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List of Abbreviations used

DNMT = DNA methyl-transferases

TET = Ten-to-Eleven Translocation enzymes

MC = Methylation Classes

MP = Methylation Patterns

RRBS = Reduced representation Bisulfite Sequencing

WGBS = Whole Genome Bisulfite Sequencing

ABS = amplicon Bisulfite Sequencing

5mC = 5-methyl-cytosine

PMF = Probability Mass Function

ASM = Allele-specific methylation

JSD = Jensen-Shannon Distance
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Abstract

DNA methylation is an epigenetic mark implicated in crucial biological
processes. Most of the knowledge about DNA methylation is based on bulk
experiments, in which DNA methylation of genomic regions is reported as
average methylation. However, average methylation does not inform on how
methylated cytosines are distributed in each single DNA molecule.

Here, we propose Methylation Class (MC) profiling as a genome-wide
approach to the study of DNA methylation heterogeneity from bulk bisulfite
sequencing experiments. The proposed approach is built on the concept of
MCs, groups of DNA molecules sharing the same number of methylated
cytosines. The relative abundances of MCs from sequencing reads incorporates
the information on the average methylation, and directly informs on the
methylation level of each molecule.

By applying our approach to publicly available bisulfite-sequencing
datasets, we individuated signatures of loci undergoing imprinting and
X-inactivation, and highlighted differences between the two processes. When
applying MC profiling to compare different conditions, we identified
methylation changes occurring in regions with almost constant average
methylation.

Altogether, our results indicate that MC profiling can provide useful
insights on the epigenetic status and its evolution at multiple genomic regions.
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Background

1. Background

1.1. DNA methylation: an overview

DNA methylation is a heritable epigenetic mark consisting of the
enzyme-mediated addition of a methyl-group to deoxyribonucleotides (Jones,
2012; Kim and Costello, 2017; Moore et al., 2013). Methylation of DNA
cytosines is the most prevalent form of DNA methylation, although adenine
methylation has also been described (Boulias and Greer, 2022). In mammals,
DNA methylation mainly occurs in CpG dinucleotides (Jones, 2012; Kim and
Costello, 2017; Moore et al., 2013), with CpX methylation being constrained to
specific tissues (neurons) and developmental stages (pluripotency) (de
Mendoza et al., 2021; Ramsahoye et al., 2000). In the following text, we will
focus on CpG methylation.

DNA methylation has been shown to regulate gene expression and
genome stability by recruiting proteins involved in gene repression and
transposon silencing, or by inhibiting the binding of transcription factor(s) to
DNA (Moore et al., 2013). Recently, a more general involvement of DNA
methylation in shaping the 3D chromatin conformation is also emerging
(Buitrago et al., 2021), although the precise mechanism and causal
relationships remain to be elucidated.

Due to its functional impact, DNA methylation has been implicated in
crucial biological processes, such as cellular differentiation (Khavari et al.,
2010), development (Smith and Meissner, 2013), disease (Robertson, 2005),
aging (Fraga and Esteller, 2007), X-inactivation (Cotton et al., 2015),
imprinting (Li et al., 1993), silencing of repetitive DNA (i.e. transposons)
(Slotkin and Martienssen, 2007) and chromosomal stability (Rizwana and
Hahn, 1999).

Dysregulated patterns of DNA methylation have been described in
plenty of pathological conditions (Ehrlich, 2019; Robertson, 2005), including
infective disease (Konigsberg et al., 2021) and genetic diseases (Villicaña and
Bell, 2021), both complex and monogenic (Levy et al., 2022).

Two counteracting processes shape the DNA methylome: DNA
methylation and DNA demethylation (Figure 1) (Smith and Meissner, 2013).

DNA methylation is an enzymatic process regulated by the family of
DNA methyltransferases, which transfer the methyl group from the donor
molecule SAM to the carbon 5 of the target cytosine (Lyko, 2018). Four
DNMTs have been described in human (Lyko, 2018):

a) DNMT1 and DNMT3 (present in two subtypes, 3A and 3B) are the
catalytically active members of the family
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b) DNMT3L has not a catalytic activity itself but it is found in complex
with DNMT3s, where it improves the ability of DNMT3s to bind to
SAM (the methyl group donor) and stimulates DNMT3s’ enzymatic
activity

c) DNMT2 is not involved in DNA methylation. Instead, it participates in
the methylation of cytosine-38 in the anticodon loop of the tRNA of the
aspartic acid.

Classically, two types of DNA methylation are distinguished (Jeltsch
and Jurkowska, 2014):

a) maintenance DNA methylation, which restores the pattern of DNA
methylation on the newly-synthesized filament during DNA replication

b) de novo DNA methylation, which establishes patterns of DNA
methylation in response to environmental stimuli or of developmental
programs.

Maintenance methylation is usually attributed to the activity of DNMT1
due to its higher affinity for hemi-methylated cytosines (Hermann et al., 2004,
p. 1). In contrast, de novo methylation is attributed to DNMT3s due to their
higher affinity to unmethylated DNA as well as to their higher concentration in
pluripotent stem cells (Okano et al., 1999). However, it has become clear that
the two subfamilies of DNMTs cooperate in both de novo and maintenance
DNA methylation. More exclusive roles have been instead described in the
establishment and maintenance of imprinted DNA methylation and X
chromosome inactivation (Dahlet et al., 2020; LaSalle, 2022).

Despite its stability, mammalian 5mC can be reversed through passive
or active demethylation (Kohli and Zhang, 2013). Passive demethylation
occurs during DNA replication as a consequence of the failure of the
methylation maintenance machinery, which results in progressive dilution of
5mC (Kohli and Zhang, 2013). Active demethylation is an enzymatic process
mediated by the family of Ten-to-Eleven Translocation (TET) proteins (Kohli
and Zhang, 2013; Wu and Zhang, 2017). These enzymes belong to the family
of dioxygenases, and use alpha-ketoglutarate to mediate the iterative oxidation
of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC) (Kohli and Zhang, 2013; Wu and Zhang, 2017).
Replication-dependent dilution of these oxidized products results in DNA
demethylation during replication (Kohli and Zhang, 2013; Wu and Zhang,
2017). For 5fC and 5caC, demethylation can also occur through base removal
mediated by thymine DNA glycosylase (TDG) followed by the activity of the
base excision repair (BER) pathway (Kohli and Zhang, 2013; Wu and Zhang,
2017).
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It is worth noting that other than intermediate products of DNA
demethylation, 5hmC, 5fC and 5caC are nowadays thought to act as epigenetic
marks themselves, even though their exact role in regulatory processes and the
interplay with 5mC remain to be elucidated (Caldwell et al., 2021).

Different isoforms have been also individuated for TET enzymes:
TET1, TET2, and TET3 (Wu et al., 2018). Unlike DNMTs, different TETs do
not exhibit preferential binding in the genome, and all contribute to maintain
the unmethylated status of promoters’ CpGs near promoter regions (Wu et al.,
2018). However, TET enzymes are expressed at different magnitudes in
different tissues both in mouse and in humans, supporting a preferential role of
different TET subtypes to the regulation of lineage-specific gene expression
(Wu et al., 2018).

CpG sites and their degrees of methylation are unevenly distributed in
the human genome (Ehrlich et al., 1982). In the largest fraction of the human
genome (about 98%) CpG sites are relatively infrequent (on average 1 CpG per
100 bp) but highly methylated (approximately 70%–80% of CpG sites)
(Ehrlich et al., 1982). The remaining fraction of the genome (about 2% of the
genome) comprises short stretches of DNA (approximately 1 kb in length and
longer than 200 bp), known as CpG islands, in which CpG sites are frequent
(~1 per 10 bp; CpG- rich regions), G+C base content is high (above 50% G+C
content) and the observed-to-expected CpG ratio is greater than 60 % (Ehrlich
et al., 1982). CpG islands are found within the promoters of ~60-70% of
human genes, characterized by an unmethylated status, a transcriptionally
permissive chromatin state and generally associated with constitutive
expression in all cell types (housekeeping genes) (Saxonov et al., 2006).
However, some CpG islands specifically gain methylation in specific tissues or
during the development (Li, 2002), resulting in a stable transcriptional
repression. Furthermore, CGI hypermethylation is required for the long-term
silencing of genes located on the inactive X chromosome (Cotton et al., 2015)
or associated with imprinted loci (Li et al., 1993), germline-specific genes (De
Smet et al., 1999) and pluripotency-associated genes (Mohn et al., 2008).

Genomic regions lying 2000 base-pairs to each side of a CpG island are
named CpG “shores,” whereas regions further extending for 2000 base-pairs
from shores are named CpG “shelves”, with the rest of the genome termed
“open sea” (Carmona et al., 2017). Together with CpG islands, these contexts
form the CpG “resort”, with the concentration of CpG sites decreasing from
islands to the open sea (Carmona et al., 2017).

Whereas DNA methylation within promoter CpG islands exhibits
patterns established during cellular differentiation, DNA methylation in CpG
shores and shelves is more responsive to external factors and can be of interest
when trying to determine whether DNA methylation mediates known
associations between exposures and diseases (Carmona et al., 2017).
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Figure 1. The process of DNA methylation. A. Overview of DNA methylation
and demethylation. The two subtypes of DNMTs are shown to regulate the
maintenance (DNMT1) and the de-novo (DNMT3A-3B) deposition of DNA
methylation. Methylated cytosines can be reverted to their unmethylated status
by passive demethylation or by active demethylation mediated by TET
enzymes (TET1-3). B. Steps of TET-mediated iterative oxidation of 5-mC. The
intermediates 5-hC (5-hydroxy-methyl-cytosine), 5-fC (5-formyl-cytosine) and
5-caC (5-carboxyl-cytosine) are shown. (TET=Ten-to-Eleven Translocation;
DNMT= DNA methyl-transferase; TDG=Thymine glycosidase; BER= Base
Excision Repair).

1.2 Experimental assays to investigate DNA methylation

Several experimental techniques have been developed to study DNA
methylation (Yong et al., 2016). State-of-the-art methods are based on the
treatment of genomic DNA with sodium bisulfite, which enable the
identification of 5-methylcytosine at single base-pair resolution (Yong et al.,
2016). In fact, after bisulfite treatment cytosines are converted into uracil
residues through oxidative deamination, whereas 5mCs are immune to this
conversion (Yong et al., 2016). Thus, methylated cytosines can be
distinguished from unmethylated ones by analyzing the resulting DNA
sequence (Figure 2) (Yong et al., 2016).
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Figure 2: Effect sodium bisulfite treatment on the DNA sequence.
Unmethylated cytosines are converted into uracils, and indeed into tymines
after PCR amplification. Methylated cytosines are not converted, and indeed
not substituted after PCR amplification.

We can distinguish two categories of bisulfite-based assays:
hybridization-based assays, like Illumina BeadChips, which uses genotyping
probes to discriminate and quantify bisulfite-induced mutations, and
sequencing-based assays, which directly detect bisulfite-induced mutations
through PCR and sequencing (Yong et al., 2016).

In particular, hybridization assays employ site-specific probes that
hybridize onto bisulfite-converted DNA at given CpG loci, resulting in
fluorescent signals. With sequencing-based assays, the sequence of a
bisulfite-treated DNA molecule is compared to the reference genome at CpG
sites. For each CpG, a methylated status (1) is assigned if a C is found in the
DNA molecule, and an unmethylated status (0) is assigned if a T is found.

