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Abstract

In this thesis, we have performed analysis regarding some frontiers of astrophysics and
cosmology, considering both observational data as well as novel models and frame-
works. More specifically, we have studied a correlation involving physical parameters
of Gamma-Ray Bursts (GRBs), intending to use these features both to classify GRBs
into physical classes as well as for employing them as cosmological tools, to infer pa-
rameters like the matter content in the Universe today and the Hubble constant. Indeed,
for our investigations on GRBs as cosmological tools, we have performed simulations
starting from the best-fit GRB fundamental plane parameters, and we have analyzed real
GRBs data together with other more conventional cosmological probes, such as Super-
novae type Ia (SNe Ia) and Baryon Acoustic Oscillations (BAO), via a Bayesian ap-
proach. We then explore possible extensions both of classical electromagnetism as well
as of General Relativity. For the former, we study what the contribution of non-standard
electromagnetic effects would be on cosmological observations, in particular on their re-
lated redshift, using mock data as well as the aforementioned SNe Ia and BAO data sets,
in cosmological models where we do not introduce the still mysterious dark energy. We
then study the Earth’s magnetosphere and the surrounding solar wind region by consider-
ing data from the Magnetospheric Multiscale (MMS) Mission, to find possible evidence
of non-standard electromagnetism using data related to the measured current densities in
these regions. From the gravitational point of view, instead, we study a particular Ex-
tended Theory of Gravity (ETG), known as f(R)—Gravity, in the weak, astrophysical,
field regime. In particular, we apply it to the stellar structure of non-compact objects,
including variable stars.

Keywords: Cosmology; Supernovae Type la; Gamma-ray Bursts; Modified Electro-

magnetism; Extended Gravity; Stellar Structure.
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Chapter 1
Introduction

General Relativity (GR), is one of the two principal pillars of modern physics, the second
being the Quantum Field Theory (QFT). Being first proposed by Einstein in [1], more
than one hundred years ago, it quickly became clear that GR was a necessary evolution of
Newtonian Gravity, which was thought to be, at that time, the "status quo" of gravitational
interactions.

One of the most successful byproducts of this theory has been the birth of modern
cosmology, a scientific branch whose aim is to describe our Universe in a mathematical
and quantitative way, thus allowing us to answer important questions, remained unsolved
since the birth of mankind as we know it, in an objective (as far as possible) fashion, via
models, equations, simulations, and observations.

Nowadays, the so-called A Cold Dark Matter (ACDM) model is considered the stan-
dard cosmological model, which is able to schematize and parameterize our Universe
with only six free parameters [2]: the baryon density parameter, the dark matter density
parameter, the observed angular size of the sound horizon at recombination, the scalar
spectral index, the curvature fluctuation amplitude, and finally the reionization optical
depth. These parameters are then used to derive, under certain constraints and hypothe-
ses, all the other cosmological ones, thus being able to describe the Universe at least for
the vast majority of its lifetime.

The ACDM model depicts the Universe as being made up of three major compo-
nents: a cosmological constant A, associated with the so-called dark energy, that should
account for 68% of the density inside the Universe [3, 2], a cold (non-relativistic) dark
matter, which should account for around the 27% of the cosmic pie [4, 5], and lastly,
the remaining 5% is composed of ordinary baryonic ordinary matter, that forms stars
and galaxies as we know them. This model is strikingly successful in its predictions in
concordance with the cosmological observations, like, for instance, with the observed

acceleration of the expansion of the Universe [6], for which the cosmological constant



has been reintroduced after many decades since its first appearance in the cosmological
equations, the latter being due to Einstein himself (albeit for different, and later revealed
wrong, reasons).

Despite their success, GR and the ACDM model present some issues that are at the
center of the current attention of the cosmological and astrophysical communities: the
most glaring one is the nature itself of dark energy and dark matter. Even after many
experiments and theoretical assessments [7, 8, 9, 10], still no positive evidence has been
found being able to answer the fundamental question regarding the nature of these mys-
terious fluids. Thus, we have to recognize that, according to the ACDM model, we
currently do not know what 95% of our Universe is made up of [11].

Another main theoretical issue concerns GR itself, particularly its link with QFT.
Despite being the two pillars on which modern physics is based, up to now their "merg-
ing" has not been possible, because very difficult conceptual problems have arisen, that
have not allowed the scientific community to link these two theories in a satisfying and
complete manner, thus not permitting the birth of the so-called "theory of everything".

Other problems have been found also from the observational point of view: for in-
stance, the famous Hubble Constant (/{) tension is also a glaring issue that needs to be
addressed. Indeed, the so-called late-time measurements related to this quantity, which
are linked to the cosmological ladder [12], are not consistent with the early-time results,
based on the Cosmic Microwave Background (CMB) radiation [2]. This tension still
exists despite many years of painstaking efforts of both teams to increase the precision
of their instruments, refine their methodologies, and reduce their systematic errors, thus
hinting at a more fundamental issue inside the model itself. We also have to stress that
this is not the only tension that exists from an observational point of view (for instance,
we recall the Sy = 0g1/Q,/0.3 tension [13, 14, 15]).

From an astrophysical point of view, GR has to be tested both in weak and strong
gravitational regimes, because, especially in the latter case, both white dwarfs exceeding
the Chandrasekhar limit [16, 17] as well as supermassive Neutron Stars (NS) [18, 19]
have been observed.

These issues have brought the scientific community to wonder if, as happened in pre-
vious instances during the history of physics, there is a more complete paradigm beyond
GR (and in general, the current status quo of Physics), able to overcome its limits while
still keeping its overwhelming successes. The analysis in this thesis is an investigation of
such possibilities, both from an observational and more theoretical point of view, regard-
ing some peculiar cases.

We start our analysis from the observational frontier, using data from the Supernovae
type Ia (SNe Ia [20]) and Baryonic Acoustic Oscillations (BAO, [21]), which are widely



used as cosmological probes, to infer cosmological parameters like H and the current
matter density component in the universe, €2,;, considering also a novel, less conven-
tional, probe: the Gamma-Ray Bursts (GRBs).

GRBs are extremely luminous transient objects, whose nature has fascinated the sci-
entific community since they were serendipitously discovered around sixty years ago.
These events do not have a preferred position in the sky, being detected in every direc-
tion, and usually last from fractions of seconds up to hours in extreme cases. One of their
main features is the fact that they easily outshine other cosmological probes that are a
part of the cosmic ladder, thus, if used for cosmological applications, they can be used
to infer information from redshifts which are way beyond the distances usually linked to
the other conventional probes (indeed, the furthest GRB ever detected has been found at
z = 9.4 [22)).

In order to use the GRBs as cosmological probes, the physics behind them needs to
be extremely well understood. Unfortunately for this point of view, contrary to what
has been inferred for SNe Ia, whose physical mechanisms, apart from some outliers, are
well-known and can be applied to the majority of them, GRBs are way more heteroge-
neous, with more possible candidates both for the astrophysical objects acting as their
progenitors as well as for their emission mechanisms. This is reflected also in their ob-
servational properties, especially in their luminosities [23, 24], which may span different
orders of magnitude. All these features make GRBs more difficult to be considered as
cosmological probes with respect to other astrophysical objects currently utilized in the
cosmological ladder.

For this final aim, empirical correlations among observational quantities of GRBs
have been found. In our work, we shall focus on the GRB fundamental plane correla-
tion (also known as the 3D Dainotti relation) [24, 25, 26] which is a correlation among
the prompt peak luminosity, the luminosity at the end of the plateau emission, and the
corresponding end time of the plateau. We shall study this correlation in an extended set
of GRBs, which have been divided into different subclasses, according to their morpho-
logical features. We shall find if there are differences between these subsets regarding
the best-fit parameters of this correlation [24]. We will also find which of these corre-
lations present the smallest related intrinsic scatter by using a Bayesian approach [27],
thus being more suitable to be used as a cosmological tool. This investigation shall be
performed also by taking into account selection biases and evolutionary effects, by em-
ploying the so-called EP statistical method [28]. Lastly, an update regarding the best-fit
computations of the most interesting GRB set studied by us shall be presented, providing
new evolutionary coefficients as well as reliability checks on the best-fit itself using other

methodologies.



Next, we shall employ this correlation for cosmological applications. We will first
study [29], via simulations, how many GRBs belonging to two particular samples (de-
fined in different wavelengths) are needed in order to constrain with a certain desired
precision on €2,,. More specifically, we shall study three thresholds reached by SNe Ia
[30, 31, 20] on the precision of a particular cosmological parameter, and compare those
with our simulations. Once we have found the number of necessary GRBs to achieve
such limits, we shall derive, following realistic assumptions regarding present and fu-
ture GRB observational missions and campaigns, how many years of GRB observations
should be necessary to reach the studied precision limits obtained using simulated GRBs.
We will see that multiple hypotheses shall be investigated using different baselines for
our simulations, as well as further possibilities regarding GRBs data and their relative
erTors.

After the aforementioned dissemination, we will consider the GRBs set at our dis-
posal for cosmological applications. More specifically [32], after obtaining closed con-
tours for different cosmological parameters employing the SN Ia, BAO, and GRB sam-
ples at our disposal, we shall also perform a binned analysis, dividing our samples in
order of increasing redshift, with the idea of gathering all GRBs in the last bin, the one
corresponding to the highest redshift interval. This has been done to further analyze the
total contribution to the derivation of the cosmological parameters brought by the GRBs,
exploiting the fact that GRBs are generally detected at much higher redshifts than other,
more conventional, probes. Finally, we will study what can be inferred from the GRBs
data alone after some caveats regarding their calibration are employed, based on the SNe
Ia results [33].

It is important to stress that, up to now, our cosmological tests are focused on the
determination of cosmological parameters (and more importantly on their precision) still
taking into account the ACDM model (or modifications of its exact parameters, to test if
they are reproduced by our best-fit computations), the focus being the use of a novel probe
like the GRBs. From this point on, instead, we shall concentrate on new hypotheses,
moving from the ACDM model to new theories.

Indeed, we now begin investigating a novel framework, according to which the effects
normally attributed to the unknown dark energy from the ACDM model could actually
have a completely different nature, that would not imply the existence of this mysterious
fluid. Indeed, we wonder if, as Newtonian gravity is an approximation of GR, also clas-
sical electromagnetism is an approximation of a broader, more complete electromagnetic
theory [34]. Thus, we give an optical origin to the effects normally attributed to dark
energy, which is transferred to the redshift of the astrophysical sources [35]. Indeed, we

study cosmological models utilizing the SNe Ia and BAO data considered previously, in



which we assume that there is not any dark energy contribution, but every astrophysical
source presents a further component to the total redshift due to these non-standard elec-
tromagnetic effects. These contributions may be blue or red (so not just red as for the
conventional cosmological redshifts), depending on all the non-standard electromagnetic
interactions in which the photon is involved during its journey to us. We investigate this
hypothesis also for mock redshifts, and we build new Hubble diagrams when general
trends are studied. Finally, we also take into account, for this analysis, the novel Pan-
theon+ sample of SNe Ia [36], which is an update of the Pantheon set [20] that has been
employed for all the previously mentioned computations, with the aim of comparing the
results achieved by these two sets.

This analysis works whichever the underlying non-standard electromagnetism theory
may be, given that, up to this point, only the "a posteriori" effect on the observed redshift
is investigated. In general, the first idea of something beyond Maxwellian electromag-
netism is the massive photon proposed by de Broglie [37], which was studied also by his
scholar Proca [38]. Further possible extensions come from the Standard Model Extension
(SME) [39] paradigm, and non-linear Electromagnetism [40, 41].

Moving to a more fundamental level, we also investigate the deviations from non-
standard electromagnetic effects using data collected by the Magnetospheric Multiscale
(MMS) Mission [42], which is a constellation of four satellites flying in a tetrahedral
formation in Earth’s magnetosphere as well as in the surrounding solar wind. On these
satellites, there are instruments capable of measuring different properties of the medium,
like ion density, temperature, and magnetic fields. Using these data, we can compare the
particle current density measured directly with the rotational current density that can be
derived by the Ampere-Maxwell equation using a particular technique called curlmeter
[43], to find if there are deviations between these two current densities. Working under
the hypothesis that these deviations are all due to non-standard electromagnetic effects,
we are able to derive an estimate for the mass of the photons where these deviations are
found, as well as for the value of parameters linked to the SME. We will also explore the
regions in which these inconsistencies arise, to investigate if there are preferred physical
conditions for such events.

Moving along the extended theories, another possible extension that is on the radar
of many scientists concerns GR itself. In this framework, we find what are known as ex-
tended theories of Gravity (ETGs) [11], called as such because they are theories in which
GR is extended in different possible ways, for instance by introducing in the Einstein-
Hilbert action different functions of the Ricci scalar (f(R)-Gravity), or by considering
further scalar fields. These theories have been studied in many fields related to astro-

physics and cosmology [19, 44], with the aim of reproducing the successes of GR while



also overcoming its observational and fundamental limits. For instance, in this paradigm,
both dark energy and dark matter could have a geometrical origin instead of a material
one [11], also, this is a possible way to give a theoretical explanation to the so-called
inflationary paradigm [45], which is the exponentially fast acceleration period in the very
early time of the Universe, that has to be introduced in order to describe some observa-
tions which, as we will see, cannot be encompassed in the standard cosmology approach,
like the asymptotic flatness or the absence of magnetic monopoles [46].

In this analysis, we will present an application of ETGs, in particular f(R)-Gravity,
to the structure of non-compact objects, more specifically variable stars. We shall derive
the modified stellar structure equations [47] and, following [49, 48], we will also find
the modified Lane-Emden equations considering the polytropic assumption, which we
shall numerically solve in order to derive different physical parameters of the stars, like
the mass and the period for a variable object. As we will see, this analysis can be used
also to study stars that are very massive [50], that are not easily explained in the GR
framework both from the stability point of view of these stellar structures [47] as well as
for the issues concerning the stellar formation processes [51, 52].

As it can be noted by the focal points previously stated, which shall be deeply devel-
oped in the course of this manuscript, the work proposed and performed in this thesis is
concentrated on some of the existent frontiers of astrophysics and cosmology, investigat-
ing novel approaches regarding those both from an observational and theoretical point of
view.

In Chapter 2 we will briefly introduce GR and the ACDM model, then we shall
present some of their issues, from the tensions between the cosmological parameters
to the structure of compact objects, passing through the link between GR and QFT, the
nature of dark matter and dark energy, and the inflationary paradigm.

In Chapter 3 we will present the astrophysical objects which shall be used for cos-
mological applications in the following chapters, in particular SNe Ia, BAO, and GRBs.
Regarding GRBs, a more in-depth description of our current understanding of their emis-
sion mechanism and progenitors will be presented, with a focus on some of the empirical
correlations found between some physical features of the detected GRB light curves.
Then, we will present the main results reached in [24], where a particular correlation,
known as the fundamental plane relation for GRBs, has been used for different GRBs
subsets, to see if it may be used as a discriminator among different classes and to find the
morphological subsets whose best-fit planes present the smallest intrinsic scatters, thus
revealing to be more suitable as cosmological tools. Finally, we will present an updated
study of the evolutionary coefficients involved in the correction for the selection biases

and evolutionary effects, performed in [33] as well as different reliability checks on the



fundamental plane related to a class particularly promising for cosmological applications,
performed using other statistical methods.

In Chapter 4, the main cosmological results involving GRBs are presented. We first
introduce the methodology used to apply our data set (composed of SNe Ia, BAO, and
GRBs) for cosmological computations. Then, the main results of [29] are shown, in
which simulations have been performed on GRBs, in order to estimate how many of
them, lying on the best-fit fundamental plane of particular samples and sets, are needed
in order to compute cosmological parameters (more specifically €2,,), with a certain de-
sired precision, the idea being to trace the "future history" of GRBs as cosmological
tools, and see if and how they will be as competitive as the nowadays SNe Ia sets for
these applications, considering three particular thresholds reached by SNe Ia cosmology
in the past years. We then present the cosmological results obtained using the real data
sets themselves, considering GRBs together with SNe Ia and BAO, which have been ob-
tained in [29, 32, 33]. These computations have been performed by considering different
combinations of these three probes, taking the SNe Ia results as reference points, to un-
derstand how much the precision on the cosmological results improves by adding more
probes. For this aim, we have also focused our computations on a binned analysis, di-
viding our set into five different bins, and on all the results obtained for €2,, and H for
each bin in which we have divided our samples. We will also show a Hubble diagram
involving the GRBs used in our cosmological studies, and a calibration test performed
on GRBs having the same redshift range of the considered SNe Ia set.

In Chapter 5, we shift our focus to non-standard electromagnetism and its cosmolog-
ical and astrophysical implications. After an introduction, in which we describe what
are some of the possible theories going beyond Maxwellian electromagnetism, focus-
ing in particular on the messengers of this interaction (the photons), we shall provide
an estimate on the shift in frequency due to these effects for astrophysical observations
[39]. This frequency shift has implications also on the observed redshift of astrophysi-
cal sources, for which we find a second contribution that is not cosmological, but purely
optical [34], and can be linked to any non-standard electromagnetic paradigm. We then
describe the analysis performed in [35], where this new shift has been studied using
mock data as well as real measurements based on SNe Ia and BAO, the former being
represented by the Pantheon sample [20]. In particular, the best-fit parameters for these
shifts have been found for cosmological models without any dark energy contributions,
thus giving to these non-standard shifts the effects normally attributed to the acceleration
provoked by this mysterious fluid. We have studied both an individualistic approach, in
which the derivation of the non-standard shift for a particular data point is independent of

all the others belonging to the data set, with the idea that these shifts depend not only on



the distance from us but also on other factors, like the environment of the host galaxy, as
well as a collective approach, in which this shift (more specifically, a parameter related
to the shift and the distance itself) is treated as a cosmological quantity valid for every
data point so that a new Hubble diagram can be built. Finally, we have performed the
same analysis also considering the Pantheon+ sample [36] of SNe Ia, performed in [53],
computing the same cases previously mentioned and comparing each of them with the
corresponding results obtained considering the Pantheon set.

We then focus on a more fundamental issue regarding non-standard electromag-
netism. After a brief introduction regarding past experiments looking for an upper limit
on the photon mass, we shall describe the analysis performed in [54], where we employ
almost 6 years of data collected by MMS to find traces of possible deviations of the
measured particle current density with the rotational current density derived using the
curlmeter technique, a method which employs the distances between spacecraft and the
measured magnetic fields, with the assumption that these discrepancies could be due to
non-standard electromagnetic effects. Considering the Parker model for the data points
inside the solar wind [55], an estimate on the vector potential can be given, thus deriving
the value of the estimated photon mass for the de Broglie-Proca (dBP) massive photon
electromagnetism in cases in which inconsistencies are found (or an upper limit for the
consistencies cases) as well as for the SME parameters.

In Chapter 6, we focus on another possible extension, related directly to GR. Indeed,
we shall apply f(R)—Gravity to the stellar structure of non-compact objects, like main
sequence stars or Classical Cepheids, thus shifting from the cosmological issues treated
in the previous chapters to an astrophysical one, keeping in mind that any theory has to
be consistent at every scale, and for every observational evidence. First, we shall derive
the field equations for f(R)—Gravity starting from a variational principle. Then, under
some approximations, we will derive the Newtonian limit of these field equations, which
has to be applied to the case in our study. We then derive a general form for the stellar
structure equation system in f(R)—Gravity. Using the polytropic assumption, that links
the pressure and the density inside the star without involving other physical features like
the temperature, we can derive the modified Lane-Emden equations for f(R)—Gravity,
which may have two different forms [Sarracino et al. 2023, in preparation]. We numeri-
cally solve both of them following [49, 48], comparing GR with f(R)—Gravity. Finally,
under certain assumptions and fixed free parameters, we derive different physical quan-
tities of the stars, like the mass, radius, luminosity, and period of variable stars.

in Chapter 7 conclusions are drawn, and a general discussion about our results is

shown, as well as future possible outlooks for our work.



Chapter 2

Open Issues in Cosmology and General

Relativity

In this chapter, a brief description of General Relativity (GR) and the ACDM model is
shown, given that both these theories are the fundamental baseline of all the analysis
performed through this thesis. Then, some reasons are shown, theoretical as well as
observational, for which one could imagine extending these theories, confirming their

major successes, and overcoming their limits.

2.1 General Relativity and the ACDM model

We begin by briefly introducing GR and one of its most successful products: the standard
cosmological ACDM model, as well as fundamental notions that will be used throughout
the thesis. GR has been introduced by Einstein in [1], and it is based on the hypothesis
that space and time are one single space-time structure which, in the limit of massive
contributions, collapses into the Minkowskian space-time metric. This theory is based on

four main theoretical pillars [11]:

* The Principle of Relativity is the requirement that all observers must be equally
valid for describing physics. In particular, inertial frames (which do not exist glob-
ally) are not preferred a priori. This postulate addresses the main shortcoming of
Special Relativity, formulated in 1905 by Einstein himself [56], being based on
preferred inertial frames and Lorentz boosts between them.

* The Equivalence Principle requires acceleration effects to be locally indistinguish-
able from gravitational phenomena (roughly speaking, it states the equivalence
between the inertial and gravitational masses). This Principle has actually three

different formulations: the Weak Equivalence Principle, the Einstein Equivalence
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Principle, and the Strong Equivalence Principle, stressing that the latter is specu-
lated to be coherent only with GR [46].

* The Principle of General Covariance requires that the field equations must be "gen-
erally covariant" tensor equations, whose form has to be the same in all coordinate
systems, and states that all coordinate systems are equivalent in the description of
physics [57].

» The Principle of Causality requires that each point in space-time must admit a
notion of past, present, and future, which has to be the same for all the physical

observers.

In GR, gravitational interactions are described through the curvature of a metric ten-
sor field g,,, related to the interval ds* = g, dz*dx” of a four-dimensional space-time
manifold (for the metric, we will use the signature (-,+,+,+) and consider c=1).

Once the metric tensor is specified, the curvature of the space-time is given by the

Riemann tensor (using the usual Greek letters for the indexes spamming from 1 to 4):

Zﬂu - Zu,b’ - Fg’u,a + Fgﬂrgu - FZﬁFZoc 2.1)

where the commas denote partial derivation. Its contraction

Ro,=R.,, (2.2)
is known as the Ricci tensor, while
R = Rﬁ =g"" R, (2.3)

is defined as the Ricci scalar, and is the scalar curvature of the tensor g,,,. Considering
matter as a perfect fluid (which is a fluid that can be completely characterized by its rest
frame mass density and isotropic pressure) the matter stress-energy tensor can be written
as

T = (P + p)uyuy + Pgpu (2.4)

where u* is the four-dimensional velocity of the particles of the fluid, while P and p are
the pressure and energy density of the fluid, respectively. The continuity equation re-
quires T,E,T,") to be covariantly constant, which means that it has to satisfy the conservation

law
VAT =0, (2.5)

where V,, denotes the covariant derivative operator of the metric g,,. Because of this
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relation, and the fact that V¥R, does not vanish except for the special case R = 0,
Einstein and Hilbert concluded heuristically that the equations for the dynamics of gravity
are given by [46]

G = KT, (2.6)
where kK = 87(G (G is the gravitational constant), and

1
G,uz/ - R,u,u - Eg;wR (27)

is known as the Einstein tensor of g,,,, which satisfies the conservation law
VG, = 0. (2.8)

It is possible to obtain the same result from computations based on the variational
principle [46]: in particular, Einstein and Hilbert derived the equations also from the
variation of the action given by a Lagrangian which consists of two terms: the first one is

the "matter" Lagrangian density £, whose variational derivative is

2 6(v/—gL™)
(m) _ _
T = g (2.9)

where g is the determinant of the metric tensor, while the second term is the Hilbert-

Einstein Lagrangian:

V=iLus = VIR 2.10)

The choice of Hilbert and Einstein was rather arbitrary, as it became clear a few years
later, but it was certainly the simplest from both the mathematical and physical points of
view. Indeed, as we shall see in the following, other choices are possible.

One of the most natural applications of GR is modern cosmology. Assuming the cos-
mological principle, according to which the Universe is both homogeneous and isotropic
beyond a certain scale, and starting from the Friedmann-Lemaitre-Robertson-Walker

metric (reintroducing c) [58, 59, 60]:

dr?
1 —kr?

ds* = dt* — a*(t) { + 7"292] , (2.11)

where (2 is the angular part of the metric, a(t) is the scale factor and k can be equal to
—1,0, 1 depending on the curvature of the universe, it is possible to derive the Friedman

cosmological equations [46, 61]:

SN\ 2 2 2
(a> LR _8nGp A 2.12)

a a2 3 3

a
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. 9
g:—#Qﬂr %) +ATC, (2.13)

where G is the gravitational constant, p is the density, p is the pressure, and A is
the so-called cosmological constant, nowadays associated with dark energy. These two
equations are the base of the standard cosmological paradigm. It is possible to write
the scale factor appearing in the previous equations as a function of the redshift z of the

astrophysical sources as follows [46]

(2.14)

This allows us to write the cosmological distances as a function of the redshift [62]. It is

possible to rewrite Eq. (2.12) in terms of densities in the following way [63]
H?(2)

Hg
where H(z) = a/a is the Hubble Parameter, H, is the Hubble Constant, Q) is the

energy density associated with the radiation in the Universe, €2, is the matter density

= Q1+ 2)" + (1T +2)* + (14 2)? + Qn, (2.15)

content (in which also dark matter is taken into account), € is the density associated to
the curvature, and (2, is the density associated with the cosmological constant, and so
with dark energy. All these quantities but H (z) are computed in the present era. Defining

the function E(z) as

E(z) = Hh(,j) = /(14 24+ (L +2)3 + Qu(1+ 2)2 + Qn (2.16)

we can now write all the possible definitions of distances in cosmology as a function
of E(z). Indeed, from a cosmological point of view, different distances from the same
astrophysical source can be defined with different meanings and applications [62]. Par-
ticularly, we shall see that the most used distance in our analysis regarding cosmological
computations, which shall be presented in the next chapters, is the so-called luminosity
distance dj,(z), which is a cosmological distance that is linked to the flux of photons

received by a particular source. It is defined as
dr(z) = (1+ 2)dm(2) , (2.17)

where dj;(z) is the transverse comoving distance

c [* d
du(z) = Fo/o B (2.18)
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for Q2 = 0 (flat universe),

(2.19)

for Qi > 0 (open universe), and

c . ((Ho/IQk| 7 d7
du(z) = sin ~ ], (2.20)
Hov/|Qk| c o E(2)

for (2 < 0 (closed universe). The luminosity distance is important for observational cos-
mology because it is linked to the so-called "standard candles", which are astrophysical
objects whose intrinsic luminosity can be derived via their physical mechanism, gener-
ally correlated with other quantities which are independent of their distance from us, and
so can be used to measure the distance itself via the definition of d;(z). Another very

important cosmological distance is the angular diameter one, defined as

da(z) = : (2.21)

which is linked to the "standard rulers" (i. e., objects whose geometrical features can
be deduced in some other ways and that can be used to derive the distance from us) of
the Universe, like d(2) is to the standard candles. Finally, we also have defined the

light-travel distance, which is the actual length traveled by the photon in an expanding

c [* dz
r= Fo/o —(1 - z’)E(z’) . (2.22)

A comparison between 3 different cosmological distances (luminosity, angular diameter,

universe

and comoving distances) and their evolution with the redshift is shown in Figure 2.1. We
note how at low redshift these quantities are actually very similar between one to the
other, while at high redshifts, the luminosity distance, given the same redshift, is always
higher with respect to the angular diameter (which decreases with the redshift after a
certain threshold) and comoving ones.

Another relation that exists between the different cosmological densities is the so-
called cosmic triangle equation, which can be derived directly from Eq. (2.12). Neglect-

ing the radiation density, this formula reads as

Qu + Q0+ Q. =1, (2.23)

thus we can link the density of matter in the Universe with the others related to dark

energy and curvature.
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Figure 2.1: Cosmological distances and their evolution with the redshift. Both axes are
on a logarithmic scale.
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From a historical point of view, dark matter has been introduced by the astronomer
Zwicky, as a concept to explain the missing mass in a cluster of Galaxies [64] that should
have been measured due to the virial theorem. Introducing this dark matter component
is also mandatory to explain the rotation curves of the galaxies, which otherwise would
not be well fitted by Newtonian computations (that should work at these scales) [65, 66]
if one were to consider only the baryonic mass of the galaxies. Instead, the cosmolog-
ical constant, subsequently linked to the dark energy, was first introduced by Einstein
himself, to maintain a stationary universe as a solution for his equations [67]. Later, ob-
servations showed that our Universe is not stationary, so for a period (up to the end of
the last century), this constant has been often dropped from the cosmological equations'.
Without this parameter, from the Friedman equations, one would expect a decelerated ex-
pansion of the Universe, but in [6] observations related to the Supernovae Type Ia (SNe
Ia)?, proved a mismatch between the known redshift of these astrophysical objects with
their measured luminosity distances for a universe in a decelerated expansion. To solve
this issue, the cosmological constant has been reintroduced in the equations, this time
associated with a dark fluid with negative pressure, that would be able to fit the acceler-
ated expansion of our Universe that the aforementioned observations imply. This result
has been confirmed also by the detection of temperature anisotropies of the cosmic mi-
crowave background (CMB) radiation, firstly detected by balloon-born experiments such
as BOOMERANG [70] and MAXIMA [71].

From an observational point of view, the paradigm that best explains the cosmological
observations using the previous equations is the so-called ACDM model. According to
this model, the Universe is made up of the three following components: ordinary matter
(5%), dark matter (27% [4, 5]), and dark energy (68% [3, 2]). This model is based on
six free parameters: the baryon density parameter; dark matter density parameter; the ob-
served angular size of the sound horizon at recombination scalar spectral index; curvature
fluctuation amplitude; and reionization optical depth [2]. This is also the smallest pos-
sible number of parameters able to present an acceptable fit for the observations, while
other cosmological quantities, like H, are either derived or fixed.

The cosmological parameters of the ACDM model can be measured in a variety of
ways. One of these is through the data gathered from the Cosmic Microwave Background

(CMB) radiation [2], thus linked to the early time Universe. Indeed, studying the power

IEinstein himself later referred to the cosmological constant as his "biggest blunder".

2SNe Ia are very luminous explosions happening in binary systems, where one of the two stars is a
white dwarf, due to the overflow of matter into the white dwarf coming from the surface of its companion,
that would bring it to surpass the Chandrasekhar Mass limit [16]. Because the physical mechanism which
causes the explosion is intrinsically the same for every phenomenon, the luminosities associated with them
can be standardized [68, 69] (a more detailed description of this object will be shown in the following
chapter).
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spectrum of the CMB originated at the recombination epoch allows us to derive directly
some cosmological parameters. It is important to stress that, given their nature, these
measurements are model dependent: observations of the early Universe, up to z ~ 1100,
are translated in terms of parameters defined for z = 0 [72].

Other methods used to measure, directly and indirectly, the cosmological parameters
are via different cosmological probes. Many of those probes are used as "standard can-
dles", as the SNe Ia mentioned previously. These standard candles are employed in a
specific pattern depending on the magnitude of the distance itself, as a part of the so-
called "cosmological ladder", in which each step is calibrated on the previous. The first
step is represented by the stellar parallax [73]°; the second step, instead, by the primary
distance indicators, like the Cepheids* [6, 12], or the tip of the red giant branch (TRGB)
3[75]. The third step is represented by probes like SNe Ia, which use the primary distance
indicator as an anchor in regions of the universe where both are detected, and which can
explore relatively high redshift regions due to their higher luminosities.

Another possible way to derive cosmological parameters from observations uses the
Baryon Acoustic Oscillations (BAO)®[21, 76], or the weak lensing’[77, 78]. Also, other
possible cosmological distance indicators have been used in the literature, some of which
will be presented in more detail in chapter 4.

Both GR and the ACDM model have been very successful in their predictions, as
many observational tests have proven. A couple of examples are the recent detection of
gravitational waves (GWs) [79], or both the direct and indirect measurements of cosmo-
logical parameters via different methods and probes. For a comprehensive summary of
the accuracy reached by the parameter-fitting in the ACDM model, as well as for possible
outlooks related to tensions we are going to describe, see [13, 80, 81, 82, 83]. As we will
state again also in the following discussions, this is an important point to keep in mind

while thinking about the shortcomings of these theories and how to surpass them.

3The stellar parallax is the apparent shift of a nearby star with the background due to the Earth’s revo-
lution around the Sun. Because of its nature, it may be used only for objects in our Galaxy, and, thanks to
the Gaia mission, in the Magellanic clouds

4Cepheids are variable stars which can be found in a particular position of the H-R diagram, pulsing in
a periodic manner. A specific relation between their luminosities and variation periods can be found [74]

>The TRGB is a specific stellar evolutionary phase, represented by the point at which its red giant phase
ends.

®BAO are fluctuations in the density of the visible baryonic matter of the Universe, caused by acoustic
density waves in the primordial plasma of the early Universe. As previously mentioned, they can be used
as "standard rulers"

"The weak lensing is a particular lensing phenomenon in which the light deflection due to gravitational
fields is impossible to detect in a single background source.
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2.2 Cosmological Issues

After the introduction of GR and the ACDM model, and some examples of their suc-
cesses, let us now discuss some "hot-topic issues" regarding these theories, that need to
be addressed in order to have a complete and satisfactory view of our Universe [11, 7].
In this section, we will present some of these problems, while, in the next chapters, we
will show some tools that have the ultimate aim of trying to overcome them, both from an
observational and theoretical point of view. We will anticipate that some of these issues
can be addressed, at least theoretically, using the Extended Theories of Gravity (ETGs),

which will be treated more extensively in Chapter 6.

2.2.1 General Relativity and Quantum Gravity

GR and the Quantum Field Theory (QFT) are the pillars upon which modern physics is
based. The former has been very successful in describing gravitational systems at large-
enough scales, while the latter excels in the description of physical processes at high
energy regimes or very small scales, where a classical paradigm breaks down. However,
in their current state of the art, the two theories do not consider the regimes in which
the other excels: GR is a classical theory that does not take into account the quantum
nature of matter, while QFT assumes that space-time is flat, and even its extensions, such
as QFT in curved space-time, consider space-time as a rigid arena inhabited by quantum
fields [11] and, so, not as a variable itself, as is the case for GR.

Even if experiments related to gravity at scales at which quantum effects become im-
portant are improbable also in future experiments (the Planck scale under which these
phenomena would become relevant is 10733 ¢m [11]), it would still be interesting to find
a theory being able to describe all scales of the known Universe in a comprehensive way
(the so-called "theory of everything"). Also, some fundamental issues are linked to the
Planck scale itself, the most relevant being the Big Bang scenario, according to which
the Universe inevitably goes through an era in which its dimensions are smaller than
the Planck scale (Planck era) [46], that, incidentally, is currently also the most obscure
period of the history of our Universe. This particular issue is the reason why formu-
lating a "quantum cosmology" paradigm is a necessary step to understanding the initial
conditions of the Universe and having a complete picture of it since its birth.

From a quantum mechanical point of view, the Universe should be described by a
wave function, which assigns a certain probability to obtain a particular configuration of
space-time and matter variables. From this theoretical line of research seems that the Uni-
verse can enucleate from the "void" [46], i.e. a configuration without a classical space-

time. The wave function can be used to calculate the probability of this phenomenon.
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The main issue with this approach is the unification of gravity with other natural
forces. In this regard, many efforts have been performed by the scientific community in
the past decades. In the quantum approach, the states of a physical system are represented
by a vector in a Hilbert space H, while the physical fields are represented by linear oper-
ators defined on domains of H. The fundamental, conceptual issue is that GR describes
simultaneously the gravitational degrees of freedom and the background space-time in
which these are defined. This means that, in order to define the concepts upon which GR
is based, it is mandatory to solve the field equations that can give a certain space-time
as a solution. This problem becomes complex in Quantum Gravity: because of the Un-
certainty Principle, particles do not have a definitive trajectory: the temporal evolution
provides a probability amplitude ¢ (z, t); so, the evolution of an initial state does not give
a specific space-time, which means that we cannot define basic concepts of GR, without
which cannot be defined, like causality relation, a specific time and so on.

Because of the difficulties of building a complete theory unifying interactions and
particles, during the last decades, the two aforementioned pillars of modern physics have
been critically re-analyzed by the scientific community. For instance, regarding GR, it
is assumed that the geometry (i.e. the Ricci tensor or the Ricci scalar) interacts directly
with quantum matter fields, which back-react on it. This interaction necessarily modifies
the standard gravitational theory, that is, the Hilbert-Einstein Lagrangian of gravity is
modified by adding effective fields to the Ricci scalar, this is one of the first examples of
an ETG theory.

To try to overcome the previously mentioned problems, two approaches have been
used, which have given different answers [11]: the canonical approach, which is based
on the Hamiltonian formulation of GR, and aims at using the canonical quantization
procedure [84, 85], and the covariant approach [11, 86] which tries to use the same
procedures and concepts of QFT by splitting the metric tensor and using a perturbative
approach. Both methods have achieved some interesting results during the past years, but
they also present some issues that did not, up to now, allow them to solve definitely this
fundamental issue.

Of course, Quantum Gravity, as with any other physical theory, has to be confirmed
by experiments (or, in this case, observations). Two possible tests for this kind of theory
are [11]:

* The evaporation of black holes (BH): a key observation would be the final evapo-
ration phase of a BH. To this end, it would be useful to observe the signatures of
primordial BH. These objects are forming not at the end of stellar collapse, like
for the ordinary stellar-mass BH, nor as a merging mechanism as the supermassive

BHs in the core of the galaxies. Instead, they can originate from strong density
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perturbations in the early Universe. In the context of inflation, their initial mass
can be as small as 1 g. Primordial BH with initial masses of about 5 x 104 g
would evaporate at the present age of the Universe. Up to now, no such object has
been observed yet [87], also given the extreme conditions that should be studied to

achieve such an observation.

* Cosmology: quantum aspects of the gravitational field may be detected in the
anisotropy spectrum of the CMB. Future experiments may be able to observe the

contribution of the gravitons generated in the early Universe [45].

2.2.2 The Inflationary Paradigm

Having briefly explained why it is necessary to introduce Quantum Gravity to explain
the initial conditions of the Universe, let us now take into account other observational
issues related to the ACDM model. Indeed, several observations cannot be explained by
this model by itself, which have bought a new paradigm describing the early times of the

Universe’s expansion. The issues are summarized as follows [46]:

* Homogeneity: photons that cannot be casually connected if the expansion of the
Universe is due just the ACDM model show the same temperature, thus proving a

physical connection between them.

* Asymptotic Flatness: observations show that the Universe is very close to being
spatially flat [88] (even if some evidence for a closed universe has been found [89]),
but any small departure from the flatness in the early times of the Universe’s history
would have been amplified by the dynamical evolution of the Universe itself, thus

arriving to a "fine-tuning" issue.

* The absence of magnetic monopoles: magnetic monopoles are naturally predicted

by many grand unified theories [90], and yet they have never been observed.

* Formation of Structures: high scale structures, bigger than 50 Mpc, have been
built during the expansion of the Universe. These regions should not be causally

connected.

These problems have brought to the so-called inflationary paradigm, according to
which, during the early epochs of the Universe, there has been an exponential accelerated
phase, during which the Universe itself has expanded by a factor of approximately €% in
a very brief time interval [46]. This expansion can address all the problems mentioned
above. For instance, according to this idea, we do not see magnetic monopoles because

we can casually see just a small fraction of the Universe that has exponentially expanded
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in the early times, so they could exist in a place that we cannot reach, while the casual
connection of large structures can be explained by the fact that they started to form when
their components could be causally connected.

While the ACDM model is well defined, there is not yet a unique theory for the In-
flationary Paradigm (which, itself, is beyond the standard cosmological model). Indeed,
two main classes of Inflationary models exist: the first consists of a description of gravity
where the Einstein GR equations are used, and a scalar field (or more scalar fields) are
employed as a source term for the inflation, while in the second both the equations and
the source term are modified. The latter framework seems to work better than the former
because eliminates a great number of problems connected to the choice of the particular
gravitational theory [46]. The ETGs fall in the latter framework. Indeed, the inflationary
scenarios related to ETGs seem to be concordant with the CMB observations [91, 92, 93,
94]. This is because it is possible to demonstrate that the higher order and non-minimally
coupled terms in an ETG can always be associated with additional scalar fields via a
conformal transformation [95]. This association can be useful also because they allow
considering multiple inflationary events to produce structures at different scales [91, 96],
with the idea of different inflationary epochs which are associated with different scalar
fields.

Lastly, inflationary models based on ETGs could solve the "Graceful exit problem"
[97], which consists of the theoretical explanation of the end of the inflationary phase and

the beginning of the ordinary acceleration phase of the Universe [98].

