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Abstract  

 

Nowcasting models use real-time data to predict rainfall with short lead times - from 

a few minutes up to six hours. They influence many aspects of daily life in 

hydrological, agricultural, and economic sectors. For example, they facilitate drivers 

by predicting road conditions, enhance flight safety by providing weather guidance, 

and prevent casualties by issuing rainfall alerts which can affect human life and cause 

environmental issues. However, short-term prediction is challenging because 

meteorological variables are strongly interconnected and rapidly change during 

events. In addition, the long computational times and low spatial and temporal 

resolution of nowcasting models do not often suit the short-term prediction 

requirements. This thesis focuses on developing an approach for probabilistic rainfall 

nowcasting with machine learning. Since machine learning does not require any 

previous physical assumption, this research investigates their ability to provide 

reliable and quick forecasts. A machine learning model for probabilistic rainfall 

nowcasting for short lead times - from a few minutes up to 6 hours - is proposed. The 

model employs cumulative rainfall fields from station data as inputs for feed-forward 

neural networks to predict rainfall intervals and the corresponding probabilities of 

occurrence. Using cumulative rainfall depths from station data overcomes the lack of 

temporal memory of the feed-forward neural networks. In this way, using only the 

current rain field as input, the model exploits pattern recognition techniques 

combining temporal - cumulative rainfall depth - and spatial - cumulative rainfall field 

– information. Several feed-forward neural networks were independently trained and 

tested on almost 360 rainfall events over the study area – one of the eight warning 

zones of the Campania Region. First, comprehensive nowcasts verifications were 

performed to analyze probabilistic nowcasts' reliability using continuous and 

categorical indicators. The performance of the models was also compared with the 

results of two different benchmarks: Eulerian Persistence and Pysteps. Then, to assess 



 

 

the extendibility of the procedure to other regions, the model was applied to another 

study area that differed from southern Italy one: the Flanders Region of Belgium. 

Results showed that using temporal and spatial information enables the model to 

predict short-term rainfall using only the current measurements as input, resulting in 

a rapid, easily replicable, and convenient nowcasting approach. Therefore, the 

procedure effectively predicts multi-step rainfall fields and is suitable for operational 

early warning systems. 

Keywords: Precipitation nowcasting; Multi-step predictions; Rain-gauge 

measurements; Pattern recognition; Feed-forward neural networks; Cumulative 

rainfall fields.  



 

 

Abstract (Ita) 

 

I modelli di nowcasting forniscono previsioni meteorologiche a breve termine, da 

pochi minuti fino a un massimo di sei ore. Essi influenzano molti aspetti della vita 

quotidiana, e sono decisivi durante le situazioni di emergenza. I modelli di 

nowcasting, infatti, condizionano la viabilità stradale, migliorano la sicurezza aerea 

fornendo indicazioni meteorologiche, e, soprattutto, supportano i sistemi di allerta 

meteo che possono salvaguardare la vita umana e prevenire disastri ambientali. 

Tuttavia, le variabili meteorologiche sono fortemente interconnesse tra di loro e 

cambiano rapidamente durante un evento. Inoltre, i lunghi tempi di elaborazione e la 

bassa risoluzione spaziale e temporale dei modelli previsionali spesso non si addicono 

alle esigenze di una previsione con associato un anticipo di non oltre 6 ore. Di 

consequenza, i sistemi di nowcasting sono impegnativi da implementare e l’utilizzo 

di modelli numerici di previsione risulta spesso inadeguato. Recenti sviluppi nel 

campo dell’intelligenza artificiale hanno fornito un approccio innovativo per costruire 

modelli previsionali di grandezze idrologiche: le Reti Neurali Artificiali. 

L’innovazione consiste nella possibilità di individuare caratteristiche spaziali e 

temporali rilevanti nei dati forniti al modello e di utilizzarle per previsioni future, 

senza effettuare assunzioni a priori. In questo modo, si potrebbero cogliere le regole 

che spieghino le relazioni che intercorrono tra le variabili idrologiche coinvolte 

nell’evento piovoso, anche se non si conoscono le soluzioni dettagliate e analitiche 

che caratterizzano il problema sotto indagine. Il presente elaborato è volto allo 

sviluppo di un modello basato sugli algoritmi dell’intelligenza artificiale per la 

previsione delle piogge a breve termine. Viene di seguito proposto un modello per il 

nowcasting probabilistico delle precipitazioni, da pochi minuti a sei ore. Il modello 

impiega campi di pioggia cumulati come input a reti neurali di tipo Feed Forward per 

prevedere possibili intervalli di pioggia e le corrispondenti probabilità di 

realizzazione, dopo un fissato orizzonte temporale. In primo luogo, la procedura è 



 

 

stata applicata a un'area di 1619 km2 in una Regione dell'Italia meridionale. Diverse 

reti neurali di tipo feed forward sono state indipendentemente addestrate e testate su 

quasi 360 eventi pluviometrici verificatisi nell'area di studio, una delle otto zone di 

allerta della Regione Campania. Le prestazioni dei modelli sono state confrontate con 

i risultati di due diversi benchmark: la persistenza euleriana e Pysteps. Dopodiché, al 

fine di valutare l'estendibilità della procedura ad altre regioni, il modello è stato 

applicato a un'altra area di studio, diversa da quella dell'Italia meridionale: la regione 

delle Fiandre, in Belgio. Tutti i modelli hanno prodotto previsioni coerenti e hanno 

ripordotto l'evoluzione spazio-temporale delle precipitazioni. I risultati hanno 

dimostrato che l'utilizzo combinato di informazioni temporali e spaziali consente al 

modello di prevedere le precipitazioni a breve termine utilizzando solo le misurazioni 

attuali come input, risultando in un approccio di nowcasting rapido, facilmente 

replicabile e conveniente. Risultati che confermano con un certo successo che la strada 

delle Rete Neurali Artificiali, integrata con altre grandezze idrologiche, potrebbe 

essere foriera di significativi benefici per il miglioramento delle previsioni. Se da un 

lato questa caratteristica presenta notevoli vantaggi perché permette di affrontare 

molti problemi di cui non sono note le soluzioni analitiche; dall’altro vi è però il 

pericolo di rinunciare a cercare di comprendere a fondo la natura di un problema e di 

rifugiarsi in una soluzione di tipo data-driven. Il mondo della ricerca scientifica trova 

oggi nuovi stimoli per lo studio di queste tecniche, con l’obiettivo di portare a livelli 

sempre più accettabili l’affidabilità degli strumenti operativi di previsione.  
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Chapter 1 -  Introduction 

 

 

 

 

 

The term nowcasting describes the expected changes in the current state of the weather 

on a timescale of a few hours (Browning, 1981). In 2010, the World Meteorological 

Organization (WMO) defined nowcasting as a forecasting technique from the present 

to 6 hours ahead, including a detailed description of the current weather. Over the 

years, the term has also found adoption in different fields outside the meteorological 

domain, such as economics, financial markets, or human mobility. In meteorology 

and hydrology, the main application of nowcasting is predicting events characterized 

by rapid evolution, such as thunderstorms, lightning, wind, and precipitations (Franch, 

2021).  

