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Abstract

Thermoacoustics combines thermodynamics, fluid dynamics and acoustics to describe the interac-
tion that exists between heat and sound. Two types of devices can be realized which are based on
the thermoacoustic conversion of energy: thermoacoustic refrigerator (or heat pump) that convert
sound wave energy in refrigeration (or heating), thermoacoustic engine that convert heat in useful
work. Nevertless, thermoacoustic technology could play a significant role in the development of
renewable energies because of its advantages over conventional energetic technologies (environ-
mentally friendly working fluid, low-grade energetic inputs can be used as driving sources, no
moving part, low manufacturing and maintenance costs), actually there are still some challenges
left that need to be resolved before thermoacoustic devices can be used competitively on a large
scale. The core of thermoacoustic engines and heat pumps (or refrigerators), in which the energy
conversion takes place, is represented by a particular porous material, named stack (or regenera-
tor), suitably designed to allow the correct viscous and thermal interactions between the oscillating
fluid and its solid surface in order to convert a mechanical energy (as a sound wave) into heat, and
vice versa. To make these devices more efficient, it is crucial to understand the phenomena that
occur in that porous core better and then identify the ideal geometry for each unique working con-
dition. Therefore, the characterization of a porous material, used as stack, is made through the
study of the thermo-fluid dynamic fields inside its solid skeleton fulfilled by a fluid. In particular,
fluid mechanics balance equations for fluids need to be solved in the harmonic regime, because
of the fluid moves under an oscillating flow (as sound wave is) stimulus. The goal of this thesis
work is to expand the frontiers of knowledge in thermoacoustics by employing unconventional
materials as stacks. Unconventional thermoacoustic stacks, such as Tetragonal Pin Array, Wire
Mesh and 3D-Membrane Foams, have been investigated. New semi-phenomenological models,
inspired by classically used models used to predict the sound absorption (or sound transmission
loss) applications, are used to mathematically describe their behaviour. These predictive models
of the viscous and thermal behaviours are based on their micro-geometrical features. Furthermore,
the experimental validations of the predictive models have been carried out. Two new measuring
approaches have been devised to address the shortcomings of the existing experimental method-
ologies, particularly in the low frequency range, for evaluating the dynamic behaviour of porous
materials. Finally, an energetic criterion to select the core which maximize the heat-to-acoustic
energy conversion has been presented.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Background and context

Research on sustainable technologies has received increasing attention in the past 20 years due to
a rise in the energy consumption by human activities and a global focus on pollution and environ-
mental challenges. Thermoacoustic technology can play a significant role in this context because
of, the use of low-grade input energy (such as solar energy or industrial waste heat) as an energy
source, the use of environmentally friendly working fluids (air, noble gas), and low realization and
maintenance costs. Two types of devices can be realized which are based on the thermoacoustic
conversion of energy: thermoacoustic refrigerator (or heat pump) that convert sound wave energy
in refrigeration (or heating), thermoacoustic engine that convert heat in useful work. The literature
shows that thermoacoustic technologies have been used in different applications such as electric-
ity generation [1], domestic refrigeration [2], automotive industry [3], cryogenics [4], and thermal
management of electronic devices [5]. Despite these advantages, thermoacoustic technology needs
to be improved before it could represent a reasonable alternative solution to the present systems.
The core of thermoacoustic engines and heat pumps (or refrigerators), in which the energy conver-
sion takes place, is represented by a particular porous material [6], named stack (or regenerator).
It is suitably designed to allow the correct viscous and thermal interactions between the oscillating
fluid and its solid surface in order to convert a mechanical energy (as a sound wave) into heat,
and vice versa. To make these devices more efficient, it is crucial to understand the phenomena
that occur in that porous core better and then identify the ideal geometry for each unique working
situation. Fig. 1.1 highlights the fields of science involved in thermoacoustics. Therefore, the
analysis of the thermo-fluid dynamic fields within the solid skeleton filled by a fluid is carried out
to characterize a porous material used as a stack. Because fluid moves in response to oscillating
flow stimuli, like sound waves, fluid mechanics balancing equations for fluids must be specifically
solved in the harmonic regime. Then, acoustic literature may be used to predict the viscous and
thermal behaviours of the materials, using a semi-phenomenological model based on the materi-
als’ microstructure. Last but not the least, thermodynamics is fundamental to quantify the energy
exchange and heat to mechanical power (and vice versa) conversion.
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Figure 1.1: Illustration of the different fields of science involved in thermoacoustics.
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1.2. RESEARCH OBJECTIVE AND OUTLINE

1.2 Research objective and outline

In thermoacoustic literature, uniform cross sectional material are generally employed as stack.
They are characterized by analytical formulations to describe their dynamic behaviour under os-
cillating flows. Nevertheless, their pore size is often too large to ensure very good heat contact
between the gas and the solid material, which is fundamental for the thermoacoustic phenomena
to rise up. Because of this constraint, materials with more complex geometry are mostly pre-
ferred. The goal of this thesis work is to expand the frontiers of knowledge in thermoacoustics
by employing unconventional materials as stacks. Unconventional thermoacoustic stacks, such
as Tetragonal Pin Array, Wire Mesh and 3D-Membrane Foams, have been investigated. New
semi-phenomenological models, inspired by classically used models used to predict the sound
absorption (or sound transmission loss) applications, are used to mathematically describe their be-
haviour. These predictive models of the viscous and thermal behaviours are based on their micro-
geometrical features. Furthermore, the experimental validations of the predictive models have
been carried out. Two new measuring approaches have been devised to address the shortcomings
of the existing experimental methodologies, particularly in the low frequency range, for evaluating
the dynamic behaviour of porous materials. Finally, an energetic criterion to select the core which
maximize the heat-to-acoustic energy conversion has been presented. The outline of the thesis is
presented in the following. In Sec. 2, physical and mathematical background is recalled starting
from fluid mechanics equations to thermoacoustic theory, together with the description of the elec-
troacoustic analogy. Acoustic semi-phenomenological models to predict the viscous and thermal
behaviours of a rigid frame porous material and its micro geometrical (transport) parameters are
presented in Sec. 3 .The numerical studies and the transport parameters models for three selected
porous materials, such as Tetragonal Pin Array, Wire Mesh and 3D-Membrane Foams are reported
in Sec. 4 , while Sec. 5 shows an overview of the existing measurement techniques for the dy-
namic behaviours of the porous media and two novel lumped element techniques. Thermoacoustic
analyses are reported in Sec. 6 where the energetic theory is developed based on the microstruc-
ture features of the stacks and the thermoacoustic numerical scheme to solve acoustic and thermal
field in such engine and heat pump is presented together with a performance comparison between
the selected porous media. Finally, in Sec. 7 future developments and a few remarks conclude the
work.

3



CHAPTER 1. GENERAL INTRODUCTION

4



Chapter 2

Wave propagation in fluid-saturated
porous medium

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 General equations in fluid mechanics . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The equation of continuity . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 The equation of motion in a viscous fluid . . . . . . . . . . . . . . . . 6
2.2.3 The equation of heat transfer . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The linearized Navier-Stokes equations in frequency domain . . . . . . . . 7
2.4 Homogenization of a rigid-frame porous media . . . . . . . . . . . . . . . . 8
2.5 Electroacoustic network analogy . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Transfer Matrix approach . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Thermoacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Thermoacoustic heat pumping process . . . . . . . . . . . . . . . . . . 14
2.6.2 Thermoacoustic devices . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 Mathematical aspects of Thermoacoustics . . . . . . . . . . . . . . . . 15
2.6.4 Analysis of heat capacity ratio in porous media . . . . . . . . . . . . . 17

5



CHAPTER 2. WAVE PROPAGATION IN FLUID-SATURATED POROUS MEDIUM

2.1 Introduction

The thesis aims to describe the energy conversions that occur inside porous materials as sound
waves propagate through them. A porous medium, being a heterogeneous system made of a solid
matrix with its void filled with fluids, can be treated as a continuum by properly accounting for
the role of each phase in transport through this system of phases [7]. Therefore, to schematize the
porous material as a single body with homogeneous behaviour it will be fundamental to correctly
assess the viscous and thermal interaction between the fluid phase and the solid skeleton. In this
chapter a brief presentation of the general equations of fluid mechanics is reported. Subsequently,
the linearized version of Navier-Stoker equations will be presented in the frequency domain to-
gether with the scale separation approach for the viscous and thermal effects. Therefore, the anal-
ogy between the equations describing sound propagation inside a porous material and the electrical
transmission line equations (Telegrapher’s equations) will be highlighted. Finally, thermoacoustic
mathematical background will be shown. In the last part, the classical assumptions of solid heat
capacity being much higher than fluid heat capacity, that are regularly utilized in literature, will be
removed in order to appropriately handle the thermal behavior of the solid skeleton.

2.2 General equations in fluid mechanics

Fluid mechanics concerns the study of the motion of fluids (liquid and gases) [8]. Since the
phenomena considered in fluid dynamics are macroscopic, a fluid is regarded as a continuous
medium. This means that even when a infinitely small elements of fluid volume is considered,
it is large when compared with the distances between molecules. The complete mathematical
description of the state of a moving fluid is given by the fields distribution of a momentum quantity
such as the fluid velocity vector v = v (x, y, z, t) and any two thermodynamic quantities of the
fluid, for instance the pressure p = p (x, y, z, t) and the density ρ = ρ (x, y, z, t). All these
quantities are, in general, functions of the spatial coordinates x, y, z and of the time t.

2.2.1 The equation of continuity

The equation of continuity expresses the conservation of matter. Let us consider a infinitesimal
volume dV of space with a boundary surface dΩ. The mass of fluid in this volume is ρdV , while
the mass of fluid flowing in unit time through an element dΩ is ρv · dΩ. Therefore, the general
balance equation can be written as the sum of variation per unit time in the mass of fluid in the
reference volume and the convective term flowing across the surface control of the volume. By
using the differential formulation, it can be written as:

∂ρ

∂t
+∇ · (ρv) = 0. (2.1)

In the case of incompressible fluid (ρ = cost), Eq. (2.1) becomes ∇ · v = 0.

2.2.2 The equation of motion in a viscous fluid

To describe the motion of a real fluid, thermodynamic irreversibility effects due to internal friction
(viscosity) must be considered. These contributes are reported in the viscous stress tensor σ′ where
its components can be written as

σ′
ij = µ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∂vi
∂xi

)
+ ζδij

∂vi
∂xi

(2.2)
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2.3. THE LINEARIZED NAVIER-STOKES EQUATIONS IN FREQUENCY DOMAIN

where µ and ζ are respectively the dynamic and the bulk viscosity of the fluid. Therefore, the
variation in time of the momentum in a volume of fluid dV is expressed, in vector form, as the
sum of the surface and viscous forces:

∂ρv
∂t

+∇ · (ρv v) = −∇p+ µ∇2v +

(
ζ +

1

3
µ

)
∇ (∇ · v) . (2.3)

This equation is properly called the Navier-Stokes equation. It becomes simpler if the fluid may be
regarded as incompressible, so the last term on the right of Eq. (2.3) is zero, and it can be written
as follow

∂ρv
∂t

+∇ · (ρv v) = −∇p+ µ∇2v. (2.4)

2.2.3 The equation of heat transfer

In a viscous fluid the law of conservation of energy express the equality between the change per
unit time in the total energy of the fluid in any volume and the total flux of energy through the
surface bounding the control volume. One contribute is the energy transfer due to the thermal
conduction, where the flux density is related to the variation of temperature through the fluid and
its thermal conductivity κ as

q = −κ∇T. (2.5)

The other contribution to energy transfer is due to the processes of internal friction. This latter
flux is giver by the vector v · σ′ (by using the Einstein tensor notation it can be written as viσ′

ij).
Accordingly, the general law of conservation of energy can be reported in terms of entropy s as
follow

ρT

(
∂s

∂t
+ v · ∇s

)
= σ′

ij
∂vi
∂xj

+∇ · (κ∇T ) . (2.6)

By considering the thermodynamic relation ds = cp
dT
T − dp

ρT , where cp is the specific heat at
constant pressure, Eq. (2.6) becomes

ρcp

(
∂T

∂t
+ v · ∇T

)
=

∂p

∂t
+ v · ∇p+ σ′

ij
∂vi
∂xj

+∇ · (κ∇T ) . (2.7)

In the extended form, the term σ′
ij

∂vi
∂xj

is written as the sum of two quantities:

1

2
µ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij

∂vi
∂xi

)2

+ ζ (∇ · v) .

In the case of incompressible fluid, the latter term vanishes in the energy equation.

2.3 The linearized Navier-Stokes equations in frequency domain

An oscillating flow arises when a fluid, that is saturating the pore domain of a porous media with
a rigid skeleton, responds to a wave stimulus. Therefore, the behaviour of the fluid is described by
the coupled linearized Navier-Stokes equations in harmonic regime [9, 10]. Said f the frequency,
ω = 2πf the angular frequency and i =

√
−1 the imaginary unit, in this treatment the Rott’s

acoustic approximation will be adopted with the following hypothesis [11]:

• Steady-state sinusoidal oscillations of the thermodynamic and kinematic variables such as
pressure, temperature, density and velocity are considered and written in complex notation
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CHAPTER 2. WAVE PROPAGATION IN FLUID-SATURATED POROUS MEDIUM

sum of the mean values (subscripts m) and the first-order oscillating terms (subscripts 1;
note also that a positive convention has been adopted eiωt and ℜ represents the real part of a
complex number):

ρ(x, y, z, t) = ρm + ℜ
[
ρ1(x, y, z)e

iωt
]
, (2.8a)

T (x, y, z, t) = Tm + ℜ
[
T1(x, y, z)e

iωt
]
, (2.8b)

p(x, y, z, t) = pm + ℜ
[
p1(x, y, z)e

iωt
]
, (2.8c)

v(x, y, z, t) = ℜ
[
v1(x, y, z)eiωt

]
. (2.8d)

• The time-dependent parts of all variables are small compared to the mean values. The
products of small variables can often be neglected in comparison to the small variables
themselves (second order variables).

• The mean pressure must be spatially uniform (independent of x, y and z) because any gra-
dient in pm, Eq. (2.8c), would cause an acceleration of gas. In addition, the mean velocity
is assumed to be zero for the consideration above, see Eq. (2.8d).

With these approximations, simplified harmonic version of equations of fluid mechanics can be
derived. Recalling that ∂/∂t is identical to iω and neglecting the second-order terms, Eqs. (2.1),
(2.3), and (2.7) over the fluid domain become

iωρ1 +∇ · (ρmv) = 0, (2.9)

iωρmv1 = −∇p1 + µ∇2v1, (2.10)

iωρmcpT1 = iωp1 + κ∇2T1. (2.11)

Together with this set of five coupled equations, the description of the thermodynamic and kine-
matic fields in the fluid domain is completed by the equation of state:

p1
pm

=
ρ1
ρm

+
T1

Tm
. (2.12)

2.4 Homogenization of a rigid-frame porous media

From a theoretical point of view, the dynamic viscous and thermal behaviour of a generic porous
material under the action of an oscillating flow can be derived by solving three linearized equa-
tions, Eqs. (2.9), (2.10), (2.11) coupled with the equation of state in the frequency domain, Eq.
(2.12). In this treatment, the solid skeleton is assumed motionless because either the solid frame
stiffness or its weight is significantly larger than that of the saturating fluid. The existence of a
microscopic characteristic length l, determined by the size of local heterogeneities or the period
size of the material, and a macroscopic characteristic length L = λ/2π, where λ = c/f is the
sound wavelength with c the speed of sound, and their highly distinct values, i.e. l/L ≪ 1, permit
defining a Representative Elementary Volume, see Fig. 2.1 [12]. Therefore, under scale separation
between the wavelength and the characteristic size of the pore (as highlighted by Kirchhoff [13]
for r3/2w f < 106 cm s−3/2, with rw the pore size being greater than 10−3 cm), momentum and
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2.4. HOMOGENIZATION OF A RIGID-FRAME POROUS MEDIA

energy equations allow to describe the visco-inertial and heat diffusion effect separately, together
with the hypotheses of rigid and isothermal walls of the material solid skeleton, Ωfs:

v1 = 0 on Ωfs, (2.13a)

T1 = 0 on Ωfs. (2.13b)

𝐿

𝑙

𝑉𝑓

Figure 2.1: On the left, macroscopic scale description, and on the right microscopic scale descrip-
tion of a periodic porous media.

Named x the coordinate of wave propagation direction, space-averaged solutions of Eqs. (2.10),
(2.11) can be written in terms of two frequency-dependent response functions to describe the
overall acoustic behaviour of fluid saturating porous materials:

dp1
dx

= − iωρm
1− fν

⟨v1⟩, (2.14)

⟨T1⟩ =
1

ρmcp
(1− fκ) p1. (2.15)

The angular brackets define the following averaging operator

⟨·⟩ = 1

Vf

∫
Vf

(·) dV

which is related to the spatial average over the fluid volume in the unit cell of the porous material.
The unbolded quantity v1 represent the x-component of the acoustic velocity vector v1. By substi-
tuting Eq. (2.15) and the spatially averaging of Eq. (2.12) in the continuity equation Eq. (2.9) and
remembering the fundamental gas law pm/ρm = RTm, where R = (γ − 1) /γ cp is the universal
gas constant and γ the specific heat ratio, it follows that

d⟨v1⟩
dx

= − iω

γpm

[
1 + (γ − 1) fκ

]
p1. (2.16)

Thermoviscous functions fν and fκ determine the dynamic complex behaviour of the porous ma-
terial and they depend from its micro-geometry and from the fluid properties expressed as the
viscous and thermal boundary layers

δν =

√
2µ

ωρm
, (2.17)

9
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δκ =

√
2κ

ωρmcp
. (2.18)

Note that Pr =
(
δν/δκ

)2, where Pr is the fluid Prandtl number. An analytical formulation for
these thermoviscous functions is provided in literature for elementary geometry pores (Fig. 2.2),
such as slits, circular pores, rectangular pores and convex geometry such as pin array [14] (as
reported in Tab. 2.1). Historically, thermoviscous functions were introduced by Rott [11] to char-
acterize the visco-thermal interaction between solid skeleton and the oscillating fluid in thermoa-
coustic science. In acoustics, Zwikker and Kosten [15] introduced two complex quantities, the
density ρ̃ and the bulk modulus K̃, to describe the behaviour of a porous material as an equiva-
lent fluid. From a fluid-dynamic point of view, the dynamic behaviour of a fluid flow fulfilling
a porous core can be expressed in terms of complex friction factor ff and Nusselt number Nu

[16]. Therefore, the complete characterization of acoustic porous media requires two dynamic
frequency-depending parameters and it can be demonstrated that all the above approaches are
equivalent. In fact, Liu and Garrett derived the equivalence between the complex friction factor
and Nusselt number with the thermoviscous function [17]. While, Dragonetti et al. pointed out
the equivalence between acoustic and thermoacoustic description of porous materials [18]

ρ̃ =
ρm

1− fν
(2.19)

K̃ =
γpm

1 + (γ − 1) fκ
(2.20)

Geometry Thermoviscous function fj for (j = κ or ν)

Parallel plate fj =
tanh[(1+i)y0/δj]

(1+i)y0/δj

Circular pore fj =
2J1[(i−1)r0/δj]

2J0[(i−1)r0/δj](i−1)r0/δj

Rectangular pore fj = 1− 64
π4

∑∞
m,n odd

(
m2n2

[
1− i

π2δ2j
8a2b2

(
b2m2 + a2n2

)])−1

Pin array fj = − δj
i−1

2ri
r20−r2i

Y1[(i−1)r0/δj]J1[(i−1)ri/δj]−Y1[(i−1)ri/δj]J1[(i−1)r0/δj]
Y1[(i−1)r0/δj]J0[(i−1)ri/δj]−Y0[(i−1)ri/δj]J1[(i−1)r0/δj]

Table 2.1: Thermoviscous functions for uniform cross-sectional geometries.

2.5 Electroacoustic network analogy

Considering the acoustic volume velocity U1 = ⟨v1⟩Af [m3/s], where Af is the fluid cross-
sectional area, Eqs. (2.14) and (2.16) can be written as

dp1
dx

= − iωρm
1− fν

U1

Af
, (2.21)

dU1

dx
= −

iωAf

γpm

[
1 + (γ − 1) fκ

]
p1. (2.22)

At this point Eqs. (2.21) and (2.22) can be combined, eliminating U1, to obtain a second-order
differential equation in p1

10



2.5. ELECTROACOUSTIC NETWORK ANALOGY

2𝑦0

2𝑙

2𝑟0

2𝑎

2𝑏 2𝑦0

𝑟0

2𝑟𝑖

(𝑎) (𝑏)

(𝑑)(𝑐)

Figure 2.2: Uniform cross-sectional material: (a) parallel plate (or slit), (b) circular pore, (d)
rectangular pore, (d) pin array.

d2p1
dx2

+
ω2ρm
γpm

[
1 + (γ − 1) fκ

1− fν

]
p1 = 0. (2.23)

This is Rott’s wave equation, which becomes the classical Helmholtz equation in the case of mono-
directional wave propagation in non-dissipative medium (fν = fκ = 0), where kA = ω/c is the
air wave number,

d2p1
dx2

+ k2A p1 = 0. (2.24)

The acoustic wave propagation inside a dissipative porous material can be described through an
electroacoustic analogy by using the acoustic transmission line [19]. A slab of the medium with
length dx, much smaller than the acoustic wavelength λ, can be modelled as a lumped acoustic
element provided with certain thermo-viscous properties, see Fig. 2.3 up. Eq. (2.21) and (2.22)
can be expressed in the following forms

dp1 = (Zνdx)
U1

Af
, (2.25)

dU1 = (Yκdx)Afp1. (2.26)

Zν represents the longitudinal impedance per unit length and it is strictly related to the viscous
dissipation along the acoustic line

Zν = − iωρm
1− fν

= −iωρ̃, (2.27)

and the transversal admittance Yκ per unit length is linked to the thermal losses

Yκ = − iω

γpm

[
1 + (γ − 1) fκ

]
= − iω

K̃
. (2.28)

11
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Linking Eqs. (2.27) and (2.28), yields

√
ZνYκ = iω

√
ρm
γpm

√
1 + (γ − 1) fκ

1− fν
= iω

√
ρ̃

K̃
= ik̃, (2.29)

√
Zν

Yκ
=

√
γρmpm

(1− fν)
(
1 + (γ − 1) fκ

) =

√
ρ̃K̃ = Z̃c, (2.30)

where k̃ and Z̃c are the complex wave number and the characteristic impedance of the transmission
line (i.e. the porous material), respectively. With the assumption in Eqs. (2.29) and (2.30), Eq.
(2.23) can be rearranged in a more compact style as

d2p1
dx2

+ k̃p1 = 0. (2.31)

Therefore, as an equivalent network, a porous material can be described as a certain number of
double bipole linked in series, at limit an infinite number as reported in Fig. 2.3 down.

