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 Introduction 
Computer systems used in critical control applications are rapidly growing in complexity, 

featuring a very high number of requirements together with large, distributed and 

heterogeneous architectures, both at the hardware and software levels. Their dependability 

requirements are even more demanding, calling for more detailed analyses in order for the 

system to be evaluated against them. 

Complex systems are usually evaluated against safety requirements using simulation based 

techniques, while formal methods are used to verify only limited parts of the system. When 

evaluating system as a whole (i.e. as a “black-box”), the simulation techniques belong to the 

class of functional testing. Traditional functional testing techniques reveal inadequate for the 

verification of modern control systems, for their increased complexity and criticality 

properties. Such inadequateness is the result of two factors: the first is specification 

inconsistency (impacting on testing effectiveness), the second is test-case number explosion 

(impacting on testing efficiency). In particular, as the complexity of the system grows up, it is 

very difficult (nearly impossible) to develop a stable system requirements specification. This 

is a traditional problem, which is even more critical with nowadays control systems, featuring 

thousands of functional requirements and articulated architectures. Accurately revising natural 

language specification only reduces the problem. Missing requirements can be added at any 

time, others are continuously modified; negative requirements are usually stably missing. The 

ideal thing is to have a testing approach which retains a certain independence from system 

specification, more focused on the variables which influence system behavior (which do not 

change as long as system architecture is kept unvaried); besides guaranteeing a higher level of 

coverage, such an approach would be also effective in detecting missing requirements. 

Another problem which is not addressed by traditional techniques is the impossibility to bias 

the test set in order to balance test effectiveness (number of potentially discovered errors) and 

efficiency (time required for the execution). Grey-box approaches allow to measure test-

effectiveness by integrating the code coverage measurement; however, a stronger integration 

between static and dynamic analyses techniques is needed to enhance functional testing.  

To cope with the aforementioned issues, in this thesis we present a hybrid and grey-box 

functional testing technique based on influence variables and reference models (e.g. UML 

class and state diagrams) which is aimed at making functional testing of critical systems both 

feasible and cost-effective (in other words, with respect to traditional approaches test 

coverage increases and execution time decreases). While some examples of model based 

testing are referenced in the research literature, it is a matter of fact that such methods are 

either too much theoretical or too much specific, missing the goal to provide a general 

approach which is suitable to all classes of complex critical systems. It is no surprise that 

testing remains the field of system and software engineering where the biggest gap exists 

between the theory and the practice; however, it is also the most critical industrial activity in 

terms of needed results, budget and time, and these are significant reasons to concentrate 

research efforts on it. 

While component or even subsystem level reliability can be evaluated quite easily, when 

availability has to be evaluated against system level requirements for non trivial failure 

modes, together with maintainability constraints, no traditional technique (Faul Trees, Markov 

Chains, etc.) seems to be adequate. To cope with such issue, designers use to specify more 

conservative constituent level requirements, ensuring feasibility at a higher expense. 

However, more strict constituent level requirements feature two disadvantages: as first, 

system level availability target is not guaranteed to be fulfilled, as it depends on non 

straightforward architectural dependencies (i.e. how constituent are connected and interact 

with each other); secondly, even though more strict constituent level reliability requirements 

would ensure the accomplishment of global availability goals, this would imply a non 

balanced allocation of costs, as developers would not be able to fine tune system reliability 
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parameters (which is only possible by means of sensitivity analyses performed on a detailed 

global model). The impossibility to correctly size reliability parameters according to structural 

dependencies is very likely to take to over-dimension some components and under-dimension 

some others, with a negative cost impact. A combination of techniques is therefore needed to 

perform system level availability modeling of complex heterogeneous control systems, 

considering both structural (i.e. hardware) and behavioral (i.e. performability) studies. While 

a single highly expressive formalism (e.g. high-level Petri Nets) could be adopted to model 

the entire system from an availability point of view, there are at least two issues which are 

related to such choice: the first is efficiency, as the more expressive formalism usually 

features more complex solving algorithms (e.g. belonging to the NP-hard class); the second is 

ease of use, as the more expressive formalisms usually require a skilled modeler. The former 

issue is such to impede the application of an entire class of formalisms to large systems (e.g. 

for the state-space explosion problem). The explicit use of more formalisms (i.e. 

multiformalism) allow modelers to fine tune the choice of the formalism to the needed 

modeling power. Furthermore, implicit multiformalism allows modelers to specify new 

formalisms out of existing ones, thus allowing to combine enhanced power, better efficiency 

and increased ease of use (the complexity of the multiformalism solving process is hidden to 

the modeler). Such a use of different formalisms must be supported by specifically developed 

multiformalism support frameworks, allowing to specify, connect and solve heterogeneous 

models. In this thesis we show how multiformalism approaches apply to critical control 

systems for system availability evaluation purposes. We also dedicate a section to 

multiformalism composition operators and their applications to the dependability modeling, 

showing why they are needed for any kind of interaction between heterogeneous submodels. 

While multiformalism approaches have been addressed by several research groups of the 

scientific community a number of years ago, they have been usually applied to case-studies of 

limited complexity in order to perform traditional analyses. In this thesis we show how to 

employ multiformalism techniques in real-world industrial applications, in order to model and 

evaluate dependability attributes with respect to system level failure modes. 

The advantages of the new proposed methodologies are shown by applying them to real world 

systems. In particular, in order to achieve a coherent and cohesed view of a real industrial 

application, the case-studies are all related to a single railway control system specification: the 

European Railway Traffic Management System / European Train Control System 

(ERTMS/ETCS). ERTMS/ETCS is a standard specification of an innovative computer based 

train control system aimed at improving performance, reliability, safety and interoperability of 

European railways (in Italy, it is used in all the recently developed high-speed railway lines). 

An implementation of ERTMS/ETCS is a significant example of what a complex 

heterogeneous control system can be. At the best of our knowledge, no consistent study about 

the dependability evaluation of ERTMS/ETCS is available in the research literature; 

therefore, this thesis also serves as an innovative case-study description about ERTMS/ETCS. 

Together with the theoretical studies, the results obtained in an industrial experience are 

presented, which clearly underline the advantages of adopting the described techniques in the 

V&V activities of a real-world system. 

 

This thesis is organized as follows: Chapter I provides thesis motivation and state of the art of 

simulative and (multi)formal dependability evaluation techniques. Existing dependability 

(safety and availability) prediction techniques are briefly introduced and discussed, showing 

their advantages and limitations and justifying the proposal for extensions needed to improve 

their effectiveness and efficiency. Also, existing dependability studies of ERTMS/ETCS are 

referenced. 

Chapter II presents simulative model-based approaches for the functional validation of 

complex critical systems; the aim of such approaches is to find systematic software errors 

which impact on system behavior; in particular, it is shown how it is possible to combine 
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static and dynamic analyses in order to enhance both effectiveness and efficiency of 

functional testing, by means of innovative hybrid and grey-box testing techniques. 

Chapter III deals with multiformalism modeling techniques for dependability evaluation, 

presenting advanced implicit and explicit multiformalism methodologies and their 

applications, based on the OsMoSys
1
 approach; in particular Repairable Fault Trees and 

Bayesian Networks are introduced in order to enhance the evaluation of system level impact 

of reliability and maintainability choices. Moreover, in this chapter we present the theoretical 

and applicative aspects related to composition operators, which are used to make 

heterogeneous models interact  in a multiformalism support environment. 

In Chapter IV a short architectural and behavioral description of the reference case-study (i.e. 

ERTMS/ETCS) is provided. Then, several applications of dependability evaluation techniques 

to different subsystems of ERTMS/ETCS are described, highlighting the results obtained in a 

real industrial experience., that is to say the functional testing of ERTMS/ETCS for the new 

Italian High-Speed railway lines. Several studies about the multiformalism evaluation of 

ERTMS/ETCS availability are presented, showing their advantages with respect to traditional 

approaches. 

                                                 
1
 OsMoSys is a recently developed multiformalism/multisolution graphical and object-based framework. 
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 Chapter I 

 Model-Based Dependability Analysis of Critical Systems 

1. Context 

Computer based control systems are nowadays employed in a variety of mission and/or safety 

critical applications. The attributes of interest for such systems are known with the acronym 

RAMS, which stands for Reliability Availability Maintainability Safety. The demonstration of 

the RAMS attributes for critical systems is performed by means of a set of thorough 

Verification & Validation (V&V) activities, regulated by international standards (see for 

instance [31] and [133]). In short, to validate a system consists in answering the question “Are 

we developing the right system?”, while to verify a system answers the question “Are we 

developing the system right?”. V&V activities are critical both in budget and results, therefore 

it is essential to develop methodologies and tools in order to minimize the time required to 

make the system operational, while respecting the RAMS requirements stated by its 

specification. In other words, such methodologies and tools must provide means to take to an 

improvement both in effectiveness and efficiency of system development and validation 

process. 

Control systems are meant to interact with a real environment, reacting in reduced times to 

external stimuli (see Figure 1); therefore, they are also known as reactive systems. This is the 

reason why such systems are required to be real-time
2
, that is a possibly catastrophic failure 

can occur not only if the system gives incorrect results, but also if correct results are late in 

time [152]. 

 

 
Figure 1. General scheme of a control system. 

 

Another feature of most control systems is that they are embedded (in opposition to “general 

purpose”), that is their hardware and operating systems are application specific. The main 

motivation of such a choice consists in enhanced reliability and survivability together with 

shorter verification times, as system behavior is more easily predictable, being its structure 

kept as simple as possible. In fact, dependability evaluation requires non straightforward both 

structural and behavioral analyses. 

Dependability is an attribute related to the trustworthiness of a computer system. According 

to the integrated definition provided in [2], it consists of threats (faults, error, failures), 

attributes (reliability, availability, maintainability, safety, integrity, confidentiality) and means 

(fault prevention, tolerance, removal, forecasting). It has been introduced in recent times in 

                                                 
2
 Critical control systems are often classified as “hard” real-time to distinguish them from “soft” real-time 

systems in which there is no strict deadline, but the usefulness of results decreases with time (timeliness 

requirements are less restrictive). In this thesis we generally refer to hard real-time systems. 

CONTROL 

SYSTEM 

SENSOR 

SYSTEM 

ACTUATOR 

SYSTEM 

ENVIRONMENT 
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order to provide a useful taxonomy for any structured design and evaluation approach of 

critical systems. A system is dependable if it can be justifiably trusted. Dependability threats 

are related to each other: symptoms of a failure are observable at system’s interface (a service 

degradation or interruption occurs); errors are alteration of system’s internal state which can 

remain latent until activated and hence possibly leading to failures; faults are the causes of 

errors, and they are also usually subject to a latency period before generating an error. Errors 

can also be classified as casual, when they are caused by faults which are external to system 

development process, or systematic, when faults are (unwillingly) injected during system 

development process. 

It is very useful to evaluate system dependability from early stages of system development, 

i.e. when just a high level specification or a rough prototype is available, in order to avoid 

design reviews and thus reduce development costs. Such early evaluation of system 

dependability is often referred to as dependability prediction. Generally speaking, most of 

dependability prediction techniques can be used at different stages of system development, 

being as more accurate as more data is available about the system under analysis. In fact, the 

same techniques are also used to evaluate the final system, in order to demonstrate (e.g. to an 

external assessor) the compliance of system implementation against its requirements. When 

used in early stages, dependability prediction techniques are very effective in giving an aid to 

system engineers to establish design choices and fine tune performance and reliability 

parameters; in fact, design reviews should be performed as soon as possible during system life 

cycle, as lately discovered errors are far more costly and dangerous than early discovered 

ones.  

Two main approaches are employed in order to predict/evaluate the dependability of critical 

control systems: the first is based on simulation based techniques, e.g. fault-injection [105] 

at the hardware level (either physical or simulated) or software testing [23] at the various 

abstraction and integration levels; the second is based on formal methods [49], which can be 

used at any abstraction level (both hardware and software) and at any stage of system 

development and validation. Simulation based techniques are aimed at approximating the 

reality by means of simulative models, e.g. small scale hardware prototypes and/or general 

purpose computers running software simulators, i.e. programs implementing external stimuli 

as well as possibly simplified target systems. Formal methods follow for an alternative 

strategy, consisting in creating and solving a sound mathematical model of the system under 

analysis, or of just a part of it, using proper languages, well defined in both their syntax and 

semantic. Formal methods produce a different approximation of reality, which gives more 

precise and reliable results, but it is often less efficient and more difficult to manage. Graph-

based formal languages feature a more intuitive semiotic, improving the method under the 

easy of use point of view. Both simulative and formal approaches are used in real world 

applications, for different or same purposes, and can be classified as model-based 

techniques, as they require designers to generate an accurate model both of the system under 

analysis and of the external environment (i.e. interacting entities); moreover, they can be (and 

often are) used in combination, with formal models possibly interacting with simulative ones 

(an example of this is model-based testing [115], which however defines a class of approaches 

and not a specifically usable methodology). A model is an abstraction of real entities; 

therefore, it is important to ensure that it adequately reflects the behavior of the concrete 

system with respect to the properties of interest (model validation and “sanity checks” are 

performed at this aim).  

Many standards and methodologies have been developed in order to guide engineers in 

performing safety and reliability analyses of computer systems; however, they generally 

suffer from one or more of the following limitations: 

• They are either application specific or too general; 

• The several proposed techniques are poorly cohesed; 
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• They are either not enough effective or efficient (i.e. they are not compatible with the 

complexity of real industrial applications); 

• Models are difficult to manage and/or the required tools are not user friendly. 

Such limitations often constitute an obstacle in implementing them in the industry, where 

traditional best practice techniques continue to represent the most widespread approaches. 

However, as the requirements of modern control systems grow in number and criticality, 

traditional techniques begin to reveal poorly effective and efficient. The increase in 

requirements also reflects in highly distributed architectures, featuring enormously increased 

classes of failure modes; such systems reveal very difficult to verify. 

This is especially true when performing system level dependability prediction of complex 

critical systems, in a verification and validation context (which means that external 

constraints are given, meeting system requirements and guidelines of international standards). 

A system level analysis does not replace the component based approach, in which constituent 

level requirements have to be fulfilled; on the contrary, it joins and often bases on the results 

of lower level analyses. The challenge stands in the fact that system level dependability 

prediction is way more difficult to perform for the obvious growth in size and heterogeneity; 

however, it is the only way to fulfill system level dependability requirements (this is 

mandatory for safety requirements, while it can be not mandatory but convenient for 

reliability requirements). A system level study requires the evaluation of two main aspects of 

interest (of which we give here only intuitive definitions): 

• System safety, related above all to functional aspects: system must behave correctly 

(with no dangerous consequences for human beings and the environment) in any 

operating condition, including degraded ones; 

• System availability, related above all to structural aspects: system should be 

operational for as much time as possible, also in presence of faults.  

Availability and safety are often correlated according to two aspects: first, increasing system 

safety level can decrease its availability, and vice versa; secondly, in many cases a poorly 

available system is also an unsafe system, e.g. when availability has a direct impact on safety, 

like in aerospace applications. The evaluation of both aspects requires structural as well as 

behavioral analyses. An integration of techniques is needed for managing the complexity and 

heterogeneity of modern computer-based control systems when evaluating their system level 

dependability (in terms of safety and availability, the latter strictly related to reliability and 

maintainability aspects); such integration is aimed at improving: 

• Effectiveness: more (automated) analyses are possible, in order to answer as many 

“what if?” (i.e. qualitative) and “how long?” (i.e. quantitative) questions as possible; 

• Efficiency: already feasible analyses can be performed more quickly or can be applied 

to larger systems (i.e. they scale up better); 

• Easy of use: analyses can be performed by building and evaluating models in a more 

intuitive and straightforward way, with positive impact on readability, reusability and 

maintainability, which obviously reduce the time to market of the final product. 

Performing a system level analysis requires combining a set of already existing model-based 

techniques or developing entirely new ones. In order to achieve such aim, modular and 

divide-et-impera approaches of modelling and analysis are necessary, possibly using bottom-

up (i.e. inductive) or top-down (i.e. deductive) composition/decomposition techniques. A 

complex embedded computing system can be represented in its distributed and multi-layered 

hardware and software structure as in Figure 2, in which rows represent complete subsystems 

or simpler but independent devices. It usually features a single distributed hardware layer, 

constituted by a set of devices interacting one with each other by means e.g. of 

communication channels. Software layers are also interacting and can be assigned different 

semantics, but in general they can be roughly associated to the levels of the ISO/OSI protocol 

stack. Higher application layers usually implement system functional requirements and can be 

further decomposable into specific sublevels for convenience of analysis. Of course, not all 
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devices of the system have to implement all levels, with simpler devices only featuring few of 

them (this is one aspect of heterogeneity). Finally, each layer of each subsystem is constituted 

by a varying set of interconnected components (e.g. CPU, communication interfaces, power 

supply, bus, etc. for the hardware levels). 

 

 
Figure 2. The distributed multi-layered architecture of a complex real-time system. 

 

As aforementioned, system level dependability attributes of critical systems are more difficult 

to predict with respect to single components, for complexity reasons. Usually verification and 

validation techniques can be distinguished into two main subgroups: the ones aimed at 

studying system availability (i.e. the RAM part of the RAMS acronym) and the ones aimed at 

analysing system safety. In the two subgroups, both simulative and formal means of analysis 

can be employed: e.g. fault injection techniques and fault tree analyses are both employed to 

evaluate hardware level availability; functional testing and model-checking approaches are 

used in order to evaluate software safety. However, concentrating on system level analyses, it 

usually happens that for complex critical systems: 

• formal techniques are suited and widespread for system-level availability prediction 

(while simulative techniques based on fault-injection are used at the component level 

in order to evaluate component reliability and coverage of fault-tolerance 

mechanisms); 

• simulation based techniques are suited and widespread for system-level safety 

prediction (while formal techniques based on model-checking or theorem-proving 

reveals almost always inadequate to deal with complex systems and are only used for 

small subsystems). 

Of course, it would be highly advantageous to perform system level safety analyses of 

complex systems by means of formal methods, but this is far from industry common practice. 

This notwithstanding, many of the formal methods introduced to predict system availability 

can be also employed, at least partially, for qualitative or quantitative safety-analyses.  

The dynamic verification (by simulation) that a system in its whole behaves as expected, that 

is it respects its functional requirements (comprising safety related ones), is know as system 

testing, black-box testing or functional testing [70].  

Grey-box testing approaches, in their various interpretations, support functional testing in 

allowing test engineers to fine tune the test-set with the aim of an effective coverage of 

functionalities with the minimum effort in time. The result is a significant reduction in test-set 

complexity, while maintaining or improving test-effectiveness. In fact, while the main 

advantage of functional testing techniques is that they are relatively easy to implement, the 

main disadvantage consists in the difficulty of balancing test effectiveness and efficiency. As 

effectiveness is difficult to predict, a thorough and extensive (thus costly and time consuming) 

test specification and execution process is usually performed on critical systems. Given the 

high number of variables involved, the required simulations (or test-runs) are prohibitive, thus 
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the process is necessarily either unfeasible or incomplete, with possible risks on system 

safety.  

The need for multiformalism modelling approaches [67] is a consequence of the limitations of 

a single formalism when dealing with system level evaluations. Such limitations consist in the 

following: 

• inadequateness of expressive power of the formalism in modelling complex structures 

or behaviors; 

• inadequateness of solving efficiency in dealing with complex systems (e.g. the well 

known problem of the “state space explosion”); 

“Applied to computer systems development, formal methods provide mathematically based 

techniques that describe system properties. As such, they present a framework for 

systematically specifying, developing, and verifying systems.” (citation from [86]). Formal 

methods are employed in a variety of industrial applications, from microprocessor design to 

software engineering and verification (see [49] for a survey of most widespread methods and 

their successful applications). Despite of such variety of methods and applications, no formal 

method seems suitable to represent an entire system from both a structural and functional 

point of view. While it is possible to find methods with which hardware complexity can be 

managed, at least when modelling dependability related aspects, extensive formal modelling 

of system level functional aspects seems still unfeasible using nowadays available tools. This 

is the reason why well established formal methods are largely employed in industrial context 

only for reliability analyses. For instance, Fault Trees (FT) and Reliability Block Diagrams 

(RBD), are quite widespread for structural system modeling [146], while some kinds of 

maintainability and behavioral analyses are possible by using Continuous Time Markov 

Chains (CTMC) [74] and Stochastic Petri Nets (SPN) [102]. The latter two formalisms feature 

reduced efficiency due to the state-based solving algorithms and are therefore unable to model 

very complex systems. The Bayesian Network (BN) formalism [52] has been successfully 

applied to dependability modeling in recent times (see [51], [96] and [5]); even though its 

solving algorithm are demonstrated to be NP-hard, they feature better efficiency with respect 

to GSPN being non-state based [6]. A comparison between the mentioned formalisms is 

provided in Figure 3. 

 
Figure 3. Comparison of different reliability modelling formalisms. 

 

Multiformalism approaches are very interesting for their ability to balance the expressive 

power of formal modeling languages and the computational complexity of solving algorithms. 

Unfortunately and despite of their huge potential, multiformalism techniques are still not 

widespread in industrial practice. The main obstacles are the difficulty of use and the limited 

efficiency. Moreover, the research community is far from developing a user friendly, 

comprehensive and efficient framework for managing multiformalism models. Some 

approaches that move toward the achievement of such an objective show the numerous 

advantages in adopting multi-formal techniques for many kinds of system analyses (see e.g. 

the OsMoSys [150] and Möbius [44] multiformalism frameworks). This also highlights the 

necessity of developing flexible composition operators for more strict interactions between 

submodels, allowing for more comprehensive and detailed analyses. A theoretical 

FT, RBD 

BN 

CTMC, 
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multiformalism framework based on composition operators would be advantageous in 

integrating heterogeneous models (both simulative and formal) within a single cohesed view, 

which could be employed in order to obtain results which are currently almost impossible to 

achieve. Composition operators are therefore orthogonal to both simulative and formal safety 

and availability evaluation techniques. 

 

Figure 4 provides a synthesis of the context under analysis, by integrating different views. In 

particular: 

• blue links refer to multiformalism evaluation of structural availability; 

• orange links refer to model-based static functional verification techniques; 

• red links refer to model-based dynamic functional verification techniques; 

• green links refer to performability evaluations; 

• shaded rectangles represent threats, attributes and means of interest. 

Black links represent other approaches, generally non suitable or advantageous for system 

level analyses (e.g. fault-injection and model-checking). While it seems possible to apply 

multiformalism techniques for system structural safety evaluation, this is not necessary in 

most of the cases (structural safety can be evaluated using more straightforward techniques 

basing on “safe” simplifying assumptions). Analogously, while functional testing can help 

detecting anomalies and non conformities having impact on system availability, it cannot 

prove the absence of deadlocks. The dashed red line between “specification” and “validation” 

refers to the possibility of the model-based dynamic analysis techniques to also detect the 

frequent natural language specification flaws, which are obviously impossible to detect using 

traditional techniques only based on the informal requirements. 
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Figure 4. Different views on the context under analysis. 

2. Motivation 

This thesis provides an integration of existing techniques and proposes new approaches to 

cope with system level dependability evaluation issues of complex and critical computer-

based control systems. An application of the new approaches is also shown for a modern 

railway control system. In the following of this section we explain why traditional safety and 

availability evaluation techniques reveal inadequate and what are the means we propose in 

this thesis in order to overcome such limitations. 

Computer based control systems have growth in complexity and criticality. The complexity 

growth is an effect of larger, more distributed (even on large territories) and heterogeneous 

architectures. Traditional techniques which have been used in the past to predict and evaluate 
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their dependability have revealed inadequate to manage such increased complexity while 

retaining power of analysis and accuracy of results. 

A critical computer system is needed to be above all available and safe. Availability and 

safety are conditioned both by software and hardware contributions. In particular, let us refer 

to an extract of a “V” development model taken from one of the RAMS standards for critical 

systems [33], which is shown in Figure 5. 

 

 
Figure 5. An extract of the “V” development cycle for critical control systems. 

 

As we can see from the diagram of Figure 5, hardware and software validation are performed 

in two distinct phases, and finally integration and system testing is performed. At each 

validation stage, system hardware or software must be validated against safety and availability 

related failure modes considering both casual and systematic errors and using simulation or 

formal means of analysis. In order to manage complexity, incremental and differential 

approaches are suggested by V&V standards, which allow to independently test hardware and 

software, at different verification stages. According to such approaches, when evaluating 

dependability attributes of system software, engineers can neglect casual errors, as hardware 

inducted software errors are demonstrated to be tolerated by fault tolerance mechanisms with 

a very low probability of undetected failures (typically lower than 10
-9
 F/h; see [13]). 

From the above considerations, we can infer that, assuming a validated hardware, software 

safety and availability are only related to functional correctness (e.g. absence of deadlocks). 

Functional correctness at a software level is obviously necessary to assure system safety. It 

can be evaluated using functional testing (a simulative approach) or model-checking (a formal 

approach); however, model checking techniques are very hard to be effectively applied to 

complex control systems, for they suffer from the state space explosion problem. Even if they 

were applicable (at least on subsystems or protocols), they would only give a complementary 

contribution in system verification, as witnessed by past experiences [77]. This is the reason 

why in this thesis we stress a model-based functional analysis approach to cope with software 

functional verification: the proposed semi-formal approach balances the advantages of a 

formal analysis (which helps to ensure correctness) and the flexibility of informal ones. The 

functional analysis can be both static and dynamic: static analysis does not need software 

execution, while dynamic analysis requires simulation. The model-based static and dynamic 

analysis techniques proposed in this thesis help finding more errors more quickly with respect 

to traditional techniques, e.g. only based on code inspection and black-box testing.  Both 

types of functional analysis share the goal of finding software systematic errors (also known 

as “defects”). The proposed model-based functional analysis process involves several 

activities traditionally related to functional (or system) testing and features the following 

original contributions: 

• the construction of reference models, that guide test engineers throughout the 

functional analysis process; 
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• the static verification and refactoring techniques, based on reverse engineering and on 

the Unified Modeling Language; 

• the definition and reduction techniques of the input and state variables influencing 

system behavior in each operating scenario; 

• the test-case reduction rules, some of which are based on the functional decomposition 

of the system under test; 

• the abstract testing approach, which allows for a configuration independent test 

specification and an automatic configuration coverage by means of the proposed 

instantiation algorithm. 

These features make the proposed methodology: 

• model-based, as models of the system under verification are needed to support the 

functional analysis process; 

• hybrid, as besides verifying system implementation, its specification is also partly 

validated by means of model-based analyses (missing and ambiguous requirements 

can be easily detected); 

• grey-box, as it needs to access system internal status for the software architecture 

analysis and for logging of the variables of interest; 

• abstract, as test specification results are not linked to a particular installation of the 

control system. 

The functional analysis methodology introduced above is described in Chapter II.  

 

As mentioned above, the hardware validation against safety is based on well established 

techniques, meant to reduce to a largely acceptable level the probability of occurrence of 

unsafe hardware failures. As unsafe failure modes are quite easy to be defined and combined, 

system level safety analyses are feasible with usual techniques (e.g. Fault Tree Analysis) 

basing on “safe” simplifying assumptions. The hardware validation against availability is 

instead problematic at a system level when non trivial failure modes are defined, each one 

requiring specific analyses. The choice of using more reliable components, which is 

sometimes possible by respecting constituent level reliability requirements, can not be 

considered as satisfactory, as cost would increase uncontrollably and the overall system 

availability with respect to a certain failure mode would be still undefined. Moreover, even 

though hardware is reliable, it is not guaranteed to be performable enough, hence timing 

failures can still occur. Therefore, the risk is to either oversize components or overestimate 

system availability. When data of measurements from real system installation is available, it 

could be too late or too costly to modify design choices. Therefore, predicting system 

hardware availability from early design stages is very important. However, traditional 

modeling techniques are either too weak in expressive power or poorly efficient to be 

employed for a system level analysis, especially when taking into account components 

dependencies (e.g. common modes of failure) and articulated maintainability policies. A 

multiformalism approach, allowing to fine tune effectiveness and efficiency while modeling 

the overall system by different formalisms, is the solution we propose in this thesis to cope 

with the problem of hardware availability prediction. 

Composition operators are needed for a more strict interaction between submodels in explicit 

multiformalism applications. A highly cohesed system-level model, which is only possible 

using composition operators, allows for any kind of analyses (e.g. “what if?”), both functional 

and structural (e.g. to evaluate system level impact of component related parameters or design 

choices); therefore such operators are orthogonal to both simulative and formal model-based 

techniques, both for safety and availability evaluation. This is the reason why we perform in 

this thesis a study of multiformalism composition operators, referring in particular to a 

possible implementation in the OsMoSys framework. While all multiformalism frameworks 

provide the possibility of implementing some kinds of model connection, no study has been 

performed to exhaustively present the issues related to composition operators (e.g. needed 
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features, attributes, preservation of properties, etc.); furthermore, composition operators have 

not been extensively addressed in the OsMoSys framework yet. An integration of such 

operators in the already existing OsMoSys multiformalism multi-solution framework is then 

proposed in this thesis, by exploiting the specific features of a graph-based object oriented 

architecture and user interface. However, we do not dare to overcome all the difficulties when 

trying to check properties on large composite models, which is one of the most challenging 

among still open problems in the formal methods research community. The solution of such 

models itself constitutes a non straightforward problem which we address. Multiformalism 

dependability evaluation is discussed in Chapter III of this thesis. 

The methodological contributions presented in this thesis have all been validated by applying 

them to the same case-study, which is complex enough to provide plenty of possible analyses, 

both from structural and behavioral points of view. In particular, the case-study consists in the 

European Railway Traffic Management System / European Train Control System 

(ERTMS/ETCS), a European standard aimed at improving performance, reliability, safety and 

interoperability of transeuropean railways [147] which is used in Italy on High Speed railway 

lines (the “Alta Velocità” system). ERTMS/ETCS specifies a complex distributed railway 

control system featuring strict safety and availability requirements. One of the innovations of 

this thesis is the presentation of useful results about how to perform system testing and how to 

size reliability and maintainability parameters of an ERTMS/ETCS implementation. Without 

the methodologies presented in this thesis, such complex system would have been almost 

impossible to validate, for the difficulty of managing its complexity when assessing its system 

level safety and availability using traditional approaches. These results, which are all original 

contributions, are provided in Chapter IV. 

3. State of the art in dependability evaluation of critical systems 

As stated in previous chapter, the use of differential and incremental approaches appears to be 

the only way to manage complexity and criticality of modern control systems. We recall that 

the approach followed in this thesis is based on the separation of concerns between: 

a. System level functional analysis, for the detection of software systematic errors 

possibly impacting on system safety; 

b. Evaluation of system level RAM attributes, with respect to failure modes due to casual 

hardware faults or performance degradations. 

Point (a) is addressed in this thesis by using model-based static and dynamic functional 

analysis approaches, while point (b) is addressed by means of multiformalism techniques; in 

this section we then divide our state of the art discussion between such two aspects, 

respectively discussed in next subsections §3.1 and §3.2. 

3.1. Functional analysis of critical systems 

Functional analysis of critical systems is the both static and dynamic activity aimed at 

detecting systematic software errors. Besides module testing, which is usually performed in 

the downstream phase of the “V” life-cycle diagram, two main activities are widespread in 

industrial V&V practice: 

• Code inspection (a static analysis technique) 

• Functional testing (a dynamic analysis technique) 

The first activity is also known as code review or walkthrough and is usually based on 

checklists [16]. Its aim is to reveal misuse of code statements and detect errors which are 

evident from a static analysis of code structure. Such activity is important not only to perform 

a gross grain error detection, but also to find code defects which always remain undetected 

during the following dynamic analysis stage. In fact, the limited execution time of system 

tests often is unable to reveal latent errors due to wrong assignment of values to variables or 

pointers. However, static analysis of software could be much more effective, as often errors 

are revealed in the following dynamic analysis stage that could have been detected by means 
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of a more accurate static analysis. Of course, lately discovered errors are more costly and 

difficult to correct. A way to improve code inspection both in effectiveness and efficiency to 

substitute it with a model-based static analysis approach, which can be also used for high 

level behavioral analyses and code improvements, as we will see later in this chapter. 

The second activity is also known as black-box testing and is related to the dynamic analysis 

stage, where software is usually executed on the target hardware system. 

Two main challenging issues have to be faced when functional testing safety-critical systems: 

• Management of criticality (related to test effectiveness); 

• Management of complexity (related to test efficiency). 

Criticality is related to the fact that functional testing is one of the last activities to be 

performed before system is put in exercise, and thus it must ensure the overall trustworthiness 

of system operation. For the same reason, it also the activity which is more time critical, as a 

delay in performing functional testing directly impacts on the time to market of the product. 

Therefore, both a safety and budget criticality exist, and this especially true for large 

heterogeneous systems, which are very hard to test extensively, but at the same time are more 

error prone due to their inner complexity. Once more, we just highlighted that a balanced 

compromise between test effectiveness and efficiency is necessary. 

As largely mentioned in previous chapter, the functional verification of critical systems 

require a thorough set of testing activities. The verification of system implementation against 

its functional requirements is usually pursued by means of black-box testing approaches 

[152]. Like any system level verification activity, black-box testing is inherently complex, 

given the high number of variables involved. To cope with test-case explosion problems, 

several techniques have been proposed in the research literature and successfully applied in 

industrial contexts. Partition testing [22] is the most widespread functional testing technique. 

It consists in dividing the input domain of the target system into properly chosen subsets and 

selecting only a test-case for each of them. Equivalence partitioning, cause-effect graphing 

[70], category-partition testing [144] and classification-tree method [104] are all 

specializations of the partition testing technique. 

The main limitation of “pure” black-box testing is the lack of the possibility to measure test 

effectiveness. In fact, it can be proven that exhaustive black-box testing is impossible to 

achieve with no information about system implementation [70]. Test adequacy can only be 

assessed by means of empirical techniques, e.g. when errors/test curve flattens out. This is 

why grey-box approaches are necessary for critical systems. Another important though often 

neglected limitation is that black-box testing approaches are based on system specification, 

which is usually expressed in natural language, besides being destined to be corrected, 

integrated and refined several times during system life cycle. Therefore, its completeness and 

coherence are far to be guaranteed, and this is especially true for complex systems. The use of 

formal specification methods is unfeasible (at least at system level) for complex systems, 

despite of the remarkable efforts of the research community. As a matter of fact, testing is the 

area of software engineering showing the greatest gap between theory and practice, and this is 

a very significant statement. There are several reasons impeding the system level use of 

formal specification languages, among which: 

• Translating system specification into a formal language requires skill, is time-

consuming and costly both to perform and to maintain (given the instability of 

requirements), even using intuitive languages (like UML); 

• Applying verification techniques on such a formal specification can be unfeasible due 

to the impossibility to manage the complexity level (the efficiency of model-checkers 

is quite limited). 

Therefore, it is easy to conclude that the effort is hardly repaid. The alternative approach is to 

improve the traditional informal techniques, which have several margins of enhancement, and 

this is the way we choose to follow in this thesis work. Empirical observations of industrial 

testing lead to the generally accepted consideration that no single technique is sufficient to 
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verify and validate software. Any technique must be assessed by considering its strengths and 

weaknesses, together with incremental and integration issues. Therefore, a complete 

functional testing process should be: grey-box based, requiring test-engineers to access 

system internal structure (i.e. software architecture and system state); hybrid, integrating a 

series of different partly existing and partly newly developed approaches (e.g. model-based 

testing and equivalence class partitioning). 

3.1.1 Grey-box testing 

Generally speaking, grey-box means any combination of black and white box testing. 

However, in traditional approaches, grey-box only refers to functional testing with added code 

coverage measures. Code coverage analysis is a structural testing technique. Structural testing 

compares test program behavior against the apparent intention of the source code. This 

contrasts with functional testing, which compares test program behavior against a 

requirements specification. Structural testing examines how the program works, taking into 

account possible pitfalls in the structure and logic. Functional testing examines what the 

program accomplishes, without regard to how it works internally. Structural testing is also 

called path testing since test cases are selected that cause paths to be taken through the 

structure of the program. At first glance, structural testing seems unsafe as it cannot find 

omission errors. However, requirements specifications sometimes do not exist, and are rarely 

complete. This is especially true near the end of the product development time line, when the 

requirements specification is updated less frequently and the product itself begins to take over 

the role of the specification; therefore, the difference between functional and structural testing 

blurs near release time.  

Code coverage analysis is the process of:  

• Detecting code areas of a program not exercised by the test suite; 

• Specifying additional test cases to increase coverage; 

• Determining a quantitative measure of test effectiveness, which is an indirect quality 

measure. 

An optional aspect of code coverage analysis is the identification of redundant test cases that 

do not increase coverage. A code coverage analyzer automates this process. Coverage 

analysis requires access to source code, for instrumentation and recompilation. 

A large variety of coverage measures exist. In the following, we present a survey of them 

(refer to [23], [118] and [132] for further reading).  

• Line (or statement) Coverage. This measure reports whether each executable statement 

is encountered. Advantage: it can be applied directly to object code and does not 

require processing source code. Disadvantage: it is insensitive to decisions (control 

structures, logical operators, etc.).  

• Decision (or branch) Coverage. This measure reports whether boolean expressions 

tested in control structures are evaluated to both true and false. The entire boolean 

expression is considered one true-or-false predicate regardless of whether it contains 

logical-and or logical-or operators; additionally, this measure includes coverage of 

“switch” statement cases, exception handlers, and interrupt handlers. Advantage: 

simplicity, without the problems of statement coverage. Disadvantage: it ignores 

branches within boolean expressions which occur due to short-circuit operators (e.g. 

“if (condition1 && (condition2 || function1()))” ). 

• Condition Coverage. Condition coverage reports the true or false outcome of each 

boolean sub-expression, independently of each other. This measure is similar to 

decision coverage but has better sensitivity to the control flow. Multiple condition 

coverage reports whether every possible combination of boolean sub-expressions 

occurs. However, full condition coverage does not guarantee full decision coverage. 
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• Condition/Decision Coverage. It is a hybrid measure composed by the union of 

condition coverage and decision coverage. It has the advantage of simplicity but 

without the shortcomings of its component measures.  

• Path (or predicate) Coverage. This measure reports whether each of the possible paths 

in each function have been followed. A path is a unique sequence of branches from the 

function entry to the exit. Since loops introduce an unbounded number of paths, this 

measure considers only a limited number of looping possibilities. A large number of 

variations of this measure exist to cope with loops, basing on the number of 

repetitions/iterations. Path coverage has the advantage of requiring very thorough 

testing. Path coverage has two severe disadvantages. The first is that the number of 

paths is exponential to the number of branches. The second disadvantage is that many 

paths are impossible to exercise due to relationships of data.  

• Data Flow Coverage. This variation of path coverage considers only the sub-paths 

from variable assignments to subsequent references of the variables. The advantage of 

this measure is the paths reported have direct relevance to the way the program 

handles data. One disadvantage is that this measure does not include decision 

coverage. Another disadvantage is complexity. Researchers have proposed numerous 

variations, all of which increase the complexity of this measure. As with data flow 

analysis for code optimization, pointers also present problems. 

