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Abstract

Artifcial intelligence (AI) is the most disruptive technology of recent

decades. Notably, its implementation in many engineering �elds has al-

ready begun to show the ability to improve design and construction meth-

ods, data management, and safety. Structural engineering plays a crucial

role in managing the safety of structures and infrastructures. Whether

at the design stage of a new building or during inspections of an existing

viaduct, engineers' skills and knowledge must provide realistic judgments

that are capable of ensuring the required safety but, at the same time, are

economically, socially, and environmentally sustainable. In this process,

arti�cial intelligence makes it possible to assist structural engineers in per-

forming repetitive tasks or duties that require analyzing large amounts of

data.

This thesis reports several use cases of AI in performing structural

safety management operations throughout the structure's life cycle.

The �rst use case is the design of irregular structures. It is complex

to obtain structural solutions with high structural performance for such

structures using traditional methodologies. Therefore, this thesis propose

a metaheuristic strategy for design optimization, the performance of which

are compared by the solutions provided by engineering students.

The second use case is the management of structural data �ows during

construction. Proper and transparent management of material acceptance

reports, inspections, and load tests is a guarantee of materials and con-

struction processes. An AI and blockchain-based tool for automatic and

transparent data management increments safety and provide more con�-

dence in structures.

The third and fourth use cases are related to structure monitoring with

dynamic and static data. The dynamic is related to the interpretation of

accelerometer data for detecting, localizating, and quantifying structural
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damage understood as reduced sti�ness and plastic hinge formation. The

static, instead, relates to the evaluation of prestress loss in prestressed

concrete lattice bridges from measurements of innovative pressure sensors.

The �fth use case is for supporting �eld engineers in post-earthquake in-

spections. Deep learning systems can process photos by identifying damage

and validating and supporting engineers' opinions. Finally, the sixth use

case is for the use of metaheuristics approaches for scheduling maintenance

activities for a portfolio of bridges to minimize the portfolio's carbon foot-

print while meeting the constraints of safety, cost, and available workforce.

A methodology based on implementing the Arti�cial Intelligence method-

ology was developed for each use case. The methodology were validated

using real-world data, where available or already in the literature, and

simulated data using computationally robust techniques.

Keywords: Structural Safety, Machine Learning, Blockchain, Arti�cial

Intelligence, Optimization



Sintesi in lingua italiana

L'intelligenza arti�ciale è la tecnologia più dirompente degli ultimi de-

cenni. La sua implementazione nel settore delle Costruzioni ha già iniziato

a mostrare la capacità di migliorare le modalità costruttive, la gestione dei

dati e la sicurezza. L'ingegneria strutturale ricopre un ruolo cruciale nella

gestione della sicurezza delle strutture e infrastrutture. Sia in fase di pro-

getto di un nuovo edi�cio che durante le veri�che di un viadotto esistente

è necessario che le competenze e le conoscenze degli ingegneri forniscano

dei giudizi realistici che siano in grado di garantire la sicurezza richiesta

ma allo stesso tempo siano sostenibili dal punto di vista economico, so-

ciale e ambientale. In questo processo l'intelligenza arti�ciale consente di

assistere gli ingegneri strutturisti nell'esecuzione di operazioni ripetitive o

che richiedono l'analisi di grandi quantità di dati. In questo lavoro di tesi

sono riportate diverse metodologie per l'implementazione dell'approccio

dell'Intelligenza arti�ciale nell'esecuzione di alcune delle operazioni per la

gestione della sicurezza strutturale durante tutto il ciclo di vita della strut-

tura.

Il primo caso d'uso è la progettazione di strutture irregolari in pianta.

Per tali strutture è complesso ottenere soluzioni strutturali con elevate

performance strutturali con le tradizionali metodologie. Si analizzano pro-

pone quindi una strategia metaueristica per la progettazione ottimizzata

e si testano le performance confrontandole con le soluzioni progettuali di

studenti di Ingegneria Strutturale.

Il secondo caso d'uso è la gestione dei �ussi di dati strutturali in fase di

costruzione. La gestione corretta e trasparente dei report di accettazione

dei materiali, ispezioni e prove di carico è una garanzia sui materiali e sui

processi costruttivi. In de�nitiva, uno strumento basato su AI e blockchain

per la gestione automatica e trasparente dei dati consente di aumentare la

sicurezza e la �ducia nelle strutture.



Il terzo e il quarto caso d'uso sono relativi al monitoraggio delle strut-

ture. Il terzo è relativo all'interpretazione dei dati accelerometrici per la

rilevazione, localizzazione e quanti�cazione del danneggiamento strutturale

inteso come riduzione di rigidezza e formazione di cerniere plastiche. Il

quarto, invece, è relativo alla valutazione della perdita di precompressione

in ponti a graticcio in c.a.p. a partire dalle misure di innovativi sensori di

pressione.

Il quinto caso d'uso è per il supporto agli ingegneri di campo nelle

ispezioni post-sisma. Infatti, sistemi di deep learning possono processare

le foto individuando i danni validando e supportando i pareri dei tecnici.

In�ne, il sesto caso è relativo all'utilizzo di metaeuristiche per lo schedul-

ing delle attività di manutenzione di un portfolio di ponti con l'obiettivo

di minimizzare la carbon footprint del portfolio rispettando i vincoli di

sicurezza, costo e manodopera disponibile.

Per ciascuno dei casi d'uso è stata sviluppata una metodologia basata

sull'implementazione dell'approccio dell'Intelligenza arti�ciale. Gli ap-

procci sono stati validati utilizzando sia dati reali, qualora disponibili o

già presenti in letteratura, sia dati simulati utilizzando tecniche robuste e

sostenibili dal punto di vista computazionale.

Parole chiave: Sicurezza Strutturale, Intelligenza Arti�ciale, Machine

Learning, Blockchain, Ottimizzazione.
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Introduction

A country's economic growth is strongly correlated to its infrastructure
endowment. Buildings, roads, bridges, airports, railways, and ports are
critical assets for the long-term development of countries that increasingly
need more facilities and routes.

Therefore, the health of the Architecture, Engineering, and Construc-
tion (AEC) sector is a critical aspect of a country's well-being.

In addition, only the construction sector accounts for between 13% and
15% of the world's Gross Domestic Product, thus highlighting a direct
signi�cant on the economy in the short term [17].

Despite being one of the most impactful sectors, the construction �eld
shows a high degree of resistance to changes due to numerous factors, such
as lack of digitalization, low-skilled labor, and others. These issues results
in limited growth of the sector. In fact, di�erently from all other industry,
the AEC has only increased by 1% annually over the past two decades
showing all its limitations [161].

Challenges in the AEC sector are related to more than just ine�ciency.
Over the past two decades, the sector has faced material and labor short-
ages, managing aging facilities and infrastructure, and limited economic
resources. In addition, the need to comply with regulations that take into
account environmental concerns has made projects even more di�cult to
implement.

On the other hand, with the widespread di�usion of digital systems
and the revolution of Industry 4.0, new opportunities opened in the 2010s
for the construction sector.

Industry 4.0, also known as the Fourth Industrial Revolution, is a term



2 Introduction

used to describe the current trend of automation and data exchange in
manufacturing technologies, including developments in arti�cial intelli-
gence, the Internet of Things, and cyber-physical systems. This trend
is expected to profoundly impact how companies do business and could
lead to increased productivity, e�ciency, and pro�ts [106, 13].

Structural engineering is one of the main areas where research and
development have focused on implementing Industry 4.0 technologies, es-
pecially Arti�cial Intelligence (AI). AI is the ability of computer systems
to perform tasks that usually require human intelligence, such as learning,
problem-solving, and decision-making. It is disruptive in di�erent areas
of industry, and it is the most promising technology to implement in the
AEC sector. AI has the potential to revolutionize the �eld of structural en-
gineering by automating speci�c tasks, improving accuracy, and reducing
the need for human labor. For example, AI algorithms can quickly analyze
and compare multiple design options, helping structural engineers �nd the
most e�cient and e�ective solution. It can also be used to optimize the use
of materials in construction, reducing waste and increasing sustainability.

This thesis analyzed solutions based on AI for the improvement of
structural safety implmententing smart designing, transparent construct-
ing data �ow, smart monitoring and inspections, and low emission in main-
taining. Speci�cally, the potential of AI methods was analyzed for each
stage of the facilities' life cycle and then used by developing a method to
support designers and engineers, increase the safety level of facilities, and
reduce emissions. The main idea is to de�ne procedures and methodologies
based on AI that will permit the existing structures to become smarter.

Figure 1 a diagram highlighting the structure of the thesis by identify-
ing the structural stages and di�erent chapters.

Figure 1. Thesis structure
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For each stage, traditional procedures were analyzed, and a logical-
mathematical representation was reconstructed to highlight current limi-
tations and possibilities for applications of innovative techniques.

In this context, mathematical models and numerical simulations were
used to represent the behavior of structures to investigate the applicability
of the proposed methodologies.

The objective of Chapter 1 is to propose a hybrid technique that can
support the designer in identifying the dimensioning of highly irregular
structures. In this way, a structure can make the best use of its structural
capabilities by avoiding stress localization, i.e., not using all its ductile
reserves. The capacity-based approach introduced the issue of evaluating
the regularity in the dynamic behavior of structures. In particular, while
earlier regulatory codes treated reinforced concrete (r.c.) structures in-
dependently from their regularity in plan and elevations, modern design
rules consider regularity by penalizing irregular structures by tuning the
behavior factor. Since controlling the structure's dynamic behavior is par-
ticularly challenging when dealing with irregular plans, common sense rules
and classical preliminary dimensioning (pre-dimensioning) methods often
require several trial-and-error attempts to achieve a satisfactory dimen-
sioning. Consequently, this intrinsic complexity fosters the development of
practical and automated algorithmic procedures that can provide reliable
dimensioning solutions for many structural typologies.

To achieve a high structural performance system, there is a need not
only for sophisticated design methodologies but is necessary to guarantee
the quality of materials and construction methodologies. Therefore, fol-
lowing the �ow shown in the Figure 1, the focus of the thesis shifts to the
construction phase.

From the material acceptance test to the last structural test during the
closeout phases, lots of documents are produced for each phase related to
a speci�c aspect of structural safety. For instance, when materials arrive
on the construction site, their datasheets are stored, and according to
the national code, many tests are made to establish material conformity.
The interaction between Blockchain technology and arti�cial intelligence
permits the building of a framework to certify exchanged data and check
structural information's formal and substantial validity.

Chapter 2 proposes a proof-of-concept of integrating blockchain tech-



4 Introduction

nology and smart contract into information �ows that deploy among di�er-
ent Common Data Environments (CDEs). The ultimate purpose is to im-
prove transparency and coordination of information �ow related to struc-
tural safety during construction and closeout phases. To this end, this
work will refer exclusively to the construction process of structural sys-
tems.

In detail, structural and civil engineers with the role of Project Man-
agers and inspection engineers oversee construction works and ensure the
structural safety of works by:

1. Checking structural materials when they arrive on construction sites;

2. Interpreting and analyzing results of tests on structural materials;

3. Inspecting structural systems to ensure compliance with safety stan-
dards and project speci�cations;

4. Overseeing closeout tests.

These are primarily manual human-dependent tasks that return reports
in PDF format or scanned paper documentation as outputs that often re-
quire collecting multiple signatures. Nonetheless, this documentation is
fundamental to demonstrating the safety and integrity of as-built struc-
tural systems; therefore, it represents an essential asset information model
(AIM) component. Additionally, this documentation is exchanged mainly
by email (or certi�ed email) to collect signatures. Sometimes, this pro-
cess is manually executed when digital approaches still need improvement.
Consequently, e�ciency, consistency, and coordination of structural-safety
outputs su�er from these traditional approaches, which entail delays, re-
dundancy, loss of documentation, and errors caused by human-depended
document management.

Despite the signi�cant developments in design and construction, the
most challenging objective for structural engineering is to ensure adequate
safety levels for existing structures and infrastructures (Fig.1).

Chapters 3 and 4 discuss two di�erent methodologies for structural
damage detection, localization and evaluation.

Structural health monitoring (SHM) involves the implementation of
detection and data-collection schemes to measure physical responses and
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assess the current state of a system's health and operations. The physical
response of the system can be measured according to a wide variety of
parameters that depend both on the structure of interest and case-speci�c
requirements. For example, health monitoring can be based on measures
of local accelerations, displacements, rotations, temperature, corrosion- in
metal components -local stresses and strains, and so forth. A constant chal-
lenge of SHM is to correctly identify when the measurements obtained are
due to damage caused by, for example, structural deterioration or earth-
quakes rather than the natural or stable movement of the structure in its
environment. Based on the structural response, the goal of SHM is to
correctly detect damages, assessing - with an increasing level of detail - (i)
damages' presence; (ii) geometric locations of damages; (iii) damage sever-
ity; and an (iv) estimation of the remaining service life of the structure,
e.g., see [165, 58, 35, 65]. Properly implementing a monitoring system
can help detect deterioration in structures early, increase safety levels, and
bring e�ciency and e�ectiveness to maintenance operations.

Chapter 3 reports D2 −DTE framework for structural damage detec-
tion based on the classi�cation of dynamic properties of the structure. The
presented methodology consents to identify, localize and quantify struc-
tural damage using a Decision Tree Ensemble Algorithm to assess the
health condition of the monitored structure.

Despite the excellent performance in sti�ness reduction identi�cation,
vibration data show low sensitivity to the damage of prestressed concrete
(PSC).

In the '60s and '70s, the unprecedented wide use of PSC allowed the
construction of large-span bridges in short times [18]. However, over the
years, some shortcomings of this structural paradigm became apparent,
with the main issues related to tendon durability and proneness to cor-
rosion phenomena [107]. Nowadays, the status of these aging structures
presents a widespread threat to reliability and safety.

These issues give rise to a growing need to monitor and maintain PSC
bridges to prevent failures that could severely harm the health of their
users. Indeed, several durability-related events were recorded in the past
few years, such as the one a�ecting the Hammersmith Flyovver [42], and
the collapse of the Polcevera bridge in Genoa, in which a sudden shearing
of the prestressing cables caused the death of 43 people [29].
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Therefore, Chapter 4 presents a new computational methodology based
on Extreme Learning Machine (ELM) to estimate the remaining prestress
levels in longitudinal beams of girder bridges.

Although structural health monitoring o�ers high opportunities for
damage detection and residual lifetime evaluation, accurate inspections
must be considered in critical situations such as after an earthquake. In-
deed, human intervention is needed under certain conditions to quickly
assess the state of structures in a wide area, while only a little part of it is
provided with sensors. Moreover, on some occasions, the event may be of
such magnitude that the monitoring system may be compromised. Then,
concerning Fig. 1, we move on to the structure inspection stage.

After a seismic event occurs, public protection authorities initiate res-
cue procedures in seismic areas. The organization of rescues requires an
expeditious assessment of the areas most subjected to damage and the
identi�cation of the safest access routes. Numerous studies about seismic
damage simulation in inhabited areas are based on building characteristics.
Despite the high simulation reliability, detecting actual damage conditions
is essential to characterize the scenario better. In this context, systems for
rapid damage assessment using Unmanned Aerial Vehicles (UAVs) could
better characterize maps and de�ne the details of rescue missions. When
the rescue operations are over, rapid assessments of damaged structures
are mandatory before allowing access to residents. The structures are eval-
uated by groups of volunteer engineers, who compile synthetic reports on
the state and de�ne the practicability of the building. Technicians quickly
evaluate hundreds of buildings in complex contexts; this determines a high
risk of error in verifying and compiling reports. With this in mind, Chapter
5 proposes a methodology to support engineers in inspection, using a Con-
volutional neural network to identify damages in the photo of inspected
structures.

In the last part of the thesis, the attention is focused on scheduling
structural maintenance activities (Chapter 6), speci�cally for large portfo-
lios of bridges. In fact, due to the widespread di�usion of aging infrastruc-
tures, timely maintenance is a fundamental element to ensure serviceabil-
ity and adequate safety levels. One of the �rst conventional approaches to
planning interventions is time-based maintenance. According to this strat-
egy, components are replaced or maintained at �xed time intervals without
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analyzing their actual conditions. Therefore, this proactive and conserva-
tive strategy yields regular and possibly unnecessary interventions. This
paradigm processes the information of inspections and monitoring systems
and plans maintenance interventions as soon as either damage or danger-
ous degradation is detected. Apart from these two classical paradigms,
many research e�orts studied the planning of maintenance operations to
address the challenges of having e�cient structures with reduced costs.
In this context, the Chapter proposes a maintenance operations schedul-
ing algorithm to reduce the emissions that allows emissions to be reduced
while ensuring the appropriate performance required and meeting budget
and workforce constraints.

Thesis Outline

The thesis is composed of six chapters:

� Chapter 1 presents an algorithmic procedure for structural perfor-
mance optimization in the structural design phase;

� Chapter 2 provides a Proof of Concept of blockchain and arti�cial
intelligence for managing and verifying documents of structural rel-
evance;

� Chapter 3 and Chapter 4 discuss two di�erent SHM data interpreta-
tion methodologies, the �rst based on dynamic data from accelerom-
eters, while the second from innovative stress sensors;

� Chapter 5 proposes a Deep Learning-based method for image analysis
of earthquake-damaged structures;

� Chapter 6 reports on an optimized scheduling strategy of bridge
maintenance activities for reducing environmental impact.





Chapter 1
AI in Design: Optimized

structural design of irregular

buildings

1.1 Introduction

The use of optimization algorithms in structural design and construc-
tion has recently seen signi�cant growth, given the advancements in the
study of optimization techniques and the di�usion of powerful computa-
tional hardware. Therefore, in recent years, research works on structural
optimization increased drastically. However, most of the papers in the
literature focus on cost-minimization problems. In this approach, struc-
tural performance is often considered a constraint to ensure. For example,
Mirzaei and Nasserasadi [135] describe a Genetic Algorithm to minimize
life-cycle cost of structures designed for a probable earthquake, and over-
come the computational challenges of life-cycle cost estimations making
use of an e�cient methodology based on fragility functions.

Rezaeian and Der Kiureghian [162] propose an Evolution Strategy tech-
nique to optimize the cost of the structure, expressed as a function of its
weight, and analyze the structural performances by means of a nonlinear
response history analysis. The approach is validated in the optimization
of two 2D r.c. frames, respectively characterized by 2-storeys and 1 bay,
and 6-storeys and 2-bays.
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By means of two cosmology-based meta-heuristics, Gholizadeh et al.
[72] optimized the cost of planar structures, under performance constraints,
such as element stress and nodal displacement in the case of steel frames.
In particular, the cost function is expressed either using weight as a proxy
� in the optimization of steel structures � or as a direct estimation � when
dealing with r.c. frames. The proposed approach is validated on a set of
2D test cases composed of truss structures, and steel and r.c. frames.

Addressing cost minimization, Camp and Huq [30] adopted a hybrid
Big Bang-Big Crunch algorithm to design optimized r.c. frames, including
also a study on the optimization of a CO2 emission function. From their
analysis, the authors evidenced how the structure obtained considering
CO2 emissions in the objective function is characterized by a relatively
small increase in the cost with respect to the structure achieved by means
of classical cost minimization, thus evidencing that it is possible to design
more sustainable r.c. frames at a reasonable cost.

Di�erently from cost optimization algorithms, recent developments con-
sider the use of heuristics approaches to optimize structural performances.
These scienti�c contributions can be mainly classi�ed according to the de-
cision variables of the problem, i.e. the structural parameters modi�ed in
the optimization process.

Extending the works presented by Miles et al. [133], Shaw et al. [174]
optimized column overall height and grid uniformity in orthogonal framed
building, by means of an algorithmic frameworks named OBGRID, that
explored optimized con�gurations of column spacings trough genetic oper-
ators.

In the context of beam-slab layout design, starting from the genetic
algorithm described in Nimtawat and Nanakorn [142], the same authors
[143] discussed the problem of column utilization e�ciency in rectilinear
structures. In particular, the genetic algorithm adopted evaluates how
e�ciently the columns sustain slabs, while enforcing constraints related to
the layout of walls, the maximum slab dimensions, and the total �oor area.

Shara� et al. [173] formulated the problem of achieving an optimized
conceptual designs as a variation of the classical knapsack problem [182].
The authors described a mathematical formulation in which the shape of
the building plan, the number of bays and the size of unsupported spans
are variables, and the objective function takes into account both the cost
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and the eccentricity of the structure. The proposed solution framework
relies on a bi-objective ant colony algorithm that is validated on an eight-
storey r.c. building under wind loading conditions.

Performance-based seismic design of reinforced concrete frames is dis-
cussed by Mergos [131], that tackled the problem by means of an iterative
methodology that designs steel reinforcements in r.c. frames to meet refer-
ence performance objectives, once the cross-sectional dimensions of struc-
tural elements has been set. This approach evaluated the performances of
the solutions exploiting non-linear analyses and is validated on two regular
2D r.c. frames, evidencing that this methodology is able to achieve robust
designs.

Notably, a related research stream addressed the optimization of seis-
mic performances investigating the optimization of viscous damping sys-
tems; see [44] for a thorough survey of this �eld. Prevailingly, given the
inherent complexity of the problem, most of these works rely on heuris-
tic techniques to �nd optimized con�gurations. For example, Hejazi et al.
[84] implement a genetic algorithm to minimize three-dimensional displace-
ments at di�erent storey levels and the occurrences of plastic hinges.

To optimize the achievements of seismic retro�t, Pollini [155] math-
ematically formalized the cost-optimization problem of fail-safe �uid vis-
cous dampers. In his work, the author considered a proxy for costs as
the objective function and structural constraints related to a diverse set
of failure scenarios. Leveraging the di�erentiability of the mathematical
formulation, the problem was solved through a gradient-based algorithm.
Notably, the proposed solution approach makes use of a working-set strat-
egy that signi�cantly reduces the computational burden.

Describing a novel evolutionary computational framework, Aposto-
lakis [7] optimized the seismic design of both regular and irregular three-
dimensional frame structures. Within his solution framework, the author
employed a mega-brace architecture that allowed for a successful reduc-
tion of the combinatorial solution space, while preserving the quality of
optimized global level topology architectures and patterns that can be
achieved.

The �rst thing that can be observed by reviewing the literature is that
the vast majority of the optimization algorithms employed belongs to the
class of meta-heuristic methods. The main advantages that characterize
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techniques of this class are related to their suitability in the solution of com-
plex problems, that often are characterized by integer or mixed-integer de-
cision variables and a high number of feasibility constraints. Among these
techniques, given the simplicity in their implementations, many optimiza-
tion problems arising in engineering applications are solved by means of
Particle Swarm Optimization and Genetic Algorithms.

Additionally, the research e�orts that study the optimization at the
pre-dimensioning phase mainly refer to the optimization of regular struc-
tures, and their validation process is often based on the analysis of simple
2D frames. Nevertheless, if the aim is to a�ect the dynamic behavior of
a structure, the signi�cant geometric di�erences that characterize 3D ir-
regular structures have to be accurately modeled, to properly represent
the complexity of the structural system. On the other hand, the research
stream studying the optimization of damping systems involved both nu-
merically accurate simulation scenarios and complex structures, yet the
application �eld of these techniques and the structural specimens therein
considered mostly refer to retro�t operations.

With in mind a context in which practitioners are called upon to de-
sign reliable dimensioning solutions for possibly complex structures in a
short time, the aim of the present work is to mathematically formalize
the pre-dimensioning problem, and describe a learn-heuristic method that
combines a genetic algorithm and a k-means procedure. The hybridization
of these algorithmic procedure aims to the size-optimization of structural
elements belonging to 3D irregular structures in plan and elevation at a de-
sign stage, possibly including additional constraints to limit cross-section
diversity.

In particular, given an irregular �oor-plan and structural elements with
preset positions, the problem here described optimizes elements' sections
and orientations in order to achieve a set of target structural performances.
In accordance with standard seismic performance requirements, the present
work evaluates inter-storey drifts and torsional e�ects as target estimators.

Additionally, given the importance of a validation in a realistic geo-
metric scenario, the algorithmic procedure employed in the solution of the
proposed pre-dimensioning problem is tested on a set of 3D models of real-
world structures.

The main contribution of this paper are:
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1. Mathematical formulation of the behavior-regularization problem for
3D irregular structures;

2. Implementation of a learn-heuristic method to tackle the problem;

3. Use of a k-means clustering approach to address construction feasi-
bility constraints that limit cross-section diversity.

4. Structural pre-dimensioning challenge to test the proposed approach
in an operational scenario.

The present chapter is organized as follows: Section 1.2 introduces the
formal description of the problem, while Section 1.3 reports the main prin-
ciples characterizing the learn-heuristic employed in the solution process.
A two thorough computational validation is described in Section 1.4, that
includes di�erent test-cases: a numerical tests that includes several 3D r.c.
structures, and a structural design challenge in which the algorithmic per-
formances achieved in the dimensioning of a 6-storey irregular r.c. building
are compared to those accomplished by a group of Ph.D. candidates. The
results are discussed in detail in Section 1.5, while concluding remarks are
given in Section 1.6.

1.2 Mathematical Formulation

The problem described in the present chapter consists in achieving a
cross-section sizing and orientation of r.c. structural elements � beams and
columns � that regularizes the structural behavior of a system possibly
characterized by geometric irregularities in plan and elevation. In this
context, the positioning of structural elements is considered preset, as often
happens in practice, where the architectural designers de�ne elements'
placing beforehand.

To formally model the problem, let n and m be the total number
of columns and beams of the structure at the ground �oor. Let s =
(s1, s2, . . . , sn+m, τ) be a vector of decision variables indicating the rectan-
gular cross-sections of each one of the n +m structural elements, and let
τ be the variable indicating the tapering strategy adopted to design upper
�oors.
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In particular, each section si is de�ned through its two dimensions bi
and hi, and its therefore characterized by an area ai = bi · hi. Starting
from the values of the sections at the ground si, i = 1, . . . , n+m, the value
of τ is selected within a discrete set of pre-determined tapering strategies,
and determines the cross-sections characterizing upper �oors. In partic-
ular, the tapering strategies de�ne how frequently, and by which amount
� if any � the dimensions of the structural elements of the upper storeys
are reduced with respect to those present at ground �oor. Additionally,
having a discrete set of pre-de�ned tapering schemes automatically ensures
that columns in lower storeys are not smaller than those present in upper
storeys.

As objective function, the mathematical framework adopted in the
present work evaluates the regularity of the seismic response minimizing
the sum of two di�erent terms, D and M , respectively related to the max-
imum inter-storey drift values and participating mass ratios.

Inter-storey drift ratios (IDRs) are classically used as damage limita-

tion requirement � see [41] sec. 4.4.3.2 � and are restricted in the regula-
tory codes of many countries [4, 198, 46]. Additionally, their study in the
context of automatic pre-dimensioning is particularly suitable since IDRs
mainly depend on the sections and their orientations rather than on ele-
ments of later design phases, such as reinforcements.

Given a speci�ed limit state of interest [156] and a speci�c section
distribution s, Dx and Dy can be de�ned as the maximum inter-storey
drift ratios along the x and y directions, respectively; then the proposed
form for the evaluation of inter-storey drift ratios, D(s), is obtained as:

D(s) =
|Dx −Dy|

max(Dx, Dy)
. (1.1)

In particular, D(·) penalizes the relative di�erences encountered in
IDRs with respect to the x and y directions, emphasizing that a regu-
lar behavior requires comparable inter-storey displacements both in x and
in y.

Additionally, to reduce torsional e�ects, the second term characteriz-
ing the objective function attempts the minimization of the modal partic-
ipating rotational mass ratios of the �rst two modes. In particular, this
property is indirectly enforced acting upon the participating ratios of �rst
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two translational modes.
Given an arbitrary section distribution s, let U I

X , U
II
X , and U I

Y , U
II
Y be

the participating mass ratios � along x and y directions � of the �rst two
modes, then the second term characterizing the objective function M (s)
is written as:

M (s) = max
(︁
1−max(U I

X , U II
X ), 1−max(U I

Y , U
II
Y ),min(U I

X , U II
X ),min(U I

Y , U
II
Y )

)︁
,

(1.2)
where

U I
X , U II

X , U I
Y , U

II
Y ∈ [0, 1].

The participating mass ratios are computed as a result of a classical
modal analysis [38]. In the experiments presented in Section 1.4 the modal
analysis is carried out on a linear elastic model implemented in OpenSees
[130].

