
University of Naples Federico II

University of Camerino

National Research Council of Italy

Doctor of Philosophy in Quantum Technologies

35th cycle

Architectures and circuits for distributed quantum computing

Daniele Cuomo

Advisors Coordinator
Prof. Marcello Caleffi Prof. Francesco Tafuri
Prof. Angela Sara Cacciapuoti

Academic Discipline: ing-inf/03

Years 2019 − 2023

Abstract

This thesis treats networks providing quantum computation based on distributed paradigms.

Compared to architectures relying on one processor, a network promises to be more scalable

and less fault-prone. Developing a distributed system able to provide practical quantum com-

putation comes with many challenges, each of which need to be faced with careful analysis in

order to create a massive integration of several components properly engineered.

In accordance with hardware technologies, currently under construction around the globe,

telegates represent the fundamental inter-processor operations. Each telegate consists of sev-

eral tasks: i) entanglement generation and distribution, ii) local operations, and iii) classical

communications. Entanglement generation and distribution is an expensive resource, as it is

time-consuming.

The main contribution of this thesis is on the definition of compilers that minimize the im-

pact of telegates on the overall fidelity. Specifically, we give rigorous formulations of the subject

problem, allowing us to identify the inter-dependence between computation and communica-

tion. With the support of some of the best tools for reasoning – i.e. network optimization,

circuit manipulation, group theory and ZX-calculus – we found new perspectives on the way a

distributed quantum computing system should evolve.

i

Contents

1 Introduction 1

1.1 Technologies for distributed quantum computing 3

1.1.1 Stationary-flying transduction . 3

1.1.2 Control system . 4

1.1.3 Bell state analyser . 5

1.2 Envisioning the full system . 6

References . 8

2 Quantum logic essentials 13

2.1 Quantum programming . 14

2.1.1 Universality . 14

2.1.2 The Clifford group . 17

2.1.3 Programming in higher order framework 18

2.2 Entanglement-based computation . 20

2.2.1 Teleportation . 21

2.2.2 Non-local operations . 22

2.2.3 Entanglement swap . 22

2.2.4 Entanglement paths . 23

2.2.5 Amortizing entanglement link consumption 25

References . 25

3 Quantum noise and how to handle it 30

3.1 Quantum noise . 31

3.2 Estimating an evolution . 32

3.3 Noise canceling through indefinite causal orders 32

3.3.1 Quantum simulation . 34

3.3.2 Physical setting . 35

3.4 Modeling faulty gates . 36

3.5 Error correction and logical computing . 37

3.5.1 Code functions . 37

3.6 Stabilizer codes . 38

3.7 Relation with classical binary codes . 39

3.8 Distance and bounds . 40

3.8.1 Classical bounds . 40

3.8.2 Quantum bounds . 41

ii

Contents

3.9 The role of stabilizers in computing . 42

3.10 Conclusion . 43

3.10.1 Open challenges . 44

References . 45

4 Circuit compilers on distributed architectures 48

4.1 Mathematical modeling . 50

4.2 Distributed quantum circuit compilation problem 50

4.2.1 Objective function . 51

4.2.2 Modeling the time domain . 51

4.2.3 Modeling the distributed architecture . 52

4.2.4 Single layer formulation . 53

4.2.5 Any layer formulation . 55

4.3 Increasing the parallelism . 56

4.4 The role of Clifford group in distributed architectures 57

4.4.1 Circuit normal forms and implications on the post-processing 58

4.4.2 Analysis on the upper-bounds and future perspective 59

4.5 Commuting circuits compiler . 60

4.5.1 An approximation-based implementation 60

4.5.2 Set-up . 61

4.5.3 Architecture evaluation . 62

4.6 Clifford circuits compiler . 63

4.6.1 Parity check circuits . 64

4.6.2 Entanglement trees . 64

4.6.3 Circuit construction and partitioning . 65

4.7 Multi-commodity flow vs. Steiner trees . 67

4.8 Conclusion: the importance of a compiler . 68

References . 69

iii

Chapter 1

Introduction

Chapter 1. Introduction

Distributed quantum computing is one of the most appealing applications in the panorama of

quantum technologies. In fact, distributed architectures could be our bridge to step beyond the

current NISQ era [1, 2, 3, 4, 5, 6]. This explains the wide interest for a large-scale integration

of quantum technologies. By inter-connecting spatially distributed quantum processors, we

would achieve a scalable architecture resistant to noise. The general trend [4, 7, 8, 9, 10, 11]

shows a common belief in distributed (and quasi-distributed, or multi-core) architectures as

physical substrate, allowing a modular and horizontal scale-up of computing resources, rather

than relying on vertical scale-up, coming from single hardware advancements. On the flip side,

by linking distributed quantum processors, several new challenges arise [12, 13, 14, 15, 16, 2].

Being up-to-date with technologies currently under construction around the globe is a

mandatory step to create a realistic system. We hence begin – in Sec. 1.1 – by reviewing

some of the most promising hardware technologies. This provide us (and the reader) with a

realistic perspective of the fundamental components belonging a distributed quantum comput-

ing system. Once done that we propose – in Sec. 1.2 – a full-stack development meant to be

modular and prone to future changes. The stack is indeed already an extension of one of our

first proposal, available in [2].

In Ch. 2, we abstract from hardware technologies, by introducing the reader to the funda-

mental tools concerning distributed computing paradigms. We use the most affirmed language

to express quantum computation, i.e. the standard quantum circuit model. We start with some

basics on unitary synthesis and decomposition, important also for local computational. We then

extend the subject to work on distributed architectures.

For the sake of completeness, In Ch. 3 we provide a framework concerning quantum noise.

Handling noise is probably, to date, the hardest challenge we are facing, as any model struggle

to be scalable for hardware. Hence the aim of this chapter is to give a perspective of the

magnitude of the problem, which – sooner or later – will be part of a distributed computing

system. The framework is strengthen by experimental results.

We conclude the thesis with what is our main contribution to research. Thanks to the knowl-

edge gathered by us throughout the aforementioned chapters, we could minutely investigate one

essential component for any system implementation of practical value. Such a component is

commonly referred as compiler, which we formulate with mathematical rigor in Ch. 4. With

the support of some of the best tools for reasoning – i.e. network optimization, circuit ma-

nipulation, group theory and ZX-calculus – we managed to give a first complete model for the

compilation problem on distributed architectures. Every feature characterizing the problem is

treated minutely. We could separate the problem in several parts, each of which is tackled with

a dedicated optimizer.

We also use our model as benchmarker for different network topologies. It is indeed impor-

tant, in the development of a practical system, that the project follows a co-design line, where

each component is designed to fit at its best with the other components.

2

Chapter 1. Introduction

1.1 Technologies for distributed quantum computing

1.1.1 Stationary-flying transduction

Qubit-qubit interaction generally works by means of some transducer. A transducer can be seen

as a physical interface “converting quantum signals from one form of energy to another” [17].

It is especially true, in a distributed setting, that a transducer is able to move an information

stored into some stationary qubit – e.g. a trapped-ion, a transmon or a quantum dot – into some

flying object, usually photons. A photon is therefore an information carrier or medium, able to

cover a long distance. Therefore, the medium can be used to make distant qubits interact.

The ability to engineer efficient transducers allows us to rethink at quantum architectures

as to be scalable and modular. Depending on the transducer [18, 17, 19, 20, 21, 10, 22, 23, 24,

9], different kinds of distributed architecture arise. For the sake of understanding qubit-qubit

interaction in a distributed setting, we now consider distributed ion-traps architectures.

Scaling up a single ion-trap is challenging [25]. On the other hand, they represent a promising

technology for integration within a distributed architecture, as a result of high gate fidelity [26,

27] and long life-time [28, 29]. In what comes next, we consider a cavity-based integration.

Cavities and photon emission

|0i⟩

|2i⟩

|1i⟩

|1p⟩

|0p⟩

Figure 1.1: Simplified energy level structure of
an ion (i) and relative photon emissions (p).

Considering the scenario of qubits stored on dif-

ferent processors, to couple them, the physical

setting needs to scatter quantum information

outside a processor and reach the other one.

This can be done by means of a single photon,

canalized within an optical fiber.

In order to achieve such a configuration,

we here consider ions able to be modeled as a

three-levels system – see Fig. 1.1. Such a sys-

tem depicts the experimental set-up proposed

in [30]1. The specifics of the system comes from

the ion species selected to encode quantum information [33]. By placing such an ion within a

cavity, this creates an ion-cavity system, where now the ion interact with the cavity mode. The

cavity has the role of collecting and scatter outside the system the photon emitted by the ion.

Fig. 1.2 shows a pictorial representation of the ion-cavity able to do so.

Figure 1.2: Exemplary representation of an
ion-cavity system emitting a photon. For tech-
nical details the reader may start from [34].

The first step taking place is the excitation

of the ion |0i⟩ → |2i⟩ – i.e. the red arrow in

Fig. 1.1. Ideally, a spontaneous decay of the

ion brings its energy with equal probabilities

to one of the two lowest (and computationally

relevant) states – i.e. |0⟩i and |1i⟩. Further-

more, this happens with the emission of a pho-

ton which is coherent with the state of the ion.

As we anticipated, the scattered photon can

be canalized within an optical fiber; the final configuration of the ion-fiber system is in the

1The interested reader can find other settings at Refs. [31, 32].

3

Chapter 1. Introduction

superposition 1/
√
2(|0i0p⟩+ |1i1p⟩).

A pictorial representation of a single node of the distributed architecture is shown in Fig.

1.3. The cavity is pointing at one of the ions, which is coloured differently as an ion-trap may be

composed by different ion species2, depending on whether it is meant to perform computation

or communication.

To achieve the non-local coupling we need to consider two ion-traps generating and distribut-

ing the entanglement (at the same time), after which, a protocol called entanglement swapping

completes the process. A control system will take care of accomplishing the task.

Figure 1.3: An ion-trap embedded with a cavity pointing at a single ion. Representation
inspired by a linear design [33, 37].

1.1.2 Control system

Summing up, to establish entanglement, the ions are simultaneously excited to an electronic

state that spontaneously decays, during which a single photon each is emitted whose polarization

is entangled with the ion’s internal state. These photons are collected into optical fibres using

free-space optics and sent to a common terminal.

The terminal take care of detecting the photons by means of a probabilistic Bell state mea-

surement. This projects the ions into a maximally entangled state, heralded by the coincident

detection of the pair of photons – see Sec. 1.1.3 for details. This is commonly referred as

entanglement swapping.

It is important that the ion-traps are synchronized, so that the photon reach the terminal

at the same time3. Classical synchronization protocol would take care of this by means of a

master-clock. An experimental settings is available in Ref. [39].

Ultimately, to achieve scalability we need to consider the case of several processors. In the

most basic scenario, all the processors are centralized, in the sense the all of them are wired

to a common terminal to perform bell state measurement. Such a setting is the first example

of scalable distributed architectures. The problems arising from such a setting is a scheduling

problem. A multiplexer taking deterministic choices would be enough to ensure that all the

processors are carefully scheduled to not create overlaps. An experimental settings, where four

processors are scheduled by means of a multiplexer, is available in Ref. [40].

2Which brings to the classification in communication and computation (or data) qubits [35, 5, 36, 2].
3Without synchronization, one can retrieve the likelihood of each photon source. This makes the photons

distinguishable, causing a loss in fidelity [38].

4

Chapter 1. Introduction

1.1.3 Bell state analyser

To keep the discussion easy we explained the main procedures by means of three-levels systems

for the ions. However, each of this state should be split to create several possible configuration.

This doesn’t change the whole protocol, but it has consequences on the possible outcomes

obtained by measuring the photons. Different ion species and kind of measurement lead to

different configurations. In general, we distinguish three main outcomes:

• One or both photons failed to be detected by the measurement. This means that the whole

procedure is basically wasted time, as the nodes need to attempt again from scratch. This

possibility can be a serious problem to practical computation, as a low success rate leads

to long waiting times.

• The protocol succeeded and the ions are in one of the four Bell states {|Φ+⟩ , |Φ-⟩ , |Ψ+⟩ , |Ψ-⟩}.

• The protocol partially succeeded. Namely, a superposition between two bell states has

been created, e.g. |Φ±⟩ or |Ψ±⟩. This scenario may occur for several reasons – depending

also from the employed physical settings – it can be caused by dark measurements [38], a

rare and negligible scenario. Otherwise, it may come, for example, from two clicks coming

from the same detector.

Figure 1.4: A common setting for
the Bell state measurement [41].

Different Bell measurement settings brings to different

sets of heralded entanglements [11, 42, 41, 43]. We here

consider the quite general case of Ref. [41], as we think this

case may be particularly efficient for distributed computa-

tion. A pictorial representation of the setting is reported

in Fig. 1.4. In fact such a configuration brings to a 50%

chance of success – i.e. two clicks on different detectors –

and 50% of partial success – i.e. two clicks on the same

detector. Namely, when the protocol succeeds, the final

state is in {|Ψ-⟩ , |Ψ+⟩}, while in case of partial success, the

output has an ambiguous phase: |Φ±⟩.
The ideal result coming from performing entanglement generation and distribution followed

by entanglement swapping is a maximally entangled state between distant qubits. In practice,

this is not achievable as each of the complicated techniques we described are in general not

perfect, resulting in a state slightly different from a Bell pair. One can evaluate the final

distributed state in terms of fidelity with some target Bell state. E.g.,

f = ⟨Φ+|σ |Φ+⟩ . (1.1)

Where σ is the generated state. For example, consider the experiments reported in Ref. [41, 11].

The author’s proposal starts with the generation of a non-maximally entangled state ion-photon√
2

3
|0i0p⟩+

√
1

3
|1i1p⟩ . (1.2)

However, after the collection into the single mode fiber, the state gets projected to the Bell pair

1√
2
(|0i0p⟩+ |1i1p⟩). (1.3)

5

Chapter 1. Introduction

Once performed the entanglement swap, the ion-ion average fidelity is 0.94; a promising

result. Unfortunately, in the perspective of practical computation, the fidelity needs to be

some f = 1 − ε with ε small enough to keep the error rate manageable, e.g. by means of error

correction schemes – treated in Ch. 3. A possible solution is called entanglement distillation

[44, 45, 46] (or purification). However, choosing the best approach is not trivial and may very

depend on the architecture specifics.

1.2 Envisioning the full system

We reported several important research fields deeply related to the implementation of a first

distributed and scalable architecture. We introduced the required technologies to achieve qubit-

qubit interaction when these are arbitrarily far apart.

 Quantum
 Link

Control
System

Logical
Network

Quantum
Node

 Logical
Gates

 Compiler

 Algorithm

Control
System

Logical
Network

Quantum
Node

 Logical
Gates

 Compiler

 Algorithm

Classical
Link

Classical
Link

Figure 1.5: Full-stack development of a dis-
tributed quantum computing framework.

The considered literature gives a per-

spective on how to integrate multiple quan-

tum processors into a scalable architecture,

able to perform distributed quantum com-

putation.

Stemming from the above overview, we

now need to extract a full-stack develop-

ment, by identifying the most important

roles – and dependencies – and we will need

to engineer an ecosystem [2], providing a

framework for distributed quantum compu-

tation. As we are facing the early stage of

quantum computation and distributed ar-

chitecture, it is wise to focus on the main

challenges and assigning them to a proper

entity4. In fact, any proposal now is highly

prone to changes, because of the continu-

ous growing of the field [3] and the huge

advancing in both technology and informa-

tion theory.

We propose a design that starts from a bottom-up reasoning, stacking up a number of layers

where the lower ones provide some resources and flexibility which the upper layers can rely on.

More precisely, consider Fig. 1.5: this shows a linear stack where each layer represents one of

the fundamental subjects necessary to create a practical framework.

Level 1

Not surprisingly, the first layer is a mere pictorial representation of the distributed hardware.

For the sake of clarity, we depicted a network composed by three quantum nodes. We already

discussed how such a network may be achieved by focusing on ion-traps integrated with cavities,

Bell state analysers and multiplexers – see Secs. 1.1 and 1.1.3.

4As usual in the engineer terminology, an entity is something quite abstract, which needs to be defined in
terms of its roles and relations with other entities.

6

Chapter 1. Introduction

A quantum node refers to the full hardware set-up working locally, which includes, of course,

the quantum processor. The nodes are inter-connected by quantum links wherein mediums

carries quantum information. Such a set-up can be achieved, for example, by means of [40]:

• ion-traps, cavity-based transducers as quantum nodes and

• optical fibers, multiplexers and bell-state analysers as quantum links.

Level 2

As explained in Sec. 1.1.2, as minimum requirement for the system to be operative, the network

needs to be carefully handled by a classical control system, which cares about synchronization

and scheduling in real time. Because of its role, the control system is mainly physical. In fact,

it is directly connected to each quantum node by means of classical links. The linkage will

be also used to gather classical information coming from measurement-based computation [47].

Advancements in the physical network5 will allow to evolve the layer, up to becoming a

quantum control system – as envisioned for example in Refs. [51, 52, 53, 54] –, a quantum

control system will be able to optimize the efficiency of the network, having access to a wider

spectrum of resources – e.g. high-dimensional entangled states – which can be manipulated to

optimize the network efficiency, by means of communication protocol fundamentally based on

quantum communication theory. A quantum control system may also be responsible for the

definition of a (distributed) error correction scheme – treated in Ch. 3.

Level 3

The control system deals with real time tasks and, if engineered properly, it is able to guarantee

a logical network with a time domain that can be discrete. Specifically, a control system

provides a topology running in well-defined time slots. This means that any kind of unexpected

delay is negligible to the upper-layers. As central part of the stack, generating a logical net-

work is a critical step. In fact, it is the layer where real-time tasks meet logical computation.

Hence, a logical network should provide an array of logical resources which are meaningful to

computation.

Level 4

As said above, the logical network provides an array of logical resources. Because of their

importance a layer is dedicated to represent such resources. The set of logical gates will

be the fundamental components upon which building a computational paradigm, specifically

designed to work on a server farm.

Logical gates can be local – e.g. multi-qubit gates [55, 56, 57, 58] – and non-local – i.e.

telegates –. In fact, while local gates operates on logical nodes, telegates operates throughout

the logical network. This makes the latter resource much more expensive, which deserve a

dedicated analysis, especially considering the degree of novelty in the context of computational

paradigms that may arise. Refer to Sec. 2.2 for details.

5Up to the development of a quantum internet [12, 15, 48, 5, 2, 49, 14, 50]

7

Chapter 1. Introduction

Level 5

We entitled this layer compiler as its role is highly related to the already well-established

branch of research in the context of local quantum computation [59, 66, 67, 68, 69, 70, 71, 72,

73, 60, 61, 62, 63, 64, 65]. A compiler has the crucial role to mask all the underlying stack to an

algorithm designer. In fact an algorithm is generally written to solve some problem which goes

beyond the architecture meant to process it. This means that the designer works in an agnostic

fashion, without considering the constraints coming from the stack. Which is why a compiler is

the final necessary optimizer, able to transform an abstract algorithm into a logical algorithm,

compliant with the logical resources given by the bottom layers. Our research project mainly

focus on the standardization of such a layer and we detailed our efforts in Ch. 4.

Level 6

The upper layer is simply an algorithm, an abstract input, which the framework takes charge

of and carefully spread throughout the whole stack in order to be processed.

Once the framework is ready-to-go, it will be able to accept some groups of algorithms6, up

to universal groups. Refer to Ch. 2 for details.

References

[1] J. Preskill. “Quantum Computing in the NISQ era and beyond.” In: Quantum 2.79 (2018)

(cit. on p. 2).

[2] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. “Towards a distributed

quantum computing ecosystem”. In: IET Quantum Communication 1.1 (2020), pp. 3–8

(cit. on pp. 2, 4, 6, 7).

[3] Elizabeth Gibney. “The quantum gold rush”. In: Nature 574.7776 (2019), pp. 22–24 (cit.

on pp. 2, 6).

[4] Jay Gambetta. Expanding the IBM Quantum roadmap to anticipate the future of quantum-

centric supercomputing. 2022 (cit. on p. 2).

[5] Angela Sara Cacciapuoti et al. “Quantum internet: networking challenges in distributed

quantum computing”. In: IEEE Network 34.1 (2019), pp. 137–143 (cit. on pp. 2, 4, 7).

[6] Rodney Van Meter and Simon J Devitt. “The path to scalable distributed quantum

computing”. In: Computer 49.9 (2016), pp. 31–42 (cit. on p. 2).

[7] Andrew Eddins et al. “Doubling the size of quantum simulators by entanglement forging”.

In: PRX Quantum 3.1 (2022), p. 010309 (cit. on p. 2).

[8] Yehan Liu et al. “Design of interacting superconducting quantum circuits with quasi-

lumped models”. In: American Physical Society (March Meeting). 2022 (cit. on p. 2).

[9] Alysson Gold et al. “Entanglement across separate silicon dies in a modular supercon-

ducting qubit device”. In: npj Quantum Information 7.1 (2021), pp. 1–10 (cit. on pp. 2,

3).

6Parallel-based algorithms – e.g. see Ref. [74] for a parallel algorithm solving the quantum Fourier transform
– are natively meant to work on distributed architectures.

8

Chapter 1. Introduction

[10] David Kielpinski, Chris Monroe, and David J Wineland. “Architecture for a large-scale

ion-trap quantum computer”. In: Nature 417.6890 (2002), pp. 709–711 (cit. on pp. 2, 3).

[11] LJ Stephenson et al. “High-rate, high-fidelity entanglement of qubits across an elementary

quantum network”. In: Physical review letters 124.11 (2020), p. 110501 (cit. on pp. 2, 5).

[12] H Jeff Kimble. “The quantum internet”. In: Nature 453.7198 (2008), pp. 1023–1030 (cit.

on pp. 2, 7).

[13] Stefano Pirandola and Samuel L Braunstein. “Physics: Unite to build a quantum Inter-

net”. In: Nature News 532.7598 (2016), p. 169 (cit. on p. 2).

[14] Wolfgang Dür, Raphael Lamprecht, and Stefan Heusler. “Towards a quantum internet”.

In: European Journal of Physics 38.4 (2017), p. 043001 (cit. on pp. 2, 7).

[15] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet: A vision for

the road ahead”. In: Science 362.6412 (2018) (cit. on pp. 2, 7).

[16] Davide Castelvecchi. “The quantum internet has arrived (and it hasn’t)”. In: Nature

554.7690 (2018), pp. 289–293 (cit. on p. 2).

[17] Nikolai Lauk et al. “Perspectives on quantum transduction”. In: Quantum Science and

Technology 5.2 (2020), p. 020501 (cit. on p. 3).

[18] Martin JA Schütz and Martin JA Schütz. “Universal quantum transducers based on sur-

face acoustic waves”. In: Quantum Dots for Quantum Information Processing: Controlling

and Exploiting the Quantum Dot Environment (2017), pp. 143–196 (cit. on p. 3).

[19] Benjamin M Brubaker et al. “Optomechanical ground-state cooling in a continuous and

efficient electro-optic transducer”. In: Physical Review X 12.2 (2022), p. 021062 (cit. on

p. 3).

[20] Timothy P McKenna et al. “Cryogenic microwave-to-optical conversion using a triply

resonant lithium-niobate-on-sapphire transducer”. In: Optica 7.12 (2020), pp. 1737–1745

(cit. on p. 3).

[21] Emil Zeuthen et al. “Figures of merit for quantum transducers”. In: Quantum Science

and Technology 5.3 (2020), p. 034009 (cit. on p. 3).

[22] Yao-Lung L Fang, Huaixiu Zheng, and Harold U Baranger. “One-dimensional waveguide

coupled to multiple qubits: photon-photon correlations”. In: EPJ Quantum Technology

1.1 (2014), pp. 1–13 (cit. on p. 3).

[23] Changchun Zhong et al. “Proposal for heralded generation and detection of entangled

microwave–optical-photon pairs”. In: Physical review letters 124.1 (2020), p. 010511 (cit.

on p. 3).