It is useful to compare different coverage measures: weaker measures are included in stronger 

ones; however, they cannot be compared quantitatively. We list the following important 

results: 

• Decision coverage includes statement coverage, since exercising every branch must 

lead to exercising every statement; 

• Condition/decision coverage includes decision coverage and condition coverage, by 

definition; 

• Path coverage includes decision coverage; 

• Predicate coverage includes path coverage and multiple condition coverage, as well as 

most other measures.  

Using statement coverage, decision coverage, or condition/decision coverage, the objective of 

test engineers is about 80%-90% coverage or more before releasing. A lot of effort is needed 

attaining coverage approaching 100%; the same effort might find more faults in a different 

testing activity, such as formal technical review. Moreover, defensive programming structures 

exist, which are hardly exercised by system tests. Therefore, a general rule consists in 

reaching a high percentage of coverage for critical software (never less than 80%), while 

inspecting the uncovered pieces of software in order to verify whether further testing is 

needed or it is possible to justify by other means the missing coverage. In such way, the 

totality of source code is either covered by tests or checked by hand (for instance, the latter is 

useful in case of numerous repetitions of the same managing routines, simply “cut and pasted” 

in different pieces of code). 

With grey-box we also mean any access to the internal state of the system, both statically and 

dynamically. With “static” we mean software architectural analysis (code structure views, 

function call graphs, block models, UML diagrams, etc.), in order to: 

• Detect functional dependencies and discover common code structures (e.g. 

management routines) in order to apply architecture based reduction rules for 

functional tests; 

• Locate the logic variables to be monitored (and thus logged) when verifying system 

state, which also constitute both the input and the output of a test-case; 

• Aid the diagnosis and correction of detected errors. 

With “dynamic” we mean on-line hardware and software diagnostics needed to access the 

value of internal state variables which are not directly accessible at system’s interface. System 

diagnostics should be less intrusive as possible, in order not to modify system behavior and 
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real-time properties. The ideal thing is to log all necessary state variables using the Juridical 

(or Legal) recording unit (JRU or LRU) which is active during system operational life. I such 

a way, system is tested together with its diagnostic extensions and therefore the risk of having 

tested a different software version (featuring instrumented code) is avoided. With respect to 

ad-hoc logging (only for testing purposes), this has the potential disadvantage of increasing 

the size of log files; however, it is possible to implement a mechanism to select the variables 

to be logged, so that during system operational life just a subset of them can be recorded 

(according to JRU/LRU specification). 

3.1.2 Equivalence class partitioning 

An equivalence class represents a set of valid or invalid states for a condition on input 

variables. The domain of input data is partitioned in equivalence classes such that if the output 

is correct for a test-case corresponding to an input class, then it can be reasonably deducted 

that it is correct for any test-case of that class. SECT is the acronym of “Strong Equivalence 

Class Testing”, which represents the verification of system behavior against all kinds of class 

interactions (it can be extended with robustness checking by also considering non valid input 

classes).  

For numerical variables, equivalence classes are defined by selecting a subset of their domain. 

Widespread approaches include: 

• “Boundary Analysis”, in which boundary values are chosen for each variability range 

referred in system requirements; 

• “Robustness Testing”, in which variables are assigned values external to their nominal 

domain in order to check system robustness (the so called “negative tests”); 

• “Worst Case Testing” (WCT) techniques, based on a combination of boundary or 

robustness approaches for more than one variable at a time (e.g. all variables are set 

out-of-range values). 

Such techniques are based on empirical studies. For instance, it has been noted that most 

errors generate in correspondence of extreme values of input variables. 

3.1.3 Simulation environments 

Simulation environments are needed to perform any type of dynamic analysis. Simulation
3
 

allows for different levels of testing on (sub)system prototypes. Even when the system has 

been entirely developed, simulation is still needed to speed-up testing (with respect to on-the-

field execution) and to perform negative testing whenever abnormal testing conditions are 

unfeasible on the real installation for safety-reasons. When relying on simulation, testing 

objectives must be clear in order to accurately select the part of the system to be simulated. 

Usually, the target system is inserted into a simulated environment, providing its external 

stimuli and probing its outputs, according to the classical “system-in-the-loop” scheme. 

However, when hardware-software integration is not object of testing, then the target software 

can be executed by means of a simulated platform running on a commercial PC. This is the 

case of logic testing or preliminary software tests. In the latter case, preliminary software 

versions are executed on a simulated hardware platform, in order to quickly detect the 

majority of bugs. Then, when approaching the final version, software is tested using the target 

hardware, in order to safely check also HW-SW integration (which is mandatory for final 

system tests). System acceptance testing require that a proper subset of the entire functional 

test-suite is repeated on the field. Such a subset is usually chosen with the objective of a broad 

system requirements’ coverage, at least in nominal conditions. Usually, as some negative tests 

related to safety critical conditions will never be executed on the real environment, the 

                                                 
3
 An introduction to (discrete event) simulation is provided in [108], which also give references for further 

readings. 
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simulation environment must be validated against the real environment, and this is performed 

by observing and comparing the results of test samples. 

Nominal simulation environments for the so called “engineering tests” are usually unable to 

simulate all abnormal conditions required for negative testing. External tools and/or code 

instrumentation is usually required to cope with the needs of extensive V&V testing (e.g. loss 

of messages), as described in the following Section 6. 

3.2. Multiformalism dependability prediction techniques 

Multiformalism refers to the use of more variously interacting models specified in different 

formal languages (see e.g. Figure 6). It helps modeling complex heterogeneous systems by 

using: 

• the most suited formal language for each subsystem or abstraction layer to be 

modeled; 

• different views on the system, according to the modeling and evaluation objectives. 

The choice of “most suited” formalism depends on the needed modeling and evaluation 

power, and it is the result of a trade off between effectiveness (i.e. expressive power), 

efficiency (i.e. computational complexity of the solving algorithms) and ease of use. 

Multiformalism techniques must be supported by proper frameworks, which should provide a 

theoretical basis, covering methodological aspects, as well as integrated software toolsets for 

the practical implementation and solution of multiformalism models. 

 
Figure 6. Example of a possible three formalisms interaction. 

 

As an example, performability models [91] are advantageously expressed through 

multiformalism. Imagine a Queuing Network (QN) model representing the performance part, 

and a Fault Tree representing the hardware availability part: the overall system will operate 

correctly when it is available and respecting its real time requirements. Therefore, an 

interaction between the two models is required, by exchanging results. Stronger interaction 

would be required if modeling, for instance, the correlation between component stress factor, 

due to system overhead, and its reliability. Connection and composition techniques of 

heterogeneous models have been addressed in several research works; for instance, reference 

[73] provides a theoretical analysis of compositional modeling with the aim of preserving 

model properties. The Möbius framework [44] also provides heterogeneous model interaction 

by means of composition operators, which have been already implemented. In Chapter III we 

will abstract advantages and limitations of the existing approaches of model composition in 

more details.  

The translation of heterogeneous models into a single more powerful language is a possibility; 

however, the drawbacks are graphical expressivity (model is more cryptic, that is difficult to 

understand) and efficiency (the simpler submodels could be solved by means of more efficient 

algorithms). As an example, consider the model of Figure 7, in which the aforementioned 

multi-formalism performability example is described by means of a single formalism (GSPN); 

note that the upper part models a queue, while the lower part translates quite intuitively a two 

states Markov chain. 
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Figure 7. A GSPN performability model example. 

 

Several multiformalism frameworks exist, defining methodologies and related toolboxes: 

DEDS (Discrete Event Dynamic System), in which the possibly heterogeneous user model is 

translated into a common abstract Petri Net notation [53]; SHARPE (Symbolic Hierarchical 

Automated Reliability and Performance Evaluator), supporting connection between a relevant 

set of useful formalisms, including Fault Trees and Petri Nets [129]; SMART (Stochastic 

Model-checking Analyzer for Reliability and Timing), integrating various high level 

modeling formalisms and providing both simulation on Markov models and symbolic model-

checking [63]; Möbius, supporting the composition of Stochastic Activity Networks, Markov 

Chains and Process Algebra, implemented by mapping on an underlying common semantic 

[44]; AToM
3
, combining meta-modeling and graph transformation techniques solving models 

by co-simulation or by translation into a common formalism [101]; OsMoSys (Object-based 

Multiformalism Modeling of Systems) is based on meta modeling paradigm and uses 

workflow management principles for orchestrating the multisolution process [150]. OsMoSys 

will be presented in more details in next section. Also integration of existing frameworks have 

been proposed by the research community, for instance in the case of Möbius and MoDeST 

[75]. 

The HIDE (High-Level Integrated Design Environment for Dependability) project tried to 

address the problem of dependability evaluation from early stages of system design basing on 

a translation of the views of the Unified Modeling Language (UML) into formally analyzable 

models [8]. Among others, partial results on this type of approach are documented in [71], 

where an algorithm to automatically synthesize Dynamic Fault Trees (DFT) from UML views 

is presented, and in [25], where the automatic translation of Statecharts and Sequence 

Diagrams into Generalized Stochastic Petri Nets together with the composition of the 

resulting models is described. The difficulties in the management of complexity and 

compositionality in HIDE would suggest as successful the theoretical integration of the HIDE 

approach with multiformalism techniques; however, this would require a significant research 

effort. Such integration would be a relevant contribution to the discipline of Model Driven 

Engineering (MDE) [136], recently introduced to cope with the model-based development 

and analysis of systems and heavily based on model transformations. 

3.2.4 The OsMoSys multiformalism multisolution methodology and 

framework 

OsMoSys (Object-based multiformalism Modeling of Systems) is both a methodology and a 

framework supporting a multiformalism/multi-solution modelling approach [150]. The 

OsMoSys methodology supports any graph based modelling language and it is based on a 

meta modelling paradigm. The OsMoSys framework is XML based and it exploits some 

aspects of object-orientation, such as inheritance, and of workflow management, for the 

orchestration of (existing) solvers in the solution process. The OsMoSys interface consists in 

the DrawNet++ GUI (Graphical User Interface) [68], which manages XML formalism and 

model descriptions. In fact, XML is used in OsMoSys for the description of formalisms (i.e. 

meta-classes), model classes (MC) and model objects (M). A model metaclass is used to 

describe model classes, while model objects are instances of model classes. Metaclasses 

define the constituents of models, i.e. element types (et) and their attributes; model classes 
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define the structure of models; finally, model objects define the values of model attributes, by 

instantiating model elements (e). 

OsMoSys allows for two types of multiformalism: 

• Implicit multiformalism, in which the modeler uses a single formalism, but the 

framework manages more formalisms/solvers in order to produce the solution of the 

model (this is the case of Repairable Fault Trees); 

• Explicit multiformalism, in which more models written in different formal languages 

interact to form the overall model (this is the case of connected/composed models). 

The software architecture of OsMoSys is composed by the following entities: 

• A Graphical User Interface (GUI), DrawNet++ [68], acting as an easy to use front-end 

to manage model construction and solution; 

• A Workflow Engine (WFE), which manages the solving process by orchestrating 

heterogeneous solvers, using workflow management principles (see [57]); 

• Adapters, which are used to interface with solvers and have to be designed specifically 

for any solver interface. 

Reference [103] provides an overview of the OsMoSys language systems (mostly XML 

based). In [59] a case-study application of the OsMoSys methodology is presented, dealing 

with a performability model of a RAID disk array.  

3.2.5 Repairable Fault Trees 

The Repairable Fault Tree (RFT) formalism [37] is an example of implicit multiformalism in 

the OsMoSys framework. RFT extends the FT formalism by adding repair boxes (RB), which 

model maintenance facilities of any kind, relying on the underlying powerful GSPN 

formalism. This allows for the evaluation of complex repair strategies, which can only be 

modeled by means of CTMC, which are however much more difficult to use with respect to 

RFT, besides featuring worse efficiency. In fact, RFT are solved by means of an iterative 

process, from tree leaves (i.e. basic events) upward. This allows for a better management of 

complexity, as small subtrees are iteratively solved by translating them into: 

• Fault trees, if they do not feature repair facilities (i.e. they are not connected to RB); 

• GSPN, if they are connected to RB. 

In summary, the RFT formalism tries to combine the advantages of Fault Trees in terms of 

efficiency and ease of use, with the ones of GSPN in terms of expressive power. 

In order to solve RFT, OsMoSys orchestrates two different solvers: 

• GreatSPN [62], for the GSPN part, 

• SHARPE , for the FT part. 

RFT will be analyzed in more detail in Chapter III, by studying their application to repairable 

systems and the formalism extension possibilities to cope with real-world repair policies. 

3.2.6 Application of Bayesian Networks to dependability 

Bayesian Networks (BN) is one of the formalisms used to model uncertainty by means of 

statistical inference based on conditional probability relations between stochastic variables. 

The interest of the dependability research community in BN is justified by their possibility of 

providing software reliability estimation models as well as structural reliability analyses: an 

example of the former application is provided in the ENEA ISA-EUNET Safety-Case 

assessment support for the quantitative evaluation of Safety Integrity Levels (SIL) [51] (see 

also [96]); the latter application is instead a consequence of the fact that a Fault Tree can be 

translated into a Bayesian Network using the conversion rules reported in Figure 8 [5]. After 

translation, it can be extended exploiting the greater modeling power of BN, supporting 

among other things: 

• Multi state events, allowing multiple failure mode modeling; 

• Complex dependencies, allowing common mode failure modeling; 
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• Noisy gates, giving to modelers more possibilities with respect to basic Boolean 

connectors. 

BN can also be extended using dynamic [137] and decision extensions. Decision Networks 

(also known as Influence Diagrams) allow to evaluate system-level cost-benefit design trade-

offs. The power of analysis of BN can be augmented using decisional extensions, namely 

decision and utility nodes (see e.g. [154] for a framework proposal for multi-criteria decision 

making). Decision extensions can be exploited to perform automated cost-benefit analyses on 

input reliability parameters of the model (e.g. MTBF, redundancy level, etc.). This is 

important because system cost raises with components’ number (linearly) and reliability 

(exponentially), while benefits include system performance and availability. More complex 

dependencies arise if we consider the impact of maintenance costs, which are obviously lower 

for a system with a limited number of more reliable components (at equal availability). 

While component level costs, e.g. due to redundancy or presence of spares, are easily 

predictable, system level impact of component level reliability or replication, which is the 

measure of interest, is not easy to associate to such costs. In fact, while several formalisms 

exist to evaluate system level impact of components’ reliability, many of which are used in 

this thesis work, none of them allows taking decision about what are the most economically 

advantageous investment to perform. Furthermore, using decision nodes the number of 

redundant component can be easily varied, constituting a parameter of the model which can 

be used to bias design choices. 

 

 

 
 

Figure 8. Translation of a Fault Tree into a Bayesian Network (picture taken from [5]). 

 

3.2.7 Multiformalism composition operators  

Multiformalism composition operators are needed for the building of highly cohesed and 

comprehensive heterogeneous models, in order to make feasible, effective and efficient 

system-level dependability analyses of critical apparels. Intuitively, a multiformalism 

composition operator is needed to make two possibly heterogeneous models interact in some 

way. The entity usually defined as a connector (or connection operator) can be considered a 

weaker composition operator, as it only allows to exchange the results of the isolated solution 

of submodels, which is a subset of the possible interaction between formalisms. Several forms 

of connection are defined in any of the existing multiformalism modeling frameworks 

(SHARPE, SMART, DEDS, etc.). They usually differ in syntactical and implementation 
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aspects, but the semantic is similar. At the state of the art, only the Möbius framework allows 

both for connection and composition operators in multiformalism model interaction [44]; 

however, only state/event sharing based composition is allowed and only for DEDS 

formalisms. OsMoSys adds the support for the elaboration of the exchanged results, besides 

the simple copy, and for the superposition of homogeneous submodels, e.g. expressed through 

Stochastic Well-formed Nets (see [72]). Much work is still needed to make composition 

operators both powerful and user-friendly. The OsMoSys framework is a good candidate to 

reach these goals, for it can act as a GUI based front-end, possibly integrating and 

orchestrating the solving engine of other frameworks (like Möbius) by means of its Work 

Flow Engine and Adapter layers. This allows to add power of analysis while retaining the 

possibility of implementing an object based composition and an intuitive user interface for 

defining and composing models. The easy extensibility of the framework, due to the 

formalism description language and the solver adaptation capabilities, guarantees the 

necessary flexibility in the integration of new formalisms, solvers and composition operators. 

3.3. Dependability evaluation of ERTMS/ETCS 

The European Railway Traffic Management System / European Train Control System 

(ERTMS/ETCS) [147] was object of analysis by several research groups, both from 

companies and universities. Its RAMS requirements have been standardized in [149]. An 

hazard-analysis of ERTMS/ETCS is documented in [121]. Shortly after the definition of the 

standard, it was tried to model and validate its specification by means of Colored Petri Nets 

(see [93]), using a layered modeling approach which however was not enough to manage 

system level complexity. Other unsuccessful attempts to perform formal development and 

verification at the overall system level are documented in [10]. The use of model-checking 

methods have taken to some results in the formal verification of the EURORADIO safety-

critical protocol of ERTMS/ETCS [127]. Other forms of model-checking using the Promela 

language and the SPIN checker have proven to be a promising approach for railway 

interlockings, but still not mature enough to manage real-world complexity [11].  

In [15], Generalized Stochastic Petri Net models have been employed in order to model and 

evaluate communication degradations due to the GSM-R network. At the best of our 

knowledge, no system level hardware availability study has been performed on 

ERTMS/ETCS. 

As for the functional testing, a subset of ERTMS/ETCS specification suite was initially 

proposed in order to support the specification of interoperability system tests [148]. It was 

found that such subset was incomplete and too much requirements based, failing to provide an 

extensive functional test specification aimed at ensuring system correct behavior in any 

operating scenario (including the ones possibly not covered by system specification). A 

reference ERTMS/ETCS subset for system testing is still missing, hence each company is 

responsible for the verification of its own system implementation against safety and 

interoperability requirements (a third party assessment is obviously required as with any 

safety-critical railway control system [33]). 
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Chapter II 

 Model-Based Techniques for the Functional Analysis of 
Complex Critical Systems 

1. Introduction and preliminary definitions 

In this section we present a methodology which combines static and dynamic techniques in 

order to enhance the functional analysis of safety-critical systems, featuring several 

advantages with respect to traditional approaches. Such a methodology is well structured, 

covers all the steps of the functional testing process and revealed both effective (with respect 

to traditional error prone approaches) and efficient (it allowed an easy management of 

complexity) when employed in an industrial context (see Chapter IV for related case studies). 

The novelty of the methodology consists in the following main original aspects: 

• The definition of a cohesed functional testing process, integrating more techniques at 

different levels; 

• The model-based approach for test enhancement, aiding specification, test-suite 

reduction and error correction; 

• The introduction of system-level state-based testing, allowing for an easy manageable 

and systematic approach to complex systems’ testing; 

• The use of influence variables, including their generation and reduction criteria, which 

makes the approach as much as possible robust and independent from specification 

incompleteness, besides being able to detect many missing requirements. 

The last point represents the major strength of the approach, above all considering what 

practically happens in industrial contexts. However, it introduces a slight superposition of 

aims between the specification and testing phase, which can be considered theoretically 

unpleasant. In fact, it happens that during functional testing specification, a significant 

revision of requirements is also performed, as a collateral effect. However, as the 

development model is not linear in practice, such an effect is nearly unavoidable, even when 

using alternative approaches. Furthermore, performing requirements level analyses and 

restructuring even in later stages of system life-cycle helps respecting the fundamental 

software engineering principles of separation of concerns (at the process level) and of design 

diversity. The advantage with our approach is that the integration of missing requirements is 

performed with just one passage, if the method is correctly applied. The method integrates 

and does not substitute traditional and less formal approaches for natural language 

requirements check for consistency, coherence and completeness. Similarly, it does not 

exclude more formal analyses on system parts whose size is such to be treatable with these 

methods. 

The set of innovative functional testing techniques presented in this chapter cover all the 

phases of the functional testing process for safety-critical systems. The concepts of model-

based testing (presented in §2) and influence variables (described in §4) represent the 

milestones of the approach, together with the combination of static and dynamic analyses. 

In particular, the methodology presented in Section 3 allows to easily manage the complexity 

of critical control software, understanding in detail its structure and behavior: once a model of 

the software is available, traceability, verification, refactoring and other analyses become 

much easier and quicker to perform, following the guidelines provided above. In Section 5 we 

show how to perform abstract testing of large control installations, by automatic instantiating 

functional tests in order to exhaustively cover any specific configuration in reasonable times. 

Abstract testing eliminates the risk of detecting latent errors when exercising control code 

with a certain configuration. We also deal with anomaly simulation (see §6), needed to cope 

with communication degradation testing in distributed control systems. 
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Successful industrial applications of the testing approach presented in this chapter will be 

provided in Chapter IV. 

This chapter is based on abstraction, integration and structured organization of some of the 

methodological results published in references [64], [66] and [55]. 

 

In the following we present the definition of some of the fundamental concepts which will be 

used in the following sections. 

 
Definition 1 

An influence variable is a variable either internal or external to the system under verification 

which is able to influence its expected behavior. Internal influence variables can be classified 

as state variables, while external ones can be considered as input variables. Influence 

variables can be further classified into scenario variables, if they can be considered constant 

given a certain operating scenario; the remainder variables are considered as test-case ones. 

 

All the variables referenced in system functional specification are influence variables. Other 

variables are related to technological aspects and can be added in brainstorming meetings, 

similar to the ones required for hazard-analysis sessions [121]. 
 

Definition 2 

A reduction rule is a criterion used to reduce the number of functional test to be executed on 

the target system. It regards either the domain of the single influence variables, or the 

combination of variables to form test-cases. Reduction rules are of different nature (formal, 

technological, procedural, etc.) and can be applied to system state, input or operating scenario. 

 
Definition 3 

A reference model is either a structural or behavioral formal representation of the system 

under analysis, which is used for model-based testing. A structural model is used to perform 

static analyses on software architecture, e.g. in order to detect reduction criteria. A behavioral 

model is a functional view representing system dynamic evolution, which can be used as an 

oracle to define system expected behavior.  

 
Definition 4 

A functional block is a software module with a very high level of cohesion and a very low 

level of coupling, which is a result of good software engineering. If the block implements the 

logics of a computer-based control system, it can be also defined as a logic block. 

 

If modules constituting functional blocks are well inspected and tested, they can be 

considered as independent, which means not influencing each other in ways different from the 

ones specified in their interfaces. 

2. Choice of the reference models 

In previous sections, we highlighted the advantages of a model-based approach for functional 

testing. Any model-based approach needs one or more reference models to aid system 

analysis [115]. 

Different reference models are possible, depending on the nature of the system. Using more 

than one model can help, e.g. in detecting more effective reduction criteria, as different views 

are available. Block-diagrams are the most simple models, as they are easy to read and can be 

assigned different semantics. UML provides a quite extensive set of views, both structural (or 

static) and behavioral (or dynamic), covering nearly any modeling need; in particular, class 

diagrams constitute the most important structural view and they are flexible enough to be used 

both in hardware and software modelling, while state diagrams (i.e. Harel Statecharts) 

together with sequence diagrams (derived from Message Sequence Charts, MSC) are very 
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effective in modeling system level behavior (the reader can refer to [110] for further reading 

on the subject). 

UML is widely accepted as a de facto standard in software engineering; its syntax and 

semantic have been formalized by the Object Management Group (OMG) [120] and used by 

several commercial automated modeling and development suites (see for instance [81]). 

Several applications of UML, apart from pure software design, are referenced in research 

literature (see [7]). The use of UML is not as formal as it could be code-based model checking 

[11], but it easily allows managing complex systems and can be the basis of a series of 

analyses and refinements, as explained in this paper. While a relevant amount of literature is 

available on UML-based refactoring (e.g. [45]), and some research works are available on 

UML-based reverse engineering (e.g. [38]), at the best of our knowledge there is no work 

dealing with integrated model-based reverse engineering approaches for the verification and 

refactoring of critical systems, which is the main topic of Section 3. 

In our approach, we base on functional block-models, validated by means of function call-

graphs, UML class diagrams as structural views, and state diagrams representing an abstract 

Finite State Machine (FSM) of the system under test. 

Let us start from an overall structural model of a generic control system’s architecture. 

2.1. Architectural model of computer based control systems 

This section provides a structural model of computer based control systems, which will be 

used in Section 5 in order to define the abstract testing mechanism. The formalism employed 

to represent the system under test consists in Class Diagrams of the Unified Modelling 

Language (UML) [120], which is a de facto standard in computer systems engineering. Class 

Diagrams allow system designer to define static views of both hardware and software, 

showing basic components in terms of their data structure (i.e. attributes), available 

functionalities (i.e. operations) and interrelationships. One of the fundamental assumptions of 

this chapter is that the system under test features an event-based software architecture, which 

is obviously true for any real-time control system [79]. 

A computer based control system has to implement both functional (i.e. input-output) and non 

functional (e.g. reliability) requirements stated by its specification. Non functional 

requirements are out of the scope of this work. Functional requirements are defined referring 

to stimulus coming from the external environment, on which the engineered system must have 

some form of control. 

Therefore, the general architecture of a control system always features: a Sensor system, 

constituted by a variable number of possibly heterogeneous sensors, used to detect inputs 

from the environment; an Actuator system, used to implement the control actions decided by 

system logic; a Control system, which collects inputs and elaborates system outputs according 

to the desired control function and acting on the actuator subsystem (all these subsystems are 

depicted in Figure 1). Computer-based control systems (also known as Real-Time systems) 

implement the control function by means of discrete control logic, written in a proper 

programming language, and a configuration database which is used to map the control logic 

on a specific installation, thus decoupling system abstract specification from any specific 

implementation. This is especially true for large systems which have to be customized in a 

number of different installations, and constitutes the prerequisite for performing abstract 

testing. The configuration independent entities of the control software constitute the so called 

“Generic Application” and are shown in light grey in the class diagram of Figure 9; the 

implementation specific ones are shown in dark grey, and constitute the “Specific 

Application”. The mapping of the Generic Application on the Specific Application, which 

requires to instantiate all the configuration specific relationships of Figure 9 (i.e. lists of 

linked entities), constitutes a difficult, time consuming and error prone activity, which has to 

be extensively verified, in particular for critical systems. 
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Processes shown in Figure 9 should not be strictly intended in terms of tasks or objects 

(though they often are): they should be seen as software entities managing specific data and 

functions, while satisfying to a certain extent the object-orientation design rules (e.g. data 

encapsulation). Such a view does not appear as a limitation in the applicability of the 

approach, as it will be better explained in the following; for now, will it be sufficient to say 

that widespread best-practice approaches in real-time software engineering base themselves 

on object-oriented structured programming, even using non object-oriented (legacy or 

proprietary) languages. In such a view, processes are associated to physical or logical entities; 

they all feature a data structure and possibly operations, and are often scheduled as 

independent tasks by a real-time operating system. At each elaboration cycle: 

• Sensor Processes collect and manage data measured by sensors; 

• Logic Processes cooperate in order to implement the desired control function by 

accessing the status of Sensor Processes and issuing commands to Actuator Processes; 

• Actuator Processes verify commands’ actability and possibly implement them by 

driving actuators. 

A Logic Process can be defined as an entity of the control software with a well defined role 

and structure, which lacks a direct correspondence with a physical entity (i.e. a sensor or an 

actuator). For instance, in a car Automatic Braking System (ABS) a physical process should 

be univocally associated to each brake and wheel, monitoring their status by mapping it on a 

proper data structure (e.g. brake_status = {activated, deactivated}, wheel_status = {blocked, 

unblocked}) and containing the needed operations (e.g. deactivate_brake(), 

get_wheel_status()); a logic process, instead, would model the ABS itself (e.g. 

available/unavailable, active/excluded, etc.), and its relationships with wheels (sensors) and 

brakes (actuators). In a typical control system, the number of logic processes is usually less 

than the number of physical objects, but their complexity is usually higher. However, there 

exists no general rule: e.g. when the control system is quite complex, the control logic can be 

achieved by hierarchically distributing the control algorithm among a significant number of 

logic processes. 

Despite of its specific representation mechanism, the configuration database must provide the 

instantiation of objects for Sensor and Actuator classes of Figure 9 and their interrelationships 

with logical entities. This is achieved by defining: 

• The physical entities used in the specific installation, by means of Sensor and Actuator 

Lists; 

• The relationships (type, cardinality, etc.) between Sensor/Actuator Processes and 

Logic Processes, using proper Association Lists. 

For coherence of representation, the aforementioned lists are shown as objects in the generic 

class diagram of Figure 9, but obviously they can be represented differently when using a non 

object-oriented database (e.g. by tables in a relational database). 

The needed assumptions and limitations of the methodology are related to when abstract 

testing is chosen to be implemented, whether a priori (during system design) or a posteriori 

(during system verification). There are essentially the following possibilities influencing the 

applicability of the approach: 

1. The software of the control system has already been developed. 

a. The software has been developed using an object-oriented or analogously 

structured design approach, in which physical and logical entities have been 

mapped on corresponding processes, each one featuring its own attributes and 

operations. 
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b. The software has been developed using a non object-oriented approach, which 

hardly allows referring to the general scheme reported in Figure 9. 

2. The software of the control system has not been developed yet. 

In cases (1.a) and (2), the mapping on the general scheme of Figure 9 can be performed with 

no difficulties. Case (1.b) requires a feasibility study in order to evaluate the possibility of 

performing a design review and software reengineering, or a more subtle reverse engineering 

and refactoring (see e.g. [109]), in order to guarantee the compliance with the scheme of 

Figure 9 and thus to allow for the applicability of abstract testing. Such a process could be 

convenient, given the significant advantages in the verification phase, when the number of 

installations (i.e. different configurations) of the system is predicted to be quite high. 
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Figure 9. General structure of a computer based control system. 

 

2.2. Functional block models 

For test-case reduction purposes, it is useful to build a functional block model by 

decomposing the system into independent logic modules. Such a decomposition (depicted in 

Figure 10) can be performed both horizontally and vertically and must be validated by static 

analysis (i.e. function call graphs) and module testing, in order to ensure that there is no 

interference or unpredicted interactions between blocks: this is necessary to validate the block 

independence assumption. A horizontal decomposition is related to the input-output control 

flow: input data is elaborated sequentially by more functional blocks (from left to right in 

Figure 10). Each functional block accepts data from its predecessor (left side block) and feed 

its successor (right side block) with data elaborated by itself, analogously to what happens in 

an assembly chain (or processor pipeline)
4
. Vertical decomposition is instead related to 

                                                 
4
 This is in fact known as a pipelined software architecture, which is usually represented by a horizontal 

sequence of blocks in the Graphical Design Notation (GDN) often used in software engineering [79]. 
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system operating modes, from “basic” or “degraded”, in which e.g. only a subset of data is 

available, to “full”, in which system is operating with its full capabilities. Vertical interaction, 

though possible, is not object of analysis; therefore the usefulness of vertical layers stands in 

the possibility of verifying each layer independently from the others (which is an application 

of the “separation of concerns” principle at the product level). It could be that more vertical 

blocks of the same column are represented by the same functional module; in this case, such a 

module can be tested just once. The result of decomposition is the functional matrix depicted 

in Figure 10, allowing for a “divide et impera” approach in functional testing, with a 

significant reduction in systems test-suite complexity, as it will be proven in Section 4.1. 

 

 
Figure 10. System decomposition into functional blocks. 

 

2.3. State diagrams 

The use of state diagrams to represent system behavior is based on a Finite State Machine 

abstraction. State diagrams hare a powerful means of analysis, provide an effective graphical 

representation of test specification, and allow for different abstraction levels according to test 

engineers’ needs. 

The state-based test specification process is made up by the following steps: 

• Detection of system boundaries, to highlight input-output gates; 

• Elaboration of a list of base operational scenarios, to be used as a starting point for the 

functional analysis; 

• For each scenario, detection and reduction of influence variables (system level 

variables, obtained by the specification, influencing system behavior; see next Section 

4.2); 

• For each scenario, representation of system behavior in the functional scenario by 

means of a state diagram; 

• For each state, generation of the elementary test-cases (simple “input-output-next 

state” relations); 

• Generation of scenario test-cases, by linking elementary test-cases. 

The combination of a system state, a relevant input condition, an expected output and state 

transition constitutes an elementary Test-Case for the system, while several Test-Cases linked 

together in order to reproduce a complete evolution of the system under test in a given 

scenario is named a Test-Scenario, as represented in Figure 11. 
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(a) 

 

 

(b) 
Figure 11. Test-Case (a) and Test-Scenario (b) representations. 

 

While the presence of initially unpredicted scenarios is automatically detected, as the result 

will be a unique and cohesed state diagram (scenarios are introduced only for commodity of 

representation), the definition of scenarios can also be formalized. In fact, part of the external 

influence variables can be classifies as “scenario variables”
5
, in the sense that they define 

system operating and environmental conditions. Such a classification does not influence the 

power of the methodology and it is performed only for a matter of convenience. As a 

justification, observe that when combining variables, the order in which they are instantiated 

is uninfluential on test specification results (see Figure 12). However, dividing between 

scenario and input variables can be useful to better manage complexity, dividing the overall 

analysis into two different levels: operating scenarios and test-cases. 

 

 
Figure 12. Combination of scenario and input influence variables. 

                                                 
5
 To avoid confusion, please note that the concepts of “scenario variable” (related to environmental operating 

conditions) and “test scenario” (a combination of sequentially linked elementary test-cases) are not related. 
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3. Model-based static analysis of control logics 

Before going into any dynamic testing, a structural analysis of the source code allows to 

quickly discover evident design flaws and functional unconformities without any execution. 

This also allows to: 

• more easily bias test-specification to exercise specific functionalities; 

• to verify properties of software architecture; 

• to diagnose and solve non conformities detected during the dynamic testing phase; 

and is part of the white-box aspects of the methodology presented in this chapter. In 

particular, we will refer to the software implementing the control logic of the system, 

therefore neglecting the software part only serving as interfaces to the external environment. 

Control logic software can be implemented by means of general purpose languages or by 

application specific logic languages. Such logic languages feature their own management 

tools, interpreters and schedulers. The choice of using such languages is justified by several 

factors, e.g. the reliability of the (validated or proven in use) development environment, the 

ease of use of the “natural language like” syntaxes, the already available debugging tools, etc. 

Furthermore, such languages can feature a proprietary syntax and lack the support for object-

oriented programming. The drawbacks are that no existing general methodology or tool can 

be directly applied in order to support the accomplishment of test engineers’ objectives, which 

usually consist in the following ones: 

• to obtain an extensive documentation describing in detail how the control logic works, 

which is necessary for any kind of testing and maintenance activities; 

• to trace the architecture and behavior of the control logic into the higher level software 

specification, allowing for an easy verification of compliance; 

• to optimize code reliability and performance, possibly by means of refactoring 

techniques, that is behavior preserving transformations [109]. 

Such objectives can be pursued by means of a proper model-based reverse engineering 

approach.  

In this section we describe a model-based reverse engineering approach in order to perform a 

static (structural and behavioral) analysis and improvement of the software used as the control 

logic of a complex safety-critical computer. 

Reverse engineering is the process of analyzing a system to identify its components and their 

interrelationships and to create a representation of the system in another form or at a higher 

level of abstraction (see [47]). Supporting reverse engineering with a proper bottom-up 

modeling of software implementation (i.e. logic code) allows for: 

• an easier static verification of higher level functional requirements, as the model is 

more compact, expressive and easily readable also by non programmers (e.g. system 

analysts or application domain experts); 

• the availability of a flexible representation which can drive a following refactoring 

work, involving code manipulation and improvement
6
. 

The modeling language which best suits the bottom-up modeling of the logic code, regardless 

of its syntax, is the Unified Modeling Language (UML). The only constraint for an 

advantageous use of UML is that developers wrote the control code using an object-oriented 

or similar approach. As aforementioned, many legacy or application specific control 

languages are not specifically object-oriented, but it is a matter of fact that object-orientation 

is obtainable also using non object-oriented languages, constituting a best-practice approach. 

Furthermore, structured programming is often used to associate a logic process to both data 

and operations of a well distinguished entity (either physical, e.g. a sensor or an actuator, or 

logical) of the control system. In case such constraint is not respected, the approach described 

in this paper can still be followed, but a more time consuming object-oriented reengineering 

and design review would be necessary. 

                                                 
6
 Reference [12] explains how to perform a UML-based consistent architectural refinement and evolution. 
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Figure 13. Three steps scheme of the modeling and verification approach: 1) reverse engineering; 

2) verification of compliance; 3) refactoring. 

3.1. Reverse engineering 

The first step consists in building an UML model of the logic code, using proper diagrams, 

with the main aim to compare such representation (obtained “bottom-up”) with the high level 

logic requirements, thus verifying the compliance of the implementation with its specification. 

While building the diagrams, it is also possible to verify on-the-fly the respect of the basic 

rules of the object-oriented paradigm (e.g. data encapsulation into objects) and to think about 

a first level restructuring of the code, together with model building (the real refactoring, 

however, is performed later, after logic behavior is verified). Furthermore, by using a 

modeling environment which is not only a diagram drawing tool, but also a syntax verifier, it 

is possible to automatically check the correctness of the model in terms of evident bugs, e.g. 

calling an undefined operation (causing an immediate model error notification). This may 

appear as a trivial control, but in practice such errors are destined to remain latent until the 

related code is exercised; however, for critical systems some code sections are hardly 

exercised, with the risk of causing system shut-downs in they rare cases in which they are 

needed, e.g. to manage specific exceptions. 

The most important structural view which has to be obtained from the code consists in class 

diagrams, statically showing the relationships between logic processes. Class diagrams 

provide a static view which is able to give test engineers at a glance and integrated 

representations of software architecture. 

Among behavioral views, sequence diagrams best suit to represent the dynamic aspects of 

logic processes, by highlighting process interactions in terms of data structure modifications 

and execution of operations. Sequence diagrams allow to easily compare process behavior 

with the one requested by the high-level specification, which are written in natural language 

in the form of input-output relations (see Section 3.2). 

State diagrams (or “statecharts”) also constitute an important behavioral view which should 

be used to check for the correctness of process state transitions. Other types of UML diagrams 

(e.g. use-case and activity diagrams) can be used as further views, e.g. to simplify the 

understanding of complex operations. 

Please not that reverse engineering criteria are application specific, but, once they are defined, 

the main task of construction and maintenance of the UML model becomes quite trivial and 

can be easily automated. 
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3.2. Verification of compliance 

Different kinds of verifications are possible on the UML diagrams: for instance, the 

verification that a functionality specified in logic requirements is present in the code, or on the 

contrary that no functionality not required by the specification is present in the code (this is a 

sort of coverage and traceability analysis for functions, also aimed at detecting “dead”, i.e. 

never exercised, code). Moreover, at a glance verifications on UML models are quite 

straightforward: a sequence diagram should contain only the processes that are involved in 

that function, as specified by high level requirements; a statechart should guarantee the 

reachability of all process states and prevent from the occurrence of deadlocks, etc. Such kind 

of analyses can be performed informally, exploiting the know-how and skill of system 

experts. 

