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3. Materials and Methods 
 

3.1 Reagents 

 

3.2 Cell culture 

Human breast carcinoma cell line (HS578T), human melanoma cell line 

(A375) and mammary breast fibrocystic disease cell line (MCF10a) were 

obtained from the American Type Tissue Collection (Rockville, MD, USA). 

HS578T and A375 cells were grown in DMEM supplemented with 10% heat 

inactivated Fetal Bovine Serum (FBS) (GIBCO), 100 U/mL penicillin, 100 

mg/mL streptomycin, and 1% L-glutamine. MCF10a cells were grown in 

MEGM (Lonza, Basel, Switzerland) supplemented with Mammary Epithelial 

Cell Growth Medium Bullet Kit (Lonza), 100 nM cholera toxin (Sigma-Aldrich) 

and 5% heat inactivated Fetal Horse Serum (FHS) (Lonza). All cell lines were 

grown at 37◦C in a 5% CO2 atmosphere. 

 

3.3 HSA-DOX quenching effect 

Human serum albumin (10 µM) was incubated with DOX at increasing 

molar ratio HSA:DOX (1:5, 1:15, 1:20, and 1:40) in PBS 1× pH 7.4 for 24h 

under stirring at room temperature (RT). The HSA fluorescence spectra were 

recorded with an excitation wavelength of 280 nm and collected from 287 to 500 

nm. All measurements were carried out in triplicate in three independent 

experiments. 

 

3.4 Stern–Volmer plots 

To study the interaction between HSA and DOX and to calculate the 

dissociation constant (Kd), the quenching constant (kq), and the number of 

binding sites (n), Stern– Volmer plot analysis was performed. In brief, to 

calculate the Kd and kq values, HSA fluorescence intensity at 347 nm (typical of 

tryptophan residues) was plotted as the ratio between fluorescence in the absence 

(F0) and in the presence (F) of the quencher (DOX) at various concentrations 

(50, 150, 200, 400 µM) versus the molar concentrations of DOX. From the linear 

regression, the Stern–Volmer constant (KD) was determined as the slope of the 

strait of the modified Stern–Volmer equation 
F0

𝐹
 = 1 + kqτ[Q] = 1 + KD[DOX]. 

The value of kq was calculated as KD/τ (τ for static quenching of HSA = 5.9 ns) 

(Agudelo 2012), Kd was calculated as 1 𝐾𝐷⁄ .  

To determine the n value of DOX to HSA, the log10(F0-F) was plotted versus 

log10 of quencher molar concentration. After linear regression, the n value was 

determined as the slope of the straight from the equation log 
F0−F

𝐹
 = log 1/Kd + n 

log[DOX]. 
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To assess the Kd, kq, and n values of HSA–DOX interaction when albumin was 

bonded on MelaSil_Ag-HSA NPs, the same experimental setup used for free 

HSA was exploited, by using the MelaSil_Ag-HSA NPs corresponding to HSA 

10 µM. 

 

3.5 Evaluation of HSA amount bonded to MelaSil_Ag NPs 

The amount of HSA bonded to NPs was determined by measuring the 

unbonded HSA after the functionalization process (Sanità 2020a). Unbonded 

HSA was precipitated through trichloroacetic acid (TCA) solution from every 

supernatant during the HSA functionalization protocol. The HSA precipitation 

was carried out by adding 10% v/v volume of TCA 100% to the supernatants. 

After 30’ at 4◦C, the precipitate was collected by centrifugation at 12,000 × g for 

30’ at 4◦C, dried at 80◦C overnight (ON), and weighted with an analytical 

balance. The amount of HSA linked to MelaSil_Ag NPs was calculated as the 

subtraction of the unbonded albumin to the total amount used in the 

functionalization process. The percentage of HSA bonded to MelaSil_Ag NPs 

was obtained as (mg of bonded HSA/mg of MelaSil_Ag NPs) × 100.  

 

3.6 Loading of DOX to MelaSil_Ag-HSA NPs 

To load DOX on HSA modified NPs, MelaSil_Ag-HSA NPs (2.6 

mg/mL) were added to DOX (with HSA:DOX ratio of 1:40) in PBS 1× for 96h 

under stirring (24h at RT and 72h at 4◦C). Next, DOX-loaded NPs were collected 

by centrifugation and washed 3 times with PBS 1×. To calculate the DOX 

amount bonded to HSA-NPs, a fluorescence calibration curve (Ex: 480 nm, Em: 

590 nm) measured with a Multilabel Reader (PerkinElmer, Waltham, MA, USA) 

was used. The bonded DOX was obtained by subtracting the unbonded DOX 

from the total amount used. The DOX bond efficiency and capacity was 

calculated as (mg of bonded DOX/mg of total DOX) × 100 and (mg of bonded 

DOX/mg of MelaSil_Ag-HSA NPs) × 100, respectively. 