[24] Stefan Krastanov et al. “Optically Heralded Entanglement of Superconducting Systems

in Quantum Networks”. In: Physical Review Letters 127.4 (2021), p. 040503 (cit. on p. 3).

[25] Galan Moody et al. “2022 Roadmap on integrated quantum photonics”. In: Journal of

Physics: Photonics 4.1 (2022), p. 012501 (cit. on p. 3).

[26] TP Harty et al. “High-fidelity preparation, gates, memory, and readout of a trapped-ion

quantum bit”. In: Physical review letters 113.22 (2014), p. 220501 (cit. on p. 3).

[27] CJ Ballance et al. “High-fidelity two-qubit quantum logic gates using trapped calcium-43

ions”. In: arXiv preprint arXiv:1406.5473 (2014) (cit. on p. 3).

9

Chapter 1. Introduction

[28] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet: A vision for

the road ahead”. In: Science 362.6412 (2018), eaam9288 (cit. on p. 3).

[29] Pengfei Wang et al. “Single ion qubit with estimated coherence time exceeding one hour”.

In: Nature communications 12.1 (2021), pp. 1–8 (cit. on p. 3).

[30] C Monroe et al. “Large-scale modular quantum-computer architecture with atomic mem-

ory and photonic interconnects”. In: Physical Review A 89.2 (2014), p. 022317 (cit. on

p. 3).

[31] Shaobo Gao et al. “Optimization of Scalable Ion-Cavity Interfaces for Quantum Photonic

Networks”. In: Physical Review Applied 19.1 (2023), p. 014033 (cit. on p. 3).

[32] Will Salmon et al. “Gauge-independent emission spectra and quantum correlations in the

ultrastrong coupling regime of open system cavity-QED”. In: Nanophotonics 11.8 (2022),

pp. 1573–1590 (cit. on p. 3).

[33] Colin D Bruzewicz et al. “Trapped-ion quantum computing: Progress and challenges”.

In: Applied Physics Reviews 6.2 (2019), p. 021314 (cit. on pp. 3, 4).

[34] Ümit Kaya. The Laser Optical Cavity. https://chem.libretexts.org/@go/page/13651

(cit. on p. 3).

[35] Daniele Cuomo et al. “Optimized Compiler for Distributed Quantum Computing”. In:

ACM Transactions on Quantum Computing (2023) (cit. on p. 4).

[36] Marcello Caleffi and Angela Sara Cacciapuoti. “Quantum Switch for the Quantum Inter-

net: Noiseless Communications through Noisy Channels.” In: IEEE Journal on Selected

Areas in Communications 38.3 (2020), pp. 575–588 (cit. on p. 4).

[37] Wolfgang Paul. “Electromagnetic traps for charged and neutral particles”. In: Reviews of

modern physics 62.3 (1990), p. 531 (cit. on p. 4).

[38] Laurent Stephenson. “Entanglement between nodes of a quantum network”. PhD thesis.

University of Oxford, 2019 (cit. on pp. 4, 5).

[39] DP Nadlinger et al. “Experimental quantum key distribution certified by Bell’s theorem”.

In: Nature 607.7920 (2022), pp. 682–686 (cit. on p. 4).

[40] Daniel KL Oi, Simon J Devitt, and Lloyd CL Hollenberg. “Scalable error correction in

distributed ion trap computers”. In: Physical Review A 74.5 (2006), p. 052313 (cit. on

pp. 4, 7).

[41] Norbert Lütkenhaus, John Calsamiglia, and K-A Suominen. “Bell measurements for tele-

portation”. In: Physical Review A 59.5 (1999), p. 3295 (cit. on p. 5).

[42] Raju Valivarthi et al. “Efficient Bell state analyzer for time-bin qubits with fast-recovery

WSi superconducting single photon detectors”. In: Optics express 22.20 (2014), pp. 24497–

24506 (cit. on p. 5).

[43] Klaus Mattle et al. “Dense coding in experimental quantum communication”. In: Physical

Review Letters 76.25 (1996), p. 4656 (cit. on p. 5).

[44] Filip Rozpedek et al. “Optimizing practical entanglement distillation”. In: Physical Review

A 97.6 (2018), p. 062333 (cit. on p. 6).

[45] Norbert Kalb et al. “Entanglement distillation between solid-state quantum network

nodes”. In: Science 356.6341 (2017), pp. 928–932 (cit. on p. 6).

10

https://chem.libretexts.org/@go/page/13651

Chapter 1. Introduction

[46] Xiao-Min Hu et al. “Long-distance entanglement purification for quantum communica-

tion”. In: Physical Review Letters 126.1 (2021), p. 010503 (cit. on p. 6).

[47] Michael A Nielsen. “Quantum computation by measurement and quantum memory”. In:

Physics Letters A 308.2-3 (2003), pp. 96–100 (cit. on p. 7).

[48] Rodney Van Meter et al. “A quantum internet architecture”. In: 2022 IEEE International

Conference on Quantum Computing and Engineering (QCE). IEEE. 2022, pp. 341–352

(cit. on p. 7).

[49] Wojciech Kozlowski et al. Architectural Principles for a Quantum Internet. Internet-

Draft draft-irtf-qirg-principles-03. Work in Progress. Internet Engineering Task Force,

June 2021. 39 pp. (cit. on p. 7).

[50] Mihir Pant et al. “Routing entanglement in the quantum internet”. In: npj Quantum

Information 5.1 (2019), pp. 1–9 (cit. on p. 7).

[51] Seid Koudia et al. “How deep the theory of quantum communications goes: Superad-

ditivity, superactivation and causal activation”. In: IEEE Communications Surveys &

Tutorials (2022) (cit. on p. 7).

[52] Jessica Illiano et al. “Quantum Internet: from Medium Access Control to Entanglement

Access Control”. In: arXiv preprint arXiv:2205.11923 (2022) (cit. on p. 7).

[53] Guus Avis, Filip Rozpedek, and Stephanie Wehner. “Analysis of Multipartite Entangle-

ment Distribution using a Central Quantum-Network Node”. In: arXiv preprint arXiv:2203.05517

(2022) (cit. on p. 7).

[54] Julius Wallnöfer et al. “Multipartite state generation in quantum networks with optimal

scaling”. In: Scientific reports 9.1 (2019), pp. 1–18 (cit. on p. 7).

[55] Yao Lu et al. “Global entangling gates on arbitrary ion qubits”. In: Nature 572.7769

(2019), pp. 363–367 (cit. on p. 7).

[56] Jorge Casanova et al. “Quantum simulation of interacting fermion lattice models in

trapped ions”. In: Physical review letters 108.19 (2012), p. 190502 (cit. on p. 7).

[57] Svetoslav S Ivanov, Peter A Ivanov, and Nikolay V Vitanov. “Efficient construction of

three-and four-qubit quantum gates by global entangling gates”. In: Physical Review A

91.3 (2015), p. 032311 (cit. on p. 7).

[58] Esteban A Martinez et al. “Compiling quantum algorithms for architectures with multi-

qubit gates”. In: New Journal of Physics 18.6 (2016), p. 063029 (cit. on p. 7).

[59] Liam Madden and Andrea Simonetto. “Best approximate quantum compiling problems”.

In: ACM Transactions on Quantum Computing 3.2 (2022), pp. 1–29 (cit. on p. 8).

[60] Yuan-Hang Zhang et al. “Topological quantum compiling with reinforcement learning”.

In: Physical Review Letters 125.17 (2020), p. 170501 (cit. on p. 8).

[61] Peter J Karalekas et al. “A quantum-classical cloud platform optimized for variational

hybrid algorithms”. In: Quantum Science and Technology 5.2 (2020), p. 024003 (cit. on

p. 8).

[62] Lorenzo Moro et al. “Quantum Compiling by Deep Reinforcement Learning”. In: Nature

Communications Physics 4.178 (2021) (cit. on p. 8).

11

Chapter 1. Introduction

[63] Marco Maronese et al. “Quantum compiling”. In: Quantum Computing Environments.

Springer, 2022, pp. 39–74 (cit. on p. 8).

[64] Kyle EC Booth et al. “Comparing and integrating constraint programming and temporal

planning for quantum circuit compilation”. In: 28th international conference on automated

planning and scheduling. 2018 (cit. on p. 8).

[65] Davide Ferrari and Michele Amoretti. “Noise-adaptive quantum compilation strategies

evaluated with application-motivated benchmarks”. In: Proceedings of the 19th ACM In-

ternational Conference on Computing Frontiers. 2022, pp. 237–243 (cit. on p. 8).

[66] Stefan Hillmich, Alwin Zulehner, and Robert Wille. “Exploiting quantum teleportation

in quantum circuit mapping”. In: 2021 26th Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE. 2021, pp. 792–797 (cit. on p. 8).

[67] Lukas Burgholzer, Sarah Schneider, and Robert Wille. “Limiting the Search Space in

Optimal Quantum Circuit Mapping”. In: 2022 27th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC). IEEE. 2022, pp. 466–471 (cit. on p. 8).

[68] Dmitri Maslov, Sean M Falconer, and Michele Mosca. “Quantum circuit placement”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27.4

(2008), pp. 752–763 (cit. on p. 8).

[69] Marcos Yukio Siraichi et al. “Qubit allocation”. In: Proceedings of the 2018 International

Symposium on Code Generation and Optimization. 2018, pp. 113–125 (cit. on p. 8).

[70] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. “Mapping quantum circuits to

IBM QX architectures using the minimal number of SWAP and H operations”. In: 2019

56th ACM/IEEE Design Automation Conference. IEEE. 2019, pp. 1–6 (cit. on p. 8).

[71] Gushu Li, Yufei Ding, and Yuan Xie. “Tackling the qubit mapping problem for NISQ-era

quantum devices”. In: Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems. 2019, pp. 1001–1014 (cit. on

p. 8).

[72] Alwin Zulehner and Robert Wille. “Compiling SU(4) quantum circuits to IBM QX ar-

chitectures”. In: Proceedings of the 24th Asia and South Pacific Design Automation Con-

ference. 2019, pp. 185–190 (cit. on p. 8).

[73] Toshinari Itoko et al. “Quantum circuit compilers using gate commutation rules”. In:

Proceedings of the 24th Asia and South Pacific Design Automation Conference. 2019,

pp. 191–196 (cit. on p. 8).

[74] Richard Cleve and John Watrous. “Fast parallel circuits for the quantum Fourier trans-

form”. In: Proceedings 41st Annual Symposium on Foundations of Computer Science.

IEEE. 2000, pp. 526–536 (cit. on p. 8).

12

Chapter 2

Quantum logic essentials

Chapter 2. Quantum logic essentials

2.1 Quantum programming

2.1.1 Universality

In this section we report some preliminaries that explain how a quantum processor can run any

algorithm by means of a restricted set of gates. Such a restricted set is called universal for this

reason. We briefly get through the Boolean logic – which governs classical computation – and

how we can express any Boolean function within the quantum framework. This gives provide

the reader with a perspective of how quantum logic can express a wider group of functions.

Boolean logic

|b1⟩ |b1⟩

|b2⟩ |b2⟩

|1⟩ |¬(b1∧b2)⟩

Figure 2.1: ¬(b1∧b2) oper-
ator by means of a Toffoli.

Classical computation is deeply based on Boolean logic. Since

classical technologies are really advanced and benefits from many

years of research on physical implementations, several Boolean

operators find direct implementation as classical gates. However,

our interested is narrowed to how we can express any boolean

function by means of quantum operators. Hence we can restrict

the discussion to a single logical operator: ¬(b1 ∧ b2). In fact, for

any Boolean variables b1, b2 ∈ {0, 1}, the ¬(b1 ∧ b2) operator1 is

universal to Boolean logic [1], hence we need to find a quantum

operator able to realize it. The Toffoli operator [2] does the job. Formally, a classical state

b1 · b2 gets encoded in the quantum state |b1⟩ ⊗ |b2⟩ ⊗ |1⟩. By applying the Toffoli operator

to the encoded system, the last qubit encodes the Boolean state ¬(b1 ∧ b2). This is shown in

Figure 2.1.

To date, there is no direct physical implementation for the Toffoli operator. It needs to be

expressed as a composition of quantum operators physically realizable.

Quantum logic

We here report a step-by-step introduction to quantum logic and what a quantum processors

should have to provide universal computing. Quantum computing works with the logic of pure

states. A Hilbert space H of dimension d is closed under the unitary group of degree d. This

means that for any pure state |φ⟩ ∈ H and any unitary operator U, it results U |φ⟩ ∈ H.

A generic quantum algorithm can be expressed as a system initialized to |0⟩⊗d and a unitary

U operating on it. Figure 2.2 gives a circuit representation.

|0⟩⊗d U U|0⟩⊗d

Figure 2.2: Generic algorithm expressed as a unitary, operating over a |0⟩⊗d state.

Since quantum processors do not supply as primitive operator a generic unitary, this is

subject to one or more steps of decomposition or synthesis. A generic decomposition is showed

in circuit of Figure 2.3.

A universal operator set should be efficient, in the sense that the overhead caused by the

decomposition from a d-degree unitary to the operator set is upper-bounded by some polynomial

1The value is true iff no more than one variable is true.

14

Chapter 2. Quantum logic essentials

. . .|0⟩⊗d U1 U2 Uk U|0⟩⊗d

Figure 2.3: Generic decomposition of U into k unitaries.

function. There are several (historically) important results showing how such a requirement

is achievable. We start from one coming from the work done in [3, 4], showing that, given a

generic 2-degree unitary U – i.e. it operates over a single qubit –, the following operator is

universal:

∧(U) ≡ |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ U (2.1)

U

Figure 2.4: Circuit represen-
tation for the ∧(U) operator.

This is a controlled-U operator in Feynmann’s notation [5]. We

will use this notation throughout this thesis because of its versa-

tility. Even if it is a bit outdated, we think it helps to highlight

the logic behind the operators; it also helps us to keep consis-

tency throughout the chapters. In the circuit model the subject

operator appears as in Figure 2.4.

One can notice that the group of equation (2.1) is pretty

compact, as it involves only 2-qubit operators where one of them

act always as control. Nevertheless, some decomposition step is necessary to get closer to what

real processors can actually offer. To this aim, we need to introduce some further operators.

The first one is known as special unitary. We refer to this operator as Vα,β,δ and it is defined

as follows [6]:

Vα,β,δ ≡

(
e
i(α+β)/2 cos δ/2 e

i(α-β)/2 sin δ/2

−ei(-α+β)/2 sin δ/2 e
i(-α-β)/2 cos δ/2

)
(2.2)

The second operator represent a global phase shift :

Gγ ≡

(
eiγ 0

0 eiγ

)
(2.3)

It results that special unitaries composed with global phase shifts characterizes the group of

unitaries. It follows the same statement in matrix form:

Uγ,α,β,δ ≡ GγVα,β,δ (2.4)

As consequence, the first decomposition we can apply comes from the circuit equivalence of

Figure 2.5.

Uγ,α,β,δ

≡
Vα,β,δ Gγ

Figure 2.5: First decomposition as a result of equivalence (2.4).

A conditioned global phase shift is equivalent to a relative phase shift. Thus, let Rγ such an

operator, defined as follows:

Rγ ≡

(
1 0

0 eiγ

)
(2.5)

15

Chapter 2. Quantum logic essentials

≡
Rγ

Gγ

Figure 2.6: Circuit representation of
the equivalence ∧(Gγ) ≡ Rγ ⊗ 1.

The above statement allows us to synthesize ∧(Gγ) into

Rγ⊗1. Figure 2.6 shows the corresponding circuit equiv-

alence.

The final step to achieve universal computing through

physically realizable operators is to decompose ∧(Vα,β,δ).
To this aim, let us introduce the rotational operators over

the Pauli axes. Namely, Xγ ≡ e-iX
γ/2, Yγ ≡ e-iY

γ/2 and

Zγ ≡ e-iZ
γ/2. Notice also that

e-iE
γ/2 = cos γ/2− iE sin γ/2, (2.6)

holds for any E ∈ {X, Y, Z}. Therefore, whenever γ = π, each rotational operator relates to the

corresponding Pauli operator X, Y or Z. Formally, they are equivalent up to the global phase

G-π/2 ≡ −i. E.g. Xπ ∼= X.

Now we proceed by reporting the results coming from [6]. Let Aα,δ, Bδ,α,β , Cα,β be a triplet

of special unitaries defined as follows:

• Aα,δ = Yδ/2Zα;

• Bδ,α,β = Y-δ/2Z-(α+β)/2;

• Cα,β = Z(β-α)/2.

With such a triplet, together with ∧(X) we are able to decompose ∧(Vα,β,δ), according to the

circuit equivalence shown in Figure 2.7.

Vα,β,δ

≡
Cα,β Bδ,α,β Aα,δ

Figure 2.7: Decomposition of ∧(Vα,β,δ).

We can finally show the universality by composing the two results and getting a decompo-

sition for ∧(Uγ,α,β,δ) – see Figure 2.8.

≡
Rγ

Uγ,α,β,δ Cα,β Bδ,α,β Aα,δ

Figure 2.8: Decomposition of ∧(Uγ,α,β,δ).

Theorem. The IBM gate set [7, 8, 9, 10] is universal.

Proof. All the processors supplied by the IBM cloud have gate set {Zγ , Xπ/2, X,∧(X)}. To prove

the universality of such a set, notice that Rγ ∼= Zγ . Furthermore, any special unitary Vα,β,δ can

be factorized as follows [6]:

Vα,β,δ ≡ ZαYδZβ

Since an IBM processor can run natively a generic Zγ gate, we only need to synthesise Yδ. This

can be done, by using operations from the gate set only:

Yδ ≡ Xπ/2Zδ+πX3π/2

16

Chapter 2. Quantum logic essentials

In conclusion, since the gate set also provides ∧(X), any ∧(U) can be realized through a compo-

sition of operations coming from the IBM gate set.

Not all the existing processors are universal. D-Wave ones are an example. In fact, the

company goal is to build specific-purpose processors, meant to explore the field of optimization

problems through quantum annealing procedures [11].

Relation between classical and quantum logic

It has been shown [12] that, to achieve quantum universality, one can start from an operator

universal in the Boolean functions, i.e. the Toffoli, and by adding only a single 1-qubit operator,

the operator set is quantum universal. The subject operator can be expressed as Xπ/2Zπ/2Xπ/2
2.

As stated in [13], this “[...] can be interpreted as saying that Fourier transform is really all

there is to quantum computation on top of classical”, since Xπ/2Zπ/2Xπ/2 corresponds to a Fourier

transform.

2.1.2 The Clifford group

The Clifford group C dues its importance to its implication in fault-tolerant computation [14],

simulation [15] and benchmarking [16]. Such a group is generated by 3 operators:

C ≡ ⟨∧(X), Xπ/2, Zπ/2⟩. (2.7)

C can be efficiently simulated by a classical computer [17]. This has as comeback that one

can evaluate fault-tolerant protocols classically. As drawback, it is not universal. However to

achieve universality while at the same time providing an operator set which can realize any

quantum evolution efficiently one need to add a single 1-qubit operator, usually assumed to be

Rπ/4
3 or the corresponding in rotational terms Zπ/4. In fact, any unitary of dimensionality 2

can be approximated efficiently and with arbitrary precision [18, 19, 20]. Formally, by properly

composing single qubit operators coming from C – i.e. Xπ/2, Zπ/2 – together with Zπ/4 one can

achieve universality in the dense sense, by only introducing a polynomial overhead4.

Since we are facing with a discrete operator set composed by even fractions of π only, we

can re-state the nomenclature. Namely, the same universal operator set can be expressed in

the following intuitive way:

C+ ≡ ⟨∧(X), X1/2, Z
1/2, Z

1/4⟩. (2.8)

This nomenclature stresses the logic behind the relation Pauli-rotational gates, as the power

function degree says how many times one needs to apply the rotational gate to simulate a Pauli

operator.

2As well as Yπ/2X or as the more common Hadamard gate H. We are not going to use the latter in this thesis
as we opted to keep the treating closer to real gate implementations.

3Commonly referred as the T gate.
4Other extensions of C may be of interest. E.g. in Ref. [21] authors consider ∧(Zπ/2) in their generator set.

17

Chapter 2. Quantum logic essentials

2.1.3 Programming in higher order framework

Time-ordered framework

So far we have implicitly assumed that a quantum evolution undergoes a time-ordered definition.

Formally, consider two unitaries U and V and a state |ϑ⟩. Then, any time-ordered framework

force us to chose whether U operates on |ϑ⟩ before or after V. In circuit representation, these

two cases are respectively

|ϑ⟩ U V VU|ϑ⟩

and

|ϑ⟩ V V UV|ϑ⟩

However quantum mechanics allows to think of more general frameworks, where, not only

states, but also operators can be superposed to create more complex systems. Such systems may

bring new non-classical advantages. Attempts in formally designing a higher-order framework

is an active branch of research [22, 23], but this is out of scope. Rather, in the following, we

work with a higher-order oracle implementing an indefinite casual order.

Indefinite causal orders

The indefinite causal order is an interesting property of quantum mechanics. In brief, it is a

quantum evolution where two or more operations occur, but the order in which they occur is

causally ordered by an extra quantum system. This creates a superposition of causal orders

among those operations. Such a resource can be used for several purposes. In Refs. [24, 25, 26],

the indefinite causal orders is considered for thermalization protocols. A big line of investigation

deals with enhancing quantum communication [27, 28, 29, 30]; we gave the first experimental

witness for such a resource [31]5. As regards computation, indefinite causal order would speed

up tasks that involves permuting operations [32, 33, 34]. In Ref. [35] authors implement a

photonic-based discrimination protocol solved by superposing unitaries.

The indefinite causal orders for computation consists essentially on superposing two or more

unitaries. The superposition is then coherently conditioned to an auxiliary qubit, called control

qubit. For the case of 2 unitaries U, V, the superposing unitary operator S can be defined as

follows:

S =

[
UV 0

0 VU

]
. (2.9)

By treating the operator S as an oracle – i.e. it takes a unit of time to run – it brings the

advantage of evaluating two different orders at the same time. This advantage comes from the

fact that we are extending the standard framework – which originally could only superpose

quantum states – to being able to superpose unitaries. This can be used, for example, in

Information Processing to distinguish between different evolution by means of a single check

[35]. This is unthinkable with standard frameworks where the order of execution of the unitaries

must be defined.

However, implementing S does not necessarily reflect the advantage coming from theory. It

is necessary to make a distinction to what is a real implementation of S and what is more like

5We report this in Ch. 3.

18

Chapter 2. Quantum logic essentials

a simulation. In other words, implementing S means that the physical settings preserve the

theoretical advantages. Only in this case one can treat S as an oracle. It is an open question if

such a real implementation will ever be possible [36, 37]. In the attempt of finding a solution,

a framework meant to superpose gravitational fields has been proposed [38].

Stemming from the above, what we can do now is to realize S by means of simulation.

Namely, an equivalent evolution which does not preserve the speed-up advantage. An example

is shown in Figure 2.9. This example immediately shows the theoretical loss, as it requires 2 use

|ϑ⟩
S

|κ⟩
≃

|ϑ⟩ U V U

|κ⟩

Figure 2.9: Simulation of oracle S; losing the theoretical advantage.

for one of the unitaries [39]. Specifically, since U operators run under complementary conditions,

one of them does not run, meaning that one time step is always dedicated to perform an identity

operation 1 – an idle time.

|ϑ⟩ U V

|0⟩ V U

|κ⟩

Figure 2.10: Simulation of oracle
S by means an auxiliary qubit.

A simulation which looks more adapt to reflect the natu-

ral behaviour of S is represented in Figure 2.10. This circuit

makes use of an auxiliary qubit initialized to |0⟩. A swap

conditioned on |κ⟩ is the only potentially entangling gate

between the three states. However, |0⟩ has no impact on the

overall system6, up to the permutation caused by the swap

operation7. It follows that by tracing out such a sub-system,

the subject circuit implements S. Thanks to the auxiliary

qubit, the two different orders can be expressed in parallel.