𝑍𝜈𝑑𝑥

1

𝑌𝜅𝑑𝑥

𝑍𝜈𝑑𝑥

1

𝑌𝜅𝑑𝑥

𝑍𝜈𝑑𝑥

1

𝑌𝜅𝑑𝑥

𝑍𝜈𝑑𝑥

1

𝑌𝜅𝑑𝑥

𝑍𝜈𝑑𝑥

1

𝑌𝜅𝑑𝑥

Δ𝑥

𝑑

𝑍𝜈Δ𝑥

1

𝑌𝜅Δ𝑥

𝑈1 𝑈1 + 𝑑𝑈1

𝑝1 𝑝1 + 𝑑𝑝1

Figure 2.3: Electroacoustic analogy of: (up) a slab of a porous material (∆x ≪ λ), and (down)
the entire thickness of the sample.

2.5.1 Transfer Matrix approach

The acoustic pressure p1 and volume velocity U1 fields inside a porous material can be found from
the solution of the second-order differential equation Eq. (2.44). They can be written as the sum
of a progressive and regressive waves:

p1(x) = Ae−ik̃x +Beik̃x, (2.32)

U1(x) =
Af

Z̃c

[
Ae−ik̃x −Beik̃x

]
. (2.33)
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2.6. THERMOACOUSTICS

The Transfer Matrix [20] allows to link the state variable, pressure and volume velocity, between
two sides of an acoustic medium (i.e. the back side x = 0 and the front side x = d, with d being
the thickness of the material, Fig. 2.4):[

p1
U1

]
x=d

=

[
T11 T12

T21 T22

][
p1
U1

]
x=0

(2.34)

From an electrotechnical analogy, it follows that

T11 = p1(d) with p1(0) = 1 and U1(0) = 0, (2.35a)

T21 = U1(d) with p1(0) = 1 and U1(0) = 0, (2.35b)

T12 = p1(d) with p1(0) = 0 and U1(0) = 1, (2.35c)

T22 = U1(d) with p1(0) = 0 and U1(0) = 1. (2.35d)

Therefore, from Eq. (2.35a) it results

p1(0) = A+B = 1,

U1(0) =
Af

Z̃c

(A−B) = 0,

and as a consequence A = B = 1
2 . It follows that

T11 = p1(d) =
1

2

(
e−ik̃d + eik̃d

)
= cos

(
k̃d
)
, (2.36)

T21 = U1(d) =
1

2

Af

Z̃c

(
e−ik̃d − eik̃d

)
= −i

Z̃c

Af
sin
(
k̃d
)
. (2.37)

By following the same steps also for Eqs. (2.35c) and (2.35d), the complete Transfer Matrix for a
porous material can be written as function of its complex dynamic parameters k̃ and Z̃c as

[
p1
U1

]
x=d

=

 cos
(
k̃d
)

−i Z̃c
Af

sin
(
k̃d
)

−i
Af

Z̃c
sin
(
k̃d
)

cos
(
k̃d
)

[p1
U1

]
x=0

. (2.38)

If a small slice of the material is considered (d = ∆x ≪ λ), it results from the first-order Taylor
expansion series that T11 = T22 ≈ 1, T12 ≈ −iZ̃ck̃∆x/Af and T21 ≈ −iAf∆xk̃/Z̃c and by
using the relations Eqs. (2.29) and (2.30), the Transfer Matrix for an infinitesimal slice of material
can be written as [

p1
U1

]
x=∆x

=

 1 − iωρ̃
Af

∆x

− iωAf

K̃
∆x 1

[p1
U1

]
x=0

. (2.39)

2.6 Thermoacoustics

Theoretical study of thermoacoustic oscillations began in 1868 when Kirchhoff [13] calculated
acoustic attenuation in a duct due to oscillatory heat transfer between solid isothermal duct wall
and the gas sustaining the sound wave. The first thorough qualitative description of thermoacoustic
oscillations was given by Lord Rayleigh. In his work, "The Theory of Sound" [21], he stated:

13
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𝑇11 𝑇12
𝑇21 𝑇22

𝑝1
𝑈1 𝑥=0

𝑝1
𝑈1 𝑥=𝑑

Figure 2.4: Transfer Matrix representation of a porous material.

"If heat be given to air at the moment of greatest condensation or taken from it at the moment of
greatest rarefaction, the vibration is encouraged".

Thermoacoustics describes energy conversion processes that arise through the interaction of tem-
perature and pressure oscillations in a sound wave with solid boundaries. In a space where no solid
boundary is present, the acoustic oscillation is usually an adiabatic process. In fact, for standard
temperature and pressure air and pressure amplitude of typical conversation temperature oscilla-
tion is about 10−4 ◦C, so it is not surprising that thermoacoustic effects are unnoticed in everyday
life. Viscous and thermal boundary layers, however, are formed when a solid boundary is present
in an acoustic field. As the fluid oscillates along the plate at the acoustic frequency, it experi-
ences changes in temperature. Part of the temperature changes come from adiabatic compression
and expansion of the fluid by the sound pressure and what is left is a consequence of the local
temperature of the plate itself. The heat flow between the fluid and the solid boundary does not
produce instantaneous changes in fluid temperature,instead, it creates a time delay, or time phas-
ing, between temperature and pressure and motion, which is needed to drive the fluid through a
thermodynamic cycle.

2.6.1 Thermoacoustic heat pumping process

Consider a solid plate placed in an acoustic field with direction of particle oscillation along its
length as in Fig. 2.5 [6]. Suppose the pressure antinode (region of maximum pressure variation)
is near the right end of the plate and the pressure node (region of zero pressure variation) is near
the left end of the plate. A typical gas parcel oscillates over a distance ξ1 about its mean position
and its pressure varies between pm − p1 and pm + p1. During its displacement the parcel gets
compressed and its temperature rises. This parcel then loses heat to the plate till its temperature
equals that of the plate. As a result right end of the plate becomes a little warmer. The parcel then
moves again to left end where its pressure as well temperature falls. The cold parcel warms up
by picking heat from left end of the plate, making the left end of the plate colder. Thus, in one
cycle the gas transports δQ amount of heat over a temperature difference of 2ξ1∇Tm, absorbing
δW2 − δW1 amount of acoustic power.

2.6.2 Thermoacoustic devices

Under the right operating conditions thermoacoustic concepts can be applied to realize two kinds
of devices: thermoacoustic refrigerator (or heat pump) that convert sound wave energy in refrig-
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𝛿𝑄1 𝛿𝑄2

𝛿𝑊1 𝛿𝑊2

(𝑎)

𝛿𝑄1 𝛿𝑄2

𝛿𝑊1 𝛿𝑊2

(𝑏)

Figure 2.5: Thermoacoustic heat pumping process: (a) standing wave refrigerator, (b) standing
wave prime mover.

eration or heating, thermoacoustic engine that convert heat in useful work. The energy conversion
takes place thanks to the interaction between the oscillating fluid particles and the solid skeleton
of a porous material suitable design with respect to the viscous and thermal boundary layer. This
porous material, called stack or regenerator, suitably designed to allow the correct viscous and
thermal interactions between the oscillating fluid and its solid surface in order to convert a me-
chanical energy (as a sound wave) into heat, and vice versa. Increasing the efficiency of these
devices means to better understand the phenomena which occur in that porous core and then to
find the optimal geometry for each specific case. Thermoacoustic devices can also be categorized
depending on the phase shift between the pressure and velocity oscillations at the location of the
stack. In a closed and empty resonator, such in Fig. 2.6.a, a pure standing-wave can be maintained
and the pressure and velocity oscillations will be exactly 90 degrees out-of-phase. In an empty
infinite tube (or a loop) a pure traveling-wave can be maintained, so that the pressure and velocity
oscillations are exactly in phase (Fig. 2.6.b). As soon as a stack is inserted in either of these
tubes, the phasing between pressure and velocity will change because of partial reflection at the
stack interfaces. Moreover, if a looped tube is considered as the type depicted in Fig. 2.6.c, with
a resonator tube attached to it, the phasing will be affected even more. Generally, it is beneficial
to use a stack inside a standing-wave device, where the pore size of the porous material are of
the same order of magnitude of the thermal boundary layer, while a regenerator inside a traveling-
wave device, where the pore size are much smaller than the thermal boundary layer. For this
reason, thermoacoustic devices are usually classified as either standing-wave stack-based devices
or traveling-wave regenerator-based devices.

2.6.3 Mathematical aspects of Thermoacoustics

In thermoacoustics, a static temperature gradient along the porous material, dTm/dx, is artifi-
cially added by means of a hot and a cold heat exchanger. Instead of Eq. (2.8b), in this case the
temperature field across the material is written as

T (x, y, z, t) = Tm(x) + ℜ
[
T1(x, y, z)e

iωt
]
. (2.40)
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(𝑎)

(𝑏) (𝑐)

Figure 2.6: Schematic representation of Thermoacoustic devices: (a) pure standing wave device,
(b) pure traveling wave device, (c) hybrid standing-traveling wave device.

Taking into account Eq. (2.40), Eq. (2.11) becomes

iωρmcpT1 + ρmcp
dTm

dx
v1 = iωp1 + κ∇2T1. (2.41)

Therefore, the solution of linearized energy equation, Eq. (2.15), changes as

⟨T1⟩ =
1

ρmcp
(1− fκ) p1 +

1

iωAf

dTm

dx

(1− fκ)− Pr (1− fν)

(1− fν) (1− Pr)
U1, (2.42)

while the Eq. (2.22) is re-written as

dU1

dx
= −

iωAf

γpm

[
1 + (γ − 1) fκ

]
p1 +

(fκ − fν)

(1− fν) (1− Pr)

1

Tm

dTm

dx
U1. (2.43)

By considering the statement from this Eq. (2.43), Rott’s wave equation Eq. (2.23) is completed
by another terms function of the applied thermal gradient across the porous material

d

dx

(
1− fν
ρm

dp1
dx

)
− (fκ − fν)

(1− Pr)

1

ρmTm

dTm

dx

dp1
dx

+
ω2

γpm

[
1 + (γ − 1) fκ

]
p1 = 0. (2.44)

This latter equation takes into account the variation along the x coordinate of the static values of
all thermodynamic quantities, such as the density ρm = ρm(x), the boundary layers δ = δ(x) and
the thermoviscous function f = f(x).

Electroacoustic analogy in Thermoacoustics

Based on the Eq. (2.43), the Eq. (2.28) is now modified due to an added term on the right side of
the equation

dU1 = (Yκdx)Afp1 + gdxU1, (2.45)

where the new term g represents a sort of complex gain/attenuation constant for volume flow rate
proportional to the local volume flow rate U1 itself, and which arises only when the tempera-
ture gradient dTm/dx along the channel is nonzero. Therefore, the representation of the network
changes as in Fig. 2.7.

16



2.6. THERMOACOUSTICS

g =
(fκ − fν)

(1− fν) (1− Pr)

1

Tm

dTm

dx
. (2.46)

This quantity has effect also on the electroacoustic analogy expressed by the transversal source
element added. Therefore, the Transfer Matrix for an infinitesimal slice of porous material with an
applied thermal gradient becomes from Eq. (2.47) to

[
p1
U1

]
x=∆x

=

 1 − iωρ̃
Af

∆x

− iωAf

K̃
∆x 1 + g∆x

[p1
U1

]
x=0

. (2.47)

𝑍𝜈Δ𝑥

1

𝑌𝜅Δ𝑥

𝑈1
𝑈1 + 𝑑𝑈1

𝑝1

𝑝1 + 𝑑𝑝1

𝑔𝑈1Δ𝑥

𝑇𝑚 𝑇𝑚 + 𝑑𝑇𝑚

Figure 2.7: Electroacoustic analogy of a slab of a porous material subjected to a thermal gradient
in a thermoacoustic device.

2.6.4 Analysis of heat capacity ratio in porous media

Porous cores in thermoacoustic engines (or heat pumps) are assumed to act as thermal reservoirs
and to have isothermal behavior compared to oscillating gas parcels, meaning that a first-type
Dirichlet boundary condition, expressed by Eq. (2.13b), is applied at the fluid-solid interface. In
literature, to take into account of imperfect isothermal condition of solid skeleton of the material,
Swift [6] introduced the heat capacity ratio parameter ϵs, obtained from the solution of the solid
and fluid thermal field in the frequency domain. Therefore, the energy differential equation Eq.
(2.41) is coupled with the energy equation describing the solid matrix temperature field

iωT1,s =
κs
ρscs

∇2T1,s. (2.48)

T1,s represents the oscillating first-order term of the temperature of the solid skeleton

Ts = Tm,s(x) + R
[
T1,s(x, y, z)e

iωt
]
, (2.49)

and κs, ρs, cs are respectively the thermal conductivity, the density and the specific heat of the
solid material. Eqs. (2.41) and (2.48) are solved with a third type Robin boundary condition,
taking into account that the oscillating temperature of the solid and fluid phase are equal and the
heat flux of the two phases are opposite
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
T1 = T1,s on Ωfs,

κ
dT1

dx
= −κs

dT1,s

dx
on Ωfs.

(2.50)

Based on these boundary conditions, the solution of energy equation, Eq. (2.42), becomes

⟨T1⟩ =
1

ρmcp

(
1− fκ

1 + ϵs

)
p1 +

1

iωAf

dTm

dx

[
1− fκ

1+ϵs

(
1 + ϵs

fν
fκ

)]
− Pr (1− fν)

(1− fν) (1− Pr)
U1, (2.51)

while the averaged thermal field in the solid skeleton can be written from the analogue solution of
the Eq. (2.48)

⟨T1,s⟩ = T1,s

∣∣
on Ωfs

fs. (2.52)

Similarly to the dynamic thermal function fκ of the fluid part, fs is the dynamic thermal func-
tion representing the temperature fields inside the solid material and it depends both on the solid
skeleton geometry and the solid thermal penetration depth δs =

√
2κs/(ρscsω), analogous to the

thermal boundary layer δκ. For simple uniform cross-sectional geometry, it can be analytically
derived. The heat capacity ratio parameter ϵs takes into account the thermal properties of the
materials and the fact that its finite heat capacity does not allow the solid to be considered as a
thermal energy tank. From an operative point of view, it can be evaluated as [22]

ϵs =
ρmcp
ρscs

fκ
fs

φ

1− φ
, (2.53)

where φ = Vf/
(
Vf + Vs

)
is the porosity of the porous medium, Vf and Vs the fluid and solid

volume fraction respectively. In the following discussion, parallel plate geometry is taken into
account (y0 and l are respectively the semi-distance between two contiguous plates and the semi-
width of the plate, see Fig. 2.2.a), where fs has the same analytical description of fκ for slits
(reported in Tab. 2.1) and replacing δκ with δs. When ϵs → 0, the solid matrix has enough heat
capacity to guarantee isothermal boundary condition

(
T1,s = 0

)
at the solid-fluid interface. In this

case, through the whole solid section amplitude oscillation is almost equal to zero, Fig. 2.8. In
this condition, the oscillating heat exchanged between fluid and solid is maximum. On contrary,
|ϵs| → ∞ when solid has such low thermal capacity that an adiabatic boundary condition can be
adopted (dT1,s/dx = 0 on Ωfs) as shown in Fig. 2.9, where in fluid there are no spatial gradients.
In thermoacoustic cores (used for energy conversion) this is unwanted, because no thermoacoustic
effect is possible without interaction between oscillating fluid and solid wall as a thermal energy
tank. Between these two extreme cases, more in general there are spatial temperature gradients
(and therefore time oscillation) both in the solid and in the fluid. The solid mean temperature lags
behind the fluid mean temperature (Fig. 2.10). In all the three previous cases pictured in Figs. 2.8,
2.9 and 2.10, temperature oscillations T1, y coordinate and time t are considered dimensionless
with respect to adiabatic temperature Ta = p1/

(
ρmcp

)
, y0 + l, and frequency f respectively,

so that trends are independent of pressure input p1, physical lengths y0, l and frequency f . At
the fluid-solid interface, temperature gradient is not continuous because thermal conductivities are
different.
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Figure 2.8: Distribution of module of temperature oscillations (left), time oscillations (right), in
the quasi-isothermal case: y0/δκ = 2, l/δs = 3, εs = 0.0047.

Figure 2.9: Distribution of module of temperature oscillations (left), time oscillations (right), in
the quasi-adiabatic case: y0/δκ = 2, l/δs = 3, εs = 47.
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Figure 2.10: Distribution of module of temperature oscillations (left), time oscillations (right), in
the general case: y0/δκ = 2, l/δs = 3, εs = 0.47.

20



Chapter 3
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3.1 Introduction

As reported in Sec. 2, the complete characterization of acoustic porous media requires two dy-
namic frequency-depending parameters: the thermoviscous functions, or equivalently the dynamic
friction factor and Nusselt number, or the complex density and the complex bulk modulus. As it
will be shown in this Section, dynamic behaviour of a porous material can be also expressed in
the same way by the dynamic viscous and thermal tortuosity, or the dynamic viscous and thermal
permeability). In acoustics, different models have been developed to describe sound propagation
in porous media. For simple uniform cross-section, such as circular pore, parallel slit, pin ar-
ray, analytical solutions are available in literature depending only on geometrical parameters. For
random porous media, such as high porosity fibers, empirical correlations are provided by De-
lany and Bezley [23], further revisited by Miki [24], where the airflow resistivity σ is required
as input parameter. Said f the sound frequency, this empirical model can be considered reliable
in the range 0.01 < f/σ < 1, elsewhere it returns non-physical results. Wilson [25] defined a
middle frequency range model through the definition of the vorticity-mode relaxation time, and
the entropy-mode relaxation time. This model does not fit the asymptotic behaviour in the low
and high frequency range. Semi-phenomenological models have been developed to characterize
the behaviour of a general porous structure through the knowledge of static parameters, so-called
transport, non-acoustical, parameters. In literature, the most used semi-phenomenological model
is the Johnson-Champoux-Allard-Lafarge [26, 27, 28] model (referred from this point as JCAL,
for brevity). It requires the knowledge of six parameters: the porosity φ, the airflow resistivity σ
(equivalent to the static viscous permeability k0 = µ/σ), the thermal Λ′ and viscous Λ charac-
teristic lengths, the high frequency limit of tortuosity α∞ and the static thermal permeability k′0.
These latter parameters link the microstructural feature of the porous medium with its macroscopic
behaviour. They are strictly linked with the high and low frequency asymptotic behaviour of the
material. JCAL model can be considered valid in the whole acoustic frequency range. Further-
more, Pride [29] introduced other two parameters, the static thermal α′

0 and viscous α0 tortuosity,
to improve the low frequency description in case of pores with possible constriction (so-called
JCAPL model). The reasons why JCAL model is the most used one in literature are its frequency
range validity and the possibility to evaluate both numerically and experimentally all the trans-
port parameters involved. The complete model (JCALP) is not diffused due to the impossibility
to measure experimentally and to verify Pride’s parameters values. They can be only evaluated
numerically, but the precise geometry is required. The outline of the Section 3 is reported in
follows. In subsection 3.2, the empirical models provided for different kind of materials are sum-
marized. In subsection 3.3 the Johnson-Champoux-Allard-Lafarge semi-phenomenological model
is recalled with its asymptotic limit for complex density and bulk modulus. The definitions of each
transport parameters are given in subsection 3.4. Subsection 3.5 shows experimental techniques to
assess non-acoustical parameters, while computational approaches to evaluate them are presented
in subsection 3.6.

3.2 Empirical models

Delany and Bazley [23] developed a simple empirical model of the acoustic complex characteristic
impedance and wave number of a porous material based on its airflow resistivity σ. The model is
based on numerous impedance tube measurements (see Sec. 5) in order to obtain robust constant
for statistical regression procedure. The mathematical structures of the correlations are

Z̃c = ρmc
[
1 + C1χ

−C2 − iC3χ
−C4

]
(3.1)
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k̃ =
ω

c

[
1 + C5χ

−C6 − iC7χ
−C8

]
(3.2)

where 0.01 < χ = ρmf
σ < 1 expresses the validity range proposed by Delany and Bazley. The

validity of this model for lower and higher frequencies was further extended by Bies and Hansen
[30]. Subsequently Miki [24], Garai and Pompoli [31], Dunn and Davern [32] provided different
values of the constants C1 − C8 for various materials. These constants are reported in Table 3.1.

Material type reference C1 C2 C3 C4 C5 C6 C7 C8

Rockwool/fiberglass
(Delany and Bazley) 0.0571 0.745 0.087 0.732 0.0978 0.700 0.189 0.595
Rockwool/fiberglass
(Miki) 0.070 0.632 0.107 0.632 0.160 0.618 0.109 0.618
Polyester fiber
(Garai and Pompoli) 0.078 0.623 0.074 0.660 0.159 0.571 0.121 0.530
Polyurethane foam
(Dunn and Davern) 0.114 0.369 0.099 0.758 0.168 0.715 0.136 0.491

Table 3.1: Values of parameters C1 – C8 for different empirical models.

3.3 Semi-phenomenological models

The semi-phenomenological Johnson-Champoux-Allard-Lafarge model provides a separated de-
scription of the dynamic viscous and thermal behaviour of a porous medium through respectively
the complex density ρ̃ (equivalent to complex viscous permeability k̃ν and complex viscous tortu-
osity α̃) and the complex bulk modulus K̃ (or which is the same, complex thermal permeability k̃′

and complex thermal tortuosity α̃′).