To better evidence the use of equation (1.2) in the dimensioning of
concrete frame structures, consider the three-storey structure whose L-
shaped plan is reported in Figure 1.1a. In the preliminary dimensioning
phase, correct orientation of the columns (as in Figure 1.1b) favors the
achievement of regular behavior, obtained as purely translational �rst two
modes. Evidence of this feature is observed in Table 1.1.

Figure 1.1. (a) L-shaped irregular plan, and (b) an example dimensioning
that orientates the columns to regularize the structural behavior.
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Mode UX UY

I 0.009 0.810
II 0.695 0.015

Table 1.1. Participating mass ratios of the dimensioning of Figure 1.1b.

As a result, applying equation (1.2), the M value associated with the
dimensioning of Figure 1.1b) is ≈ 0, 305.

Comparatively, a dimensioning that disregards a correct orientation
of the columns � e.g. one that that equally applies sections of 40cm x
30cm � presents a less regular behavior. As shown in the mass ratios of
Table 1.2, the second vibration mode presents participating masses in both
directions, thus indicating the presence of torsional behavior.

Mode UX UY

I 0.162 0.598
II 0.649 0.221

Table 1.2. Participating mass ratios of the dimensioning using only 40cm x
30cm sections.

This di�erence in terms of regularity is detected by equation (1.2), that
for the second dimensioning computes scores a total of 0, 402. Therefore,
the minimization of M favors structures that exhibit more regular behav-
iors.

The terms evaluating the IDRs and the modal participating masses
are combined in a single objective function f to be minimized, through a
convex combination:

f(s) = λD(s) + (1− λ)M (s) λ ∈ [0, 1] . (1.3)

Ultimately, a mathematical description of the pre-dimensioning opti-
mization problem can be formulated as follows
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min
s

f(s) = λD(s) + (1− λ)M (s) (1.4)

s.t.

Dx ≤ δ (1.5)

Dy ≤ δ (1.6)

νi ≤ νmax ∀ column i (1.7)

si ∈ Sc ∀ column i (1.8)

sj ∈ Sb ∀ beam j, (1.9)

With constraints (1.5) and (1.6) that bound IDRs from above accord-
ing to the maximum allowed IDR by Structural Code, δ; with Sc and
Sb representing the available cross sections for columns and beams; and,
constraint (1.7) that restricts the value of the maximum axial load level,
where � for a given column i of cross-section ai � the corresponding axial
load level is computed as

νi =
Ned

ai fcd
, (1.10)

with Ned and fcd being, respectively, the column design axial load and the
characteristic compressive strength of the material.

As stated previously, the main objective of the proposed optimization
problem consists in the regularization of the dynamic behavior of irregular
structures. At the same time, alongside the regularizing objective func-
tion, the aim of the introduced constraints is to let the optimized solution
comply with regulatory codes. Accordingly, the the validation presented
in Section 1.4 presents an analysis of the designed solutions with respect
to a regulatory code of reference NTC 2018 [47].

Lastly, to address the feasibility of the designed pre-dimensioning from
the standpoint of the construction process, an additional constraint limit-
ing the number of di�erent cross-section employed is addressed, as speci�ed
in Section 1.3.3.

All the symbols and de�nitions introduced in the present section are
summarized in Table 1.3.
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Symbol De�nition

ai Area of the cross-section of the ith structural element

D Drift objective function, eq. (1.1)

Dx Inter-storey drift ratio, x direction

Dy Inter-storey drift ratio, y direction

f Objective function, eq. (1.3)

fcd Characteristic material compressive strength

M Mass objective function, eq. (1.2)

m Beams per �oor

n Columns per �oor

Ned Column design axial load

s Vector of cross-sections

Sb Set of available beam sections

Sc Set of available column sections

U I
X Modal participating mass ratio, x direction, 1◦ vibration mode

U II
X Modal participating mass ratio, x direction, 2◦ vibration mode

U I
Y Modal participating mass ratio, y direction, 1◦ vibration mode

U II
Y Modal participating mass ratio, y direction, 2◦ vibration mode

δ Maximum inter-storey drift ratio allowed

ν Column axial load level

νmax Maximum column axial load level allowed

Table 1.3. Symbols and De�nitions.
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1.3 Hybrid Learn-heuristic approach

The present Section describes in detail the optimization algorithm im-
plemented to solve the pre-dimensioning problem. In particular, the ap-
proach herein proposed is composed of three di�erent components:

� Genetic Algorithm: to serve as a core heuristic method to yield a set
of well-performing pre-dimensioning solutions;

� Local Search procedure: for intensi�cation purposes, to improve the
best solution found by the GA and achieve a high-quality output
solution;

� k-Means algorithm: to address the additional constraint that limits
the number of di�erent cross-sections used in the dimensioning.

Sections 1.3.1 - 1.3.3 detail each of such characteristic components.

1.3.1 Genetic Algorithm

Genetic Algorithms (GA) represent one of the most employed method-
ologies in the landscape of heuristic optimization. These methods are itera-
tive algorithms that operate on a set � population � of candidate solutions,
that is improved through randomized recombination operators according
to a given objective function � �tness. The simplicity in their implemen-
tation and their general optimization framework that does not rely upon
derivative information makes them a standard for tackling many engineer-
ing problems [67, 189, 114], and encouraged their use in a wide variety of
application scenarios, ranging from �nance [132] to the prediction of the
quality of life for lung transplant recipients [148].

Starting from a population of random solutions, P , where the cardi-
nality |P | is equal to an user de�ned parameter Π, the general structure
of a genetic algorithm is manly based on the iteration of three operators:
Selection, Crossover, and Mutation, where

� Selection: selects two or more candidate solutions from P (elite in-
dividuals);

� Crossover : recombines the selected solutions to generate new candi-
date solutions to be inserted in P ;



20 Chapter 1. AI in Design: Optimized structural design of irregular buildings

� Mutation: introduces random variations in the generated solutions
to diversify the search process and avoid to get stuck in local optima.

The pseudo-code of the GA implemented for the pre-dimensioning
problem is reported in Algorithm 1. A �rst initialization phase randomly
generates the solution populations P and sorts its element according to
their objective function values f(·). After the initialization phase, the
main loop starts and is carried over until the maximum number of itera-
tions has been reached.

The goal of the generic iteration consists in the generation of new candi-
date solutions to be inserted in the population P , with the aim of increas-
ing the quality of explored pre-dimensioning solutions. The generations
of new solutions � o�springs � starts with the random selection of two
parents from P , s1 and s2. The random selection is biased by the values
of f(·): the better the values, the higher the probability of selecting the
corresponding solutions. This guiding principle is founded on the natural
observation that, during an evolution process, the better genes are those
more likely to be passed to the next generations.

Algorithm: Genetic Algorithm(Π, MaxIt, µ, f(·))
Initialize P ;
Evaluate f(s), ∀s ∈ P ;
Sort P according to f(·);
It = 0;
while It ≤ MaxIt do

for to be generated do
[s1,s2] = SelectFrom(P );
[s′,s′′] = Crossover(s1,s2);
Mutate(s′,s′′);
insert in P ;

end
remove from P the worst solutions;
It = It + 1;

end
return best solution found s∗;

Algorithm 1: Pseudo-code for a genetic algorithm.

In particular, for each si ∈ P the corresponding selection probability
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P(si) is obtained as :

P(si) =

1
1+f(si)∑︁|P |

j=1
1

1+f(sj)

, (1.11)

with |P | being the cardinality of P , so that solutions with better objective
function values are more likely to be selected as parents.

In optimization literature, the idea of introducing biased probabilities
as in eq. (1.11) proved to be e�ective in di�erent steps of the optimization
process, including the construction phase [62] and the diversi�cation phase
[149].

To better grasp the functioning of P, considering three di�erent solu-
tions, with respective objective function values of 0.1, 0.5, and 0.9. Apply-
ing equation (1.11), the corresponding selection probabilities are, approx-
imately, 43%, 32%, and 25%, thus favoring the solution with minimum
objective function value.

Starting from two parent solutions s1 and s2 selected according to P,
two o�springs s′ and s′′ are then generated. The generation is carried
out by means of a 1-point crossover operator [154]: starting from a vec-
torial representation of the parent solutions, a cut-o� point κ is selected
uniformly at random and the o�springs are obtained cross-combining the
components of s1 and s2 around κ.

The next step consists in the mutation of s′ and s′′. For each o�spring,
and for each component of its vector representation, a number r ∈ [0, 1] is
drawn uniformly at random, and if r is lower than a user-de�ned mutation
probability, µ, then the component is randomly modi�ed.

Subsequently, the objective function values of the mutated o�springs
are evaluated, and the solutions inserted in the population P . At the end
of the iteration, only the Π best solutions are kept in the population.

This iterative scheme is continued until a speci�c termination criterion
is not ful�lled. Classical strategies bound the maximum number of itera-
tions or evaluate the convergence of the population i.e. estimating whether
the average value of f(·) over the population is close to the best value f∗

found. At the end of its execution the algorithm returns as output the
best solution found in the search process s∗. In the numerical validation
presented in the next section, the optimization algorithm is terminated if
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and only if both the two following occurrences take place: (i) a minimum
number of iterations has been performed, (ii) convergence is observed in
the population. Moreover, in the computational experiments considered,
to avoid premature convergence the minimum number of iterations to be
executed is set to 150. Additionally, the mutation probability is 0.1, while,
as a reference case, the population size and the number of new solutions
generated at each iteration are set to, respectively, 100 and 30. A set of
preliminary analyses tested the e�ect of the changes of population size on
solution quality. Four di�erent population sizes were tested (50,100,150,
and 200) � keeping constant the ratio between total population and new
individuals to 10 : 3 � yet the numerical experiments evidenced that the
objective function values yielded by the algorithm were equal to the third
decimal digit.

1.3.2 Local search

In the local search phase, the algorithm performs an intensi�cation
phase, exploring the neighborhood of the solution obtained as output of
the GA, to improve the quality of the pre-dimensioning. To this extent,
the implemented procedure uses a 1-exchange (�ip) neighborhood function,
according to which two solutions are neighbors if and only if they di�er
in at most one component. Therefore, if there exists a better solution s̄
that di�ers only for one vector component from the current solution, the
current solution s is set to s̄ and the procedure restarts. If such a solution
does not exists, the procedure ends and returns the current solution s.

This local search operator has been implemented considering the �rst
improvement strategy. According to this paradigm, the current solution
is replaced by the �rst improving solution found in its neighborhood, and
such improving solution is then used as a starting point for the next local
exploration.

1.3.3 k-Means Clustering: controlling cross-section diver-

sity

Frequently, while pre-dimensioning a structure, the use of a limited
number of di�erent cross-section sizes is a desirable property. Indeed, this
requirement could facilitate the construction process in situ. Limiting the
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number of distinct cross-section sizes in a structure directly implies that
many elements would be characterized by the same cross-section dimen-
sions, meaning that in an algorithmic framework a small set of optimized
choices are shared between few groups of columns/beams.

In a scenario in which the number of di�erent cross-sections has to be
lower than a critical parameter Kdiff , three straightforward approaches
could be followed, each of which is characterized by its shortcomings.

(i) Randomly generating pre-dimensioning and discarding those that
present a total of di�erent cross-sections that is higher than Kdiff would
be extremely ine�cient, especially when Kdiff is signi�cantly lower than
the number of available cross-section sizes.

(ii) Reducing the section database so that the number of available
cross-section sizes is be equal to Kdiff would imply an a priori choice on
the speci�c cross-sections to be evaluated. This choice would substantially
reduce the �exibility of the optimization procedure and the bene�ts of its
application.

(iii) Or else, it is possible to introduce a penalization term in the objec-
tive function that assigns worst objective function values at the solutions
whose number of di�erent cross-sections exceeds Kdiff , yet this approach
would aggregate the structural information of eq. (1.4) with the penal-
ization term, possibly favoring solutions that yield poor structural perfor-
mances.

To include a restriction on the di�erent number of cross-section sizes
employed, this work implements a k-means clustering procedure within the
Genetic Algorithm to partition the structural elements in Kdiff distinct
groups. Then, each element of a group is characterized by a single decision
variable, implying that all elements of the group will be characterized by
the same cross-section dimensions. The use of a k-means clustering algo-
rithms bypasses the defects of (i)-(iii) since it does not need to discard
pre-dimensioning solutions as (i) does; does not reduce a priori the types
of cross-sections that can be used as (ii) does; and does not need a penal-
ization term in the objective function, as implied by (iii).

Since the k-means algorithm partitions a set of points of an Euclidean
spaces, each structural element needs to be characterized as a vector (or
point) of an Euclidean space, meaning that each element is identi�ed by a
vector of signi�cant numerical properties.
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The k-means algorithm is an iterative procedure: initially it creates k
partitions and randomly assigns the structural elements to each partition;
then it computes the centroid of each group in the Euclidean space; it
constructs a new partition by associating each entry point with the group
whose centroid is closest to it; �nally the centroids for the new groups are
recomputed, and so on, until the algorithm converges.

To run the clustering algorithm, the columns of the building are rep-
resented as points of an Euclidean space according to the following char-
acterization. Let C be a column of the structure, then C is represented
as a vector v(C) = (v1, v2, v3) ∈ R3. The �rst component of this vectorial
representation, v1, is associated to the area of in�uence of C, so that, in
the clustering process, columns bearing similar loads are closer in R3. The
next two components, v2 and v3, are obtained as follows. Let smin the
pre-dimensioning solution that for each column considers the minimum
cross-sections that respects constraint 1.7, and let f(smin) the objective
function value associated to smin. Let Secx and Secy be the two cross-
sections of the column database characterized by the largest moment of
inertia respect to x and y direction, respectively. Let s′min (resp. s′′min)
be the pre-dimensioning obtained from smin by imposing in C the use of
the section Secx (resp. Secy). Then, v2 (resp. v3) is obtained as per-
centage variation of the objective function f(s′min) (resp. f(s

′′
min)) respect

to f(smin). The last step of this process consists in the normalization of
vi, i = 1, 2, 3, for all the columns C. Section 1.4.3 investigates the results
when imposing di�erent Kdiff values.

1.4 Validation

The performances achieved by the Learn-heuristic algorithm here pre-
sented are assessed by means of three di�erent validation steps:

1. Preliminary Analysis;

2. Pre-dimensioning Contest;

3. Cross-section diversity limitation test.

The goal of the preliminary analysis � Section 1.4.1 � consists in the
appraisal of the in�uence of the Genetic Algorithm on the dynamic of four



1.4. Validation 25

di�erent r.c. structures � mostly irregular in plan. In particular, this
analysis focuses on the optimization with respect to a simpli�ed objec-
tive function, based on the di�erence of the �rst two modal periods, that
can approximate the dynamic behaviour of the structure, without resort-
ing to the complex interactions between M (·) and D(·) that characterize
equation (1.3). The results achieved by the GA are compared with the
structural performances of the dimensioning based on gravity loads, used
as reference solutions. At this stage, only the core of the optimization
procedure, i.e. the GA, is considered.

Di�erently, the second validation step is carried out under the form of
a structural design challenge of a 6-storey irregular r.c. building � Section
1.4.2 �, in which the performances of the optimization method are com-
pared against those achieved by a group of Ph.D. candidates. The goal
of this experiment consists in the validation of the algorithm in an oper-
ational scenario. To this extent, the pre-dimensioning problem is solved
considering an algorithmic setup based on GA + Local Search (Section
1.3.2). Since the aim of the challenge is to explore the design freedom en-
abled by the proposed optimization algorithm, the restrictions considered
are those of equations (1.4)-(1.9), without any limitations on the number
of di�erent cross-section dimensions.

Lastly, the Cross-section diversity limitation test � Section 1.4.3 �,
introduces a constraint limiting the number of di�erent cross-sections that
can be used in the structure, according to a diverse set ofKdiff parameters,
and studies the quality of corresponding solutions.

The optimization code is implemented in Matlab, and the computa-
tions are conducted on a computer with a Intel Core i9-9900X@3.5 GHz
processor with 32 GB of RAM, and an Windows 10 operating system.

1.4.1 Preliminary Analysis

The �rst validation phase focuses on the evaluation of the e�ective-
ness of the Genetic Algorithm in in�uencing the dynamic behaviour of
the structure. In particular, in this �rst experimentation, the objective
function f(·) of eq. (1.3) is replaced by a simple criterion that can summa-
rize regularity requirements studying a single set of parameters, namely
vibration periods. More speci�cally, the objective of this phase aims to
reducing the di�erence ∆T between the �rst two modal periods � T1 and
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T2, respectively �,
∆T = |T1 − T2|. (1.12)

This optimization is carried out on a set of four di�erent structures, the
characteristics of which are depicted in Figure 1.2 and reported in Table
1.4.

Figure 1.2. Irregular plans considered in the �rst set of numerical experi-
ments: (a) Rectangular plan, (b) L-shape, (c) T-shape (d) O-shape.

In the solution of the pre-dimensioning problem of cases (a) - (d),
the available sections for columns, Sc, are obtained starting from the
the 30 cm × 30 cm square section as base cross-section � the minimum
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Plan storeys storey Height [m] Columns Beams

Rectangular 3 3 20 31
L - shape 3 3 14 19
T - shape 3 3 16 23
O - shape 3 3 20 30

Table 1.4. Summary of �oor plan characteristics considered in cases (a) -
(d).

squared section by Italian standards NTC 2018 [47] �, and increasing one
of its dimensions by 10 cm, so as to obtain rectangular cross-sections. An
analogous strategy is adopted for beam cross-sections, Sb, starting from
30 cm ×40 cm and increasing one dimension by 5 cm. The set of available
cross-sections for columns and beams are summarized in Table 1.5.

Sc

30x30 30x40 40x30 30x50
50x30

Sb

30x40 30x45 30x50 30x55
30x60

Table 1.5. Summary of available sections for columns � Sc � and beams � Sb

� considered in cases (a) - (d).

Table 1.6 lists the∆T values obtained in the optimized solutions (�Opt�)
and the pre-dimensioning obtained considering gravity loads (�GLoad�).
Additionally, as discussed in [46] sec. 7.3.3.2, the modal period of an r.c.
structure whose height is lower than 40 m can be estimated by T , where

T = 0.075 ·H
3
4 , (1.13)

with H being the height of the building from the foundation �oor. The
value of T allows for an estimation of ∆T in terms of approximate per-
centage di�erence:
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%∆T = 100 · ∆T

T
. (1.14)

Analyzing the results presented in Table 1.6 it is possible to observe
that the optimized solution is characterized by vibration periods that on
average exhibit a 3.59% di�erence, that never exceeds 6.16%. Additionally,
it can be observed that the solution achieved by the Genetic Algorithm
outperforms the gravity load solution in three out of four cases, with a
tie recorded on the L-shaped structure, thus evidencing that the dynamic
behavior of the structure can be e�ectively in�uenced by the optimization
algorithm.

Plan ∆T [s] %∆T
GLoad Opt GLoad Opt

Rectangular 0.030 0.021 7.70 5.39
L - shape 0.024 0.024 6.16 6.16
T-shape 0.028 0.005 7.18 1.28
O - shape 0.030 0.006 7.70 1.54

average 0.028 0.014 7.18 3.59

Table 1.6. Summary of results achieved for cases (a) - (d). According to the
parameters of Table 1.4, the value of T computed is equal to 0,38971 s.

1.4.2 Structural Pre-dimensioning Contest

The second step of the validation process consists in the testing of the
proposed optimization approach in an operational scenario in which the
algorithm has to achieve a pre-dimensioning of an r.c. structure that is
then compared to the solutions designed by a group of engineers. This
validation phase � named Structural Pre-dimensioning Contest � was con-
ducted at the Department of Structures for Engineering and Architecture
of the University of Naples �Federico II�. The engineers involved were se-
lected among the Ph.D. candidates with speci�c expertise in the design
and retro�t of r.c structures.

The case-study considered in the challenge is a 6-storey 3D structure
with an irregular C-shaped plant (see Figure 1.3). The building is char-
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acterized by an inter-storey height of 3 metres, and the dimensions of the
irregular plan are 44 and 37 m along the y and x directions, respectively.
To simulate the presence of an architectural model, an irregular mesh has
been placed onto the plan, and the nodes of the mesh are taken as preset
positioning for the columns.

Figure 1.3. (a) View in plant of contest structure (b) 3D View of contest
structure

Contest participants were given a total of 6 hours to size the elements of
the structure according to the criteria of good design [41, 151], in particular
by addressing the mathematical model in equations (1.4)-(1.9) in order to
reduce the torsional e�ects in the �rst vibration modes of the structure and
control inter-storey drift ratios at damage state limit. To ensure fairness
in the evaluation of pre-dimensioning solutions, the Ph.D. candidates were
provided with an automated script that, taking their solution as input,
computes D(·) and M (·) in accordance to the objective function in eq.
(1.4), as done for the proposed optimization algorithm.

The computation of IDRs is based on a linear static analysis with force
distribution evaluated according to Italian NTC2018 for a structure located
in Avellino, in the south of Italy. Table 1.7 reports the seismic hazard
parameters for Avellino, and the elastic response spectrum for damage
limit state is obtained in accordance to Italian NTC 2018 [47] (see Figure
1.4).
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Figure 1.4. Response spectrum for Avellino, Italy, built according to NTC
2018 considering elastic behaviour (q=1), Tr= 50y and PVR

= 0.63 for Vr=50y.

In these analyses, the value of νmax is set to 0.5, to ful�ll the basic
requirements speci�ed in Italian NTC 2018 [47], while the value selected
for λ is 0.5 to equally balance D(·) and M (·).

The set of available column sections Sc � listed in Table 1.8 � is larger
with respect to the one considered in the preliminary analysis, and includes
cross-sections with wider area, in order to sustain the loads acting on a
heavier structure. On the other hand, the challenge excluded the variability
in the cross-sections of the beams that all have 30cmx 50cm dimensions.

The possible tapering schemes explored by the algorithm in the contest
are: (i) no tapering, i.e. the cross-sections of the upper �oors are those
present at ground �oor, (ii) tapering each two �oors, and (iii) each three
�oors, namely by reducing columns cross-section by 10 cm along the di-
rection characterized by the larger dimension.

Table 1.9 lists the performances achieved by the solutions competing in
the Structural Pre-dimensioning Contest. In particular, for each solution
are reported the objective function f � computed according to (1.3) � and
the optimality gap (Gap %), that measures the percentage relative increase
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Parameter Value

ag 0.021 g
F0 2.317
Tc 0.311 s

Table 1.7. Seismic hazard parameters for Avellino, Italy, according to
NTC2018.

Column Sections

30x30 30x40 40x30 30x50
50x30 40x40 30x60 60x30
40x50 50x40 30x70 70x30
40x60 60x40 40x70 70x40

Table 1.8. Summary of available column sections in the pre-dimensioning
challenge.

in terms of f(·) of a given solution with respect to the best (minimum)
solution found, i.e. for a solution s, the % Gap is computed as

%Gap = 100 · f(s)− f(s∗)

f(s∗)
, (1.15)

where s∗ is the minimum solution found for the structure of interest.

Solution ID f % Gap

Ph.D. 1 0.275 882.1%
Ph.D. 2 0.263 839.3%
Ph.D. 3 0.238 750.0%
Ph.D. 4 0.248 785.7%
Ph.D. 5 0.243 767.9%
Ph.D. 6 0.243 767.9%

Optimized 0.028 0.0%

Table 1.9. Summary of objective function and gap values achieved in the
Structural Pre-dimensioning Contest.

Analyzing the results reported in Table 1.9, it is possible to note how
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the best values are those of the pre-dimensioning achieved by the proposed
learn-heuristic framework, that reached a solution characterized by an ob-
jective function value f = 0.028. Di�erently, the solutions yielded by the
Ph.D. candidates exhibit dynamic behaviors that worsen the optimized
solution approximately by one order of magnitude. In fact, for such solu-
tions, the measured relative worsening (% Gap value) falls between 750%
and 882.1%, with a mean worsening of approximately 798.8%. Further-
more, it is reported that the optimization algorithm achieved a solution
characterized by a τ that does not present the tapering of the columns.

Additionally, with the aim of better evaluating the pre-dimensioned
structures, and to validate the mathematical formulation presented in Sec-
tion 1.2 from the standpoint of a regulatory code, each one of the solutions
designed in the pre-dimensioning challenge has been implemented in a ge-
ometric model of the Edilus software. In particular, Edilus is a commercial
software of common use [179] that, starting from a geometric model, auto-
matically de�nes section reinforcements and carries out structural analyses
to check whether the designed solution complies with a reference regu-
latory code or not. More speci�cally Edilus includes all the structural
checks speci�ed in NTC 2018 [47], with these being related to both the
structural elements' cross-sections and their reinforcement. Checks such
as those involving bending moments mainly depends on reinforcements
and are automatically complied by the software. Conversely, checks that
involve shear forces, nodes and beam-column capacity design, are mostly
related to the choice of the elements' cross-sections. Table 1.10 reports the
outcome of this former group of structural checks, listing, for each one of
those � named Shear Forces, Node, and Capacity Design (Beam-Column)
� whether the designed solution passed or failed the check.

Observing the results related to the structural checks reported in Table
1.10 it can be noted how the optimized solution and the pre-dimensioned
structures of Ph.D. 1 and Ph.D. 3 are compliant with NTC 2018 [47] and
can be immediately used for a construction project. Instead, it is observed
how the solutions proposed by Ph.D. 2 and Ph.D. 6 require limited in-
tervention, while the solutions of Ph.D. 4 and Ph.D. 5 require extensive
modi�cations to comply with regulatory codes.

Moreover, it is possible to relate the outcomes of the structural checks
with the axial load levels targeted by the designers. In particular, the
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Solution ID
Shear
Forces Node

Capacity Design
(Beam-Column)

Ph.D. 1 ✓ ✓ ✓

Ph.D. 2 ✓ ✓ ✗

Ph.D. 3 ✓ ✓ ✓

Ph.D. 4 ✗ ✗ ✗

Ph.D. 5 ✗ ✗ ✗

Ph.D. 6 ✓ ✗ ✓

Opt ✓ ✓ ✓

Table 1.10. Summary of structural checks.

students that designed pre-dimensioning solutions that satisfy structural
checks, either completely or almost completely, � Ph.D. 1,2,3,6 � targeted
lower ν values (≈ 0.3), while Ph.D. 4 and 6, whose solution fail to comply
with the three structural checks, aimed to have a higher axial loads acting
upon the columns, targeting ν ≈ 0.5. Conversely, the proposed learn-
heuristic algorithm allowed to consider the same higher target axial loads
(ν ≈ 0.5) while optimizing the dynamic behavior of the structure so that
all the structural checks are satis�ed.

1.4.3 Testing the cross-section diversity control

Lastly, to appraise the e�ects of the cross-section diversity constraint,
the present section reports the results of a set of numerical experiments
that include such restriction on the columns in accordance to a diverse set
of Kdiff values. In particular, the optimization algorithm is independently
executed considering Kdiff ∈ {3, 4, 5, 6, 7, 8, 9, 10}, and the constraint is
enforced using the k-means clustering approach described in Section 1.3.3.

The computational results are represented in Figure 1.7 that for each
Kdiff imposed reports the corresponding objective function value.

Interesting insights can be gathered observing the cross-sections em-
ployed in the solutions of the contest. For each solution, Figure ?? reports
a histogram depicting the absolute frequencies of each available cross-
sections.

Observing the results of Figures 1.5 and 1.6, it stands out that the
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Figure 1.5. Cross-sections usage in the solutions provided in the Pre-
dimensioning Contest (PhD1-PhD4).

Figure 1.6. Cross-sections usage in the solutions provided in the Pre-
dimensioning Contest (PhD5-Optimized).
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number of di�erent cross-sections considered by the Ph.D. students is gen-
erally reduced with respect to those employed by the optimization algo-
rithm, that employs 15 out of the 16 available cross-sections at least once.
The higher number of di�erent cross-section found in the optimized so-
lution is related to the randomized process guiding the genetic algorithm
that allows for a strong diversi�cation in the choice of decision variables.
From the standpoint of the construction process of the structure, this di-
versity is not necessarily favorable, since it can be desirable to simplify
a pre-dimensioning solution limiting the number of di�erent cross-section
employed.