Nevertheless notice that it make use of a complex gate at the beginning – i.e. a controlled

swap. However, to date, there is no technology providing such a gate natively, hence it is

necessary to consider it as an oracle to not lose the advantage. The best we can do now is

providing an efficient decomposition for it, aware of the fact that we have partial knowledge of

the input – i.e. auxiliary qubit being in state |0⟩. Figure 2.11 shows an optimized decomposition

w.r.t. the standard one [40].

|0⟩ X-1/2 Z-1/4 Z1/4 Z-1/4 Z1/4 X1/2 ∼= |0⟩

Figure 2.11: Optimized decomposition of the controlled swap operation.

Unfortunately, as long as native controlled swap are not physically implemented, the speed-

up advantage – w.r.t. a time-ordered framework – is still just theoretical and it cannot be

witnessed on real implementation. This is especially true when trying to superpose more than

6I.e., no phase shift leaks in nor out of state |0⟩.
7Which can be retrieved through a non-destructive measurement Z ⊗ Z. Non-destructive measurements are

introduced in Chapter 3.

19

Chapter 2. Quantum logic essentials

two unitaries. Some investigations are available in Refs. [41, 34], where the computational

speed up is preserved as long as the swaps are considered oracles.

Nevertheless, a non-native implementation of indefinite causal orders may still bring some

sort of quantum advantage, as it can be used for magnitude amplification [42, 43, 44]8. In

Section 3.3, we treat this concept – also experimentally – to enhance communication capacity.

2.2 Entanglement-based computation

Entanglement is probably the most fascinating property coming from quantum mechanics. It

is also the most promising resource.

To our purpose we focus on one of the four Bell states. These states are fully entangled,

meaning that their correlation is maximal and the system is said to be close. Let us introduce

the |Φ+⟩ state, defined as follow:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

Since the two system in |Φ+⟩ present a non-local correlation, this state can be used to perform

non-local operations. Physically speaking, this means that one need to perform what is called

entanglement generation and distribution [46, 47, 48]:

• generation; despite the non-local correlation, the generation happens between system

which are in proximity one another. Generating a maximally entangled state with high

fidelity is generally hard and time-consuming.

• distribution; once that the entanglement is ready, it is possible to relocate the two systems.

The entanglement is, in principle, preserved.

Below we outline some of the most promising resources for distributed quantum computing, all

exploiting entanglement. Most of what follows comes from the work published in [49]. Before

proceeding, we need to introduce a formalism for measurement-based computation.

Measurement-based computation

A computing paradigm is called measurement-based whenever the quantum computation is

interleaved by measurements acting on a sub-system [50]. The output of a measurement is then

used to perform classical conditioned quantum operations.

A measurement over a Pauli axis E generates a Boolean b:

⟨E⟩,b

The output can then be used to choose whether performing or not a unitary operation U over

another qubit:

Ub

Whenever to a Pauli gate follows a Pauli measurement, there is no need to apply the former.

Precisely, instead of applying the quantum gate followed by the measurement, one can always

8Useful, e.g., to implement Grover’s algorithm oracle [45]

20

Chapter 2. Quantum logic essentials

perform the measurement and then applying a classical correction on the output, corresponding

to the Pauli gate. Such a technique may be referred as pushing technique as, intuitively, one

can picture this manipulation as pushing the gate beyond the measurement. See circuits in

Figure 2.12 for an example.

⟨Z⟩,b1X ≡ ⟨Z⟩,¬b1 ⟨X⟩,b1Z ≡ ⟨X⟩,¬b1

Figure 2.12: Pushing technique to avoid quantum gates.

2.2.1 Teleportation

Pi

Pj

⟨X⟩,b1

⟨Z⟩,b2

|φ⟩

|Φ+⟩
Zb1 Xb2 |φ⟩

Figure 2.13: Quantum teleportation protocol
between two parties.

The first resource we report is called teleporta-

tion [48]. It is a protocol that, by fact, tele-

port quantum information from a system to

another, by means of entanglement. Figure

2.13 shows the protocol steps in circuit rep-

resentation. The wires are grouped by color,

representing different processor, or memories.

A generic processor is referred as Pi. In the

case of teleportation 2 processors Pi, Pj are in-

volved, which has the roles of sender and re-

ceiver. At the beginning of the protocol, the quantum information |φ⟩ is located within the

sender, together with half of the Bell state |Φ+⟩. The receiver need to store the other part of the

Bell state. At this point the receiver need to wait that the receiver perform a few operations

meant to “inject” the information within its half part of the entangled state. Because of the

entanglement, now the quantum information is already spread all over the system, which means

that Pj , the receiver, also has partial knowledge of it.

The end of this part consists on measuring the entire system in the orthogonal basis X⊗ Z.

This is a necessary step in order to ensure that the receiver will get exactly |φ⟩. In fact, the

measurement will produce two boolean values, b1, b2, that the receiver will need to correct its

state.

To understand how such a resource can be used in computation, consider that it is often

the case where two states need to interact but they are stored in such a position that does not

allow them to do so, unless some middle step is performed to approach them. This means that

a routing protocol would take care of moving those states up to a couple of qubits which are

able to interact one another. This can be done by means of teleportation [51]. However, in local

quantum computation, it is more common to find some smart criteria to re-arrange the state

storage when necessary, by means of swapping protocols [52, 53, 54]. Even if this is the most

common approach, it may be smart as well to instead consider teleportation as an alternative

to swapping protocols.

When considering distributed architecture, this are generally assumed to deeply exploit

entanglement for their interconnection. Hence, it is more likely to see in the future proposal

exploiting teleportation, rather than swapping.

21

Chapter 2. Quantum logic essentials

2.2.2 Non-local operations

Pi

Pj

⟨Z⟩, b1

⟨X⟩, b2

|φ⟩ Zb2

|Φ+⟩

|ϑ⟩ Xb1

≡

Pi

Pj

|φ⟩

|ϑ⟩

Figure 2.14: Tele-gate performing ∧(X) between qubits belonging different processors.

The teleportation protocol results to be a basic example of a wider class of teleporting

protocols. It is in fact possible to, not only teleport state, but entire operations. For this

reason the procedure we report here can be also referred as tele-gate.

We already discussed the importance of the ∧(X) operator for quantum computation in

Section 2.1.1. We here report a way to perform such an operation between states belonging to

different processors by means of non-local operations. In fact, since we are under the assumption

the processors inter-connectivity is fundamentally based on distributed entangled states, a ∧(X)
operator can be implemented within a few steps. These steps are shown in Figure 2.14.

Notice that performing a non-local operation is not limited to the consumption of a Bell

state |Φ+⟩. Rather, as discussed in Sec. 4.8, one can use any Bell state. For the sake of

simplicity, we will always refer to |Φ+⟩ states.

Pi

Pj

⟨Z⟩, b1

⟨X⟩, b2

|φ⟩ Zb2

|Φ+⟩

|ϑ⟩ Zb1

Figure 2.15: Tele-gate performing ∧(Z) be-
tween qubits belonging to different processors.

Similarly to the teleportation protocol – see

Figure 2.13 –, there is a step meant two inject

the control and target states within the entan-

gled state. Thanks to this step, some quantum

information is exchanged between the two par-

ties. However, to ensure the equivalence with

the subject operator, a measurement step is

necessary. Hence, the state that was originally

fully entangled in |Φ+⟩ is measured in the or-

thogonal basis Z⊗ X. The output b1, b2 is then

subject to a cross communication through clas-

sical channels and eventually used to perform

Pauli corrections, i.e., the last step of the procedure: Zb2 over the control qubit and Xb1 over

the target qubit.

Mindful of Section 2.1.1, we don’t need further non-local operations in order to achieve

universal computation. However, it is useful to know that other tele-gates are certainly possible.

E.g. Figure 2.15 shows the procedure to perform a ∧(Z) non-local operator.

2.2.3 Entanglement swap

Here we report a protocol known as entanglement swap. It is a promising procedure as it

models scalable distributed architecture. Figure 2.16 shows the parties involved and their

actions. Specifically, assume that two processors Pi, Pj cannot rely on a direct inter-connection

22

Chapter 2. Quantum logic essentials

through an entanglement pair. However they both share an interconnection with a middle

processor Pk. The middle processor has therefore stored in his memory two half of entangled

pairs. By means of a local ∧(X) on his system, Pk inter-connects Pi with Pj . As usual, an

orthogonal measurement X⊗ Z is necessary to apply eventual corrections over Pi and Pj , which

at the end of the procedure share a fully entangled state, ensuring the new inter-connection.

Pi

Pk

Pj

⟨X⟩, b1

⟨Z⟩, b2

|Φ+⟩
Zb2

|Φ+⟩

|Φ+⟩
Xb1

Figure 2.16: The entanglement swap protocol
inter-connects two processors by means of an
intermediate one, which has direct connection
with both of them.

Depending on the time model adopted

when dealing with this procedure, the inter-

connectivity among the processors find differ-

ent treating. For example, the work done in

[55] has a more dynamic-like approach, mak-

ing a distinction between link and virtual link.

Such a choice probably comes from an interest

in modeling a network of quantum technolo-

gies, where it is more common to deal with on-

line combinatorial problems [56]. Instead, our

focus here is to smartly model distributed ar-

chitecture meant to perform algorithms. This

brings us to see the inter-connectivity within a

more static time model; which translates into

a simpler modeling for the connectivity. We explain this in detail within next sub-section 2.2.4.

2.2.4 Entanglement paths

As our focus is on the treating of distributed quantum computing, we here provides a non-

local ∧(X), which makes use of entanglement swaps. The circuit in Figure 2.17 comes from

the combination of the basic implementation of a non-local ∧(X) – see Section 2.2.2 – with the

entanglement swap protocol. It is important to notice that all the measurements happen at the

Pi

Pk

Pj

⟨Z⟩, b1

⟨X⟩, b2

⟨Z⟩, b3

⟨X⟩, b4

|φ⟩ Zb2⊕b4

|Φ+⟩

|Φ+⟩

|ϑ⟩ Xb1⊕b3

≡

Pi

Pj

|φ⟩

|ϑ⟩

Figure 2.17: Tele-gate ∧(X) by means of entanglement swap.

same time. Even more important to know is that this result can be generalized to any number

of middle processors Pk1 , Pk2 , . . . , Pkm . For this reason we refer to {Pi, Pk1 , Pk2 , . . . , Pkm , Pj}
as an entanglement path of length m+ 2. We now give an inductive proof for this result.

Theorem. An entanglement path {Pi1 , Pi2 , . . . , Pim} has an implementation with depth 4.

23

Chapter 2. Quantum logic essentials

Proof. Consider an entanglement path of length 2. A naive realization consists on putting in

strict sequence two entanglement swaps:

⟨X⟩,b1

⟨Z⟩,b2

⟨X⟩,b3

⟨Z⟩,b4

|Φ+⟩
Zb1 Zb3

|Φ+⟩
Xb2

|Φ+⟩
Xb4

Pauli gates are the only ones we are going to optimize; since the others are independent and

no optimization can be applied. What follows is the base case for the induction:

⟨X⟩,b3

⟨Z⟩,b4

Zb1 Zb3

Xb2

Xb4

≡
⟨X⟩,b3

⟨Z⟩,b4

Zb1⊕b3

Xb2⊕b4

The r.h.s. of the above equation has post-processing composed by Zb1⊕b3 on first qubit and

Xb2⊕b4 on last qubit. Notice that the measurements are independent from other operations.

By assuming that such a shape is preserved in the inductive step, we show that this trans-

formation can be applied to any length m:

⟨X⟩,b2m-1

⟨Z⟩,b2m

Zb1⊕b3⊕···⊕b2m-3 Zb2m-1

Xb1⊕b3⊕···⊕b2m-2

Xb2m

≡
⟨X⟩,b2m-1

⟨Z⟩,b2m

Zb1⊕b3⊕···⊕b2m-1

Xb1⊕b3⊕···⊕b2m

This proves that we can always consider an entanglement path {Pi1 , Pi2 , . . . , Pim} to have circuit
depth 4.

We just showed an efficient implementation for the entanglement path. Now we do one last

step to exploit such a result and performing a generalized remote operation efficiently.

Theorem. A tele-gate of entanglement path {Pi1 , Pi2 , . . . , Pim+2
} has depth 4.

Proof. The theorem above allows us to assume that, to perform a remote operation by using

a path of length m, the computing qubits interact only with two communications qubits and

depend only by Pauli operations Zb1⊕b3⊕···⊕b2m−1 and Xb2⊕b4⊕···⊕b2m . We can further propagate

such operations as follows:

⟨Z⟩,b2m+1

⟨X⟩,b2m+2

Zb2m+2

Zb1⊕b3⊕···⊕b2m-1

Xb2⊕b4⊕···⊕b2m

Xb2m+1

≡
⟨Z⟩,b2m+1

⟨X⟩,b2m+2

Zb1⊕b3⊕···⊕b2m-1⊕b2m+2

Xb2⊕b4⊕···⊕b2m ⊕b2m+1

In this way the measurements are independent and the depth of the circuit is not increased.

24

Chapter 2. Quantum logic essentials

2.2.5 Amortizing entanglement link consumption

≡

Figure 2.18: Circuit representa-
tion of the equivalence (2.10).

Driven again by the aim of finding smart strategies to per-

form non-local gates with low consumption of entanglement

links; we now investigate a way to perform multiple opera-

tions by means of the same link. To get a first intuition

of what we are going to show, consider the following equiv-

alence:

∧(1⊗ X) · ∧(X⊗ 1) ≡ ∧(X⊗ X); (2.10)

which has circuit representation reported in Figure 2.18. Behind its simplicity, equivalence

(2.10) gives us a different perspective to implement multiple non-local operations by means

of one entanglement link. This happens for the case of two processors Pi, Pj , but it can be

generalized. In fact, as showed in [57, 58], any ∧(X⊗m) – with system of dimensionality n > m

and control qubit being stored in a different processor w.r.t. the target one – admits an

implementation that needs one entanglement link only.

Pi

Pk

Pj

⟨Z⟩,b1

⟨X⟩,b2

⟨Z⟩,b3

⟨X⟩,b4

|φ⟩ Zb2⊕b4

|Φ+⟩

|ψ⟩ Xb1

|Φ+⟩

|ϑ⟩ Xb1⊕b3

≡

Pi

Pk

Pj

|φ⟩

|ψ⟩

|ϑ⟩

Figure 2.19: Remote implementation of ∧(X⊗ X).

Stemming from equation (2.10), the two target systems are essentially independent, up to

the common control qubit. Hence, there is no reason to restrict them to be part of the same

processor. For the case under consideration – i.e. ∧(X⊗X) –, the maximum number of processors

is three. Figure 2.19 shows the circuit protocol to perform ∧(X⊗X), where the system is spread

over three processors.

Thanks to the entanglement path definition given in Sec. 2.2.4, such a protocol runs effi-

ciently also for system linked only by an entanglement path.

We will use this technique in Ch. 4 to minimize entanglement links consumption, up to gain

optimal solutions in some interesting scenarios.

References

[1] William Wernick. “Complete sets of logical functions”. In: The Journal of Symbolic Logic

7.2 (1942), pp. 99–99 (cit. on p. 14).

[2] Tommaso Toffoli. “Reversible computing”. In: International colloquium on automata, lan-

guages, and programming. Springer. 1980, pp. 632–644 (cit. on p. 14).

25

Chapter 2. Quantum logic essentials

[3] Adriano Barenco. “A universal two-bit gate for quantum computation”. In: Proceedings

of the Royal Society of London. Series A: Mathematical and Physical Sciences 449.1937

(1995), pp. 679–683 (cit. on p. 15).

[4] David P DiVincenzo. “Two-bit gates are universal for quantum computation”. In: Physical

Review A 51.2 (1995), p. 1015 (cit. on p. 15).

[5] Richard P Feynman. “Quantum mechanical computers”. In: Optics news 11.2 (1985),

pp. 11–20 (cit. on p. 15).

[6] Adriano Barenco et al. “Elementary gates for quantum computation”. In: Physical review

A 52.5 (1995), p. 3457 (cit. on pp. 15, 16).

[7] IBM. IBM Quantum backends. https://github.com/Qiskit/ibmq-device-information/

tree/master/backends. [Online; accessed 14-november-2022] (cit. on p. 16).

[8] IBM. A high-fidelity, two-qubit cross-resonance gate using interference couplers. https://

research.ibm.com/publications/a-high-fidelity-two-qubit-cross-resonance-

gate - using - interference - couplers. [Online; accessed 29-november-2022] (cit. on

p. 16).

[9] Qiskit. The cross-resonance gate for superconducting qubits implements a Z⊗X interaction.

https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZXGate.

html. [Online; accessed 29-november-2022] (cit. on p. 16).

[10] Chad Rigetti and Michel Devoret. “Fully microwave-tunable universal gates in supercon-

ducting qubits with linear couplings and fixed transition frequencies”. In: Physical Review

B 81.13 (2010), p. 134507 (cit. on p. 16).

[11] D-Waver. What is quantum annealing? https://docs.dwavesys.com/docs/latest/c_

gs_2.html. [Online; accessed 14-november-2022] (cit. on p. 17).

[12] Yaoyun Shi. “Both Toffoli and controlled-NOT need little help to do universal quantum

computing”. In: Quantum Information & Computation 3.1 (2003), pp. 84–92 (cit. on

p. 17).

[13] Dorit Aharonov. “A simple proof that Toffoli and Hadamard are quantum universal”. In:

arXiv preprint quant-ph/0301040 (2003) (cit. on p. 17).

[14] Jonas T Anderson, Guillaume Duclos-Cianci, and David Poulin. “Fault-tolerant conver-

sion between the steane and reed-muller quantum codes”. In: Physical review letters 113.8

(2014), p. 080501 (cit. on p. 17).

[15] Daniel Gottesman. “Theory of fault-tolerant quantum computation”. In: Physical Review

A 57.1 (1998), p. 127 (cit. on p. 17).

[16] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. “Characterizing quantum gates

via randomized benchmarking”. In: Physical Review A 85.4 (2012), p. 042311 (cit. on

p. 17).

[17] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. In: Quantum 5 (2021), p. 497

(cit. on p. 17).

[18] Christopher M Dawson and Michael A Nielsen. “The solovay-kitaev algorithm”. In: arXiv

preprint quant-ph/0505030 (2005) (cit. on p. 17).

26

https://github.com/Qiskit/ibmq-device-information/tree/master/backends
https://github.com/Qiskit/ibmq-device-information/tree/master/backends
https://research.ibm.com/publications/a-high-fidelity-two-qubit-cross-resonance-gate-using-interference-couplers
https://research.ibm.com/publications/a-high-fidelity-two-qubit-cross-resonance-gate-using-interference-couplers
https://research.ibm.com/publications/a-high-fidelity-two-qubit-cross-resonance-gate-using-interference-couplers
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZXGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZXGate.html
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://docs.dwavesys.com/docs/latest/c_gs_2.html

Chapter 2. Quantum logic essentials

[19] Vadym Kliuchnikov. “Synthesis of unitaries with Clifford+ T circuits”. In: arXiv preprint

arXiv:1306.3200 (2013) (cit. on p. 17).

[20] Farrokh Vatan and Colin Williams. “Optimal quantum circuits for general two-qubit

gates”. In: Physical Review A 69.3 (2004), p. 032315 (cit. on p. 17).

[21] Andrew N Glaudell, Neil J Ross, and Jacob M Taylor. “Optimal two-qubit circuits for

universal fault-tolerant quantum computation”. In: npj Quantum Information 7.1 (2021),

pp. 1–11 (cit. on p. 17).

[22] Giulio Chiribella, G Mauro D’Ariano, and Paolo Perinotti. “Quantum circuit architec-

ture”. In: Physical review letters 101.6 (2008), p. 060401 (cit. on p. 18).

[23] Giulio Chiribella and Hlér Kristjánsson. “Quantum Shannon theory with superpositions

of trajectories.” In: Proceedings of the Royal Society A 475.2225 (2019), p. 20180903 (cit.

on p. 18).

[24] David Felce and Vlatko Vedral. “Quantum refrigeration with indefinite causal order”. In:

Physical review letters 125.7 (2020), p. 070603 (cit. on p. 18).

[25] Kyrylo Simonov et al. “Work extraction from coherently activated maps via quantum

switch”. In: Physical Review A 105.3 (2022), p. 032217 (cit. on p. 18).

[26] Tamal Guha, Mir Alimuddin, and Preeti Parashar. “Thermodynamic advancement in the

causally inseparable occurrence of thermal maps”. In: Physical Review A 102.3 (2020),

p. 032215 (cit. on p. 18).

[27] Daniel Ebler, Sina Salek, and Giulio Chiribella. “Enhanced communication with the as-

sistance of indefinite causal order”. In: Physical review letters 120.12 (2018), p. 120502

(cit. on p. 18).

[28] Sina Salek, Daniel Ebler, and Giulio Chiribella. “Quantum communication in a superpo-

sition of causal orders.” In: arXiv preprint arXiv:1809.06655 (2018) (cit. on p. 18).

[29] Marcello Caleffi and Angela Sara Cacciapuoti. “Quantum Switch for the Quantum Inter-

net: Noiseless Communications through Noisy Channels.” In: IEEE Journal on Selected

Areas in Communications 38.3 (2020), pp. 575–588 (cit. on p. 18).

[30] Seid Koudia et al. “How deep the theory of quantum communications goes: Superad-

ditivity, superactivation and causal activation”. In: IEEE Communications Surveys &

Tutorials (2022) (cit. on p. 18).

[31] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. “Experiencing the com-

munication advantage of the Superposition of Causal Orders”. In: 2021 IEEE 22nd Inter-

national Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

IEEE. 2021, pp. 181–185 (cit. on p. 18).

[32] Giulio Chiribella. “Perfect discrimination of no-signalling channels via quantum superpo-

sition of causal structures.” In: Physical Review A 86.4 (2012), p. 040301 (cit. on p. 18).

[33] Mateus Araújo, Fabio Costa, and Časlav Brukner. “Computational advantage from quantum-

controlled ordering of gates.” In: Physical Review Letters 113.25 (2014), p. 250402 (cit. on

p. 18).

[34] Timoteo Colnaghi et al. “Quantum computation with programmable connections between

gates”. In: Physics Letters A 376.45 (2012), pp. 2940–2943 (cit. on pp. 18, 20).

27

Chapter 2. Quantum logic essentials

[35] Lorenzo M Procopio et al. “Experimental superposition of orders of quantum gates”. In:

Nature communications 6.1 (2015), pp. 1–6 (cit. on p. 18).

[36] V Vilasini and Renato Renner. “Embedding cyclic causal structures in acyclic spacetimes:

no-go results for process matrices”. In: arXiv preprint arXiv:2203.11245 (2022) (cit. on

p. 19).

[37] Giulia Rubino et al. “Experimental verification of an indefinite causal order.” In: Science

Advances 3.3 (2017), e1602589 (cit. on p. 19).

[38] Nikola Paunković and Marko Vojinović. “Causal orders, quantum circuits and spacetime:

distinguishing between definite and superposed causal orders”. In: Quantum 4 (2020),

p. 275 (cit. on p. 19).

[39] Giulio Chiribella et al. “Quantum computations without definite causal structure.” In:

Physical Review A 88.2 (2013), p. 022318 (cit. on p. 19).

[40] Vivek V Shende and Igor L Markov. “On the CNOT-cost of TOFFOLI gates”. In: Quan-

tum Information & Computation 9.5 (2009), pp. 461–486 (cit. on p. 19).

[41] Martin J Renner and Časlav Brukner. “Computational Advantage from a Quantum Su-

perposition of Qubit Gate Orders”. In: Physical Review Letters 128.23 (2022), p. 230503

(cit. on p. 20).

[42] Alessandro Zavatta, Jaromır Fiurášek, and Marco Bellini. “A high-fidelity noiseless am-

plifier for quantum light states”. In: Nature Photonics 5.1 (2011), pp. 52–56 (cit. on

p. 20).