Microarrays platforms allow assessing the methylated status of huge
numbers of CpG sites (ranging from about 27.000 to 850.000 for the widely
adopted Illumina platforms) distributed along the whole genome (Carmona et
al., 2017). Microarrays are therefore a fast and cheap assay to individuate
genome-wide DNA methylation alterations at reproducible targets, and are
therefore widely adopted, for example, in epigenome-wide association studies
where a high number of samples are tested for DNA methylation alterations
associated to a given molecular or clinical phenotype (Carmona et al., 2017).
However, microarrays are only available for a restricted number of species,and
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constrain the observations to pre-defined CpG targets, mostly designed to
capture genes and promoter CpG islands (Carmona et al., 2017). Furthermore,
they come with some technical issues, like dye-biases and different probe
chemistries, and positional effects due to probe cross-reactivity and ambiguous
mapping, that must be corrected during data processing and that potentially
reduce the number of usable probes (Carmona et al., 2017).

Sequencing-based strategies are instead applicable to whatever species
with available reference genome, and can virtually cover all CpG sites, and
also CpX sites, in a region of interest, until the whole genome (Carmona et al.,
2017). Furthermore, sequencing strategies enable rescuing the information on
how methylated residues are phased in a DNA molecule (Landan et al., 2012;
Landau et al., 2014; Li et al., 2014). This information, which is lost when using
array platforms, is important to explore the inner dynamics of DNA
methylation and demethylation, as well as to explore the molecular and cellular
heterogeneity of DNA methylation (as will be illustrated in the next section)
(Landan et al., 2012; Landau et al., 2014; Li et al., 2014).

Bisulfite sequencing techniques are adopted to assess the methylation
status at single base resolution at targeted regions or at genome-wide level (Gu
et al., 2011; Masser et al., 2013; Varley and Mitra, 2010; Yong et al., 2016).

A popular targeted sequencing experiment is amplicon bisulfite
sequencing (ABS) (Florio et al., 2017; Klobučar et al., 2020). In ABS, the
region of interest is selectively amplified, and the amplified products are then
sequenced (Florio et al., 2017; Klobučar et al., 2020). ABS is generally
achieved through double-step PCR (Florio et al., 2017; Klobučar et al., 2020).
In a first step, bisulfite-treated genomic DNA is amplified by using
target-specific primers. The 5′ end of these primers contains overhang adaptor
sequences that are used in the second step of amplification. This latter step
enables the addition of multiplexing indices and sequencing adaptors to the
amplified molecules. The obtained sequencing library is then multiplexed and
sequenced (Florio et al., 2017; Klobučar et al., 2020). ABS is a useful approach
to profile DNA methylation in hypothesis-driven settings, selecting for genes
or regulatory regions presumably involved in a biological process (Florio et al.,
2017; Klobučar et al., 2020).

An interesting variant of ABS is Deep-ABS, which takes advantage of
the throughput of NGS platforms to in deep sequence (10^3 to 10^5 reads per
region) amplicon-selected libraries (Florio et al., 2017; Klobučar et al., 2020).
Other than enabling an accurate analysis of the amount of methylated
molecules per CpG site, Deep-ABS enables a robust analysis of the
arrangements of methylated residues in individual DNA molecules (Affinito et
al., 2016; Florio et al., 2017).
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Sequencing-based approaches for measuring DNA methylation across
the human genome have rapidly scaled to the whole genome over the last
decade. Whole-genome bisulfite sequencing (WGBS) enables the assessment
of the methylation status at almost all CpG sites of the human genome.

In WGBS, DNA is sheared usually by sonication, and then subjected to
end repair and to the addition of an adenosine nucleotide at the 3′ end, in a
process called end repair and A-tailing (Karemaker and Vermeulen, 2018).
The A-tail serves as a binding site for sequencing adapters’ ligation. After this,
fragments of homogenous size compatible with sequencing requirements are
selected and subjected to bisulfite conversion. Bisulfite-converted fragments
are amplified by PCR and sequenced (Karemaker and Vermeulen, 2018). At
least 500 million reads are needed to provide 1x coverage of the whole
genome. Therefore, WGBS requires a large amount of input DNA (1-3 μg) and
generates a large amount of data that poses computational costs (Karemaker
and Vermeulen, 2018). Furthermore, much of the WGBS data is not
informative, due to the invariant DNA methylation status of large genomic
regions across conditions and cell-types or to a lack of overlap between
samples (Karemaker and Vermeulen, 2018).

To overcome these limitations, enrichment-based assays have been
developed to selectively assay more informative regions. Reduced
Representation Bisulfite sequencing (RRBS) is a popular bisulfite sequencing
assay which enriches for CG-rich parts of the genome, thereby reducing the
amount of sequenced genome while capturing the majority of promoters and
other relevant regulatory regions (Gu et al., 2011). In RRBS experiments, the
purified genomic DNA is digested with the methylation-insensitive restriction
enzyme MspI, which recognises the sequence CCCG and cuts between the first
and the second cytosine, thus generating CG-ending fragments. The digested
DNA is then subjected to end-repair and A-tailing, to enable adapter ligation.
The obtained fragments are then size-selected with insertion sizes generally
ranging between 40 and 220 base-pairs. The DNA fragments are subjected to
bisulfite conversion, PCR amplified and sequenced on a NGS platform (Gu et
al., 2011).

RRBS requires less amount of input DNA (10–300 ng) then WGBS,
while retaining most information about the DNA methylome (Gu et al., 2011).
However, the original version of the RRBS assay poorly covered regions with
intermediate CG density, like the CG-shores, that undergo DNA methylation
changes upon environmental stimuli, or distal regulatory elements (Gu et al.,
2011).

An enhanced version of RRBS (ERRBS) has been therefore developed
and is becoming increasingly adopted (Garrett-Bakelman et al., 2015). In
ERRBS, the MspI-digested DNA is size-selected to enrich for fragments
corresponding to 84–334 base-pairs. This fraction is selected from agarose gel
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in two fractions: one ranging between 84 and 184 base-pairs and one ranging
between 185 and 334 base-pairs. These fractions are bisulfite treated and
PCR-amplified independently, and are t pooled at the same molarity before
sequencing, resulting in good representation of the overall 84-334 base-pairs
length range (Garrett-Bakelman et al., 2015). ERRBS covers about 10% of
genomic CpG sites, and provides a higher coverage of regions outside CpG
islands and promoters, including exons, introns, and intergenic regions
(Garrett-Bakelman et al., 2015; Kacmarczyk et al., 2018).

It is worth noting that different enrichment strategies are also available
to profile DNA methylation at relevant epigenetic regions. In
methyl-sequencing assays, target regions are captured from sonicated DNA by
hybridization with capture platforms or oligo-covered baits (Kacmarczyk et al.,
2018). Several kits are available to target a broad panel of genomic regions
known to be epigenetically regulated (Kacmarczyk et al., 2018). Alternatively,
target panels have been developed to profile genomic regions relevant for
specific biological processes, like genomic imprinting (Ochoa et al., 2022).

Methyl-sequencing assays offer the great advantage to reproducibly and
stably profile DNA methylation at same genomic regions in different samples
(Kacmarczyk et al., 2018). However, the higher amount of input DNA required
(0.25-3 μg) and higher costs have limited their adoption (Kacmarczyk et al.,
2018).

Recently, bisulfite sequencing has also been implemented in single-cell
settings (Karemaker and Vermeulen, 2018). Studies based on single-cells
bisulfite sequencing have highlighted huge cell-to-cell differences even in
homogenous conditions (Carter and Zhao, 2021). However, technical issues
and elevated costs still limit the diffusion of such assays for DNA methylome
(Karemaker and Vermeulen, 2018).

Among these issues, a critical one is the scarce coverage of genomic
CpG sites (about 10^6 CpGs covered), dropping from 40% of bulk RRBS to
4% of a single-cell experiment (Karemaker and Vermeulen, 2018). As a
consequence, single-cell DNA methylation assays suffer from a restricted
overlap in the covered sites between individual cells (Karemaker and
Vermeulen, 2018).

Therefore, the dissection of cellular DNA methylation heterogeneity
still mostly relies on bulk experiments (Huan et al., 2018; Teschendorff et al.,
2020). In this setting, increasing interest is devoted to single-cell guided
deconvolution approaches, which enable inferring the proportion of different
cell-types in a given sample from bulk DNA methylation data (Scherer et al.,
2020a; Teschendorff et al., 2020).

Alternatively, analysis of DNA methylation heterogeneity can be
carried out through the analysis of phased chains of methylated cytosines in
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individual DNA molecules (Landan et al., 2012; Landau et al., 2014; Li et al.,
2014). This latter approach will be discussed in detail in the next section.

1.3 Analytical approaches to DNA methylation

The state of the art of the analysis of DNA methylation is a quantitative
approach, which consists in computing the fraction of molecules in which a
certain cytosine is methylated out of the total number of analyzed molecules
(Bock, 2012).

As such, the methylation status of a cytosine is generally expressed as a
proportion, and ranges between zero and one (Bock, 2012). The comparison of
methylation proportion across samples enables to identify CpGs whose amount
of methylation is associated with environmental exposures (Mitchell et al.,
2016), disease conditions (Jin and Liu, 2018) and chronological age (Hannum
et al., 2013; Horvath, 2013).

Genome-wide studies of DNA methylomes have highlighted that the
proportion of methylation of single cytosines follows a bimodal distribution,
with most cytosines peaking near zero or one (Bock et al., 2010). However,
most cytosines significantly diverge from the fully unmethylated and the fully
methylated values, and about 2% of 26.9 million CpGs in the human genome
exhibit intermediate DNA methylation values (between 0.25 and 0.75) in bulk
samples (Scherer et al., 2020b). This indicates that most cytosines are not
evenly methylated in different DNA molecules of the same sample,
highlighting a certain degree of within-sample heterogeneity (Scherer et al.,
2020b).

The main biological sources of such heterogeneity include cell-type
composition, cell-to-cell differences, allele- and strand-specific DNA
methylation (ASM and hemimethylation), and DNA methylation erosion, i.e.
the stochastic loss of DNA methylation at a given locus (Scherer et al., 2020b).

Although a single methylated CpG may occasionally be linked to gene
expression regulation (Xu et al., 2007) and may affect disease risk (Raval et al.,
2007), evidence has been provided that DNA methylation is regulated in larger
genomic regions, with sets of neighboring cytosines working as functional
units (Haerter et al., 2014; Irizarry et al., 2009; Jaenisch and Bird, 2003; Zhang
et al., 2017). DNA methylation analysis has indeed turned to the study of the
amount of methylation of DNA regions, which is expressed as average
methylation (the fraction of methylated cytosines in a given region), and on the
identification of regions with consistently different DNA methylation levels
between groups of samples (differentially methylated regions, DMR) (Bock,
2012). Most of the current knowledge on DNA methylation and its implication
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Background

in health and disease status is founded on this latter approach (Doi et al., 2009;
Hansen et al., 2011; Lokk et al., 2014).

However, the overall average methylation of a region does not inform
on how this amount is contributed by the average methylation of single DNA
molecules. As an example, an average methylation value of 0.5 for a given
locus could result from a homogenous pool of half methylated molecules, or
from an heterogeneous, balanced set composed of fully methylated and
unmethylated molecules, or even from more heterogeneous pools (Figure 3)
(Mikeska et al., 2010).