Figure 1.7. Comparison of objective function values achieved for di�erent
Kdiff choices.

If the use of a reduced number of di�erent cross-sections is consid-
ered as a key characteristic of the pre-dimensioning solution, it is possible
to enforce this property by means of the clustering approach described
in Section 1.3.3. Whenever the optimization includes limitations on the
maximum number of di�erent cross-sections (Figure 1.7), as expected, the
overall tendency is that for higher values of Kdiff the algorithm has more
freedom to explore di�erent solution con�gurations, and thus generally
the objective function value achieved improves. Nevertheless, since the k-
means clustering induces a heuristic grouping, monotonicity is not ensured
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for successive Kdiff values, and as can be observed from the comparison
betweenKdiff = 5 andKdiff = 6 � (equivalentlyKdiff = 6 andKdiff = 7
� it can happen that a more restrictive Kdiff leads to sightly better solu-
tions.

Comparatively, it is possible to observe from Figures 1.5 and 1.6 that
Ph.D. 1 and Ph.D. 3 made use of, respectively, 4 and 5 di�erent cross-
sections. When imposing the constraint limiting cross-section diversity
with such Kdiff values, it is possible to see that the proposed learn-
heuristic achieved better performing solutions. Nevertheless, as expected,
when the limitation on cross-section diversity is more restrictive (Kdiff =
4) the improvement respect to the Ph.D. pre-dimensioning is marginal,
while the optimized performance are signi�cantly better for kdiff = 5.
This behavior can be related to the observation that the optimization
approach can attain its full potential when few constraints allow for an
extensive exploration of the solution space.

1.5 Potential Additional Objectives: Costs and

IDR Distribution

Questions may arise concerning the trade-o� between classical objec-
tives, such as volumes/costs or IDRs distribution, and the objective func-
tion of eq. (1.4). To investigate the material usage of the solutions featured
in the Structural Pre-dimensioning contest, Figure 1.8 reports a compari-
son of the employed concrete volumes.

In particular, it is possible to observe how the volume employed by
the optimized solution (193.68 m3) is higher with respect to the average
volume employed by the students (≈ 172.7 m3). Nevertheless, considering
only the students' solutions that comply with the regulatory codes � as
the optimized solution does � we can observe how Ph.D. 3 designed a
solution that is more expensive than the optimized one (223.2 m3), while
the amount of concrete used by Ph.D. 1 is lower (186.03 m3). Ultimately,
this analysis evidences that the optimized solution achieves a good trade-o�
between material usage and regularization of dynamic behavior, in fact,
the remarkable structural performance observed comes at the price of a
4.1% increase of material with respect to Ph.D. 1.

Lastly, Figure 1.9 shows for each of the storey level the IDR val-
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Figure 1.8. Comparison of the employed concrete volumes of the optimized
solution and Ph.D. 1-6.

Figure 1.9. IDRs in directions x and y for Ph.D 1, Ph.D. 3, Opt, and
Kdiff = 6.
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ues respect to directions x and y. This comparison considers both pre-
dimensioning solutions of Ph.D. 1 and 3, and two solution of the proposed
optimization method: the structure obtained in the pre-dimenisoning con-
test, and the solution obtained for Kdiff = 6. The �rst thing that can be
observed is that all IDR values are below 0.5%, as required by equations
(1.5) and (1.6). Moreover, in general it can be seen that the solutions ob-
tained with the proposed learn-heuristic attain IDR distributions that are
intermediate between those achieved by the pre-dimensioning designed by
the Ph.D students. In particular, optimized solutions exhibit IDRs that
are closer to those of Ph.D. 3, while the solution proposed by the Ph.D. 1
shows a greater drift on the upper levels. This property is probably related
to the use of smaller sections, and thus less weight, as correctly re�ected
by Figure 1.8.

1.6 Final Computational Remarks

The numerical validation presented in Section 1.4.2 includes a diverse
set of 3D structures, and as well a structural pre-dimensioning challenge, to
evaluate the approach in an environment as close as possible to an opera-
tional scenario. In this context the structure pre-dimensioned with the pro-
posed methodology was then compared with structures pre-dimensioned
by practitioners who used their experience to limit the time of a trial
and error pre-dimensioning approach. The comparison showed that the
regularization function considered in the problem description was signif-
icantly better minimized by the proposed algorithm rather than by any
one of the practitioners. Moreover, additional information were gathered
studying the cross-sections employed in the di�erent solutions of the Struc-
tural Pre-dimensioning Contest. This analysis evidenced how most of the
practitioners relied on a limited number of di�erent cross-section, follow-
ing similar design principles. It is possible to observe that the solutions
designed by the Ph.D. candidates were outperformed in their structural
performances by those achieved by the proposed learn-heuristic even when
considering a limited number of di�erent cross-sections, thus validating the
k-means approach described in Section 1.3.3.

Moreover, a comparison was performed to evaluate the readiness of so-
lutions to meet code requirements. It was assessed that in addition to hav-
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ing the better performances in terms of objective functions, the solutions
of Ph.D. 1, Ph.D. 3 and the described learn-heuristic are those compatible
with the codes, while 4 out of 6 pratictioners' pre-dimensionings required
limited-to-extensive corrections to comply with regulatory codes. This ob-
servation emphasizes once again how the pre-dimensioning phase of an
irregular structure is a challenging operation that can be accomplished by
means of an optimization procedure, while if carried out according to rules
of thumb and common sense may require several attempts and subsequent
e�orts of trial and error. Additionally, �nding out that the optimized
solution complies with the requirements of regulatory code can suggest,
to some extent, that the mathematical formulation originally proposed in
Section 1.2 adequately represents the problem of interest.





Chapter 2
AI in Construction:

Blockchain in structural

information �ows

2.1 Introduction

In this chapter is proposed a proof-of-concept of the integration of
blockchain technology and smart contract into information �ows that de-
ploy among di�erent CDEs. The ultimate purpose is to improve trans-
parency and coordination of information �ows that relate to structural
safety during construction and closeout phases. To this end, this chapter
will refer exclusively to the construction process of structural systems.

2.1.1 Problem statement

In detail, structural and civil engineers with the role of project man-
agers (PM) and inspection engineers oversee construction works and ensure
the structural safety of works by 1). checking structural materials when
they arrive on construction sites; 2). Interpreting and analysing results of
tests on structural materials; 3). Inspecting structural systems to ensure
compliance with safety standards and project speci�cations, 4). Oversee-
ing closeout tests. These are mostly manual human-dependent tasks that
return reports in PDF format or scanned paper documentation as outputs
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which often require the collection of multiple signatures. Nonetheless, this
documentation is fundamental to demonstrate the safety and integrity of
as-built structural systems therefore it represents an essential component
of an asset information model (AIM). Additionally, this documentation is
mostly exchanged by email (or certi�ed email) with the additional purpose
of collecting signatures. Sometimes, this process is still manually executed
when digital approaches are lacking. Consequently, e�ciency, consistency,
and coordination of structural-safety outputs su�er from these traditional
approaches which entail delays, redundancy, loss of documentation, errors
caused by human-depended document management.

Research scope arises from the need to overcome ine�ciencies and in-
crease reliability and transparency in the management of structural-safety
documentation. Consequently, this work proposes a proof-of-concept of the
integration of blockchain technology and smart contract into information
�ows among di�erent common data environments (CDEs). The ultimate
purpose is bypassing obsolete and incomplete exchange processes based on
email and providing, concurrently, an instrument to create an immutable,
trustworthy source that collects the whole storyline of structural-safety
information exchanges which occur during the building process. Accord-
ingly, the proof-of-concept introduces smart contracts with di�erent levels
of complexity where the advanced level compares exchanged information
with data gathered by IoT sensors on site. Improved immutability, trans-
parency, and reliability of structural-safety information and documenta-
tion can prevent litigations on construction sites because all signi�cant
events are traced on the blockchain, always quaryable, and prove them-
selves as a source of evidence. Adopting blockchain technology can bring
other bene�ts like encouraging the use of digital documentation in place of
paper-based one, increasing attention on the construction process of struc-
tural systems. Finally, this framework could be used to fully integrate
information collection and coordination of in-situ automated construction
processes of structural components (for example that one implementing ad-
ditive manufacturing technologies) and traditional construction processes.
This Chapter comprises 5 sections:

� Section 2.1 is the introduction where the problem statement and re-
search scope are described. In this section, we also provide a brief in-
troduction to current blockchain technology applications in the con-
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struction sector;

� Section 2.2 presents the proof-of-concept of the integration of blockchain
technology and smart contracts into information �ows among di�er-
ent CDEs;

� Section 2.3 illustrates the �rst implementation of a decentralised ap-
plication (DAPP) that deploys a basic level smart contract;

� Section 2.4 introduces the testing of our proof-of-concept by compar-
ison between the proposed and the traditional approaches.

2.1.2 Blockchain technology in the construction sector

Leveraging blockchain technology for renovating work processes in the
construction industry is a rather recent academic research �eld. Figure
2.1 depicts results of a query on the Scopus database with the follow-
ing attributes: TITLE-ABS-KEY ("Construction" AND blockchain): �rst
documents only date back to 2016 but publications have conspicuously in-
creased between 2018 and 2020. This means that blockchain technology is
gaining great attention among researchers of the construction industry.

Figure 2.1. Blockchain technology research in the construction industry:
publications by year (Scopus).

Looking at the most recent documents, the work of Yang et al. [194]
deserves a deeper analysis. It returns an interesting classi�cation of the
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application of blockchain in the construction industry. For an in-depth
exposition on blockchain adoption in other domains of the Architecture,
Engineering, and Construction (AEC) sector such as real estate, smart
cities, and smart energy, refer to Li et al. [111]. Yang et al. [194] iden-
tify twenty-seven publications among journal papers, conference papers,
and book chapters from twelve countries all around the world. The au-
thors provide in-depth analysis of publications that they have also classi�ed
with respect to two criteria (blockchain technology) integrated with other
digital technologies; digitalization of work process. According to Yang's
work, integration between blockchain and BIM technologies is currently
the most attractive �eld of research in the construction domain (the study
highlighted 13 publications on the subject) which also includes integra-
tion with the internet of things (IoT) and RFID and sensors; moreover,
digitalization of work processes mainly a�ects work processes that relate
to information management, supply chain management, smart contract
and cryptocurrencies (economic management). In detail, Yang et al. [194]
have collected the following work processes: Automatic payments; Con-
tract execution (tendering, etc.); Construction procurement in the supply
chain; Supply-chain logistics of construction materials; Management of
data and intellectual property rights in the design phase; Recording build-
ing performance; Registration of land titles; Information management for
all building stages; Equipment leasing. Other work processes can add
to this list because this is an open research �eld. However, Yang et al.
[194] have also pointed out that most of the reviewed publications present
only inception ideas, while few publications that present proof-of-concept
ideas mainly involve cryptocurrencies. This is not surprising because cryp-
tocurrencies have been the �rst application of blockchain technology which
dates to 2008 (Nakamoto 2008). Information management has been ad-
dressed by Turk and Klinc [184], Wang et al. [192], and, recently, Sheng
et al. [175] and Elghaish et al. [57]. Turk and Klinc [184] �rst proposed
to use blockchain technology to archive operations and changes onto in-
formation models created with BIM authoring software. This approach
would enhance trace-back processes to establish both intellectual property
and responsibilities in the design phase. Currently, there are commer-
cial solutions that are trying to implement this approach like Bluebeam
(Available: https://www.bluebeam.com/). Wang et al. [188] argue that
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blockchain can apply to document management to develop notarization-
related applications that eliminate veri�cation time of documents' authen-
ticity. Documents can be stored in a distributed ledger where all creation,
deletion and updating are recorded; traceability, immutability, and trans-
parency properties of blockchain technology ensures authenticity of doc-
uments. However, authors' contribution mainly consists in highlighting
possible bene�ts of a blockchain-based document management approach;
in fact, an application is missing, neither implications nor possible ways of
connection with BIM-based information management are discussed. This
work focuses on this type of applications and proposes, in section 2.3, a
blockchain-based solution for document management in BIM collabora-
tive processes which deploy during the construction phase. Sheng et al.
[175] also focus on the construction phase and develop a blockchain-based
framework for managing quality information. Their scope consists of pro-
viding consistent and secure quality information management to stream-
line management of nonconformances and determine the party responsible
for ensuring that quality standards are ensured. Although authors pro-
vide a solution, based on an Hyperledger Fabric architecture Androulaki
et al. [6], that could be promoted and applied in practical cases, they also
recognise that blockchain technology in the construction industry is still
in the exploring stage, thus their work needs further e�orts to overcome
two fundamental limitations they recognise themselves: the premise that
the participants can reach an agreement on applying blockchain to manage
quality information; the data on the chain have a strong tamper-proof ca-
pacity, but no guarantee exists that fraudulent data will not be uploaded.
In this regard, they have also highlighted that improvements can derive
from exploring the potential of co-evolution of blockchain technology with
BIM and IoT technologies. Finally, Elghaish et al. [57] have developed
a framework proposing blockchain technology utilisation in projects that
adopt integrated project delivery (IPD) to manage economic �ows. The
framework would enable core project team members to automatically ex-
ecute all �nancial transactions (or automatic payments), through coding
the three main transactions of IPD projects - reimbursed costs, pro�t and
cost saving - as functions of an IPD smart contract. The interoperability
between proposed framework and 5D BIM is also investigated. In this re-
gard, Di Giuda et al. [50] argue that blockchain can provide a trustworthy
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infrastructure for implementing automatic contract executions to support
BIM-based processes that relate to tenders and payments in construction
phase. Blockchain applications for construction supply chain management
are in their infancy, however, considering also other supply chains, there
are still few examples of business value being delivered by live solutions
Jensen et al. [93]. Wang et al. [192] try to address the applications of
blockchain in the domain of the construction supply chain and propose a
blockchain-based framework for improving supply chain traceability and
information sharing in precast construction. In detail, they substitute fun-
damental steps in the supply chain for precast construction elements, such
as asking, ordering, producing, transporting, and delivering, into func-
tions of a smart contract (named `chain-code in the Hyperledger Fabric
architecture). However, the proposed solution misses an integration with
economic �ows and implementation on a pilot project. Kifokeris and Koch
[96] try to integrate also economic �ows into blockchain applications in
the construction sector. Since the very beginning of their research, which
is currently going on, they point out Sweden's construction supply chain
as a proli�c ground to develop a digital business model because general
contractors and suppliers often turn to independent third-party logistics
consultants. These assist them in coordinating and handling complex, re-
current, and con�icting �ows consisting of deliveries of materials, arrival of
incoming goods, and other sub-systems. A digital business model, accord-
ing to authors, could reduce need of such intermediaries. A completely
new utilization is combining blockchain technology and additive manufac-
turing; according to Zhu et al. [204], this integration can enable cloud
additive manufacturing. The authors explore game theory application to
establish prices of the 3-D printed component; for estimations, they lever-
age on-chain data which are automatically updated by IoT sensors that
communicate with robotic printing devices to record fundamental data of
the printing process.

Blockchain technology

Blockchain technology belongs to the wider family of digital ledger
technology that comprises three fundamental types: centralised, decen-
tralised (based on hubs) and distributed. Blockchain technology belongs
to the latter: distributed ledger technology (DLT). This is a type of data
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structure that resides across multiple computing devices, called nodes,
generally spread across locations or regions. The ledger contains records
(i.e. transactions) collected into blocks that are linked to each other us-
ing cryptography Pilkington [153]. A blockchain (and more generally a
DLT) comprises three interdependent core layers: protocol layer, which
comprises governance (consensus rules), peer-to-peer (P2P) network and
ledger (record of transactions which are grouped into blocks in the case
of blockchains); internet layer, which is IP or TCP; application (or data)
layer, which contains relations (smart contracts essentially) that allow in-
formation to �ow through the system. Without going too much into tech-
nical details, permissionless blockchains use proof-based consensus algo-
rithms, among which, Proof of Work (PoW) and Proof of Stake (PoS) are
the most common ones[15]. Moreover, permissionless blockchains are also
a public blockchain, like Bitcoin and Ethereum, because anyone can join
the network. On the other side, permissioned blockchains, like the Hy-
perledger Fabric framework [6], adopt voting-based consensus algorithms
[140]. Permissioned blockchain is also called private blockchain because re-
quires pre-veri�cation of the participating parties within the network, and
these parties are usually known to each other. A combination of both per-
missionless and permissioned blockchains is possible and is known as Con-
sortium blockchain. According to the Blockchain and Distributed Ledger
Observatory, the main feature of blockchain technology refers to digitizing
and transforming data into the digital format. This feature combines with
other properties:

� Distribution: information is recorded by distributing it among sev-
eral nodes to ensure IT security and system resilience.

� Traceability: each element (i.e. transaction) on the register is trace-
able in every part and can be traced back to its exact origin.

� Disintermediation: blockchain platforms allow management of trans-
actions without intermediaries, in other words without the presence
of trusted central bodies.

� Transparency: the content of the register is transparent and visible
to everybody (in the public blockchain) as well as easily accessible
and veri�able.
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� Immutability: once written into the register, the data cannot be
changed without the network's consent.

� Trust: it is built by the P2P network throughout the consensus mech-
anism, with no need for intermediaries even though there is no trust
among parties involved.

� Possibility to program transactions: it is possible to schedule actions
that take place when certain conditions occur on the blockchain (i.e.
smart contracts).

Smart contract

A smart contract is an agreement, which is written in the machine-
readable language, that can execute a part of its function by itself [181].
Self-executed functions consist of prede�ned actions that initiate when
certain conditions (named `trigger events') are met on the blockchain sys-
tem. Commonly, smart contracts are used to automate repetitive processes
relying on information stored in a blockchain (Hunhevicz and Hall 2020).
However, smart contracts have also the role to interact with the blockchain
to broadcast transmission and recall data stored in blockchain blocks.

2.2 Integrating smart contracts into BIM collab-

orative processes

Adopting the BIM methodology involves de�ning internal processes
and collaborative processes among stakeholders to support information
management during the entire building process. For a speci�c project,
collaboration happens in the common data environment (CDE) that the
ISO 19650-1:2019 de�nes �an agreed source of information for any given
project or asset, for collecting, managing, and disseminating each informa-
tion container through a managed process�, where information container
stands for �named persistent set of data and information within a �le, sys-
tem or application storage hierarchy�. The same standard has also pointed
out that there is at least two CDEs: the appointing party's CDE and the
appointed party's CDE, which is also known as distributed CDE. The
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distributed CDE is the place where collaboration among stakeholders hap-
pens, therefore there are gates to exchange information among CDEs (i.e.
diamonds of Figure 2.2). The DIN SPEC 91391-1,2:2019 - Common Data
Environments (CDE) for BIM projects � Function sets and open data ex-
change between platforms of di�erent vendors � Part 1 and Part 2 �rst
provide reference communication strategies among CDEs of di�erent ven-
dors which deploy application programming interfaces (APIs) especially
to manage milestones and data drops. Generally, stakeholders that par-
ticipate in the building process already have, before working on a speci�c
project, a platform (or a database) to manage and archive information;
the quality and e�ciency of these tools depend on a stakeholder's needs
and purchasing power. The split can depend on contractual arrangements,
functional needs, and technological necessities. In the construction phase
thus, a possible con�guration of CDEs can be the one that Figure 2.2
depicts: general contractor, project manager (PM), client, design project
team, and suppliers have their own CDE. Information exchanges that con-
cern structural systems can include: - BIM models. - 2D shop drawings.
- Technical documentation, such as inspection reports, reports of mate-
rial acceptance, certi�cates of testing, etc. - Accounting documentation,
such as bills of lading, construction journal, interim payment certi�cates
(`stato avanzamento lavori' in Italian), etc. However, both technical and
accounting documentation is generally in the form of pdf �les and more
often scanned paper documentation, in either case, stakeholders exchange
this using certi�ed and non-certi�ed electronic mail in place of APIs. It
follows that the sender should upload documentation, from his/her CDE,
as an attachment that the receiver would download and then upload in
his/her CDE. In the meantime, metadata is di�cult to transfer and the
trace-back of versions gets complicated. Moreover, PM and inspectors'
work gets more di�cult because some emails and attachments could easily
go unnoticed. It is worth noting that, however, this documentation consti-
tutes a fundamental part of the project information model (PIM, according
to ISO 19650) for structural systems. We argue that criticalities we have
highlighted can be overcome by introducing a tool based on blockchain
technology, named DAPP, that leverages APIs of CDEs and smart con-
tracts to support exchanges of structural-system-related documentation
during the production stage of the work, with particular attention to the
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execution, testing and closeout phases of the structural system.

Figure 2.2. Possible con�guration of CDEs in the construction stage.

We propose a blockchain-based tool to trace �ows of information among
CDEs and secure exchanged information containers. In detail, the tool will
allow:

� To automatically transfer information containers from a CDE 1 to a
CDE 2;

� To create and automatically transfer transmittal documents;

� To create Hash �ngerprints of information containers that will be up-
loaded on the blockchain (this process is also known as notarization
of documentation);

� To certify information �ows' main metadata (sender, receiver, date,
type of information container);

� To recall information from the blockchain to support checking and
inspection activities.
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Figure 2.3 illustrates the process of transferring an information con-
tainer.

Figure 2.3. Notarization on the blockchain of information �ows among CDEs.

The tool leverages APIs of CDEs to automate information exchanges.
Before delivering information containers into the receiver's CDE, the tool
interacts with a smart contract that generates a transmission, on the
blockchain, which contains Hash �ngerprints of exchanged information con-
tainers. The smart contract also allows verifying exchanged information
containers (which can be �les in any format: .pdf, .xls, .doc, .ifc, etc.) be-
cause this can recall information from the blockchain as Figure 2.4 depicts.
We will further deepen the smart contract's capabilities in section 2.3.

Improved immutability, transparency, and reliability of structural-safety
information and documentation can prevent litigations on construction
sites because all signi�cant events are traced on blockchain and can be
retrieved anytime is necessary.

2.2.1 Levels of implementation of smart contracts

In our view, smart contracts can be implemented in information �ows
among CDEs with an increasing level of complexity and automation of
operations:
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Figure 2.4. Recalling information from the blockchain.

Basic level : a smart contract automatically generates a transmission
whenever there is a transfer of information containers from a CDE
to another. Additionally, the smart contract records the Hash �n-
gerprint of exchanged information containers. Figure 2.5 depicts an
example of this type of implementation for the case of a third-party
accreditation (Universities, testing organizations, etc.) that delivers
a certi�cate of testing to the PM's CDE.

Intermediate level : a smart contract collects multi-party consent be-
fore exchanging information containers. This functionality can sum
to the functionalities described before. Figure 2.6 depicts this type of
implementation concerning the case of a PM that delivers documen-
tation for interim payment certi�cates to the client and concurrently,
the general contractor should approve that documentation.

Advanced level : a smart contract performs automatic assessments of
exchanged information containers in terms of format, size, and struc-
ture, and data content. Figure 2.7 depicts this type of implementa-
tion for the delivery of an as-built model for the interim payment
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Figure 2.5. Basic level smart contract.

certi�cates. The implementation of IoT systems on the construction
site and Arti�cial Intelligence algorithms for monitoring the works
will allow assessing automatically validity of exchanged information
containers, according to the rules set out in the smart contracts. Ul-
timately, an AI algorithm will be able to verify the correspondence
between the as-built model and reality on the construction site, thus
approving the interim payment certi�cates.

Levels I and II can address poor quality management of construction-
site documentation that pertains to structural systems. However, we have
realised that the purpose of this documentation is collecting sensible in-
formation on the construction site that could not be gathered otherwise.
This information mostly pertains to temporary tasks therefore documents
that contain this are generally signed by multiple stakeholders at a time
to ensure sharing of liabilities. The III level addresses renovation of the
traditional paper-based approach which, besides, would prove ine�cient
if in-situ automated construction processes of structural components, like
additive manufacturing, were adopted.
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Figure 2.6. Intermediate level smart contract.

2.3 The �rst implementation of a basic level smart

contract

To evaluate the bene�ts and limitations of the proposed approach, a
Decentralized Application (DAPP) was implemented to exchange docu-
ments between CDEs. DAPPs are applications able to interact using
smart contracts with blockchain and allow users to perform operations
through ad-hoc developed user interfaces. We decide to use DAPPs based
on Etherium since this blockchain was the �rst to introduce smart con-
tracts and its native language solidity is the most used. Moreover, the use
of solidity guarantees the possibility to reuse the code even on di�erent
blockchains using Etherium Virtual Machine (EVM), which is an emu-
lator of the Etherium blockchain that guarantees the portability of the
code. In this �rst application, �les were transmitted between two personal
cloud environments that allow simulating data passing between generic
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Figure 2.7. Advanced level smart contract.

CDEs. Speci�cally, the Dropbox API was used for data management by
the DAPP.

At the beginning of the smart contract, we have de�ned the structure
of the transmission that comprises: the address of the sender, the address
of the receiver, the name of the exchanged information container, the type
of exchanged information container, a Hash function of each exchanged in-
formation container, the number of the block, the date and traces of a new
version of the same information container. Then, we have implemented
the methods:

� Generate transmission, which is used to generate a unique code of
exchanged information containers and record on blockchain all data
that describe the structure of the transmission. This also allows the
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management of new versions of the same �les.

� Generate register of transmissions.

� Verify transmission, which is used to recall information from the
blockchain to check the authenticity of transmissions and exchanged
information containers.

The proposed smart contract allows to manage �le authenticity and
versioning of a generic �le: in fact, the Hash veri�cation function allows to
verify that a generic �le, which was sent in transmission `i', is authentic by
comparing a Hash of the �le that is generated at the moment with the hash
that was uploaded on the blockchain at the moment of the transmission.

2.3.1 An application to the construction process of struc-

tural systems

The assembling process of a structural system requires both practi-
cal and supervision activities to be done on the construction site. While
general contractors materially produce the structure, structural and civil
engineers with the role of project managers (PM) and inspection engineers
oversee construction works and ensure the structural safety of works by

1. checking structural materials when they arrive on construction sites;

2. Interpreting and analysing results of tests on structural materials;

3. Inspecting structural systems to ensure compliance with safety stan-
dards and project speci�cations;

4. Overseeing closeout tests.

We will show to follow the potential of our blockchain-based tool concern-
ing some of the listed activities. Figure 2.8 presents the user interface of
the tool we developed. In detail, there are three areas: CDE (or database)
view (1), transmission view (2), sending area, and information container
veri�cation (3). In area 1, it will be possible to access one's information
containers, both on CDE and simple database. In area 2 all transmis-
sions have been carried out with the relevant information that refers to
the validation on the blockchain (date and block) and version validity.
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SQL commands allow �ltering the table of transmissions to display only
the items of interest. In area 3, we provide tools to calculate the Hashes
of information containers; this function is used both when there are infor-
mation containers to send and when there are information containers to
verify once they have been received.

Figure 2.8. Overview of the tool's user interface.

Concerning the example of Figure 2.5, the tool allows the third-party
accreditation to explore his own CDE in the tree menu on the left of Figure
2.9; concurrently, in the table on the right he/she can see all transmissions
already done and he/she can �lter them with SQL commands. In detail,
thus, an employee of the third-party accreditation accesses an information
container (1), the tool calculates its Hash (2) and the employee transfers
it to the distributed CDE of the PM (3).

For Figure 2.10, the inspector engineer (or the PM) can use the tool



58 Chapter 2. AI in Construction: Blockchain in structural information flows

Figure 2.9. Sending information containers.

to see all information containers he/she has received in his/her CDE (the
distributed CDE) with speci�cations of each transaction (on the right).
The speci�cations include the sender, the block where the transmission re-
sides, the date, and the valid version veri�cation. He/she can also export
a report of transactions. Additionally, the engineer and the PM can ver-
ify whenever the information containers received in their CDE have been
certi�ed on the blockchain. Once the structure inspector engineer has
received the �nal report of the works (`relazione a struttura ultimata' in
Italian), he/she has to certify the existence of all attachments this contains
and their formal and substantial correctness. From the formal perspective,
with our tool implementing a basic level smart contract, he/she can use
the tool to query the smart contract that will recall information from the
blockchain to verify the authenticity and validity of all attached informa-
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tion containers.

Figure 2.10. Receiving and verifying information containers.

