useful to evaluate the quantity ς2 = Var[r] · P

(r = x, y) to compare the trapping efficiency of this system with the intracavity
optical tweezers for air trapping. In this case, the estimation for each laser power
of ς2, evaluated as the average value of its estimation along x and y directions, are

ς
2,(1)
SBOT,air = (8.93± 0.8)µm2 · µW

ς
2,(2)
SBOT,air = (8.32± 0.9)µm2 · µW

ς
2,(3)
SBOT,air = (8.76± 0.6)µm2 · µW

(6.33)

Therefore, the estimation of ς2SBOT,air is obtained as mean value of ς2,(j)SBOT,air with
j = 1, 2, 3 and it is

ς2SBOT,air = (8.7± 0.6)µm2 · µW (6.34)
All the stiffnesses obtained are summarised in the following table:
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k
(1)
x k

(1)
y k

(2)
x k

(2)
y k

(3)
x k

(3)
y

Eq 0.924± 0.011 0.911± 0.008 1.119± 0.013 1.136± 0.020 1.125± 0.011 1.051± 0.007

PSD 0.96± 0.03 0.95± 0.03 1.191± 0.020 1.120± 0.018 1.22± 0.03 1.109± 0.020

MSD 0.954± 0.021 0.953± 0.018 1.13± 0.03 1.057± 0.019 1.195± 0.016 1.034± 0.019

ACF 0.941± 0.018 0.957± 0.021 1.131± 0.017 1.023± 0.016 1.187± 0.016 1.062± 0.014

U 0.910± 0.007 0.901± 0.016 1.10± 0.03 1.119± 0.016 1.108± 0.005 1.054± 0.015

where Eq indicates the equipartition method and the stiffnesses are indicated in
10−5N/m.
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Figure 6.9: (a) optical power P of the bottom beam (circles) and of the top beam
(triangles) as function of the pump power Pp when the system is misaligned;
(b) optical power P of the bottom beam (circles) and of the top beam (triangles)
as function of the pump power Pp when the system is aligned in single-beam
configuration (orange circles) and in double-beam configuration (blue circles and
triangles).

6.2 Intracavity trapping
The intracavity optical trapping differs from conventional optical traps because

the trapped particle is part of the laser cavity and, therefore, the laser power changes
according to the particle position. Since the laser power is one of the key quantities,
a preliminary characterisation of the laser system is needed. Then, the results con-
cerning the trapping in water for both single-beam and double-beam configuration
are reported for different types of particles. In addition, the results concerning
the motion of a particle when a slight misalignment of the two beams is done on
purpose are presented (double-trap). Finally, some preliminary results trapping
particle with IOT air are discussed.

6.2.1 Characterisation of the laser system
The characterisation of the laser system is done measuring the optical power

inside the cavity when no particle is trapped. To examine all the experimental
conditions, the power is measured when the cavity is misaligned and aligned, with
and without the isolator. When the cavity is completely misaligned, there is no
laser effect in the cavity, but the optical power is not completely zero due to the
spontaneous emission that in fibre lasers is guided by the fibre through the col-
limators: increasing the pumping power, the optical power increases according to
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figure 6.9a. Therefore, the laser can be considered powered off if the power inside
the cavity is almost equal to the measured power in this condition. In addition, the
beam exiting from the bottom collimator (bottom beam), that is the beam used in
single-beam configuration, has an optical power Pb smaller than the beam exiting
from the top collimator (top beam).

When the cavity is aligned, instead, the laser power of both beams increases due
to the laser effect. In single-beam configuration, the optical isolator suppresses the
top beam and constrains the stimulated emission only in the direction of the bottom
beam1. Removing the isolator (double-beam configuration), the laser power is split
almost equally between the two beams being their sum almost equal to the power
of the bottom beam in single-beam configuration, see figure 6.9b2.

Finally, the laser is characterised by a threshold pump power Pp,th under that
the laser effect does not happen that is about Pp,th = 44.5± 0.1mW.

6.2.2 Single-beam trapping in water
The IOT system, as described in chapter 3, is characterised by a correlation

between the position of the trapped particle and the laser power inside the cavity.
For this reason, the acquired video of the trapped particle is synchronised with an
hardware clock with the measured optical power. Then, the trajectory of the particle
is reconstructed from the video files applying the holographic tracking described in
chapter 5.1.3.

According to the toy model discussed in chapters 3.2.1 and 3.2.2, the laser power
P and the square of the distance of the particle from the centre of the trap r are pro-
portional. However, the experimental particle coordinates x and y are measured in
the reference frame having as origin the bottom-left corner of each acquired frame.
Instead, the z direction is referred to the imaging plane that, in order to improve
the 3D tracking, is on purpose shifted3 from the focal plane of the trapping system,
i.e. the trap centre. Therefore, the experimental particle coordinates (xexp, yexp, zexp)
are studied in a reference frame different from the one in which the toy model is
formulated. To compare the experimental data with the model, it is mandatory to
estimate the position of the trap centre (xc, yc, zc).

The estimation of (xc, yc, zc) can be performed observing that the laser is switched
off when the particle is near the trap position. Experimentally, the IOT can be con-
sidered switched off when the laser power is below a certain threshold value Pth, i.e.
P < Pth. In these experiments, the pump power is Pp = 53.0mW which corresponds,
as figure 6.9a shows, to a laser power in misaligned condition of about Poff ≃ 2µW.
Consequently, the threshold value is set to Pth ≃ 2µW. Thus, the centre (xc, yc, zc)
is measured as the average position of the particle for which P < Pth. The typical

1In this condition, the pump power Pp is used by only one beam explaining why in single-beam
configuration the laser beam power is higher.

2The laser power measured in this condition is the maximum laser power that the two beams can
have at a fixed value of the pump power

3The shift of the imaging plane is done by moving the tube lens of the CCD camera.
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Figure 6.10: optical power P as function of the particle distance from (a) the
experimental reference frame, rexp, and (b) from the estimated trap centre, r, when
a 1.98µm diameter polystyrene particle is trapped; (c) blocking of P as function of r
(red squares with error bars) and its best fit function with the theoretical expression
of equation (6.35).

uncertainties of (xc, yc, zc) are less than 100 nm and it does not appreciably affect
the results obtained in this section. Then, the particle coordinates are translated
according to the transformation x = xexp − xc, y = yexp − yc, and z = zexp − zc.

Having estimated (xc, yc, zc), the power P as function of r =
√
x2 + y2 + z2 follows

the relation:

P (r) =


0 if |r| ≤ ron

P0

(
r2

r2on
− 1

)
if ron < |r| ≤ rmax

P0

(
r2max

r2on
− 1

)
if |r| > rmax

(6.35)

with P0

(
r2max

r2on
− 1

)
= Pmax the maximum value of the laser power, i.e. without a

trapped particle. To underline the importance of finding (xc, yc, zc), figures 6.10a
and 6.10b show the difference of studying P as function of rexp or of r. As figure
6.10b shows, P (r) is characterised by a statistical noise due to the Brownian motion
of the particle inside the trap and, in order to improve the accuracy of the fitting
parameters, a blocking procedure is applied to the data as shown in figure 6.10c.
In this way, the parameters P0, ron, and rmax are estimated by fitting the data with
the theoretical expression of equation (6.35) allowing a physical explanation of the
behaviour of SBIOT. This preliminary analysis is done for all the three experiments,
which involve particles of different materials and diameters.

Polystyrene particles of diameter 1.98µm
The first experiment is done with polystyrene particles of diameter 1.98µm and the
acquired data consists of 15 videos of 100 frames at 10 fps. The x, y, and z components
of a typical trajectory and the relative laser power P are shown in figures 6.11a and
6.11b, respectively, as functions of time t. The particle trajectory is characterised by
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Figure 6.11: (a) x, y, and z components of the particle trajectory and (b) its
corresponding power P as function of time t for a 1.98µm polystyrene particle.

fluctuations of the order of some micrometers, while the power P is about zero, i.e.
P < Pth, for relatively long time intervals and suddenly it increases to high values.
The time intervals with P < Pth indicate when the particle has a distance r from
the trap centre less than ron, r ≤ ron, allowing the estimation of ron as the mean of
the maximum values of r in each of these time intervals, i.e.

r̃PS1.98
on = (1.46± 0.09)µm (6.36)

where its uncertainty is estimated by the standard deviation of all the maximum
values. This parameter can also be estimated by the fitting the experimental power
as function of r as explained before, which gives

rPS1.98
on = (1.49± 0.08)µm (6.37)

presenting no discrepancy with the previous estimation. This value is about 1.5
times the particle radius suggesting that the laser powers on only when the particle
moves from the trap centre by a distance comparable to its diameter.