2.2.3 Dark Matter and Dark Energy

As previously mentioned, according to the ACDM model, up to 95% of the Universe is
composed of either dark matter or dark energy, which have been introduced to match
the observations to the standard cosmological model and GR [64, 66, 6]. The main is-
sue regarding these physical quantities is that their nature remains completely unknown.
Related to dark matter, a plethora of very precise, fine-tuned experiments have been per-
formed (and are still being performed) [8, 9, 10], from many collaborations and faculties,
like the GSSI and CERN, but, up to now, only null results have been found regarding the
nature of this quantity. A similar situation applies to dark energy. As we have seen, dark
energy, for the ACDM model, is parameterized by a constant density, 25, introduced to
explain the accelerated expansion of the Universe, but, again, its nature is still a complete
mystery. One of the most pressing matters regarding this constant is its value: there is,
indeed, an enormous discrepancy between the value measured by cosmological observa-
tions with respect to the same quantity computed by particle physics as the zero-point

energy in the vacuum [11] (a striking difference that can be as high as 120 orders of
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Figure 2.2: The evolution of the densities composing the universe with the time. Both
axes are on a logarithmic scale.

magnitude). Also, according to the ACDM model, it seems that we live in a very special
epoch, where the dark energy density is of the same order of magnitude with respect to
the matter density, which is arguably a highly odd coincidence, given that latter evolves
with the cosmological time while the former should remain fixed: this issue is known as
the coincidence problem [99].

To understand this conceptual problem, we consider the densities evolution in the
Universe with the time shown in Figure 2.2 . In particular, we note how peculiar the
concordance in order of magnitude of €2,, and €2, (that acts like a constant as described
by the ACDM model) is in our current time, given the evolution of €2,; and Q5. We also
note that this coincidence should not be verified in any other cosmological epoch given
this evolution.

The dark energy constant is associated with an equation of state of the type w = —1
[7]. There exist also models in which the dark energy is not simply a constant [100,
101], but it is represented by a scalar field ¢ rolling slowly down a flat section of a
potential V'(¢) and giving rise to the models known as quintessence [102]. One of the

main issues of this kind of theory is still the coincidence problem: even if the scalar field

8figure taken from https://physics.stackexchange.com/questions/233801
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is evolving with time like the other densities, there is no reason, according to our current
understanding, about why the dark fluid and the matter density are of the same order
of magnitude in the current epoch. Also, the scalar field related to these models has an
unknown nature itself.

Other possible schematizations of dark energy have been introduced in the past years
[103], like models in which interactions between dark energy and dark matter are taken
into account [104]. There are also hypotheses according to which only one cosmological
fluid exists, that acts like dark energy at low densities and dark matter at high ones. For
this class of theories, the coincidence problem is naturally solved, because this framework
addresses the transition from a matter-dominated era to a dark energy-dominated epoch
[105].

In summary, for the ACDM model, 95% of the Universe is still unknown, many
models and schematizations exist trying to provide a comprehensive physical origin to
these mysterious quantities, but still, no experimental evidence has been found. Also,
all these hypotheses can bring different cosmological models that are able to explain the
accelerated expansion of the Universe; thus, there exists a degeneracy between those, that
cannot allow us to discriminate among them.

There are other possibilities to explain the effects normally attributed to dark energy
and dark matter, that would imply going beyond GR and the ACDM model, as well
as a change of perspective on the problem itself: one of those regards the possibility
of introducing non-standard electromagnetic effects due to possible extensions of the
Maxwellian theory [35], which will be extensively detailed in chapter 5, the other is con-
sidering, again, the ETGs: indeed, for this second approach, the observed acceleration
is not the manifestation of yet another ingredient of the cosmic pie, but rather the first
signal of a breakdown, in the infrared limit, of the laws of gravitation as we understand
them [106]. Indeed, for this framework, we are considering the idea that the acceleration
originates from a "geometrical" source, rather than a material one [107]. For instance,
a cosmological constant may be recovered as a consequence of a non-vanishing torsion
field, able to match the observations [108]. SNe Ia data could also be efficiently fitted by
including in the gravitational sector higher order curvature invariants [109]. In the litera-
ture, there are many other theoretical frameworks using ETGs that attempt to go beyond
the dark universe described by the ACDM model, naturally providing a cosmological
component with negative pressure originating from the geometry of the universe. Given
the abundance of these models, an issue regarding the degeneracy of these, as the one
mentioned above related to the nature of dark energy, still exists. This is because there
exists only a limited number of cosmological tests to discriminate between these mod-

els [91]. We expect that this issue, with time and the certain future improvement of the
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detectors and experimental apparatuses, should be overcome by the scientific community.

The important point is that the ETGs have to be as successful as GR in the appropriate
energy scales, while also overcoming its limits. This means that, in the weak field limit,
they have to be able to reproduce the same results obtained in GR, while also improving
them if possible. Indeed, even the weak limit is a matter of debate concerning the ETGs:
in fact, some of them do not reproduce exactly the Einsteinian results in their Newtonian
limit but, in some sense, generalize them. For instance, the ETG with Lagrangian (R +
aR?) gives rise to Yukawa-like corrections to the Newtonian potential with potentially
interesting physical consequences, as we shall see in chapter 6. In general, this allows
for test beds also at astrophysical scales with weak fields for both GR and ETGs, which

could be used to confirm or rule out all these possible theories.

2.2.4 Tensions in the Standard Cosmological Model

As previously mentioned, the ACDM model has been very successful in the fit of cos-
mological parameters, and yet very famous tensions (incompatibilities within the given
errors) exist between different measurements which are the object of a very intense dis-
cussion in the scientific community [13]. Certainly, the most famous one in cosmology is
related to the Hubble Constant, H, between the early time measurements using the CMB
compared with the late observations deduced using the cosmological ladder. Considering
the latest results, the CMB measurements, performed by the Planck collaboration [2],
found Hy = 67.4 £ 0.5 km/(s Mpc), while the latest results presented by the SHOES
collaboration, using the cosmic ladder method, give us Hy = 73.04 £ 1.04 km/(s Mpc).
We are looking at a 5o tension between these two measurements [12], which in princi-
ple should instead present the same result. An interesting fact is that these two values
represent two sets, each composed of many measurements: indeed, all the early time es-
timations of H, agree with each other, and the same is true for the late-time deductions
[13]. Thus, the tension is between early and late type measurements of this quantity. It is
also important to note that the late-time estimates are independent of the ACDM model
itself, while the observations concerning the CMB are model dependent. One late-time
measurement, the cosmic ladder approach, has already been defined previously, but it
is important to note again that SNe Ia, Classical Cepheids, and the stellar parallax are
not the only astrophysical objects that can be used for estimating H, using cosmologi-
cal probes, as we will see in more detail in the next chapters. Indeed, there have been
various attempts in obtaining new values via the cosmic ladder by changing the calibra-
tion processes between different steps of the ladder (an example is considering Classical
Cepheids that are not in our galaxy but in the Large Magellanic Cloud [110]) or using

new probes, like Near Infrared SNe Ia [111]. For a comprehensive review of all the re-
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cent measurements obtained using late-time probes, see [13]. The issue is that even if
all these measurements are averaged in different combinations, they present a tension
between 4.50 and 6.30 concerning the Planck results [112, 113]. Considering that we
are dealing with measurements, possible systematic effects could be the reason for this
tension, but both the Planck and SHOES teams are being very scrupulous in addressing
them, finding that possible systematic effects are not enough for explaining the tension
[12], also, only calibration errors would not explain why also other collaborations using
different probes find a similar tension. The alternative would be that new physics, be-
yond the ACDM model, is responsible for this tension, which would mean that finding a
possible explanation for the tension becomes crucial also at the fundamental level.

In Figure 2.3 a comprehensive collection of results involving H during the years
is presented [114], from which we can appreciate the glaring difference between early,
indirect type measurements with late direct observations, obtained with different probes.

In recent years, non-parametric models have also been used, which would be able to
derive the cosmological parameters directly from the data, without assuming cosmolog-
ical models a priori [13]. Some examples use cosmography [116, 117], while others use
machine learning approaches [118].

As previously mentioned, other possible probes can be used to derive cosmological
parameters [119]. The important point is that a plethora of measurements exists in the
literature, which falls into one of the two main groups of results from the H, tension [13].

A new window on these measurements has been opened by the GW observations,
which in principle can be used as standard sirens, i.e., propagating waves whose features
are known from the physics behind their origin, which can be inferred independently
from their distance, and thus used to derive the distance itself. The first results on the
estimation of H, using GW show important uncertainties, not competitive with the more
conventional measurements, that cannot allow discriminating on which side of the tension
these observations may belong (or if they actually fill the gap) [120, 121]. Nevertheless,
given that we are only at the dawn of the GW era, significant improvements are expected
from this approach in the near future, when new generations of GW instruments will be
operational [13].

It is important to stress that, although the H tension is certainly the most famous
related to cosmological data, it is not the only tension existing between the results pro-
vided by the ACDM model and late-time measurements. Indeed, another example is the
so-called Sg = Ugm tension, where Sg is a parameter indicating the strength
with which matter is clustered in the Universe. Indeed, there is a discrepancy at 2 — 30
level [13] between the measurements given by the Planck data and late time probes, such

as weak gravitational lens and cluster of galaxies [14, 15]. In particular, the Ss mea-
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surements from CMB data are systematically larger than the late-time measurements.
Systematic effects can still play a role in the measurements, as usual, but the fact that we
find a tension similar to that related to Hy from different collaborations even for mea-
surements of different quantities may hint that more fundamental issues are at hand.

Other measurements are also challenging the ACDM model, like the previously men-
tioned possibility, inferred by recent observations, that the Universe is actually closed
[89], as well as the so-called "Axis of Evil", which is an apparent correlation between the
plane of the Solar System and aspects of CMB, that seems to give us a preferred position
in the Universe, which should not be possible considering the Cosmological Principle
[122] (the Solar System is only one of the billions of similar systems, why would it have
a preferred position in the Universe?). In summary, even if unknown systematic effects,
as well as selection biases, are still possible, the scientific community has to understand
if they are the sole reason for these tensions or if new physics is at hand, which could
modify the ACDM model that is, up to now, the most widely accepted model regarding
our Universe.

It should also be noted, again, that the ACDM model, even considering the issues dis-
cussed in the previous sections, is still an extremely successful model able to fit the ma-
jority of the cosmological data and to describe with precision a great part of our Universe
with a small number of free parameters, which would mean that any alternative theoreti-
cal approach must (to the very least) be able to reproduce its results. This consideration
may hint at the possibility that the ACDM model is actually a very valid approximation
to a more complete cosmological model yet to be found (like what is Newtonian gravity
with respect to GR). We will see a similar assumption on Maxwell’s electromagnetism in
chapter 5 and on GR (the ETG framework previously introduced) in chapter 6.

Regarding this point, many possibilities have been proposed by the scientific com-
munity in the past decades, some of which, like quintessence models, have already been
cited. As we will see, ETG models have also been used for cosmological applications
[123, 44].

2.3 Astrophysical Issues

Up to now, issues related to the cosmological point of view have been presented: from
the initial conditions of our Universe, to the inflationary Paradigm, to the "mandatory"
presence of dark constituents of unknown nature, and finally to the tensions in the cos-
mological parameters measured by different probes. We now change our perspective and
look at some astrophysical observations which may suggest the possibility of theories

going beyond GR also to these scales.
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Conceptually speaking, the idea of looking for tests-bed hinting at new theoretical
discoveries would suggest testing GR in strong gravitational field regimes, where the
extreme environment could cause a breakdown of this theory in favor of alternative (or
more complete) frameworks, like ETGs. These regions are found near very compact and
dense astrophysical objects, like Neutron Stars (NS), or BH.

In general, these kinds of tests are very difficult for two main reasons [124]: the first
one is that phenomena occurring in strong gravitational fields are complex, extreme, and
often explosive, making it very difficult to find observable properties that depend cleanly
on the gravitational field and that allow for quantitative tests of gravitational theories,
while the second one is that there is not a general theoretical framework within which
quantify deviations from GR predictions in the strong-field regime.

Nevertheless, during the past few years, an incredible improvement in these kinds of
observations has been achieved, thanks to the effort of the scientific community: we can
think of, again, the birth of GW astronomy. Indeed, the famous event GW170817 [125],
which signed the dawn of the GW era, was due to the inspiraling of two NS, which would
mean that GW can shed light on the exact extreme events that would be able to test GR by
studying phenomena happening near compact objects; indeed, even the observations of
GW one century after Einstein’s prediction represent, by itself, a beautiful confirmation
of GR.

All the historical GR tests have been performed in the Solar System [124], which
means that the strongest gravitational field tested by these experiments is found on the

surface of the Sun, which corresponds to a gravitational redshift equal to

_aM,
SR R@CQ

~2x 1075, (2.24)

and to a space-time curvature defined as

GM,

EXE ~4x 10 %8em ™2 (2.25)

Of course, these quantities are significantly smaller than what can be found in strong
gravitational regimes, like in the vicinity of NS and BH, where we find a gravitational
redshift of &~ 1 and a space-time curvature of ~ 2 x 10~!3. With the aforementioned solar
system tests, a deviation of GR’s prediction using parameterized post-Newtonian (PPN)
parameters has been found to be of order ~ 10~ [126]. This would imply that strong
field tests could find way more significant deviations from the GR predictions. Related
to these regions, we have to note that GR would imply an infinite curvature and matter

density in the integration, forward in time, of the Oppenheimer-Snyder equations, which
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describe the collapse of a cloud of dust [127, 124]. Clearly, this solution is non-physical
and has to be complemented in some other way.

As we already mentioned, the strongest gravitational fields around astrophysical sys-
tems can be found near NS and BH in X-ray binaries. Large gravitational potentials, but
smaller curvatures can be found around the horizons of intermediate-mass BH (whose
existence is still being under investigation, with the closest observational proof being the
GW signal GW190521, to which it has been associated a merging of two intermediate-
mass BH into a 150 Mg one [128]) and in active galactic nuclei. Weaker gravitational
fields exist near the surfaces of white dwarfs, main-sequence stars, or at the distances
of the various planets in our solar system. Finally, even weaker gravitational fields are
probed by observations of the trajectories of the stars close to the black hole in the center
of our galaxy (Sgr A*), and by studies of the rotational curve of the Milky Way and other
galaxies [124]. A comprehensive map of the gravitational parameters expected by these
objects is represented in Figure 2.4. From this figure, we may note that only a limited part
of this parameter space can be accessible to experiments. Indeed, the region correspond-
ing to the condition € > 1 symbolizes distances from a gravitating object that are smaller
than their event horizon radius and are, therefore, inaccessible to observers. Also, the
dark energy itself may influence these tests, especially below the green line visualized in
Figure 2.4. Finally, the ability to perform a quantitative test of a gravitational theory also
relies on an independent measurement of the mass that generates the gravitational field
itself. This is not always possible, especially in various cosmological settings, where
gravitational phenomena are used mostly to infer the presence of dark matter and not to
test GR. This kind of system is found under the purple line in Figure 2.4.

We also have to note that supermassive NS have been observed in recent years, which
would require a very stiff equation of state in GR [129], as well as white dwarfs exceed-
ing the Chandrasekhar’s limit [16, 17]. These observations are not easily explained by
GR formalism, thus ETG studies have been performed both related to white dwarfs [130]
as well as NS [131, 133, 19, 132]. For instance, regarding the NS, it has been found
that ETGs are able to insert supermassive NS in their theoretical framework without hy-
pothesizing exotic equations of state, because, considering the same equation of state and
initial conditions, they may model, using the mass-radius relation, NS more massive than
the GR counterpart. For a comprehensive review of compact objects in ETG theories, see
[134].

As we have seen, the extreme regions with very high gravitational fields are the most
interesting to test GR and ETGs, but even so, it is necessary to test ETGs also in the weak
field regimes, to see if they are able to reproduce the GR results or to quantify if, and how,

they are expected to change in the extended formalism (as previously mentioned, the ETG
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weak field limits is a very debated theoretical point of this paradigm, because some of
these limits do not reproduce exactly the results given by GR).

From the observational point of view, moving to the weak gravitational regimes, we
note that non-compact stars have been detected, whose inferred mass is not easily ex-
plained by the GR (Newtonian) formalism. Up to now, the most massive star has been
found in the NGC 2070 star cluster, where a Wolf-Rayet object with an estimated mass
of 315M, has been detected [50] (even if other, new, estimates provide a mass of around
222M, [135]). This is not the only case of a very massive star [136]. The existence
of these very massive stars presents theoretical challenges both from a stability point of
view [47] as well as for their birth from interstellar gas [S1], and for other observations-
derived limits on the stellar mass itself [137]. This is a possible test bed for ETGs in a
weak gravitational environment: indeed, as it will be detailed in chapter 6, ETGs, more
specifically f(R)-Gravity, have been applied to the stellar structure of non-compact ob-
jects [49, 48, 138], as well as for their origin from interstellar clouds [52], giving rise
to theoretical solutions in the ETG framework which are able to naturally include stellar
objects more massive than the structures foreseen by GR in the same initial condition,
as well as helping the star formation under the same initial conditions for the interstellar
clouds.

Scalar-tensor theories have been used related to different astrophysical distance indi-
cators such as Classical Cepheids [139, 140]. Other tests in the weak gravitational field
limit have been performed regarding the two-body problem [141], and the orbit of the
so-called S stars around Sgr A*, which we recall is the supermassive black hole at the
center of our galaxy [142, 143, 144]. These are only a few examples of the possible tests
that can be performed on ETGs in the weak limit, where they are expected to at least
reproduce GR results or to even present better fits to the real data due to their generaliza-
tions. As previously mentioned, we shall see in more detail a further example of stellar

structure in f(R)-Gravity for non-compact objects in chapter 6.



Chapter 3
Physics behind the Cosmological Probes

In this chapter, we focus on the physics behind the cosmological probes studied in the
following chapters of this thesis. In particular, we focus on SNe Ia, GRBs, and BAO,
giving more space to the GRBs.

3.1 SNela

SNe Ia are a particular type of SN. In general, the SNe are very luminous and explosive
events associated with stars. A classification of these phenomena based on their detected
spectra has been performed in the past decades by the scientific community: in particular,
type II SNe present strong hydrogen lines, while Type I do not show them. These two
macro-classes have, in turn, been divided into subclasses, always using spectroscopic
features. For instance, the type I class is further divided into type Ia (showing silicon
lines), type Ib (showing helium lines), and type Ic (without helium nor silicon lines).
This classification is still evolving nowadays, with new definitions of subclasses, because
of the presence of abnormal SNe showing intermediate features among the previously
mentioned features [145, 146].

From a more physical point of view, the classification is drastically different: indeed,
while SNe Ia are linked to the explosion of white dwarfs in binary systems exceeding
the Chandrasekhar limit because of the injection of mass of the companion star, all the
other SNe are believed to be due to core-collapse explosions of very massive stars at
the end of their lifetimes. The differences in their spectroscopic lines are a consequence
of the nature of the progenitor stars and their evolutionary history. This conclusion is
also confirmed by the fact that core-collapse SNe are found in star-forming regions and
galaxies, indicating the brief lifetime of their progenitors.

SNe Ia are, instead, given their nature, found in every type of galaxy, meaning that

their progenitors can also have long lifespans (as is the case for less massive stars and
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white dwarfs). The particular, historical model which agrees well with the majority of
SNe Ia observations is the so-called single-degenerate Chandrasekhar-mass explosion
model [147], in which the white dwarf accretes mass in a binary system, stealing it from
its companion, that is a less evolved star (for instance, a red giant, which is way less
dense than a white dwarf, especially in the external regions). In principle, spectroscopic
differences may be found also between different SNe Ia depending on the white dwarfs
acting as a progenitor (in particular, on the elements of which are composed), but it has
been found that the main candidates for the SNe Ia explosion are the carbon-oxygen
white dwarfs [148].

After the explosion due to the white dwarf surpassing its stability limit, the burning
front moves subsonically, producing heavy elements like iron. The SNe Ia light curves
are well-fitted by the deflagration model shown in [149]. SNe Ia light curves are primarily
powered by the 3-decay of the radioactive *Ni produced during the explosion [150].

The mechanism behind the explosion of SNe Ia is, in general, well understood. In
particular, according to its nature, the luminosity should be approximately the same for
every SNe Ia: indeed, they show an absolute magnitude which is around M ~ —19[151],
but both super-luminous [152], as well as sub-luminous [153], SNe Ia have been ob-
served, suggesting the possibility of more complex physical mechanisms, linked to the
primary phenomena previously explained, like a delayed detonation scenario for the
super-luminous SNe Ia [154], or a double degenerate model in which a merging of two
white dwarfs causes the explosion, instead of the so-called single degenerate scenario in
which the inflow of matter comes from a non-compact, less evolved star.

Even with these caveats, their nearly uniform luminosity has suggested the scientific
community to use them as standard candles. Indeed, SNe Ia are standardizable in the
sense that, even if their light curves are not exactly uniform for every SNe Ia, they obey
a phenomenological correlation, known as the Phillips relation [68], between the peak
magnitude of the light curve itself and luminosity decline rate in each SN Ia. This relation
can be parameterized by a stretch factor [155]: in fact, different light curves with different
luminosities can be incorporated by one single template once this stretch factor has been
applied.

The role of SNe Ia in cosmological measurements has been of fundamental impor-
tance [156]. Historically speaking, progress on their actual use as cosmological probes
has been performed since the advent of CCD images in the 1990s [157], after which,
two main teams have been working on the distance measurements of high-z SNe Ia:
the Supernova Cosmology Project (SCP) and the High-z team (HZT). These measure-
ments have also been used to infer the best-fit parameters of cosmological values, like

Q) and 2,. These observations showed SNe Ia at high-z that were fainter in a flat,
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matter-dominated universe with €23, = 1 than their lower redshift counterparts. This fact
has brought to the reintroduction of dark energy and to the currently accepted best-fit
parameters of {25, ~ 0.3 and 25 ~ 0.7, which implies an accelerated expansion of our
Universe, as anticipated in the previous chapter.

Since then, SNe Ia have been a cardinal part of the distance ladder, and have been used
in many works in the literature regarding the measurements of cosmological parameters.
This has brought the scientific community to create more and more complete SNe Ia cat-
alogs, where careful analysis has been performed on the light curves and redshift estima-
tions. One of the most recent catalogs is the so-called Pantheon sample [20], composed of
1048 SNe Ia collected from many observational campaigns, which are CfA1-CfA4 [158,
159, 160, 161, 162], CSP [163], LOSS [164], ESSENCE [165], SNLS [166], SDSS
[167], PS1 [168], SCP [169], GOODS [170] and finally CANDELS/CLASH [171, 172].
The redshift interval of the Pantheon sample goes from z = 0.01 up to z = 2.26. This is
also the SNe Ia sample that has been used for the cosmological application that will be
presented in the following chapters, in which we will show also how we have treated the
information provided by this sample for our cosmological computations. Very recently,
an update of this sample, called Pantheon+ [36], has been used for the new estimate of
Hy of the SHOES program [12, 173]. This is an extension of the Pantheon set, and it is
composed of 1701 light curves taken from 1550 SNe Ia, with the new additions being
especially in the low redshift regions, to further increase the reliability of the calibration

procedure on the Classical Cepheids.

3.2 Gamma-Ray Bursts: introduction

As we will see in the next section, one of the studies performed in this thesis has been
focused on applying GRBs as cosmological tools together with other probes. In this
section, we shall describe the phenomenology and the physics behind these astrophysical
objects.

GRBs are incredibly luminous explosions, in fact, the most luminous transient phe-
nomena in the Universe after the Big Bang (Indeed, the most luminous GRBs are 11
orders of magnitude more luminous than the typical SN Ia). They are irregular pulses of
radiation lasting typically less than one minute with a non-thermal (broken power-law)
spectrum peaking at ~ 10 — 10* keV [23]. Their nature is clearly intergalactic, as it was
noted because of the observations not having a preferred plane coincident with our galaxy
disk, but being homogeneously distributed in all the sky. Indeed, the furthest GRB ever
detected has a redshift equal to z = 9.4 [22], much beyond the limit reached by SNe Ia.

GRBs’ emission is usually divided into two phases, a prompt main emission followed
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by what is called the afterglow phase. Different observational campaigns and satellites
have been used in the past decades to detect observations in the high-energy spectrum,
allowing us to shed light on the phenomena involved in GRBs emission. One of the most
important instruments from this point of view is the Neil Gehrels Swift Observatory
(hereafter Swift) [174], launched in 2004, thanks to which many observational features,
that will be presented in the following paragraphs, have been revealed.

Observationally speaking, the prompt emission duration is described by a histogram
in the time duration presenting two peaks, the first around 0.3 s, while the second at 30
s, with a gap around 2 s [23]. This fact has led to the first, macro-classification of GRBs
into two main classes, the Short GRBs and Long GRBs, depending on the duration of the
prompt emission: indeed, if this duration is less than 2 s, we are talking about a Short
GRB, while, for the opposite case, of a Long GRB [175, 176]. To be more precise, the
parameter measured is known as Tyy, which is the time over which a burst emits from
5% to 95% of its total measured counts in the prompt emission. The different prompt
duration has suggested to the scientific community that there are two, main, different
physical mechanisms acting as the engine of these objects, which is also confirmed by the
fact that, usually, Short GRBs are harder (present a more relevant high-energy component
with respect to the total detected energy) than the Long GRBs.

GRBs prompt light curves have been compared to snowflakes: indeed, it is very hard
to observe two GRBs with very similar prompt light curves [177], but there are some
features in common, like the presence of asymmetric pulses given by sharp rises and
shallower decays [23], and the duration themselves.

From a spectral point of view, the prompt emission is usually well described by the
so-called Band Spectrum [178, 179], which is characterized by two decay phases divided
by the so-called knee of the spectrum. The energies characterizing the prompt emission
are typically very high: indeed, it is often detected from the hard X-ray band up to 100
MeV ~-rays, with sometimes also an optical component [24].

The second part of the total GRB emission is called afterglow: it is the long-lasting
energy emission following the main explosion, usually detected in different wavelengths
(X-rays, optical, and sometimes radio). Generally, the time evolution of the afterglow is

divided into five main components [23]:

* A very steep decay phase right after the prompt emission.

A very shallow decay phase called the plateau, in which the flux remains almost

constant.

The normal decay phase.

A late steepening of the decay phase.
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* flaring activity which may happen through the entire afterglow emission.

Each of these phases is divided by "breaking points" in time. This is the main scheme
that can describe fairly well the majority of the afterglow light curves, but there are
some exceptions: for instance, in [180] a particular Short GRB has been studied whose
afterglow cannot be described by the summary presented above, showing a very steep
decay phase after the plateau.

As we will discuss, the second break in the afterglow light curves is attributed to the
so-called jet break, due to the relativistic and collimated nature of GRBs’ ejecta. Given
this assumption, the break should be achromatic, as it is indeed the case for the majority
of the GRBs [181], and yet, even for this feature, exceptions have been observed, where
a relationship between the position of this break and the spectral band has been noted
[182]. Just from the description above, we notice how the observations suggest that
GRBs are way more varied in their phenomenology than SNe Ia, both photometrically
and spectroscopically.

A very important observation related to the GRBs involves the electromagnetic coun-
terpart of the gravitational wave event GW170817 [183]: indeed, the X-ray counterpart
has been identified with a Short GRB, while the softer side to a Kilonova (KN) [184],
which is an explosive event following the coalescence of two compact objects, thus pre-
senting an evident link between a Short GRB with its progenitor as well as with a grav-
itational wave event. On the link between KNe and GRBs, we shall return in the next
sections.

Another association suggested by the observations is between the Long GRBs and
core-collapse SNe [185]. All these facts have led the scientific community to understand
that high-energy processes, such as synchrotron radiation and inverse Compton scatter-
ing, must be at hand to describe the emission due to GRBs. Indeed, the main model of
GRBs describes them as a central engine expelling ejecta moving at relativistic speed in
a collimated beam. This ejecta creates a shock front with the interstellar medium which
is responsible for the energetic processes detected during the afterglow. This external
shock scenario [186], is able to describe the five components afterglow light curve de-
scribed above, while to explain the observation in [180], internal shocks in the ejecta
itself must be taken into account [23], which may be due to the reverse shock formed at
the front with the interstellar medium moving backward in the ejecta itself, as well as
because of the formation of internal shock fronts. A long-lasting activity of the central
engine itself during the afterglow phase may also be considered for these internal plateau
scenarios. In general, the difference between the internal and external plateau can be de-
rived from the value of the temporal power-law (PL) decay index of the plateau, o; [24]:

a very steep decay indicates the possible internal origin of the plateau [187, 188].
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The second break in the light curve mentioned above is believed to be due to the col-
limated form of the emission and its relativistic velocity: indeed, due to the relativistic
nature of the jet, in the first phases of the emission, the related relativistic angle is smaller
than the collimation one, so that all the radiation can be seen by an external observer. Due
to the shock front slowing down, then, the magnitude of the relativistic angle reaches and
surpasses the collimation limit. After this event, only a part of the full radiation budget
can be detected, and the break in the light curve happens. The chromatic behavior ob-
served for some GRBs of this break may be explained by the different possible emission
sites (In particular the reverse shock and the long-lasting energy injection from the central
engine itself) [23].

All these observational facts have led the scientific community to two main possi-
ble astrophysical phenomena, that may lead to the explosion of GRBs, which are either
the coalescence of two compact objects [189] or the explosion of very massive stars
[190]. These models have found evidence in the observations mentioned above. Usu-
ally, Long GRBs are associated with the core-collapse models, while Short GRBs to the
merging, but there have been some exceptions: for instance, there have been observed
Long GRBs with no-SNe associations, even in situations where the SN should have been
clearly detected, like the nearby z = 0.09 SN-less GRB 060505, and GRB 060614A,
with z = 0.125 [24], which could mean that the associations Long GRBs-Collapse of
very massive star/ Short GRBs-Merging of two compact objects may not be perfect, and
some outliers can be found.

Related to this point, a classification scheme has been proposed based on the pro-
genitors themselves [191]: Type I GRBs are related to the merging of compact objects,
while Type II GRBs are associated with the collapse of massive stars. This classification
is linked to observational evidence going beyond the prompt duration itself.

In particular, type I GRBs have the following principal features [186, 191, 24]:

* Prompt duration < 2 s.
* No SN association.

* Detected in elliptical or early-type galaxies, where generally no massive stars are

found, and with low star formation rates (SFRs).

* They received a "natal kick" so that they are pushed away from their original birth

site.
Meanwhile, type II GRBs may be identified by:

* Prompt duration > 2 s, also considering the (1 + z) factor due to the cosmological

distance.
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* Clear SNe association.

* Detected in galaxies with high star formation rates.

* They explode in the same location where the progenitor stars are formed.
* A stratified stellar-wind-type medium [192, 193].

Regarding the central engine powering GRBs, there are again two main models that
are widely accepted by the scientific community: either the central engine is a hyper-
accreting BH, or a fast rotating highly magnetized neutron star, known as a magnetar
[23]. Indeed, from the observations, the central engine has to be able to launch an ex-
tremely energetic jet far surpassing the Eddington Luminosity limit. Also, they should be
intermittent and be able to reactivate at later times, to explain the flaring activity detected
during the afterglow emission. These two models satisfy all these features.

It is possible to distinguish between the two central engine models from the phe-
nomenological features [194, 195]. A summary of the differences between these models
is as follows [23]

* The magnetar model has an upper energy limit of around 10°? erg, while this limit
does not exist in the accreting BH model. The problem to discern between the
two models using this feature is the collimated nature of GRBs emission because

it would not be possible to detect directly the total energy of an off-axis jet.

* The requirements regarding the rotation rate are more severe for the hyper-accreting
BH model.

* A steep decline of the X-ray light curve at the end of the prompt phase can be
explained more easily by the hyper-accreting BH model.

* The combination of a flat X-ray light curve (which would require a constant accre-
tion rate) and a subsequent very rapid drop is more understandable in the magnetar

framework.
» X-ray flares are easier to schematize using the magnetar model.

It is also necessary to note that other alternatives have been proposed by the scientific
community, both regarding the central engine and the progenitors of GRBs [23]. Also,
differently from the SNe Ia case, these physical central engines do not impose a strictly
defined morphology, given that they have to encompass events that may be very different

from one to the other.
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As it may be noted from the introduction above, the physics behind GRBs is way
more heterogeneous than what can be hypothesized for SNe Ia. Indeed, many more
GRBs subclasses have been defined in the past years [24], going beyond the macro-
classes previously described: in fact, we find the X-ray flashes (XRFs) with unusually
soft spectra and greater fluence in the X-ray band (2-30 keV) than in the ~y-ray band (30-
400 keV), the Ultra-long GRBs (ULGRBs) with a very long prompt duration [196, 197],
GRBs that show a detectable association with SNe Ia [185]. We may also find GRBs that
present features between the Long and Short GRBs, called Short GRBs with extended
emission (SEE) [198]. We will show how these and other subclasses have been studied
in [24], for now, we note that, in general, they are not even mutually excluding, so a

single GRB may belong to different subclasses.

3.3 Gamma-Ray Burst correlations

Even considering the complexity of the astrophysical processes that may lay behind
GRBs, in the last years, the scientific community has noticed different important corre-
lations between physical parameters involving both prompt and afterglow GRB features.
In this section, we shall briefly present some of these and then go into more detail about a
particular fundamental plane correlation, that has been used by us both as a discriminator
between classes as well as a possible cosmological tool, as we will see.

One of the first correlations discovered is the so-called Amati relation [23], between
the photon energy at the peak of the prompt spectrum in the rest frame of the GRB, £, .,
and the isotropic gamma-ray energy spectrally extrapolated to a standard energy band
in the GRB rest frame £, ;5, [199]. This relation is found for Long GRBs with known
redshifts and has also been used for cosmological computations [200, 201], as we will
see. Even if it has been suggested that this correlation is due to selection biases [202],
counter-arguments show that these effects cannot completely delete the relation [203],
but they may still increase the intrinsic scatter on the correlation itself [23], which, as we
shall see, is a parameter of utmost importance for possible cosmological applications.

Another correlation regarding only prompt phase variables has been discovered be-
tween L, . and the isotropic gamma-ray luminosity of a burst at its peak flux, L. s,
[204, 205].

The E), .-F., ;5, correlation is valid for Long GRBs, while the Short GRBs do not seem
to follow the same trend [23]. Indeed, Short GRBs seem to follow a parallel track with
respect to the Long ones, which means that, at the same value of £, ., the Short GRBs
are systematically less energetic. This can be attributed to their shorter duration, which

hints that luminosity may be more intrinsically related to E), .. Indeed, the E), .-L. 5 is0
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does not separate Long and Short GRBs [206].

Another correlation has been proposed directly linked to the F, .-E, ;,, relation, in
which the jet opening angle, 0;, of the GRB emission is considered in the following way
[207]: E, = (1 — cos(#;))E is0» so that a new relation E,, — E, is defined. The jet
opening angle is linked to the jet break detailed in the previous section and expresses
how collimated the GRB is. This is a tighter correlation than the E, .-F, ;,, one, but,
as we have already noted, the achromaticity requirement necessary for the geometrical
nature of the jet break is not satisfied by every detected afterglow [23].

Three-parameter correlations have been discovered as well, like the E, .-L. 50 — 15 -
[208], where t;, . = tops /(1 + 2) is the afterglow light curve break time in the rest frame
of the burst measured in the optical band. Another three-dimensional correlation has been
discovered between E,, ., L. piso. and Tg 45 . [209], where T 45, = To.45/(1 + 2), and
Th 45 is the time spanned by the brightest 45% of the total counts above the background
(Usually, the prompt emission duration is measured with the aforementioned 7 99, which
has a definition clearly linked to 7{ 45).

Many other relations have been discovered as well between other observational fea-
tures, for instance in [210, 211, 212]. For a more complete review see [23]. Finding
correlations between GRB physical parameters is a fundamental step to shed light on
their interior mechanism, discerning between different types of GRBs and, ultimately,
using them as cosmological probes, by inferring their luminosities via these relations
from features non-depending on their distance from us. Indeed, just these main objec-
tives are enough to explain the interest surrounding GRBs correlations and their scientific
applications, in particular in finding ways of making them tighter and tighter.

We now introduce the GRB correlation that has been used for our analysis. Histor-
ically, one of the possibilities introduced by the observations performed by Swift was
the idea of using afterglow physical quantities to introduce new correlations [213, 214,
215]. The advantage of using afterglow features is the smaller variability characteriz-
ing them than the prompt physical quantities, which we recall may differ substantially
between GRBs. One of these correlations is the so-called Dainotti relation [216], be-
tween the X-ray rest-frame end time of the plateau 77} y and its correspondent luminosity
L, x. This particular correlation has been extensively studied and confirmed in [217,
215, 218]. This relation has been linked to the different theoretical models presented in
the previous section, which could be able to physically explain it, such as the accretion
onto the black hole [219], or the spin-down of a magnetar [220, 221, 195]. According to
the latter model, we can link the physical parameters of the correlation to other quantities
describing the magnetar itself, like the moment of inertia and the spin period, through the

following equations
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Loag x By 15 P53 Re, (3.1

Toms = 2.05145B2 5Py _3Rg°. (3.2)

0%%ergs~!, I,5 is the moment of

In these equations, Lg 49 1s the plateau luminosity in 1
inertia in units of 10 g ¢cm?, B, 15 is the magnetic field strength at the poles in units of
10'® G, Ry is the radius of the NS in 10° cm and P, _3 is the spin period in milliseconds.

From these equations, we can derive the following

log Ly o< (log(10°*1,5' Py _3) — log(Tem)), (3.3)

where we note that the first term may be interpreted as a constant for a given fixed period
of the magnetar and momentum of inertia, and the luminosity is inversely correlated with
the rest frame time at the end of the plateau emission.

Another possibility concerns a modification of the microphysical parameters model
[222] which considers jets viewed slightly off-axis [223].

Recently, this 2-D correlation has also been studied in the optical band, considering
the same physical quantities in this new spectral region (1, o p7, La,opr) [224]. Correla-
tions in the optical band were already discussed in [225]. We will return to this point in
the next chapter, in particular for the cosmological applications. Given that the slope of
the optical relation is similar to the X —ray correlation, the physical interpretation of this
relation can also be linked to the spin-down of a magnetar model.

This relation has also been extended by discovering a third parameter, linked to the
relation itself in the X-ray wavelength, which is the peak prompt luminosity, Lycqk, x,
thus defining a new fundamental plane correlation for GRBs, involving both afterglow
and prompt features. This fundamental plane presents an intrinsic scatter smaller than
the one of the corresponding 2-D relation, and has been extensively studied in the fol-
lowing papers: [226, 25, 24, 227, 228, 229]. In particular, we shall see more in-depth
the analysis performed in [24] in the next section, while in [25] we see the first use of
this fundamental plane as a discriminator between GRB classes, in [229], instead, we see
how this correlation has been used to discriminate among several scenarios of slow or
fast cooling in a wind or a constant interstellar medium. Finally, in [227, 228] the closure
relations and the correlation in the high-energy spectra using the Fermi-LAT observations
have been analyzed. From a theoretical point of view, also the fundamental plane can be
linked to the magnetar scenario [195], by the anti-correlation between L, and the spin

period within the model of the pulsar spin-down found in [230].
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3.4 GRB classes and the fundamental plane

We now go more in-depth into the analysis performed in [24], in which we have used
the fundamental plane correlation for different GRB subclasses, to note if dissimilarities
between the classes arise in the best-fit parameters of the correlation. We will show the

sample selection as well as the most relevant results reached by the paper.

3.4.1 Sample selection and definition of subclasses

The classes considered are many of the ones mentioned in section 3.2, as well as other
subclasses. A detailed description of the data set shall be given once the sample selection
procedure will be shown, here we just say that, among the other categorizations, we
have also divided the GRBs presenting an SNe association according to the classification

shown in [231], which is as follows:
* (A) Clear spectroscopic evidence for a SN-GRB association.
* (B) A clear bump in the GRB light curve, suggesting an association with a SN.

* (C) The same bump described in the previous point, but without any spectroscopic

evidence.

* (D) A significant bump on the light curve, but the properties of the SN are not
completely consistent with other GRB-SNe associations, or the bump itself is not

well sampled, or there is no GRB spectroscopic redshift.

* (E) A bump, with low significance or inconsistencies with other observed GRB-
SNe identifications, but with the information of the spectroscopic redshift of the
GRB.

In particular, we have gathered the categories (A), (B), and (C) in a separate subset. Also,
we have introduced two novelties, the first related to a set of GRBs associated with KNe,
and the second to a particularly strict defined subset of Long GRBs.

For the sample selection, we have analyzed all GRBs detected by Swift from 2005
January to 2019 August showing X-ray plateau afterglows and with known redshifts,
spectroscopic or photometric, following for this last point [232]. The GRBs have been
selected from the Greiner web page ! and in the Gamma-ray Coordinates Network circu-

lars and notices,? excluding redshifts for which there is only a lower or an upper limit.