 

 

3.7 Dynamic light scattering and ζ-potential characterization 

Size distributions and ζ-potentials of MelaSil_Ag, MelaSil_Ag-HSA, 

and MelaSil_Ag-HSA@DOX NPs were measured by a Zetasizer (Nanoseries, 

Malvern) using the laser dynamic scattering (λ = 632.8 nm) and the particle 

electrophoresis techniques, respectively. All the samples were diluted up to a 

droplet concentration of approximately 0.025% w/v by using Milli-Q water. A 

detecting angle of 173◦ and 5 runs for each measurement (1 run lasting 100 s) 

were used in the calculations of the particle size distribution. ζ-potential analyses 

were carried out by setting 50 runs for each measurement. 

 

3.8 DOX release from MelaSil_Ag-HSA@DOX NPs 
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To evaluate the DOX release from loaded NPs at two different pH levels 

(5.2 and 7.4), MelaSil_Ag-HSA@DOX NPs were incubated at 2.6 mg/mL in 

PBS 1× at 37◦C under stirring for 0.5, 4, 24, and 48h. Successively, the NPs were 

collected by centrifugation and the amount of released DOX was calculated by 

using a Multilabel Reader. The amount of DOX released by MelaSil_Ag-

HSA@DOX NPs was plotted as percentage of the total amount of DOX bonded 

to NPs. 

 

3.9 Confocal microscopy of 2D cells 

HS578T cells (5×103/coverslip) were plated on 10 mm glass coverslips 

positioned on the bottom of 24-well plate, allowed to attach for 24h under normal 

cell culture conditions and then incubated with MelaSil_Ag-HSA@DOX NPs at 

120 µg/mL (corresponding to 2.6 µM of DOX) for 3 and 6h at 37◦C. Cells were 

washed with PBS, fixed in 4% formaldehyde for 20 min, and washed 3 times 

with PBS. Cell nuclei were then stained with Hoechst 33258 (Invitrogen, 

Carlsbad, CA, USA). Cells were then spotted on microscope slides and analyzed. 

Experiments were carried out on an inverted and motorized microscope (Axio 

Observer Z.1) equipped with a 63×/1.4 Plan Apochromat objective. The attached 

laser scanning unit (LSM 700 4× pigtailed laser 405–488–555–639; Zeiss, Jena, 

Germany) enabled confocal imaging. For excitation, 405 nm and 480 nm lasers 

were used. Fluorescence emission was revealed by Main Dichroic Beam Splitter 

and Variable Secondary Dichroic Beam Splitter. Double staining fluorescence 

images were acquired separately using ZEN 2012 software in the red and blue 

channels at a resolution of 512 × 512 pixels, with the confocal pinhole set to one 

Airy unit, and then saved in TIFF format. 

 

3.10 Cell viability assays 

To evaluate MelaSil_Ag-HSA@DOX NPs toxicity, CellTiter-GLO 

assay and Live Cell Explorer assay, according to the manufacturer’s instructions, 

were used. Luminescence was recorded for 0.25 s per well by a Multilabel 

Reader, while images were acquired by using a digital camera (Panasonic Lumix 

DC-FZ82 Bridge) with a 10x magnification. 

For CellTiter-GLO assay, HS578T cells were seeded into 96 opaque-walled 

plates at the density of 5×103 cells/well and incubated with free DOX at 0.65, 

1.3 and 2.6 µM and MelaSil_Ag-HSA@DOX NPs were used at a concentration 

depending on the DOX loading efficiency and corresponding to the same DOX 

concentration (NPs ≌ 30, 60 and 120 µg/mL). The assay was performed after 

24, 48, and 72h of incubation for HS578T cells. For MCF10a cells, CellTiter-

GLO assay was performed by using 1.3 and 2.6 µM of DOX carried by 

MelaSil_Ag-HSA@DOX NPs, for 24 and 48h. 

For Live Cell Explorer assay, HS578T cells were seeded into 24-well microtiter 

plates at the density of 40×103 cells/well and incubated with free DOX and 

MelaSil_Ag-HSA@DOX NPs in the same experimental conditions. After 



 

 

 

 MATERIALS AND METHODS 

 
 

incubation, cells were observed by fluorescence microscopy and images were 

acquired.  

 

3.11 Photothermal response of MelaSil_Ag NPs under CW laser 

irradiation 
 

The thermal behavior of MelaSil_Ag NPs was studied under prolonged 

laser illumination at 808 nm continuous wavelength (CW), a custom-made setup. 