The fitting procedure allows also to estimate the other parameters, but, in this
experiment, the laser power never reaches its maximum value Pmax ≃ 5.23mW (fig-
ure 6.9b for Pp = 53.0mW) after the particle loading and rmax can not be estimated.
Instead, the best fit estimation of P0 is

PPS1.98
0 = (0.92± 0.18)mW (6.38)

where the larger uncertainty of about 20% is principally determined by the experi-
mental points at higher power, which are less frequent than the others.
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An additional proof of the feedback effect is given by the correlation coefficient
between the laser power P (t) and r2(t), which is

CPS1.98
P,r2 ≃ 0.73 (6.39)

This value indicates that the relationship between P (t) and r2(t) is not perfectly
linear, as expected from equation (6.35). The linear relationship is expected to hap-
pen when the distance r is greater than ron and, indeed, the correlation coefficient
becomes

CPS1.98
P,r2 ≃ 0.95 if r > ron (6.40)

indicating an almost perfect linear correlation.
Thanks to the feedback effect, the particle confinement, quantified by the vari-

ance Var[r] of the particle as explained in chapter 3.2, is relatively high if compared
to the mean optical power of the system P̄ . In this case, the mean power is

P̄ = 54± 4µW (6.41)

and it is 6 times greater than the value evaluated by the toy model expression of
equation (3.19)

P̄toy ≃ 9.2µW (6.42)
utilising the estimated value of rPS1.98

on and PPS1.98
0 . Also the modified toy model of

equation (3.31) gives a similar value:

P̄toy ≃ 8.9µW (6.43)

utilising as maximum power the value Pmax ≃ 5.23mW. This indicates that the toy
model describes well only qualitatively the IOT. On the other hand, the variance
Var[r] is

Var[r] = (0.186± 0.002)µm2 (6.44)
and it is 3.6 time less than the value obtained by applying the toy model expression
of equation (3.27), which is

Var[r]toy ≃ 0.663µm2 (6.45)
and 2.2 times less than the value given by the modified toy model, which is

Var[r]mod toy ≃ 0.402µm2 (6.46)

obtained utilising equation (3.42) the estimated values of rPS1.98
on and PPS1.98

0 , and for
Pmax ≃ 5.23mW. The modified toy model proposed in this work, therefore, improves
the particle variance estimation compared to the standard toy model. In order
to compare the IOT system with the SBOT, the parameter ς2 = Var[r] · P̄ needs
to be evaluated to deal with the different optical powers used in these different
experiments. In this case, ς2 is

ς2 = 10.1± 0.7µm2 · µW (6.47)
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Figure 6.12: (a) optical power P as function of the particle distance rexp from
the experimental reference frame when trapping a 4.97µm diameter polystyrene
particle; (b) z component of the particle trajectory as function of time t; (c) power P
as function of t.

and it is about 4 times smaller that the corresponding value for the SBOT of equa-
tion (6.13),

ς2SBOT = 41.2± 0.6µm2 · µW (6.48)
This indicates a higher trapping efficiency that arises from the feedback effect,
which allows to trap particle with a very low mean power compared to SBOTs.

Polystyrene particles of diameter 4.97µm
Other experiments are done with polystyrene particles of diameter 4.97µm and
the acquired dataset consists of 20 videos of 3000 frames at 10 frames per second.
Trapping larger particles involves a different experimental behaviour. Indeed, the
laser power P (rexp) shown in figure 6.12a is not symmetrical like for the smaller
particles, figure 6.10a, suggesting that the motion of the particle with respect to the
trap centre is asymmetric. Qualitatively, the particle is positioned below the trap
centre and the trapping force pushes the particle towards it. However, the particle
is so big as to turn off the laser before reaching the trap centre. Consequently,
the particle starts to settle slowly with Brownian motion and, when far enough
from the trap centre (some micrometers), the laser powers on trapping the particle
again. This can be seen from the behaviour of the z trajectory( figure 6.12b) and
of the laser power P (figure 6.12c): the particle is falling almost periodically of at
most 3 µm about each 5 s. The motion is not properly periodic due to its Brownian
motion and because the laser power depends also on the x and/or y position of the
particle. This explains why the particle motion in the trap is asymmetric along z
and, therefore, why zc can not be estimated. Therefore, the fit with the theoretical
model can not be done.

Nevertheless, the correlation coefficient can be still evaluated and it is

CPS4.97
P,r2 ≃ 0.65 (6.49)
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Figure 6.13: (a) optical power P as function of the particle distance rexp from the
experimental reference frame when trapping a 2.31µm diameter silica particle; (b)
x, y, and z components of the particle trajectory as function of time t.

indicating a non-linear relationship between P and r. In this case, the region in
which the linear relationship is expected can not be identified by using ron as done
for smaller particles, but observing that this region is also defined as the region in
which the laser power is above the threshold Pth. Thus, the correlation coefficient
evaluated for P > Pth becomes:

CPS4.97
P,r2 ≃ 0.87 if P > Pth (6.50)

Also Var[r] can be still estimated and it is

Var[r] = 0.1615± 0.0017µm2 (6.51)

while ς2 = Var[r] · P̄ is
ς2 = 22.3± 0.4µm2 · µW (6.52)

being P̄ = 137.9 ± 1.9µW. Compared to the SBOT (equation (6.48)), ς2 is about 2
times smaller. Therefore, the IOT is still more efficient with respect to SBOT, but
its efficiency is decreased because the large size of the particle forces the laser to be
powered on for longer time compared to a smaller particle.

Silica particles of diameter 2.31µm
The last experiments are done using 2.31µm silica particles and the dataset con-
sists of 20 videos of 1000 frames at 10 frames per second. Like for polystyrene
particles of diameter 4.97µm, the laser power P as function of rexp (figure 6.13a)
is not symmetrical and, in particular, the laser is always on. This can be explained
observing that silica is denser than polystyrene and, for this reason, the equilibrium
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Figure 6.14: (a) x, y, and z components of the particle trajectory as function of time
t and (b) optical power of the bottom beam Pb (red solid line) and of the top beam Pt

(violet solid line) as function of t for a 2.31µm diameter silica particle trapped with
a double-beam intracavity optical tweezers.

position inside the trap is below the trap centre. In this position, the laser beam is
larger than in the focus and the light scattered out by the particle is not sufficient to
completely shut down the laser, i.e. the power never satisfies the condition P ≤ Pth.
This is confirmed by the particle trajectory of figure 6.13b because, differently from
the 4.97µm polystyrene particles, x, y, and z are oscillating around an equilibrium
position (far from the particle centre) like in a standard SBOT. The feedback effect
is still present and, because the laser is always on, the correlation coefficient is

CSi 2.31
P,r2 ≃ 0.95 (6.53)

without the need of any restriction on the data points. Even if the feedback effect is
strongly present, this condition greatly decreases the trapping efficiency, because
the mean power P̄ is much higher than the other experiments, i.e. P̄ = 1586±7µW,
resulting in

ς2 = 71.2± 1.2µm2 · µW (6.54)
being Var[r] = (44.9 ± 1.3 · 10−3)µm2. Therefore, the ς2 is about 1.7 times greater
than ς2SBOT indicating that IOT is less efficient with respect to SBOT when trapping
silica particles.