2.4 Discussion

Our proposal aims to bypassing email, certifying on the blockchain any
kind of information container exchanged and the corresponding informa-
tion �ow, and providing a common and reliable source of information for
inspectors of the structural systems both during and following the con-
struction process of structural systems. Preliminary testing of the proof-
of-concept is presented in Table 2.1. In detail, the proposed approach has
been compared to the traditional approach in terms of criticalities that
arise in the exchange of information, the reliability of the exchanged infor-
mation, and the transparency of the decision-making process.
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Although the use of blockchain introduces new criticalities that relate
to the timing and availability of credit, traditional tools that require human
intervention at several stages present a higher risk of error when transmit-
ting the information.

Moreover, the criticalities of the blockchain-based approach can be mit-
igated during implementation. On the other hand, the traditional ap-
proach is not able to a�ect the reliability of the information transmit-
ted and the transparency of the decisions made because the activities are
mainly manual and left to the discretion of who performs them (project
manager, inspector of structures, general contractor, etc.).

On the contrary, the use of an approach based on blockchain technol-
ogy allows the introduction of smart contracts that perform shared and
pre-established procedures to verify the information transmitted. This in-
creases the reliability and quality of the information exchanged and the
transparency of decision-making processes.

The levels of reliability and transparency that the proposed approach
can ensure are related to the complexity of the smart contracts used, in
fact in the case of implementation of advanced smart contracts reliability
and transparency are maximized.

Finally, we conducted the �rst implementation using basic smart con-
tracts. We have found that the availability of open APIs of CDEs is rather
scarce, despite the indications of DIN-SPEC 91391-1,2:2019. Besides, we
have already seen advantages in drafting the �nal report of structures, in
the closeout phase, because information stored on the blockchain can sup-
port both the recovery and the veri�cation of the reliability of construction
site exchanged documentation.





Chapter 3
AI in Vibration-based SHM:

the D2-DTE approach

3.1 Introduction

Several research strands focus on damage detection and location stud-
ies. Ensuring the safety of existing structures and infrastructure is one of
the most critical engineering challenges, given the aging and deteriorating
infrastructure. On the other hand, the development and dissemination of
innovative data analysis techniques have provided new opportunities and
thus stimulated research activities on new SHM methodologies.

In visual-based approaches the detection strategies rely on the analysis
of images of the visible surfaces of a structure. Recent contributions in
this �eld are mainly based on the success of convolutional neural networks
(CNN) in computer vision, as in [113], [190], [32], [66], and [112]. Although
damage identi�cation systems based on the vision-based approach have
achieved notable accuracies, they are unable to report on the presence of
non-visible structural damages that could severely a�ect operations and
the residual service-life of a structure. In addition to this, most of the
methods described in the literature require images captured at standard
distances and angles, which can hardly be obtained from a few cameras,
and without the intervention of a trained operator, that captures speci�c
images for the di�erent structural elements to be analyzed.

To avoid these limitations, in the sensor data-processing the monitoring
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process is based on information gathered by sensors placed on a structure,
that record measurements of both static and dynamic physical quantities.
Within this context, the data-collection scheme can be accomplished ac-
cording to a wide variety of paradigms, ranging from the classical study of
static displacements measured by means of �ber optics, GPS, or corrosion
sensing ([91, 119]), to the development of innovative sensing materials, that
enable the continuous recording of the physical response of the structure
[53, 54, 193, 68].

More generally, whenever sensors are used to detect information regard-
ing the dynamic behavior of the structure, sensor data-processing methods
are also denoted as vibration-based approaches. In the approaches of this
class, data is either analyzed in the form of time-history, such in the case of
acceleration data, or pre-processed by dynamic identi�cation techniques,
that enable the extraction of predictive features to be subsequently ana-
lyzed.

As instances of the former approach, Chun et al. [39] use acceleration
time-histories to train an arti�cial neural network, the aim of which con-
sists in the detection of thickness reductions of steel elements in a bridge.
Analogously, de Almeida Cardoso et al. [43] devise an unsupervised method
to directly process raw dynamic data, and identify structural novelties, val-
idating their approach studying a railway viaduct. Abdeljaber et al. [2]
use a 1-D CNN to detect damage to the connections of a steel structure,
training the model to identify joint damages directly using acceleration
time-histories experimentally acquired from the structure. Remarkably,
the authors distribute their dataset, that can be used for benchmarking
purposes in the testing of damage localization algorithms. Conversely,
other approaches start from a feature extraction pre-processing phase,
that allows the elaboration of raw signals, obtaining signi�cant quanti-
ties that are then used in the monitoring of the structure. Ra�ei and Adeli
[158] embed a restricted Boltzmann machine within a framework that is
based on a neural dynamic classi�cation algorithm to detect damages in
high-rise buildings; even in this example, the validation of the approach
is made through the analysis experimentally recorded data. Notably, the
same structural typology � addressed in the seminal work of Jiang and
Adeli [94] � is considered in Ra�ei and Adeli [159], that describe a novel
unsupervised methodology that does not require the costly experimental
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simulations of damages on a scaled version of the structure. In Chong
et al. [37] features are extracted by a multi-phased process that integrates
a wavelet decomposition and wavelet-based autoregressive models; then,
the damage detection is obtained exploiting a non-linear multi-class sup-
port vector machine. Lin et al. [116] use an automatic feature extraction
algorithm coupled with a CNN to localize simulated damages on a nu-
merical model of a simply supported Euler-Bernoulli beam. Cabboi et al.
[27] adopt a two-step approach - combining a principal component anal-
ysis (PCA) with a novelty-detection system - to cleanse monitored data
and localize numerically simulated damage on a �nite element (FE) model.
Sajedi and Liang [167] de�ne the concept of a grid environment, that allow
the �exibility of taking into account di�erent structural typologies within
the same methodological framework. This environment is coupled with a
CNN whose input consist in cumulative intensity measures. Finally, Azimi
and Pekcan [10] implement a CNN that identi�es and localizes damages
considering three possible inputs: time-domain data �i.e. raw accelerome-
ter signal �, discrete histograms to compress acceleration data, and three-
parameters data that represent a continuous distribution in an extremely
compressed form. Notably, the authors validate their approach considering
FE models and publicly available data: both from numerical simulations
and experimental recordings.

On the other hand, a widespread feature extraction approach consists
in the processing of acceleration time-histories through operational modal
analysis (OMA). The di�usion of this approach is founded on the obser-
vation that the extracted dynamical properties are extremely sensitive to
changes in the sti�ness of structures, and can so be used as predictors in
damage detection systems. OMA represents a research topic of interest,
given the challenges that it presents, such as: full or partial references, mul-
tiple sensors setup, non-stationary excitation, structural mode sorting, bias
and modal shape scaling (Zhang and Brincker [201]). Notable examples of
recent contributions in the integration or automation of OMA within con-
tinuous SHM frameworks can be found in Magalhães et al. [123], Gentile
and Saisi [70], Oliveira et al. [146], Zhang et al. [199, 200].

A signi�cant portion of scienti�c literature attempts to take advantage
of combined OMAs and damage localization methods based on learning
algorithms. In particular, this combination aims to provide robust dam-
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age detection methods that make use of natural frequencies, mode shapes,
and damping, or in general features extracted by OMA as input. In Zhou
et al. [202] damage identi�cation on long-span bridges is obtained trough
a probabilistic neural network which uses only the modal frequency infor-
mation as inputs. This approach is numerically validated considering the
introduction of damages to cable, bearings and main griders of two distinct
FE models: the suspension Tsing Ma Bridge, and the cable-stayed Ting
Kau Bridge.

Lam et al. [105] employ an arti�cial neural network (ANN) to local-
ize and quantify damage from a numerical model of a steel truss system.
The network is trained with a set of Ritz vectors associated with numer-
ically simulated damage scenarios and evidences good �exibility when it
came to identifying the sti�ness reduction in the structure's truss elements.
Similarly, Chang et al. [34] train an ANN model to localize and quantify
damages, specifying the a�ected story, of a seven-story building.

Reviewing the contributions proposed in the scienti�c literature, it can
be pointed out that most of the cited research e�orts provide only lim-
ited details about the occurred damage in the case of complex structures;
or, alternatively, an in-dept characterization of the occurred damage is
achieved only simple structures (e.g. a few structural elements) analyzed
as independent structural systems.

In addition, most of the proposed approaches are based on the hy-
bridization of multiple interacting numerical procedures. The resulting
intrinsic complexity makes often challenging the e�ective implementation
of a given solution method. In this context, the less is more approach

(LIMA) � originally proposed in optimization literature [138, 137, 24] �
attempts to make a methodology as simple as possible, but at the same
time, more e�ective than the current state-of-the-art.

Following this consideration, this chapter proposes a SHM framework,
named Damage-Detection Decision Tree Ensemble (D2-DTE ), based on
a vibrational approach coupled with a decision trees ensemble (DTE [69])
learning method, able to respond to LIMA needs. In details, following a
vibration-based feature acquisition, the learning algorithm infers the re-
lationship between the dynamic structural properties of a given complex
structure and the corresponding detected single and/or multiple damage,
with an high level of accuracy. Within the proposed framework, FEM
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is used to: create a database of "pathological" (damaged) structural re-
sponses; test the performances of the DTE learning method; and simulate
the occurrence of damage to real case structures. Hence, the main research
objectives are:

� to investigate the possibility of identifying damage with di�erent
localization accuracy and extent, down to the scale of a single struc-
tural element;

� to explore the learning capabilities of DTEs, tailoring their algorith-
mic procedures to the SHM objectives;

� to assess DTE performances in terms of classi�cation agreements be-
tween the damage prediction and the real assessment, the con�dence
of probabilistic predictions, and damage localization distances.

3.2 D2-DTE methodology

The basic idea behind the proposed D2DTE SHM methodology here is
that, for any single structure, it is possible to create a large database of
virtual 'pathological' and 'non-pathological' structural responses, gathered
either from a calibrated FE model, or laboratory tests, through which,
numerous damaged scenarios of the structure are generated and recorded.
Then, this large database can be used to train an ML model that is able to
process sensor data from an actual structure and identify any pathological
responses, highlighting the position and extent of occurred damage on
structural elements.

In particular, as depicted in Figure 3.1, the methodology is divided in
two main phases: a set-up phase, and the deployment phase. During the
set-up, preliminary operations are performed on the target structure to be
monitored, i.e.: FE modelling, damage simulation, and data preparation,
leading to the DTE training and testing outcome. The deployment phase
consists in the application of the trained learning model to analyze data
recorded on the monitored structure in order to timely produce health
assessments.

The set-up phase is thoroughly described in this Section, and it is
composed by:
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1) FE modelling ;

2) damage simulation;

3) data preparation;

4) DTE training ;

5) DTE performance evaluation.

Figure 3.1. Depiction of the D2-DTE methodology.

The �rst two steps � Section 3.2.1 � consist in the modelling of a struc-
tural system of interest and in the choice of a simulation strategy to intro-
duce in the model several damage conditions. In the data preparation step
� Section 3.2.2 �, based on the FE model and damage simulation strat-
egy de�ned in the �rst two steps, the structural response of the system is
recorded in the form of a vector of dynamic properties d corresponding to
each damage scenarios generated; the locations of those damages are then
labelled according to a pre-de�ned level of detail. In the DTE training �
Section 3.2.3 � , the vectors of dynamic properties obtained from the dam-
age scenarios are used as samples to let the DTE learn the association rule
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between a speci�c dynamic structural response d (denoted as input) and
the corresponding health assessment of the structure (denoted as output).

To evaluate the reliability of the performances achieved by the trained
DTE (using the metrics described in details in Section 3.2.4), the testing
phase considers a "new" dynamic structural response vector d along with
the corresponding actual damage con�guration ad (damage location and
extent), and compares the predicted damage con�guration adpred with ad.
The "new" dynamic structural responses used in this step can either gath-
ered by a di�erent generated (damaged) FE model of the target structure,
or by data collected from a physical structure, as done in the deployment
phase. This validation phase represents a common practice in the context
of ML for SHM, and its goal is to assess the accuracy and robustness of
the predictor. It is duly noted that the validation represents a similar sit-
uation of a possible SHM scenario, with the main di�erence being that in
a real deployment phase the actual damage con�guration ad is not known
a-priori.

To this aim, the learning method validation step reported in Section
3.3 includes three di�erent test cases: (i) damage localization accuracy de-
termination based on FE numerical models (ii) damage identi�cation and
quanti�cation using the IASC-ASCE benchmark [95, 28], and (iii) dam-
age localization and quanti�cation using the Qatar University Grandstand
Simulator (QUGS) [2, 9]. In particular, the three test cases are designed to
account for the variations of performances with respect to: di�erent dam-
age localization scales, source of data (numerical or physical) and analysis
of input data derived from increasing levels of structural complexity.

3.2.1 Structural modeling and Damage simulation

The structural typologies investigated in this work include two rein-
forced concrete (r.c.) frames (2D and 3D frames) and a 3D steel truss
frame, belonging to IASC-ASCE benchmark and the testing cases from
QUGS. These structural typologies are considered mainly for two reasons:
the importance of traditional construction paradigms with concrete, and
the possibility to highlight di�erences between them in the D2-DTE val-
idation process. The corresponding FE structural models are generated
by means of the FE code OpenSees [130]. Each one of the structural ele-
ments in the r.c. frames or steel truss is modeled using native elastic beam
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or column elements [129]; further details of the structural FE models are
given in the description of each testing case reported in the corresponding
subsections. With the aim of generating a suitable training data-set for
the DTE learning algorithm, it is �rstly necessary to incorporate damage
scenarios in the target structure modeled using FE; this can be achieved
either using (i) an appropriate FE damage modeling strategy, or (ii) by
adopting available sensor recordings measured during laboratory testing.

In particular, di�erent FE modeling strategies were adopted in this
study according to the structural typology considered. In the case of the
r.c. structures, the simulated damages belong to two di�erent classes: con-
crete cracking and joint damages. Cracking phenomena are implemented
in the model by introducing a reduction factor related to the cross-section
inertia of each damaged element, αrc; in this way, the "local" sti�ness (of
the structural element) is reduced and, as a consequence, the global dy-
namic structural behavior changes accordingly. The extent of cracking is
taken into account through three di�erent damage levels (i.e. correspond-
ing to three element sti�ness reductions): undamaged, moderate cracking,
and severe cracking. A set of αrc factors is de�ned for each level, and it is
assumed that the element is: undamaged when the local sti�ness reduction
is between 0% and 15%; moderately damaged with a local sti�ness reduc-
tion between 15% and 75%; and severely damaged when the local sti�ness
reduction is greater than 75%. The relationships between the reduction
factors and damage levels are set out in Table 3.1.

The damage a�ecting r.c. beam-column connections is not categorized
in terms of severity and is introduced as perfect hinges into the structural
joint. In order to evaluate the damage a�ecting the endpoints of each struc-
tural element converging into a given joint, a generic node N is modeled as
four di�erent connecting nodes (N I , N II , N III , and N IV ) linked by a rigid
body constraint to N (see Figure 3.2). Regarding steel structures, damage
often can occur due to corrosion phenomena: for these cases the damage
is introduced as a reduction in the cross-section of the structural element.
The adoption of this kind of damage for the steel structure is mainly related
to two observation: 1) steel is characterized by higher mechanical perfor-
mances, meaning that the cross-sections of common commercial pro�les
are relatively small. As a result, minor variations in the cross-section of
an element could correspond to major changes in its structural behavior;
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Figure 3.2. Representation of the joint, modeled as four constrained connec-
tion nodes.

and 2) changes in cross-sections have a signi�cant e�ect on the structural
performances of truss structures (a widespread standard in steel construc-
tions), whose stresses are mainly due to axial forces. As for the cracking
damage in the r.c. structures, the reduction in the steel elements' sti�ness
is again de�ned using a reduction factor αst, in accordance with Table 3.1.

Table 3.1. Summary of Element sti�ness reductions for damage simulation
in r.c. and steel structures.

αrc, αst Local reduction (%) Damage severity

1 0% Undamaged
0.9 10% Undamaged
0.85 15% Undamaged
0.55 45% Moderate damage
0.45 55% Moderate damage
0.25 75% Severe damage
0.20 80% Severe damage
0.10 90% Severe damage
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3.2.2 Training data generation

Given a speci�c structural model, the training data generation phase
simulates a broad set of damage con�gurations, recording the resulting dy-
namic response of the system. The recorded vector of dynamic properties
of the system, d, consists of modal analysis outcomes associated to the
�rst three mode shapes and frequencies.

This decision is related to the observation that the higher the mode
shape, the less in�uence it has on the dynamic behavior of the structure.
Consequently, selecting data from the �rst three mode shapes and frequen-
cies aims to balance the trade-o� between computational e�ectiveness and
the use of a denser dataset, i.e., a higher number of mode shapes and fre-
quencies. Section 3.3.1 contains a brief discussion relating to the accuracy
of the DTE in this regard. In particular, denoting the ith period with Ti,
the kth mode shapes related to the jth set of recorders (placed on the frame
structure) with ϕkj , and L the number of di�erent set of recorders, then
d is obtained as

d = (T1, T2, T3, ϕ11, ϕ21, ϕ31 . . . , ϕ3L ) . (3.1)

For element cracking (in r.c. frame) and cross-section reductions (in
steel truss), the number of possible damage con�gurations depends directly
on three factors: the number of structural elements in the system (Nel), the
possible α values (Nα), and the number of simultaneous damages (Nsim)
on the structure. The total number of damage con�gurations, Dmgtot,
is then obtained as the product of the number of Nsim-permutations with
repetitions of Nα elements, times the number of Nsim-combination without
repetitions of Nel elements, thus giving:

Dmgtot = NNsim
α · Nel!

(Nel −Nsim)! ·Nsim!
. (3.2)

Di�erently from crackings and section reductions, damage severity stands
unde�ned for joint damages. Consequently, Dmgtot can be obtained as

Dmgtot =
2 ·Nel!

(2 ·Nel −Nsim)! ·Nsim!
, (3.3)

considering that the number of connections nodes is twice the size of Nel,
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as depicted in Figure 3.2.

Hence, while generating training data, each one of the Dmgtot damage
con�guration is modelled according to the speci�c structural typology (r.c.
or steel) and with respect to the simulation paradigm discussed in Section
3.2.1. To each of such damage scenarios, the structural model associates
a dynamic response that is then recorded in a vector d (as in (3.1)) to be
used as input in the training of the DTE.

The training of the DTE � and in general of all supervised learning
methods � is based on the principle of gathering the relationships con-
necting input and output pairs of a training set, in order to automatically
produce a predicted response in presence of new (real, recorded) input
data. In the context herein described, the input is given by the vector d
of dynamic properties resulting from a given damaged con�guration, and
coherently, the output corresponds the health assessment of the structure,
ad. Such an health assessment can be formulated in many ways: detecting
di�erent damage localization scales and/or including damage severity.

Figure 3.3. Representation of the story localization scales for the cracking
phenomena and joint damage.

Unlike available approaches in which the damage detection is often
limited to the story level (as in the case of complex structures, e.g. Lin
et al. [116]), or it is very accurate but limited to simple structural elements
(e.g. Cabboi et al. [27] and Chang et al. [34]), the localization attempts
performed in the D2-DTE aim to identify the occurred damage according
to di�erent levels of detail. In particular, the overall D2-DTE outcome
ranges from the identi�cation of the story at which the structural element
damage has occurred � especially in multi-story r.c frames �, to the single
structural element a�ected.
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Three di�erent levels of detail are thus considered for damage detection
in D2-DTE training data generation for the two damage types (i.e. element
cracking and joint damage). In the case of the cracking phenomena, the
levels are:

� the story extent: indicates the story to which the damaged element
belongs (Figure 3.3);

� the floor− beam level: indicates the single damaged element (if it
is a column) or the �oor beam to which the element belongs (Figure
3.4, a);

� the single structural element: indicates the a�ected element (Fig-
ure 3.4, b).

For the joint damage type, the three levels are:

� the story extent, indicates the story to which the damaged joint
belongs (Figure 3.3);

� the single node scale: indicates the node a�ected by the damage
(Figure 3.5, a),

� the hinge scale which identi�es the joint which is responsible for
plastic hinge activation (Figure 3.5, b).

Figure 3.4. Representation of the column and �oor-beam (a) and element
(b) localization scales for the cracking phenomena.

Additionally, the health assessment can possibly include an estimation
regarding the damage severity.
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The last step of the training data generation focuses on a data aug-
mentation procedure to reduce over�tting and test the performances of
the DTE in common applications where uncertainty and errors a�ect the
acquisition data. More speci�cally, each vector of dynamic properties d is
modi�ed by adding random Gaussian noise. In this phase, noise is added
according to a normal distribution, with a mean of zero and a standard
deviation of σ > 0, N(0, σ).

In particular, starting from an arbitrary vector d, the corresponding
noisy data, d̃, is obtained as

d̃ = d+ d · X̃, (3.4)

where X̃ is a diagonal matrix whose non-zero components are independent
realizations of a random variable distributed as N(0, σ).

This procedure is conducted in such a way that each single dynamic
property is a�ected by a variation around its normalized value, with an
expected maximum magnitude of either 3%, 6%, or 9%. This strategy
successfully de�ned three di�erent levels of disturbance in the analyses.

Additionally, the Gaussian noise considered in the data augmentation
phase is used to obtain the samples belonging to Training and Testing sets.
Since eq. (3.2) and (3.3) generate di�erent number of damage con�gura-
tions in each scenario, sets of total records (Testing plus Training) of pro-
portional size are populated with a number of samples equal to 50·Dmgtot.
More speci�cally, the samples are divided into two disjoint groups, Train-
ing and Testing, and then the two groups are perturbed introducing the
Gaussian noise as speci�ed by equation (4.4). As a fortiori sanity check,
the numerically simulated datasets obtained through data subdivision and
augmentation present analogous relative di�erences and cosine similarity
values to those extracted from the experimental dataset discussed in Ab-
deljaber et al. [2], and Avci et al. [9]. In particular, the testing reported in
Sections 3.3.1-3.3.1 considers a 50% − 50% Training-Testing split. Di�er-
ently, throughout the whole numerical experiments of Sections 3.3.2 and
3.3.3, the testing process follows a 5-fold validation approach, thus im-
plying that the Training-to-Testing size ratio is 4 to 1. To investigate the
damage localization capability of the D2-DTE , the numerical validation of
Section 3.3 reports on the achievable levels of responsiveness in structural
health assessment.
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Figure 3.5. Representation of the node (a) and hinge (b) localization scales
for the joint damage.

3.2.3 DTE Training

Decision tree ensembles belong to the class of supervised learning ap-
proaches. As such, starting from a set of known input/output pairs (the
training set), their goal is to produce a function that maps a certain input
into its associated output. In the learning paradigm discussed here, the
input d is an m-dimensional vector of structural dynamic properties, and
the output is a predicted health assessment for the structure, ad.

In addition, according to the ensemble learning paradigm, a collection
of weaker learning models should be aggregated to obtain a combined ver-
sion with a better predictive performance [163]. In the present Chapter,
the ensemble is obtained by aggregating classi�cation trees with the bag-
ging meta-algorithm, depicted in Figure 3.6. This technique, discussed in
Breiman [21], starts by generating L di�erent samplings � uniformly at
random �, {Di}Li=1, of the training set, D.

In the SHM context here embraced, Di is a collection of pairs Di ={︁(︁
d1, a

d1
)︁
, ...,

(︁
dh, a

dh
)︁}︁
, where each single dj , j = 1, . . . , h, is as in (3.1),

and adj is its corresponding health assessment. Subsequently, each sample
Di is used to obtain a classi�cation tree, Ti [22]. After this training phase,
the DTE is obtained by aggregating the Tis: given a new vector of dynamic
properties d̄, the ensemble model returns the assessment provided by the
majority of the Tis.

The hyper-parameters characterizing the DTE are obtained through a
preliminary tuning. As a consequence, the total number of trees in the
ensemble is set to 30 while each single tree makes use of Gini purity index
and a best-splitting strategy. Additionally, each set Di is obtained sampling
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Figure 3.6. Depiction of the decision tree ensemble obtained with the bagging
meta-algorithm.

uniformly with replacement from D exactly N elements, with N = |D|.
Thus, for large values of N , each sampling Di is expected to have the
fraction (1 − 1/e) (≈ 63.2%) of the unique examples of D, with the rest
being duplicates [8].

3.2.4 DTE performance estimation metrics

The prediction capabilities of the DTE are evaluated considering three
di�erent classes of evaluation criteria: accuracy ; con�dence of probabilistic
predictions; and localization errors. The goal of accuracy is to appraise
the degree of agreement between the output provided by the D2-DTE and
the real health assessment, which is achieved by counting the percentage
of correct predictions over the total number of cases tested.

In particular, Accuracy counts the percentage of cases in which adpred
is equal to ad. Consequently, this accuracy evaluation follows the levels of
detail described in Section 3.2.1.

In contrast, in terms of the con�dence of the probabilistic predictions,
the goal is to evaluate the con�dence levels of the di�erent assessment
by the set of Tis. More speci�cally, given a certain damage scenario, the
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Tree Ensemble associates a con�dence value Pa ∈ [0, 1] to each possible
assessment ad. The con�dence of probabilistic prediction consists in the
comparison of the relative frequency (in the Tree Ensemble) of the correct
assessment (PT in Section 3.3) to that of the output assessment, i.e., the
most common among the T ′

i s (PP). The higher and closer are the two
values, the better is the prediction. These values can then be used as
likelihood estimates for each possible assessment outcome.

Lastly, the prediction of the DTE is evaluated from a damage local-
ization accuracy standpoint. For each test case that involved damage, the
distance (in meters) between the actual damage location in the structure
and that produced by the tree ensemble is measured. In particular, as
set out in Figure 3.7, in the case of single damage, it is evaluated the
distance d′ between the center of mass of the structural element identi-
�ed as "damaged" by the predictive model (E2-5 in Figure 3.7, a) and
the actual damage position (element E1-4 in Figure 3.7, a). Similarly,
in the case of more than one site of damage, the distances are computed
with respect to the closest predicted damage location from each center of
mass of an element with actual damage. As shown in Figure 3.7 (b), the
computed distances are, respectively: d′′1 and d′′2, separating E1-4 (actual
location) and E2-5 (predicted location); and E10-11 (actual location) and
E7-8 (predicted location). It is duly noted how this metric is strongly scale
dependent. In the case of damage localization at the story level, the error
distance is computed between the center of mass of the predicted and the
actual position of the story a�ected by the damage. In the numerical val-
idation, the localization error is denoted as Error-DIST.

3.3 Numerical Validation

The validation of the D2-DTE framework herein adopted is organised
through three test cases, characterized by the analysis of three correspond-
ing data-sets: (i) damage simulated using FE models of r.c. and steel truss
frames, (ii) the IASC-ASCE structural health monitoring benchmark prob-
lem [95, 28], and (iii) the QUGS dataset.

The �rst test case consists in the simulation and subsequent localiza-
tion of a diverse set of damage con�gurations introduced in the numerical
models of three di�erent structural typologies, namely: a 2D r.c. frame, a
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Figure 3.7. Depiction of the error estimation in relation to the damage
localization.

3D r.c. frame, and a 3D steel truss structure. The aim of this �rst test case
is to appraise the localization performances with respect to the de�nition
of the three di�erent levels of details described in Section 3.2.2.

On the other hand, the test case of the IASC-ASCE benchmark allows
the evaluation of damage detection e�ectiveness in two well-established
numerical models characterized by 12 and 120 DOFs. The aim of this test
case is two-fold: the �rst is to localize damages with respect to models
characterized by a di�erent number of DOFs, and the second is to use a
well-established benchmark that allows the direct comparison of the per-
formances with other research e�orts.

Lastly, the use of the data recorded on the QUGS enables the testing
of the framework in a set-up closer to the deployment phase, in which the
data used for both the training and the testing of the DTE are obtained
as two distinct sets of measurements recorded on a physical structure. As
an additional value, just as for the IASC-ASCE benchmark, the di�usion
of the QUGS allows for a direct comparison of the damage localization
performances of our framework with other damage localization approaches.

3.3.1 R.C. frames and 3D steel truss system

The structural models adopted in the �rst tranche of numerical tests are
developed using the FE code OpenSees [130] and include two r.c. frames
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(2D and 3D) and a 3D steel truss structure. For each structure, the modal
properties are obtained simulating the presence of three axis accelerometers
in a set of measurement points.