"http://www.mpe.mpg.de/jcg/grbgen.html
“http://gcn.gsfe.nasa.gov/
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We have downloaded the BAT + XRT light curves from the Swift web page repository.
3, and we have considered all the GRBs that can be fitted by the phenomenological W07

model [187]:
( Fjex 1 ! Xp & for t < T;
p T e : 0

ft) = (3.4)

t\ " t;
| (7) e (-%) or t>

where both the prompt (index ‘i=p’) y-ray and the initial X-ray decay and the after-

glow (‘i=a’) are modeled. The light curve fi,.(t) = f,(t) + f.(t) contains two sets of
four free parameters (7;, F;, v;, and t;), where t; is the initial rise timescale, «; is both
the time constant of the exponential decay and the temporal power-law decay index of
the plateau, and F; is the measured v-ray energy flux over a 1 s interval at the time 7;.

We have excluded the cases where the afterglow fitting procedure fails or where the
determination of the 1 o confidence intervals does not satisfy the criteria shown in [233]
regarding the 2.

We have also discarded the GRBs whose light curves can be fitted by black body
radiation instead of a PL or cutoff PL. We then followed the criteria shown in [234] to
define equality in the light curve fitting of PLs and cutoff PLs. Where such equality is
found, we choose the cutoff PL.

Under these criteria, the total sample reduces to 222 GRBs, which we divide into
different subclasses. At this stage of the analysis, we define a subset that we call the
"Platinum sample", which we are going to use also in the next chapter. This is a subset of
the so-called Gold sample, defined in [226, 25]. Let us start from the Gold set: this is a
subset composed of only Long GRBs with the following two morphological conditions:
the beginning of the plateau should have at least five observed data points, and the plateau
itself must not be too steep (the angle indicating the plateau’s inclination must be less than
41°). These criteria allow us to select 69 GRBs from our entire set.

From the Gold sample, we define a second, even more strict, subset, which is selected

using both the criteria chosen to define the Gold set as well as the following:

* Tx is not inside a large gap in the data, which allows us to determine it with satis-

factory accuracy.
* A long enough plateau duration (at least 500 s), without gaps after it.

* No flares and bumps at the start and during the plateau phase.

3http://www.swift.ac.uk/burst_analyser
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All these criteria allow us to select 50 Platinum GRBs.

Regarding the Short GRBs, we have gathered in the same set all the proper Short
GRBs, the SEE, and the intrinsically short (IS) GRB class, defined by having the rest
frame Ty, = Too/(1 + 2) < 28 [235].

Given these definitions, we now present the subsets used in our analysis. From the
total sample of 222 GRBs, we find 138 Long GRBs, 20 XRFs, 22 GRBs with a SN asso-
ciation (SN-GRBs), 14 GRBs with a SN association of type A, B, or C (SN-GRBs-ABC)
43 Short GRBs, 11 ULGRBs, 8 GRBs associated with KNe (KN-GRBs), 69 Gold GRBs,
and 50 Platinum GRBs. We have also divided our set following the [186] classification,
finding 179 Type II GRBs and 43 Type I GRBs (all the Short GRBs in our case).

The ULGRBs of our set have been selected following [236]. We note again that some
of these classes are not mutually exclusive, like for instance the Gold and Long sets.
Lastly, we have further segregated the GRBs that may have an internal plateau, following
the criteria of the very steep «; shown in [188, 237]. 12 GRBs have been found following
this feature, which we consider as a different class separated from all the rest. After this
selection, the final sample is composed of a total number of 222 GRBs divided in the
following way: 65 Gold GRBs, 47 Platinum GRBs, 129 Long GRBs, 43 Short GRBs, 22
SN-GRBs, 14 SN-GRB-ABC, 18 XRFs, 10 ULGRBs, 8 KN-GRBs, 167 Type II GRBs
and 12 GRBs with internal plateaus. In Tables 3.1 and 3.2, lists regarding the SN-GRB
and KN-GRBs and the related parameters used in the fundamental plane correlation are
shown. As we will notice, these are one of the most interesting sets investigated in our
analysis, because of the results we will achieve with them.

We now focus our attention on the KN-GRBs subset, stressing that the analysis con-
cerning the association of KNe with correlations involving GRB features is a novelty for
this kind of approach. As we have seen in section 3.2, one very important observation
related to KN-GRBs association is related to the GW 170817 event, which is linked to
the Short GRB 170817A, and the KN event AT 2017gfo [238].

Short GRBs are usually discovered through the detection of the ~-ray jet, which
means that they are typically observed where the afterglow is the brightest. This im-
plies that the KNe associated with them are more likely to be observed when the viewing
opening angle is larger than the jet opening one [239].

We have based our selection of GRBs associated with KNe following the literature,
with the idea to use the fundamental plane as a discriminant between classes even when
the KN itself is not clearly detected. The 8 GRBs associated with KNe in our set are
060614A, 070714B, 130603B, 070809, 111117A, 140903A, 100625A, and 061201.

In [240, 241] four possible candidates (GRBs 080503, 050724, 070714B, and 061006)

have been found for a KN-GRB association powered by a magnetar born after a merging
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GRB | subclass | Lycq (erg/s) T% (s) Lx (erg/s) z
161219B B 49.31 £ 0.03 3.95£0.03 | 45.62+£0.03 | 0.147
060707 C 51.60 £0.15 294+£0.13 | 48.07+£0.10 | 3.08
081007 B 50.29 £0.05 3.40+0.08 | 46.44+£0.06 | 0.529
090618 C 51.44 £0.01 | 3.485+£0.014 | 47.40+£0.02 | 0.54
091127 A 01.41 £0.02 3.81£0.02 | 47.07£0.02 | 0.49
060904B C 50.47 £ 0.03 3.64 £0.08 | 46.36 £0.12 | 0.703
080319B C 51.73 £0.03 5.08 £0.09 45.4+£0.1 | 0.937
101219B B 50.09 £0.11 4.23£0.17 45.1+0.1 | 0.552
120422A A 49.01 £ 0.08 5.13+0.22 | 43.66 +£0.12 | 0.28
130831A B 50.862 +0.014 | 3.154+0.09 | 47.05 £0.06 | 0.479
141004A B 50.691 £0.014 | 3.11£0.08 | 46.524+0.09 | 0.57
171205A A 47.26 £ 0.09 5.47+0.11 | 42.06 £ 0.07 | 0.037
180728A B 50.474 £ 0.004 | 3.821 £0.015 | 46.12£0.01 | 0.117
060218 A 46.08 = 0.09 5.06 £0.14 | 42.62+0.16 | 0.033
090424 E 51.707£0.025 | 2.81£0.01 | 48.00£0.01 | 0.544
100621A E 50.961 £ 0.015 | 3.45 £ 0.06 471£0.1 | 0.542
120729A D 50.69 £ 0.04 3.27£0.05 471£0.1 0.8
050824 E 49.97 £0.14 4.82+0.13 | 45.24+£0.07 | 0.83
051109B E 47.76 £ 0.08 3.62£0.13 43.6 £0.1 0.08
100418A D 20.1£0.1 5.33 £0.07 44.7£0.1 0.08
150821A E 53.15+0.14 2.714+0.02 | 48.53 +£0.02 | 0.755
060729 E 49.91 £0.04 | 4918 £0.013 | 45.97£0.04 | 0.54

44

Table 3.1: Table with L., T, Lx with their respective errors, z and the classification
according to [231] of the 22 GRBs associated with SNe present in our sample. All the
values presented here except the redshift are in logarithm.

GRB | Lpjear (ergs™) T% (s) Ly (ergs ™) | =z
060614A | 49.514+0.02 | 4.98£0.03 | 43.81 £0.04 | 0.125
061201 49.00£0.02 | 3.45+£0.09 | 45.04 £ 0.09 | 0.111
070809 49.06 £ 0.04 4.1+£0.2 44.1+0.2 |0.219
070714B | 50.74 £0.02 | 2.95+0.09 | 46.9+0.1 0.92
100625A | 50.09 £0.02 | 2.28+0.24 | 46.0+0.4 | 0.452
111117A 51.0+0.2 25+£0.1 46.9 £ 0.2 2.21
130603B | 50.28 £0.05 | 3.40+0.05 | 46.1+0.2 | 0.356
140903A | 49.80£0.03 | 4.16 £0.07 | 45.25 £ 0.06 | 0.351

Table 3.2: Table with L., 1%, Lx with their respective errors, and z of the 8 GRBs
associated with KNe present in our sample. All values presented here except the redshift

are in logarithm.
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event between two compact objects. These candidates have been noticed among 96 Short
GRBs observed by Swift. Out of these GRBs, the SEE GRB 070714B belongs to our
sample as well.

In [242], seven GRBs have been found among a set of 28 Short GRBs which are either
associated with claimed KNe or present a shallow decay of the afterglow, which could
be a signature of the KN, all of them with known redshift. Out of these seven GRBs,
three are also present in our sample: GRBs 060614A, 070714B, and 130603B. GRB
070809 is associated with a KN, but with a less secure redshift according to [242]. GRBs
111117A and 100625A have a probability > 1% to be associated with KNe. However,
given the lack of any other possible galaxy with a similarly low chance association, this
connection is more probable than what was previously mentioned. GRB 061201 has a
luminosity smaller than 0.35 of the luminosity of the GRB associated with AT2017gfo,
which could be a possible reason explaining why the KN has not been clearly detected.
Indeed, if a KN were to be present, it should be at least 5 times fainter than AT2017gfo
in the blue component [242]. Finally, GRB 140903A 1is 15 times brighter than the GRB
associated with AT2017gfo, meaning that this burst could have masked the KN [243].

3.4.2 Best-fit fundamental planes

We now present the methodology behind the best-fit analysis that we performed for the

different subclasses, as well as the results. The fundamental plane is defined as follows:
logLx = C, +a xlogTyx + b x log Lyeak, 3.5)

where C,, a, and b are the best-fit parameters that we intend to compute for each

subclass. Lx and L., are defined as

Lx = 47d3(2) Fx(Emin, Emaz, T%) - K, Lyeak = 473 (2) Fpeak(Emins Emazs T%) - K,
(3.6)
where dr(z) is the luminosity distance, already defined in Eq. (2.17), computed
assuming a flat ACDM model with Q,; = 0.3 and Hy = 70 km s™! Mpc™!, K is the K-
correction for cosmic expansion [244], and (E,in, Emae) = (0.3,10) and (Eoin, Emez) =
(15,150) keV are the limits of the Swift-XRT and BAT band-pass, respectively.
The best-fit has been computed using a Bayesian approach [27], naturally able to
derive also the intrinsic scatter, 0;,;, of the correlation. As for many derivations regarding
best-fit analysis performed in this chapter as well as in chapters 4 and 5, the computations

rely on Cobaya [245], a code for Bayesian analysis in python, that adopts a Markow-
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Figure 3.1: The best-fit fundamental plane for the 222 GRBs in the Lx — T% — Lpcak
parameter space, including SN-GRBs (purple cones), XRFs (blue spheres), Short GRBs
(red cubes), Long GRBs (black circles), ULGRBs (green dodecahedrons), KN-GRBs
(yellow truncated icosahedrons), and GRBs with internal plateau (dark green diamonds).
Darker colors indicate GRBs above the plane, while lighter colors show GRBs below the
plane. This figure shows the edge-on projection.

Chain Monte-Carlo (MCMC) method. The best-fit procedure has been performed for the
total sample of 222 GRBs as well as for each of the subsets. The resulting fundamental
plane (seen edge-on) for the entire sample is shown in Figure 3.1, while, some other
best-fits, yielding the most interesting results and regarding the Platinum, KN-GRBs,
and SN-GRBs-ABC sets, are shown in Figure 3.2. Finally, the other fits are gathered in
Figure 3.3. We would like to note how, in Figure 3.1, the KN-GRBs all fall below the
best-fit fundamental plane, thus already suggesting from this plot that they may obey a
statistically different fundamental plane relation on their own.

The full results for all our computations are shown in Table 3.3. In particular, for
the simple best-fit of the fundamental plane correlation, we refer to the first half of this
table. Let us now discuss these results, taking the Gold fundamental plane as a reference
point: we note that the intrinsic scatter for the Platinum sample is ;,; = 0.34 4= 0.04,
which is 12.8% smaller than the same quantity computed from the Gold sample. Also,
we note that the smallest intrinsic scatter has been computed for the KN-GRB sample

(0int = 0.21 £ 0.16), with a reduction of o;,; of 46.1% compared to the Gold sample,
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Figure 3.2: The best-fit fundamental plane for the Platinum sample (left panel), for the
KN-GRBs sample (central panel), and for the SN-GRBs-ABC sample (right panel).

followed by the SN-GRB-ABC set (0, = 0.29 £ 0.10).

Let us now do a first check on the compatibility of the different fundamental plane
parameters with the results obtained for the Gold sample. The Platinum, Long, SN-GRB,
ULGRB, KN-GRB, XREF, and internal plateau parameters are all compatible within 1 o
with respect to the Gold parameters. Regarding the sample for which no internal plateau
is included, instead, a is compatible in 1 o, b, and Cj in 2 ¢. For SN-GRB-ABC, a is
compatiblein 2 o, band Cj in 1 0. For the Short GRB sample, there is compatibility in 2
for a, in 3 o for band in 3.1 o for Cy. For the Type Il GRBs, there is a 2 o compatibility for
a, b, and Cy. We note that, for the KN-GRB plane, the a and b parameters are compatible
within 1 o with respect to the Short GRB ones, while the (|, parameter is compatible
within 2 o. The difference in the best-fit parameters may suggest a different physical
mechanism behind each subclass, as is the case for the Gold and Short GRBs.

We have further progressed in our analysis of the compatibility of the fundamental

planes of the different subsets by computing the so-called z-score, defined as:

<X > — < X9 >
- I L 3.7)
of a3
Ny Na

where < x; > and [NV; are the mean and the size of the samples, respectively. We
compute the z-score for all classes with respect to the Gold sample, which then is used to
derive the probability P, for a sample to be compatible with the Gold set. The results are
gathered in the first half of Table 3.4. We note that The KN-GRB plane has the highest
z-score= 10.18, corresponding to a probability P < 10~* that the two samples are drawn
from the same population, thus showing that this class is a clear outlier together with the
SN-GRB, SN-GRB-ABC, and Short GRB classes. This result could be considered a hint
that these categories can be produced by a distinct physical mechanism, like the fact that
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Figure 3.3: The best-fit fundamental plane for the ULGRBs (top left panel), for the Short
sample (top right panel), for the Gold set (middle left panel), for all the GRBs associated
with SNe (middle right panel), and lastly for the GRBs with internal plateau (bottom

panel).
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Figure 3.4: Gaussian fit of the histogram of the distance distribution from the gold fun-
damental plane for all classes. A line perpendicular to x = 0 is shown as the reference of
the gold sample.

the KNe are linked to the Short GRBs, while the Gold is a subset composed of only
Long GRBs, thus confirming the previous discussion regarding the central engines and
progenitors.

The difference between these subclasses from the Gold fundamental plane can be
clearly noted in Figure 3.4, where the Gaussian distributions of the geometric distance
from the Gold fundamental plane are shown for each category. This fit shows the frac-
tional probability distribution functions (PDFs) obtained so that the size of each class
compared to the whole sample is taken into account. We note how the centers of the
probability distributions for the KN-GRBs, Short GRB, and SN-GRBs are the furthest
from the Gold fundamental plane. Other than in this work, the peculiar difference be-
tween the Gold sample and the SN-GRBs which we may note from this plot has already
been noted in [25]. The z-score for the observed ULGRBs is very low (z-score=0.12),
confirming that ULGRBs and Long GRBs may belong to the same physical population
[246].

3.4.3 Correction for selection biases and evolutionary effects

The role of possible selection biases and evolutionary effects for the 2-dimensional Dain-

otti relation has already been studied in [215]. Studies on the L,,..;-L x relation have then
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been performed in [218, 26]. Indeed, each physical quantity related to the fundamental
plane correlation is affected by selection biases due to the instrumentation used to detect
them as well as evolutionary effects depending on the redshift. To address this problem
we have used the so-called Efron & Petrosian (EP) method [28], which employs a modi-
fication of the Kendall 7 test to compute the statistical dependence among variables. 7 is
defined as

S Zz (Rl - EZ) (3.8)

V Zz Vi

where R; is the rank, & = (1/2)(i+ 1) is the expectation value, and V; = (1/12)(i* +
1) is the variance. The rank R; for each data point is determined from its position in
the "associated sets", which include all objects that could have been detected given the
observational limits.

In our case, the limits are given by the luminosities and the times, which means
that we have to determine the evolution with the redshift for Lx, T%, and Ly, To
compute the evolution of Lx and L., we first find the flux limit, fj;,, at the end of
the plateau. From this, we derive the minimum detectable luminosity at a given redshift:
Lnin(2) = 47D (2)? flm K. Similarly, T% 1im = Txpim/(1 + 2) where T i, is the
minimum end time of the plateau for a given observed sample and energy band.

The associated set for a GRB at a given z; contains all objects that have luminosity
L; > L,y and redshift z; < z;. The objects in the sample and the associated sets are
indicated with i and j, respectively. The EP procedure requires conservative choices for
the limiting values so that at least 90% of the original set is taken into account. Therefore,
this method enables us to remove biases without substantially reducing the samples, and
its reliability has been already verified with Monte Carlo simulations [215].

The fundamental plane correlation, once the selection effects are considered, be-

comes:

log Lx — kg, log(z + 1) = aeor - (log T% — kry log(z + 1))+
bcor : (log Lpeak - kLpeak IOg(Z + 1)) + Ceors (39)

The evolutionary functions of the redshift used in this work are the ones defined in
[26], with the same coefficients. The results are presented in the second half of Table 3.3.
All the coefficients computed with this correction for all the samples involved in our
analysis present a 1 o compatibility with respect to the results derived without consid-
ering the evolution (the only exceptions are the b and Cj parameters for the Short GRB

sample, which are compatible within 2 o).
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Class a b Co Tint N | acor beor Cocor Cintcor
Gold -0.82+0.13 | 0.55+0.11 | 22.245.6 | 0.39+£0.04 | 65 | -0.79+0.15 | 0.47+0.14 | 27.1£7.2 | 0.32+0.07
Platinum -0.86+0.13 | 0.56+0.12 | 21.8+46.3 | 0.34+0.04 | 47 | -0.90+0.16 | 0.50+0.16 | 25.6£8.2 | 0.22+0.10
Long -0.98+0.07 | 0.62+0.06 | 19.1+3.1 0.43+0.03 | 129 | -1.054£0.09 | 0.654+0.09 | 18.7+4.8 0.40+0.05
Short -0.58+0.10 | 1.15+0.10 | -9.7£5.0 | 0.38+0.05 | 43 | -0.74+0.17 | 1.54+0.23 | -27.8+12.0 | 0.55+0.11
SN-GRB -0.81+0.14 | 0.72+0.07 | 13.24£3.9 | 0.42+0.08 | 22 | -0.77+0.18 | 0.82+0.10 | 8.245.7 0.43+0.09
SN-GRB-ABC | -1.16+0.16 | 0.59+0.07 | 20.6+£4.1 | 0.294+0.10 | 14 | -1.18+0.18 | 0.65+£0.09 | 18.3+5.2 | 0.22+0.10
XRFs -0.81£0.19 | 0.69+0.13 | 14.6+£6.7 | 0.54+0.10 | 18 | -0.92+0.25 | 0.66+0.17 | 16.9£8.9 | 0.50+0.19
UL -0.62+0.20 | 0.74+0.12 | 11.6+6.2 0.43+0.15 | 10 | -0.724+0.27 | 0.9440.19 | 2.9+9.8 0.514+0.23
KN-GRB -0.83+0.22 | 0.80+0.25 | 8.5+£12.9 | 0.21+£0.16 | 8 | -1.09+0.20 | 1.03+£0.27 | -1.5+13.3 | 0.24 £0.12
Type II -1.15+0.08 | 0.28+0.05 | 37.2+£ 2.6 | 0.66+0.05 | 167 | -1.14+0.09 | 0.28+0.06 | 37.3+£3.0 | 0.66 £ 0.05
Int. plateau -04+0.4 | 0.36+0.24 | 30.9+ 12.4 | 0.59+0.12 | 12 | -0.28+0.88 | 0.64+0.58 | 14.8+30.3 | 0.55 +0.29
No int.plateau | -0.78+0.05 | 0.82+0.04 | 8.1£2.2 | 0.5040.03 | 210 | -0.93+0.08 | 0.880.08 | 6.24+4.0 0.61 £ 0.04
Whole sample | -0.77+0.06 | 0.81+£0.05 | 8.6+ 2.5 0.52+0.03 | 222 | -0.91+0.08 | 0.874+0.08 | 6.94+4.1 0.64 £+ 0.04

Table 3.3: The best-fits for both the observed plane parameters (first half of the table),
and the ones accounting for the evolution, indicated with the subscript “cor" (the second
half of the table), 0;,,;, and number of GRBs for each category.

Considering these corrections, we note that the Platinum and SN-GRB-ABC sam-
ples have the smallest intrinsic scatter o piatinum,cor = OSN—GRB—ABC,cor = 0.22 £ 0.10,
followed by the KN-GRB (0 x n—GRrB,cor = 0.244-0.12). We then perform the same com-
patibility test previously mentioned between the different plane coefficients to the gold
best-fit results. These tests show the following: the Platinum, XRF, and internal plateau
parameters are all compatible in 1 o. For the Long GRB, SN-GRB-ABC, and Type II
samples, a is compatible in 2 ¢, and b and Cj, are compatible in 1 o. For the SN-GRB,
ULGRB, and KN-GRB samples, a is compatible in 1 o, and b and C|, are compatible
in 2 0. For the sample without internal plateaus and the whole sample, a is compatible
in 1 0, and b and C| are compatible in 2 o. Lastly, for the Short GRB sample there is
compatibility in 3 o for b and Cj, and in 1 ¢ for a.

We also compute the z-scores of the corrected set, alongside the probability, as pre-
viously done for the non-corrected results. The results are shown in the last two columns
of Table 3.4. We note how, even if the values of the z-scores change with respect to the
first case, the general conclusion does not: the KN-GRB distribution is still the furthest,
with z-score=10.39, followed by the SN-GRBs and Short GRBs.

In conclusion, the major results reached in [24] show that it is indeed possible to
discern the nature of particular GRBs following the fundamental plane correlation, at
least for some subclasses for which a significant difference between the planes has been
found, like for instance for the Long GRBs and the GRBs associated with the KNe.
Regarding the former sample, it is interesting to show Figure 3.4.3, in which we focus our
attention only on the Short GRBs and the GRBs associated with KNe. We note that, even
if the KN-GRBs are all short in our sample, all of them fall below the Short GRBs’ best-
fit fundamental plane. This observational fact may hint at physical mechanisms which
could bring differences between the Short GRBs depending on their possible association
with a KN.
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Class z-score | N | Probability | z-score cor | Probability cor
Gold 0.00 65 1.00 0.00 1.00
Platinum -0.22 | 47 0.83 -0.51 0.61
Long 1.89 | 129 0.06 1.54 0.12
SN-GRB 6.39 22 <10 8.07 <10
SN-GRB-ABC | 6.51 14 <10 7.55 <10
XRF 3.15 18 0.002 3.80 0.0001
Short 5.57 43 <10 4.60 <10
Ultra Long 0.12 10 0.90 0.73 0.47
KN-GRB 10.18 8 <10 10.39 <10

Table 3.4: Table of z-scores for all classes, with the number of GRBs in each sample
and the probability that the Gold fundamental plane and the other planes are drawn by
the same distribution. On the right side of the table, we show z-scores without evolution,
while on the left side those with evolution (cor).

We have also obtained particular low values for the intrinsic scatter for different fun-
damental planes, like for the newly defined Platinum sample, as well as for the KN-
GRBs and the SNe-GRBs-ABC. This conclusion is of interest because a sample showing
a tight relation with a small intrinsic scatter is the most suitable for cosmological appli-
cations. Indeed, in the following chapter, we will use the Platinum sample, together with
other cosmological probes, to derive the values of some cosmological parameters. These
results are also confirmed after the application of the EP method for the correction of
selection biases and redshift evolution.

The difference between the subsets has been further confirmed using the z-score as
well as by the visualization via the PDFs, through the Gaussian fits of every set around
their respective planes. Regarding the KN-GRBs sample, a possible outcome, once the
set becomes numerous enough with future observations, would be the possibility to use
the fundamental plane also to discern between the progenitor mechanisms; indeed, a NS-
BH merger can produce as much as 10 times more dynamical ejecta than a binary NS can
[247].

3.4.4 A new study of the fundamental plane correlation

In [33] a further study of the fundamental plane correlation for the Platinum sample is
present. We have first updated the evolutionary coefficients related to the EP method con-
sidering the entire sample of 222 GRBs, following the same procedure found in [26] for
the coefficient used in [24], which was presented in the previous subsections. In doing
so, the new coefficients to use in Eq. (3.9) are ky,_,, = 2.247030, kr, = —1.257032,

kr, = 2.4270-21 The plots from which these coefficients have been derived are visual-
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ized in Figure 3.6. More specifically, the limiting values of these quantities, as previously
described for L.k, Lx, and Ty, are shown in the left panels of this figure, while the evo-
lutionary coefficients themselves are shown in the right panels.

Using these new coefficients we can thus compute new best-fit parameters for the fun-
damental plane correlation regarding the Platinum sample once we include the correction
for selection biases, finding a., = —0.85 4+ 0.12, b, = 0.49 £ 0.13, cey = 25.4 £ 6.9,
and o0;,; = 0.18 £0.09. We note how the new central value for intrinsic scatter is smaller
than what has been found in [24], see Table 3.3.

We thus start our statistical reliability check with this new fundamental plane. In fig-
ure 3.7 we show the 2D projections of the fundamental planes for the Platinum sample,
both with and without considering the evolutionary effects, as well as the errors on the
data points, represented by the ellipses. We notice that when the correction for evolution
is applied, the data points are closer to the plane (including the error bars), and fewer out-
liers are present compared to the computations in which the evolution is not taken into ac-
count. We confirm the stronger correlation when the evolutionary effects are considered
via the Akaike information criterion (A/C') and the model weight: B; = o Fromig=2Ci
for each relation, where AIC,,;, = MIN (AICeworutions AIChoer ), and AIC; is the AIC

value corresponding to the relation for which the B parameter is computed. For each

min

B; .
model we computed the “relative likelihood": P, = ———, obtaining P.,ousion = 0.99

2 B;
and P,,,., = 0.01. Thus, the model with evolution is fa\J/ored compared to the one without
evolution.

In this analysis we have also used alternative methods to confirm the reliability of
our results, focusing on other best-fit approaches. For instance, we considered the [212]
Bayesian method, which takes into account a likelihood function slightly different from
the D’ Agostini fit. In doing so, results consistent within 1 o with the derivations obtained
previously have been found. We also used an online fitting procedure called "HyperFit"
(https://hyperfit.icrar.org/, [248]), built to obtain the best-fit of linear models that con-
sider heteroscedastic errors for multidimensional data using Bayesian inference. This
tool offers the possibility to employ different algorithms and methods, which we used
to compare with our results regarding the D’ Agostini fitting, that we found consistent
with these computations, as we may note for the smoothed histograms shown in figure
3.8, representing all our derivations obtained with the HyperFit routine both with and
without the correction for evolutionary effects. Indeed, computing mean and standard
deviation for both cases, we find 0 = 0.374 + 0.024 for the non-evolution case and
o = 0.237 % 0.043 for the evolution, noting that they are both compatible within 1 o with

respect to the D’ Agostini computations.
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Figure 3.6: The application of the EP method to our entire sample for the parameters in-
volved in the fundamental plane correlation. The limiting lines chosen for the EP method
are visible in red. The left panels show the distribution of studied parameters versus z+1,
while the right panels show the relation between 7 and the evolutionary coefficients in
red. The vertical red solid lines indicate the value for which 7 = 0 and thus the evolution
is removed. The dashed blue lines represents the 1 o for the evolution, which is deter-
mined for 7 < 1.
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We also applied other best-fit algorithms: the Principal Component Analysis, the
PCA, the PC Regression (PCR), and the Partial Least Squares (PLS) regression, where
the latter two are regression methods based on PCA. Using the PCA we found: a =
—1.19, b = 0.44, ¢ = 28.87 and acor = —1.17, beor = 0.49, ceor = 26.75 for the no
evolution and the evolution cases, respectively. When comparing the PCA results with
the D’ Agostini ones for the non-evolution case, the parameters a, b, and c are within 2.5,
1, and 1.1 o, respectively; for the evolution case b.,, and c,,, are consistent in 1 o, while
acor 18 consistent in 2.7 o. We also have to stress that the PCA fitting does not take into
account the error bars, and thus does not consider the intrinsic scatter, which instead is
computed by the aforementioned Bayesian approaches. This could be the main reason
for the different results.

For PCR and PLS, we have used bootstrapping techniques to infer the errors on the
best-fit parameters. The results provided by these methods are consistent within 1 o with

respect to the D’ Agostini computations, thus giving more reliability to our conclusions.

3.5 BAO

As previously mentioned, BAO are fluctuations in the density of the visible baryonic
matter of the Universe, caused by acoustic density waves in the primordial plasma of the
early Universe. For their nature, they are physical processes that depend on the early
stages of the Universe, which in turn are reflected in observations of the late type (i. e.
cluster formations, galaxy distributions). They are linked to the acoustic peaks measured
from the CMB [21]. These peaks occur because the cosmological perturbations excite
sound waves in the relativistic plasma of the early Universe [249]. Then, the recombi-
nation process to a neutral gas happening at very high redshift values (¢ ~ 1100, [21])
strongly decreases the sound speed of the medium, thus effectively ending the wave prop-
agation. In the time between the formation of the perturbations and the recombination,
modes of different wavelengths can complete different numbers of oscillation periods.
This translates the characteristic time into a characteristic length scale and produces a
harmonic series of maxima and minima in the anisotropy power spectrum [21].

This also translates into the aforementioned relation between these early time pro-
cesses and the perturbations in the power-matter spectrum of late times observations
[250]. Indeed, considering a perturbation both for the baryonic and dark matter, the
former will expand as a spherical wave, while the latter will grow in place [251]. At re-
combination, the expanding shell will have a radius roughly equal to 150 Mpc [21]. After
this event, both dark matter and baryon perturbation start the formation of large-scale

structures. Because the central perturbation in the dark matter is dominant compared to
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the baryonic shell, the acoustic feature is manifested as a single spike in the correlation
function at around 150 Mpc between pairs of galaxies. This scale is usually close to the
sound horizon [252]. The early Universe presented many spherical perturbations, so the
final density distribution is a linear superposition of the small-amplitude sound waves.

From its geometrical nature, we can see how the acoustic peaks allow measuring
quantities linked to the angular diameter distance (Eq. 2.21), offering an alternative to
the usual cosmological ladder related to the luminosity distance, considering also that
the length scale of measurements related to this quantity allows us to reach observa-
tions at a wide range of redshifts. The BAO-related measurements have seen an impres-
sive improvement in their precision during the past decade [76], which has proven to
be mandatory for cosmological application, given that the acoustic features in the mat-
ter correlations are weak and on large scales [21]. The largest spectroscopic survey to
date is the Baryon Oscillation Spectroscopic Survey (BOSS [253]) which was one of
the main objectives of the Sloan Digital Sky Survey (SDSS)-III Collaboration [254]. In-
deed, this collaboration completed spectroscopy on more than 1.5 million galaxies to
produce BAO-related data points. This compilation has then been complemented with
the extended Baryon Oscillation Spectroscopic Survey (eBOSS [255]), which was the
cosmological survey within the SDSS-IV [256]. Other BAO-related surveys are the 6dF
Galaxy Survey (6dFGS, [257]), and the WiggleZ Dark Energy Survey [258]. The corre-
lation measurements have been performed using luminous red galaxies (LRGs), emission
line galaxies (ELGs), quasars, and Lyman-« (Ly«) forests.

For the remainder of the analysis in this thesis, we consider two samples of BAO
data: one taken from [259, 260], which consists of a total of 26 BAO-related data, while
the other has been built gathering the observations of [257, 258, 261, 262, 76], which are
a total of 16 BAO-related measurements, whose specific nature shall be detailed in the
next chapter. All these BAO-related measurements have been built specifically for cos-
mological applications, measuring particular cosmological quantities at specific values
of redshifts, which are all linked one to the other and to the angular diameter distance, as

we shall see in the next chapter.



Chapter 4

Cosmological applications of GRBs,
SNe Ia, and BAO

In this chapter, we shall see how the astrophysical objects presented in the previous one
can be used for cosmological purposes, focusing our attention on the GRBs, for which an
analysis based on simulations has been performed, together with applications considering

real GRB data, which have been studied considering also BAO and SNe Ia measurements.

4.1 SNe Ia and BAO as cosmological probes

Let us start with the more conventional cosmological probes, SNe Ia and BAO, which
shall be used both in the computations shown in this chapter as well as in the next.

As discussed in Chapter 3, SNe Ia, due to their intrinsic nature and physical mecha-
nisms, can be used as standard candles after the standardization process that accounts for
their different luminosities and light curve lengths. Many observational campaigns have
focused their attention on SNe la and their use as the "third step" of the cosmological
distance ladder. Given their link to the luminosity distance, the use of SNe la as cosmo-
logical probes is based upon the following equation, in which the distance modulus is

defined starting from the luminosity distance d,
fith,sNela = M — M = 5log(dy) + 25, 4.1)

where m is the apparent magnitude of the astrophysical object, M is its absolute magni-
tude, and the distance is expressed in Mpc. This quantity is confronted with the detected
distance modulus g5 of the SNe Ia, from which a best-fit of the desired cosmological
parameter (as well as of the absolute magnitude M) can be performed. As previously

stated, for our analysis in this chapter we consider the Pantheon catalog [20], thus, we

59
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also base ourselves on their analysis of the SNe Ia light curves. The detected distance
modulus is defined as [263]

[obs, SNefa = Mp — M + axqy — fc+ AM + AB, 4.2)

where x; is the stretch parameter for the light curve standardization, c is the color, mpg
is the apparent magnitude detected in the B-band of a reference SN Ia with ¢ = 0 and
x1 = 0, AM is a distance correction based on the galaxy mass in which the SN Ia has
been detected, and finally, A B is a bias correction factor [20].

For the color and stretch parameters, the approach used in [20] is based on two dif-
ferent models, the first shown in [264] while the second presented in [265]. In their
analysis, they consider the average of these two models, which represents the systematic
part of the covariance error matrix of the distance modulus measurements, which shall
be introduced shortly.

The Pantheon sample provides the quantities mentioned above as well as directly the
apparent magnitudes m for each SN Ia, from which, once M is fixed, we obtain the
detected distance modulus, that can be used to derive best-fit values of different cosmo-
logical parameters.

For the luminosity distance related to the SNe Ia, Eq. (2.17), the factor (1 + z) before
the integral refers to the heliocentric redshift, that is the apparent redshift affected by the
relative motion of the Sun, and not to the redshift observed in a cosmological rest frame
[266], which instead has been used inside the integral of the same equation.

As we shall see, the reduced chi-squared used for our cosmological computations

related to SNe Ia is defined as follows

Xenera = (Hen = tovs)" X Canpra X (Hen — Hobs) - 4.3)

where Cgy 7, is the inverse of the covariance matrix of the Pantheon sample, that in turn
1s defined as [263]

CSNEIa = Usys + Dstatu (44)

where C,; is the systematic part, which is linked to the aforementioned stretch and color
models, while D, is a diagonal matrix associated with the statistical errors character-
izing the distance measurements of every SN Ia. For a more complete discussion on the
photometric treatment of the SNe Ia light curves as well as on the error estimates and the
general analysis behind the Pantheon sample see [20]. Here we use their end-product for
our analysis.

‘We now focus on how the BAO-related measurements have been used in our cosmo-
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logical computations. The main, more practical, difference between BAO and SNe Ia as
cosmological probes, apart from the fundamental physical differences that exist between
the two objects, stays in the fact that while all the SNe Ia data are linked directly to the
luminosity distance and thus to the distance modulus, BAO-related data give estimates of
different quantities which are linked one to the other and the angular diameter distance,
but they are not the same for every BAO data point, as instead happens to the SNe Ia.
Indeed, as we shall see, the BAO-related measurements involved in the first set of 16

BAO data points offer information about the following quantity

dy(2) = {dﬁ(@%} ;’, (4.5)

where d ) is the transverse comoving distance defined in Egs. (2.18,2.19,2.20) and H (=)
is defined in Eq. (2.15). Also, other cosmological parameters derived by these BAO are
the following
100d VQh?
A(z) = 200dv () VEE (4.6)

cz
where h = Hy/(100km s~!Mpc~1); the so-called Hubble distance

“.7)

and the comoving distance itself. We note again that all these definitions are linked
one to the other, but they are not the same. This is a relevant point when the covariance
matrix has to be built using these heterogeneous measurements. It is also important to
stress again that, behind each of these data points, there are usually thousands of obser-
vations regarding astrophysical objects, like galaxies, clusters of galaxies, quasars, and
Lyman « forests [76].

It is also important to note that the majority of the BAO-related data are given con-
sidering a rescaling factor, r4, which is the distance between the end of inflation and the
decoupling of baryons from photons after the recombination epoch. It is roughly equal
to 150 M pc and it is defined as [76]

* cs(2)
H(z)

rg= dz, (4.8)

zq
where c4(2) is the sound speed, while z, is the redshift of the drag epoch, which in turn
corresponds to the time when the baryons decouple from the photons, around a redshift
z = 1020. It is possible to provide an approximation of r; depending on the cosmological

parameters. Indeed, the formula used in our analysis is as follows [267]
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55.154 - el~72:3(2h2+0.0006)?]
(Qh2)0-25351((), p2)0-12807

where (2, is the baryonic density in the Universe, and (2, is the neutrino density,

Mpc, 4.9)

rq =

which, for our computations, have been fixed according to the ACDM values (€, - h? =
0.02237, Q, - h? = 0.00064, [2]).

In general, the chi-squared for the BAO can be written in the same form as the one
related to the SNe Ia

XQBAO = (dB,th - dB,Obs)T X Cg}qo X (dBﬂgh — dB,obs) , (410)

where dp 4, and dp s may correspond to the different physical quantities presented
previously, and Cp 40 is the corresponding covariance matrix.

In the analysis presented in this chapter, we have considered also a second set of 26
BAO-related measurements, gathered from [260]. In this case, all the data refer to the
following quantity

Td
ds(z) = m, 4.11)
where r,4 and dy (z) have been defined in Eqs. (4.9) and (4.5), respectively. The

corresponding likelihood function remains of the same form presented in Eq. (4.10).

4.2 GRBs as cosmological tools

In this section, we will discuss how GRBs can be used as cosmological tools alongside
the other probes, and which would be the expected advantage of these computations. This

analysis is the main focus of [29, 32, 33].

4.2.1 Historical Introduction

Considering their incredible luminosity, GRBs may be detected by our instrument even
in deep regions of the Universe, where not many other astrophysical objects can be ob-
served. Indeed, we recall that the furthest GRB ever studied has been found at z = 9.4
[22]. This fact alone would make them ideal cosmological probes, able to extend the cos-
mological ladder up to regions way beyond the possibilities of SNe Ia, creating a bridge
between the early and late-type observations, being ideally also model-independent, dif-
ferently from CMB estimates.

Unfortunately, as shown in the previous chapter, the physics behind GRBs is not as

well-understood as for more conventional standard candles, and huge variability exists
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between the physical features of different GRBs, especially regarding their luminosity,
whose observations show may spam between different orders of magnitude. Of course,
the same has not been noted for other cosmological probes like SNe Ia. This fact alone
makes their cosmological application difficult. Nevertheless, in the past two decades,
efforts in using them as cosmological probes have been performed by the scientific com-
munity, considering the observed correlations introduced in the previous chapter. In this
sense, the main difficulty is in finding a tight enough relation [23]: indeed, each corre-
lation is characterized by an intrinsic dispersion, which has to be quantified and deeply
studied, as shown in the previous chapter, in order to find, among the other scopes of
such correlations, also possible cosmological applications. Another issue to be addressed
is the so-called "circularity problem", which is the possibility to calibrate a given GRB
correlation on a particular cosmological model, thus prohibiting us from using such rela-
tion for cosmological applications, in particular for the determination of parameters that
influence the quantities involved in the relation itself.

Early computations related to this point were performed in [268, 269], where broad
correlations were used in order to build Hubble diagrams with GRBs. Given the nature of
these correlations, these data could not give any constraint on cosmological parameters
[23]. In [270, 271, 272], the first cosmological constraints using GRBs were found, albeit
with very large errors, which were consistent with the parameters of the ACDM model.
These works used the ), , — E, Amati correlation, introduced in the previous chapter.
Another correlation used in the early days of GRB cosmology was the £, .-L~ p, iso — 5.2
relation [208], with which similar results were obtained.

The £, .-E., ;5. correlation has been used widely in the literature also in more recent
years (see, for instance, [273, 201], in which Hubble diagrams involving GRBs have been
built and cosmological parameters were derived together with SNe Ia data). Even more
recently, [274, 275] consider this relation for 6 different cosmological models, obtaining
results comparable with other probes like BAO and SNe Ia.