A formal traceability analysis can be obtained by a hierarchical superposition of sequence 

diagrams, matching the ones obtained top-down from the high level logic specification with 

those obtained bottom-up by modeling the logic code. To perform this, partial sequence 

diagrams have to be linked to build up a complete operating scenario for direct verification of 

compliance. In other words, process operations, which were modeled singularly in sequence 

diagrams, have to be linked together in order to form a complete scenario, traceable on the 

high-level specification.  

3.3. Refactoring 

Analysis, refinement and optimization by code restructuring is the last step of the present 

approach. Refactoring is performed on the UML diagrams and then implemented top-down in 

the logic code. The availability of a model of the software under analysis, featuring 

complementary views, allows to detect more easily “smells” in the code [50]. Smells are 

simply defined as code structures that suggest the possibility of refactoring, like degenerate 

classes, e.g.: too large or too small, featuring only data, pleonastic (just forwarding method 

calls), etc. In particular, for critical systems, defensive programming controls have to be 

added to check and react on inputs that are illegal or incompatible with process status. 

Moreover, refactoring can involve the grouping of condition checks, the re-ordering of checks 

(weighted by occurrence probability and/or by the number of necessary steps to perform the 

check of the condition) and other specific performance optimizations. The use of sequence 

diagrams allow test engineers to precisely weight the condition checks in terms of needed 

interactions between logic processes, and thus in terms of elaboration cycles. 

As for the respect of object-orientation, whenever necessary, operations must be added in 

class diagrams in order to make processes modify variables of other processes only by using 

proper methods, and not by directly accessing external attributes. Such a modification also 

allows moving defensive programming controls from the calling methods to the new added 

ones, possibly gaining in reliability, readability and code length. 

The behavioral impact of such modifications can be easily checked by means of UML 

sequence and state diagrams. Of course, in case of verified compliance with high-level 

requirements, the logic behavior has to be preserved. 

4. Test-case specification and reduction techniques 

As largely mentioned above, test engineers cannot trust system specification, as it is often 

incomplete till the last steps of the development cycle and therefore continuously revised. 

Being written in natural language, there is no feasible formal way to automatically verify its 

consistency. Therefore, any functional testing approach which is only based on system 

requirements reveals to be inadequate to test safety-critical systems. In this section we present 

an approach based on influence-variables whose aim is to extensively generate system inputs. 

This allows not only to safely specify and reduce a comprehensive test-suite, but also to detect 

specification deficiencies. Moreover, it allows for extensive negative testing: usually system 

specification says what system should do in a particular situation, but it does not say what 
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system should not do, implicitly assuming that any unspecified input is not recognized by the 

system and thus does not alter its behavior. In practice, system must be verified against all 

these unspecified conditions; this is necessary to be sure it does never reach an unsafe state. 

An influence variable is defined as a variable which is able to influence system behavior. 

Basing on the FSM abstraction presented in Section 2.3, influence variables can be divided 

into two main classes: 

• input variables, which are “visible” from the outside of the black-box; 

• state variables, which are internal to the system and can only be accessed by means of 

code instrumentation, diagnostic mechanisms or logging units (e.g. LDR); 

More informally, influence variables are all the (possibly redundant) variables cited in system 

functional requirements when defining (initial state-input-output-next state) conditions. As 

system specification is written informally, such variables are not used in any possible 

combination of their values. To cope with such issue, a safe tree-based generation of influence 

variables’ combinations can be performed. Tree-based generation of the combinations of 

influence variables and their equivalence class based reduction corresponds to implement an 

extended SECT coverage criterion (see Section 3.1.2). 

 

 
Figure 14. Tree based generation of test-cases from influence variables. 

 

As such generation (shown in Figure 14, with scenario variables distinguished from the 

others, as described in Section 2.3) can easily suffer from combinatorial explosion, criteria 

(namely “reduction rules”) are needed to reduce the number of test-cases, pruning tree 

branches in anticipation. There are several classes of reduction rules, which should be 

implemented sequentially: 

1. Logic block based reduction 

2. Elimination of redundant or dependent variables 

3. Variables’ domain reduction 

4. Incompatible combinations of variables 

5. Not realistic operating conditions 

6. Equivalence class based reductions 

7. Context specific reductions 

 

Such reduction rules will be described in detail in the following sections. 

… 

vS1=VS1M1 

 

… 

… 

… 

Scenario 
Level 1 

Scenario 
Level i 

Test-Case 
Level 1 

Test-Case 
Level j 

… … … 

vS1=VS11 

vS1=VS11,…, vSi=VSi1 

 

vS1=VS11,…, vSi=VSi1; 
vT1=VT11 

 

Set of 
Independent 

Influence 
Variables 

vS1=VS11,…, vSi=VSi1; 
vT1=VT1P1 

 

vS1=VS11,…, vSi=VSi1; 
vT1=VT11, .…, vTj=VTj1 

 

vS1=VS11,…, vSi=VSi1; 
vT1=VT11, .…, vTj=VTjPj 

 

vS1=VS11,…, vSi=VSiMi 



MODEL-BASED TECHNIQUES FOR THE FUNCTIONAL ANALYSIS OF COMPLEX CRITICAL SYSTEMS  
 

 40 

4.1. Logic block based reductions 

This section deals with test case reduction rules according to system decomposition into 

functional blocks
7
, as described in Section 2.2. Logic modules can be separated whenever 

they can be proven to be independent and/or to interact with each other in a well defined way. 

Therefore, the decomposition must be validated by analyzing structural dependencies within 

software modules and verifying that it respects such assumptions. Function call-graphs based 

techniques can be adopted, together with traditional module tests, to validate system 

decomposition. After this step, each module (or macro-function) can to be fed with extensive 

input sequences in order to check its output behavior. The advantage is that each block is 

influenced by a reduced set of variables with respect to the class of system inputs; however, 

block outputs are not necessarily accessible at system’s interface, thus requiring the access to 

its internal state (as described in §6.1). 

Rule 1 is not always applicable (it depends on the fact that system is suited to be decomposed 

into functional modules). However, SECT is usually feasible as far as each logic block 

features a small number of influence variables, each one being assigned a small number of 

classes of values. If rule 1 cannot be applied, then the effectiveness of the other rules must be 

enhanced for a successful application of the methodology. 

To estimate the achieved reduction factor, let us consider a system characterized by the 

following parameters: 

- N, total number of input variables; 

- m, average number of possible values for each input variable; 

- s, number of logic blocks in which the system has been divided; 

- r, average reduction factor in the number of input variable for each logic block. 

For such system the reduction factor R in the total number of test-cases (and thus in the time 

required for their execution) is easily obtainable as follows:  
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Equation 1 

This expression proves that, as r > 1, the overall reduction factor grows with N in an 

exponential way. Thus, the effectiveness of the presented technique is particularly high when 

dealing with large systems, featuring a large amount of influence variables. 

4.2. Reduction of influence variables 

To avoid redundancies (rule 2), the selection algorithm reported in Figure 15 can be applied to 

each logic block. A redundancy exists not only if the same variable is found to be cited in the 

specification with a different name, but also if two or more variables are dependant, in the 

sense that the value of one can be deducted by the value of the other. The selection algorithm 

starts from a certain logic block in which the system is decomposed; of course, if no 

decomposition has been possible, the only logic block consists in the entire system. 

 

                                                 
7
 In this section the terms functional/logic block/module are used as synonyms to indicate the same entities, 

which are obtained by decomposition. 
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Figure 15. Influence variable selection flow-chart. 

 

4.3. Domain based reductions 

A domain based reduction is implemented with rule 3, which consists in reducing the range of 

variation of influence variables into subset constituting equivalence classes. Combining the 

several criteria presented in Section 3.1.2, with the usual aim of pursuing a good compromise 

between effectiveness and efficiency, influence variables can be assigned the following 

classes of values: 

• internal values 

• high-boundary values 

• low-boundary values 

• near high-boundary values 

• near low-boundary values 

• over high-boundary values 

• below low-boundary values 

• special values (only for discrete variables) 

The last three classes are very important to test robustness (and thus to ensure system-level 

safety). All in all, a non Boolean variable assumes, in the final set of test-cases, at least three 

different values, belonging to the first three categories.  

 

 
Figure 16. Example of robust checking for 2 influence variables. 

4.4. Incompatibility based reductions 

Partial dependencies between variables do not allow for any combination of values. In fact, 

even though variables a and b are distinct and no redundancy between them exists, it could 

happen that assigning a certain value to variable a implies that variable b can never be 
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assigned one or more values. Therefore, impossible combinations of variables exist, leading to 

test-cases which can be safely eliminated from the test set. 

4.5. Constraint based reductions 

This reduction is based on non realistic operating conditions, given by external constrains. In 

fact, the real operating scenario does not allow for any combination of inputs, due to physical 

constraints (e.g. speed can not be negative or exceed given values) or installation rules (e.g. 

national norms of railway signaling). Of course, the assumption here is that installation rules 

are verified separately. 

4.6. Equivalence class based reductions 

Equivalence classes of test-cases are already generated when performing the domain based 

reduction described in Section 4.3. However, other equivalence classes can be defined 

reasoning in terms of system level effects of certain sets of test-cases. This is the most generic 

and risky reduction class; in fact, failing to define a safe criterion to form equivalence classes 

can lead to illegal grouping of test-cases (of which only one is executed) with obvious 

dangerous consequences. Therefore, test engineers should group test-cases into equivalence 

classes of any sort only if they are absolutely sure (and not “reasonably sure” as it happens for 

non critical systems) they will produce the same effect on system state and output. There are 

cases, however, in which the test-set is willingly less detailed, for instance: 

• When selecting subsets of the test-suite to be executed on the field as acceptance tests 

or to validate the simulation environment; 

• When generating a gross grain test-suite in order to quickly find macro errors, to be 

lately exploded into a more effective test set (in which equivalence classes are 

ungrouped). 

An easy way to think to equivalence classes of test cases is given by the following example. 

Consider two subsystems, S1 and S2 (which can also be two logical blocks of the same 

system), sequentially interacting with each other as represented in Figure 17. Let us suppose 

that S1 is has a transfer function with 4 inputs (I11, I12, I13 I14) and 2 outputs (O11, O12), such to 

perform the following transformations: 

O11 = I11 + I12 

O12 = I13 − I14 

and S2 has instead only 2 inputs (I21, I22). 

If S1 is already validated, in the sense that we can trust its behavior without any reasonable 

doubt, then for the entire system S, constituted by the series of S1 and S2, all test-cases for 

which (I11 + I12) and (I13 − I14) are constant belong to the same equivalence class, as they 

produce the same input for the block or subsystem S2, which is the actual object of testing. By 

iterating such process and applying it to the logical blocks of Figure 10, it is easy to 

understand the power of decomposition when combined with equivalence classes. 

 
Figure 17. Equivalence class based reduction. 
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4.7. Context specific reductions 

This category comprises all the reductions which do not belong to the previous classes and 

can be performed by analyzing the software structure of the specific system under test. It 

comprises:  

• Code-based static independence checking 

Some routines can exist in safety-critical software which are used to manage specific error 

conditions, regardless of the specific operating conditions (e.g. “unexpected or illegal key-

pressure” error). If test-engineers are able to prove the independence of a specific 

management function from other influence variables (e.g. the operating mode), then test-

cases can be specified in order to test the function in a reduced set of conditions (e.g. in 

just one operating mode). 

• Mapping on test-cases already defined for a different logic block 

If test-engineers specified a test-case with reference to a particular logic block and then 

realize that it is needed as it is to test another logic block, then the same test-case is used 

and only further output checking is added. 

• Context-specific dependencies 

In certain operating scenarios, dependencies among influence variables exist which are 

not general; such dependencies can be exploited when the system operates in the specific 

scenario, in order to further reduce the test-set. 

5. Automatic configuration coverage 

In this section we present an abstract testing approach which has the following aims: 

• To dynamically test the integration between generic application SW and the specific 

configuration for each new installation of the control system; 

• To automatically instantiate abstract system tests in order to cover any specific 

configuration. 

Traditional approaches, based on by hand or tool based static configuration verification, fail in 

detecting logic and configuration integration errors. This happens because system logic is 

tested using a specific configuration. Functional testing for any configuration is unfeasible, 

for the huge number of configuration variables. Therefore, functional test has to be repeated 

for any new installation, after manual test-suite customization. 

Figure 9 gives an at a glance general representation of a control system, featuring sensor and 

actuator subsystems in order to interact with the external environment, while Figure 18 shows 

the necessary integration between generic control software and specific configuration data, 

which is the central topic of this section. 

 

 
Figure 18. The integration between generic application and configuration data. 

5.1. Definition of abstract testing 

Abstract testing can be synthetically defined as a configuration independent and auto-

instantiating approach to system testing of large computer based control installations. In other 

words, it consists in having an abstract test specification, written without referring to any 

specific system installation, and a mechanism to automatically detect the specific 

configuration of the control system and instantiate accordingly the abstract test suite into test-
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cases to be physically executed on the system under verification. The configuration data 

depends on the type and number of devices to be used, which in turn is usually installation 

specific, while the control logic or algorithms is configuration independent in most cases. This 

means that control actions performed by the actuators depend on device classes and subsets 

related to the specific installation and on their interrelationships; however, such dependency 

does not impact on the generality of system functional requirements and of the corresponding 

test specification. 

The approach presented in this paper provides a general methodology and algorithm for the 

efficient customization of system test-suite to a specific configuration, by using an automatic 

generation algorithm. With respect to traditional approaches, in which such an objective is 

achieved manually, this allows for a great saving in time and safer results, thus reducing the 

time to market for any new developed system, as demonstrated by our multi-year testing 

experience. 

The approach is based on the assumptions on control system architecture reported in Section 

2.1 (Figure 9) which are quite general: its applicability is then a consequence of how well the 

system under verification can be abstracted into such a hypothesized structure. There are 

reasons to think that most real world control systems fit reasonably well such general model. 

5.2. Abstract testing methodology 

Before presenting the abstract testing methodology, two introductory statements are 

necessary: 

1) It should be clear that abstract testing is not a functional test specification methodology, but 

a useful complement to it. We will start from system requirements with the only aim to show 

more clearly how it should be employed in a real testing process (how to specify functional 

tests is object of Section 4); 

2) Abstract testing is not meant to discover most configuration errors, as it is based on 

configuration itself; it allows, instead, to cover system configuration, besides control code, 

and thus provides a form of strong integration testing between control software and 

underlying configuration. The verification that the system is configured properly for the 

specific installation should be performed separately (e.g. by a diversity based approach) and 

such an aspect is not in scope of this approach. 

The abstract test specification is performed starting from system functional requirements and 

using a precise formalism, in order not to generate ambiguities when the abstract test 

algorithm will interpret it. System specification is usually written in natural language, using a 

form for requirements which can be easily conveyed into the following general one: 

“When system is in state SI and receives an input I from sensors SEN, then it shall 

actuate output O using actuators ACT and transit in state SO”, 

where S, I, O, SEN, and ACT are respectively lists, vectors or equivalence classes 

(determined by particular properties) of states, inputs, outputs, sensors and actuators. Herein 

after, with no loss of generality, we will usually assume to deal with generic “properties”, 

used to select objects of any class (i.e. S, I, O, SEN, ACT) within requirements, coherently 

with an abstract specification which should identify entities only according to their properties 

of interest (i.e. attributes’ range of values and relationships with other entities). Usually, 

informal specification only indicates changes in outputs or output states, assuming the rest 

remains the same; obviously, this does not influence the generality of the proposed form. 

Therefore, a general format for abstract test description (or Test Case, TC), formalizing the 

functional requirement, could be the following: 

STATEI – INPUT → OUTPUT – STATEO 
Equation 2 
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for each significant system state and input stated by the specification (system level state based 

testing has been introduced in Section 2.3). STATEI and STATEO represent respectively input 

and output states. INPUT includes both input values and the involved sensors; similarly, 

OUTPUT also refers to both actuators and output values. Therefore INPUT = {I, SEN} and 

OUTPUT = {O, ACT}. Each macro variable in the left part of Equation 2 is a combination of 

elementary variables (namely “influence variables”, see Section 4.2; e.g. STATEI = (StateI1, 

StateI2, …)), which satisfy a given condition (e.g. SI) and have to be instantiated according to 

such condition in order to generate an executable test-case (e.g. StateI1 = sI1, StateI2 = sI2, …). 

Dealing with critical systems, we assume to consider any combination of inputs respecting SI 

and I, despite of possible redundancies which could be eliminated by defining proper (i.e. 

safe) reduction criteria to be applied on the test set (as explained in Section 4). The macro 

variables on the right of expression (1), instead, must be checked after test execution in order 

to verify that their instances satisfy the O and SO conditions. Note that in general STATEI ≠ 

STATEO (intended as sets), that is the state variables to be checked do not have to be the same 

defined in input state. This leaves test engineers free to define different subsets of interest on 

input and output states, thus implicitly defining equivalence classes. Finally, note that 

according to the general structure presented in previous section, system state is exhaustively 

given by defining the value of all attributes of all its Processes. Of course, such a 

generalization comprises the simplest cases, in which e.g. the requirement (and thus the test) 

specifies single input and output instances.  
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Figure 19. A high level flow-chart of the abstract testing algorithm. 

 

The first two variables, namely STATEI and INPUT can be collapsed into a single variable, 

namely INPUT_SEQUENCE. Introducing INPUT_SEQUENCE allows considering the 

system combinatorial from an input point of view: starting from a well-know 

INITIAL_STATE of the system, e.g. the one following system boot-strap or initialization, an 
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INPUT_SEQUENCE univocally determines STATEI (and possibly also INPUT) for a given 

test, passing through a number of intermediate system states. This is important, as system 

functional tests should be always performed starting from a “clean” system state (typically an 

“idle” state), and performing all the actions necessary to reach the state of interest; then 

system is stimulated with required input, and finally output and output state are checked for 

correctness with respect to the expected ones (the process is usually automated in simulation 

environments providing scripting capabilities). 

On the basis of such assumptions, a transformation algorithm for abstract testing can be 

introduced, with the aim of being (at least partially) automated
8
. We provide the algorithm in 

two different forms: a classic flow-chart (see Figure 19), which is at a higher abstraction level, 

less formal but more readable; a more detailed meta-language program, which uses a sort of 

(C and SQL)-like pseudo language, featuring a quite self-explaining syntax (variables are 

shown in Italic font to distinguish them from keywords). 

The following further assumptions are necessary in order to simplify the algorithm in its 

detailed form, without loosing its generality: 

- Test-cases are ordered by their input states, so that for any new test-case processed by 

the algorithm it is possible to find a previously executed (and not failed) test-case 

whose output state consists in the input one of the new test to be executed: in such a 

way, the input sequence can be determined backward in a very straightforward manner 

(the corresponding procedure is omitted in the algorithm for the sake of brevity); 

- The complete system state is given by the value assigned to all attributes of all its 

objects (i.e. s1=attribute1, s2=attribute2, etc.): in such a way, the output state is checked 

by identifying state variables by the name of the corresponding attributes (assuming 

them as unique identifiers). 

None of such assumptions appears to be restrictive in any way. 

The detailed algorithm written in meta-language is reported below. Numbered comments have 

been added for any significant statement or cycle (let us refer to them as “steps”), in order to 

aid the understanding of the algorithm for the reader. The variables used in the algorithm and 

their meaning are listed in Table 1 (ordered as they are met in the code). 

 

                                                 
8
 Other variants of the algorithm are possible, of course, but they should not differ too much from the proposed 

one. 
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VARIABLE BRIEF DESCRIPTION 

TC Test-case of the abstract test specification 

I_States Subset of input states defined by the abstract test 

Input_States Domain of possible input states for the system under test 

Si Condition used to extract a subset from the set of input states 

STATEi Generic input state amongst the ones defined by the abstract test 

Input_Sequence Sequence of inputs needed to reach a certain state 

Input_Sensors Subset of sensors involved in the abstract test 

Sensor_List 
Complete set of sensors available in the installation under test 
(configuration data) 

SEN Condition used to extract a subset from the set of sensors 

Sensor Generic sensor amongst the ones involved in the abstract test 

Input_TC 
Input of the test case, selected from the complete input domain (it 
specializes to each sensor to which it is applied) 

Input Complete input domain for the system under test 

I Condition used to extract a subset from the input domain 

INPUTj Generic input amongst the ones defined by the abstract test 

Output_Actuators Subset of actuators involved in the abstract test 

Actuator_List 
Complete set of actuators available in the installation under test 
(configuration data) 

ACT Condition used to extract a subset from the set of actuators 

Actuator Generic actuator amongst the ones involved in the abstract test 

O Output condition to be checked on actuators 

Attributes Set of attributes defining output state as defined in the abstract test 

STATEo 
Output state defined in the abstract test, intended in the algorithm as 
the subset of attributes to be checked 

Attrib Generic attribute whose value has to be checked for correctness 

S_Attrib 
Attribute of sensor processes which has the same name of the one to 
be checked 

Sen_LP 
Set of logic processes associated to sensors and containing at least 
one of the attributes to be checked 

Sensor_Association_List Set of logic processes associated to sensors 

A_Attrib 
Attribute of actuator processes which has the same name of the one 
to be checked 

Act_LP 
Set of logic processes associated to actuators and containing at least 
one of the attributes to be checked 

Actuator_Association_List Set of logic processes associated to actuators 

Logic_Processes 
Set of logic processes associated to sensors or actuators and 
containing at least one of the attributes to be checked 

Logic_Process 
Generic logic process associated to sensors or actuators and 
containing at least one of the attributes to be checked 

LP_Attrib 
Attribute of logic processes associated to sensors or actuators which 
has the same name of the one to be checked 

Proc_Attrib 
Complete set of system attributes having the same name of the one 
to be checked 

So Condition to be checked on attributes of system output state 

Table 1. Variables used in the abstract testing algorithm. 

 

/* 0. Scan all abstract test-cases 

for each TC 

  /* 1. Cycle through all input states of the equivalence class 

  select I_States from Input_States satisfying Si 

  for each STATEi in I_States 

    execute Input_Sequence reaching STATEi 

    /* 2. Select all sensors involved in the test 

    select Input_Sensors from Sensor_List satisfying INPUT->SEN 

    /* 3. Cycle through all sensors to assign their input values 

    for each Sensor in Input_Sensors 

      /* 4. Each sensor is stimulated with an input of the equiv. class 

      select Input_TC from Input satisfying INPUT->I 

      for each INPUTj in Input_TC 

        stimulate Sensor with INPUTj 

      endfor 

      /* When all sensors have been stimulated with proper inputs 

      /* the corresponding output and output state are checked  
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      /* 5. Select all actuators involved in the test 

      select Output_Actuators from Actuator_List satisfying OUTPUT->ACT 

      /* 6. Verify that each actuator satisfies its output condition 

      for each Actuator in Output_Actuators 

        check Actuator for condition O 

        if check failed then notify failure 

      endfor 

      /* 7. Select the subset of system state to be checked 

      select all Attributes from STATEo 

      /* 8. Verify that the value of each attribute of control 

      /*    processes satisfies output state condition 

      for each Attrib in Attributes 

        /* 9. Scan through attributes of all processes using association 

        /*    lists to detect the attributes of interest 

        for each Sensor in Input_Sensors 

         select S_Attrib of Sensor where S_Attrib->name=Attrib 

         select Sen_LP in Sensor_Association_List including Attrib 

        endfor 

        for each Actuator in Output_Actuators 

         select A_Attrib of Actuator where A_Attrib->name=Attrib 

         select Act_LP in Actuator_Association_List including Attrib 

        endfor 

 /* 10. Merges selected logic processes in a single list 

        merge Sen_LP and Act_LP to Logic_Processes 

       /* 11. Select attributes of logic processes by their name 

       for each Logic_Process in Logic_Processes 

   select LP_Attrib of Logic_Process where LP_Attrib->name=Attrib 

       endfor 

       /* 12. Merges all selected attributes in a single list 

       merge S_Attrib, A_Attrib, LP_Attrib to Proc_Attrib 

       /* 13. Checks all selected attributes to verify output state 

       check all Proc_Attrib for condition So 

       if check failed then notify failure 

     endfor 

  endfor 

endfor 

/* 14. If no fail is notified, test can be considered as “passed”       

 

As already mentioned, properties (e.g. I) are generally used in order to extract objects from a 

given set (e.g. input domain), using proper queries, whose implementation is application 

specific, depending on the particular representation of the configuration database. The 

involved Lists are the ones represented in Class Diagram of Figure 9 and already described in 

Section 2.1. The variables of the algorithm which have not been already defined correspond to 

list of objects (or records) obtained by a query (e.g. SELECT Input_Sensors …) on the 

configuration database, using the input conditions defined by the abstract test. 

Cycle numbered as 1 selects a state of the equivalence class defined in the abstract test-case 

and executes the proper input sequence needed to make the system transit in that state; in such 

a case, the SELECT query is implicit in the statement, as no system database access is 
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necessary (as aforementioned, each of the input states is generated by extensive combination 

of elementary states variables defined by test engineers). All following instruction blocks 

behave in a similar way: they first select a subset of interest of a certain domain by 

performing a query based on a specified property, and then execute a cycle on the extracted 

subset. 

As aforementioned, in general SEN, ACT, I, O and S could be either lists themselves, then 

they will contain the identifiers of the entities to be involved (e.g. SEN = {SEN1, SEN2, …}), 

or properties to be satisfied by one or more attributes (e.g. SENSOR_TYPE), identifying a 

class of entities (e.g. SENSOR_TYPE = Temperature_Sensor OR Light_Sensor): both options 

can be collapsed into the same case of a property based selection, with no loss of generality. 

However, while it seems possible to explicitly refer to particular inputs, when the selection 

regards system entities the explicit form should not be used. In fact, dealing with an abstract 

test specification, it does not appear to exist any way to refer to a particular class of entities 

which cannot be implicitly identified by their properties (otherwise, we would be dealing with 

a configuration dependant test specification). 

Furthermore, from the algorithm it is evident that, for each produced test-case, a sensor can be 

stimulated by a single input at each input state, so there are no input sequences possible at the 

test-case level (they are only possible at a higher test-scenario level); this is coherent with the 

state machine assumption: as the first input can possibly trigger a state transition, following 

inputs must correspond to different test-cases. 

The core of the algorithm consists in its second half (steps from 7 to 14), where output state is 

checked for correctness, needing a further explanation. When system is configured on a 

certain installation, its hardware structure is well known, in terms of needed sensors and 

actuators, while the type and number of logic processes are not directly known. The reason is 

that logic processes are automatically instantiated according to hardware configuration, as 

defined in sensor, actuator and association lists. Therefore, the algorithm, in order to be 

general, should access system internal state by scanning attributes of all control processes, 

thus including “only logic” ones, starting form sensor and actuator lists and accessing related 

logic processes by association lists. These lists, in other words, link system hardware to its 

software structure, both of which are variable from installation to installation: the presented 

approach consists in moving from system external entities (i.e. its interface with the 

environment) to its control logic (i.e. software processes) by using configuration information. 

The search process is based on the assumption that the state variable to be checked has the 

same name of the corresponding attribute(s). In fact, although object oriented programming 

should avoid attribute duplication, the same state variable can be stored in more homonymous 

attributes of different classes. A different design option consists in copying at each 

elaboration cycle the content of attributes constituting the data structure of all objects into a 

unique database: this option is highly advantageous because it avoids attribute duplication 

(any attribute is a primary key in database) and simplifies the search process for output state 

checking (a simple query for each state variable is enough). 

The output of the algorithm is a set of test-cases to be physically executed on the system 

under test, depending on its specific configuration. In other words: 

TestPhysicalionConfiguratTestAbstract
orithmAionTranformat

_),_(
lg_
 →  

The cardinality of the transformation is in general “one to many”: at least one physical test 

must be executed for each abstract test, but more of them could be necessary. Nevertheless, a 

degenerate although possible case consists in a configuration which does not allow executing 

any physical test for a specified abstract test. 

As for algorithm execution, there are basically two possibilities: 1) the above algorithm for 

abstract testing in interpreted in real-time, and then statements like “stimulate Sensor with 
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Input” are physically executed on the system under tests as the algorithm executes; 2) the 

algorithm does not directly execute statements, but instead writes them using a proper syntax 

on a series of script files to be executed later in an automated testing environment. These 

possibilities are perfectly equivalent for our purposes. 

One important aspect of the algorithm is that, besides generating test-cases, it also checks 

output for correctness in an automated way. If the state of the system under verification is not 

accessible by test engineers, then the part of the algorithm meant to verify output state (steps 

7-13) is not applicable. Furthermore, if an automated checking of actuators’ output is not 

possible, also steps 5 and 6 are not applicable, and the algorithm only serves as a test-case 

generator. 

In order to understand how the algorithm works by a simple example, let us consider the 

following requirement of a safety-critical home automation system, connected to intrusion, 

gas and smoke sensors, and controlling fire doors, water sprinkles, gas valves and alarms: 

“If fire extinguisher function is active, for each sensor detecting smoke, all fire doors 

belonging to the same zone of that sensor must close and sprinkles which are adjacent 

to that sensor must activate. Zone alarm must activate, too, and the Fire Icon must be 

shown on the control display to notify the emergency, until manually reset” 

The configuration database of the home automation system will obviously contain, besides 

sensor and actuator lists, the relations between them and control processes. In particular, 

sensors and actuators will be associated to a control function (e.g. fire extinguishment), to a 

certain zone of the building (e.g. first floor, north) and to their neighbour sensors and 

actuators (for fault tolerance or control reasons). At least one abstract test can be specified for 

the given requirement, as follows: 

- Input State: Fire extinguisher function = ACTIVATED 

- Input: Any Smoke Sensor = ACTIVATED 

- Output: 

1. Sprinkles adjacent to activated smoke sensors = ACTIVATED 

2. Fire doors belonging to the same zone of activated smoke sensors = CLOSED 

3. Zone Alarm related to smoke sensor = ACTIVATED 

4. Fire Icon on control display = ACTIVATED 

- Output State: General State = FIRE EMERGENCY 

Obviously, it is implicit in test specification that we don’t care the values of all other non 

cited variables. Note that a change in the output state is necessary in order not to loose the 

notification of the dangerous condition: whenever output could return in its idle condition 

when the dangerous condition stops occurring (sensor is not triggered anymore), system must 

keep memory of the emergency by leaving the fire icon enlightened on the control display, 

until manually reset by an operator (of course other functions, e.g. inhibition of gas valve 

opening, could depend on such a state). 

Now, let us see in detail, for instance, the O condition associated to Output number 2. The 

control system has to close all fire doors whose zone is the same of the activated smoke 

sensor. In other words, there must exist an attribute ZONE in both “Smoke_Sensor” and 

“Fire_Door” classes of objects, and the output involves only the Fire_Door objects whose 

ZONE attribute is the same of the homologous of Smoke_Sensor objects whose “State” 

attribute has the value “ACTIVATED”. For the sake of brevity, we are not going to describe 

in detail all the analogous queries which are present in the general algorithm, allowing to 

instantiate the abstract test into a series of physical tests, whose number is dependant on how 
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much large and complex is the system under verification. In this simple example, one test is 

automatically instantiated for each smoke sensor, as the requirement specifies just one input 

state. Note that requirements can vary in complexity, so if we had written the requirement in 

the form “Only if fire extinguisher function is active…”, we would have specified also the 

negative abstract test, corresponding to the case in which the extinguisher function of the 

home automation system is not active and a smoke sensor is activated. Furthermore, also test 

specification can be more or less detailed: for instance, we must have at least one test for each 

smoke sensor, but, for the same requirement, we could be willing to specify a test for each 

combination of different activated smoke sensors, in order to verify that system behavior is 

the same regardless of multiple sensor activations. Such an aspect, which is very important for 

critical systems, is not in the scope of this work, as aforementioned: we assume to deal with 

an already available abstract test specification; therefore, we only need to translate it into 

physical tests to be executed on the specific installation, according to its configuration. A final 

observation on the same topic relates to the availability of a complete formal specification of 

the system under test. Although rare, such a case should be managed using a more formal, 

possibly automated, test specification approach; again, this aspect only regards the passage 

from requirements to abstract test specification, which is only marginally treated in this paper. 

A more complex real world abstract testing case-study is provided in Chapter IV. 

6. Implementation related activities 

The test process described in this chapter involves a series of collateral activities, related 

above all to diagnostic, simulation and automation environments, which are necessary for its 

practical implementation in industrial contexts. In next section we provide a brief description 

of such activities. 

6.1. Definition and verification of expected outputs 

For each specified test-case, a related expected output must be defined. Given the extensive 

generation of system inputs, there are essentially two possible situations: 

a. output is clearly deductible from system functional requirements; 

b. output is undefined as the test-case corresponds to an unspecified input condition. 

Case (a) can be managed by the oracle predicting system outputs manually or by means of a 

parallel independent model (this is the case of numerical outputs which are produced by math 

functions). 

Case (b) should be managed producing a SPR which formalizes the specification 

incompleteness, requesting for integration. After the requirement integration has been 

performed, the test can be executed and the output verified. 

The novelty with the grey-box testing approach presented in this chapter is the necessity to 

access system internal state for the verification of outputs. Of course, for each test-case only a 

subset of all system outputs is of interest. However, it is important to verify what is implicitly 

assumed, that is no unspecified variation happens on other output or state variables other than 

the ones involved in the test. In order to unintrusively access system status, it could be 

necessary to implement a diagnostic environment featuring hardware probes, as depicted in 

Figure 20. The recording should be performed also on output variables, whose status is visible 

form outside of the black-box, for the following reasons: 

a. test automation, requiring the automatic comparison of actual outputs with the 

expected ones (see Section 6.3); 

b. test result proof, required by the assessor for sample controls on the results of the test-

activity, when direct witnessing is not feasible. 

Point (a) requires that diagnostic environment or logging units have passed some form of 

validation, in order to trust their output (it is theoretically possible that the actual output 

differs from the logged one). 
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Figure 20. A possible diagnostic environment. 

 

6.2. Simulation environments for anomaly testing of distributed systems 

Critical distributed systems must be tested against communication anomalies. Therefore, 

extensive testing of such systems requires, besides tools for test scripting and automation 

(allowing for unattended batch execution), simulation environments providing means to 

simulate degradations of the communication. It is a matter of fact that the vast majority of 

tests specified by means of the methodology presented in Section 4 is constituted by anomaly 

tests (which belong to the class of negative tests). 

When simulating distributed systems, constituted in general by both real and simulated 

subsystems, all entities must be interconnected and communicate with a central master by 

which it is possible to command all of them, generating all the abnormal and degraded 

conditions which can happen in a real operating situation; this so called “master simulator” 

should be able to interpret script files used to specify complete test scenarios, comprising 

communication anomalies. 

As an example, CENELEC 50159-part 2 [35] norms report the threats of a communication 

based on an open network (i.e. deletion, re-sequencing, insertion, repetition, delay, corruption 

and authentication of a message; see Table 2) and suggests some means to ensure the safety of 

the system with respect to such threats. Therefore, to be CENELEC compliant, the 

communication protocol employed for the data exchange from and to any subsystem should 

protect from all the aforementioned threats. The functional analysis used for test specification 

considers all the possible threats also in degraded operating conditions in order to exercise the 

robustness of the systems and of the communication protocol. Therefore, the simulation 

environment has to be able to simulate both degradations and malfunctions. This is usual 

unfeasible with a “standard” environment, which is not designed to verify the robustness and 

the protection mechanisms implemented at different levels (protocol, application, etc.). 

Therefore, the simulation environment has to be possibly adapted and customized in order to 

simulate in laboratory all the aforementioned communication anomalies, by means of an 

“anomaly manager” tool, which can be completely independent from the nominal simulator. 
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CENELEC EN 50159 Keywords 

Keyword Meaning 

Repetition A message is received more than once 

Deletion A message is removed from a message stream 

Insertion A new message is implanted in the message stream 

Resequencing Messages are received in an unexpected sequence 

Corruption The information contained in a message is changed, 
casually or not 

Delay Messages are received at a time later than intended 

Masquerade A non-authentic message is designed thus to appear to 
be authentic (an authentic message means a valid 
message in which the information is certificated as 
originated from an authenticated data source) 

Table 2. Threats of system communications. 

6.3. Execution, code coverage analysis and regression testing 

Prior to test execution, an optional priority level can be assigned to test-cases, based on 

safety-criticality or other importance metrics, in order to quickly find most important errors. 

To speed-up test process, more activities (test specification, test execution, output log 

checking) can be executed in parallel, with more test-engineers and simulators working 

together in a sort of pipeline; obviously, this works for the first test execution or when no 

automated simulation environment is available. In fact, the test-set has to be repeated at any 

new software version, when no other regression testing technique is available. New software 

versions are distributed as the system is incrementally developed but also when SPR are 

processed by the engineering/development division (i.e. corrective maintenance has been 

performed). 

In order to measure the achieved level of coverage, code must be properly instrumented and 

recompiled before test execution. While condition/decision coverage seems to be the best 

general-purpose measure for C, C++, and Java, the simpler condition coverage measure can 

be chosen, as far as short-circuit operators are avoided (this is the only significant 

disadvantage of condition coverage). Such avoidance is usually true for critical code, due to 

mandatory coding rules. A good example of condition coverage is known as Decision to 

Decision Path (DDP) and it is provided by the widespread Telelogic Logicscope tool [145]. 

In order to verify the correct implementation of needed modifications and to ensure the 

absence of regression errors, the whole set of tests has to be repeated at any new software 

version. This is the most simple and safe non-regression testing technique, known in literature 

as “Retest-All” [143]. A regression testing technique consists in selecting a sub-set of the 

entire set of test-cases to be repeated on modified software versions. Other so called “safe 

techniques” exist, but there are several reasons not to implement them in safety-critical 

system testing: 

• Even using safe techniques, the selection of tests to be repeated is an error prone activity; 

• Any safe technique requires a relevant amount of time to identify the set of test-cases to 

be repeated, while the test-suite reduction can often be very small, if any (see [143]); 

thus, there is a risk of over-estimating cost-effectiveness of safe techniques; 

• When test-execution is automated, test-suite reduction is not a fundamental concern. 

Of course, it does remain the problem of checking the correctness of output log-files. The 

problem can be chased by implementing a so called Gold-Run technique [27]. A Gold-Run 

(or Gold-Standard) log-file contains the results of a test which showed no unconformities. 

While the comparison of actual outputs with expected ones often proceeds manually, the 

verification of log-files corresponding to repeated test-cases could be automated by means of 

a software comparator tool. The building of the tool is complicated by non deterministic 
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outputs (such as time delays or non rigid output sequences). Comparison on stochastic values 

can be based on confidence ranges calculated by estimating the variance of the results 

obtained in more test runs (typically three runs are enough); this implies more test runs and 

manual verifications, but ensures a better level of automation, with a reduced error rate. Of 

course, a manual control has to be performed in case of failures, in order to ensure the absence 

of positive faults, which are caused by the automatic comparator tool and not by systematic 

errors in the target system. 