Figure 3. Quantitative versus qualitative analysis of DNA methylation. For a
representative locus containing 4 CpG sites, two different configurations are
shown. In both cases, average methylation (i.e. the overall fraction of
methylated cytosines, here represented as black dots) is equal to 50%.
However, in the first condition, two different epialleles with opposite
methylation levels (i.e. a fully methylated and a fully unmethylated epiallele)
are represented in the pool of DNA molecules. In the second condition, all
possible arrangements of methylated cytosines (24) are equally represented in
the pool of DNA molecules. (Figure adapted from Florio et al., 2016)
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Single-cell DNA methylation assays have highlighted extensive
cell-to-cell differences in regional DNA methylation (Huan et al., 2018;
Karemaker and Vermeulen, 2018), and have demonstrated that cellular
heterogeneity can have a functional impact. For example, epigenetic variability
at regulatory elements has been linked with gene expression variability
(Angermueller et al., 2016; Carter and Zhao, 2021).

Since single-cell DNA methylation assays are still limitedly adopted
due to the high cost and large sparsity of produced data (Huan et al., 2018;
Teschendorff et al., 2020), alternative approaches have been developed to
dissect DNA methylation heterogeneity from bulk experiments.

These approaches are generally based on the analysis of the
arrangements of methylated cytosines in individual bisulfite sequencing reads,
referred to as epialleles (Huan et al., 2018; Landan et al., 2012; Landau et al.,
2014; Li et al., 2014; Scherer et al., 2020b; Xu et al., 2007). Being focused not
only on the methylation amount of a given region, but also on how it is
distributed across cytosines in individual DNA molecules, these approaches are
here referred to as qualitative.

Qualitative analysis of epiallele composition generally relies on two
assumptions:

1) each sequenced read comes from and individual DNA molecule

2) each epiallele is representative of the epigenetic status of a
given region in an haploid cell

Based on these assumptions, notions and techniques derived from
population genetics, ecology and metagenomics have been adopted to directly
compare the frequency of epiallele across conditions.

A common approach is to compute an heterogeneity score that
summarizes the number of different epialleles and their relative proportion
observed in a given region (Scherer et al., 2020b). These scores can be then
used to define regions with similar degree of epigenetic variability and to
individuate regions under epigenetic drift or clonal selection across conditions
(Scherer et al., 2020b).

Some of the most popular scores are the Shannon entropy and the
Epipolymorphism.

Shannon entropy of a given locus is a measure of the randomness of
DNA methylation patterns in a cell population (Xie et al., 2011).
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Epipolymorphism of a given locus represents the probability that two
epialleles randomly sampled from the locus differ from each other (Landan et
al., 2012).

Both scores range between 0 (minimum degree of epigenetic
variability) and 1 (maximum degree of epigenetic variability).

A widely adopted measure to individuate shifts in epiallele composition
between pairs of samples is the combinatorial entropy implemented in the tool
Methclone (Li et al., 2014). Combinatorial entropy ranges between 0 and -144,
where 0 corresponds to no change and -144 to the maximum entropy change
that can be observed in a locus bearing 4 CpGs (Li et al., 2014).

Beside this approach, other tools such as AmpliMethprofiler and
EpiStatProfiler adopt functions from ecology fields to directly compare
epiallele composition observed in a given region in different samples from
targeted and genome-wide experiments, respectively (Sarnataro et al., 2022;
Scala et al., 2016). This latter approach can capture regions in which the same
or a similar degree of epigenetic heterogeneity is contributed by different
epialleles. These regions would be indeed overlooked when comparing
heterogeneity scores (Sarnataro et al., 2022; Scala et al., 2016).

In genome-wide settings, qualitative analysis is limited in the ability to
quantify heterogeneity across the genome compared to quantitative analysis. In
fact, in order to properly reconstruct the phase of methylated cytosines for a
region of interest, each sequencing read has to fully cover the entire region
(Scherer et al., 2020b). Furthermore, a minimum number of reads is usually
required to have a good representation of the entire range of epigenetic
variability of the region (Scherer et al., 2020b).

The choice of target regions is therefore carried out in order to retain
the maximum genomic coverage (i.e., the higher number of analyzed targets)
while enabling an accurate estimate of epiallele composition of each target.
The most adopted setting is to select regions encompassing 4 CpG sites
(Landan et al., 2012; Li et al., 2014). Alternatively, regions of fixed size set
according to sequencing read length can be selected (Sarnataro et al., 2022).
The coverage threshold can be variable depending on the approach, ranging
from 16 (the minimum number of reads to observe all possible epialleles in a
4-CpG region) to more stringent values (30-50 reads per target region) (Landan
et al., 2012; Li et al., 2014; Sarnataro et al., 2022).

Nonetheless, epiallele analysis adds useful information about the
dynamics that form, maintain and reprogram methylated regions in cancer and
developing cells. In (Landan et al., 2012), the authors demonstrated increased
epigenetic polymorphism in cancer cells, characterized by the co-existence of
cell subpopulations gaining DNA methylation and others remaining completely
resistant to methylation (Landan et al., 2012). Gain of methylation proceeds by
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progressive sensitization of resistant CpG sites to DNA methylation (Landan et
al., 2012). Moreover, epiallele analysis was shown to capture DNA
methylation shifts in leukemia patients from diagnosis to relapse after
treatment, shifts that would be missed when adopting a quantitative approach
(Li et al., 2014). In a targeted study, Florio et al. demonstrated that neuronal
differentiation proceeds through the emergence of characteristic epialleles from
non-organized pools observed in undifferentiated cells (Florio et al., 2017).
This pattern of heterogeneity was reproducible among individuals and
independent from cell-type composition (Florio et al., 2017).

1.5 Reconciling quantitative and qualitative analysis of DNA
methylation

When performing qualitative analysis of DNA methylation, the overall
amount of DNA methylation of individual epialleles is usually not taken into
account. However, it is expected that the functional properties of individual
epialleles is at least influenced, if not determined, by their inherent level of
methylation.

In this direction, several scores have been developed to integrate
quantitative and qualitative aspects of DNA methylation heterogeneity.

The proportion of discordant reads (PDR) score is one of the first and
successful attempts of taking into account the methylation levels to interpret
DNA methylation heterogeneity (Landau et al., 2014). This score is based on
the analysis of discordant reads, i.e. reads aligned to a certain region and
carrying cytosines with different methylation status, independently of their
position. PDR is indeed computed as the fraction of discordant reads out of the
total number of reads (Landau et al., 2014). Notably, PDR can be computed for
each individual CpG site, provided that the reads covering the CpG have a
minimum reciprocal overlap (Landau et al., 2014). PDR has enabled to
highlight locally disordered DNA methylation as a signature of leukemia cells,
which is currently viewed as facilitating tumor evolution through increased
epigenetic plasticity (Landau et al., 2014). Moreover, increased PDR resulted
in low-levels of gene expression and adverse clinical outcomes of leukemic
patients (Landau et al., 2014).

Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) is a
promoter-centered methylation quantification method based on the estimate of
the fraction of epialleles holding ≥1 methylated cytosines to the total number
of epialleles observed for the promoter (Xu et al., 2021).

CHALM was shown to better correlate with gene expression and
histone marks better than promoter average methylation (Xu et al., 2021).
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Concurrence ratio quantifies the ratio between the percentage of
unmethylated CpGs in partially methylated reads to assess the concurrence of
DNA methylation and demethylation in a genomic region (Shi et al., 2021).

By using this score, the authors were able to stratify large
undermethylated regions into two subgroups with distinct chromatin and gene
regulation patterns (Shi et al., 2021). Moreover, the authors demonstrated a
strong correlation between high concurrence ratio and the repression of a
relevant fraction of tumor suppressor genes (Shi et al., 2021).

As for epiallele analysis, analytical approaches can be adopted to
analyze and compare the full distribution of methylation levels exhibited by
DNA molecules at a given genomic region.

Mathematical modeling has been indeed applied to infer the distribution
of methylation levels from Whole Genome Bisulfite Sequencing (WGBS) data
at 150 base-pairs genomic windows (Jenkinson et al., 2017).

The starting point of this approach is a mathematical model
incorporating relevant factors known to shape DNA methylation dynamics,
including the physical distance among CpG sites and the cooperative effect
between neighboring cytosines (Jenkinson et al., 2017). Experimental data, i.e.
the epiallele configuration of sequencing reads mapped at each 150 base-pairs
windows, are then fitted to the model in order to compute the region-specific
parameters (for example, the entity of CpG co-methylation) (Jenkinson et al.,
2017). These parameters, integrated in the mathematical model, enable to
compute the probability mass function (PMF) of methylation levels that could
be observed in a pool of molecules at the inherent genomic region (Jenkinson
et al., 2017).

This approach, specifically designed to deal with the low coverage of
WGBS experiments, has provided novel insights on DNA methylation
heterogeneity and its disposition across the genome, its evolution upon
differentiation, aging and cancer, and its relationship with the genetic
background (Abante et al., 2020; Jenkinson et al., 2018, 2017).

In previous studies, high-coverage amplicon bisulfite sequencing
allowed us to directly estimate the distribution of methylation levels from
supporting sequencing reads at targeted regions (Affinito et al., 2016; De Riso
et al., 2020). Our approach, here referred to as MC profiling, was based on the
concept of Methylation Classes (MCs), i.e. groups of molecules holding the
same amount of methylated cytosines (Affinito et al., 2016; De Riso et al.,
2020).

The underlying idea of MC profiling is that looking at the distribution
of epialleles grouped by their methylation levels adds useful information for
the functional interpretation of DNA methylation heterogeneity in a sample.
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We already applied the concept of MCs in previous works with the aim
to model DNA methylation dynamics at targeted loci assayed through
high-coverage bisulfite sequencing (Affinito et al., 2016; De Riso et al., 2020).

The aim of this study is therefore to extend MC profiling to
genome-wide bisulfite sequencing data, with the aim to explore DNA
methylation heterogeneity of a huge number of genomic regions from the same
sample.
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Aims

2. Aims of your study

The goal of the project was to extend MC profiling to genome-wide
bulk bisulfite experiments, which enable to assay the methylation status of
thousands of genomic regions in the same sample.

Towards this goal, we planned the following specific aims:

1) assess the feasibility (in terms of accuracy and precision) of MC
profiling in low-coverage settings

2) Automate the extraction of MC profiles from genome-wide bisulfite
sequencing data

3) develop a computational framework to analyze and compare MC
profiles observed in a given region in different conditions (inter-sample
analysis)

4) develop a computational framework to analyze and compare MC
profiles observed at multiple regions in a given conditions
(within-sample analysis)

5) Test the potential of MC profiling on well-known patterns of DNA
methylation heterogeneity (both within and between conditions)
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3. Materials and Methods

MC profiling

a. MC profile computation

For each epilocus, i.e. a region holding 4 CpGs, we first selected the
reads spanning the entire regions. We then computed the set of the relative
abundances of the 5 possible methylation classes (MCs), here referred to as
MC profile. To this aim, we counted the different configurations of methylated
cytosines found supported by the selected reads. We grouped these
configurations in 5 MCs according to the number of methylated cytosines. For
each MC, we computed the relative abundance as the fraction of sequencing
reads supporting the MC out of the total number of reads.

b. Measure of dissimilarity

We adopted the Jensen-Shannon Distance to measure the dissimilarity
between two MC profiles. The Jensen Shannon Distance (JSD) quantifies the
degree of dissimilarity between discrete distributions P1 and P2 (in our case
represented by two sets of relative abundances), and is defined as

(Lin, 1991)𝑑 =
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d.  Epilocus filtering and multiple samples handling

We limited our analysis to epiloci with a coverage (number of reads
spanning the entire epilocus) of at least 50 reads and not higher than a
sample-specific cutoff, computed as the 99th percentile of the coverage of all
epiloci. To limit our observations to a set of independent epiloci, we applied a
sliding selection. Having the set of epiloci ordered by genomic coordinates, we
jumped from the first to the nearest non overlapping epilocus, thus retaining
only non-overlapping epiloci.