6.2.3 Double-beam trapping in water
By removing the optical isolator from the cavity, the IOT system traps particle

with two counter-propagating beams, called bottom beam and top beam, as demon-
strated in [27].
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The experiment is done with silica particles of diameter 2.31µm with a pump
power of Pp = 75.6mW and the acquired data consists of 50 videos of 1000 frames at
100 frames per second. The x, y, and z components of a typical trajectory and the
relative laser power for the bottom beam, Pb, and for the top beam, Pt, are shown in
figures 6.14a and 6.14b as functions of time t. The DBIOT confines the particle more
than the single-beam configuration, as it can be seen from the particle trajectory:
the particle oscillates around its equilibrium position by hundreds of nanometres
and not by micrometers like in single-beam configuration. Quantitatively, this is
confirmed by the measured variance, which is

Var[r] = 3.9± 0.4 · 10−3 µm2 (6.55)

i.e. about 10 times smaller than the value obtained trapping the same type of
particles with the SBIOT. Thus, ς2 is

ς2 = 88± 8µm2 · µW (6.56)

being the mean power inside the cavity equal to

P̄tot = 22.4± 0.4mW (6.57)

This inhibits the feedback effect that, as seen in single-beam configuration, arises
only when the particles is far from the trap centre more than ron. This is confirmed
by the following correlation coefficients

CxPb
≃ 0.21 CxPt ≃ 0.19

CyPb
≃ −0.11 CyPt ≃ −0.12

CzPb
≃ −0.08 CzPt ≃ −0.03

(6.58)

The interesting novelty of DBIOT is that the power of the two beams are cor-
related, being generated by the same active medium, unlike in standard counter-
propagating optical tweezers. Therefore, the particle is trapped in the position that
makes the two beams of equal power, which is the fundamental condition in counter-
propagating optical tweezers for trapping. In this experiment, the correlation can
be seen from the behaviour of Pb as function of Pt, figure 6.15a. Indeed, Pb and Pt

change their power in an anti-correlated way when the particle tries to escape from
the trap. This happens rarely (only few times in all the dataset) and figure 6.15b
shows the power behaviour of the two beams when the particle moves more than
some hundreds of nanometres from the equilibrium position.

This slight anti-correlation is also confirmed by the correlation coefficient

CPbPt =≃ −0.40 (6.59)

In addition, the top beam, which travels in the same direction of the gravity, has a
mean power P̄t slightly smaller than the bottom beam, which travels in the opposite
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Figure 6.15: (a) optical power of the bottom beam Pb as function of the optical
power of the top beam Pt; (b) distance rexp of the particle from the centre of the
experimental reference frame as function of time t when a particle tries to escape
from the trap (dashed grey line t ≃ 7.18 s). The solid line changes its colour
according to the power of the top beam Pt while the markers changes their face
colour according to the power of the bottom beam Pb; (c) power of the top beam Pt

(red solid line) and of the bottom beam Pb (violet solid line) as functions of time t
before (t ≲ 23.1 s) and after (t ≳ 23.1 s) trapping a particle.

direction, and both of them have a mean power that differs from their power when
no particle is inside the cavity, P̄no,t and P̄no,b, which are{

P̄no,t ≃ 14.2mW

P̄no,b ≃ 7.4mW
(6.60)

Instead, with a trapped particle, P̄t and P̄b are c{
P̄t = 11.0± 0.3mW

P̄b = 11.4± 0.3mW
(6.61)

i.e. the top beam is suppressed by the presence of the particle while the bottom
beam is enhanced. This is confirmed by measuring these powers during a trapping
event, as figure 6.15c shows.

Other experiments are performed using 2.82µm diameter polystyrene particles
acquiring 50 videos of 1000 frames at 100 frames per second. The x, y, and z compo-
nents of a typical trajectory and the relative laser powers Pb and Pt, are shown in
figures 6.16a and 6.16b. In this case the measured variance is

Var[r] = 1.26± 0.15 · 10−3 µm2 (6.62)

and ϱ2 = 29± 3µm2 ·µW , being the mean power P̄tot = 23± 0.2mW. As for the silica
particle, the mean power of the two beams changes after trapping in a similar way
being {

P̄b = 11.3± 0.12mW

P̄t = 11.2± 0.16mW
(6.63)
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Figure 6.16: (a) x, y, and z components of the particle trajectory as functions of
time t; (b) optical power of the bottom beam Pb (red solid line) and of the top beam
Pt (violet solid line) as functions of t for a 2.82µm diameter polystyrene particle
trapped with a double-beam intracavity optical tweezers; (c) Pb as function of Pt.

The main difference with the previous case is that the power of the two beams
is strongly anti-correlated being

CPbPt =≃ −0.98 (6.64)

and this is also confirmed by the behaviour of Pb as function of Pt as figure 6.16c.
This arises because this type of particles move along the z axis more than the silica
ones (but less along x and y), see figure 6.16a, so as to involve the feedback effect.
This larger motion of polystyrene can be explained observing that polystyrene scat-
ters more light than silica (higher refractive index, nPS ≃ 1.59 > nSi ≃ 1.42) causing
higher losses in the cavity and lowering the trap stiffness when the particle is in its
equilibrium position.

In conclusion, the feedback effect of the DBIOT is fundamental to trap the parti-
cle, even if, during the trapping of silica particles, it is almost completely inhibited
by the strong confinement of the particle. Indeed, it adjusts intrinsically and auto-
matically the power of the two beams to be similar, so that the scattering forces of
the two beams cancel each other out when the particle is in the trapping position,
as figure 6.15c shows, allowing de facto the trapping itself.
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Figure 6.17: (a) x, y, and z components of the particle trajectory and (b) its
corresponding power P as function of time t for a 2.82µm polystyrene particle
trapped with two slightly misaligned beams and considering only the first 50 s of
the acquired data.

6.2.4 Double-trap
In double-beam configuration, two close optical traps can be produced if the

two counter-propagating beams are slightly misaligned. In this experiment, the
misalignment is produced by translating one of the two trapping objective lenses
by only few micrometers along one direction (misalignment distance), assuring that
the laser cavity is still closed and, therefore, the laser effect is still present. In this
way, the two optical traps compete to capture the particle, producing two metastable
states between which the particle transits. These transitions are mainly char-
acterised by the feedback effect and, therefore, differ substantially from thermal
Kramers’ transitions.

Experimentally, polystyrene particles with diameter 2.82µm are trapped in this
configuration changing the misalignment distance dmis along the y direction, so that
the top beam centre is shifted in the video frames to the left with respect to the
bottom one. The phenomenon is studied parametrically by changing dmis and the
pump power Pp. For each value of dmis and Pp, 10 videos of 10000 frames at 100 frames
per second are acquired. The components of the trajectories, measured by means of
the 3D holographic tracking, are shifted so that their average value is zero, so that
the bottom beam centre is located at positive y values and the top one at negative y
values.

A typical trajectory of a trapped particle is shown in figure 6.17a for dmis ≃
4µm and Pp = 174.9mW, while the power of the bottom beam Pb and the top one
Pt are shown in figure 6.17b as functions of the time. Figure 6.17a shows that
this phenomenon is different from the Kramers’ transitions, which are random
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Figure 6.18: (a) y and z component of the particle trajectory, Pb, and Pt as functions
of time t ; (b) sketch of the four positions configuration where the transparency of
the beams changes according to their laser power.

transitions, being the coordinates of the particle trajectory regular and periodic.
In addition, the peak-peak amplitude of the oscillations along the y is comparable
to dmis (∼ 4µm), the one along z is larger than along y (∼ 28µm), while along x is
less than 1µm. In other words, the particle motion happens principally in the y-z
plane. In addition, during the transitions from the bottom beam to the top one, the
laser power of the two beams changes according to the particle position as shown
in figure 6.17b. Indeed, the power of the bottom beam Pb is low when the particle is
in the bottom beam centre, while the power of the top one Pt is high and vice versa.

To well describe how the laser power of the two beams changes, it is useful to
study only few seconds of the particle trajectory referring in particular to figures
6.18a and 6.18b. In position I, the particle is located in the bottom beam (y ≃ +2µm
and z ≃ 0µm) that tends to push the particle upwards, but it is depleted by the
particle scattering. Consequently, its power Pb is minimum while the top beam
power Pt is maximum.