3.3.1 Johnson et al. model

Johnson, Koplik and Dashen [26] provided the analytic properties of the viscous behaviour of
a porous material subjected to an infinitesimal oscillatory pressure gradient. In this work, an
analytical formulation for the complex density ρ̃ is derived for the entire frequency range, starting
from the exact high- and low- frequency parameters, k0 and (α∞,Λ) respectively. For visco-
inertial effects, it results

ρ̃ =
ρmα∞

φ

[
1− i

ων

ω
G̃

]
, (3.3)

where

G̃ =

√
1 +

1

2
iM

ω

ων
, (3.4a)

M =
8k0α∞
φΛ2

, (3.4b)

ων =
µφ

ρmk0α∞
. (3.4c)

M and ων are respectively the viscous pore shape factor and viscous reduced frequency. They
allow to express the the complex viscous behaviour of a porous material by using dimensionless
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parameters. The equivalence between dynamic viscous parameters can be expressed through the
Darcy’s law in dynamic regime and the definition of dynamic tortuosity as follow

k̃ν =
δ2ν
2i

ρm
ρ̃
, (3.5a)

α̃ =
ρ̃

ρm
, (3.5b)

k̃ν =
δ2ν
2iα̃

. (3.5c)

In the description of dynamic viscous behaviour of sound propagating in a porous material, it can
be highlighted that viscous losses prevail on inertia effects on low frequency and vice versa in high
frequency regime. The high and low frequencies are related to the thermal and viscous boundary
layer compared to the medium pore dimension, or a hydraulic radius

(
r̄ ≈ Λ′) taken as length

reference. At low frequency limit, for Λ′/δν → 0, complex density at first order approximation
can be written as

ρ̃ =
ρm
φ

[
φ

2i

δ2ν
k0

+ α∞

(
1 +

2k0α∞
φΛ2

)]
=

ρmα∞
φ

(
−i

ων

ω
+ 1 +

M

4

)
. (3.6)

and combining with Eq. (3.5a), it follows that

k̃ν =

[
1

k0
+

2iα∞
φδ2ν

(
1 +

2k0α∞
φΛ2

)]−1

. (3.7)

At high frequency limit, for Λ′/δν → ∞ , inertial effects prevail on viscous behaviour, and com-
plex density can be express as

ρ̃ =
ρmα∞

φ

[
1 + (1− i)

δν
Λ

]
=

ρmα∞
φ

[
1 +

(1− i)

2

√
ων

ω
M

]
. (3.8)

As a consequence, the dynamic viscous tortuosity in high frequency approximation becomes

α̃ = α∞

[
1 + (−i)

δν
Λ

]
. (3.9)

3.3.2 Champoux-Allard-Lafarge model

Champoux and Allard [27] extended the concept of characteristic length introduced in the def-
inition of the dynamic tortuosity by Johnson et al. to express the frequency dependence of
the bulk modulus of the saturating fluid at high frequencies. Lafarge [28] improved the semi-
phenomenological formulation provided by Champoux and Allard by adding the dependece from
an another parameter, the static thermal permeability k′0. Based on these assumptions, and by using
an analogous dimensionless formulation as for the viscous behaviour, the dynamic bulk modulus
can be written as

K̃ =
γpm/φ

γ − (γ − 1)
[
1− iωκ

ω G̃′
]−1 , (3.10)

where in this case
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G̃′ =

√
1 +

1

2
iM ′ ω

ωκ
, (3.11a)

M ′ =
8k′0
φΛ′2 , (3.11b)

ωκ =
κφ

ρmcpk′0
. (3.11c)

M ′ and ωκ are respectively the thermal pore shape factor and thermal reduced frequency. Con-
sidering the equivalent thermal Darcy’s law introduced by Lafarge (reported in the following sub-
section), the dynamic thermal permeability and thermal tortuosity result

k̃′ =
δ2κ
2i

γ

γ − 1

(
1− pm

K̃

)
, (3.12a)

α′ =
γ − 1

γ

(
1− pm

K̃

)−1

, (3.12b)

k̃′ =
δ2κ
2iα′ . (3.12c)

Thermal characterization of a porous material moves from an isothermal (low frequency, Λ′/δκ →
0) to adiabatic (high frequency, Λ′/δκ → ∞) behaviour. Therefore, Eq. (3.10) becomes in low
frequency approximation as

K̃ =
γpm/φ

γ − (γ − 1)
(

φ
2i

δ2κ
k′0

+ 1 +
2k′0
φΛ′2

)−1 =
γpm/φ

γ − (γ − 1)
(
−iωκ

ω + 1 + M ′

4

)−1 , (3.13)

and substituting this equation in Eq. (3.12a), it follows that

k̃′ =

[
1

k′0
+

2i

φδ2κ

(
1 +

2k′0
φΛ′2

)]−1

. (3.14)

In the high frequency limit, the bulk modulus can be written as

K̃ =
γpm/φ

γ − (γ − 1)
[
1− (1− i) δκ

Λ′

] =
γpm/φ

γ − (γ − 1)
[
1− (1−i)

2

√
ωκ
ω M ′

] . (3.15)

Equivalently to Eq. (3.9), also the thermal tortuosity can be reported in the high frequency limit

α′ =

[
1− (1− i)

δκ
Λ′

]
. (3.16)

As it can be seen from Eqs. (3.6),(3.8), (3.13), and (3.15), low and high frequency dynamic
behaviour of porous material are described respectively from the permeabilities and the high fre-
quency limit of tortuosity and the characteristic lengths. Generally, porous material for acoustic
applications should be characterized by M and M ′ with order of magnitude around 1 (equal to
1 for straight cylindrical pore). In Figs. 3.1, 3.2, dimensionless complex density ρ̃/ρm and bulk
modulus K̃/pm are reported respectively versus the dimensionless frequencies axes ω/ων and
ω/ωκ, as function of the set of quantities

(
M,M ′, α∞, γ, φ

)
to be independent from fluid proper-

ties.
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Figure 3.1: Dimensionless complex density ρ̃/ρm from JCAL model.

Figure 3.2: Dimensionless complex density K̃/pm from JCAL model.

3.3.3 Pride et al. model

Pride [29] corrected the low frequency description of JCAL model by adding two static parameters:
the static thermal α′

0 and viscous tortuosity α0. Therefore, in the so-called Johnson-Champoux-
Allard-Pride-Lafarge (JCAPL) model eight input parameters are required and Eqs. (3.3) and (3.10)
become

ρ̃ =
ρmα∞

φ

[
1− i

ων

ω
D̃

]
, (3.17)

K̃ =
γpm/φ

γ − (γ − 1)
[
1− iωκ

ω D̃′
] , (3.18)

where
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D̃ = 1− P + P

√
1 +

iM

2P 2

ω

ων
(3.19a)

D̃′ = 1− P ′ + P ′
√
1 +

iM ′

2P ′2
ω

ωκ
(3.19b)

P =
M

4
(

α0
α∞

− 1
) (3.19c)

P ′ =
M ′

4 (α′
0 − 1)

(3.19d)

By setting P = P ′ = 1, JCAPL model recovers JCAL model. In literature, there are no direct
(experimental) or indirect method (see Chap. 3) to assess α′

0 and α0 values, and they can only
be evaluated from a numerically point of view once the geometry is known. Due to these reasons,
Pride modification of JCAL model is not so used in literature.

3.4 Definitions of transport parameters

3.4.1 Porosity

The porosity is defined as the relative fraction, by volume, of air contained within the material,
and it can be operatively written as the ratio between the fluid part volume Vf and the total volume
of the material Vt

φ =
Vf

Vt
=

Vf

Vf + Vs
= 1− ρb

ρm
(3.20)

where Vs is the volume occupied by the solid skeleton. At the same time, porosity can be defined
also considering the complement to unit of the ratio between the bulk density ρb of material and
the density of the solid skeleton ρs.

3.4.2 Airflow resistivity

Static viscous permeability is defined as the low frequency limit of the dynamic viscous perme-
ability k̃ν , Eq. (3.7) to characterize the dynamic behaviour of Darcy’s law in frequency domain

φ⟨v⟩ = k̃ν
µ
∇p. (3.21)

Dynamic viscous permeability is defined as a second order symmetric tensor due to its definition
based on two vectorial quantities such as acoustic particle medium velocity ⟨v⟩ and the pressure
gradient along a direction ∇p. The static viscous permeability is the reference value respect to the
direction of wave propagation, and it is strictly related to the airflow resistivity from the relation

σ =
µ

k0
. (3.22)

Airflow resistivity represents the most common parameters in the description of flow across porous
media. It is defined as the ratio between static pressure gradient and the fluid velocity across the
material

σ =
∆p

d⟨v⟩
(3.23)

where d is the sample thickness. Airflow resistivity unit is Rayls (equal to
[
Pa · s/m

]
), while

permeability has the dimension of an area m2.
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3.4.3 Thermal characteristic length

Thermal characteristic length is a geometrical quantity defined as twice the ratio between the
volume of fluid V on the fluid-solid wet surface ∂Ω (a generalized hydraulic radius)

Λ′ = 2

∫
V dV∫
∂Ω dΩ

. (3.24)

This parameter allows to describe the thermal exchange between fluid and solid skeleton due to
the thermal effect generated by the compression and the rarefaction of particles. In particular, in
high frequency limit thermal effects can been seen only near the wall of the skeleton of the porous
material [26].

3.4.4 Viscous characteristic length

Viscous characteristic length is defined in the high frequency limit where the effect of viscosity is
overcome by the forces of inertia. Due to this fact, it is defined as twice the ratio of the weighted
by the velocity in the volume to that of the surface of an inviscid (no viscosity) fluid [26]

Λ′ = 2

∫
V vdV∫
∂Ω vdΩ

. (3.25)

3.4.5 High frequency limit of tortuosity

The high frequency limit of tortuosity (or tortuosity) depends on the microgeometry of the porous
frame and is a dimensionless parameter. When the effect of viscosity becomes negligible, at high
frequency when the viscous penetration depth tends to zero, the effective fluid density tends to
ρmα∞ . Tortuosity is defined in the case of inviscid fluid as [26]

α∞ =

1
Vf

∫
V |v

2|dV(
1
Vf

∫
V |v|dV

)2 . (3.26)

3.4.6 Static thermal permeability

Lafarge [28] introduced the dynamic thermal permeability k̃′ to improve the description of low
frequency thermal behaviour of porous media, by setting an analogous thermal Darcy’s law similar
to Eq. (3.21)

φ⟨T ⟩ = k̃′

κ

∂p

∂t
, (3.27)

where ⟨T ⟩ is the acoustic oscillating temperature averaged in the sample. Analogously, static
thermal permeability k0

′ is defined as the low frequency limit of the thermal dynamic permeability,
Eq. (3.14). The description of thermal behaviour involves scalar quantities such as the acoustic
pressure and temperature fields. Therefore, thermal permeability is a scalar quantity depending
only on the microgeometry of the material. In his work, Torquato pointed out the relations between
the permeability and the trapping constant Γ of porous media [33]

k0
′ =

1

Γ
. (3.28)

In diffusion-controlled reactions problems, trapping constant is defined

Γ =
s

φ⟨m⟩D
, (3.29)
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where D and s are respectively the diffusion coefficient and the rate of production of reactant in a
steady-state fluid region with volume dV and ∂Ω the boundary surface between fluid and solid

D∇2m = −s in dV, (3.30a)

m = 0 in ∂Ω. (3.30b)

3.5 Measurement techniques

Different measurement techniques have been developed to assess the values of transport parame-
ters for porous materials. Direct methods refer to methodologies which allow to directly estimate
a parameter. Indirect method is based on the acoustical inversion of complex density and bulk
modulus in order to assess all the transport parameters from the expressions given by Panneton
and Olny [34, 35]. Inverse methods are based on optimization model to find out the best set of
transport parameters that fit experimental curves.

3.5.1 Direct methods

Different experimental techniques to evaluate each transport parameter are reported in the follow-
ing.

Porosity

Different approaches are adopted in the measurement of porosity. Beranek [36] proposed a method
based on the height of the water in the two sides of the U-manometer linked to a chamber contain-
ing the sample, Fig. 3.3.a. This device was based on the equation of state for ideal gases. Panneton
[37] provided a pressure/mass method based on four measurements in different operating condi-
tions. Acoustical methodologies to assess the porosity value of a porous material are provided by
Umonva et al. [38] and Fellah et al. [39]. In both papers, porosity and tortuosity are determined.
The first one uses pulses with central frequencies close to 12 kHz, since in high frequency the
inertial effects dominate over the viscous one in the sound propagation.

Airflow resistivity

Different experimental methodologies have been developed to assess the airflow resistivity of
porous material. The most used technique is essentially based of the measuring the pressure across
the material sustaining a constant volume velocity [40, 41], as shown in Fig. 3.3.b. The ASTM
C522 [40] provides a Standard Test Method for airflow resistance of acoustical materials with
σ = 100÷ 10000 Rayls. The test requires a suction generator, a flowmeter and differential pres-
sure measuring device low linear velocity

(
< 50mm/s

)
and low-pressure difference across the

sample (250 Pa) are required to avoid turbulence and non-linear effect. Bies and Hansen [30] also
reproduced the set up reported in ASTM C522 and provided technical tips to take into account
the typology of material (hard or soft skeleton) and to avoid air losses. Another method based
on alternating airflow has also been standardized by ISO 9053-2 [42]. This method requires an
oscillating piston which generates an alternating flow across the sample at the frequency of 2 Hz
(Fig. 3.3.c). Dragonetti et al. [43] showed the possibility to evaluate airflow resistivity though
an equivalent electro-acoustic network, by measuring the pressure inside the cavity in which the
sample is placed in and the acoustic volume velocity with the pressure in the back cavity of the
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loudspeaker, as shown in Fig. 3.3.d. In a range where the imaginary part of the ratio between these
two acoustic pressures is linear with the frequency, airflow resistivity can be estimated as

σ = −
ℑ
(

pup
pdw

)
ωVdw
γpmSd

(3.31)

Where Vdw and S are respectively the air volume of the back cavity of the loudspeaker and the
cross-sectional area of the tube where the sample is placed.

High frequency limit parameters

Ultrasonic measurement set up are provided to assess the values of the characteristic lengths and
the tortuosity, see Fig. 3.3.e. In the works of Leclaire et al. [44] and Fohr et al. [45], a method
based on the utilizing the difference in physical properties of air and helium combining with high
frequency limit of both viscous and thermal behaviour allows to evaluate the characteristic lengths.
Due to linear behaviour of wavenumber at high frequencies (70–600 kHz), two slope, expressed
in terms of Λ′ and Λ, are obtained [Eq. (2), Ref. [44]]. Fohr et al. [45] carried out the mea-
surement by positioning the sample between two ultrasonic transducers (40 kHz), one emitter and
one receiver, as shown in Fig. 8. Two measures are carried out: with and without the tested
samples. The relative time delay and amplitude attenuation caused by the tested material allow to
extract both characteristic lengths and tortuosity [Eqs. (6) and (7), Ref. [45]], always based on the
mathematical description of high frequency limit behaviour.

Static thermal permeability

Henry and Allard [46] and Debray et al. [47] showed an acoustic method to measure the trapping
constant based on the low frequency limit of the bulk modulus (defined in terms of compress-
ibility), see. Eq. (11) in Ref. [47]. This method replaces Tarnow’s acoustic set up [48] for the
measurement of compressibility based on the variations of the resonance frequencies in a cylindri-
cal tube with and without the testing sample.

3.5.2 Indirect methods

The indirect method is based on the works of Panneton and Olny [34, 35], which provided inverse
formula to assess the transport parameters from the knowledge of dynamic thermal K̃ and vis-
cous ρ̃ behaviour. These two dynamic quantities can be experimentally estimated from acoustical
measurements with three- [49]/four-microphones [50] techniques based on wave decomposition in
impedance tube [42, 51]. A synthesis of calculation of these techniques is reported in Sec. 5. Other
thermoacoustic methodologies to assess the dynamic visco-thermal behaviour of porous material
are the lumped element techniques proposed by Di Giulio et al. (for ρ̃) [52] and Napolitano et al.
(for K̃) [53]. These latter methods are particularly advices for low frequency measurements. The
porosity can be estimated both from low and high frequency limit of dynamic bulk modulus as
follow

lim
ω→0

K̃ =
pm
φ

, (3.32)

lim
ω→+∞

K̃ =
γpm
φ

. (3.33)

At the same time, airflow resistivity can be obtained in the limit of low frequency of the imaginary
part of dynamic density
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𝑝𝐴

𝑝𝐵

𝑑

𝑝2

𝑝1

Δ𝑝

(𝑎) (𝑏)

(𝑐) (𝑑) (𝑒)

Figure 3.3: Schematic representation of: (a) Beranek’s measurement system for porosity, (b)
Airflow resistivity standard measurement from ISO 9053-1, (c) Alternating airflow method for
measuring airflow resistance, ISO 9053-2, (d) Acoustical measurement of airflow resistivity (Drag-
onetti et al. set up, (e) Ultrasonic set up measurement for characteristic lengths and tortuosity.

σ = − 1

φ
lim
f→0

ℑ (ωρ̃) . (3.34)

Known these parameters, the others four are obtained from the provided analytical solutions

α∞ =
1

ρm

ℜ (ρ̃)−

√
ℑ (ρ̃)2 −

(
σφ

ω

)2
 , (3.35a)

Λ = α∞

√
2ρmµ

ωℑ (ρ̃)
(
ρmα∞ −ℜ (ρ̃)

) , (3.35b)

Λ′ =
√
2δκ

−ℑ

(
γpm − φK̃

γpm − φγK̃

)2
− 1

2

, (3.35c)

k′0 =
φδ2κ
2

−ℜ

(
γpm − φK̃

γpm − φγK̃

)2
− 1

2

. (3.35d)

Eqs. (3.35a)-(3.35d) are not obtained from asymptotic behaviour and they are valid in whole
frequency range. Of course, the estimations of all the parameters are affected by uncertainties
related to the impedance tube measurements [54, 55, 56, 57]. In particular, as it can be seen the
accuracy of the estimation of φ and σ influence the assessment of the other four parameters.

3.5.3 Inverse methods

Inverse methods are essentially based on the minimization of cost function C (θ) in Rn space,
where θ is the set of n parameters to be optimized, between experimental data and theoretical
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model. The direct measures of these parameters are tedious and provide a less accuracy to respect
to the porosity and airflow resistivity measurements. The inverse characterization of porous media
based on acoustical measurement has been carried out for different model and parameters. Atalla
and Panneton [58] firstly introduced this technique to assess the values of high frequency param-
eters θ =

(
α∞,Λ,Λ′). Taking as reference the surface impedance Z̃s = −iZ̃c cot

(
k̃d
)

, with d

the sample thickness, carried out from experiments, cost function is defined as follow by [58]

C (θ) =
1

2

N∑
i=1

|Z̃si,model (θ)− Z̃si,experimental|2, (3.36)

where N is the total number of computed frequencies in the range of interest. Solution of the math-
ematical problem is found for θ∗ =

(
α∗
∞,Λ∗,Λ′∗) for which C (θ∗) = min

[
C (θ)

]
. Of course,

upper and lower boundary constrains to values must be set to avoid local minima of C (θ∗) with
no physical meaning. Further studies have been conducted to improve the inverse characterization
methodology. Dragonetti et al. [59] highlighted the complex values of Z̃s and proposed to find the
minima of cost function in vector form dividing real and imaginary part

C
(
θ∗
)
= min


1

2

N∑
i=1

ℜ
(
Z̃si,model (θ)

)
ℑ
(
Z̃si,model (θ)

)
−

ℜ
(
Z̃si,experimental

)
ℑ
(
Z̃si,experimental

)

 . (3.37)

3.6 Numerical approaches

Numerical calculation of transport parameters is based on three uncoupled-steady problems:
• the Stokes flow problem, where viscous forces dominate over the inertial ones (ω ≪ ων) and
static viscous permeability k0 can be estimated;
• the Laplace’s problem, where high frequency limit (ω ≫ ων) allows to consider the fluid invis-
cid and to calculate tortuosity α∞ and characteristic lengths Λ;
• the Poisson’s problem, which replaces the diffusion-controlled problem to assess static thermal
permeability k0

′.
Each problem is defined in a Representative Elementary Volume (REV) of the material, or which
is the same in a Periodic Unit Cell constituting the porous media. An example with the consti-
tutive surfaces for the boundary conditions is reported in Fig. 3.4. The presented approach to
assess transport parameters is generally called Hybrid Multiscale (HM) [84–94], while to achieve
a complete dynamic description of the behaviour of material Direct Multiscale (DM) or Direct
Numerical Simulation (DNS) approaches can be applied. An exhaustive synthesis of the compu-
tational approaches for modelling dynamic visco-thermal behaviour of porous material is reported
in the benchmark of Zienlinski et al. [60].

3.6.1 Viscous flow

In the low Reynolds number, Stokes equation governs the behaviour of an incompressible Newto-
nian fluid

µ∇2v −∇p = −G on Vf , (3.38)

where the applied boundary conditions are
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∇ · v = 0 in Vf , (3.39a)

v = 0 on Ωfs, (3.39b)

v · n = 0 on Ωlateral, (3.39c)

p = pup on Ωup, (3.39d)

p = pdw on Ωdw. (3.39e)

(3.39f)

pup and pdw are the pressure conditions on the top Ωup and bottom Ωdw faces of the unit cell,
respectively. Therefore, a macroscopic pressure gradient

(
G = ∇p/L = pdw − pup

)
is applied,

with L the dimension of the cell in the direction of wave propagation. v is the velocity of fluid
and no-slip boundary condition and periodicity are respectively applied to fluid-solid interface(
Ωfs

)
and lateral boundaries

(
Ωf,lateral

)
. The static viscous permeability can be evaluated from

the averaged velocity over the fluid volume

k0 = µ
⟨v⟩ · e
G

, (3.40)

where e is the unit vector of the direction of wave propagation, and angular brackets indicate the
average over the fluid volume.

3.6.2 Inertial flow

In high frequency range, viscous boundary layer becomes negligible, and the fluid behaves as an
inviscid perfect one. According to the works of Johnson et al. [26], Brown [61] and Avellaneda
and Torquato [33], this problem is equivalent to the problem of electric conduction, where the
conducting fluid fills the porous media having a constant conductivity. Laplace’s problem can be
written as

∇2ϕ = 0 in Vf , (3.41)

where the boundary conditions are

E = −∇ϕ in Vf , (3.42a)

E · n = 0 on Ωfs and Ωlateral, (3.42b)

ϕdw = −pup = −∆V/2 on Ωup and Ωdw. (3.42c)

E and ϕ are respectively the local electric fields and the electric potential. Therefore, the high
frequency of tortuosity and the viscous characteristic length can be evaluated as

α∞ =
⟨E · E⟩Vf

⟨E⟩Vf
· ⟨E⟩Vf

, (3.43)

Λ = 2

∫
Vf

E · E dV∫
Ωfs

E · E dΩ
. (3.44)

3.6.3 Thermal problem

Eq. (3.27) pointed out by Lafarge [28] links the acoustic fluctuations of temperature to the time
derivative of acoustic pressure. The static thermal permeability is useful to describe these thermal
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effects in the fluid saturating a solid skeleton, which can be considered as a thermostat. Further-
more, the Poisson’s problem becomes

∇2τ = −1 in Vf , (3.45)

where boundary conditions on τ are

τ = 0 on Ωfs, (3.46a)

∇τ · n = 0 on Ωlateral, Ωup and Ωdw. (3.46b)

Therefore, static thermal permeability is estimated as

k0
′ = φ⟨τ⟩. (3.47)

Porosity and thermal characteristic length are purely geometrical transport parameters not related
to a specific physical field. Therefore, their values can be assessed only by using their definition,
Eqs. (3.20) and (3.24), from the CAD geometry of the unit cell. An example of the three fields
(viscous flow, electric potential and thermal flux) inside a Representative Volume of a porous
material (here, tetragonal pin array) is shown in Fig. 3.5.

(𝑎) (𝑏) (𝑐)

Figure 3.4: Surface for the boundary conditions: (a) fluid-solid interface Ωfs, (b) lateral surface
Ωlateral, (c) Ωup and Ωdown.