[43] MS Kim et al. “Scheme for proving the bosonic commutation relation using single-photon

interference”. In: Physical review letters 101.26 (2008), p. 260401 (cit. on p. 20).

[44] A Zavatta et al. “Experimental demonstration of the bosonic commutation relation via

superpositions of quantum operations on thermal light fields”. In: Physical Review Letters

103.14 (2009), p. 140406 (cit. on p. 20).

[45] Christof Zalka. “Grover’s quantum searching algorithm is optimal”. In: Physical Review

A 60.4 (1999), p. 2746 (cit. on p. 20).

[46] Angela Sara Cacciapuoti et al. “Quantum internet: networking challenges in distributed

quantum computing”. In: IEEE Network 34.1 (2019), pp. 137–143 (cit. on p. 20).

[47] Angela Sara Cacciapuoti et al. “When entanglement meets classical communications:

Quantum teleportation for the quantum internet”. In: IEEE Transactions on Communi-

cations 68.6 (2020), pp. 3808–3833 (cit. on p. 20).

[48] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. “Towards a distributed

quantum computing ecosystem”. In: IET Quantum Communication 1.1 (2020), pp. 3–8

(cit. on pp. 20, 21).

[49] Daniele Cuomo et al. “Optimized Compiler for Distributed Quantum Computing”. In:

ACM Transactions on Quantum Computing (2023) (cit. on p. 20).

[50] Michael A Nielsen. “Quantum computation by measurement and quantum memory”. In:

Physics Letters A 308.2-3 (2003), pp. 96–100 (cit. on p. 20).

[51] Stefan Hillmich, Alwin Zulehner, and Robert Wille. “Exploiting quantum teleportation

in quantum circuit mapping”. In: 2021 26th Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE. 2021, pp. 792–797 (cit. on p. 21).

28

Chapter 2. Quantum logic essentials

[52] Alwin Zulehner and Robert Wille. “Compiling U(4) quantum circuits to IBM QX architec-

tures”. In: Proceedings of the 24th Asia and South Pacific Design Automation Conference.

2019, pp. 185–190 (cit. on p. 21).

[53] Bryan O’Gorman et al. “Generalized swap networks for near-term quantum computing”.

In: arXiv preprint arXiv:1905.05118 (2019) (cit. on p. 21).

[54] Liam Madden and Andrea Simonetto. “Best approximate quantum compiling problems”.

In: ACM Transactions on Quantum Computing 3.2 (2022), pp. 1–29 (cit. on p. 21).

[55] Davide Ferrari et al. “Compiler Design for Distributed Quantum Computing”. In: IEEE

Transactions on Quantum Engineering 2 (2021), pp. 1–20 (cit. on p. 23).

[56] Pascal Van Hentenryck and Russell Bent. Online stochastic combinatorial optimization.

The MIT Press, 2006 (cit. on p. 23).

[57] Pablo Andres-Martinez and Chris Heunen. “Automated distribution of quantum circuits

via hypergraph partitioning”. In: Physical Review A 100.3 (2019), p. 032308 (cit. on p. 25).

[58] Anocha Yimsiriwattana and Samuel J Lomonaco Jr. “Generalized GHZ states and dis-

tributed quantum computing”. In: arXiv preprint quant-ph/0402148 (2004) (cit. on p. 25).

29

Chapter 3

Quantum noise and how to

handle it

Chapter 3. Quantum noise and how to handle it

3.1 Quantum noise

Assuming a good characterizing model for the noise affecting quantum information can be

challenging. A highly generic one can be described as the evolution N on an d-dimensional

system, where a state of interest σ evolves together with the environment in a state ρ [1]:

N (σ) = Trenv
(
U(σ ⊗ ρ)U†

)
.

Let {|ek⟩}k be an orthonormal basis for the environment. One can assume the environment

system as being in the state ρ = |e0⟩ ⟨e0|. This assumption is non-restrictive as the basis is

generic and if the considered environment was not pure, one can always introduce an extra

reference system to purify ρ. It follows that

N (σ) =
∑
k

⟨ek| U(σ ⊗ |e0⟩ ⟨e0|)U† |ek⟩ .

By defining Nk = ⟨ek| U |e0⟩, known as Kraus operator, N becomes

N (σ) =
∑
k

NkσN
†
k. (3.1)

Decoherence is the most problematic noise affecting information. This can be represented with

the Kraus formalism in terms of Pauli operators acting on each qubit independently [2, 3, 4],

hence the set {Nk}k as the form {√pk Ek}k, such that
∑
k pk = 1 and Ek belongs to the Pauli

group P ≡ {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}⊗d.
A further refinement is achievable. In fact, from an information perspective, the global

phase has no relevance. Hence, by considering the “quotient” group1

E ≡ {1, X, Z, XZ}⊗d ⊂ P, (3.2)

one can assume {Ek}k ⊂ E.
A comparison among Pauli noise evolution for a 2-dimensional state is given in Fig. 3.1.

{X,1} and p = 0.3. {1}, i.e., a noiseless evolution. {Z,1} and p = 0.3.

Figure 3.1: Example of Pauli noise for 2-dimensional Hilbert space in Bloch sphere representa-
tion.

1Being aware of the equivalence XZ ≡ −iY.

31

Chapter 3. Quantum noise and how to handle it

3.2 Estimating an evolution

For a given evolution N , another useful representation of its action on a state σ is through its

Choi matrix [5] ςN . When the Kraus operators of N are known – i.e. {√pk Ek}k – the Choi

matrix is immediately defined as [6]:

ςN =
∑
n,m

√
pnpm|En⟩⟩⟨⟨Em|, (3.3)

with |E⟩⟩ being the vectorization of E. When the evolution is unitary – i.e. U(σ) = UσU† –,

equation (3.3) simplifies to

ςU = |U⟩⟩⟨⟨U|. (3.4)

Working with Choi matrices allows to compute the fidelity of some unknown evolution w.r.t.

a target one. For example, given a target unitary evolution U and an experimental evolution

E , both operating on d-dimensional Hilbert space. The following function is a proper fidelity

for the two channels:

f(U , E) = 1

d
· Tr(

√√
ςU
√
ςE)

2. (3.5)

Estimating ςE is an expensive procedure based on a orthogonal set of measurements. A

sufficient and common one is the Pauli group. In the circuit model we refer to this procedure

as follows

⟨X,Y,Z⟩σ E

The circuit above represent a state tomography – i.e., how E affects σ. It works by running k

sets of experiments to obtain an estimator for {pk}k.
Similarly, a process tomography starts from an orthogonal set of input states in order to

fully characterize ςE . In the circuit model we express such an estimation as

|0,1,+,i⟩ ⟨X,Y,Z⟩E

Tomography methods are intractable when considering high-dimensional systems.

3.3 Noise canceling through indefinite causal orders

Similarly to what we have done in Sec. 2.1.3, we now report the possible advantages coming

from the indefinite causal order framework, applied to non-unitaries. Namely, noisy channels

are superposed in order to increase the overall capacity [7, 8, 9, 10]

There are several ways to physically implement an indefinite order. Most of realizations are

photonic-based [11, 12, 13, 14, 15], but it is not the only way. Indeed, within this Section we

go over the work in Ref. [16]; presenting an implementation with a programmable technology,

based on superconductors [17, 18].

The Indefinite Causal Orders for two evolution N 7→ {Nn}n andM 7→ {Mm}m, is given by

[19]:

S(σ,κ) =
∑
nm

Snm(σ ⊗ κ)S†nm, (3.6)

32

Chapter 3. Quantum noise and how to handle it

where κ is a control state and {Snm}nm denotes the set of Kraus operators such that

Snm = NnMm ⊗ |0⟩ ⟨0|+ MmNn ⊗ |1⟩ ⟨1| (3.7)

Therefore, under the assumption of errors in E – see Eq. 3.2 –, it is also true that

Snm =
√
pnpm

[
Enm 0

0 Emn

]
. (3.8)

As NnMm =
√
pnpm Enm and MmNn =

√
pmpn Emn, with Enm, Emn being in the Pauli group.

As discussed in Sec. 2.1, higher-ordered circuit frameworks are not presented within this

thesis. An oracle is sufficient to our purpose.

σ
S

∑
nm Snm(σ⊗κ)S†nm

κ

Our aim here is to report our work published as in [16]. Namely, experiencing and evaluating

the indefinite causal order within a Noisy Intermediate-Scale Quantum (NISQ) architecture [20],

based on superconductors. NISQ architectures are widespread and they promise to be resources

of practical interest in the next future. Furthermore, the design is likely to rapidly evolve, also

by considering the Indefinite Causal Order as resource. Our hope is to enrich the knowledge

on the capabilities of current quantum technologies, with the long-term goal of contributing to

shape future architecture designs.

The experiment set-up is meant to witness the communication advantage, resulting from a

specific case of the subject evolution. According to quantum Shannon theory [21], the capacity

is a metric to quantify the ability for a noisy channel to convey quantum information, without

destroying it. A channel with null capacity destroys the coherence of the quantum information,

meaning that it is not possible to retrieve the original information. By superposing two or

more null capacity channels, the result is a new channel with a not-null capacity, an interesting

behaviour from a practical point of view [8, 9].

In the following we consider the bit-flip channel X 7→ {X,1} and the phase-flip channel

Z 7→ {Z,1}, having noise probability, respectively, p and q. Ultimately, by preparing the

control state to be κ = |+⟩ ⟨+|, it occurs the evolution represented in Figure 3.2 [8].

|+⟩

σ
S (···)⊗|+⟩⟨+| + pq(YσY)⊗|-⟩⟨-|

Figure 3.2: Superposition of causal orders for bit-flip and phase-flip.

According to the bottleneck inequality [21], given the composite operation Z ◦ X and let

C(·) be the quantum capacity, the following upper-bound holds [8]:

C(Z ◦ X) ≤ 1− max{h2(p), h2(q)}, (3.9)

where h2 denotes the binary Shannon entropy. Also, the same inequality holds for X ◦ Z.
Whenever both p and q are equal to 1/2, we have that both the configurations are charac-

terized by a null capacity, i.e., C(Z ◦ X) = C(X ◦ Z) = 0.

33

Chapter 3. Quantum noise and how to handle it

Let us now superpose the two noises. Accordingly, with probability pq the output of circuit

3.2 is given by the second addendum, namely,
(
YσY

)
⊗ |-⟩ ⟨-|. As consequence the capacity

of S is lower-bounded by C(S) ≥ 1/4, as shown in [9]. Specifically, σ occurs to pass through

Y(σ) = YσY, coherently with control state being |-⟩ ⟨-|. Therefore, it is possible to exploit the

control state to gain a heralded unitary evolution Y via post-selection through the occurrence

of |-⟩ ⟨-|. Since Y is unitary, it is also reversible, therefore we can restore the information,

gaining a perfect transmission of σ, i.e.,

Y ◦ Y(σ) = YYσYY = σ. (3.10)

3.3.1 Quantum simulation

In this section we present our steps to realize S of Figure 3.2. We already discussed that

the state of the art on quantum technologies doesn’t allow any native implementation of the

indefinite causal orders. Hence our goal is to witness the communication advantage through

quantum simulation.

|ϑ⟩ {E,1} 7→
|p⟩

|ϑ⟩ E

Figure 3.3: Stinespring dilation simu-
lating a generic Pauli noise E.

When considering a non-unitaries, as in the case

of our interest, the overhead grows up w.r.t. super-

posing unitaries. The reason is that non-unitaries are

naturally harder to engineer and need to be simulated

as well. Specifically, for any Hilbert space H, the cor-

responding set of density states lies in the convex map

C(H).

According to the Stinespring dilation [22], one can

always associate to a non-unitary evolution N : C(H) → C(H) a unitary one, AN , defined as

follows:

AN : C(H)⊗ C(A)→ C(H)⊗ C(A) (3.11)

where C(A) is an auxiliary system with associated basis
{
|av⟩ ⟨aw|

}
vw

. Since AN is unitary, it

has direct realization with the circuit algorithm. To simulate N from a realization of AN , one

need to discard the auxiliary system. In terms of operations, discarding the auxiliary system

means applying a partial trace Tr2 : C(H) ⊗ C(A) → C(H). Specifically, for a generic state

σ =
∑
ijvw cijvw

(
|ϑi⟩ ⟨ϑj | ⊗ |av⟩ ⟨aw|

)
, the partial trace outputs the following [23]:

Tr2(σ) =
∑
ijvw

cijvw |ϑi⟩ ⟨ϑj | ⟨aw|av⟩. (3.12)

Since H and A are taken to be generic systems, equation (3.12) has a direct generalization to

the form Tri1,...,ik , tracing out subsystems indexed by i1, . . . , ik.

In summary, we just outlined a method to realize an operation N , involving two steps:

1. realizing the circuit AN ;

2. discarding the auxiliary system with a partial trace Tr2.

To our purpose, we apply this method, restricted to evolution {E,1}. In circuit representa-

tion this is shown in Figure 3.3. To superpose them we need an extra qubit, which encodes the

control system. The final realization is shown in Figure 3.4.

34

Chapter 3. Quantum noise and how to handle it

|p⟩

|q⟩

|κ⟩

|ϑ⟩ Ei Ej Ei

Figure 3.4: Circuit implementing an indefinite causal orders between two Pauli noise Ei, Ej .

3.3.2 Physical setting

Starting from circuit 3.4, we can do a step closer towards the real physical setting meant for

us to witness the communication advantage of the indefinite causal order. To this aim we need

to simulate the evolution from Figure 3.2, for the case of i.i.d. probabilities – i.e. p = q = 1/2.

Figure 3.5 shows the physical setting we used for our experiments. Notice that we added specific

state preparations and measurements for information and control qubits. This update express

a process tomography settings, explained in detail in Section 3.2. Second and third qubits are

not measured, rather, their final output is ignored, which naturally express trace out over those

systems – i.e. Tr2,3.

|0,1,+,i⟩ ⟨X,Y,Z⟩

|+⟩

|+⟩

|+⟩ ⟨X⟩X

Figure 3.5: Circuit representation of the quantum experiment setting we used to witness the
communication advantage.

At the end each run a post-selection occurs. Namely, coherently with our discussion of

Section 3.3, we only keep those outputs where the control qubit results in the state |-⟩. To

the given set of outputs, we then apply a classical bit-flip in case the information qubit

was subject to a measurement ⟨X⟩ or ⟨Z⟩. In fact, aware of the fact that the communication

advantage comes from the post-processing of equation (3.10), which is a Pauli operation, this

can be computed classically and has an effect only when measuring ⟨X⟩ and ⟨Z⟩.

Circuit decomposition and optimization

|+⟩ Z1/4 Z-1/4 Z1/4 Z-1/4 X-1/2 ∼= |+⟩

Figure 3.6: Whenever the second wire takes |+⟩ as input, the gate r.h.s. is equivalent, up to a
global phase, to the decomposition l.h.s.

As already discussed in Section 2.1.3, it is often the case that a real quantum technology

doesn’t supply natively a gate. For our setting of Figure 3.5, this is the case of the 3-qubits

35

Chapter 3. Quantum noise and how to handle it

gates, which have expensive decomposition [24].

-1

-0.5

10.5

0

0.5

0.5

0
0

1

-0.5
-0.5

-1

Figure 3.7: Bloch sphere representation
of the experimental characterization for
the physical setting of Figure 3.5.

To witness the communication advantage we

managed to do some optimization on the first oc-

currence of such a gate. The rationale behind the

optimization is that the gate decomposition could

be simpler in case we have some knowledge of the

input. We indeed know there is at least one qubit

prepared in the state |+⟩. This is enough to use the

decomposition in Figure 3.6 instead of the standard

one.

The final result is shown by plotting the char-

acterization of the channel as a bloch sphere – See

Figure 3.7. It represents the experimental character-

ization for the physical setting of Figure 3.5. Gray

sphere represents the ideal sphere, corresponding to

a set of pure states. The inside coloured sphere is the

deformation induced by the imperfections caused by

the employed technology, which in this case is the

santiago processor provided by IBM2, which has a

quantum volume [25] of 16.

3.4 Modeling faulty gates

...
...

N U

Figure 3.8: Faulty operation U expressed
as the composition U ◦ N .

According to the Pauli-Lindblad master equation

[26, 4, 27, 28], a faulty operation can be modeled

as U ◦ N . In words, the model allows to think of a

faulty operator as the composition of an ideal oper-

ator U preceeded by some Pauli-noise N – see Fig.

3.8.

For numerical evaluations, a common assumption

is that a quantum evolution undergoes a depolariza-

tion [29] D, which can be expressed as a mixture of

Pauli errors:

D(σ) =
√
1− 3λ

4
1σ1+

√
λ

4
(XσX+ ZσZ+ YσY). (3.13)

Starting from equation (3.13), it is possible to relate λ to a triplet of probabilities for the

Pauli errors X, Y and Z. A method to do that is outlined in Ref. [30]. Furthermore, according

to Ref. [2], the approximation

D(σ) ≈ (1− p)2σ + p(1− p)(XσX+ ZσZ) + p2XZσXZ. (3.14)

is a good model for decoherence and it applies independently to each qubit of the system – i.e.,

D⊗d, for a d-dimensional system.

The joint result of equation (3.14) together with the Pauli-Lindblad assumption, allows to

2The processor has been retired at the time of writing.

36

Chapter 3. Quantum noise and how to handle it

invastigate circuit as a composition of ideal operators affected by some single qubit Pauli error

that affect the logic of computation. Such errors propagate among the circuit coherently with

the logical operators. As basic example, consider the operator ∧(X). According to equation

(3.14), a Pauli error may precede its execution and propagates through the system as in Figure

3.9.

Despite the simplicity of the example, the two propagation rules shown in Figure 3.9 are

complete, as ∧(X) is the only non-single qubit necessary for universal computation3.

→
Z

Z Z

→
X X

X

Figure 3.9: Propagation over ∧(X) operator.

As regards single-qubit operators, consider operators Z
1/2, X

1/2, necessary to generate the

Clifford group as section 2.1.2. In such a case, orthogonal Pauli errors invert their logic, as in

circuits of Figure 3.10

X Z1/2 → Z-1/2 X Z X1/2 → X-1/2 Z

Figure 3.10: Pauli noise affecting orthogonal single-qubit operators.

3.5 Error correction and logical computing

3.5.1 Code functions

Γ1,2 |ϑϑϑ⟩|ϑ⟩

|0 ⊕ ϑ⟩

|0 ⊕ ϑ⟩

Figure 3.11: Example of code
function Γ1,2 : H→ H⊗3.

Similarly to what is done in classical information [31], quan-

tum information can be protected through the introduction

of an error correction scheme [3]. This starts with the def-

inition of a code function Γ, which introduce redundancy

to the system and exploit it to restore the original infor-

mation, in case an error occurs. Formally, a code function

Γk,m : H⊗k → H⊗(k+m), able to encode k qubits into k +m

with m > 0. The code is said to have ratio k
k+m . When

defining a code, a desideratum is to achieve a high ratio.

Another likewise important metric is the distance of a code. Specifically, Γk,m creates a code-

word space s.t. |Im(Γk,m)| = 2k+m where only 2k elements are valid codewords. Generally

speaking a highly sparse valid space allows for higher distance among valid codewords. On con-

trary a dense valid space makes fuzzier the identification of a couple of valid-invalid codewords.

This issue is treated more formally in Section 3.8, while now it is just important to observe that

distance and ratio are, by their nature, inversely proportional, creating a challenging trade-off

to handle.

3We discussed this in detail in Section 2.1

37

Chapter 3. Quantum noise and how to handle it

Redundancy through entanglement

As an example, consider a code function which takes in input a generic single qubit |ϑ⟩ =
α |0⟩+ β |1⟩ and generates a logical qubit

|ϑϑϑ⟩ ≡ α |0⟩+ β |1⟩ ≡ α |000⟩+ β |111⟩ . (3.15)

Such code can be implemented as in Fig. 3.11.

Coherently with the definition of code, the system has 3 qubits with 2k = 2 possible out-

comes: |000⟩ and |111⟩. After the application of Γ1,2, some errors become detectable. For

example, assume that the bit-flip noise X 7→ {1, X} affects each qubit, with i.i.d. error proba-

bility p. One can perform a projection over the even space and the odd space for qubits 1 and

2, and then the same for qubits 2 and 3. This can be done by performing the non-destructive

measurement4

Z⊗2 = (|00⟩ ⟨00|+ |11⟩ ⟨11|)− (|01⟩ ⟨01|+ |10⟩ ⟨10|). (3.16)

The eigenvalues are ±1 and the detectable errors are represented in the table below.

Syndrome Detection

+1,+1 I⊗ I⊗ I

−1,+1 X⊗ I⊗ I

−1,−1 I⊗ X⊗ I

+1,−1 I⊗ I⊗ X

Notice that Z⊗2 has no effect on α |000⟩ + β |111⟩, whatever the target qubits are. For this

reason its measurement can be used to detect some error, without affecting the original state.

This error correction scheme works for p < 1
2 . Without the scheme the minimum fidelity is

f = min
∀|ϑ⟩

√
⟨ϑ| X (|ϑ⟩ ⟨ϑ|) |ϑ⟩ =

√
1− p.

The probability of getting an error on the scheme is given by pe = 3p2(1 − p) + p3, so it is

required that
√

1− pe >
√
1− p, which happens when p < 1

2 .

3.6 Stabilizer codes

Generally speaking, defining an efficient code is a hard task. Here, we review a fundamental

family called stabilizer codes, which is particularly helpful as it can relate to linear codes coming

from classical error correction.

A code function Γk,m is a stabilizer code if its image is characterized by an abelian subgroup5

S ⊆ E as follows

Im(Γk,m) ≡ {|ϑϑϑ⟩ : S |ϑϑϑ⟩ = |ϑϑϑ⟩ ,∀S ∈ S}

S must be abelian in order to stabilize a non-trivial code. Consider the case [S1, S2] = 1, then

S1S2 |ϑϑϑ⟩ = −S2S1 |ϑϑϑ⟩ = − |ϑϑϑ⟩, but also S1S2 |ϑϑϑ⟩ = |ϑϑϑ⟩; hence |ϑϑϑ⟩ = − |ϑϑϑ⟩ = 0 and S stabilizes

the trivial code Im(Γk,m) = {0}.
4A possible implementation of non-destructive measurement is is given in Sec. 3.7.
5A group of which components commute one another. I.e. [Si, Sj] = 0 holds for any Si, Sj ∈ S.

38

Chapter 3. Quantum noise and how to handle it

For 2k possible outcomes, a stabilizer group S has 2m elements and, since it is abelian, it can

be specified by m generators {S1, S2, . . . , Sm}. The benefit of using generators is that to check

whether a state vector is stabilized by S or not, one needs only to check it for the generators.

To see how the correction strategy works, consider an error operator E ∈ E. Let us analyse
how E relates with a generator Si.

1. ∃Si : ESi = −SiE, then SiE |ϑϑϑ⟩ = −ESi |ϑϑϑ⟩ = −E |ϑϑϑ⟩. Therefore, E |ϑϑϑ⟩ is a −1 eigenvector

of Si and E can be detected by measuring Si.

2. Otherwise ESi = SiE ∀Si6, then if E ∈ S, it clearly doesn’t corrupt the state. So the

problem arises when E /∈ S, making E undetectable.

The set of undetectable errors is given by CE(S) ∖ S, where C is the centralizer function.

Nevertheless, a noise N with some undetectable operators, may still be correctable. Formally,

a generic noise N (σ) =
∑
k pkEkσEk is correctable if any two operators Ei, Ej ∈ {Ek}k, differ in

syndrome or have the same syndrome but differ by a stabilizer, i.e.

EiEj ∈ S ∪
(
E ∖ CE(S)

)
.

3.7 Relation with classical binary codes

Instead of expressing the error detection as the measurement operator Z⊗2, we can use the math

coming from classical linear codes to define a quantum error correction scheme, e.g.