As a final observation, in order to provide unattended test execution, the simulation 

environment has to be configured with failure management and auto-restart macros. 
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 Chapter III 

 Multiformalism Dependability Evaluation of Critical 
Systems 

1. Introduction 

Formal methods allow predicting system availability since early stages of system 

development, reducing the probability of design reviews. In particular, it is important to 

evaluate the effects of variations on the reliability related parameters on global system 

availability, in order to fulfill the dependability requirements stated by the specification while 

minimizing development costs. To perform this, it is necessary to develop a high-level model 

of the system since early design stages, using proper modelling languages and balancing 

expressive power and solving efficiency. This could require using more than one formal 

technique, suiting the different parts of the systems or the different abstraction levels. 

To model structural reliability aspects, several formal methods have been proposed by the 

scientific community. For instance, Fault Trees (FT) and Reliability Block Diagrams (RBD) 

are limited in expressive power, but they are very efficient and easy to use; Continuous Time 

Markov Chains (CTMC) and the various kinds of Stochastic Petri Nets (SPN), on the 

contrary, allow modelling any complex structure or behavior, but are usually not compatible 

with the complexity of very large systems, as their solving algorithms suffer from the state 

space explosion problem. This is also true for Fault Tree extensions which are solved by 

translation into CTMC or SPN (e.g. Dynamic and/or Repairable Fault Trees, see respectively 

[84] and [54]). Finally, Bayesian Networks (BN) have been recently shown to be able to 

balance expressive power and solving efficiency in order to model structural reliability 

aspects, providing, together with their extensions (e.g. Dynamic Bayesian Networks, see 

[137]), a unified framework which is able to model nearly all reliability related issues. 

2. Implicit multiformalism: Repairable Fault Trees 

Critical repairable systems are characterized by complex architecture and requirements. The 

evaluation of benefits produced by repair policies on the overall system availability is not 

straightforward, as policies can be very articulated and different. In order to support this 

evaluation process, the Repairable Fault Tree (RFT) formalism revealed to be useful and 

suitable to represent repair policies by extending the existing Fault Tree formalism (see [54]). 

In this section we show why the RFT formalism is so advantageous to use and how it is 

possible to extend RFT in order to model complex repair strategies and behaviors. Such 

extensions will be applied in Chapter IV to a real-world critical repairable system. 

2.1. Repairable systems: architectural issues 

Critical systems are a relevant example of what can be a challenge for a designer. This kind of 

systems is characterized by complex requirements, including non-functional specifications, 

which result in a complex architecture. Complexity in requirements is expressed in the 

presence of many (generally non-independent) performance, availability or security 

specifications, that can be related to the whole system as well as to its components, or in the 

strictness of specifications themselves, that is in the need for achieving performance and/or 

dependability targets. Complexity in architecture is given by a large number of interacting 

components or subsystems, by a layered organization, by the presence of multiple kinds of 

interactions or dependence among them, or by heterogeneity in the nature of components and 

subsystems. In this section we focus on a class of systems that is critical in availability 

requirements (with consequences on system architecture) and on the evaluation of the effects 

of design choices by exploring the effects of repair policies on overall system availability, in 
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early phases of system design. The overall availability of a system is influenced by the 

reliability of its components, by its architecture (and how it affects the propagation of system 

faults) and by the policy by which faults are diagnosed and recovered (maintenance, 

rejuvenation, repair, reset, depending on the kind of system). These three factors are related to 

each other, since a system architecture with fault masking ability or with no single point of 

failure design strategy allows a global availability that is better than components’ availability, 

an on-line repair or maintenance policy can restore faulty components before the propagation 

of fault effects in the system, and (trivially) better components result in a better overall 

behavior. Whereas in some cases a reference system architecture could be imposed by 

standards (as in the case study presented in Chapter IV) or by common design practice, repair 

policies and components choice must be balanced in order to cope with the specifications.  

2.2. Repairable systems: modeling issues 

A repairable system is a system which, after failure, can be restored to a functioning condition 

by some maintenance action other than replacement of the entire system (which, however, 

remains an option) [74]. Maintenance actions performed on a system can be corrective or 

preventive. Corrective actions are performed in response to system failures, while preventive 

ones are intended to delay or prevent system failures. Even though this is not a rule, usually 

preventive maintenance actions are faster and cheaper. In fact, especially for complex 

repairable systems, the time needed to diagnose and restart after a corrective maintenance 

action plays an important role in the total down time of the system. Usually, when modeling 

repairable system, the system is assumed to be always in one of the two states: functioning 

(up) or down. This is realistic when modeling with respect to a certain failure mode. In fact, a 

complex repairable system features several failure modes. With reference to a certain failure 

mode, system availability can be studied assuming the aforementioned two states model. The 

dependability attributes of interest for a repairable system are reliability, maintainability and 

availability [2]. Reliability indices give a measure the continuity of the service, which is the 

ability of the system to work without any service interruption. Maintainability refers to the 

capacity of the system to overcome repair interventions; its indices can measure the 

effectiveness and speed of the maintenance actions. Availability measures the fraction of time 

in which the system is providing a correct service. Availability is generally considered as the 

most important index, as it is a synthetic measure of reliability and maintainability properties. 

However, all the attributes are important, because for cost reasons a system with a few long 

failures is not equivalent to the same system featuring a lot of short failures, even though their 

availability is the same. The occurrence of failures in complex repairable systems, made up by 

a large number of components, can be modeled as a particular kind of Renewal Process, the 

Homogeneous Poisson Process. The reason is that in a complex system a repair is supposed 

not to improve neither to worsen system reliability. Thus, in the useful life of the system, the 

distribution of the inter-failure times remains the same, and this means we are dealing with a 

Renewal Process [139]. Moreover, it is realistic to assume that the distribution of inter-

failures features the memoryless property: regardless of the observation time, the remaining 

time to fail only depends on system architecture and reliability parameters and not on the time 

elapsed since the last failure. This implies that the inter-failure times are distributed as 

exponential random variables. Even though confirmed by many experimental observations 

and also mathematically proved in realistic assumptions, the Homogeneous Poisson Process 

(HPP) property of the failure occurrence process in a complex repairable system was often 

subject to criticism [76]. For non repairable components, the use of an exponential model is 

usually acceptable to model the period of useful life of the component, in which the failure 

rate can be considered as a constant (according to the “bathtube” model) [130]. We assume 

for system components exponential distribution for both repair times and inter-failure times. 

In all cases in which both these time distribution functions do not change with the elapsed 

time (time-invariance property), the so called limited (or steady-state) availability measure A, 
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which is by far the most used availability index, can be obtained as MTTF/(MTTF+MTTR), 

where MTTF (resp. MTTR) is the Mean Time To Failure (resp. Repair), that is the statistic 

average of the Time To Failure (resp. Repair) random variable [130]. The MTTF is a 

component specification value, usually reported in proper data-sheets and expressed 

equivalently as a MTBF (Mean Time Between Failures) measured in hours (h). Several 

approaches have been proposed in the literature to model repairable systems. Fault Trees (FT) 

and Reliability Block Diagrams (RBD) are commonly used for modeling reliability. In these 

kind of formal representations, components are linked to make up a system according to 

AND/OR or SERIES/PARALLEL relationships. FT and RBD have two main advantages: 

they are easy to use, as they do not require very skilled modelers, and fast to evaluate, as it is 

possible to use very efficient combinatorial solving techniques. The main limitation of FT and 

RBD consists in the lack of modeling power, as they do not allow to explicitly model 

maintenance related issues. However, maintenance can be taken into account in FT and RBD 

in two ways: the first way is to consider the entire system as a black-box and to assume an “as 

good as new” repair policy (i.e. a HPP based failure model). Using such an approach, once 

obtained the reliability measure (e.g. the MTBF) from system analysis, system availability can 

be obtained using another simple model, for instance a two state (“Functioning”/“Not 

Functioning”) Continuous Time Markov Chain (CTMC) [139]. This approach is satisfactory 

for a small class of simple systems. The second way is to consider in the models availability 

instead of reliability parameters for components: it has been proved that model structure 

remains the same and thus we are able to directly obtain an availability measure [74]. This 

approach assumes the availability of unlimited repair resources, because there is no limitation 

on the number of concurrent repairs. In most practical applications, this assumption is not 

realistic, because we can rely on a limited number of repair teams or technicians. 

However, using these formalisms it is not possible to evaluate complex repair policies, based 

on limited resources, maintenance priorities, etc. (see [153] and [30]). CMTC have been used 

to model a class of more complex maintenance policies, such as the ones based on limited 

repair facilities (i.e. maintenance resource sharing) [139]. Generalized Stochastic Petri Nets 

(GSPN) have been also used to model the availability of reliable systems, allowing to 

represent any repair policy and complex behaviors [102]. However, these formal 

representations require a skilled modeler; another main problem with CMTC and GSPN is the 

computational complexity of the solving process used to achieve the analytical solution. In 

fact, such algorithms are based on the exploration of the state space, and thus tend to become 

very inefficient as the number of states of the model grows up. To cope with efficiency issues 

of state based models, a series of simulation based techniques have been proposed (see for 

instance [48]), which however are not as formal and exact as the analytical techniques. 

In Section 3.2.5 we presented the RFT formalism, which is a novel formal technique to 

system modeling from the availability point of view. Such a technique enables the evaluation 

of trade-offs between repair policies and components’ reliability. Furthermore, the RFT 

formalism joins ease of use with the ability of modeling in a consistent way both complex 

maintenance policies and reliability aspects.  As already mentioned in Section 3.2.5, the RFT 

formalism is a result of the application of the OsMoSys multi-formalism multi-solution 

methodology [150]. Repairable Fault Trees preserve the modeling simplicity of FT and allow 

to exploit the expressive power of Petri Nets, while implementing where possible an efficient 

divide-et-impera solving process [10]. At the state, RFT allow to model a series of complex 

maintenance policies, including limitation of repair resources, repair priorities and different 

repair times for preventive (i.e. on-line) and corrective (i.e. off-line) maintenance 

interventions. The implementation of subtree-based iterative solving process also allows for a 

relevant reduction in complexity of the solving algorithm, as explained in [106].  
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2.3. The components of a Repairable Fault Tree 

The RFT augments the well known FT formalism by adding a new element, namely the 

Repair Box (RB), which is able to take into account repair actions in any of the following 

aspects that are related to the chosen maintenance policy: 

• which fault condition will start a repair action (i.e. the triggering events); 

• the repair policy, including the repair algorithm, the repair timing and priority, and the 

number of repair facilities; 

• the set of components in the system that are actually repairable by the RB (i.e. the 

repair effects). 

Graphically, a RFT model is a simple FT with the addition of the RBs. The FT is obtained 

exactly as for usual FT models, then RBs are added to implement repair actions. A RB is 

connected to the tree with two kinds of links: the first kind connects the event that triggers the 

repair action to the RB; the second kind connects the RB with all the Basic Events in the FT 

(that are the elementary events, at the bottom of the tree) on which it operates, that is with all 

the components of the system that can be repaired by it. The trigger event can also be 

expressed by a boolean combination of fault events: in this case, we suppose for each RB to 

apply a logical OR between trigger events. 

The RFT model of a system can be obtained in two steps. First, the FT of the system is built 

by inspection of its structure; then the chosen repair policies are applied to the model by 

evaluating which conditions will trigger the repair policies and on which sub-tree (i.e. subset 

of components) each of them will be applied. 

A RFT is solved by translating it into an equivalent GSPN model and efficiently evaluating 

the probability of having a system failure [10]. 

2.4. Extending and applying the RFT formalism 

We can summarize here the advantages of the application of the RFT formalism to complex 

repairable systems: 

• The easy of use of the formalism in the OsMoSys framework allows to manage 

modeling complexity; 

• The expressive power assured by the GSPN basis allows for enough expressive power 

to model any articulated repair policy (extensibility and reuse are further advantages); 

• The divide-et-impera iterative solving approach allows for an efficient solution, 

separating repairable and non repairable tree branches and solving them 

independently using the most suited solver. 

The following repair policies have been implemented in the RFT formalism: 

• Limited resources, used to remove the unrealistic infinite repair facilities assumption; 

• Resource sharing between more repairable systems; 

This feature is useful to model the case in which maintainers are called to supervise 

more apparels in control system installations. This means that when they are engaged 

in a repair action of an apparel, they are obviously not available for the repair of other 

ones. 

• Attendance time-slices of maintainers; 

This feature is used to model the possibility for maintenance teams to cycle their 

attendance turns within geographically distant installations; 

• Priority in case of concurrent failures, which can be function of the: 

o Mean Time To Repair (MTTR) - πMTTR policy 

The component/subsystem featuring the lower MTTR is repaired first; 

o Mean Time To Fail (MTTF) - πMTTF policy 

The component/subsystem featuring the lower MTTF is repaired first; 

o Redundancy level - πred policy 

The component/subsystem with the lower level of redundancy is repaired first. 
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Figure 21 shows the process of translation of a Fault Tree into a Repairable Fault Tree, with 

the addition of the Repair Box GSPN subnet. The Repair Box structure is kept simple, as 

much of the complexity is left to its connections, and therefore is quite general. In the 

following we report the modeling and connection rules required for modeling partial 

availability of the repair resources and more articulated activations of the trigger event, in 

order to implement the above mentioned repair policies: 

• Limited resources are modeled by limiting the number of tokens in place 

“RESOURCE AVAILABLE”, which represent the number of repair facilities; 

• Resource sharing is modeled by making the resource(s) unavailable when busy in the 

repair of another system; 

• Attendance time slicing is modeled by making the resource periodically switch from 

available to unavailable; 

• Priority is implemented by making the repair action sequence dependant on the 

reliability parameters of the failed subsystems. 

Therefore, resource unavailability can be caused by several factors: attendance time 

slicing; resource busy in a repair of the same system; resource busy in a repair of another 

system. More articulated policies could be implemented also at the Repair Box activation 

level, by acting on the triggering events in order to model any form of preventive 

maintenance or to limit the frequency of maintenance interventions in case of oversized 

redundancy levels (which could be considered for cost reasons); however, these aspects 

have not been analyzed in this thesis because of their limited interest in practical 

maintenance applications for critical systems. 

 

(a)    (b)    (c)     

 

 (c)    (d)  
Figure 21. The process of translation of a FT into a RFT: (a) RFT target model; (b) FT to GSPN 

translation rules; (c) GSPN translation result; (d) GSPN Repair Box definition; (e) Repair Box connection. 



MULTIFORMALISM DEPENDABILITY EVALUATION OF CRITICAL SYSTEMS  
 

 60 

3. Explicit multiformalism in system availability evaluation 

In this section we provide a procedure for modeling complex systems by means of a 

combination of heterogeneous models, which is known as explicit multiformalism in the 

OsMoSys framework. A combined usage of more formalisms enable modelers to take 

advantage of the points in favor of each formal language, in terms of easy of use, expressive 

power and efficiency.  

The choice of the formalism to use to model a certain aspect of interest depends of course on: 

• Characteristics of the application 

o System Development stage (e.g. Specified, Prototypal, Developed, etc.) 

o Evaluation objective (e.g. Reliability, Safety, Performance, etc.) 

o Evaluation type (e.g. Qualitative or Quantitative, Structural or Behavioral, etc.) 

o Evaluation result/precision (e.g. Simulative or Analytical) 

o Abstraction level (e.g. HW, Base SW, Application SW) 

o Integration level (e.g. Component, Subsystem, System) 

o Size 

o Structural complexity and interdependencies 

o Evolvability 

• Characteristics of the formalism 

o Ease of use – modeling & readability (e.g. Intuitive, Straightforward, Requires 

training, Difficult, Abstruse) 

o Tools - ease of use and functionalities (e.g. User friendly vs Non user friendly) 

o Modeling expressiveness 

o Solving efficiency / Scalability 

o Modularity / Compositionality / Reusability of submodels 

A multiformalism approach is the only feasible approach for designers to precisely predict 

system availability and perform design choices accordingly, basing on the result of sensitivity 

analyses. For the same reason, it is the only way to ensure that the system under development 

will fulfill the availability requirements stated by its specification with respect to non trivial 

failure modes. 

System level hardware availability prediction requires modeling: 

• Structural aspects, related to component interconnections, fault propagation and failure 

effects; 

• Behavioral aspects, related to maintainability policies (triggering and effect of repair 

actions) and performability (modeling of timing failures). 

We already assumed not to consider systematic errors in availability modeling. This is 

justified by the fact that the probability of occurrence of systematic errors is kept several 

orders of magnitude lower with respect to casual errors, e.g. by an accurate testing phase, and 

thus can be neglected. Figure 22 shows the contribution to a system availability failure: by 

neglecting systematic failures, only hardware and timing failures have to be considered. 

Therefore, the evaluation is statistical and the precision of the result is significant: as system 

unavailability is often requested to be less than 10
-7
, the error should be at least one order of 

magnitude smaller. Furthermore, size is high and dependencies due to common mode of 

failures should be modeled. It does not exist a single formalism which is able to satisfy all 

these needs also ensuring efficiency and ease of use. 
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Figure 22. System availability modelling. 

 

Referring to Figure 22, it can be noted that behavioral models are needed for repairable 

subsystems and timing failures. Furthermore, structural models allowing to take into account 

interdependencies between events are needed to model common mode of failures. Therefore, 

we propose the following multiformalism combination, which is able to exploit the 

advantages of three widespread formalisms: 

• Fault Trees, for modeling structural aspects when no statistical dependencies between 

components exist and no on-line repair policy is implemented (e.g. non serviceable 

subsystems); 

• Repairable Fault Trees, for modeling repairable subsystems featuring any articulated 

repair policy; 

• Bayesian Networks, when interdependencies between failure events exist or more 

expressive power is needed for other reasons (e.g. multistate events for modeling more 

than one failure mode); 

• Generalized Stochastic Petri Nets, when timing failures or other complex behaviors 

must be modeled which are not supported by previous formalisms. 

 

We have mentioned in Chapter I how Bayesian Networks, historically exploited in artificial 

intelligence applications, are applicable in order to model and evaluate software reliability) 

and to augment the expressive power of Fault Trees, featuring better efficiency with respect to 

Petri Nets and its extensions. In the latter application, the BN formalism is very effective as it 

supports multi-state events, noisy gates, common mode failures, decision extensions and it 

can be used to detect reliability bottlenecks and to diagnose failure causes starting from 

observable symptoms (the “evidence”). We have already described the methodology to 

translate a FT into a BN and the result of a performance comparison among FT, PN and 

GSPN, obtained by modelling and evaluating the same case-study. Therefore, it would be 

advantageous to integrate a new formalism, whose name can be Bayesian Fault Trees (BFT), 

in the OsMoSys framework. Similarly to RFT, BFT constitute an example of implicit 

multiformalism, as the modeler would only use a single formalism, a sort of “Bayesian 

enhanced” FT formalism (e.g. allowing for multi-state and variously correlated events). With 

respect to DFT, there would be the advantage of more efficient non state-based solving 
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algorithms. With respect to the combined usage of FT and BN, there would be the advantage 

of ease and quickness of use, as the integrated environment hides to the modeler the presence 

of more formalisms, more solvers, and how they interact to exchange results (without BFT, 

such results must be exchanged by hand, as performed in the case-study of Chapter IV). 

3.1. Performability modelling 

In Chapter I we cited a simple example of a multiformalism performability model. In this 

section we will study a rather general GSPN scheme to predict the rate of timing failures in 

real-time concurrent systems. Such a scheme can be combined with other structural models 

(e.g. FT or BN) to predict hardware failures; the result of such models, in terms of HW failure 

rate, can then be integrated in the GSPN model, or combined using a multi-formalism 

approach (see Chapter IV). 

The stochastic model we propose in this section accounts for casual errors due to transmission 

errors and limited throughput. As aforementioned, it can be extended (using the same or 

different formalisms) to account also for hardware failures. Systematic failures are instead not 

considered, as the system is supposed to be functionally validated and therefore the possibility 

of residual systematic errors can be statistically neglected. 

The dynamic software architecture of the system can be represented by several schemes. In 

general, it happens that concurrent application tasks share common resources, like CPU, 

communication channels, etc. Such resources, besides being available or not available 

(depending on hardware failures), feature limited capacity and bandwidth, which can limit 

throughput causing performance bottlenecks and congestion to happen with a probability 

which should be reasonably low, but not null. The reason stands in the fact that system inputs 

are also distributed as stochastic processes; therefore, they can be only statistically predicted. 

For cost reasons, not any subsystem can be sized in order to be robust against the worst case, 

with respect to performance; of course, vital subsystem must be such that timing errors always 

lead to safe states. For instance, in distributed systems freshness controls are performed using 

time-stamp information in data packets and channel vitality is monitored so that safe 

shutdowns or other form of reactions (e.g. emergency brakes) are applied in case of timing 

failures. 

 

 
Figure 23. Task scheduling class diagram. 

 
Figure 24. Star-shaped task scheduling scheme. 
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Figure 25. The GSPN subnet for the task scheduling scheme. 

 

The use of a star-shaped GSPN net (as shown in Figure 24 and in Figure 25 for a 4 task 

scheduling example) in modeling CPU sharing among tasks allows for a flexible 

representation and evaluation of scheduling policies (Tq is the CPU cycle time): 

• Round robin (fixed) 

In this case all the arcs going out from the place “CPU Idle” feature equal weight and 

priority, hence the CPU will be equally divided among tasks;  

• Stochastic priority 

In such scheduling the CPU time of each task is proportional to the weight assigned to the 

arcs coming out from the place “CPU Idle”. For instance, if weights are (1,1,2,3), each 

task would be assigned the CPU for a time of respectively (1/7,1/7,2/7,3/7), in the 

assumption that the task are always active; 

• With deterministic priority 

In such case the task scheduling sequence is predetermined according to the priority of the 

related transitions. This means that if the tasks are contemporarily active, the CPU is 

certainly assigned to the task with the higher priority until it has finished serving all the 

requests in its activating events queue. Also a preemptive scheme can be easily 

implemented with slight modifications to the net. 

Task execution and interaction can be modeled with GSPN using the following rules: 

• If the computation step is internal to the task, it can be modeled by a single transition, 

regardless of the complexity of the computation itself, whose mean lasting time must 

be, however, accurately estimated; 

• If the computation step needs to access an external resource, resource-task interaction 

(request, grant, release) must be properly modeled; 

• If the computation step activates/deactivates another task, this can be modeled by a 

simple exchange of tokens; 

• If the computation needs to activate or be activated by a communication procedure 

with the external environment, this must be modeled by proper queues with related 

activated transitions or activating places. 

Of course, more ways of modeling the same behavior with GSPN are possible, by exploiting 

more or less compact syntax (two or more “views” can be equivalent in terms of semantics, 

but one can be much more readable than the others). A more formal approach to GSPN based 

performance modeling, which could be employed for this application, is presented in [14]. 

Other forms of performability submodels can be integrated in the explicit multiformalism 

model, for instance specifically modeling the anomalies in communication channels (loss of 

packets/messages or corruption of frames). It is difficult to abstract common features of this 

kind of models, as they depend on the particular technology which is used for the 

communication (i.e. network type, transmission protocol, vitality timers, etc.). 
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4. Multiformalism model composition  

Despite of the relevant work already performed on the subject, a comprehensive formal 

definition of connection and composition operators and their needed features is still missing. 

We think that such definition cannot be separated from the modeling needs, otherwise it 

would remain just a theoretical exercise. In particular, in this section we concentrate on the 

forms of composition needed for dependability evaluation, and we will choose significant 

examples of composition accordingly. We will provide a more general study on 

connection/composition operators, explaining why they are needed, what features they must 

have, the potential dependability related analyses they enable and hints about their 

implementation. 

This study is mainly based on the works reported in [73] and [44]. In [73] model composition 

is presented in its general issues and a theoretical framework is presented to preserve model 

properties after composition. In [44] a formal definition of the Möbius multiformalism 

modelling framework is presented. Möbius is of particular interest in this study for its 

similarity with OsMoSys. Therefore, a short presentation of Möbius and a comparison 

between Möbius and OsMoSys is reported, with the main aim of highlighting points in favour 

and against with respect to model composition. Moreover, a study of Möbius allows for the 

exploitation of the work already done in the development of such framework to cope with 

multiformalism composition, both from a theoretical and an implementation point of view. 

4.1. Compositional issues 

Component-based engineering is common to all engineering disciplines and allows for a 

modular development and analysis of complex systems starting from their basic constituents. 

If these constituents are highly heterogeneous, then formal engineering and validation 

techniques also need to use heterogeneous modelling techniques. Heterogeneity, furthermore, 

is not only a consequence of the nature of constituents, but also of the aim of the analyses. 

However, a global model obtained by composition is often needed to allow for general system 

level analyses. The interaction among different sub-models developed using different 

formalisms presents a series of issues which, at the best of our knowledge, have not found yet 

a general and unique solution. The work presented in [2] tries to give a contribution toward 

the formalization of a general theoretical framework for component based engineering. This 

work is briefly described in the following of this section. 

A component can perform actions from a vocabulary of actions. The behavior of a component 

describes the effect of its actions
9
. Actions in an integrated model are named interactions, 

which can be binary (point to point) or n-ary for n > 2. 

These actions are regulated by integration constraints, which can be divided into: 

• Interaction constraints (architectural mechanisms, e.g.  connectors, channels, etc.) 

• Execution constraints (used to restrict non determinism and ensure efficiency 

properties) 

Two main hard problems arise when dealing with component based design techniques: 

• Heterogeneity in model interaction, e.g.: 

o Strict synchronization (blocking->risk of deadlocks) – Non strict 

synchronization 

o Data driven – Event driven 

o Atomic – Non Atomic (allows for interference with other interactions) 

and execution, e.g.: 

o Synchronous – Asynchronous 

• Correctness by construction, e.g.: 

o Deadlock freedom 

                                                 
9
 Actions determine events, that is state changes, in the Möbius framework definition, which will be introduced 

later. 
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o Progress 

A component can be seen as the superposition of the following three models: 

o Behavioral model 

o Interaction model (architectural constraints on behavior, defined by connectors and 

their properties) 

o Execution model (needed to coordinate model execution and to improve solving 

efficiency) 

The deadlock free composition operator formally introduced in the paper is a consequence of 

the distinction between these three orthogonal aspects, which is of general methodological 

interest. 

It is significant to cite directly from the paper: “We currently lack sufficiently powerful and 

abstract composition operators encompassing different kinds of interaction”. Then a series of 

compositional techniques and frameworks (CCS, CSP, SCCS, Statecharts, UML, etc.) are 

briefly cited, highlighting their limitations in expressive power or in the lack of compositional 

semantics, not allowing incremental descriptions. Therefore: “The definition of a single 

associative and commutative composition operator which is expressive and abstract enough to 

support heterogeneous integration remains a grand challenge”. 

The rest of the paper formally presents an abstract framework based on an unique binary 

associative and commutative composition operator. In particular, the framework is based on 

the following two rules which are needed for establishing correctness by construction: 

o Composability rules (used to infer that, under some conditions, a component will meet 

a given property after integration); 

o Compositionality rules (used to infer a system’s properties from its components’ 

properties). 

The concepts of abstraction and incrementality are also presented. Abstraction is used to hide 

model internal details, giving evidence only of its external specification (a sort of “interface”). 

Abstraction allows for incremental development of submodels (e.g. initially developed as 

stubs, then completed and refined). 

Compositionality is obtained by means of connectors, relating actions of different 

components. Connectors contain a set of composite actions, namely interactions, that can take 

place whenever certain conditions are met (such conditions are also contained in the definition 

of the connector). Actions can be, e.g., “send” or “receive”. 

Two main classes of interactions are defined: 

• Asymmetric interactions (triggered by an initiator) 

• Symmetric interactions (all the actions play the same role) 

We omit here, for the sake of simplicity, the formal core of the paper, consisting in the formal 

definition of the framework. Summarizing, it introduces the important formal definition of an 

interaction model, which is enough general to be used in any multiformalism framework. 

Then it describes an incremental description of interaction models and composition semantic 

and related properties. 

We think that, considering our short term objectives, the paper under examination gives us its 

main contribution in summarizing the issues of component based modelling of complex 

heterogeneous systems. The important result of the paper in defining a compositional operator 

preserving deadlock freedom represents, in our opinion, a further step in the development of 

compositionality in OsMoSys. In other words, in a first phase, the framework should be able 

to support any kind of heterogeneous interaction, then some constraints can be used in order 

to implement in OsMoSys the deadlock free composition operator defined in the paper. This 

allows for maximum flexibility and yet permits to restrict the kind of interaction whenever is 

vital to preserve model properties (“interaction safety”). 
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4.1.1 Compositionality in Möbius 

Möbius was born to overcome the limitations of early frameworks, like SHARPE and 

SMART, which only allow model composition by exchanging results, or DEDS, in which all 

sub-models are translated into a common abstract notation [44]. The only exchange of results 

is obviously limited, as models cannot interact as they execute, while the use of a common 

abstract notation is also a limitation for the possibly very low efficiency of the solving 

techniques. Other factors to keep in count are the flexibility and extensibility of the 

framework, as well as the ability to create new formalisms out of existing ones, also 

exploiting strict interaction between submodels. This is the “leit motiv” of Möbius and 

OsMoSys, which are similar in the aims but quite different in the solutions. 

The basic model in Möbius is the atomic model, written in a single formalism and made up 

by: 

• state variables (e.g. places in PN or queues in QN), 

• actions, changing state variables (e.g. transitions in PN, servers in QN) and  

• properties (management of the solution process; solver domain). 

Reward models are solvable models in which the measures of interest (reward variables) are 

specified. A reward variable define a measure on the underlying stochastic process of a 

Möbius model. 

Atomic models can be composed, e.g. by means of Replicate/Join formalism, graph 

composition formalism, synchronizing on actions (e.g. PEPA, GSPN, etc.). Model 

composition can preserve or destroy model properties, and may add new properties. 

A solver is used to compute the solution of a reward model. The calculation can be exact, 

approximate or statistical. A solver produces values of reward variables, namely results. 

Results can include solver specific information, e.g. confidence intervals. A result can be used 

for further computation in connected models. 

A fundamental assumption which is made in Möbius is that the framework only has to deal 

with discrete events systems: the state changes in discrete points in time, and much of the 

behavior can be described by means of random variables and processes. Moreover, one of the 

main contributions in defining the theoretical framework is the introduction of a general 

execution policy, describing formally how a model evolves over time. 

Not all models of all formalisms are expressible in Möbius (e.g. QN with infinite servers has 

infinite actions, not supported by Möbius). In general, a mapping between a formalism model 

and a Möbius model is necessary to describe a model in the framework. This mapping also 

requires to deal with efficiency related issues. Finally, Möbius does not address the issues 

related to the existence and uniqueness of the solution in connected or composed models. All 

these issues are left to formalism and solver designers. 

The most common execution policies are: 

• prd: the action completes in random time and starts over if disabled or interrupted; 

• prs: as above, but suspended if interrupted; 

• pri: as prd, but keeps the same completion time as before any interruption. 

Other state-dependant execution policies are possible, e.g. reactivation in SAN. A versatile 

multiformalism framework must accommodate all kinds of possibly state-dependant 

execution policies. This is particularly important for composed models. 

The behavior of composed models could be expressed in terms of simulation clocks
10

, but this 

is a limitation, as presupposes simulation as the solution technique. In general, an analytical 

solution could be applicable, and this requires a more structured way to express complex 

behaviors. 

An event is a state change that occurs in a model, belonging to one of the following 

categories: 

• Enabling event (an action becomes enabled) 

                                                 
10
 This should consist in the synchronous execution described in [2]. 
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• Disabling event 

• Completing event (an action completes) 

• Interrupting event (disabling+enabling->the action remains enabled) 

• Defining event (enabling, disabling or interrupting) 

The issue of analytical solutions is not addressed by Möbius, but only indirectly supported (at 

least at the time the thesis [3] was written). 

Most model composition formalisms are based on one of two types of sharing: 

• Sharing state (e.g. Repl/Join, graph composition; all model symmetries can be 

automatically detected) 

• Sharing (synchronizing on) actions (e.g. PEPA, GSPN) 

A new action is built out of two old ones; it is enabled if the enabling conditions of the 

old ones are. When the action completes, the model changes as if both old actions had 

completed. The delay characteristics and execution policy depend on the particulars of 

the formalism. Kronecker-based approaches are used to improve solving efficiency. 

Model composition function (CM) operates on reward models (RM). It is a mapping: 

RMxRMxxRMRMCM k →...: 21  

A composed model is a reward model built up by a model composition function. 

A connected model is a collection of models that communicate by exchanging results. 

Connected submodels are solved in isolation and only share results (nor state nor actions). A 

connected model is made up by 4 components: 

• a set of parameterised solvable models 

• a “shares with” relation (how results are shared) 

• a “sharing” function (how results are used to compute model parameters) 

• a stopping criterion 

The “shares with” is only used for solution efficiency. The actual order in which models are 

solved and the value of parameters are determined by the model connection formalism 

(usually iteratively). The existence and uniqueness of the solution is not addressed by the 

framework: only the mechanism to do model connection is provided. 

A study model is a parameterized model with a set of parameter values (useful to study trade-

offs in performance-dependability-cost). 

4.1.2 Compositionality in OsMoSys 

Compositionality in OsMoSys is obtained by defining Bridge Metaclasses, containing arcs, 

operator nodes and external references to the interface elements of Model Classes whose 

objects must be connected (the formal definition of a Bridge Metaclass can be found in 

[150]). 

In the OsMoSys definition, the bridge formalism is the meta-model which is able to “link” 

models expresses through different formalisms. More formally, given m Model Classes, the 

bridge formalism can be defined as follows: 

 

BBBBB ExtOPAB ∪∪=εε :),(  

 

with AB being the set of arcs directed toward an operator (which is an element of OPB) or 

toward an element of ExtB. The latter set is defined as follows: 
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Therefore, a bridge formalism contains an operator defining the composition semantic and the 

reference to the interfaces of the model it is able to compose. 

 

In [60] a set of operators have been defined for the OsMoSys framework, including ASSIGN, 

RETRIEVE, COMPUTE, EVALUATE, SUPERPOSE. With the exception of the latter, such 

operators are only aimed at the (possibly elaborated) exchange of attribute data or results, and 

therefore belong to the class of connectors. The SUPERPOSE operator, performing elements 

superposition, is the only operator allowing for a real composition; however, with its current 

definition it only works with certain classes of homogeneous models. 

 

The above listed operators reveal to be useful in several contexts, but they still can not be 

considered as exhaustive, for their expressiveness is limited (for instance, they do not allow 

for any basic state/event sharing between heterogeneous submodels). 

4.1.3 Comparison between Möbius and OsMoSys approaches 

In Figure 26, a class diagram formalizing the hierarchy of the main entities in OsMoSys and 

in Möbius is sketched. Starting from the “Formal language” main class (as defined in [86]), 

on the left side it is shown the structural relationships between OsMoSys constituents, while 

the right side refers to Möbius framework structure. The diagram only deals with conceptual 

entities, while implementation aspects, regarding the software architecture of the frameworks, 

are not represented. 

As for the OsMoSys part, the diagram is built accordingly with the formal definition of the 

framework which has been given in [150], while a formal definition of Möbius can be found 

in [44]. 

The main difference which is evident from the diagram is that while the main aim of both 

frameworks is the same, that is to provide an environment for managing multiformalism 

models, the frameworks focus on different aspects. OsMoSys’s focus is on graph based 

formal languages, without any other assumption, while Möbius only deals with DES 

description formalisms, without any assumption on the nature of the formal languages. 

OsMoSys provides a structured organization for the representation of multiformalism models. 

The graphical means for the syntactic description of models and of how they interconnect 

constitute, in fact, the core of the OsMoSys framework. On the other hand, Möbius 

concentrates on describing model behavior and interactions, regardless of their representation. 

Therefore, an integration of OsMoSys and Möbius could be performed starting from such 

considerations (however, this is not in the scope of this work). 

The above mentioned difference (i.e. representation vs behavior) on the focus of the 

frameworks reflects on how they manage model composition. OsMoSys manages such 

problem by relying on subclasses and bridge formalisms, as already described, and by leaving 

to the modeller, via the WFE, the management of the solution process for each specific 

multiformalism model class. This means that existing solvers and related adapters, in practice, 

play an important role in allowing strict interactions between submodels, as we will see in the 

following. For instance, composed models have been successfully defined for single-

formalism/single-solver applications (e.g. SWN, see [72]), implicit multiformalism (i.e. 

single-formalism/multi-solver; see for instance Repairable Fault Tree, solved by managing 

Fault Tree and GSPN submodels [37]), and some explicit multiformalism case studies (e.g. 

RAID, see [59]). However, none of the cited applications relies upon a generalized approach 

for managing composed models, and difficulties can be foreseen in the construction of more 

strictly interacting and highly cohesed models. 

Möbius, instead, sacrifices the easy of use of a graph and XML based approach for a greater 

generality in model composition, distinguishing first of all between models that simply 

exchange results (namely, connected models), which are easily implementable also in 

OsMoSys by using existing solvers and adaptation layers, and models that interact in any way 
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as they execute (namely, composed models). To allow for the latter kind of interaction, 

Möbius must use specifically developed solvers, and this is both an advantage, from the point 

of view of generality, and a limitation, as each new formalism requires a new solver to be 

integrated into the framework. By using proper third party solvers and orchestrating them via 

the WFE, OsMoSys is able to obtain the same results of Möbius in model composition 

without the need for writing an entirely new specific solver (only an adapter is needed). 

Moreover, graph-based syntactic elements with associated attributes and a well defined 

semantic can be defined to be used as connectors or composition operators in order to easily 

develop connected and/or composed models by integrating and properly connecting graphical 

elements (i.e. operators, arcs and submodels), possibly with different levels of abstraction. An 

attempt to do this in OsMoSys, according to Möbius and similar multiformalism approaches, 

is presented in the shaded parts of the class diagram reported in Fig. 1, as described in the 

following section. 
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Figure 26. OsMoSys & Mobius comparison class-diagram: compositional issues and integration. 

 

4.2. Connectors in OsMoSys: needed features 

In this section we study and formal define connectors in OsMoSys. Even though connectors 

can be defined in OsMoSys as a particular type of composition operators, in this section we 

will always refer to “model connection” instead of “model composition”, to avoid confusion 

and underline the fact that submodels only share attributes of graphical elements and results 

(states or events sharing will be discussed later in this chapter). 

Even though a Bridge Metaclass is defined without limiting the number of Model Classes it is 

able to connect, for the sake of simplicity in this section we deal with the case of two Model 
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Classes connection. This is not a limitation, as it is easily provable that the results obtained 

can be easily generalized to the composition of more than two Model Classes. 

Let F1 and F2 , with F1 ≠ F2
11

, be both graph based formalisms defined in OsMoSys as Model 

Metaclasses using the Metaformalism language, and let ε1 and ε2 be respectively the set of 

element types of F1 and F2. The Bridge Metaclass formalism BF1-F2 is used to connect models 

compliant with F1 and F2; it must define the allowed connections (syntax) and the connection 

operators (semantic). A Bridge Metaclass has also its own set of element types, which are 

function of the Model Classes to be connected. In the following we will concentrate on 

defining the semantic of the connection, as the syntax and the graphical representation will be 

derived from the connection possibilities obtained by a theoretical study. 