1.1 -  Rainfall nowcasting 

Rainfall nowcasting influences many aspects of daily life. For example, it facilitates 

drivers by predicting road conditions, enhances flight safety by providing weather 

guidance for regional aviation, and avoids casualties by issuing citywide rainfall 

alerts. During emergencies, rainfall nowcasting supports early-warning systems to 

reduce fatalities and economic losses, which can affect human life and cause 

environmental issues (Aakash Parmar, Kinjal Mistree, 2017; Ayzel et al., 2020; 
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Barrera-Animas et al., 2022; Chen et al., 2022; Foresti et al., 2016; Hammad et al., 

2021; Liu et al., 2021; Luo et al., 2022; Ravuri et al., 2021).  

However, early warning systems are beneficial only if the underlying nowcasts are 

accurate, timely, and reliable. Uncertainty in the nowcasts originates from either 

model structure, initial conditions, setup, calibration procedures, or the precipitation 

phenomenon itself (Beven, 1993; Clark et al., 2017; Melsen et al., 2016).  

1.2 -  Hydro-meteorological processes 

Due to its high variability in time and space, precipitation nowcasting is among the 

most challenging tasks in hydrological fields (Moulin et al., 2009; Sampson et al., 

2014). To experience the challenges in nowcasting models, it is essential to 

understand the processes governing precipitation formation. The precipitation cloud 

systems can be organized and structured in convective and stratiform movements. 

These two mechanisms exhibit different types of droplets and rain formation initiated 

by air motions with different magnitudes and, consequently, present different rainfall 

duration and intensities.  

The convective precipitation comes from local solid vertical air motions (for instance, 

created by intense solar radiation) that can initiate in a short time (in the range of 

minutes) the formation of big droplets at the base of the cloud formation. On the other 

hand, stratiform precipitation is usually developed over a longer time (in the range of 

hours or even days), as the vertical air motion is feeble, causing tiny droplets at the 

top of the cloud formation. In the presence of mountains, at both stratiform or 

convective structures, a vertical movement of the air masses can occur due to the 

orographic lifting.  

Observing needs to be quality controlled to capture space-time details of the 

precipitation processes. Indeed, nowcasting is highly dependent on observational data. 
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1.3 -  Rainfall measurements 

According to the spatial scale and, mainly, on the data availability, different rainfall 

measurements may be used for nowcasting. They include gridded data from 

radars/satellites or rain gauges.  

Weather radar indirectly measures the rainfall field through reflectivity; the radar 

transmits microwave signals via pulses, and the energy reflected by hydro-meteors is 

captured back and converted into intensity. As the radar does a 360 scanning around 

itself, it builds up rainfall fields, usually at 1 km2 and 5 min resolutions. Due to the 

radar's ability to capture rainfall structures at such fine scales, urban hydrologist has 

long recognized its potential for urban hydrology use. However, since the radar data 

does not measure the rainfall directly, it is subjected to several sources of errors, 

compromising the accuracy of the rain rates. Many studies have attempted to 

recognize and mitigate these sources of errors over the past decades, nevertheless 

since the right rainfall field is not known (radar rainfall rates at such scales do not 

necessarily meet the rain gauge measurement (Ochoa-Rodriguez et al., 2019), no 

conclusion can be reached regarding its accuracy.  

On the other hand, rain gauges are considered reference devices for measuring the 

amount of precipitation at ground level (Duan et al., 2021; Moraux et al., 2019; Shehu 

and Haberlandt, 2021). They report precipitation rate and accumulation and provide 

information on instantaneous and heavy rainfall intensity over short periods. The main 

drawback of rain gauges is their lack of spatial representation, being point 

measurements (Yang et al., 2020). Indeed, if a storm occurs between the rain gauges, 

they can miss the peak rainfall intensity, automatically leading to an underestimation 

of the forecast. However, if a particularly dense network of rain gauges is available, 

it can be used for detection and nowcasting purposes (WMO, 2017). 
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1.4 -  Machine Learning models 

In addition to the inherent complexities of the atmosphere and relevant dynamical 

processes, the ever-growing need for real-time, large-scale, and fine-grained 

precipitation nowcasting poses extra challenges to the meteorological community. 

Consequently, it has aroused research interest in the machine-learning community. 

The recent application of machine learning and deep learning techniques in 

nowcasting has produced several advances in the accuracy of precipitation nowcasting 

systems. Machine Learning (ML) allows for unravelling hydrological problems, 

including forecasting rainfall (Hong, 2008; Ridwan et al., 2021; Valverde Ramírez et 

al., 2005).  

ML models can identify the relationships between input and output data without 

making a priori assumptions about the physical processes. They can even recognize 

all the existing complex and typically non-linear relationships of the dynamical 

process. Disadvantages include their “black box” nature, proneness to over-fitting, 

and the empirical nature of model development (Bai et al., 2021; Liong and He, 2010). 

Among ML techniques, Feed Forward Neural Networks (FFNNs) has been propelled 

to the forefront in investigations of nowcasting methods (Prudden et al., 2020; Zhou 

et al., 2022). They have recently achieved outstanding predictive performance and 

have become an indispensable tools in various pattern recognition applications (Bai 

et al., 2021). Bishop (2006) stated that the most successful model in pattern 

recognition is the feed-forward neural network.  

Indeed, ML's flexibility and conceptual simplicity make them attractive for 

nowcasting purposes (Asghari and Nasseri, 2015). Although recent advances in 

weather forecasting models based on ML techniques, precipitation nowcasting is still 

a challenge for researchers and operational weather services (D. K. Kim et al., 2021; 

Lengfeld et al., 2020).  



 

5 

1.5 -  Probabilistic nowcasting 

Precipitation nowcasts issued by ML systems are often subject to uncertainties. There 

are many forms of uncertainty in modelling; thus, any sensible model will be uncertain 

when predicting unobserved data. At the lowest level, model uncertainty derives from 

measurement noise; at higher levels, a model may have many parameters, and there 

is uncertainty about which values of these parameters will be good at predicting new 

data. The probabilistic approach to modelling uses probability theory to express forms 

of uncertainty. Therefore, it is crucial to provide, together with a nowcast, an 

estimation of its uncertainty (Foresti et al., 2016).  

Nowcasting techniques include deterministic and probabilistic methods. 

Deterministic methods lead to one nowcast for every time step, while probabilistic 

nowcasts often generate ensembles, i.e., multiple nowcasting scenarios for every time 

step, to quantify the predictability. 