Therefore, the particle begins to be trapped by the top beam passing thorough
the position II (y ≃ −µm and z ≃ 0µm), while Pb increases and Pt decreases. From
position II, the particle transits to the top beam pushed downwards (position III,
y ≃ −2µm and z ≃ 0µm), while Pt continues to decrease due to the scattering of the
particle and Pb increases. Finally, the particle transits to position IV (y ≃ −µm and
z ≃ 0µm) faster than the transition I-II because the particle is pushed downwards
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Figure 6.19: (a) z component of the particle trajectory as function of its y component.
The solid line changes its colour according to the power of the top beam Pt and the
markers change their face colour according to the power of the bottom beam Pb; (b)
bottom beam power Pb as function of the top beam power Pt.

by the scattering force of the top beam and, also, the gravity. In position IV, Pt is
minimum and Pb is maximum and the particle is trapped again by the bottom beam
starting a new cycle. This behaviour can also be visualised in figure 6.19a, which
shows the y-z trajectory of the particle whose colours that change according to the
power of the two beams.

The strong dependency between the particle position and the laser power of the
two beams is measured with the correlation coefficients, that are{

CyPb
= −0.79± 0.013 CyPt = 0.608± 0.008

CzPb
= −0.301± 0.007 CzPt = 0.454± 0.011

(6.65)

showing that the two beams are correlated mainly with the y position of the par-
ticle, as described before. Similarly, the power of the two beams is strongly anti-
correlated being

CPbPt = −0.864± 0.012 (6.66)

as shown also by the behaviour of Pb as function of Pt, figure 6.19b. This demon-
strates that the particle is acts like a micro-isolator, which suppresses the laser
beam in which is trapped enhancing the other beam.
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Figure 6.20: (a) experimental potential U as function of y (blue squares) and its best
fit function (black solid line) assuming that the potential is a double-well potential;
(b) normalised PSD, S̄, as function of the frequency f (blue squares) and the PSD
relative to the double-well potential S̄DW as function of f (black solid line).

This process remembers the thermal activated Kramers’ transitions, that are
characterised by a double-well potential. As said, the dynamics of Kramers’ thermal
transitions totally differ from those observed in this experiment. In fact, thermal
transitions from one trap to another occur stochastically, while in a double-trap in-
tracavity, the interconnection between the powers of the two beams and the particle
position causes regular transitions. However, to further highlight these differences,
the experimental potential is extrapolated following the procedure described in
chapter 5.2.3. The potential is not properly a double-well potential, figure 6.20a,
mainly because it is the temporal average of the instantaneous potentials produced
by the two beams being their power changing in time. Nevertheless, to numerically
show that this transitions are not thermal activated because of the feedback effect,
the potential is assumed to be a double-well potential in order to fit it with the
theoretical expression of equation (2.68), which gives

U(y) =
aexp
4
y4 − bexp

3
y3 − cexp

2
y2 + dexp

aexp = 1.8± 0.3
kBT

µm4

bexp = (2.46± 0.14) · 10−8 kBT

µm3

cexp = 3.2± 0.4
kBT

µm2

dexp = 2.32± 0.05 kBT

(6.67)
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shown as solid line in figure 6.20a. From this best fit, the physical quantities pre-
dicted by Kramers’ theory are compared with the experimental ones. It is important
to observe that, practically, the potential has b = 0 and, therefore, all the results of
chapter 2.3 can be used being the potential symmetric.

The physical quantities to compare are the transition times, which are defined
by equation (2.71) according to Kramers’ theory. Using the best fit potential param-
eters obtained before, they are {

T+ = 26± 2 s

T− = 26± 2 s
(6.68)

Instead, the experimental transition times 4 are{
T+,exp = 0.70± 0.06 s

T−,exp = 0.69± 0.06 s
(6.69)

Therefore, the experimental values are completely different from the values pre-
dicted by Kramers’ theory, confirming that this transition are not thermally acti-
vated, but feedback activated.

Another quantity that confirms this hypothesis is the normalised power spectral
density S, that, for a double-well potential with b = 0, is given by the sum of two
Lorentzian curves as shown in equation (2.79), i.e.

S̄DW(ω) =
∆1λ1
λ21 + ω2

+ (1−∆1)
τW

1 + τ 2Wω
2

∆1 ≃ 0.93

λ1 ≃ 0.097Hz

τW = 0.67 s

(6.70)

where λ1, ∆1, and τW are numerically evaluated with equations (2.74), (2.75), (2.76),
and (2.77) using the best fit potential parameters. To compare the experimental
S with the theoretical one, they are normalised and plotted in figure 6.20b. The
experimental S does not follow the theoretical expression and, in particular, is
characterised by a large peak for f ≃ 0.71Hz that corresponds to the period of
the y component of the trajectory. The presence of only one peak in this function
confirms that the transition rates between the two beams is the same. Therefore,
the transition time can be also estimated by

T±,exp =
1

2f
≃ 0.7 s (6.71)

that confirms the previous estimates.
4The transition times are measured as the difference between the local maxima and the local

minima of the y component of the trajectory
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Figure 6.21: (a) transition times T± and (b) correlation coefficient CPbPt as functions
of the pump power Pp for different misalignment distances dmis.

To conclude this section, the behaviour of this periodic motion is studied for
several values of dmis and Pp, analysing the transition times T± and the correla-
tion coefficient CPbPt. The transition times T±,exp increase as the pump power Pp

decreases (figure 6.21a) because, when Pp increases, the trapping force of the two
beams is higher and the particle is trapped quickly. Moreover, T±,exp increase as dmis

increases, because the particle needs to move more to enter in the beam centre.
Similarly, CPbPt increases as the pump power Pp decreases: when the laser ef-

fect is weak because of a low pump power Pp, the micro-isolator effect is almost
ineffective reducing substantially the anti-correlation. For the same reason, the
correlation CPbPt increases as the distance dmis decreases because high misalign-
ment implies higher losses being the laser power of the two beams not properly
reinjected in the active medium. The behaviour of CPbPt as functions of Pp for each
dmis is shown in figure 6.21b.
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Figure 6.22: (a) x, y, and z components of the particle trajectory as functions of the
time t for a 4.80µm diameter silica particle trapped with a single-beam intracavity
optical tweezers in air; (b) zoom of the y component as function of t and yw component
for a particle trapped in water with the same system; (c) optical power of the
trapping beam P as function of t.

6.2.5 Intracavity trapping in air
In the last part of this work, the IOT is used in single-beam configuration to trap

particles in air using the loading system described in chapter 4.4. As said before,
particles in air are characterised by relaxation times (∼ 50µs) greater than in water
(∼ 1µs) that make the inertial effects not negligible. Therefore, particles trapped in
air are affected by strong and almost instantaneous changes in momentum, which
are suppressed by the fluid’s viscosity in the case of particles trapped in water.
To deal with these sudden accelerations, the dataset is acquired at 500 fps and it
consists of 10 videos of 50000 frames of a silica 4.80µm particle is trapped using a
pump power of Pp = 124.5mW.

A typical time evolution of the x, y and z coordinates of a particle trapped by
IOT in air is shown in figure 6.22a, which has structured fluctuations unlike the
one obtained trapping with conventional optical trap in air (see figure 6.4b). Figure
6.22b shows that the particle along the y direction moves by 3µm in ∼ 1.5 s, while in
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Figure 6.23: trajectory of the particle in (a) x-y, (b) x-z, and (c) y-z plane for a 4.80µm
diameter silica particle trapped in air with a SBIOT. The dots change their colour
according to the laser power P .

water the coordinate ym varies by 3µm in ∼ 7 s. This behaviour indicates that, even
in air, the particle is trapped thanks to the optical feedback mechanisms observed
trapping in water. Indeed, the time-dependent laser power shown in figure 6.22c
confirms the correlation between the particle position and the laser power.