H =

(
1 1 0

0 1 1

)
.

H can be used as parity-check matrix to detect and correct a bit flip occurring in one of the

three physical qubits of |ϑϑϑ⟩ – see Fig. 3.12. Clearly, this is true as long as ancillary qubits

undergoes a negligible noise .

H

⟨Z⟩,b1

⟨Z⟩,b2

|ϑϑϑ⟩

Xb1∧¬b2

Xb1∧b2

X¬b1∧b2

|0⟩

|0⟩

Figure 3.12: The gray coloring helps to visualize how the classical matrix representation H of
the detection scheme is implemented by means of auxilliary qubits.

Ancillary qubits allows to abstract from the hardware, while the real implementation of

this scheme very depends on what kind of measurements the quantum processor supplies7.

Since E ∈ E, one can represent a generic error as a 2(k +m)-dimensional binary vector (ex|ez),
6Because any couple of E either commutes or anti-commutes.
7See for example [32] for an experimental implementation, based on ancillary qubits to get non-destructive

measurements.

39

Chapter 3. Quantum noise and how to handle it

such that if ei,x = 1, E has an X operator affecting the i-th qubit, or the identity otherwise.

Symmetrically, for ei,z the subject operator is Z.

With the same criteria, let (si,x|si,z) be the binary vector representing a generator Si. Thus

one can construct an m× 2(k +m) matrix H such that

H ≡


s1,x|s1,z

...

sm,x|sm,z

 (3.17)

To check if the noise N is fully correctable, for any couple (ei,x|ei,z), (ej,x|ej,z), related to

the operators Ei, Ej , the following holds:

H(ei,x + ej,x|ei,z + ej,z)
⊺ ̸= 0.

To get a stabilizer code starting from a classical linear code function8 Σk,m : Fk2 → F(k+m)
2 ,

with 0 < m < k and parity-check matrix HΣ. The corresponding matrix for the quantum

paradigm is given by

HΓ ≡

(
HΣ 0

0 HΣ

)
(3.18)

If the code is self-orthogonal – i.e. Im(Σk,m)⊥ ⊆ Im(Σk,m) –, HΓ relates to a stabilizer group

S – in accordance with matrix (3.17) – for k − m logical qubits and k + m physical qubits9.

Formally, following this procedure leads to a quantum code Γk−m,m such that

Im(Γk−m,m) ≡ {|ϑϑϑ⟩ : S |ϑϑϑ⟩ = |ϑϑϑ⟩ ,∀S ∈ S}.

A slightly more general definition considers a couple of classical linear codes Σk1,m1
,Σk2,m2

.

As long as Im(Σk2,m2
)⊥ ⊆ Im(Σk1,m1

) and k1 + m1 = k2 + m2 hold, we can perform the

parity check, in accordance with matrix (3.18). The result is a quantum code Γk,m with

k = k1 + k2 −m1 −m2 and m = m1 +m2. Γk,m is called CSS code because of their creators

Calderbank, Shor and Steane [33, 34].

3.8 Distance and bounds

3.8.1 Classical bounds

Consider a codeword set s.t. |Im(Σk,m)| = 2k, defined in a 2k+m-dimensional Hamming space.

An error relates to a codeword u, creating a new word ũ = u + e. Generally speaking ũ can

relate to more than one u or e, making the definition of a good code a hard task. A good code

should be able to relate any error e to one and one only codeword u. In this sense, such a code

relates to each u a lattice sphere, centered in u with radius r. Each word ũ in the sphere is

such that d(u, ũ) ≤ r and d(v, ũ) > r for any other codeword v. In order to avoid any overlap,

the radius is upper-bounded by r ≤ ⌊d/2⌋, where d is the minimum distance of the code. From

8Fn
2 is a binary n-dimensional Hamming space, i.e. a vector of n binary values.

9Notice the loss in the ratio – i.e. m/(k +m) – caused by “quantizing” a classical code.

40

Chapter 3. Quantum noise and how to handle it

this the Hamming bound follows:

⌊d/2⌋∑
i=0

(
k +m

i

)
≤ 2m

Where 2m is the maximum number of words orthogonal to the code and
(
k+m
i

)
is the number

of errors involving i bits. Whenever the spheres saturate this bound, without creating any

overlap, the code is said to be perfect10.

The minimum possible distance to not run into overlaps is 3. To see that consider the basic

case of two codewords 01, and 11. A parity-check with even result on the first codeword is

indistinguishable from an odd result on the second codeword. It is possible to define a group

of perfect codes11 of distance d = 3. Namely, by setting k = 2h − h− 1 and m = h it results

1∑
i=0

(
2h − 1

i

)
= 2h

Notice how the ratio – i.e. 1− h
2h−1

– rapidly grows to 1 as h grows. More in general, for any

high-dimensional code Σk,m and minimum distance d ∝ k +m, it is possible to prove [3] that

the ratio 1− h2(d/(k +m)) is achievable , where h2 is the binary entropy.

3.8.2 Quantum bounds

For a given noise N (σ) =
∑
k pkEkσEk, let {Eki}i ⊆ {Ek}k be the set of undetectable errors.

Then, the code distance is given by

d = min
{
w(E) : E ∈ {Eki}i

}
,

where w is the weight function, counting the number of single-qubit components differing from

the identity operator I. If the code Im(Γk,m) is characterized by a stabilizer group S, then

d = min
{
w(E) : E ∈ CE(S)∖ S

}
. (3.19)

Symmetrically to classical codes, the Hamming bound related to a code Γk,m is given by

⌊d/2⌋∑
i=0

3i
(
k +m

i

)
≤ 2m.

The new factor 3i expresses the possible error combinations from E involving any i qubits.

Saturating the Hamming bound establishes a perfect code only if this is non-degenerate.

Consider, as an example, the following stabilizer set

S = ⟨X1,4Z2,3, X2,5Z3,4, X1,3Z4,5, X2,4Z1,5⟩

S generates a code Γk,m such that m = log |S| = 4 and, as the operators are defined over a

5-dimensional system, k = 1. Ultimately, according to (3.19), the distance is given by any E

10Despite its name, the code is still unable to apply correction whenever u1 + e1 = u2 + e2 occurs, with u1, u2

being codewords and e1, e2 being errors.
11Known as Hamming codes.

41

Chapter 3. Quantum noise and how to handle it

operating on at least 3 qubits, coming from the centralizer group CE(S), e.g. E = Z1,2,4X4.

To see that, consider any 1- or 2-qubits operator and check that it anti-commutes with some

element from S. Hence d = w(E) = 3. The sphere coverage is

1∑
i=0

3i
(
5

i

)
= 16 = 2m

and, therefore, the code is perfect.

3.9 The role of stabilizers in computing

There is a tight relation between communication and computing scenarios, as regards error

correction. Namely, in communication, noise affects information conveyed through a physical

channel. Similarly, in computing, noise affects information during the life-time of an algo-

rithm. Both scenarios run under the same noise model N (σ) =
∑
k pkEkσEk. However, during

computation, logical states demand for the definition of logical operators.

A unitary operator UUU is a logical operator for a code Γ stabilized by S if, for any logical state

|ϑϑϑ⟩ and any S ∈ S, the following holds:

UUU |ϑϑϑ⟩ ∈ Im(Γ), UUUSUUU† ∈ S.

To prove that, it is sufficient to show that

UUUSUUU†UUU |ϑϑϑ⟩ = UUUS |ϑϑϑ⟩ = UUU |ϑϑϑ⟩

holds for all S in the generator of S. Notice that UUUSUUU† stabilizes UUU |ϑϑϑ⟩.

Defining a stabilizer code from scratch

From the above emerges a general way to build a stabilizer code by defining together a code

function Γ̄k,m and its stabilizer group S̄. Formally consider the state |ϑϑϑ⟩ ≡ |ϑ⟩ ⊗ |0⟩⊗m, which

is (trivially) stabilized by the group S ≡ ⟨Zk+1, Zk+2, . . . , Zk+m⟩. Let U be a unitary operator

mapping S to itself12, then

Im(Γ̄k,m) = {U |ϑϑϑ⟩ : S̄U |ϑϑϑ⟩ = U |ϑϑϑ⟩ ,∀S̄ ∈ S̄},

where S̄ ≡ ⟨S̄1, S̄2, . . . , S̄m⟩ and S̄i ≡ UZk+iU
†.

If the code is meant for computation, the only missing ingredient is the set of logical oper-

ators, which is {
ZiZiZi,XiXiXi : ZiZiZi ≡ UZiU

†, XiXiXi ≡ UXiU
†}

1≤i≤k.

Achieving fault-tolerant computing

Let Γ be any stabilizer code satisfying self-duality13 and being doubly-even14. Then the Clifford

group generators ∧(X), X1/2 and Z
1/2 relate to fault-tolerant logical operators ∧(X)∧(X)∧(X),X1/2X

1/2X
1/2,Z

1/2Z
1/2Z
1/2.

12This may be any operator coming from the Clifford group, as it satisfies the closure over the Pauli group.
13Im(Γ) = Im(Γ)⊥.
14Any codeword has Hamming weight divisible by 4.

42

Chapter 3. Quantum noise and how to handle it

|ϑϑϑ⟩

|φφφ⟩

−→ |ϑϑϑ⟩
|φφφ⟩

Figure 3.13: Transversal implementation of a logical ∧(X)∧(X)∧(X).

These operators can be claimed to be fault-tolerant because they admit (in principle) a

so-called transversal implementation, which is very efficient in terms of circuit depth and error

propagation. Figure 3.13 shows an example of transversal implementation of ∧(X)∧(X)∧(X) between two

logical qubits |ϑϑϑ⟩ and |φφφ⟩. Its efficiency is given by the fact the each physical operator acts

on independent pairs of physical qubits. For the same reason, also the noise does not mix up

among the physical qubits.

|ω⟩ ⟨Z⟩,b

|ϑ⟩ Zb/2 Z1/4|ϑ⟩

Figure 3.14: Example of Z
1/4 gate injection.

As regard fault-tolerance for the universal gate

set C+ – see Sec. 2.1.2 – and especially for the non-

Clifford operator Z
1/4; there are some proposal for

transversal implementation for the logical opera-

tor Z
1/4Z
1/4Z
1/4, but these usually do not relate to any

stabilizer group. Hence, in literature, two main

branches of research emerged:

• circuit manipulation with the goal of minimizing Z
1/4 occurrences [35, 36];

• design of Z
1/4Z
1/4Z
1/4 by means of injection protocols [37, 38, 39].

A basic example of Z
1/4 injection is shown in Figure 3.14; this performs the injection by

introducing one auxiliary qubit to the processor, prepared in the state

|ω⟩ = 1√
2
(|0⟩+ e

iπ
4 |1⟩). (3.20)

Normal forms – see Sec. 2.1.2 – for universal circuits are also possible. An interesting result

in this sense is available in Ref. [40], where authors showed that non-Clifford operators can be

pushed to the beginning of the circuit.

3.10 Conclusion

With this chapter we covered many important topics to know when dealing with quantum

computation. Especially considering the current state-of-the-art of quantum technologies, which

are commonly referred as Noisy Intermediate-Scale Quantum (NISQ) architectures [20]. With

the incoming Ch. 4, we will focus on optimizing circuits by means of circuit compilation, which

preserves the circuit logic, while aiming to circuits more compliant to the hardware limitations.

For practical reasons, we will consider circuit optimization without error correction schemes,

as at the current stage of quantum technologies, these are to be considered at an early stage,

where the gain promised by the theory struggle to be witnessed in real implementations. In

fact, such schemes usually demands for more resources than the actual availability.

43

Chapter 3. Quantum noise and how to handle it

In accordance with our full-stack development proposed in Ch. 1, we expect error correction

scheme implementations to show up at the control system level. Hence, a scheme will be in

charge of providing a logical view of the physical resources. Because of such an organization,

the compiler should not affect the logic on which the scheme relies on. This observation lead

to think of new challenges specific to distributed architectures.

Before proceeding with the investigation of distributed compilers, we conclude the chapter

by making some observation on the complication arising when trying and embedding error

correction schemes within a distributed system.

3.10.1 Open challenges

- -- -- -

⟨ZZZ⟩

⟨XXX⟩

- -- -- -

|φφφ⟩

|Φ+Φ+Φ+⟩

|ϑϑϑ⟩

Figure 3.15: Transversal tele-
gate, without post-processing.

As already shown in Ch. 2, telegates work by means of the

generation and distribution of Bell states. Implementing a

transversal logical telegate would result into a high paral-

lelism of each required task. However, it is not straight-

forward to import the quantum error correction schemes

into the distributed paradigm. To understand why, consider

Fig. 3.15, it shows all the telegate steps but the last one –

i.e. the post-processing. The bold representation refer to a

transversal implementation, according to the formalism we

introduced – see Fig. 3.13. Unfortunately, such an imple-

mentation is not logical in general, as the Bell states may affect the system which can end up

outside the code scheme. For example, assuming:

∣∣Φ+Φ+Φ+
〉
≡ |Φ+⟩⊗k+m . (3.21)

In such a case the Bell states are independent one another and because of this, there is a time

lapse during which the system lays outside the code scheme and, for this reason, it is vulnerable

to undetectable errors. The time lapse starts when applying the transversal operators ∧(X) and
can only be restored by the post-processing, hoping that no error occurred in the meantime. In

other words, the only detectable errors would be those caused by the post-processing, which,

however, from a hardware perspective, results to be the most reliable step. Hence, this should

not be considered as a practical way to proceed.

A possible way round is to generate and distribute a maximally entangled system, e.g., the

generalized GHZ state: ∣∣Φ+Φ+Φ+
〉
≡ 1√

2

(
|0⟩⊗k+m + |1⟩⊗k+m

)
. (3.22)

Since the distributed system is now fully entangled, such a system can be used not only to

perform the non-local operator ∧(X)∧(X)∧(X), but it results that the measurement outcome can be used

to detect errors, combining so the syndrome with the post-processing.

The proposed distributed encoded system – Eq. (3.22) – seems to be the solution to the

problem. However, it has significant drawbacks from an hardware perspective. It should be

already clear, this far, that generating a Bell state with high fidelity and within a reasonable

time lapse is very challenging. This gets even harder, when thinking of higher degree systems,

as the one of Eq. (3.22)15.

15E.g. the smallest transversal code has k = 1 and m = 6 [41], resulting in the generation and distribution of

44

Chapter 3. Quantum noise and how to handle it

In conclusion, to model a fault-tolerant scheme for ∧(X)∧(X)∧(X), Eq. (3.22) may be an assumption

too strong to be practical. A more clever approach would be to define the generation and

distribution protocol as to be part of the encoding. Very little has been done in this direction

experimentally. An inspiring set-up can be found in Ref. [42], where authors managed to create

a Shor code [43] by means of photons paired in Bell states. As being photon-based, this may

bring to future experimental settings where stationary-flying hybrid systems are considered.

References

[1] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Informa-

tion. Cambridge University Press, 2010 (cit. on p. 31).

[2] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathematical Physics

43.9 (2002), pp. 4452–4505 (cit. on pp. 31, 36).

[3] Stefano Mancini and Andreas Winter. A Quantum Leap in Information Theory. World

Scientific, 2020 (cit. on pp. 31, 37, 41).

[4] Ewout van den Berg et al. “Probabilistic error cancellation with sparse Pauli-Lindblad

models on noisy quantum processors”. In: arXiv preprint arXiv:2201.09866 (2022) (cit.

on pp. 31, 36).

[5] Man-Duen Choi. “Completely positive linear maps on complex matrices”. In: Linear al-

gebra and its applications 10.3 (1975), pp. 285–290 (cit. on p. 32).

[6] Jarn de Jong. “Fault-tolerant quantum computation: Implementation of a fault-tolerant

SWAP operation on the IBM 5-qubit device”. MA thesis. Delft University of Technology,

2019 (cit. on p. 32).

[7] Daniel Ebler, Sina Salek, and Giulio Chiribella. “Enhanced communication with the as-

sistance of indefinite causal order”. In: Physical review letters 120.12 (2018), p. 120502

(cit. on p. 32).

[8] Sina Salek, Daniel Ebler, and Giulio Chiribella. “Quantum communication in a super-

position of causal orders.” In: arXiv preprint arXiv:1809.06655 (2018) (cit. on pp. 32,

33).

[9] Marcello Caleffi and Angela Sara Cacciapuoti. “Quantum Switch for the Quantum Inter-

net: Noiseless Communications through Noisy Channels.” In: IEEE Journal on Selected

Areas in Communications 38.3 (2020), pp. 575–588 (cit. on pp. 32, 33, 34).

[10] Seid Koudia et al. “How deep the theory of quantum communications goes: Superad-

ditivity, superactivation and causal activation”. In: IEEE Communications Surveys &

Tutorials (2022) (cit. on p. 32).

[11] Lorenzo M Procopio, Amir Moqanaki, Mateus Araújo, et al. “Experimental superposition

of orders of quantum gates.” In: Nature Communications 6.1 (2015), pp. 1–6 (cit. on p. 32).

[12] Giulia Rubino et al. “Experimental verification of an indefinite causal order.” In: Science

Advances 3.3 (2017), e1602589 (cit. on p. 32).

[13] Yu Guo et al. “Experimental transmission of quantum information using a superposition

of causal orders”. In: Physical Review Letters 124.3 (2020), p. 030502 (cit. on p. 32).

a maximally entangled system of 14 qubits.

45

Chapter 3. Quantum noise and how to handle it

[14] Joseph F Fitzsimons, Jonathan A Jones, and Vlatko Vedral. “Quantum correlations which

imply causation.” In: Scientific Reports 5.1 (2015), pp. 1–7 (cit. on p. 32).

[15] Kaumudibikash Goswami et al. “Indefinite causal order in a quantum switch”. In: Physical

Review Letters 121.9 (2018), p. 090503 (cit. on p. 32).

[16] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. “Experiencing the com-

munication advantage of the Superposition of Causal Orders”. In: 2021 IEEE 22nd Inter-

national Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

IEEE. 2021, pp. 181–185 (cit. on pp. 32, 33).

[17] IBM Quantum. https://quantum-computing.ibm.com/. 2021 (cit. on p. 32).

[18] D. Castelvecchi. “IBM’s Quantum Cloud Computer goes Commercial.” In:Nature 543.7644

(Mar. 2017), p. 159 (cit. on p. 32).

[19] Giulio Chiribella et al. “Quantum computations without definite causal structure.” In:

Physical Review A 88.2 (2013), p. 022318 (cit. on p. 32).

[20] J. Preskill. “Quantum Computing in the NISQ era and beyond.” In: Quantum 2.79 (2018)

(cit. on pp. 33, 43).

[21] Mark M Wilde. Quantum Information Theory. Cambridge University Press, 2013 (cit. on

p. 33).

[22] W. Forrest Stinespring. “Positive Functions on C*-Algebras”. In: Proceedings of the Amer-

ican Mathematical Society. 6.2 (1955), pp. 211–216 (cit. on p. 34).

[23] Eleanor G Rieffel and Wolfgang H Polak. Quantum computing: A gentle introduction.

MIT Press, 2011 (cit. on p. 34).

[24] Vivek V Shende and Igor L Markov. “On the CNOT-cost of TOFFOLI gates”. In: Quan-

tum Information & Computation 9.5 (2009), pp. 461–486 (cit. on p. 36).

[25] AndrewW Cross et al. “Validating quantum computers using randomized model circuits”.

In: Physical Review A 100.3 (2019), p. 032328 (cit. on p. 36).

[26] Heinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems.

Oxford University Press on Demand, 2002 (cit. on p. 36).

[27] Maximilian A Schlosshauer.Decoherence: and the quantum-to-classical transition. Springer

Science & Business Media, 2007 (cit. on p. 36).

[28] Angela Sara Cacciapuoti and Marcello Caleffi. “Toward the quantum Internet: A directional-

dependent noise model for quantum signal processing”. In: ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

2019, pp. 7978–7982 (cit. on p. 36).

[29] Michael A Nielsen. “Quantum computation by measurement and quantum memory”. In:

Physics Letters A 308.2-3 (2003), pp. 96–100 (cit. on p. 36).

[30] Craig Gidney. Decorrelated Depolarization. https://algassert.com/post/2001 (cit. on

p. 36).

[31] D J Baylis. Error Correcting Codes: A Mathematical Introduction. Routledge, 2018 (cit.

on p. 37).

[32] Julia Cramer et al. “Repeated quantum error correction on a continuously encoded qubit

by real-time feedback”. In: Nature communications 7.1 (2016), pp. 1–7 (cit. on p. 39).

46

https://quantum-computing.ibm.com/
https://algassert.com/post/2001

Chapter 3. Quantum noise and how to handle it

[33] Robert Calderbank and Peter Shor. “Good quantum error-correcting codes exist”. In:

Physical Review A 54.2 (1996), p. 1098 (cit. on p. 40).

[34] Andrew Steane. “Multiple-particle interference and quantum error correction”. In: Pro-

ceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineer-

ing Sciences 452.1954 (1996), pp. 2551–2577 (cit. on p. 40).

[35] Peter Selinger. “Quantum circuits of T-depth one”. In: Physical Review A 87.4 (2013),

p. 042302 (cit. on p. 43).

[36] Matthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimiza-

tion of Clifford+T circuits via matroid partitioning”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 33.10 (2014), pp. 1476–1489 (cit. on

p. 43).

[37] Mithuna Yoganathan, Richard Jozsa, and Sergii Strelchuk. “Quantum advantage of uni-

tary Clifford circuits with magic state inputs”. In: Proceedings of the Royal Society A

475.2225 (2019), p. 20180427 (cit. on p. 43).

[38] Ying Li. “A magic state’s fidelity can be superior to the operations that created it”. In:

New Journal of Physics 17.2 (2015), p. 023037 (cit. on p. 43).

[39] Xinlan Zhou, Debbie W Leung, and Isaac L Chuang. “Methodology for quantum logic

gate construction”. In: Physical Review A 62.5 (2000), p. 052316 (cit. on p. 43).

[40] John van de Wetering. “Constructing quantum circuits with global gates”. In: New Jour-

nal of Physics 23.4 (2021), p. 043015 (cit. on p. 43).

[41] “[[7, 1, 3]] Steane code”. In: The Error Correction Zoo. Ed. by Victor V. Albert and

Philippe Faist. 2022. url: https://errorcorrectionzoo.org/c/steane (cit. on p. 44).

[42] Rui Zhang et al. “Loss-tolerant all-photonic quantum repeater with generalized Shor

code”. In: Optica 9.2 (2022), pp. 152–158 (cit. on p. 45).

[43] “[[9, 1, 3]] Shor code”. In: The Error Correction Zoo. Ed. by Victor V. Albert and Philippe

Faist. 2022. url: https://errorcorrectionzoo.org/c/shor_nine (cit. on p. 45).

47

https://errorcorrectionzoo.org/c/steane
https://errorcorrectionzoo.org/c/shor_nine

Chapter 4

Circuit compilers on distributed

architectures

Chapter 4. Circuit compilers on distributed architectures

As outlined in Ch. 1, a full-stack development of a distributed system for quantum com-

putation requires to be carefully engineered. The proposed stack allows a circuit designer to

focus on the logic of its algorithm, without necessary consider all the issues coming from the

physical infrastructure that will take care of computing it.

In this chapter we consider the layer interfacing with the algorithm (written in circuit model).

This takes care of optimizing the circuit, adapting it to the constraints given by the underlying

layers. Such a layer is commonly referred as compiler and the corresponding optimization

problem is called the compilation problem. This is a generally tough task to solve, even on

single processor, and for which an NP-hardness proof is available [1]. An ever growing literature

arises with a variety of proposals for local computation [2, 9, 10, 11, 12, 13, 14, 15, 16, 3, 4, 5,

6, 7, 8] and for distributed computation [17, 19, 20, 21, 22, 23, 24, 25, 26, 18].