1.6 -  Objective of the thesis  

This study investigates the enhancement that can be reached in rainfall nowcasting by 

exploiting ML methods and using rain-gauge measurements as inputs. In particular, 

probabilistic machine learning approaches for rainfall nowcasting will be developed. 

The main objectives of this work are as follows. 

1. Developing a new nowcasting approach based on machine learning models that 

suits many contexts and can be quickly reproduced. Indeed, ML models can 

identify the relationships between input and output data without making a priori 

assumptions about the physical processes. Moreover, they can even recognize all 

the existing complex and typically non-linear relationships of the dynamical 

process. In particular, the study will focus on feed-forward neural networks since 

they are commonly used neural network types in hydrology due to their simple 

architecture and ability to detect non-linear relationships among variables. 
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2. Considering recording stations and cumulative rainfall depths as inputs for feed-

forward neural networks to overcome their lack of temporary memory. Indeed, 

feed-forward neural networks can not learn sequential or time-varying patterns 

(F. J. Chang et al., 2014). To overcome this drawback, this study would employ 

cumulative rainfall depths, which are non-decreasing variables. Unlike rainfall 

depths, which vary during an event, cumulative rainfall depth cannot decrease. 

Likewise, the model would employ rainfall depths measured in adjacent gauges, 

which could also provide valuable spatial information. As a result, temporal 

memory would be achieved through cumulative rainfall depth and cumulative 

rainfall depth from adjacent gauges.  

 

3. Providing an estimation of the uncertainty of the nowcasts, giving a probabilistic 

interpretation of the outputs. The probabilistic prediction would be achieved by 

employing the Softmax function in the ML model, which solves nonlinear 

multiple classification problems (Huang and Xiang, 2018). The Softmax function 

turns a vector into a vector of values between 0 and 1 that sum one. Thus, they 

can be interpreted as probabilities; therefore, the model would supply the most 

likely forecast as long as the associated probability. Since probabilistic 

predictions provide greater economic and decision-making value than 

deterministic ones (Ravuri et al., 2021) 

 

4. Enhancing model operational utility and reliability. Thus, analyse the flexibility 

and conceptual simplicity of the proposed approach and verify if it can be a 

promising tool for nowcasting purposes.  
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1.7 -  Outline of the Thesis 

This section serves as an introduction to the research work. Chapter 2 introduces 

nowcasting approaches and presents a review of current methods. Next, existing 

models are described, highlighting their strengths and predictability limits. In 

Chapter 3, the study area and the dataset are presented. The procedure to select 

relevant rainfall events is described, and a description of the selected rainfall events 

is provided. Chapter 4 describes the methodology and all the steps developed to 

obtain the final configuration. It lists all the processes, from raw rainfall data reading 

to final probabilistic predictions. Chapter 5 reports the results of the models. Both 

performance and the training strategy are assessed. The first part of the chapter is 

devoted to analyzing all the rain events that were not used to train the models to 

evaluate the generalization abilities. Then, to highlight the ability of the models to 

predict differently, some rainfall events with different characteristics are analyzed. 

Chapter 6 deals with the possibility of applying the model in another region: the 

Flanders region in Belgium. Here, two benchmark models, taken from the scientific 

literature, are used to assess the novelty of the procedure: Eulerian Persistence and 

Pysteps. Finally, Chapter 7 provides a synthesis of the research work, in which the 

main findings are summarised and discussed together with the implications for future 

research.  
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Chapter 2 -  Nowcasting models 

 

 

 

 

 

This chapter presents the more common techniques used worldwide for forecasting 

rainfall. Section 2.1 introduces Numerical Weather Prediction (NWP) methods and 

discusses their performance and predictability limits. Next, section 2.2 describes 

machine learning tools generally used for rainfall nowcasting. The gap between NWP 

and ML models is illustrated, and conclusions are derived about the need and room 

for improvement of the existing nowcast methods. Then, Section 2.3 focuses on 

Pattern Recognition techniques for nowcasting purposes. Finally, the selected nowcast 

benchmark methods are described shortly in Section 2.4 and section 2.5.  

To evaluate possible critical situations, an effective nowcasting model requires a 

succession of nowcasts characterized by high update frequency and short 

computational time (Imhoff et al., 2022; WMO, 2017). Prior investigations queried 

several approaches to meet nowcasting model requirements. The prevailing ones are 

1) Model-Driven Methods (MDMs), which entail the identification of the 

relationships among variables involved; 2) Data-Driven Methods (DDMs), which 

comprise all the models that employ available data in order to identify patterns and 

classify new ones, without making a priori assumptions (De Luca and Capparelli, 

2022).  
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2.1 -  Numerical Weather Prediction models 

MDMs encompass Numerical Weather Prediction (NWP) models, which appeal to 

the water community because of their proven effectiveness and robustness through 

the years (De Luca and Capparelli, 2022; Liu et al., 2021). NWP models solve 

mathematical equations to simulate the dynamics and physics of the atmosphere, 

producing reliable forecasts. Regardless of their exact applications, NWP 

implementation is nontrivial due to the high dimensionality of the spatiotemporal 

relationship between meteorological variables. Nevertheless, they represent proper 

rainfall forecasting tools for daily temporal scale and over the spatial scale of 1000 

km (De Luca and Capparelli, 2022). However, NWP models can capture mesoscale 

weather patterns such as fronts, not smaller-scale convective patterns within 

mesoscale systems (Chao et al., 2018). As a result, convective heavy precipitation 

cells are difficult to predict with NWP models mainly because their lifetimes are often 

shorter than 30 min (Jasper-Tönnies et al., 2018). Thus a level of nowcast accuracy at 

the convective scale is challenging to reach with NWP (Simonin et al., 2017). 

Moreover, adequate observations of meteorological variables are not regularly 

available within the area of interest, which makes it challenging to define accurate 

initial and boundary conditions (Dolciné et al., 1997). 

2.2 -  Machine Learning models 

On the other hand, DDMs have also been widely used to unravel hydrological 

problems, including rainfall forecasting (Hong, 2008; Ridwan et al., 2021; Valverde 

Ramírez et al., 2005). They can identify the relationships between input and output 

data without making a priori assumptions about the physical processes. They can even 

recognize all the existing complex and typically non-linear relationships of the 

dynamical process. Disadvantages of DDMs include their “black box” nature, 

proneness to over-fitting, and the empirical nature of model development (Bai et al., 

2021; Liong and He, 2010).  