In detail, 500 µL of NPs (1 µg/µL) were loaded in a polystyrene cuvette, then 

placed inside a cuvette holder, in which, on the left side was an optical fiber for 

laser illumination and on the right side was a power meter to measure the 

outgoing laser irradiation. The thermal infrared images were acquired during the 

NP heating (15 min) and cooling (10 min) steps, at a 10 Hz rate in matrices of 

60 × 84 pixels, recording in time the absorbed power. 

 

3.12 Cell viability following laser irradiation 

For the PT experiments, HS578T cells were seeded into white 96-well 

plates at the density of 2×103 cells/well. Then, cells were incubated with 

MelaSil_Ag-HSA@DOX NPs or MelaSil_Ag-HSA NPs for 3, 6 or 16h. 

MelaSil_Ag-HSA@DOX NPs were used at a concentration corresponding to 

0.65, 1.3 and 2.6 µM of DOX; MelaSil_Ag-HSA NPs were used at the same 

concentrations of MelaSil_Ag-HSA@DOX NPs. At the end of the incubation 

time, the medium was replaced with fresh medium and the cells were irradiated 

at 808 nm CW laser for 5 min, with a mean power density of 3 W/cm2. During 

irradiation, cells were maintained at 37◦C. Cell viability was assessed 24h after 

irradiation by the CellTiter-GLO assay, as described above. 
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4. Results  

4.1 Evaluation of MelaSil_Ag-HSA@DOX NPs cytotoxicity in 2D 

and 3D models  

4.1.1 Doxorubicin and human serum albumin interaction 

A preliminary analysis of the DOX-HSA interaction was carried out. To 

evaluate the DOX–HSA interaction, HSA at 10 µM was incubated with DOX at 

increasing concentrations (from 0 to 400 µM). The HSA fluorescence spectra 

(Ex 280 nm) were recorded from 287 to 500 nm for each DOX concentration 

(Figure 16A). This preliminary result show that a good bonding capability was 

at 400 µM of DOX, in a molar ratio HSA:DOX of 1:40. Then, the number of 

binding sites (n), the quenching constant (kq) and the dissociation constant (Kd) 

and relative quenching parameters through a Stern–Volmer plot were 

established. The n value, for each HSA molecule, determined by log10 (
𝐹0−𝐹

𝐹
) 

versus log10 of quencher molar concentration, was 1.5, according with literature 

(Figure 16B) (Agudelo 2012). Moreover, the quenching constant (kq = 0.96 x 

1012), which acts as a measure of quenching efficiency, indicates that the 

quenching process shows a good efficiency (Figure 16C), and the value of Kd 

(177 µM), an index of the quenching efficiency, suggests a strong interaction 

between fluorophore and quencher. 

 
Figure 16: Fluorescence emission spectra and Stern–Volmer plots for HSA–doxorubicin 

interaction. A) Fluorescence emission spectra; B) Stern–Volmer plot of HSA binding sites; C) 

Stern–Volmer plot of Kd and kq. p < 0.05. 
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4.1.2 DOX and MelaSil_Ag-HSA nanoparticles interaction 

The interaction between DOX and HSA bonded to MelaSil_Ag NPs was 

evaluated by recording the fluorescence spectra of MelaSil_Ag-HSA NPs (HSA 

10 µM) with and without DOX at increasing concentrations (Figure 17A). 

The spectra were collected by using the same experimental conditions previously 

used. The fluorescence spectra showed a quenching effect clearly visible up to 

400 µM of DOX (Figure 17B) and the Stern-Volmer formula was used to obtain 

the kinetic parameters (n = 1.6, kq= 29.26 x 1012 and Kd = 56 µM) (Figure 17C 

and 17D).  

 
Figure 17: Fluorescence emission spectra and Stern–Volmer plots for MelaSil_Ag-HSA NPs–

doxorubicin interaction. A) DOX loading scheme; B) Fluorescence emission spectra; C) Stern–

Volmer plot of HSA binding sites; D) Stern–Volmer plot of Kd and kq. p < 0.05. 
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4.1.3 Drug loading on MelaSil_Ag-HSA NPs 

The intrinsic fluorescence of DOX was used to calculate the amount of 

DOX loaded on MelaSil_Ag-HSA NPs, as reported in “Materials and Methods” 

section. For each MelaSil_Ag-HSA@DOX NPs preparation, the DOX bond 

efficiency and capacity were calculated and, on average, the DOX concentration 

was approximately 0.02 μM per 1 μg/mL of NPs. Then, hydrodynamic diameter, 

polydispersity index (PDI), and ζ-potential both before and after drug loading 

were evaluated, showing a slight increase in size of DOX@NPs up to 407 nm ± 

29 nm (PDI 0.45) with a ζ-potential of -17 ± 2.16 mV, as shown in Table 2 

(Figure 18). 