3.6.4 Consistency of the parameters

Transport parameters are independent one from an another from their definitions, but the geometry
of the solid skeleton imposes some constrains in the range of values they can assume. As it is
shown in the work of Johnson et al. [26], the viscous characteristic length is always lower than the
thermal one

Λ ≤ Λ′. (3.48)

At the same time, Avellaneda and Torquato [33] demonstrated the inequality between the static
thermal and viscous permeability for all micro-geometries

k0 ≤ k0
′. (3.49)
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(𝑎) (𝑏) (𝑐)

Figure 3.5: Fields of (a) the velocity v under an unitary differential pressure stimulus ∆p = 1,
(b) electric potential E under an unitary differential voltage stimulus ∆V = 1, and (c) scaled
temperature τ , for Hybrid Multiscale calculations of the tetragonal pin array.

Furthermore, for different typologies of material the tortuosity follows the Archie’s empirical law
[62]

α∞ =

(
1

φ

)r

(3.50)

where r is a coefficient depending on the material. Another check can be done on the values of
viscous and thermal pore shape factor M and M ′ which are of the order of magnitude around the
unit for classical porous material for acoustic applications. For example, in case of uniform cross
section materials, mathematical description of viscous and thermal problems has the same form
[14]. Therefore, it results that

k̃ν (ω) = k̃′ (Prω) , (3.51a)

M = M ′ = 1, (3.51b)

k0 = k0
′, (3.51c)

Λ = Λ′, (3.51d)

α∞ = 1. (3.51e)

In Fig. 3.6, dimensionless viscous and thermal permeabilities are reported in the case of uniform
cross-sectional materials. As it can be seen, thermal and viscous problems are represented in the
same form.
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Figure 3.6: Dimensionless viscous (thermal) permeability for uniform cross-sectional materials.
It can be noted that scaled velocity and temperature fields have the same mathematical description.
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CHAPTER 4. NEW TRANSPORT PARAMETERS MODELS FOR UNCONVENTIONAL
THERMOACOUSTIC STACKS

4.1 Introduction

To assess the dynamic behaviour of a porous material undergoing a sound wave excitation, its own
transport parameters are required. The modern additive manufacturing (AM) technologies allow
to realize innovative and multi-functional materials for different applications. In particular, AM
techniques make possible to design a material with a precise-controlled micro-geometry. There-
fore, from the spatial repetition of a chosen unit cell, an entire sample can be realized. This allow
to investigate on the properties of the unit cell to design the overall material, and then to select
the geometry suitable designed for a specific application. In recent years various AM technologies
have already been used in the research and development of a variety of new acoustic materials,
such as acoustic absorbers with passive destructive interference [63], hollow-sphere foams [64],
3D-printed fibrous materials [65], sound-absorbing micro-lattices [66]. Therefore, the possibility
to have sets of correlations between micro-geometry and transport parameters helps in the design
of a porous material with specified acoustic properties. The aim of this work is to realize thermoa-
coustic stacks by means of additive manufacturing, once the unit cell able to maximize the ther-
moacoustic energy conversion is found through the following developed models. In this section
the transport parameters models are reported for three different typology of material: Tetragonal
Pin Array [67], Wire Mesh [68] and 3D-Membrane Foams.

4.2 Tetragonal pin array

The lattice can be imagined as an arrangement of intersecting struts constituting the diagonals of
a tetragon with a square base. According to the height or the size of the base of the tetragon, the
struts can have different orientations with respect to the direction of the sound waves propagation.
This study is motivated by the remarkable thermoacoustic potentialities of that material, and very
similar type of lattices, shown in previous studies [69, 70, 71]. Parallel pin-array porous materi-
als, shown in Fig. 4.1.a, also called pin-array stacks in case of thermoacoustic applications, are
studied by Swift and Keolian [70] where the authors noted an increase in efficiency compared to
other traditional stacks (circular pores and parallel plates). The enhanced thermoacoustic perfor-
mance expected for cores with cylindrical elements is related to the fact that, for working fluids
with Prandtl number Pr < 1, the convexity of the solid surface results in a greater ratio of ther-
moacoustic area to viscous area compared to other stacks provided with inner concave geometries.
Swift pointed out that a practical realization of the pin-array stack geometry is a significant engi-
neering challenge, and for this reason, he made it of a simple “large-scale” model (pin diameter
3.18mm) and applied the principle of similitude. Thanks to the advent of additive manufacturing,
it seems that the engineering challenge has been somewhat won and, apart from the relative diffi-
culties related to times and costs of implementation, preliminary results on stainless steel pin-array
elements confirm what Swift theoretically proved. Even more interestingly, the additive manufac-
turing allows the creation of ordered structures of struts with different orientation and not only
“pins” parallel to the direction of flow, as studied by Swift or orthogonal to the direction of sound
propagation (Fig. 4.1.b, as proposed by Matveev [72]). Lattices based on Tetragonal Body Cen-
tered (TBC) cells allow different orientation of the struts according to the desired height of the cell
itself, reported in Fig. 4.1.c [67]. Moreover, the additive manufactured structures can be precisely
controlled and realized by using different constituting materials.

Numerical simulations

In Fig. 4.2.a an entire view of a porous sample based on TBC unit cell (Fig. 4.2.b) is reported.
Different TBC cells can be simulated by varying the main geometrical dimensions Lx, Ly, Lz and
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(𝑎) (𝑏) (𝑐)

Figure 4.1: (a) Longitudinal pin array, (b) transversal pin array, (c) tetragonal pin array.

pin radii rp. In that case, Direct Numerical Simulation approach has been used. Therefore, the lin-
earized Navier-Stokes equations, Eqs (2.9), (2.10) and (2.11), in frequency domain are solved for
a single unit cell in order to solve thermo-fluid dynamic fields inside the fluid volume. A pressure
gradient ∆p in the direction of wave propagation, symmetry on lateral boundaries (v1 · n = 0) and
no-slip isothermal wall (v1 = 0, T1 = 0) at fluid-structure interface are applied as boundary con-
ditions. Thermoviscous functions can be assessed by reversing Eqs. (2.14) and (2.15), once from
the numerical results pressure, temperature, and velocity averaged fields over the fluid domain are
known [73]

fν = 1− ⟨v1⟩
uinv

, (4.1)

fκ = 1− ⟨T1⟩
Ta

, (4.2)

where uinv = i
ωρm

∆p
Lz

is defined as the inviscid velocity and Ta = ⟨p1⟩
ρmcp

as the adiabatic temper-
ature. Subsequently, from Eqs. (2.19) and (2.20), the complex density ρ̃ and the complex bulk
modulus K̃ can be evaluated. Based on the Π-theorem, each dimensionless transport parameters
can be expressed as function of two dimensionless quantities L̄x = Lx/rp, L̄z = Lz/rp. As conse-
quence, an algorithm realized in MATLAB is used to perform a parametric optimization procedure
where the transport parameters of the JCAL semi-phenomenological model, are extracted from the
knowledge of complex density ρ̃ and bulk modulus K̃ provided by the FEM simulations performed
on 324 different lattice cells, which are obtained by varying L̄x, L̄z in a range of values from 8
to 25 and by fixing rp = 9e − 5m. The procedure is based on Ordinary Least Squares method,
described in Ref. [59]. Once the parameters have been obtained for each cell of the large set of
cells simulated with FEM, a fitting procedure has been implemented to find out the coefficients of
the second order polynomials for each parameter (adjusted R-square equal to 0.99 in each case)[

φ,
Λ′

rp
,
Λ

rp
, α∞,

k0
r2p

,
k0

′

r2p

]
= A1 +A2L̄x +A3L̄z +A4L̄

2
x +A5L̄xL̄z +A6L̄

2
z, (4.3)

where the constant Ai=1−6 are reported in Tab 4.1.
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Dimensionless parameter A1 A2 A3 A4 A5 A6

φ 0.4787 0.03023 0.01335 -0.0006 -0.0001627 -0.0002149
Λ′/rp -0.9985 0.1024 0.08976 -0.001162 0.04551 -0.01226
Λ/rp 0.3271 0.1772 -0.1711 2.728e-5 0.01215 0.005476
α∞ 1.373 -0.02005 -0.01669 0.0003822 0.0002203 0.0002946
k0/r

2
p 1.31 -0.1572 -0.2395 0.02229 0.004712 0.007991

k0
′/r2p 2.804 -0.5023 -0.2478 0.01621 0.05014 -0.003899

Table 4.1: Constants A1 − A6 of TBC cell model for the evaluation of dimensionless transport
parameters

𝐿𝑥

𝐿𝑥
𝐿𝑧

2𝑟𝑝

(𝑎) (𝑏)

Figure 4.2: Tetragonal pin array: (a) the stack, (b) the unit cell.

4.3 Wire mesh

Wire meshes (or stacked screen bed), reported in Fig. 4.3, are largely used, because they are
easy to realize with respect to other classical uniform cross-sectional stacks (parallel plates, cir-
cular pores and pin array); and they offer a low ratio between the fluid volume and the fluid-solid
interface area which makes them suitable for travelling wave devices [3, 74, 75]. There is, how-
ever, a lack of an accurate model in the literature to describe the viscous and thermal properties
of this kind of stacks. The performance predictions of these stacks are usually determined from
semi-empirical correlations provided by Swift and Ward [76]. They are, however, restricted to a
specific geometrical configuration in their current form, which limits their ability to study how
thermoacoustic efficiency relates to the geometrical details of the wire mesh stack. Swift and
Ward [76] proposed a description of the dynamic viscous and thermal-relaxation effects of these
materials from the friction factor and heat transfer data of Kays and London [77], derived from a
steady-state assumption

dp1
dx

= −iωρm

[
1 +

(1− φ)2

2 (2φ− 1)

]
⟨v1⟩ −

µ

r2h

[
c1
8

+
c2Re,1

3π

]
⟨v1⟩, (4.4)
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d⟨v1⟩
dx

=− iω

γpm
p1 +

1

Tm

dTm

dx
⟨v1⟩+

+
iω

Tm

 1

ρmcp

(
gc + e2iθpgν

)
εh

1 + εh
(
gc + e2iθT gν

)p1 − 1

iω

(gc − gν) εh

1 + εh
(
gc + e2iθT gν

)⟨v1⟩
 .

(4.5)

Here, rh = 2A/pwet is the hydraulic radius defined as the ratio between the cross-sectional area A
and the wet perimeter pwet, Re,1 = 4|⟨v1⟩|rhρm/µ is the complex Reynolds-number amplitude,
θp and θT are respectively the phase angle between the oscillating velocity and pressure and oscil-
lating velocity and temperature. c1 (φ), c2 (φ) and εh (φ) are polynomial correlations expressed as
functions of porosity, while gc and gν can be assessed from trigonometric integrals. More details
are reported in [78]. All these elements make heavy and tedious the general description of the
visco-thermal behavior of such materials. Therefore, it would be desirable to extend the simple
use of thermoviscous functions, fν and fκ, to a convenient analytical formulation, as available for
other canonical geometries (parallel plates, circular pores, pin arrays). Because fν and fκ are in-
trinsic properties of the materials; the possibility to characterize the thermo-viscous functions for
the wire mesh would allow making preliminary considerations on the behavior of these materials
and then on their thermo-acoustic efficiency without simulating the entire device.

𝑑𝑠

2𝑟𝑝

(𝑎) (𝑏)

Figure 4.3: (a) Schematic representation of the wire mesh stack and its geometrical descriptors.
(b) An illustrative example of wire mesh stack representative volume element. For the sake of
clarity, only the solid skeleton of the wire mesh stack of through-thickness Dt is displayed.

Numerical simulations

The homogenization theory [12] highlights that when a scale separation exists, viscous and thermal
effects can be decoupled. In particular, thanks to the JCAL model, the knowledge of the dynamic
complex behaviour of the material is a function of only six non-acoustical parameters, which
can be assessed from three boundary value problems, as reported in Subsec. 3.6. Wire meshes are
practically obtained through superposition of several layers of grid, placed in a random way. It was
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observed, from the numerical procedure reported throughout Appendix A, that the relative error
of both the viscous and thermal permeability computations between two subsequent calculations
corresponding to the number n of grid layers, was typically less than 5%, for n = 6. The maximum
relative differences for the other transport parameters were less than 1%. The Representative
Volume Element (RVE) was therefore considered in this study to be composed of six superimposed
grid layers (Fig. 4.3.b). Lateral dimensions were imposed to be twice those of the thickness. Under
these circumstances, it was observed that the lateral dimensions have no influence on the results
when increasing their size. Simulations were carried out on 150 different unit-cells obtained by
varying the strut radius rp from 0.13 to 0.78 mm, and the distance between struts ds from 1
to 3.5 mm. Note that this range of variations of rp and ds parameters encompasses the typical
dimensions of commercial wire screens [79, 74]. It is also noteworthy that the geometry of wire
mesh is characterized by intertwined metal filaments, while we constructed a simplified model of
the wire mesh. The junction at two connected filaments was represented as a straight intersection.
This model was found to be accurate enough for the prediction of the transport parameters of wire
mesh stacks (Appendix A). Through Eqs. (3.20), (3.24), (3.40), (3.43), (3.44), (3.47), transport
parameters were evaluated for each unit-cell. Subsequently, the general structure of the proposed
correlations between geometrical descriptors and transport parameters was inspired from the ones
provided by Luu et al. [80]. This was possible because of the similarity between wire mesh
and fibrous structure. The proposed correlations are summarized in Tab. 4.2, together with some
statistical indicators assessing the goodness-of-fit.

Correlation R-Squared SSE

φ = 1− 0.7099
πrp

ds+2rp
0.9806 0.0493

Λ′/rp = φ
1−φ−0.005133 0.9845 10.38

Λ/rp = 0.4825 φ
1−φ+0.04564 0.9802 1.284

α∞ =
(

1
φ

)0.5807
0.9657 0.1303

log10

(
k0/r

2
p

)
= 0.7765 log10

[
φ3

(1−φ)2

]
− 0.9855 0.9993 0.0605

log10

(
k0

′/r2p

)
= 0.7258 log10

[
φ3

(1−φ+0.3054)2

]
− 0.6741 0.9992 0.1802

Table 4.2: Transport parameters’ correlations for wire mesh stacks. R-squared is the coefficient of
determination, while SSE denotes the sum squared errors of residuals.

4.4 3D-printed membrane foams

Foams is a dispersion of gas in a liquid or solid matrix. Its structure consists of membranes, liga-
ments (intersection of three membranes), and vertices (intersection of four ligaments) (Fig. 4.4).
Whereas closed membranes are necessary to ensure the mechanical stability of liquid foam, they
can be open in solid foam, allowing for the foam cells (pores) to be connected through windows
[81, 82, 83]. Solid foams find applications in many fields, such as mechanical dampers, thermal,
or/and acoustic insulation heat exchangers. As shown in Fig. 4.4, a typical PU foam microstructure
can be seen as a collection of interlinked struts forming 3D structures as a packing of tetrakaidec-
ahedra cells. Each cell is connected to others through pores. Materials with 100 % open pores are
called “fully reticulated.” In this case the interconnectivity between cells is maximal. If some of
the pores are closed or partially closed by thin membranes, the material is called “partially reticu-
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lated”. Solid films or membranes in real porous media such as polyurethane or metallic foams only
account for a very small fraction of material in the overall mass of the porous media. Yet, their
role might be of primary importance in the understanding of transport and acoustical properties
of these foams. As a long wavelength wave propagates, the viscoinertial and thermal interactions
between the disordered interconnected pores and the surrounding air pose a fundamental physical
challenge in the microstructural identification of features, which are characteristic of the overall
transport phenomena. Realistic foam microstructures usually exhibit a distribution of pore size are
widely used to simulate Polydisperse foams are simulated through the Random Laguerre tessella-
tions, constructed by using a random dense packing of hard spheres with a distribution of sphere
size that coincides with the pore size distribution (estimated from the characterized foam samples).
The aim of this model is to predict the dynamic properties of membrane foams realized with ad-
ditive manufacturing technique. This means that ordered monodisperse geometry are considered,
refereed as 3D Membrane Foams. The main differences between the chosen unit cell and the clas-
sical reticulated tetrakaidecahedra cell are the absence of ligaments to link the membrane, and the
no-negligible thickness of the membranes, as shown in Fig. 4.5.a. Therefore, the three geometrical
descriptors which characterize the unit cell are the dimension of the unit cell Dt, the membrane
thickness ξ and the membrane opening ratio defined as t0 =

√
Aopen/Amembrane (ratio between

the light green and red area in Fig.4.5.a).

Figure 4.4: Solid polymeric foam for packaging under the optical microscope revealing the open-
cell microstructure and showing vertex, ligaments, membranes and windows apertures (dashed
lines). Photo source: Wikimedia.

Numerical simulations

As for the Wire Meshes, numerical simulations are carried out on the unit cell to assess the trans-
port parameters through the scale separation hypothesis by using Stokes, Laplace and Poisson
problems (Fig. 4.5.b). Taking advantage of the symmetry of the unit cell, only its one-eighth part
is taken into account as fluid domain to reduce the computational costs. The limit range of the
geometrical parameters are expressed through two dimensionless quantities as 0.2 < t0 < 0.7
and 0.003 < ξ/Dt < 0.2. Furthermore, a numerical trick is adopted to help the convergence of
transport parameters values. In fact, rounded edges of membrane are adopted to avoid singularity
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points in the numerical grid. In Appendix B, it can be seen the convergence trend of the rounded
versus non-rounded edges simulations. The structure of the correlations for the porosity φ and
thermal characteristic length Λ′ as functions of geometrical descriptors are derived analytically,
while for inertial parameters Λ and α∞ correlations are inspired from Doutres et al. [84] and for
static viscous permeability from Langlois et al. [85]. The proposed correlation are reported in Tab.
4.3.

Correlation R-Squared SSE

φ = 1− 9
16

(
1 + 2

√
3
) (

1− t20
)

ξ
Dt

0.9875 0.01649

Λ′/Dt =
2φ

6(1−t20)+
ξ

Dt

0.9534 0.03528

Λ′/Λ = φ0.2468
(

1
t0

)0.9609
0.9556 3.254

α∞ = 0.6668 (φ)
−0.4703

(
1
t0

)0.9678
0.9641 1.984

k0/D
2
t = 0.03249φt30 0.9974 2.334e-6

k0
′/D2

t = 0.04023φ3.265t2.4940 + 0.01097
(

ξ
Dt

)−0.07873

0.9971 8.569e-7

Table 4.3: Transport parameters’ correlations for 3D-printed membrane foams. R-squared is the
coefficient of determination, while SSE denotes the sum squared errors of residuals.

𝐷𝑡

𝜉

Figure 4.5: (a) The unitary solid skeleton of the 3D-membrane foam, (b) one-eighth part of the
fluid volume unit cell adopted in the numerical simulations.

4.5 Thermal behaviour of the solid skeleton

As highlighted in Subsec. 2.6.4, to complete the thermoacoustic description of a porous material,
the heat capacity ratio εs parameter is needed in order to take into account the imperfect isothermal
condition provided by the solid matrix. The heat capacity ratio εs allows to express how far the
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solid skeleton is from an isothermal condition [22]. This parameter turns out to be equal to zero for
a perfect isothermal solid condition and tends towards infinity in the case of an adiabatic condition.
εs can be assessed in an operative way by means of Eq. (2.53)

ϵs =
ρmcp
ρscs

fκ
fs

φ

1− φ
.

fs is the dynamic thermal function (a solid dynamic thermal function understood as an analogue
to fκ for the fluid part) depending on the geometry of the solid structure and the solid thermal
penetration depth δs =

√
2κs/(ρscsω). Therefore considering the above mentioned models,

the dynamic thermal function fs is the only missing parameter to assess the heat capacity ratio
εs of Tetragonal Pin Array, Wire Mesh and 3D-printed membrane foams, and fulfil the overall
thermoacoustic description of these stacks. In the cases of Tetragonal Pin Array and Wire Mesh,
the solid structure geometry can be considered as an array of circular rods, for which an analytical
formulation of the solid thermal function exists,

fs =
2J1

[
(i− 1) rp/δs

]
2J0

[
(i− 1) rp/δs

]
(i− 1) rp/δs

. (4.6)

In the case of 3D-printed membrane foams, the geometry of the solid skeleton has a more complex
shape which do not allow to use any analytical formula for fs. Therefore, the idea is to adapt the
Champoux-Allard-Lafarge model coupled with Dragonetti et al. relationship between K̃ and fκ
to characterize the dynamic thermal behaviour of solid skeleton. By combining Eqs. (3.10) and
(2.20), it follows

fs = 1−

1 + φsks
ik′0scsωρs

√
1 + i

4k′0s
2csρsω

ksΛ′
s
2φ2

s

−1

, (4.7)

where subscript s indicates the solid matrix properties. In Eq. (4.7), three novel transport parame-
ters are introduced:
• the solid porosity, which is complementary to the classical porosity defined for the fluid part,

φs = 1− φ. (4.8)

• the solid thermal characteristic length defined as, in analogy with Eq. (3.24),

Λ′
s = 2

∫
Vs

dV∫
Ω dΩ

= Λ′ 1− φ

φ
= Λ′φs

φ
. (4.9)

• the solid static thermal permeability, which has the same geometrical meaning of k′0 but refereed
to a volume corresponding to the solid fraction. Therefore, φs and Λ′

s are expressed as function of
the transport parameters φ and Λ′, for which the correlation are reported in Tab. 4.3. With respect
to the first two solid thermal transport parameters, k′0s needs to be assessed through numerical
simulations, solving the Poisson’s problem in the solid shape volume (Fig. 4.6). The comparison
between the fitting curve and the FEM results is highlighted in Fig. 4.7. The correlation for the
solid static thermal permeability as function of the geometrical parameters Dt, ξ and t0 is reported
in the following

k′0s
D2

t

= 0.001999t0.91610

(
ξ/Dt

)−0.186
. (4.10)
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Figure 4.6: Scaled thermal field inside solid volume fraction geometry (one eighth part of the unit
cell).

Figure 4.7: Comparison between the fitting curve and the FEM results (black point) for k′0s/D
2
t .