When multiple samples were available for the same condition, we
handled MC profiles observed in different samples by computing a consensus
MC profile at each epilocus. First, we quantified the inter-individual variability
for an epilocus by computing the JSD between the MC profiles observed in the
possible sample pairs. After this step, we retained epiloci with low
inter-individual variability, i.e. with JSD below 0.26 in all the pairs. For each of
these epiloci, we computed the average MC profile by averaging the relative
abundance of each MC among all the samples. In this way, we obtained a
consensus MC profile representative of all samples in a given condition, that
we could directly compare among conditions through the JSD.

e.  MC profiles classification

To provide biological interpretation of MC profiles, we adopted a data
compression scheme. We defined 5 archetypal profiles, reminiscent of standard
discrete distributions and reflecting the reasonable profiles expected given a
certain methylation amount. We then assigned each MC profile to one among 5
groups named Methylation Patterns (MPs) according to the most similar
archetypal profile.

To assign an MC profile to the nearest MP, we computed the JSD from
all the 5 archetypal profiles. We then assigned the MC profile to the MP
corresponding to the most similar archetypal profile (i.e. the reference profile
with minimum JSD).

We checked the appropriateness of our classification procedure by
comparing the JSD of each MC profile from the two nearest MPs, with the
lower JSD value representing the distance from the membership pattern
centroid (Within Class Distance, WCD) and the higher value representing the
distance from the nearest outer pattern centroid (External Class Distance,
ECD).
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Dataset

We analyzed previously published RRBS data and enhanced RRBS data
publicly available in the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
with the following accessions: GSE66121, GSE130735, GSE53714,
GSE72700. The samples adopted from each dataset are described in Table 1.

Table 1: RRBS datasets adopted in this project

Dataset GEO accession Sample accessions Description

Dataset 1 GSE130735 GSM3752619,
GSM3752620,

GSM3752621

samples from 3 WT
littermate E8.5
embryos

Dataset 2 GSE66121 GSM1614765,

GSM1614766,

GSM1614767

human CD19+ B-cells
isolated from 3 normal
controls

Dataset 3 GSE53714 GSM1299332,

GSM1299333,

GSM1299334

liver samples from 3
F1 mice originating
from C57BL/6J and
DBA/2J strain cross

Dataset 4 GSE72700 GSM1868584,

GSM1868589,

GSM1868591

ERRBS data from
C57BL6 male mice
neurons at different
developmental stages
(hippocampal
precursors:, granule
cells:; CA3 neurons:)

22



Materials and Methods

Data processing

a. RRBS raw data processing

Fastq files were quality checked by using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality
bases were removed using Trim Galore v0.6.6 with parameters --rrbs and
–paired for paired end experiments
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The
obtained fastq were aligned to the reference genomes (hg19 for human samples
and mm10 for mouse samples) through Bismark v0.23.0 employing default
parameters. The obtained BAM files were sorted and indexed using
SAMtoolsKit (http://www.htslib.org/).

b. Deep - Amplicon Bisulfite Sequencing data processing

D-ABS data were processed as previously described (Affinito et al.,
2020; Cuomo et al., 2019; Florio et al., 2017). In brief, paired-end reads were
merged in a single fastq file through PEAR (minimum overlapping residues
equal to 40) (https://cme.h-its.org/exelixis/web/software/pear/doc.html). The
fastq file was then converted to fasta through PRINSEQ
(http://prinseq.sourceforge.net/).

c. Epiallele counts extraction

For RRBS data, epiallele counts were extracted from BAM files using
the utilities provided by the EpiStatProfiler R package (Sarnataro et al., 2022).
Genomic regions covered by at least 50 reads were individuated through the
filterByCoverage function. Target regions holding 4 CpGs (the epiloci
described in this manuscript) were individuated by using the makeBins function
(step parameter equals to 1). The maximum length of the target regions was set
according to the specific library design (ranging from 70 to 100). Epiloci were
then analyzed by using the epiStatAnalysis function with default parameters.
For each epilocus, this function returns a table with summary statistics (such as
average methylation), and a file with epiallele counts. This latter was analyzed
through in-house R scripts to compute MC profiles, as described above.

For D-ABS data, epiallele counts were then extracted by adopting
AmpliMethProfiler (Scala et al., 2016). The MC profile of the amplicon was
then computed following the same procedure of RRBS epiloci.

d. Allele-specific alignment sorting
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To perform allele specific MC profiling, we applied the pipeline based
on the SNPsplit tool (54) on a dataset of crossed strain mice. First, the positions
holding alternative sequences between the strains were extracted from the VCF
file downloaded from the Mouse Genomes Project repository
(ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.
vcf.gz), and were masked from the reference mm10 genome by using the
SNPsplit_genome_preparation function in single strain mode. Fastq files were
then aligned to the masked genome by using Bismark 0.23.0 with default
parameters. The reads aligned to polymorphic sites were assigned to the
respective allele by using the SNPsplit function.

In brief, the reads aligned to variant positions were tagged
(SNPsplit-tag internal function), assigned to the reference or to the alternative
allele (tag2sort internal function), and written down in separate bam files. We
ran the SNPsplit function in --bisulfite mode to automatically discard the reads
aligned to C/T or T/C variants on the forward strand and to G/A or A/G
variants on the reverse strand, since these variants cannot be distinguished from
a methylation status call. The bam files relative to the reference and the
alternative allele were processed independently with the EpiStatProfiler tool to
obtain the epiallele counts and to compute the MC profile.

At the end, we were able to profile 2749, 460, 314 autosomal epiloci in
three mice, with a minimum coverage of 50 reads on both alleles.

e. Epiloci annotation

Epiloci were annotated by using the annotatr R package against hg19
and mm10 tracks (CpG islands and coding regions).

Epiloci were associated with the nearest genes by using the
seq2pathway R package, setting the ‘adjacent’ parameter to assign each
epilocus to the closest genes only. For our analysis, we considered the
FullResult output which also included non-coding genes.

To test the association between MC profiles and chromatin marks,
epiloci of Dataset 2 were annotated using the chromHMM segmentation tracks
for the GM12878 lymphoblastoid cell line from the RoadMap Epigenomics
project
(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/C
hmmModels/coreMarks/jointModel/final), whereas epiloci of Dataset 5 were
annotated using the segmentation tracks for mouse hindbrain (E10 and P0)
obtained from UCSC (van der Velde et al., 2021). For Dataset 4, the E10
hindbrain track was used to annotate epiloci of hippocampal precursors,
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whereas the P0 hindbrain track was adopted to annotate epiloci in differentiated
neurons (Granule cells and CA neurons). Epiloci overlapping with genomic
segments with different labels were annotated based on the label of the
genomic segment with the highest overlap.

Association of MPs with expression level

For Dataset 2, we downloaded normalized expression data (FPKM) for
3 samples from GEO with the accession GSE66121. For each gene, we
computed the average value among the 3 samples. We then assigned to the
highly-expressed group those genes with expression value above the median,
and assigned to the lowly-expressed group those genes with expression values
below or equal to the median.

Epiloci were assigned to gene promoters, exonic or intronic regions by
using the annotatr R package against hg19 genes track.

The association between the proportion of epiloci assigned to the
different MPs and the expression status was tested through the chi-square test
and post-hoc analysis of chi-square residuals (see the Statistical test Section).

Statistical analysis

a. Classification concordance of neighboring epiloci

To test the concordance of neighboring epiloci from Dataset 1 and 2,
we binned the genome into 1 kb long regions. We removed the bins harboring
less than 3 epiloci, and labeled the remaining ones as concordant if all the
epiloci were assigned to the same MP, and discordant otherwise.

We used bootstrapping to test whether the number of concordant bins
was higher than the one expected by chance. In brief, we scrambled the epiloci
grouped in each bin, such that the overall number of bins together with the
number of epiloci for each bin reflected those observed in experimental data,
but the epiloci were no longer grouped in a bin based on their proximity. We
repeated this procedure 1000 times, and each time we counted the number of
bins classified as concordant. We thus obtained the distribution of the number
of concordant bins expected by chance, that we used to compute the empirical
probability of observing the number of concordant bins found in experimental
data.
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Statistical test

All the statistical analyses were performed using R software (version
4.0) with an alpha value set for p < 0.01.

Association between categorical variables was tested for statistical
significance through either Fisher test (when both categorical variables were
dichotomous) or chi-square test and post-hoc analysis of chi-square residuals
(chi.square.posthoc.test function from the homonymous R package, adopting
Bonferroni correction to control for alpha inflation). In particular, we applied
Fisher to test whether MC profile changes more probably involved epiloci that
also underwent chromatin changes upon differentiation, epiloci located in
promoters or epiloci located in CpG Islands. We instead applied chi-square to
test whether epiloci exhibiting inter-individual variability were enriched in
peculiar genomic contexts (promoters, exons, introns, or intergenic regions), or
whether epiloci assigned to different MPs were enriched in particular genomic
regions (for example, regions flanking imprinted genes or regions decorated
with different histone marks) or more probably changed MC profiles upon
differentiation.

Differences in reciprocal distance among epiloci in concordant and
discordant bins was tested through the Mann-Whitney test.

Enrichment analysis for 5129 epiloci with significant changes in MC
profiles and stable average methylation upon differentiation was performed
using GREAT version 4.0.4, using the coordinates of all the analyzed epiloci
(115608) as background.
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4. Results

4.1 The MC profiling approach

4.1.1 Rationale

The rationale of MC profiling, and the differences with epiallele-based
approaches, is depicted in Figure 4.

Epiallele-based approaches are based on the direct analysis of the
arrangements of methylated and unmethylated cytosines (epialleles) in
sequencing reads mapped to a region of interest (Figure 4A).

Considering each reads coming from a DNA molecule, several scores
have been developed to quantify the heterogeneity observed in a bulk sample,
and to compare it among different samples (Figure 4B) (Scherer et al., 2020b).
This approach has proved to be particularly suitable, for example, to
individuate regions undergoing clonal selection and epigenetic drift in tumors
(Landan et al., 2012; Landau et al., 2014; Li et al., 2014). In this setting, the
composition of individual epialleles is only indirectly accounted for. Similar
heterogeneity values could, indeed, come from different epiallele compositions.
Of note, the methylation level of epialleles is usually not, or only partially,
incorporated in these heterogeneity scores, which makes difficult to interpret
the functional impact of heterogeneity shifts (Landan et al., 2012; Landau et
al., 2014; Li et al., 2014; Xu et al., 2021; Zhang and Wang, 2022).

The underlying idea of our approach is that looking at the distribution
of epialleles grouped by their methylation levels adds useful information for
the functional interpretation of DNA methylation heterogeneity in a sample.
The proposed approach, MC profiling, is indeed based on the empirical
estimate of the distribution of epialleles grouped by their methylation levels
(Figure 4C). We already applied the concept of MCs in previous works with
the aim to model DNA methylation dynamics at targeted loci assayed through
high-coverage bisulfite sequencing (Affinito et al., 2016; De Riso et al., 2020).

We here extended our approach to enrichment-based genome-wide
datasets, like the ones from Reduced Representation Bisulfite Sequencing
(RRBS) experiments, thus allowing for the simultaneous analysis of thousands
of regions from the same sample. In this context, we implemented a new
analytical framework to directly compare MC profiles across regions and
samples.

Instead of adopting a numerical index (as, for example,the Shannon
Index) to summarize the DNA methylation heterogeneity of a given region, we
kept as much information as possible and described, for each DNA region, the
relative abundance of the possible MCs. In this setting, we adopted the direct
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comparison of MC profiles to analyze differential methylation of a given
region among conditions, or to examine the differences among regions in the
same condition (Figure 4C). It is important to point out that, in this latter
setting, direct comparison of epiallele composition would only be possible
through MCs, being these sequence independent, and not through the epialleles
themselves.