In the following, we shall focus on the fundamental plane correlation, introduced
and studied in the previous chapter. The 2-D Dainotti relation, from which the funda-
mental plane correlation has been derived, was one of the first correlations involving the
afterglow which has been proposed as a cosmological tool [213, 214, 276, 277]. This
correlation has also been employed as a cosmological tool recently in [278], where they
obtained results consistent with the ACDM model by using a sample of Long GRBs. This
result has been confirmed in [279], where they combined a set of Short GRBs with the
previously cited sample of Long GRBs. This data set has been combined in [280, 281]
with GRBs obeying the £, .-E. ;,, relation, obtaining again results consistent with the

derivations obtained using other probes, like BAO.
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As previously stated, this correlation has a solid theoretical grounding, being consis-
tent with the magnetar model for GRBs [195], thus being a proper candidate for cosmo-
logical applications also from this point of view. The introduction of a third parameter in
this correlation and, thus, the definition of the fundamental plane relation for GRBs, has
allowed for a significant decrease of the intrinsic scatter [24], therefore addressing one
of the major limitations of the general application of GRB correlations as cosmological
tools. As previously stated, the fundamental plane, like the 2-D correlation, has a reliable
physical explanation via the magnetar model [195], and it has been deeply studied in
various aspects, as shown in the previous chapter.

The fundamental plane correlation and the 2-dimensional counterpart have also been
studied in the optical bands: indeed, it has been found a similar relation among 102 GRBs
between the optical rest-frame end time, 7opr, and the optical luminosity at the end of the
plateau, Lopr [224]. This optical relation has also been extended by adding the energy in
the prompt emission, Fj, [282].

4.2.2 The fundamental plane relation as a cosmological tool: method-
ology

We now show how we have used the fundamental plane relation, described in equation
3.5, as a cosmological tool. For the sample selection, regarding the data set in the X-rays,
we have chosen for our computations the Platinum sample described in the previous chap-
ter (directly or as a baseline of simulations, as we will show). For the Optical data set,
we have started from all GRBs included in [224, 283]. The optical data have been gath-
ered from the observations performed by Swift Ultra-Violet/Optical Telescope (UVOT),
as well as ground-based telescopes. For a more detailed description of the sample selec-
tion involving the optical data, see [224, 283]. In total, the Optical sample used in our
analysis is composed of 45 GRBs. For the determination of the plateau, the best-fit for
the [187] functional model has been used, as was the case for the X-Ray GRBs. Given
the smaller sample size, defining an analogous of the Platinum sample for Optical GRBs
is still not possible [29].

We now describe how we have used the fundamental plane correlation, Eq. (3.5)
as a cosmological tool to infer different cosmological parameters. Our goal is to derive
an expression of the distance modulus related to GRBs pgrp from the correlation. In
order to do so, we recall that luminosities and fluxes are linked by Eqgs. (3.6), where
dy(z) is, again, the luminosity distance defined in Eq. (2.17). Using these relations, it is

possible to derive the following equation, where we write d (z) as a function of the other
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parameters involved in the fundamental plane correlation

alog,, Ty | b (logy Foeax + 1ogyg erak)

10%10<DL) =

2(1 — b) 2(1-1)
(b—1)logy(4m) + ¢ _ logyg F + logyg Ka, (4.12)
2(1 — b) 2(1-1)

where we recall that K., and K, are the K '-corrections for cosmic expansion intro-
duced in the previous chapter. If we now define the following new parameters: a; =
af(2(1 = b); b = b/(2(L = b)) e = (b — 1) logye(dm) + C)/(2(1 - b); dy =
—1/(2(1 —0)); Fpeak, cor = Fpeak * Kpeak; and Fy cor = Fj - K, and use the definition of the
distance modulus, we finally obtain

Hobs, GRB = 5 . (CLl loglo(T:) + bl loglo(Fpeak,cor) + C1 -+ d1 loglo(Fa,cor)) + 25 (413)

We have also computed the relative uncertainties on the GRB distance moduli, which are
given by

O-/,L,’i - \/(561 * log Fp,err,c()r)2 _'_ (50,1 * lOg FX’err’COr)2 + (5d1 ° log TX*)2 (4.14)

These equations allow us to define the cosmological likelihood for GRBs,

1 1 [ [tinGRB,i — Mobs,GRB,i ?
— E S — i i ) 4.1
Lors (ln ( V QWUu,i) 2 ( O, ) @15

i

This likelihood can be used together with the ones linked to BAO and SNe Ia, in-
troduced in the previous section, in order to have a complete likelihood, that can allow
us to derive the cosmological parameters via a Bayesian approach, similar to what has
been considered in the previous chapter [27], for all our cosmological probes. As we will
see, we have used different combinations of our probes to infer different cosmological
parameters like (25, and Hy. In order to avoid the previously mentioned circularity prob-
lem affecting GRBs, we note that we find the best-fit values of the fundamental plane
correlation together with the cosmological parameters themselves, thus avoiding a direct

dependence on the underlying cosmology.

4.3 GRB Cosmological Simulations

Before describing the results obtained with the real set of GRBs together with SNe Ia

and BAO, in this section, we shall describe an analysis focused on the use of GRBs as
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standalone cosmological probes, based on simulations employing the fundamental plane
correlation of the real GRB data as a starting point, both for the X and Optical bands.
These simulations have been performed in [29], by using python’s MCMC sampler emcee

[284], for the possibility of parallelizing the computations.

4.3.1 Number of GRBs to reach the studied limits

The idea behind this approach is to find how many GRBs lying precisely on a funda-
mental plane would be needed to obtain constraints on the cosmological parameters (in
particular on 2, for this analysis) with a comparable precision with respect to three
results obtained for the SNe Ia found in the literature. More precisely, we investigate
the threshold given by [30], where an error on €2,, equal to 0.10 was found using 472
SNe Ia, by [31], where a 0 = 0.042 on €2, has been computed using 740 SNe Ia, and
finally by [20], where they found o = 0.022 for the 1048 SNe Ia belonging to the Pan-
theon set. Thus, we wish to find how many GRBs lying exactly on the fundamental plane
are needed in order to reach these limits, and estimate the number of years necessary to
achieve these numbers. These GRBs have been simulated in order to satisfy exactly the
fundamental plane correlation, with the physical quantities (and their errors) built using
the distributions of the data points considered to build the Platinum (and Optical) data
sets, using, as the baseline, the best-fits of fundamental planes provided by these two sets
(and their subsets, as we will see).

We first consider different baselines for the fundamental plane correlation, starting
from what we have obtained using the entire Platinum sample. As an example of our
simulations, we show some results in Figure 4.1, in order to visualize the general trend
we have found for our computations on the precision of 2. We note the general im-
provement in it due to the addition of more simulated GRBs, but we also note how the
required precision is not yet reached for any of the thresholds considered even with 200
simulated GRBs. We thus analyze results considering even more simulated GRBs. As
a further computation, we also consider the case in which we take into account halved
error for the starting distributions on the physical quantities used as starting points for our
simulations, with the idea that future GRB observations with more updated instruments
should also be able to decrease the observational error on the parameters involved in the
fundamental plane correlation.

The first results are shown in Figure 4.2. We note how the mean value of {2y stabilizes
around 0.3 rather quickly for both tests (especially for the computation involving halved
errors, right panel, in which we can see a faster decrease of the scatter on €2y with the
number of GRBs). We also note the general decrease in the error for the cosmological

parameter. From this plot, we now wish to find the number of GRBs necessary to reach
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Figure 4.1: Results of the simulations for {2 given 50 (top left), 100 (top right), 150 (bot-
tom left), and 200 (bottom right) GRBs simulated off the Platinum fundamental plane.
With the dotted lines, we indicate the mean percentile with its respective errors.
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Figure 4.2: Left panel: the mean values of {2y vs. the numbers of GRBs obeying the
X-ray fundamental plane to converge upon a value of €2y, using GRBs as the standalone
probe by considering the observed error bars. Right panel: the same as the left panel, but
considering the halved error bars for the simulations.
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Figure 4.3: Left and right panels show the error plots for undivided and halved error
bars, respectively, for the Platinum sample. The green, grey and black lines identify the
[30, 31, 20] errors on (), respectively. The blue line, instead, denotes a polynomial
fitting function used for the extrapolation of the exact GRB numbers for which we have
achieved the SNe Ia thresholds.

the aforementioned thresholds obtained by the SNe Ia data, so that we focus on the error
on {2y rather than on the value of the parameter itself. In order to do so, we employ a
polynomial best-fit function to our data (number of GRBs versus the error on {2y) and
find the exact number from this function. The results are shown in Figure 4.3. From
these figures, we can infer that, regarding the simulations with non-halved errors (left
panel), 789 GRBs are needed to reach the same precision obtained in [30], 2653 GRBs
are instead needed to reach the limit shown in [31], while we have not been able to
achieve the [20] precision with this particular simulation.

We now focus on the right panel, where the simulations with the halved errors are
shown. We note again how, in this instance, the decrease of the scatter with the number of
simulated GRBs is faster than what we have obtained for the previous case, and this fact
is reflected in the number of GRBs necessary to reach the three thresholds. Indeed, we
find that only the first two simulations performed by us have uncertainties on {2y higher
than the [30] limit, which thus is reached with 357 GRBs according to our polynomial
fit. For the [31] limit, we note that 1452 GRBs are needed. Finally, we expect to reach
the [20] limit with 2724 GRBs from our simulations. We would like to stress again
that the hypothesis of errors halved in future observations is, at least, realistic, given the
technological improvements we are assisting in recent years. For instance, in [283] it has
been tested that, with the current sample, a mean error reduction of 47.5% is viable with
light curve reconstruction (LCR) methods [29] when we consider the error bars on the
time at the end of the plateau, 7, and its corresponding flux.

We now move to the simulations based on the 45 GRBs belonging to the Optical

sample. Following the same procedure as what we have explained regarding the Platinum
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Figure 4.4: left panel: the mean values of {2y vs. the numbers of GRBs obeying the
optical fundamental plane to converge upon a value of €2y using GRBs as the standalone
probe by considering the observed error bars. Right panel: the same as the left panel, but
considering the error bars divided by 2.
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Figure 4.5: The plots show the number of simulated GRBs versus the error on €2y, derived
by the simulations starting from the full Optical sample. On the left panel, we have the
undivided errors for the physical quantities related to the GRBs, while, on the right panel,
we have divided these errors by 2. The green, grey, and black lines identify the [30, 31,
20] errors on {2y, respectively.

set, the results of our simulations are visualized in Figure 4.4, while the polynomial best-
fits are shown in Figure 4.5. Interestingly, even if the baseline of the simulations is
smaller, and fewer selection criteria have been applied to the optical GRBs, we note that
in this case the simulations actually converge faster than those performed for the X-rays
data, especially when the errors are halved. Even the Optical sample with undivided
errors produces simulations that converge faster than those obtained with the X-ray set
and halved errors.

This fact is confirmed by the polynomial best-fit. Indeed, we find that we need only
271 and 142 GRBs with undivided and halved errors, respectively, to reach the [30] limit,
and 1031 and 489 GRBs, respectively, to reach the [31] one. Furthermore, with these
simulations, we are finally able to reach the [20] limit with the non-halved errors: in

order to do so, we need 2718 and 1086 GRBs, considering undivided and halved errors,
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Figure 4.6: Left panel: the mean values of {2y vs. the numbers of GRBs obeying the Plat-
inum fundamental plane simulated with the 10 closest GRBs (undivided errors). Right
panel: the same as the left panel, but considering the plane simulated with the 20 a pos-
teriori GRBs instead of 10 with halved errors.

respectively.

We now continue our analysis by considering subsets of the Platinum and Optical
samples as the baseline of our simulations. The first trimming of these samples has been
decided "a priori", choosing the GRBs whose best-fitting fundamental plane shows a near
0 intrinsic scatter by taking the closest GRBs to the fundamental planes derived by the
full sets. An alternative method has been followed as well, looking for the number of
GRBs belonging to the Platinum sample that forms the set which, acting as a baseline,
presents the faster convergence of the simulations. This method has also been applied to
the Optical sample. These samples, chosen "a posteriori" are composed of 20 Platinum
and 25 Optical GRBs, respectively. The general results regarding the trimmed analysis, in
particular where the aforementioned thresholds have been reached, are reported in Table
4.1. We also show some of the plots representing the best-fit on {2, with the relative
error versus the number of simulated GRBs, from which these results have been achieved
via the aforementioned polynomial fit. For instance, the dependence of the derived {2y
with the number of simulated GRBs for the a priori trimming of the Platinum sample and
considering halved errors is shown in the left panel of Figure 4.6, while, in the right panel,
we find the same dependence but considering the a posteriori trimming as a baseline for
the simulations. We note an improvement in the velocity of the convergence with respect
to the full Platinum as a baseline case for the a posteriori computation, as expected given
how it has been built.

Another example of our results is illustrated in Figure 4.7, where this time the a poste-
riori trimmed sample of optical GRBs is shown, both with undivided errors (left panel) as
well as with halved errors (right panel). We may note the higher convergence speed even
at low simulated numbers of GRBs, especially in comparison with the corresponding full

data set simulations.
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Figure 4.7: Left panel: the mean values of {2\ vs. the numbers of GRBs obeying the
optical fundamental plane simulated starting from the 25 a posteriori GRBs. Right panel:
the same as the left panel, but considering the error bars divided by 2.

Number of GRBs with Plateaus Needed
GRB Conley et al. (2011) | Betoule et al. (2014) | Scolnic et al. (2018)
Sample n=1 n=2 n=1 n=2 n=1 n=2
PLAT 789 357 2653 1452 - 2724
OPT 271 142 1031 284 2718 1086
PLATtrim (a priori) 847 399 2705 1788 2839 2649
OPTtrim (a priori) 330 112 829 393 2870 1513
PLATtrim (a posteriori) | 646 354 2699 1466 - 2719
OPTtrim (a posteriori) 244 36 685 350 2104 822

Table 4.1: The first column shows the sample, while the successive ones the numbers of
GRBs needed for the limits set by [30, 31, 20], for both the full and halved error bars.
We put a hyphen when the limit is not reached.
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We note from this table that, while the a priori trimming, in general, does not reduce
the number of GRBs necessary to reach the SNe Ia limits, the a posteriori simulations
actually achieve higher precision with a smaller number of simulated GRBs in many

cases, especially for the [30] limit.

4.3.2 GRBs cosmology timetable

We now shall derive in how many years these limits could be realistically achieved by
the real future GRB data. For these computations, we also consider the possibility to
use machine learning (ML) techniques in order to infer the redshift of GRBs otherwise
unidentified [285], hypothesizing the doubling of the sample size at a given time due to
these techniques, as well as light curves reconstruction methods [283], that, as previously
discussed, should allow for a mean error reduction of 47.5%.

For the considered observational missions, we have taken into account the still op-
erating Swift observatory, as well as future missions that should be launched in the next
years. In particular, we considered the future contribution of the Space Variable Objects
Monitor (SVOM, [286]), and the Transient High Energy Sources and Early Universe
Surveyor (Theseus, [287]). SVOM should be launched in June 2023 and should act as a
pathfinder for Theseus. It is expected to observe 80 GRBs per year for a mission planned
to last 3 years, thus it should collect ~ 240 GRBs throughout the course of its lifetime,
with ~ 1 — 2 triggers per week expected [288]. Theseus has, instead, a very tentative
launch date in 2037. It is expected to observe 300-700 GRBs per year, and it has an
expected lifetime of 3.45 years.

For our computations, we hypothesize that the effective lifetimes of these two fu-
ture missions will be actually prolonged, as has already happened to other astrophysical
missions. In particular, we guess that Theseus’s lifetime will be at least as long as Konus-
Wind’s (27 years). We also assume that the SVOM mission will be prolonged to at least
15 years. For our deductions, we also take into account that our Platinum sample of
50 GRBs has been selected out of 1064 GRBs presenting X-rays observed by Swift-
XRT up until August 2019, and that our 45 Optical GRBs set has been selected from
761 GRBs with optical observations from January 1997 up to December 2018, including
those without redshift measurements and detected plateaus. We project the proportional-
ities to future data both in X-ray and optical bands in order to obtain our estimates.

To summarize, our hypotheses have brought us to the following prerequisites and

considerations:
* Lifetime of Theseus = 27 years, with an estimated launch date in 2037.

* Lifetime of SVOM = 15 years, with an estimated launch date in 2023.
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* Total number of GRBs observed throughout the lifetime of Theseus = 18900.

» Total GRBs observed throughout the lifetime of SVOM = 1350.

o Current rates of detection of Swift = 89.45 yr—!.

* For X-ray wavelengths, we assume that the ratio (0.82) of the total number of GRBs
observed by Swift-XRT (1064) from 2005 January until 2019 August compared to
the total number of GRBs observed by Swift (1305) will be the same ratio of GRBs
observed by the ECLAIRs (4-120 keV) on board of SVOM and the X-Gamma rays
Imaging Spectrometer (XGIS, 2-20 MeV) and Soft X-ray Imager (SXI, 0.3-5 keV)

on board of Theseus.

* For optical wavelengths, we assume that the ratio (0.39) of the total number of
optical afterglows (761) observed from 1997 up to December 2018, compared to
the total number of GRBs by all missions (1942), is again the same as the one ob-
served by the Infrared Telescope (IRT, 0.7-1.8 um) on Theseus, and as the Visible
Telescope (VT, 540-600 nm) on board of SVOM.

Lastly, for optical wavelengths, we also consider ground-based telescopes, expecting
a detection rate that shall remain the same as what we observe nowadays also in the future
years, assuming that, even if some ground-based telescopes will stop their operations,
new missions will take their places keeping the same detection rate (realistically, the rate
should increase, given that new technological advances will be performed, but we prefer a
conservative assumption on this particular point). Keeping in mind all these hypotheses,
we finally obtain the results visualized in Tables 4.2 and 4.3.

We have divided these results into two tables because the [20] threshold has been
reached predominantly by the Optical simulations. We note how dividing the errors in
two has always a beneficial effect even for the year to achieve these limits, as expected
given that it decreases the number of GRBs necessary to reach such thresholds. We also
note that, for the [30] limit, in an ideal situation with all halved errors, and ML and LCR
approaches already applied, for the Optical sample we should already be able to reach
these limits, while, without all these hypotheses and looking only at the raw, real data,
we reach these thresholds in 2055 for the Platinum sample and 2045 for the Optical set,
once the a posteriori baselines are considered.

Regarding the [31] limit, instead, the earliest year in which we fall below the threshold
is in 2038 with the full Optical sample and 2056 for the full Platinum sample, if we
consider halved errors and LCR methods. These are the time periods we infer from our
simulations in which GRBs should be able to constraint alone cosmological parameters

with a precision similar to what is currently achieved by SNe Ia. Adding also the ML



4.3. GRB COSMOLOGICAL SIMULATIONS

74

GRB Conley et al. (2011) Betoule et al. (2014)
Sample n=1|n=2|n=1475%LCR) [ n=2475%LCR) | n=1 | n=2 | n=1(47.5%LCR) | n=2 (47.5% LCR)
# GRBs (Plateau) | 789 357 374 169 2653 | 1452 1260 689
PLAT # GRBs (Total) | 16789 | 7596 7975 3608 56455 | 30898 26816 14676
Year Achieved 2060 | 2044 2045 2037 2129 | 2085 2078 2056
# GRBs (Total) | 8394 | 3798 3987 1804 28227 | 15449 13408 7338
PLAT + ML Year Achieved 2045 | 2037 2038 2026 2080 | 2058 2054 2043
# GRBs (Plateau) | 271 142 128 67 1031 284 489 134
OPT # GRBs (Total) | 4582 | 2401 2176 1140 17435 | 4802 8281 2281
Year Achieved 2046 | 2038 2038 2026 2093 | 2047 2060 2038
# GRBs (Total) | 2291 | 1200 1088 570 8717 | 2401 4140 1140
OPT + ML Year Achieved 2038 | 2027 2025 Now 2061 | 2038 2045 2026
# GRBs (Plateau) | 847 399 402 189 2705 | 1788 1284 849
PLATtrim (10) # GRBs (Total) | 18024 | 8490 8561 4033 57562 | 38048 27342 18073
Year Achieved 2062 | 2045 2046 2038 2131 | 2097 2078 2062
# GRBs (Total) | 9012 | 4245 4280 2016 28781 | 19024 13671 9036
PLATtrim (10) + ML | Year Achieved 2046 | 2038 2038 2027 2081 | 2064 2054 2046
# GRBs (Plateau) | 330 112 156 53 829 393 393 186
OPTtrim (10) # GRBs (Total) | 5580 | 1894 2650 899 14019 | 6646 6659 3156
Year Achieved 2050 | 2037 2039 2022 2081 | 2054 2054 2041
# GRBs (Total) | 2790 | 947 1325 449 7009 | 3323 3329 1578
OPTtrim (10) + ML Year Achieved 2040 | 2023 2029 Now 2055 | 2042 2042 2032
# GRBs (Plateau) | 646 354 306 168 2699 | 1466 1282 696
PLATtrim (20) # GRBs (Total) | 13746 | 7533 6529 3578 57434 | 31196 27281 14818
Year Achieved 2055 | 2044 2045 2037 2131 | 2085 2078 2057
# GRBs (Total) | 6873 | 3766 3264 1789 28717 | 15598 13640 7409
PLATtrim (20) + ML | Year Achieved 2043 | 2037 2036 2025 2081 | 2058 2054 2044
# GRBs (Plateau) | 244 36 115 25 685 350 325 166
OPTtrim (25) # GRBs (Total) | 4126 | 608 1959 289 11584 | 5918 5502 2811
Year Achieved 2045 | now 2037 Now 2072 | 2051 2050 2040
# GRBs (Total) | 2063 | 304 979 144 5792 | 2959 2751 1405
OPTtrim (25) + ML Year Achieved 2037 | Now 2024 Now 2051 | 2040 2040 2030

Table 4.2: In the first column, we show all the samples considered in our analysis. In
the three rows associated with each sample definition, we find the number of GRBs nec-
essary to reach the specified limit with detected plateau phases belonging to the future
Platinum and Optical sets under the same criteria considered by us, the total number of
GRBs needed, and the expected year in which this number is achieved with observed
data. For each row, we show results related to samples with the errors undivided, the
errors halved, the errors undivided considering LCR, and finally, the errors halved in-
cluding LCR. The overarching columns three and four give these estimates considering
the precision reached by [30] and [31], respectively. A sample “+ ML” implies that
machine learning techniques are employed to double the initial sample size by redshift

inference.




4.3. GRB COSMOLOGICAL SIMULATIONS

75

GRB Scolnic et al. (2018)
Sample n=1 | n=2 |n=1A75%LCR) | n=2 (47.5% LCR)

# GRBs (Plateau) | 2718 | 1086 1291 515

OPT # GRBs (Total) 45964 | 18365 21833 8723
Year Achieved 2197 | 2097 2140 2061
# GRBs (Total) 22982 | 9182 10916 4361

OPT + ML Year Achieved 2113 | 2063 2069 2046
# GRBs (Plateau) | 2870 | 1513 1363 718

OPTtrim (10) # GRBs (Total) 48534 | 23054 12153 19840
Year Achieved 2207 | 2123 2114 2074
# GRBs (Total) 24267 | 12793 11527 6076

OPTtrim (10) + ML | Year Achieved 2118 | 2076 2072 2052
# GRBs (Plateau) | 2104 822 999 390

OPTtrim (25) # GRBs (Total) 35580 | 13900 16900 6602
Year Achieved 2159 | 2080 2091 2054
# GRBs (Total) 17790 | 6950 8450 3301

OPTtrim (25) + ML | Year Achieved 2094 | 2055 2060 2042

Table 4.3: In the first column we show all the combinations of Optical GRBs used. The
three rows associated with each sample show 1) the needed number of GRBs having ob-
served plateau phases, 2) the total number of GRBs needed, and 3) the year in which that
number of GRBs is achieved with observed data. These rows are repeated for samples
with the errors undivided, the errors halved, the errors undivided considering LCR, and
finally, the errors halved including LCR. These estimates are given considering the pre-
cision reached by [20]. Again, with ML we take into account possible machine-learning

techniques.
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approaches, we ideally reach this limit in 2026 (4 years from now) for the Optical sample
and in 2043 for the Platinum sample considering halved errors.

In Table 4.3 we see the years in which the optical simulations reach the [20] limit.
We see that, for the most ideal case, this limit should be reached in 2042. This baseline
does not take into account the idea that, with more optical GRBs, in the future we should
be able to define an analogous of the Platinum sample also for the optical band, thus im-
proving, even more, their constraint capabilities. Furthermore, as we keep investigating
the physics of GRB progenitors and central engines, we will be able to better define GRB
classes and samples, thus continuing to improve the precision of our results, as well as
shed more and more light on the mechanisms behind these objects. Nevertheless, even
with some drawbacks and the ideal nature of some of the hypotheses used in our inves-
tigation, we still expect the time periods deduced by us to be indicative of the future of

GRBs’ standalone cosmology.

4.4 GRBs, SNe Ia, and BAO

In this section, we will show the results related to the derivation of cosmological param-
eters that we obtained using the real data of GRBs together with the other probes, more
specifically SNe Ia and BAO. In this section, a good part of the analysis performed in
[29, 32, 33] will be shown.

4.4.1 Using the full samples

As previously introduced, the data sets used are the following: the Pantheon sample of
SNe Ia [20], 16 BAO-related measurements, [76, 257, 258, 261, 262], and the Platinum
and Optical samples of GRBs previously discussed. The idea is to combine the different
likelihoods to infer the values and, more importantly, the precision of these values, of
cosmological parameters like (2); and H,. For the GRB samples, we also employ the EP
method to correct for evolutionary effects and selection biases, as we did in the previous
chapter, in order to find if this correction has also an influence on cosmological results.
The first results are gathered in Table 4.4.1, where the inferred cosmological param-
eters for the following combinations of sets are collected: SNe Ia, BAO, SNe Ia+ BAO,
BAO+GRBs without evolution corrections, BAO+GRBs with evolution corrections, SNe
Ia+BAO+GRBs without evolution corrections, SNe Ia+BAO+GRBs with evolution cor-
rections. In this case, the GRBs are those belonging to the X-rays Platinum sample.
When we compute only €2, we fix Hy = 70 km s~ Mpc—!, while, when we derive

only Hy, we fix 23, = 0.3. This will also be true for all the computations we are going
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Figure 4.8: Posterior contours computed for the full samples of SNe Ia, BAO, and GRBs.
On the upper panels, the results for BAO+GRBs without evolution are shown varying
Q) alone (upper left), Hy alone (upper center), and €2,; and H, together (upper right).
On the central panels, instead, the results for SNe la+BAO+GRBs without evolution are
shown, in the same order as before. The same is visualized in the bottom panels, where
the evolutionary effects regarding GRBs are taken into account.
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Sample Qs Hy, Qur and Hy

km s *Mpc™t | km s 'Mpc™t

SNe Ia 0.299 +0.009 | 69.98 £0.14 | 0.298 £ 0.020

70.014 + 0.313

BAO 0.326 £ 0.004 | 68.17+0.23 | 0.286 £ 0.015

67.19 +1.09

SNe [a+BAO $0.322 +0.003 | 69.53 +0.12 0.321 4+ 0.003
69.64 + 0.12

BAO+GRBs NO EV 0.326 +0.004 | 68.17 £ 0.22 0.289 4+ 0.015
67.41 +1.08

BAO+GRBs EV 0.326 +0.004 | 68.17 £ 0.22 0.286 4+ 0.015
67.22 +1.05

BAO+SNe Ia+GRBs NOEV | 0.322 +0.003 | 69.53 £ 0.12 0.321 4+ 0.003
69.64 + 0.12

BAO+SNe [a+GRBs EV 0.322 +0.003 | 69.53 £ 0.11 0.321 4+ 0.003
69.64 + 0.12

Table 4.4: The table shows the results of our cosmological computations for the full SN
Ia, BAO, and GRB Platinum samples. With "EV" we indicate the correction for redshift
evolution and selection biases regarding the GRB sample.

to show in this section. Lastly, we study the case in which we vary both these values con-
temporaneously. We also note that in these derivations we are keeping ourselves inside
the ACDM paradigm and that these parameters have been derived while also computing
the best-fit coefficients of the fundamental plane correlation, thus avoiding the aforemen-
tioned circularity problem.

We may note the beneficial effect of adding more cosmological probes with respect
to using SNe Ia as standalone candles: for instance, we notice that the smallest scatter
on Hj has been reached by the SNe [a+BAO+GRBs set with evolution corrections. This
beneficial effect is predominantly due to the addition of BAO to the Pantheon SNe Ia
sample (that we keep as a reference point), but we note that also GRBs bring a positive
contribution, because the SNe la+BAO+GRBs sets provide a precision that is slightly
better or comparable to the SNe [a+BAO one. Even in the cases in which they do not
improve the overall precision on the cosmological parameters, their contribution remains
important because they are able to extend, by their nature, the cosmological ladder up
to z = 5 (for the Platinum sample), keeping in mind that GRBs can be detected at even
higher redshifts.

In Figure 4.8 we visualize the contour plots of some of the results presented in the
table, more specifically the BAO+GRBs without evolution, SNe Ta+BAO+GRBs without
evolution, and SNe Ia+BAO+GRBs with evolution sets. We note the higher precision

reached by the latter two computations than the former for every cosmological parameter
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Sample OMm Sample Y

SNe Ia 0.299 £ 0.009
PLAT+SNe Ia 0.299 4+ 0.009 PLAT+SNe Ia (EV) 0.299 4+ 0.009
PLATtrim+SNe Ia | 0.299 4+ 0.009 | PLATtrim+SNe Ia (EV) | 0.299 4 0.008
OPT+SNe Ia 0.299 £ 0.009 OPT+SNe Ia (EV) 0.299 £ 0.008
OPTtrim+SNe Ia | 0.299 4+ 0.009 | OPTtrim+SNe Ia (EV) | 0.299 £ 0.009

Table 4.5: Results for {2, taking into account the Platinum and Optical GRB samples
together with SNe Ia. In the second column, we do not consider the evolutionary correc-
tions, while in the fourth we do.

studied in our analysis.

Next, we shall compare the Optical and Platinum samples as direct cosmological
tools, using them together with the SNe Ia set. We will also consider the possibility of
using the a priori trimmed samples introduced in the previous section [29]. The results
are shown in Table 4.5 for €2,,.

We note how, in general, the precision of the results remains unvaried, with a reduc-
tion, albeit not decisive, of the scatter on {2, for the trimmed Platinum sample and the
Optical set once the evolutionary effects are taken into account.

These cosmological computations allow us to draw a Hubble diagram related to the
GRBs. This is shown, for the Platinum sample, in figure 4.9. We note how the majority
of the data points are consistent with the best-fit cosmological line. We also note that a
few data points are not consistent with the best-fit curve within 1 ¢. This could be due
to large dispersion effects that may be related to the errors on the measured quantities
in our fit, but still, given the majority of the data points are well-fitted by our derived
cosmological model, this shows a good hint for the reliability of GRBs as cosmological
tools.

To confirm the reliability of our analysis, we have also considered a different sample
for BAO measurements regarding our cosmological computations. Indeed, taking into
account the values found in [260] instead of those used up to now, we have performed
the same computations concerning the aforementioned cosmological parameters. The
related results are shown in Table 4.4.1. Comparing these with the ones obtained with
the previous BAO set, we note that the latter achieves a higher precision for every com-
putation, especially regarding {2,,. We also note the difference in the computed central
values, again predominantly on when we derive (2, fixing H.

With the new BAO sample, we have also investigated parameters going beyond the
classical ACDM model. Indeed, we have computed the dark energy parameter w for
a wCDM model (for which we recover the ACDM model if we fix w = —1), and the

curvature density g, thus not imposing the universe to be flat. The results for these
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Figure 4.9: The Hubble diagram computed considering only the Platinum GRBs used in
our computations.

Sample Qur H, Qyr and Hy

km s *Mpc™t | km s 'Mpc!

SNe Ia+BAO 0.304 £ 0.006 | 69.69 +£0.13 0.311 &£ 0.007

69.82 +0.13

BAO+SNe Ia+GRBs NO EV | 0.306 & 0.006 | 69.94 + 0.13 0.310 &£ 0.007
69.84 £ 0.15

BAO+SNe Ia+GRBs EV 0.306 & 0.006 | 69.94 £0.14 0.310 &£ 0.007
69.83 £0.16

Table 4.6: The table shows the results of our cosmological computations for the full
SN Ia, the 26 BAO measurements of [260], and GRB Platinum samples. With "EV"
we indicate the correction for redshift evolution and selection biases regarding the GRB
sample.
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Sample Qe w
SNe Ia -0.003 £ 0.018 | —1.000 £ 0.018
SNe [a+BAO -0.016 £ 0.012 | —1.017 £ 0.014

BAO+SNe [a+GRBs NOEV | -0.017 £ 0.012 | —1.017 £0.014
BAO+SNe la+GRBs EV -0.013 £0.011 | —1.017 £ 0.015

Table 4.7: The table shows the results of our cosmological computations for the full
SN Ia, the 26 BAO measurements of [260], and GRB Platinum samples, for two new
cosmological parameters going beyond the ACDM model.

Bin | Mean 2 z range SNe | BAO | GRBs
1 0.038 | 0.010 < 2 <0.094 | 209 0 0
2 0.156 | 0.096 < z < 0.203 | 209 2 0
3 0.248 | 0.203 < 2z <0.298 | 209 0 0
4 0.375 | 0.299 < 2 < 0.503 | 209 3 0
5 1.071 0503 <z2<5 212 | 11 50

Table 4.8: The table shows the number of bins, the average redshift of each bin, and the
number of SNe Ia, BAO, and GRBs in every bin considering the division in the redshift
ranges displayed in the second column.

further computations are visualized in Table 4.4.1. Here, we may note that our results are
consistent (or close to being consistent) with the ACDM model within 1-0. We have to
also note that these values have been computed by keeping fixed all the aforementioned

cosmological parameters.

4.4.2 The Binned analysis

To further investigate the weight of GRBs in our cosmological computations, taking into
account the Platinum sample, in [32] we have decided to divide our data sets into 5
different bins, in order of increasing redshift, in such a way that all GRBs belong to the
last bin. Each bin division has been performed so that every one of those contains the
same number of SNe Ia (with the exception of the last bin, which has 3 more SNe Ia with
respect to the others). This bin division has brought us to the subsets detailed in Table
4.8, in which we can also see the redshift intervals for each bin. For this analysis, we go
back to the 16 BAO data-set used previously [76].

As we can see, the BAO data points are gathered inside bins 2, 4, and 5. We now
move to the computations themselves. As done in the previous section, we compute {2,
keeping H, fixed, Hy keeping §2,, fixed, and 2,; and H, contemporaneously, recalling
that the fixed values are those previously mentioned. For each of these cases, we consider
the GRBs both with and without the corrections for evolutionary effects and selection

biases.
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Qur (SNeIa) | Qpr (SNe Ia+BAO) | Q57 (SNe Ia+BAO+GRBs) No EV | 2,/ (SNe Ia+BAO+GRBs) EV
0.387 +0.143 -
0.259 4+ 0.038 0.298 £+ 0.031 - -

0.334 £ 0.025 - - -
0.272 £ 0.016 0.314 £ 0.006 - -
0.295 + 0.013 0.326 = 0.005 0.326 = 0.005 0.326 = 0.005

Table 4.9: The table shows in the first column the results for €2, for the bins of SNe Ia
alone, in the second column the results for €2;, with SNe Ia+BAOQO, in the third column the
same results for SNe la+BAO+GRBs without accounting for the evolutionary effects for
GRBs, and in the last column the same combination considering the evolutionary effects.

The first results, related to €2,,, are shown in Table 4.9. For each bin, all the possible
sub-sets have been considered, taking into account which particular data point belongs to
each bin. Commenting on the results, we see that, as for the full sets, also in this case a
beneficial effect due to adding more probes to the SNe Ia, whose standalone results are
taken as reference points, as usual, has been noted. This trend will be verified also for
the computations regarding H, and €2,;, H, together. Indeed, we note that the highest
precision has been reached from the results given by bin 5 when at least SNe Ia and BAO
are considered: 2, = 0.326 £ 0.005, which is also the same result obtained once GRBs
are taken into account, both accounting or not for evolutionary effects. Adding more
probes to the SNe Ia does indeed increase the precision of the cosmological calculations
because bin 5 presents more BAO and GRBs. This is true even if the GRB and BAO
sets are considerably smaller than the SNe Ia sample, even after the bin division (albeit
we have to recall that behind the BAO-related data there are hundreds of thousands of
observations regarding galaxies and clusters of galaxies [76]).

Regarding the central values obtained for each bin, we note that all the results for €2,
are consistent within 1 o once we take into account the BAO data. We also note that BAO
measurements have the most relevant impact concerning the decrease of the cosmological
uncertainties with respect to the SNe Ia alone computations. The decrease on the scatter
(0) of Q) for bin 5 compared to the SNe Ia alone is 62% for GRBs+BAO+SNe Ia both
for the case of evolution and the one of no evolution, as well as for the SNe Ia+BAO set.
We also note that the most significant decrease comes for bins 4 and 5, where the most
non-SNe Ia probes are found.

In Figure 4.10, some salient contour plots are shown, related in particular to bin 5. We
note how similar they are when we compare the SNe [a+BAO and GRBs+SNe Ia+BAO
results, and their improved precision with respect to the SNe Ia computations.

We now comment on the results obtained for H,, shown in Table 4.10. We again note
the increase in the precision of our results obtained by adding GRBs and BAO to SNe Ia.

Indeed, We note that, in this case, the best precision is reached again by bin 5 when we
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Figure 4.10: Results of the cosmological computations of bin 5, varying only €2,,, for
SNe Ia (top left panel) SNe Ia+BAO (top right panel), and GRBs+SNe Ia+BAO, both
without (bottom left panel) and with (bottom right panel) considering the evolutionary

effects.
Hjy (SNe Ia) Hy (SNe Ia+BAO) | Hy (SNe Ia+BAO+GRBs) No Ev | Hy (SNe Ia+BAO+GRBs) Ev
km s 'Mpc™' | km s 'Mpc! km s Mpc! km s~ Mpc™

70.50 4+ 0.40 - - -

69.55 £+ 0.29 69.52 + 0.32 - -

70.37 + 0.35 - - -

69.46 + 0.33 69.16 £ 0.27 - -

69.80 £+ 0.45 68.61 + 0.26 68.61 + 0.26 68.61 £ 0.26

Table 4.10: Similarly to Table 4.9, this table shows the results obtained for H, for the
same bins used in the previous table, this time fixing the values of §2,,.
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Figure 4.11: Results of the cosmological computations of bin 5, varying only H, for SNe
Ia (top left panel) SNe Ia+BAO (top right panel), and GRBs+SNe Ia+BAO, both without
(bottom left panel) and with (bottom right panel) considering the evolutionary effects.
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consider BAO+SNe Ia and BAO+SNe Ia+GRBs both with and without evolution. Again,
the most relevant contribution comes from the BAO measurements, while the highest
contribution of GRBs is allowing, due to their nature, to extend the cosmological ladder.
The clearest improvement in the precision comes, again, from bin 5, where we note that
the scatter on H, goes from 0.45 km s 'Mpc~! for the SNe Ia only sub-set to 0.26
km s~*Mpc= for all the other subsets belonging to bin 5, thus bringing us to a 42.2%
decrease on the scatter. In Figure 4.11, again, some contour plots are shown, related in
particular to bin 5, this time for Hy. We note again the similarities between the SNe
Ia+BAO and GRBs+SNe [a+BAO results, and the improved precision of both of them
with respect to the SNe Ia computations.

Finally, we address the case in which we vary €2, and H, contemporaneously, whose
results are presented in Table 4.11. We note that for bins 1 and 3 the computations do not
converge for the particular prior interval chosen for our Bayesian analysis (0 < €2, < 1)
when we consider only the SNe Ia: these cases are indicated with NA inside the table.
Like for the other computations, the scatter is reduced by adding other probes to the SNe
Ia, especially due to BAO. In particular, for bin 4, when we consider SNe Ta+BAO, we
reach a precision for 2, and H, similar to what has been obtained when we vary these
two parameters alone: H, = 69.27 = 0.28 when we vary them contemporaneously vs.
Hy = 69.16£0.27 when we keep 2, fixed, and €23, = 0.311+0.006 when we vary both
of them vs. 23, = 0.314 + 0.006 when we keep H, fixed. When we consider bin 5 the
same precision is reached for €2,; for SNe la+BAO and GRBs+SNe Ia+BAO both with
and without considering evolutionary effects. For Hj, instead, the most precise value
is reached when only BAO+SNe Ia are considered, followed by the case of GRBs with
evolution. The least precise measurement (excluding the SNe Ia case) belongs to the case
of GRBs with no evolution. Regarding the percentage decrease on the scatter for bin 5,
for 2, we obtain a 90.8% decrease for all the cases in which we add probes to the SNe
Ia, while for H, we obtain an 85.2% decrease when we compare SNe Ia to SNe Ta+BAO,
an 84.2% decrease when we compare SNe Ia to SNe la+BAO+GRBs without evolution,
and an 84.7% decrease when we compare SNe Ia to SNe Ia+BAO+GRBs with evolution.