Statistical parameters of the goodness of the fit are reported.
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CHAPTER 5. EXPERIMENTAL CHARACTERIZATION OF THE DYNAMIC BEHAVIOUR
OF POROUS MATERIALS

5.1 Introduction

Experimental characterization of the dynamic frequency-dependent properties of a porous material
is traditionally carried out through the standard three- and four- microphones techniques. These
methodologies require the sample to be tested in a Kundt’s tube (or standing wave tube). Based on
the direct and reflected wave decomposition, the three- [49] and four-[50] microphones tests allow
to characterize the transfer matrix between the two sides of the sample [86], Eq. (2.38), and as
consequence, the complex density ρ̃ and bulk modulus K̃ (or equivalently the complex wave num-
ber k̃ and characteristic impedance Z̃c, or the thermoviscous functions fν and fκ). The frequency
validity range of these two methodologies are linked to the geometrical dimensions of the setup,
such as separation distances between adjacent microphones, the inner diameter of Kundt’s tube.
These technical limitations make it very difficult to obtain accurate measured dynamic properties
of material for very low frequencies (under 500 Hz) [87]. Furthermore, it has to be considered
that the low frequency range is where porous materials absorb the least amount of acoustic energy.
On the other hand, in thermoacoustic applications, porous materials, usually refereed as stack or
refrigerator, are used in low frequency range. This is one of the reasons why different measure-
ment techniques have been developed to characterize the viscous and thermal behaviour of porous
materials in a very low frequency range. Hayden and Swift [69] introduced a method to measure
thermoviscous function fκ. Wilen and Petculescu developed a method to directly characterize
both thermoviscous functions fν and fκ [88, 89, 90]. The limitations of these thermoacoustic
methodologies are the complex instrumentation needed to provide the measure (such as a cali-
brated linear variable differential transformer or a laser beam off a mirror) and the accuracy of the
data due to different order of magnitude of measured quantities (harmonic volume displacement
and acoustic pressure). Therefore, two novel measurement techniques have been developed to
assess experimentally the dynamic properties of porous materials in low frequency range based
only on acoustic instrumentation, such as two microphones and a loudspeaker. In this section, a
brief review of the standard three- and four microphones techniques is recalled and subsequently
the two novel lumped element techniques for low frequency range measurement are presented [53,
52].

5.2 Three-microphones technique

The three-microphone method proposed by Salissou et al. [49] allows one to simultaneously deter-
mine the normal incidence sound absorption coefficient α, the normal incidence sound transmis-
sion loss coefficient nSTL, and the effective acoustic properties of the tested porous material by
the impedance tube setup shown in Fig. 5.1.a. In this configuration, the porous sample is backed
on the rigid termination. Here the sample is assumed to be homogeneous, symmetric, isotropic
and acoustically rigid or limp (i.e., it behaves as an equivalent fluid).

From the two pressure transfer function measurements H12 = p1
p2

and H23 = p2
p3

, respectively
between microphones 2 and 1 and microphones 3 and 2, one can deduce the pressure ratio between
the front (x = 0) and the rear face (x = d) of the porous layer as

H0d =
1 + r

eikAL + re−ikAL
H23, (5.1)

with r the complex reflection coefficient given by

r =
eikAs −H12

H12 − e−ikAs
e2ikAL. (5.2)
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Here, s is the spacing between microphones 1 and 2, L is the distance between microphone
2 and the front surface of the porous sample and d is the sample thickness, and kA = ω/c is the
wave number in the ambient fluid. The surface impedance for x = 0 is equal to

Zs = ρmc
1 + r

1− r
. (5.3)

From the transfer matrix approach and considering that the velocity of the air particle at x = d is
equal to zero (wall condition), it is shown that the transfer function H0d is equivalent to the first
element of the normal incidence transfer matrix T11. Thus, the wave number and the characteristic
impedance of the material can be evaluated as

k̃ =
1

d
cos−1 (H0d) , (5.4)

Z̃c = iZs tan
(
k̃d
)
. (5.5)

From Eqs. (2.29) and (2.30), the complex density and bulk modulus can be obtained, and as
consequence the thermoviscous functions fν and fκ by using Eqs. (2.19) and (2.20) also.

5.3 Four-microphones technique

The four-microphones technique [50], Fig. 5.1.b, allows to assess the amplitude of the direct and
reflected wave in the front side and back side of the sample through the four pressure point picked
up:

A = i
p1e

ikAx2 − p2e
ikAx1

2 sin (kAs)
, (5.6a)

B = i
p2e

−ikAx1 − p1e
−ikAx2

2 sin (kAs)
, (5.6b)

C = i
p3e

ikAx4 − p4e
ikAx3

2 sin (kAs)
, (5.6c)

D = i
p4e

−ikAx3 − p3e
−ikAx4

2 sin (kAs)
. (5.6d)

Therefore, the acoustic pressure and velocity in the front and rear face of the material can be
evaluated as

p0 = A+B, v0 =
A−B

ρmc
, (5.7a)

pd = Ce−ikAd +DeikAd, vd =
Ce−ikAd −DeikAd

ρmc
. (5.7b)

From the transfer matrix formulation, Eq. (2.38), the element T11 and T12 are estimated as

T11 =
p0v0 + pdvd
p0vd + pdv0

, (5.8a)

T12 =
p20 − p2d

p0vd + pdv0
, (5.8b)

T21 =
v20 − v2d

p0vd + pdv0
. (5.8c)
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In a similar way to the three microphones techniques, Eqs. (5.4) and (5.5), the complex wave
number and the characteristic impedance are in this case equal to

k̃ =
1

d
cos−1 (T11) , (5.9)

Z̃c =

√
T21

T12
. (5.10)

𝑥 = 0

𝑠 𝐿 𝑑

𝑥 = 0

𝑥1

𝑥2

𝑑

𝑥3
𝑥4

(𝑎)

(𝑏)

Figure 5.1: Three- (a) and four- (b) microphones techniques set up.

5.4 Novel low frequency lumped element techniques

As reported in subsec. 2.5.1, the wave propagation inside a porous material can be described as
a certain number of double bipole linked in series, at limit an infinite number. While, under the
lumped element hypotesis, a porous material can be represented by a single double bipole, with its
longitudinal impendance Zνd and its transversal admittance Yκd. Lumped element measurement
techniques are based on the assumption that the transfer matrix representing a porous material can
be expressed, see Eq. (2.47),[

p1
U1

]
x=d

=

 1 − iωρ̃
Af

d

− iωAf

K̃
d 1

[p1
U1

]
x=0

. (5.11)

The fundamental hypothesis which allows to describe a porous material using only a double bipole
is expressed as

|k̃d| < 0.5. (5.12)

The quantity |k̃d| is the absolute value of the complex dimensionless wave number, depending on
the material properties k̃ and its thickness d.
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5.4.1 Complex density

To measure the complex density ρ̃, viscous behaviour should be highlighted. Looking at the two-
port network shown in Fig. 5.2, this can be accomplished if a very low impedance value Zrad

(ideally a short-circuit) is considered. This condition can be realized by placing the sample be-
tween the acoustic source and an open-end. It will be shown that this is equivalent to have a
uniform acoustic volume velocity across the material (i.e. with reference to Fig. 5.2.b this means
to have Ux=0 ≈ Ux=d). As shown in Fig. 5.3, the method proposed by Di Giulio et al. [52] is
based on two measurements with (refereed as full) and without (refereed as empty) the material to
be tested and by considering the same measurement set up. In this way, it is possible to assume
the same boundary conditions or, in other words, the same acoustic impedance at the open-end
(section x = d) in the two measurements. As will be shown shortly, the latter allows to assess the
complex density ρ̃ without knowing the impedance value at the open end of the tube, x = d. In the
empty case, neglecting the losses at the edges of the tube, (an ideal gas fulfils the opened cavity),
it can be written as follows

[
p1
U1

]
x=d

=

 1 − iωρm
Af

d

− iωAf

γpm
d 1

[p1
U1

]
x=0

. (5.13)

The acoustic pressure at the open-end section x = d can be derived from Eqs. (5.11), (5.13) as
function of the measured pressure in the section x = xmic, named pup, as follows

px=d,full = pup,full −
iωρ̃

Aφ
(d− xmic)U1,full, (5.14a)

px=d,empty = pup,empty −
iωρm
A

(d− xmic)U1,empty, (5.14b)

where the lumped element hypothesis and the low value of the radiation impedance allow to as-
sume the uniform volume velocity across the porous sample equal to U1. By dividing both Eqs.
(5.14a) and (5.14b) by U1, the expressions of the surface impedance at open-end section are found
for the full and empty cases. Therefore, by equalling these expressions it follows

(
p

U

)
x=d

=

(
pup
U1

)
full

− iωρ̃

Aφ
(d− xmic) =

(
pup
U1

)
empty

− iωρm
A

(d− xmic) . (5.15)

Assuming that the dimension of the air volume behind the loudspeaker (lower chamber) is much
smaller than the wavelength, the acoustic volume velocity can be evaluated as [43]

U1 = −iω
Vdw

γpm
pdw, (5.16)

where Vdw is the volume of the lower chamber and pdw the acoustic pressure therein. By substi-
tuting Eq. (5.16) in (5.15), the complex density of the tested sample can be evaluated as

ρ̃ = φ

ρm +
γpmA

ω2Vdw (d− xmic)

[(
pup
pdw

)
full

−
(
pup
pdw

)
empty

] . (5.17)

51



CHAPTER 5. EXPERIMENTAL CHARACTERIZATION OF THE DYNAMIC BEHAVIOUR
OF POROUS MATERIALS

𝑍𝜈𝑑

1

𝑌𝜅𝑑

𝑈1,𝑓𝑢𝑙𝑙

𝑝𝑢𝑝,𝑓𝑢𝑙𝑙 𝑍𝑟𝑎𝑑

𝑍𝜈𝑑
𝑈1,𝑓𝑢𝑙𝑙

𝑝𝑢𝑝,𝑓𝑢𝑙𝑙 𝑍𝑟𝑎𝑑

−
𝑖𝜔𝜌𝑚𝑑

𝐴

−
𝛾𝑝𝑚
𝑖𝜔𝐴𝑑

𝑈1,𝑒𝑚𝑝𝑡𝑦

𝑝𝑢𝑝,𝑒𝑚𝑝𝑡𝑦
𝑍𝑟𝑎𝑑

𝑈1,𝑒𝑚𝑝𝑡𝑦

𝑝𝑢𝑝,𝑒𝑚𝑝𝑡𝑦
𝑍𝑟𝑎𝑑

−
𝑖𝜔𝜌𝑚𝑑

𝐴

(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 5.2: The acoustic transmission line of a porous material (a) and free air (c) placed close to
an open-end section. The case of negligibility of the transveral acoustic impedance in the case of
the material (b) and free air (d).
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𝑝𝑑𝑤,𝑒𝑚𝑝𝑡𝑦

Figure 5.3: The acoustic setup to measure the complex density for the full configuration, on the
left, and empty configuration, on the right.

Negligibility of radiation impedance

As reported in Fig. 5.2, a low value of the radiation impedance Zrad is required to realize the short-
circuit condition in the equivalent electro-acoustic network. The radiation impedance is expressed,
for circular tube with inner radius R, as [20]
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Zrad =
ρmc

A

(
(kAR)2

4
+ 0.6ikAR

)
. (5.18)

The effect of the presence of radiation impedance can be considered negligible when kAR < 0.5.
Therefore, the greater the tube radius, the smaller the frequency range for which Zrad is negligible.
In some cases, the condition kAR < 0.5 can be more restrictive than the one for the validity of
lumped element approximation |k̃d| < 0.5. To clarify this statement, Fig. 5.4 reports kAR as
a function of frequency, for three different radius values (R = 3, 5, 10 cm), compared with the
values of |k̃d| < 0.5 obtained for a porous material with thickness of 3.5 cm and three different
values of airflow resistivity

(
σ = 5000, 10000, 40000 (Pa · s)/m2

)
. It can be noted that, up to a

certain radius of the tube and for higher value of airflow resistivity (or what is the same for higher
value of thickness), |k̃d| < 0.5 is more restrictive than kAR < 0.5 because the cut-off frequency is
smaller. On the other hand, for higher values of R and smaller value of airflow resistivity (or what
is the same for smaller value of thickness), the cut-off frequency it is affected by kAR. In Fig. 5.4,
numerical simulations on the same material (d = 0.046m and σ = 2600Pa ·s/m2) are compared
for different values of the tube radii: (a) R = 3 cm where the lumped-element condition is more
restrictive than the impedance radiation negligibility, (b) R = 5 cm where the two limit condition
are very close, (c) R = 10 cm where the negligibility of Zrad provides a frequency limit smaller
than the lumped-element condition.

Figure 5.4: |k̃d|, for a porous material with thickness 3.5 cm with three different values of airflow
resistivity

(
σ = 5000, 10000, 40000 Pa · s/m2

)
and kAR, with three different dimensions of the

tube radius R = 3, 5, 10 cm versus frequency.

5.4.2 Complex bulk modulus

Dynamic thermal behaviour of a porous material is expressed through its complex bulk modulus
K̃, which determines the transversal admittance Yκd. Therefore, in order to characterize this
quantity using an equivalent circuit representation, viscous behaviour should be neglected, i.e. the
longitudinal viscous impedance [53]. The condition reported in Fig. 5.6 can be realized through
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Figure 5.5: The comparison between ρ̃theoretical (black line) and ρ̃lumped−element (blue line) for
a sample with thickness d = 4.6 cm and σ = 2600 Pa · s/m2 plotted versus frequency f referred
to as left y axes. The |k̃d| parameter (continuous red line) and kAR (dashed red line) referred to as
the right y axes: (a) R = 3 cm, (b) R = 5 cm, (c) R = 10 cm. The black vertical dashed-dotted
line represents the cut-off frequency corresponding to |k̃d| = 0.5 (red horizontal line). The black
vertical dashed line represents the frequency corresponding to kAR = 0.5.

two assumption: by adding a very high values transversal impedance, parallel to Yκd, borderline
an infinite value such as a perfect hard wall condition, and neglecting the viscous impedance over
the thermal one which mathematical means, using Eqs. (2.29) and (2.30),

Zνd ≪ 1

Yκd
→
√

Zνd
1

Yκd

=
√

ZνYκd2 = |ik̃d| ≈ 0. (5.19)

Under this hypothesis, the acoustic pressure in the cavity where the material is placed in, which
can be considered uniform

(
p1,x=0 = p1,x=d = pup

)
. Therefore, expressing U1,x=0 from the Eq.

(5.16), the surface admittance at the back-end section x = d in the full and empty cases can be
derived by dividing Eqs. (5.11), (5.13) for pup as follows

(
Ux=d

pup

)
full

= −iω
Vdw

γpm

(
pdw
pup

)
full

− iω
Vupφ

K̃
, (5.20a)(

Ux=d

pup

)
empty

= −iω
Vdw

γpm

(
pdw
pup

)
empty

− iω
Vup

γpm
. (5.20b)

These surface admittance (equivalently the surface impedance) are equal in the configurations
empty and full since both are characterized by the same boundary conditions at the end section
x = d, as in Fig. 5.7. Consequently, it follows that

K̃ =
γpm

1
φ − Vdw

Vupφ

[(
pdw
pup

)
full

−
(
pdw
pup

)
empty

] . (5.21)
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Figure 5.6: The acoustic transmission line showing: the complete thermo-viscous model and the
model neglecting transversal viscous impedance respectively for the material (a) and (b), and in
free air (c) and (d).
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Figure 5.7: The acoustic setup to measure the complex bulk modulus for the full configuration,
on the left, and empty configuration, on the right.

Negligibility of viscous impedance over the thermal admittance

The airflow resistivity is taken as a reference parameter for the viscous losses of the two materials
and it is set to σ = 1000 Pa ·s/m2 and σ = 10000 Pa ·s/m2 in the two cases. The error provided
by the lumped element approach, can be expressed as:

ϵ (ω) =
∣∣∣1− K̃lumped element

K̃theoretical

∣∣∣× 100, (5.22)
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with K̃lumped element and K̃theoretical the complex bulk moduli value given, respectively, by the
numerical simulations and JCAL model. In Fig. 5.8 the values of the complex bulk modulus given
by the numerical simulations and JCAL model are plotted versus the dimensionless parameter, |k̃d|
(upper x-axis). |k̃d| is used to estimate the reliability range of the lumped approximation, since
|k̃d| is directly related to the phase variation and attenuation of the acoustic pressure throughout
the porous material. By looking at the Figs. 5.8.a and 5.8.b, it is easy to verify that, for both
materials, ϵ is smaller than 5% when |k̃d| < 0.5. Thus, |k̃d| < 0.5 can be taken as a criterion to
assess the upper limit of frequency validity range of the proposed method. Eq. (5.19) implies that,
limiting |k̃d| to small values, the transversal viscous impedance Zν d is negligible with respect
to the thermal impedance 1/Yκ d of the material. Chosen |k̃d| ≈ 0.5 as a limiting value, the
surface plots in Fig. 5.9 and Fig. 5.10 show the range of application of the method in terms
of frequency, material thickness and airflow resistivity values. Moreover, from Fig. 5.10, an
important consideration can be done regarding the cut-off frequency for a fixed airflow resistivity
value, the smaller the sample thickness, the higher the frequency limit. For a fixed the thickness
value, the greater the airflow resistivity, the lower the frequency limit.

Figure 5.8: The comparison between K̃theoretical (black line) and K̃lumped element (magenta
dashed line) for a sample with thickness d = 0.08 m,φ = 0.99 and transport parameters Λ =
2e − 4 m,Λ′ = 2Λ, α∞ = 1, k′0 = 2k0 = 2µ/σ, where σ = 1000 Pa · s/m2 on the left and
σ = 10000 Pa ·s/m2 on the right. black vertical dashed line represents the limit value |k̃d| = 0.5.

Microphone position

The lumped element technique requires a uniform acoustic pressure inside the porous sample but
as seen in the previous section, there is always a certain variation on the acoustic pressure along the
sample. This variation is sufficiently small, to obtain reliable results, when |k̃d| < 0.5. However,
it is important to highlight the dependence of the measurement results from the position of the
microphone in the upper cavity (see Fig. 5.11). The outcomes of several numerical simulations,
which are intended to investigate this problem, are plotted in Fig. 5.12. It reports the value of the
complex bulk modulus given by numerical simulations and obtained by the sound pressure picked
at different positions in the upper chamber and compared with the K̃theoretical. In particular, three
microphone positions were considered in the upper cavity: front (blue line), rear (red line) and
middle (magenta line) position. It can be observed that the best location for the microphone is in
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Figure 5.9: The surface plot of |k̃d| as a function of the frequency range and specimen thickness
for a sample with φ = 0.99 and transport parameters Λ = 2e − 4 m,Λ′ = 2Λ, α∞ = 1, k′0 =
2k0 = 2µ/σ, where σ = 1000 Pa · s/m2 on the left and σ = 10000 Pa · s/m2 on the right.

Figure 5.10: The 3D-surface plot of |k̃d| for increasing values of the airflow resistivity σ.

the middle of the sample, as it provides approximately an averaged value of the sound pressure that
occurs in the cavity, with and without porous material. Results in Fig. 5.12 show that the numerical
value of the complex bulk modulus given by numerical simulations and obtained by front (blue
line in Fig. 5.12) and rear (red line in Fig. 5.12) sound pressure can diverge from theoretical one
also for values of |k̃d| less than 0.5 whereas the agreement is good enough for results obtained by
the middle microphone (magenta line in Fig. 5.12).
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Figure 5.11: The different microphone positions along the porous material, indicating the behind
section of the sample in red, the front section of the sample in blue, and the middle section of the
sample in magenta.

Figure 5.12: The comparison between K̃theoretical (black line) and K̃lumped element, where the
acoustic pressure p1 is estimated behind (dashed lines, dashed red line), in front (blue point and
line), and in the middle section (magenta dashed line) of the material. On the left and on the right,
the materials have respectively the same transport properties as those in Fig. 5.8.a and 5.8.b. the
black vertical dashed line (dashed lines) represents the limit value|k̃d| = 0.5.

5.5 Experimental results

The experimental apparatus for the low frequency measurements of the thermal and viscous func-
tions inside porous media are sketched in Figs. 5.3 and 5.7. In particular, driver and sample holder
must be sealed up to avoid air leakages. The first step is to provide accurate measurements of lower
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and upper volumes, Vdw and Vup, that are fundamental for the calibration of the measurement sys-
tem. An acoustic method for the evaluation of the volume cavities, i.e. acoustic compliance, is
proposed by Dragonetti et al. [43]. The porous medium should occupy most of the volume in the
upper cavity. Therefore, a movable termination has to be set at the end of the sample in the bulk
modulus measurement while acoustic tubes with same inner radius different length of the sample
must be employed. After a first estimation of the volume of the cavities, the only parameter of the
sample that must be known is the open porosity φ. Therefore, two measures must be carried out:
one without the testing sample, where the volume in the upper cavity is fulfilled only by air, and
one with the testing sample. The different typologies of the samples with various thicknesses and
airflow resistivity have been tested to validate the experimental methodology, such as: a fibrous
material sample, triangular pore sample, Wire Mesh samples and 3D-membrane foams. Experi-
mental data are partially extracted from the works of Di Giulio et al. [52], Di Giulio et al. [68]
and Napolitano et al. [53]

Fibrous material

The tested fibrous sample is a polyester fiber specimen, commercially named Edilfiber. The airflow
resistivity has been measured though the Dragonetti et al. [43] method and it is 1850 Pa · s/m2.
The experimental results are compared with the results provided by Miki’s model, which is reli-
able for fibrous material.
For the complex density measurements, results are plotted by using two y axes versus the fre-
quency f on x axes: on the left the real and imaginary part of complex density, on the right the
dimensionless |k̃d| (continuous red line) and kAR (dashed red lines) parameters to highlight the
validity range of the lumped element technique. It will be the lower frequency value between the
two criteria: |k̃d| < 0.5 or kAR < 0.5. The |k̃d| parameter is proportional to the frequency,
sample thickness and viscous dissipation (or viscous impedance Zνd). Therefore, the higher the
viscous dissipation (strictly related to airflow resistivity σ) or the sample thickness d, the lower the
frequency validity range of lumped element technique. In Fig. 5.13 , results obtained for Edilfiber
sample are reported. As it can be seen the deviation of experimental data from the model increases
when the frequency decreases. This is attributed to the acoustic source which is not particularly
designed for the pure low frequencies, and it has been adapted for the measurement frequency
range.
Also in the case of the bulk modulus measurement, the data are plotted versus two x axes: the fre-
quency on the lower axis and the parameter |k̃d| on the upper axis. As expected, the experimental
results are coherent with the theoretical predictions up to cut-off frequency (Fig. 5.14).