 
Table 2: DLS and ζ-potential of MelaSil_Ag-HSA NPs before and after DOX conjugation. 

 ζ -average (nm) PDI ζ-Potential (mV) 

MelaSil_Ag-HSA NPs 394 ± 32 0.26 ± 0.9 - 27.2 ± 1.65 

MelaSil_Ag-HSA@DOX 

NPs 
407 ± 29 0.45 ± 0.09 - 17 ± 2.16 

 

 
Figure 18: Number distribution (%) of DLS measurements on A) MelaSil_Ag-HSA NPs at 100 

g/mL and B) MelaSil_Ag-HSA@DOX NPs at 100 g/mL. 
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4.1.4 Drug release 

The DOX release profile was assessed in vitro up to 48h of incubation at 

acidic pH (pH 5.2) and physiological pH (pH 7.4). At acidic pH, 50% of the drug 

was released in the first 30 minutes and up to 80% after 24h, followed by a slow 

and sustained release. Contrary, at physiological pH, a maximum drug release of 

about 20% after 30 minutes was observed, this value remained constant up to 

48h. (Figure 19).  

 
Figure 19: Doxorubicin release at pH 5.2 and pH 7.4. p < 0.05. 
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4.1.5 DOX delivery in breast cancer cells 

To evaluate nuclear localization of the drug delivered by MelaSil_Ag-

HSA@DOX NPs, confocal microscopy was performed. HS578T cells were 

treated with DOX@NPs with an amount of DOX of about 2.6 μM (NPs = 120 

μg/mL) at 37°C for 3 and 6h. The images reveal a significant degree of 

internalization inside cell nuclei, indicating a good DOX delivery into cells 

(Figure 20). 

 
Figure 20: Representative images of confocal microscopy analysis of HS578T cells treated with 

HSA@DOX NPs. C) Control; 1–3) MelaSil_Ag-HSA@DOX NPs 3h; 1’–3’) MelaSil_Ag-

HSA@DOX NPs 6h. Cell nuclei were stained with Hoechst 33258; DOX is visible as red color. 

Scale bar: 10 μm. 
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4.1.6 Cytotoxicity of MelaSil_Ag-HSA@DOX NPs vs. free DOX in 

2D cells 
 

CellTiter-GLO and Live Cell Explorer assays were used to assess the 

cytotoxicity of MelaSil_Ag-HSA@DOX NPs compared to free DOX. For 

CellTiter-GLO assay, HS578T breast cancer cells were cultured for 24, 48, and 

72h with increasing concentrations of DOX-loaded NPs (30, 60, and 120 µg/mL 

with an amount of DOX of about 0.65, 1.3, and 2.6 M, respectively) and the 

corresponding concentrations of free DOX. Results show a viability decrease of 

40% and 67% after 24h of incubation at a concentration of DOX delivered by 

NPs of 1.3 and 2.6 M, respectively, versus 20% and 39% with the same 

concentrations of free DOX. After 48h, a toxicity of 73% (DOX@NPs) vs. 48% 

(free DOX) was observed. At prolonged incubation time (72h), the DOX carried 

by NPs at 0.65 μM showed a high toxic effect (53%) compared to the free DOX 

(13%) (Figure 21A). Furthermore, to evaluate toxicity in healthy cells, MCF10a 

(mammary breast fibrocystic disease cells) were incubated with DOX@NPs 

with an amount of drug of 1.3 and 2.6 μM and the results show a significant 

lower toxicity in healthy cells compared to breast cancer cells. After 48h of 

incubation MCF10a showed of 61% of vitality versus 16% of HS578T (Figure 

21B). For Live Cell Explorer assay, HS578T cells were treated at increasing 

incubation time with free DOX (1.3 μM) and MelaSil_Ag-HSA@DOX NPs (60 

μg/mL with DOX at 1.3 μM) (Figure 21C). According with CellTiter-GLO 

assay, in all tested conditions, DOX carried by NPs is more toxic than free drug.  
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Figure 21: Cell viability assays. A) CellTiter-GLO assay of HS578T cells treated for 24, 48, and 

72h with MelaSil_Ag-HSA@DOX NPs (30, 60 and 120 μg/mL corresponded to DOX 0.65, 1.3 

and 2.6 μM) and free DOX (at the same concentrations). p < 0.05; B) Cell-Titer GLO assay of 