 

15 

Among DDMs, Machine Learning (ML) techniques have been propelled to the 

forefront in investigations of nowcasting methods (Prudden et al., 2020; Zhou et al., 

2022). L. C. Chang et al. (2014) illustrate the benefit of using a hybrid ML model 

based on a Self-Organizing Map (SOM) and Dynamic Neural Networks for 

forecasting inundation maps based solely on rainfall data and historical inundation 

depths. Chang, K.Y. and Tsai, M.J. (2016) propose an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model for flood forecasting and demonstrate its capability 

in modeling the complex rainfall–runoff process. With a temporal resolution of 10 

min and a spatial resolution of 1.25 km, they reveal that the approach alleviates the 

timing error problem and improves the accuracy and reliability of the forecast. A ML 

model to estimate 6-hour precipitation at a spatial resolution of 5 km based on 

Himawari-8 and ground station data over China was recently developed by Zhou et 

al. (2022). Also, Liu et al. (2022) show how a Deep Neural Network model for hourly 

rainfall forecasting using radar echo images can predict over 40% of rainfall events 

and forecast well on small-scale intense rainfall. 

It is still unknown whether the DDMs will gradually prevail over the MDMs or vice 

versa and how the traditional models will further develop, given the distinct 

philosophy used in those two groups of models (T. Kim et al., 2021). In recent studies, 

researchers have used ML techniques for rainfall nowcasting, and some studies have 

performed better than traditional methods (D. K. Kim et al., 2021). Indeed, ML's 

flexibility and conceptual simplicity make them attractive for nowcasting purposes 

(Asghari and Nasseri, 2015). Nevertheless, despite recent advances in weather 

forecasting models based on ML techniques, precipitation nowcasting is still 

challenging for researchers and operational weather services (D. K. Kim et al., 2021; 

Lengfeld et al., 2020). 
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2.3 -  Pattern Recognition techniques 

Since machine learning does not require any previous assumption, they have become 

an indispensable tool in a wide range of pattern recognition applications. Pattern 

recognition is the scientific discipline whose goal is classifying objects or classes. 

Depending on the application, the objects can be images, signals, or any 

measurements that need to be classified. The objects are usually referred to as patterns, 

hence the name pattern recognition (Theodoridis and Koutroumbas, 2009). Even 

though the specific pattern recognition technique varies depending on the structure of 

the problem, the aim is always concerned with developing algorithms and decision 

rules that classify patterns into different categories (Fogler, 1974). According to 

McArthur (1987), the typical approach to developing pattern recognition techniques 

is bottom-up: a set of processes is established to identify all features of interest in a 

dataset and aggregate them into patterns. If the approach relies on rules, it may lead 

to a proliferation of rules, exceptions to the rules, and so on.  

Feed- forward neural networks are considered one of the most successful models in 

pattern recognition (Bishop, 2006). Implementing a feed-forward neural network for 

pattern recognition techniques requires examples of patterns, thanks to which the 

network can learn and apply the leant rule to future, unseen examples. The learning 

process is supervised learning if the examples of patterns (input vectors) are provided 

along with their corresponding categories (target). The concept of supervised learning 

encompasses using examples to develop a tool that can identify and extract 

regularities in input vectors to classify them into the corresponding target vectors 

according to found regularities. Once the learning process is completed, the tool will 

classify new unseen data according to found regularities. A model is considered well-

defined if it can make forecasts or predictions about unobserved data having been 

trained on observed data.  

Moreover, FFNNs are commonly used neural network types in hydrology due to their 

simple architecture and ability to backpropagate the error while training over network 

structure (McGarry et al. 1999).  
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2.4 -  Benchmark models  

The Eulerian Persistence (EP) and the Short-Term Ensemble Prediction System 

(STEPS) are used as a reference for estimating and improving the proposed models' 

predictability.  

2.4.1 -  Eulerian Persistence 

Eulerian Persistence (EP) refers to keeping the most recent observation frozen in 

space and considering it as all predictions up to a desired lead time. EP is shown 

mathematically as (Zawadzki,1973):  

𝜑(𝑡0 + 𝐷𝑇, 𝑥) = 𝜑(𝑡0, 𝑥)                   (2.1) 

where 𝜑(𝑡0, 𝑥) is the observed data field, 𝑡0  is the start time of the forecast, 

𝜑(𝑡0 + 𝐷𝑇, 𝑥) is the forecast at lead time 𝐷𝑇, 𝑥 is the position. Eulerian persistence 

represents the most straightforward forecast and is typically used as a reference for 

more sophisticated nowcasting methods (Pierce et al., 2004; Ebert et al., 2004). 

2.4.2 -  STEPS 

Several methods have been developed for probabilistic rainfall nowcasting based on 

extrapolation of radar data, which are especially suited for short-term (0–3 h) rainfall 

forecasts at spatial resolutions as fine as 1 km2 (Bowler et al., 2006, Berenguer et al., 

2011). The Short-Term Ensemble Prediction System is an example of a method for 

creating short-term probabilistic rainfall nowcasts (STEPS; Bowler et al., 2006). This 

method produces an ensemble of equally likely rainfall nowcasts by perturbing the 

rainfall patterns for every ensemble member with a second-order autoregressive 

process.  

Pysteps (Pulkkinen et al., 2019) is a modular framework that allows users to use 

different parts and concepts of (probabilistic) nowcasting methods and to develop 

them further. Initially, Pysteps entailed STEPS (Bowler et al., 2006; Seed et al., 2013), 
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but nowadays, it also supports more recent approaches by, for example, Nerini et al. 

(2017) and Pulkkinen et al. (2020).  
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Chapter 3 -  Study area and dataset 

 

 

 

 

 

This chapter presents the study area – section 3.1 – and the available data – section 

3.2 – used to investigate the predictability of the proposed nowcast method. Next, 

section 3.3 summarizes the procedure employed for identifying relevant rainfall 

events used for training and validating the method. Finally, as the nowcast methods 

are expected to behave differently based on the event types, a classification scheme 

of the selected rainfall events is described in section 3.4. 

3.1 -  Study area  

The Campania region (Southern Italy) has an area of 13’600 km2 and a population of 

about 5.8 million people. It is currently divided into 8 “meteorological warning zones” 

according to homogeneity criteria considering the following factors: hydrography, 

morphology, rainfall, geology, land-use, hydraulic and hydrogeological events, and 

administrative boundaries (Piciullo et al., 2016). The study area is zone 1 of the 

Campania region (Fig. 3.1, left). It covers 1619 km2 and includes 109 municipalities 

and 19 rain-gauges (Fig. 3.1, right).  
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Fig.  3.1 The location of the study area (left) within Campania Region and (right) with the 

corresponding elevation and boundaries. The location of meteorological stations is illustrated 

right. 

 

The area has a complex highlands system and two main volcanic structures, Vesuvius 

and the Phlegrean Fields. These two orographic features constitute an essential factor 

in the mesoscale meteorology of the region, enhancing convection systems 

development, especially in the summer.  