Even if quantum processors are already available, distributed architectures are at an early

stage and must be discussed from several perspectives. A key concept is that of telegates as

the fundamental inter-processor operations [27, 28, 29]. We already discussed in Ch. 2 how

telegates works, but we report below the main steps.

Each telegate can be decomposed into several tasks, that we group as follows: (i) the gener-

ation and distribution of entangled states among different processors, (ii) local operations and

(iii) classical communications. These tasks makes the telegate an expensive resource, in terms

of running time and/or fidelity. As a consequence, they have critical impact on the performance

of the overall computation. In contrast to such a limit, telegates offer remarkable opportunities

of parallelization. In fact, much circuit manipulation is possible to keep computation indepen-

dent from telegate’s tasks. Therefore, we aim to model an optimization problem that embeds

such opportunities.

Fig. 4.1 provides the reader with a conceptual map concerning the main scientific contribu-

tions.

formulations dynamic flows §4.2

assumptions logical network §1logical gates §2

evaluationrandom samples §4.4

E-count, E-depth

spanning trees §4.6

worst cases §4.7

Figure 4.1: Overview of the main contribution; blue blocks denote the main steps in the problem
modeling, scanned by blue arrows. The violet blocks are the main ingredients to the entry blue
blocks.

49

Chapter 4. Circuit compilers on distributed architectures

4.1 Mathematical modeling

Entanglement link

ProcessorQubit

P0

q1 c1

q2 c2

P2

c3 c5

c4 q3
P3

c6

q4 q5

Local coupling

q6

Figure 4.2: Toy distributed quantum architec-
ture with 3 processors.

According to the current trend on quantum

technologies – reported in Ch. 1 – we can

give a mathematical description. Formally,

let N = (V, P, F) be a network triple rep-

resenting the architecture. V = Q ∪ C

is a set of nodes describing qubits, there-

fore it is the disjoint union of computation

qubits Q = {q1, q2, . . . , q|Q|} and communica-

tion qubits C = {c1, c2, . . . , c|C|}. We can

represent n processors by partitioning V into

P = {P1, P2, . . . , Pn}. Therefore, a sub-set Pi characterizes a processor as its set of qubits/n-

odes.

F = L ∪R is as a set of undirected edges. L represents the local couplings, therefore

L ⊆
⋃
i

Pi × Pi.

Notice that there is no particular assumption on connectivity nor cardinality within processors.

This keeps the treating hardware-independent and it allows for heterogeneous architectures.

R represents entanglement links. Since entanglement links connect only communication

qubits, we introduce, for each processor, a set of those qubits only; i.e., Ci = C ∩Pi. Therefore,
we have

R ⊆
⋃

i,j : i̸=j

Ci × Cj .

Fig. 4.2 shows an exemplary architecture, with three processors in P , six computation qubits

in Q, six communication qubits in C, three entanglement links in R and ten local couplings in

L.

Concerning minimal assumptions, we only care about architectures actually able to perform

any operation. This translated into a simple connection assumption.

4.2 Distributed quantum circuit compilation problem

Usually, in the literature dealing with compiler design [15, 16, 13, 21], a circuit is encoded

as a set of layers. Formally, a layer is a set ℓ of independent operators, meaning that each

operator in ℓ acts on a different collection of qubits. A circuit is an enumeration of layers

L = {ℓ1, ℓ2, . . . , ℓ|L|}, where the cardinality is also commonly referred as circuit depth.

A quantum programmer writes a logical circuit, abstracting from the real architecture and

assuming that qubits are fully connected, i.e., any couple of qubits can perform a ∧(X) operation
– defined as in Eq. (2.1) – directly. Such an abstraction holds also when stepping to distributed

architectures.

However, NISQ architectures do not always provide full coupling. This is especially true in

the distributed scenarios. As a consequence, there must be an interface – namely, a compiler

– able to map an abstract circuit to an equivalent one, but meeting the available coupling.

In general, such a mapping implies overhead in terms of circuit depth. Therefore, finding a

50

Chapter 4. Circuit compilers on distributed architectures

mapping with minimum depth overhead is an optimization problem. We refer to it as the

quantum circuit compilation problem (QCC), which is proved to be NP-hard [1]. Its version

on distributed architectures, which we refer to as the distributed quantum circuit compilation

problem (DQCC), is likely to be at least as hard as QCC. In fact, while in QCC we deal with local

connectivity restrictions, in DQCC local connectivity stands alongside with remote connectivity –

i.e., the entanglement links –, which is less dense than the local one1. Furthermore, performing

a remote operation is much more time consuming than a local operation. Just consider that a

remote operation relies on communication of both quantum and classical information.

The above reasons make telegates the bottleneck in distributed computing. Therefore, they

are worth of dedicated analysis to minimize their impact.

4.2.1 Objective function

To optimize a circuit, the first thing we need to do is choosing an objective function to rate

the expected performance of a circuit. A common approach is to evaluate only those operators

which are somehow a bottleneck to computation. Considering the universal gate set C+ –

defined in Sec. 2.1.2, in the context of fault-tolerant quantum computing [30], the bottleneck is

the Z
1/4 operator [31, 32], since error correction protocols are designed for the Clifford group C.

Conversely, on current NISQ technologies, the bottleneck lies in the interaction between qubits

– as for the case of ∧(X). The relevant metric can either be the number of occurrences of some

operator O, namely the O-count, or the number of layers containing O at least once, namely the

O-depth. To rate a compiled circuit on distributed architectures, we do something along the

lines of this approach. Specifically, the bottleneck are the non-local ∧(X) (and ∧(Z)) operators,
each of which implies one occurrence of entanglement generation and distribution stage. We

refer to such a stage as the E operator. Therefore, we will rate a circuit by means of its E-depth

and E-count.

4.2.2 Modeling the time domain

It should be clear that E has central interest in our treating. In fact, we are also going to

model the time by scanning it as E occurs. Specifically, notice that link generations among

different couples of qubits are independent. For this reason we assume that all the possible

links generate simultaneously and, as soon as all the states are measured, a new round of

simultaneous generations begins.

Clearly, after that a measurement generates a boolean b, there is at least one post-processing

operator that need to wait for that boolean to arrive. Generally speaking, the longer the path

the more time b takes to reach its destination. We need to account for that by a proper model.

To this aim, we do some observations.

Remark. Consider a generic single-qubit unitary operator U. The time required to perform Ub

is given by the sum of the travel time of b plus the time to perform U. However, the traveling of b

is independent from computation and any operation preceding Ub can run. Hence, we compactly

refer to the post-processing waiting-time as ∆Ub . A second observation is that the travel of b

is also independent by entanglement link creations, which we assume to take time ∆E. It is,

therefore, also reasonable to assume ∆Ub ≲ ∆E because of the following observation: even if

1Because the more communication qubits there are, the less computing resources are available.

51

Chapter 4. Circuit compilers on distributed architectures

b need to cover a longer distance than the one covered by E, b relies on classical technologies,

which are way more efficient2 than entanglement generation and distribution protocols. For this

reason, in our treating we neglect ∆Ub , since it happens in parallel with ∆E. Furthermore, in

Secs. 4.4 and 4.6 we will focus on groups of circuits where all the post-processing operations

are fully separated from the quantum computation.

Stemming from this, we can model the time domain as a discrete set of steps τ ∈ {1, 2, . . . , d},
where d is an unknown time horizon, which is also the E-depth. At the beginning of each time

step τ , the whole set of entanglement links is available for telegates. Notice that most of the

local operators are expected to run during the creation of the links. Because we relate them to

the following inequality

∆E ≫ ∆∧(U),∆U, (4.1)

where U is a single-qubit unitary operator. Therefore, since E is independent from local oper-

ators, we can always attempt to run these while E is running – and also while classical bits b

are traveling, as explained in Sec. 2.2.4.

4.2.3 Modeling the distributed architecture

p1 p2
2 p3

1

Figure 4.3: Quotient graph derived
from Fig. 4.2. The processors become
the nodes, the entanglement links be-
tween a couple of processors gather into
one edge, with capacity equal to the
number of original links [33].

In light of the above observations, it is reasonable

and convenient to consider the whole processor as a

network node, and define a function c that provides

the number of available links between two processors.

Specifically, we first formalized a distributed architec-

ture as the network graph N = (V, P, F) introduced

in subsection 4.1; this step was important to under-

stand the interior behavior of remote operations from

a qubit perspective. However, now it is useful to re-

state it to a more compact encoding, which highlights

the main bottleneck of a distributed quantum architecture, the entanglement links. Formally

speaking, we will consider a quotient graph of N .

To not further weigh down the formalism, we re-model the instance, by considering as

main nodes, the processors, corresponding to an enumeration for the partition P , i.e., P =

{p1, p2, . . . , pn}. All the entanglement links, connecting the same couple of processors, now

collapse to an only edge with integer capacity c, describing how many parallel entanglement

links the two processors supplies3. We refer to this sets of edges as

E ⊆
⋃

i,j : i ̸=j

pi × pj .

Hence, the new undirected graph is Q = (P,E, c). With this reformulation a remote operation

will refer to a control processor and a target processors – e.g., ∧(X)u,v with pu, pv ∈ P .

In Fig. 4.3 we show the quotient graph related to the toy architecture of Fig. 4.2.

2The design of a distributed quantum architecture can easily adapt to satisfy requirements coming from
assumptions on classical technologies, since these are very advanced.

3Notice that this has no impact when the quantum processor is based has a full-connected topology, as in
the case of Ion-traps.

52

Chapter 4. Circuit compilers on distributed architectures

4.2.4 Single layer formulation

Consider a basic circuit expressed as the singleton L = {ℓ}. Assume that in ℓ there occur k

∧(X) – or ∧(Z) – operators. From a logical perspective, all the k operators can run in parallel,

by definition of layer. In other words, if the architecture connectivity had infinite capacity –

i.e., c(e) =∞, ∀e ∈ E – we could run L with E-depth 1, that is optimal. As the capacity values

decrease, the optimal E-depth value grows, up to E-depth k in the worst-case.

Let us formulate an optimization problem for the single-layer case – we will introduce a

generalization to any circuit in subsection 4.2.5. Specifically, the quickest multi-commodity flow

[34] wraps this basic scenario.

In brief, the goal is to find a flow over time which satisfy the constraints imposed by a set

of so-called commodities, which are going to represent the ∧(X) of a quantum circuit. The

less time the flow takes, the better. To formalize this problem, one can directly model an

objective function that evaluates a flow by the time it takes. This is an approach employed in

Ref. [35], but for single commodity. Alternatively, authors in Ref. [34] propose to start from

a formulation of the multi-commodity flow problem over time MCFd, where d is a given time

horizon4, namely a maximal number of time steps in which the flow is constrained. We prefer

this latter way because dynamic flows like MCFd has been deeply studied since long time ago

[36, 37]. Furthermore, even if this approach has an important drawback, explained at the end

of this sub-section, it does not apply to our scenario.

Commodities

To formulate MCFd, first, we enumerate the occurrences of two-qubit remote operators in L as

a set of commodities [k] = {1, 2, . . . , k}. A set of couples source-sink nodes associates to the

commodities. To do that, let s = (s1, s2, . . . sk) and t = (t1, t2, . . . tk) be two vectors induced

by the operators ∧(X) – or ∧(Z) – in L5 such that,

∧(X)si,ti ∈ ℓ ⇐⇒ ∃i ∈ [k] : psi , pti ∈ P.

Namely, psi (pti) is the processor where the control (target) qubit of operation i occurs.

Decision variables

The decision variables of the optimization problem are the time-dependent functions fe,i(τ) ∈
{0, 1}, indicating the flow on edge e ∈ E dedicated to operation i ∈ [k] at time τ . The function

has a binary co-domain because an operation i uses at most one entanglement link.

Constraints

As usual, the first constraint we introduce is the flow conservation constraint. Formally, ∀i ∈ [k],

∀τ ∈ [d] and ∀pj ∈ P ∖ {psi , pti} the following holds:∑
e∈δ−(pj)

fe,i(τ)−
∑

e∈δ+(pj)

fe,i(τ) = 0 (4.2)

4The choice of using letter d should highlight that the time horizon is going to be the E-depth.
5We need to use vector notation to admit repetitions.

53

Chapter 4. Circuit compilers on distributed architectures

where δ−, δ+ : P → E are the standard functions outputting the set of entering and exiting

edges of the input node, respectively.

Since a flow fe,i(τ) = 1 identifies the usage of an entanglement link in e to perform i, we

need to guarantee that the flow going through intermediate links of a path does not stop there.

Conversely, whenever an end point of the path occurs in the control or target processor – i.e.,

psi or pti –, the operation demand – or commodity demand – constraint holds instead of the

conservation constraint. Namely, ∀i ∈ [k], this can be written as:

∑
e∈δ−(psi)

∑
τ∈[d]

fe,i(τ)−
∑

e∈δ+(psi)

∑
τ∈[d]

fe,i(τ) = −1 (4.3)

∑
e∈δ−(pti)

∑
τ∈[d]

fe,i(τ)−
∑

e∈δ+(pti)

∑
τ∈[d]

fe,i(τ) = +1 (4.4)

The above constraint explicitly requests that a flow dedicate to i reaches its target pti , without

exiting. Symmetrically, it leaves its control processor psi without returning.

Notice that constraint (4.2) forces the operation demand to be satisfied within a single

time-step.

The last constraint ensures that, at any time step, the number of operations does not exceed

the entanglement resources. Hence, ∀e ∈ E and ∀τ ∈ [d], we introduce a capacity bound :∑
i∈[k]

fe,i(τ) ≤ c(e) (4.5)

Ultimately, the objective function is the total flow f =
∑
e∈E

∑
i∈[k]

∑
τ fe,i(τ).

By gathering the above equations, we obtain the Integer Linear Programming formulation

(4.6), which models MCFd. A flow f perfectly matches a set of entanglement paths used by the

telegates.

minimize f =
∑
e∈E

∑
i∈[k]

∑
τ∈[d]

fe,i(τ)

subject to
∑

e∈δ−(pj)

fe,i(τ)−
∑

e∈δ+(pj)

fe,i(τ) = 0 ∀i ∈ [k],∀τ ∈ [d],∀pj ∈ P ∖ {psi , pti},∑
e∈δ−(psi)

∑
τ∈[d]

fe,i(τ)−
∑

e∈δ+(psi)

∑
τ∈[d]

fe,i(τ) = −1 ∀i ∈ [k],

∑
e∈δ−(pti)

∑
τ∈[d]

fe,i(τ)−
∑

e∈δ+(pti)

∑
τ∈[d]

fe,i(τ) = +1 ∀i ∈ [k],

∑
i∈[k]

fe,i(τ) ≤ c(e) ∀e ∈ E,∀τ ∈ [d]

(4.6)

Notice that solutions with cycles are in general feasible, but are senseless in our scenario.

By expressing the problem as a minimization of f , a solver will avoid any cycle and will try to

use as few entanglement links as possible. Once defined a solver for MCFd, we just need to use

it as proposed in Ref. [34], namely the solver occurs as sub-routine within a binary research on

the minimum time where a feasible solution exists. Since the research space is over time, the

algorithm is, in general, pseudo-logarithmic.

54

Chapter 4. Circuit compilers on distributed architectures

Algorithm 1: Quickest multi-commodity flow

Input: Q, [k]
Output: d

1 L← 1, R← k

2 while L ≤ R do

3 d̄← ⌊L+R2 ⌋
4 S ← MCFd̄(Q, [k])
5 if S is feasible then

6 d← d̄

7 R← d̄− 1

8 else

9 L← d̄+ 1

Specifically to our case, we already know

that the worst solution is where all the

operations run in sequence – i.e., E-

depth equal to the amount k of telegates.

Therefore, the time horizon is upper-

bounded by k and the binary search has

log k calls to the sub-routine. Algorithm

1 shows the steps. Notice that it makes

use of an undetermined solver for MCFd.

Since we are facing an NP-hard problem,

this means that a real implementation

would generally look for sub-optimal so-

lutions.

Unfortunately, standard MCFd cannot

catch the whole features of DQCC when

L = {ℓ1, ℓ2, . . . , ℓ|L|}; we need to consider that operations in [k] are somehow related each other

by a logic determined by L. Hence, in Sec. 4.2.5 we will model such relations by introducing

extra constraints.

Transformation to direct graph

pi pj

pi pi′

pj′

pj

c

c

∞∞

∞ ∞

Figure 4.4: Mapping from an undirected
graph to a directed one working for any
multi-commodity flow problem. The trans-
formation undergoes with a constant over-
head in the number of nodes and edges.

Since the literature dealing with multi-commodity

flows usually assume a direct graph, we here re-

port a mapping method from an undirected graph

to an equivalent one with direct edges. This would

bring just a constant overhead in the space, while

it would not affect any approximation factor which

a solver would rely on. Fig. 4.4 comes from [38].

It is a fast approach to map an undirected multi-

commodity flow problem to a directed one. Specif-

ically, for each couple of nodes pi, pj connected by

an edge with capacity c, one have to introduce two

extra nodes, say pi′ , pj′ and connect them with the

direct edge (pi′ , pj′) of capacity c. The last step is

creating directed cycles of infinite capacity, where

the only bottleneck is c.

4.2.5 Any layer formulation

As mentioned, the formulation we just gave is not enough to model the DQCC problem to any

L = {ℓ1, ℓ2, . . . , ℓ|L|}, because a circuit generally follows a logic which is related on the order

of occurrence given by L. Therefore, even if it might happen that two operations could run in

any order, in general this is not true. One needs to define an order relation which is consistent

with the logic of the circuit. From an optimization point of view, a critical matter is to choose

an order relation that either wraps most of the good solutions or is prone to optimization

algorithms. For this reason and for the sake of clarity, we here refer to a generic, irreflexive,

55

Chapter 4. Circuit compilers on distributed architectures

order relation ≺ defined over [k], without giving it a unique definition. Formally, for any

i, j ∈ [k], j ≺ i means that to run i we need to ensure that j already ran. Starting from ≺, we
can define a constraint to add to formulation (4.6). Namely, ∀i ∈ [k],∀e ∈ δ−(pti) the following

holds:

fe,i(τ) ≤ min
j≺i

∑
τ̄<τ

fe,j(τ̄) (4.7)

The right part of the inequality is a value in {0, 1} and takes value 1 only if all the operations

logically preceding i already ran. Notice that constraint (4.7) is linear, as it takes the minimum

value among linear functions, and it can be easily mapped to a set of independent constraints

fe,i(τ̄) ≤
∑
τ̄<τ fe,j(τ̄), ∀j : j ≺ i.

The formulation now models DQCC. But we will refine inequality (4.7) to get a better solution

space – see Sec. 4.3.

4.3 Increasing the parallelism

i

j

Figure 4.5: Telegates in
logical conflict.

As before, from an optimization point of view, we are interested

in considering as many good solutions as possible. To this aim, we

propose an interesting approach which should enlarge the space of

good solutions. Specifically, we notice that even if two operations

i, j ∈ [k] are such that i ≺ j, this does not necessarily mean that

they must run at different time steps. They, indeed, may run at

the same time step and still respecting the logic imposed by ≺.
Consider the example from Fig. 4.5. Since operations i and j

operates over a common qubit, they are in logical conflict. Hence,

it is reasonable to think that i ≺ j should hold. However, when

considering i and j in their extended form – i.e., where commu-

nication qubits are explicit – we notice that their logical conflict does not map over all the

operations involved. As Fig. 4.6 shows, the left part of the equivalence is a naive implementa-

tion of i followed by j, where the extended form completely inherits the logical conflict. Instead,

the right part of the equivalence is way more efficient and it is still an implementation of circuit

of Fig. 4.5. As consequence, even if i and j are in logical conflict, they can run at the same

time step. We refer to this property as quasi-parallelism. For this reason we introduce a new

binary relation between operations in [k], which we refer to with the intuitive symbol q.

⟨Z⟩,b1

⟨X⟩,b2

⟨Z⟩,b3

⟨X⟩,b4

Zb2

E

Xb1 Zb4

E

Zb3

τ τ+1 τ+2

≡

⟨Z⟩,b1

⟨X⟩,b2

⟨Z⟩,b3

⟨X⟩,b4

Zb2

E

Zb4Xb1

E

Zb1⊕b3

τ τ+1

Figure 4.6: Example of how to achieve quasi-parallelism for two telegates in logical conflict.

56

Chapter 4. Circuit compilers on distributed architectures

As before, we do not give here a unique definition of q. Specifically, for any i, j ∈ [k], we write

i q j to mean that operations i and j can run at the same time step, but we did not fix a criterion

to establish when q holds. Clearly, operations i, j ∈ [k] which can run in full parallelism, are a

special case of quasi-parallelism and i q j holds.

We can now split the constraint (4.7), by discriminating between operations which can run

in quasi-parallelism and the ones which cannot. Formally, ∀i ∈ [k],∀e ∈ δ−(pti) we introduce

two new constraints

fe,i(τ) ≤ min
j≺i∧j/i

∑
τ̄<τ

fe,j(τ̄) (4.8)

fe,i(τ) ≤ min
j≺i∧jqi

∑
τ̄≤τ

fe,j(τ̄) (4.9)

To sum up, we propose (4.10) as Integer Linear Programming formulation of the DQCC

problem. C is the set of constraints coming from the standard MCF formulation given in (4.6).

In what follows we propose a characterization for relation q.

minimize f =
∑
e∈E

∑
i∈[k]

∑
τ∈[d]

fe,i(τ)

subject to C,

fe,i(τ) ≤ min
j≺i∧j/i

∑
τ̄<τ

fe,j(τ̄) ∀i ∈ [k],∀e ∈ δ−(pti),∀τ ∈ [d],

fe,i(τ) ≤ min
j≺i∧jqi

∑
τ̄≤τ

fe,j(τ̄) ∀i ∈ [k],∀e ∈ δ−(pti),∀τ ∈ [d]

(4.10)

For an exemplary characterization of q, please refer to [33] where we introduced a com-

putationally efficient predicate, which states whenever two remote operations i, j can run in

quasi-parallelism. We opted to not report this part and rather focus on ways of getting rid of

the extra constraints – see Sec. 4.4. To this aim we investigate different groups of algorithms

and what normal forms they offer. This allows to give a much wider perspective on what kind

of shapes the compiler can get in input.

4.4 The role of Clifford group in distributed architectures

In our model, we showed that by postponing the Pauli-corrections, we get the combined ad-

vantage of (i) parallelizing remote operations and (ii) delaying the correction, which amortizes

the impact of the traveling time that a boolean value takes to reach its destination(s). An ideal

result would be to push all the corrections to the end of the circuit. In fact, as already discussed

in Sec. 2.2, if the corrections reach the end of the circuit, they could be replaced by classical

computation. Driven by this goal, we now investigate the properties of quantum circuits to find

when such a condition is satisfied, starting from the Clifford group C.
The interest in the Clifford group derives from the fact that it covers a wide spectrum of

circuits and, to be universal, it needs only one extra operator. In Sec. 2.1.2, we referred to

such an extension as the group C+ ≡ ⟨∧(X), X1/2, Z
1/2, Z

1/4⟩. For this reason, it makes sense to

represent an arbitrary circuit in terms of a Clifford circuit plus as little Z
1/4 as possible. This

is, indeed, an active branch of research [31, 32].

57

Chapter 4. Circuit compilers on distributed architectures

4.4.1 Circuit normal forms and implications on the post-processing

L(1)

∧(Z)
L∧(X)

L
Y1/2

L(2)

∧(Z)...
...

Figure 4.7: Normal form coming from the ZX-
rules applied in Ref. [39].