Despite these similarities with trapping in water, a major difference is that the
buoyancy is negligible in air (air density is 1000 times less than that of water)
and, therefore, the particle falls downwards rapidly when the laser power decreases
making all the dynamics faster. Indeed, when the particle is close to the trapping
position the scattering losses increase leading to a decrease of the beam power.
Therefore, the particle falls along the beam direction due to gravity, moving away
from the trapping position. Hence, the scattering losses decrease and the laser
power increases pulling again the particle close to the trapping position. This
explains why the particle trajectory is characterised by oscillations, which are also
influenced by the Brownian motion of the particle, and indicates that the dynamics
is mainly determined by the z position of the particle. To visualise this behaviour,
the particle position in the planes x-y, x-z, and y-z are shown taking into account the
laser power P variations. Figures 6.23a, 6.23b, and 6.23c show that the beam power
increases when the particle is at low z-values (measured from the imaging plane
located above the trap centre) and decreases when z increases, which indicates that
the particle fluctuates below the trap centre. In addition, the laser power increases
when the y component (measured from the bottom left edge of frame) has high
values indicating a small tilt of the optical axis of the imaging system with respect
to the direction of the laser beam.
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Figure 6.24: (a) z components of the particle trajectory and laser power P as
functions of time t with their corresponding moving mean curves (black solid line);
(b) optical power of the trapping beam P as function of z for a 4.80µm diameter silica
particle trapped in air with the single-beam intracavity optical tweezers.

To clarify the correlation between the z position of the particle and the laser
power, the 10 seconds interval of the z position and the laser power P shown in
figure 6.24a is analysed. Due to the presence of Brownian motion, the trend of the z
position and the power P of figure 6.24a are extrapolated applying a moving mean
procedure (solid black lines). In figure 6.24a, the particle is initially attracted by the
trap along z towards its centre: the z component increases slowly, while the laser
power decreases. Then, at about 15.5 s, the laser power becomes insufficient to trap
the particle, which falls very rapidly moving about 2µm in about 1 s. Consequently,
the laser power increases just as quickly and the trapping force is again able to
trap the particle. Since the viscosity of air is low, the trapping is very fast pushing
suddenly the particle towards the trap centre and, after 1 s, the particle is in a new
position that inhibits the laser beam and, so, it starts to fall again. This behaviour
of the particle trajectory occurs throughout the optical trapping and it confirms the
presence of the feedback effect, which is also confirmed by the correlation coefficient
between the power P and the z position, that is

CzPb
= −0.77± 0.01 (6.72)

and also by the behaviour of P as function of z of figure 6.24b.
This behaviour of the IOT in air explains why the variance of the particle tra-
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jectory is higher than in water, i.e.

Var[r] = 0.225± 0.013µm2 (6.73)

while the mean power P̄ is
P̄ = 32.2± 1.2mW (6.74)

being the laser always on, like trapping silica particles with IOT in water. This
decreases the trap efficiency being

ς2 = 7.2± 0.5µm2 ·mW (6.75)

which indicates this system is less efficient than standard optical tweezers when
particles are trapped in air.
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Conclusions

In this thesis, intracavity optical tweezers (IOT) are realised using a ring cavity
Yb3+ fibre laser. The experimental setup here proposed allows to trap particles
in single-beam configuration (SBIOT) and in double counter-propagating beams
configuration (DBIOT). The switch between these two configuration is obtained by
means of a removable optical isolator in the laser cavity.

The experiments done by trapping particles in water with the SBIOT demon-
strate the presence of a non-linear intrinsic feedback effect, which improves the trap-
ping efficiency with respect to that of a standard optical tweezers (OT). However, the
efficiency of SBIOT decreases as the diameter and density of the particle increase,
because of the effects that these parameters have on the trapping dynamics. For this
reason, three different types of particles have been studied: polystyrene particle
of diameter 1.98µm and 4.97µm, and silica particle of diameter 2.31µm. When a
polystyrene particle of diameter 1.98µm is trapped, its trajectory is isotropic around
the trap centre and the laser power increases quadratically with the displacement
of the particle from this position. Moreover, when the particle is close enough to the
centre, the laser power is almost zero as predicted by the toy model. In addition,
this experiment demonstrates that the modified toy model predicts the variance of
the trajectory of the particle better than the original toy model.
On the contrary, the experiments done with polystyrene particles of diameter 4.97µm
show a different laser-particle dynamics. The particle is pulled by laser towards the
centre of the trap. However, the large scattering losses due to the particle size turns
off the laser before the particle reaches the trap centre explaining why the particle
remains mainly above this position. This implies that, unlike for smaller particles,
the trap centre can not be estimated and, consequently, the toy model can not be
applied being it formulated in terms of the distance of the particle from the trap
centre. Although the feedback effect is reduced, it still makes the SBIOT more
efficient than a similar conventional trap, but less than for smaller particles like
the previous case.
Similarly, silica particles (diameter 2.31µm) mainly remain above the trap centre,
but due to their larger density. The equilibrium position is located in such a way
that the particle never switches off the laser, reducing the feedback effect and there-
fore the trapping efficiency.

Regarding the DBIOT, the trapped particle is much more confined than the
case of SBIOT and, consequently, the feedback effect is practically negligible. Nev-
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ertheless, the study of the dynamics of particle loading shows that the feedback
effect is still fundamental in the trapping mechanism and that the laser powers
of the two beams are anti-correlated. Indeed, the powers of the two beams adjust
automatically to be very similar to each other when the particle enters the trap, so
that the scattering forces of the two beams cancel each other out guaranteeing the
trapping condition.

The DBIOT is also used to produce two close optical traps by slightly misaligning
the two beams along one direction. The trapped particle exhibits periodic tran-
sitions between the two traps characterised by the feedback effect. Indeed, the
laser power of the two beams changes periodically as the particle trajectory. There-
fore, the particle acts as a micro-isolator that suppresses the beam in which it is
trapped enhancing the other beam thanks to their anti-correlation interconnection.
These transitions are then feedback activated as also confirmed by the comparison
with Kramers’ theory, in particular comparing the experimental transitions times
with the Kramers’ one. Finally, this phenomenon has been studied parametrically
changing the misalignment distance and the laser pump power. The transition
times increase as the pump power decreases: indeed, when the pump power in-
creases, the trapping force of the two beams is higher and the particle is trapped
quickly. Similarly, the anti-correlation between the two beams vanishes as the
pump power decreases: when the laser effect is weak because of a low pump power,
the micro-isolator effect is almost ineffective thereby reducing substantially the
anti-correlation of the two beams.

Then, the SBIOT is used for trapping in air. Trapping in air is not trivial because
particles do not float like in water, but they are stuck on the chamber wall due to
the van der Waals force. To push the particle in the trap centre, a special system
based on a piezoelectric transducer is developed for this thesis, which detaches the
particles by vibrating the chamber wall. To fine tune the loading system, a standard
single-beam optical tweezers is used to trap particles in air, from which inertial
effects on the particle motion are observed.

After this preliminary step, SBIOT is used to trap particles in air. Due to inertial
effects and a negligible buoyancy, the particle is characterised by faster dynamics
than in water. When the particle is near the trap centre, the laser power is low
(due to scattering losses) and the particle falls along the beam direction faster
than in water. Hence, the laser power increases pulling again the particle close to
the trapping position producing oscillations in the particle motion that are totally
absent when trapping with a standard optical tweezers. In addition, the particle
never powers off the laser reducing the IOT efficiency.