Comparing MC profiles allowed us indeed to compare not only the
heterogeneity but also the different methylation levels of DNA molecules.

In summary, adopting MC profiles can provide the following
advantages:

- Considering how they are computed, MC profiles directly incorporate the
average methylation of a given region, and inform on how it is contributed by
single DNA molecules.

- MC profiles retain all information from a pool of molecules, and enable the
direct visualization of DNA methylation heterogeneity of a given region

- MC profiles are empirically estimated from sequencing reads, and are
independent on a priori parametrization of DNA methylation dynamics.

Figure 4: rationale of MC profiling. A: example of a region of interest
holding 4 CpGs (TSS=Transcription Starting Site) B: Representation of
epiallele-based analysis. DNA methylation heterogeneity for a certain locus is
usually quantified through a numerical index (e.g., epipolymorphysm, Shannon
entropy, ..). This can be then adopted to compare the heterogeneity of pools of
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molecules (for example, to compare the heterogeneity of a certain locus in
different samples). C: Representation of MC profiling analysis. The epialleles
are first grouped in Methylation Classes (MCs) according to the number of
methylated cytosines. The relative abundances of the possible MCs (for a locus
holding n CpGs there are n+1 possible MCs), named MC profile, summarize
the molecular heterogeneity and the methylation levels of a given region. MC
profiles can be directly adopted to perform differential analysis.

4.1.2 Establishment of MC profiling’s thresholds

To extend MC profiling to genome-wide datasets, we had to account for two
main technical issues:

a) the shortness of reads limiting the number of CpGs that can be assayed
in the same DNA molecule

b) the coverage of target regions, limiting the number of DNA molecules
that can be analyzed to capture DNA methylation heterogeneity

Regarding point a), a previous study systematically addressed the decrease in
the number of informative regions as a function of the number of CpGs to be
included in the target region, and highlighted that increasing the number of
considered CpGs from 4 to 5 causes a drop of the number of analyzable target
regions. Based on these results, we fixed the number of CpGs to 4.

Regarding point b, we didn’t find guidelines from previous studies that could
fit the specific nature of our analysis. In this context, we reasoned that we
could use deep amplicon bisulfite sequencing (D-ABS) data from our previous
studies to assess the impact of coverage on MC profiles estimates. We therefore
simulated 4-CpG low coverage datasets, starting from an in-house database of
D-ABS amplicons. Detailed descriptions of the employed amplicons can be
found in Table 2.
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Table2: Details about D-ABS data adopted for data simulations

Gene Organism Amplicon Coordinates Genome Assembly

DAO Human CHR12:108879926-108880252 GRCh38/hg38

DDOH Human CHR6: 110415392-110415789 GRCh38/hg38

SCRN1 Human CHR7:29990018-29990346 GRCh38/hg38

CDKL5 Mouse CHRX: 160994844-160994655 GRCm38/mm10

DDO_R3 Mouse CHR10:40629085-40629513 GRCm38/mm10

DDO_R4 Mouse CHR10:40629544-40629949 GRCm38/mm10

DDO_R6 Mouse CHR10:40630278-40630682 GRCm38/mm10

DDO_R7 Mouse CHR10:40630812-40631211 GRCm38/mm10

DLX6 Mouse CHR6:6864874-6865260 GRCm38/mm10

TPH1a Zebrafish CHR25:8159799-8160116 GRCz11/danRer11

(human_DDO: human D-Aspartate Oxidase, mouse_DDOR4: mouse
D-Aspartate Oxidase Region 4, mouse_DDOR6: mouse D-Aspartate Oxidase
Region 6, mouse_DDOR7: mouse D-Aspartate Oxidase Region 7)

First, we split each amplicon into non-overlapping regions made up of 4
CpGs, thus obtaining several 4-CpG high-coverage datasets. Among these
datasets, we selected those with higher coverage (number of reads > 20000).
Since we expect that fully methylated or unmethylated profiles would be better
captured at low coverage than intermediately methylated ones, due to the
higher number of methylation classes with non-zero abundance, we selected
4-CpG datasets with average methylation levels spanning the entire range from
0 to 1 and enriched for datasets with intermediate average methylation. In this
way, we selected 25 datasets, representative of 5 groups according to the
average methylation level.

To simulate low coverage datasets, we randomly sampled a fixed
number of reads from each 4-CpG dataset.
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We simulated low coverage datasets to address the following issues:

a) the minimum coverage to minimize the error between a reference MC
profile (i.e., the MC profile computed from the high coverage dataset)
and an estimated MC profile (i.e., the MC profile computed from a low
coverage dataset)

To address this point, we synthesized 1000 low coverage 4 CpG
datasets for coverage values ranging from 20 to 200. From each dataset, we
calculated the MC profile, and computed the JSD from the MC profile of the
respective 4 CpG high-coverage dataset. As shown in Figure 5A, the JSD
values decreased as the coverage increased, as expected. In particular, JSD
values dropped between 25 and 50 reads (Figure 5A). A similar gain in
accuracy is achieved by triplicating the coverage (i.e. achieving a read number
higher than 150). Based on these observations, we considered a region covered
by at least 50 reads to be eligible for MC profiling.

b) the minimum value of JSD to consider 2 MC profiles as different.

To address this point, we simulated 1000 pairs of low-coverage datasets
with a fixed coverage of 50 reads. For each dataset pair, we computed the JSD
among the estimated MC profiles. Ideally, two read groups sampled from the
same dataset should exhibit very similar, if not identical, profiles, with a JSD
value approaching 0. In practice, however, the estimated profiles differed to a
certain extent. As shown in Figure 5B, at a coverage of 50 reads, MC profiles
exhibited a JSD lower than 0.26 (min=0.22, max=0.28) for 95% of the
experiments. JSD values observed for a wider range of coverage are reported in
Table 3.
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Figure 5: Results from data simulation. A: Accuracy of MC profiles from
simulated datasets with increased coverage (y-axis: average JSD value of the
MC profiles estimated between 1000 low-coverage 4-CpG datasets and the MC
profile computed from the high-coverage 4-CpG dataset. x-axis: number of
reads to simulate low coverage datasets. Dashed lines: gain in accuracy when
increasing the coverage between 25 and 50 reads. Solid lines: interval of
increased coverage to obtain the gain in accuracy observed between 25 and 50
reads). The shaded area indicates the standard deviation of the observed JSD
value at a given coverage. B: Precision of MC profiles estimated from
simulated 50 reads datasets for each 4-CpG high coverage dataset (y-axis: JSD
values between MC profiles estimated from 1000 datasets’ pairs; x-axis:
4-CpG datasets).
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Table 3: Jensen-Shannon distance cutoff as a function of coverage

coverage cutoff

25 0.37

50 0.26

75 0.21

100 0.18

150 0.15

200 0.13

We concluded that MC profiles having a JSD higher than 0.26 could be
defined as different with an error equal or lower than 0.05. Hence, when
comparing two MC profiles, we considered them to be different when we
observed a JSD above 0.26.

4.1.3 Extraction of MC profiles from genome-wide experiments

The procedure to obtain MC profiles starting from aligned reads
produced from bisulfite sequencing experiments is depicted in Figure 6.
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Figure 6. Epiallele extraction and MC profiling. A. Selection of genomic
blocks, i.e. contiguous positions above a user-defined coverage threshold B.
Selection of target regions for epiallele analysis. In this study, we focus on
regions made up of 4 CpG sites, referred to as epiloci C. Extraction of epiallele
table. For each epilocus, the sequence of individual reads is compared with the
reference genome at the position of the CpG sites, taking into account the
strand of the aligned read. If a T is found on the forward strand or an A on the
reverse strand in correspondence of the reference C position, then the
corresponding position in the matrix is marked as 0 (unmethylated). If instead
a C is found on the forward strand or a G on the reverse strand in
correspondence of the reference C position, then the corresponding position in
the matrix is marked as 1 (methylated). In this way, a nCs (number of
cytosines) x nRs (number of reads) table is obtained. Only information from
reads completely spanning the 4 CpG sites of an epilocus is retained.
Moreover, reads with ambiguous calls in correspondence of CpG positions
(i.e., reads for which neither a T or C on the forward strand or an A or G on the
reverse strand is found in the correspondence of a CpG site) are filtered out
from the epiallele table. D. Selection of epiloci eligible for MC profiling. These
are not overlapping epiloci for which the epiallele configuration can be
assessed for at least 50 reads E. MC profiling. For a given epilocus, the MC
profile is computed as the fraction of reads supporting the possible MCs (i.e.,
groups of epialleles bearing a given number of methylated cytosines,
independently of the position) out of the total number of reads.

An epilocus is defined as a genomic region holding 4 CpGs.
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MC profiles are built using the functionalities of EpistatProfiler, an R
package we recently developed to extract and analyze information on epiallele
composition from genome-wide experiments (Sarnataro et al., 2022).

EpiStatProfiler provides a set of functions that allow genome-wide
analysis of epialleles composition at thousands of genomic regions that fulfill
user-defined criteria.

First, information on aligned reads stored in a bam file is used to
compute the genome-wide coverage at single-base resolution. The contiguous
regions satisfying a user-defined coverage threshold are then merged to
generate a collection of genomic blocks (Figure 6A).

These blocks are subsequently partitioned to build a set of smaller
genomic regions constituted by a contiguous set of covered sites meeting
user-defined criteria. These can be either the usage of sliding windows of
variable length containing a user-defined number of CpG sites or the usage of a
sliding window with user-defined fixed length and step sizes, containing a
variable number of CpG sites. For the aims of MC profiling, we adopted a
sliding window with a fixed number of 4 CpGs for target region selection, that
we will refer to as epiloci in the text (Figure 6B).

For each epilocus to be profiled, epialleles composition is extracted by
EpiStatProfiler in the following manner (Figure 6C).

First, all the sequenced reads mapping to the corresponding locus are
selected and their sequence is compared with the reference genome at the
position of the CpG sites, taking into account the strand of the aligned read.

Given the number of cytosines in the CpG context at the considered
epilocus (n Cs) and the number of reads spanning the entire epilocus (n Rs), a
nCs x nRs matrix - composed of n Cs columns and n Reads rows - is compiled.

For each read and each CpG, if a T is found on the forward strand or an
A on the reverse strand in correspondence of the reference C position, then the
corresponding position in the matrix is marked as 0 (unmethylated). If instead
a C is found on the forward strand or a G on the reverse strand in
correspondence of the reference C position, then the corresponding position in
the matrix is marked as 1 (methylated).

To account for ambiguous methylation calls due to polymorphisms or
sequencing errors, if neither a T or C on the forward strand or an A or G on the
reverse strand is found in the correspondence of a CpG site, the corresponding
cell is filled with the value of 2. Rows harboring these values (i.e. reads with
ambiguous calls in correspondence of CpG positions) are filtered out when
computing summary metrics and epiallele composition.
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At the end, two different outputs are obtained starting from the 0-1
epiallele matrix related to a given epilocus.

The first one is a compressed table of epialleles. To build this output,
each row of the binary epiallele matrix is converted to a string that represents
one epiallele species. The compressed table is then created by reporting the
count for each epiallele species.

The second output is obtained by applying a customizable set of
functions that take the binary matrix as input and compute a given summary
statistic. A data frame that contains the computed summary statistics is then
generated. Available summary statistics include, among the others, the average
DNA methylation of the epilocus, computed . The number and the type of
functions to compute summary statistics over the epiallele binary matrix can be
easily changed and extended with user defined functions.