As said at the beginning of Sec. 2.1.2, impor-

tant benefits could be achieved by postponing

the post-processing to the end of the circuit,

where they can be computed classically. An at-

tempt in this direction is available in Ref. [40],

where authors delay Pauli operations together

with non-Pauli ones. Instead, our approach is

to show that the result can always be achieved

on the Clifford group, by relying on the nor-

mal forms [39, 41, 42, 43, 44, 45]. Such a form

results particularly useful for distributed com-

puting and, more in general, for measurement-based computation. It has been shown in [39]

that any Clifford gate acting on a Pauli state can be represented in the normal form depicted in

Fig. 4.7. This normal form is of practical interest as it can be obtained starting from any Clif-

ford circuit, which is in general not in normal form. Such a result comes from the employment

of a ZX-calculus reasoner, e.g. [46]. ZX-calculus [39, 47] is a graphical language, arisen as an

optimizer for quantum circuits, that translates a quantum circuit into a ZX-diagram. The main

difference between the diagram and the original circuit is that the former works with ZX-rules,

which serve as a reasoning tool to smartly generate a new circuit, equivalent to the original one.

ZX-calculus was introduced in the literature in 2007 [48], with the main objective of minimizing

a circuit gate-depth, and its potentiality is still being explored, raising increasing interest for

its versatility. In fact, we use it here to perform architecture-compliant optimization.

Coming back to Fig. 4.7, we use the circuit symbol to express a generic Pauli state

preparation. Similarly, the symbol expresses a generic Pauli measurement. LO is a set

of layers where only the O operator occurs. For example L∧(Z) encodes a circuit composed by

∧(Z) operators.
For the subject normal form we need to define only a few pushing rules. As regard the

circuit L∧(X), the following rules always apply:

• ∧(X) · Xb ⊗ 1 ≡ Xb ⊗ Xb · ∧(X)

• ∧(X) · 1⊗ Zb ≡ Zb ⊗ Zb · ∧(X)

• ∧(X) · 1⊗ Xb ≡ 1⊗ Xb · ∧(X)

• ∧(X) · Zb ⊗ 1 ≡ Zb ⊗ 1 · ∧(X)

Similarly, for L∧(Z) circuits, we can use the following rules:

• ∧(Z) · Xb ⊗ 1 ≡ Xb ⊗ Zb · ∧(Z)

• ∧(Z) · Zb ⊗ 1 ≡ Zb ⊗ 1 · ∧(Z)

Finally, the last single layer circuit LY1/2 can be handled as follows:

• Y
1/2 · Xb ∼= Zb · Y1/2

• Y
1/2 · Zb ≡ Xb · Y1/2

58

Chapter 4. Circuit compilers on distributed architectures

Remark. By means of the above rules, all the post-processing operations can be pushed for-

ward, up to end of the circuit and they can be computed efficiently by a classical computer.

Furthermore, since no post-processing occurs during quantum computation, the entanglement

path length has negligible impact to the running-time (thanks to the non-locality of the opera-

tions).

The normal form suggests that the problem can be separated into three parts, corresponding

to L(1)
∧(Z), L∧(X) and L

(2)
∧(Z). For two of them – i.e., L(1)

∧(Z) and L
(2)
∧(Z) – the order relation is trivial

(as all ∧(Z) commute), and therefore we can use any quickest multi-commodity flow solver to

get a feasible compilation. On the contrary, the optimal characterization of the order relation

for L∧(X) is more complex. Indeed, a set of relations with minimal size may not be the best

characterization from a practical point of view, if many of the relations involve remote qubits.

The topic of optimal ∧(X) order relations deserves a dedicated analysis. Hence we first evaluate

what we achieved so far, by evaluating our model on L∧(Z), while we investigate later L∧(X)

circuits. – see Sec 4.6.

Let us emphasize the importance of L∧(Z) circuits, by pointing out some facts from Ref.

[43]. The authors therein introduce the Boolean degrees of freedom as a way to count how

many different algorithms can be implemented with a class of gates, and show that a generic

L∧(Z) “has roughly half the number of the degrees of freedom” compared to a generic L∧(X),

and roughly a quarter compared to the Clifford group.

L∧(Z) circuits represent also an important group for efficient syntheses [49, 50, 51, 52], where

these are used to maximize the efficiencies by means of parity check sequences.

We validate our compiler performance by solving L∧(Z) circuits on different architectures in

Sec. 4.6. So, being able to exploit normal forms to isolate two highly expressive blocks L(1)
∧(Z)

and L(2)
∧(Z) that can be compiled without recurring to order relations, is a very relevant result.

4.4.2 Analysis on the upper-bounds and future perspective

There is a fair doubt arising from the employment of normal forms for compilation: do we

know the overhead cause by mapping any Clifford circuit to some normal form? If yes, is it

reasonable?

The answer is positive to both questions. By working with normal forms, we are not only

able to work with a circuit with known shape, but we can also upper-bound the overhead for

the number of introduced operations. Depending on whether or not ancillae are considered, the

system get more complex in terms of space or run-time. In Ref. [50], authors treat both cases,

and prove linear upper-bounds.

Normal forms unlock also better opportunities from an hardware perspective. Specifically,

dealing with well defined circuit allows to extend the gate set with more practical operators, as

the ∧(X⊗m) introduced in Ch. 2. In Sec. 4.6 we refer to these gates as fan-in (and fan-out)

gates. From a hardware perspective, these are also commonly referred as global gates, as they

may act over a large m simultaneously [53, 54, 55, 56]. Citing [53]: “It has been suggested that

polynomial or exponential speedups can be obtained with global [gates]”.

Other results in terms of overhead can be found in Ref. [57], where authors proved that any

n-qubit Clifford circuit can be synthesised to 4n− 6 global gates and any n-qubit circuit with

ṅ non-Clifford gates can be synthesised with no more than 2ṅ+O(n/logn) global gates.

59

Chapter 4. Circuit compilers on distributed architectures

Ultimately, our choice to employ the normal form of Fig. 4.7 has several benefits, besides

the ones we already discussed:

• It is practical, as the open-source pyzx [46] provides the tools to perform the mapping.

• It is efficient, as the pyzx engine works to minimize the number of two-qubit gates.

• It has a good shape, as L∧(Z) circuits are generally easier than L∧(X) ones.

Let us make a final remark on ZX-calculus. We introduced it in the context of the Clifford

group, but it is designed to work more broadly with any circuit [58, 59, 60, 61]. Therefore, we

aim to expand our analysis in future works, by investigating normal forms for universal circuits.

An interesting result in this direction is available in Ref. [62], where authors split a universal

circuit into the following three steps:

1. the system is prepared in a non-Clifford state [57], this involves auxiliary qubits which

will do the work of injecting non-Clifford phases;

2. an L∧(X) circuit;

3. a measurement-based sequence of Clifford operations – which can still be treated with

ZX-calculus [63].

4.5 Commuting circuits compiler

As distributed quantum architectures are still at an early stage, it is hard to predict with

confidence what kind of connectivity and resources they will supply. It is therefore of interest

to investigate on what kind of topology a distributed architecture should have. For this reason

we now report a compiler for L∧(Z) and use it to evaluate the performance given by different

topologies. Thanks to this evaluation, we could choose the topology most performing with our

experiments6.

Here we evaluate the rectangle lattice topology – see Figs. 4.8a, 4.8c – and comparing it

with a hexagon lattice topology – see Fig 4.8b. We therefore verify the compiler performance

for both the lattices in terms of:

• solution quality;

• robustness to scale-up.

We conclude the comparison with the possible implications of the results.

4.5.1 An approximation-based implementation

We already discussed in Sec. 4.2.4 how to tackle DQCC as a particular case of quickest multi-

commodity flow. In this way we managed to reduce the problem on the resolution of one or

more static instances of MCF. In Refs. [65, 66] it has been shown that whenever each commodity

is a source (or a target) for any other node, then solving it through LP-relaxation outputs an

optimal solution to MCF. This result can be of interest when treating fully entangling circuits.

6The same topology is also employed in [64], where authors deal with unreliable optical links to create
entanglement and dynamically choose a multi-path solution in order to maximise the entanglement success-rate.

60

Chapter 4. Circuit compilers on distributed architectures

Algorithm 2: Iterative compiler

Input: Q, [k]
Output: d

1 S ← [k]

2 d← 0

3 while S ̸= ∅ do

4 S̄ ← MCF(Q, S)
5 S ← S ∖ S̄

6 d← d+ 1

To keep the compiler more general, we

opted to investigate algorithms with approx-

imation boundary guaranteed [67, 68, 69].

Specifically, we implemented the pseudo-code

outlined in Ref. [70]. This is followed by a

proof on the approximation quality for the case

of capacity c = 1 and c > 1. We focus on the

case c = 1, but it can be extended to c > 1.

By using our formalism, the approximation

algorithm aims to run as many non-local oper-

ators – i.e. satisfying commodities demand –

as possible. A computed solution is a sub-set S ⊆ [k]. The optimal solution is S∗ ⊆ [k] and

|S| ≤ |S∗|. It follows the (optimal) approximation boundary [68, 70]:

|S| ≥ |S∗|
O(
√
m)

, m = |E| (4.11)

Notice that the solution quality is inversely proportional to the number of entanglement

links. It means that we cannot estimate an optimal solution to the DQCC, as for a given time

horizon, this affects the quality of the solution space. Furthermore, the time-expansion increases

the number of edges and so does the distance |S∗| − |S|. Ultimately, even if the allocated space

by the time-expansion grows at most linearly with the number of non-local operations – see

Sec. 4.2.4 –, this can seriously affect the performance when such an amount is very big7. On

contrary, it is possible to keep the time-expansion abstract and compiling iteratively as many

operations as possible at each time-step. This method is detailed in Algorithm 2. Notice that

each iteration guarantees the boundary of equation (4.11) and, above all, since the instance

decreases in size, the distance |S∗| − |S| tends to decrease as well.

4.5.2 Set-up

To compare the compiler performance on different topologies, we make use of a generator factor

g ∈ N ∖ {0}. The number of nodes and edges of each lattice will be expressed as a function of

g. Because the two lattices differ by definition, it is not trivial to settle a fair comparison. To

do that, we first generate8 a sample of hexagon lattices H such that

|P | = 1/2 · g2 + 3g +O(1), |E| = 3/4 · g2 + 7/2 · g +O(1). (4.12)

We compare H with two rectangle lattices, say R▼ and R▲ , that have sizes respectively lower

and higher than H for each g – see Fig. 4.8. Hence, R▼ is such that

|P | = 1/4 · g2 + 3/2 · g +O(1), |E| = 1/2 · g2 + 2g +O(1). (4.13)

while R▲ is such that

|P | = 2g2 + 2g, |E| = g2 + 2g +O(1). (4.14)

7Better upper-bounds for the worst-case solution should be investigated.
8With the help of the networkx library [71].

61

Chapter 4. Circuit compilers on distributed architectures

We show in the next subsection that R▲ and R▼ perform better than H in terms of resulting

E-depth. This implies that the rectangle lattice is a better design for distributed quantum

computers, assuming that our compiler performs equally well on different topologies.

(a) rectangle lattice R▼ . (b) Hexagon lattice H. (c) rectangle lattice R▲ .

Figure 4.8: Example of lattices used for the experimental evaluation; they all come from gen-
erator g = 4.

Since we use Algorithm 2, capacities are assumed to be 1. We already pointed out that such

an algorithm can be extended to the case c > 1.

Notice that different node degrees imply different assumptions on the processor units Pi. The

hexagon lattice has node degree upper-bounded by 3 and lower-bounded by 2, which means

that Pi has 2 to 3 communication qubits. Similarly, the rectangle lattice has degree upper-

bounded by 4. Hence, the communication qubits per unit are 2 to 4. Since our focus here is

on distributed compilation, we will assume that Pi has 1 computation qubit. This is especially

reasonable when considering that real implementation of distributed architecture may use most

of their local resources as auxiliary qubits, meant to keep the computation fault-tolerant.

For the numerical evaluation we use a generating vector g = (1, 2, . . . , 11). Hence, when the

generator is fixed to 11, the size of H reaches |P | = 96 and |E| = 131, R▼ reaches |P | = 49 and

|E| = 84, while R▼ reaches |P | = 144 and |E| = 264.

We generate three samples classified by their size (or number of occurring operators). Each

sample is composed by 10 random circuits in order to average the results. The size of the

samples are 256, 512 and 1024.

4.5.3 Architecture evaluation

To evaluate the results we used the matlab environment [72]. The employed architecture is a

MacBook Air - M1, 2020, 8GB RAM.

The first result – shown in Figs. 4.9a, 4.9b and 4.9c – is a comparison on the solution

quality, a.k.a. the E-depth.

As anticipated, the plots show that a rectangle lattice gives better solutions, for any problem

size. We can relate this behavior to the ratio edges-to-nodes. Formally, let rQ = |E|
|P | be such a

ratio for a graph Q. Then it results that rectangle lattices have ratio:

lim
g→∞

rR = 2. (4.15)

Instead hexagon lattices have a lower ratio:

lim
g→∞

rH = 3/2. (4.16)

This suggests that the bigger the ratio, the better the solutions. The plots also show that

62

Chapter 4. Circuit compilers on distributed architectures

0 2 4 6 8 10 12
Generator

0

20

40

60

80

100

D
ep

th
Hexagon lat.

(a) 256 ∧(Z).

0 2 4 6 8 10 12
Generator

0

50

100

150

200

D
ep

th

Hexagon lat.

(b) 512 ∧(Z).

0 2 4 6 8 10 12
Generator

0

100

200

300

400

D
ep

th

Hexagon lat.

(c) 1024 ∧(Z).

0 2 4 6 8 10 12
Generator

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
ec

on
ds

Hexagon lat.

(d) 256 ∧(Z).

0 2 4 6 8 10 12
Generator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
ec

on
ds

Hexagon lat.

(e) 512 ∧(Z).

0 2 4 6 8 10 12
Generator

0

1

2

3

4

5

6

S
ec

on
ds

Hexagon lat.

(f) 1024 ∧(Z).

Figure 4.9: Quality and time scale comparison.

the depth achieved by the different lattices may be ruled by the same polynomial function (up

to some constant factor). This is in line with the intuition that a more connected topology

allows for shorter depth. Furthermore, we already mentioned in Sec. 4.5.1 that, even if the

approximation algorithm depends on the edges size, this is called as a subroutine that performs

better and better at each iteration. All this may mean that the compiler has a convergence

to an optimal depth. On contrary, if the compiler was affected by the number of edges, the

functions should swap at some point, but we never observed such phenomenon.

To conclude our evaluation, we took the average times for each sample. The results are

shown in Figs. 4.9d, 4.9e and 4.9f. Differently from what we got in the solution quality

evaluation – where we noticed a similar behaviour for each architecture – the time-scale gives

new perspectives in the lattices comparison. In fact, H andR▲ seems to need approximately the

same time to compile any circuit, with R▲ performing slightly worse, which is coherent with the

size difference between the twos. Instead, R▼ outperforms the others lattices. Furthermore, it

seems that it is more resistant to scale-up as the scaling seems to follow a lower degree function.

Thanks to the given experimental evaluation, we could give a first evaluation of our model,

by implementing it for an important group of commuting circuits – i.e. the L∧(Z). At the same

time we could find a good topology for our next step, which is compiling Clifford circuits.

4.6 Clifford circuits compiler

In Sec. 4.5 we evaluated our model on L∧(Z) circuits. Even if they represent an important

group of circuits, both theoretically [43] and practically [50, 51, 52, 49, 57] – see Sec. 4.5– we

now aim to extend our model to cover any Clifford circuit. Hence, since we managed to split

the Clifford compilation in 3 independent problems – see Sec. 4.4 – the final step is to define a

compiler for L∧(X) circuits.

63

Chapter 4. Circuit compilers on distributed architectures

4.6.1 Parity check circuits

Any L∧(X) can be interpreted as a parity check circuit, e.g. [39]:

|b1, b2, b3, b4⟩ 7→ |b1 ⊕ b2, b1 ⊕ b3, b4, b3⟩ .

We highlight such a relation to make more intuitive how we are now going to envision a generic

L∧(X). It is common in parity check circuits to layering the circuit in operations of two kinds:

fan-in or fan-out [49]. These two kinds are shown in circuit representation in Figs. 4.10a and

4.10b. Hence, one can see an L∧(X) circuit as a sequence of ∧(X⊗m) operations, eventually

interleaved by a layer of local gates LY1/2 . m denotes the number of target qubits and respects

m < n, with n being the total number of qubits.

We already showed in Sec. 2.2.5 how to efficiently implement – in terms of E-count – an

∧(X ⊗ X) distributed over three processors. But we didn’t detailed the general case ∧(X⊗m);

because it depends on the connectivity of the network.

Assuming to work with rectangular lattices R▼ – since we showed in Sec. 4.5 having the

best performance – it is convenient to generalize the definition of entanglement path – given in

Sec. 2.2.5 – to the concept of entanglement tree.

· · ·

· · ·

· · ·
...

· · ·

≡
...

(a) Fan-in

· · ·

· · ·

· · ·
...

· · ·

≡
...

Y1/2 Y1/2

Y1/2 Y1/2

Y1/2 Y1/2

Y1/2 Y1/2

(b) Fan-out

Figure 4.10: Generic fan-in and fan-out operations

4.6.2 Entanglement trees

While it is always possible to find an entanglement path passing through all the qubits involved

by a ∧(X⊗m) operators, this may not be the best approach to run the subject operator. In fact,

the shortest entanglement path does not necessarily finds the minimal E-count. In alternative,

consider that a fan-in (fan-out) operator is rooted in the control (target) qubit and it doesn’t

actually constrains the targets (controls) to be covered by a single entanglement path. Hence,

we can opt to compute an entanglement tree, which may result in better solutions. In fact,

the search for a tree covering ∧(X⊗m) can be expressed as a generalization of the minimum

spanning tree problem [73, Chapter 4.5]. Such a generalization is known as minumum Steiner

tree problem [74], which, in general, is not tractable. Nevertheless efficient approximation ratio

have been achieved [75, 76, 77] and it can be used for any topology. Since a lattice is a special

case of the Euclidean plane, a further interesting result is that, for such a group of topologies,

the problem admits a polynomial-time approximation scheme [78]. Finally, we report a result

important to us within the following remark [79, 80]:

Remark. The minimal Steiner tree on rectangular lattices R can be found in polynomial time.

64

Chapter 4. Circuit compilers on distributed architectures

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

(a) Rectangular lattice R▼ with generator g = 6.

0 1 2

4 5 7

9 10 11

12 13 14 15

18

(b) A Steiner tree with E-count of 13.

Figure 4.11: A Steiner tree computed from a network in the rectangular lattice topology. The
tree is able to perform any non-local ∧(X⊗m), spread over thirteen processors.

The above remark tells us that we can find, for any fan-in (fan-out) operation, the minimum

E-count possible, by constructing an entanglement tree treated as a minimum Steiner tree

problem. Fig. 4.11 shows an example computed with the method provided by the networkx

library [71].

4.6.3 Circuit construction and partitioning

· · ·

· · ·

· · ·
...

...

· · ·

· · ·

· · ·

q1

q2

q3

qn−2

qn−1

qn

Figure 4.12: Hardest fan-in circuit com-
posed by

(
n
2

)
telegates, with n being the

number of qubits/processors.

To prove the quality of our proposal, we start by con-

sidering dense fan-in (fan-out) circuits, where with

dense we mean that the layers of a circuit L∧(X) =

{ℓ1, ℓ2, . . . , ℓd} are such that each ℓḋ ∈ L∧(X) is a fan-

in (fan-out) involving as many qubits as possible9,10.

The rationale behind this choice is that, when writ-

ing a parity circuit, it is convenient to aggregate ∧(X)
operators to form fan-in operators, i.e. ∧(X⊗m). This

does not restrict the kind of circuits the compiler will

be able to process, since also the two-qubit operator

∧(X) is a basic case of fan-in. By proceeding this way,

we can push our compiler to solve the most complex

parity check circuits, in terms both of number of op-

erations and commutativity. Specifically, the hardest

fan-in circuit has
(
n
2

)
operations and n− 1 non-commuting layers. For this reason, the E-depth

corresponds to the number of layers, while we can optimize the E-count by computing the

minimal Steiner tree for each layer. Circuit in Fig. 4.12 shows the criterion.

In terms of our formulation (4.10) of DQCC, this means that we are fixing the order relation

for any pair ∧(X)si,ti ∈ ℓḋ and ∧(X)sj ,tj ∈ ℓd̈ to satisfy the following statement:

i ≺ j ⇐⇒ ḋ < d̈ (4.17)

9Notice that including further operators would turn up to just create repeating pairs of ∧(X), which cancel
out each other.

10One may then generalize the definition to let more than one fan-in (or fan-out) within the same layer, as
long as they operate on different qubits.

65

Chapter 4. Circuit compilers on distributed architectures

Since we are facing a circuit composed by
(
n
2

)
non-local operations, this is also a lower-bound

on the optimal E-count. One last step is required to make the compiler reach this lower-bound.

Specifically, for a given set of qubits Q = {q1, q2, . . . , qn} and processors P = {P1, P2, . . . , Pn}11,
then qi ∈ Pi, ∀i. A remark follows:

Remark. The compiler hits the lower-bound of
(
n
2

)
for the hardest fan-in (fan-out) circuit,

which means the E-count is optimal.

From this result we also notice that we can apply the same idea to solve L∧(Z) circuits,

achieving even better results. Specifically, first notice that fan-in and fan-out circuits do not

limit to ∧(X⊗m) operator, but also to ∧(Z⊗m). Furthermore, since L∧(Z) are commuting circuit,

one can always reduce it to a dense fan-in circuit, by proceeding in a greedy fashion outlined

below.

1. For each qubits, compute the number of ∧(Z) in which they are involved;

2. Enumerate the qubits by decreasing order and partition them such that qi ∈ Pi;

3. iterate over the enumeration and associate the maximal fan-in coming from L∧(Z);

4. solve each layer with the spanning tree based compiler.

In this way, any L∧(Z) circuit is expressed as a dense fan-in circuit, for which we can compute

the optimal E-count. In other words:

Remark. The minimal E-count for any L∧(Z) circuit can be computed efficiently with at most

n− 1 fan-in layers.

Such a result relates to the same upper-bound of n− 1 fan-in (fan-out) given in Ref. [57].

Notice that, with this last remark, we now have all the ingredients to construct an efficient

compiler for Clifford circuits12. In fact, even if so far we proceeded under the assumption that

each processor has only one computational qubit and link capacity one. This helped us to let

out the potentiality of distributed architectures. We indeed managed to show very promising

results. However, this approach does not limit the compiler to only distributed operations

and can be extended to differ between local and non-local fan-in (fan-out) and even mixtures.

Also the capacity can be generalized as the minimum spanning tree problem already works to

minimize the total capacity.

It is also important to remember that the normal form we showed in Sec. 4.4 is only one

of several [39, 41, 42, 43, 44, 45]; each with implications on the structure of L∧(Z) and L∧(X)

circuits. Hence, despite the appealing properties of the spanning tree approach, whenever the

circuit is naturally composed by a few gates, a Steiner tree over fan-in layers may still be beaten

by a quickest multi-commodity flow solver.

As an example, consider that for any L∧(X) circuit, it has already been discovered an algo-

rithm to compute the minimum number of ∧(X) operators [81]. Even if the minimum number

of ∧(X) is an important result that, in perspective, closes positively the problem, this does not

mean that optimal E-depth and E-count reside here. Hence, other techniques may be more

practical – e.g. see [57].

11Please refer to Sec. 4.1 for the employed formalism.
12Which may also be expanded to universal circuits with methods as the one outlined in [57].

66

Chapter 4. Circuit compilers on distributed architectures

The conclusion of our analysis is that a good compiler should be tunable; meaning that it

is able to use one or the other approach depending on the circuits in input13. For this reason

we think a good conclusion of our investigation is a comparison between the two approaches.

But before that, let us sum up the steps of a tunable compiler :

1. Transform the circuit in input into some normal form.

2. Split the problem into L∧(X) and L∧(Z) sub-circuits.

3. Analyse the structure of the sub-circuits (fan-in density, number of operators, etc.).

4. For each sub-circuit, eventually reduce to a fan-in structure.

5. For each sub-circuit, solve with the multi-commodity flow or the spanning tree approach.

4.7 Multi-commodity flow vs. Steiner trees

Thanks to this new perspective for circuits – i.e. as dense fan-in (fan-out) circuits – we can

now evaluate the performance of our previous compiler – see Algorithm 2 – with the new one.