We denote with S the set of instantiated element types, that is the set of elements of a Model 

Class. Each element type ε∈e  can belong or not to the interface of the model; the subset of 

interface element types of a Model Class is indicated with ExtS (the rest of the elements are 

encapsulated by the class). Each element type can feature a set of attributes (or “parameters”). 

With EPS we hence refer to the attributes of ExtS, that can be seen as the externally accessible 

(or “interface”) parameters of the Model Class. Let us further divide the EPS set into two 

subsets: EPSi containing only input attributes, that is the ones needed to instantiate and solve 

the model, and EPSo, containing output parameters that can be used to instantiate other 

submodels by the connection operators. Of course: 
oi SSs EPEPEP ∪= . Theoretically, an 

attribute could be both of input and output types. However, to eliminate ambiguities, we will 

assume that submodels attribute interact with the external world playing only one of the two 

roles. In other words, even though they could be seen either as input or output parameters, the 

modeller has to define their role in model connection. This does not affect generality in the 

case in which the attribute is instantiated to solve a submodel and then used as an output 

parameter in order to instantiate a connected submodel, because it is perfectly equivalent to 

instantiate it apart for the latter submodel, thus eliminating one useless interaction. The use of 

input/output attributes, however, can also serve to a different semantic: a submodel can be 

solved by instantiating an input attribute, then its output parameters used to solve another 

submodel in whose outputs there is a new (possibly corrected) value of the attribute. In other 

words, such an interaction defines a cycle that can be used for an iterative evaluation of 

submodels, which, if correctly managed by the solution process (i.e. by the software “engine” 

of OsMoSys), can make the framework flexible enough to support iterative refinements of the 

solution. An example of this can be found in one of the following sections. 

Now, let MC1 and MC2 be two model classes of respectively F1 and F2, and let EPS1 and EPS2 
be their non empty sets of interface parameters. A bridge connection operator 

2121 FFMCMC BB −− ∈ between MC1 and MC2 has to implement in general the following functions: 

 

i

MCMC

o S

B

S EPEP
2

21

1
 →

→

  
i

MCMC

o S

B

S EPEP
1

12

2
 →

→

 

 

Therefore: 
122121 MCMCMCMCMCMC BBB →→− ∪= . Such a bi-univocal relationship can be 

represented graphically by means of a rhombus connected to submodels by undirected arcs, as 

shown in Figure 27. 

 

                                                 
11
 As it will be clear in the following, this is not a limitative assumption; however, if F1≡F2 we are not dealing 

with explicit multiformalism and several simplifications are possible. 
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MC1 MC1BMC1-MC2

EPS1 EPS2

 
Figure 27. Graphical representation of a bridge between two model classes. 

 

More in detail, given the two metal classes 11 FMC ∈  and 22 FMC ∈ , BMC1-MC2 can be defined 

as a set of functions according to the following expression: 

 

),...,( 22211211

1211 nii ooiiMCMCiSi epepep  B  EPep ββ =∈∃∈∀ −    

∧  

),...,( 1112212
2

2

121 mj oojjMCMCjiSi epepep  B  ,EPep ββ =∈∃∈∀ −    

Equation 3 

 

where β represents the connection operators
12

 of the bridge formalism, m and n the cardinality 

of the sets EPS1o and EPS2o. 

Such an expression defines in general a bidirectional association between MC1 and MC2. It 

can be specialized to a directional connection from MC1 to MC2 by only considering the β
12
 

type functions. From such definition it should be clear that the BMC1-MC2 set of functions can 

be represented as the following functional vectors: 

 

[ ]1212
2

12
1

12 ... nββββ =  

 

[ ]2121
2

21
1

21 ... mββββ =  

 

Therefore [ ] 1122
o

T

i epep ⊗= β , where ep
1
i (resp. ep

2
o) is the vector of input (resp. output) external 

parameters of MC1 (resp. MC2). In an analogous way it can be defined the association for the 

directed bridge BMC2→MC1. Generalizing to the case of k-formalisms connection, we would 

obviously obtain a set of (2·k) functional vectors in which each β, defining an input attribute 

of a Model Class, is a function of all the output attributes of the (k - 1) Model Classes it 

interfaces with. 

 

Until now, we did not assume anything about the number of the connections and the nature of 

the functions. In fact, as shown in Figure 27, we presented a general association of cardinality 

“many-to-many” between two formalism types, that regards all the parameters of their 

interface elements (graphically, this would correspond to m x n undirected arcs connecting all 

such elements). This is the most general kind of connection between two Model Classes. 

However, many simplifications can be performed on the general definition when it has to be 

specialized to a determined couple of formalisms, as only significant connections have to be 

taken into account. This allows to simplify the implementation of the tools used to interpret 

and solve the multi-formalism model in the OsMoSys framework. Before discussing the 

specialization of the general definition to all the possible couples of formalisms already 

supported or to be supported by OsMoSys, let us specialize the definition only according to 

the significant values of m and n, and to the type of functions implemented by the connection 

operators, assuming a directional connection from MC1 to MC2 (thus all the considered ep of 

                                                 
12
 They can be also indicated with OP. 
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MC1 are assumed to be output ones, while all the condidered ep of MC2 are assumed to be 

input ones). 

 

- Case m=1, n>1. This is the case in which the value of a parameter of MC1 influences more 

than a parameter of MC2. The β
12

 vector is then constituted by n functions of one variable. For 

instance, it could be the failure rate of the Top Event of a Fault Tree (FT), modelling the 

hardware structure of a data-base server, which alters the throughput of all the systems of the 

same kind integrated in a Queuing Network (QN) model. The β functions can be simple 

identities, or perform more complex computations. Returning to the FT-QN example, the 

service rate of each server in the QN can be a function of the reliability obtained by the FT 

model and of a maintainability index not included in the model. Another significant example 

function can be the following:  

 

1
1

2 1
ep

n
ep j = , for j = 1, .. , n 

 

This is the case, for instance, in which a stress parameter obtained by a model has to be 

distributed on more entities. Referring again to the FT-QN example and inverting the 

connection direction (from QN to FT), the average rate of queue arrivals can be a stress 

parameters that could significantly worsen the reliability of hardware components. More 

specifically, if the part of the system under stress is a RAID disk array, the stress parameter 

has to be divided for the number of the available disks that work in parallel. 

 

- Case m>1, n=1. This is the case in which more parameters of MC1 influence just one 

parameter of MC2. The β
12
 vector is then constituted by only one function of m variables. 

Typical operations useful on the source attributes could be: sum(), product(), min(), max(), 

mean(), etc. For instance, coming back to the FT-QN connection, I could be interested in 

determining a reliability bottleneck from the subtrees of the FT model using the min() 

function and use such a value in a higher level QN model; on the other side, I could use the 

mean() function to obtain the average throughput of the subsystems modelled by the QN and 

use this value as a stress parameter for a higher level FT model. The expression corresponding 

to the latter example is the following: 

 

),...,( 11
1

2
1 mepepmeanep =  

 

Finally, the case m=1 and n=1 is a straightforward specialization of the aforementioned ones, 

and can correspond to a variety of modelling scenarios: despite of its simplicity, it is easily 

predictable that it is the most frequent to deal with in practical applications. Figure 28 

summarizes the cases of connection multiplicity that have been discussed in this section.  
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Figure 28. Multiplicity of connection operators: (a) Bridge Metaclass; (b) m>1, n>1; (c) m=1, n>1; (d) 

m>1, n=1 
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4.2.1 Issues in combining compositional syntax and semantic in OsMoSys 

In this section we exploit the peculiarities of the OsMoSys framework in combining the 

general definitions introduced in the previous sections to the graphical representation in the 

OsMoSys/DrawNet GUI [68]. 

The key element to connect graph based Model Classes is the “arc” graphical element. As in 

the general definition of Bridge Metaclasses arcs cannot be implicitly associated connection 

operators, it is not possible to directly connect element types of different formalisms without 

introducing the connection operators as “nodes”. In other words, nodes implement the 

β operators previously described, while arcs are associated the compositional syntax rules. 

Such rules define the constraints which must be respected in connecting the bridge operators 

to interface element types. The choice of hiding arc connections to the element types of 

Model Classes does not allow to explicit the graphical model elements and their parameters 

which are involved in the connection (Figure 29 represents a composed submodel view which 

is very similar to the one of the OsMoSys/DrawNet GUI). Such information, thus, would have 

to be embedded in the connection operators in order to include information about the input 

and output domain of the operators. However, it is possible to exploit a lower level view of 

the composition, which would implement a compositional syntax similar to the one presented 

in Figure 28 (b), (c) and (d), supposing to have one arc for each attribute involved in the 

composition. Actually, one arc could refer also to more than one attribute of the same element 

type; instead, in the lower level view, it would be obviously impossible to find in arc 

properties attributes belonging to more than one element type, as each arc extremity can 

connect to only one element type. In addition, instead to use a unique operator defined by a 

complex functional matrix, a series of simpler “one to one” operators can be used at a lower 

level view. The superposition of the views is hierarchical, thus if supported by the 

OsMoSys/DrawNet GUI, a double click on the rhombus representing at a higher level the 

bridge Model Class could open a window showing the detail of the composition. This 

behavior is intuitive and similar to what happens when clicking on the MC boxes and 

obtaining a view of the submodel. The composition operators could also be implemented by 

means of submodels, and in this case the double click on the rhombus would also open the 

bridge submodel. Such behavior has been hypothesized in previous single-formalism/single-

solver case studies (e.g. composition of Stochastic Well Formed Nets; see [72]). However, 

theoretically this would not add anything to the compositional power in case of explicit multi-

formalism: it would be perfectly equivalent to explicit the submodel used to connect the 

Model Classes and use two bridge operators for the composition. In other words: 

 

(MC1 - Bridge Submodel12 - MC2) ≡ (MC1 - Bridge13 - MC3 - Bridge32 - MC2), 

 

where MC3 is a third submodel which, together with the operators defined in Bridge13 and 

Bridge32, implements a transformation equivalent to the one of Bridge Submodel12. Therefore, 

in this work we do not take into consideration such type of composition. 

In the following, we formally introduce and describe a sort of low-level composition 

operators which are compatible with the general definition given in the OsMoSys 

methodology but have been used only informally in previous works [see RAID case-study]. 

The reason why it is convenient to represent compositional operators in such an alternative, or 

low-level way is that it is more intuitive, easily traceable on the general formal definition and 

does not need to embed the information about input-output element types and parameters into 

the operator. In fact, it is intuitive to have input-output arcs that connect the operator to the 

element types of the Model Classes to be composed, with arc parameters indicating the 

external attributes to be involved in the composition and arc orientation indicating their 

input/output role. Thus, the following formal definition is a specialization of the more general 

one by taking into account the properties of the graphical elements (i.e. arcs and nodes) used 

to connect heterogeneous Metaclasses: 
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Definition 5 
Let MC1 and MC2 two Model Classes connected by a Bridge Model Class. Considering the 

low level representation of the bridge formalism, 
21

21 , MCMC SetSet ∈∀∈∀ , if it exists a directed 

arc a1 from et1 to a composition operator β and a directed arc a2 from β to et2 and if the 

external parameters oSo EPep
i 1

1
∈  and iSi EPep

j 2
2 ∈  belong to the arc properties of respectively a1 

and a2, then it must exist a function ββ ∈12
j  by which: ,...)(..., 1122

ij oji epep β= . If a1 and a2 are the 

only arcs connecting to β, then )( 12

ij oi epep β=  (case of unary operators). 

 

Such a definition reduces the possible interactions among input/output attributes of composed 

models (defined in Equation 3) to the ones specified by the connections syntactically 

individuated by the arcs connecting element types and by their properties. This implies that 

the composition operators must only define mathematic properties of the composition, that is 

the functional vectors whose generic element jβ  represent the unary operator used to obtain 

ji
ep . The definition can be easily generalized to the case of multiple input-output connections 

to-from the composition operator, and to the case of more than two Model Classes interaction 

(we will not do it here for the sake of simplicity). Let us observe that using unary composition 

operators, the case of multiple formalisms is included in Definition 1, considering each couple 

of different formalisms at a time. For all the other cases, will it be sufficient to say that for 

each output attribute (belonging a particular formalism), individuated by an output arc and by 

its properties, β defines a function which allows to determine its value starting from the 

values of the input attributes, in turn individuated by all input arcs (coming from different 

formalisms) and their properties. 

In Figure 29 it is shown the syntax and semantic of an unary bridge composition operator in 

the proposed low level view. 

 

et1 ββββ et2

MC1 MC2

ep1 ep2

ep2=ββββ(ep1)
 

Figure 29. A low level view of an unary composition operator. 

 

Examples of connections between graphical formalisms for dependability evaluation purposes 

are listed in the following: 

• Fault Tree and Queuing Networks 

Useful for building cohesed performability models in which the hardware reliability 

part is modeled by the FT and the performance part is represented by QN; 

• Fault Trees and Petri Nets 

Same as above, but peformability model can be more complex, e.g. including 

transmission errors, task scheduling and interaction, etc.; 

• Petri Nets and Queuing Networks  

Still dealing with performability analyses, in this case is the Fault Tree part of the 

basic hardware failure model that can be extended with Petri Nets; 

• Fault Tree and Bayesian Networks 
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This combination is needed when it is not required to translate an entire Fault Tree 

into an equivalent Bayesian Network, e.g. when just a subsystem is affected by 

common mode of failures; 

• Petri Nets and Bayesian Networks 

Such kind of interaction could be used to build a performability model with Bayesian-

extended Fault Trees or to model complex behavioral aspects which require state 

based analysis and thus PN together with other aspects which can be modelled by BN. 

• Queing Networks and Bayesian Networks 

Needed for performability models featuring common mode of failures. 

 

Of course, any type of n-ary composition between different formalism could reveal also 

useful in some cases. For instance a FT-BN-PN-QN multiple connection is able to model and 

iteratively evaluate complex performability models in which: dependencies are taken into 

account; stress parameters related to system charge are feedbacked into reliability models; 

performance degradations due to partial failures are taken into account when evaluating 

system throughput (a RAID 5 disk array could be a good candidate case-study [59]). 

4.3. Implementation of composition operators in OsMoSys 

Starting from the aforementioned definition of OsMoSys Bridge Formalisms and of their 

operators (OP), we introduced the general concept of bridge operator and the specific 

implementation of connection and composition operators, as shown in the shaded classes of 

Figure 26. 

In OsMoSys definition, an operator is introduced simply as a mean to connect submodels, 

possibly written in different formalisms, together with arcs and interface (i.e. external) 

element types, in order to obtain explicit multiformalism model classes. We now particularize 

such a definition by introducing the following concepts, directly related to attributes to be 

integrated in the data structure of the objects representing composition operators: 

• Operator type (OP_type
13

) 

o Connector: it is only used to make submodels interact by exchanging results, 

possibly iteratively; 

o Composition operator: it allows for a more strict interaction between 

submodels, based not only on output data, but also on states and events. 

• List of formalisms (F_list) 

This is the list of formalisms to be connected/composed; it is not strictly needed, as it could 

be obtained by examining component model classes, but it has been added as it 

characterizes the operator in terms of allowed connections, with the aim of creating a 

library of specialized operators to be used for different kinds of compositions.  

• Multiplicity 

The multiplicity of the operator expresses the number of model classes that can be 

composed by using a single operator (we assume that an operator is at least binary, as it is 

used to connect at least two submodels; it is very likely that binary operators will be the 

most used in practical applications). 

• Execution type 

For each submodel (i.e. model object), this composed attribute indicates the kind of 

required solution (analytical vs simulation). The different kinds of solution, whenever 

supported by solvers, not only present different levels of efficiency and accuracy, but also 

provide more execution types (e.g. support for synchronous vs asynchronous execution, 

step-by-step or time-driven for debugging models, etc.). 

                                                 
13
 Refer to Figure 26. 



MULTIFORMALISM DEPENDABILITY EVALUATION OF CRITICAL SYSTEMS  
 

 76 

• Solver type 

This structured attribute indicates the solver to be used for each submodel, whenever more 

options are available. 

• Input variables 

These are the (optional) variables (or “parameters”, as defined in Möbius) to be used as the 

input of the model in case of multiple evaluations (e.g. study models used to minimize or 

maximize an objective function, possibly via genetic or adaptive algorithms). 

• Reward variables 

These are the (mandatory) variables which we are interested in when performing model 

evaluation. A reward variable can be, in general, also a variable external to the model, that 

is not coinciding with any model attribute (e.g. a flag indicating an evaluated  property of 

the overall model, such as absence of deadlocks). Such a concept is new both for OsMoSys 

and Möbius. 

• Stopping criterion 

It is the condition which, when verified, stops the execution of the model (e.g. reaching of 

a particular state, event or accuracy on evaluated data). 

For connectors, the following attributes should be added to the class data structure: 

• Transfer functions 

This is a structured complex attribute, which could be represented as a functional matrix, 

which associates a transfer function to any input-output combination. This facilitates the 

introduction of (simple) elaborations on the exchanged results, without the need for 

introducing a specific math or logic based formalism (theoretically, the transfer function 

can be of any type). While the semantic of the connection is given by all class data 

structure, from the point of view of the graphical implementation into the framework, such 

a combination can be expressed in two different syntactical forms: 

o High level connection syntax (submodel layer view) 

This is a compact view in which only model classes and operators are 

represented in the OsMoSys GUI, connected by undirected arcs. The syntax is 

quite simple, and could be enriched by specifying in the arc attributes the 

model elements and their attributes involved in the connection, their role 

(input, output or both) and the transfer function identifier. Alternatively, this 

information could be only embedded in the data structure of the connection 

operator. 

o Low level connection syntax (element layer view) 

At this level, the structure of submodels is explicated, so that the arcs of the 

bridge formalism directly connect to the model elements of the connected 

model classes. Arc attributes can identify the element parameters involved in 

function evaluation, as inputs (outgoing arc), outputs (ingoing arc) or inputs-

outputs (undirected arc). Another attribute is needed to identify the transfer 

function to be used, among the ones specified in the connector. In case of 

multi-variable functions, a set of input and output arcs can be associated to the 

same function, thus the need to use functional matrices (M inputs – N outputs 

implies a M x N matrix of functions). 

The possibility of achieving the user-friendly views described above is one of the 

points of strength of the OsMoSys graphical framework in designing multiformalism 

models. 
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• Execution type 

This attribute specifies the kind of execution sequence of the submodels in the overall 

connected model. It can be predetermined (i.e. “fixed”) by means of a static list of the 

submodels to be executed (e. g. M1, …, Mk; see next attribute) only once, in the case it is 

enough to reuse results obtained by the evaluation of a set of models, or iterative (i.e. 

“loop”), when it is necessary to repeat the evaluation of submodels a certain number of 

times (not known statically), until a stopping condition is reached (e.g. the results of the 

last two evaluations differ by a value d < ε). Such stopping condition is the same stated in 

the stopping_criterion attribute of the parent class OP. 

• Execution sequence 

This is the list M1, …, Mk of submodels that define the sequence of consecutive 

evaluations to be performed once or iteratively, as already stated above. 

For composition operators, we define the following data structure, with the aim of 

exhaustively considering any significant composition related issue: 

• Initiator models 

These are the submodels whose execution starts the evaluation of the overall composed 

model. Theoretically, all submodels can start their execution at the same time, without the 

need for an initiator. In practice, there could exist one or more initiators, whose execution 

(possibly) triggers the evaluation of other submodels, according to the defined 

interactions. Of course, the set of initiators must not be empty. 

• Triggers 

It is a complex data structure containing the description of the interactions in terms of: 

o Trigger condition 

It is the condition which starts the interaction, expressed in terms of submodel 

state, action or output data. 

o Execution policy 

This variable represents the execution policy of the submodels involved in the 

interaction. Theoretically we could slightly modify the data structure in order to 

use a different execution policy for each submodel or even for each submodel 

state, but this could be not always significant or unfeasible, and should be of 

limited utility in practice. The following are all the significant execution policies 

which can be found in the literature, as already described above: synchronous 

(“sync”), that is submodels are simulated and interact sharing a common time 

reference (or “clock”); asynchronous (“async”), that is state or event driven, based 

on a prd, prs or pri policy. 

o Interaction policy 

This policy refers to the power of an interaction to influence (i.e. interrupt, 

suspend or restart) an already started action or not. The former possibility is 

usually indicated as “preemptive”, the latter as “non preemptive”. 

o Atomicity 

The flag indicates whether the interaction is exclusive or can co-execute together 

with other interactions. In case of co-execution, when more interactions are 

enabled (i.e. can start, that is their triggering condition is met), the execution order 

can be chosen randomly. In alternative, a priority or a specific policy could be 

assigned to interactions, as it happens with the Petri Net formalism when more 

transitions are enabled. 
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o Trigger action 

This variable determines the effect of the interaction, which can be a state change 

(or “event”), possibly enabling/disabling actions, a direct action or a data change 

of any type, to be performed in one or more target submodels. 

To facilitate the XML based object-oriented implementation in OsMoSys, we propose in the 

following a possible abstract data structure of an “extended” Model Object
14

 in the framework 

(some is inherited from parent classes): 

• Formalism name (public attribute) 

This is the name of the formal language (or bridge formalism) by which the model is 

written. 

• Model structure (private attribute) 

This represents the element types of the model and their interconnections. 

• Element attributes (private attribute) 

This is the list of instantiated attributes of the model element types. 

• Model interface (public attribute) 

This is the set of external elements, constituting the interface of the model object. 

• Model parameters (public attribute) 

This is the set of model inputs on which we can act to obtain different model 

evaluations, in the case of study models. 

• Model state (public attribute) 

This is the “visible” state of the model, which could be a subset of the entire model 

state, considering only some equivalence classes which are significant in model 

interactions, and so have to be made public. 

• Current action (public attribute) 

This is the currently enabled action (among the vocabulary of all possible actions or a 

subset of it), which has been selected to be performed next. It must be dynamically 

updated by solvers during model execution. In the assumption that more enabled 

actions can be selected to be executed concurrently, this variable is a list of actions. 

• Model attributes (public attribute) 

Features of the overall model (e.g. additional properties which can be evaluated). 

• Reward variables (public attribute) 

The variables we are interested in when performing a (stand-alone) model evaluation. 

• Model solution (public attribute) 

The values of the evaluated reward variables and model attributes. 

• Submodels (private attribute) 

The submodels contained in the model object. 

• Operators (private attribute) 

The connection/composition operators used to integrate (heterogeneous) submodels. 

As the model (and possible submodels) executes, the following variables are evaluated and 

can change their values with respect to the initial ones (if any): 

• model state variables 

• current action(s) 

• reward variables 

                                                 
14
 This synthetic representation enriches the basic definition of MC and willingly hides the details of the 

structured attributes and related subclasses (cited in the class diagram of Fig. 1), which are omitted for the sake 

of readability. 
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• variable element attributes 

• variable model attributes 

With the exception of internal element attributes, which, though varying, are not accessible by 

model interface, all the aforementioned variables can be used by operators of higher level 

bridge formalisms. Model state variables, in particular, have been added as it should be 

possible to access the entire model state, as well as only a (possibly elaborated) subset (or an 

“equivalence class”), which do not necessarily consist in external element attribute values 

(which are still necessary for graph model connection/composition). For instance, for a given 

model of high complexity (e.g. featuring millions of different possible states), the modeler 

could be only interested in triggering interactions on a limited number of macro-states (i.e. 

aggregated), synthesized in the subset of state variables of model interface (e.g. system 

working at top performance, system working in a degraded operating mode, system down). 

For many graph based formalisms, however, this state is very likely to consist in the values of 

variable attributes of external model elements. 

This should allow for any kind of model connection/composition, even when using math 

models, simulative models, or stubs (temporary models to be refined). In fact, as model 

interface and its implementation are separated and decoupled (none of model structure and 

internal element attributes are visible by other classes), the way a submodel is built can be 

changed at any time with no impact on the rest of the connected/composed model. Of course, 

solvers must be able to instance the variables of interest of model interface, so they must be 

flexible enough to solve models as “glass boxes”, giving in output model state variables and 

stopping the evaluation when given conditions are reached. In other words, the only way to 

obtain a high level of cohesion in model interaction, solvers must allow for a “state and 

action” based model elaboration. If we can only rely on limited solvers, which threat models 

as black boxes (model input parameters – model results), then such limitation directly impacts 

on the kind of compositions we are able to perform. Of course, an existing solver can be 

adapted and a specific solver can be always developed and integrated in the framework. In 

particular, existing Möbius solvers could be integrated in OsMoSys. 

Summarizing it up, the presented approach features several advantages with respect to 

existing frameworks, like Möbius. First of all, we would like to recall the easy of use of a 

graphical and object-oriented XML based interface. Then it has to be noted the flexibility of 

the introduced model connection and composition techniques, featuring several novelties: 

transfer functions for further elaboration of any type on exchanged results in connected 

models (e.g. math functions as mean, max, min, etc.); distinction between model internal 

structure and interface, with all the advantages of information hiding and of considering only 

significant aggregated subsets of state variables. Furthermore, we underline how taking into 

consideration and trying to improve the state of art of theoretical multiformalism frameworks 

to develop our own approach, we achieved as much generality as possible, both at a 

theoretical level and in framework implementation (for comparison, Möbius does not allow to 

define atomic interactions, or to trigger interactions on variables external to the model, such 

as model properties). Finally, advanced workflow management techniques, continuously 

improving, allow for the distributed orchestration of different solvers running on different 

machines in order to efficiently achieve model solution. 

4.4. Application of compositional operators to dependability evaluation 

The aim of this section is to provide case-studies proposals in order to demonstrate the 

advantages of composition operators. In particular, the described applications aim at 

illustrating the limitations of connected models with respect to composed ones: the former do 

not allow to model interactions between models as they execute. Such a limitation reflects on 

a reduced modeling power of multiformalism approaches only based on connected models. 

Let us consider a simple embedded computing device (e.g. a PLC). The first decomposition 

which is usually performed in order to model the system is between hardware and software 
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layers, which should not need further explanations. The software layer can be further 

decomposed into a set of different layers. Let us suppose to consider only two software layers: 

the operating mode layer (lower) and the procedure layer (upper). The difference between 

such two layers is quickly explained as follows: when the device is working in a specific 

operating mode, only some procedures are allowed, while others are hidden or blocked; the 

device adapts its functional behavior when performing a procedure according to the current 

operating mode; finally, some procedures, when executed correctly, allow the device to 

change its operating mode. A possible quite self-explaining list of system operating modes is 

reported below: 

• Device off 

• Stand-by 

• Initialization 

• Half-Operational 

• Full-Operational 1 

• Full-Operational 2 

• Severe Failure occurred 

• Moderate Failure occurred 

• Error management 

• etc. 

While the upper functional layer, namely the “procedure layer”, can be of any complexity, 

usually the intermediate “operating mode” layer is simpler. Despite of its simplicity, the 

management of the operating mode layer is critical, as it triggers the correct high-level 

behavior of the system, also according to the health status of the underlying hardware (e.g. 

management of failure modes). It is a good engineering strategy to always make critical parts 

of complex systems as simple as possible, also in the specification phase, in order to allow an 

easy understanding, modeling and testing; this is true for many safety-critical systems. The 

operating mode is a way to achieve this goal. 

The transition between operating modes is specified without any ambiguity (that could arise 

for more specific functional details), and can be easily modeled by means of Finite State 

Machines (FSM), e.g. Harel State-Charts (available among the Unified Modeling Language 

diagrams). An operating mode is modeled as a state, while state transitions are triggered by 

events happening either in the hardware layer (e.g. subsystem failure) or in the procedure 

layer (e.g. a message received). 

The upper functional layer can be modeled with Generalized Stochastic Petri Nets, which 

allows for an unlimited expressive power. To reduce complexity, a subnet should be 

associated to each procedure, with subnets interacting one with each other in order to 

exchange data or events (in general, procedures execute concurrently). 

Finally, the hardware layer can be modeled with several formalisms, but Fault Trees and their 

extensions are widespread in hardware failure modeling. Bayesian Networks can also be 

employed whenever there is the necessity to model common mode of failures or multi state 

events (e.g. minor failure, severe failure, etc.). 

Wishing to execute the entire model in order to evaluate how the dependencies between the 

different submodels of the same layer and of distinct layers, it is necessary to define such 

dependencies by proper modeling elements and execute the entire composed model at once. 

Therefore, both inter-layer and intra-layer interactions have to be modeled by means of the so 

called composition operators, that is mechanisms allowing models to communicate exploiting 

data-exchange or state-exchange relationships. 

Model interactions only based on result exchange after isolated submodel evaluations are 

limited in expressive power, as they do not allow to make models interact as they execute. 

The multiformalism models allowing such kind of interactions are usually defined as 

“connected models”. For instance, a connected model is useful to evaluate system availability, 

by means of a structural view, and then use such a result in a behavioral model in order to 
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obtain a performability measure. However, connected models do not allow to model, e.g., 

“on-line” interactions between behavioral models, such as Petri Nets (PN) exchanging events 

with Finite State Machines (FSM), as it happens in the proposed case study. In fact, as 

aforementioned, we assumed that in general: 

• state transitions in the Operating Mode layer are triggered by PN transitions of the 

Procedure layer (e.g. the reception of a message triggers the transition in a full 

operational mode), and 

• PN transitions in the Procedure layer are triggered by state transitions in the Operating 

mode layer (e.g. a failure state activates the related failure management procedure). 

Moreover, state transitions in the Operating Mode layer can also be triggered by subsystem 

failures in the Hardware layer. In such a case, the solution of Fault Trees must be state based 

and non combinatorial. Another issue can consist in the non perfect decoupling between the 

Procedure and Hardware layers: for instance, an intensive use of the device could have a 

direct impact on the reliability of hardware components, thus introducing a dependency. Such 

a dependency, as well as other ones, can be modeled by means of a properly connected 

Bayesian Network (which we omit here for the sake of simplicity). Submodels can be solved 

by either simulation or analytical techniques. What is important is to provide a mechanism to 

make solvers recognize the visible state of the models which are involved in the solution 

process and act as a consequence. Such an aim is not straightforward to obtain. 

In Figure 30 it is reported a sequence diagram in which the interaction of submodels 

belonging to different layers is shown. At this step, we did not refer to any real system: the 

system modeled is a generic and not well specified embedded device with an I/O (or 

communication) subsystem. A typical operating mission is modeled, in which the system is 

initialized, performs some operations transiting in different operating modes, and finally, after 

an unspecified amount of time, shutdowns due to an unrecoverable system failure (assuming 

to deal with a safety-critical system, the shutdown has to take to a safe-state). The diagram is 

self explaining and clearly shows the interaction between the several models by which the 

system is represented (Repairable Fault Trees, Finite State Machines and Generalized 

Stochastic Petri Nets). During system evolution in its life cycle, all submodels evolve 

concurrently. To make such submodels evolve over time in a coherent and consistent way, we 

need a mechanism to make them interact by exchanging their state and/or data. Such a 

mechanism can not be the one of connected models, as it would not allow to model on-line 

interactions (i.e. during execution). In other words, the only execution policy allowed by 

connected models is a sequence of execution of solvers over atomic models, which is not 

sufficient to solve the proposed case-study. Of course, it is always possible to express all 

submodels using a single formalism (whenever a modular approach is still possible), but this 

implies many well-known disadvantages, consisting above all in the difficulty of obtaining 

complex and non intuitive representations and in the possible hard limitations in solving 

efficiency. 

Let us now see how it is possible to overcome such limitations by using compositional 

operators in the OsMoSys framework. OsMoSys allows for the utilization of any graph based 

formalism, thus including RFT, FSM and GSPN. The interface of submodels consists in the 

element types whose attributes are visible by other submodels in composed models. The set of 

evaluated interface attributes of a submodel represents the state of the system which is of 

interest to the external world. In our case, for the RFT model, we only need to access 

subsystem and system failures/repair (component failures can be hidden to the external world, 

as they are only managed internally). For the FSM model, nearly all the states must be 

accessible by the upper layer, with the exception of the initial SLEEPING state and of 

possibly vanishing states. Finally, for the GSPN model it is sufficient to access the marking of 

the places which are associated to significant input or output events. Once defined model 

interface and the semantic of the interaction, the framework should execute the overall model 

in a way such that when the conditions triggering interactions are met, then a modification on 
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the attributes of the target submodel is automatically performed, and then the execution is 

restarted from the point it was interrupted. Given that the attributes of element types 

exhaustively determine the enabling of actions, then a so defined interaction is able to achieve 

a highly cohesed level of model composition, allowing to model many aspects that are 

impossible to represent using only connected models. 
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Figure 30. Sequence diagram showing the interaction between submodels of different layers. 

 

Let us now consider two simple embedded computing devices, interacting one with each 

other. Each one can be represented as described in the previous example. The further step here 

is to make it interact, by means of its functional level, with other similar or different devices. 

The interaction has to be represented by connecting/composing behavioral models in the 

procedure layer. The difference with respect to the previous example is that we are now 

considering submodels belonging to the procedure layers of distinct devices. Another 

difference is the possible high heterogeneity of models: some models can be formal, while 

others are simulative, featuring different level of details and complexity. Despite of such 

heterogeneity, the interaction policy which has been already represented in the behavioral 

model of Figure 30 continues to be valid also for inter-device interaction. 
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 Chapter IV 

 A Case-Study Application: ERTMS/ETCS 

1. Introduction 

The European Railway Traffic Management System / European Train Control System 

(ERTMS/ETCS) is an example of a real world safety-critical control system, which has all the 

characteristics of complexity and heterogeneity largely cited in previous chapters. It is the 

specification of a European standard for an Automatic Train Protection System (ATPS) aimed 

at improving performance, reliability, safety and interoperability of modern trans-European 

railway lines. It is used in Italy as the reference standard for all newly developed High Speed 

railways
15

. This section uses some material published in reference [65]. 

1.1. Automatic Train Protection Systems 

Railway applications are requested to be more and more performable, reliable ad safe. The 

use of computer based railway control systems is nowadays widespread, as it has been proven 

to be the most effective, if not the only practicable way to pursue such hard requirements. 

Automatic Train Protection Systems (ATPS) are used in railway control to supervise train 

speed against an allowed speed profile which is automatically elaborated by the on-board 

equipment, on the basis of the information received by the signalling (i.e. ground) sub-system. 

The on board control system, which is installed in train cockpit, has the aim of guaranteeing 

the respect of the speed profiles, elaborating the so called “braking curves” in order to allow 

the train to slow down and brake before any stop signal or emergency condition (see Figure 

31). In case of an erroneous or late intervention by the train driver, which interacts with the 

system by a Man Machine Interface (MMI), the on-board control system automatically 

commands the braking procedure, directly acting on train-borne apparels via a specific 

interface, namely the Train Interface Unit (TIU). 
 

 
Figure 31.  A braking curve or dynamic speed profile. 

 

1.2. ERTMS/ETCS implementation of Automatic Train Protection Systems 

The European Railway Traffic Management System / European Train Control System 

(ERTMS/ETCS) is the reference standard of the new European railway signalling and control 

systems. The standard provides the specification for an interoperable ATPS aimed at 

improving both the safety and the performance of railway lines. ERTMS/ETCS specifies three 

levels of growing complexity and performance, which can be implemented singularly or 

                                                 
15
 The Italian “Alta Velocità” system. 
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together, with the lower levels acting as fall-back systems in case of unavailability of the 

upper ones. All over Europe, several pilot projects based on different levels of ERTMS/ETCS 

have been developed and are under experimentation. In Italy, the new signalling systems used 

in the high-speed railways have been chosen by the railway authority to be compliant to the 

ERTMS/ETCS level 2 specification. ERTMS/ETCS level 2 is based upon an advanced 

continuous radio signalling system which uses a special version of the GSM standard, namely 

the GSM-R, as the most important means of communication between the on-board system and 

the ground system (see  

Figure 32 and refer to Table 3 for term explanation). For traditional Italian railway lines, a 

kind of proprietary ERTMS/ETCS level 1, namely SCMT (“Sistema Controllo Marcia 

Treno”, i.e. Train Movement Control System), have been specified by the Italian railway 

authority. SCMT maintains all the working principles and advantages of the ERTMS/ETCS 

level 1 standard except for the interoperability aspects. 
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Figure 32. ERTMS Trackside (left) and on-board (right) systems. 

 

For instance, with reference to braking curve of Figure 31, in ERTMS/ETCS the Target Point 

is given by the so called Movement Authority (MA) while the Maximum Speed is obtained by 

the so called Static Speed Profile (SSP). The difference between ERTMS/ETCS level 1 and 2 

is substantially given by the means of transmission by which such information is obtained by 

the train: in level 1 the MA and the SSP are discontinuously obtained via radio from the so 

called balises, devices physically installed between the track lines and energized by the trains 

passing over them; in level 2 the same information is continuously transmitted by the ground 

system via messages using the GSM-R network. 

Together with many other innovative aspects and technical advantages, ERTMS/ETCS has 

brought out a series of issues related to its large level of complexity. With traditional railway 

verification and validation (V&V) techniques, managing the complexity of such a large 

heterogeneous distributed system is nearly unfeasible.  



A CASE-STUDY APPLICATION: ERTMS/ETCS  
 

 85 

Term Meaning Brief Explanation 

ASF Ansaldo Segnalamento Ferroviario  The Italian branch of ANSALDO SIGNAL, a leading company in the 

railway signalling industry. 

ATPS Automatic Train Protection System Used to protect train movement against the allowed speed profiles. 

BG Balise Group A set of identical balises grouped together to allow data redundancy and to 
detect train direction. 

BTM Balise Transmission Module Device used by the on-board system to read data from balises. 

BTS Base Transmitter-receiver Station Used for GSM-R communication and distributed along the track. 

ERTMS/ETCS European Railway Traffic Management 
System / European Train Control System 

The new European standard for railway signalling and train control systems. 

Eurobalise (or 

simply Balise) 

- Device installed between rail lines used to transmit static (e.g. position) 

and/or dynamic (e.g. MA) data to the on-board system. 

EVC European Vital Computer The on-board embedded computing sub-system. 

GSM-R Global System for radio communications 
- Railways 

A reliable GSM standard specifically developed for railway signalling. 

IXL Interlocking System Used to provide train routing, to detect track circuit occupancy status and 

other emergency conditions, and to provide the traditional signalling (by 
light signals) still mandatory in ERTMS/ETCS level 1 (and in SCMT). 

JRU Juridical Recording Unit Device used to record train events for diagnostic and legal purposes. 

LTM Loop Transmission Module Device used by the on-board system to read data from track circuits (or 

“loops”). 

MA Movement Authority The distance a train is allowed to cover in safe conditions, used by the on-
board system together with SSP to build up the braking curve. 

MMI Man Machine Interface Used to allow train driver interact with the on-board system 

PR Train Position Report Used in ERTMS/ETCS level 2 by the train to send to the RBC its position 

(obtained from the last read balise) together with other data (e.g. speed, 
operating mode, etc.). 

RBC Radio Block Center Used to provide train distancing by communicating with the on-board 

system via the GSM-R network and with IXL via the WAN. 

RTM Radio Transmission Module Device used by the on-board system to communicate by GSM-R. 