Lastly, in Figure 4.12, the results for H, and €2, are shown for the same cases. The
same conclusions related to the other contour plots apply also here.

The general trend shown in the previous three tables allows us to deduce that GRBs
bring a marginal contribution to the increase in the precision of the cosmological parame-
ters, overshadowed by the other two types of cosmological probes. We still think that this
is an interesting result, given that they are still able to extend the cosmological ladder with
no harm to the precision itself. Nevertheless, we further investigate their contribution by

adding a new subset, which we call bin 6, composed of all the astrophysical objects that
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Qur (SNeIa) | Qy (SNe Ia+BAO) | Q;7 (SNe Ta+BAO+GRBs) No Ev | Q,; (SNe Ia+BAO+GRBs) Ev
Hy (SNela) | Hy(SNeIa+BAO) | Hy (SNe Ia+BAO+GRBs) No Ev | Hj (SNe Ia+BAO+GRBs) Ev
NA - - -
71.20 £0.88 - - -
0.60 £ 0.20 0.429 + 0.072 - -
67.4+1.4 68.679 4+ 0.605 - -
NA - - -
64.8 £2.2 - - _
0.339 £+ 0.140 0.311 £ 0.006 - -
68.88 + 2.38 69.27 £ 0.28 - -
0.314 £ 0.065 0.317 £ 0.006 0.317 = 0.006 0.317 £ 0.006
69.37 £ 2.03 69.11 £0.30 69.11 £0.32 69.11 £0.31

Table 4.11: Similarly to the two previous tables, this table shows the same analysis, but
for the case where (2, and H, are computed contemporaneously. We indicate with "NA"
(not available) the runs for €2, that do not converge in the allocated intervals.
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Figure 4.12: Results of the cosmological computations of bin 5, varying both €2, and H,,
for SNe Ia (top left panel) SNe Ia+BAO (top right panel), and GRBs+SNe IA+BAO, both
without (bottom left panel) and with (bottom right panel) considering the evolutionary
effects.
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O (GRBs+BAO) No Ev | H, (GRBs+BAO) No Ev | (2;; (GRBs+BAO) Ev | H, (GRBs+BAO) Ev

0.272 £ 0.038 67.83 £ 3.50 0.271 £ 0.037 68.45 £+ 3.60

Table 4.12: Results obtained considering the BAO and GRBs belonging to bin 6 varying:
1) Q,, alone without evolution; 2) H, alone without evolution; 3) €2,, alone with evolu-
tion, and 4) H, alone with evolution.

present a redshift beyond the one of the furthest SN Ia belonging to the Pantheon sample
(# = 2.26). The probes that satisfy this requirement are 2 BAO-related measurements
and 23 GRBs. The results for this new bin are shown in Table 4.12.

In this table, we note how, albeit the precision of the results is worse than what has
been obtained in the previous computations, as expected given the limited number of
data points, we still manage to obtain close contours for the cosmological parameters
even with a relatively small sample size of cosmological probes. The results have been
derived both with and without considering the corrections due to the evolutionary effects
related to GRBs.

4.4.3 Calibrating GRBs on SNe Ia

We now present some further cosmological computations regarding GRBs performed in
[33]. In particular, we have already mentioned that, for the cosmological ladder approach,
one could set up a standard candle by calibrating it with other cosmological probes. For

the case of GRBs, we refer, again, to the SNe Ia, considering the following methodology:

1. we first fit the GRB fundamental plane correlation (as usual, considering also the
intrinsic scatter) for the part of our GRBs sample whose redshift overlaps with the
redshift range of SNe Ia, which corresponds to 25 GRBs. For this computation,
we fix the values for the Hy and €2, parameters considering the results obtained
by SNe Ia alone (using Hy = 70 km s 'Mpc=t and Q); = 0.3 as we did in the

previous computations, being values close to those obtained from SNe Ia).

2. We have then performed our cosmological computations as previously shown for
GRBs, but this time fixing the fundamental plane correlation parameters to what
we have found in the previous step, thus varying only the cosmological ones. This
time, for the priors, we have considered Gaussian priors with 3 ¢ based on the
values of [20]. We have again performed our computations both with and without
considering the evolutionary effects for GRBs. The Gaussian priors are justified by
the fact that the underlying physics behind the fundamental plane is not expected to
vary within any cosmological model, given that the magnetar framework does not

depend on cosmology, but rather on the fundamental physics of compact objects.
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Considering evolution | parameters varied Qur Hy w
without evolution Qur 0.292 + 0.068 70 -1
without evolution H, 0.30 73.286 + 3.007 -1
without evolution Qur and Hy 0.295 + 0.064 | 73.358 = 3.006 -1

without evolution w 0.30 70 —1.094 £0.673
with evolution Qur 0.316 + 0.068 70 -1
with evolution H, 0.30 72.762 £ 3.227 -1
with evolution Qur and Hy 0.306 £ 0.060 | 73.264 £ 3.082 -1

with evolution w 0.30 70 —0.743 £ 0.694

Table 4.13: Cosmological parameters obtained using GRB alone calibrated on SNe Ia
using Gaussian priors. In the first column, we show if evolution has been considered or
not. In the second column, we define which cosmological parameters are left free to vary.
In the next three columns, we present the values of parameters with error bars obtained
in our computation for each given case, showing in bold the fixed values of the other
cosmological quantities.

Considering evolution | parameters varied <> <Hy> <w>
without evolution Qur 0.50 = 0.28 70 -1
without evolution Hy 0.30 74.11 + 14.48 -1
without evolution w 0.30 70 —1.01 +0.56

with evolution Qur 0.59 +0.27 70 -1
with evolution H, 0.30 79.04 +£13.12 -1
with evolution w 0.30 70 —0.88 +0.58

Table 4.14: Averaged cosmological parameters obtained using GRB alone calibrated on
SNe Ia using flat priors, running 100 times the best-fit computations. In the first column,
we show if evolution has been considered or not. In the second column, we define which
cosmological parameters are left free to vary. In the next three columns, we present
the values of parameters with error bars obtained in computation for each given case,
showing in bold the fixed values of the other cosmological quantities.

3. Finally, we have performed the same computations, but considering flat priors for
the cosmological parameters. For this case, 100 best-fit runs have been performed

for each derivation, and the average cosmological results of these runs are shown.

The results for these two procedures are gathered in Tables 4.13 and 4.14. For the
Gaussian prior results, we note that they are all consistent with those found for the ACDM
model, with Hj consistent with the values achieved by the late-type measurements. This
was to be expected given the methodology followed for this particular section, which
cannot allow us to explore parameter spaces that may lead to exotic scenarios, but rather
to test the reliability of GRBs as cosmological probes. It is also noticeable that, accord-
ing to our computations, the current data for GRBs analyzed by us are not competitive
with more popular cosmological probes, especially for the precision achieved on the pa-
rameters, but still, as previously mentioned, a beneficial effect is at hand because of the

possibility of exploring high redshift regions.
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This is more evident from the results obtained considering flat priors, from which
we may note higher uncertainties on the best-fit values than those obtained by using the
Gaussian prior, even after the averaging procedure. Indeed, we may note scatters that
are more than three times bigger for all the cosmological parameters if we compare flat
priors with the Gaussian ones, with one, remarkable, exception. Indeed, the w results are
more precise for the flat priors than the Gaussian ones. It is not clear why this result has
been obtained only for this particular parameter. We also note the high central value for
s, which could be investigated once more GRB data are at our disposal. This effect
could not have been analyzed in the simulations shown previously for how they have
been built (we recall that the focus was the study of the achieved uncertainties rather than

the cosmological parameters themselves.)



Chapter 5

Extended Electromagnetism and its
cosmological and astrophysical

applications

In this chapter, we are going to show a novel framework, which changes drastically the
point of view usually adopted for the cosmological observations, that we have followed
in the previous discussions. In fact, we will focus here on the messengers of the astro-
physical objects rather than the objects themselves. Indeed, we are going to introduce the
so-called extended theories of electromagnetism (ETE), and see how they can change the

nature of cosmological observations.

5.1 Extended Electromagnetism: Introduction

The Maxwellian theory provides a complete and precise description of the majority of
electromagnetic phenomena, being also covariant in its formulation and thus "surviving"
the revolution in fundamental physics that happened in the last century, which has brought
the advent of Quantum Mechanics and GR. Nevertheless, we wonder if this theory is an
approximation of a broader one, as Newtonian theory is for GR (and GR itself could be
for an ETG or a complete Quantum Gravity paradigm). The reasons that have brought us
to do so are the following [35]: 1) the Maxwellian formulation of electrodynamics leads
to severe issues in the self-force problem (radiation reaction) of charged point particles,
as non-physical pre-acceleration and run-away solutions [289]; ii) any modification of the
phenomena of electrodynamics will also be related to a modified space-time geometry;
ii1) if we were to assume the incompatibility between GR and Quantum Mechanics, a
new paradigm combining the geometric and quantum aspects of our world has to be

different from at least one of these theories which, in turn, would also change the Maxwell

90
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equations.

From a more fundamental point of view, also the Standard Model (SM) has been
showing limitations that may ask for an extension of it, like the aforementioned nature of
dark matter and dark energy, the imbalance between matter and anti-matter [290], and the
evidence of massive neutrinos [291, 292], which leaves, according to the SM, the photon
to be the only free confirmed massless particle. An extension of this theory could open a
new world which would affect also electromagnetism as we know it.

Leaving aside the SM for a moment, the first idea of a massive photon was pro-
posed by de Broglie in 1922 [37], who also managed to estimate an upper limit of its
mass (around 107°3 kg) through dispersion analysis [293, 294]. Then, the first modified
Maxwell equations were written in a non-covariant form [295]. His student Proca wrote
a Lagrangian for electrons, positrons, neutrinos, and photons [38, 296] laying down the
first massive electromagnetic theory, which was consistent with the Lorentz(-Poincaré)
Symmetry (LoSy), but was not gauge invariant [34].

The de Broglie-Proca (dBP) electromagnetic equations read as [297]

V-E=2 _ a2y, (5.1)
€o
ok
VxB= [L()J + ﬂoEOE — MQA, (52)
V-B =0, (5.3)
0B

where M is the photon rest mass, which is also the inverse of its Compton length

1 m~c

M= e T” (5.5)

where m,, is the mass of the photon. We note that the differences between these

equations and the Maxwellian ones are in the massive terms in Egs. (5.1, 5.2), which

involve also the scalar potential 1 and vector potential A, thus giving them the property

of not being gauge invariant, because of the direct involvement of these potentials in the
equations, which we do not find in the standard electromagnetic theory.

Later developments of extended electromagnetism were based on physics that was

beyond the classical SM, which was explored with the so-called Standard Model Exten-

sion (SME) [298, 299], where the photons acquire an effective mass, causing a dispersion

relation which is in general of the fourth order with respect to the four-momentum, pro-
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portional to the Lorentz-Poincaré Symmetry Violation (LSV) factors, as studies on light
propagation in SME show [300, 301].

The SME-LSYV factors linked to a possible effective mass of the photon are a vector
kAF when the handedness of the Charge conjugation-Parity-Time reversal (CPT) sym-

metry is odd, and a tensor £%"”’, when the CPT symmetry is even [34]. In particular,

AF avpo
ka

always induces an effective mass, while £, ™ only in a particular context. Indeed,
for the SME considering k/\¥', Eq. (5.2) becomes

OE E
VXB:,U/oj—i‘MQCOE—Fk(?FB—kAFXz, (56)
where k4" and k" are the time and space components of the LSV vector. If k3" = 0,
we obtain
RBIKAF
m, — MK (5.7)
c

where z is an angular factor depending on the difference between the preferred frame
and observer directions, which is equal to one in the photon rest frame [300].

Another possible extension of electromagnetism is the so-called non-linear electro-
magnetism. One of the first examples of such a theory is detailed in the Born-Infeld
papers [40, 302]. It was introduced to solve the infinite self-force of punctiform charges,
and it has been shown that it can be treated as an approximation, in some versions,
of string theory [303]. Another renowned non-linear electromagnetic theory has been
proposed in [41] which was derived as an effective classical field theory for Quantum
Electro-Dynamics. Both these theories are LoSy invariant, which is a relevant difference
with respect to the SME approach.

Many peculiar features arise in the extended theories of electromagnetism, not ob-
served in the Maxwellian theory: for instance, in the de Broglie-Proca theory, we ob-
serve that the energy-momentum density tensor 07, of the photon is not conservative also
for constant background electromagnetic fields[39, 34]. This is because we find, for this
tensor, that the novel mass term couples with the background potential time-derivative.
Non-conservation in a vacuum is also found in the SME theories, for which three different
massive contributions have been derived [34]. This non-conservation has important con-
sequences on astrophysical and cosmological observations [35]. Indeed, we can translate
the variation of the energy-momentum density tensor into a photon energy variation, and
thus to a frequency shift, which is not found in the Maxwellian theory, as we shall see in
more detail in the next sections.

Let us now confront the different terms of 0,0 both in the Maxwellian theory as well
as in the ETE. For Maxwell, we find
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aoﬁf = 7% far — %(aaF ﬁ)fﬁq- ) (5.8)

where 7 is an external current, f;, is the electromagnetic field tensor of the photon,
and Fj, the same tensor for the background.

For the de Broglie-Proca electromagnetism, instead, we have already noted that the
photons interact directly with the potentials because of the massive terms, this translates

into a variation of the energy-momentum density tensor in the following way

1 1
0u0% = § for — —(0aFP) fa, + —M?*(0.AP)ag . (5.9)
Ho Ho

We note a new term in Eq. (5.9), which does not appear in Eq. (5.8), depending
on the mass of the photon itself as well as the background potential. This allows us to
conclude that the photon energy is not conserved even if the background field is constant,
thus giving us a new contribution to the frequency shift not appearing in the standard
electromagnetism framework. We also note that, in the absence of a background field, the
energy-momentum tensor does conserve itself even in this non-standard electromagnetic
scenario.

Let us now consider the same equation for the SME-LSV. As previously mentioned,
we can have two non-standard different contributions, represented by the vector k7" or

avpo

by the tensor £, "". We focus our attention on the terms directly involved with an effec-
tive photon mass, recalling that k‘éF
from the LSV tensor, the LSV vector violates the CPT theorem. The frequency shift is

thereby an observable of CPT violation since it also depends on the LSV vector [35]. The

always induces an effective mass term. Differently

frequency shift, in this case, can be written as [34]

_ 1 111 1
aaeo;_ - ]Vfur - _(aaFaV)fuT - _(aak‘éF)gaVaV - Z(aTk%VH)\)fOéVfH/\_‘_

Ho o [ 2

(5.10)
aa(kgyn)\Fn/\)fz/T + kQFGanuT 5

where G and ¢®” are the dual electromagnetic fields for the background and the
photon, respectively. We note that in this equation, apart from the first two Maxwellian
terms, there are other non-standard contributions, whose nature is explained in the fol-

lowing [34]:

* The first two terms are background independent, thus implying that the energy-
momentum tensor does not conserve itself, even in the absence of a background
field, if the LSV fields are space-time dependent. This is a peculiar feature of

SME, because, as we have already seen, the de Broglie-Proca energy tensor does
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conserve itself in the same situation.

* A non-constant space-time-depending term in which we find derivatives of the LSV

tensor coupled with the background field.

* A constant term depending on the background, coming from the Carroll-Field-
Jackiw (CFJ) electrodynamics [304].

Let us now try to give an estimate of the frequency shift due to the LSV terms follow-
ing a heuristic methodology, considering an actual astrophysical observation, following
the computations performed in [39]. Starting from Eq. (5.10), under certain assumptions

(in particular, considering a low-frequency regime and a constant k"), we obtain:

1 1 ai ai
95 = J' fio — N—[(%F ) fio + k2 G fio). (5.11)
0

Because we are interested in finding, from this equation, the frequency shift of the photon
along its path x, we consider the absence of an external current, and rewrite this equation
in the following way, explicating the electric and magnetic fields of the photon (e and b),

as well as its vector potential a:

10 , kg b? 10 B
éa(eoe ——e-at+ — +—a—(e><b)x_

Ho€ Ho Ho OT (5.12)
Ho

The first term on the right-hand side of this equation is estimated to be negligible and
thus dropped for the next computations. Also, we assume the absence of inter-galactic
medium magnetic field fluctuations over long time scales, which means that we consider
only the time fluctuations in the emitting galaxy and in the Milky Way. Taking into
account the detection of an object at z = 0.5, the correspondent look-back time' is
trp = 1.57 x 10" s. Considering a fixed cosmological ACDM model with Hy = 70
km/s per Mpc, 2, = 0.3 and €2, = 0.7, we take into account a parameter, which
we define as p, that considers the different possible orientations of the magnetic fields
encountered by the photon in its path to us. The magnetic fields are themselves estimated
to be around 1071°/107° T as an order of magnitude.

Thus, the energy density change of the wave due to the second term is

C
AE = u—k§F|Bfi0\ptLB ~ 1.02 x 10253 p| fol, (5.13)
0

!the look-back time is the time in which a photon reaches us from a particular source. It is directly
linked to the previously introduced light-travel distance (Eq. 2.22)
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which brings to a frequency shift Av equal to

Av ~ wlgé%\fm = 1.55 x 10°°k¢ p| fiol- (5.14)

It is now necessary to compute | f;o| = |e|/c. In a first, Maxwellian, approximation, we
may write the classic intensity I as I = egce? = o f2,.

We consider a typical frequency linked to a SN Ia observation, which corresponds to

the silicon absorption line: v = 4.86 x 10'“Hz. The monochromatic AB magnitude is

based on flux measurements that are calibrated in the absolute unit [305] as the logarithm

of the spectral density SF'D as, in the appropriate scales of measurement [39]
map = —2.5logy SF'D — 48.6. (5.15)

For map = —19 we obtain SF'D = 1.44 x 1071 Js~! Hz~! m~2. Integrating over
the frequency width of a bin of 2.37T H z, we compute / = 3.4 x 1073 Js~' Hz"! m~2,
from which we finally have

Av = 5.87 x 1077k p. (5.16)

The range of the measurements obtained for k47" is very wide, as is the parameter
p, which, when it assumes very low values (p ~ 10723 [39]), indicates an extreme mis-
alignment of the magnetic field. The important point is that this shift can have a relevant
influence on the frequency measurement of a particular source, and thus on its inferred

redshift. As we shall see in the following.

5.2 Dark Energy and Electromagnetic frequency shift

In this section we will present the work performed in [35], in which we have followed a
drastic change in the framework of the ACDM model to derive a new, further component
of the total redshift measured for an astrophysical source and used it to find the same
effects normally attributed to the dark energy, studying cosmological models where the
latter is not considered. This analysis has then been complemented by considering the

most updated SNe Ia set, as we will see.

5.2.1 A new redshift contribution for Cosmology

The frequency shift due to the non-standard electromagnetic phenomena can bring, among
other possible effects, also to a shift in the measured redshift of the astrophysical sources.

This idea can change drastically the cosmological conclusions due to such observations.
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This novel contribution to the total redshift, which we call zg, does not depend only on
the distance between the source and us itself, but also on the electromagnetic fields en-
countered by the photon during its journey to us. Thus, two astrophysical sources at the
same distance could have different zg, and a different total redshift z. Not only that, but
zg, differently from the cosmological redshift z¢, can either be blue or red. Indeed, in the
former case, this would imply that the photon actually gains energy during its journey to
us, while in the latter it loses energy via non-standard interactions with the background
electromagnetic fields.

It is important to note that this discussion applies to every non-standard electromag-
netic effect, from the massive photon of the de Broglie-Proca theory to the non-linear
electromagnetism to the SME, because the optical frequency shift can be linked to any
non-standard electromagnetic effect.

We recall the definition of z = Av/v,, where Av = v, — 1, is the difference between
the observed v, and emitted v, frequencies, or else = = AM/)\, for the wavelengths.
Then, for the cosmological expansion A, stretches to Ac; that is, A\c = (1 + z¢)Ae. We
recall that the quantity z¢ refers only to expansion.

The wavelength A could be further stretched or, conversely, shrunk for the non-
standard electromagnetic shift zg to A\, = (1 + 25)A\¢c = (1 + 25)(1 + 2¢)A.. But since
Ao = (14 2)Ae, wehave 1 + 2z = (1 + 2z¢)(1 + 2g); thus

z=2zc+ 25+ 2028 = 2, (5.17)

where z, is the spectroscopically or photometrically observed z. We note that the second
order is non-negligible.

As we shall see, we are going to derive zg both for mock data as well as for real cos-
mological observations. The procedure for computing zg considers that the expansion of
the Universe is solely represented by z¢, for which we derive the cosmological distances
(and not for the observed redshift z). From Eq. (5.17), z¢ is given by

2 = i;: (5.18)

We note again that if zg is blue (negative), the photon gains energy in the path to us

due to one of the non-standard electromagnetic processes. This in turn means that the
expansion redshift z¢ is bigger than the observed z, which implies that the astrophysical
object is further than what we could have detected in the ACDM model. If instead zg
is red (positive), the photon loses energy in its path, implying that z¢ is smaller than z,
meaning that the astrophysical object is closer to us than what it would have been dictated
by the ACDM model.

We now link the zg with other astrophysical parameters: in particular, we hypothesize
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Table 5.1: The different variations of the frequency v can be summarised by four different
cases of proportionality: 1) to the instantaneous frequency and the distance; 2) to the
emitted frequency and the distance; 3) to the distance only; 4) to the observed frequency
and the distance. These variations determine the frequency observed v,, the shift zg, the
parameters k;, and the distance r.

four different behaviors for this quantity, which has been considered proportional to:

the instantaneous frequency and the distance;

the emitted frequency and the distance;

only the distance;

the observed frequency and the distance (although it is not clear why the shift
should be dependent on the observed frequency rather than on the emitted one, we

have still analyzed this case together with the others).

The relations between zg, the distance r, and the frequency v that are shown in Table
5.1. We note that, in this table, the aforementioned proportionality has been schematized
by the k; parameters.

Regarding the distance r, we have chosen to use in the following computations the
light-travel distance defined in Eq. (2.22), which is the actual length traveled by the pho-
ton in an expanding universe. Also, as we shall see in the next sections, the k; parameters
may be considered individually for each source, as well as in common for every source.
In the first case we can infer effects that can be dependent not only on the distance itself
but also on other possible factors, while, for the second computation, the k; parameter
can be treated as a new, proper, cosmological parameter. Both instances have advantages
and disadvantages, and both have been studied.

As previously mentioned, the main goal of this analysis is to compute which values
of zg are necessary to reproduce the effects normally attributed to the dark energy, thus

fundamentally changing the perspective, focusing on the photon themselves rather than
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on the astrophysical objects observed. In order to do so, we consider three different

cosmological models, for all of which we have set 2, = 0:

* Cosmological model A: we set {2); = 0.3 and consider {25 = 0, implying a flat
universe where the "cosmic triangle" relation €2,; + Qg + (24 = 1, is not satisfied
a priori. Nevertheless, we still consider this case with the idea that the contribution
normally attributed to the dark energy could be completely replaced by the effect
of zg a posteriori. This approach supposes that zg is a manifestation of the LSV

vacuum energy in string models, in the case of SME [306].

* Cosmological model B: we take into account an open universe model, where {2, =
0.3 and Qg = 0.7, so that Qx + Q= 1.

* Cosmological model C: we return to the Einstein-de Sitter cosmological model
[307], which is a flat, matter-dominated universe with 2;; = 1. This was one
of the most popular cosmological models before the advent of the dark energy
hypothesis [308].

5.2.2 Methodology and mock redshift results

We now start describing the methodology followed in [35] as well as the first results
reached using mock redshifts. As previously stated, our main goal is to find the values
of the parameters provided by the ETE framework to match the effects usually attributed
to dark energy according to the ACDM model. From the data points in our cosmological
computations, we first consider a set of mock redshifts at regular intervals that do not
correspond to any observation. The interval chosen starts at z = 0 and stops at z = 11,
which is of the order of magnitude of the furthest detected galaxy [309]. For these, we
compare the luminosity distance of a hypothetical astrophysical object at that specific
redshift given by the ACDM model with the same distance computed in one of the afore-
mentioned cosmological models, considering only the contribution of the cosmological
redshift z¢ as defined in Eq. (5.18), then, a best-fit has been performed, matching the
values of zg with these mock redshifts.

For the real data, we use first the Pantheon sample, to which we will add later the
BAO-related measurements, considering the 16 BAO data points used in the previous
chapter. For the SNe Ia data, as mentioned above, we have chosen to compute the best-fit
values of the k; parameters and zg both considering each SN Ia individually as well as
finding a general value valid for all SNe Ia, through a general best-fit that accounts for the

covariance matrix of the systematic and statistical errors (as done for the cosmological



5.2. DARK ENERGY AND ELECTROMAGNETIC FREQUENCY SHIFT 99

computations shown in the previous chapter). For both cases, we have used the distance-

modulus like we previously did, which we recall is defined as (length units in Mpc)

p=m— M =5log,[dL(zc)] + 25 . (5.19)

We have fixed the value for the absolute magnitude M for the SNe Ia belonging to
the Pantheon sample to —19.35 [263], to avoid the degeneracy with H.
When we evaluate the effect for each SN Ia individually, we minimize the following

quantity for each SN Ia
2 — (obs = pun)”
! (,uobs,err)2

where p.ps 18 the distance-modulus given by the Pantheon sample with the corresponding

) (5.20)

ITOT [Lobs err» While fi4, 1s the theoretical distance-modulus computed according to our
cosmological models including zs. We emphasize that this is not the x? of the entire
Pantheon sample: the values derived by these computations individually belong to each
SN Ia. The advantage of this approach is the possibility to find singular values of zg linked
to only one SN Ia each, thus allowing us to find for SNe Ia at the same distance different
values of zg, that could depend not only on the distances but also on the environments
in which the SNe Ia reside, as well as on the proper path of the photons to us and the
electromagnetic fields they encounter.

For the second approach, instead, we consider the entirety of the SNe Ia set and find
a best-fit value for the k; parameters, which is valid for the entire sample. To do this, we
employ Eq. (4.3), shown in the previous chapter, for the minimization process. For this
approach, zg depends only on the light-travel distance between a specific SN Ia and us.
The advantages of this analysis are the characterization of the three cosmological models
through single k; values, and even the possibility of treating the k; values as cosmological
parameters like H or 2, allowing us to draw new Hubble diagrams taking into account
these processes.

Related to the BAO data, as previously mentioned, we are going to use the same set
of 16 BAO introduced in section 4.1, thus following the same equations for the best-fit
analysis.

As in the previous cosmological computations, we use a Bayesian approach, assign-
ing flat priors (specified in the next section) for the variables under consideration, em-
ploying Cobaya.

Lastly, for our analysis, we have fixed H to three different values: H, = 67,70, 74
km s~! per Mpc, to understand how this value affects the results on zg.

We now present the results related to the mock redshifts for the three cosmological

models and the three different values of H considered by us. The results are shown in
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Figure 5.1: Plots of zg versus the mock z for the Cosmological model A, where €2, =
0.3, Q. = Q = 0. We have considered Hy, = 67,70, 74 km s~! per Mpc for the left,
central and right panels, respectively. The peaks for the absolute values of zg have been
reached for z = 2.1 (left panel), = = 1.5 (central panel), and z = 1.1 (right panel). We
note that, in all cases, the shifts are towards the red, and thus dissipative.
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Figure 5.2: Plots of zg versus the mock z for the Cosmological model B, where €2, =
0.3, Q) = 0.7, and Q, = 0. We have considered Hy, = 67, 70, 74 km s~! per Mpc for the
left, central and right panels, respectively. The minima for the values of zg correspond to
z = 1.2 (left panel), z = 1.35 (central panel), and z = 1.45 (right panel). The shifts are
towards the red or the blue, depending on the value of z.

Figures 5.1, 5.2, and 5.3.

Let us now comment on these results, starting from Figure 5.1, in which we show
the relation between zg and the mock redshift z for the Cosmological model A. We note
that, in this case, zg is always positive, thus red, which means that in this model the
non-standard effects are dissipative for the photons. This occurs for all three values of
Hj considered. We also note a peak for zg for the values z considered in Figure 5.1,
after which we see a decrease in the value of zg, with a variable steepness depending on
the fixed value of Hj. Indeed, we observe that the steepness of the curve after the peak
increases when we decrease the value of H,.

In Figure 5.2, instead, we show the results for the Cosmological model B. We note
a very different behavior than the previous results: zg has a negative peak for z in the

region around 1.3 (the precise values are stated in the caption of Figure 5.2) then increases
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Figure 5.3: Plots of zg versus the mock z for the Cosmological model C, where €2, = 1,
O = Qp = 0. We have considered Hy = 67,70, 74 km s~ per Mpc for the left, central
and right panels, respectively. We note that for the left panel, the shifts are toward the red
and the blue; while only toward the blue for the central and right panels.

monotonically, becoming positive. The value of H affects the size of the negative peak
as well as the steepness during the subsequent increase, but it does not affect the overall
behavior. We recall that a negative zg indicates an increase in the energy of the photons
due to the non-standard electromagnetic effects.

The third set of three plots, Figure 5.3, shows the behavior of zg versus the mock
redshift z for the Cosmological model C. We observe, again, different results with respect
to the previous two cosmological models. Indeed, we note that zg is always negative, and
decreases with z. Once more increasing f, shifts the curve downward without changing
the overall behavior.

In summary, our tests with mock redshifts have shown us that, for the relation between
zg and z, the cosmological model considered is way more impactful than the fixed value
of Hy, yielding completely different results between one to the other. We anticipate that
this conclusion applies also to the computations regarding the real data. We also note that
our results for the Cosmological model B are in agreement with those found in [34] with

a similar procedure.

5.2.3 SNe Ia individual results

We now show the results obtained using the Pantheon sample, both considering each SN
Ia on its own as well as in doing a general fit. Let us start with the individual results,
which are shown in Figures 5.4, 5.5, and 5.6. In each of these figures, we show the
histograms of zg for the three cosmological models (the first row of each figure) and the
plots of zg versus z (second row).

Let us now comment on these plots. In Figure 5.4, we are considering the Cosmo-

logical model A. In the histograms shown in the first row, we see that the peak value of



5.2. DARK ENERGY AND ELECTROMAGNETIC FREQUENCY SHIFT

020

015

fon

0.05

0.00
T

102

Figure 5.4: The first row shows the histograms of zg for the Cosmological model A,
where ), = 0.3, Q = Q) = 0, related to the Pantheon sample. The second row shows
the scatter plot zg versus z. Hy assumes the values 67 (first and fourth panels), 70 (second
and fifth panels), 74 (third and sixth panels), km s~! per Mpc.
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Figure 5.5: The first row shows the histograms of zg for the Cosmological model B,
where 2y, = 0.3, Q, = 0.7, and €2y = 0, related to the Pantheon sample. The second
row shows the scatter plot zg versus z. H assumes the values 67 (first and fourth panels),

70 (second and fifth panels), 74 (third and sixth panels), km s~ per Mpc.
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Figure 5.6: The first row shows the histograms of zg for the Cosmological model C,
where (2, = 1, Q. = Q) = 0, related to the Pantheon sample. The second row shows
the scatter plot zgvsz. Hy assumes the values 67 (first and fourth panels), 70 (second and
fifth panels), 74 (third and sixth panels), km s~ per Mpc.

zg 18 below 0.1, and decreases when we increase the value of H,. Also, we note that
zg 1s always positive, confirming the mock redshift trends, for which the non-standard
electromagnetic effects are dissipative. In the second row, we visualize the behavior of
zg with respect to the detected z, as in the mock redshift case. This time, we see a clear
dispersion of the points obtained by our computations, probably due to the uncertainties
in the real measurements, especially on the distance modulus.

Comparing these results with those obtained in the corresponding case for the mock
redshifts (Figure 5.1), we find that, where the studied z overlap, there is a similar trend
in the values of zg between the two cases. Also, we note the same decrease in the peak
value of zg both in the real data computations and in the mock z test. We also notice
that higher values of zg are reached from the real data than the test with mock redshift.
This could be an effect due to the already mentioned dispersion. Finally, the zg values
get lower by increasing H as in the mock redshift test.

We now consider Figure 5.2, where the same plots described previously are shown
for the Cosmological model B. From the histograms in the first row, we note that the peak
of zg is close to 0. We also see that the majority of the zg inferred values are negative.
Increasing H, shifts the majority of SNe Ia to more negative values of zg. Looking at the

second row, we see the general trend of zg, which we compare with the results obtained
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with the mock redshift displayed in Figure 5.2, we see that the negative peak predicted
with the mock redshifts is more visible with the real data. We also note that raising the
value of Hj increases the absolute value of the negative peak reached by zg, as expected
from the mock redshift plots. We then notice that the positive values of zg can be found
at both low and high z. This could be due to data dispersion or to the changing sign of
the non-standard electromagnetic contribution, at low and high values of z, respectively.
The former was not observed for the mock redshifts, conversely from the latter. We also
note that the scattering seems to decrease in the third plot, for the highest value for H,.

In Figure 5.6, we consider the Cosmological model C. Looking at the first row, we
see in the histograms that the great majority of zg is negative, especially for larger H,.
This trend can be noted also in the second row, where we notice that the positive values
of zg are found at low z, from which a monotonic decrease is observed. This behavior
confirms the mock redshifts test, Figure 5.3, with the positive values probably linked to
data dispersion.

Generally, the behavior observed for the mock redshifts is confirmed by real data in
the common z range for all the Cosmological models. Thereby, we are induced to assume
that the predicted behavior of zg for large redshifts, beyond the Pantheon catalog range,
can be coincident with those computed by the mock redshifts test. The discrepancies,
namely the dispersion and the values of zg themselves, can be ascribed to the natural
observational uncertainties on the provided quantities.

We now use the relationships shown in Table 5.1 to compute the k; parameters for
each SN Ia studied as well as for each cosmological model and value of Hy. The results
are visualized in Table 5.2, where we present the mean and standard deviation of the
distributions obtained for the k; parameters. We note that a negative value of k; for
1 = 1,4 means a positive value for zg and vice versa, while for : = 2, 3 the sign depends
also on the denominator. For our computations, we have chosen for the emitted frequency
ks, v. = 6.74 x 1051, which is an optical frequency in the B-Band.

The absolute values of the k; parameters are in the range 4 x 1076 — 8.5 x 107> per
Mpc for i = 1,2,4, and of 10'° per Mpc s~! for i = 3. This difference in the order
of magnitude for + = 3 is due to the frequency implicitly incorporated in k3. We thus
conclude that we obtain results for the k; with a similar order of magnitude, with the
exception of k3. We note a relatively high standard deviation in comparison with the
mean, due to the dispersion in the data that was already visualized in the previous plots.
We recall that these results do not assume the meaning of a best-fit of £; for all the SNe
Ia, which will be presented later, but allow us to predict the expected order of magnitude

of the general computations.
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Cosmology k1 ko ks ky

A, Hy =067 | (—8.18 £2.15) x 10=° (—7.89 + 2.20) x 107° (—=5.28 £1.47) x 1010 (—8,49 + 2.10) x 107°
A, Hy=170 | (—7.69£2.13) x 107 | (—7.44£2.16) x 107 | (—4.98 & 1.45) x 10 | (—7.96 £ 2.10) x 10°
A, Hy=T74] (=7.03+£2.11) x 107° | (—6.82 £ 2.13) x 107> | (—4.57 & 1.42) x 1010 | (=7.24 £2.10) x 107>
B, Hy =67 | (0.39+1.53) x10° | (040 £.54) x 10° | (0.27 £ 1.07) x 10 | (0.42 £ 1.67) x 107
B, Hy =170 (1.34 + 1.57) x 107° (1.37 £ 1.61) x 107° 0.92 + 1.08) x 1010 (1.32 + 1,54) x 107°
B.Hy=74| (272+£1.63) x10° | (277£1.69) x 10° | (L.79+ 1.10) x 10 | (2.66 = 1.57) x 107
C,Hy =067 | (1.66+231)x10° | (1.73+£2.41) x 10° | (1.16 £ 1.62) x 1000 | (1.61 £2.23) x 107
C,Hy =170 (2.73 + 2.38) x 107° (2.83 £2.53) x 10=° (1.89 + 1.69) x 1010 (2.63 + 2,25) x 107°
C,Hy=74| 417+ 2.49) x 107° (4.33 £2.71) x 107° (2.90 + 1.81) x 1010 (4.01 + 2.30) x 107°

Table 5.2: Mean and standard deviation values of the k; parameters issued from the
individual computations of zg, for the three cosmological models. The computations have
been performed considering the distances in Mpc, which means that the k; parameters are
in Mpc™! fori = 1,2,4 and Mpc~! s~! for k = 3, while the values for H, are in km s~*
per Mpc.

5.2.4 Best-fit for k; and inclusion of BAO data

We now search the k; parameters valid for every SN la. We will first analyze the results
considering uniquely the Pantheon sample, and later we will add the BAO data.
An iterative procedure has been performed using Eqs. (5.18, 2.22, 2.17), and Table

5.1 in the following way

z = 1(2) = ki(2) = 25(2) = zc(2) = r(z¢) — ki(2c) — and back again.

Starting from the observed redshift z of the Pantheon sample, we compute the light-
travel distance and, by our Bayesian procedure, we derive the best-fit values for the k;
parameters via Eq. (4.3). These parameters have been used to derive zg and z¢. Once we
know z¢, we go back to the best-fit derivation of the k; parameters using this new value
for the expansion redshift instead of z, to compute a new light-travel distance and repeat
the procedure. We stop the iteration once the difference between the light-travel distances
computed in two subsequent steps falls below a certain threshold (in particular, a mean
difference between these two values of ~ 1 Mpc considering all SNe Ia). The same
approach has been used for the BAO, considering the appropriate likelihood equations
for each data point, as explained in the previous chapter.

Considering the three cosmological models and fixing the values of Hy, as it was
done for the individual SNe Ia computations, we again gather 9 different cases. For the
Bayesian computations, we have chosen flat priors for each parameter, whose intervals
have been identified case by case, keeping in mind the values obtained in the previous
computation for individual SNe Ia. The results obtained for the k; parameters are shown
in Table 5.3.

As previously mentioned, considering the k; parameters as general, cosmological,
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Cosmology k1 ko ks ky
A, Hy =67 | (=8.19£0.02) x 107° | (=7.7440.02) x 1075 | (—5.17 £0.01) x 10'° | (=8.53 £ 0.03) x 10~°
A, Hy =70 | (=766 £0.03) x 107° | (=7.30 £ 0.02) x 107> | (—4.89 £ 0.02) x 10'° | (=8.00 & 0.03) x 10~°
A, Hy=74| (=7.01 £0.03) x 10~° | (=6.7240.02) x 107° | (=4.51 £0.01) x 10'° | (=7.29 4 0.02) x 1075
B, Hy =67 | (0.39+£0.04) x 107° (0.39 £ 0.04) x 107° (0.26 4-0.03) x 1010 (0.39 £0.04) x 107°
B, Hy=70 | (1.34+0.04) x 10~° (1.34 £0.05) x 107° (0.90 £+ 0.03) x 10'° (1.3240.04) x 10=°
B, Hy=74| (2.60+0.04) x 10~° (2.63 £0.04) x 10~° (1.76 £0.03) x 10 (2.58 £ 0.04) x 107°
C,Hy=67| (1.52+0.04) x 107° (1.54 +£0.04) x 10~° (1.02 4 0.03) x 100 (1.51+0.04) x 10=°
C,Hy="70] (2.56=+0.04) x 10~° (2.58 £0.04) x 10~° (1.73 £0.03) x 10 (2.54 4+ 0.04) x 10—°
C,Hy=T74] (3.96+£0.04) x 107° (4.02 £ 0.05) x 107° (2.69 4 0.04) x 1010 (3.91£0.05) x 107°

Table 5.3: The best-fit values with the relative errors for the k; parameters, considering
the general best-fit for all the SNe Ia belonging to the Pantheon sample, for the three
cosmological models. The computations have been performed considering the distances
in Mpc, which means that the k; parameters are in Mpc~! for i = 1,2,4 and Mpc~* s *
for k = 3, while the values for Hj are in km s~! per Mpc. The numbers in the first column
indicate the cosmological model considered, in the same order as the one illustrated in
the main text.

ones implies that the non-standard electromagnetic effects represented by those depend
only on the distance between the astrophysical objects and us. Nevertheless, we note
how the results in Tables 5.2 and 5.3 are very similar. Indeed, they are consistent within
1 o level (even if this is not very informative given the high standard deviations found
in Tab. 5.2), and in some cases, they present identical mean values, at the level of the
chosen precision. Conversely, the computed uncertainties of the general parameters are
two orders of magnitude smaller than those obtained in the previous computations, even
if we have to remind the two distinct meanings of these quantities: the first is the standard
deviation of a distribution formed by the %; computed from each SN Ia data point, while
the latter is the computed uncertainty of a single, best-fit value valid for every data point
for the k; parameters.