The study area is near the Mediterranean Sea; thus, the prevailing climate is the 

Mediterranean, characterized by long dry summer periods and rainy winters with mild 

temperatures. In particular, the winter exhibits stratiform rainfall events lasting up to 

a few days. In summer, there are stratiform events, convective events, and 

combinations. Furthermore, in the cold season, the region is sometimes affected by 

polar maritime air masses coming from the North Atlantic, which can lead to the 

development of thunderstorm cells over the sea surface and the coastal sectors. On the 

other hand, in the warm season, thunderstorm events are mainly triggered by the 

interaction between small-scale mechanisms and synoptic-scale flow (Capozzi et al., 

2018).  
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3.2 -  Available data 

The rain-gauge data used in this study are registered by tipping bucket devices with 

0.2 mm resolution. For every rain gauge station over the study area (Table 2.1), the 

Campania Region Department of Civil Protection (DPC) provided rainfall 

measurements every 10 minutes.  

In events determination, all intervals with only 0.2 mm in 10 min were ignored 

because these are often artefacts of condensation at the end of events, increasing the 

duration of events with minimal increase in rainfall depth (Gaál et al., 2014). 

 

Table 3.1 Basic parameters of the meteorological stations over the study area. 

ID Sensor Station Name Longitude  

[UTM] 

Latitude  

[UTM] 

Z  

[m a.s.l.] 

1 18919 Capri 14.2386 40.5483 195 

2 37534 Capua 14.2083 41.1086 24 

3 20881 Castel Volturno 13.9397 41.0338 9 

4 36309 Cellole 13.8383 41.1961 9 

5 21760 Ercolano 14.3722 40.8255 209 

6 33430 Forio 13.8791 40.7319 340 

7 12243 Grazzanise 14.1052 41.0925 14 

8 33436 Ischia 13.9469 40.7400 35 

9 40341 Lago Patria 14.0211 40.9411 1 

10 18955 Monte Epomeo 13.8955 40.7116 370 

11 18891 Napoli Camaldoli 14.1988 40.8583 390 

12 18949 Napoli Capodimonte 14.2325 40.8616 176 

13 36128 Nisida 14.1638 40.7937 88 

14 18901 Ottaviano 14.4786 40.8547 180 

15 33433 Piano Liguori 13.9497 40.7105 320 

16 18953 Pozzuoli 14.1355 40.8298 127 

17 21520 S.Castrese 13.8361 41.2802 750 

18 38667 S.Marco Evangelista 14.3359 41.0225 31 

19 18929 Torre del Greco 14.3805 40.7941 50 
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3.3 -  Rainfall event selection 

Rain events are a convenient way of summarizing rainfall time series into meaningful 

entities regarding a particular application (Haile et al., 2011). Therefore, it is essential 

to define a rain event and the duration considered to distinguish it. Since this study 

aims at predicting punctual rainfall with short lead times, the definition of spatial 

events was revised.  

It is common to define punctual rainfall events by the Minimum Inter-arrival Time 

index, hereafter referred to as MIT. Regarding a single station, a storm is a rainfall 

period with preceding and succeeding dry periods more than MIT (Heneker et al., 

2001). Many application-based criteria for identifying rainfall events using a fixed 

MIT exist in the literature, with values ranging from 3 min to 24 h.  

Since the model employs precipitation fields, the MIT criteria were adapted for them. 

Thus, regarding meteorological stations over an area, a rainfall event is defined as a 

period of rainfall with preceding and succeeding dry periods more than MIT for the 

total number of stations in the area. According to climate characteristics, precipitation 

events were identified separately for the warm (April–September) and cold (October–

March) seasons. A MIT of 2 hours was chosen for the warm season and 1 hour for the 

cold season. Fig. 2.2 depicts two so-defined rainfall events.  

 

 

Fig.  3.2 Example of storm event separation method using 1-h minimum inter-event time MIT. 

Y axis indicates average rainfall depth of the rain-gauge stations over the study area. 
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Almost 32 events per year, for a total of 359 rainfall events, occurred in the study area 

from 2009 to 2019 and were registered by the 19 rain-gauge stations (Fig. 3.3). 

 

 

Fig.  3.3 Number of events selected each year according to Minimum Inter Event Time (MIT) 

criteria. 

3.4 -  Rainfall event classification 

For each month, the main characteristics of the selected rainfall events were computed 

(Fig. 3.4):  

- rain event duration {𝑇1, 𝑇2, … , 𝑇𝑀} where M is the number of events. 

- maximum total rainfall volume registered during the M rain events 

{𝐻𝑚𝑎𝑥
1 , 𝐻𝑚𝑎𝑥

2 , … , 𝐻𝑚𝑎𝑥
𝑀 } (Eq. 1): 

𝐻𝑚𝑎𝑥
𝑘 = max{𝐻1

𝑘, 𝐻2
𝑘 , … , 𝐻𝑖

𝑘 , … , 𝐻𝑛
𝑘} =

max{∑ ℎ1,𝑡
𝑘𝑇𝑘

𝑡=1 , ∑ ℎ2,𝑡
𝑘𝑇𝑘

𝑡=1 , … , ∑ ℎ𝑖,𝑡
𝑘𝑇𝑘

𝑡=1 , … , ∑ ℎ𝑛,𝑡
𝑘𝑇𝑘

𝑡=1 }                (3.1) 

where 𝐻𝑚𝑎𝑥
𝑘  is the maximum total rainfall volume registered during k-th rain 

event among the n station over the study area, 𝐻𝑖
𝑘 is the total rainfall volume 

registered by the i-th station during k-th rain event, ℎ𝑖,𝑡
𝑘  is the rain depth 

registered by i-th station during t-th instant of k-th rain event, 𝑇𝑘 is the 

duration of the k-th event, and n is the number of stations. 
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- average 10 minutes rain depth {ℎ1̅̅ ̅, ℎ2̅̅ ̅, … , ℎ𝑀̅̅ ̅̅ , }, according to Eq. 2: 

ℎ𝑘̅̅ ̅ =
1

𝑛
∑ ℎ𝑘̅̅ ̅

𝑖
𝑛
𝑖=1                     (3.2) 

where n is the number of stations, ℎ̅𝑖 the average 10 minutes rain depth 

registered by n-th station during the k-th rain event, calculated according to 

Eq. 3.3: 

ℎ𝑖
𝑘̅̅ ̅ = ∑ ℎ1,𝑡

𝑘𝑇𝑘
𝑡=1                      (3.3) 

 where ℎ1,𝑡
𝑘  is the rain depth registered by i-th station during t-th istant of k-th 

rain event and 𝑇𝑘 is the duration of the k-th event. 

- maximum 10 minutes of rain depth, among the measurements registered by 

the stations during the event {ℎ𝑚𝑎𝑥
1 , ℎ𝑚𝑎𝑥

2 , … , ℎ𝑚𝑎𝑥
𝑀 } (Eq. 3.4): 

ℎ𝑚𝑎𝑥
𝑘 = max{ℎ𝑚𝑎𝑥,1

𝑘 , ℎ𝑚𝑎𝑥,2
𝑘 , … , ℎ𝑚𝑎𝑥,𝑛

𝑘 }                (3.4) 

where ℎ𝑚𝑎𝑥
𝑘  is the maximum 10 minutes depth registered during k-th rain event among 

the n station over the study area, ℎ𝑚𝑎𝑥,𝑖
𝑘  is the maximum 10 minutes depth registered 

by the i-th station during k-th rain event. 