The 2D r.c. frame is characterized by three storys (height 3 m) and two
spans (length 4 m). The rectangular sections for the beams and columns
are 30× 50 cm and 30× 30 cm, respectively, as depicted in Figure 3.8.

Figure 3.8. 2D r.c. frame considered in the numerical validation.

The 3D r.c. frame is composed by three storeys (height - 3 m) and
two spans along the x direction (length - 5 m), and three spans (length -
4 m) along the y direction. The rectangular cross-sections of the beams
and columns are 30 × 50 cm and 30 × 30 cm, respectively, as depicted in
Figure 3.9.

As shown in Figures 3.8 and 3.9, in both r.c. frame structures the modal
properties are obtained in correspondence of three di�erent measurement
points, one per each storey, taken on corner pillars belonging to a same
vertical axis.

Each one of the structural elements in the r.c. frames are modeled using
OpenSees' native elastic beam column elements [129], while the columns
are clamped to the base. Additionally, diaphragm constraints are sepa-
rately applied on the set of nodes lying on each story,according to a rigid-
�oor assumption by means of the native OpenSees command equalDOF.

Lastly, the 3D truss a 8 m-high triangular truss structure, with equal-
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Figure 3.9. 3D r.c. frame considered in the numerical validation.

sided L-section elements with the dimensions 30×30×3mm, as represented
in Figure 3.10.

Figure 3.10. Depiction of the 3D truss structure.

For the case of the triangular truss structure, the modal properties are
obtained considering a total of four measurement points placed every 2
meters of a same vertical direction (see Figure 3.10).

Preliminary analysis of the input features

As detailed in Section 3.2.2, the input features of the D2-DTE are �rst
three vibration modes of the structure. From a methodological point of
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view, di�erent input combinations, as a function of occurred damage, can
be considered, and these either reduce or enrich the complexity of the
input dataset. To evaluate the e�ect of di�erent combinations of periods
and mode shapes, on the overall accuracy (the relationships connecting
the input features with the predicted damage performances), a preliminary
test case is generated on the 2D r.c. structure considering a single-cracking
damage type.

The numerical results reported in the following refer to the �oor-beam
scale damage localization, with 6% random Gaussian noise. Table 3.2 re-
ports the results of this comparative analysis, with �X� implies that the
single feature has been considered in the input, �-� otherwise. Analyzing
the results, it should be noted that the con�gurations that consider only
one of the vibration modes (either I, II or III) make inaccurate predictions
(between 50% and 59%). Similar performances, although less remarkable,
occurred in the case of an arbitrary combination of two of three vibra-
tion modes, which produced an accuracy of 73.9%, 78.4% and 77.7%, re-
spectively. It is possible to observe that the vibration periods alone are
unable to represent the statistical variability of the input/output relation-
ship (33.6% accuracy), but the modal shapes are more sensitive regarding
damage localization (86.4% accuracy), given their spatial interpretation.
This di�erence in predictive quality was expected, as periods aggregate
the structural behavior in a �global� measure, while modal shapes pro-
vide �local� and geometrical information, in line with the requirements of
a localization problem. Ultimately, the highest accuracy is obtained when
including the complete set of input features, and this will therefore be
considered in the numerical validations set described in Section 3.3. In
contrast, the di�erent e�ectiveness of the modal shapes as input feature is
of particular interest in terms of their potential use in real-case scenarios
(as identi�cations from the sensor data).

2D concrete frame

The �rst step in the numerical validation consists of damage detection,
localization and estimation in the 2D r.c. frame.

This test case includes four di�erent types of damage scenarios: the
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presence of a single cracked element, the presence of two cracked elements,
single joint damage, and damages a�ecting two joints. The results achieved
for the detection of a single cracked element are reported in Table 3.3,
highlighting that the D2-DTE exhibits a very high accuracy for the story
scale and low noise level, while, as expected, higher levels of both detail
and noise are correlated with reduced accuracy.

In the case of 6% noise, the detection of a single cracked element is
managed properly by the DTE, which produced an accuracy of 83% on the
element scale (with damage). This performance is encouraging, detecting
that the average distance separating the predicted and the actual damage
location (Element scale) is less than 0.74 m for 6% noise, and less than 0.01
m and 1.14 m for 3% and 9% noise, respectively. This behavior suggests
that, in a monitoring scenario, it may be possible to de�ne a relatively
small area in which the damage is probably localized, even when there are
prediction errors.

Finally, the prediction output of the single trees in the ensemble can be
evaluated by studying the distribution of the con�dences for each health
assessment (as referred to in Sections 3.2.3 and 3.2.4). A comparison of
the PP and PT values revealed that, as expected, when the prediction
con�dence is high, the corresponding accuracy is also satisfactory, while
lower con�dences are correlated with a greater number of errors. In terms
of the detection of the joint damage, Table 3.4 reports accuracy of over 92%
for all noise levels. These results are supported by the observation that
joint damages severely a�ect modal shapes and are thus easier to detect
and localize. In fact, considering the Hinges localization scale, the average
localization error is lower than 0.5 m. The quality of the performances
exhibited by the DTE is consistent, including in terms of label ranking
and the di�erence between the con�dence of the true assessment (PT) and
the predicted assessment (PP).

The next two analyses are characterized by the simulation of two di�er-
ent simultaneous damages in the structure (Nsim = 2): the �rst considers
two cracked elements and the second two joint damages. In contrast to
the single damage case, the study of a two-damage-site con�guration in-
troduces a degree of di�culty related to the more complex interactions
between the dynamic properties and the health assessment. As reported
in Table 3.3 concerning the classi�cation of two cracked elements, the DTE
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achieved lower accuracy (in percentage), ranging from 95% in the easiest
case (story scale, 3% noise level) to 49% (element scale with damage in-
tensity, 9% noise). The worse performances can be related to the high
number of possible assessments generated by the likely damage locations
and intensities. A further indication of this change in performance is the
fact that increasing the level of speci�city in the localization and damage
scales, signi�cantly reduces the PT and PP values, and so the con�dence
level of the DTE.

As set out in Table 3.4, the results obtained for the two joint damages
evidence behavior that is consistent with that observed in the single case.
Regarding the cracking phenomena, however, the algorithmic performances
did not produce the same reduction in accuracy. The greater con�dence
in the results is re�ected in the fact that the PP and PT values are close
and higher than those reported in Table 5. Notably, these performances
are not reasonably a�ected by the noise levels.

3D concrete frame

The D2-DTE simulation results are divided based on the type of dam-
age considered and regard either the presence of a single cracked element in
the structure or the activation of a single plastic hinge in the joint connec-
tion. As also done for previous simulations, the experiments account for
three noise levels: 3%, 6%, and 9%. The results are summarized in Tables
3.5 and 3.6. It is notable that the accuracy for the detection of a single
cracked element is 86% for the 9% noise level and also for the element with
the damage scale. Conversely, in the numerical experiments, the accuracy
is reduced for the simplest case of the story scale with the 3% noise level.
This behavior can be related to the di�erent number of input examples in
the training dataset, which may have led to an under�tting phenomenon.

As for the 2D frame, these performances suggest that, even in the
case of an erroneous localization, the actual damaged element will be close
enough to enable the predicted locations to be used to de�ne a small area
where the damage is most likely to be found.

The results obtained on the detection and localization of a single joint
damage in a 3D r.c. frame (Table 3.6) show a high reduction in perfor-
mance for the hinge scale localization compared to the 2D frame. This is
because the modal shapes, in the presence of 12 columns per story and,
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Table 3.4. Summary of performances: 2D frame, joint damages.

Level of detail Story Node Hinges
Damage severity n.d.
Noise Level 3% 6% 9% 3% 6% 9% 3% 6% 9%

Single joint damage:

Accuracy 97% 97% 95% 97% 94% 92% 98% 97% 96%
PT 0.95 0.94 0.92 0.92 0.90 0.87 0.91 0.88 0.85
PP 0.96 0.95 0.94 0.94 0.92 0.89 0.97 0.94 0.91
Error - DIST [m] 0.09 0.11 0.21 0.37 0.48 0.71 0.34 0.43 0.62

Two joint damages:

Accuracy 91 % 86 % 82 % 88 % 83 % 77 % 89 % 84 % 78 %
PT 0.81 0.69 0.64 0.76 0.66 0.57 0.76 0.58 0.56
PP 0.84 0.74 0.70 0.79 0.71 0.63 0.79 0.64 0.61
Error - DIST [m] 0.66 0.76 1.43 1.01 1.31 1.91 0.91 1.15 1.67

therefore, 24 hinges, are less sensitive to damage to single hinges.

3D truss system

The �nal analysis of the �rst type of test cases is conducted with a
3D steel truss structure. As reported in Table 3.7, D2-DTE achieved good
performances in the localization of the section reduction in the 3D truss.
Indeed, the predictive model had very high accuracy across the entire
dataset and for all noise levels. Good performances could also be noted
when comparing the PT and PP values, which are similar and high.These
achievements can be related to the speci�c geometry of the truss, which
increases in height, meaning that the modal shape is de�ned by eight
displacement values, thus presenting a rich vector of input data.

3.3.2 IASC-ASCE benchmark

The IASC-ASCE benchmark is a well-known problem initially described
in Johnson et al. [95] and numerically simulated in Caicedo et al. [28]. The
structure is a four-story quarter-scale (grade 300W) steel frame, character-
ized by a height of 3.6 m and a 2.5 m ✗2.5 m squared plan. The sections
are speci�cally designed for the scale model: the columns are B100x9 sec-
tions and the �oor beams are S75x11 sections. The bracing system is



88 Chapter 3. AI in Vibration-based SHM: the D2-DTE approach

T
a
b
le

3
.5
.
Sum

m
ary

of
perform

ances:
3D

fram
e,
single

cracked
elem

ent

L
e
v
e
l
o
f
d
e
ta
il

S
to
ry

E
le
m
e
n
t

D
a
m
a
g
e
se
v
e
rity

N
o

Y
e
s

N
o

Y
e
s

N
o
ise

L
e
v
e
l

3
%

6
%

9
%

3
%

6
%

9
%

3
%

6
%

9
%

3
%

6
%

9
%

A
c
c
u
ra
c
y

83%
79%

75%
88%

85%
85%

88%
87%

87%
93%

87%
86

%
P
T

0.80
0.76

0.60
0.87

0.68
0.70

0.87
0.86

0.85
0.84

0.86
0.86

P
P

0.83
0.81

0.75
0.89

0.72
0.74

0.89
0.89

0.88
0.85

0.88
0.88

E
rro

r
-
D
IS
T
[m
]

0.53
0.71

1.93
-

-
-

0.39
0.40

0.41
-

-
-



3.3. Numerical Validation 89

Table 3.6. Summary of performances : 3D Frame, single joint damage

Level of detail Story Hinges
Damage severity n.d.
Noise Level 3% 6% 9% 3% 6% 9%
Accuracy 81 % 82 % 77 % 73 % 57 % 52 %
PT 0.76 0.74 0.72 0.67 0.47 0.41
PP 0.81 0.81 0.78 0.75 0.60 0.54
Error - DIST [m] 0.83 1.09 1.28 0.42 0.74 1.12

Table 3.7. Summary of performances: 3D truss, single section reduction
damage.

Level of detail Element
Damage severity No Yes
Noise Level 3% 6% 9% 3% 6% 9%
Accuracy 99 % 98 % 96 % 99 % 98 % 97 %
PT 0.97 0.96 0.94 0.99 0.97 0.96
PP 0.98 0.96 0.95 0.99 0.98 0.97

composed by two 12.7 mm diameter threaded steel rods placed diagonally.
The damages introduced in this benchmark are obtained either removing
or reducing the cross sections of diagonal bracing members present at each
�oor.

The dynamic behavior of the structure is numerically simulated through
two di�erent FE models, introduced by Caicedo et al. [28]. More specif-
ically, the �rst model consists of a 12-DOF shear-frame, in which each
single �oor is described by three degrees of freedom. The second model is
more complex and includes out-of-plane motion and rotations in the �oor
slabs; the resulting DOF are 120. It is worth noting that the di�erence in
terms of DOFs � and thus complexity of the numerical model � is used to
simulate the possible disagreement existing by a simple numerical model
(12DOF) and the complexity of a real-world structure (120DOF). As re-
ported in Johnson et al. [95] the numerical models simulate the presence
of sixteen mono-axial accelerometers, two each in the x- and y-directions
per �oor. Accordingly, the data representing each simulated case is com-
posed by 51 scalars: 3 Periods, and 48 modal shapes (3 modes for each
accelerometer).
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In order to validate the D2-DTE approach here presented, in addition to
the undamaged scenario, the same 8 di�erent damage patterns considered
in Azimi and Pekcan [10] are introduced in the numerical model, and
consequently grouped into 8 di�erent cases to be analyzed. The damage
patterns P1-P8 are shortly described in the following, and depicted in
Figure 3.11.

P1: a brace of the �rst �oor is damaged by 30%;

P2: a brace of the �rst �oor is damaged by 100%;

P3: a brace of the �rst �oor and a brace belonging to the second �oor
are damaged by 100%;

P4: two braces at the �rst and second �oor are completely damaged. Two
of the �oor beams are released from their endpoints;

P5: all the braces of the �rst �oor are damaged by 100%;

P6: all the braces of the �rst and third �oors are damaged by 100%;

P7: the braces from the same facade of the �rst and second �oors are
damaged by 100%;

P8: all the braces belonging to a facade are 100% damaged. Additionally,
two �oor beams (1st and 2nd story) are released from their endpoints.

The resulting cases to be analyzed are reported in Table 3.8.

Table 3.8. Cases analyzed in the IASC-ASCE benchmark.

Case Excitation Model Damage patterns
1 Wind 12 DOF Intact, P1, P2
2 Wind 12 DOF Intact, P3, P4
3 Wind 120 DOF Intact, P1-P4
4 Wind 12 DOF Intact, P5, P6
5 Wind 120 DOF Intact, P5, P6
6 Shaker 12DOF Intact, P5, P6
7 Wind 120 DOF Intact, P7, P8
8 Wind 120 DOF Intact, P1-P8
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Figure 3.11. Damage patterns considered in the IASC-ASCE benchmark.
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As done in Azimi and Pekcan [10], the simulated dynamic behavior of
the structure is obtained for the undamaged condition, and thus introduc-
ing the patterns P1-P8 by means of the Matlab code available in Dyke
[56]. The generated samples are collected according to 8 di�erent cases
summarized in Table 3.8.

As discussed in Johnson et al. [95] the damage patterns P1-P8, and
their grouping in cases, are not necessarily intended to directly represent
the complexity of a frequent or physically realistic damage mechanism,
but their variety is introduced to test the capability of Machine Learning
methods with di�erent damage typologies, DOFs in the numerical model,
and actions (wind, shaker).

The data obtained by means of the Matlab code simulation is generated
in terms of acceleration time history, thus the modal properties are derived
through the FDD algorithm [25]. For each of such cases, the generated data
are then split in training and testing according to a 5-fold cross-validation
approach. The performances of the D2-DTE are reported in the confusion
matrices of Figures 3.12 - 3.13.

With the aim of testing the D2-DTE , the present Section reports a
comparison with the damage classi�cation approaches originally discussed
in Azimi and Pekcan [10] and tested on Cases 1 - 8 by the authors.

In particular these damage classi�cation approaches rely on a �nely-
tuned Convolution Neural Network that analyzes acceleration data, the
source of which is either conventional sensors (MEMS raw data) or com-
pressed data. In particular, compressed data is obtained ideally sampling
acceleration time-histories at discrete time interval, as done by self-powered
sensors. The result of this sampling operation is thus a discrete histogram
representing the dynamic information in a compressed form.

The main di�erences distinguishing the method presented in the present
Chapter with respect to the approaches discussed in Azimi and Pekcan [10]
lie in the fact that the D2-DTE relies on a di�erent base-classi�cator, De-
cision Tree Ensembles, and the damages are assessed on to assess damages
based on the dynamic proprieties of the structure.

For the sake of comparison, Table 3.9 collects the results gathered on
Cases 1 � 8 by the D2-DTE and the two methods described in Azimi and
Pekcan [10]. For each case, the methods achieving the best accuracy are
reported in bold.
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Figure 3.12. Confusion matrices for cases 1-7.
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Figure 3.13. Confusion matrices for case 8.

Table 3.9. Comparison of the performances achieved by D2-DTE , and the
two methods described in Azimi and Pekcan [10].

Case Accuracy [%]
MEMS Self-powered Sensors DTE

1 98.6% 99.8% 99.8%
2 99.9% 99.9% 100%
3 97.6% 100% 100%
4 100% 91.6% 99.8%
5 100% 94.4% 100%
6 100% 96.3% 100%
7 100% 100% 100%
8 96.5% 98.1% 100%
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3.3.3 QUGS

The third dataset considered in the validation process is composed by
experimental data, and its purpose is to appraise the performances of D2-
DTE when applied in the analysis of a real physical structure. The dynamic
properties used in this experiment were obtained processing acceleration
time-histories recorded on a steel frame structure named Qatar University
Grandstand Simulator (QUGS) [2, 9]. This grandstand is made by IPE 220
hot rolled elements, and designed to hold 30 spectators. The frame is made
up of 8 main beams and 25 secondary beams supported by 4 columns. The
main beams are 4.6 m long, the secondary beams measure 77 cm, while the
height characterizing the two columns is 1.65 m. The main beams and the
25 secondary beams are connected by 30 joints, each of which is equipped
with an accelerometer. The damages on the frame are simulated loosening
the bolts of one connection at a time. For each damage pattern � 30 in
total � the acceleration is recorded in a time history.

For each scenario, the acceleration signals were recorded in correspon-
dence of each one of the 30 joints under a white noise shaker excitation
at a sampling frequency of 1024 Hz. The signals were recorded for 256
s. This process was conducted twice for each scenario, resulting in two
datasets: Dataset A and Dataset B. Then, the former data set is used in
the training phase, while the latter is employed in the testing phase of the
D2-DTE .

In order to apply the D2-DTE methodology herein proposed, the modal
properties of the structure are obtained, for each pattern, by means of
dynamic identi�cation. The dynamic identi�cation is then obtained from
the acceleration time-history applying the FDD technique.

In order to reduce over-�tting in the training process, a data augmen-
tation strategy is adopted, adding a 5% Gaussian noise to the dataset. The
results of a 5-fold cross-validation approach are reported in Figure 3.14,
evidencing an accuracy of 98.3%.
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3.4 Discussion

The numerical experiments presented in Section 3.3 are aimed to ana-
lyzing the performances achieved through the D2-DTE in assessing a wide
variety of damage scenarios in a diverse set of structures, being either FE
simulations or reals cases. In particular, the validation process tackles
three di�erent test cases: damage localization on numerical models, dam-
age identi�cation on the IASC-ASCE benchmark, and damage localization
on the QUGS.

The aim of the �rst test case consists in the study of damage detection
performance on simulated on numerical models, with respect to the de�-
nition of di�erent levels of details according to the proposed classi�cation
of section 3.2.2. In the detection of a single damage (either single element
cracking or joint failure), DTE attained 91%, 87%, and 84% mean accu-
racy (for 3%, 6%, and 9% noise), with standard deviations of 0, 07, 0, 10,
and 0, 11, respectively. Moreover, as expected, DTE achieved its lower
values when the noise levels are higher and the damage con�gurations are
more complex. Nonetheless, to evaluate the performances in terms of the
di�erent levels of detail considered, encouraging insights are gathered by
the determination of the distance metric (Error - DIST [m]). Analyzing
the results reported in Tables 3.3� 3.6, it is possible to notice how, even
in the case of signi�cantly reduced damage detection accuracy (in per-
centage), the localization error in terms of physical distances is limited.
A notable example of this behavior can be observed for the localization
of two simultaneous cracking damages in the 2D frame with a 9% noise
level (Table 3.3): in this scenario DTE exhibits the lowest accuracy (48%),
while achieving a relatively small average localization error (1.48 m). The
duality between these two metrics suggests that in the evaluation of the
performances with respect to di�erent levels of detail, accuracy alone can
only give limited information concerning the robustness of the DTE, while
distances can be used to estimate the magnitude of localization errors.

The results gathered testing the D2-DTE on the IASC-ASCE bench-
mark, point out the robust and accurate prediction across the whole set of
cases 1-8. In fact, out of the 8 cases analyzed, the adopted DTE learning
algorithm of the SHM framework was able to achieve exact matching in 6
cases, while registering a single misclassi�cation in the remaining 2 cases
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(case 1 and 4). Interestingly enough, both cases 1 and 4 are simulated
with the 12DOF model; nevertheless, the magnitude of the error is negli-
gible and does not allow to draw conclusions. For the sake of comparison,
the performances of the DTE are measured against those achieved by the
methods described in Azimi and Pekcan [10]. As reported in Table 3.9,
it can be seen that all of the three approaches scored an accuracy value
higher than 90% for the simulated damages. Additionally, it can be noted
how the CNN based on MEMS is characterized by the best performances
4 out of 8 times; the CNN based on Self-powered sensors 3 out of 8 times,
while the DTE characterizing the present framework achieves the best ac-
curacy in 7 out of the total 8 cases.

Lastly, the application of the D2-DTE framework to the QUGS bench-
mark data shows high prediction capabilities also in a real application envi-
ronment. In particular, as reported in the confusion matrix of Figure 3.14,
the DTE achieved 98.3% accuracy while recording limited localization er-
rors for a very small subset of damage con�gurations. On the contrary, for
example, in the analysis of the QUGS, the CNN coupled with self-powered
sensors of Azimi and Pekcan [10] achieved an accuracy of 91.9%.



Chapter 4
AI in Stress-based SHM: the

LA-ELM approach

4.1 Introduction

The study of damage-detection strategies for bridge structures de�nes a
well-established �eld in scienti�c literature [169, 191, 171]; within this con-
text, several works speci�cally refer to the possibility of detecting � through
physical measurements � the presence of damages a�ecting the prestressing
systems of bridge decks. These studies involve both experimental analyses
and numerical computations, and can be broadly classi�ed according to
the measurements considered in the assessment process, which are either
dynamic, static, or nonstructural. The following paragraphs summarize
the main research streams on the subject, yet a full review is beyond the
scope of this chapter; the reader is instead referred to Bonopera et al. [20].

The sensitivity of dynamic properties to damages a�ecting the pre-
stressing system has been evaluated both with numerical experiments and
by studying real-world structures. Conducing laboratory experiments, Hop
[85] found a cause-e�ect relationship between increased prestressing force
and increased vibration frequency. This correlation has also been observed
in other studies [166, 97], yet evidencing how after a certain threshold of
the prestressing force the increase in frequency is reduced. Conversely,
the �ndings of numerical studies partially contrasted these results, but
this behavior is possibly due to the fact that the simulations only included
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damages a�ecting the prestressing system, without taking into account the
e�ects of concrete crackings. Using a transformation method to process
vibration data, Tuttipongsawat et al. [185] proposed to use change of phase
space topology (CPST) index to detect damages, studying experimentally
measured acceleration histories. In their work, the authors observed a
correlation between the increase of damage severity with the increase of
the CPST index, noting a higher sensitivity to damages in comparison to
modal properties.

Allegedly, there is not a consensus in scienti�c literature concerning
the inter-relations of prestressing force and structural dynamics. For ex-
ample Chan and Yung [33] and Law and Lu [108] described that, as the
prestressing force increases, there is a reduction of the natural frequency
of the deck, while Vera et al. [186] �nd an opposite trend. Instead, Hamed
and Frostig [80] and Limongelli et al. [115] observed only marginal in�u-
ences of prestressing force over structural dynamics.

Di�erently from dynamic analyses, static tests for the evaluation of
prestress levels can be either destructive or non-destructive. The former
provide excellent results in terms of measurements but imply damaging
the structure and are thus not suitable for real-time assessment. Halsey
and Miller [79] evaluated stress levels in cables by cutting them and mea-
suring deformations with a strain gauge, Baran et al. [16] have instead
performed tests evaluating cracking loads while back-calculating prestress
levels. In their �ndings the authors assessed that prediction of losses based
on the study of crackings and standard theory of mechanics results in an
overestimation of prestress losses. Otherwise, the implementation of a real
time system requires the measurements to be non-destructive like those
proposed by Bagge et al. [12] and Azizinamini et al. [11], that correlate
local deformations to prestress level. An alternative is the evaluation of
de�ections in the presence of known loads, which could be produced by
closing the structure for a few minutes and allowing the transit of vehicles
with a known weight [40].

Lastly, a related stream of scienti�c research proposed tendon-evaluation
techniques based on non-structural measurements. Among others, acous-
tic evaluation can be used to assess failures. For instance, this approach
is used by Yuyama et al. [197], which measured how the rupture of a
tendon generates an acoustic emission that exceeds 100dB. The authors
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used such emissions to detect ruptures in their laboratory experiments,
�nding an 80% accuracy. A further set of experiments assessed the per-
formance of this method in a real-world context, studying two operating
bridges. The goal of the experiment was to appraise acoustic emissions
related to ruptures in presence of high ambient noise (e.g. tra�c). Emis-
sions compatible with those measured in the laboratory experiment were
generated by a rebound hammer. The authors found detection accuracies
between 80% and 90%. Another application based on the use of acous-
tic waves is described by Salamone et al. [168]. Using guided ultrasonic
waves transmitted through the prestressing tendons, the authors aimed to
detect defects or changes in prestressing force. The experimental results
presented indicated that the nonlinear ultrasonic parameter � the ratio
between higher-order harmonics and the fundamental generated harmonic
� is a suitable feature for monitoring prestress levels in posttensioned con-
crete beams. Di�erently, Oh et al. [145] developed and applied a movable
yoke system, coupled with a denoising algorithm, to detect the reduc-
tion of cross-sectional area in corroded external prestressing tendons. The
proposed method correctly detected corrosion events characterized by less
than 3% cross-section reductions. In line with the importance of continu-
ous and accurate structural monitoring, in the past few decades a growing
amount of research was devoted to the development of Structural Health
Monitoring (SHM) systems based on the use of Arti�cial Intelligence (AI)
and Machine Learning (ML) techniques; see [63] for a recent survey on the
subject.

Nevertheless, despite the interest in the study of PSC bridges, only few
works directly relate AI to these structural specimens. Cancelli et al. [31]
proposed a method to localize and quantify cracking damages using vibra-
tion data. The authors described a methodology consisting of a model-
updating framework based on a Particle Swarm Optimization algorithm,
tested with both numerical simulations and a laboratory experiment, in
which the data is collected on a single full-scale bridge girder. Supported
by the visual observation of crack locations registered during the labora-
tory test, the authors demonstrated that the model-updating algorithm
was able to identify the location of damages. Using structural dynamics as
input of an algorithmic methodology, Lee et al. [110] presented a novelty
detection approach to identify tendon damages in PSC bridges, based on
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the numerical analyses of acceleration histories of the deck as one or more
vehicles pass by. Using a convolutional autoencoder the authors mod-
elled the structure in the undamaged state and in three signi�cant damage
conditions, in which the tendons were a�ected by loss o tensions of 50%,
75%, and 100%, respectively. Additionally, in their numerical simulation,
random noise between 0% and 10% was added to simulate the possible
presence of measurement errors. The results of the numerical experiments
reported accuracies > 79.5% in the case of severe damages (100% and 75%)
with all error levels, and 50% damage severity with no error. Di�erently,
the authors report reduced accuracies in case of 50% damage severity with
5% and 10% error levels.

Reviewing the contributions proposed in the scienti�c literature, it
can be pointed out that just few of the cited research e�orts describe
ML approaches to monitor PSC bridges and detect tendon malfunctions.
Moreover, often the corresponding health assessment produced by such
algorithms mostly consists in limited details about the occurred damage,
rather than a precise quanti�cation and localization of the prestress loss
in the structure.

Finally, many application scenarios require model updating procedures
to yield reliable estimations of the structural performance [82]. Accord-
ingly, ML algorithms in these SHM scenarios may require frequent training
phases, subsequent to each model updating procedure. Henceforth, the
training time required by the ML algorithms is a key aspect to be consid-
ered as it can often be a bottleneck aspect in the applicability of proposed
algorithmic methodologies.