Building on top of the compressed epiallele table output by
EpiStatProfiler, we used in-house R scripts to perform MC profiling. These
scripts have been made available in Zenodo
(https://doi.org/10.5281/zenodo.7414513).

The procedure to obtain MC profiles for a target epilocus is depicted in
Figure 6D-E.

We first selected the epiloci covered by at least 50 reads (Figure 6D).
Then, for each epilocus, we grouped the observed epialleles into 5 Methylation
Classes (MCs) according to the number of methylated cytosines. For a 4
CpG-locus, 5 MCs can be described.

Finally, we computed the relative abundance of each MC by summing
the counts of epialleles belonging to the given MC out of the total number of
analyzed DNA molecules, thus obtaining the MC profile of the considered
epilocus (Figure 6E).

4.1.4 Analytical framework of MC profiling

The analytical framework of MC profiling is summarized in Figure 7.

Throughout this study, we adopted the Jensen Shannon Distance (JSD)
to quantify the dissimilarity between MC profiles (see Methods). Based on the
results of simulations performed on high-coverage targeted bisulfite
sequencing data, we considered two profiles to be different when we observed
a JSD above 0.26 (see Methods).

The JSD can be used to assess the changes of MC profiles at a given
epilocus in different conditions. When different samples were available for
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each condition, we computed an average MC profile by averaging the relative
abundance of each MC among the samples assigned to a given condition. In
this way, we obtained a consensus MC profile representative of all samples in a
given condition. This enabled us to directly compare the consensus profiles of
an epilocus in two conditions through the JSD.

Figure 7: schematic drawing of MC profiling. A. The Jensen-Shannon
distance is used to quantify the degree of dissimilarity between MC profiles.
Based on the results obtained from simulated data, we considered two MC
profiles to be different when observing a JSD above 0.26. The JSD can be used
to assess the changes of MC profiles at a given epilocus in different conditions.
The JSD can be also compared to other metrics, such as the difference of
average methylation (delta met), over the analyzed epiloci. B. MC profiles
were assigned to 5 Methylation Patterns (MPs) according to the most similar
among 5 archetypal profiles (here indicated in the upper panel, middle row).
This data compression procedure provided us with a signature of genome-wide
MC profiles composition in a given condition. MPs enabled us to i) directly
compare the MP of different epiloci within the same sample/ or condition
(within sample analysis) and ii) to compare the MP transitions occurring at a
given epilocus in different conditions (between conditions analysis).

The JSD can be also compared to other metrics, such as the difference
of average methylation (delta methylation), over the analyzed epiloci.

To improve the interpretability of the data, we adopted a data
compression procedure, and assigned each MC profile to a Methylation Pattern
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(MP) according to the most similar of 5 archetypal profiles (Figure 7D),
hereafter referred to as prototypes (see Methods). The prototypes, which are
reminiscent of standard discrete distributions, were chosen because they reflect
the reasonable profiles of an epilocus expected at a given methylation amount.
In fact, D1 and D2 represent the two symmetric profiles for highly methylated
or unmethylated epiloci, in which we expect a prevalence of fully
unmethylated and methylated MCs, respectively. D3, D4 and D5, instead,
represent the hypothetical profiles of intermediately methylated regions, that
can reflect 1) the prevalence of both fully methylated and unmethylated MCs
(D3, bimodal profile), 2) the prevalence of intermediately methylated MCs
(bell-shaped profile, D4), or 3) the presence of all possible MCs with the same
relative abundance (uniform profile, D5).

This data compression procedure provided us with a signature of
genome-wide MC profiles composition in a given condition. MPs enabled us to
i) directly compare the MP of different epiloci within the same sample or
condition (within sample analysis) and ii) to compare the MP transitions
occurring at a given epilocus in different conditions (between conditions
analysis).

4.2 MC profiles are mostly stable among individuals and across
genomic regions

We first applied MC profiling to 2 datasets of samples publicly
available in GEO (see Table 1). Dataset1 included samples from 3 wild-type
mice embryos, whereas Dataset2 included 3 samples from human CD19+
B-cells isolated from normal controls. Indeed, our datasets came from different
species and were representative of different developmental stages, where we
expect that DNA methylation heterogeneity probably derives from different
dynamics (epigenetic drift in somatic cells vs cell differentiation in mouse
embryos). We reasoned that such an experimental plan would have enabled us
to generalize the results of our analysis.

For each sample, we profiled about 100000 epiloci in Dataset 1 and
90000 epiloci in Dataset 2.

By examining the average methylation of epiloci belonging to different
MPs, we confirmed that the quantitative amount of methylated cytosines of
assigned elements was coherent with the expected values for each pattern
(Figure 8A).
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Figure 8. MC profiles versus average DNA methylation. A: Average
methylation level of epiloci assigned to each MP in a sample from Dataset 1.
B: example of epiloci with same average methylation and different MC
profiles.

However, MC profiles add further information depicting the
heterogeneity of DNA methylation among DNA molecules. This was
particularly evident for the D3, D4, and D5 patterns. In fact, epiloci exhibiting
the same average methylation were assigned to different MPs (Figure 8B).

We then investigated the stability of MC profiles across samples. For
this aim, we analyzed the epiloci for which the MC profiles were assessed in
all the samples in the individual datasets (n=87457 and n=41609) and
computed the JSD of MC profiles among sample pairs. We found that 98% of
epiloci in Dataset 1 and 96% in Dataset 2 had JSD lower or equal to 0.26 in all
sample pairs, meaning that MC profiles at most of the epiloci were very similar
between samples (Figure 9A).
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Figure 9. MC profiles are mostly stable among individuals and across
genomic regions. A. Density plot of MC profile distance between sample pairs
of Dataset 1 and 2. x-axis: JSD values between sample pairs. y-axis:density of
epiloci with a given sample-pairs JSD value The red line indicates the cutoff
value of JSD. B: Genomic annotation of epiloci with stable or variant MC
profiles. C: average distance between epiloci inside concordant and discordant
bins in dataset 1 and 2.

In both datasets, we found that stable epiloci, i.e. epiloci with a JSD
below the cutoff in all sample pairs (n=86319 and n=39767, in Dataset1 and 2
respectively), were enriched in promoters (chi-square post hoc test p-values <
1e-7) and depleted in intergenic regions (chi-square post hoc test p-values <
1e-7). On the contrary, variant epiloci, i.e. epiloci with JSD above the cutoff in
at least one sample pair (n= 1138 and n=1842, in Dataset 1 and 2 respectively),
were depleted in promoters (chi-square post hoc test p-values < 1e-7) and were
enriched in intergenic regions (chi-square post hoc test p-values < 1e-7). We
found no difference in the proportion of stable and variant epiloci located in
coding sequences (Figure 9B).

Based on this result, for each dataset we retained for further analysis the
stable epiloci, and computed the consensus MC profile by averaging the
relative abundances of each MC from the three samples. We then applied the
data compression procedure, and assigned the consensus MC profiles to the
MPs (see Methods).

Since epigenetic modifications are expected to involve larger DNA
regions than individual epiloci, we expected that neighboring epiloci exhibited
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concordant MC profiles. To test this hypothesis, we binned the genome in 1 kb
regions, and compared the MPs of epiloci located in each bin (see Methods).

Among the bins harboring at least 3 epiloci, 10733 (99%) bore concordant and
(1%) 148 bore discordant epiloci in Dataset 1, whereas (95%) 5079 bore
concordant and (5%) 249 bore discordant epiloci Dataset 2. We confirmed that
the number of bins bearing concordant epiloci significantly differed from the
one expected by chance in both datasets (see Methods). This result suggests
that MC profiles of neighboring epiloci tend to be similar. This conclusion is
further supported by the observation that the reciprocal distance between
epiloci in concordant bins tends to be lower than in discordant bins
(Mann-Whitney p-value = 0.0005866, Figure 9C).

Overall, MC profiles resulted to be mostly stable among individuals
and across genomic regions, thus suggesting that the heterogeneity captured by
MC profiles mostly results from controlled DNA methylation dynamics, rather
than from stochastic fluctuations of methylation levels.

4.3 MC profiles differentiate functional genomic regions

We reasoned that assigning MC profiles to different MPs could provide
us with a signature of genome-wide MC profiles composition in a given
dataset. We indeed examined the proportion of epiloci assigned to each MPs.

In accordance with the well-established bimodal distribution of average
DNA methylation (Bock, 2012), the most represented prototype classes were
D1 (83% and 78% of epiloci in Dataset 1 and 2, respectively) and D2 (about
15% and 16% of epiloci in Dataset 1 and 2, respectively).

The intermediately methylated D3, D4 and D5 classes accounted
respectively for 2% of epiloci in Dataset 1 and 5% of epiloci in Dataset 2.
Among the intermediately methylated classes, the most represented one was
the D5 (90% and 82% of epiloci in Dataset 1 and 2, respectively), followed by
the D3 class (9% and 13% of epiloci in Dataset 1 and 2, respectively). The D4
class was strongly underrepresented (1% and 4% of intermediately methylated
epiloci in Dataset 1 and 2, respectively) in normal conditions, suggesting that
intermediate values of average methylation rarely reflect an intermediate
methylation amount on different DNA molecules. Instead, intermediate values
of average methylation more often reflected the coexistence of fully
unmethylated and fully methylated molecules, in presence (D5) or in absence
(D3) of intermediately methylated molecules.

The classification of MC profiles to MPs also enabled us to investigate
whether epiloci attributed to the different prototype classes were located in
genomic regions with different functional characteristics (Figure 10A).
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Figure 10. MC profiles differentiate functional genomic regions. A. Genomic
annotation of epiloci assigned to the different MPs in Dataset 1 and 2. B.
Proportion of MPs in Dataset 2 for regions assigned to different functional
categories according to the chromHMM track for GM12878 cell line (Tx=
Strong Transcription, EnhG= Genic enhancer, Quies= Quiescent/Low, TxWk=
Weak transcription, Het= Heterochromatin, TxFlnk= transcription at gene 5’
and 3’, ZNFRpts= ZNF genes and repeats, Enh= enhancer, ReprPCWk= Weak
Repressed Polycomb, TSSAFlnk= Flanking active TSS, ReprPC=Repressed
Polycomb, EnhBiv= Bivalent enhancer, BivFlnk=Flanking bivalent
TSS/enhancer, TssBiv= Bivalent/Poised TSS, TssA= Active TSS). C.
Proportion of MPs in functional regions (promoters, introns and exons) of
highly expressed and lowly expressed genes.

We found that the D1 class was enriched within promoters and exons
(chi-square post hoc p-values < 1e-7) and depleted in intergenic regions and
introns (chi-square post hoc p-values < 1e-7). On the contrary, the D2 class was
mainly located in intergenic regions and introns (chi-square post hoc p-value<
1e-7) and depleted in promoters and exons (chi-square post hoc p-value< 1e-7).
Similarly, the D5 class was depleted from promoters and enriched in intergenic
regions (chi-square post hoc p-values < 1e-7). We did not find significant
differences in the localization of D3 and D4 epiloci.

We found that MPs composition could further distinguish genomic
regions decorated with different histone marks in Dataset 2 (Figure 10B). For
example, MPs separated constitutive heterochromatin from
Polycomb-repressed regions (chi-square p-value < 1e-7), with the former
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enriched not only for the methylated D2 but also for the D5 MP (chi-square
post hoc p-value< 1e-7), pointing to higher heterogeneity in constitutively
inactive genomic regions. Polycomb-repressed regions, on the other hand, were
enriched for the D1 MP (chi-square post hoc p-value< 1e-7), pointing to lower
levels of DNA methylation in Polycomb-regulated regions.