Once we have computed the best-fit values of k; we used those to derive the zg for
every SNe la using the relations in Table 5.1. The histograms summarizing these results
for k; (the other k; bring to very similar conclusions) are shown in Figures 5.7, 5.8, and
5.9.

In Figure 5.7, the results concerning the Cosmological model A are shown. The pos-
itive values for zg reflect the negative sign for k. It is worth noticing that the magnitudes
reached by zg are similar to those computed in the individual cases. Again, these values
decrease with the increase of H(, without changing the overall distribution, as we have
seen in the corresponding previous cases.

In Figure 5.8, the results concerning the Cosmological model B are shown. Once
more, the negative values for zg are due to the positive sign of k. The main difference
with the individual SNe Ia computation lies in the magnitude of zg, with its maximum

absolute value being smaller; further, we do not obtain positive zg values, found in the
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Figure 5.7: Histograms of the computed zg from the k; parameter considering the Cos-
mology model A, where 2, = 0.3, . = Qx = 0 (Hy = 67,70, 74 for the left, central
and right panels. The values for Hj are in km s~! per Mpc).
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Figure 5.8: Histograms of the computed zg from the k; parameter considering the Cos-
mology model B, where 2, = 0.3, 0, = 0.7, Qx = 0 (Hy = 67,70, 74 for the left,
central and right panels. The values for Hy are in km s~! per Mpc).
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Figure 5.9: Histograms of the computed zg from the k; parameter considering the Cos-
mology model C, where ), = 1, (2, = Qy = 0 (Hy = 67,70, 74 for the left, central and
right panels. The values for Hj are in km s~! per Mpc).
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corresponding individual cases beforehand, as expected given that the sign of all the zg
depends on the one of the best-fit value of k;. This method does not lead to the same
variability on zg, which is due to the higher precision of %; in the general computation,
that accompanies a smaller spread on the results for zg. Finally, increasing H determines
a larger absolute mean value of zg.

In Figure 5.9, the results for the Cosmological model C are shown. We obtain only
negative zg, with a larger mean absolute value than what has been obtained in Figure 5.8,
but smaller than those computed for the individual cases, in Figure 5.6. Again, increasing
H) increases the mean absolute value for zg.

As previously mentioned, the idea to treat the k; parameters as general ones allows us
to use them as proper cosmological parameters, so that we can build the Hubble diagrams
of the Pantheon sample or the three cosmological models. These diagrams are shown in
Figure 5.10.

In these diagrams, the theoretical curve represented by the black line is consistent
with the majority of the data points, especially for the Cosmology model B. Instead, in
the other models, the theoretical curve falls below the data points for high redshifts, for
the three values of H,y. We quantify the goodness of the fits using the computations shown
in Table 5.4, where we note the reduced Xz’ corresponding to the k; best-fit value, the
root mean squared deviation (RMSD), and the normalized root mean squared deviation
(NRMSD) for k;. We observe that the results indicate that the lowest values are asso-
ciated with Cosmological model B, which we recall is a non-flat cosmological model.
Thus, these statistical indicators confirm our previous comments concerning Figure 5.10.
The other cosmological models show acceptable fits too, although worse than the fit ob-
tained using the Cosmological model B.

We now add the BAO data to our set, to see what kind of differences their addition
would bring to the overall results. Due to their nature (we recall that they are not lu-
minosity distance-based) we show the results for the k; parameters without the Hubble
diagrams. The results are gathered in Table 5.5, which we compare with those in Table
5.3. For all k;, considering the Cosmological model A, the BAO data contribute with a
negative value, and thus they bring a positive contribution to zg, strengthening previous
findings. Instead, for the Cosmological models B and C, the impact of considering BAO
may strengthen or weaken previous findings, even changing the sign of the shift. For
the Cosmological model C, it is very interesting that for Hy = 70 km s~! per Mpc, we
find the values of k; consistent with zero, despite the large errors. This derivation may
be relevant because it corresponds to zg = 0 in a universe assumed without dark energy.
Recalling that the Cosmological model C considers 2, = 1, this implies that this par-

ticular combination of SNe Ia+BAO leads to the same results regarding the redshifts of
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Figure 5.10: The Hubble diagrams for the three cosmological models, one for each row,
based upon the best-fit values of & with data from the Pantheon sample, with the three
values of H, (67,70, 74 kms~! per Mpc, one for each column. The black lines represent
the models, while the blue marks trace the SNe Ia data with their errors. We underline
that the redshift on the x-axis is the computed expansion redshift z¢. This explains why
the interval on the x-axis changes between different cosmological models.
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Cosmology | Reduced x* | RMSD | NRMSD
A, Hy = 67 1.58 0.244 0.154
A, Hy="170 1.62 0.247 0.155
A, Hy="74 1.59 0.244 0.155
B, Hy =67 1.08 0.165 0.150
B, Hy =70 1.07 0.164 0.150
B, Hy=T74 1.06 0.162 0.150
C, Hy=67 1.46 0.228 0.151
C,Hy=170 1.47 0.230 0.151
C,Hy="174 1.47 0.230 0.151

Table 5.4: Best-fit statistics for the k; parameter in all the cases considered in our work.
The NRMSD has been derived from the RMSD divided by the difference between the
maximum and minimum values of the difference between the theoretical and observed
distance modulus. The mean value of the uncertainty on the observed data is A s =
0.142. The values for H are in km s~ per Mpc. The numbers in the first column indicate
the cosmological model considered, in the same order as what is illustrated in the main
text.

Cosmology ki ko ks ka

A, HO :67

(—8.72£0.02) x 107

(—822£0.02) x 107

(—5.49 £ 0.01) x 10

(—9.19£0.02) x 107

A, H(J = 70

(—8.37£0.02) x 107

(=7.92+0.02) x 107

(—5.30 £ 0.01) x 10™

(—8.85+0.02) x 107

A, Hy =74

(—788£0.02) x 107

(—7.49£0.02) x 10

(—5.02 £ 0.01) x 107

(—828£0.02) x 10 °

B, Hg :67

(1.23 £ 0.03) x 1075

(1.23£0.03) x 107°

(0.82 +0.02) x 10™

(1.21£0.03) x 1075

B, Hy = 70

(1.23+0.04) x 107

(1.24+0.04) x 107

(140 + 0.02) x 10™°

(2.07+0.03) x 107

B.Hy=74| (324+0.03)x10° | (3.30£0.03) x 10°° | (221£0.02) x 10™ | (3.20=+0.03) x 10°
C.Hy=067 | (—0.91+0.03) x 10~° | (—0.91 +0.03) x 10~ | (—0.61 £ 0.02) x 10" | (—0.91 £ 0.04) x 10~°
C.Hy=70| (031%£343)x10 7 | (—0.77£3.77) x 107 | (—0.81 £2.31) x 10° | (—0.29 £ 3.81) x 10"
C.Hy=74| (123£0.03) x10° | (1.244£0.04) x 10°° | (0.84+0.03) x 10 | (1.22+0.04) x 107

Table 5.5: Results for the k; parameter considering the general best-fit for SNe Ia belong-
ing to the Pantheon sample together with the BAO constraints, for the three cosmological
models. The values for Hy are in km s~! per Mpc. The numbers in the first column
indicate the cosmological model considered, in the same order as what is illustrated in
the main text.

the ACDM model, at least concerning this specific computation, without introducing the
dark energy.

In conclusion, the analysis performed in [34] presented in this section has the ob-
jective to find, under the fundamental hypothesis of the absence of dark energy and the
presence of ETE effects, what would be the contributions necessary for such effects to
match the observations. Of course, such an alternative theory has to have a strong con-
ceptual basis to actually be accounted as a possible contender for the ACDM model from
a theoretical point of view. Furthermore, it has to coherently account for all possible
astrophysical and cosmological observations. In [34], a brief discussion regarding other
probes usually used in cosmology, such as the CMB and the weak lensing, is presented

as well.
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For instance, the concept of time dilation has been taken into account, whose obser-
vations [310, 311] have ruled out the tired light hypothesis [312], according to which the
redshift of the astrophysical sources is entirely due to the photon losing energy in a static
universe. This theory suffers from different shortcomings [313]. Our approach differs
in the sense that we do not halt completely the expansion of the universe, but, in some
sense, we complement it with a new mechanism. Furthermore, while the tired light pro-
cess 1s always dissipative, the non-standard electromagnetic effects could actually allow
the photons to gain energy in their path to us.

Regarding the CMB, instead, referring to the discussion in [34], the data, being
model-dependent, can be interpreted to fit different cosmological models [314]. Further-
more, the CMB on its own is limited in constraining the dark energy hypothesis, since it
is not one of the six free parameters, but it is derived using subsequent assumptions [315].
Indeed, information related to the dark energy content in our Universe depends also on
the distance between the CMB and us, given that in the early times for the ACDM model
the effects of dark energy were negligible, which would mean that a reinterpretation of
the redshift does not change the intrinsic physics of the CMB [35].

Another probe that has been used to derive information related to the dark energy is
the weak lensing, more specifically the deformation linked to the shear [77, 78]. This
quantity also depends on the value of the redshift at which the weak lensing has been
detected. Thus, we expect that the recasting of the redshift would affect these measure-
ments roughly in the same way as the probes used in our analysis, namely, with a further

contribution to the total redshift being able to reproduce the effects of the dark energy.

5.2.5 The Pantheon+ Analysis

We now complete our previous findings by considering the very novel Pantheon+ set of
1701 light curves taken from 1550 SNe Ia [36], which is the successor of the Pantheon
sample used and discussed in the previous sections and chapters. This is the main focus of
[53]. Considering the same methodology regarding the best-fit analysis expressed above,
we compute new results regarding the non-standard frequency shifts for this new set,
comparing these with the results obtained for the Pantheon sample and highlighting the
differences. We first note that the Pantheon+ sample has the same redshift range as the
Pantheon set, having more low-redshift SNe Ia. Also, we note that, while for the Pantheon
sample uncertainties regarding the redshift measurements were absent, they have been
introduced for the Pantheon+ set, allowing a direct comparison of them with the non-
standard frequency shifts computed by us, in order to understand if these possible effects
are of the same order of magnitude than the uncertainties themselves. Furthermore, the

Pantheon+ sample data also include directly the distance modulus, differently from the
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Figure 5.11: The first row shows the histograms of zg for the Cosmological model A,
where ,; = 0.3, Q0 = Qp = 0, related to the Pantheon+ sample. The second row
shows instead the scatter plot zg versus z. We fixed the values for H, to 67 (first and
fourth panels), 70 (second and fifth panels), 74 (third and sixth panels), km s~! per Mpc.

Pantheon set, obtained by using a fiducial absolute magnitude for SNe Ia derived by the
SHOES 2021 Cepheid host distances [36, 12].

In showing these new results, we follow the same order presented for the Pantheon
sample computations. Given that the mock redshifts are not affected by the new set, let us
start with the individual computations. The results are visualized in Figures 5.11, 5.12,
and 5.13.

Regarding Figure 5.11, where we consider the Cosmological model A, in the his-
tograms visualized in the first row, we note a peak for zg consistent with zero, followed by
a distribution presenting a secondary peak, which is consistent or slightly below zg = 0.1,
depending on the value for Hy. The maximum value reached for zg depends on H as
well. We note that in these computations zg is always positive for every value of H,.

Comparing these histograms with the corresponding ones obtained for the Pantheon

sample, Figure 5.4, we note the following points:

* In both cases, zg is always positive, confirming also the results obtained with the

mock redshift for the same cosmological model, Figure 5.1.

* In 5.4, the peak of zg consistent with zero is also present, but is not as predominant

as in the new results, being of the same magnitude as the secondary peak.
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Figure 5.12: The first row shows the histograms of zg for the Cosmological model B,
where €2, = 0.3, (2, = 0.7, and €2, = 0, related to the Pantheon+ sample. The second
row shows the scatter plot zg versus z. We fixed the values for H, to 67 (first and fourth
panels), 70 (second and fifth panels), 74 (third and sixth panels), km s~! per Mpc.

* The new distribution is wider: both the secondary peak as well as the maximum
value of zg are bigger than those obtained with the new result, and this is true for
all the values of Hj.

* the dependency on the value of H is very similar between the two results: increas-

ing H, decreases both the value of the secondary peak as well as of the maximum.

In the second row of Figure 5.11, we show the scatter plots visualizing the behavior
of zg versus the detected z. As for Figure 5.4, we note a dispersion probably due to the
uncertainties on the distance modulus. In general, the scatter plots obtained with the two
SNe Ia sets are similar. The main difference between the results achieved by the SNe Ia
sets is the peak at low redshifts noted in the histograms, which is due to the increased
number of low redshift SNe Ia in the Pantheon+ sample.

We now comment on the findings shown in Figure 5.12, in which we take into account
the Cosmological model B. The main feature of the histograms shown in the first row is
the predominant peak for zg around 0. We also note a very interesting behavior depending
on the fixed value of Hy: for Hy = 67 km s~! per Mpc, the distribution is fairly symmetric
around 0, while increasing the value of H, breaks this symmetry, having a bigger tail for

negative values for zg than the positive end of the distribution. The result for Hy, = 67
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km s~! per Mpc is particularly interesting: indeed, a 25 consistent with zero would imply
that the open cosmological model without dark energy is able to reproduce the results
of the ACDM model without invoking the zg contribution, even if we see also a large
dispersion of the computed values, from which we deduce that the overall effect due to
zg 1s not negligible.

Comparing these results with those obtained for the corresponding case in Figure 5.5,
we note that we did not find the same symmetric behavior with the Pantheon sample:
indeed, the majority of the zg was negative even for Hy = 67 km s~! per Mpc. We
also note that the intervals of the zg obtained in the two computations have comparable
widths, with the Pantheon+ results being more shifted to positive values than what we
have obtained for the corresponding Pantheon cases. We also note the peak near zg = 0,
to which we give the same explanation concerning the findings observed in Figure 5.11.

On the second row, we see the scatter plots, similar to what we have shown in Figure
5.11. It is clear, from this plot, the symmetric behavior for Hy = 67 km s~! per Mpc,
which is broken by increasing the value of H,. We also note that the negative values of
zg seem to increase with the redshift, especially for Hy, = 70 and Hy, = 74 km s~* per
Mpc. Finally, we also note that the scattering characterizing these plots seems to decrease
with Hj. Interestingly, these plots are different from the results achieved with the mock
redshift in the corresponding case, especially for Hy = 67,70 km s~ per Mpc. This
could be because of the variability shown for the low redshift SNe Ia.

Let us now discuss the results shown in Figure 5.13 for the Cosmological model C.
Looking at the first row, where the histograms of zg are shown, we note that the majority
of the zg seems to be negative, as was the case for the same computations for the Pantheon
sample, Figure 5.6. Instead, this is not the case, as we shall note when we will compute
the k; parameters, because the number of negative and positive zg is closer than what we

would expect from these plots, especially for Hy = 67 km s~*

per Mpc. The number
of negative zg increases with the value of Hj, as again was the case for the previous
computations. In general, we can see that this is the case where the results obtained for
the Pantheon+ and Pantheon sets are more alike. The main difference is in the peak near
zs = 0, as in the other computations, to which we give the same reasoning as in the
previous two cases. In the second row, we note from the scatter plots that zg becomes
more negative at high redshifts, as was the case for the results in Figure 5.6. Indeed, even
from this plot, we can appreciate the similarity between the two results (and also with the
mock redshift for the same cosmological model). Regarding the maximum (in absolute
value) reached by zg, we note that it increases with the value of Hj, and also that it is
bigger for the Pantheon sample than for the Pantheon+ set.

Given that the new Pantheon+ sample provides also an estimate of the errors on the
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Figure 5.13: The first row shows the histograms of zg for the Cosmological model C,
where €, = 1, Q0 = Qp = 0, related to the Pantheon+ sample. The second row shows
the scatter plot zgvsz. We fixed the values for H, to 67 (first and fourth panels), 70
(second and fifth panels), 74 (third and sixth panels), km s~! per Mpc.

Cosmology | Hy=67 | Hy=70 | Hy="74
Cosmology A 32.1 30.14 27.8
Cosmology B 3.06 2.51 3.39
Cosmology C, 3.25 3.38 5.37

Table 5.6: The median of the distributions of the ratios between the computed zg and the

uncertainties provided by the Pantheon+ sample. The values for Hy are in km s~ per
Mpc.

observed redshifts, we can compare the magnitude of our results regarding zg to them, in
order to understand if, by considering the uncertainties on the measurements, a similar
effect to what we deduced for the non-standard shift can be achieved by the observational
errors themselves. We thus compute the ratio between zg and the errors, from which we
derive the median of the related distributions. The results are gathered in Table 5.6, in
which we note that the zg are consistently predominant over the uncertainties provided
by the Pantheon+ sample, which implies that their contributions cannot be accounted for
by errors in the measurements.

As we did with the Pantheon set, from these computations and using the relations
in Table 5.1, we can now compute the k; parameters for each SN Ia belonging to the

Pantheon+ sample. This has been done for every cosmological model and value for H
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Cosmology k1 ko ks k4

A, Hy =67 | (=9.94 £2.46) x 10~° (—9.67 £2.56) x 107° | (=6.48 £1.71) x 10% | (=1.02 +£0.24) x 10~*
A, Hy =170 | (—9.45 £2.44) x 107° (—9.20 £2.52) x 107° (—6.16 £ 1.69) x 1010 (—9.71 £2.36) x 107°
A, Hy=T4 1] (—8774+241) x 107° | (—8.57£2.47) x 107° | (=5.74 + 1.66) x 10 | (=9.00 + 2.35) x 10>
B, Hy =67 | (=1.01+£1.95) x 107° | (=1.00 £ 1.95) x 107° | (=0.67 £ 1.31) x 10'° | (=1.02 £ 1.95) x 10~°
B, Hy = 70 | (—0.06 £ 1.95) x 107 | (—0.05 £ 1.95) x 107 | (—0.03 £ 1.31) x 10" | (~0.06 £ 1.94) x 107
B,Hy=74| (1.22+1.94) x 107° (1.24 £1.96) x 107° (0.83 +£1.31) x 100 (1.21 +£1.93) x 107°
C,Hy=67 | (=0.194+2.43) x 107° | (=0.17 £ 2.46) x 107 | (=0.12 £ 1.65) x 101 | (0.20 & 2.40) x 10~°
C,Hy="70| (0.84+2.46) x 10° (0.87 £ 2.52) x 107° (0.59 £+ 1.69) x 10'° (0.81 £ 2.42) x 107°
C,Hy=T4| (2.23£2.52) x 107° (2.29 £+ 2.62) x 107° (1.53 £1.75) x 10 (2.17 £ 2.44) x 107°

Table 5.7: Mean and standard deviation values of the k; parameters derived from the
individual computations of zg, for the three cosmological models. The computations have
been performed considering the distances in Mpc, which means that the k; parameters are
in Mpc™! fori = 1,2,4 and Mpc~! s~! for k = 3, while the values for H, are in km s~*
per Mpc, as usual.

previously considered. The results are illustrated in Table 5.7, where we show the mean
and the standard deviation of the k; distributions. For our computations, as we did for the
Pantheon set, we choose for the emitted frequency ks, v, = 6.74 x 10'4s~!, which is an
optical frequency in the B-Band.

The derived values for the k; parameters present the same order of magnitude as
those found in the Pantheon sample, shown in Figure 5.2: indeed, we note that all the
new results are consistent with the old findings within 1 o. As in the Pantheon results,
the computed standard deviation is of the same order of magnitude (or even higher) that
the mean values, and we obtain results consistent with 0 for the Cosmological models B
and C. This was expected from the plots shown beforehand, because of the presence of
both positive and negative zg, and because of the general dispersion observed for the real
data.

We now describe the results obtained for the general best-fit computations, again
considering the now usual 9 cases (3 cosmological models, 3 fixed values for H), from
which we derive our estimations for the k; best-fits. The results obtained for the k; pa-
rameters are shown in Table 5.8.

We first note how the results, albeit having different meanings, shown in Tables 5.7
and 5.8 are consistent within 1 o, as was the case for the Pantheon computations, Tables
5.2 and 5.3. We also note how the uncertainties for the general case are, for the major-
ity of the computations, significantly smaller than the scatters derived for the singular
computations, still reminding the conceptual difference between the two values.

Comparing Tables 5.8 and 5.3, we instead note how, contrary to what we obtained
for the Table 5.2, not all the new k; parameters derived in this work are consistent with
those derived for the Pantheon set: indeed, a direct comparison expressing in how many
o the values are (identified by the sum of the errors on the two results) is shown in Table

5.9. We note that the highest discrepancies have been found for the Cosmological model



5.2. DARK ENERGY AND ELECTROMAGNETIC FREQUENCY SHIFT 117
Cosmology k1 ko ks ky
Cosmology A, Hy = 67 | (—9.84 £0.69) x 107> | (—8.85 £ 0.69) x 107> | (—5.88 £ 0.41) x 10'° | (—1.05 £ 0.08) x 10~*
Cosmology A, Hy =70 | (—9.38 £0.73) x 107> | (—8.47 £ 0.63) x 107> | (—5.66 & 0.45) x 10'° | (—=1.01 £0.09) x 10~*
Cosmology A, Hy =74 | (—=8.70 £ 0.73) x 107> | (=7.93 £0.74) x 107° | (=5.27 4 0.46) x 100 | (—9.17 £ 0.86) x 10~°
Cosmology B, Hy = 67 | (—0.68 £1.21) x 1075 | (—0.67 £ 0.97) x 107° | (=3.63 £7.46) x 10 | (—0.70 £1.22) x 10~

Cosmology B, Hy = 70 | (026 £1.22) x 10 ° | (0.26+121) x 10° | (220£8.69) x 10° | (0.27+1.33) x 10 °

Cosmology B, Hy = 74 | (154 +£127) x 10° | (1.53+1.35) x 10° | (1.06%0.87) x 10 | (1.55+1.24) x 10°

Cosmology C, Hy = 67 | (—0.24 £1.13) x 107° | (—0.23 £ 1.31) x 107

Cosmology C, Hy =70 | (0.77+1.43) x 107> | (0.74 +1.20) x 107°

(

( )
(0.07£7.64) x 10° | (0.56£1.22) x 10
(5.57£7.91) x 10° | (0.80£1.29) x 107

( )

Cosmology C, Hy = 74 | (212+£159) x 10° | (2.05+£1.69) x 10> | (1.37£1.02) x 10° | (2.19+1.61) x 10°

Table 5.8: The best-fit values with the relative errors for the k; parameters, considering
the general best-fit for all the SNe Ia belonging to the Pantheon+ sample, for the three
cosmological models. The computations have been performed considering the distances
in Mpc, which means that the k; parameters are in Mpc~! fori = 1,2, 4 and Mpc~! s~ !
for k = 3, while the values for Hy are in km s~ per Mpc.

Cosmology k1 ko ks ky
Cosmology A, Hy = 67 2.32 1.56 1.69 2.37
Cosmology A, Hy =70 2.26 1.8 1.64 2.26
Cosmology A, Hy =74 2.22 1.59 1.62 2.14
Cosmology B, Hy = 67 | Below 1 1.05 Below 1 | Below 1
Cosmology B, Hy = 70 | Below 1 | Below 1 | Below 1 | Below 1
Cosmology B, Hy = 74 | Below 1 | Below 1 | Below 1 | Below 1
Cosmology C,H, = 67 1.50 1.31 1.29 Below 1
Cosmology C, Hy = 70 1.22 1.48 1.43 1.31
Cosmology C, Hy = 74 1.13 1.13 1.25 1.03

Table 5.9: Table of the comparisons between the results shown in Table 5.8 and the
corresponding findings in 5.3. The numbers shown are the ratios between the difference
between the two mean values and the sum of the corresponding errors. If this number is
below 1 (i. e., the two results are consistent) we just show "Below 1" in the table.

A, while for the Cosmological model B the results are almost always consistent within 1
o. One interesting difference regards the results with H0 = 67 km s~! per Mpc for the
Cosmological models B and C: indeed, we note how the old results presented a positive
mean value, while the new findings show a negative mean. This would imply a change of
the sign for the related zg, as we will see. This difference could be because, as previously
shown, there are more data points that would be more consistent with a negative value for
zg in the Pantheon+ sample, as well as because the new results are consistent with zero.
Indeed, another key difference between the old and new derivations is in the magni-
tude of the related uncertainty: for the new results, this is significantly higher than what
we obtained in Table 5.3. One possible reason for this conclusion is the higher number of
probes in the new set, which would bring to a higher possible variability for the zg, even
if this uncertainty is still smaller than that derived for the individual SN Ia case (keeping

in mind the different meanings between the two quantities).
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Figure 5.14: Histograms of the computed zg from the k; parameter considering the Cos-
mological model A, where {2, = 0.3, {2, = Q) = 0 (Hy = 67,70, 74 for the left, central
and right panels. The values for Hj are in km s~! per Mpc).
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Figure 5.15: Histograms of the computed zg from the k; parameter considering the Cos-
mological model B, where €2, = 0.3, Q, = 0.7, Q4 = 0 (Hy = 67,70, 74 for the left,
central and right panels. The values for Hy are in km s~! per Mpc).

As we did previously for the Pantheon sample, we derive from the best-fit of the k;
parameters the zg for the entire data set. The results are shown in Figures 5.14, 5.15, and
5.16, where we show the histograms of the computed zs. We visualize the results related
to k1 because no significant difference has been observed for the k; parameters even with
the new set.

We now comment on the results shown in these histograms starting from Figure 5.14,
where the findings related to the Cosmological model A are visualized. As we expected
from the formula inside Table 5.1, the zg values derived from this model are always pos-
itive for every H,. We again note the peak for zg ~ 0, which is due to the additional
low redshift SNe Ia present in the Pantheon+ sample. We also note that increasing H
decreases the maximum value obtained for zg, as was the case for the individual com-
putations, of which they keep the same general order of magnitude. This feature was
present also in the results obtained for the Pantheon sample, Figure 5.7.

We now move to the histograms visualized in Figure 5.15, which are the results re-

lated to the Cosmological model B. We note that the zg are rather small and that for



5.2. DARK ENERGY AND ELECTROMAGNETIC FREQUENCY SHIFT 119

w0 600
500
500 500
400 0 400
c
w 2 w
7 00 g 300 7 a0
£ 8 c
c
00 00 00
100 100 100
0 d T 0 7 d 0
0000 0001 0002 0003 0004 0005 0006 -0.0175-0.0150-0.0125-0.0100-0.0075-0.0050-0.0025 0.0000 -4 -0m -0.02 -0 0.00
3 ] 5

Figure 5.16: Histograms of the computed zg from the k; parameter considering the Cos-
mological model C, where €2, = 1, 2, = Q = 0 (Hy = 67,70, 74 for the left, central
and right panels. The values for H are in km s~* per Mpc).

Hy = 67 km s~! per Mpc they are positive, while, for the other two values, they are neg-
ative. This depends on the mean value of the general parameter k;, which was negative
for Hy = 67 and positive for Hy = 70, 74 km s~! per Mpc. This effect has been hinted at
by the corresponding individual results, for which a rather symmetric distribution around
2g = 0 has been found for H, = 67 km s~! per Mpc, which has then moved to more neg-
ative values for Hy = 70,74 km s~! per Mpc. As for the Pantheon computations, given
how the zg are computed in this second approach, we can only have either an entirely
positive or negative set of results for zg for a singular histogram. The changing sign in
the results was not observed for the results derived from the Pantheon sample, Figure 5.8,
for which negative values for zg were observed also for Hy = 67 km s~! per Mpc. We
also note that the zg for the new computations are, in general, smaller than those obtained
by the old derivations. Regarding the changing sign, this could be because of the sym-
metric behavior observed in the new results (which is shown also from the general low
values for zg), which was not observed with the Pantheon sample, in concordance with
the shift due to the increasing value of Hy. We also note the usual peak at zg = 0 due to
the new low redshift SNe Ia.

We now comment on the results shown in Figure 5.16, where we find the Cosmo-
logical model C. We may note some similarities with respect to the Cosmological model
B results, albeit here we also notice how the zg are usually larger. Indeed, we see that
for Hy = 67 km s™! per Mpc we obtain positive values for zg, while we find negative
ones for Hy = 70,74 km s~! per Mpc. Again, this difference has not been noted, neither
for the individual SNe Ia results nor for the derivations for the Pantheon results, Figure
5.9. The reasons behind this difference are the same as those illustrated for the Cosmo-
logical model B. In general, we note that the relation between the computed zg and the
fixed value of H is the same as what we observed in the old Pantheon sample for all the

cosmological models considered.
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Cosmology | Hy=67 | Hy=70 | Hy="74
Cosmology A 33.6 31.32 28.71
Cosmology B 2.06 0.77 4.46
Cosmology C, 0.69 2.21 5.92

Table 5.10: The median of the distributions of the ratios between the computed zg and
the uncertainties provided by the Pantheon+ sample. The values for Hy are in km s™! per
Mpc.

As we did for the individual computations, we can now compare our zg with the
correspondent uncertainties provided by the Pantheon+ sample. The ratios for the £,
parameter are shown in Table 5.10. We observe again that, in general, the zg are higher
than the observational errors, with the only exceptions for Cosmological model B, Hy =
70 km s~! per Mpc, and Cosmological model C, H, = 67 km s~! per Mpc, where the
median displays that the two quantities are of the same order of magnitude. This is linked
to the small values for the k; parameters found in those specific cases.

One effect that we find for both Pantheon and Pantheon+ results is the contribution of
H,. Indeed, we note that increasing the value of H shifts the derived zg in the same way
for all the cases considered, namely making them more negative. This is because, as we
can note from Eq. (2.18), H is inversely proportional to the distance, thus, the effect of
decreasing the distance is opposed by the more negative values of zg in our comparison
with the real data, which we recall increases the distance of the astrophysical probes from
us.

We now draw the Hubble diagrams for the Pantheon+ sample, as done for the Pan-
theon set, considering the zg effects for all the cosmological models and values of H
considered. Again, we focus on the k; parameters. The diagrams are shown in Figure
5.17. We may note that, even if we are considering a new sample, the behavior of these
diagrams is similar to that obtained with the Pantheon sample: the best-fit has been vi-
sually reached by the Cosmological model B for all the values for H,. For the other
two cosmological models, we see the theoretical black line fall below the data points at
high redshifts, as was the case for the Pantheon sample. Still, for all our computations,
the theoretical curve is consistent with the majority of the data points belonging to the
Pantheon+ sample. We note again that the redshift on the x-axis in these plots is the cos-
mological redshift 2, which we note is very similar to the one obtained for the Pantheon
sample.

As we did for the Pantheon sample, to verify the goodness of our fits we have com-
puted some statistical indicators, namely the reduced x?, corresponding to the &, best-fit
value, the RMSD, and the NRMSD, which have been derived for all the k; parameters.

The results are visualized in Table 5.11. Comparing these results with those obtained
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Figure 5.17: Best-fit for the Hubble diagrams computed for our cosmological models
(one for each row), using k; with data from the Pantheon+ sample, with the usual three
values of H, (67,70, 74 kms~! per Mpc, one for each column. The black lines represent
the models, while the blue curve the SNe Ia data with their respective errors. We under-
line that the red shift on the x-axis is the computed expansion redshift z¢, which is why
it changes between cosmological models.
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Cosmology Reduced x? | RMSD | NRMSD
Cosmology A, Hy = 67 0.007 0.240 0.106
Cosmology A, Hy = 70 0.009 0.259 0.111
Cosmology A, Hy = 74 0.009 0.257 0.111
Cosmology B, Hy = 67 0.003 0.186 0.087
Cosmology B, Hy = 70 0.003 0.183 0.086
Cosmology B, Hy = 74 0.003 0.183 0.086
Cosmology C, Hy = 67 0.006 0.225 0.104
Cosmology C, Hy = 70 0.006 0.226 0.104
Cosmology C, Hy = 74 0.006 0.228 0.104

Table 5.11: Best-fit statistics for the k£ parameter in all the cases considered in our work.
As for the previous computation, the NRMSD has been computed by dividing the RMSD
by the difference between the maximum and minimum values of the difference between
the theoretical and observed distance modulus. The mean value of the uncertainty on the
observed data is A, = 0.243, which is higher than the correspondent value for the
Pantheon set, A ;s = 0.142. The values for H are in km s~! per Mpc.

from the Pantheon computations, Table 5.4, we note that we infer, in general, better fits:
indeed, while the RMSD remains of the same order of magnitude, we note a significant
decrease for the NRMSD and especially for the reduced x2. We also note that, as in the
Pantheon computations, the Cosmological model B achieves the most consistent best-fit
results with the real data, confirming our comments in regards to Figure 5.17. The other
cosmological models show also acceptable fits, better than their Pantheon counterparts,
although worse than the results obtained by the Cosmological model B.

We now add the BAO set also to the Pantheon+ sample. The results related to the
k; parameters are gathered in Table 5.12. Comparing the results shown here with Table
5.8, we note a general significant decrease in the uncertainties regarding our results, for
all the considered cases, arriving at the order of magnitude of the precision reached by
the Pantheon set. We also note that the mean values of the Cosmological model A are
very similar between the two cases, while we see a significant shift to positive values for
the k; parameters for the Cosmological model B, and negative ones for the Cosmological
model C. We also note that we do not obtain results consistent with zero anymore for
any of the considered cases. Regarding the comparison with the corresponding table for
the Pantheon set, Table 5.5, we notice a negative shift of the results for the Cosmolog-
ical models A and C, while the opposite has been found in the Cosmological model B.
Previously, with the combination of SNe Ia and BAO considering the Pantheon sample,
we obtained for some particular cases results consistent with zero, which we do not find

here. This is because of the differences between the Pantheon and Pantheon+ results.
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Cosmology

Ky

ks

ks

i

Cosmology A, Hy = 67

(—9.53 £0.03) x 107°

(—884£0.03) x 100

(—=5.91 £ 0.02) x 100

(—10.03£0.04) x 107

Cosmology A, Hy = 70

(—9.37£0.03) x 107°

(—8.71£0.03) x 100

(—5.84 £ 0.02) x 101

(—10.09 £ 0.03) x 107

Cosmology A, Hy = 74

(—9.13£0.03) x 10 °

(—8.53 £0.03) x 107

(—5.71 £ 0.02) x 101

(—9.78 £ 0.04) x 10~°

Cosmology B, H, = 67

(2.50 £ 0.05) x 107

(2.63+0.05) x 10°°

(1.76 £ 0.04) x 101°

(2.54 £0.04) x 1075

Cosmology B, Hy = 70

(5.94+0.09) x 10°°

(5.39 % 0.10) x 10 °

(2.28 £0.04) x 1010

(3.25+£0.04) x 107°

Cosmology B, Hy, = 74

(4.34 £0.06) x 107°

(4.49 £0.06) x 1075

(3.00 £ 0.04) x 107

(4.22 £0.06) x 1075

Cosmology C, Hy = 67

(—4.80 £ 0.05) x 107°

(—4.65+0.06) x 107°

(—3.1240.04) x 1010

(—4.91 £ 0.06) x 1075

Cosmology C, Hy = 70

(—4.17+£0.07) x 107°

(—4.08 £0.05) x 1077

(—2.73£0.03) x 10

(—4.28£0.06) x 1077

Cosmology C, Hy = 74

(—3.30 £ 0.06) x 107°

(—3.25+0.06) x 107°

(—2.16 +0.04) x 101°

(—3.36 £0.07) x 107°

Table 5.12: Results for the k; parameter considering the general best-fit for SNe Ia of the
Pantheon sample together with the BAO constraints, for the three cosmological models.
The values for H, are in km s~* per Mpc.

5.3 Finding the mass of the photons

Up to now, we have worked on possible consequences of a new shift contribution with-
out worrying about the particular non-standard electromagnetic phenomenon which may
cause it. We now move to a more fundamental level by showing a series of experiments
and analyses whose aim has been to find a possible mass of the photon, or at least an
upper limit for it. It is important to note that a definitive test of a zero-particle mass can-
not be performed, considering that, for the Heisenberg principle in the energy-time form
applied to our universe, the minimum possible detectable mass is of the order of 10~
kg [316, 317], thus the upper limits estimations will inevitably end at that point if it will
be ever reached experimentally. The first estimation was due to de Broglie himself, who
used dispersion analysis to give an estimate of the upper limit equal to 1073 kg. For a
general critique of the results achieved before 2008, see [297]. In laboratory tests, one of
the most stringent upper limits has been reached by testing Coulomb’s law [318], find-
ing an experimental upper limit equal to 2 x 107°° kg. For a more complete review of
tests performed on the Earth, more specifically which physical fundamental law they are
testing and what are the experimental apparatuses, see [319].

Moving to the astrophysical observations, studies regarding the mass of the photon
have been performed using Fast Radio Bursts (FRBs), which are transient radio pulses
whose length goes from a fraction of a millisecond to a few milliseconds, caused by
some high-energy astrophysical process not yet completely understood, using dispersion
analysis [320, 321]. Indeed, if the photon actually has a mass, its velocity will depend on
it, so we would notice, from an astrophysical signal of this kind, a temporal lag between
the different frequencies of that signal itself. In particular, this time lag between two
photons with energies F/, /5 has the form (using the natural units):

A (L H,(2) (5.21)
T OH\E2 E2) V) '
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where H,(z) is defined as

z ds'
H,(z) = /0 NG z’)3Qm' (5.22)

Noticing that this time lag could also be due to the interactions with the intergalactic
medium [321], it is also important that these two lags have different dependencies on
the redshift of the astrophysical source. From these observations, one of the best results
achieved is an upper limit equal to 3.9 x 107°! kg at a 95% confidence level [322].
These limits may suffer a certain degree of ambiguity since the plasma and photon time
delays are indistinguishable in the measurements [323], if gamma-ray frequencies are not
considered [324]. A space project has also been proposed in order to further improve the
limits given by the dispersion analysis [323].

Currently, the most strict upper limits found for the photon mass have been derived us-
ing magnetohydrodynamics arguments considering the de Broglie-Proca equations based
on the Parker Model for the solar wind [55], near the Earth and Pluto magnetospheres,
respectively [325, 326]. In particular, the orders of magnitude found in these works are
10752 kg and 107°* kg, respectively. The latter limit has been denominated to be the
actual upper limit of the photon mass by the latest release of the Particle Data Group [5].
However, in [327] a critique of this result can be found, according to which this conclu-
sion has been reached via a particular model with its associated assumptions, and only
marginally by data points collected from the missions Pioneer and Voyager. In particular,
the test used a set of three data: magnetic field, ion density, and particle velocity. Also,
there is no analysis regarding the errors related to these quantities, so a change to these
data points could alter significantly the computed upper limit.

In [327] other three possible upper limits for the photon mass have been found by
looking for deviations from Ampere’s law in the solar wind, using the Cluster constella-
tion data, a mission composed of four identical spacecraft. The method will be explained
in more detail in the next section, given that it is similar to the analysis that will be
shown in that section, here we say that it is based on the comparison between the particle
current densities measured by the instruments on board of each spacecraft with a mean
rotational current density derived with the curlmeter method, which shall be detailed in
the next pages. Considering three different assumptions regarding the vector potential of
the magnetic field, they found the following three upper limits: 1.4x 1074 kg, 1.6 x 10759
kg, and 3.4 x 107! kg.

Other upper limits for the photon mass have been found in the past decades in a
plethora of different environments and experiments, also using different physical ap-

proaches, even in the astrophysical field. For a more complete list see [4, 5]. The im-
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Smallest (Heisenberg) measurable mass for any particle is 1.3 x 107% kg for At = age of the Universe

Reference Value (kg) | Method Comment
[328, 329, |3 x 107% | Modelling the | Defined as speculative in [297]. Absence of data and
330] 3x 1078 galactic potential error analysis. The final estimate is based on a space-

time constant galactic magnetic field and on the appli-
cability of the virial theorem and of the equilibrium of
the interstellar gas. Difference of 5 orders of magni-
tude between estimates.

[331] 3 x 1076 Modelling Crab | The authors state in the abstract that their arguments
Nebula magne- | are “'not rigorous”. Absence of data and error analysis.
tohydrodynamic

waves via polarisa-
tion plates
[332, 333, | 2.4 x 107 | Torsion pendulum | Defined as speculative in [297]. The final estimate of

334] 1.8 x 10723 the torque is based on assumed exceptional values of
galactic magnetic fields and potential.
[335] 10752 Low frequency res- | Method defined of "dubious validity" by [5].
onance circuits
[336] 3.6 x 107°2 | Speed of 5-50 | Assumption that the frequency shift due to photon

Hz lightning dis- | mass would be linear rather than quadratic.
charges in the

troposphere

[337] 8 x 10752 Jupiter  magnetic | The authors are concerned by the neglected systematic
field effects.