In this context, this chapter proposes a novel framework based on the
Extreme Learning Machine (ELM) model, a recent ML approach that in
many studies achieved high accuracies with reduced training times in com-
parison to classical deep learning techniques [89]. The aim of the present
work is to describe an innovative algorithmic methodology to provide a
precise detection and quanti�cation of damages a�ecting the prestressing
system of a PSC bridge, using local stress data. The proposed framework is
characterized by a layout-aware weight generating model (LA-ELM), that
accounts for the positioning of the sensors to guide the learning model to-
wards a spatially-consistent network topology.

According to the supervised learning paradigm, the described approach
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builds a training dataset simulating stress data in di�erent damage scenar-
ios, and trains the LA-ELM to precisely recognize the damage a�ecting the
prestressing system analyzing stress data. This proposal is tested in a di-
verse set of computational experiments that evaluates its performance in
the analysis of the numerical models of three PSC bridges.

The main contributions of this chapter are: (i) study of the e�ciency
and applicability of ELM in the context of SHM, (ii) implementation of
a problem-speci�c layout-aware weight assignment procedure for the de-
tection of tendon malfunctions in PSC bridges, and (iii) achievement of
high accuracies in short computational times and statistically signi�cant
improvements when compared to the classical ELM implementation.

The chapter is structured as follows: Section 4.2 reports the outline of
the proposed approach and a formal description of its components. Nu-
merical tests are described and discussed in Section 4.3 while Section 4.4
deals with the limitations of the numerical experiments.

4.2 Methods

The objective of the proposed methodology is the detection, localiza-
tion and quanti�cation of damages a�ecting the prestressing system of a
PSC bridge with n longitudinal beams. In this context, the developed al-
gorithm allows to evaluate n damage indices, related to the prestress load
of each beam, thus providing identi�cation, localization and quanti�cation
of the damage.

The work described in the present chapter employs an ELM-based algo-
rithm � named LA-ELM � embedded with a problem-speci�c weight gen-
eration procedure. According to this paradigm, for any single structure of
interest, it is possible to train the learning model on a datasets composed of
simulated structural responses � including both �pathological� and �non-
pathological� scenarios � to extract the intrinsic mathematical relations
connecting a set of physical input features to a speci�c assessment on the
health of the bridge.

The proposed methodology is based on the analysis of normal stresses
at di�erent points of the structure.

Currently, the estimation of stresses in structural elements is a major
R&D challenge for sensor manufacturers, and in the past years, many
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patents were �led on the topic (e.g. see [61, 178]). Although a general
evaluation of stresses presents several di�culties, in the linear-elastic region
of the stress-strain curve, Hook's law allows them to be easily derived from
strains. In civil engineering, several solutions have been described while
surveying passive wireless sensor networks [45]. Additionally, Lee et al.
[109] proposed the use of a novel design for a tri-axial piezo-resistive sensor,
based on a vertically integrated double-bridge scheme, and Gallucci et al.
[65] described a setup based on wireless communication and power systems
to evaluate the stresses in structural elements with a load cell.

In this work we refer to innovative parallel-plate capacity sensors � as
patented in [78] � that allow to precisely estimate local stress values in
structural elements by measuring changes in the electric signal due to con-
traction or the expansion of the dielectric material. This sensing unit is
able to adjust the measurement using data acquired from thermocouples.
Currently, di�erent studies are investigating the quality of the measure-
ments for di�erent structural types [102].

For the sake of simplicity, in line with what found in the literature,
in the remainder of the chapter such sensing system will be referred to as
stress-sensors.

With these recent �ndings in mind, the proposed methodology consid-
ers as input features the normal stresses evaluated at di�erent points of
the longitudinal beams of the deck. The use of normal stresses as input
features is justi�ed by the observation that variations of tension in the
prestressing tendons should induce a variation of the normal stress on the
beam.

This methodology can be applied to both new and existing bridges.
The main di�erences distinguishing these two cases are related to the two
following aspects: ease of installation, and the capability of the sensors to
evaluate the stress levels for deadweight loads.

Indeed, while the capacity sensors patented by Guidetti et al. [78] are
straightforward to install on new structures, their use in existing bridges is
being currently tested. Alternatively, many sensing systems can be used for
the estimation of stresses while measuring strains. To this end, di�erent
typologies can be considered, yet, in practical applications, each one of
these needs to be coupled with denoising strategies to isolate the e�ects
that external factors � e.g. temperature � have on the strain �eld.
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For their widespread di�usion in the measurement of strains, �ber op-
tics represent one of the reference technologies [92], and can be used for
both distributed or local measurements � when coupled with �ber Bragg
grating [195].

Recent research e�orts proved that soft elastomeric capacitive sensors
can be used to evaluate strains by assessing changes in the electrical charac-
teristics of the device [104]. In fact, the deformations alter the capacitance
of the sensor, and this can be correlated to strains, estimating stresses
accordingly. Notably, this technology can be used to measure strains over
large surfaces [103]. Further type of surface sensors for large areas are
based on Large-Area Electronics [75, 101].

For what concerns the capability of evaluate stresses, while in a new
structure the sensors measure the actual stress values, in an existing bridge
the sensors can only measure stress variations with respect to the condi-
tions assessed at installation. Therefore, the analysis of existing structures
requires an estimation of the initial stresses via a numerical model. Ac-
cordingly, the input of the predictive model � σML � will have the following
formulation:

σML = σRM + σSS (4.1)

where σRM is the numerically estimated deadload stress at the time of
sensor installation, and σSS is the stress value estimated by the sensing
system.

In this context, the problem of interest is formulated as a regression
analysis for each beam of the bridge, in which the numerical output to be
predicted gives an estimate of the stress levels of the prestressing cables.

Figure 4.1 presents a graphical representation of the methodology de-
scribed in this chapter. Ideally, the work�ow is divided in two main phases:
a set-up phase, in which the preliminary operations are performed, and a
second phase that takes on the actual monitoring of the structure.

The �rst two steps of the Set-up phase consist in the Finite Element
(FE) modelling of the structural system of interest and in the simulation of
a wide variety of damage conditions. These two operations allow to collect
numerically simulated stress data that can be then used in the training of
a LA-ELM algorithm for each beam of the bridge. In this training process,
the aim of the algorithmic model is to learn the association rule between
a speci�c stress vector � input � and the corresponding health assessment
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Figure 4.1. Graphical depiction of the proposed methodology.

of the prestressing system � output �.
Subsequently, the performance of the trained models are evaluated in

a testing phase. Such phase considers unseen vectors of stress values along
with their corresponding health assessment of the prestress cables, and
compares the regression of the LA-ELM with the actual health assessment
of each beam. The unseen vectors of stress data used in this step can either
by new numerical simulations of the target structure, or by data collected
from a physical structure, as done in real-time monitoring. This validation
phase represents a common practice in the context of ML for SHM, and
its goal is to assess the accuracy and robustness of the predictor.

4.2.1 Structural FE Modelling

The �rst step of the Set-up phase aims to build a benchmark database
of structural responses. To this extent, a �tting FE model allows to sim-
ulate the behavior of a structural system of interest in a wide variety of
damage con�gurations. This dataset will be used to train the LA-ELM.
In this context, the structural elements will be modelled with linear and
elastic materials, to simulate a scenario that aims to the detection of dam-
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ages a�ecting the prestressing system in absence of visual cues, such as
crackings and spalling phenomena. The structural specimens modelled in
this study are three PSC bridge decks characterized by common geometric
features, as reported in Table 4.1.

The bridge decks have been modeled in SAP2000 using a plate with
eccentric beam (PEB) modelling approach [3] as depicted in Figure 4.2.
This structural simulation strategy requires the use of one-dimensional
elements for beams, two-dimensional elements for deck slab, and rigid links
for the geometric o�set of the structures. The 2D continuous deck modelled
in the PEB approach enforces compatibility between girders and allows the
transfer of longitudinal shear forces between them, avoiding the need to
use approximating schemes based on e�ective widths and modular ratios.
In the modelling phase, more detailed 3D elements could also be used,
but this choice would result in a higher computational burden implied by
the increase in DOFs. Consequently, for the purposes of this work the
PEB approach has been identi�ed as an adequate trade-o� between model
�delity and computational e�ciency.

Figure 4.2. Numerical Model of a PSC bridge modelled using PEB approach.

In the reference models the bridge deck slabs are supported by 5 I-
shaped longitudinal prestressed beams and 2 rectangular-shaped transverse
beams. Table 4.1 shows beam sections for each one of the bridges modelled.

Lastly, the action of the prestressing system is modelled using the
SAP2000 native tendon elements. Tendons are adopted to simulate the
e�ect of post-tension in longitudinal beams. In particular, the native el-
ement permits to consider the e�ective tendon geometric shape and pre-
stress load.
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Table 4.1. Characteristic features of PSC bridges considered.

Deck
length [m]

Deck
width [m]

Deck slab
thickness [mm]

I-shaped
beams [mm]

Transverse
beams [mm]

20 12 250

30 12 250

40 12 250
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4.2.2 Damage simulation

To simulate the conditions characterizing a deteriorated bridge, this
work employs a strategy to stochastically introduce di�used damages in
the FE models of Section 4.2.1. This strategy consists in the simulation
of di�erent damage levels for each tendon of the I-shaped longitudinal
beams according to a statistical distribution. The simulation process �
depicted in Figure 4.3 � is divided in two fundamental step: (i) main
damage simulation, and (ii) damage di�usion.

Figure 4.3. Graphical depiction of the damage generation process.

Let A0 and N0 be, respectively, cross-section area and the axial force
characterizing an undamaged tendon. In the simulations, the cross-section
and axial force of a beam whose prestressing system is a�ected by a main
damage, respectively Ad and Nd, are obtained introducing a damage re-
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duction coe�cient, Di (< 1), such that:

Ad = Di ·A0 (4.2)

Nd = Di ·N0. (4.3)

As a direct consequence of Equation (4.3) the damage index Di is
strictly related to the loss of prestress load of each one of the longitudinal
beams (for i = 1, . . . , n).

In the numerical simulations considered in the present chapter, Di ac-
counts for thirty di�erent levels of damage, Di ∈ [0, 0.97], with a step of
0.03.

Once the main damage is simulated, stochastic di�used damages are
generated on the remaining beams. Letting η be the number of remaining
beams, the di�used damage reduction coe�cients Dij , j = 1, . . . , η, � to be
used as in Equations (4.2) and (4.3) � are determined as samples of a nor-
mal distribution with mean α ·Di and σ = 0.15, i.e. Dij ∼ N (αDi, 0.15).
In the present work α is set according three di�erent standard deviation
values, namely α ∈ {0, 0.33, 0.67}.

4.2.3 Data extraction

To carry out the training and testing phases, data in vectorial form
are extracted from the numerical analyses on the three reference bridge
decks. As stated in the description of the general framework, the proposed
approach uses stress data as input features of the regression model, yet, at
this stage, to allow for the comparison of di�erent inputs in the numerical
experiments, both stress and vibration data are extracted from the numer-
ical analyses on the three reference bridge decks.

In particular, a modal analysis collects the �rst 3 frequencies of the
structure, and the modal displacements are estimated on each longitudi-
nal beam � for each mode �, in 2 reference points, placed at L/4 and
3/4L. These same information, in a more operational scenario, could be
extracted using Operational Modal Analysis (OMA) of accelerometric sig-
nals collected on the physical structure [160].

Di�erently, the stress data consist in the normal stress along the middle
section of each beam, evaluated in two points located as shown in Figure
4.4.
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Figure 4.4. Graphical depiction of the positioning of stress sensors. (a)
cross-section view at mid-span; (b) deck as seen from above.

The result of this operation consists in a vector of input features, F ,
made up by either vibration or stress data, to be used as training infor-
mation in the damage detection system. The data extracted from the
numerical models of the PSC bridges are used to assess the performance
of the proposed ELM in damage detection, localization and evaluation.

In order to simulate the presence of the uncertainty characterizing mea-
surements in a real-world scenario, random white noise is added to F . In
particular, this noise addition procedure de�nes three di�erent noise levels,
and each component Fi ∈ F is modi�ed as

Fi = Fi + Fi · ξ, with ξ ∼ N(0, σ). (4.4)

The values of σ ∈ {0.003, 0.01, 0.016} de�ne three noise levels, namely
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low, medium and high. Using Chebyshev inequality, these σ values relate
noise levels to variations that are likely to be within 1%, 3%, and 5%,
respectively, of the original Fi. In the following, these three noise levels
will be denoted via such percentage variations.

4.2.4 Extreme Learning Machine

The Extreme Learning Machine (ELM) has been proposed as an ex-
tremely e�cient paradigm of single hidden layer feedforward neural net-
work (SLFN). According to this model, the only parameters that are
learned are the weights β of the edges connecting the hidden layer and
the output layer, while the hidden nodes are randomly initialized and then
�xed without any iterative tuning.

Besides its e�ciency, the ELM is characterized by the same universal
approximation capabilities of SLFNs, as shown by several theoretical anal-
yses (e.g. see [88]).

Let Ñ be the number of nodes of the hidden layer, and g(·) an activation
function, then the generic output oj of a SLFN can be modelled by the
following equation:

oj =

Ñ∑︂
i=1

βig(wi · xj + bi), j = 1, . . . , N, (4.5)

where wi (respectively βi) are the weights of the connections between the
i-th hidden node and the input (output) nodes, and bi are the biases of the
hidden nodes (see Figure 4.5).

Given the vector of target (output) values T � associated to the input x
�, the exact approximation of the input samples can be expressed through
the following vectorial equation:

Hβ = T , (4.6)

where

H =

⎡⎢⎣g(w1, b1,x1) · · · g(wÑ , bÑ ,x1)
...

...
...

g(a1, b1,xd) · · · g(wÑ , bÑ ,xd)

⎤⎥⎦ , and T =

⎡⎢⎣t1...
td

⎤⎥⎦ . (4.7)
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Figure 4.5. Schematic representation of ELM � feedforward neural network.

In traditional SLFN approaches the network is trained to �nd the opti-
mal set of w, b,and β such that the minimum of the norm ∥H(w, b,x)β−
T ∥ is attained. This step is usually carried out by means of gradient-based
algorithms that induce high computational costs.

Contrarily, in the ELM paradigm, the parameters of the hidden nodes
w and b are randomly generated according to a continuous probability dis-
tribution, without being explicitly tuned. The weights of the connections
between input layer and the output layer, instead, are yielded by minimiz-
ing the squared error in Equation (4.6). One of the optimal least-squares
solution of Equation (4.6) is given by:

β = H+T , (4.8)

where H+ indicates the Moore-Penrose pseudoinverse of H. In contrast
to the computationally expensive tuning of classical SLFNs, e�cient tech-
niques such as Gaussian elimination and single value decomposition can
be used to solve Equation (4.8).
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4.2.5 Layout-aware random weight distribution

While the standard implementation of the ELM is based on a com-
pletely random generation of w, recent researches explored the use of
problem-speci�c weight generation procedures to improve the performance
and the robustness of ELM in case of either noisy or missing data [124,
125, 86].

As mentioned earlier, the damage-detection methodology described in
the present chapter is based on a set of parallel ELM � one for each longi-
tudinal beam of the bridge � each of which takes the full data as input and
outputs a health assessment concerning the beam it refers to. In this con-
text, since the input data is related to a network of sensors placed on the
structure � either physically or in the numerical simulations � each ELM
is embedded with a weight generation procedure that assign weights ac-
cording to statistical distributions that depends on the distances between
the sensors and the beam to be assessed. The resulting ELM is named
layout-aware ELM (LA-ELM)

Let Bh be the beam whose health assessment has to be produced by
the ELM. Let w be the set of input weights connecting the input layer with
the hidden layer of the ELM. To scale the input weights in accordance to
the positions of sensors with respect to the central axis of Bi, w can be
yielded as the Hadamard product of two matrices, S and R:

w = S ⊙R, (4.9)

or equivalently
wi,j = Si,j ·Ri,j , (4.10)

where wij indicates the weight of the edge of the ELM connecting the i-
th input node and the j-th hidden node. It is noted how in the context
of SHM the i-th input node is related to the measurements of a physical
(resp. simulated) sensor, located on the structure. In Equation (4.10) R is
a Gaussian random matrix, i.e. Ri,j ∼ N (0, 1). Sij , instead, is a function
of the distance separating the sensor related to the i-th input node and the
central axis a of Bh. Let d be the vectorial distance separating a and the
sensor related to the i-th input (See Figure 4.6); d can be split into its two
projections on the horizontal and vertical axis, namely dx and dz. Then,
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Sij is obtained as

Sij =
sign(dz)

1 + d2x
. (4.11)

This formulation accounts for two problem-speci�c behavior that can be

z x

d

Bh Bk

stress
sensor

d = dx + dz

a

Figure 4.6. Scaling procedure

observed in a PSC deck: (i) the sensors may be located at points where the
e�ects of prestressing are di�erent, in case of damages in the compressed
zone there is an increase in compression, while in the traction zone there is
a reduction in traction; (ii) losses of tension in a tendon of a beam generate
a redistribution of stresses that is mainly noticed in the closer beams. The
ratio of Equation (4.11), then, is to adopt weights whose average value is
proportional to the distance of the analyzed beam. In this way, the attempt
is to amplify the sensitivity of stress redistribution to damage locations,
while the the sign at the numerator distinguishes between sensors located
in the traction and compressed zone, respectively.

The training process of the LA-ELM is summarized in the pseudocode
of Alghoritm 2.

4.2.6 Evaluation Metrics

Once the ELM is trained, its regression performance are evaluated
on the testing set using three di�erent metrics: Root Mean Square Er-
ror (RMSE), coe�cient of determination (R2), and the maximum error
recorded (MaxError).
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Algorithm: LA-ELM(Ñ , x, T , Bh)

Initialize Ñ nodes;
Compute distances d of each sensor si from beam Bh;
for each sensor s do

compute d;
project d to yield dz and dx;

Sij =
sign(dz)

1 + d2x
;

end
W = S ⊙R;
H = g(W · x+ b);
β = H+T ;
return trained LA-ELM(W ,b,β);

Algorithm 2: Pseudo-code for the LA-ELM for the health assessment
of a generic beam Bh.

Given a total of Ntest test samples, and letting yi and ŷi (i = 1, · · · , N),
be the actual and predicted values, respectively, then RMSE measures the
square root of the mean squared error:

RMSE(y, ŷ) =

⌜⃓⃓⎷ 1

Ntest

Ntest∑︂
i=1

(yi − ŷi)
2. (4.12)

Di�erently, R2 provides indications regarding the goodness of adapta-
tion of the regression model to the data, i.e. evaluates how well unseen
samples are likely to be predicted correctly. Its mathematical formulation
is:

R2(y, ŷ) = 1−

Ntest∑︂
i=1

(yi − ŷi)
2

Ntest∑︂
i=1

(yi − ȳ)2

, where ȳ =
1

Ntest

Ntest∑︂
i=1

yi (4.13)

The last metric measured in the numerical experiments is MaxError.
This value provides the maximum error recorded in the testing phase, i.e.

MaxError(y, ŷ) = max
i=1,...,Ntest

|yi − ŷi|. (4.14)
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The knowledge of the maximum error committed, especially on large
samples, can be used to estimate the maximum possible inaccuracy of the
regression method, thus providing useful information when accounting for
the safety of an automatic health assessment.

4.3 Computational Results

The validation of the ELM framework herein adopted is organized
through four di�erent numerical analyses, reported in Sections 4.3.1 - 4.3.4.
The numerical experiments investigated are:

1. Input Comparison : to study the possible advantages of using
stress as inputs rather than dynamic measurements.

2. Layout-aware random weight testing : to assess the improve-
ments achieved using the proposed LA-ELM in comparison to the
classical ELM implementation.

3. Learning models comparison : to explore the trade-o� between
accuracy and computational e�ciency of the proposed LA-ELM in
comparison to other standard Machine Learning algorithms.

4. Parametric Analysis: to evaluate the in�uence of several inde-
pendent variables � deck length, beam to be assessed, noise level �
on the performance of the proposed methodology.

The subject of the analyses discussed in the present section are the three
bridge structures (20 m, 30 m, 40 m) � as reported in Table 4.1 � each
of which is analyzed in presence of three di�erent Gaussian noise levels,
namely 1%, 3%, and 5%.

In the numerical experiments the Training-Testing split is carried out
using a random hold-out approach with a 70:30 ratio. All the errors re-
ported in the following sections are relative to the testing dataset.

All the Machine Learning algorithms featured in the experiments are
implemented in Python 3.9 using the Scikit-learn library. All the numerical
experiments are conducted on a Virtual private server with a 2.2 GHz Intel
Xeon CPU E5-2630 v4 processor with 8 GB of RAM, and a three level cache
with levels of 32KB, 4096KB, and 6144KB.
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4.3.1 Input comparison: stress and vibration

The �rst set of numerical experiments is devoted to the study of the
regression performance achieved using stress data as input.

The objective of these analyses is to hold a preliminary evaluation of
the sensitivity of dynamic characteristics and the global stress distribution
to decreases in prestressing force. The parallel of these two sensitivities
lies within the scope of the assumptions and simpli�cations underlying the
FE modelling of Section 4.2.1. Accordingly, the standard ELM implemen-
tation is trained using either stress (ELM - stress) or vibration (ELM -
vibration) data as input. Table 4.2 reports the results gathered in this
�rst comparative analysis.

Table 4.2. Summary of results obtained comparing ELM-vibration and ELM-
stress.

ELM - vibration ELM - stress
L [m] Noise RMSE R2 MaxError RMSE R2 MaxError

20 1% 0,356 0,12 0,67 0,033 1,00 0,06
3% 0,411 -0,26 0,85 0,046 0,99 0,08
5% 0,437 -0,46 0,79 0,064 0,96 0,14

30 1% 0,400 -0,18 0,79 0,043 0,99 0,08
3% 0,432 -0,32 0,84 0,077 0,94 0,17
5% 0,452 -0,62 0,85 0,101 0,90 0,21

40 1% 0,407 -0,15 0,76 0,052 0,98 0,11
3% 0,435 -0,39 0,84 0,100 0,90 0,23
5% 0,435 -0,68 0,91 0,100 0,82 0,33

Avg 0,418 -0,33 0,81 0,068 0,94 0,16
std. dev. 0,029 0,23 0,06 0,027 0,05 0,08

Analyzing the RMSE values, it is possible to observe how consistently
the regression achieved by ELM-stress exhibits lower errors with respect
to ELM-vibration. In fact, on average, with stress as input values, the
ELM scores a RMSE of 0.068, with a standard deviation of 0.027. In con-
trast, the use of vibration data yields an average RMSE of 0.418 with a
standard deviation of 0.029. Analogous observations stem from the anal-
ysis of the maximum errors recorded in the regression of the test dataset.
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Averaging over all structures and noise levels, the maximum error commit-
ted by ELM-vibration (0.81) is approximately �ve times higher than the
maximum error recorded using stress values as input (0.16). Therefore,
considering a deployment scenario in which the ELM algorithm is imple-
mented to automatically monitor the tendons of a PSC bridge of interest,
these preliminary numerical analyses suggest that the use of stress values
as input would lead to a less error-prone monitoring system. To highlight

Figure 4.7. Visualization of average and worst case performances recorded
for the ELM, in the cases of: L = 30 m, Noise = 1% and using stress data.

physical meaning of RMSE values, Figure 4.7 shows examples of average
and worst case prediction for the 30 m deck with 1% noise using stress
data. In detail, for each beam, the �gure shows the actual damage indexes
(�rst row), and the prediction ranges in case of mean error (second row)
and maximum error (third row).

Similar conclusions can be drawn analyzing R2 values. Such metric
analyzes the proportion of explained variance in the regression model and
provides an indication of goodness of �t, i.a. a proxy measure to evaluate
how well unseen samples are likely to be predicted by the model. Values
closer to 1 indicate a better �t, while a constant model that always outputs
the expected value of the independent variable would score a R2 value 0.
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Analyzing Table 4.2, it is possible to note how ELM-stress is characterized
by high R2 values, on average always greater than 0.82. This observation
indicates that in the datasets analyzed the stress-damage relationship ac-
counts for more than 82% of the total variation. Conversely, the R2 scores
of ELM-vibration are either close to zero or negative. This behavior evi-
dences that the use of vibration data leads to a regressor which generally
�ts worse than the mean value of the independent variable. These obser-
vations concerning the goodness of �t of the two models are re�ected in
the two regression plots, reported in Figure 4.8. For the sake of brevity
only the median value of the noise (3%) is presented.

Therefore, the �rst set of numerical experiments evidenced how the
performance achieved using vibrational features as inputs lead to worse
results in the analysis of the dataset presented in Section 4.2.1. This �nding
agrees with the conclusions of Hamed and Frostig [80] and Limongelli et al.
[115], that discussed how changes in the magnitude of prestressed force do
not appear to a�ect the natural frequencies of prestressed beams.

For the sake of fairness, as a consequence of this �rst numerical analysis,
all the following numerical tests � whether it be involving the ELM or other
learning algorithms � will use stress as input features.

4.3.2 Testing layout-aware random weights

To justify the use of a case-speci�c weight assignment procedure, the
present section reports a comparison between Layout-aware ELM (LA-
ELM) and ELM with completely random weights. As stated previously,
both networks use stress data as input values. Table 4.3 reports a compact
summary of the RMSE value recorded in this comparative experiment.
In addition to RMSE averages and standard deviations, the results are
reported in terms of relative di�erence (%gap) with respect to the best
value, i.e. for each method and each analysis, such gap is computed as

%gap =
RMSE− best RMSE

best RMSE
· 100. (4.15)

Analyzing the �ndings reported in Table 4.3 it is possible to note that
LA-ELM consistently scores the lower RMSE values between the two ap-
proaches. This behavior is correctly underlined by the %gap column,
according to which LA-ELM is the approach that yields the best result
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Figure 4.8. Comparison between regression quality achieved using Vibration
data (left) and Stress data (right) as inputs, noise level 3%.
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LA-ELM ELM
L [m] Noise RMSE %gap RMSE %gap

20 1% 0,018 0% 0,033 81,0%
3% 0,036 0% 0,046 28,9%
5% 0,056 0% 0,064 13,4%

30 1% 0,030 0% 0,043 43,2%
3% 0,070 0% 0,077 10,9%
5% 0,099 0% 0,101 2,7%

40 1% 0,041 0% 0,052 26,5%
3% 0,098 0% 0,100 1,5%
5% 0,098 0% 0,100 1,4%

Avg 0.061 0% 0.068 23,29%
std. dev. 0.032 0 0.027 0.260

Table 4.3. Summary of the comparison between Layout-aware ELM (LA-
ELM) and ELM with completely random weights.

� always scoring 0% relative di�erence with respect to the best RMSE.
Moreover, to quantify the bene�ts of a layout-aware weight assignment,
it is possible to note how the standard ELM exhibits errors that are on
average ≈ 23.3% worse of the best values (i.e. those of LA-ELM). While
still present, the bene�ts of using LA-ELM with respect to the standard
approach appear to be less convenient when the length of the beam deck
increases. This behavior can be related to the observation that the layout-
aware approach is strictly related to the distances separating the sensors,
and the number of sensors that yields excellent performance for a 20 m
bridge deck could be less decisive in the case of a 40 m bridge deck.

Finally, the statistical signi�cance of the improvements of LA-ELM
over the standard ELM is assessed via a two-sided Wilcoxon signed-rank
test. In particular, the 12 average RMSE values achieved by each method
in the analyses are compared as samples of two distributions, related to LA-
ELM and the standard ELM, respectively. A two-sided Wilcoxon signed-
rank test � with critical value α = 0.01 � suggested that these averages are
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signi�cantly di�erent (p-value equal to 4.88 · 10−4).

As a result of this analysis, the following tests will feature the Extreme
Learning Machine in its layout-aware implementation (LA-ELM).

4.3.3 Comparing learning models

Many di�erent Machine Learning algorithmic approaches have been
described in the context of Structural Health Monitoring to the aim of
detecting damages. Without any claim of providing an exhaustive list,
the wide variety of learning algorithms considered ranges from classical
methods, such as K-Nearest Neighbors (KNN) [187, 170, 60] and Support
Vector Machines (SVM) [26, 98, 77], includes ensemble methods such as
the Random Forests (RF) [141, 128], and often features the accurate and
computationally demanding neural networks (NN) [121, 34, 134, 1].