This work demonstrates that is possible to use IOT to trap particles in air keep-
ing the intrinsic feedback effect. In these conditions, the laser is always in its
steady-state because the timescale for the displacement of the particle (millisec-
onds) is much greater than the response time of the laser (nanoseconds). In vacuum,
on the other hand, these timescales are comparable and, therefore, the feedback
dynamics changes completely, also leading to possible chaotic effects. Future ex-
periments about IOT trapping in vacuum, therefore, will lead to more intriguing
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physics, such as the study of chaotic effects and, thanks to the feedback effect,
the cooling of the trapped particles with the consequent possibility of observing
quantum effects on mesoscale.
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Appendix A

Mie theory

To give an explicit expression of the optical force in the intermediate regime,
it is necessary to use the multipole expansion and the Mie theory, named after
the German physicist Gustav Mie [68], which provides an analytical solution for
the scattering problem of an electromagnetic wave on a sphere or cylinder. In
this discussion, it is essential to use the Helmholtz equation for the electric field
(similarly for the magnetic field)(

∇2 + k2
)
E⃗(r⃗) = 0 (A.1)

whose general solution is given ([31], chapter 5.2.3), for the case of a field regular
in the origin of the reference system1, by the following multipole expansion:

E⃗i(r⃗) = Ei

∑
p=1,2

∞∑
l=0

l∑
m=−l

W
(p)
i,lmJ⃗

(p)
lm (kr, r⃗) (A.2)

where:

• E =
∣∣∣E⃗∣∣∣;

• the superscript p = 1 (p = 2) refers to the multipolar components of the
magnetic (electric) kind;

• the vectors J⃗ (j)
lm (kr, r⃗) are

J⃗
(1)
lm (kr, r⃗) = jl(kr)Z⃗

(1)
lm (r⃗)

J⃗
(2)
lm (kr, r⃗)= i

√
l(l + 1)

kr
jl(kr)Y⃗lm(r⃗)−

1

kr

[
jl(kr) + r

djl
dr

(kr)

]
Z⃗

(2)
lm (r⃗)

(A.3)

where jl(kr) indicates a spherical Bessel function, and Y⃗lm(r⃗) and Z⃗
(1,2)
lm (r⃗)

indicate the radial and the transversal vector spherical harmonics, defined
1The field is supposed to be regular in the centre of the reference frame, which is chosen coincident

with the centre of the sphere.
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respectively as ([31], chapter 5.2.3):

Y⃗lm = Ylmr⃗ (A.4)

Z⃗
(1)
lm = − i√

l(l + 1)
r⃗ ∧ ∇⃗Ylm (A.5)

Z⃗
(2)
lm = −Z⃗(1)

lm ∧ r⃗ (A.6)

if Ylm is a spherical harmonic ([31], chapter 5.2.1);

• W p
i,lm is a numerical coefficient ([31], chapter 5.2).

Instead, the general solution of equation (A.1) for a field satisfying the radiation
condition at infinity, i.e. the scattered electric field by the particle, is

E⃗s(r⃗) = Es

∑
p=1,2

∞∑
l=0

l∑
m=−l

A
(p)
s,lmH⃗

(p)
lm (kr, r⃗) (A.7)

where A(p)
s,lm is a numerical coefficient and
H⃗

(1)
lm (kr, r⃗) = hl(kr)Z⃗

(1)
lm (r⃗)

H⃗
(2)
lm (kr, r⃗)= i

√
l(l + 1)

kr
hl(kr)Y⃗lm(r⃗)−

1

kr

[
hl(kr) + r

dhl
dr

(kr)

]
Z⃗

(2)
lm (r⃗)

(A.8)

and hl(kr) spherical Hankel functions of the first kind.
Equations (A.2) and (A.7), indeed, allow to derive the phasor of equation (1.48),

which by exploiting the superposition principle is

E⃗ = E⃗i + E⃗s (A.9)

being the total electric field E⃗ the sum of the incident field, E⃗i, and of the scattered
one, E⃗s (similarly for the magnetic field). These two phasor, E⃗i and E⃗s in far field
condition, using the asymptotic behaviour of the Bessel functions, are (the same for
the magnetic field)

E⃗i ∼ Ei

∑
p=1,2

∞∑
l=0

l∑
m=−l

W
(p)
i,lmZ⃗

(p)
lm (r⃗)

(−1)p−1

kr
sin

(
kr − (l + 1− p)

π

2

)
(A.10)

E⃗s ∼ Ei

∑
p=1,2

∞∑
l=0

l∑
m=−l

A
(p)
s,lmZ⃗

(p)
lm (r⃗)

eikr

kr
i−l−p (A.11)

where k = 2πni/λ0 and λ0 is the wavelength of the incident radiation. The ex-
pression of A(1,2)

s,lm can be analytically evaluated for a sphere of refractive index np
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and radius a. According to this theory, A(1,2)
s,lm is related to W (1,2)

i,lm through the Mie’s
coefficients al and bl given by

al = −
A

(2)
s,lm

W
(2)
i,lm

=
niu

′
l(kpa)ul(ka)− npul(kpa)u

′
l(ka)

niu′l(kpa)wl(ka)− npul(kpa)w′
l(ka)

bl = −
A

(1)
s,lm

W
(1)
i,lm

=
npu

′
l(kpa)ul(ka)− niul(kpa)u

′
l(ka)

npu′l(kpa)wl(ka)− niul(kpa)w′
l(ka)

(A.12)

where kp is the wavenumber of the electromagnetic field in the sphere, the super-
script ′ denotes the total derivative, ul(x) is ul(x) = xjl(x), andwl(x) iswl(x) = xhl(x).
For a plane wave propagating along the z-direction, it is possible to demonstrate
that [31]

W
(1)
i,lm =

{
il
√
π(2l + 1) ifm = ±1

0 ifm ̸= ±1
(A.13)

W
(2)
i,lm =

{
mil

√
π(2l + 1) ifm = ±1

0 ifm ̸= ±1
(A.14)
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Appendix B

About the Langevin equation of a
free particle

In the simple 1-D case, the Langevin equation is given by adding a random force
ξ(t) to Newton’s equation for a particle in a viscous fluid, i.e.

dr(t)

dt
= v(t)

dv(t)

dt
= − γ

m
v(t) +

1

m
ξ(t)

(B.1)

where m is the mass of the particle, η the viscosity coefficient of the fluid in which
the particle moves, and γ = 6πηa is the particle friction coefficient defined by Stokes’
law assuming the particle to be spherical with radius a.

The random force ξ(t) is fundamental to explain the equilibrium properties of the
system because, as expected from the equipartition theorem, the expected value of
v2 is

E[v2(t)]eq =
kBT

m
(B.2)

This expression is found if ξ(t) ̸= 0, since equation (B.1) with ξ(t) = 0 has the
solution

v(t) = e−t/τBv(0) ⇒ E[v2(t)]eq = e−2t/τBE[v2(0)]eq −−−→
t→∞

0 (B.3)

where τB = m/γ.
The random force ξ(t) has two important properties that are useful to evaluate

the solution of the Langevin equation.

1. The average value over all possible realisations of the noise, defined asE[ξ(t)]ξ,
is zero due to the homogeneity and isotropy of the fluid.

2. E[ξ(t1)ξ(t2)]ξ = gδ(t1 − t2) with g ≡ E[ξ(t)2]ξ with g called. This property is
true because the particle has a very large mass with respect to the mass of
the fluid constituents and, therefore, the collisions at time t1 are independent
of those at time t2, i.e. there are no memory effects in this stochastic process.
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To write g in terms of physical quantities, it is necessary to evaluate the autocor-
relation function of the velocity E[v(t1)v(t2)]ξ and, consequently, the expression of
the velocity v(t). The velocity can be obtained with the differential form of equation
(2.2):

dv(t) = − γ

m
v(t)dt+

1

m
dU (B.4)

with dU ≡ ξ(t)dt, that gives

v(t)− v(0) = − γ

m
[x(t)− x(0)] +

1

m
[U(t)− U(0)] (B.5)

Before evaluating g, it is important to observe that the Langevin equation respects
all the properties of Brownian motion is a Wiener process, because the random
variable U(t), which introduces the stochastic process U = {U(t), t ≥ 0}, is defined
by:

U(t) =
n∑

k=1

U(tk)− U(tk−1) (B.6)

where the interval time [0, t] is partitioned in the partition {0 = t0 < t1 < ... < tn = t}.
Indeed:

• U(0) = 0, choosing properly the time origin;

• as explained above, the increments are independent;

• since the collisions are very frequent, by an application of the central limit
theorem the increments are found to be normally distributed;

• this process is almost surely continuous due to the continuity of the integral
function, being defined by

U(t) =

∫ t

0

ξ(t)dt (B.7)

Having verified that the Langevin equations describe the correct stochastic process,
the expression of the velocity can be obtained from equation (B.4), which has the
solution

v(t) = e
− t

τB v(0) +
1

m

∫ t

0

e
− t−s

τB dW (s) = e
− t

τB v(0) +
1

m

∫ t

0

e
− t−s

τB ξ(s)ds (B.8)

with τB = m/γ. Consequently, the autocorrelation function of the velocity is

E[v(t1)v(t2)]ξ = E

[(
e
− t1

τB v(0) +
1

m

∫ t1

0

e
− t1−s

τB ξ(s)ds

)(
e
− t2

τB v(0) +
1

m

∫ t2

0

e
− t2−s

τB ξ(s)ds

)]
ξ

=

= v(0)2e
− t1+t2

tB +
1

m2

∫ t1

0

∫ t2

0

e
− t1−s1

tB e
− t2−s2

tB E [ξ(s1)ξ(s2)]ξ ds2ds1 =

= v(0)2e
− t1+t2

tB +
gtB
2m2

(
e
− |t2−t1|

tB − e
− t2+t1

tB

) (B.9)
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where Fubini’s theorem is applied to change the order of integration between E[·]ξ
and

∫
· ds and the terms with E[ξ(t)]ξ are not shown due to the property E[ξ(t)]ξ = 0.