SCMT Sistema Controllo Marcia Treno An Italian implementation of ERTMS/ETCS level 1, not fully compliant to 

the standard. 

SRS System Requirements Specification Documents containing the set of requirements that the system must respect. 

SSP Static Speed Profile Static speed restrictions due to the physical structure of the track. 

TC Track Circuit Used to detect train presence on a specific section of the railway (typically 

1350 meters long) and also to transmit information to the train in 

ERTMS/ETCS level 1 (and in SCMT). 

TIU Train Interface Unit Device used to allow the on-board system’s interaction with train-borne 
apparels. 

WAN Wide Area Network The long distance network infrastructure used to connect the different 

ground apparels (e.g. IXL and RBC). 

 

Table 3. Brief explanation of technical terms and acronyms used in this chapter. 

 

1.3. ERTMS/ETCS Reference Architecture 

ERTMS/ETCS provides the specification of an On-board, a Lineside and a Trackside system. 

The most widespread ERTMS/ETCS Level 2 is based on a fixed-block and continuous radio-

signalling system. The Lineside system is distributed along the track and it is constituted by a 

set of Balise Groups (BG), each one made up by one or more (redundant) balises. A balise is a 

device installed between rail-lines, which has the aim to transmit data telegrams, containing 

geographical positioning information, to the trains passing over it. The On-board system is 

installed on the train and has the aim of controlling train movement against a permitted speed 

profile (also known as braking or protection curve), which is elaborated on the base of the 

information received from the Trackside via the GSM-R radio network. The On-board also 

communicates its position, detected by reading balise telegrams, and other data (e.g. operating 

mode) to the Trackside via specific GSM-R messages, namely Position Reports. Therefore, in 

order to perform train protection, the On-board must be equipped with the following devices: 

- RTM (Radio Transmission Module), used to provide a bidirectional communication 

interface with the Trackside using a GSM-R Mobile Terminal; 

- BTM (Balise Transmission Module), used to energize balises and read their telegrams; 

- TIU (Train Interface Unit), used to interface with train borne apparels (traction 

control, service and emergency brakes); 
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- DMI (Driver Machine Interface), needed to provide on-board interaction with train 

driver for manual procedures, selections, acknowledgements, etc.; 

- EVC (European Vital Computer), elaborating the on-board control logic. 

The EVC is an embedded, real-time and safety-critical computing system, so we will suppose 

it is based on the well-known and highly adopted Triple Modular Redundant (TMR) 

architecture (2 out of 3 voting on processor outputs). In order to control train movement, the 

EVC has to interface with the on-board Odometer, measuring train speed and distance since 

last balise (a balise provides the train with its exact position, thus recalibrating the Odometer). 

The Trackside is constituted by the so called Radio Block Centres (RBCs), which have the 

responsibility of providing trains with Movement Authorities, Static Speed Profiles and 

possible emergency information. In order to detect track status, the RBC needs to collect data 

coming from the national Interlocking (IXL) system, which is not object of standardization 

and thus of analysis in this paper. Therefore, the RBC needs a safety-critical elaboration 

subsystem (let us suppose a TMR system, like the one of the EVC), and two main 

communication interfaces: 

- GSM-R, in order to communicate with trains in its (limited) supervised area; 

- WAN (Wide Area Network), used to interface with IXL, which is distributed along the 

track, and with adjacent RBCs, in order to manage the so called train Hand-Over procedure, 

activated when a train is going to exit/enter the RBC supervised area. 

A scheme of overall system architecture and main data flows is depicted in Figure 33. 
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Figure 33. Architectural scheme and data flows of ERTMS/ETCS Level 2. 

 

The trackside subsystem is the “ground” (or “fixed”) part of the overall signalling system, that 

is the entire ERTMS/ETCS system minus the on-board sub-system. The ERTMS L2 trackside 

subsystem is mainly constituted by two sub-systems: the route management system (known as 

Interlocking, or IXL), which is responsible of train routing and of collecting track circuit 

occupation status, and the separation subsystem, made up by the Radio Block Center (RBC) 

and Eurobalises, which is mainly responsible of detecting train position and delivering the 

correct Movement Authorities (MA) and Static Speed Profiles (SSP) to the trains. The IXL 

part has not been standardized in the ERTMS/ETCS specification, so it was possible to simply 
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adapt the already existing national interlocking system. The Italian national IXL is a 

distributed system, made up by a series of distributed IXL modules (hence indicated with 

IXL1, IXL2, and so on) connected to each RBC in order to detect and transmit route and track 

status to the separation sub-system.  

The lineside sub-system is made-up by Eurobalises, which transmit a position telegram when 

energized by a train passing over them. Such a telegram contains a Balise Group (BG) 

identifier that will be included in the train Position Report (PR), together with other 

information (e.g. train speed and position detected by the on-board odometer), and transmitted 

to the RBC. RBC will use the balise identifier included in the PR and the offset position 

measured by train odometer in order to calculate the Movement Authority to be sent to the 

train. In fact, RBC has an internal data-base (configured off-line), in which BGs are 

associated with their actual position and with Static Speed Profiles (SSP). This information, 

together with the track circuit status received from the interlocking system is (nearly) all the 

RBC needs to continuously provide trains with their MAs and thus to achieve its separation 

functionality. In ERTMS L2 the on-board and trackside communicate by the GSM-R radio 

network, especially designed for railway applications, using the Euroradio protocol [10]. Data 

is encapsulated in radio messages whose type and structure is standardised in the 

ERTMS/ETCS specification. 

1.4. RAMS Requirements 

ERTMS/ETCS RAMS requirements define the (non functional) dependability related indices 

which a system implementation must satisfy in order to be fully compliant to the standard. 

The study of the Safety part is not in the scope of this work, so we will consider only RAM 

specification. Of course, RAM aspects do not impact on interoperability and safety, therefore 

in practice each railway authority is free to relax or strengthen such requirements according to 

its own needs. Another assumption for our analysis is that we will not take into consideration 

performability indices (e.g. train delays, transmission errors’ contribution, etc.), related to 

specific hardware performance and software implementation; we will only consider structural 

(i.e. hardware) reliability aspects. 

ERTMS/ETCS define three main types of system failure modes: 

- Immobilizing Failures (IF), which happen when two or more trains are no more under 

full system supervision; 

- Sevice Failures (SF), as above but for only one train; 

- Minor Failure (MF), another kind of degradation which is not IF or SF. 

For each of these failure modes, RAM specification define the required reliability indices (e.g. 

MTBF, Mean Time Between Failures) and the contribution coming from different system 

parts or abstraction levels (e.g. software vs hardware, Trackside vs On-board, etc.). The 

interesting part is that besides system level indices, also constituent level indices are given, 

leaving to designers freedom of choice between a system level evaluation, harder in the 

modelling phase, and a more conservative constituent based approach, using more reliable 

and thus expensive components. The challenge consists in demonstrating compliance to 

system level RAM requirements using less reliable constituents. Another useful analysis is 

aimed at ensuring coherence and reachability of reliability indices stated in RAM 

specification.  

Table 4 summarizes the most important indices that will be considered in the following of this 

paper (a bracketed asterisk in description indicates a constituent level requirement). 
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PARAMETER DESCRIPTION REQUIREMENT 

MTBF-IONB MTBF w.r.t. IFs due to the On-board subsystem > 2.7*106 h 

MTBF-SONB MTBF w.r.t. SFs due to the On-board subsystem > 3*105 h 

MTBF-ITRK MTBF w.r.t. IFs due to the Trackside subsystem > 3.5*108 h 

MTBF-ILNS MTBF w.r.t. IFs due to the Lineside subsystem > 1.2*105 h 

URBC RBC Unavailability (*) < 10-6  

UBAL Balise Unavailability (*) < 10-7 

AIF-HW Overall System Availability w.r.t. hardware Immobilising Failures > 0.9999854 

ASF-HW Overall System Availability w.r.t. hardware Service Failures > 0.99987 

 

Table 4. ERTMS/ETCS RAM requirements of interest. 

2. Functional analyses for the safety assurance of ERTMS/ETCS 

Safety assurance of ERTMS/ETCS required a number of thorough functional analyses 

techniques. The methodologies presented in Chapter II have been applied to a real system 

implementation, largely demonstrating their effectiveness and efficiency. 

This section is based on some of the case-study results published in [64], [66], [55] and [28]. 

2.1. Functional testing of the on-board system of ERTMS/ETCS 

This section describes the application of the functional testing methodology presented in 

Chapter II to SCMT, which is the Italian implementation ERTMS/ETCS Level 1. 

2.1.1 Architectural model 

SCMT is the name of the Italian ATPS to be used on traditional rail lines. SCMT is made up 

by two principal sub-systems: an on-board part, physically installed in train cockpit, and a 

ground part, distributed near the rail-lines. Two different types of devices are used in the 

ground sub-system to interact with the on-board sub-system. The first type of ground apparels 

consists in the track-circuits, which are devices using rail-lines to transmit data to the on-

board sub-system, allowing a semi-continuous signalling system. Track-circuits are meant to 

send to the on-board system the status of the signals which the train is going to reach. Such 

information is constant during the time the train takes to travel along the loop made up by the 

rail-lines (typically, 1350 meters long). The second type of device is named balise, which is a 

transmitting antenna energized by trains passing over it, constituting a discontinuous 

communication system. Balises can be static or dynamic and they are able to provide the on-

board system with more data respect to track-circuits. To be able to update their data, 

according to track status, dynamic balises must be connected to a proper encoder system. To 

get the information it needs from the ground sub-system, the on-board sub-system has to be 

connected to the TCTM (Track Circuit Transmission Module)
16

, which receives data 

transmitted by track-circuits
17

, and BTM (Balise Transmission Module), which energizes 

balises and reads their messages. Finally, a Man Machine Interface (MMI) is used to allow 

train driver interaction with the on-board sub-system. All these information are managed by 

the on-board sub-system which has to ensure train safety by elaborating the allowed speed 

profiles (i.e. dynamic protection curves) and activating service or emergency brakes in case of 

dangerous situations. The described architecture is depicted in Figure 34. 

 

                                                 
16
 The equivalent of the Loop Transmission Module (LTM) standardized in ERTMS/ETCS Level 1 specification. 

17 Data transmitted by track-circuits is often referred to as “codes”. 
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Figure 34. SCMT architecture diagram. 

 

The whole SCMT system had to be tested in order to be validated against safety related 

requirements in both nominal and degraded operating conditions. In particular, to reduce 

testing complexity, it has been chosen to test separately the ground sub-system by verifying 

the correctness of both installation and data transmitted by balises. Therefore, SCMT system 

functional testing only regarded the on-board sub-system. However, as aforementioned, the 

main issue was that we could not completely rely on system requirements specification as it 

often did not extensively cover degraded conditions which constituted critical scenarios for 

system safety. 

In the following, we will refer to the on-board sub-system as “SCMT on-board”. In order to 

accurately select target system’s input-output ports, we represent them through a context 

diagram (see Figure 35) and a class diagram, describing structural relationships involved in 

system architecture (see Figure 36). 

Testing the on-board system for an exhaustive set of input sequences would be unfeasible for 

the exponential growth of test-cases. Such a problem, known in the literature as “test-case 

explosion”, depends on the number of input variables and on the set of possible values for 

each variable. Next section will show how to contain test-case explosion applying proper 

reduction rules. 

 

 
 

Figure 35. Context diagram for the SCMT on-board subsystem. 
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Figure 36. Class diagram for SCMT on-board. 

 

2.1.2 Testing issues 

In the systematic testing performed using a black-box approach, the system is stimulated and 

verified at the global input/output gates. Referring to the above context-diagram, the black-

box testing scheme of the SCMT system is depicted in Figure 37. 
 

 
Figure 37. SCMT black-box testing. 

 

In “pure black-box” approach we would rapidly achieve a huge number of test-cases as the 

system should be tested for each combination of values of the input variables, thus making 

exhaustive testing unfeasible, in reasonable times, for any complex system. For instance, if we 

had 10 input variables and each of them could assume 10 different values, the number of 

possible input combinations would be 10
10

.  

2.1.3 Application of the testing approach 

In this section we describe the application to SCMT of the functional testing approach 

presented in Chapter II. In particular, a software architecture model was used to perform a 

preliminary functional decomposition. Logic modules have been separated whenever they 

could be proven to be independent and to interact with each other in a well defined way. Such 

decomposition was validated by analyzing structural dependencies within software modules. 

Function call-graphs based techniques have been adopted, together with traditional structural 

tests, to validate system decomposition. After this step, each module (or macro-function) had 

to be fed with extensive input sequences in order to check its output behavior. Outputs had to 

be accessed by acting on system hardware by means of proper diagnostic instruments 

(hardware and software tools). It was important to ensure that such instruments were the less 

intrusive as possible, in order not to influence in any way system behavior. This was achieved 

equipping the system under test with built-in hardware diagnostic sub-systems and standard 

output communication facilities, in order to interface with software diagnostics.  
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Figure 38. SCMT system logic decomposition. 

 

As represented in Figure 38, the decomposition of the system into macro-functions (i.e. logic 

blocks) to be separately tested followed two directions: 

• Horizontal decomposition, which was based on input-output relations; 

• Vertical decomposition, by superposition of progressive complexity levels. 

The horizontal decomposition highlighted the well defined data path from inputs to outputs, 

i.e. a generic block is influenced only by external inputs and output of the previous block, but 

not by the other surrounding blocks. Vertical decomposition consisted in considering the 

system as the superposition of different working levels, from the simplest to the most 

complex, in a bottom-up way. The upper levels introduced new functionalities relying on a 

new set of external influence variables. In such a way, the system was divided in distinct logic 

blocks, for instance Braking Curve Elaboration (horizontal level) for Complete SCMT 

(vertical level). 

Each logic block was influenced by a well defined set of inputs and reacted with outputs that 

could be either accessible or not at the system’s output interfaces. In case the output was not 

visible, internal probes had to be used to access the part of the system state we were interested 

in. 

A test-case classification according to the introduced logic blocks was possible, with each 

block was associated with its own test suite. In particular, the first level horizontal 

decomposition of SCMT was constituted by the following blocks (see Figure 39): 

1. SCMT System Logic, which had the aim to apply the correct “work plane”; 

2. Braking Model Elaboration, aimed at building the proper protection curves; 

3. Braking Model Application, which had to control the braking distance. 

The same decomposition is very likely to apply to all classes of brake-by-wire system, in 

which the first block (on the left) collects and elaborates external data (coming from input 

devices), the central block computes the output of the reference braking model, while the last 

block (on the right) controls the correct respect of the braking profile (as detected by on-board 

odometer). A slightly modified scheme should apply to fly-by-wire system, respecting the 

general division between data collection and elaboration, reference flying-model computation, 

respect of the model profile or flying route (comparing expected position with the one 

collected by airborne sensors, e.g. altimeter, GPS, radar, etc.). 

Internal variables had to be assigned values, for testing purposes, acting on the corresponding 

external input variables. In order to perform this operation, we needed to know the functional 

behavior of the previous block (obtainable by the specification) and to test it previously to 

ensure its correct implementation. For instance, having already tested the first horizontal 

block, it was straightforward to obtain the corresponding external inputs by means of a 
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backward analysis from “internal” outputs (i.e. D0, V0, etc.) to external inputs (i.e. the real 

influence variables). This process could be iterated for every block. 

 

 
 

Figure 39. First-level horizontal decomposition of SCMT in detail. 

 

SCMT vertical working levels are related to the completeness of the information received 

from the ground sub-system. At the Basic SCMT level, on-board sub-system only reads codes 

from track-circuits. At the Partial SCMT level, only information  from static balises are added 

to the codes. Finally, in Complete SCMT level all ground transmission devices are used to 

collect data. It is important to underline that while real SCMT working levels contain 

incremental functionalities (e.g Partial SCMT comprises Basic SCMT), vertical levels shown 

in Figure 39 feature differential functionalities (e.g. Partial SCMT contains all the functions 

not already contained in the lower level). Such a distinction allowed us to reduce test 

redundancies, by verifying only the new functionalities at each working level, in a bottom-up 

way. 

Finally, we were able to divide the target system into 15 blocks, with an influence variable 

average reduction factor of 2 for each block (further augmentable with other techniques). To 

estimate the achieved reduction factor, we considered  Equation 1. For SCMT we achieved an 

overall reduction factor, at this stage, of more than 100. 

SCMT influence variables could be divided into the following two main groups: 

• Scenario variables, which represented operating conditions (e.g. track circuit length 

and transmitted codes or code sequences, balises messages, etc); 

• Test-Case variables, which represented specific inputs for a given scenario (e.g. train 

speed, key pressures, etc.). 

At a first step, we identified all the possible influence-variables. Then, in order to reduce the 

number of influence variables for each logic block, we developed a simple procedure of 

variable-selection, with a step-by-step independence checking: if the value of a certain 

variable was directly deductible from the others, then it was excluded from the set of 

influence variables because it would have led to define further test-cases which, however, 

would have revealed equivalent to at least one of the already developed. For instance, for the 

proper working of the “SCMT System Logic” blocks, it was necessary to define a set of 

variables needed to express at least the following information: the completeness of the ground 

equipment (only track-circuits, track-circuits and static balises or track-circuits and dynamic 

balises), the type of installed balises and the consistency of the information contained in 

balises. On the basis of the requirements contained in system specification, we found out that 

the variable expressing that data consistency of balises was always dependant on the first two 

variables. Thus, such a variable was excluded from the set of influence variables, being 

redundant. Another simple example of a redundant variable consists in the one expressing the 

“Train Stopped” condition. Such a variable was always used in combination with “Train 

Speed”, and its value was dependant on “Train Speed” value, because the train was 

considered stopped if and only if train speed was less than 2 Km/h. 

Output variables classification was performed starting from the logic block(s) they influenced. 

In particular, to access “hidden outputs”, that is outputs that were not normally accessible 

from the interacting entities, we need to know system physical structure. For instance, let us 

refer to the first level horizontal decomposition shown in Figure 39. In such case, the 

stimulating variables were Do, Vo, VT, while the output variables to be probed were Sn, Sa, Sc. 
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The former variables were assigned values by properly acting on external accessible inputs, 

while the latter could be read from the log-files generated by the diagnostic software 

managing hardware probes. 

A tree-based test-case generation technique was applied to every logic block. At each level, 

only one influence variable, among the ones not already instantiated, was assigned all the 

significant values of its variation range, according to the reduction criteria that will be 

described later in this section. Influence variable instantiation could be divided into two 

macro-levels: scenario variables and test-case variables. In fact, test-cases were introduced 

only when all the significant operating scenarios had been defined. The combination of the 

instances of the variables was performed automatically by a tool meant to apply a set of pre-

determined reduction rules (described later on in this section), for an “a priori” pruning of 

pleonastic tree branches. With such an approach, tree leaves represented the test-cases which 

had to be actually executed. 

The main reduction criteria adopted have been: 

• Incompatible combination of scenario or test-case variables; 

• Not realistic operating conditions (for scenario variables); 

• Equivalence class based reduction (considering scenario parameters or input variation 

ranges); 

• Context specific reductions (i.e. context-specific dependencies, code-based static 

independence checking, mapping on test-cases already defined for a different logic block, 

etc.). 

For scenario variables, the conditions to assess “incompatibility” were usually based on 

constraints coming from the physical environment, while “realistic operating conditions” refer 

to the railway national or international norms prescribing a set of requirements that must be 

necessarily respected [114]. Some of these norms are about track circuit length, balise 

positioning, signalling rules, etc. 

For test-case variables, context specific dependencies were very frequent and could be found 

when the assignment of some particular values or ranges of values to a specific set of 

variables implied a fixed value assignment for another distinct set of variables. Also code-

based independence checking was used in order to avoid repetition of simple tests (e.g. key 

pressure failures) in different SCMT operating modes, when it could be proven that the called 

managing procedure was the same. Finally, as test-cases stimulated different logic-blocks, 

often only one execution was performed for multiple defined tests (what increased was the 

output checking time for the same test). 

The most complex and efficient technique was based, both for scenario and test-case 

variables, on equivalence class based reductions. An equivalence class represents a set of 

valid or invalid states for a condition on input variables. The domain of input data is 

partitioned in equivalence classes such that if the output is correct for a test-case 

corresponding to an input class, then it can be reasonably deducted that it is correct for any 

test-case of that class. By tree-generating the combinations of influence variables and 

reducing them with an equivalence class based approach, it was implemented what is called 

an extended SECT coverage criterion. SECT is the acronym of “Strong Equivalence Class 

Testing”, which represents the verification of system behavior against all kinds of class 

interactions (it can be extended with robustness checking by also considering  non valid input 

classes). In our case, SECT was feasible because each logic block had a quite small number of 

influential variables, each one assuming a small number of classes of values. 

Generally speaking, when we had to select input values for influence variables we chose at 

least one test-case for each of the following classes: internal values, high-boundary values, 

low-boundary values, near high-boundary values, near low-boundary values, over high-

boundary values, below low-boundary values, special values (only for discrete variables). The 

last three classes were very important to test robustness (and thus to ensure system-level 

safety). Therefore, a non Boolean variable assumed at least three different values, belonging 
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to the first three categories. The followed approach included “Boundary Analysis”, 

“Robustness Testing” and “Worst Case Testing” (WCT) techniques
18

. In some cases, 

according to system specifications, we merged the three techniques by adopting nearness, 

robustness and worst-case conditions. For instance, train speed ranges have been first 

partitioned into sub-sets, according to the specified speed limits, that is: V<2 Km/h, 

2Km/h<V<15Km/h, 15Km/h<V<30Km/h, etc. The obtained sub-sets represented all the 

significant train speed ranges used in the entire system specification. However, for all tests in 

which we were testing a function which only required the train to be under a maximum speed 

limit (VMAX), train speed values were chosen as follows: V=1/2 VMAX; V=VMAX - δV; 

V=VMAX + δV (where δV is a small positive speed value, for instance 1Km/h). The so defined 

speed values were combined with all the remaining influence variable values, even in the 

worst-case conditions. 

The next stage consisted in determining expected outputs for each test-case. Examples of 

measured output variables are: leds (on/off), icons, text messages, brake intervention, train 

position, etc. System behavior was modelled in terms of significantly varying outputs and 

their expected values. The correct behavior was directly obtainable from system 

specifications, but, in some cases, it had to be derived by means of a parallel independent 

model. Comparison of the results was then made manually. For instance, we used a parallel 

independent model for the braking curve prediction based on a human comparator. When the 

described approach was able to highlight incompleteness or incoherence in system 

specifications, it was necessary that the responsible for system specifications assessed the 

correct system behavior corresponding to the identified input conditions. Finally, as an 

operational tool, we made use of a spreadsheet in order to represent Test Case Specification in 

terms of: operating scenario, represented by instantiated scenario variables (e.g. TC code 

sequence: CODE1→CODE2); input sequences, represented by test-case variable values and 

their associated time-line (e.g. key X pressed within time T); expected outputs and optional 

measurement instructions (e.g. icon Y appearing on the MMI display and recorded as variable 

Vy in log-file L). 

 

 

Fig. 1. Example of using a parallel model in SCMT. 

 

A relevant amount of tests had to be executed on the SCMT system, so it was useful to 

identify priority levels for test classes. The main criterion was the safety criticality of 

functions/blocks, identified by the hazard-analysis processes [121], used to validate system 

specification against the most critical causes of dangerous failures. For instance, correctness 

of system behavior was first tested against the so called “restrictive input sequences”, that is 

track-circuit code sequences that should activate one or more train protection mechanisms. 

Moreover, in testing the system for any new software version, we adopted a “width-first” 

coverage strategy, that consisted in executing the most significant test-cases for each block 

                                                 
18
 Such techniques are based on empirical studies. For instance, it has been noted that most errors generate in 

correspondence of extreme values of input variables. 

COMPARATOR 

Sn,Sa,Sc D0,V0,VT 

Protection curve elaboration 
SCMT 

System 

Logic 

Braking 

model 

application 

PARALLEL 

INDEPENDENT MODEL 

for curve elaboration 

= 



A CASE-STUDY APPLICATION: ERTMS/ETCS  
 

 95 

and category, in order to quickly discover and notify macroscopic non conformities or 

dangerous behaviors. 

Test-cases have been executed in a simulation environment made up by: the system prototype 

under test; hardware devices simulating external interactions (i.e. system inputs); software 

tools aimed at simulating the operating environment (i.e. the scenario) and allowing the 

automation of the test process through batch-files. To speed up test process, preparation, 

execution and output verification activities have been pipelined, in order to allow more test-

engineers work in parallel. Comparison of the output log-files with the expected outputs had 

to proceed manually in the first phase of test execution, because Pass/Fail criteria were often 

based on time/speed ranges, very difficult to validate in a complete automatic environment. In 

all cases a faulty behavior has been observed, a proper notification (i.e. System Problem 

Report) was sent to the development division. Such a notification could regard, as 

aforementioned, implementation errors as well as specification errors. The testing 

environment used for SCMT has been depicted in Figure 40. 

In order to verify the correct implementation of needed modifications and to ensure the 

absence of regression errors, the whole set of tests had to be repeated at any new software 

version. This is the most simple and safe non-regression testing technique, known in literature 

as “Retest-All” [143], which was easily applicable due to test automation. The automation of 

the check for correctness of output log-files was performed using a Gold-Run technique [15].  

 
 

 
 

Figure 40. Test execution pipeline. 
 

The approach described in this section allowed test engineers to define and execute more than 

2500 test-cases, covering all the functionalities of the system in normal as well as in degraded 

states of operation. The revealed errors contributed to improve system specifications in terms 

of both correctness and completeness. The application of the innovative testing approach 

allowed to improve test coverage while reducing the number of required test-cases. An 

extensive documentation activity (test plan, test design specification, test case specification, 

etc.) helped improve organization with the result of speeding up test execution and facilitating 

test reproducibility. The verification of coverage by code instrumentation showed a coverage 

(using a Decision to Decision Path technique [13]) of nearly 90%, which did highlight the 

effectiveness of the testing approach. The uncovered parts of software were verified apart, 

resulting almost exclusively in defensive control branches. In past experiences, such a high 

level of coverage was only obtained by means of dynamic white-box tests in simulated 

environments, which however did not give test-engineers the same level of confidence of 

system tests in assuring system correct operation, for the following reasons: 

• task interaction was limited to the phases of interest; 

• hardware-software integration was not tested, as commercial PCs were used instead of 

target hardware; 

• the simulation environments are not validated, as this is usually considered not worth 

the significant effort required. 
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2.2. Model-based reverse engineering for the functional analysis of 
ERTMS/ETCS control logics 

In this section we show how we applied the model-based static analysis technique to the 

control software of the Radio Block Center, using the Unified Modeling Language (UML), as 

explained in Chapter II §3.  

 

 
Figure 41. RBC software architecture. 

2.2.4 RBC control software 

The software architecture of the RBC is depicted in Figure 41. There are some “application” 

processes (written in a safe subset of the C programming language), which manage the 

interaction of the RBC with the external entities (i.e. other subsystems and the RBC operator), 

and some “logic” processes, which instead implement the control logic of the RBC; the latter 

are written in an application specific logic language, as already mentioned above. 

The logic manager has to interpret logic language, translating it into executable code, and to 

schedule the logic processes, while the shaded rectangles in Figure 2 represent the logic 

processes, which are the target of our work. For instance, the “MA” process, shown in Figure 

2, verifies the integrity of the Movement Authority assigned to the train against all the 

significant track and route conditions. Such conditions are received from the interlocking 

system by means of the “IXL interaction” application process and are managed by the “TC” 

logic process, which stores Track Circuit physical conditions in its internal variables. If the 

MA integrity verification fails (for instance a track circuit is not clear or involved in an 

emergency condition), the MA process has to command the sending of an emergency message 

to the “Train interaction” application process, which will manage the sending of the proper 

radio messages to the train. In this simple example, the MA and TC processes interact with 

the application processes to manage data from and to the external subsystems; moreover, they 

interact with each other, as the MA process asks the TC process for the status of track circuits, 

in order to verify the integrity of the movement authorities. 

There are many other logic processes which behave in a similar way. They can feature: 

- a set of data variables and a special “process status” variable; 

- a set of “operations” which can be activated: by application processes or the RBC operator 

by means of “manual commands”; by other logic processes, issuing  “automatic commands”; 

directly, when the process status variable is assigned a certain value. 

Typical process operations are:  

- verify conditions on internal variables or on the ones of different processes; 

- assign values to internal or other processes’ variables (the logic manager does not restrict the 

visibility and modifiability of variables);  
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- issue automatic commands to other processes; issue “application commands” to application 

processes (e.g. “send MA”). 

2.2.5 Reverse engineering and static verification of the RBC 

In this section, the modeling technique from RBC logic language to UML diagrams is 

described referring to the very simple “Change of Traction Power” (CTP) logic process. The 

CTP process has to manage manual commands of activation/deactivation of a change of 

traction power line section, coming from the RBC operator. The activation/deactivation 

command must be accepted only if the track circuit in which there is a change of power is free 

and not included in a MA assigned to a train. In the following we present the modeling rules 

in the building of UML views for such example process.  

 

          

Figure 42. Use case (left) and class (right) diagrams for the CTP logic process. 

- Use case diagrams (see Figure 42, left): they represent how a logic process can be used by 

application processes or the operator using manual commands; therefore, they represent the 

externally triggered high-level procedures. 

- Class diagrams (Figure 42, right): they are built from a static software architecture view 

(data structure with internal/public attributes, operations), also showing the relationships and 

interactions between processes (variable read/write, procedure call). They represent the 

backbone of the entire model, as the first modeling step consists is the definition of a class for 

each of the logic processes. The relationships between classes are determined by the “access” 

or “assign” statements (as aforementioned, all process variables are seen as public) and by the 

issuing of commands, triggering process operations. Given the high number of associations 

(some processes can share up to 20 distinct links) a comprehensive class diagram would be 

very complex and almost unreadable. We preferred to build up partial class diagrams, each 

one focusing on a single process and showing all the incoming and outgoing links to/from that 

process. The CTP process features three local variables, a single “outlinked” process and two 

operations. In case a process only accesses (or “reads”) data of another process (usually to 

check some conditions on the state of the other process), the link is modeled by a dependency 

relation (dashed line). In case, instead, the process also activates operations of the other 

process (by automatic commands), the link is modeled as a real association (full line). If the 

modeler does not need to build an executable model (as in our case), he/she does not need to 

be fully compliant to the UML standard, and can therefore adapt the notation to his/her needs. 

For instance, we also associated to relations a list of accessed variables and operation, as a 

further documentation. From the class diagram, we see that CTP process is used by the MA 

process: in fact, the MA process has to manage the presence of a CTP section as an additional 

information to be added to the outgoing MA message in order to inform the on-board system 

of the CTP procedure. From the CTP class diagram it is evident that a first refactoring is 

necessary: class attributes must be kept private, and a Get_CTP_State() must be added in order 

to get CTP state. 
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Figure 43. Sequence (left) and state (right) diagrams for the CTP logic process. 

- Sequence diagrams (Figure 43, left): they are specified for each operation, showing its 

implementation and detailed interactions between logic processes. A full arrow has been used 

for check and assignment statements, specifying the nature of the operation as a comment. A 

normal arrow is used, instead, for the activation of an operation. For better clarity, each 

complex diagram has been detailed using linked notes. In Figure 43 we report an example 

sequence diagram for the CTP process, showing the activation operation (the deactivation is 

very similar): when an activation command is received, the state of the associated TC 

(belonging to a properly declared linked processes list) must be checked in order to verify if it 

is in the “free” and “not requested” (for a MA) states. If the condition is satisfied, the 

automatic command Set_CTP_Active() is issued to the TC process.  

In general, the traceability and verification of compliance was performed as follows. Using 

sequence diagrams, the execution process was statically analyzed from the external activation 

of an operation (by a “manual command”) to the reaching of a stable process state, e.g. the 

one following the sending of a message to an application process. A proper package named 

“Scenarios” containing all scenario sequence diagrams was created for the traceability 

analysis. Each “composed” or “high-level” sequence diagram represents a scenario of e.g. 

Start of Mission, Hand-Over, Emergency, and so on. For instance, we discovered that in some 

cases the controls on the actuability of a manual command were missing. In particular, an 

emergency message to a non existing train number caused the RBC to crash. Usually, such 

errors are revealed in the functional testing phase, while the approach described in this paper 

allowed us to detect them earlier in system validation process. Furthermore, by tracing 

sequence diagrams into functional requirements, we discovered some pieces of code related to 

never referenced operations, which were inherited from an early specification: an application 

of refactoring, in this case, consisted in removing such pleonastic operations and attributes. 

- Statecharts (Figure 43, right): they show the transitions of the state variables of the logic 

processes against the triggering events. The CTP statechart has been simplified to be self 

explaining. Clearly, for the CTP process all input conditions at any state have been 

considered, and there are no unreachable or deadlock states (which have been detected and 

corrected for some other processes). 

Finally, let us present a refactoring example which is quite general. From the analysis of 

sequence diagrams, we realized that most of the RBC logic code was made up by condition 

verification statements. Therefore, by properly grouping and shifting conditions we were able 

to predict and minimize the number of controls performed at each elaboration cycle, thus 

improving system performance and directly impacting on the number of trains the RBC was 

able to manage (final gain was about the 30%). For instance, if a TC is interested by an 

emergency, there is no need to check its occupation status: immediately after the emergency is 

detected, an emergency message must be sent to the train. Thus, it would be natural to choose 

such control as the first to be performed. However, the probability of an emergency is very 

low, and such a check would be false most of the times, wasting elaboration time, so it is 

better to put it in the end of the control chain. 
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With respect to previous projects of similar complexity, the RBC static verification process 

was speeded-up by several times and the number of revealed bugs at this stage (before any 

dynamic analysis) was more than double (the final number of discovered errors remaining 

approximately the same). As a further advantage, the availability of a model also allowed us 

to reduce the time to find the cause of errors detected during the following functional testing 

phase. 

2.3. Functional testing of the trackside system of ERTMS/ETCS 

In this section we deal with the functional validation of the trackside part of an ERTMS/ETCS 

compliant system. An extensive set of functional tests need to be specified in order to 

thoroughly verify the system, using the innovative approach based on influence variables and 

state diagrams described in Chapter II. The statechart based reference model allowed for 

extensive scenario based test-case specification and reduction. 

Such a detailed test specification requires a great amount of time and resources to be entirely 

executed in the real environment. Moreover, several tests need to generate abnormal safety-

critical conditions that are unfeasible on the field. In this section we also describe how we 

overcame such problems by developing a flexible distributed simulation environment for 

anomaly testing and test automation based on a scripting language with both execution and 

verification capabilities.  

2.3.1 Introduction 

The most important aspect in testing the ERTMS/ETCS trackside subsystem was the 

verification of interoperability and safety requirements. Compliance to ERTMS/ETCS, in 

fact, means also interoperability of trans-European rail lines. Safety, of course, was the most 

important aspect: all the functional safety requirements, obtained by the preliminary hazard 

analysis process, were to be thoroughly verified. This implied a detailed functional test 

specification, based on the concepts of influence variables, firstly introduced in the SCMT 

system validation, and state diagrams, found to be the best way to represent the behavioral 

aspects of a very complex system, as the one under test.  In the total scheme of the assurance 

tasks (hazard analysis, static code analysis, etc.), functional testing plays, according to our 

experience, the most important role, in terms of required time, budget and visibility (it is one 

of the last activities to be performed before system activation). 

The main problem was that such a thorough test specification included more than 2000 tests, 

many of which were not reproducible in real conditions, as they regarded extensive 

combinations of abnormal conditions, negative inputs, degraded states of operations, etc. 

Thus, the testing team had to deal with the following three issues: 

• a lot of test conditions (about the 30%) were not feasible in the real environment; 

• the time to execute the tests in the real environment was excessive (it would have taken 

several years); 

• the real environment does not allow to automate test execution, and this is a serious 

problem when dealing with regression testing (the entire test suite must be repeated at 

any new software version). 

Therefore, a simulation environment had to be developed and fine tuned to match the needs of 

the test engineers, consisting in simulating both nominal and negative test conditions, also in 

degraded states of system operation. Finally, the simulation tools had to be able to support 

batch execution by means of proper script management capabilities, in order to automate the 

test process. 

The “system in the loop” [8] simulation environment described in this paper together with a 

specifically designed anomaly management tool allowed the testing team to define by script 

files and automatically execute most of the specified functional tests in a few months, 

detecting several unconformities and implementation errors (test suite execution is still in 
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progress).  

A context diagram of the trackside subsystem is reported in Figure 44. 

 

 

Figure 44. The trackside context diagram. 

2.3.2 Application of the test specification methodology 

As described in Chapter II, traditional functional testing techniques allow to verify system 

implementation against its requirements, but it is beyond their scope to validate system 

requirements specification; natural language specification, however, even though revised, is 

often incomplete, so a stronger technique is needed. This technique should merge the main 

objectives of safety and feasibility. The test specification for the ERTMS/ETCS trackside 

system had to guarantee: 

• The complete coverage of system functional requirements, both in nominal and degraded 

states of operation (“negative testing”); 

• An in depth analysis of system scenarios aimed at detecting operating conditions not 

covered by system specification (using the concept of “influence variables”, as described 

in Chapter II); 

• The minimization of the number of required test-cases, to ensure the feasibility of the 

functional testing phase; 

• A structured and systematic test specification, documentation and execution process, 

aimed at an easier data understanding and management, to be shared by a large group of 

test engineers. 

The result of considering all these needs was a test specification methodology based on 

influence variables and represented by state diagrams. The influence variables are all system 

variables that are able to influence its behavior and have been divided in input and state 

variables. The resulting state diagrams represented all the system operating scenarios that are 

ideally linkable all together to represent the overall functional behavior of the system under 

test. 

The test specification process is made up by the following steps: 

• Detection of system boundaries, to highlight input-output gates; 

• Elaboration of a list of base operational scenarios, to be used as a starting point for the 

functional analysis; 

• For each scenario, detection and reduction of influence variables (system level variables, 

obtained by the specification, influencing system behavior); 

• For each scenario, representation of system behavior in the functional scenario by means 

of a state diagram; 

• For each state, generation of the elementary test-cases (simple “input-output-next state” 

relations); 

• Generation of scenario test-cases, by linking elementary test-cases. 
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More specifically, the following were the significant state variables for the trackside system: 

• Track status (managed by IXL): track circuit occupation (used to compute the Movement 

Authority); route integrity (e.g. “switches out of control”); emergency conditions (e.g. 

“line out of service”). 

• Train status (as seen from the RBC): information received by means of the train Position 

Report (train speed and position, as computed by the odometer, and Last Relevant Balise 

Group read by the train); information previously managed by the RBC (Movement 

Authority and SSP assigned to the train, list of messages waiting for an 

acknowledgement, list of emergency messages transmitted to the train). 

• RBC status: list of radio messages sent to the train; list of radio messages received from 

the train; route status (i.e. route assigned to the trains); emergency and Temporary Speed 

Restrictions input from operator. 

Analogously we could define the input from trains (i.e. radio messages), from track (e.g. track 

circuit occupation) and from operator (e.g. Temporary Speed Restrictions on the line), which 

have to be managed from the trackside in any state. 