The aim of the present computational experiment is to explore the
trade-o� between performance and computational times when comparing
LA-ELM with other learning models. The present analysis is not intended
as a direct comparison with other methodologies presented in the same
�eld for di�erent structural specimens. In fact, di�erent structure of inter-
est are characterized by di�erent geometric features and problem-speci�c
challenges. The aim of these tests is to highlight the possible bene�ts of
using a LA-ELM as a base learner to build a continuous SHM framework.

To asses the compromise between the regression capabilities of the
learners and their computational expenses, this numerical experiment con-
sidered 5 di�erent learning models: LA-ELM, KNN, NN, RF, and SVM,
measuring both the RMSE errors achieved and the time spent in the train-
ing phase. Since each one of such methods is characterized by its own set
of parameters, the training phase included a grid search to �nd the best
set-up for each one of the tested algorithms. Moreover, since the results
are reported in terms of best RMSE values, the total times for tuning and
training are reported for each method.

Figure 4.9 shows the box-plots of the RMSE distributions characteriz-
ing each learning model considered in this study. Observing the distribu-
tions it is possible to distinguish two groups. The �rst group is composed
by relatively simple learning models, that exhibit the worse performance
on the dataset: KNN, SVM and RF. This behavior suggests that learners
of this group do not perform particularly well on the reference dataset,
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and present worse capabilities of generalizing the information collected in
the training. On the other hand, the second group is made up by the
two deep learning algorithms considered in this study, LA-ELM and NN.
The two deep learning algorithms are apparently equivalent in terms of
scored RMSE � both with median values < 0.05 and maximum RMSE
≈ 0.12 � and outperform the learners of the �rst group. This observation
is expected and can be related to their inherent complexity, that can yield
better generalization capabilities.

KNN LA−ELM NN RF SVM
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15
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Figure 4.9. Comparison of the RMSE of LA-ELM with respect to other well
established supervised learning algorithms.

While the distribution of RMSE evidenced how the two deep-learning
models (LA-ELM and NN) perform better than the other three algorithms
featured in the numerical analyses, a study of the time spent in the tuning
and training phases can give useful information when accounting for the
bene�t/costs trade-o� of employing these learners in operational scenarios.
For each learning model other than the LA-ELM, Figure 4.10 reports the
computational times recorded, normalized with respect to the average time
of LA-ELM, that Figure 4.10 indicated by the solid horizontal line y = 1.
Additionally, for reference, a dotted and a dashed line report, respectively,
the maximum and minimum normalized times of LA-ELM.
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As expected, observing the positioning of the time distributions in Fig-
ure 4.10 it is possible to note that the shallow learners always require
less training time with respect to NN and LA-ELM, given their simpler
structure. This phenomenon suggests that a decrease in terms of time of
computation needed comes at the price of less accurate regression perfor-
mance. On the other hand, the LA-ELM is faster than NN by almost one
order of magnitude. Additionally, the standard deviations σ are 4.8 and
33.7, respectively, for LA-ELM and NN. These σ values imply that the
the training times for the LA-ELM are consistently distributed in a small
neighborhood around the mean value, while NN times are more scattered
and tend to �uctuate more away from the mean.

The �ndings in the analysis of the training times is in line with previous
studies [89] and suggest that the ELM appears to be characterized by good
generalization performance while not implying a heavy computational bur-
den. These characteristics potentially make ELM a well suited framework
to tackle many Structural Health Monitoring problems in which e�ciency
and e�ectiveness are both key aspect of the operational scenario.

Figure 4.10. Comparison of the computational times required by the com-
pared methodologies, normalized with respect to the average time required by
LA-ELM.
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4.3.4 Parametric Analysis

The last set of analyses studies how the performance of LA-ELM is
a�ected by the variation of di�erent parameters. In particular, as described
in Figure 4.2, the numerical dataset considered includes variations of three
di�erent independent variables: the length of the bridge (L), the beam
a�ected by the main damage (Beam n◦), and the noise level considered.
Each of such independent parameter has its own range of possible values,
as reported in Table 4.4.

Table 4.4. Domains of the independent parameters characterizing the
dataset.

L [m] Beam n◦ Noise

20, 30, 40 B0 - B4 1%, 3%, 5%

Figure 4.11 shows three scatter-plots relating the e�ectiveness of LA-
ELM � in terms of RMSE scores � with respect to the variations of the
three independent parameters of Table 4.4.

The distribution of RMSE values of Figure 4.11 a) evidences a positive
correlation of the magnitude of errors and deck length. This behavior is
possibly related with the fact that the numerical models of the bridge decks
considered are provided with the same amount of measurement points, as
shown in Figure 4.4.

The e�ects of Gaussian noise � Figure 4.11 b) �, as widely expected,
are closely correlated with the performance of the method. Higher noise
values imply a higher scattering rate in the space of input features, and
thus worse regression performance. Nevertheless, the average RMSE values
evidenced by the LA-ELM are always lower than 0.15.

Studying the performance of LA-ELM with respect to the beam to
be assessed � Figure 4.11 c) � it is possible to observe how the method
is consistent across the whole set of longitudinal beams. Only a slight
correlation favouring the outermost beams (B0 and B4) can be appreciated,
yet by these numerical experiments is not possible to determine whether
such slight improvement in performance is due to random noise or to the
fact that the outermost beams are generally the most stressed, and thus
most sensitive to stress variations.
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4.4 Limitations

The numerical experiments of Section 4.3 suggest that the proposed
LA-ELM can analyze stress data to yield favorable results in the detec-
tion and localization of damages a�ecting the prestressing systems of PSC
bridges. At the same time, this exploratory study presents some limitations
that need to be considered in the evaluation of the results and addressed
in future works.

The main point requiring consideration is the simpli�cation implied
by a purely numerical analysis. While drawing preliminary conclusions,
computational simulations are a capital resource, yet these allow to by-
pass the inherent complexity that characterizes applications in operating
�eld conditions. For this reason, future investigations need to include
real-world data, accounting for the in�uence of di�erent environmental
conditions on the behavior of the structure. Indeed, di�erent air humid-
ity levels and daily temperature variations can induce additional internal
forces that cause increased de�ections and a�ect global stress distribu-
tions. The use of real-world data will also increase the knowledge of the
physical phenomena in action, driving the scienti�c community towards
more accurate models and thus reducing epistemic uncertainties as much
as possible. Consequently, further evaluations of the e�ectiveness of the
proposed methodology require the use of both laboratory and �eld exper-
iments.

The study of in-operation monitoring will also pose additional questions
to consider from both technical and management standpoints, including
the possibility of correctly estimate moving loads or the operational costs
of service interruptions.

Moreover, the proposed analyses on the detection of prestress losses,
rather than a direct comparison between the use of stress data and the
classical dynamic monitoring, should be intended as a feasibility study
investigating the practicability of the novel LA-ELM methodology, whose
performance � as other ELM counterparts in di�erent application �elds �
continues to show high accuracy with limited computational expenses.

Further evaluations on physical structures can e�ectively appraise the
bene�ts of employing the proposed algorithm, directly comparing its detec-
tion capabilities with state-of-the-art statistical pattern recognition meth-
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ods based on the study of modal properties variation.





Chapter 5
AI in Inspections: Fast

Post-seismic assessment of

masonery buildings

5.1 Introduction

Since 1997, in Italy, the assessment report used is the Aedes form,
whose acronym in English can be translated as "Practicability and dam-
age in the seismic emergency" [49]. It is a form for the fast detection of
damages, the de�nition of prompt intervention measures, and the evalu-
ation of post-seismic practicability of buildings with ordinary structural
typology (in masonry, reinforced concrete, steel, or wood) of the building
for housing and services [51]. Similar forms have been approved by North
American and New Zealand authorities.

Machine Learning and Deep Learning techniques are highly used in the
context of structural engineering, especially for Structural Health Monitor-
ing and damage detection applications [59, 73, 127]. These applications are
based on the analysis of the di�erent types of data; the most common are
vibration data [126, 2, 90], highly sensitive to mass and sti�ness, and static
data [74, 19], correlated to change of stress state. These more advanced
techniques are challenging to use in the post-earthquake fast assessment
phase because they require an ad-hoc sensors system during all operational
phases of the structure or an accurate study to estimate the pre-seismic



132Chapter 5. AI in Inspections: Fast Post-seismic assessment of masonery buildings

structural condition. Therefore, for ordinary structures, there is a need for
a system that can provide results quickly, albeit with a lower level of ac-
curacy. The di�usion and development of Deep Learning (DL) algorithms
for image analysis are enabling the development of several solutions based
on the use of camera Images or surveys for assessing the state of structures
[55, 150]. Such methodologies can directly detect damages from a photo
or video frames or process video and derive its dynamic properties.

Several approaches have been de�ned for the support of engineers dur-
ing a visual inspection, using a Deep Learning-based system [99, 196]. Most
of them are focused on bridges since codes require periodic inspections for
this kind of structure. On the other hand, for masonry buildings that are
very susceptible to earthquakes, there are no approaches in the literature
to support or replace the on-site inspection in order to detect, localize and
quantify the structural damage. This study is the �rst attempt to give a
synthetic report of the structural damage for a masonry building through
a DL-based approach to the authors' best knowledge.

In this context, we propose the use of a vision-based system to sup-
port post-disaster Building Safety Evaluations for masonry buildings. An
automatic approach can speed up a process mainly based on manual in-
spections. In addition, the introduction of a support system based on
machine learning in error-prone activities, such as the safety report �lling,
permits more precise correspondence between the actual state and the de-
tected state.

The main contributions of this work can be summarised as follows:

1. A DL-based approach for crack detection, localization, and quanti�-
cation on masonry buildings utilizing photos of buildings facades;

2. The preparation from scratch of a dataset of concrete cracks for
model training;

3. A baseline methodology to produce a synthetic assessment of the
structural damage to support the compilation of inspection forms or
highlight compilation errors by technicians.

The rest of the Chapter is structured as follows: Section 5.2 describes
the proposed approach for crack detection, localization, and quanti�cation
in masonry buildings; Section 5.3 reports and analyses obtained results.
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Figure 5.1. The work�ow of the proposed approach. On the right there is an
example of the building zones subdivision: Pi represents a pier, Si represents
a spandrel, Ri a rigid zone. On the right there is an example of the matrix of
damages.

5.2 Materials and Methods

This section, starting from the overall description of the methodology,
illustrates the components that contributed to the whole approach.

5.2.1 The Proposed Approach

We propose an image analysis approach, using a set of pictures of
the building to be assessed, that provides a synthetic tool to support the
compilation and validation of the safety assessment forms �lled on site.
Figure 5.1 shows a diagram for the overall approach we proposed.

This approach is based on the interaction of two di�erent vision-based
predictive models that have the objective to detect, localize and quan-
tify the damage. The Images are acquired during the inspections of the
technicians, using high-resolution cameras or by UAVs that detect the dif-
ferent facades of the building following a predetermined path. Both two
methodologies can achieve good performance. However, the �rst allows us
to emphasize the details and then highlight the minor damage in the most
accessible areas by the technician; vice versa, the drone allows a constant
degree of accuracy regardless of the presence of damages. The acquired Im-
ages are then processed by the two components of the Damage Assessment
system. The �rst component deals with the identi�cation of the cracks and
their intensity. In contrast, the second deals with the localization of the
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cracks concerning the schematization adopted in the macro-modeling ap-
proach [23]. Starting from detecting the openings, piers, spandrels, and
rigid zones will be identi�ed. In particular, as depicted in Figure 5.1, we
adopted the following labeling scheme: wall piers are areas on left and
right of openings, wall spandrels are areas on top and bottom of openings,
rigid zones are areas of intersection between piers and spandrels.

The result of the two components is synthesized in the matrix of dam-
ages (matrix in Figure 5.1). This matrix provides information on the
amount, intensity, and location of the damage. The generic element of
this matrix has the number of cracks detected belonging to the i-th class
of damage intensity and located in the j-th macro area. This matrix allows
a rapid correlation with the state of the structure. Knowing the extent and
quantity of damage, it is possible to estimate the reduction of sti�ness of
the di�erent macro-areas and, through simpli�ed approaches, evaluate the
overall extent of loss of strength of the structure.

5.2.2 Data preparation

Deep Learning (DL) algorithms are data-driven techniques; thus, they
profoundly rely on data quality and the amount of data. Primarily, it
needs to pay attention to the model's ability to adapt appropriately to new,
previously unseen data, i.e., avoid over�tting training data. This aspect
is of particular importance in this work. The Images to be analyzed will
be taken by instrumentation on drones rather than by technicians during
the inspection. So, photos will be highly heterogeneous in brightness,
shot angles, and backgrounds. These features make the task analyzed in
this work more challenging because, in past works, special consideration
was frequently paid when collecting data so that photos are taken in a
homogeneous way keeping stable conditions, such as distance, angle, etc.
[113, 52, 147]. These rules cannot apply strictly to photos taken by UAVs
rather than by technical personnel. In addition, already existing datasets
do not provide data about the severity of the cracks.

Therefore, a generic dataset, able to include several scenarios, is critical
for increasing the chance of developing a tool that can generalize well and
perform adequately in real cases. Considering all these requirements, a new
dataset was prepared for this study. The training dataset was populated
by labeling photos of post-earthquake surveys in central Italy. Additional
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photos were obtained from the Internet. In order to emulate the scenario
where di�erent users and instrumentations will work to the data collection,
various people photographed cracks with their phones or DSLR cameras.
We provided them with simple guidelines, e.g., photographing a whole
single facade of a building at a time, being in the front of the facade when
possible. The dataset also contained various photos collected by camera
drones. In total 115 photos containing cracks, positive patches, and 222
without any crack, negative patches, were gathered. They include several
strong light, distortion, and darkness types and have di�erent resolutions.
These photos were divided into 224 × 224 pixels patches, which led to
1652 patches containing cracks. Moreover, 11490 non-crack patches were
randomly selected from the gathered photos. For the negative patches,
two patches could not overlap. In order to increase the number of crack
samples, because crack patches only consist of a small proportion of the
collected Images, we generated new patches with the following steps: (i) for
a patch containing crack, we got all adjacent patches with an overlapping
both horizontal and vertical of 50%; (ii) �ltering out all generated patches
which not contain cracks; (iii) rotation of each candidate patch by a random
angle α ∈ [0◦, 360◦]. Out of the generated samples from the above steps,
the �nal dataset contained 5423 positive patches.

Multiple annotators labeled the dataset, and they were asked to an-
notate several pieces of information beyond the crack segmentation. In
particular, they annotated the severity of the crack, i.e., low, moderate,
high. Low severity was assigned to surface damage visible in close-up pho-
tos. Medium severity was assigned to small cracks (< 5mm) for which the
space is not such that shadows are evident between the crack edges. High
severity was associated with all damage e�ects with signi�cant crack open-
ing with shadows or other major disruption. Of the 5423 positive patches,
813 had a low severity, 1861 moderate, and 2749 high.

In addition, all building openings, i.e., doors and windows, were labeled
too. From the 337 photos taken, 2250 building openings were labeled.
Windows and doors were considered with their frames. We had to take care
of occlusion during the labeling phase, an inevitable feature in the captured
data. An occlusion occurs when objects appear in front of objects we label.
In that case, we employed a simple strategy: if an object is occluded, the
area was still labeled with its corresponding category. This choice arises
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from the fact that, in this work, we are mainly interested in identifying
the whole area occupied by the object.

5.2.3 Crack detection with Convolutional Neural Networks

In this research, di�erent state-of-the-art CNNs pre-trained on Ima-
geNet [48] were examined for their e�ectiveness in classifying Images from
building surfaces on patch level. The addressed problem was a multi-class
classi�cation where the model must discriminate between (i) non-crack, (ii)
low severity crack, (iii) moderate severity crack (iv) high severity crack. As
the reference dataset described in Section 5.2.2 is relatively small to enable
a robust training of a complete deep learning model, transfer-learning via
�ne-tuning was applied. Fine-tuning was implemented by training only
the fully connected (FC) layers at the top of a pre-trained network, using
the new data with a low learning rate. In details, an FC layer with 512
features and recti�ed linear unit (ReLU) activation was added, followed by
batch normalization and a dropout layer with a probability of 0.5. Batch
normalization is an approach that improves the speed, performance, and
stability of arti�cial neural networks and it is used to normalize the input
layer by adjusting and scaling the activations. At the same time, dropout
temporarily disconnects the neural connections between connected layers
during training. Finally, an FC layer with softmax activation was placed
to classify the Images into one of the four classes. CNNs taken into account
were: VGG16 [118], DenseNet121 [87], ResNet34 [81], ResNet50 [81]. We
trained all our models using Adam optimizer with β1 = 0.9, β2 = 0.99,
ϵ = 1−5, a weight decay of 1−2 and a batch size of 64. The considered loss
function was the cross entropy (CE) loss function (Lce) and is given as:

Lce = −(ylog(p) + (1− y)log(1− p))

where y is the ground-truth and p is the probability for that class.
In order to �nd an optimal learning rate (LR) value, we made use of the

learning rate range test [176]. LR range test is a technique to estimate the
reasonable minimum and maximum boundary values for LR. It runs the
model for several epochs while letting the LR increase linearly between low
and high LR values after each mini-batch, until the loss value explodes.
Plotting the accuracy versus the LR allows choosing the LR one order
lower than the point where the loss is minimum.
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The performance of the networks was evaluated based on the values of
accuracy and F1-score, which are de�ned as:

Accuracy =
TP + TN

TP + TN + FP + FN

F1 = 2× precision× recall

precision+ recall
=

TP

TP + 1
2(FP + FN)

where TP, TN, FP and FN correspond to true positive, true negative, false
positive and false negative, respectively.

Since the problem is a multi-class classi�cation task, the single per-class
scores were combined, averaging them. The dataset was split into training,
validation, and test sets with ratios 70%, 20%, and 10%, respectively.

5.2.4 Building zones labeling

Section 5.2.1 described how, knowing building openings position, a
building facade was subdivided into piers, spandrels, and rigid zones. In
this work, building facade openings detection is implemented by means of
image segmentation via Convolutional Neural Networks. We categorized
the facade image data into two classes: windows and doors. A pseudo-class
representing the background categorizes all features that do not belong to
other classes. The �rst deep-learning approach for the semantic segmenta-
tion task was based on a fully convolutional neural network (FCN) [120].
In an FCN, the fully connected layers are replaced by convolution layers
that act as deconvolution operators. The deconvolution operations restore
the output feature maps to the original input resolution, resulting in a
class label corresponding to each pixel, i.e., a pixel-wise mask. The spatial
resolution of the feature maps, i.e., the outputs of each convolution layer,
decreases throughout the feature extraction process, allowing the learned
feature maps to be more invariant to small translations of the inputs. How-
ever, this downsampling process becomes a considerable concern because
the process can potentially erase much information. Herein, we used a U-
Net-based architecture, an improvement of FCN. U-Net [203] introduced
operations called skip connections, outperforming the FCN approach. The
architecture has an e�cient symmetric encoder-decoder structure, with a
downsampling part, i.e., the encoder, and an upsampling part, i.e., the
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decoder. Skip connections concatenate feature maps from the contracting
path to the symmetric feature maps in the expansive path. The design
allows for features representing small object information to be transmitted
to higher levels of the network, better preserving small object information.
Because windows and doors are small objects to detect in a building fa-
cade dataset, the bene�ts of the symmetric U-Net architecture are highly
relevant to our problem.

Instead of using the encoder as published in the original paper, U-Net
was employed as a backbone architecture, but several models replaced the
encoder part. We experimented with the same models adopted in the
classi�cation task: VGG16, DenseNet121, ResNet34, ResNet50. As the
reference dataset is relatively small to enable a robust training of a com-
plete deep learning model, transfer learning via �ne-tuning was applied in
this task too. In particular, weights computed with the crack classi�cation
task described before were adopted as a starting point.

Models were trained with image patches of 512× 512 and using Adam
optimizer with β1 = 0.9, β2 = 0.99, ϵ = 1−5, a weight decay of 1−2 and a
batch size of 10. The considered loss function was the dice loss function
which is given as:

Dice =
2 |A ∩B|
|A|+ |B|

Ldice = 1−Dice

where A is the predicted segmentation mask, B the ground-truth one and
|.| represents the number of elements in the set.

The learning rate was found with the LR range test technique discussed
before. One cycle policy [177] variated the LR during the training. The
technique requires an initial interval of values: we choose the maximum
value using the range test and the lower as 1/5th or 1/10th of the max-
imum LR. Starting from this interval, the algorithm went from the lower
to the higher value in step one and from the higher back to the lower in
step two. We used this approach for each epoch, considering a lower value
of 1/10th or 1/100th w.r.t. the maximum one in the few last epochs. An
early stopping criterion was used to stop training once the model perfor-
mance stopped improving on the validation dataset. The dataset was split
into training, validation, and test sets with ratios 70%, 20%, and 10%,
respectively.
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Network Accuracy F1

VGG16 87.0% 81.8%
DenseNet121 91.1% 86.5%
ResNet34 94.7% 89.5%
ResNet50 89.9% 84.6%

(a) (b)

Figure 5.2. Results for the patch classi�cation task. (a) Metrics of the
networks;(b) Confusion Matrix for ResNet34 model

A series of post-processing operations were applied to the segmenta-
tion masks in order to reduce imperfections by accounting for the standard
structure of doors and windows, i.e., rectangular shape. Primarily, noisy
data were �ltered out using remove_small_holes and remove_small_objects

operations from the Scikit-Image library. Later, using the OpenCV library,
all contours in the binary mask were located, and for each one, the bound-
ing rectangle was found.

5.3 Experimental Results

This section presents the results obtained by the trained networks for
crack detection and building opening segmentation.

Figure 5.2a enlists the obtained metrics from the trained models on
the test set for the crack detection task of Section 5.2.2. While all the
considered networks got high accuracy, 87% or more, ResNet34 surpassed
the rest by scoring 94.7%, with an F1 score of 89.5%. In order to examine
the bene�t of transfer learning, ResNet34 was also evaluated without pre-
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training with randomly initialized weights. The accuracy and F1 dropped
to 86.2% and 81.8%, revealing that transfer learning helped boost per-
formance. Based on the collected metrics, it can be concluded that the
network learns rich features that allow for correct classi�cations on the
produced dataset.

Di�erent cases of FP and FN predicted with ResNet34 from the vali-
dation set are displayed in Figure 5.3. In Fig. 5.3a, part of an electrical
wire is wrongly classi�ed as crack. Evidently, a further expansion of the
masonry dataset should better represent these cases. On the contrary, the
situation shown in Figure 5.3b needs attention: the model detects a crack,
which is not correctly reported in the dataset. In this case, the model
shows a superior generalization capacity detecting cracks not annotated
during the dataset's creation. The confusion matrix in Figure 5.2b high-
lights the performance of the best model. It is deduced that the model
excels in predicting the non-crack case correctly. Instead, some di�culty
emerges classifying patches with low severity cracks. These issues may be
partially explained by the lower number of low-class examples and possibly
by some mislabeling introduced by the annotators.

Table 5.1. Metrics of the networks used for building openings segmentation

Network Pretrained Parameters Dice

U-Net-VGG16 Yes 46.1M 70.6%
U-Net-DenseNet121 Yes 41.6M 70.2%
U-Net-Resnet34 Yes 48.0M 71.8%
U-Net-Resnet50 Yes 73.7M 67.9%

Table 5.1 shows the segmentation results from the trained networks.
Dice values were very similar among the models, but U-Net-ResNet34 ob-
tained the best, with a value of 71.8%. Although dice value is not very
high and other solutions could be investigated, e.g., di�erent segmentation
models trained with di�erent loss functions, it is important to note that
in this work, the building openings segmentation was of interest only for
identifying the areas of the building. This work's goal was not to �nd the
best segmentation approach for a building facade.

Figure 5.4 shows how the interaction between the zone labeling and
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(a) (b)

(c) (d)

Figure 5.3. (a) FP example; (b) Wrong FP: patch labeled in the dataset as
"no-crack", but it contains a crack that the model detects; (c)(d) FN examples
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Figure 5.4. Final result example of the overall proposed approach.

the crack detection provides the �nal output of the proposed approach.
The damage assessment matrix summarizes the presence of cracks in the
building structure, highlighting their localization in the piers, spandrels,
or rigid zone of the whole structure. Technicians can easily use this infor-
mation to compile the safety form or assess the correctness of an already
compiled form.



Chapter 6
AI in Maintenance:

Minimizing the Carbon

Footprint of Bridges

6.1 Introduction

Ensuring an adequate level of safety of existing bridges is one of the
main challenges of structural engineering. However, scheduling mainte-
nance activities according to the budget, workforce, and structural per-
formance requirements is a complex task. Therefore, there are several
contributions from the scienti�c literature on the topic proposing di�erent
approaches. Most of the related study the planning of cost-e�ective main-
tenance while preserving the reliability of the structures [100, 172]. These
approaches aim to reduce the expected life-cycle costs while ensuring that
the reliability index of the structure is always above a certain target. The
speci�c planning strategies include a broad variety of studies. For exam-
ple, Ghodoosi et al. [71] described an optimization framework that used a
�nancial model to precisely assess life-cycle costs, and a Genetic Algorithm
that served as optimization core of their methodology. The proposed ap-
proach was evaluated on a simply supported bridge superstructure, where
achieved signi�cant cost reductions. A similar optimization method was
considered in combination with Markov-chain models by Morcous and Lou-
nis [139]. In their formulation the authors considered several groups of
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homogeneous facilities, to e�ectively reduce the computational complexity
of the problem. Without any claim of presenting an exhaustive literature
review on this vast subject, other notable uses of the same baseline opti-
mization principles can be found, for example, in Liu and Frangopol [117],
Miyamoto et al. [136], and Hegazy et al. [83].

Di�erently, less research was devoted to the emission minimization of
maintenance operations. As examples of this stream of research, Peng
et al. [152] recently introduced an optimization methodology to optimise
the maintenance operations considering sustainability criteria. In their
multi-objective formulation, the authors included the failure probability,
life-cycle costs, and environmental impact caused by maintenance activi-
ties during bridge service process; nevertheless, emissions caused by service
interruptions are not considered. Sustainability is also considered in the
works of Sun et al. [180] and Gokasar et al. [76]. The former developed
a decision support system for maintenance operations that converts emis-
sion into costs and embeds them into the life-cycle cost analyses, while
the latter devised a tool to produce a bridge maintenance priority ranking.
Notably, Gokasar et al. also include in the computation the emissions due
to the detour of the truck �ow, yet rather than an explicit maintenance
schedule for the bridge dataset, the result of their tool consists in a rank-
ing of the bridges whose maintenance needs priority. Ultimately, the works
found in the scienti�c literature mostly approach the scheduling of mainte-
nance operations as a process whose objective is the minimization of costs.
Whenever sustainability criteria are evaluated, often the impacts of tra�c
detour are disregarded, or the output results is simpli�ed. Moreover, most
of the studies focus on case studies pertaining single bridges rather than
structural portfolios.

This chapter aims to study a framework that minimizes the carbon
footprints of the maintenance operations on a portfolio of aging bridges
while ensuring adequate safety levels and considering the availability of
economic and workforce resources. In this context, the CO2 emissions
are computed as a combination of direct emissions of the maintenance
interventions and the pollution caused by the detours. To this end, the
core of our methodology is an optimization process based on the Adaptive
Large Neighborhood Search algorithm (ALNS) that extensively explores
the solution space and interfaces with a Monte Carlo simulation mod-
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ule. The stochastic simulation module allows considering the uncertainty
that characterizes the structural deterioration process, e�ectively evalu-
ating the reliability of the solutions analyzed. Accordingly, this chapter
formally describes this new optimization driven methodology and com-
pares the maintenance solutions of a diverse set of bridge infrastructures
with classical maintenance paradigms, analyzing the performance of the
emission-optimized solution in terms of carbon footprint, cost of opera-
tions, reliability levels, and job resources required.