[338,339] | 107°¢ Satellite data of | Reliable estimate depending upon precise magnetic

4 x 10721 Earth’s  magnetic | field mapping current and systematic errors.

field

[340] 1.3 x 107°1 | Alfvén waves in | Another upper limit of 1.1 x 107%? is also proposed,
the interplanetary | but indicated as less reliable.
medium

Table 5.13: Summary of some photon mass upper limits below 10~°° kg not cited in the
main text.

portant point is that a very large room for improvement exists, given the many orders
of magnitude between these estimations and the theoretical limit for the smallest possi-
ble mass. Also, it seems that even if the accepted limit is 10754 kg, every limit which is
around 107! kg deserves a worthy analysis given the discrepancies between the different
results. Nevertheless, many more estimates on the upper limit of the photon mass exist,
some defined as "speculative" in [297, 5]. Other limits, not cited previously, as well as
some comments about them, are shown in Table 5.13.

For the LSV parameters, which we recall may be linked to an effective photon mass,
a great disparity of results exists between upper limit estimates, as high as from 18 to 24
orders of magnitude: |kA¥| < 4 x 107" mYor 5 x 1074 m~!, and kAF < 5 x 10710

m~" for laboratory tests [341]; |FAF| ~ k2F < 5x 10728 m~! for astrophysical estimates

[342]. The latter are close to the Heisenberg limit.
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5.4 Testing the Ampere-Maxwell law using MMS data

5.4.1 Data selection and methodology

We are now going to describe the analysis performed in [54] performed in order to derive
an eventual new upper limit (or a possible estimation of a photon mass under certain hy-
potheses), by testing the Ampere-Maxwell using the Magnetospheric Multiscale (MMS)
Mission data [42], which is a constellation of four satellites flying in a tetrahedral forma-
tion exploring regions near the Earth. The mission was launched in 2015, with the main
goal of studying the magnetic reconnection processes occurring in highly conducting
plasma, for which the magnetic topology is rearranged and magnetic energy is converted
to kinetic energy, thermal energy, and particle acceleration, happening on the frontier
between Earth’s Magnetosphere and the solar wind region. With time, MMS has also
been used for other studies and applications, thus exploring other regions of the Mag-
netosphere and the solar wind surrounding it. Different detectors have been mounted
on each satellite composing the MMS constellation, like The Fast Plasma Investigation
(FPIL, [343]) which was developed to measure the differential directional flux of magne-
tospheric electrons and ions and, thus, the particle currents for both electron and ions,
and the Fluxgate Magnetometer (FGM, [344]), being able to measure the magnetic fields
inside the plasma.

The idea of our work is to study the Ampere-Maxwell law, comparing (from now on
we shall refer to the current densities as just current) the particle current appearing on
the right-hand side of the equation with the V x B operator on the left-hand side. If the
two values are discordant and the current associated with the electric field is negligible,
then we could assume that such discrepancies are actually due to non-standard electro-
magnetic effects, thus validating Eq. (5.2) or Eq. (5.6). Under this hypothesis, we write
down these equations as

JB =Jp+Jp+ juu (5.23)

where fB =VxB / o, fp = f, JE = 60(85 /Ot), and jn a indicates the non-Maxwellian
terms.

For the data set, we have used the Automated Multi-Dataset Analysis AMDA website
[345], where the data of many campaigns and instruments regarding plasma physics,
including MMS?3, are gathered.

Let us now go into more detail regarding the methodology followed in this analysis.

The particle current is defined as

Zhttps://mms.gsfc.nasa.gov/index.html
3https://lasp.colorado.edu/mms/sdc/public
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ir = q(ni@ — net.) | (5.24)

where n; (n.) are the ion (electron) particle densities in the plasma, while v; (v;) are
the ion (electron) velocities in the medium. We note that in this instance we did not use
the quasi-neutrality assumption, according to which we should have n; ~ n., even if later
in the analysis we have confirmed its validity. Both the densities and velocities, as well as
their errors, are measured by the FPI instruments on board of MMS and thus provided by

AMDA. Of course, if we write the current for each Cartesian component (z, v, 2) we have

7% = q(niv?f —n.v?) and similarly for y, z; the modulus is jp = /(%) + (j%)2 + (j&)2.

The error on jp has been computed through error propagation processes starting from
the errors on the densities and the velocities provided by AMDA [346, 347]. For instance,
regarding the » component we find Aj} = g (vFAn; + n,Avf + v An, + n.Av?) and

similarly for y, 2, so that the total error is
. | . . Az
Ajp = i (I76|1AJp + 1ip|Adp + iplAJp) - (5.25)

These computations refer to the particle current measured by each of the four satel-
lites. For our comparisons, we take the average of these currents and their respective
errors.

Regarding jp, AMDA provides an estimate of this quantity, but not a direct experi-
mental error. In order to find the associated uncertainties, we have built an algorithm able
to compute both jp and its error using the curlmeter technique [43, 348]. This technique
allows us to find an estimate of jz (which we call rotational current), inside the tetra-
hedron formed by the four spacecraft, considering the magnetic field measurements of
each spacecraft as well as the displacement of the spacecraft themselves. This technique
is based on a linear approximation for the variation of the gradients of the magnetic field
inside the region. Given its nature, this is why we have decided to compare it to the aver-
age of the particle currents measured by each satellite. For this method, fB is defined as
¢ =1,2,3,4,[349)])

4
JjB = — E ke x By, (5.26)
Ho 7

where EZ are the reciprocal vectors of the tetrahedron, defined by (7;; = 7; — 7, where ¢

and j refer to the spacecraft positions)
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P T23 X T4 M= 731 X T34
1 —= — — ) 2 — — — )
To1 - (7“23 X 7"24) 32 (7"31 X 7"34) (5.27)
= Toq X T21 o T3z X T3y
ks = ky =

_7723'(7?24 ><7721)’ 7734’(7?32 ><F31) .

We have verified that the value of j5 derived by us using this method compares sat-
isfactorily with the one provided by AMDA. As expected, the errors on jB depend on
the uncertainties of the magnetic field and the separations between the spacecraft. For
the former, we consider a constant value AB = 0.1 x 1072 T for each component of
the magnetic field [350], while for the latter we consider a relative error equal to 1% of
the separation distance [351]. After a lengthy error propagation computation, we arrive
at writing the error on the ¢ component for a single spacecraft (thus for a single ¢ in the

previously shown sum)

Aji g = (K| + K7 )AB + | By | Ak + | Bi| Ak, (5.28)

r, s being the other components. The final error on the ¢ component of j% is

4
Ajl =" Aji . (5.29)
(=1

which is then used, together with the other components, to find the error on the value
of j5. We stress that these are results of instrumental error propagation.

We now start describing the data selection. We have considered almost six years of
measurements, from November 2015 to September 2021, especially from the FPI and
FGM instruments on every spacecraft. We picked only "burst mode" data [42], which are
the ones providing the highest time resolution collected by MMS. For the first results, we
have selected the data for which 1) Both the rotational and particle currents are available
and 2) The particle current measured from each spacecraft are all consistent, within their
errors, with one to the other. The last point has been considered to give more reliability
to the hypothesis behind the curlmeter technique so that both methods are measuring the
same effective current under this assumption.

We have chosen to download the data using a sampling of 1 s, to have a significant
number of data points for our analysis. The various instruments actually provide the
majority of the data of interest in the order of magnitude of ten milliseconds, thus, we
have, first of all, verified that the sampling chosen by us actually gives a mean on the
specifically chosen interval of 1 s. This is relevant because, for its nature, the curlmeter

technique is not able to identify high-frequency components for the currents, which we
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have naturally deleted in our mean process and, thus, erased a possible systematic effect
that could jeopardize our conclusions.

Taking into account the previous caveats, in total, we have considered in our computa-
tions approximately 3.8 x 10° data points in time, for each of which we have downloaded
and 82 physical quantities: the ion and electron component velocities for four spacecraft
(24), distances in components between spacecraft and the coordinates of the barycenter
(18), the electric field at the first spacecraft (3), the electron and ion densities (8), the
parallel and perpendicular electron and ion temperatures (16), the magnetic field (12),
and the detection time (1), both for the comparisons themselves as well as for further
reliability checks of our results.

As a first check, we have verified, given our sampling time, that jE is effectively sev-
eral orders of magnitude smaller than both the rotational and particle currents, as well
as their eventual differences. jz has been computed from the ratio of the electric field
variation over the sample interval of 1 s. More quantitatively, we have found an average
of 75 = 1.4 x 10~ Am~2, which is at least six orders of magnitude smaller than the av-
erages of the curl and particle currents. We have thus confirmed the possibility of directly
comparing j’B with jp to find an eventual value for jn u as shown in Eq. (5.23), thus as-
suming that every possible inconsistency between the two currents is due to non-standard
electromagnetic effects (i. e. a photon mass, either real for the dBP theory or effective
for SME), as previously stated. Indeed, we compare the two currents considering their
respective errors, and label "inconsistencies" the data points where the two correspond-
ing currents do not overlap considering their error bands. Instead, a "consistency" occurs
when the two current bands overlap. For the consistencies, we provide a definition for a
possible upper limit for jn M, as the smallest amount to add (subtract) to (from) one of the
two currents to get an inconsistency case. These two situations are illustrated in Figure
5.18.

Summarizing this procedure, we can write

- - - - gap
ol = A1l = (il + Alil) = = 0. (5.30)
overlap
where p, e = B, P depending on whether |jp| — A|jp| is larger or smaller than |75| —
A];’B|. This analysis has been carried out for the modulus and for the Cartesian compo-
nents. In the latter case, we define an inconsistency if a gap emerges from at least one of

the three axes.
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inconsistency: consistency:

massive photon = photon mass upper limit (two possible cases)
. E Minimal overlap - - _I
— Gap=jy T )T
/ E - .----3 — — — . Minimal overlap
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Figure 5.18: The red and blue lines represent the currents, and, if dotted, the error bounds.
In the left panel, we show the case of inconsistency, where the gap implies 7,5, # 0. In-
stead, in the right panel, the case of consistency, for which, moving upward or downward
one of the two bands, we would fall in the inconsistency case, thus defining an upper limit
for jn - This computation has been carried out for the modulus and each component.

5.4.2 Results

We now show the results obtained for our comparisons using the aforementioned data
set and methodology. First, considering the entire data at our disposal, we find 2% of
inconsistencies for the modulus and 5.2% in Cartesian components. As expected, the
inconsistencies in the latter case are more numerous than those found in the former one,
because of the more relaxed criteria for the inconsistency definition. Interestingly, albeit
for a small percentage, inconsistencies have actually been found. This can be noted in
Figure 5.19, in which the computations for Eq. (5.30) are illustrated. The inconsistencies
are represented by the positive values in this plot. Considering the scheme explained in
Figure 5.18, we can now draw our distributions for the consistencies and inconsistencies
derived by our comparisons for the entire set of data studied in our analysis. These are
shown in Figure 5.20.

We now further investigate our results. For the application of the curlmeter tech-
nique the displacement of the spacecraft, and thus the specific form of the tetrahedron, is
important because this technique is sensible also to the singular separations of the four
spacecraft locations [352]. This is why we have further refined our analysis by consider-
ing the so-called geometrical quality factor [42], which has already been introduced for

the Cluster constellation. In particular, we employ the form related only to the volume
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Figure 5.19: Histogram of Eq. (5.30) for all the burst data studied in our analysis. Most
values are negative, indicated with blue bars, on the left of and close to zero. The positive

values, white bars, on the right of zero, corresponding to the inconsistencies, range from
1.1 x 1072 Am—2to 1.5 x 107° Am~2,
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Figure 5.20: Histograms of the inconsistencies (left panel) and consistencies (right panel)

found for the entire set of data, according to our comparisons. The values for the currents

are presented in Am 2,
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JB Ajp Jp Ajp
Mean (Inconsistencies) | 4.9 x 1078 | 6.9 x 1078 | 2.0 x 1077 | 5.3 x 1078
Mean (Consistencies) | 2.0 x 1078 | 1.8 x 1077 | 3.9 x 107% | 2.4 x 1078

Table 5.14: The average values for the currents and their errors, considering the data with
Q > 0.7, [Am~?].

of the tetrahedron: @ = V,/V,, where V, is the actual volume of the tetrahedron in a
given moment, while V. is the volume of the regular tetrahedron having as side the aver-
age of the separations between the spacecraft. We have computed this factor for all the
data points, selecting for this second run only those that present () > 0.7, and then make
our comparisons taking into account only these data points. By doing so, the percent-
ages of inconsistencies slightly increase to 2.2% for the modulus and slightly decrease to
4.8% for the components. Thus, we conclude that this quality check does not influence
our conclusions regarding the discrepancies in a significant manner, concluding that the
reliability and the results of our comparisons are not dependent upon the shape of the
tetrahedron itself. In Table 5.14 we report the averages of the particle and rotational cur-
rents for the high-quality factor data points, noting the orders of magnitude of difference
with the previously presented displacement current.

As a further step, we have investigated the physical zones in which MMS flies, to see
if there is a dependence between the number of inconsistencies found and the conditions
of the plasma itself. In order to do so, we have studied the pressures, in particular,
the ram pg, magnetic p,;, and thermal p; pressures, at each data point, defining the
following scheme: if pr > 10 max(par, pr), we identify the region as the solar wind; if
0.3 min(par, pr) < pr < 4 maz(pyr, pr), as the magnetosheath; if 10 pr < pyy, as the
magnetosphere. The region of undetermined data points between the solar wind and the
magnetosheath is named zone I, whereas all the rest of the undetermined data have been
gathered inside zone II.

The results, both for the effective number of data points as well as in percentages,
considering also the aforementioned quality check, are detailed in Table 5.4.2.

We note how, even if the data points in the solar wind are a minority (4.5% of the total
data set) a considerable amount of inconsistencies (gaps) has been found in this particular
region. Indeed, summing the inconsistencies in the solar wind and in the undetermined
zone I, we find that 76% (42473/55916) in modulus and 65% (77847/119850) for the
components of the total inconsistencies are found in 14% of the total data set. This
derivation is interesting, because it links the inconsistencies to a particular physical zone,
thus underlying possible physical phenomena which would favorite this discrepancy in

the solar wind, where indeed we also find the highest percentages of inconsistencies with
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Results Solar Wind | Zone I | Magnetosheath | Zone II | Magnetosphere

Gaps M) 24376 18097 10669 2203 571

Overlaps (M) 92190 261103 1033981 356592 707595
Gaps (C) 34813 43034 35422 5421 1160

Overlaps (C) 81753 236166 1009228 353374 707006
Data by region/total data 4.5% 9.5% 42.9% 14.1% 29%
Gaps by region/total gaps (M) 39% 31.1% 24% 4.5% 1.4%
Gaps/total data by region (M) 21% 6.4% 1.0% 0.6% 0.1%
Gaps/total data by region (C) 29.9% 15.3% 3.3% 1.5% 0.2%

Table 5.15: Results in modulus (M) and components (C) on gaps (inconsistencies) and
overlaps (consistencies) for burst data and () > 0.7, analyzed by region, in number and
percentages.

respect to the total solar wind data points analyzed (21% for the modulus and 29.9% for
the components), forming a remarkable minority of the data analyzed in that particular
region.

Even if we may work under the assumption that all the possible inconsistencies are
due to non-standard electromagnetic effects, we are aware that this might not be the
case, and that other, possibly systematic effects could be at hand, even if calibrations on
the instruments and studies on systematic uncertainties have been performed [42, 343,
344, 346, 347], for instance, on the intrinsic charge created by the instrumentation itself
[353]. Indeed, reducing errors and possible systematic effects has been one of the main
objectives of the MMS mission: the instrumentation enables regular cross-calibration
and validation of the FPI measurements, thus reducing systematic errors to within a few
percent, and providing suitable accuracy to calculate current density directly from particle
observations [347]. Similarly, calibrations have been performed on the FGM instruments
as well [344].

Even considering the above caveats, we have still performed further analysis to con-
firm the reliability of our results. Indeed, one possible source of systematic errors could
be found in an environment with low ion and electron densities, given the possibility that
the instruments could not detect densities below a certain threshold. Regarding this point,
we have investigated the possible correlation between densities and inconsistencies, not
finding any. This comforts us because if discrepancies were due to this systematic effect,
a clear correlation should have been seen. We have also studied the density in the solar
wind+zone I data, where the majority of the inconsistencies lie. We have found that the
electron density has an average of 22.96 cm™ and a median of 11.88 cm~3, while the ion
density has an average of 22.85 cm ™2 and a median of 12.1 cm~2. Considering as low
densities the one below a certain threshold (5 cm™2), we have found that only in 13.6%

and 8.6% of cases the electron and ion densities, respectively, are smaller than this limit.
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5.4.3 Estimating the ETE parameters

In this section we shall derive, from the previous computations, our estimates on the mass
of the photons (and its effective counterpart in the LSV theory) from the inconsistencies
found, keeping in mind the assumption according to which they would entirely be due
to non-standard electromagnetic effects, and the corresponding upper limit from the con-
sistencies. In order to do so, we first have to find the modulus of the vector potential,
that we need to use in Egs. (5.2, 5.6). Thus, we focus on the solar wind+zone I region,
where the majority of the inconsistencies lie, and we apply the [55] model for the solar
wind to derive the potential. Indeed, it is possible to show that for this model, in spherical
coordinates, defined by taking as center the Sun and considering the Coulomb gauge, the

vector potential becomes [354]

Ar:2—b{1—§x—xln(1+x)}, (5.31)
3 2
2b . T cos
A9—§s1n«9{1+x+ln(1+x)}( . ), (5.32)
Ay = —2 (1+a) (5.33)
®" rsing o '

where x = |cosf| and, at 1 AU and for magnetic fields equal to 5 nT, a = 3.54 x
107 T AU? and b = 3.54 x 10~° T AU for a diagonal direction. Given that we are
interested only in the modulus of the vector potential and at a fixed distance (1 AU)
because we aim to study the solar wind around the Earth, after some computations we
find a direct proportionality between the modules A and B for this particular region:
A= \/T/ﬁBR, where R is 1 AU. Knowing this, we are able to compute the modulus
of the vector potential for each data point inside the solar wind and zone I regions.
Once we do so, we are finally able to compute our mass estimate (or the upper limits)
using the following formula
m, = b [l (5.34)
¢ |A]

from which we also derive the LSV parameter using Eq. (5.7). The results, both for

the mass estimations as well as for the upper limits for all the data analyzed in our work,
are shown in Figure 5.21.

From this figure, we may note that the minimum, average, and median values of
the upper limit distribution are very similar to the corresponding values of the photon

mass distribution. This is due to our definition of the upper limit, which involves the
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Figure 5.21: Left panel: for the solar wind and zone I regions burst data and () > 0.7, we
show the histogram of the photon mass derived from the inconsistencies. The minimum
value is 1.7 x 107° kg, while the average is 2.5 x 107°! kg. Right panel: the upper
limits for the same region and quality factor. Here, the minimum is 1.8 x 10753 kg, the
average 2.2 x 107°! kg, and the median 2.2 x 10~°! kg. In both figures, the x-axis is in
logarithmic scale.

minimal displacement, upward or downward, of the currents considering their errors.
Regarding the values themselves, we note that they are in the same order of magnitude
intervals as the values obtained in the literature presented previously. Incidentally, we
also note again that we find discrepancies between the currents, which according to our
assumptions would imply a value for the photon mass, in a minority of the cases. We
choose to consider the minimum value, 1.7 x 107°3 kg, of the distribution as our estimate,
because that would be viable for all the cases in which discrepancies have been found.
We have to stress again the previously mentioned caveats, that do not allow us to state
that we have formally found a mass of the photon, we just state that, if the discrepancies
between the instrumental detection are due to non-standard electromagnetic effects, then
they would be explained by these estimates for the massive terms. Nevertheless, the
significant amount of inconsistencies found in the solar wind is worthy of scrupulous
scrutiny. Instead, for the upper limit estimate, we consider the average of our distribution,
2.2 x 10751 kg, as the reference value, being more representative of all the values found
for each data point, thus being consistent with the order of magnitude of the results found
in the literature.

Incidentally, from these results we can also derive the values of the LSV parameters:
indeed, we find, for the inconsistencies, a minimum equal to ]EAF\ =49 x 107" m™,

1 1

an average of 7.1 x 107 m~!, and a median equal to 5.18 x 10~ m~!. For the upper

limits, instead, we find as the minimum 5.2 x 107'! m~!, the average 6.3 x 107° m~!,
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Figure 5.22: The smallest presumed photon mass, see the spots, has been derived from
the comparison that occurred on 19 October 2020, at 14h 51m 05s, in the zone I burst data
and Q = 0.82. The particle current jp = (1.2 + 0.4) x 1077 Am~2, and the rotational
current jp = (2.6 & 4.9) x 107® Am~2 produced a difference of 7.4 x 1072 Am~2,
This difference is not visible on the vertical axis carrying units which are five orders of
magnitude larger. The vertical dotted lines are the errors. The potential of 3.8 x 10> Tm™*
leads to a mass of 1.7 x 107° kg, and thereby ]EAF| =49 x 107" m~.

and, finally, the median 6.2 x 10~ m~!. We have also isolated the data point in which
the smallest mass has been found, and we show it in Figure 5.22, where we also note
four inconsistency points around the one related to the smallest presumed mass (the latter
highlighted with the dots).



Chapter 6
Extended Gravity and oscillating stars

In this chapter, we shall introduce in more detail a particular ETG, known as f(R)-
Gravity, and its application to the stellar structure of non-compact objects. For the entire
chapter, we are going to use the signature (+,-,-,-). This analysis is the main goal of

[Sarracino et al. 2023, in preparation].

6.1 Field Equations for f(R)-Gravity

Let us derive the field equations for f(R)-Gravity starting from a variational principle.
Neglecting the material component of the Lagrangian, the variation of the action reads as
[46]

6/\/—_gf(R)d4x =0, (6.1)

where f can be any analytical function of the Ricci scalar R. We note that the main dif-
ference between this equation and the Einstein-Hilbert action is precisely in the presence
of this function (we recall that, for GR, f(R) = R).

In a local reference frame, we find

i [ Vst - / 5V =9f(R) + v=g5(f(R))|d"z. 6.2)

The right-hand side of this equation, using properties of the metric, can be rewritten

as

[l rm, - ausm]|seae s [ mesrute 6

where the prime symbolizes a derivative with respect to /2. Considering that we are

working in an inertial reference frame, and the relation between the Ricci tensor and

137
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Christoffel symbols I';, 5, we find

"R, = g" 0 (0T7],) — g"70,(0T},) = 9, W7, (6.4)

where we have defined
W7 = g"Ts, — gTY, (6.5)

Using this definition in the second integral of Eq. (6.3), we find

/ V=9 (R)g" R, d"x = / V=gf (R)A,W?d"z. (6.6)

Solving by parts and using the divergence theorem, we arrive at the following equa-

tion

[ Ve g sRuats =~ [ alv=ar s 6.7)

It is now necessary to explicate the factor W7 in terms of the metric, which can be

done using the properties of the Christoffel symbol. In doing so, we obtain [46]

WU = 80(9#1/69”#) - a“(guyégoy)7 (68)
that we can insert in Eq. (6.7) to derive

/ V=3l (R)g™ 6 R’z = / 00 I/ =3 (R)[0" (9u69°") — 0 (989" d'x. (6.9)

Integrating the previous equation by parts, and deleting null terms due to the diver-

gence theorem, we find

/\/__gf/(R>g‘uy6R,uud4x =
[ w0 oulv=ar (w)ag e~ [ 6,00, [V=or (), (610

that we can finally substitute in Eq. (6.3) to obtain the expression for the variation of
the action in f(R)-Gravity

5 [v=armata = [ v=g {f’(R)RW - %gWﬂR)} S+
4 / G D[/ —Gf (R)|6g" d'z — / Gou D0,V G (R)Sg™ d'. (6.11)
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For this variation to be 0, the integrand has to be null, so we must have

PRI R = 37 (R = 9,5 (R) = 9,0f (R), (612)

where [J = ¢""V,V, is the d’Alembertian operator. These equations are the field
equations for a general f(R)-Gravity theory without matter; as we can see, differently for
the field equations of GR, which were of the second order, these are of the fourth order
with respect to the metric. We also note that the field equations of GR are recovered in
the particular case f(R) = R [91]. The most straightforward class of these ETGs, which
considers f(R) = R + «R?, has been applied for the inflationary paradigm, as already

mentioned in Chapter 2 [45]. This equation can be rewritten as

L
J'(R) 2

G = (f(R) = ['(R) + ['(R)yw — 9 0f (R)|,  (6.13)
where G, is the usual Einstein tensor and ";" is the covariant derivative. The last equa-
tion shows us how we can find a "geometrical" contribution to the impulse-energy tensor
due to the further components found in Eq. (6.12) with respect to the GR ones.

Let us now consider the matter part of the Lagrangian, that we have not taken into
account in the previous derivation. This is necessary because we wish to apply the f(R)-
Gravity formalism to the stellar structure of non-compact objects, thus in situations in

which the material term clearly cannot be neglected. In this case, the action becomes

A- /\/_—g[f(R) A\ Lldis = 0. (6.14)

Deriving the field equations following the same procedure expressed before, we find
1

f/(R)R/U’ - §f(R)gMV - vuvl/f,(R> + g,ul/ljf/(R) = XTum (615)

where we recall that T}, is the energy-momentum tensor, as defined in Eq. (2.9). Finally,
we show the trace of Eq. (6.15), which shall be used in the computations that we are

going to show in the next section

30 (R) + f/(R)R — 2f = T. (6.16)

6.2 The f(R)-Gravity stellar structure equations

We are interested in applying these equations to the structure of non-compact stars, thus

in the Newtonian limit. In order to do so, we note that, because the function f(R) is
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analytical, we can expand it to the second order of the Taylor series. For this expansion,
the Ricci scalar becomes [355, 356]

R~ RY(t,z) + O4), (6.17)

where R™ denotes a quantity of order n; so the n — th derivative of Ricci function can

be developed as:
[ (R) ~ [URP(t,7) + O(4)) ~ [7(0) + f7H0) R + O(4). (6.18)

Using this expansion and stopping at the lowest order of the fields in the trace equation
(6.16), we note that we find f(0) = 0. This means that space-time is asymptotically
Minkowskian and that we are discarding a cosmological constant term in this analysis,
whose contribution is irrelevant at the stellar levels we wish to study. At these limits, the
field equations become (taking f’(0) = 1 for simplicity):

(2)

R
AD + —— " (0)AR® = —xp, (6.19)
and
3f"(0)AR® + R® = —xp, (6.20)

where p is the energy density, A is the Laplacian in the flat space-time, and ® is the
gravitational potential. Egs. (6.19) and (6.20) can be considered the modified Poisson
equations for f(R)-Gravity. Indeed, for f”(0) = 0, we recover the Newtonian formula-

tion, which we recall is

AD = 4nGp. (6.21)

It is possible to show that at O(2) order [52]

1 1
R® ~ 5 Agld) — 5 Ag?, (6.22)
where gé%) and gz(f ) are components of g,z at the Newtonian order. This last equation can

be rewritten as
RY ~ A(® — V), (6.23)

where W is a second gravitational potential related to the components gz(f ) [52]. Using

this new potential, the modified Poisson equations become

AD + AV — 2f"(0)A%® + 2f"(0)T? = 2xp, (6.24)
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and
A® — AV + 3f"(0)A?® — 3f"(0)¥* = —xp. (6.25)

As previously stated, This system is equivalent to the mass conservation equation for
f(R)-Gravity. The modified gravitational potential ¢ can be computed in this limit, for
which we have [357]

677“/)\

GM + 5(t)\? : (6.26)

r T

d=—

where A\ = 6f”(0) and 6(¢) is an arbitrary function of time. We here note that we find
a Yukawa-like correction to the usual gravitational potential of the Newtonian theory, as
we were mentioning in Chapter 2. This is relevant for different reasons: for instance,
this property implies that in the Newtonian limit for f(R)-Gravity the Gauss theorem
does not hold, because the force is not proportional to |x|_2, which in turn means that
the equivalence between a spherically symmetric distribution and point-like distribution
having the same mass, typical of Newtonian dynamics, is not valid anymore [49].

As previously stated, we wish to apply this formalism to the stellar structure of non-
compact objects. In turn, this implies that we have to find the stellar structure equations
for f(R)-Gravity. We here recall these equations in the Newtonian formalism for static

spherical stars [358]:

AP GM
a2 (6.27)
AM
== 47rp, (6.28)
dL
i 47 pe, (6.29)
AT 3 Kp L
ar = dac T9 dnr? (6.30)
1 GM
__ (1 _ ;) o G 631)

Eq. (6.27) expresses the hydrostatic equilibrium and shows that, in order to have a
static star, a pressure gradient must exist to counteract the gravitational force. Eq. (6.28)
is the mass conservation equation, that describes how the internal mass of the star must
vary with the distance from the center. We have already found the analogous of this
equation in f(R)-Gravity in Egs. (6.24) and (6.25). Eq, (6.29) is the energy conservation
equation, which links the luminosity of the star with its density via the e parameter.
Egs. (6.30) and (6.31) are the energy transport equations, where Eq. (6.30) holds if the

radiative transport dominates while Eq. (6.31) is valid if convention prevails. The form
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presented here for Eq. (6.31) is true only in the adiabatic hypothesis [358].

In Eq. (6.29), € is the energy generated per unit mass per second, and has different
physical contributions: € = ¢, + €, + €, where ¢, is the gravitational energy contribution
(which does not appear in the static configuration), €,, is the energy produced by nuclear
reactions and ¢, is the energy transported by neutrinos. In Eq. (6.30) k is the Rosseland
mean opacity [358] that accounts for all the possible physical absorption processes inside
the star. Once we insert the physical inputs (which are the equation of state that links the
pressure and the density, and the functional forms of the energy density and the opacity)
and we define the appropriate boundary conditions, it is possible to solve this system to
compute all the physical parameters of the star.

We also recall that in Newtonian theory, the gravitational potential is

> = —GTM, (6.32)

from which we can see that Eq. (6.27) can be also written as:

dP  dd
— = —0. 6.33
dr dr (6.33)
It is possible to show that the mass conservation equation (6.28) is equivalent to the

Poisson Equation in spherical symmetry:

1d [ ,d®
~ — ) =4nG .34
rzdr(T d?") i (6.34)

thus confirming the association between this particular equation and the modified Poisson
equations previously introduced.

We will now find the hydrostatic equilibrium equation for GR which, as we shall see,
is also viable in f(R)-Gravity if the Ricci scalar is constant, or depends only on the radial
coordinate (i.e. time-independent, spherical symmetry and static configuration, which is

the one studied in our analysis [91]). We start with the metric

ds? = e’Me2dt? — A dr? — 12402, (6.35)

where v and )\ are functions depending only on the radial coordinate. We note that, if we
do not explicate these functions, the metric has the same form as what is employed for
GR computations. We obtain [46]

V—g= 3" r2sind. (6.36)
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Considering a perfect fluid in the rest frame we have

Jopuu’ =1, (6.37)
and
ub = 0. (6.38)
Eq. (6.37) implies that
goo(u’)® =1, (6.39)
from which .
u’ = — 72, (6.40)

1/ goo

which means that the quadrivelocity vector is equal to [46]
u® = (e72,0,0,0). (6.41)
The energy-impulse tensor for a perfect fluid is equal to
T°? = (e + P)u®u’® — Pg°”. (6.42)

Using the equations reported above, we can derive its expression for this particular case:

P P
T = diag| ee™”, Pe ™, —, ——— |, (6.43)
72’ r25in6
and
Tg = diag(e, —P,—P,—P). (6.44)

Now we can write the energy conservation equation
T =0 (6.45)
a;8 ) )

by considering the following relation valid for any symmetric tensor

T5 __1 i
a;ﬁ_\/_—ggxﬁ

Using all the previous equations for the energy-impulse tensor and the metric, it is possi-

1
(\/—ng) - 5gW,QTW. (6.46)

ble to show that, from Eq. (6.46), in the case & = 1, we can derive the following equation

[46] p p
P 1 v
= —— P)—.
(e + )dr

> 6.47
dr 2 ( )
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We would like to stress again how this derivation is valid both for GR and f(R)-Gravity,
as long as we do not explicitly define the v(r) and A(r) functions in the metric. This is
relevant also for the discussion regarding the Jordan and Einstein frames applied to ETGs
[11]. Indeed, we note how in the Jordan Frame, where we modify the geometrical part of
the Einstein equations (in this case by considering a function of the Ricci scalar) while
keeping the material one unvaried, the hydrostatic equation is not modified by the effects
of extended gravity, while this is not true in the Einstein frame, where, conversely, we
modify only the material part, keeping the geometrical portion unvaried by transforming
the action in such a way that we eliminate the explicit dependence on new fields, and
so we add more terms to the energy-impulse tensor giving the hydrostatic equilibrium
equation, in general, a different form.

In the Newtonian limit, € ~ pc? >> P and v ~ 20—‘3 [46], where in this case ® is the
modified gravitational potential for f(R)-Gravity previously introduced. This implies
that, as long as we do not explicitly write down the gravitational potential, the form of
the hydrostatic equilibrium equation is the same for GR and f(R)-Gravity also in the
weak field limit.

We now analyze the last three equations of the stellar structure system. Because we
are modifying only the gravitational part of the physics inside the star, while the nuclear,
optical, and thermodynamical phenomena are unaffected by this modification (at least at
the first level), we do not expect these equations to change their form, if we express them
in term of the modified gravitational potential given by f(R)-Gravity.

Using the definition of € (¢ = dL/dm, where dm is the infinitesimal mass) [358], we
can see that the luminosity equation remains unvaried in f(R)-Gravity

dL

e 47T7”2p6. (6.48)

The first energy transport equation does not change because only the luminosity appears
as a quantity depending on the rest of the system, while we can manipulate the second

equation concerning convection using Eq. (6.32) to obtain

alT__(1 1),umH@

- \" v) k dr’

(6.49)

that is valid for f(R)-Gravity because of the hydrostatic equilibrium equation.
In conclusion, the stellar structure system for a static, spherical symmetric non-
compact star in f(R)-Gravity is
dP dd

- = 6.50
I P (6.50)

AD + AT — 2f"(0)A%® + 2f"(0)A%T = 2xp, (6.51)
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A® — AV + 3f7(0)A%® — 3f"(0)A*¥ = —xp, (6.52)

dL
— = 47r?pe, (6.53)

dr

dT 3 Kp L
ar = " dac T3 dm? (€39
1\ pmpy d®

=—{1-=)———. 6.55
( ’y) k dr ( )

We can see that we have one more equation with respect to the GR system, which is linked
to the modified Poisson Equation, and the correction brought by the gravitational poten-
tial. In general, both the GR and f(R)-Gravity systems have to be solved numerically
by introducing further physical information, like the opacity and the energy generation
form inside the stellar structure, but, if we assume that the pressure depends only on the
density, we can divide this system into two different sub-systems: the first, composed
of Egs. (6.19, 6.20, 6.33), represents the mechanical part of the physics inside the star;
while the second, formed by the remaining equations, gives the thermodynamical and

optical parts [47]. This assumption is used in what follows in this chapter.

6.3 The Lane-Emden equations for GR and f(R)-Gravity

We now introduce the Lane-Emden equations for GR and the derivation for the equivalent
equations in f(R)-Gravity. We start from the polytropic assumption, according to which

the pressure and the density of the stellar object are related by the following formula

P=Kp =KpTn, (6.56)

where K is the polytropic constant, and  the polytropic exponent. Instead of -, it is

conventionally used the polytropic index n in the literature, defined as
n=—-. (6.57)

For GR, introducing this relation in the hydrostatic equilibrium equation (6.27) allows
us to obtain [47]
dd dp
— = —yKp . 6.58
o TRptTo (6.58)
If v # 1 (that is the case of isothermal spheres of an ideal gas) this equation can be

integrated

)} n
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If we now introduce the previous equation in the right-hand side of the Poisson Equa-

tion (6.21) we find an ordinary differential equation for ®

d>®  2dP - "
— +—— =4 — | . 6.60
a? 7TG((7L+1)K> (6.60)

We now define two dimensionless variables, z and w, as:

z = Ar, (6.61)
e 4rG n=1
2 _ —p )l 6.62
® p 1/n

where @, and p. are the gravitational potential and the density at the center of the star,
respectively. Thus, 2z and w are two dimensionless quantities, the former representing the
radius of the star, while the latter the gravitational potential. At the center of the star, we

have z = 0 and w = 1. Using these new variables we obtain

li( 2d_w> Wt — 0. (6.64)

2d:\" 4z
The previous equation is the so-called Lane-Emden for GR, which allows us to de-
scribe the stellar structure of the stars under the polytropic assumption. Indeed, once
solved, it is possible to reintroduce the dimensional quantities to derive parameters like
for instance the central density and the radius of the star. This equation presents analytical

solutions for three values of the polytropic index:

n=0:w(z)=1- ézQ (6.65)
n=1:w(z)= smz(z) (6.66)
n=95:w L (6.67)

&=
while, for the other values, a numerical approach is required [47], we also note that
n = 5 is the upper limit of the polytropic index for which we may find a physical solution,
given that it represents the limit between finite and infinite solutions.
We now aim to find the corresponding equations for f(R)—Gravity, starting from the
same polytropic assumption [49, 48]. We recall that this time we need to use the modified
Poisson equations (6.19, 6.20), while the form for the hydrostatic equation remains the

same as that regarding GR, as previously demonstrated. In doing so, we obtain, defining



6.3. THE LANE-EMDEN EQUATIONS FOR GR AND F(R)-GRAVITY 147
m? = —1/3f"(0):

(A — mQ)R(z) = ym?p. (6.68)

This equation can be solved by using the Green function method [356], from which we
find
R® = A, xm? / Br'G(z, 7)™ (2). (6.69)

It is possible to show that there are two choices of Green functions for spherically

symmetric systems [359], which are

1 —ml|z—a'|
G(z,7) = ——° (6.70)

-]

for m? > 0 and

G(C(_],ZZ’,) = Cl +C2

|z — 2/ |z —af|’

(6.71)

for m? < 0, where C; + Cy = —ﬁ. Considering Eq. (6.70) we obtain the first Modified
Lane-Emden (MLE) Equation:

d? 2d 1 [/ , ,
P w":m?go; / dz' [l —emml = ()t (6.72)
0

|| P 3 o  AmGp.
= = —: = |—— A*= . 6.73
< é—(] ) U)(Z) (I)CJ 50 QXA(I)g_l? K ( )

®. and p,. are the gravitational potential and the density in the center of the star, respec-

where

tively, while n is the polytropic index.

Instead, using Eq. (6.71) we obtain

65715 + %ccll_q;) w" = %&]% /06/60 dz'2! [emmeol== | emimbol= () (6.74)
The boundary conditions of Egs. (6.72) and (6.74) are w(0) = 1 and w'(0) = 1.

The difference between Egs. (6.74) and (6.72) is the presence of the imaginary unit
in the exponential functions, which can be used to represent oscillating behaviors. The
correction brought by f(R)-Gravity with respect to GR is regulated by the m¢, value,
while the difference between these two equations and the corresponding ones for GR is
in the fact that these have an integro-differential form, with the integral part regulated by
the scale factor m&,, which depends both on the physical features of the studied object as
well as on the particular weak field limit of the studied f(R)-Gravity theory.
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These equations can be solved analytically only for n = 0 and n = 1 [49], and
only following particular assumptions for the latter index. For all the other values of the

polytropic index, they have to be solved numerically.

6.4 Numerical solutions of the MLE Equations

A numerical solution has been computed for the Lane-Emden Equations for both GR and
f(R)—Gravity. In order to do so, we follow the procedure shown in [48]. This is based

on an iterative algorithm, which can be written as

dei 2 dwz n m&)

— w! = ——N|w;_ 6.75
dz? = z dz ! 8z [wial, 675

where in the right hand of the equation we are using the function w;_; computed at the

(i — 1)™ iteration. For this algorithm, this term can be considered as a source term of

a nonlinear second-order differential equation. We can now rewrite the equation as a

system of two first-order differential equations:

dw;
dU; = ki?
(6.76)
dk‘z . 2 n m&)
dz _zkl Wt 8z Nwial,

with boundary conditions w;(0) = 1 and k;(0) = 1. For the first step, we set wy = 1 as
a starting point. This system has to be solved until convergence is reached, which in our
case happened after 5 iterations.