Triangular pore sample

This sample with uniform cross section areas has been tested, for which an analytical solutions for
both ρ̃ and K̃ exist:

ρ̃ = ρmϵ2
[
ϵ2 − 3ϵ coth (ϵ) + 3

]
, (5.23a)

K̃ = γpm

(
γ − γ − 1

Prϵ2

[
Prϵ

2 − 3
√

Prϵ coth
(√

Prϵ
)
+ 3

])−1

. (5.23b)

where ϵ = t
2

√
3iωρm

µ , being t the dimension on the side of the triangle. As for the Edilfiber sample,
results are reported against two y and x axes to highlight the validity range of the measurement
techniques respectively in Figs. 5.15 and 5.16.
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Wire Mesh

Three different Wire Mesh samples have been tested: in Fig. 5.17.a, Wire Mesh 1, rp = 0.35mm,
ds = 3.07 mm, in Fig. 5.17.b, Wire Mesh 2, rp = 0.3 mm, ds = 2.30 mm, and in Fig. 5.17.c,
Wire Mesh 3, rp = 0.2 mm, ds = 1.63 mm. For these samples, the experimental results are
reported in terms of the viscous and thermal functions, fν and fκ, equivalent to complex density
ρ̃ and bulk modulus K̃ through Eqs. (2.19) and (2.20). Figs. 5.18, 5.19, 5.20 compare the experi-
mental results obtained though the lumped element techniques with the theoretical model combin-
ing the JCAL approach with the proposed transport parameter derivations (Tab. 4.2). Experimental
data are generally in good agreement with the theoretical predictions both for the viscous and ther-
mal behaviours. Based on the equations reported in Tab. 4.2 and the Eqs. (3.4c), (3.11c), the
estimated values of the viscous fνt = µφ/ (2πρmα∞k0) and thermal ftt = κφ/

(
2πρmcpk

′
0

)
transition frequencies, for the three wire mesh samples that were characterized (Wire Mesh 1 to
3), are respectively equal to 19, 32, 65Hz and 14, 21, 45Hz. Therefore, most of the measured be-
haviours of the viscous fν and thermal fκ. functions correspond only to the inertial and adiabatic
regimes. Some differences between the experimental data and the model were observed for the
imaginary part of the thermal response function, fκ (below 50 Hz). This resulted mostly because
of difficulties inherent to the measurement technique, which requires a perfectly sealed setup to
avoid air losses and an acoustic source able to support the front and rear compliance volumes.
As said above, in the employed experimental setup the used acoustic source was not properly de-
signed to work under such low frequencies. As a consequence, an increasing standard deviation
was characterized when the frequency decreases. Specifically, the difference in amplitude between
the experimental results and the model predictions for the thermal function fκ of the Wire Mesh 1
(Fig. 5.18) resulted mostly from the fact that a larger thermal permeability k′0 was observed when
compared with the other samples (Tab. 4.2). In agreement with the previous statement about the
thermal transition frequency ftt, the associated transition between the isothermal and adiabatic
regimes of 14 Hz indicates that an accurate measurement of both the real and imaginary part of
fκ would require a specifically designed experimental setup.

3D-membrane foams

3D-membrane foam samples have been realized through an additive manufacturing techniques, in
particular, Fused Deposition Modelling (FDM) from plastic filaments has been used. FDM forms
a 3D geometry by assembling individual layers of extruded thermoplastic filament, such as acry-
lonitrile butadiene styrene (ABS) or polylactic acid (PLA), which have melting temperatures low
enough for use in melt extrusion in outdoor non-dedicated facilities. However, the complex ge-
ometries of the unit cell (Fig. 4.5.a) make difficult to have an high accuracy in the realization of the
entire sample. Several issues can be highlighted, such as: the low opening ratio t0 of the membrane
which can determine the total closure of the membrane during the process, the small dimensions
both of the unit cell and the thickness of the membrane which could not mechanically support the
structure itself. Taken into account these realization problems, three unit cells have been chosen
and realized based on the minimum dimension that can be printed with the employed technology,
0.8mm. Therefore, the three samples (named S1, S2 and S3) have all the same dimension for the
unit cell and the thickness of the membrane, respectively Dt = 8 mm and ξ = 0.8 mm, and they
differs for the opening ratio, which is fixed equal to t0 = 0.6 for S3 (Fig. 5.21.a), t0 = 0.4 for S2
(Fig. 5.21.b), t0 = 0.25 for S1 (Fig. 5.21.c). All the samples have the same thickness d = 6 cm.
In order to underline the equivalence between the two dynamic parameters description of porous
materials, results are reported in terms of complex density and bulk modulus for the Edilfiber and
Triangular pore sample, the thermoviscous functions for the Wire Mesh samples, and finally in
terms of dynamic permeabilities k̃ν and k̃′ for the 3D-Membrane Foams. As for the Wire Mesh
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samples, the experimental results compared to the theoretical model (transport parameters corre-
lations in Tab. 4.3 coupled with JCAL semi-phenomenological model) are reported in Figs. 5.22,
5.23, 5.24. From each plot it can be highlighted that the low frequency limit of the real part of
both viscous and thermal permeability achieves the static value, while the imaginary part tend to
zero. Furthermore, plots with zoomed scale on y-axis are reported for each thermal permeability
k̃′ in order to highlight the coherence between the model and the measured data. As expected,
the sample S1 is characterized by the highest airflow resistivity (lowest static viscous permeability
k0) among the samples (respectively k0 = 2.4841e − 8 m2, 1.0501e − 7m2, 3.7696e − 7m2 for
S1, S2 and S3). This is due the lower value of the opening ratio t0 of the membrane which is
the control parameter for the viscous behaviour. While, from a thermal point of view, the three
samples behave in a very similar way, because the thermal permeability has a weak dependence
on the opening ratio t0 (k′0 = 8.7551e − 7m2, 9.6262e − 7m2, 1.2482e − 6m2 for S1, S2 and
S3). Additionally, the acoustic source is adapted to operate in a frequency range for which it was
not specifically designed, rather than being a low frequency generator like a woofer. As a con-
sequence, few deviations of the experimental results from the predictive model can be mentioned
from Figs. 5.22 (right), 5.23, 5.24 (left), in particular under 50Hz.

Figure 5.13: The Edilfiber showing Miki’s model (continuous black line) and the experimental
data (lumped element technique) referred to as the left y axes. The |k̃d| parameter (continuous
red line) and kAR (dashed red line) referred to as the right y axes. The vertical dashed-dotted line
represents the cut-off frequency corresponding to |k̃d| = 0.5(kAR = 0.5) (horizontal red line).
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Figure 5.14: The Edilfiber, EF, showing Miki’s model (continuous black line), experimental
data (red circle points). The black vertical dashed line (dashed lines) represents the limit value
|k̃d| = 0.5.

Figure 5.15: The Triangular pore sample showing the analytical curve, Eq. 5.23a (continuous
black line) and the experimental data (circle points) referred to as the left y axes. The |k̃d| param-
eter (continuous red line) and kAR (dashed red line) referred to as the right y axes. The black ver-
tical dashed-dotted line represents the cut-off frequency corresponding to |k̃d| = 0.5(kAR = 0.5)
(horizontal red line).
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Figure 5.16: The triangular pore structure showing the analytical curve, Eq. 5.23b (continuous
black line) and experimental data (circle points). The black vertical dashed line (dashed lines)
represents the limit value |k̃d| = 0.5.

Figure 5.17: Three Wire Mesh samples: (a) Wire Mesh 1, rp = 0.35 mm, ds = 3.07 mm, (b)
Wire Mesh 2, rp = 0.3 mm, ds = 2.30mm, (c) Wire Mesh 3, rp = 0.2 mm, ds = 1.63mm.
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Figure 5.18: Wire mesh 1: Comparison between experimental results (red circular points, mean
value ± standard deviation) and modelling approach (continuous black line). Real and imaginary
parts of the frequency-dependent (a) thermal function fκ and (b) viscous function fν .

Figure 5.19: Wire mesh 2: Comparison between experimental results (red circular points, mean
value ± standard deviation) and modelling approach (continuous black line). Real and imaginary
parts of the frequency-dependent (a) thermal function fκ and (b) viscous function fν .
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Figure 5.20: Wire mesh 3: Comparison between experimental results (red circular points, mean
value ± standard deviation) and modelling approach (continuous black line). Real and imaginary
parts of the frequency-dependent (a) thermal function fκ and (b) viscous function fν .

Figure 5.21: Three 3D-Membrane Foams samples: (a) S3, Dt = 8 mm, ξ = 0.8 mm and
t0 = 0.6, (b) S2, Dt = 8 mm, ξ = 0.8 mm and t0 = 0.4, (c) Dt = 8 mm, ξ = 0.8 mm and
t0 = 0.25.
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Figure 5.22: 3D-membrane foam S1: Comparison between experimental results (red circular
points, mean value ± standard deviation) and modelling approach (continuous black line). Real
and imaginary parts of the frequency-dependent viscous permeability k̃ν (on the left) and thermal
permeability k̃′ (on the right).

Figure 5.23: 3D-membrane foam S2: Comparison between experimental results (red circular
points, mean value ± standard deviation) and modelling approach (continuous black line). Real
and imaginary parts of the frequency-dependent viscous permeability k̃ν (on the left) and thermal
permeability k̃′ (on the right).
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Figure 5.24: 3D-membrane foam S3: Comparison between experimental results (red circular
points, mean value ± standard deviation) and modelling approach (continuous black line). Real
and imaginary parts of the frequency-dependent viscous permeability k̃ν (on the left) and thermal
permeability k̃′ (on the right).
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6.1 Introduction

The interaction between an oscillating flow and the solid skeleton of a porous material gives rise to
viscous and thermal power exchanges [15]. This is due to a diffusive process related to the particle
velocity and temperature gradients of the oscillating flow which arises near the surface of the solid
skeleton. This phenomenon can be used to dissipate sound power or to convert it into heat and vice
versa. The summation of thermal and viscous losses contributes to sound absorption; it is therefore
necessary to ensure that both of them are very high, in the desired frequency range [58]. In the
models used to predict the sound absorption coefficient, little attention is usually paid to distin-
guish how much power is dispersed primarily due to the thermal relaxation process or associated to
the viscous nature of the fluid. When small stimuli are applied, the linear and frequency-dependent
response function of the porous system is dominated by viscous effects before the viscous char-
acteristic frequency, and by inertia in the high frequency regime [12]. At the same time, for low
frequencies the behaviour of the fluid is isothermal while for higher frequencies it tends to become
adiabatic. For a medium consisting of pores having uniform cross section, the ratio between the
viscous and thermal relaxation frequencies is equal to the Prandtl number. Therefore, for rectilin-
ear and pores of uniform cross section, viscous and thermal losses can be maximized at a given
frequency for a value of the characteristic dimension (semi-distance y0 between the plates and the
inner radius r0 for the circular pores, see Fig. 2.2). Other relations depending on these parameters
must be introduced when the geometry is more complex. For more complex geometry structures,
the six parameters JCAL model can be used to predict the frequency-dependent behaviour of
visco-inertial and thermal exchanges between the frame and saturating fluid [26, 27, 28]. In recent
years these devices have attracted the attention of an ever-increasing number of researchers due to
the energy crisis and its peculiar characteristics of constructive simplicity and cost-effectiveness
[6]. Despite the similarities shared between acoustics and thermoacoustics, these disciplines have
evolved somehow independently although one may take advantage of their specific advances. In
thermoacoustic devices, a thermal gradient is imposed between the two opposite sides of a porous
material by using two heat exchangers. For this reason, thermal exchanges between the fluid and
the solid skeleton are increased with respect to the case of a uniform temperature distribution
across the material. Regardless the case of a primary motor or reverse machine (heat pump or
refrigerator), the goal is to maximize heat exchange and to minimize viscous losses. It is therefore
desirable to design the device so that it works at the maximum heat exchange frequency. From
what has been said previously it can be highlighted that tortuous pores allow to control this fre-
quency with more degrees of freedom than the only hydraulic radius needed for the straight and
uniform pores. The study of thermal and viscous exchanges will be addressed assuming that these
effects can be separated. This hypothesis is generally accepted in the framework of small perturba-
tions, and justified when a scale separation between the incident wavelength and the characteristic
size of the pores is fulfilled: momentum and energy equations therefore allow describing visco-
inertial and heat diffusion effects independently, as highlighted from the homogenization theory
[12]. Regarding the thermoacoustic effects, the discussion is however more complex, because
of the thermal gradient existing along the direction of propagation of the sound wave inside the
material [10]; but this hypothesis can still be preserved as it will be shown in detail below. In
this Section, the power exchanges within an air-saturated porous medium subjected to an oscillat-
ing flow will be analysed both for uniform cross-sectional materials and complex porous materials.
The study will provide the criteria to select the thermoacoustic stack to be tested in a thermoacous-
tic devices. Furthermore, the numerical scheme to simulate the thermoacoustic phenomena which
occur inside the porous core will be reported and different typologies of stacks will be compared.
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6.2 Fluid-structure power exchanges in porous materials

Starting from the general definition of the sound power and considering the hypothesis of lower
order viscosity, it is possible to separate the contributions of thermal and viscous powers that a
moving fluid exchanges with the solid matrix. The time-averaged sound power Ė across the cross-
sectional area of the material can be expressed as:

Ė =
ω

2π

∮
ℜ
[
p1e

iωt
]
ℜ
[
U1e

iωt
]
dt =

1

2
ℜ [p̂1U1] =

1

2
ℜ
[
p1Û1

]
, (6.1)

where hat quantities represent the complex conjugate. From the derivation of the time-averaged
acoustic power dĖ produced in a length dx, it follows that

dĖ

dx
=

1

2
ℜ
[
p̂1

dU1

dx
+

dp1
dx

Û1

]
. (6.2)

Formally, the pressure variation along x is not affected by the temperature variation, at least di-
rectly from Eq. (2.21)

dp1
dx

= − iωρm
1− fν

U1

Af
,

In contrast, the variation of U1 along x is more complex because it depends directly on the ther-
mal gradient and on the oscillatory phenomenon itself, Eq. (2.43) considering also the imperfect
isothermal condition of the solid skeleton:

dU1

dx
= −

iωAf

γpm

[
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]
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Tm

dTm
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Substituting Eqs. (2.21) and (6.3) into the Eq. (6.2) leads to

dĖ
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=

1
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− iωρm
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Af
−
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γpm
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U1p̂1

]
. (6.4)

At this point the viscous resistance per unit length and the the thermal-relaxation conductance per
unit length can be introduced as follow

rν =
ωρm
Af

ℑ [−fν ]

|1− fν |2
, (6.5a)

1

rκ
=

γ − 1

γ

ωAfℑ [−fκ]

pm
, (6.5b)

It can be easily proved, by combining the above Eqs.(6.5a) and (6.5b) with Eqs. (2.27) and (2.28),
that

rν = −ℜ

[
Zν

Af

]
,

1

rκ
= −ℜ

[
YκAf

]
.

In fact, the longitudinal complex impedance Zνdx, as in Fig. 2.3, is characterized by an inertance
and viscous resistance, while the transversal admittance Yκdx by a compliance and a thermal
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relaxation conductance. As in the case of electrical network, inertance and compliance do not take
part to the dissipation process of the active power (dissipated power), but only the reactive power.
As a consequence the acoustic intensity variation along the material is function of the resistance
and conductance part of the impedance and the admittance. Therefore, by substituting Eqs. (6.5a)
and (6.5b), together with Eq. (2.46), Eq. (6.4) is written as follow

dĖ

dx
= −rν

2
|U1|2 −

1

2rκ
|p1|2 +

1

2
ℜ [gp̂1U1] . (6.6)

From Eq. (6.6), it can be seen how the term g represents the gain (or attenuation) of the acoustic
power flowing along the porous material in thermoacoustic devices. In fact, this term g arises
only when a non-zero thermal gradient ∇Tm is applied between the two sides of the material.
Alternatively, by considering that

p1 = |p1|eiθp , U1 = |U1|eiθU , ∆θ = θU − θp,

and that
p1p̂1 = |p1|2, Tmρmcp =

γpm
γ − 1

,

Eq. (6.4) can be rearranged and written as
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dĖκ

dx
+

dĖν
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(6.7)

From Eq. (6.7), it is possible to notice that the second term that multiplies |U1|2 represents the
viscous term, Ėν , while the first term, the one that multiplies |p1|2 (named as Ėκ), represents the
thermal contributions, i.e. represents the power heat exchanged between the fluid and the solid and
depends strongly on the Γ parameter. This last parameter accounts for the presence of a thermal
gradient along the direction of wave motion, which is necessary to trigger the thermoacoustic
phenomenon. Γ = ∇Tm/∇Tcrit is defined as the ratio between the applied thermal gradient
(or raised) throughout the porous material and, the critical temperature gradient to trigger the
thermoacoustic phenomenon ∇Tcrit = TmωA|p1|/ρmcp|U1|. Tab. 6.1 reports the three possible
thermoacoustic cases.

Γ > 1 Ėκ > 0 Thermoacoustic engine

Γ < 1 Ėκ < 0 Thermoacoustic heat pump (or refrigerator)

Γ = 0 Ėκ > 0 Pure dissipation

Table 6.1: Thermal power amount in different cases as a function of the Γ parameter.

6.2.1 Uniform cross-sectional materials

To further elaborate on the potential of Eq. (6.6), the analysis will first focus on to the case of
a material consisting of straight pores having a constant cross-section shape, like slits or circular
pores (Fig. 2.2). The expressions of the functions fν , fκ are reported in Tab. 2.1 for these pore
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shapes. First, the analysis of the viscous and thermal resistances will be carried out inside a single
pore. Next, the structure of Eq. (6.6) suggests to investigate to a greater extent how the value of
the particle volume velocity and the acoustic pressure, combined with the viscous rν and thermal
1/rκ resistances together with the εs factor and the porosity φ influence the energy conversion
inside a porous material.

Viscous losses

Viscous losses depend on the square of the particle volume velocity |U1|2 (as the kinetic energy),
on the angular frequency ω, and on the geometry of the porous material taken into account by
means of the fν function; see Eqs. (6.5a) and (6.6). To investigate the role of the viscous resistance
rν , in particular on the viscous losses, we first varied the value of the hydraulic radius rh =
1, 0.5, 0.2 mm and tested the evolution of −ℑ [fν ] /|1 − fν |2 as a function of frequency (Fig.
6.1) for both circular pores (rh = r0 where r0 is the pore radius) and slits (rh = y0, where y0 is
the semi-distance between two contiguous slits). The amplitude of −ℑ [fν ] /|1 − fν |2 decreases
exponentially with frequency until a given frequency, which will be defined here as the viscous
power transition frequency, ftpν (also reported as vertical line in the Fig. 6.1). For circular pore,
ftpν ≈ 3µ/

(
ρmr20

)
; for slit, ftpν ≈ 2.2µ/

(
ρmy20

)
. In particular, the viscous losses due to pore

geometry decrease in frequency, as a consequence of the viscous boundary layer decrease with
increasing frequency, Eq. 2.18; the decrease being more pronounced before ftpν is attained. The
product of the angular frequency ω and the function −ℑ [fν ] /|1− fν |2 gives as result the viscous
resistance rν , Eq. (6.5a). In Fig. 6.2 a nonlinear increase of the viscous resistance rν as a function
of frequency can be observed. Fig. 6.2 also shows the drastic effect that the hydraulic radius rh
of the pores has on the overall value of the viscous resistance rν . Although the viscous resistance
increased steadily and linearly as the hydraulic radius rh decreased (rh > 0.4 mm), the results
suggest that the viscous resistance rν increases strongly and nonlinearly with the lower studied
values of the hydraulic radius rh (rh > 0.4 mm). At a given hydraulic radius rh, the slits display
greater viscous resistances (losses) over the whole range of frequencies than the circular pores
do. As frequency decreases (ω → 0), the flow inside the pores tends to be predominantly of the
Poiseuille type (purely viscous). In this case, the viscous resistance rν tends to be equal to the
airflow resistivity σ

lim
ω→0

rν (ω) = σ. (6.8)

Thermal losses

Thermal losses depend on the square of the sound pressure |p1|2 (such as the potential energy), on
the frequency, as for viscous losses, and on the geometry of the porous material; see Eqs. (6.5b)
and (6.6). In this case, the thermal resistance depends only on the imaginary part of the func-
tion fκ, an imaginary part which is negative and characterized by a global minimum. Therefore,
a global maximum should be associated to the thermal losses. Plotting 1/ (rκω) in Fig. 6.3 as
a function of frequency f and hydraulic radius rh for both circular pores and slits confirms this
statement. For a given value of the hydraulic radius rh, a frequency corresponding to the thermal
relaxation frequency fκ,max, where the thermal losses are maximized, exists. The maximum de-
pends on the dimensionless parameter rh/δκ, and occurs at the same frequency for circular pores
and slits of given hydraulic radius rh (in general for all pores with uniform cross-sections). For
slits, the peak was found numerically to occur at max

[
1/ (rκω)

]
≈ 1.1791× 10−6

[
1/Pa

]
(with

min
[
ℑ (fκ)

]
≈ −0.4172), for rh/δκ = y0/δκ = 1.1311. For circular pores, max

[
1/ (rκω)

]
≈

1.067 × 10−6
[
1/Pa

]
(with min

[
ℑ (fκ)

]
≈ −0.3774), for rh/δκ = y0/δκ = 1.7818. Results

reported throughout Figs. 6.2 and 6.3 might be useful to compare the rates of thermal and vis-
cous energies exchanged for the simple pore shapes which have been considered. Whereas the
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slits geometry allows for the exchange of more thermal power at a given hydraulic radius than in
the circular pores case (Fig. 6.3), the corresponding viscous losses are larger (Fig. 6.2). This is
an important point for the design of thermoacoustic devices, which implies a choice of the pore
geometry. For a selected geometry, one needs to ensure that an increase in the exchanged thermal
power is not lost due to viscous losses. It is noteworthy that for rectilinear and uniform pores the
single design variable is the hydraulic radius, while tortuous pores may correspond to more avail-
able parameters. We also note that in the analysis reported so far, a classical isothermal boundary
condition was assumed at the interface between the fluid and solid (εs → 0), such that the porous
material is replaced by a single pore, with the porosity φ acting as a scaling factor. Clearly, the
porosity φ corresponds to the fluid volume fraction that will interact with the structure and it is
therefore related to the power exchange ratio. Consequently, increasing the porosity allows one to
promote power exchanges, but at the expense of the solid volume fraction (thinner solid part). In
the limit φ → 1, the isothermal boundary condition at the solid skeleton interface may no longer
be valid and the εs parameter has to be explicitly introduced. To further elaborate on the effect of
the εs factor, in particular on the heat exchange at fluid-solid interface, the value of the εs param-
eter is varied by considering a specific case in the dilute limit when φ → 1. The geometry used
for the numerical application consists of solid slits, with y0 = 0.3 mm, l = y0/100 being the
semi-width of the solid part and φ = y0/(y0+ l) = 0.99. In Fig. 6.4.a is reported in black and red
dotted lines the ℑ [−fκ] for a perfect isothermal boundary condition and for real case, respectively.
Eq. (6.5b) is derived for such a geometry, by taking Celcor as the solid part, a ceramic material
whose thermophysical properties at 20◦C are cs = 722 J/(kg · K), κs = 2.5 W/(m · K) and
ρs = 2510 kg/m3. The effect on the thermal performance can be understood from the fact that
when the value of the εs parameter differs from zero, the corresponding factor ℑ

[
−fκ/ (1 + εs)

]
is decreasing. Therefore, a departure from the perfect isothermal boundary condition (εs ̸= 0) has
a negative effect on thermal performance. The spectral quantities of ℑ

[
−fκ/ (1 + εs)

]
has been

computed for two different configurations of the boundary condition at the interface: ideal with
εs = 0 (black dotted lines) and imperfect with εs ̸= 0 (red dotted lines); see Fig. 6.4.a. Taking
a non-isothermal boundary condition into account instead of the classical isothermal one when
εs ̸= 0 reduces the amplitude of the global minimum in the imaginary part of ℑ

[
−fκ/ (1 + εs)

]
.