Based on these characteristics, rainfall events were distinguished into three groups: 

- stratiform; 

- convective; 

- mixed. 

The third group was introduced because, according to event duration, both stratiform 

and convective storms were present during an event. Thus, a clear separation was not 

possible.  

Most of the events were contemporary registered by all the stations, typical of 

stratiform events. However, during some events, more than one convective cell was 

observed. In particular, during the winter, rain events have smaller rain depths and 

can last up to a few days, typical of stratiform events. While in summer, rain events 
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occur predominantly in the form of more localized rain showers, with shorter 

durations and higher rain depths, according to convective event type formation. 

 

Fig.  3.4 Box plot of a) rain event duration; b) total rainfall volume; c) average 10 minutes rain 

depth; d) max 10 minutes rain depth observed each month by all rain gauge stations during the 

selected events.  
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Chapter 4 -  Methodology: the 

Machine Learning model 

 

 

 

 

 

This chapter illustrates the proposed model and all the steps to obtain the final 

configuration. First, section 4.1 gives an overview of the workflow and lists all the 

processes: from raw rainfall data reading to final probabilistic predictions. Then, in 

the following sections, every step is explored, and a detailed description is given. First, 

section 4.2 defines how to pre-process rainfall data to make them usable for the 

models. Next, section 4.3 illustrates the architecture of the models and the training 

strategy adopted to achieve competitive training. Then, section 4.4 describes output 

post-processing. Finally, section 4.5 defines the performance criteria considered to 

evaluate the models.  

4.1 -  Workflow 

The proposed ML model employs cumulative rainfall depth from recording stations 

over the study area as inputs to predict rainfall interval and the corresponding 

probability of occurrence in one of the stations after DT lead-time. In particular, a 

model was independently developed and trained from the others for each station and 

each lead time. The stations were 19, and the lead times were 5, so a total of 95 models. 

Fig. 4.1 shows the nowcasts workflow regarding one station and one lead-time. 
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First, let t0 be the time when a rain event starts; the first step is reading the cumulative 

rainfall depths (observation) of the stations over the study area 

𝒉𝒕𝟎
= ℎ1, ℎ2, … , ℎ𝑛                     (4.1) 

where n is the number of stations. 

According to contingency Table 2, the observations 𝒉𝒕𝟎
 are discretized into rain 

intervals or rain classes 𝒙𝑡0 (as better explained in section 4.2 – input variable pre-

processing) to form the input pattern. After the discretization, the difference between 

two values within the same interval is neglected.  

𝒙𝒕𝟎
= 𝑥1, 𝑥2, … , 𝑥𝑛                    (4.2) 

where n is the number of stations. 

Then, the input pattern at t0 (𝒙𝒕𝟎
) pass through the nowcasting model (section 4.2) to 

predict the probabilities of occurrence 𝑷(𝒚𝒕𝟎+𝑫𝑻) for every rain interval 𝒚𝒕𝟎+𝑫𝑻
, at t0 

+ DT with DT being equal to the lead time (section 4.4): 

𝑷(𝒚𝒕𝟎+𝑫𝑻) = 𝑃(𝑦1), 𝑃(𝑦2), … , 𝑃(𝑦𝑁)                 (4.3) 

Where 𝑦𝑖 is the rain interval, N is the number of rain intervals, and 𝑃(𝑦𝑖),  the 

probability of occurrence of 𝑦𝑖. The probability of occurrence 𝑃(𝑦𝑖),  is calculated 

through the Softmax, which ensures that the sum of the 𝑃(𝑦𝑖) is equal to one: 

∑ 𝑃(𝑦𝑖) = 1𝑁
𝑖=1                     (4.4) 
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Fig.  4.1 - Schematic model overview regarding a generic lead time DT and recording station 

n. 41.   

 

1 The n observations (ht0) at t0 are discretized into rain intervals (xt0), according to input 

variable pre-processing, where n is the number of recording station over the study area. The 

input pass through the i-th nowcasting models to predict the corresponding probability of 

occurrence P(y + DT) of  the N rain intervals yt0 + DT, where N is the number of rain interval 

and DT is the lead time. The model selects the rain interval with the highest probability of 

occurrence y*. The colours of the probability vector begin with bright green through shades of 

bright red: brighter green means a higher probability of occurrence, while brighter red lower. 
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Finally, the model selects the rain class 𝑦𝑡
∗ with the highest probability:  

𝑦𝑡
∗ | 𝑃𝑦𝑡

∗ max {𝑃(𝑦1), 𝑃(𝑦2), … , 𝑃(𝑦𝑁)}                  (4.5) 

Where N is the number of rain classes. 

At time t1, new registrations are available 𝒉𝒕𝟏
, which are added up to the previous 

registrations 𝒉𝟎 and discretized in 𝒙𝒕𝟏
, according to the corresponding rain class. 

Then, 𝒙𝒕𝟏
are employed by the model to provide new nowcasts, thus the associated 

probability of occurrence 𝑷(𝒚𝒕𝟏+𝑫𝑻). 

The update frequency is 10 minutes; thus, t0-t1=10 minutes. Each model has its 

parameters, but the input pattern is the same for each of them, which means that the 

input at time t0 (vector xt0) is passed through each model, but each model predicts 

different outputs. A numerical example of the input-output pattern is given below: 

assuming that the vector 𝒉𝒕 is 

𝒉𝒕 = { 0.2 , 1.0 , 3.2 , 0.2 , 4.2 , 4.6 , 5.8 , 1.2 , 1.2 , 0.2 , 0.4 , 1.4 , 1.6 , 2.4 , 1.2 , 0.2 

, 0.4 , 0.2 , 0.4 } 

it will be discretized into the corresponding vector 𝒙𝑡:  

𝒙𝑡 = { 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }. 

The nowcast after DT lead time for station number 4 will be the vector Py4,t+DT: 

Py4,t+DT = { 0 , 0.02 , 0.04 , 0.89 , 0.01 , 0.01 , 0.01 , 0.01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

, 0 , 0 , 0 }. 

Thus, the highest probability for station number 4 is associated with class third (89 

%), i.e., the most probable rain interval is between 5 and 10 mm, according to 

contingency Table 4.1. 
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Table 4.1 Contingency table for the discretized intervals of precipitation. 

Class ID 

(x) 

Interval 

[mm] 

No. 