As for the expected trackside behavior, most of the outputs directly regard RBC, which is the 

most complex and important subsystem, because it collects data from the track and directly 

interacts with the on-board subsystems. Generally speaking, there are some common aspects 

in RBC reaction against a particular input, which we briefly list in the following: 

• When it receives an emergency condition from the IXL or from the human operator, it 

reacts sending a proper emergency message to one or more trains; 

• When it receives a Position Report from a train, it stores the relevant information and 

verify the possibility to assign it a new Movement Authority; 

• According to the track freedom and route integrity received from the IXL, it chooses the 

length and the operating mode (Full Supervision, On-Sight or Staff Responsible) of the 

Movement Authority to be sent to the trains; 

• When actuating a procedure, that is a sequence of predefined operations, it ignores a set 

of “safe” unexpected messages received from a train while it orders a disconnection if the 

message is considered “unsafe”; 

• During a procedure, it passes from a state to another when it receives an expected 

relevant message from a train or a condition from the trackside; 

• It manages some sets of messages at any phase of train mission (i.e. during any 

procedure), such as disconnection requests and validated train data. 

The combination of a system state, a relevant input condition, an expected output and state 

transition constitutes an elementary Test Case for the system, while several Test Cases linked 

together in order to reproduce a complete evolution of the system under test in a given 

scenario is named a Test Scenario, as defined in Chapter II. 
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Figure 45. A logic scheme of the testing environment. 
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2.3.3 The simulation environment 

The IXL modules (see Figure 32) are distributed all along the track, at an average inter-

distance of 12 km and are normally remote controlled by a central control room. There are 

several types of IXL modules, that we distinguish here only into “line” and “station” 

categories for the sake of simplicity. The Radio Block Center, instead, is physically installed 

in the central place and communicates with neighbour RBCs and its IXL modules by means 

of a high-speed long-distance fiber optic backbone (redundant). Given the complex 

architecture of the system under test, it was not easy to create a simulation environment that 

was both realistic (all the real hardware and software to be tested had to be used) and flexible 

(the external environment had to be completely programmable). A classic “system in the 

loop” scheme was adopted for the simulation environment; however, the hard task was to 

adapt the tools used to stimulate the system in normal operating conditions, that were already 

developed, in order to make them able to be used to generate non nominal (or negative) ones.  

The simulation environment is made up by the following elements (see Figure 45): 

• a real RBC; 

• a pair of simulated RBCs (its neighbours); 

• a certain number of real and simulated IXL modules (the ones in its supervised area); 

• a certain number of on-board simulators, used as a sort of input injectors and output 

probes with respect to the trackside; 

• a so called master simulator, used to control and stimulate all the simulated entities. 

The choice of real and simulated sub-systems is given by two contrasting factors: 

• the realism of the environment, which would suggest the use of all real sub-systems; 

• the flexibility of the environment: most negative and degraded conditions are either 

impossible or very difficult to obtain with the real systems. 

The master simulator is a tool used to command the on-board and IXL, in particular by 

stimulating: 

• the on-board simulator with train-driver, balise and trainborne (speed, diagnostic) 

inputs;  

• the IXL with track conditions (track circuit occupation, degradations of route status, 

emergencies). 

The configuration of the real RBC was based on the same hardware and software used on the 

field, comprising a vital section constituted by the following parts: 

• a safety kernel with three independent computing subsystem in a Triple Modular 

Redundant configuration, which manages the train separation; 

• a Man Machine Interface (MMI) constituted by a video terminal (showing train data), 

a track display (showing train position and track status) and a functional keyboard 

used by the RBC operator to digit commands to be sent to the trains (e.g. temporary 

speed restrictions and emergency messages). 

The non vital section is made up by the following systems: 

• two communication computers, used to communicate with IXL and on-board sub-

systems; 

• a redundant chronological event recorder, that is a sort of extended Juridical 

Recording Unit (JRU), with the aim of recording the times and nature of the 

significant events (e.g. diagnostic data, alarms). 
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The extended JRU is also used to read after-test data in order to compare obtained outputs 

with the expected ones (such comparison is partly automated). 

All the real and simulated entities were connected in our laboratory by means of a normal 

LAN (Ethernet 100Mb/s). 

 

 

Figure 46. The hardware structure of the trackside simulation environment. 

 

Each of the simulated sub-systems (i.e. each simulated on-board, RBC, or IXL module) was 

installed on a different general purpose computer (see Figure 46). The software simulators 

were complete, showing all the features of a real MMI on the PC screen. The master simulator 

together with the train simulators allow to simulate the trains marching on a certain track 

section, showing their speed and positions and simulating track circuit and route occupation. 

In order to allow test automation, both in the real systems and in the simulated ones it was 

installed some tools which communicate with a central master by which it is possible to 

command all the systems and create all the abnormal and degraded conditions which could 

happen in a real operating situation. A scripting language was implemented in order to specify 

batch sequences, that is to say the commands of the master simulator used to execute the 

complete test scenarios. 

The last element of the simulation environment is the on-board simulator. It has been 

developed to simulate the behavior of a real train and properly adapted in order to generate 

anomalies that, otherwise, would be very hard or impossible to obtain with a real train. The 

simulation of anomalies with the on-board simulator is the main topic of the next section. 

2.3.4 Simulation of anomalies 

The communication between the RBC and the on-board and between the RBC and the IXL 

uses an open network. The CENELEC 50159-part 2 norms report the threats of a 

communication based on an open network (i.e. deletion, re-sequencing, insertion, repetition, 

delay, corruption and authentication of a message; see Table 2) and suggests some means to 

ensure the safety of the system with respect to such threats. The communication protocol 

employed for the data exchange from and to the RBC is CENELEC compliant and should 

protect from all the aforementioned threats [121]. The functional analysis used for test 

specification had to consider all the possible threats also in degraded operating conditions 

(e.g. a degraded route due to a loss of control of one or more switches) in order to exercise the 

robustness of the systems and of the communication protocol. 

Therefore, the simulation environment has to be able to simulate both degradations and 

malfunctions. The “standard” environment is able to create all the degradations of the 

signalling system, which are abnormal railway conditions which the system must be able to 

properly manage. The simulation of railway degradations is useful to verify that the RBC is 
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able to understand and react correctly to such conditions, ensuring the safety of train 

movement.  

However, a standard environment is not able to reproduce the anomalies of the 

communication between the RBC and the on-board, which can happen in real operating 

conditions. In fact, the same threats reported in the CENELEC 50129 part 2 can affect the 

communication by the GSM-R network and both the robustness and the protection 

mechanisms implemented at different levels (protocol, application, etc.) must be verified in 

the functional testing phase. 

For the above considerations and due to the need for testing the train separation system in all 

conditions with all combinations of its significant inputs, the simulation environment had to 

be adapted and customized in order to simulate in laboratory all the aforementioned 

communication anomalies. 

The first step was the analysis of test specifications  in order to identify the tests related to 

communication anomalies. We found out that only the 13% of the specified tests 

corresponded to nominal operating conditions; the remaining 87% were degradation or 

anomaly tests (respectively the 52% and the 35%). On the basis of such analysis and 

classification, we implemented a so called “anomaly manager” tool, which was completely 

independent from the nominal simulator. 

The abnormal conditions that have been detected and implemented are the following: 

• deletion of any message from a train to the RBC; 

• deletion of any message sequence (i.e. loss of N consecutive messages); 

• substitution of any message with any other one; 

• insertion of a certain massage in any correct message sequence; 

• modification of one or more fields in any message to be sent to the RBC with 

erroneous values; 

• one or more repetitions of a message. 

The implementation of the anomaly manager, moreover, allowed to apply one or more 

abnormal conditions in any phase of the train mission, depending on train position and on the 

message the train would send in nominal operating conditions. 

The abnormal conditions are listed in a configuration file which the on-board simulator reads 

at the beginning of each test. This allows to automatically execute more consecutive tests 

comprising several abnormal conditions. 

Before starting test execution it is necessary a preparation phase in which such configuration 

files for the on-board simulator must be compiled. Then the master simulator scripts must be 

prepared, and this allows to automatically execute, by means of a single key pressure, any 

sequence of complex test scenarios. 

The described implementation of the anomaly manager allows to test the behavior of the 

trackside system with all the inputs coming from the on-board sub-system. This, together with 

the already existing possibility of generating all the railway degradations, allows to execute 

any extensive test-set. 

The overall simulation environment, comprising the anomaly manager, features several 

advantages with respect to the “on the field” execution (by means of real train runs), as we 

already mentioned, which reflects to the possibility to thoroughly verify the system under test 

in less time and at a less cost. 

2.3.5 Anomaly testing examples 

In this section we present some examples of application of the anomaly manager in the 

simulation of abnormal operating conditions. As already mentioned above,, the Radio Block 
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Center is designed in order to tolerate unexpected messages, by ignoring them or by 

automatically reaching a safe state (i.e. sending a disconnection request) whenever it detects a 

safety critical condition or a non Unisig compliant
19

 on-board system. For each state of the 

functional test scenarios, the RBC is tested against all the expected and unexpected messages 

received from the on-board. All the non nominal conditions can only be tested by means of 

the Anomaly Manager, because there is no way to reproduce them with a real on-board 

system. Moreover, the RBC features some robustness against availability critical situations: 

for instance, if it does not receive a message from a certain train for a given time (a few 

minutes), it has to delete such train from its internal database; this situation corresponds to a 

“lost” train (not properly disconnected), which must not be managed by the RBC anymore. 

Then it is necessary to allow other trains, within the maximum number allowed by the RBC, 

to connect using the so freed channel. 

More specifically, in the following we present three test-case examples that can be easily 

reproduced in the simulation environment by means of the Anomaly Manager: 

a. Unknown balise group; 

b. Unexpected train data; 

c. Unauthorized Track Ahead Free (TAF). 

The case (a) corresponds to a RBC receiving a balise group identifier (used as a location 

reference) which is not included in its database. This can be the result of several faults: a mis-

positioning of the balises, a train connected to the wrong RBC, a configuration error in the 

balise telegram or in the RBC database (wrong ID or balise not configured at all). When the 

RBC receives a Position Report from a train with an unknown balise group, then it must not 

control the train because it does not seem to belong to its supervised area. Thus, the robust 

reaction which has been designed for the RBC against such a condition is the sending of a 

disconnection request to the train. With a real train, such a test would require a very difficult 

preparation (e.g. balise reprogramming or reposition). Using the Anomaly Manager, instead, 

it is sufficient to load the configuration files of the on-board simulator in order to substitute 

the message corresponding to a correct Position Report with one in which the balise group 

identifier is altered as requested by the test-case (i.e. set of a wrong number). 

The case (b) happens when the RBC receives the train-data message from the on-board in non 

nominal time instants or in scenarios different from the start of mission procedure, as 

requested by Unisig. The train data message contains train length, braking mass, shape limits, 

etc. which must be track compatible. Usually, the train changes its data only after an end of 

mission procedure, i.e after having disconnected from the RBC. However, as train data can be 

changed by the train driver in any moment at standstill, the RBC must be able to correctly 

manage such condition. The correct behavior designed for the RBC is the immediate 

verification of any train data received from the train against the maximum allowed 

boundaries. The specified functional test-cases require to verify that the RBC reacts with a 

disconnection request whenever it receives incompatible train data. Obviously, with a real on-

board system which can change train data only after an End of Mission (in the correct 

implementation) it is not possible to execute such test. Therefore, the only solution to cope 

with such issues is to use the Anomaly Manager, which allows to simulate the behavior of any 

Unisig compliant on-board. This is a general need, as the Unisig specification often leaves 

freedom about system implementation. This implies that with a particular implementation of a 

subsystem it is not possible to stimulate other subsystems with all the possible conditions at 

the interface between them. 

Finally, the (c) condition corresponds to an unexpected (or out of sequence) Track Ahead Free 

(TAF) message. The so called TAF procedure is mandatory in all cases in which the on-board 

has to pass from a partial supervision (e.g. due to route degradation) to a full supervision 

operating mode. With the TAF procedure the train driver, pressing a button on its MMI, 

                                                 
19
 “Unisig compliant” means that system implementation respects the requirements contained in [1]. 
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notifies to the RBC the freedom of the track between the front-end of the train and the end of 

the track circuit occupied by the train, which can not be ensured by the RBC. In a correct TAF 

procedure, a TAF Request message is sent by the RBC to the train whenever it is able to 

assign it a Full Supervision movement authority; if the train driver acknowledges the TAF 

Request with the pressure of the TAF button, then a TAF Granted message is sent by the on-

board to the RBC. In a non nominal case, the RBC could receive such a message without 

having previously sent a TAF Request message. This is risky, because in no way the RBC 

must send a Movement Authority to the train without the correct actuation of the TAF 

procedure: for instance, the train could not be in the so called TAF zone, the only one in 

which the TAF is allowed because of the limited human sight extension, or simply the on-

board is acting in a wrong way. The test-cases specified for such condition have the aim to 

verify that the RBC state machine evolves correctly and protects from dangerous transitions: 

for instance, a possible design error could be to trigger the MA sending by the RBC in 

correspondence of the reception of a TAF Granted, without controlling that a previous TAF 

Request has been sent. The nominal as well as the abnormal test conditions have been 

represented in Figure 47, using the graphical formalism of the test specification methodology 

(see Figure 11). A nominal on-board would be unable to reproduce the unauthorized TAF 

condition. Again, the use of the Anomaly Manager is the only way to easily overcome this 

problem. The configuration file of the Anomaly Manager can be prepared by making the 

simulator send a TAF Granted message before it reaches the TAF zone at the end of the track 

circuit: in fact in such a condition it is sure that the RBC does not output any TAF Request, 

whose sending is triggered by the reception of a position report message reporting train 

standstill in the TAF zone. 
 

 
Figure 47. A representation of the TAF procedure. 

 

2.4. Abstract testing a computer based railway interlocking 

The Radio Block Center (RBC) and the Interlocking (IXL) constitute the complete 

ERTMS/ETCS trackside subsystem: the RBC (together with balises and possibly other 

lineside equipment) manages train separation, while IXL manages train routes (formation and 

degradations). Even though IXL is not standardized in ERTMS/ETCS specification, its 

reference architecture can be predicted quite easily, as IXLs produced by different suppliers 

differ from each other in a very few aspects. 

We applied the abstract testing methodology described in Chapter II §5 to a railway 

interlocking system, used for train route and ground signalling management. The approach 

perfectly suited such a real-world industrial case-study, allowing to validate in short times a 

great number of installations and ensuring a full code and configuration coverage.  

2.4.1 Computer based railway interlocking systems 

A railway interlocking system (IXL) is a safety-critical distributed system used to manage 

train routes and related signals in a station or line section (which is divided into “blocks”). Its 
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development and validation process must respect international safety norms [31]. Modern 

IXL are computer based and feature a high number of functional requirements, thus making 

them very complex. The verification and validation (V&V) process of such system consists in 

a set of time consuming activities (hazard-analysis, code inspection, structural testing, etc.), 

among which functional testing is undoubtedly the most important one, in terms of budget and 

criticality. Moreover, IXL installations are different from each other; therefore, V&V consists 

first in verifying the generic software application, and then the specific one. However, while 

an abstract test-suite can be developed on the basis of the Generic Application (and then of 

system functional specification), in order to verify the specific application the former test-

suite must be instantiated, according to the configuration of the installation under test. 

Clearly, this need exactly fits the purpose of the presented abstract testing approach. 

Traditionally, such an activity was performed by hand, with evident disadvantages in terms of 

required effort and correctness of results. 

A computer based IXL is composed of the following entities: 

- a safety-critical centralized elaboration unit (let us indicate it with CPU), which is meant to 

run the control software (processes and configuration); 

- a Man Machine Interface (MMI), composed by a display and a functional keyboard which 

allow the set and visual control of train routes; 

- a Communication Computer (CC), used to manage the communication via a Wide Area 

Network (WAN) with a (distant) central Automation System, also providing remote route 

management, and possibly adjacent IXL; 

- a set of Track Circuits (TC), used to detect if a train is occupying the route; 

- a set of Switch Points (SP), used to form train route; 

- a set of Light Signals (LS), used to notify to train drivers route status. 

The IXL configuration associates each possible route to its related physical control entities: 

TC, SP and LS. 

A slightly simplified architecture of an IXL is reported in Figure 48(a). 

Briefly, an IXL is basically used to manage route formation commands coming from a local 

human operator (using the MMI) or a remote operator (using the AS). When a command is 

received, the CPU controls its actability by checking the status of all involved entities, either 

physical (TC, SP and LS) or logical (e.g. block orientation, line out of service, station 

emergency, etc.). If route formation command is actable, then Switch Points are moved 

accordingly. A route can also be formed in a degraded mode, in which route integrity can not 

be assured because a check failed on a Track Circuit which is not clear or a Switch Point out 

of control. These degradations reflect on route integrity status, which have to be properly 

notified by multi-aspect Light Signals. Moreover, the system has also to manage the change 

of route status when a train passes on it, until the liberation of the route. The state machine 

associated to a route is quite complex: for the sake of simplicity, we will not describe it in 

detail. 

For our purposes, it is important to distinguish first of all between sensor and actuator entities 

in an IXL. Clearly, Track Circuits can be considered as Sensors, as they are only used to 

detect train position. Switch Points and Light Signals are instead Actuators, because they are 

the actors of system control actions. The interface for route setting and monitoring, finally, 

can be considered both as a Sensor, as it receives commands, and an Actuator, as it displays 

outputs; analogously for the WAN interface. Another option, which is equivalent in theory but 

could be advantageous in practice, is to consider the effects of MMI and WAN interfaces 

directly on system state: intuitively, moving an input variable into a state variable is always 

possible and does not necessarily impact on test accuracy. 
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Now, let us define a possible IXL software architecture, using an object oriented design, 

which we will use as a reference for our abstract testing application. Control processes will be 

associated to each physical control entity (TC, SP, LS), thus obtaining: 

- TC_Process, dealing with Track Circuit status (clear, occupied, broken, etc.); 

- SP_Process, managing Swich Point status (straight, reverse, moving, out of control, 

etc.) and operations (move_straight, move_reverse, etc.); 

- LS_Process, aimed at controlling Light Signals’ status (green, red, yellow, flashing 

yellow, etc.) 

Furthermore, logic processes have to be defined for each logical control entity, thus obtaining: 

- Route_Process, managing route status and control actions; 

- Line_Process, managing out of service conditions, temporary speed restrictions, etc.; 

- Block_Process, managing logical block orientation; 

- LeftIXL_Process (managing data received by left adjacent IXL) 

- etc. 

Also Sensor type processes, if implemented according to object orientation, shall feature the 

operations needed to access the status of their attributes. 

An IXL will then feature a real-time kernel scheduling the above mentioned processes. In case 

of the ASF Interlocking system, there exists a Logic Manager used to interpret and schedule 

processes written in an application specific logic language (see §2.2 for a brief description of 

its syntax), which allows for a sort of object orientation, even though not being specifically 

object oriented (see Figure 48(b)). Moreover, a separate and well defined system 

configuration will allow customizing the IXL to each specific installation (e.g. Manchester 

railway station). In ASF implementation, the configuration database is of a relational type, 

featuring tables containing “lists of entities” and “lists of linked entities”, expressing the 

interrelationships between logic and physical control processes; such lists are used to perform 

queries in order to determine the associations needed for the system to work and which 

abstract testing is based on (they basically correspond to Sensor/Actuator_Association_Lists 

referred to in Figure 9). Finally, the output state of the CPU is copied in a “state of entities” 

database at each elaboration cycle, with attributes being primary keys, thus significantly 

simplifying output state checking, as explained in previous section. 
 



A CASE-STUDY APPLICATION: ERTMS/ETCS  
 

 109 

 (a) 
 

 (b) 
Figure 48. An IXL scheme (a) and related control software architecture (b). 

2.4.2 Application of the abstract testing methodology 

A possible approach in verifying an IXL from a system level point of view consists in the 

following steps: 

- Functional testing of the control software and measure of code coverage; 

- Static verification of the configuration, using proper support tools; 

- Acceptance testing regarding the verification of most significant railway logic 

conditions. 

While quite effective, such an approach does not guarantee dynamic configuration coverage. 

In other words, control software is tested dynamically over a little part of a specific 

configuration, until code coverage is considered satisfactory, but there is no evidence that the 

integration of generic control logic and configuration is correct for the specific installation, as 

the configuration is exhaustively verified only statically. Clearly, a dynamic black-box testing 

of the specific installation, ensuring both code and configuration coverage, represents the 

safest approach, also considering that installations can be very different one from each other, 

thus possibly stimulating the control software with untested combination of inputs (refer to 

[121] for a brief introduction to the hazard-analysis of railway control systems). However, an 

extensive system testing based on such a criterion would be difficult and time consuming, 

almost unfeasible using traditional approaches. This is where abstract testing comes in help, 

by automating most of the work needed to achieve such objective. 

In previous section, we showed the general architecture of an IXL and how it can be mapped 

on the general scheme of Figure 9. This mapping being possible, the application of the 

algorithm in its general form to our case-study reveals quite straightforward. In order to see, 

in particular, how the algorithm applies to a specific abstract test-case, let us consider the 

following requirement:  

“When the IXL receives a route formation command it has to check the following 

conditions: 

All TC associated to the route must be clean 

All SP associated to the route must be controlled 

The LS associated to the route must be controlled 
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If such conditions are fulfilled, then SPs have to be moved accordingly, route LS shall 

be set to GREEN and Route Status has to be set to Integer”
20

. 

The requirement can be tested using the following abstract test-case (r represents a generic 

route): 

- Input State: 

Route r TC Status = Clean 

Route r SP Status = Controlled 

Route r LS Status = Controlled 

- Input: 

MMI Input: Route r Formation Command 

- Output: 

 Route r SP Output = Positioned according to r 

 Route r LS Output = GREEN 

- Output State: 

 Route r Status = Integer 

For such an abstract test-case, the algorithm: 

- Step 1: Selects all input states satisfying the Si condition specified in the test-case. In 

other words, all combinations of TC, SP and LS statuses associated to each configured 

route have to be set to the specified values; for the specific test-case, there exists exactly 

one combination of such values for each possible route, corresponding to a nominal 

system state (e.g. the idle state following system start-up); 

- Steps 2-4: Stimulates the IXL via the (simulated) MMI with the specific route formation 

command; as only one command is possible for each route, the SEN and I conditions will 

select exactly one sensor and one input for each input state; 

- Steps 5-6:  

Checks that all SP are positioned according to the specific route; the actuator selection 

routine applies to switch points of the specific route: condition ACT will read as 

follows “Actuators SP whose Routes attribute contains r” (SP are associated to more 

than one route); condition O will be “Positioned according to r”; 

Checks that the specific route status is set to GREEN: the check for LS output is 

analogous to the one described for SP (see point 0 above); 

- Steps 7-13: Checks that output status satisfy the So condition, that is “Route r Status = 

Integer”. As attributes are not duplicated into different objects and a “state of entity” 

dynamic database is available, such check consists in a simple database access, verifying 

that “Route_Status_r” (primary key) is set to the value “Integer”. 

Clearly, the algorithm will produce as many physical tests as the number of possible routes 

which are configured in the IXL. The example is straightforward, as it usually happens when 

dealing with nominal tests. A possible negative test, related to the previous one, corresponds 

to the following statement: 

“[…] If any of the conditions listed above is not fulfilled, then route command must 

not be accepted”. 

                                                 
20
 In a real IXL, the correct execution of a switch movement command must be verified before setting the signal 

to GREEN (in other words, SPs feature additional sensors). 
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In such a case and without adopting any reduction criterion on Si, we would have a significant 

increase in the number of generated physical tests. In fact, for each route the combinations of 

input states impeding the correct formation of the route are numerous, and all of them should 

be tested.  

In order to implement abstract testing in practice and to perform test automation, the 

transformation algorithm has to be translated into an executable language (e.g. “C”), and its 

output must correspond to a test script whose syntax is interpretable by the specific simulation 

environment. In our experience with the verification of IXL systems, we developed a series of 

tools and integrated them into a cohesed functional testing framework (an example is 

described in [55]), which deeply facilitated the implementation of abstract testing, according 

to the general guidelines described in this section. 

3. Multiformalism analyses for the availability evaluation of 
ERTMS/ETCS 

In this section we describe the application to ERTMS/ETCS of the multiformalism 

methodologies presented in Chapter III. 

This section is based on some of the case-study results published in [54] and [56]. 

3.1. Evaluating the availability of the Radio Block Center of ERTMS/ETCS 
against complex repair strategies by means of Repairable Fault Trees 

In order to prove the power of the RFT approach, we evaluated the impact of different repair 

policies on the availability of a critical computer which constitutes the heart of the 

ERTMS/ETCS trackside (ground) subsystem: the Radio Block Centre (RBC). Being a 

complex repairable system, the RBC constitutes the ideal case-study to show the practical 

benefits of the RFT formalism. Furthermore, at the best of our knowledge no maintainability 

study has been performed on the RBC (at the time we are writing). 

 

 
 

Figure 49. A RBC centered view of ERTMS/ETCS level 2. 

3.1.1 The importance of RBC availability in ERTMS/ETCS 

Figure 49 shows RBC interactions at the level 2 ERTMS/ETCS implementation. At this level, 

the Radio Block Center (RBC) is the most important ERTMS/ETCS subsystem, as it is 

responsible for guaranteeing a safe outdistancing between trains by managing the information 

received from the on-board subsystem (by means of the GSM-R network) and from the 

Interlocking (IXL) subsystem (by means of a dedicated Wide Area Network, WAN) in order 

to compute and send to the trains their movement authorities, which represent the distance the 
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trains are allowed to cover in safe conditions. The positioning information received from the 

trains allows the RBC to locate them on its internal route representation, while the track status 

received from the IXL allows the RBC to compute the information related to track occupancy 

status. Finally, on the basis of such information, the RBC computes the movement authorities 

to be transmitted to the trains via GSM-R. Therefore, the unavailability of a RBC is critical, as 

there is no way for the signaling system to work without its contribution. In case of a RBC 

failure, all the trains under its supervision (typically more than 5) would be compelled to 

brake and proceed in a staff responsible mode, and this would lead to the most critical 

ERTMS/ETCS (safe) failure. Most of the functions that an ERTMS/ETCS system has to 

manage are allocated on the RBC, which is the most complex subsystem. 

3.1.2 RBC availability requirements and hardware architecture 

As introduced in Section 1.4, the ERMTS/ETCS standard requires compliance with specified 

RAMS (Reliability Availability Maintainability Safety) requirements [149]. RAM 

requirements specify for the RBC a maximum unavailability of 10
-6
 (see [149], §2.3.3), whose 

fulfillment has to be properly demonstrated. We largely mentioned that international 

standards and guidelines for railway V&V processes explicitly advocate the use of formal 

methods in order to demonstrate the fulfillment of RAMS requirements. As for any mission 

critical computer system, the RBC must be designed to be highly fault-tolerant and easily 

maintainable on-line, without service interruption. The very high level of availability required 

for the RBC can be obtained by balancing the reliability of the used components, the degree 

of redundancy of the system and the adopted maintenance strategies. Using high reliable 

components is very expensive, as development costs increase with reliability in a more than 

linear way. This justifies the use of COTS (Commercial Off The Shelf) components, which 

are not very reliable but can be redundant and have the advantage to highly reduce 

development times and costs. Increasing too much the redundancy of the system, however, 

also increases system complexity, which brings a lot of design and validation issues in safety-

critical real-time systems. Double or triple redundancy is usually adopted depending on the 

specifications: one exception consists in the computing sub-system, which is usually based on 

a 2oo3 (2 out of 3) voting. Such a configuration is also known as Triple Modular Redundant 

(TMR) computing subsystem and it is a cheaper and more available alternative to the 

redundant 2oo2 (2 out of 2) configuration (the voting is always necessary for safety reasons). 

In order to build a proper model of the RBC, in the following a reference architecture is 

described in its structure, components and reliability parameters. The computing subsystem 

can be made up by three commercial CPU-RAM cards and a redundant FPGA based voter in 

a TMR configuration. The GSM-R and WAN communication subsystems are also chosen as 

COTS. Three commercial power supplies and a redundant standard backbone (used as the 

main system BUS) complete the RBC configuration, which therefore does not require any 

specifically designed component. RBC architecture is represented in the class diagram of 

Figure 50. The reference values of component reliability parameters, chosen from the data-

sheets of commercial devices, are listed in Table 5. 
 

 
Figure 50. Class diagram of the RBC. 
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Table 5. COTS reliability values. 

 

As in many other contexts, the balancing between different design choices is a matter of 

trade-offs which are often quite difficult to manage. From the above considerations it is clear 

that no many degrees of freedom are available for the designer (i.e. reliability engineer) in the 

industrial practice and thus maintenance policies become a fundamental aspect to concentrate 

on, as they directly impact on system availability and are more easily manageable than many 

other factors. This is the reason why it is important not only to evaluate the impact of design 

choices and reliability parameters on the RBC availability, but also to concentrate on the 

maintenance policies. ERTMS/ETCS gives only qualitative suggestions for preventive 

maintenance, while the upper bounds for corrective maintenance intervention times are very 

high (not more than 2 hours; see [149] §2.2.2.3.2 and §2.2.2.3.3). There are no other 

restrictive requirements for the maintainability parameters and this leaves a lot of freedom in 

designing and dimensioning repair policies. The assumptions made about the nominal values 

of repair parameters (MTTR) are given in Table 6; these values are chosen on the basis of 

empirical considerations about component accessibility, mean substitution times and restart 

delays. 
 

 
Table 6. Reference parameters for repair. 

3.1.3 Modeling and analysis 

In order to compare the effects of different repair strategies, the system has been modeled by 

means of the RFT formalism. Several RB have been designed as described in Chapter III §2, 

introducing slight differences with respect to the general framework defined in [37]. As first, 

starting from the RBC architecture, the RFT model of the RBC has been created following 

usual FTA techniques. Then, different RBs have been applied to the RBC in order to evaluate 

the achievable improvements on overall system availability. The repair policies differ the in 

allocation and number of repair resources. To obtain an upper bound, a model with unlimited 

resources and a complete independence among repair actions is used to evaluate the ideal 

(best) achievable unavailability of the RBC, given reference MTBF and MTTR values. Then, 

a complex repair policy is applied with a variable number of repair resources, including the 

case of non-continuous availability of the resource. A further study is performed on the 

comparison of the aforementioned repair policies. Moreover, the effects of (fixed) priority 

schemas on the repair policy are evaluated, assuming a single repair resource. Finally, in the 

last part of this section we show how to use the RFT formalism to tune component reliability 

parameters given system specifications. 
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The reference repair policy and the upper bound for availability 

The basic idea behind the reference repair policy is that using both on-line and off-line repair 

approaches is a good trade-off between the required parameters for components and the global 

MTTR. In the reference repair policy, two basic repair mechanisms are used: the on-line 

repair is triggered whenever a single component of the RBC fails, before the fault generates a 

system failure, while a (higher priority) off line repair restores the minimal number of 

required components to remove system failure whenever a system failure happens, in order to 

reduce the system down time. Such a repair strategy (in which the same repair resources are 

shared between the two mechanisms) gives the single subsystems a higher availability and 

achieves a fast system restore by polling one by one faulty subsystems and removing only the 

minimal fault set. In each RB it is embedded a repair action, performed on a certain 

subsystem (component by component) by using a repair resource (e.g. a maintainer) in a 

certain time (i.e. component MTTR). The repair action is triggered by a condition verified by 

the subsystem (e.g. a fault of one of the components in the subsystem). 

 
 

 
Figure 51. The RBC RFT general model. 
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Figure 52. The GSPN model of the RFT. 

 

The RFT for the RBC is showed in Figure 51; its GSPN translation is depicted in Figure 52. 

For each subsystem and for the global system there are RBs, properly connected to the events 

that contribute to their triggering. Each RB also reports the priority level with which it is 

activated in case of conflicts on the triggering conditions (here the global RB has priority on 

the local RBs when in conflict for a repair resource). 

The reference unavailability measure with which we compare the quality of the various repair 

policies is obtained by setting the number of resources to infinite (that is, giving independent 

and infinite resources to each RB)
21

. Given the reference parameters in Table 5 and Table 6, 

our analysis gives an overall unavailability of 1.304*10
-6
. The only way to improve this limit 

is to modify component parameters (MTTR and MTBF).  

Effects of available resources 

In order to evaluate the effects of limited repair resources, two cases have been considered in 

the model, with one and two shared resources respectively. Moreover, two further scenarios 

have been considered in which resources are available only in the 50% and in the 10% of the 

time respectively; this models a situation in which the repair personnel is part-time allocated 

to the RBC (e.g. it is shared with other RBCs). Furthermore, the time ratio of attendance can 

be composed of several rounds (e.g. the RBC has the resource for 50% of the time, sliced in 

turns of 2 hours each), whose length impacts on availability. Results of these analyses are 

listed in Table 7 and in Figure 53. 
 

                                                 
21
 This scenario can be evaluated by means of a simple Fault Tree where availability values are used for 

components instead of MTBF. 
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Table 7. RBC unavailability with respect to resources. 

 

 
Figure 53. RBC sensitivity to number and attendance of repair resources. 

 

As from the results, it is evident that the number of resources gives a significant contribution 

to the policy. The unavailability achieved using two resources is far better than using one 

resource, and the result is comparable to the value achievable with infinite resources (the 

difference is only 3%). 

About the part-time attended repair policies, in which, to model a situation that prevents the 

resource to be (continuously) available for RBs, the resource is inhibited for a given 

percentage of the time, results show that as first the continuous availability of at least one 

resource is critical for the overall availability of the system (for the 50% of presence in the 

best turn there is a loss of one order of magnitude for unavailability). It is noticeable that 

better results are obtained with shorter turns (that is, shorter unattendance periods), which 

suggests that in case of resource sharing it is preferable a close sequence of attendance and 

unattendance periods. Results in the 10% case are very poor, and should advice the need for a 

higher expense on repair resources. 

Finally, a more accurate analysis requires the evaluation of cost factors which are not possible 

using the RFT formalism, together with considerations that are related to other ERTMS/ETCS 

subsystems; in fact, a global analysis would help to understand whether the RBC 

unavailability is a limiting factor or not (see next §3.2). 

Effects of the policy 

As mentioned above, the reference repair policy has two main contributes: an off-line and an 

on-line repair action. In order to evaluate the opportunity of implementing both actions, it is 

useful to evaluate the unavailability of the RBC when only the off-line repair action is 

available. Since this action is implemented by a single repair resource and in this situation the 

presence of a repair resource is only relevant and always necessary when the RBC fails, no 

variation on resources is considered in the analysis for the alternate model. This RFT model is 

simply obtained from the model in Figure 51 removing all the RBs but the top one. 
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The analysis of the model gives an overall availability of 3.42*10
-3
, thus loosing three orders 

of magnitude with respect to the reference case unavailability, and demonstrating the need for 

a preventive repair action even with a shared single resource. 

Effects of priority 

Given the need for a preventive maintenance in the repair policy, and always giving the 

highest priority to the off-line repair action, it is interesting to evaluate the impact of priorities 

in accessing repair resources for the RBs that contribute to the on-line action. In the previous 

cases we considered a random priority schema (that is, a non-prioritized access to the 

resource). Three criteria have been considered to design priority schemas. 

The first schema (namely πMTTR) privileges access to the resources for the subsystems 

featuring lower MTTR for components. Subsystems are ordered and prioritized from the 

subsystem whose components are repaired more quickly to the subsystem whose components 

are repaired more slowly, in order to privilege the allocation of the resource where it is 

released more quickly. 

The second schema (namely πMTBF) privileges access to the resources for the subsystem 

featuring lower MTBF for components. The criteria gives priority to the subsystem whose 

components fail more often, in order to lower the risk of having the whole subsystem failing 

before its components are repaired (that is, the risk of a system fault). 

The third schema (namely πRedundancy) accounts for the redundancy degree of components in 

subsystems, considering that a subsystem that is more redundant (i.e. has more replicas) can 

lose more components before causing a system fault. A triple redundant subsystem has then a 

lower priority than a double redundant one, which in turn has a lower priority than a 2 out of 3 

redundant subsystem
22

. 

The results of these analyses, performed with a single resource, are listed in Table 4. The best 

result is achieved by the πRedundancy schema, although the model seems to be not very sensitive 

to the repair priorities (the best schema gives a 3.8% enhancement with respect to the random 

schema and a 4.3% enhancement with respect to the worst performing πMTBF schema). 
 

 
Table 8. RBC unavailability with respect to maintenance priorities. 

Designing components parameters: MTTR 

The model can also be used to evaluate the effects of variations on component parameters 

such as MTTR and MTBF in order to esteem admissible ranges for them in early stages of 

system design, given a specification for the RBC unavailability. 

A first sensitivity analysis has been performed in which the MTTR of each component has 

been set to 50%, 75%, 150%, 200% with respect to the reference values given in Table 6 for 

the RBC. The repair policy for the analysis is the reference policy with 1 repair resource. 
 

                                                 
22
 Let p be the probability of failure of a generic component; we can calculate that: Pdouble = p

2
, Ptriple = p

3
 and 

P2oo3 = 3*p
2 
. Assuming p << 1, it is straightforward to obtain: Ptriple < Pdouble < P2oo3 . 
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Table 9. RBC unavailability with respect to on-line and off-line MTTR. 

 

 

 
Figure 54. RBC sensitivity to MTTR variations. 

 

Table 9 and Figure 54. RBC sensitivity to MTTR variations. show the effects on RBC 

unavailability of variations of the parameters. Considering the operation needed to replace 

components, they have been grouped in two sets sharing the same MTTR: the Bus and FPGA 

components have MTTR-BF, all other components have MTTR-Card; moreover, the off-line 

repair policy has MTTR-OffLine, including all the operations needed to check, fix and restart 

the system. While these parameters vary, all the other parameters are kept to reference values. 

MTTR-OffLine improvements are obviously very effective because as they have a direct 

impact on system down-time; however, they are limited by the time to diagnose and to restart. 

More relevant results have been obtained for MTTR-Card and MTTR-BF. In both cases, the 

increase in unavailability is linear in the reference range, but the higher marginal contribution 

is given by MTTR-Card variations. MTTR-Card (which includes the time needed to 

physically access failed components, the time to reinstall them, the time for reintegration of 

the repaired component in the system) can be lowered by technological means, but also acting 

on component (i.e. LRU) accessibility in the RBC rack and improving operational procedures. 
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Table 10. RBC sensitivity to MTBF variations. 

Designing components parameters: MTBF 

Another sensitivity analysis has been performed which the MTBF of each component has 

been set to the 50% and 20% with respect to the reference values. The repair policy for the 

analysis is again the reference policy with one repair resource. Table 10 shows the effects on 

the RBC unavailability of parameter variations. In the table, three components have been 

considered to investigate which of them can be the limiting factor in the architecture and 

which of them can possibly be substituted by a less reliable (and less expensive) one. Only 

two variations are shown in the table for the most significant components. As in the other 

cases, the reference repair policy is applied with one repair resource, and in each of the cases 

summarized in Table 10; the other parameters are kept to their reference values. It is visible 

that the system is completely indifferent to variations of the FPGA MTBF in the reference 

range, while the CPU board is critical. In fact, by halving the MTBF, the RBC unavailability 

looses one order of magnitude, while a double MTBF for the CPU board gives the system an 

unavailability that is close to the case in which two repair resources are used (the difference is 

29%, while the difference given by the additional resource with respect to the reference case 

is 60%). 