We also found that MPs composition varied when separately
investigating the promoter, exonic and intronic regions of genes with
expression levels lower or higher than the median value in Dataset 2
(chi-square p-value < 1e-7, Figure 10C). We found that D1 MP was enriched in
promoters, introns and exons of highly-expressed genes (chi-square post-hoc
p-value < 1e-7), whereas the D2 MP was enriched in exons (chi-square
post-hoc p-value < 1e-7) and slightly enriched in promoters of lowly-expressed
genes (chi-square post-hoc p-value < 5e-3). Again, we found an enrichment of
the D5 MP in promoters, exons and introns of lowly expressed genes
(chi-square post-hoc p-value < 1e-7), suggesting a consistent pattern of
increased heterogeneity in low-to-inactive regions.

4.4 MC profiling individuates a signature of imprinted regions and X
chromosome inactivation

We tested the capability of MC profiling to discriminate regions
undergoing genomic imprinting, a well-known phenomenon of allele specific
regulation. In these regions, it is expected that the two alleles differ for their
DNA methylation status. Hence, we wondered whether D3 epiloci, in which
two pools of molecules exist with opposite DNA methylation status, were
enriched at genomic regions flanking imprinted genes.

To test this hypothesis, we assigned each epilocus of Dataset 1 and 2 to
its nearest gene (see Methods) and marked the epiloci as associated with
imprinted genes if the closest gene was enlisted in Geneimprint
(https://www.geneimprint.com/).

As shown in Figure 11A, the five MPs were differentially represented
among epiloci flanking imprinted and not imprinted genes (chi-square test
p-values < 2.2e-16). Specifically, epiloci assigned to the D3 pattern were
strongly overrepresented among epiloci flanking imprinted genes (chi square
post-hoc test p-values < 2e-16), thus confirming that D3 epiloci were
preferentially, even though not exclusively, associated with allele specific
methylation.
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Figure 11: MC profiling of imprinted and X-inactivated regions. A:
proportion of epiloci assigned to the different MPs in imprinted and non
imprinted genomic regions in Dataset 1 and 2. B: example of bimodal epilocus
flanking the Zdbf2 imprinted gene in Dataset 3. The joint MC profile (i.e. the
profile obtained without splitting the alleles) is shown in light blue, whereas
the profiles of the reference (ref) and the alternative (all) alleles are shown in
orange and green respectively. C: classification of epiloci flanking genes
undergoing X inactivation (subject), stably escaping X inactivation (escapee),
or variably escaping X inactivation (variable escapee); D: average MC profile
of epiloci classified as D1 in a male sample from Dataset 1(blue) compared to
the average profile of the same epiloci in two female samples from the same
dataset (red).

As a confirmatory experiment, we searched for D3 epiloci flanking
imprinted genes in a third dataset of DNA methylation data from mice born
from two different strains (Dataset 3 in Table 1). Based on known polymorphic
sites between the two strains, we were able to attribute each read to the
respective allele, and to explore the allele specific MC profile for more than
300 autosomal epiloci in 3 mice (see Methods).

Due to the scarce coverage of imprinted regions also stated in the
original study (Orozco et al., 2014), we could find a single epilocus exhibiting
a D3 profile and located near imprinted genes. In particular, this epilocus was
located on chr1, upstream of the Zdbf2 imprinted gene. In this locus,
differentially methylated regions had been previously described (Hiura et al.,
2010, p. 1). Figure 11B shows how the bimodal joint MC profile at this
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epilocus results from different profiles on the two alleles, with one skewed
towards complete demethylation and the other towards complete methylation.
It is worth noting that, for both alleles, MC profiling individuated a certain
degree of cellular heterogeneity, since intermediate MCs were also represented.

Based on the results obtained from MC profiling of imprinted genes, we
decided to investigate whether epiloci located on the X chromosome also
exhibited peculiar MC profiles due to the X inactivation process. It is in fact
known that, during the inactivation of the X chromosome, most loci are
inactivated (subject loci) while others partially or totally escape this
inactivation (escapee or variable escapee loci) (Balaton et al., 2015).

We indeed analyzed the MPs to epiloci flanking genes with different
inactivation status. First, we assigned X epiloci to the respective MP in two
female samples from Dataset 2. Then, we assigned to each epilocus the
consensus inactivation status of the nearest gene (Balaton et al., 2015). In this
way, we classified 551 epiloci as subject to X chromosome inactivation, 138 as
escapee, 56 as variable escapee and 233 as unknown/discordant.

As shown in Figure 11C, MPs were represented in different proportions
among subject, escape and variable escape epiloci (chi square post-hoc test
p-value < 1e-7). Escape epiloci mostly exhibited unmethylated D1 profiles (chi
square post-hoc test p-value < 1e-7), whereas subject epiloci mostly exhibited
either bimodal D3 or uniform D5 profiles (chi square test post-hoc p-value <
1e-7). Both groups of MPs (D1 and D3/D5) were represented among variable
escape epiloci, none of them significantly enriched.

We hence decided to investigate the MC profile of the inactive X in
Dataset 1, for which two female and one male sample was available. We
reasoned that we could deduce the profile of the female inactive X by
comparing the MC profile of X epiloci in males and females, and that such
deduction would have been particularly feasible for epiloci classified as D1 in
the male samples. In fact, in this condition, it could be reasonably inferred that
methylated molecules in females mostly resemble the methylation status of the
inactive X. We indeed compared the average profiles of 1068 epiloci belonging
to the D1 MP in males with the respective average profile in female samples
(Figure 11D).

The sex difference among the average MC profiles pointed to a
heterogeneous DNA methylation status of the inactive X, ranging from being
lowly to fully methylated in different cells. Of note, we observed a more
gradual methylation status of the inactive X compared to the methylated alleles
of imprinted epiloci. This observation is compatible with the previously
described discrepancy of average methylation between imprinted and X
inactivated genes. In fact, while for imprinted loci one of the alleles is fully
methylated, X inactivated genes exhibit partial methylation of the inactive
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allele (Balaton et al., 2021). In addition, MC profiles suggest that this partial
methylation is due to cell-to-cell differences, and not to a partial methylation in
all cells.

4.5 MC profiling individuates DNA methylation changes upon
differentiation

We challenged the ability of MC profiling to capture epigenetic changes
among conditions. As a model of epigenetic changes, we choose a dataset of
neuronal differentiation. To this aim, we analyzed MC profiles changes of
115608 epiloci upon differentiation of hippocampal precursors (HP) to granule
cells (GC) (Dataset 4).

For each epilocus, we calculated the difference of average methylation
between differentiated cells and neuronal precursors (delta meth), and
quantified the MC profiles’ change by using the Jensen-Shannon distance
(JSD). The relationship between these two measures is shown in Figure 12A.
The red lines delineate the difference of average methylation observed in 95%
of the considered epiloci (0.14), and the black line indicates the JSD threshold
(0.26).
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Figure 12: Application of MC profiling on neuronal differentiation. A: DNA
methylation changes at 104720 epiloci upon differentiation of hippocampal
precursors to granule cells. X-axis: average methylation change (delta met);
y-axis: MC profile change (JSD). The black line indicates the JSD cutoff,
whereas the red lines indicate the 95th percentile of observed delta values. B:
examples of epiloci with low difference in average methylation but high JSD
values between HP and GC MC profiles (epiloci coordinates:
chr19:57700749-57700788 and chr1:186924297-186924337). C: Comparison
of MC profile changes upon differentiation of hippocampal precursors (HP) to
granule cells (GC) or CA3 neurons. x-axis: JSD values between MC profiles in
HP and GC. y-axis: JSD values between MC profiles in HP and CA. D: MPs
composition of hippocampal precursors (on the left) and granule cells (on the
right) samples. E: Transition plot of variant epiloci in the HP-GC pair. For the
epiloci assigned to the different MPs in HP cells the classification in
differentiated GC neurons is shown.

As expected, MC profiles’ and average methylation changes were
mostly correlated. This relationship strengthened as differences in average
methylation approached the maximum, consistent with the fact that huge
differences in the amount of methylated cytosines are expected to affect both
average methylation and MC profiles. Symmetrically, the relationship between
average methylation and MC profiles’ changes weakened for lower values of
average DNA methylation and was almost lost below 0.14. In this range,
despite a large number of epiloci exhibiting stable MC profiles (n= 104720), a
group of 5129 epiloci exhibited significant changes in MC profiles upon
differentiation (blue dots in Figure 12A). As examples, Figure 12B shows two
epiloci with significant changes of MC profiles and little variation of average
DNA methylation. This result suggests that, at these epiloci, MC profiles were
remodeled without a significant gain or loss of overall DNA methylation.

To test the association between changes in MC profiles and the process
of neuronal differentiation, we checked the consistency of the MC profiles
changes upon differentiation of the same precursor in a different type of
neuron. Notably, we found a high correlation between MC profiles changes for
the 97119 epiloci examined upon differentiation of hippocampal precursors to
granule cells or CA neurons (Pearson R 0.81, Figure 12C), according to the
previously described high similarity among these differentiation processes
(Sharma et al., 2016).

To further establish the relationship between the changes in MC profiles
and epigenetic remodeling upon cell differentiation, we explored the chromatin
landscape, summarized by chromHMM labels, associated with the analyzed
epiloci. We observed that MC profile changes more probably involved epiloci
located in regions that also underwent chromatin changes upon differentiation
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(Fisher test p-value < 2.2 e-16). In fact, only 5% of epiloci located in genomic
regions with stable chromatin marks underwent changes in their MC profile,
whereas 22% of epiloci undergoing chromatin changes also changed their MC
profile, thus suggesting that our approach was probably identifying loci
undergoing epigenetic remodeling.

When investigating the genomic localization of developmentally
variant epiloci discovered by our approach, we found that they were slightly
depleted outside CpG islands and promoters (Fisher test p-values < 2.2 e-16)
both in HP-GC and HP-CA transitions.

Being JSD is a symmetric distance, it only quantifies the dissimilarity
between two MC profiles, but does not return the information on whether this
dissimilarity corresponds to a gain or loss of DNA methylation. Thus, we
turned to the analysis of prototype classes to qualitatively interpret MC profile
changes upon differentiation. The prototype class composition for HP and GC
is shown in Figure 12D.

First, we asked whether changes were occurring at epiloci exhibiting
peculiar MC profiles in neural precursors. We found that epiloci classified as
D1 remained mostly stable, whereas epiloci assigned to the other classes
mostly changed their MC profile upon differentiation (chi-square post-hoc
p-values < 1e-7).

We then analyzed the prototype class composition in differentiated
neurons, and found a depletion of D2 epiloci and an increased fraction of D5
epiloci (chi-square post-hoc p-values < 1e-7), suggesting that the methylated
status in differentiated neurons tends to be more heterogeneous among
different cells.

Finally, to better characterize how MC profiles changes were occurring,
we analyzed the prototype class transitions upon differentiation. In Figure 12E,
for each prototype class in neuronal precursors, we show the final prototype
class in differentiated neurons.

We noticed that for a consistent fraction of D1 and D2 epiloci, MC
profiles’ changes did not correspond to class transitions, meaning that these
epiloci were shifting toward a higher or lower DNA methylation heterogeneity.
We also noticed that a reduced fraction of epiloci evolved toward the D2 class
upon differentiation. Interestingly, most of D3 epiloci evolved to lower
methylation upon differentiation, transiting to the D1 class. Thanks to
prototype class analysis, we could interpret this demethylation as a negative
selection of the fully methylated molecules that were present in neural
precursors.