HS578T and MCF10a cell lines treated for 24 and 48h with MelaSil_Ag-HSA@DOX NPs.                    

p < 0.05; C) Representative images of Calcein-AM fluorescent morphology images of HS578T 

cells before and after treatment with MelaSil_Ag-HSA@DOX NPs and free DOX. Scale bar: 

1000 μm. 
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4.1.7 Thermal properties of MelaSil_Ag-HSA NPs 

By using spectrophotometric analysis, the light absorbance 

characteristics of the MelaSil_Ag-HSA NPs were examined (Figure 22A and 

22B). MelaSil_Ag-HSA NPs have an absorbance value of approximately 0.69 at 

808 nm wavelength and they display a temperature increase of 14 °C (from 25 

to 39 °C) after 15 minutes of laser irradiation (Figure 22C). The heating behavior 

was fitted according to a second-order exponential curve (f1): 

ΔT = a*e(b*t) + c*e(d*t) (f1) 

and, after continuous wavelength laser stimulation, NPs show a temperature 

increase up to 10 °C in about 200 s, as shown in Figure 22D. 

 

 
 

Figure 22: Thermal properties of MelaSil_Ag−HSA NPS. A) MelaSil_Ag−HSA NPs (1 µg/µL); 

B) spectrophotometric analysis of the light absorbance properties of MelaSil_Ag−HSA NPs; C) 

typical thermal trends of MelaSil_Ag-HSA NPs, CW heating (laser on), and cooling (laser off) 

processes; D) dynamic evaluation of heating performances of MelaSil_Ag−HSA NPs during 

laser illumination, and the fitting curve (green) of ΔT vs. time. 
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4.1.8 Thermal trend of DMEM and DOX 

Thermal trend of DMEM culture medium as a function of 808 nm laser 

irradiation time was evaluated and no significant change in presence or in 

absence of the light was observed (Figure 23A). Furthermore, the 

spectrophotometric analysis of the light absorbance properties at a wavelength 

of 808 nm of free DOX (100 µM) in DMEM and free DOX (100 µM) in PBS 

was performed. As reported in Figure 23B, results show no significant DOX 

absorbance at 808 nm. 

 

 
 

Figure 23: A) Thermal trend of DMEM culture medium as a function of 808 nm laser irradiation 

(400 mW) time. CW heating (laser on) and cooling (laser off) processes. B) Spectrophotometric 

analysis of the light absorbance properties of free DOX (100 µM) in DMEM (orange) and free 

DOX (100 µM) in PBS (blue), DMEM (black) and PBS (green). 
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4.1.9 Cytotoxicity of MelaSil_Ag-HSA@DOX upon laser 

irradiation 
 

To evaluate the cytotoxicity of MelaSil_Ag-HSA@DOX NPs upon laser 

irradiation, HS578T cells were incubated for 3, 6 and 16h with increasing 

concentrations of MelaSil_Ag-HSA@DOX NPs (30, 60 and 120 g/mL with an 

amount of DOX of 0.65    and 2.6  respectively) and exposed to laser 

photothermal irradiation (3 W/cm2) for 5 minutes (Figure 24).  

After 3h of incubation, a dose-dependent reduction in cell viability was observed 

for MelaSil_Ag-HSA@DOX NPs in comparison to MelaSil_Ag-HSA NPs at 

the same concentrations (51.3%, 75.0%, and 79.9% at 0.65, 1.3 and 2.6μM DOX 

vs. 7.5%, 49.6%, and 58.4% at 30, 60 and 120 μg/mL, respectively). After 6h of 

incubation, DOX-loaded NPs (0.65 μM of DOX) caused a dramatic decrease of 

cell viability compared to HSA-NPs (80.2% vs. 8.4%, respectively). After 16h 

of incubation, a rise of PTT efficacy was observed for MelaSil_Ag-HSA NPs, 

but MelaSil_Ag-HSA@DOX NPs (0.65 μM of DOX) generated a greater 

cytotoxic effect (61.2% vs 92.2%, respectively).  

 
Figure 24: Cell viability of HS578T following 808 nm CW laser irradiation. Cells treated for 3, 

6, and 16h with MelaSil_Ag-HSA@DOX NPs (red) or MelaSil_Ag-HSA NPs (gray) at the 

concentrations of 30, 60, and 120 μg/mL (upper X axis), corresponding to 0.65, 1.3, and 2.6 μM 

DOX, respectively, for DOX-loaded NPs (lower X axis) and irradiated for 5’. * p < 0.05 and *** 

p < 0.001 versus cells treated with MelaSil_Ag-HSA NPs. CellTiter-GLO assay was performed 

24h after irradiation. 
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