Examples 

Percentage 

[%] 

Cumulative 

percentage [%] 

1 0-2 231408 0.2782 0.2782 

2 2-5 135316 0.1627 0.4408 

3 5-10 146280 0.1758 0.6166 

4 10-15 96427 0.1159 0.7325 

5 15-20 67726 0.0814 0.8140 

6 20-25 47105 0.0566 0.8706 

7 25-30 32564 0.0391 0.9097 

8 30-35 23334 0.0280 0.9378 

9 35-40 16271 0.0196 0.9573 

10 40-45 9537 0.0115 0.9688 

11 45-50 6538 0.0079 0.9766 

12 50-60 9854 0.0118 0.9885 

13 60-70 5153 0.0062 0.9947 

14 70-80 2217 0.0027 0.9974 

15 80-90 1068 0.0013 0.9986 

16 90-100 504 0.0006 0.9992 

17 100-125 337 0.0004 0.9996 

18 125-150 170 0.0002 0.9999 

19 150-175 54 0.0001 0.9999 

20 175-200 70 0.0001 1.0000 

 

4.2 -  Input variables pre-processing 

According to Moon et al. (2019), we discretized continuous data (ℎ𝑡) into intervals 

(𝑥𝑡), thus, after the discretization, the difference between two values within the same 

interval is neglected. Table 4.1 is the contingency table for the discretized 

precipitation intervals, hereafter referred to as rain classes or classes. Twenty classes 

with different widths, ranging from 2 mm to 25 mm, were defined.  

The upper limit of the highest class is 200 mm, which depends on the employed data 

set, thus, on the rainfall events. According to MIT criteria for rainfall events 

determination, the maximum total rainfall volume observed during the 359 events was 
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almost 194 mm. As a result, when an observed value is higher than 200 mm, the 

rainfall event is considered finished.  

 

 

Fig.  4.2 Histogram of examples within each rain class 

 

Our discretization is narrower than the ones done by (Moon et al., 2019; Suyatno et 

al., 2018), resulting in higher intervals and accuracy. However, it is worth highlighting 

that the 20 classes have different percentages of examples, resulting in an 

asymmetrical distribution with higher frequency for the first classes. To achieve 

uniform distribution, intervals should have been narrower for lower classes and wider 

for higher ones. However, on the one hand, further discrimination among first classes 

would have led to an interval of less than 1 mm width, resulting in a useless precision 

for operational nowcasting. On the other hand, higher classes would have been joined 

into a wider one, leaking valuable information. Therefore, this study prefers intervals 

with variable width rather than a uniform class distribution. 
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4.3 -  Model setup and Training Strategy 

A neural network is defined by its structure, including the hidden layers number, the 

number of nodes in each hidden layer, how the layers are linked, the activation 

function, and the weights. A feed-forward neural network was independently 

developed and trained from the others for each station and lead time.  

Feed-forward neural networks pass the data forward from input to output. As 

illustrated in Fig. 4.3, it consists of interconnected layers with nodes and weights, 

where the flow of information is in the forward direction only. Thus, there is no 

backward flow, hence the name feed-forward network. 

 

 

Fig.  4.3 Feed-forward neural network architecture with one hidden layer 

 

The n number of input data is assigned to the nodes in the input layer (xi , i = 1, 2, …  

, n), and is propagated through the interconnected nodes in the hidden layer, with 

weight parameters and biases. Each j hidden node (j = 1, 2, … , p) receives the weighted 

sum of the input nodes, adds the bias, and transfers to the output layer through an 

activation function. It can be described in 
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zj=fz(∑ xiWji+cj
n
i=1 )=fz(𝑢𝑗)                    (4.6) 

where zj is the j-th node in the hidden layer (j=1, 2, …, p), Wji is the weight parameter 

between the hidden and input node, cj is the bias, uj is the symbol for the term in 

brackets, and fz is the activation function, which is the hyperbolic tangent function: 

fz(𝑢𝑗)=
2

1+e
-2𝑢𝑗

-1                   (4.7) 

Similarly, this process is also performed between the hidden and output layer.   

P(y
k
)=fy (∑ ziWkj+bk

p

j=1 ) = fy(𝑠𝑘)                 (4.8) 

where yk is the output variable (k = 1, 2, ⋯, N), Wkj is the weight parameter between 

the hidden and output nodes, bk is the bias, sk is the symbol for the term in brackets, 

and fy is the activation function, which is the normalized exponential function, also 

known as the softmax function:  

fy(𝑠𝑘)=
e𝑠𝑘

∑ 𝑒𝑠𝑘N
k=1

                     (4.9) 

The training problem consists of finding the optimal combination of weights of the 

ML model. The most common training strategy is backpropagation, which adjusts the 

weights of connections between neurons in hidden and output layers to reduce the 

error in the output. However, when the dataset consists of experimental points, 

usually, there is some noise in the data. Therefore, reproducing the dataset precisely 

as it is not the best strategy because the noise will be reproduced, too. Moreover, one 

of the main drawbacks of ML models is overfitting, which happens when the model 

performs well on the dataset but poorly on new unseen data.  

The early stop technique is applied while training the models to avoid those problems. 

The dataset, thus the rainfall events, were split into three groups: the period 2009-

2014 was used for training (60%), the period 2015-2016 for validation (10%), and 

2017-2019 for testing (30%). The training set was used to train the model by tuning 

its parameters with the back-propagation algorithm; the validation set asserted 

generalizing ability and avoided overfitting, which happens when the model is 

performing well on the data used during training but performs poorly on new unseen 
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data (Nguyen and Bae, 2020). As shown in Fig. 4.4, the network stops training when 

the error over the validation set (red line) increases while the error over the training 

set (blue line) is still decreasing; in this way, the network avoids overfitting.  

 

 

Fig.  4.4 Training, testing, and validation curves as a function of the epochs. The best 

validation performance is at epoch 498. 

 

Evaluating the performance of the validation set is done to determine and optimize 

different network architectures and training strategies. Selecting the model and 

training method performing the best on the validation set introduces the risk of 

overfitting this dataset. Finally, the testing set allows the final model evaluation. We 

trained all the models by minimizing the cross-entropy loss (Eq. 4.10), which is most 

commonly used for classification (Zhang and Sabuncu, 2018). 

lossj=-Oj ln Pj -(1-Oj) ln(1-Pj)                 (4.10) 
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where Pj is the corresponding predicted value to Oj (observed value) at epoch j, an 

epoch refers to one cycle through the dataset is passed forward and backward the 

neural network 

4.4 -  Output variables post-processing: a probabilistic 

approach 

Once trained, each ML model predicts an output vector of the probability of 

occurrence 𝑷(𝒚𝒕+𝑫𝑻)  associated with the vector of rain classes 𝒚𝒕+𝑫𝑻. The 

probabilistic output from ML models is achieved by employing the Softmax function 

in the output layer. The Softmax is helpful because it provides a normalized 

probability distribution conditioned on the input (Huang and Xiang, 2018). The input 

values can be positive, negative, zero, or greater than one, but the softmax transforms 

them into values between 0 and 1. Many multi-layer neural networks end in a 

penultimate layer that outputs real-valued scores that are not conveniently scaled and 

may be challenging. The probability of occurrence enhances the ML model's 

operational utility and reliability. From an operational perspective, it is crucial to 

provide, together with the nowcast, an estimation of its uncertainty. Hence, 

probabilistic predictions provide greater economic and decision-making value than 

deterministic ones.  
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4.5 -  Performance criteria 

The nowcasts are verified against the observed values using continuous and 

categorical scores. The continuous scores include the Root Mean Square Error 

(RMSE) and Root Square Error (RSE). Since the model predicts a rain class, thus an 

interval, the continuous metrics are evaluated concerning the mean values of the 

classes. 