Overall comparison 

The variety of possible interventions whose effects can be evaluated on the model gives the 

designer wide freedom in choosing the best combination of factors leading to the necessary 

availability for the system. In our case, the best combination (not considering cost factors and 

discussion about lower bounds for the off line MTTR) is given by using two repair resources, 

a πRedundancy policy for resource allocation and a 50% factor for the off-line MTTR. In these 

conditions, the RBC unavailability is 6.736*10
-7
, improving the infinite resources result with 

reference parameters by a 48%. 
 

 
Figure 55. Comparison of different design choices. 
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An overall comparison of the best results obtained by the analysis is reported in Figure 55. 

The graph shows the improvements for RBC unavailability for each of the most significant 

(effective) techniques. Of course, the optimal choice depends on the availability of resources 

and on the cost of variations: nevertheless, the graph is a valid reference to evaluate effects of 

different trade offs between resources, quality of components and repair efficiency. 

3.2. Evaluating system availability of ERTMS/ETCS by means of Fault 
Trees and Bayesian Networks 

Critical control systems require proper techniques to predict their failure rate since early 

design stages, in order to fulfill dependability requirements and minimize development costs. 

In Chapter III, Bayesian Networks have been shown to be suitable to model structural 

reliability aspects, extending the modeling power of Fault Trees and featuring a better solving 

efficiency with respect to Petri Nets. In this section, we exploit the Fault Tree and Bayesian 

Network formalisms, as described in Chapter III §3, in order to perform a structural 

availability analysis of ERTMS/ETCS. As largely mentioned above, ERTMS/ETCS is a 

complex real world case study, featuring a distributed heterogeneous architecture with strict 

availability requirements. On the basis of such requirements and of the hypothesized system 

reference architecture, we studied structural availability by instantiating models with realistic 

reliability parameters and performing a series of sensitivity analyses in order to highlight 

design trade-offs. By evaluating and integrating sub-models using a compositional approach 

we both obtained several interesting results and showed the effectiveness of a combined use 

of Fault Trees and Bayesian Networks in dealing with structural reliability analyses of train 

control systems. 

A structural reliability model of ERTMS/ETCS with respect to system level failures due to 

casual hardware faults cam be represented by means of composition operators with the 

semantic of connectors (see Chapter III §4) in Figure 56. This structure is general enough to 

model any failure mode and its semantics only depends on the instantiation of composition 

operators. The structure of Figure 56 clearly highlights the advantages of composition based 

modeling, with the possibility of defining and reusing libraries of standard components. 

 

 
 

Figure 56. ERTMS/ETCS composed hardware failure model. 

 

It should be noted that operators can not only perform copy of results or AND / OR / “M-out-

of-N” computations, because more failure modes are addressed (namely Immobilizing, 
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Service and Minor failures), as it will be clear in next sections, in which such composition 

will be performed “by hand”. 

3.2.1 The Lineside subsystem: modelling and evaluation 

Lineside model structure 

The Lineside subsystem at ERTMS/ETCS L2 is not implementation specific, so the 

considerations presented in this section are very general. In fact, given track related 

parameters (i.e. track length and BG interdistance, which impact on total BG number), design 

freedom only regards the dimension of reliability related parameters (i.e. MTBF, MTTR and 

redundancy). In particular, redundancy reflects on the number of balises for each group, 

which can vary from 2 to 8, according to the specification (we explicitly neglect the case of 

single balise groups, as they do not allow to detect train direction, so they are never used in 

current applications of the standard). Finally, we remark that ERTMS/ETCS RAM 

specification for constituents requires UBAL < 10
-7
 (e.g. a combination of MTBF=10

7
h and 

MTTR=1h). In our analysis, we provided a variation interval for Lineside reliability 

parameters in order to show that less reliable balises used in redundant groups are able to 

easily fulfil system level availability requirements at a less cost (we will consider the impact 

of Lineside availability on overall system availability in Section 6). In particular, we assumed 

the Lineside is responsible for an Immobilising Failure whenever two adjacent BGs fail, as 

such an event causes the train to apply the emergency brakes as the so called “balise linking 

error reaction” in most system implementations. The Fault Tree model for the Lineside is 

depicted in Figure 57 (BG structure, being the same for all groups, is only explicited for the 

first one). 

 

BG1.1 fail

BG1.2 fail

AND

OR

Track 1

Lineside

failure

OR

BG1.2 fail

BG1.3 fail

AND

BG1.(N/2-1) fail

BG1.N/2 fail

AND

...

BG2.1 fail

BG2.2 fail

AND

Track 2

OR

BG2.2 fail

BG2.3 fail

AND

BG2.(N/2-1) fail

BG2.N/2 fail

AND

...

BaliseM fail

Balise1 fail

... 2ooM

 
Figure 57. Fault Tree model of the Lineside subsystem. 

 

Lineside model parameters 

The description and variability interval for parameters is presented in Table 11. The 

variability interval of the total number of balise groups has been chosen considering: realistic 

track lengths from 100Km to 400Km, an average BG inter-distance of about 1Km, and both 

track directions.  
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PARAMETER DESCRIPTION MIN MAX STEP 

MBG Number of balises for each group 2 8 1 

NBG Total number of balise groups 200 800 200 

MTBFBAL Mean Time Between Failures for each balise [h] 2.5 105 1.5 106 2.5 105 

MTTRBAL Mean Time To Repair for each balise [h] 0.5 2.5 1 

UIF-LNS Lineside system unavailability with respect to Immobilising Failures 

Table 11. Lineside model parameters. 

 

Lineside model evaluation 

Selected results of the analyses are shown in Table 12 (as aforementioned, the only significant 

failure mode for the Lineside leads to an Immobilising Failure). Table 12 suggests that BGs 

constituted by more than 2 balises are over-dimensioned with respect to ERTMS/ETCS 

availability requirements: this result formally justifies the practical choice of adopting groups 

constituted by just two balises in all current projects. The possibility to adopt BG of up to 8 (!) 

balises seems therefore completely useless, as the only reason to do this would be using very 

low reliable balises, which is obviously not convenient, as frequent on-the-track interventions 

are difficult and costly. As for the other results, almost any combination of Lineside 

parameters produce acceptable results, with most of them (not all shown in the table) leading 

to UIF-LNS<10
-8
. The only results requiring attention are the ones corresponding to the worst 

combinations of parameters: maximum track length, lowest balise reliability, highest time to 

repair: even in such worst conditions, the result of UIF-LNS≈10
-7
 is perfectly compatible with 

the order of magnitude of the other ERTMS/ETCS subsystems, as it will be shown in the 

following sections. In fact, other ERTMS/ETCS subsystems (e.g. EVC, RBC, etc.) feature a 

similar unavailability, but in a typical installation they are usually required in a number which 

is more than one. However, the mentioned worst case corresponds to a balise unavailability: 

UBAL= 1−MTBFBAL/( MTBFBAL+MTTRBAL)=1−2.5*10
5
/(2.5*10

5
+2.5)=10

-5
, 

which is two orders of magnitude higher than the 10
-7 

value stated by RAM specification for 

constituents (see  

Table 4), thus justifying the convenience of a system level approach. Finally, the Lineside 

results presented above justify the possibility to neglect the Lineside subsystem contribution 

in a global system availability analysis when a proper choice of parameters is performed. 
 

MBG NBG MTBFBAL MTTRBAL UIF-LIN 

0.5 h 3.1840*10-9 

1.5 h 2.8655*10-8 

2.5 h 7.9598*10-8 

2.5 105 h 
 

2.5 h 1.9900*10-8 

200 

106 h 2.5 h 4.9750*10-9 

400 7.5 105 h 1.5 h 6.3839*10-9 

0.5 h 1.2784*10-8 2.5 105 h 

2.5 h 3.1959*10-7 

5.0 105 h 0.5 h 3.1960*10-9 

2 

800 

106 h 1.5 h 7.1909*10-9 

≥ 3 Any Any Any ≈ 0 (<< 10-10) 

Table 12. A selection of Lineside results. 

3.2.2 The On-board subsystem: modelling and evaluation 

On-board model structure 

We will realistically assume the On-board system is not repairable on-line, for the 

unavailability of an on-board technician. Moreover, each On-board system only features a 

failure mode related to availability. In other words, at any time the On-board can only assume 

two states: available (working in full operating mode) and unavailable. A Fault Tree model 

based on components’ MBTF perfectly fit the required analysis. The FT model will comprise 

all On-board components described in Section 2, in redundant configurations to avoid single 

point of failures, plus the ones constituting the EVC elaboration subsystem (based on a basic 

TMR architecture, as aforementioned). In particular, the EVC will feature: 3 CPU cards with 
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dedicated memory; a redundant FPGA-based majority voter on CPU outputs; 3 redundant 

Power Supplies (PS); a system BUS interconnecting all the peripherals. All ERTMS/ETCS 

components are essential for correct on-board operation, and thus are connected to the Top 

Event of the Fault Tree via an OR gate. The FT model for the On-board is depicted in Figure 

58: the FT formalism is quite easy to read and thus self-explaining, so we are not going to 

describe model details any further. To cause an Immobilising Failure due to the On-board 

subsystems, at least two of them must fail, while for a Service Failure just one On-board 

failure is sufficient. 
 

PS1 fail

PS2 fail

PS3 fail

AND

OR

BUS1 fail

BUS2 fail

AND

PS fail

BUS fail

TMR fail

CPU1 fail

CPU2 fail

CPU3 fail

2oo3

AND
Voter1 fail

Voter2 fail

OR

RTM1 fail

RTM2 fail

AND
RTM fail

BTM1 fail

BTM2 fail

AND
BTM fail

DMI1 fail

DMI2 fail

AND DMI fail

ODO1 fail

ODO2 fail

AND
ODO fail

TIU1 fail

TIU2 fail

AND TIU fail

On-board

failure

CPU fail

Voter fail

 
Figure 58. Fault Tree model of the On-board subsystem. 

 

On-board model parameters 

For the EVC, Commercial Off The Shelf (COTS) components have been chosen, consulting 

commercial datasheets. Such values should be considered only as orders of magnitude, to 

have an idea of typical COTS reliability. For instance, Power Supply is chosen to be dual 

redundant because typically it is less reliable than other components. For standard 

ERTMS/ETCS devices (e.g. BTM, RTM, etc.), the basic MTBF values have been chosen in 

accordance with specified RAM requirements for constituents; then their value has been 

varied in a sensitivity analysis whose results will be described in next section. The chosen 

parameters are reported in Table 13. With safe train headways of at least 15Km (considering 

the train braking distance at a maximum speed of at least 300Km/h), the average number of 

trains does not exceed 24 for typical track lengths (however, lower values are far more 

probable, as high-speed railway lines are not so heavily loaded in practice). 
 



A CASE-STUDY APPLICATION: ERTMS/ETCS  
 

 124 

PARAMETER DESCRIPTION VALUE 

NONB Total number of On-board systems 2-24 

MTTRONB MTTR of the On-board 30’, 1h, 2h 

MTBFCPU MTBF of the Processor-Memory Card 1.35*105 h 

MTBFBUS MTBF of system Bus 2.25*105 h 

MTBFVOT MTBF of each FPGA based Voter 3.33*108 h 

MTBFPS MTBF of Power Supply 5.50*104 h 

MTBFRTM MTBF of the Radio Transmission Module 106 h 

MTBFBTM MTBF of the Balise Transmission Module 108 h 

MTBFODO MTBF of the on-board Odometer 107 h 

MTBFTIU MTBF of the Train Interface Unit 107 h 

MTBFDMI MTBF of the Driver Machine Interface 107 h 

MTBFONB MTBF of a single On-board system 

MTBFIF-ONB MTBF of the On-board system with respect to Immobilising Failures 

MTBFSF-ONB MTBF of the On-board system with respect to Service Failures 

Table 13. On-board model parameters. 

 

On-board model evaluation. 

The results of On-board model evaluation have been obtained fixing COTS’ MTBF values 

(which are given by their specification) and varying the MTBF of ERTMS/ETCS 

components, as the latter have to be developed ex novo. In particular, to better understand the 

impact of ERTMS/ETCS components’ reliability on On-board system reliability, we 

performed a sensitivity analysis whose results are shown in Table 14 (with reference to a 

single On-board system). Row headings represent the scaling factors on variable parameters 

for the sensitivity analysis (e.g. Scale 0.1 for RTM means MTBF
*
RTM = 0.1*10

6 
h = 10

5 
h). 

The overall On-board system sensitivity to ERTMS/ETCS components’ reliability is quite 

low when MTBF scales up or down of only one order of magnitude, as the EVC constitutes 

the main reliability bottleneck; when the reliability of ERTMS/ETCS components is scaled of 

two or more orders of magnitude, instead, the impact on MTBFONB is more significant. By 

simply observing model structure, with the hypothesized reference architecture and in a Level 

2 implementation, it does not appear to be any reason to assign a higher reliability to certain 

On-board components, as their influence only depends on their reference value and not on 

structural aspects (probably, the specification choice of differentiating them is related to the 

possibility for the On-board to “fall-back” into the lower ERTMS/ETCS Level 1; such a 

possibility has not been implemented in any real project). Therefore, despite of component 

RAM specification, our system level analysis for an ERTMS/ETCS Level 2 implementation 

suggests a balanced choice of MTBF for ERTMS/ETCS components; e.g. all components’ 

MTBF = 10
6 

h
 
implies MTBFONB = 6,3825*10

4 
h. Finally, Table 15 shows the impact of 

MTTRONB and of the number of trains on overall On-board reliability and availability (only a 

selection of results is reported). Our analysis shows that the On-board MTBF requirements of  

Table 4 are not respected by our reference architecture, even with a low number of trains; 

however, such requirements are hardly fulfilled even by completely redundant On-boards 

using very reliable components. Therefore, they seem over dimensioned considering real EVC 

implementations (which constitute the limiting factor to reliability). Fortunately, from a 

system level point of view, it is sufficient to reason in terms of unavailability, whose results 

for the On-board are also reported in Table 15 and seem compatible with system level 

requirements which will be used in the global analysis of Section 6. 
 

SCALE MTBFONB 

10 6.4776*104 

1 6.4769*104 

0.1 6.4195*104 

0.01 4.4182*104 

0.001 0.6885*104 

Table 14. Results of the On-board sensitivity analysis. 
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MTTRONB NONB MTBFSF-ONB MTBFIF-ONB USF-ONB UIF-ONB 

2 3.1913*104 9.5738*104 1.5667*10-6 5.2223*10-6 

4 1.5956*104 3.7232*104 3.1335*10-5 1.3429*10-6 

6 1.0638*104 2.3403*104 4.6999*10-5 2.1364*10-5 

12 5.3188*103 1.1121*104 9.3997*10-5 4.4958*10-5 

30’ 

24 2.6594*103 5.4344*103 1.8798*10-4 9.1998*10-5 

1h 6 1.0638*104 2.3403*104 9.3994*10-5 4.2728*10-5 

2h 6 1.0638*104 2.3403*104 1.8797*10-4 8.5452*10-5 

Table 15. On-board unavailability with respect to MTTR and number of trains. 

3.2.3 The Trackside subsystem: modeling and evaluation 

Trackside model structure 

Most of the considerations already done about the architectural model of the EVC can be 

applied to the Radio Block Center, with the following two differences: 1) instead of On-board 

ERTMS/ETCS components, the RBC only features two communication interfaces (GSM-R 

and WAN); 2) the RBC is a repairable system, which can be maintained on-line by a 

dedicated technician. Therefore, while model structure remains substantially the same, the 

computation will be performed with respect to components’ availability instead of MTBF. 

The Fault Tree formalism still suits such kind of analysis, in the infinite repair resources 

assumption: when a failure occurs to a component, the repair action starts immediately and 

finishes after a Mean Time To Repair which is independent from concurrent failures and does 

not account for possible system restart times (we assume them negligible; for more articulated 

maintenance policy modelling, refer to §3.1). The RBC Fault Tree model is depicted in Figure 

59. Just like the Lineside, the only failure mode for a RBC leads to an immediate system 

Immobilizing Failure, as the number of trains meant to be managed by each RBC is at least 2. 

Therefore, with respect to IFs, the Trackside can be modelled by a simple OR gate connecting 

all RBCs installed on the track. 
 

PS1 fail

PS2 fail

PS3 fail

AND

OR

BUS1 fail

BUS2 fail

AND

PS fail

BUS fail

TMR fail

CPU1 fail

CPU2 fail

CPU3 fail

2oo3

AND
Voter1 fail

Voter2 fail

OR

GSM1 fail

GSM2 fail

AND GSM-R fail

WAN1 fail

WAN2 fail

AND
WAN fail

RBC

failure

CPU fail

Voter fail

 
Figure 59. Fault Tree model of the Radio Block Center. 

 

Trackside model parameters 

Refer to Section 3.2.2 for explanation about the COTS components used in the computing 

subsystem (the chosen MTBF are the same). For GSM-R and WAN interfaces, COTS 

components are used, too. The MTTR is assumed to be the same for all components, each of 

which is easy accessible and hot-replaceable. The MTTR variation set consists in typical 

values for supervised systems: 5, 10 and 30 minutes (the latter can correspond to a system 

with less easily accessible components or more hardly diagnosable faults).  
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PARAMETER DESCRIPTION VALUE 

NRBC Total number of Radio Block Centres 1-5 

MTBFCPU MTBF of the Processor-Memory Card 1.35*105 h 

MTBFBUS MTBF of system Bus 2.25*105 h 

MTBFVOT MTBF of each FPGA based Voter 3.33*108 h 

MTBFPS MTBF of Power Supply 5.50*104 h 

MTBFGSM MTBF of GSM-R communication interface 1.75*105 h 

MTBFWAN MTBF of WAN communication interface 4.00*105 h 

MTTRRBC Mean Time To Repair (or replace) a RBC component 5’, 15’, 30’ 

Table 16. Trackside model parameters. 

Trackside model evaluation 

For the RBC, no MTBF requirement is given, so we can directly reason in terms of 

availability. Table 17 reports the evaluated unavailability of the Radio Block Center with 

respect to different repair times. Availability is related to reliability and maintainability 

according to the well know formula: A=MTBF/(MTBF+MTTR). Therefore, the result of 

strong dependence between URBC and MTTRRBC, shown in Table 17, is expectable and 

underlines the importance of adopting efficient repair strategies and hot-spare components: 

this allows satisfying the requirement on system availability (URBC<10
-6
) without using highly 

reliable and expensive ad-hoc components. However, for the system level analysis we won’t 

consider the poorly realistic result corresponding to the lowest MTTRRBC=1’, as we will show 

that this is not necessary to satisfy the system level availability requirement. Finally, Table 18 

shows the results about Trackside unavailability, assuming a realistic MTTRRBC=15’. 

According to the results obtained, the number of RBC should be kept as low as possible; 

however, other factors (e.g. performance requirements) constrain such a choice. As evaluated 

for the On-board (see Section 4), it could be shown that the requirement MTBF-ITRK>3.5*10
8 

h is largely over-dimensioned: we will simply neglect it and proceed to our system level 

analysis. 

 
MTTRRBC URBC 

1’ 3.0182*10-7 

5’ 1.5145*10-6 

15’ 4.5454*10-6 

30’ 9.0909*10-6 

Table 17. RBC unavailability with respect to repair times. 

 
NRBC UIF-TRK 

2 9.0909*10-6 

3 1.3636*10-5 

4 1.8182*10-5 

5 2.2727*10-5 

Table 18. Trackside unavailability with respect to the number of RBCs. 

3.2.4 The global model of hardware failures 

Global model structure 

For the global failure model, we decided to exploit the Bayesian Networks formalism as it 

allows to: 

1) model several failure modes (i.e. IF and SF) in a single model, by means of multi-state 

stochastic variables; 

2) introduce and evaluate the system level impact of common mode failures, e.g. power 

failures; 

3) automatically locate system level criticalities, by a posteriori probabilities. 

While these features can be separately provided by other formalisms, BN allow treating them 

in an integrated framework, and they do not suffer from the state space explosion problem. 

The basic structure of the BN model (shown in Figure 60) is simply a translation of an 

homologous FT model, extended with the aforementioned specific features of BN. The 

ERTMS Failure event is modelled by a three state variable which represents the most 
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significant ERTMS system level failures (IF, SF, MF or no failure), as described in Section 2. 

For instance, the Conditional Probability Table (CPT) for the “noisy” OR gate connected to 

ERTMS_Failure (a sort of Top Event for a Fault Tree) is shown in Table 19. As we can see 

from the CPT table, gate implementation is obtained by conditioning system failure 

probability to subsystems’ failure probability, as described in detail in [5] (note that the On-

board failure node is a three state event, as the On-board features two failure modes: 

Immobilising and Service). 
 

LINESIDE TRACKSIDE ON-BOARD IMMOBILIZING FAILURE SERVICE FAILURE MINOR OR NO FAILURE 

OK OK OK NO NO YES 

OK OK KO_IMMOB YES NO NO 

OK OK KO_SERV NO YES NO 

ANY OTHER COMBINATION YES NO NO 

Table 19. Conditional Probability Table of the noisy OR gate connected to the “Top Event”. 

 

The choice of modelling a common mode of failure is justified by the fact that in a real 

operating environment, all the RBC are located in the same building, in order to ensure easy 

maintenance, sharing the same power line. For the common source of failure to cause a 

system level failure, also the Uninterruptible Power Supplies (UPS) must fail, and such an 

event is modelled by a simple Bayesian AND gate. 
 

 
Figure 60. The global Bayesian Network model featuring a common mode failure. 

 

Global model parameters 

The parameters of the final BN global model are no more varying in their full variability 

range, as assumed for previously described subsystems Fault Tree analyses, whose results 

have already been discussed above. Instead, they are chosen using the already available 

results and according to realistic assumptions about the number of trains (i.e. EVCs), RBCs 

and BGs, taken from real world system implementations and usage characteristics. In 

practical implementations, in fact, no more than 3 trains follow each other for each track 

direction, no more than 3 RBCs are used for each high-speed railway line, and Lineside 

results are related to high reliable balises used in groups of 2 (thus the Lineside subsystem in 
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not even exploded in its basic components). Parameter values, meaning and variability range 

is reported in Table 20. They have been scaled up of several orders of magnitude when used 

in the model of Figure 33, as a consequence of Netica parameters’ representation and limited 

solver precision; of course, results have been scaled down accordingly. UPS unavailability 

refers to high reliable and easily maintainable industrial models (e.g. MTBFUPS=2*10
5
 h and 

MTTRUPS=15’); power line unavailability is assumed to be quite low with respect to normal 

users’ perceptions for the usual presence of diesel generators which activate quickly in case of 

black-outs (e.g. MTBFPWR=3 months and MTTRPWR=2’). 

 
PARAMETER DESCRIPTION VALUES 

URBC RBC Unavailability 1.5145*10-6, 4.5454*10-6 , 9.0909*10-6 

UEVC EVC Unavailability 7.8339*10-6, 1.5668*10-5, 3.1335*10-5 

ULNS Lineside Unavailability 3.1959*10-7 

UPWR Power Line Unavailability 1.54*10-5 

UUPS UPS Unavailability 1.25*10-6 

Table 20. Global model parameters. 

 

Global model evaluation 

First of all, a first study can be performed on the model under analysis by exploiting the Most 

Probable Explanation of Bayesian Networks. If an Immobilising Failure occurs, the a 

posteriori failure probabilities are almost the 80% for the Trackside (about 26% for each 

RBC) and 16% for the On-board (nearly 6% for each system), therefore the former seems the 

main responsible for IFs (the Lineside contribution, once more, proves to be negligible). On 

the opposite side, when a Service Failure occurs, the responsibility is 100% allocated to the 

On-board, as expectable. The “sensitivity to findings” calculation provides and automated 

sensitivity analysis, in which the On-board branch gives the far higher contribution, 

suggesting the opportunity to act on On-board in order to improve system availability. 

The results of global model evaluation are reported in Table 21. We can observe how the 

common mode failure contribution is negligible when its probability is kept low (<10
-9
) by 

adding redundant UPS, while it is as more relevant as other components’ unavailability 

decreases, partly annihilating the efforts made to design more available subsystems. The 

fundamental result is that the shaded cells of Table 21 highlight design choices fulfilling the 

system level requirements: 

   - UIF-HW<1.46*10
-5
 (from Table 4, AIF-HW>0.9999854 and obviously UIF-HW=1-AIF-HW), or 

   - USF-HW<1.30*10
-4 

(from Table 4, ASF-HW>0.99987 and obviously USF-HW=1-ASF-HW). 

The results in bold can be selected as valid design choices, as they fulfill both requirements on 

Immobilising and Service Failures. We recall that some of these results correspond to 

subsystems’ MTBF which we showed in previous sections not to be compliant to 

ERTMS/ETCS RAM specification for constituents, and this underlines the value of a system 

level analysis (fulfilling the requirements for constituents would have been either unfeasible 

or too much expensive). Finally, the results also demonstrate how the use of properly 

redundant COTS components suits the engineering of high-available critical systems.
 

 
COMMON CAUSE URBC UEVC USF UIF 

7.8339*10-6 4.4972*10-5 5.7519*10-6 

1.5668*10-5 8.6449*10-5 8.3687*10-6 

1.5145*10-6 

3.1335*10-5 1.5956*10-4 1.8329*10-5 

4.5454*10-6 1.5668*10-5 8.5664*10-5 1.7372*10-5 

7.8339*10-6 4.3956*10-5 2.8213*10-5 

NO 
(YES, with 

redundant UPS) 

9.0909*10-6 

3.1335*10-5 1.5596*10-4 4.0507*10-5 

7.8339*10-6 4.4915*10-5 6.9947*10-6 1.5145*10-6 

3.1335*10-5 1.5936*10-4 1.9556*10-5 

YES, with 
no UPS 

9.0909*10-6 3.1335*10-5 1.5576*10-4 4.1706*10-5 

Table 21. A selection of system level results. 
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The analyses on ERTMS/ETCS presented in this section allowed us to obtain several useful 

results. First of all, we showed the advantages of a system level analysis with respect to a one 

based on constituents: the former allows using less reliable (e.g. COTS) components and 

fulfill structural reliability requirements at a lower cost. Secondly, we highlighted some 

incoherence in reliability requirements stated by the specification (some values are over-

dimensioned with respect to other ones). Last but not least, we were able to find out optimal 

design choices in order to fulfill availability requirements since early design stages, only 

basing on the specification and on the proposed reference architecture. The compositional 

approach and the combination of Fault Tree and Bayesian Network formalisms revealed their 

advantages in terms of power and flexibility in performing the presented study. 

3.3. Performability evaluation of ERTMS/ETCS 

System level failures are not only due to hardware faults to components. Performance 

degradations can happen due to transmission errors in the communication network, causing 

loss of frames, data packets, messages and possibly connections. Other performance 

degradations can happen due to system charge: even though software is not affected by 

systematic errors, the scheduling of processes can be such not to exclude performance 

degradations when system is overstressed. As a fundamental aspect of real-time systems is 

temporal predictability, this can only happen when timing failures are not safety-critical, that 

is to say when they can be tolerated and only take to a performance degradation or availability 

related problems. This is the case of the trackside system of ERTMS/ETCS: an on-board 

vitality timer monitors the messages coming from the trackside, commanding brakes when 

communication is loss due to unavailability or performance degradation of either the trackside 

or the communication network. Therefore, it would be useful to predict system availability 

with respect to several factors, e.g.: 

• the number of trains to be controlled, their speed and the Position Report message 

transmission rate; 

• the GSM-R network bit error rate, packet loss rate or availability; 

• the software architecture and the scheduling policy of the necessary processes. 

To simplify things, worst case conditions are specified in ERTMS/ETCS RAMS requirements 

document, which can be relaxed or customized to address specific needs (e.g. maximum 

speeds less than 500Km/h, higher inter-balise distances, different Position Report and 

Movement Authority sending parameters, etc.). 

In Figure 61 we report a system Failure Model addressing both structural hardware failures 

and timing failures. The hardware system failure model block on the left synthesizes the  

model represented in Figure 56, which have been studied in the previous section. 

Performability contributions, instead, are a result of trackside subsystem or GSM-R timing 

failures. The model assumes that the contribution of systematic errors is negligible, as 

justified in Chapter II, and specializes the general Fault Tree of Figure 22. 

 

 
 

Figure 61. The integration of performability aspects in the overall system failure model. 
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For the Radio Block Center, a performability study has been performed in [58] by applying 

the GSPN modelling paradigm described in Chapter III §3.1 for representing task interaction 

and transmission queues. A schematic and quite self explaining representation of network 

structure is provided in Figure 62, with the “CPU Scheduling” subnet implementing the 

scheme of Figure 25. 

 

 
Figure 62. A scheme of the GSPN performability model of the Radio Block Center. 

 

This study has shown that by properly selecting the number of GSM-R radio channels, the 

contribution of timing failures to the global system availability can be kept as low as 10
-6
, in 

the worst conditions defined according to the Alta Velocità system specification (i.e. the 

Italian implementation of ERTMS/ETCS level 2). When an adequate number of radio 

channels is used, the task scheduling policy and the CPU performance do not seem to 

influence the results, as expected. The needed message buffer size could also be sized by 

monitoring the average number of tokens in selected places.  

For the communication channel, we exploit the results of two studies. The first has been 

published in [15] and reports the results of the analysis of a GSPN model of communication 

failure and recovery behaviour in ERTMS/ETCS. The study shows that “the connection is 

working with a probability of 99.166%”, with the cell handover and bursts giving the most 

relevant contribution to such result. A similar GSPN model has been developed in [142], 

which produces a result for the GSM-R unavailability of 3.24*10
-3
, considering realistic 

parameters. If we compare such result with the ones reported in Table 21, we can easily detect 

an average difference of about 3 orders of magnitude between the GSM-R unavailability 

result and the other hardware contributions. 

The aforementioned models can be integrated in the corresponding blocks of Figure 61. Given 

the relevant difference in orders of magnitude of the results, it is not necessary to perform any 

elaboration to conclude that the GSM-R network is the limiting factor in determining system 

availability. Timing failures, in fact, give by far the most relevant contribution in the overall 

failure probability, and this is confirmed by experimental observations of on-the-field data. 

It is very significant to observe that such studies have been performed too late, when most 

tracks were already operational. An early availability of such studies would have suggested 
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designers to pay more attention in the technology or quality of the communication network, 

which could be predicted to be the availability bottleneck for ERTMS/ETCS Levels 2 and 3. 

In fact, all the data necessary to perform modeling and analysis was already available to 

designers years before. The availability of a model would have also helped to fine tune 

reliability and performance parameters in order to contain costs. It would have also allowed to 

limit the availability requirement for the Radio Block Center hardware: it is a non sense to 

make it so restrictive when the far more relevant contribution is given by the communication 

network; this is a very evident inconsistency in RAM requirements specification. Now, it 

would be very difficult and costly to implement effective solutions for such problem. This 

real-world experience underlines the importance of dependability prediction, which has been 

stressed throughout this thesis work. 
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 Conclusions 
Any engineering discipline is based on models. Models are as more useful as system 

complexity and criticality grow up. In this thesis we have shown an application of mostly 

graphical models to the dependability evaluation of complex critical systems, covering both 

functional analysis (static and dynamic) for the detection of software defects and 

multiformalism modeling for the availability evaluation with respect to system level failure 

modes due to casual hardware faults. These are not the only activities involved in the V&V of 

critical systems, but being necessarily performed at the system level, they are the ones most 

penalized by the growth in complexity. 

Despite of the successful application of the proposed techniques to a real-world industrial case 

study
23

, which gave us enough confidence on their validity, still much work remains to be 

done. 

First, model-based analysis techniques can be refined and automated. Further efforts should 

be performed to bridge the gap between the general theoretical framework and the practical 

application of the method in industrial contexts. Support tools are usually very effective in 

achieving this aim. Therefore, a model-based testing environment could be developed in order 

to systematically manage system input data (influence variables, functional input-state-output 

relations, etc.) and provide model building and analysis, in order to automate as much as 

possible the manual elaborations described in Chapter II. All these efforts are aimed at a 

stronger integration of model-based analyses techniques in the development cycle of critical 

systems. 

As for the multiformalism approaches, Decision Networks [154] could be advantageously 

employed for the automatic evaluation of cost/benefits trade-offs, integrated with genetic or 

adaptive algorithms in order to minimize the objective cost function by acting on model input 

parameters (e.g. MTBF, MTTR, level of redundancy, etc.) and evaluating corresponding 

output variations. Integrating more formalisms in OsMoSys and supporting the translation 

between formalisms would also bring advantages in flexibility. For instance, the modeler 

would be able to sketch a Fault Tree, translate it into a Bayesian Network and then define 

dependencies or add event states. In Chapter III we already forecasted the advantages of 

integrating a “Bayesian Fault Tree” formalism in OsMoSys. The integration of flexible 

composition operators in OsMoSys is also a short term objective. Flexibility in adding or 

customizing operators should not impede the fundamental characteristics of expressiveness 

and easy of use, with modelers interacting by a GUI environment and connecting reusable 

modules in a quick and straightforward way. Long term objectives are: the integration of the 

HIDE [8] methodology, with the support of UML views and the translation into analyzable 

multiformal models; the preservation of properties after model integration/composition and/or 

their verification by model-checking techniques; the support for model complexity reduction 

approaches, e.g. based on equivalent submodels [95] or model folding by exploiting 

symmetries [61]. 

We stressed the importance of tight model composition in system level dependability studies, 

as it would allow for advanced analyses on comprehensive and well integrated system level 

models. For the analysis performed in this thesis, model composition was performed by hand; 

however, we showed that this is a complex and error prone task which lacks flexibility and the 

possibility of reuse model blocks (library of models could be made available for modelers 

according to any application domain). When composition operators will be available in the 

OsMoSys framework with all their required features, model composition would gain power, 

flexibility and ease of use. 

                                                 
23
 The recently activated Rome-Naples and Turin-Novara High-Speed railway lines have been validated using 

the approaches presented in this thesis. 
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As a last example of the potential modeling power of composition, we report in Figure 63 an 

example cohesed model of the entire ERTMS/ETCS system. Such a system is composed by a 

number of on-board systems (installed on the trains) and a number of trackside and lineside 

devices, constituting the ground subsystem. A multilayered modelling paradigm can thus be 

exploited, hence achieving the abstract representation of Figure 63. Compositional operators 

are used to make intra-layer, inter-layer (i.e. intra-device) and inter-device communication. In 

some cases, connectors can be used instead of composition operators, for instance when we 

are only interested in the evaluation of performance/reliability parameters to use as input 

attributes of other submodels. The contribution of external entities (e.g. users, temperature, 

etc.), represented by further submodels, should be added to the overall model in order to make 

it evolve as it were in its real operating environment. This applies to any complex distributed 

control system, featuring a number of heterogeneous devices interacting one with each other 

in a non straightforward way. Other interesting and very promising applications of 

multiformalism composition operators are the ones related to biological models and critical 

infrastructures [112], which are similarly suited to be represented by modular and layered 

structures. 
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Figure 63. A complex multi-layered multiformalism model using composition operators. 
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 Glossary of Acronyms 
A list of the acronyms used more often in the text follows. 

 
Abbreviation Meaning 

ABS Automatic Braking System 

ALARP As Low As Reasonably Practicable 

ATC Automatic Train Control or Air Traffic Control 

ATM Automatic Transaction Module 

ATP Automatic Train Protection 

BA Boundary Analysis 

BDD Binary Decision Diagram 

BE Basic Event 

BIST Built In Self Test 

BN Bayesian Network 

BTM Balise Transmission Module 

COTS Commercial Off The Shelf 

CPN Coloured Petri Nets 

CPT Conditional Probability Table 

CPU Central Processing Unit 

CTMC Continuous Time Markov Chain 

CTP Change of Traction Power 

DAG Direct Acyclic Graph 

DBN Dynamic Bayesian Network 

DDP Decision to Decision Path 

DFT Dynamic Fault Trees 

DMI Driver Machine Interface 

EDRM Error Detection and Recovery Mechanism 

ERTMS/ETCS European Railway Traffic Management System / European Train Control System 

EVC European Vital Computer 

FIS Functional Interface Specification 

FME(C)A Failure Mode Effects (and Criticality) Analysis 

FPGA Field Programmable Gate Array 

FRACAS Failure Reporting Analysis and Corrective Action System 

FRS Functional Requirements Specification 

FSM Finite State Machine 

FT Fault Tree 

FTA Fault Tree Analysis 

GSPN Generalized Stochastic Petri Nets 

GUARDS Generic Upgradeable Architecture for Real-Time Dependable Systems 

GUI Graphical User Interface 

HA Hazard Analysis 

HDL Hardware Description Language 

HDS Hardware Design Specification 

HIDE High-level Integrated Design Environment for Dependability 

HMI Human Machine Interface 

HPP Homogeneous Poisson Process 

HW Hardware 

ISO/OSI International Standards Organization / Open Systems Interconnection 

JRU Juridical Recording Unit 

LCSAJ Linear Code Sequence and Jump 

LIVE Low-Intrusion Validation Environment 

LOC Lines of Code 

LRU Legal Recording Unit 

LTM Loop Transmission Module 

MA Movement Authority 

MC Markov Chain 

MCS Monte Carlo Simulation 

MDT Mean Down Time 
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MEM Minimal Endogen Mortality 

MMI Man Machine Interface 

MSC Message Sequence Chart 

MTBF Mean Time Between Failures 

MTBHE Mean Time Between Hazardous Events 

MTTD Mean Time To Diagnose 

MTTF Mean Time To Fail 

MTTR Mean Time To Repair 

OMG Object Management Group 

OS Operating System 

PC Personal Computer 

PFT Parametric Fault Trees 

PLC Programmable Logic Controller 

QN Queuing Network 

RAID Redundant Array of Independent Disks 

RAMS Reliability Availability Maintainability Safety 

RB Repair Box 

RBC Radio Block Center 

RBD Reliability Block Diagrams 

RFT Repairable Fault Trees 

RT Real Time 

RTM Radio Transmission Module 

SC Safety Case 

SDD Software Design Description 

SECT Strong Equivalence Class Testing 

SIL Safety Integrity Level 

SPN Stochastic Petri Net 

SPR System Problem Report 

SRS System Requirements Specification 

SSRS Sub-System Requirements Specification 

STM Specific Transmission Module 

SW Software 

SWN Stochastic Well-formed Nets 

SWRS Software Requirements Specification 

TA Timed Automata 

TC Track Circuit 

TE Top Event 

THR Total Hazard Rate 

TIU Train Interface Unit 

TMR Triple Modular Redundancy 

UML Unified Modeling Language 

UPS Uninterruptible Power Supply 

V&V Verification and Validation 

WCT Worst Case Testing 

WFE Workflow Engine 

XML Extended Markup Language 
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