From this expression, g can be evaluated observing that

E[v(t)v(t)]ξ = E[v(t)2]ξ = v(0)2e
− 2t

tB +
gtB
2m2

(
1− e

− 2t
tB

)
−−−→
t→∞

gtB
2m2

=
kBT

m
(B.10)

and, therefore,
g = 2kBTγ (B.11)

where the last equality of equation (B.10) arises from the thermal equilibrium that
the particle reaches at long times (t→ ∞) and, therefore, limt→∞E[v(t)2]ξ =

kBT
m

.
Having obtained the noise properties, ξ(t) can be rewritten as

ξ(t) =
√

2γkBTΞ(t) (B.12)

with Ξ(t) a white noise random variable that satisfies the relations E[Ξ(t)]Ξ = 0 and
E[Ξ(t1)Ξ(t2)]Ξ = δ(t1 − t2).

Now, the Langevin equation can be solved using the method of the variation of
the constants. Applying this method, the solution is

r(t) = a1(t)r1(t) + a2(t)r2(t) (B.13)

with rn (n = 1, 2) a solution of the associated homogeneous equation of equation
(2.2), that is

d2rn
dt2

= − γ

m

drn
dt

⇒

{
r1(t) = c0 +

mv0
γ

r2(t) = −mv0
γ
e−

γ
m
t

(B.14)

with c0 and v0 constants defined by the initial conditions. To identify the analytical
form of a1(t) and a2(t), the following system of equations needs to be solved{

da1
dt

dr1
dt

+ da2
dt

dr2
dt

=
√
2γkBT
m

Ξ
da1
dt
r1 +

da2
dt
r2 = 0

⇒

a1(t) = 1
c0+

mv0
γ

√
2kBT

γ

∫ t

0
Ξ(τ) dτ + a10

a2(t) =
√
2γkBT
m

∫ t

0
Ξ(τ)e

γ
m
τ dτ + a20

(B.15)

from which it follows that the solution and its derivative (the velocity) are

r(t) = C1e
− γ

m
t + C2 +

√
2kBT

γ

(∫ t

0

Ξ(τ) dτ −
∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t

)
(B.16)

v(t) = − γ

m
C1e

− γ
m
t +

γ

m

√
2kBT

γ

∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t (B.17)

with C1 and C2 given by the initial conditions r0 = r(t = 0) and v0 = v(t = 0), i.e.{
r0 = C1 + C2

v0 = − γ
m
C1

⇒

{
C1 = −mv0

γ

C2 = r0 +
mv0
γ

(B.18)
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As a result, it follows that

r(t) = r0 +
mv0
γ

(
1− e−

γ
m
t
)
+

√
2kBT

γ

(∫ t

0

Ξ(τ) dτ −
∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t

)
(B.19)

v(t) = v0e
− γ

m
t +

γ

m

√
2kBT

γ

∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t (B.20)

It is useful to evaluate the expected value E[r(t)] on all the realisations of the noise
Ξ and Var[∆r(t)], which is called mean squared displacement (MSD). The expected
value of r(t), applying Fubini’s theorem, is

E[r(t)]Ξ = r0 +
mv0
γ

(
1− e−

γ
m
t
)

(B.21)

which implies

r(t) = E[r(t)]Ξ +

√
2kBT

γ

(∫ t

0

Ξ(τ) dτ −
∫ t

0

Ξ(τ)e
γ
m
τ dτe−

γ
m
t

)
(B.22)

Instead, to evaluate the MSD it is useful to explicate the quantity E[r(t1)r(t2)]Ξ,
being the MSD = E[r(t)r(t)]Ξ. Applying Fubini’s theorem and observing that all
the terms containing Ξ (and not Ξ(τ)Ξ(τ ′)) are zero because E[Ξ]Ξ = 0, the MSD is
evaluated by direct calculation from (B.22), i.e.

E[r(t1)r(t2)]Ξ = E[r(t1)]ΞE[r(t2)]Ξ +
2kBT

γ

[∫ t1

0

∫ t2

0

E[Ξ(τ)Ξ(τ ′)] dτ dτ ′+

−
∫ t1

0

∫ t2

0

E[Ξ(τ)Ξ(τ ′)]e
γ
m
τ ′ dτ dτ ′e−

γ
m
t2 −

∫ t1

0

∫ t2

0

E[Ξ(τ)Ξ(τ ′)]e
γ
m
τ dτ dτ ′e−

γ
m
t1+

+

∫ t1

0

∫ t2

0

E[Ξ(τ)Ξ(τ ′)]e
γ
m
(τ+τ ′) dτ dτ ′e−

γ
m
(t1+t2)

] (B.23)

The integrals in this equation can be resolved using E[Ξ(t1)Ξ(t2)]Ξ = δ(t1 − t2) and
they are 

∫ t1
0

∫ t2
0
E[Ξ(τ)Ξ(τ ′)] dτ dτ ′ = t2∫ t1

0

∫ t2
0
E[Ξ(τ)Ξ(τ ′)]e

γ
m
(τ ′) dτ dτ ′ = m

γ

(
e

γ
m
t2 − 1

)∫ t1
0

∫ t2
0
E[Ξ(τ)Ξ(τ ′)]e

γ
m
(τ+τ ′) dτ dτ ′ = m

2γ

(
e

2γ
m

t2 − 1
) (B.24)

assuming t2 ≤ t1. In addition, the initial velocity of the particle v0 is usually
unknown and, in order to have useful results, the average value over all the possible
initial velocities is needed. Applying the equipartition theorem, this average gives
v0 =

kbT
m

. Using these results and performing the calculations, E[r(t1)r(t2)]Ξ is

E[r(t1)r(t2)]Ξ =
2kBT

γ
t2 +

kBTm

γ2

[
e−

γ
m
t1 + e−

γ
m
t2 − e−

γ
m
(t1−t2) − 1

]
(B.25)
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Equation (B.25) gives the MSD:

MSD(τ) = E[r2(τ)]Ξ−2E[r(τ)r(0)]Ξ+E[r
2(0)]Ξ =

2kBT

γ
τ+

2kBTm

γ2

[
e−

γ
m
τ − 1

]
(B.26)

Following similar calculations, it is possible to demonstrate that for the overdamped
Langevin equation the MSD is

E[r2(t)]Ξ =
2kBT

γ
t (B.27)



136APPENDIX B. ABOUT THE LANGEVIN EQUATION OF A FREE PARTICLE



Appendix C

Langevin equation of a trapped
particle

The Langevin equation of a trapped particle is given by the following expression:

d2r

dt2
(t) = − γ

m

dr

dt
(t)− k

m
r(t) +

√
2γkBT

m
Ξ(t) (C.1)