The solution of Egs. (6.75) and (6.76) at the " iteration can be obtained via a cou-
pled 4th order Runge-Kutta integration method, up to the value z,,,, = £/&o, with the
aforementioned initial conditions. This is a numerical procedure generalizing the Euler
Method. The integral represented by N[w(z’)] can be solved using the Gauss-Legendre
quadrature, because of the smooth and regular behavior of the function w(z), according
to the definition

&/¢o n

< Y
i (2)dz 2 2. q(z)f <2§0 2 + 2&)) , (6.77)

where
2

1) = T DB

(6.78)

are the weights, z; are the j roots of the Legendre polynomial P,(z;), and n is the

total number of the nodes. As it is built, such a quadrature rule provides an exact result
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Figure 6.1: Left panel: solutions of the Lane-Emden equation in GR for the values of the
polytropic index considered. Here m&, = 0. Right panel: the same for f(R)-Gravity.
Here m&, = 1.

for polynomials of degree 2n — 1 or less, and it is the more precise the more f(z) is
well-approximated by these polynomials.

The two input parameters are the polytropic index n and the product mé&y; the latter
is linked to the correction brought by f(R)-Gravity, (in fact, as previously stated, 1/m&,
defines the characteristic scale of the correction to the Newtonian potential, which has
a Yukawa-like form for Eq. (6.72) and an oscillating behavior for Eq. (6.74)). The
dimensionless radius of the star z,,,, = £/ is not a free parameter given by hand but is
derived from the solution considering the point where the function w(z) reaches 0.

Using this algorithm, we have solved the MLE equations taking into account m&y, =
1. We have computed the solutions for GR as well, which we recall is recovered by
taking m&, = 0. We have chosen to solve these equations for n = 0;1;3/2; and 3.
This is because the most interesting cases from a physical point of view are n = 3/2
and n = 3, which are the indexes able to schematize the degenerate electron structure
in white dwarfs in non-relativistic and relativistic environments [47] and have been also
used for the stellar structure of main sequence stars like the Sun [358]. A first comparison
is shown in Figure (6.1), where we see the polytropic functions found for GR in the left
panel, and those derived for f(R)-Gravity, for Eq. (6.72), in the right panel.

Let us now discuss these first results. We recall that z is the dimensionless radius
while w(z) is the dimensionless gravitational potential inside the star. A direct compari-
son with the GR case displays that, in f(R)-Gravity, the polytropic functions are wider.
In particular, in such theories, the maximum dimensionless radius of the star, represented

by the point where w(z,q.) = 0, is bigger than the corresponding radius in GR, derived
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Figure 6.2: Left panel: Solutions of the MLE equation in f(R)-Gravity for the values
of the polytropic index considered. Here m&, = 1 (the same plot presented in the right
panel of Figure 6.1). Right panel: the same solutions for the Second MLE with oscillating
behavior.

from the same initial conditions. We also note that the difference between these two
theories grows with the value of the polytropic index n. The direct conclusion that we
can infer from these plots is that, given the same initial conditions, f(R)-Gravity allows
for wider stars than those represented by GR. We also note that, as we shall see, this
difference depends on the scale factor m&.

We now present a second comparison, between the numerical solutions of the two
possible MLE equations, which are shown in Figure 6.2, wherein the left panel we show
the solutions for Eq. (6.72) (the ones already shown in Figure (6.1)), while on the right we
see the solutions for Eq. (6.74). Comparing the results obtained from these two equations,
we can see that they coincide for m&, = 1 (apart from some very slight differences for
n = 3 and n = 3/2). This means that we can include stellar structures having an
oscillating behavior (schematized by the oscillating potential shown in Eq. (6.74)) in the
solutions obtained by our theoretical scheme.

The differences between the results given by GR and f(R)-Gravity depend on the
value chosen for m&,. A substantial variation appears if we choose 107* < L, /& < 1,
with L, = 1/m [48], where the radius computed by the f(R)-Gravity model is consis-
tently bigger than the value provided by GR, as shown in Figure 6.1. We can consider
L, /& as a new length scale that quantifies the correction brought by f(R)-Gravity to the
results derived by GR, that we recover outside this interval.
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6.5 Physical results

Having found the polytropic functions for both GR and f(R)—Gravity, our goal now is
to use these functions to find physical parameters defining the stars, looking for differ-
ences characterizing these two theories. The first two parameters are the mass and the

gravitational energy of the stellar object, which in general are defined as

R
M:/ p(z)dz, (6.79)
0

and "
Eg:/ O(z)p(z)dz. (6.80)
0

Recalling that we have ® = w®,, . = pi/ "(n+1)K and p = p.w", these two equations

can be rewritten as

M = 47 p. / w"Zdz, (6.81)
0

and B

B, = —4n&3(n + 1)K pl/m+! / w1 22dz. (6.82)
0
For GR, it is possible to prove that these two equations can be solved analytically to
obtain L4
M = 47p,R? (———w) , (6.83)
zdz ),

and s o
E,=- . 6.84
I 5—n R ©.84)

While for f(R)—Gravity they need to be solved numerically [48]. A direct comparison
between these quantities in GR and f(R)—Gravity may be performed by deriving the

ratios, defined as
Zmax n 2
Mywy  Jo™ wim?dz

== , 6.85
MGR fo " ngZQd’Z ( )
and . B s
Eymy  Jo " wymrTdz 6.86
EQ ~ (Zmaz , n+l 2 : ( . )
GR 0 Wagr 274z

This computation, performed in [48], shows that for the m&, values for which the
radius computed by the two theories differ substantially, the mass and the gravitational
binding energy provided by f(R)-Gravity can be up 50% bigger than the corresponding
GR case [48], while outside this interval there is not a difference between these two

theories. This conclusion is valid both in the oscillating and non-oscillating cases, given
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their similarities. These results tell us that it is possible to include very massive structures
in the theoretical scheme given by f(R)-Gravity, which cannot be considered by the
corresponding GR case, as it has already been noted by the wider dimensionless radii
found in the previous section. We also stress that we can recover the GR results for the
opportune values of m&.

The free parameters that act as the starting points of our derivations of the other
observed quantities of the stars are the central density, p., the polytropic index, n, and
the polytropic constant, /. We note that, inside the ratios given in Egs. (6.85) and (6.86)
these parameters do not appear, making these ratios independent from them.

Another quantity that can be derived from Eqgs. (6.72) and (6.74) is the radius of
the star, defined as R = {24, Using a luminosity-mass relation (we here refer to the
formula shown in [360]), it is possible to estimate from our model the stellar luminosity.
Furthermore, we can also be able to compute the period of an oscillating star, starting

from a period-mass-luminosity relation of the following form [361]

3/2 -1/2
P = (;) (M%> ) (6.87)
® ®

The last equation can be derived from the virial theorem starting from the Newtonian
gravitational potential, thus we can apply similar reasoning to f(R)—Gravity starting
from Eq. (6.26) and deriving the corresponding period-luminosity relation. For the mod-
ified potential, we consider m? = 2/\?, m = L/&, and choose the arbitrary function of

time J to be
qGM

&

for dimensional reasons, where ¢ is an arbitrary dimensionless constant. The presence

5(t) = — (6.88)

of this parameter allows us to recover the results given by GR as well as modify them.

Choosing ¢ = 30, we find that the modified gravitational potential becomes

M 106 V3o
G (HM). (6.89)

b =——
r L?
Plugging this equation into the virial theorem and deriving from that the period-mass-

radius relation, we get a correction to the computed period equal to

rL
106 Vo \ 12
e—) , (6.90)

P, :P0(1+ -

where F} is the period computed from the Newtonian potential in GR. We found that the

magnitude of this correction does not depend on the free values of p. and /K, but only on
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Figure 6.3: Left panel: central density-period relation for f(R)-Gravity for different val-
ues of the polytropic index. Right panel: the same for GR. Both plots are on a logarithmic
scale.

the polytropic index: in particular, the total period becomes smaller, decreasing of 18.6%
forn = 3/2, of 24.9% for n = 1 and of 1.79% for n = 3. Of course, these results depend
on the form of J chosen as well as on the value of ¢.

Varying the initial values of p., K, and n, we have used the model explained above to
compute mass, luminosity, radius, and period for both GR and f(R)-Gravity, by fixing
mé&y = 1 as in the previous section for the polytropic computations, and both for the
results of Eqgs. (6.72) and (6.74). The main conclusions achieved in our analysis are the

following:

* The period does not depend on K, but only on p. and n.
* For n = 1, the radius does not vary with p., but it depends only on K.
* For n = 3, the mass and the luminosity do not change with p., but only with K.

 For n = 3/2, decreasing p. by a factor of 10® has the same effect as increasing K
by a factor of 10.

These conclusions can be applied both for GR and f(R)-Gravity. Regarding the
differences between the oscillating and non-oscillating solutions for the f(R)-Gravity
model, we note that very slight variations (the biggest discrepancy is of the order of
1072) arise between the physical parameters computed in these two situations. This is
consistent with the results reached in the previous section, shown in Figure 6.2, according
to which the solutions of the two MLE equations are very similar.

In Figure 6.3 the central density-period relation computed by our model is shown
both for f(R)-Gravity (left panel) and GR (right panel) for different values of n. We note

the linear behavior (in log scale). We also note how, given the same value of the central
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Radial oscillations for f(R) and GR, n=3/2
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Figure 6.4: The oscillations of the radius computed by our model during two periods.
This plot shows both GR and f(R)-Gravity results.

density, the computed periods for f(R)—Gravity are slightly smaller than the respective
ones for GR. The differences in the periods computed by these models shown in Figure
6.3 exist because of both the correction on the period itself given by Eq. (6.90) as well as
on the different physical parameters derived by the solutions shown in Figure 6.1.

We next introduce a periodic variable behavior in our initial coefficients, to compute
how much our physical parameters, in particular the radius, change during a period for
a variable star. Starting from a particular initial condition for our parameters (p., K)
and computing from that the radius and the period, we simulate a sinusoidal behavior
for the central density and determine how much the radius of the stellar object changes
with p.. To obtain a radial variability of around 10% (which is what is typically observed
for Cepheid variables, see [362]) we have to start from a 57% variability on the central
density. For n = 3/2, the results are shown in Figure 6.4 both for GR and f(R)-Gravity.

The main conclusions that we derive from this figure are the following:

* The period for the result given by f(R)-Gravity is smaller than what has been
derived by GR. This is because of the correction on the period shown in Eq. (6.90).

* The starting values of the radii for f(R)-Gravity and GR are different, even if the
same initial conditions are used. This is because of the different solutions given by
the Lane-Emden and MLE equations, respectively.
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* The curves are not symmetrical around the starting values, but the maxima are
further from them than the minima. This behavior is consistent with the real light
curves of Cepheids [363].

* The amplitudes of the curves are different, being the ones related to the f(R)-

Gravity bigger than the same variations computed for GR.

The results of our f( R)-Gravity model are able to reproduce real data related to observed
oscillating stars: for instance, the values obtained for our variability example: (R =
83.9Ro, M =6.95 Mg, L = 2169 Lg, P = 4.39 d) are comparable with those observed
for the Classical Cepheid Eta Aquilae A (R = 66 +22 Ry, M = 5.7 Mg, L = 2630 L,
P = 7.18 d [364, 365]). This is not a coincidence because of our freedom in choosing
the initial parameters, for which we could also recover the GR results.

Even if the results achieved have been considering a rather simple model for oscillat-
ing stars, we can note how interesting differences arise in the computed physical param-
eters of the stellar structures. As possible future investigations, it would be interesting
quantifying these differences using more realistic models for the structure and general
behavior of variable stars, like Classical Cepheids and RR Lyrae [366, 367, 368].



Chapter 7
Discussion and conclusions

In this thesis, we have studied different frontiers of astrophysics and cosmology, both
observational and theoretical. Indeed, from the observational point of view, we have
studied a novel cosmological tool, the GRBs, that would allow us to explore deep zones
of the Universe, unreachable by more standard cosmological probes like SNe Ia. We
have first studied a particular correlation, the so-called fundamental plane relation for
GRBs, between three physical features of these astrophysical objects, namely between
the X-ray rest-frame end time of the plateau 77, its correspondent luminosity L,, and the
peak prompt luminosity, L., considering, for the X -rays, a set of 222 GRBs chosen
between those observed by the Swift satellite. As a starting point, we have divided these
GRBs into different classes according to their features, highlighting the new definition of
the Platinum sample, which is a set of Long GRBs with very strictly defined qualities,
as well as the results obtained using the sets of GRBs associated with KNe and SNe.
We have computed the best-fit parameters of the fundamental plane correlation for each
subclass. We found that the smallest intrinsic scatter related to the best-fit correlations,
one for every subset, has been achieved for the three sets previously mentioned in this
paragraph.

This result has been confirmed also after we considered corrections due to selection
biases and redshift evolution via the so-called EP statistical method. Thus, this result
allowed us to conclude that, between the different subclasses studied, the Platinum, the
GRB-KNe, and GRB-SNe a/b/c sets are the most suitable ones to be used for cosmolog-
ical applications, at least for the criteria related to the tightness of the best-fit plane. We
also note that accounting for the selection biases and redshift evolutionary effects reduces
the intrinsic scatter for these sets, especially for the Platinum sample.

We have also studied the differences between the best-fit fundamental plane parame-
ters for the subclasses considered by computing the z-scores of each of them with respect

to the Gold sample, a set of Long GRBs from which the Platinum has been derived. We
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note how some statistically significant differences have been found between some sets,
as we may note from the Gold sample vs. the GRB-KNe comparison, from which we can
conclude that the fundamental plane correlation can be used also as a tool to discern be-
tween different subclasses, thus linking observational features and correlations involving
GRB observed quantities to their intrinsic physics, like the central engine or the nature of
their progenitors.

This study has then been refined from a statistical point of view, focusing on the
Platinum sample itself, by computing new evolutionary coefficients using the EP method
for the entire set of 222 GRBs, and by using alternative best-fit methods as a reliabil-
ity check for our results regarding the fundamental plane and its intrinsic scatter. The
new correction has allowed us to reach effectively one of the smallest intrinsic scatter in
the literature regarding GRBs correlations up to date, especially for relations involving
afterglow features, while further statistical studies, based on other Bayesian approaches
as well as on PCA analysis, show a comfortable concordance with the results obtained
using the D’ Agostini method.

All the aforementioned analysis allowed us to conclude that, regarding the X-ray
observations, the Platinum sample is the most appropriate to be used as a baseline for
our cosmological application of GRBs. The fundamental plane correlation has also been
studied in the optical wavelengths, allowing us to study possible cosmological method-
ologies also in this new light window. Indeed, cosmological computations have been
carried out both via simulations and with real GRBs data, used as standalone probes for
the former and together with SNe Ia and BAO data for the latter.

Regarding the simulations, our goal was to find how many GRBs would be needed
lying exactly on the best-fit fundamental plane of real GRB data, in order to find a preci-
sion on §2,; comparable with what has been computed using SNe Ia by different works
in the literature, and thus finding an approximate timetable for the future concerning the
standalone GRB cosmology based on the fundamental plane correlation. We have done
so with both the Platinum X-ray sample and the Optical set, and both considering the full
errors on the parameters used as the baseline for our simulated distributions and halving
them, supposing that an increasing precision shall be reached in the future.

We found out that, in general, decreasing the errors used as a baseline for our simula-
tions does indeed help the convergence of the simulation themselves, requiring a smaller
number of simulated GRBs to reach the prefixed thresholds on the precision regarding
Q). We have also noted that, surprisingly, the simulations performed starting from the
Optical sample as the baseline converge faster than those which have been computed
considering the X -ray set, even if all the selection criteria used for the latter could not be

considered for the former given the paucity of data points. This interesting result could
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hint at the possibility that optical GRBs are indeed the future preferred path for their
general application as cosmological tools. As a baseline of our simulations, we have
also used trimmed sub-sets of the Platinum and Optical samples. In particular, we have
selected the 10 closest X -rays and optical GRBs, so that the best-fit fundamental plane
presents an intrinsic scatter close to O (the "a priori" trimming), as well as an alternative,
"a posteriori" trimming, based on further simulations, whose aim was to find out how
many real GRBs, used as a baseline, would yield the highest precision on {2, given the
same number of simulated GRBs, without halving the errors. For the latter computations,
we have found two sets of 20 X -rays and 25 optical GRBs, respectively. In doing so, we
concluded that, in general, the a priori trimmed sample gives comparable prediction with
respect to the derivations obtained by using the entire sets as a baseline, while the a pos-
teriori derivations generally improve such predictions, giving a higher precision for the
same number of simulated GRBs in all cases where we do not halve the errors and, thus,
reaching the desired precision faster.

Using these simulations, we have derived, via a polynomial fit, exactly how many
GRBs would be needed to match the imposed thresholds, from which we derive the
expected number of years in which these limits would be reached. In order to do so,
we have considered the number of detected GRBs per year from the Swift missions,
as well as from future telescopes, such as SVOM and Theseus. We have also taken into
account the possibility of using machine learning techniques to halve the required number
of GRB detected with an observable redshift, as well as statistical LC reconstruction
methods to decrease the error bars on the physical quantities used in our correlations. The
results show that in general, the next decades will be very fruitful for the use of GRBs
as standalone cosmological probes, which should be able to match the same precision
achieved by the SNe Ia without depending on the previous steps of the cosmological
ladder, and without being dependent of the so-called circularity problem.

We now move to the cosmological computations related to the real GRBs data, used
together with other probes, more specifically SNe la and BAO. We first compute {2,
using the entire sets, as well as the a priori trimmed sub-samples, of Optical and Platinum
GRBs, with SNe Ia, finding values for the errors which are the same (or slightly smaller)
than the results derived considering SNe Ia alone.

Next, we focus on the Platinum sample, which represents the currently most studied
wavelength concerning GRBs afterglows. We use the entire set and add also BAO data to
derive €2,;, Hy, and both these quantities contemporaneously. The first results, in which
we use the entire BAO and SNe IA sets, show that considering the SNe Ia alone achieved
precision as a reference point, the highest beneficial effect related to the precision of the

cosmological derivations is achieved by adding the BAO to the SNe Ia. We also note
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that adding GRBs allows us to obtain comparable, or even slightly smaller, uncertainties.
Keeping in mind that the GRBs belonging to the Platinum sample explore regions going
up to z = 5, this result shows the beneficial effect of adding GRBs to the other cosmo-
logical probes, offering the possibility of exploring deeper parts of the Universe without
sacrificing the precision on the results. This is true both with and without considering the
corrections due to selection biases and evolutionary effects. We have also employed two
different BAO sets, to fortify even more the reliability of our analysis and compare the
precision achieved by the two samples.

We further studied the contribution of the GRBs to our results by dividing our samples
into 5 bins, in order of increasing redshift, so that each of the bins presents the same
number of SNe Ia belonging to the Pantheon sample (with the only exception of Bin 5,
which presents 3 more SNe Ia with respect to the others). Incidentally, all the GRBs
belong to the last bin, together with 11 out of the 16 BAO-related measurements. Thus,
this binning division allows us to further appreciate the contribution of the other probes
to the SNe Ia results, even if the SNe Ia themselves are still the majority of the data points
in each of the bins (more than 200 in each of them).

The computations performed using the binned analysis confirm the conclusions reached
using the entire sets, namely that the most relevant contribution to the precision of the
results (taking again the results attained by the SNe Ia as a reference point) has been
achieved by adding the BAO measurements to the SNe la data, with the addition of
GRBs marginally influencing the precision already obtained by the SNe Ia+ BAO sets,
both with and without considering the correction for evolutionary effects. More in de-
tail, the biggest improvements have been reached when we consider bins 4 and 5, where
we find more BAO and GRBs. This conclusion has been reached for all the computa-
tions performed and for all the cosmological parameters. Thus, the findings obtained for
the full samples still stand, keeping in mind that future GRB missions and observational
campaigns will decrease the uncertainties of the observed quantities, as well as increase
the number of detected GRBs, as we have seen from the discussion related to the simu-
lations. We have also studied possible calibration results of GRBs, fixing the parameters
of the correlation using GRBs in the same redshift range of SNe Ia and deriving from
those cosmological results, finding, in general, encouraging results for the future of GRB
cosmology.

We now move from an observational frontier of cosmology to a more theoretical one
(albeit still using SNe Ia and BAO data sets). One reason why the scientific community
is interested in finding more cosmological probes is to fix the tensions brought by the
ACDM standard cosmological model (or at least find the underlying physics behind such

tensions). We now go beyond this model and start questioning some of the fundamental
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assumptions on which is based. One possible game-changing idea would be to start in-
vestigating not the astrophysical objects, but the messengers themselves. Indeed, we have
studied what a new, optical contribution to the measured cosmological redshift of astro-
physical sources would bring. This new shift has an optical origin, due to non-standard
electromagnetic effects, and thus does not depend on the expansion of the Universe itself.
Working under this hypothesis, we have studied three cosmological models without dark
energy, to compute how relevant the further shift due to non-standard electromagnetism
should be in order to match the observations. We also recall that, differently from the
cosmological shift, the non-standard electromagnetic one could also be blue, depending
on the environment of the source as well as on the path of the photon itself, and also that,
for this framework, two sources observed at the same distance could, in principle, present
different total redshifts.

We have first studied a sample of mock redshifts not corresponding to any observation
spanning up to z = 11, a redshift similar to those of the most distant objects observed
up to now, and confront the hypothetical luminosity distance of the observations found
at such redshift in our cosmology model without dark energy with the ACDM model.
We have found that the physical interpretation of such comparisons is strictly linked
to the cosmological model studied: indeed, for the first cosmological model, in which
we recall we have fixed Q,; = 0.3, Qr = Qa = 0, we have found that all the non-
standard redshift contributions must be red, thus positive. Instead, completely different
behaviors have been found for the second cosmological model, in which we have fixed
Qu = 0.3, Q2 = 0.7, and 24, = 0, where we have derived zg being both positive and
negative, following a first decreasing, then increasing trend. Finally, different results
have been found also for the last cosmological model, in which we have fixed 2, = 1,
Q. = Q) = 0, where we have computed all negative zg and an overall decreasing trend
with the redshift. We have also changed the fixed values of H, considering three different
values of it, for every cosmological model considered. We have noted slight differences
due to this change when we compared the results achieved by the same cosmological
model, which shifts the obtained results to smaller values of zg without changing the
overall behavior. We recall that a negative zg implies that the photons gain energy while
crossing (inter-)galactic fields and, thus, that the astrophysical objects are actually farther
than what we deduce from the observed z. Of course, the opposite is true for a positive
value of zg.

We next started our analysis regarding real data. We first considered the SNe Ia
Pantheon sample, for which we derived the zg both using an individualistic approach (i.
e., we derived zg for each SN without considering the general likelihood and the related

covariance matrix) as well as general computations (in which we have derived the &;
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parameters, strictly linked to the zg ones, as a general best-fit, thus using the SNe Ia
likelihood and the related covariance matrix). Both approaches present advantages, in
particular, the individual procedure allows us to appreciate effects in the derived values
for zg which could not be linked to only the distance itself, while the general computation
allows us to treat the non-standard electromagnetic effects encapsulated in the k; as a
cosmological parameter like Hj or €2,,.

For the individual results, considering the three aforementioned cosmological models
and the three fixed values for H, we obtain results that match, at least tentatively, with
those obtained by the mock computations, where the two redshift intervals overlap. The
main difference between the simulated and real results is in the dispersion found in the
latter, which is expected due to the possible measurement errors and different environ-
ments of the SNe Ia. Thus, the conclusions achieved for the mock redshift results are also
confirmed here.

Regarding the general results, we note how the central values obtained as best-fit for
the k; parameters are remarkably consistent with the mean of the individual computa-
tions, albeit a way smaller dispersion has been found in this case, as it may be expected
given its general nature. These computations have also allowed us to infer Hubble di-
agrams from the SNe Ia data in our non-standard cosmological models, computing the
best-fit curve and comparing it with the real data. We find that all our results provide an
acceptable fit considering the real data, with the best-fit reached by the second cosmo-
logical model, in which an open universe is taken into account, being the most consistent
with the real data.

We have added the BAO data to our computations, finding a shift in the results either
positive or negative, depending on the cosmological model considered. An interesting
result has been obtained for the third cosmological model, Hy = 70 km s~! per Mpc,
where we find k; consistent with 0, which would imply that, from a cosmological point
of view, our model without dark energy provides the same results than the ACDM model
for that particular fixed value of H,.

We have then performed the same computations, but taking into account the novel
Pantheon+ sample, which is an update of the Pantheon set used in all our previous com-
putations regarding the SNe Ia. Given that the simulated redshifts do not depend on this
particular point, we moved directly to the real data, considering both the individual as
well as general estimates. We have performed the same computations previously pre-
sented, comparing them with the respective previous cases, and, as a novelty, also with
the redshift errors, which are provided by the Pantheon+ catalog but not by the Pantheon
one.

The comparisons regarding the individual cases show a predominance for low values
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(in modulus) of the zg distribution, which was less remarkable for the Pantheon results.
This is probably because of the higher relative number of low redshift SNe Ia, on which
the Pantheon+ update was predominantly focused. Nevertheless, the general behavior has
not been modified by considering the new set, apart from the second cosmological model,
in which a nearly symmetric distribution around zg = 0 has been found for Hy = 67,70
km s~! per Mpc. We also note that the zg are, in general, larger than the errors themselves
(more than one order of magnitude for the first cosmological model). The averages of the
related k; distributions are consistent with those derived from the Pantheon set.

Regarding the general best-fit, instead, we have found more noticeable differences for
the Pantheon+ sample computations with respect to the Pantheon findings, especially for
the second and third cosmological models: indeed, while the first model presents results
which are remarkably similar to the Pantheon computations, apart from the peak near
zg = 0 due to the low redshift SNe Ia, for the second and third cosmological models,
instead, we note a shift in the sign for the k; parameters when we fixed Hy = 67 km s*
per Mpc. This may be due to the general low values of the k; parameters found for these
particular cases. Indeed, we recall that, while the zg may have different signs between
one another for the individual computations, this cannot be achieved by the general fit,
considering that they depend directly on the sign of the singular value for k;, which means
that they are either all positive or all negative. Also, we note that the best-fit values for
the k; parameters are consistent with O for the second and third cosmological models,
when we fix Hy = 67,70 km s~! per Mpc, differently from the Pantheon computations.
We also note that the derived uncertainty for these best-fit values is generally higher
than the corresponding Pantheon case. Differences were to be expected between the
general best-fit values, given the differences in the samples themselves. We also plotted
Hubble diagrams, similarly to what we did for the Pantheon case, finding fits that are
statistically better than their Pantheon counterparts. Once again, the most precise fit has
been achieved by the open cosmological model. Lastly, we deduced that adding BAO
data to the Pantheon+ set has the same effect derived for the Pantheon computations, as
expected given that we did not change the BAO set.

We note that, for all the analysis regarding both the Pantheon and Pantheon+ sets,
increasing the value of Hj, shifts the derived zg in the same way, namely making them
more negative. This is because Hj is inversely proportional to the distance, and thus
the effect of decreasing the distance is opposed by the more negative values of zg in our
comparison with the real data.

We also present a discussion regarding other probes and how we would expect the
non-standard shift to influence them. It is important to stress that such an alternative

approach has to be based on solid physical grounding to truly be competitive with the
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widely accepted and successful ACDM model. Indeed, the computations regarding zg
previously discussed do not consider the particular, non-standard electromagnetic phe-
nomenon at hand which may cause it. This makes finding and studying these effects a
mandatory requirement for this kind of approach. As we have seen, one possible exten-
sion is the possibility to attribute a mass to photons, following the so-called dBP formal-
ism. Different experiments and analyses in the literature have been performed in order to
find an upper limit to the mass of the photons.

In our investigation, we aimed to achieve this goal using the MMS data, a constella-
tion of four satellites studying the solar wind surrounding Earth’s magnetosphere and the
magnetosphere itself. More specifically, we have compared the particle current, that is
the current measured by each satellite starting from the plasma velocities and densities,
with the rotational one, which is given by the curl of the magnetic field computed by us-
ing the so-called curlmeter method, taking into account the hypothesis that every possible
inconsistency between the two currents is due to a dBP contribution due an intrinsic mass
of the photon, or an LSV parameter in the SME framework. In order to do so, we have
computed the errors for both these quantities starting from the data downloaded from the
AMDA website. We have considered for our analysis data gathered in almost 6 years
of observations, in the burst region, which is the highest quality data collection in the
MMS data set, especially regarding the time resolution, thus working with 3.8 x 10° data
points, for each of which we have collected different physical quantities, that have been
used either in the comparison itself or in reliability checks.

The results found by us tell us that, while in the majority of the cases the two cur-
rents, considering their errors, are indeed consistent, inconsistencies have been found in
some cases (2.2% for the modulus, 4.8% for the vector components), which, under our
assumptions, would presume a mass for the photon, at least according to this minority
of data points. For the consistencies cases, an upper limit can still be computed, being
represented by the smallest amount to add (or subtract) to (from) one of the two currents
to get an inconsistency case. We have also added a quality factor keeping into account
the geometry of the tetrahedron formed by the MMS satellites. In doing so, we do not
observe a significant modification of the percentage representing the inconsistency cases.

Then, we divided our data set into different regions, finding, for each data point, to
which physical area (solar wind, magnetosheath, magnetosphere) it may belong, fol-
lowing criteria based on the relations between the different pressures (ram pg, mag-
netic pys, and thermal pr pressures) derived for that particular point. Indeed, if pp >
10 maz(pp, pr), we identify the region as solar wind; if 0.3 min(py, pr) < pr <
4 max(par, pr), as magnetosheath; if 10 pr < pys, as magnetosphere. The region of un-

determined data points between the solar wind and the magnetosheath is named zone I,
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presenting features that are intermediate between the magnetosheath and the solar wind,
while all the other undetermined data points are instead gathered in zone II.

In doing so, we have noted that the majority of the inconsistencies are found in the
solar wind and zone I regions. Indeed, we note that 76% of the inconsistencies for the
modulus, and 65% for the components, lie in these two regions, which represent only
14% of the total data. This conclusion is very interesting because it allows us to deduce
that there are physical regions in which the inconsistencies between the two currents are
way more frequent than in others.

Given that the majority of the inconsistencies are found in the solar wind+zone I
regions, we can use the Parker model for the solar wind to infer the vector potential for
each of these points, starting from the measured magnetic fields. In doing so, we can
finally compute the presumed mass of the photons for the inconsistencies, and the upper
limits for the consistencies, taking into account the aforementioned caveats. In particular,
we have found that the minimum of the photon mass distribution is 1.74 x 107°3 kg, the
average is 2.48 x 107°! kg, and the median is 1.82 x 1075! kg. These results are in the
same order of magnitude as the majority of experiments and deductions related to this
subject, even if in those only an upper limit is considered.

From these estimates we can also derive the values for parameters linked to another
non-standard electromagnetic quantity: the LSV parameter, \EAF], which we recall rep-
resents an effective mass of the photon in the SME formalism and that can be linked to
an effective mass, and so to the previous findings regarding the dBP mass.

Different reliability checks have been performed by us to confirm the findings of our

analysis:

¢ we have confirmed that the current due to the time derivative of the electric fields

is negligible given the time sampling chosen by us.

* We have confirmed that the time sampling chosen by us is derived by a mean
process, thus all the high-frequency components, which cannot be accounted for

by the curlmeter techniques, have been naturally discarded by our analysis.

* We have not noted any correlation between the densities related to particular data
points and the inconsistencies, thus the latter cannot be due to a systematic issue
linked to the failing of the instruments in detecting some electrons (or ions) due to
the low density.

* We have considered only data points in which the particle currents measured by

each MMS satellite are consistent with one another.
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Nevertheless, we cannot conclude that we have actually found the mass of the pho-
ton: albeit the collaboration working on MMS has addressed many systematic effects
related to the instruments used in our analysis as well as calibration processes, still pos-
sible errors could be at hand, that could have influenced our results. Furthermore, the
inconsistencies represent only a minority of cases in the studied six years of data and
measurements, thus cannot allow us to conclude that a definitive mass exists given the
majority of consistencies, and would instead allow only for an estimate of the upper limit.
Nevertheless, we are able to state that, if the inconsistencies we have found are actually
due to non-standard electromagnetic effects, the related dBP mass (or LSV parameter)
are those previously shown, of course, if that is the case, a dedicated analysis would be
in order to understand why these effects arise only for this particular minority.

Considering the estimates on the upper limits on the photon mass given by the con-
sistencies, instead, we have found a minimum equal to 1.84 x 1073 kg, an average equal
to 2.21 x 107°! kg, and a median equal to 2.17 x 107°! kg. These results are in the same
order of magnitude regions of both the results achieved in the literature as well as of our
estimates regarding the inconsistencies. Given that the majority of our comparisons show
consistencies, the average of them is our estimate regarding the photon mass upper limit.

We now move from the electromagnetic extension to a gravitational one, and from
cosmology to stellar astrophysics. Indeed, ETGs have been studied in the literature to all
these scales, from the "small" neighborhood of compact objects to the entire Universe,
to test if they are able to recover the results of GR where the latter is consistent with the
observations, while also overcoming its limits. In this analysis, we have studied the stel-
lar structure of non-compact objects (including variable starts), using a particular ETG:
f(R)—Gravity. Indeed, we have derived the stellar structure system for f(R)-Gravity
related to non-compact stars, finding an interesting result related to the hydrostatic equi-
librium equation, which is the same as in GR for the Jordan frame, as long as the potential
is not expressed explicitly. We have also noted that the main difference between this sys-
tem and the one related to GR is in the Poisson Equation, that in f(R)-Gravity becomes
a system of two fourth-order equations.

In general, in order to obtain the solution of the stellar structure starting from this sys-
tem, assumptions related to the energy density and opacity are mandatory, but, working
under the polytropic relation, thus linking the pressure to the density without involving
the temperature, results can be achieved by using only the mechanical part of the afore-
mentioned system. Indeed, we have analyzed polytropic models in f(R)-Gravity, and
compared them to the classical GR case, finding for the former framework two different
modified Lane-Emden equations, depending on the particular Green function chosen to

derive these equations, which are integro-differential equations depending on the partic-
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ular f(R)-model represented by the parameter m. These equations can be solved analyti-
cally with an exact solution only for n = 0, and for n = 1 considering particular caveats,
differently from the GR case, for which an analytical solution can be found for n = 0, 1,
and 5.

Thus, we have solved numerically these equations for different values of the poly-
tropic index. From a physical point of view, the most interesting cases are the non-
relativistic (n = 3/2) and the highly relativistic (n = 3) limits of completely degenerate
gas that we can find in a white dwarf, neutron stars, and the core of less evolved stars,
also, n = 3 has been used to fit successfully the values observed for the Sun [358]. Thus,
solutions for both the modified Lane-Emden equations as well as for the Lane-Emden
equation in GR have been found, yielding polytropic functions linking the dimension-
less radius with the dimensionless potential. We have noted that, for the same polytropic
index, in f(R)-Gravity, the radius is systematically bigger than in GR, and the differ-
ence increases with the polytropic index itself. We also note that the two modified Lane-
Emden equations yield almost identical results. This is interesting because the oscillating
behavior of one of them can be used in relation to variable stars, which thus can be en-
compassed in our formalism. It is interesting to note that the oscillating behavior of these
stellar structures has not been given by hand, but it is a natural consequence of the system
solution.

From these solutions, we can derive different physical quantities related to the stellar
structure itself, like the radius, mass, and gravitational binding energy of stellar struc-
tures. It is also important to stress that we can recover the classical results from the
f(R)-Gravity case by choosing appropriate values for the second derivative of the Taylor
expansion of the function f(R). This means that f(R)-Gravity can recover the cases
already well described by GR.

We have then computed the period for oscillating stars using the modified potential for
the weak limit in f(R)-Gravity, and compared it with the same quantity derived from GR,
starting from the same initial conditions given by the central density and the polytropic
parameter, stressing the differences between the results given by the two theories. Again,
flexibility due to a particular assumption in this computation is achieved, because of the
degree of freedom we have in choosing a particular parameter involved in the modified
potential, and thus in the period for f(R)-Gravity. We have then simulated a sinusoidal
behavior for one of the free parameters studied in our model, to show the behavior of the
radius over two periods, again comparing the results achieved by f(R)-Gravity and GR.

Further analysis and new outlooks are possible for all the work presented in this
thesis. For instance, future GRBs observations will improve our knowledge both on

the physical mechanism behind these fascinating objects as well as on the correlations
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between their physical parameters, with new GRBs belonging to the Platinum sample as
well as the possibility to define even more refined subsets. These would be in turn used
for cosmological applications, as our work regarding the GRB simulations shows.

Regarding the extension of electromagnetic theory, it is possible to further analyze
this paradigm both from an observational and theoretical point of view. Observationally,
we could improve and amply the analysis presented here for its cosmological contribu-
tion, trying to understand how the other cosmological parameters would behave in this
new framework, and involving other cosmological probes. Also, it would be possible to
look for other evidence for testing the possible mass of photons, or upper limits on this
quantity, which, as we have seen, can be performed in different environments, as close as
Earth’s magnetosphere and as far as the observations related to FRB, speculated of be-
ing of extra-galactic origin, recalling that there also exist laboratory experiments which
are not linked to astrophysical observations. Theoretically, a strong physical ground is
mandatory for this theory to be actually competitive with the ACDM model. Indeed, it is
necessary to understand what exactly is the physical mechanism behind the assumed non-
standard shifts, alternatives being the dBP theory, the extension of the Standard Model,
or non-linear electromagnetism.

Finally, for the ETGs, in particular for our application to the stellar structure of non-
compact objects, some outlooks are the following: it would be interesting to apply f(R)-
Gravity to models for the stellar structure which do not forecast a polytropic relation
between the pressure and the density inside the star. In particular, this approach would
be useful to compare our results with more realistic models for oscillating stars, like
Classical Cepheids and RR Lyrae, that include the temperature and the metallicity, which
play a fundamental role in the study of these stars. Also, it would be possible to apply this
framework to different ETGs, in particular for their weak limits, to understand which one
of those resembles better the real data (although, as we have seen in our work, different
free parameters are present which allow tuning our conclusions to the real data).

The study of stellar structures can be a very important test-bed for f(R)-Gravity,
which we recall is a theory widely used both in cosmological and strong gravitational
field environments, where the shortcomings of GR are more evident; indeed, in order to
have a valid gravitational theory, it has to be adequate at all scales, stellar ones included,
which means that finding actual detected effects due to ETGs at these scales could con-
firm even more their reliability, with the caveat that they have to reproduce the results
obtained by GR where it is most successful. Of course, this applies also to the cosmolog-
ical scales.

It would also be possible to merge the different branches studied in this thesis, like

studying both ETE and ETG at the cosmological scale using the observations concerning
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cosmological probes, to understand which of the two frameworks influences more the
results. Regarding this point, we may look at a recent result concerning a particular
ETG model, known as the f(7") teleparallel gravity model [44], in which the action is

expressed by
1

~ 167G

/ dizelT + F(T)) + A, (7.1)

where f(T) is a generic function of the torsion scalar 7', A,, is the action related to the
matter terms, and e = y/—g is the metric determinant. Obtaining the Friedman equations

for this theory considering a flat Friedman-Robertson-Walker metric we find [44]

E(z) = \/Qr(1+z)4+QM(1+z)3+Tio[f—2Tf’], (7.2)

where 7" = 6H holds. We note that the main difference between this equation and
Eq. (2.16) is in the last term, which substitutes the dark energy density. This framework
has been used considering three specific forms of the f(7") function, in concordance
with real data (CMB, the Pantheon sample, BAO, DES) to derive the free parameters
on which the ACDM model is based upon. Introducing our formalism for zg, i. e.,
including computations regarding the finding of the values of cosmological parameters
in ETG theories, like this one, also the further redshift contribution that has been analyzed
in chapter 5, it would be interesting to consider both modifications using real data as we
previously did, to understand how the two extensions compare with each other when both
are employed contemporaneously to infer cosmological parameters in models without a
constant dark energy contribution.

Other examples in the literature exist where ETG models have been considered to
constrain observational parameters using real data. For example, [369] used a particu-
lar f(R)-Gravity exponential model in conjunction with real data (SNe Ta, BAO, H(z),
CMB) to constrain four free parameters of his theory, finding a concordance with the ob-
served data similar to the ACDM model. Comparisons with the observations considering
this exponential model were found in [370, 371].

From a more theoretical point of view, many other possible cosmological models
going beyond GR and considering ETG have been studied by the scientific community
[372, 107]. Finding a comparison with one of these models with our approach linked
to the frequency shifts, rather than on underlying gravitational and cosmological theory,
would allow us to infer which of the two modifications would bring the greater impact on
the cosmological results, and if or how an improvement with respect to the ACDM model
is at hand. Adding GRBs to these tests in the future would also be possible, given their
ability to explore high-redshift regions, especially after new data points shall be acquired

by present and future missions.
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In conclusion, all the computations performed in this thesis have the aim to explore
the frontiers of standard cosmology and astrophysics, testing novel applications (both ob-
servational and cosmological) in the boundaries of these two theories, going beyond the
standard framework by proposing changes to the general paradigm itself and comparing
the achieved results with those commonly known. The promising results reached in this
thesis pave the way to further future analysis, aiming at overcoming limits that are one
of the main focus of discussions inside the astrophysical community, while keeping the
successes of the standard theory (GR and ACDM model), which, we recall once again,

are way more numerous of the current known shortcomings.
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