All together, these results indicate that our approach well captures
quantitative and qualitative DNA methylation changes upon neuronal
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differentiation that might be underestimated or overlooked by an average
methylation based approach.
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5. Discussion

Each cell is unique. Evidence has accumulated that even in
morphologically homogeneous cell populations extensive differences can be
highlighted at multiple molecular levels, and that these differences are relevant
to biological processes (Carter and Zhao, 2021).

Single-cell DNA methylation assays promise to be the standard
technique to study DNA methylation heterogeneity in cell populations
(Angermueller et al., 2016; Hui et al., 2018). However, single-cell DNA
methylation technologies still generate very sparse data, in a limited number of
cells per sample, and at high cost (Huan et al., 2018; Teschendorff et al., 2020).
Alternatively, cell-to-cell differences can be deduced by studying the
methylation patterns of consecutive cytosines in sequenced reads from bulk
experiments, assuming each read coming from a single DNA molecule (Huan
et al., 2018; Landan et al., 2012; Li et al., 2014; Scherer et al., 2020; Xu et al.,
2021). This approach can stand comparison with single-cell assays when the
goal is to obtain a statistical/robust description of DNA methylation of a
genomic region in a cell population (Huan et al., 2018).

Building on top of our experience on deep targeted bisulfite
sequencing, in this study we propose MC profiling as a genome-wide approach
to the study of DNA methylation heterogeneity. Given an epilocus holding 4
CpG sites, we defined its MC profile as the ensemble of the relative
abundances of molecules sharing an equal number of methylated cytosines
(Methylation Classes, MCs). Such an approach, while incorporating
information on the overall average methylation of a region, directly informs on
the different methylation levels, and their abundance, observed in a pool of
molecules. This information is usually not, or poorly, taken into account by
other approaches, which directly quantify the degree of cellular heterogeneity
through the analysis of individual arrangements of methylated cytosines in
single DNA molecules (epialleles).

In previous studies, several scores have been developed to incorporate
methylation level of individual molecules in the estimate of DNA methylation
heterogeneity, thus improving prediction of gene expression levels, and
correlation with chromatin marks compared to the overall average methylation
(Landau et al., 2014; Shi et al., 2021; Xu et al., 2021). MC profiling is in line
with this logic, but further enlarges the information on DNA methylation
heterogeneity by considering molecules with different methylation levels as
separate entities.

A conceptually similar approach to MC profiling has been proposed in
(Abante et al., 2020; Jenkinson et al., 2018, 2017). In these studies, DNA
methylation is expressed as the probability mass function (PMF) of
methylation levels that could be observed in a pool of molecules, which
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resemble the concept of our MCs. This approach, specifically designed to deal
with the low coverage of WGBS experiments, has provided novel insights on
DNA methylation heterogeneity and its disposition across the genome, its
evolution upon differentiation, aging and cancer, and its relationship with the
genetic background (Abante et al., 2020; Jenkinson et al., 2018, 2017). The
biggest difference between this approach and MC profiling is that while the
PMF is predicted from a mathematical model applied to DNA methylation
data, the frequencies of MCs are empirically estimated from experimental data,
thus avoiding time consuming model fitting and releasing the distribution of
methylation from a-priori parametrization of DNA methylation dynamics.

To quantify the dissimilarity between MC profiles, we adopted the
Jensen-Shannon distance (Lin, 1991). This dissimilarity measure has been
applied in bioinformatics and epigenetics (Abante et al., 2020; Guo, 2020;
Itzkovitz et al., 2010; Jenkinson et al., 2018, 2017; Kartal et al., 2020).

To set the parameters of our approach, we synthesized low coverage 4
CpG datasets from an in-house database of high-coverage amplicon bisulfite
sequencing data (Affinito et al., 2020; Cuomo et al., 2021, 2019; Florio et al.,
2017). In this context, we provided a systematic quantification of the impact of
coverage on the accuracy of MC profiles, and estimated the expected error
associated with MC profiles at a coverage of 50 reads. In our opinion, these
results could serve as guidelines to orient qualitative analysis of DNA
methylation in low coverage settings.

Here, similarly to previous studies (Jenkinson et al., 2018), we adopted
a classification procedure, assigning each MC profile to the most similar
among 5 reference profiles. This classification scheme provided us an
interpretable representation of each MC profile. Furthermore, it provided us
with a qualitative property to be compared across epiloci. Finally, being this a
fixed scheme, we could apply it and directly compare the results on different
conditions and species.

We demonstrated that MC profiles were stable among different samples
and neighboring epiloci. Previous studies illustrated that DNA methylomes
exhibit high inter-individual stability, especially in CG dense regions (Bock et
al., 2008; Palumbo et al., 2018). Concordant epigenetic marks, including DNA
methylation, across genomic blocks have been also described (Ernst and Kellis,
2017; Jenkinson et al., 2017; Zhang et al., 2017). Altogether, our results are in
line with previously described patterns of regional and inter-individual stability
of DNA methylation, and suggest that MC profiles capture controlled DNA
methylation dynamics rather than stochastic fluctuations of methylation levels.

In this paper, we applied MC profiling to gain insights on methylation
heterogeneity in various biological contexts.
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Firstly, we tested the capability of MC profiling to inspect known
examples of mono-allelic regulation, i.e. genomic imprinting and
X-inactivation, in which DNA methylation is notably involved.

When we analyzed the MC profiles of epiloci located in proximity of
known genomic imprinted regions, we found that bimodal MC profiles were
overrepresented. This was expected, considering the known opposite
methylation pattern of the two parental alleles at imprinted regions (Edwards
and Ferguson-Smith, 2007). For an epilocus located upstream of the Zdbf2
gene, holding a polymorphic site, we were able to clearly show opposite MC
profiles on the two alleles.

We then analyzed the MC profiles of epiloci located on the X
chromosome in female samples. First, we compared MC profiles of epiloci
flanking genes with reported differential inactivation status. Consistent with
previous findings (Balaton and Brown, 2021; Cotton et al., 2015; NISC
Comparative Sequencing Program et al., 2018), escapee epiloci showed
homogeneous DNA methylation on both X copies, being unimodally fully
methylated or unmethylated. Subject epiloci, on the contrary, were enriched for
more heterogeneous MC profiles (D3 and D5), compatible with different DNA
methylation status of the two alleles (Balaton and Brown, 2021; Cotton et al.,
2015; NISC Comparative Sequencing Program et al., 2018).

To further inspect the DNA methylation status of the inactive X, we
selected the X epiloci with a fully unmethylated profile in male samples, and
examined the corresponding MC profiles in female samples to infer the profile
of the inactive X. We showed a prevalence of intermediately methylated
classes on the inactive X, accompanied by high cellular heterogeneity.
Incomplete DNA methylation of the inactive X was described in (Balaton et
al., 2021) at single CpG level, thus marking a difference between the X
inactivation and the genomic imprinting processes that was well reflected in
our analysis. It is worth noting that the prevalence of intermediately methylated
MCs that we found with our approach also suggested a difference between the
methylated status on the inactive X and at autosomal epiloci, suggestive of
peculiar mechanisms intervening in DNA methylation establishment and
regulation on the inactive X.

The methylation status of the inactive X appeared also to be highly
heterogeneous among different cells. We speculate that this cellular
epipolymorphysm could almost in part find its reflection in differences of X
inactivation status between equivalent cells described in single-cell RNA-seq
studies (Garieri et al., 2018; Keniry and Blewitt, 2018).

Finally, we applied MC profiling to the analysis of DNA methylation
changes in different conditions. In particular, we examined profiles’ changes
upon differentiation, when epigenetic remodeling is expected to occur. We
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adopted the Jensen-Shannon distance to capture epiloci with significant
differences in MC profiles between neural precursors and differentiated
neurons. Being JSD a symmetric distance measure, it didn’t return the
information on whether MC profiles changes correspond to gain or loss of
DNA methylation. Thus, we examined the pattern transitions to gain insights
on how profiles’ changes were occurring. Combining the analysis of JSD and
pattern transitions provided us a comprehensive picture of DNA methylation
differences among conditions: in fact, we could distinguish profiles changes
associated with unvaried patterns (and thus, with stable reciprocal proportion
of DNA molecules with different methylation levels) from profiles changes
accompanied with pattern transitions (which indicate a redistribution of the
proportions of molecules with different methylation levels).

As expected, we found that MC profiles changes captured by JSD
correlated with average DNA methylation gain or loss at most epiloci.
However, we described MC profile changes at almost constant DNA
methylation for more than 5000 epiloci. Qualitative DNA methylation changes
occurring with little to no changes in overall average methylation were also
described in (Abante et al., 2020; Jenkinson et al., 2018, 2017), indicating that
such an approach can be even more informative than average methylation
based approach in the analysis of dynamic systems.

Interestingly, we found that MC profile changes were enriched at CpG
islands, which were described to be spared from most epigenetic changes in the
original study (Sharma et al., 2016). The association that we found with
changes of chromatin marks, as well as the concordance of MC profiles
changes upon differentiation in two different neuronal subtypes, pointed to
exclude random variations occurring at these epiloci. Instead, considering that
most epiloci exhibited stable MPs in precursors and differentiated neurons, it is
possible that MC profiling has captured changes in cellular heterogeneity that
were overlooked by the average methylation-based approach.

Applying MC profiling to RRBS data can give insights on cellular
epigenetic heterogeneity from plenty of already available datasets in public
repositories. However, it strongly limits the analysis to CpG islands and
immediately proximate regions (Bock et al., 2010; Gu et al., 2011). This limit
is further exacerbated when selecting target regions harboring 4 CpGs (the
epiloci of this study) shared among multiple samples. The required coverage of
50 reads strongly limits the applicability of the proposed approach outside
Whole Genome Bisulfite Sequencing (WGBS) data. However, more unbiased
enrichment assays have been developed which combine high throughput
sequencing with selection of target regions through PCR or capture-based
trapping that are natively less biased toward CG dense regions and could fit the
coverage requirements of MC profiling (Kacmarczyk et al., 2018; Klobučar et
al., 2020).
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Despite these limitations, we here showed that MC profiling could
effectively capture cellular differences and changes also in CG dense regions,
which are usually reported to be resistant to DNA methylation in normal
conditions (Edgar et al., 2014; Mohn et al., 2008). We indeed believe that
applying MC profiling to these experiments could further extend our
observations outside CG dense regions.
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6. Conclusions

We have presented a novel approach named MC profiling aimed at exploring
DNA methylation heterogeneity at multiple target regions in bulk bisulfite
sequencing experiments. MC profiling is built on the concept of MCs, groups
of molecules holding the same number of methylated cytosines. DNA
methylation is indeed represented through MC profiles, i.e. the relative
abundances of possible MCs for a given region.

MC profiles directly incorporate the average methylation of a given region, and
inform on how it is contributed by single DNA molecules. Thus MC profiles
offer a functional view of DNA methylation heterogeneity in a sample. MC
profiles are empirically estimated from sequencing reads, and are independent
on a priori parametrization of DNA methylation dynamics. Moreover, MC
profiles retain all information from a pool of molecules, and enable the direct
visualization of DNA methylation heterogeneity of a given region.

MC profiling led to the identification of signatures of loci undergoing genomic
imprinting and X inactivation, and highlighted differences between the two
processes. When applied to a dynamic system, MC profiling identified DNA
methylation changes in regions with almost constant average methylation.
Altogether, our results indicate that MC profiling can provide useful insights
on the epigenetic status and its evolution at multiple genomic regions.
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