6.2 Formal description of the problem

Let B = {b1, b2, . . . , bn} be a portfolio of bridges to be maintained,
and let T be a time horizon within which the service needs to be guar-
anteed. The set of possible maintenance interventions I = {i1, i2, . . . , im}
is such that each i ∈ I is associated to a cost, a workforce demand, an
improvement in reliability, and a level of tra�c interruption. The aim of
the problem studied in the present chapter is to schedule a set of mainte-
nance interventions on the bridges of B such that the total CO2 emission
polluted in T is minimized. In this context, the emission related to an
intervention i on bridge bj is computed as the sum of two distinct terms,
Edir and Edet. The �rst one represents the emission directly implied by
the machinery usage and energy consumption of the intervention, while
the second measures the emissions which would result from the detour
caused by the closure of the bridge or a tra�c limitation. Therefore, Edet

is computed as:

Edet = duration · detour · (traffic · car% · ecar + traffic · truck% · etruck)
(6.1)

where tra�c is the number of vehicles that every day crosses the bridge,
car%, and truck% are respectively the percentages of tra�c represented
by cars and trucks, while ecar, and etruck are the average emission per
km of regular vehicles and trucks, respectively. Moreover, each optimized
schedule x should satisfy three distinct requirements:

� At any time t ∈ [0, T ], the reliability index of each bridge bi ∈ B
should be always larger than a user-de�ned threshold;
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� The total costs of the interventions planned on the portfolio within
the time horizon should not exceed a maximum budget, Bmax;

� At any time t ∈ [0, T ] the workforce usage implied by the inter-
ventions planned in x should not exceed the maximum workforce
availability, WFmax.

In this chapter, the reliability is modelled as proposed by Frangopol et al.
[64] (Fig. 6.1). For each bridge, the reliability index can be speci�ed as
a combination of two parameters, an initial reliability β0 and a decaying
rate α. At any time, an intervention improves the reliability of a certain
amount γ and for a limited yields an improved decaying factor α′.

Figure 6.1. Evolution of the reliability index of a bridge.

6.3 Proposed solution methodology

The approach described in the present work relies on two interacting
modules: an optimization core to achieve the best possible maintenance
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schedule, and a Monte Carlo simulation algorithm to accurately evaluate
the reliability indices of the bridges to be maintained. Both components
are detailed in the following sections.

6.3.1 Adaptive Large Neighborhood Search

The Adaptive Large Neighborhood Search (ALNS) is a metaheuristic
algorithm proposed for solving complex optimization problems. Introduced
by Ropke and Pisinger [164], the ALNS generalizes the Large Neighbor-
hood Search (LNS). The LNS is a heuristic algorithm that iteratively mod-
i�es an initial solution x with two distinct procedures, one that introduces
random perturbations to x, named destroy operator, and a repair opera-
tor whose purpose is to optimize the perturbed solution to yield improved
performances. Unlike the LNS, the ALNS implements several destroy and
repair operators, collected in the sets D and R, to explore more broadly the
solution space. According to its optimization strategy, at each iteration,
the ALNS randomly selects two operators from D and R to modify the
current solution x. Throughout the process, the randomized choice of the
heuristics uses selection probabilities related to the past success of each
operator.

The pseudocode of Figure 6.2 shows the general structure of the ALNS.
The �rst operations of the algorithm initialize the current solution x, the
best solution xbest, and the set of probabilities p used in the random se-
lection process. The main loop (lines 4 − 12) explores the solution space
and iterates until it veri�es the stopping rule. At each iteration, the ALNS
selects a destruction and a repair heuristic from the relative sets and mod-
i�es x (lines 6 and 7). As a result of these operations, a new solution, x̄ ,
is obtained.

The ALNS accepts x̄ as the current solution according to an acceptance
rule. In accepting a new current solution, the ALNS balances the drive
of improving the objective function with a diversi�cation approach to not
stagnate in locally optimal solutions early in the search process. Moreover,
if x̄ improves the current best objective function, the best solution found
is updated. At the end of each iteration, the ALNS updates the selection
probabilities of the destruction and repair heuristics. The �nal output of
the algorithm is the best solution found in the search process.

As acceptance criterion the present work uses a Simulated Annealing
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Figure 6.2. Pseudocode of a generic ALNS algorithm.

(SA) strategy. CO2 is a well-known paradigm in the landscape of opti-
mization, as it allows to implement a diversi�cation element in the search
process by possibly accepting worsening solutions during the exploration
of the solution space. Using a characteristic parameter τ , SA computes
the di�erence ∆E between the objective function value of the new solution
x̄ and the current solution x. Then, the probability of accepting x̄ as the
new current solution, P (∆E), is:

P (∆E) =

{︄
1, if ∆E < 0;

e−∆E/T , otherwise.
(6.2)

During the iterations of the ALNS, τ decreases, so that as the search
process progresses, the probability of accepting worsening solutions is re-
duced.

The pools D and R of destructive and repair heuristics implemented
to optimize the carbon footprint of maintenance operations are as fol-
lows. Operating on a current maintenance schedule x of the n bridges, D
comprises three distinct operators, all of which use an input percentage
parameter ρ that regulates the disruption's intensity:

1. Random activity removal (RAR): a random ρ of the maintenance
activities scheduled in x are removed from the solution;

2. Random bridge schedule removal (RBR): a random ρ of the bridges
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is selected. RBR removes all the maintenance activities scheduled
on such bridges;

3. Random activity type removal (RTR): a random ρ of the activity
types is selected. RTR removes from x all maintenance interventions
of such types.

Respectively, the operators implemented in the set R are:

1. First Possible Improvement (FPI): The set B of bridges is iterated
sequentially. On each bridge, FPI schedules the �rst intervention
that improves the objective function value until all the bridges are
above the reliability threshold throughout the time horizon.

2. Best Intervention in Bridge Sequence (BBS): The set B of bridges
is iterated sequentially. On each bridge, BBS schedules the best
intervention in terms of lowest possible emissions until all the bridges
are above the reliability threshold throughout the time horizon.

6.3.2 Monte Carlo simulations

Classically, problems of the optimization literature were described us-
ing deterministic formulations, yet their applications to real-world scenar-
ios constantly faced the challenges implied by uncertainty. Accordingly,
when the optimization algorithms do not account for stochasticity, the
solutions achieved may be unstable or not feasible in practical applica-
tions [36]. Therefore, a growing stream of research combined the power
of metaheuristic algorithms with the assessment provided by Monte Carlo
simulations [62]. These hybrid simulation-optimization approaches allow
the correct assessment of promising solutions by evaluating the uncertain-
ties that characterize the problem of interest. In the context of bridge
maintenance planning, the reliability index of each structure is related to
uncertain information. Indeed, either for the epistemic uncertainties of the
model assumptions or the noise and incompleteness in data, at each stage
of the time-horizon the decaying factor α of the reliability index can be
seen as a random variable. To this end, at each time stage t within the
time horizon, the reliability index can be obtained as the reliability value
corresponding to the previous time instant, t− 1, diminished according to
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a stochastic α factor. In our framework, this stochasticity is modeled as a
Weibull random variable, with shape and scale respectively equal to 0.05
and 2, therefore giving:

β(t) = β(t− 1)−∆T · (α− wblrnd(0.05, 2)) (6.3)

Conclusively, the proposed approach uses Monte Carlo simulations to
accurately evaluate the feasibility of each maintenance schedule under dif-
ferent conditions. To this end, each evaluation of a new solution x features
a user-de�ned number of Monte Carlo sampling of the stochastic variables
throughout the time horizon [0, T ], and veri�es that the maintenance oper-
ations planned in x are such that requirement R1 of Section 6.2 is satis�ed
for each simulated scenario. To balance reliability of the structural as-
sessments and computational performance, the Monte Carlo simulation
module follows a two-staged process. In fact, during the execution of the
ALNS, the solutions are evaluated using a lower number of simulations,
nsim. On the contrary, at the end of the optimization process, the best so-
lution found is assessed with a higher number of simulations, Nsim > nsim,
to appraise the feasibility with higher accuracy.

6.4 Computational Analysis

The numerical experiments that assess the performance of the proposed
metaheuristic approach rely on the comparison of the solutions achieved
the ALNS with solutions obtained using the time-based and the condition-
based maintenance strategies. The analyses use a benchmark containing
geographical and logistic information available for existing bridges and
consider three di�erent scenarios arranged in decreasing order of mean
reliability index. The benchmark set featured in the numerical analyses is
thoroughly described in Section 6.4.1, while the computational results are
presented in Section 6.4.2. Our proposal is implemented in Matlab 2019
and the experiments were run on a 3.50 GHz Intel Core I9 processor with
64 GB of RAM.
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Table 6.1. Summary of the bridges considered in the numerical experiments.

ID Year Built L W Detour
Avg Daily
Tra�c

Avg Daily
Truck Tra�c

# [y] [m] [m] [Km] # %

1 1942 13.7 26.5 0 55700 4

2 1942 17.1 26.5 0 55700 4

3 1942 14.3 26.5 0 55700 4

4 1959 21.9 47.3 2 153700 5

5 1959 12.5 28.0 3 153700 5

6 1963 21.3 8.4 2 12500 5

7 1959 14.9 24.4 2 150600 4

8 1964 17.4 11.9 2 19700 1

9 1964 15.9 14.6 2 24500 1

10 1964 18.6 13.7 2 15800 1

11 1964 22.6 11.4 3 10400 1

12 1962 21.3 41.5 3 10700 1

13 1972 21.6 41.5 2 58000 5

14 2012 23.2 20.1 0 86500 4

15 2012 22.9 18.0 3 86500 4

6.4.1 Benchmark Dataset

The dataset used in the numerical experiments is extracted from the
bridge data provided by the Federal Highway Administration (FHWA) of
the U.S. Department of Transportation. The full dataset, retrievable online
[144], comprises over 600 thousand structures, with the aim of precisely
inventorying the bridges of the nation. Each bridge is catalogued using a
wide range of information, collected in a maximum of 117 items, including
structural and historical data, ownership, geographical location, and so on.
The bridges used in the computational experiments of the present section
are 15 PSC highway bridges of the District of Columbia. The structures
were built between 1942 and 2012, and presented span lengths ranging from
13.7 m to 23.2 m. For each bridge, Table 6.1 reports the main geometric
characteristic and a summary of the daily tra�c record.

Subsequently, starting from the bridges summarized in Table 6.1, this
work considers three scenarios, arranged in decreasing order of mean reli-



152 Chapter 6. AI in Maintenance: Minimizing the Carbon Footprint of Bridges

Table 6.2. Summary of the possible maintenance operations considered in
the analyses.

(Sun, Xiao-Yan, et al.,2015)

ID Name Tra�c Average Cost
Average Reliability

improvment
Work Force

# - - [Euro/m2] [-] [units/m2]

1 Surface Repair Normal 469.00 0.375 0.016

2 Bearing replacement Closure 7273.00 2.475 0.126

3 Crack injection Limited 588.00 0.250 0.020

4 Silane treatment Limited 882.00 0.000 0.031

5 Cathodic protection Normal 987.00 0.000 0.034

6 Deck-thickening Closure 699.30 0.000 0.012

7 Steel jacketing Limited 1440.60 1.800 0.025

8 FRP jacketing Limited 1254.40 0.975 0.022

9 Section enlarging Closure 3857.00 1.060 0.067

10 Component replacement Closure 2667.00 1.605 0.093

11 External prestress Normal 1484.00 1.390 0.026

ability index at t = 0. These scenarios are denoted as �Moderate�, �Low�,
and �Critical�, and are characterized by initial mean β values of 3.25, 3.5
and 4.2. Lastly, the maintenance interventions considered in the algorithm
are summarized in Table 6.2

6.4.2 Numerical Results

Sec. 6.3 reports the computational results achieved in the numerical
experiments. For each scenario, and each maintenance strategies, the solu-
tion performance is compared in terms of emissions and costs. Analysing
the results, the �rst behaviour that can be pointed out is that as expected
the Time-based maintenance is the strategy characterized by the least
competitive performance. This is widely expected, as also pointed out
in the scienti�c literature, since the �xed-time schedule of the time-based
maintenance often results into frequent and yet not necessary maintenance
operations. Therefore, this property is re�ected in both the economic cost
and the emissions related to this approach, that are larger than those
achieved by the ALNS by one order of magnitude in all three scenarios.

On the contrary, the maintenance schedule achieved by the Condition-
based approach is more competitive, both in terms of costs and emissions,
as its operations are strictly related to the reliability indexes of the struc-
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Table 6.3. Comparison of the optimized solution (ALNS) whit the mainte-
nance schedule of the Condition-based and Time-based approaches

Moderate
Maintenance Strategy

ALNS Condition-Based Time-Based

cost 2.19E+06 2.38E+06 2.10E+07

Emission [CO2 ton] 1.04E+04 3.09E+04 1.76E+05

Low
Maintenance Strategy

ALNS Condition-Based Time-Based

cost [¿] 5.41E+06 1.69E+07 3.03E+07

Emission [CO2 ton] 4.46E+04 1.17E+05 1.78E+05

Critical
Maintenance Strategy

ALNS Condition-Based Time-Based

cost [¿] 9.57E+06 2.78E+07 1.41E+07

Emission [CO2 ton] 7.92E+04 1.29E+05 1.35E+05

tures of interest. The performance achieved by the ALNS in the Moderate
scenario are comparable in terms of total costs while improving the emis-
sions of the Condition-based by 66%. Moreover, as the global reliability of
the portfolio worsen -i.e., for scenarios Low and Critical the advantages of
using the proposed approach are notably increased, as both the costs and
the emission values are markedly reduced. These results evidence how the
use of an optimization approach is a valuable resource whenever the average
number of interventions to be planned within the time horizon is high. To
better grasp the evolution in time of the three approaches, using Medium
as scenario of reference, Figures 6.3 and 6.4 depict the evolutions of the
costs and the emissions of the three maintenance approaches. Analysing
the cumulative costs in time, it can be observed how the proactive nature
of the Time-based approach implies periodic and signi�cant spikes in the
total budget spent, while the Condition-based strategy and the ALNS,
being more focused on reliability indices, are able to guarantee the same
levels of safety by scheduling targeted maintenance interventions. The
cumulative emission values of Figure 6.1 also show that the Time-based
strategy implies frequent unnecessary tra�c interruptions and thus high
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emissions. Moreover, the ALNS can maintain a reduced value for the total
emissions by scheduling fewer interventions.

Figure 6.3. Evolution of the costs implied by the three maintenance strategies
in time.

This feature is also re�ected by Figure 6.1, that reports the evolution
of the reliability indices of the three bridges of B characterized by the
lowest β at t = 0. Analyzing the increases of the reliability, it is possible
to note that the ALNS has the tendency to schedule interventions that
on average increase β more. While this locally can imply lower costs for
the Condition-based maintenance, ultimately means that this strategy is
forced to multiple interventions that cause several tra�c interruptions and
therefore higher emissions.
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Figure 6.4. Evolution of the emissions caused by the three maintenance
strategies in time.

Figure 6.5. Evolution in time of the reliability indices of the three bridges
characterized by the lowest values at t = 0.





Conclusions

This thesis presents several applications of the AI methodology in struc-
tural engineering concerning di�erent phases of the structure's lifecycle.
The methodologies presented in this work address traditional structural
engineering problems in innovative ways. Implementing smart solutions al-
lows for improving the structural design quality, existing structures' safety,
and helping minimize infrastructures' environmental impact.

Figure 6.6. Chapters and Technologies.

Figure 6.6 depicts the thesis �ow showing for each chapter the im-
plemented technology. OPT consent to improve structural performance
in challenging situations, like irregular buildings and reduce carbon emis-
sions by �nding the best scheduling solution for maintenance interventions.
Then, Machine learning and Image Analysis enable all the possibilities of
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arti�cial intelligence dealing with big data, providing prediction on the
health state of structures from sensors data or analyzing the inspection's
report. Finally, blockchain and smart contracts consent to certify data
integrity to improve trust in material and structure test reports.

For the sake of clarity, in this section, the principal results and limita-
tions of the proposed methodologies are discussed separately.

Chapter 1 proposed a novel formulation of the pre-dimensioning prob-
lem of reinforced concrete frame structures, which is aimed to regularize
the dynamic behavior of structures in seismic areas. In particular, the
mathematical formulation describes the problem in terms of inter-story
drifts and modal participating mass ratios, given their pivotal importance
in regulatory codes particularly when it comes to reduce non-structural
damage in the event of earthquakes with high probability of occurrence.
Additionally, since one of the aims of the contribution consists in the de-
scription of a solution strategy that could be implemented in the common
approaches of structural practitioners, the problem is solved by means of a
learn-heuristic algorithm that hybridizes a Genetic Algorithm with a local
search and a k-means procedure, to address as well an additional limitation
on the di�erent number of cross-sections in the structure.

The mathematical criteria described in Chapter 1 are the core prin-
ciples guiding the optimization algorithm in exploring the design space.
Such evaluation of the structural regularity addresses both the equivalent
static load and the dynamic behavior of the structure by evaluating drift
ratios and by considering the participating masses of the modes.

As evidenced by the numerical experiments, this mathematical frame-
work, with the addition of speci�c constraints to limit normal stress levels,
achieves good designs. Indeed, the optimization principles strive to achieve
the su�cient capacity to prevent collapses for rarer seismic events and si-
multaneously control damages for more frequent events. Remarkably, the
guiding principles put in practice by the optimization algorithm are also
pursued in classical design methodologies.

The design of automated optimization strategies allows exploring a
wide variety of solutions, therefore enhancing the freedom of design. Ac-
cordingly, in their implementation within the well-established processes of
the construction sector, speci�c care needs to be devoted to the feasibility
of the optimized solutions from the realization standpoint. To adequately
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bridge the gap between innovative solutions and common practices, this
work includes an additional constraint that allows the user to limit the
maximum number of di�erent cross-sections used.

Chapter 2 proposed a proof-of-concept of the integration of blockchain
technology and smart contract into information �ows that deploy among
di�erent CDEs. The proposal focuses on reducing human errors and in-
creasing the reliability and transparency of decision processes on construc-
tion sites concerning the structural system. To this end, the proof-of-
concept introduces smart contracts with di�erent levels of complexity: ba-
sic -for certi�cating information �ows, intermediate - for also gathering
multiparty signatures or consent, and advanced - for comparing automat-
ically exchanged information with data gathered by IoT sensors on site.
Preliminary testing of the proof-of-concept consists of a comparison be-
tween the latter and the traditional approach in terms of criticalities that
arise in the exchange of information and the characteristics of reliability
of exchanged information and transparency of decision-making processes.
The proposal reduces the risk of human errors in transmitting the informa-
tion and increases reliability and transparency in construction site infor-
mation management. To do so, some checking activities are automatically
performed by a combination of smart contracts and AI algorithms. It is
worth noting that the proposal allows integrating blockchain technology
into the construction site activities both today and in the long term. In
fact, even when the BIM approach is applied, the construction process of
structural systems deploys a huge amount of paper documentation that
traces human activities on the construction site. Accordingly, leaving cur-
rent practices unchanged, the blockchain can have the potential to certify
construction site documentation and eliminate dependence on paper, also
legally. Additionally, increased reliability and traceability of information
�ows, that are certi�ed on the blockchain, introduce the possibility of im-
plementing tools to trace back the construction process at any moment.
These valuable features will be even more worthy in the next future when
other innovative technologies of IoT, 3-D printing, and additive manufac-
turing will lend to the construction site. Those new construction practices
will require suitable checking processes and also suitable storage of sen-
sible data. The proof-of-concept provides an answer to this need using
advanced smart contracts and arti�cial intelligence applications. This last
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step would make it possible to close the circle by integrating the use of the
BIM approach to manage all the information of the construction site 4.0.

Chapter 3 explored the potential of a SHM framework based on a vibra-
tional approach coupled with a decision trees ensemble learning method,
for the damage-detection and localization or r.c and steel structures, de-
noted as D2-DTE . More speci�cally, the DTE uses vibration periods and
modal shapes of a target structure as inputs, which are simulated through
a set di�erent (possible) damage scenarios, including multiple damages of
di�erent type and severity. This allows the learning of the association rules
connecting the dynamic properties exhibited by a structure, and the cor-
responding structural health assessment.

To evaluate the performances of the proposed SHM framework, the
numerical validations considered three di�erent test-cases, to properly test
the decision tree ensemble on data that is either simulated on numerical
models, or recorded on a structure of interest in laboratory conditions.

In the study of damage detection according to di�erent levels of detail,
the DTE evidences small distance errors in the localization of single dam-
ages, even in the presence of non-negligible random Gaussian noise. This
behavior suggests a favorable implementation of this method in the con-
text of continuous monitoring. Indeed, such a paradigm would enable the
continuous detection of the dynamic properties of the system, and should
produce an alert at the �rst occurrence of damage in the structure which
could be, in principle, localized satisfactorily.

On the other hand, as expected, the classi�cation and localization of
two damaged elements led to reduced accuracy due to the more complex
interactions taking place in the structural behavior. Nevertheless, as for
the single damage con�gurations, the localization errors detected did not
evidence a huge decrease in performance. Indeed, DTE produced minor
localization errors across the entire validation set, suggesting that it is
possible to identify a limited area � centered around the predicted damage
location � that probably encloses the real damaged element.

Additionally, for the sake of comparison, the proposed methodology is
used in the analysis of two well-known benchmark datasets: the IASC-
ASCE benchmark model, and the QUGS. In particular, the performances
achieved in these two test cases compare favorably with respect to a ref-
erence solution approach based on Convolution Neural Networks, always
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scoring an accuracy higher than 98%.

In conclusion, given the growing interest in the integration of ML al-
gorithms with SHM, future investigations should increase the maturity
level of smart monitoring technologies for real-case scenarios. On this line,
future works will include further experiments with data collected in op-
erational conditions and low damage levels, to bring added value in the
assessment of the sensitivity of our method in a real world scenario. In ad-
dition to these analyses, further advancements can be achieved increasing
the computational e�ciency of the training process of our methodology,
reducing the number of training samples needed to correctly build the
learning model.

Since the D2-DTE belongs to the family of methods that classify dam-
ages learning the properties of a simulated dataset, an accurate modelling
of the structural system is a pivotal component of the proposed damage de-
tection system. Therefore, when targeting a structure of interest, enhanced
and reliable results could be gathered by preceding the D2-DTE with a
pre-processing stage in which an adequate numerical model is achieved via
model-updating techniques [14, 183].

Additionally, to enhance the performances achieved in the inclusion of
ML in SHM, future research will investigate cutting-edge classi�cation al-
gorithms � as Enhanced Probabilistic Neural Networks [5] and the Neural
Dynamic Classi�cation [157] � to improve robustness in case of low signal-
to-noise ratio, and to include an optimized exploration of the feature spaces
to �nd the optimal subset of input features to achieve an accurate classi-
�cation, respectively.

In particular, further studies can involve the relationship between tem-
perature variations and the corresponding dynamic measurements. In fact,
an in-depth study of the e�ects of such variations can improve the quality
of the dynamic identi�cation and localization, especially when dealing with
limited damages. In addition, to properly evaluate reliability of a damage
detection system especially when describing a decision-making framework,
a signi�cant e�ort has to be carried out to estimate and approximate the
e�ects of the epistemic uncertainties related to model assumptions or ex-
periment design.

Finally, a favorable step towards robustness could involve the inclusion
of additional sensor types to describe the state of a real structural sys-
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tem more extensively, introducing measurements such as temperature and
displacements, and a subsequent testing on datasets that properly enclose
complex dynamic behaviors of existing structures, such as Z24 [122].

Chapter 4 described a damage-detection approach based on the Ex-
treme Learning Machine algorithm � named LA-ELM � to address the
problem of automatically locating and quantifying losses of tensions a�ect-
ing the prestressing system of a PSC bridge. The proposed methodology
uses stress data as input features and embeds a layout-aware weight gener-
ating procedure to guide the learning model towards a spatially-consistent
network topology.

The computational experiments tested the LA-ELM in the analysis
of the numerical models of three di�erent bridge specimens. The tests
evidenced that, for the speci�c type of damage considered, stress appear
to be signi�cantly more sensitive than vibration periods and modal shapes.
The results achieved in the regression analysis evidence low RMSE errors,
whose total average is ≈ 0.07. The performance quality slightly decreases
when the Gaussian noise level increases, as expected, yet the errors remain
limited. A similar trend can be observed with respect to the length L of the
deck, with the RMSE values that increase when L is increased. This result
could be justi�ed observing that the same amount of stress data points
is used in the analysis structures of sensibly di�erent lengths. Therefore,
future studies could optimize the regression quality controlling the number
and positioning of sensors of the structure.

Moreover, a two-sided Wilcoxon signed-rank test (α = 0.01) evidenced
that the layout-aware weight generating process yields statistically signi�-
cant improvements (p-value= 4.88 ·104) with respect to a naive implemen-
tation of ELM, in which the weights are drawn randomly.

A comparison of LA-ELM with other learning algorithms evidence that
the proposed methodology is characterized by a competitive trade-o� be-
tween accuracy and computational expenses. Conclusively, the fast train-
ing process and low errors recorded by the LA-ELM suggest a favorable
implementation of this technique as base-learner in a real-time monitoring
scenario. However, further testings require the study of real datasets that
properly enclose complex dynamic behaviors of existing structures, to ac-
curately assess the challenges to be faced in the monitoring of a real-world
structure.
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Chapter 5 proposed a methodology to de�ne a support system for the
compilation of forms for the safety assessment of masonry buildings after a
seismic event. In an emergency context, this tool is fundamental to guaran-
tee the precision and accuracy of the data collected by �eld engineers, and
therefore, the quality of emergency operations and reconstruction plans.
The system is founded on an integrated approach based on two DL-based
models that work together, evaluating cracks and localizing them in the
macro-areas of the facades of a masonry building. For the training of the
predictive models, a dataset with photos from masonry structures was as-
sembled containing complex backgrounds and various crack types and sizes.
Di�erent Deep Learning (DL) networks were evaluated, and by leveraging
the e�ect of transfer learning, crack detection on masonry surfaces was per-
formed on a patch level. ResNet34 obtained the highest accuracy, which
was 94.7%. In addition, a DL model for building openings segmentation
was assessed in order to subdivide the building facade into piers, spandrels,
and rigid zones. U-Net-ResNet34 obtained the best result with a dice score
of 71.8%. Mixing these pieces of information, the damage assessment ma-
trix was proposed as a synthetic perspective of the structural damage of
the building.

Currently, the system has some constraints related to the character-
ization of the cracks discovered on the building surface. The proposed
approach was founded on patch-based crack detection. Although it per-
mitted promising results in terms of accuracy with a small dataset, it al-
lowed quantifying the damage just in terms of the number of the detected
areas interested by a crack. This number depends on the patch's size and
cannot describe proper measurements of crack characteristics, including
the area, perimeter, width, length, and orientation. So, the system can be
improved both in its current components and by adding new components
in the future. In particular, the results of DL methods heavily rely on the
dataset's quality. Thus, the expansion of the current masonry dataset is
highly recommended. A semantic segmentation approach could be ana-
lyzed to detect cracks and characterize them in terms of area, width and
length. Finally, new modules could be added to allow the automatic com-
pilation of forms, the digitization of their results in a Building Information
Modeling (BIM) environment, and the optimized design of rehabilitation
interventions.
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The framework presented in Chapter 6 studied the carbon footprint op-
timization of the maintenance operations on a set of aging bridges. To this
end, the problem was formally described in terms of an objective function
that cumulates both direct emissions of the interventions and the pollution
caused by the detours implied by tra�c interruptions. The maintenance
schedule pursued in this work is subject to three di�erent constraints, re-
quiring that at any time within the time horizon, the reliability indices
of the structures need to be above a certain threshold and that the total
costs and periodic workforce implied by the operations need to be below
the maximum values allowed. To solve the problem, this chapter presents
a hybrid optimization-simulation algorithm that combines the intensi�ca-
tion ability of an ALNS metaheuristic with the stochastic simulation of the
Monte Carlo approach. Accordingly, the proposed solution approach can
broadly explore the solution space in the pursuit of optimized solutions
while correctly accounting for the uncertainty that characterizes the opti-
mization scenario. In the numerical experiments, the proposed approach
was compared with two well-established maintenance strategies: the Time-
based approach and the Condition-based approach. The computational
results evidence that the ALNS-based algorithm can achieve improving
solutions in terms of emissions with respect to the two competitors and
at least comparable values in terms of total costs. In future research, this
approach will be combined within a speci�c structural health monitoring
framework so that at any time, the reliability indices can be estimated with
higher accuracies and formulate a feedback framework that automatically
plans CO2-e�cient maintenance interventions as soon as the monitoring
process detect structural criticalities. Moreover, the optimization core of
the methodology will be extended so that bridge portfolio of larger sizes
can be managed in short computational times.
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