The solution of this equation can be obtained using the method of the variation of
the constants:

r(t) = a1(t)r1(t) + a2(t)r2(t) (C.2)

with rn (n = 1, 2) being a solution of the associated homogeneous equation of equa-
tion (C.1). The solution of the homogeneous equation is

d2rn
dt2

+
γ

m

drn
dt

+
k

m
rn = 0 ⇒ rn(t) = Cne

µnt (C.3)

with µ 1
2
= −1

2
γ
m
± 1

2

√(
γ
m

)2 − 4 k
m

and Cn a constant defined by the initial conditions.
The variation of constants method gives the following system of equations to deter-
mine a1(t) and a2(t):{

da1
dt

dr1
dt

+ da2
dt

dr2
dt

=
√
2γkBT
m

Ξ
da1
dt
r1 +

da2
dt
r2 = 0

⇒

{
a1(t) =

1
C1

√
2γkBT
m

1
µ1−µ2

∫ t

0
Ξ(τ)e−µ1τ dτ + a10

a2(t) = − 1
C2

√
2γkBT
m

1
µ1−µ2

∫ t

0
Ξ(τ)e−µ2τ dτ + a20

(C.4)
From these equations, the solution and its derivative (the velocity) are

r(t) = C1e
−µ1t + C2e

−µ2t +
√
2γkBT
m

1
µ1−µ2

(∫ t

0
Ξ(τ)e−µ1τ dτ −

∫ t

0
Ξ(τ)e−µ2τ dτ

)
(C.5)

and

v(t) = µ1C1e
−µ1t + µ2C2e

−µ2t +
√
2γkBT
m

1
µ1−µ2

(
µ1

∫ t

0
Ξ(τ)e−µ1τ dτ − µ2

∫ t

0
Ξ(τ)e−µ2τ dτ

)
(C.6)
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with Cn = cnan0 (n = 1, 2) defined by{
r0 = C1 + C2

v0 = µ1C1 + µ2C2

⇒

{
C1 = −µ2r0−v0

µ1−µ2

C2 =
µ1r0−v0
µ1−µ2

(C.7)

assuming r0 = r(t = 0) and v0 = v(t = 0). Averaging over all the possible noise
realisations, these equations give the following expected position value E[r(t)]Ξ

E[r(t)]Ξ = C1e
−µ1t + C2e

−µ2t =
µ1r0e

−µ2t − µ2r0e
−µ1t + v0e

−µ1t − v0e
−µ2t

µ1 − µ2

(C.8)

and the following expected velocity value E[v(t)]Ξ

E[v(t)]Ξ = µ1C1e
−µ1t + µ2C2e

−µ2t (C.9)

where, for both the expected values, the second integral term of equations (C.5) and
(C.6) is zero because the hypothesis of Fubini’s theorem are satisfied in this analysis(
E
[∫ t

0
f(τ) dτ

]
Ξ
=

∫ t

0
E [f(τ)]Ξ dτ

)
and, therefore, E

[∫ t

0
Ξ(τ)e−µ1,2τ dτ

]
Ξ
= 0, being

E[Ξ]Ξ = 0.
In order to evaluate the MSD, the average of r(t1)r(t2) for t1 = t2 = t needs to be

obtained and, to evaluate r(t1)r(t2) in a simple way, some important consideration
are needed:

• r(t) can be rewritten in terms of its average E[r(t)]Ξ, i.e.

r(t) = E[r(t)]Ξ +

√
2γkBT

m

1

µ1 − µ2

(∫ t

0

Ξ(τ)e−µ1τ dτ −
∫ t

0

Ξ(τ)e−µ2τ dτ

)
(C.10)

• all the terms obtained as product of the first term and the second one of the
previous equation are zero, because they containE

[∫ t

0
Ξ(τ)e−µ1,2τ dτ

]
Ξ

that has
zero average;

• all the terms obtained as product of the second term and itself (at different
times t1 and t2) have an integral like E

[∫ t2
0

∫ t1
0

Ξ(τ)Ξ(τ ′)e−µ1τ−µ2τ ′ dτdτ ′
]
Ξ

that
is equal to∫ t2

0

∫ t1

0

E [Ξ(τ)Ξ(τ ′)]Ξ e
−µ1τ−µ2τ ′ dτdτ ′ =

1

µ1 + µ2

(
1− e−(µ1+µ2)t2

)
(C.11)

where E [Ξ(τ)Ξ(τ ′)]Ξ = δ(τ − τ ′) and t2 < t1 is assumed.

Using all these considerations, E[r(t1)r(t2)]Ξ is

E[r(t1)r(t2)]Ξ = E[r(t1)]ΞE[r(t2)]Ξ +
2kBTγ

m2(µ1 − µ2)2

[
1

2µ1

(
1− e−2µ1t2

)
eµ1(t1+t2)+

+
1

2µ2

(
1− e−2µ2t2

)
eµ2(t1+t2) − 1

µ1 + µ2

(
1− e−(µ1+µ2)t2

) (
eµ1t1+µ2t2 + eµ1t2+µ2t1

)] (C.12)
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that, for t1 = t2 ≡ t, gives

E[r(t)2]Ξ = (E[r(t)]Ξ)
2 +

2kBTγ

m2(µ1 − µ2)2

[
1

2µ1

(
e2µ1t − 1

)
+

1

2µ2

(
e2µ2t − 1

)
− 2

µ1 + µ2

(
e(µ1+µ2)t − 1

)] (C.13)

To understand the physical meaning of this expression, this equation needs to be
reduced to the terms of equation (2.37) only. Firstly, the term (E[r(t)]Ξ)

2 can be
rewritten observing that

E[r(t)]Ξ = r0

cosh

√

γ2

m2 − 4 k
m

2
t

+
γ/m√
γ2

m2 − 4 k
m

sinh


√

γ2

m2 − 4 k
m

2
t

 e− γ
2m

t+

+
2v0√

γ2

m2 − 4 k
m

sinh


√

γ2

m2 − 4 k
m

2
t

 e−
γ
2m

t

(C.14)

obtained adding and subtracting the terms µ1e
µ1t and µ1e

µ1t in equation (C.8), using
the definition of cosh and sinh, and substituting the definition of µ1,2. Secondly, the
second term of equation (C.13), manipulating it in a similar way, is

kBT
k

[
1−

(
2 γ2

γ2−4mk
sinh2

(√
γ2

m2−4 k
m

2
t

)
+ γ/m√

γ2

m2−4 k
m

sinh

(√
γ2

m2 − 4 k
m
t

)
+ 1

)
e−

γ
m
t

]
(C.15)

In typical experiments, the initial position r0 is known, but not the velocity v0
and, therefore, the useful expression of the MSD is obtained averaging over all the
possible values of v0, E[(E[r(t)]Ξ)2]v0. From the equipartition theorem, the initial
condition E[v20]v0 =

kBT
m

allows to write

E[r(t)2]Ξ = kBT
k

+
(
r20 − kBT

k

) [
cosh

(√
γ2

m2−4 k
m

2
t

)
+ γ/m√

( γ
m
)2−4 k

m

sinh

(√
γ2

m2−4 k
m

2
t

)]2
e−

γ
m
t+

+ 2kBT r0

k
√

γ2

m2−4 k
m

sinh

(√
γ2

m2−4 k
m

2
t

)[
cosh

(√
γ2

m2−4 k
m

2
t

)
+ γ/m√

( γ
m
)2−4 k

m

sinh

(√
γ2

m2−4 k
m

2
t

)]
e−

γ
m
t

(C.16)

In this expression (for alternative approaches see [43, 44]), there are two angular
frequencies contributions: Ω =

√
k/m, that is the angular frequency of the trapped

particle without damping, and Ω1 =
√

γ2

m2 − 4 k
m

=
√
Γ2
0 − 4Ω2, that is the cyclic

frequency of the damped oscillator in which Γ0 = γ
m

is the damping coefficient.
Therefore, assuming r0 = 0, the MSD = E[r(t)2]Ξ−2E[r(t)r(0)]Ξ+E[r(0)

2]Ξ, obtained
combining allt he previous results together, is

MSD(t) = 2
kBT

k
− 2

kBT

k

[
cosh

(
Ω1

2
t

)
+

Γ0

Ω1

sinh

(
Ω1

2
t

)]
e−Γ0t/2 (C.17)

The MSD, for t→ ∞, has the limit value of lim
t→∞

E[r(t)2]Ξ = 2kBT
k

.
Following a similar procedure, the MSD in the low Reynolds number regime si

E[r(t)2]Ξ =
2kBT

k

(
1− e−

k
γ
t
)

(C.18)
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