In fact, while with the quickest multi-commodity flow we focused on minimizing the E-depth,

we are now minimizing the E-count. By means of a careful construction of dense fan-in circuits,

we can’t do much optimization on the E-depth, while we can still work on the E-count.

To this aim, we focus on L∧(Z) circuits, where both compiler works at their best. However,

we consider again the worst case scenario – i.e., fan-in circuits of
(
n
2

)
operators – where we expect

the multi-commodity flow approach suffering the most. We already showed the optimality in

the E-count for the spanning tree approach, but let us see now how the multi-commodity flow

approach work in such a hard case, compared to Steiner trees.

0 2 4 6 8 10 12
Generator

0

20

40

60

80

100

120

E
-d

ep
th

Steiner tree
Multi-commodity

(a) E-depth comparison.

0 2 4 6 8 10 12
Generator

0

1000

2000

3000

4000

5000

6000

E
-c

ou
nt

Steiner tree
Multi-commodity

(b) E-count comparison.

Figure 4.13: This is a comparison between a compiler based on multi-commodity flow with one
based on Steiner trees.

The plot in Fig. 4.13a shows that the E-depths achieved are still comparable, which preserve

a side interest into employing the multi-commodity flow approach. However, from the plot in

Fig. 4.13a emerges a neat advantage in terms of E-count. This is probably related to the

13It may be also convenient to further refine the Steiner tree approach, e.g. whenever a single layer has more
than one fan-in (fan-out) acting on independent qubits, then the layer can be solved by computing the Steiner
three of the induced sub-graphs.

67

Chapter 4. Circuit compilers on distributed architectures

formulation of the multi-commodity flow, which has primal interest into minimizing the E-

depth, while the E-count is minimized only in the case this is convenient in terms of E-depth.

Such an analysis brings the attention to different formulations, called path-based, while the one

we gave – i.e. formulation (4.10) – is edge-based. An interesting branch of research in this

direction can be found in Ref. [82].

4.8 Conclusion: the importance of a compiler

According to our envision of the full-stack development – see Sec. 1.2 – a compiler will take

care of creating a logical circuit which is compliant with the hardware. To understand how

helpful a compiler can be, it is important to keep in mind that the word “logical” should be

interpreted in two different ways.

1. The lower layers guarantee a reliable abstraction on which the compiler can operate

logically.

2. The compiler lighten the lower layers from all the tasks which are merely logical.

Specifically to the second interpretation, consider that each layer of the stack has important

and complex tasks to care about. Lower layers are more prone to treat real-time problems. In

fact, the scheduler cares about synchronization and connectivity maximization. The hardware

layer cares of being efficient in terms of, e.g., pushing the technologies at their maximal perfor-

mance to get high fidelities and high success rates. The above tasks are for sure hard. For this

reason, identify what can be delegated to a logical reasoner – i.e. the compiler – may bring

critical advantages to the overall architecture.

To get a practical intuition of what we are stating, consider for example our assumption for

the E operator. We used this assumption to provide the reader with a model relatively easy to

understand. But with a careful knowledge of the underlying architecture from an information

theory perspective, something better can be achieved. As an example, consider the stationary-

flying system – see Ch. 1 – generating and distributing entangled states. When it succeeds, it

generally means that a heralded Bell state has been produced – i.e. {|Ψ+⟩ , |Ψ-⟩ , |Φ+⟩ , |Φ-⟩} –.
Now; if the reader believe, as we do, that delegating to the compiler to analyse post-

processing will bring advantages to the general performance of the quantum computation, then

it is clear that this approach does not stop to the model we created throughout this chapter. As

a matter of fact, Bell states differ one another by Pauli corrections, which are usually treated at

the hardware layer to provide the upper layers with |Φ+⟩. But, even if local operations are very

efficient, when it comes to multiple repeated steps – as for the case of quantum computation

– every single gate avoided has a positive impact on the final fidelity. For the case we are

considering now, the presence of a compiler enable the hardware to delegate the corrections,

which now includes them to the big set of logical instructions to optimize. As basic example

consider the circuit in Fig. 4.14, where a ∧(X) runs with a different Bell state.

Let us see numerically what happens without delegating the correction to the compiler.

Consider a single-qubit gate error of probability p = 10−n. Then, for 10·m non-local operations,

the probability get worse of m orders of magnitude, i.e. 10−n+m. On contrary, the compiler

eliminates all the corrections, preserving the error probability to 10−n. The same reasoning

applies to the running-time.

68

Chapter 4. Circuit compilers on distributed architectures

Pi

Pj

⟨Z⟩, b1

⟨X⟩, b2

|φ⟩ Z¬b2

|Ψ-⟩

|ϑ⟩ X¬b1

≡

Pi

Pj

|φ⟩

|ϑ⟩

Figure 4.14: Non-local ∧(X) performed by means of |Ψ-⟩. This example shows how to avoid
Pauli corrections.

With our models we covered several interesting group of circuits14, for which the compiler

eliminates every single correction from the quantum computation. The Bell state correction is

no different. Specifically, instead of performing Pauli-corrections, the compiler keeps track of

the logical error propagation caused by avoiding it. At the end of the computation the compiler

provides the classical computer the necessary bit-flip corrections to get the right final state,

just like we have done so far, by means of the rules introduced in Sec. 4.4.1.

References

[1] Adi Botea, Akihiro Kishimoto, and Radu Marinescu. “On the complexity of quantum

circuit compilation”. In: Eleventh annual symposium on combinatorial search. 2018 (cit.

on pp. 49, 51).

[2] Liam Madden and Andrea Simonetto. “Best approximate quantum compiling problems”.

In: ACM Transactions on Quantum Computing 3.2 (2022), pp. 1–29 (cit. on p. 49).

[3] Yuan-Hang Zhang et al. “Topological quantum compiling with reinforcement learning”.

In: Physical Review Letters 125.17 (2020), p. 170501 (cit. on p. 49).

[4] Peter J Karalekas et al. “A quantum-classical cloud platform optimized for variational

hybrid algorithms”. In: Quantum Science and Technology 5.2 (2020), p. 024003 (cit. on

p. 49).

[5] Lorenzo Moro et al. “Quantum Compiling by Deep Reinforcement Learning”. In: Nature

Communications Physics 4.178 (2021) (cit. on p. 49).

[6] Marco Maronese et al. “Quantum compiling”. In: Quantum Computing Environments.

Springer, 2022, pp. 39–74 (cit. on p. 49).

[7] Kyle EC Booth et al. “Comparing and integrating constraint programming and temporal

planning for quantum circuit compilation”. In: 28th international conference on automated

planning and scheduling. 2018 (cit. on p. 49).

[8] Davide Ferrari and Michele Amoretti. “Noise-adaptive quantum compilation strategies

evaluated with application-motivated benchmarks”. In: Proceedings of the 19th ACM In-

ternational Conference on Computing Frontiers. 2022, pp. 237–243 (cit. on p. 49).

14In Sec. 4.4 we also gave a perspective on how our approach would eventually bring us to cover universal
groups as well.

69

Chapter 4. Circuit compilers on distributed architectures

[9] Stefan Hillmich, Alwin Zulehner, and Robert Wille. “Exploiting quantum teleportation

in quantum circuit mapping”. In: 2021 26th Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE. 2021, pp. 792–797 (cit. on p. 49).

[10] Lukas Burgholzer, Sarah Schneider, and Robert Wille. “Limiting the Search Space in

Optimal Quantum Circuit Mapping”. In: 2022 27th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC). IEEE. 2022, pp. 466–471 (cit. on p. 49).

[11] Dmitri Maslov, Sean M Falconer, and Michele Mosca. “Quantum circuit placement”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27.4

(2008), pp. 752–763 (cit. on p. 49).

[12] Marcos Yukio Siraichi et al. “Qubit allocation”. In: Proceedings of the 2018 International

Symposium on Code Generation and Optimization. 2018, pp. 113–125 (cit. on p. 49).

[13] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. “Mapping quantum circuits to

IBM QX architectures using the minimal number of SWAP and H operations”. In: 2019

56th ACM/IEEE Design Automation Conference. IEEE. 2019, pp. 1–6 (cit. on pp. 49,

50).

[14] Gushu Li, Yufei Ding, and Yuan Xie. “Tackling the qubit mapping problem for NISQ-era

quantum devices”. In: Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems. 2019, pp. 1001–1014 (cit. on

p. 49).

[15] Alwin Zulehner and Robert Wille. “Compiling SU(4) quantum circuits to IBM QX ar-

chitectures”. In: Proceedings of the 24th Asia and South Pacific Design Automation Con-

ference. 2019, pp. 185–190 (cit. on pp. 49, 50).

[16] Toshinari Itoko et al. “Quantum circuit compilers using gate commutation rules”. In:

Proceedings of the 24th Asia and South Pacific Design Automation Conference. 2019,

pp. 191–196 (cit. on pp. 49, 50).

[17] Robert Beals et al. “Efficient distributed quantum computing”. In: Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 469.2153 (2013), p. 20120686

(cit. on p. 49).

[18] Ranjani G Sundaram, Himanshu Gupta, and CR Ramakrishnan. “Efficient Distribution of

Quantum Circuits”. In: 35th International Symposium on Distributed Computing. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik. 2021 (cit. on p. 49).

[19] Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, and Monireh Houshmand. “Op-

timizing teleportation cost in distributed quantum circuits”. In: International Journal of

Theoretical Physics 57.3 (2018), pp. 848–861 (cit. on p. 49).

[20] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. “Optimized Quantum Cir-

cuit Partitioning”. In: International Journal of Theoretical Physics 59.12 (2020), pp. 3804–

3820 (cit. on p. 49).

[21] Davide Ferrari et al. “Compiler Design for Distributed Quantum Computing”. In: IEEE

Transactions on Quantum Engineering 2 (2021), pp. 1–20 (cit. on pp. 49, 50).

[22] Eesa Nikahd et al. “Automated window-based partitioning of quantum circuits”. In: Phys-

ica Scripta 96.3 (2021), p. 035102 (cit. on p. 49).

70

Chapter 4. Circuit compilers on distributed architectures

[23] Davood Dadkhah, Mariam Zomorodi, and Seyed Ebrahim Hosseini. “A New Approach for

Optimization of Distributed Quantum Circuits”. In: International Journal of Theoretical

Physics 60.9 (2021), pp. 3271–3285 (cit. on p. 49).

[24] Omid Daei, Keivan Navi, and Mariam Zomorodi. “Improving the Teleportation Cost in

Distributed Quantum Circuits Based on Commuting of Gates”. In: International Journal

of Theoretical Physics 60.9 (2021), pp. 3494–3513 (cit. on p. 49).

[25] Moein Sarvaghad-Moghaddam and Mariam Zomorodi. “A general protocol for distributed

quantum gates”. In: Quantum Information Processing 20.8 (2021), pp. 1–14 (cit. on p. 49).

[26] Mariam Zomorodi-Moghadam, Zohreh Davarzani, Ismail Ghodsollahee, et al. “Connec-

tivity matrix model of quantum circuits and its application to distributed quantum circuit

optimization”. In: Quantum Information Processing 20 (2021) (cit. on p. 49).

[27] LJ Stephenson et al. “High-rate, high-fidelity entanglement of qubits across an elementary

quantum network”. In: Physical review letters 124.11 (2020), p. 110501 (cit. on p. 49).

[28] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. “Towards a distributed

quantum computing ecosystem”. In: IET Quantum Communication 1.1 (2020), pp. 3–8

(cit. on p. 49).

[29] Rodney Van Meter and Simon J Devitt. “The path to scalable distributed quantum

computing”. In: Computer 49.9 (2016), pp. 31–42 (cit. on p. 49).

[30] Daniel Gottesman. “Theory of fault-tolerant quantum computation”. In: Physical Review

A 57.1 (1998), p. 127 (cit. on p. 51).

[31] Peter Selinger. “Quantum circuits of T-depth one”. In: Physical Review A 87.4 (2013),

p. 042302 (cit. on pp. 51, 57).

[32] Matthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimiza-

tion of Clifford+T circuits via matroid partitioning”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 33.10 (2014), pp. 1476–1489 (cit. on

pp. 51, 57).

[33] Daniele Cuomo et al. “Optimized Compiler for Distributed Quantum Computing”. In:

ACM Transactions on Quantum Computing (2023) (cit. on pp. 52, 57).

[34] Lisa Fleischer and Martin Skutella. “The quickest multicommodity flow problem”. In: In-

ternational Conference on Integer Programming and Combinatorial Optimization. Springer.

2002, pp. 36–53 (cit. on pp. 53, 54).

[35] Maokai Lin and Patrick Jaillet. “On the quickest flow problem in dynamic networks –

A parametric min-cost flow approach”. In: Proceedings of the 26th annual ACM-SIAM

symposium on discrete algorithms. SIAM. 2014, pp. 1343–1356 (cit. on p. 53).

[36] Lester R Ford Jr and Delbert Ray Fulkerson. “Constructing maximal dynamic flows from

static flows”. In: Operations research 6.3 (1958), pp. 419–433 (cit. on p. 53).

[37] Lester R Ford Jr and D.R. Fulkerson. “A suggested computation for Maximal Multi-

Commodity Network Flows”. In: Management Science 5.1 (1958), p. 97 (cit. on p. 53).

[38] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. “Network flows”. In: (1988)

(cit. on p. 55).

71

Chapter 4. Circuit compilers on distributed architectures

[39] Ross Duncan et al. “Graph-theoretic Simplification of Quantum Circuits with the ZX-

calculus”. In: Quantum 4 (2020), p. 279 (cit. on pp. 58, 64, 66).

[40] Daniel Litinski. “A game of surface codes: Large-scale quantum computing with lattice

surgery”. In: Quantum 3 (2019), p. 128 (cit. on p. 58).

[41] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”. In:

Physical Review A 70.5 (2004), p. 052328 (cit. on pp. 58, 66).

[42] Jeroen Dehaene and Bart De Moor. “Clifford group, stabilizer states, and linear and

quadratic operations over GF (2)”. In: Physical Review A 68.4 (2003), p. 042318 (cit. on

pp. 58, 66).

[43] Dmitri Maslov and Martin Roetteler. “Shorter stabilizer circuits via Bruhat decomposi-

tion and quantum circuit transformations”. In: IEEE Transactions on Information Theory

64.7 (2018), pp. 4729–4738 (cit. on pp. 58, 59, 63, 66).

[44] Marc Bataille. “Reducing stabilizer circuits without the symplectic group”. In: arXiv

preprint arXiv:2012.09224 (2020) (cit. on pp. 58, 66).

[45] Sergey Bravyi and Dmitri Maslov. “Hadamard-free circuits expose the structure of the

Clifford group”. In: IEEE Transactions on Information Theory 67.7 (2021), pp. 4546–

4563 (cit. on pp. 58, 66).

[46] Aleks Kissinger and John van de Wetering. “PyZX: Large Scale Automated Diagram-

matic Reasoning”. In: Proceedings 16th International Conference on Quantum Physics

and Logic. Vol. 318. Open Publishing Association, 2020, pp. 229–241 (cit. on pp. 58, 60).

[47] John van de Wetering. “ZX-calculus for the working quantum computer scientist”. In:

arXiv preprint arXiv:2012.13966 (2020) (cit. on p. 58).

[48] Bob Coecke and Ross Duncan. A graphical calculus for quantum observables. https:

//zxcalculus.com/publications.html. 2007 (cit. on p. 58).

[49] Dmitri Maslov and Yunseong Nam. “Use of global interactions in efficient quantum circuit

constructions”. In: New Journal of Physics 20.3 (2018), p. 033018 (cit. on pp. 59, 63, 64).

[50] Sergey Bravyi, Dmitri Maslov, and Yunseong Nam. “Constant-cost implementations of

Clifford operations and multiply controlled gates using global interactions”. In: arXiv

preprint arXiv:2207.08691 (2022) (cit. on pp. 59, 63).

[51] Nikodem Grzesiak et al. “Efficient quantum programming using EASE gates on a trapped-

ion quantum computer”. In: Quantum 6 (2022), p. 634 (cit. on pp. 59, 63).

[52] Pascal Baßler et al. “Synthesis and compilation with time-optimal multi-qubit gates”. In:

arXiv preprint arXiv:2206.06387 (2022) (cit. on pp. 59, 63).

[53] Yao Lu et al. “Global entangling gates on arbitrary ion qubits”. In: Nature 572.7769

(2019), pp. 363–367 (cit. on p. 59).

[54] Jorge Casanova et al. “Quantum simulation of interacting fermion lattice models in

trapped ions”. In: Physical review letters 108.19 (2012), p. 190502 (cit. on p. 59).

[55] Svetoslav S Ivanov, Peter A Ivanov, and Nikolay V Vitanov. “Efficient construction of

three-and four-qubit quantum gates by global entangling gates”. In: Physical Review A

91.3 (2015), p. 032311 (cit. on p. 59).

72

https://zxcalculus.com/publications.html
https://zxcalculus.com/publications.html

Chapter 4. Circuit compilers on distributed architectures

[56] Esteban A Martinez et al. “Compiling quantum algorithms for architectures with multi-

qubit gates”. In: New Journal of Physics 18.6 (2016), p. 063029 (cit. on p. 59).

[57] John van de Wetering. “Constructing quantum circuits with global gates”. In: New Jour-

nal of Physics 23.4 (2021), p. 043015 (cit. on pp. 59, 60, 63, 66).

[58] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. “A complete axiomatisation of

the ZX-calculus for Clifford+T quantum mechanics”. In: Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science. 2018, pp. 559–568 (cit. on p. 60).

[59] Titouan Carette et al. “Completeness of Graphical Languages for Mixed State Quantum

Mechanics”. In: ACM Transactions on Quantum Computing 2.4 (2021), pp. 1–28 (cit. on

p. 60).

[60] Miriam Backens. “The ZX-calculus is complete for stabilizer quantum mechanics”. In: New

Journal of Physics 16.9 (2014), p. 093021 (cit. on p. 60).

[61] Aleks Kissinger and John van de Wetering. “Reducing T-count with the ZX-calculus”. In:

arXiv preprint arXiv:1903.10477 (2019) (cit. on p. 60).

[62] Luke E Heyfron and Earl T Campbell. “An efficient quantum compiler that reduces T

count”. In: Quantum Science and Technology 4.1 (2018), p. 015004 (cit. on p. 60).

[63] Ross Duncan. “A graphical approach to measurement-based quantum computing”. In:

arXiv preprint arXiv:1203.6242 (2012) (cit. on p. 60).

[64] Mihir Pant et al. “Routing entanglement in the quantum internet”. In: npj Quantum

Information 5.1 (2019), pp. 1–9 (cit. on p. 60).

[65] D Kleitman et al. “A matching theorem for graphs”. In: Journal of Combinatorial Theory

8.1 (1970), pp. 104–114 (cit. on p. 60).

[66] Daniel J Kleitman. “An algorithm for certain multi-commodity flow problems”. In: Net-

works 1.1 (1971), pp. 75–90 (cit. on p. 60).

[67] Bernhard Korte and Jens Vygen. “Multicommodity Flows and Edge-Disjoint Paths”. In:

Combinatorial Optimization: Theory and Algorithms. Springer, 2006 (cit. on p. 61).

[68] Maren Martens. “A simple greedy algorithm for the k-disjoint flow problem”. In: Interna-

tional Conference on Theory and Applications of Models of Computation. Springer. 2009,

pp. 291–300 (cit. on p. 61).

[69] Petr Kolman and Christian Scheideler. “Improved bounds for the unsplittable flow prob-

lem”. In: SODA. Vol. 2. 2002, pp. 184–193 (cit. on p. 61).

[70] Li Fei. Multicommodity Flows and Disjoint Paths Problem. https : / / cs . gmu . edu /

~lifei/teaching/cs684spring17/lec8.pdf. 2017 (cit. on p. 61).

[71] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network structure,

dynamics, and function using networkx”. In: Proceedings of the 7th Python in Science

Conference. Pasadena, CA USA, 2008, pp. 11–15 (cit. on pp. 61, 65).

[72] MATLAB. R2021b. Natick, Massachusetts: The MathWorks Inc., 2021 (cit. on p. 62).

[73] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006 (cit. on

p. 64).

[74] Dietmar Cieslik. Steiner minimal trees. Vol. 23. Springer Science & Business Media, 2013

(cit. on p. 64).

73

https://cs.gmu.edu/~lifei/teaching/cs684spring17/lec8.pdf
https://cs.gmu.edu/~lifei/teaching/cs684spring17/lec8.pdf

Chapter 4. Circuit compilers on distributed architectures

[75] Lawrence Kou, George Markowsky, and Leonard Berman. “A fast algorithm for Steiner

trees”. In: Acta informatica 15.2 (1981), pp. 141–145 (cit. on p. 64).

[76] Piotr Berman, Marek Karpinski, and Alexander Zelikovsky. “1.25-approximation algo-

rithm for steiner tree problem with distances 1 and 2”. In: Workshop on Algorithms and

Data Structures. Springer. 2009, pp. 86–97 (cit. on p. 64).

[77] Miroslav Chlebık and Janka Chlebıková. “The Steiner tree problem on graphs: Inapprox-

imability results”. In: Theoretical Computer Science 406.3 (2008), pp. 207–214 (cit. on

p. 64).

[78] Jaroslaw Byrka et al. “An improved LP-based approximation for Steiner tree”. In: Pro-

ceedings of the forty-second ACM symposium on Theory of computing. 2010, pp. 583–592

(cit. on p. 64).

[79] Marcus Brazil et al. “Minimal Steiner trees for 2k× 2ksquare lattices”. In: journal of

combinatorial theory, Series A 73.1 (1996), pp. 91–110 (cit. on p. 64).

[80] Marcus Brazil et al. “Minimal Steiner trees for rectangular arrays of lattice points”. In:

journal of combinatorial theory, Series A 79.2 (1997), pp. 181–208 (cit. on p. 64).

[81] Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible

circuits.” In: Quantum Inf. Comput. 8.3 (2008), pp. 282–294 (cit. on p. 66).

[82] Julian Rabbie et al. “Designing quantum networks using preexisting infrastructure”. In:

npj Quantum Information 8.1 (2022), pp. 1–12 (cit. on p. 68).

74

	Introduction
	Technologies for distributed quantum computing
	Stationary-flying transduction
	Control system
	Bell state analyser

	Envisioning the full system
	References

	Quantum logic essentials
	Quantum programming
	Universality
	The Clifford group
	Programming in higher order framework

	Entanglement-based computation
	Teleportation
	Non-local operations
	Entanglement swap
	Entanglement paths
	Amortizing entanglement link consumption

	References

	Quantum noise and how to handle it
	Quantum noise
	Estimating an evolution
	Noise canceling through indefinite causal orders
	Quantum simulation
	Physical setting

	Modeling faulty gates
	Error correction and logical computing
	Code functions

	Stabilizer codes
	Relation with classical binary codes
	Distance and bounds
	Classical bounds
	Quantum bounds

	The role of stabilizers in computing
	Conclusion
	Open challenges

	References

	Circuit compilers on distributed architectures
	Mathematical modeling
	Distributed quantum circuit compilation problem
	Objective function
	Modeling the time domain
	Modeling the distributed architecture
	Single layer formulation
	Any layer formulation

	Increasing the parallelism
	The role of Clifford group in distributed architectures
	Circuit normal forms and implications on the post-processing
	Analysis on the upper-bounds and future perspective

	Commuting circuits compiler
	An approximation-based implementation
	Set-up
	Architecture evaluation

	Clifford circuits compiler
	Parity check circuits
	Entanglement trees
	Circuit construction and partitioning

	Multi-commodity flow vs. Steiner trees
	Conclusion: the importance of a compiler
	References