A more thorough discussion of these aspects would require a particular attention to the absorption
of sound, as reported in the next section.

Sound absorption

In classical engineering, sound absorbing materials use a dissipating mechanism based on viscous
losses. Thermal losses, however, turn out to be also appropriate. The description of dissipation
phenomena introduced throughout Eqs. (6.5a), (6.5b) and (6.6) allows one to identify that viscous
and thermal losses depend on the sound field created by a pseudo-standing wave within the ma-
terial. In particular, the viscous dissipation is related to the particle velocity of air in the porous
medium. When backed by rigid and impervious termination, the particle velocity at the face be-
tween the material and the rigid backing is always zero, which leads to reduce the particle velocity
within the porous material itself. In particular, if the thickness of the material is small (when com-
pared to the wavelength), the losses due to viscous dissipation might be negligible compared to
the thermal ones. The amount of absorbed acoustic power by a porous material over a fluid area
Af , is defined in the condition of rigid and impervious back-end surface as

α =
Ėdiss

Ėinc

, (6.9)
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where Ėinc is the incident power over the porous material surface and Ėdiss is the dissipated power
across the porous material with thickness d

Ėdiss =

∫ d

0

(
∂Ė

∂x

)
dx =

∫ d

0

(
∂Ėν

∂x
+

∂Ėκ

∂x

)
dx = Ėdiss,visc + Ėdiss,therm (6.10)

This coincides with a classical expression, which is possible to obtain with other techniques such
as the transfer matrices or the surface impedances methods [58]. Fig. 6.4.b presents the amount
of dissipated sound power Ė per unit area of fluid Af due to viscous Ėν/Af (continuous line) and
thermal Ėκ/Af (dashed line) effects. For the studied configuration, the dissipated sound power is
dominated by thermal effects up to about 900Hz. The expected value of the maximum dissipated
sound power, for each frequency, that could be achieved from thermal effects is shown in dashed-
dotted line; a value obtained if ℑ [−fκ] displays its maximum value of 0.41 (Fig. 6.4.a). It is
observed that the maximum dissipated power due to thermal effects occurs only at the thermal
relaxation frequency fκ,max (Fig. 6.4.b). Note that a variation of this thermal relaxation frequency
fκ,max would require a modification of y0: as y0 decreases, fκ,max increases (fκ,max ∝ 1/y20)
together with ftpν . As it can be seen the viscous losses will become larger than the thermal ones
at higher frequencies (Fig. 6.4.c). Also shown is the relative percentage of dissipated power due
to viscous and thermal interactions with respect to the total dissipated sound power, as presented
in Fig. 6.4.c. As the frequency increases, the relative contribution of viscous losses tends to
increase and to be predominant with respect to the thermal ones. Finally, Fig. 6.4.d illustrates
the value of the sound absorption coefficient αmax that could be obtained if the thermal losses
were maximized (dashed line) by setting the imaginary part of the thermal function ℑ [−fκ] to
a fixed and maximal amplitude (Fig. 6.4.a). This graph suggests that, if the thermal losses are
predominant with respect to the viscous ones, they can be maximized at a given frequency by
properly choosing the geometry (in this case y0). Red curve that merges with the black one shows
the absorption coefficient considering the εs ̸= 0 values. It is slightly smaller but indicates that
also thermophysical properties, in theory but little in practice, can affect the sound absorption
coefficient.

Figure 6.1: Evolution of ℑ [fν ] /|1 − fν |2 as a function of frequency for three different values
of the hydraulic radius rh = 1, 0.5, 0.2 mm for circular pores (solid line) and slits (dashed line).
Vertical lines correspond to the viscous power transition frequency, ftpν .
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Figure 6.2: Viscous resistance rν as a function of frequency f and hydraulic radius rh for circular
pores (grey surface) and slits (red surface). The specific values of the viscous resistance rν at the
viscous power transition frequencies ftpν are also reported within the range of studied hydraulic
radii 0.1 mm < rh < 1 mm.

Figure 6.3: 1/ (rκω) as a function of frequency f and hydraulic radius rh for circular pores (grey
surface) and slits (red surface). The specific values of 1/ (rκω) at the frequencies corresponding
to fκ,max are also reported (same colours).
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Figure 6.4: a) Imaginary part of fν (solid line) and fκ (dashed line) in the ideal εs = 0 (black)
and real εs ̸= 0 (red) cases. b) Viscous Ėν/Af (solid) and thermal Ėκ/Af (dashed) powers over
a fluid area; the maximum achievable thermal power Ėκ,max/Af (dashed-dotted) and the related
viscous fν,max and thermal fκ,max relaxation frequencies, together with the viscous power transition
frequency ftpν . c) Percentage of dispersed energies due to thermal and viscous effects (the sum is
always equal to 100%). d) Absorption coefficient obtained by using Eq. (6.9) in the ideal and real
cases, and the maximum absorption coefficient.

6.2.2 Generic porous materials

In the general case of complex tortuous pores, the thermal and viscous functions depend on sev-
eral parameters. By using the Johnson-Champoux-Allard-Lafarge model to characterize the visco-
thermal behaviour of a porous material, six transport parameters are required [26, 27, 28]. It is
possible to note from Eq. (3.3) coupled with Eq. (2.19) that fν function depends on the static
viscous permeability k0 (or the airflow resistivity, σ = µ/k0), the viscous characteristic length Λ
and the high frequency limit of the tortuosity α∞. Instead, fκ function depends on two parameters:
the static thermal permeability k′0 and the thermal characteristic length Λ′. In the following, the
role of these parameters in the responses of the viscous and thermal resistances has been tested.
First, a parameter-variation study is performed to investigate the role of these transport parame-
ters, in particular to evaluate if a different pattern of behaviour as that observed for the circular
pores and slits could be obtained. Second, because these transport parameters are inter-dependent,
and depend in fine on the microstructure of the porous material itself, correlations between mi-
crostructure and transport parameters available in the literature have been applied to ensure that
the potentially interesting configurations identified during the parameter-variation study could be
assessed from realistic microstructures.

Viscous losses

First, the viscous resistance rν as a function of frequency f and airflow resistivity σ for different
values of Λ has been examined and reported as surface plot in Fig. 6.5. From the microstructural
point of view, a reduction of Λ at constant σ could be obtained by increasing the cell size of a foam
together with the opening ration t0. The fact that the viscous resistance resistance rν increases
with frequency and resistivity σ. Fig. 6 can be seen as a book that is leafed through by taking the
page for low values of airflow resistivity and high values of frequency. The pages are raised as Λ
decreases. A similar image can be obtained by considering the effect of the tortuosity α∞ instead
of the viscous characteristic length Λ (not reported here for the sake of brevity). In the latter case,
the pages are raised as the tortuosity α∞ increases. The consequence is that the viscous resistance
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rν that might be understood as viscous losses also depends on the viscous characteristic length Λ
(or on the tortuosity α∞), in particular for high values of the frequency f and for low values of
the airflow resistivity σ. In other circumstances, rν vary relatively little with Λ and α∞. An easier
appreciation of the viscous resistance variation rν can be obtained from two-dimensional graphs,
by plotting the viscous resistance rν as a function of the airflow resistivity σ at a fixed frequency
(f = 500 Hz), for different values of the viscous characteristic length Λ = 50 µm (green line),
100 µm (red line) and 350 µm (black line), Fig. 6.6.a. The dependency of viscous resistance
rν with resistivity σ can be described by a linear behaviour (dotted line) is the airflow resistivity
display a value greater than a specific resistivity, σ ≥ σs (rν becomes independent of Λ):

σs ≈
√

feC , (6.11)

where C is a constant that depends on both Λ and α∞ as

C = 0.531Λ−0.2359 + 1.44α0.513
∞ (6.12)

In Fig. 6.6.b, the resistivity σ of the porous material has been varied (specifically 5000, 20000, and
50000 Pa ·s/m2), while the viscous characteristic length Λ has been modified for each previously
determined resistivity; namely 50 (green line), 100 (red line), and 350 (black line) µm. Increasing
the airflow resistivity σ significantly decreases the influence of the viscous characteristic length
Λ. Therefore, the consequence of this statement is that for a constant and low resistivity value
σ (5000 Pa · s/m2), decreasing the viscous characteristic length Λ (50 µm) corresponds to a
significant increase of the viscous resistance rν (i.e. the viscous losses). The latter values of
the viscous resistance rν can be even higher than for porous materials with much larger airflow
resistivity σ while the viscous length Λ is increased (σ = 20000 Pa · s/m2; Λ = 100 or 350 µm;
f ≥ 0.5 kHz). Also displayed in the results reported in Fig. 6.6.b is that for high values of Λ
(350 µm in this example), rν varied relatively little with frequency and was approximately equal
to the quasi-static σ value (dashed horizontal lines), as from Eq. (6.8).

Thermal losses

The way in which the thermal losses vary with Λ′ and k′0 is very complex. Fig. 6.7 reports 1/rκ
as a function of frequency and static thermal permeability for three different values of the thermal
characteristic length. To better understand the meaning of Fig. 6.7 one can image to cut this figure
with three different k′0 values as shown in Fig. 6.8. Fig. 6.8.a highlights that, for low k′0 values,
the thermal losses are not influenced by Λ′. For intermediate values (Fig. 6.8.b) they increase
as Λ′ increases for almost the entire frequency range. For large values of k′0 (Fig. 6.8.c) the
trend is reversed. It can be observed that for low frequencies, the behaviour is like the case of
that in Fig. 6.8.b, while for the high frequencies low value of Λ′ implies a large thermal loss. In
the following a discussion on the trend of the maximums of 1/rκ is reported. Fig. 6.9.a reports
how the frequency at which the maximum of 1/rκ is obtained, compared to the dimensionless
frequency ω/ωκ, varies as a function of a parameter M ′, defined in Eq. (3.11b). Fig. 6.9.b reports
the maximum values of ℑ [−fκ]) versus the same M ′ parameters. These trends can be described
by the following functions

ω

ωκ
=

{
0.04M ′2 − 0.22M ′ + 1 M ′ < 6

0.716M ′ − 3.176 M ′ ≥ 6
(6.13)

max(−ℑ [fκ]) = 0.3e−0.3752M ′
+ 0.2 (6.14)

The meaning of Eqs. (6.13) and (6.14), reported in Fig. 6.9, are not intuitive and can be explained
graphically, as shown in Fig. 6.10. It is possible to see that the frequency at which the maximum
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of 1/rκ is obtained decreases almost linearly with the increase of k′0 (Fig. 6.10.a), at least up to a
limit value of k′0 which can be identified by the limit condition M ′ = 6 once φ and Λ′ have been
assigned. In this case, for simplicity, it has been assumed that φ = 1. At the same time, Fig. 6.10.b
shows that also the maximum value of the function ℑ [−fκ] decrease as k′0 increase, and therefore
the maximum thermal power the fluid can exchange with the solid skeleton. Fig. 6.10.b highlights
that, in general, to increase thermal exchange it is important to assure porous material characterized
by a very large Λ′ value. As far as the design of a thermoacoustic device is concerned, the results
shown in Fig. 6.10 are of great importance for several reasons. The first certainly because it shows
that the maximum value of ℑ [−fκ] can be greater than that achieved in rectilinear and uniform
pores. Furthermore, it makes clear that the frequency at which the maximum of 1/rκ is obtained
and the maximum value can be controlled with two different parameters, at least until M ′ < 6
reported with a dotted vertical line in the case of Λ′ = 100 µm. The case where M ′ ≥ 6 is
not very interesting because it is characterized by very low of max(ℑ [−fκ]). In any case, the
maximum thermal exchange is achieved for low values of k′0 and large values of Λ′. The results
reported in Fig. 6.10, combined with those of Fig. 6.5, allow to make important considerations
in the design of a tortuous porous material as a stack in a thermoacoustic engine. If the goal
is to maximize the heat exchange, it is necessary to follow the recommendations set out above,
that is design the porous material to have a very large Λ′ value, but at the same time a very low
value of k′0, see Fig. 6.10.b. Note that, from Fig. 6.10.a, the last condition implies working at
too high frequency. But at high frequency, the losses of a viscous nature, (see Fig. 6.5), increase
significantly and could completely delete the gain of thermal power. At the same time the less
the frequency, viscous losses would decrease but the less is the maxima of the ℑ [−fκ] function
and therefore the heat exchange. Therefore, the only parameter to be act on is Λ′, whatever the
operating frequency of the device, and make sure that it is as high as possible.

Figure 6.5: The viscous resistance rν as a function of the airflow resistivity σ and frequency f for
three different values of the viscous characteristic length Λ.
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Figure 6.6: (a) Viscous resistance rν as a function of resistivity σ at fixed frequency f = 500Hz
for three different values of Λ [50 µm (green line), 100 µm (red line) and 350 µm (black line)].
The vertical lines represent the specific values of σ σ ≥ σs after which a linear behaviour is
observed. (b) Viscous resistance rν as a function of frequency f for three different values of σ:
5000, 20000 and 50000 Pa·s/m2; with low frequency limit of rν equal to σ (Eq. 6.8) [Λ = 50 µm
(green line), Λ = 100 µm (red line) and Λ = 350 µm (black line)].

Figure 6.7: 1/rκ vs k′0 and frequency for three values of Λ′.
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Figure 6.8: 1/rκ vs frequency for three values of Λ′ and three different values of k′0: (a) 10−10 m2,
(b) 10−9 m2 and c) 10−8 m2.

Figure 6.9: (a) maximum frequency of 1/rκ, compared to the frequency ωmax/ωκ, vs M ′ param-
eter; (b) maximum values of ℑ [−fκ] vs M ′.

Figure 6.10: (a) ωmax vs k′0, dotted-vertical line reports the case of M ′ = 6; (b) max(−ℑ [fκ]) vs
k′0. All the curves are plotted in the hypothesis of φ = 1.
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6.3 Total power

Fig. 6.11 introduces the topic of total power, indicated as Ḣ , showing two typical control volumes
of interest in thermoacoustics. Consider the thermoacoustic refrigerator shown in Fig. 6.11.a and
6.11.b, driven by a loudspeaker (or a piston) at the left and having thermal insulation around ev-
erything except the heat exchangers, so that heat can be exchanged with the outside world only
at the two heat exchangers, and work can be exchanged with the outside world only at the piston.
The principle of energy conservation can be applied to the control volume shown by the dotted
line in Fig. 6.11. In steady state, time-averaged over an integral number of acoustic cycles, the
energy inside the control volume cannot change, so the rate at which energy flows into that control
volume must equal the rate at which energy flows out. What flows in is clearly the time-averaged
mechanical power (which is exactly equal to the acoustic power flowing from the face of the loud-
speaker into the gas). That must equal the sum of the two outflowing powers, labelled heat power
and total power. Another typical important control volume is shown in Fig. 6.11.b, intersecting
a stack or regenerator in two places, with thermal insulation around the immovable side walls.
Here the only powers flowing are the total powers in and out of the two end surfaces of the control
volume. Applying the principle of energy conservation (again, steady state and time averaged)
to this control volume shows that total power in equals total power out. So total power cannot
depend on x within a stack or regenerator (it has to be constant, independent of x). Rott’s acoustic
approximation to the total power flux in the x direction, time averaged and integrated over the
cross-sectional area A of the channel, can then be written as

Ḣ =
1

2
ρm

∫
ℜ
[
h1û1

]
dA− Q̇κ, (6.15)

where Q̇κ is the heat flowing via conduction through a solid. Said κeq the equivalent thermal
conductivity of the porous material and Q̇κ can be expressed in a general form as

Q̇κ = κeqA∇Tm = κeqA
dTm

dx
. (6.16)

where A is the overall cross-sectional area. For an ideal gas, it is true that

h1 = cpT1 (6.17)

By substituting Eqs. (6.17) and (6.16) in Eq. (6.15), it follows that

Ḣ =
1

2
ρmcp

∫
ℜ
[
T1û1

]
dA− κeqA

dTm

dx
. (6.18)

Using Eqs. (2.51) and (2.14) for respectively T1 and u1 and, performing the integration in Eq.
(6.18) yields

Ḣ =
1

2
ℜ

p1Û1

1− fκ − f̂ν

(1 + Pr)
(
1− f̂ν

)
(1 + εs)


+

+
ρmcp|U1|2

2Aω (1− Pr) |1− fν |2
ℑ

f̂ν +
(
fκ − f̂ν

)(
1 + εs

fν
fκ

)
(1 + εs) (1 + Pr)

 dTm

dx
− κeq

dTm

dx
A. (6.19)
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Figure 6.11: A standing-wave refrigerator, insulated everywhere except at the heat exchangers.
(a) One useful control volume for thermoacoustics, enclosing the left end. (b) Another useful
control volume, enclosing part of the stack.

6.3.1 Thermal conductivity models for stacks

To assess the heat flowing via conduction through the porous stack, it is fundamental to correctly
estimate the value of the equivalent thermal conductivity κeq, as reported in Eq. (6.16). Swift [6]
evaluates Q̇κ as

Q̇κ = −
(
κAf + κsAs

) dTm

dx
= −

(
φκ+ (1− φ)κs

) dTm

dx
. (6.20)

Eq. (6.20) can be considered valid for uniform cross-sectional material, such as parallel plates,
circular pores and longitudinal pin arrays, where heat flows in parallel between fluid and solid.
For porous materials with a random solid skeleton distribution a more generic formulation, as
reported in Eq. (6.16), should be used. κeq is the equivalent thermal conductivity of the porous
medium and it depends both on fluid and solid thermal conductivity, the porosity and a geometrical
factor which represents the solid distribution over the fluid in the porous material. Therefore, to
complete the description of the complex porous material to be used as thermoacoustic stack, an
analytical formulation of the equivalent thermal conductivity κeq is needed to correctly assess the
conductive heat power Q̇κ. For several porous materials, such as Wire Mesh, models for assess the
equivalent thermal conductivity are available in literature [91]. When there is a lack of analytical
formulation in literature, numerical simulation based on Finite Element Method can be used to
evaluate this parameter κeq.

Tetragonal Pin Array

Generally, fibers networks are composed by a large number of struts statistically oriented in the
space, while pin array stack is characterized by a precise controlled geometry. Therefore, the
aim is to have a thermal conductivity model particularized for the tetragonal with square base pin
array depending on the pins ‘orientation. The two-limit cases for the thermal conductivity are
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represented by the longitudinal κL (Fig. 4.1.a) and the transversal κT pin array (Fig. 4.1.b), which
analytical description are available

κL = φκ+ (1− φ)κs, (6.21a)

κT =

(
φ

κ
+

1− φ

κs

)−1

. (6.21b)

An analytical model for thermal conductivity of tetragonal pin array is developed as weighted
average between κL and κT as [92]

κeq,TBC = ΩzzκL + (1− Ωzz)κT , (6.22)

where Ωzz = L2
z/(L

2
x + L2

z) is the geometrical parameter indicating the orientation of the pin
array to respect the thermal gradient direction. Since the parallel and transversal formulations
of conductivity depend on the porosity φ, assessed through formulation provided by Di Giulio
et al. [67] (Eq. (4.3) with the constant in Tab. 4.1), the proposed relation, Eq. (6.22), for the
equivalent thermal conductivity is function only of the geometrical parameters of the unit cell(
Lx, Lz, rp

)
. Finite Element simulations have been carried out on the Representative Elementary

Volume of the Tetragonal pin array porous material to verify the previous analytical expression
of the effective thermal conductivity κeq. In Fig. 6.12.a., the fluid and solid volume fractions,
respectively Vf and Vs, in which the thermal problem is solved, are shown. A temperature gradient
is applied on the unit cell (T = Tup on Ωup and T = Tdown on Ωdown, first type Dirichlet’s
boundary conditions), while symmetry boundary conditions are imposed on the lateral boundaries
(∇T · n = 0) to reproduce the periodicity of the elementary volume. Based on these assumptions,
the effective thermal conductivity can be assessed by picking up the volume average heat flux
q̇x
[
W/m2

]
value along the thermal gradient

(
∇T = Tdown − Tup

)
direction

κFEM = − q̇x
∇T

= − q̇x
Tdown − Tup

Lz. (6.23)

In Fig. 6.12.b, the thermal field inside the unit cell is reported. The comparison between the
predictive model, Eq. (6.22), and FEM results is reported in Fig. 6.13 for three different values of
L̄z = 10.5, 13.9, 17.3.

Wire Mesh

For Wire Mesh, an extensive review of the equivalent thermal conductivity is reported in the work
of Li and Peterson [91] In a first approach, the relation proposed by Alexander [93] is adopted

κeq,WM = κ

(
κs
κ

)(1−φ)0.59

. (6.24)

3D-membrane foams

As for the Tetragonal Pin Array, Finite Element based simulations have been carried out in order
to find a predictive correlation between microstructural parameters ξ,Dt and t0 and the effective
thermal conductivity of these structures. As for the case of Tetragonal Pin Array, for every ty-
pology of material κL and κT , Eqs. (6.21a) and (6.21b), represent the upper case (fluid and solid
in parallel) and the lower case (fluid and solid in series) in the evaluation of the effective thermal
conductivity. Therefore, by following the same logic above, Eq. (6.23), the equivalent thermal
conductivity κeq,MF formulation can be written as
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κeq,MF = 0.2203κL + (1− 0.2203)κT , (6.25)

where the correlation coefficient equal to 0.2203 guarantees a value of Adjusted R-square equal
to 0.8438 and a low Sum of Squares Error fixed to 0.002624. The comparison between the fitting
curve and the FEM results can be appreciated in Fig. 6.14.a, while in Fig. 6.14.b residual plot is
reported.

𝑉𝑠

𝑉𝑓

Figure 6.12: (a) Fluid and solid volume fractions. (b) The thermal field inside the unit cell
(Tup = 293K and Tdown = 393K).

Figure 6.13: Comparison between FEM results (point) and predictive model (continuous line) of
dimensionless equivalent thermal conductivity κeq/κs versus porosity
φ
(
κ/κs = 1.091e− 4

)
. In black, L̄z = 17.3. In red, L̄z = 19.3. In blue, L̄z = 10.5.
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Figure 6.14: (a) Comparison the fitting curve and the FEM results (black point) for the dimen-
sionless equivalent thermal conductivity κeq,MF/κs. (b) residual plot of the correlation over the
FEM results.

6.4 Simulation of thermoacoustic devices

To have a preliminary evaluation of the different stacks performance, numerical simulations are
carried out on a standing wave thermoacoustic engine. Solving the thermoacoustic fields inside the
stacks means to know the distribution of acoustic pressure p1(x), volume velocity U1(x) and static
temperature Tm(x) along the device. In particular, it is necessary to solve the system composed
by Eqs. (2.21), (6.3) and (6.19)

dp1
dx

= − iωρm
1− fν

U1

Af
,

dU1

dx
= −

iωAf

γpm

[
1 + (γ − 1)

fκ
1 + εs

]
p1 +

(fκ − fν)

(1 + εs) (1− fν) (1− Pr)

1

Tm

dTm

dx
U1,

dTm

dx
=

Ḣ − 1
2ℜ

p1Û1

(
1− fκ−f̂ν

(1+Pr)
(
1−f̂ν

)
(1+εs)

)
ρmcp|U1|2

2Aω(1−Pr)|1−fν |2ℑ

[
f̂ν +

(
fκ−f̂ν

)(
1+εs

fν
fκ

)
(1+εs)(1+Pr)

]
− κeqA

.

The free software for the numerical simulations of thermoacoustic devices is DeltaEC [78]. How-
ever, it does not contemplate the use of complex porous material as stack, but only the uni-
form cross-sectional materials. Therefore, a MATLAB code, which works in a similar manner
as DeltaEC, has been realized to take into account the new functions fν and fκ given by the JCAL
model coupled with the transport parameters correlations for each selected material [18]. In par-
ticular, in order to focus the attention only on the stack performance, the other components relative
to the standing wave device such as the hot and cold duct and the hot and cold heat exchanger are
not taken into account in the remainder of this discussion. Even if their characteristics affect the
results of this analysis, their influence is almost the same regardless of the type of stack used. It is
supposed that the standing wave can propagate in an ideal hot duct of length Lhot without losses,
then entering in an ideal hot heat exchanger where it receives heat power Q̇hot equals to the total
power Ḣ conserved into the stack (Fig. 6.15).
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𝑝1

𝑈1

ሶ𝑄hot

𝐿hot 𝐿s

𝑥

𝑇hot

𝑇cold

Figure 6.15: Sketch of a device used to numerically analyse the thermoacoustic performance of a
stack.

6.4.1 Numerical procedure

Therefore, assuming a pure standing wave inside the device the boundary conditions to be fixed
are: the acoustic pressure at x = 0 coordinate, named prun, the hot and cold temperature between
the two side of the stack, respectively Thot and Tcold and the input heat power Q̇hot. From these
hypotheses, the acoustic pressure, volume velocity and static temperature at the hot section of the
stack can be assessed as

p1,x=Lhot = ps =
1

2

(
eikALhot + eikALhot

)
prun, (6.26)

U1,x=Lhot = Us =
1

2

(
eikALhot − eikALhot

)
ρmc

prun, (6.27)

Tm,x=Lhot = Thot. (6.28)

The fluid parameters, such as the air wavenumber kA, the sound speed c and the density ρm, are all
functions of the temperature and they must be assessed at the temperature Thot. To solve the above
differential equations system, the 1D-Finite Differences numerical scheme is adopted together with
an iterative procedure. The stack is divided in N slices of length ∆x, therefore Eqs. (2.21), (6.3)
and (6.19) are discretized as follow

pi+1
1 − pi1
∆x

= − iωρm
(1− fν)Af

U i+1
1 + U i

1

2
, (6.29)

U i+1
1 − U i

1

∆x
=

iωAf

γpm

(
1 + (γ − 1)

fκ
1 + εs

)
pi+1
1 + pi1

2
+

+
fκ − fν

(1− fν) (1− Pr) (1 + εs)

T i+1
m − T i

m

∆x

U i+1
1 + U i

1

2
, (6.30)
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T i+1
m − T i

m

∆x
=

Ḣ − 1
2ℜ

pi+1
1 +pi1

2
Û i+1
1 +Û i

1
2

(
1− fκ−f̂ν(
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)
(1+Pr)(1+εs)

)
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∣∣∣Ui+1
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1
2
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(1+εs)(1+Pr)

]
− κeqA

. (6.31)

Eqs. (6.29) and (6.30) can be rewritten solving for the i+ 1 element as

pi+1
1 = pi1 + C1

U i+1
1 + U i

1

2
∆x, (6.32)

U i+1
1 =

(
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2

)
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2− C1C2∆x2

2 − C3∆x
, (6.33)
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Where

C1 = − iωρm
(1− fν)Af

, (6.35a)

C2 =
iωAf

γpm

(
1 + (γ − 1)

fκ
1 + εs

)
, (6.35b)

C3 =
fκ − fν

(1− fν) (1− Pr) (1 + εs)

T i+1
m − T i

m

∆x
, (6.35c)

are functions of the static temperature in each slice, assessed as the mean value between T i
m and

T i+1
m

C1, C2, C3 = f

(
T i+1
m + T i

m

2

)
.

Here, the procedure starts by fixing the first iterative value

T i+1
m,I = T i

m,

and then from Eqs. (6.32) and (6.33), pi+1
1 and U i+1

1 are found. Subsequently, from Eq. (6.34),
the second iterative value named T i+1

m,II is found. The procedure for each slice will stop when the
following condition is satisfied

T i+1
m,j − T i+1

m,j-1 < ϵ, (6.36)

where j is the nth iteration and ϵ is the tolerance value chosen for the convergence.
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6.4.2 Performance comparison of unconventional stacks

The performances of a thermoacoustic engines using three unconventional stacks (Wire Mesh,
Tetragonal Pin Array and 3D-Membrane Foams) are compared by using the numerical scheme
presented in the subsection above. Two dimensional sweeps are provided for the geometrical
parameters of each stack, in particular: for Wire Mesh, 0.13 mm < rp < 0.78 mm and 1 mm <
ds < 3.5 mm; for Tetragonal Pin Array, rp = 0.09 mm, 8 < L̄x < 24 and 8 < L̄z < 24; for
Membrane Foams, Dt = 1 mm, 0.1 < ξ/Dt < 0.2 and 0.2 < t0 < 0.7. The sketch used for
the simulations is the one reported in Fig. 6.15. The applied boundary conditions are reported
in Tab. 6.2. As it can be seen from Figs. 6.16, 6.17, 6.18, three different working frequencies
f = 100, 150, 200 Hz have been chosen. The surface plots allow to recognize the set of the
geometrical parameters where the stack is able to convert a positive amount of energy per unit
time

Ėgain =

∫
1

2
ℜ
[
gp1Û1

]
dx > 0. (6.37)

It means that heat to mechanical energy conversion will take place. Otherwise, when Ėgain < 0,
no conversion in mechanical energy will be and only dissipative process arises. In the case of
Tetragonal Pin Array and Wire mesh stacks, positive and negative region Ėgain are highlighted in
the surface plots, Figs. 6.16, 6.17. It means that regions such as for very low value of L̄z and high
value of L̄x for TBC, and for very low value of rp and high value of ds for Wire Mesh, heat to
mechanical energy conversion is favoured, while in the region where Ėgain < 0 dissipated energy
is increased due to the thermal relaxation processes. Regions where Ėgain = 0 are characterized
by balanced effects between the thermoacoustic energy conversion and the losses. In the case of
Membrane foams (Fig. 6.18), it can be noticed that, for the same operating parameters (Tab.6.2),
no Ėgain < 0 regions exist which means only regions where heat to mechanical energy conversion
will happen (low values of t0), at least Egain = 0 regions but the energy losses in that case are never
incremented. Note that the color scale has been fixed equal for all the surface plots (−30 W <
Ėgain < 15W ) and this is the reason why the plots in Fig. 6.18 look with uniform color (quite flat).
For this reason, for each surface plot, a subplot is reported with a zoomed scale. Anyway, to be
able to observe the thermoacoustic phenomenon arises the amount of energy gained per unit time
Ėgain must overcome the amount of energy dissipated for viscous and thermal interaction between
the fluid and the solid skeleton of the stack Ėdiss. This amount of energy is estimated through Eq.
(6.10). Also for the dissipated energy per unit time Ėdiss subplots are reported in Figs. 6.19,6.20,
6.21, for each different material and operating frequency. It can be highlighted the high amount
of dissipation provided by the membrane foam which is two order of magnitude greater than the
one provided by the other typologies of stacks (note that the colormap scale are different for this
material respect to Wire Mesh and Tetragonal Pin Array). Therefore, thermoacoustic phenomenon
will take place when the sum of the gain energy and the dissipated energy per unit time is greater
than zero

Ėtot = Ėgain + Ėdiss > 0. (6.38)

Figs. 6.22,6.23, 6.24 show the real potentiality of these kind of stacks to trigger the thermoacoustic
phenomenon inside a device working with these operating conditions. What can be seen is that
for Membrane foams seems to not be any combination of the geometrical parameters (Dt, ξ, t0)
for which thermoacoustic engine will work. While Wire Mesh and Tetragonal Pin Array provide
several combinations for which the Ėtot > 0, in particular, for very low value of L̄z and high
value of L̄x for TBC, and for very low value of rp and high value of ds for Wire Mesh. Finally,
the Tetragonal Pin Array should be preferred respect to the Wire Mesh, because of the narrower
Ėtot > 0 region. Last analysis is conducted on the quantities ℑ [−fκ] and ℑ [−fν ] /|1 − fν |2
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proportional respectively to the thermal relaxation conductance and the viscous resistance offered
by the material to the passing fluid (in this case air), see Eqs. (6.5b), (6.5a). In Fig. 6.25, 6.26 these
quantities are plotted for the selected best stack in terms of Ėtot against the dimensionless thermal
and viscous frequencies, Eqs. (3.11c), (3.4c), black line for the Wire Mesh (rp = 0.13 mm, ds =
3.5 mm for all the frequencies), blue line for the TBC (rp = 0.09 mm, L̄z = 8, L̄x = 22.5 for
f = 100 Hz, rp = 0.09 mm, L̄z = 8, L̄x = 19.6 for f = 150, 200 Hz), and orange line for
Membrane Foams (Dt = 1mm, ξ/Dt = 0.1, t0 = 0.2 for all the frequencies). In bold red line the
working region is highlighted taking into account that the operating frequency f is fixed as constant
but along the stack there is a temperature variation which involves a fluid parameters variation and
then in the ωκ and ων values. In particular, despite Membrane Foams are the material where Ėgain
is always positive, from Fig. 6.26 it can be seen how the viscous resistance is always the highest
among the material. Therefore, these dissipations are not balanced by the gain converted and they
results always the losses material to be employed in a thermoacoustic engine under these operating
conditions.

Hot Duct Length Lhot λ/4

Stack Length Lstack 5 cm

Maximum Pressure prun 5000 Pa

Hot Temperature Thot 593K

Cold Temperature Tcold 333K

Heat Power Q̇hot 100 W

Table 6.2: Applied boundary conditions for the thermoacoustic engine simulations.

Figure 6.16: The performances, in terms of positive amount of energy per unit time Ėgain, of
a thermoacoustic engines using a Wire Mesh stack. Two dimensional sweeps are provided for
0.13 mm < rp < 0.78 mm and 1 mm < ds < 3.5 mm: left, 100 Hz, centered, 150 Hz,right,
200 Hz.
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Figure 6.17: The performances, in terms of positive amount of energy per unit time Ėgain, of a
thermoacoustic engines using a Tetragonal Pin Array stack. Two dimensional sweeps are provided
for rp = 0.09 mm, 8 < L̄x < 24 and 8 < L̄z < 24: left, 100 Hz, centered, 150 Hz,right,
200 Hz.

Figure 6.18: The performances, in terms of positive amount of energy per unit time Ėgain, of a
thermoacoustic engines using a 3D-Membrane Foam stack. Two dimensional sweeps are provided
for Dt = 1 mm, 0.1 < ξ/Dt < 0.2 and 0.2 < t0 < 0.7: left, 100 Hz, centered, 150 Hz,right,
200 Hz. For each surface plot, a subplot is reported with a zoomed scale.
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Figure 6.19: The dissipated energy per unit time Ėdiss, of a thermoacoustic engines using a
Wire Mesh stack. Two dimensional sweeps are provided for 0.13 mm < rp < 0.78 mm and
1mm < ds < 3.5 mm: left, 100 Hz, centered, 150 Hz,right, 200 Hz.
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Figure 6.20: The dissipated energy per unit time Ėdiss, of a thermoacoustic engines using a
Tetragonal Pin Array stack stack. Two dimensional sweeps are provided for rp = 0.09 mm,
8 < L̄x < 24 and 8 < L̄z < 24 : left, 100 Hz, centered, 150 Hz,right, 200 Hz.

Figure 6.21: The dissipated energy per unit time Ėdiss, of a thermoacoustic engines using a 3D-
Membrane Foam stack. Two dimensional sweeps are provided for Dt = 1mm, 0.1 < ξ/Dt < 0.2
and 0.2 < t0 < 0.7: left, 100 Hz, centered, 150 Hz,right, 200 Hz.
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Figure 6.22: The total amount of energy per unit time Ėtot, of a thermoacoustic engines using
a Wire Mesh stack. Two dimensional sweeps are provided for 0.13 mm < rp < 0.78 mm and
1 mm < ds < 3.5 mm: left, 100 Hz, centered, 150 Hz,right, 200 Hz.
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Figure 6.23: The total amount of energy per unit time Ėtot, of a thermoacoustic engines using
a Tetragonal Pin Array stack stack. Two dimensional sweeps are provided for rp = 0.09 mm,
8 < L̄x < 24 and 8 < L̄z < 24: left, 100 Hz, centered, 150 Hz,right, 200 Hz.

Figure 6.24: The total amount of energy per unit time Ėdiss, of a thermoacoustic engines using
a 3D-Membrane Foam stack. Two dimensional sweeps are provided for Dt = 1 mm, 0.1 <
ξ/Dt < 0.2 and 0.2 < t0 < 0.7: left, 100 Hz, centered, 150 Hz,right, 200 Hz. For central and
right surface plot, a subplot is reported with an extended scale.

Figure 6.25: Comparison between the quantity ℑ [−fκ] of the three different materials (black line
for the Wire Mesh, blue line for the TBC and orange line for Membrane Foams): left, 100 Hz,
centered, 150 Hz,right, 200 Hz. In bold red line the working region in terms of dimensionless
thermal frequency taking into account the temperature variation along the stack.
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Figure 6.26: Comparison between the quantity ℑ [−fν ] /|1− fν |2 of the three different materials
(black line for the Wire Mesh, blue line for the TBC and orange line for Membrane Foams):
left, 100 Hz, centered, 150 Hz,right, 200 Hz. In bold red line the working region in terms of
dimensionless viscous frequency taking into account the temperature variation along the stack.
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7.1 General conclusions

Porous materials represent the core of thermoacoustic devices. In this work the relations be-
tween the microgeometrical features (transport parameters) and the dynamic viscous and thermal
behaviors of the porous materials have been investigated. In particular, predictive models have
been developed to correlate the transport parameters with the geometrical dimensions, for three
different typologies of materials: Tetragonal Pin Array, Wire Mesh and 3D-Membrane Foams. Fi-
nite Element based simulations allowed to numerically estimate the transport parameters from the
resolution of the Stokes, Laplace and Poisson’s problems inside the Representative Elementary
Volume of the material. In fact, thanks to the diffusion of the additive manufacturing technol-
ogy precise-controlled geometry porous materials can be realized. Therefore, a predictive model
is a powerful tool in the design phase of both sound absorption applications and thermoacoustic
applications. In the first case, the aim is to maximize the energy dissipation due to the viscous
and thermal losses when the sound propagate in the solid skeleton. While in the second case, the
goal is to find the optimal balance between viscous resistance and thermal relaxation effects in
order to trigger the thermoacoustic phenomenon, i.e. the heat to mechanical energy conversion
(and vice versa). Furthermore, two new experimental apparatuses and techniques have been de-
veloped to accurately characterize porous media in low frequency range. These techniques are
lumped element based and the analysis for the frequency validity ranges has been synthesized in
|k̃d| < 0.5. Subsequently, an energetic criterion has been developed to qualitatively predict the
performance of a porous material used as stack. In particular, ℑ [−fκ] and ℑ [−fν ] /|1−fν |2 func-
tions are studied as functions of the transport parameters of a generic porous material modelled
with Johnson-Champoux-Allard-Lafarge semi phenomenological model. Finally, a comparison
between the performances of a thermoacoustic engine using the three different stack (Tetragonal
Pin Array, Wire Mesh and 3D-Membrane Foams) and the same operating conditions has been
reported in terms of amount of energy gained and dissipated energy per unit time.

7.2 Future remarks

The experimental activities have been carried out entirely at the Acoustic Laboratory of the Indus-
trial Engineering Department (LAD), University of Naples Federico II. Numerical elaborations
have been partially conducted in Naples and partially at Laboratorie Modélisation and simula-
tion multi échelle of University Gustave Eiffel in Paris. The predictive models of the viscous and
thermal behaviour of the presented stacks have been tested with a total acoustic setup (only the
microphones and the loudspeaker). As future remarks, in the LAD of University Federico II a first
prototype of a thermoacoustic engine, shown in Fig. 7.1, has been realized in order to thermoa-
coustically test the predictive models also of the performances of the thermoacoustic devices using
unconventional porous stacks. Internal heat exchangers are replaced with external heat sources to
keep as many parameters under control as possible. To supply the high temperature heat power, a
heating tape in particular is adopted. When the operating temperature is achieved, the thermoreg-
ulator that controls its power supply can turn off the heating tape. A Variac is used to regulate the
electrical voltage, current, and then the power. The ambient heat exchanger is performed by an
external cooling serpentine. A serpentine surrounds the device and receives water at ambient tem-
perature from a resevoir through a pump. A stack holder composed of insulating ceramic material
is used to thermally separate the device’s hot and cold parts in order to prevent thermal bridges.
Thermocouples and microphones conclude the probes. Different thermoacoustic measurements
will be made using such a system by changing the controlled process parameters, including the
input heat power, the hot temperature, the employed stack, and its location. Verifying the accuracy
of the models presented in predicting thermoacoustic performance will be a future goal.
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Figure 7.1: Thermoacoustic engine prototype realized in Acoustic Lab of University of Naples
Federico II. The components: (a) copper tube, (b) heating tape, (c), stack holder made by insulating
ceramic material, (d) cooling serpetine, (e) ambient temperature resevoir, (f) flowmeter, (g) Voltage
Variac, (h) heating tape thermal controller, (i) thermocouple type K, (l) microphone, (m) data
acquisition system, (n) post-processing computer.
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Appendix A

Definition of the unit cell for Wire Mesh

Wire meshes are realized by intertwined metal filaments (Figs. A.1.a and A.1.b). The geometry
of the RVE was simplified by considering intersecting filaments at the junctions (Figs. A.1.c and
A.1.d). The effects of this simplification on the transport parameter values were assessed by means
of numerical simulations on a single layer. The relative differences ∆ between transport parame-
ters of intertwined and intersecting filaments was much lower than 5%, with a small exception for
the characteristic length (attributed to the lower wetted surface area ratio of the straight pattern);
Tab. A.1. Following this analysis, the simplified geometry was chosen to realize the RVE, mainly
for two reasons: (i) the greater simplicity to build the geometry; (ii) this approach allowed us to
avoid uncertainties usually associated with the analysis of singular geometrical problems (due to
the mesh in the vicinity of critical points, such as the contact of two filaments in the intertwined
case).The representative volume element (RVE) on which the numerical simulations are carried
out is based on six superimposed layers, randomly oriented (Fig. 4.3.b). The convergence of the
transport parameters was assessed by adding progressively supplementary layers of wire-mesh.
For a given number of layers, the simulations were repeated four times with the relative orienta-
tion of each horizontal layer being chosen randomly. Results are presented as mean ± standard
deviation (Fig. A.2). The relative difference ∆ between the mean value corresponding to a trans-
port parameter with n layers and the mean value corresponding to the same transport parameter
with n− 1 layers was found to be less than 1% for the porosity (Fig. A.2.a) and for the tortuosity
(Fig. A.2.b), and less that 5% for the characteristic lengths (Figs. A.2.c and A.2.d); with n = 6.
Considering the viscous k0 and thermal k′0 permeabilities, the relative difference declines appre-
ciably with the number of layers, with a relatively stable level for n ≥ 4 (Figs. A.2.e and A.2.f).
A value of n = 6 represents a good tradeoff between accuracy and computational time.

Geometry φ α∞ Λ Λ′ k0 k′0

Intertwined 0.9536 1.0385 0.7936 2.6254 0.2981 0.5115

Intersecting 0.9533 1.0456 0.7596 2.7806 0.2930 0.5199

∆% 0.04 0.68 4.49 5.58 1.73 1.60

Table A.1: Transport parameter values of an intertwined and intersecting wire mesh geometry(
rp = 0.15 mm, ds = 3.3 mm

)
.
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Figure A.1: Intertwined metal filaments. (front (a) and perspective (b) views) compared to the
simplified model with intersecting filaments (front (c) and perspective (d) views).

Figure A.2: The relative variation between a calculation with n layers and the previous one with
n− 1 layers for: (a) the porosity φ, (b), the high frequency limit of tortuosity α∞, (c) the thermal
characteristic length Λ′, (d) the viscous characteristic length Λ, (e) the static viscous permeability
k0, (f) the static thermal permeability k′0.
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Appendix B

Convergence analysis for Membrane
Foams

Langlois, Trinh and Perrot [94] highlighted how the electrical resistivity and the high-frequency
tortuosity of solid foam are modified by the presence of membranes that partially or totally close
the cell windows connecting neighbor pores. Laplace problem could present singulary points in the
fluid domain where discontinuities of the solid boundary are heightened, such as presence of holes,
thin membranes, cusps or any angular points. Therefore, to avoid numerical convergence problems
in the resolution of electrical fields, the edges of the 3D-Membrane Foams have been rounded
in order to allow a convergence trend as the mesh size is reduced (Fig. B.1). In Fig. B.2 the
comparison between the no-rounded edges and the rounded edges for three different values of the
radius R = 0.02, 0.005, 0.001mm is reported for both the tortuosity and the thermal characteristic
length. It can be seen how the no-rounded edges geometry does not show a convergent trend with
the reducing of the mesh size, while in the case of rounded edges it can be recognized a convergent
trend to different values, but very close one to each other. In particular, the smaller the radius, the
closer the curves. For the presented study the chosen radius is 0.001 mm.

Figure B.1: One eighth part of the Representative Elementary Volume of 3D-Membrane Foams
with: (a) no-rounded edges, (b) rounded edge with radius 0.001mm,(c) rounded edge with radius
0.005 mm,(b) rounded edge with radius 0.02mm.
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Figure B.2: Comparison between the no-rounded edges and the rounded edges for three different
values of the radius R = 0.02, 0.005, 0.001 mm reported for: on the left, the tortuosity; on the
right, the thermal characteristic length.
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