RMSE =√∑ (Pi-Oi
𝑁
𝑖=1 )2

N
 [mm]                 (4.11) 

RSE =
∑ (Pi-Oi)

2N
i=1

∑ (μO-Oi)
2N

i=1
 [-]                  (4.12) 

where Pi and Oi are the predicted and observed rainfall classes, N is the number of 

observations, μ is the mean of observations (μO). 

The categorical scores include three indicators commonly used in the meteorological 

community: Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical 

Success Index (CSI). They are skill scores similar to precision and recall commonly 

used by machine learning researchers (Kim et al., 2017). The values of the scoring 

indicators range from 0 to 1. The lower FAR, the better, and the higher the value of 

CSI and POD, the better. 

POD = 
Hits

Hits + Misses
                 (4.13) 

FAR = 
False Alarm

False Alarm+Hits
                 (4.14) 

CSI = 
Hits

Hits+False Alarm + Misses
                (4.15) 

where Hit indicates that the observed rainfall class is correctly predicted; False Alarm 

indicates that the predicted rainfall class is greater than the observed one; Miss 

indicates that the predicted rainfall interval is lower than the observed one (Table 4.2). 

According to how categorical indicators were defined, a threshold was not needed. 

Indeed, the model nowcasts a rainfall class, thus a categorical value.  
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Table 4.2 Contingency table for meteorological indicators. 

Observation Nowcasting  

 Present Absent 

Present Hit Miss 

Absent False Alarm  

 

All the performance criteria are calculated per station by pooling together the 

information from all the events. Moreover, a confusion matrix is used to find the level 

of accuracy of the multiclass classification model. It shows the accuracy of a machine 

learning algorithm, especially in the supervised learning method (Suyatno et al., 

2018). The confusion matrix consists of columns representing predicted data classes 

and rows representing the original data class.  

Finally, the verification results are compared with those from Eulerian Persistence 

(EP), which assumes that for any lead time t+DT, the nowcasts are the observation at 

time t. 
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Chapter 5 -  Results and 

Discussion 

 

 

 

 

 

The following results assess the performance of the models and the training strategy. 

First, to evaluate the generalization abilities of the models, section 5.1 is devoted to 

analyzing all the rain events that were not used to train the models, i.e., the events of 

the testing set. Each model is evaluated and compared using continuous (RMSE and 

RSE) and categorical (POD, CSI, and FAR) metrics. In addition, the Eulerian 

Persistence (EP) is considered a benchmark. Section 5.2 compared two events of the 

testing set whose characteristics are similar to convective events - characterized by 

high intensities and short durations - and stratiform ones - characterized by more 

significant areas of influences, higher durations, and lower rainfall intensities -

respectively.  

5.1 -  Nowcast performance and skill evaluation  

For the testing set (years 2017, 2018, and 2019), the RMSE and RSE for all the 95 

ML models were computed (Fig. 5.1). RMSE mean values increase from 1.67 mm to 

6.15 mm, while RSE values range between 0.158 and 0.186 from 30-minutes to 6-

hours lead time models, respectively (Table 5.1).  
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The boxplot's interquartile range (IQR) is narrow for 30min lead times but wider for 

6 hours lead times. This result suggests that the models perform similarly for all rain 

gauges at short lead times but differently for higher lead times. The RMSE and RSE 

of the EP nowcast are significantly higher than the ones obtained by the proposed 

models. The difference is accentuated for increasing lead times and highlights the 

ability of the proposed models to provide better estimation than the simple EP model. 

 

 

Fig.  5.1 Boxplots of RMSE and RSE values for each lead time between observed and 

predicted values of the 19 rain gauges. The blue crosses are the mean values of RMSE and 

RSE for the Eulerian Persistence (EP) for each lead time.  

 

As expected, 30-minutes lead time models produce the best performance, while 6-

hours ones perform the worst. These trends are broadly consistent with physical 

behavior. Thus, it is widely recognized that as the nowcast lead time increases, the 

correlation between the desired output and available input decreases (Lin et al., 2009), 

and rainfall nowcasts deteriorate (Heuvelink et al., 2020).  

 

Table 5.1 Comparison of the average scores of the different models over five lead 

times. RSE, POD, FAR, and CSI are dimensionless and range between 0 and 1 (the values are 

the mean values from the boxplots in Fig. 5.1 and Fig. 5.2).  
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Lead-time [h] 0.5 1 2 3 6 

RMSE [mm/10 min] 1.6735 2.4559 3.6998 4.5373 6.1506 

RSE [-] 0.0158 0.0339 0.0751 0.1100 0.1864 

POD [-] 0.9164 0.8584 0.7813 0.7504 0.7445 

FAR [-] 0.0082 0.0182 0.0506 0.0775 0.1225 

CSI [-] 0.9094 0.8450 0.7502 0.7060 0.6748 

 

Model accuracy analysis reveals the same trends mentioned above: POD and CSI 

decrease from 0.5 h to 6 h lead-time model, while FAR increase (Fig. 5.2). The 30-

minutes lead times models achieve the highest CSI (90.94%) and POD (91.64%) and 

lowest FAR (0.82%), giving better performance (Table 4).  

Notwithstanding the decreasing trend, POD and CSI are all higher than 74.45 and 

67.48%, and FAR lower than 12.25%, which means they all are, on average, close to 

their ideal values (100, 100 and 0%, respectively), confirming the goodness-of-fit of 

the models. In particular, low values of FAR are desirable for early warning systems 

since they cause financial losses and may result in people losing confidence in weather 

services and civil protection authorities (Liu et al., 2021).  
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Fig.  5.2 Box plot of POD, CSI, and FAR values for each lead time between observed and 

predicted values of the 19 rain gauges. The blue crosses are the mean values of POD, CSI, and 

FAR for the Eulerian Persistence (EP) for each lead time. 

 

The proposed models outperformed the benchmark EP for all the lead time and 

performance criteria (Fig. 5.2). Indeed, the EP approach is suitable for precipitation 

fields with negligible advection but can lead to significant errors in predicting the 

intensity of moving rainfall patterns.  

Moreover, the models show an underestimation of the observations, as better depicted 

in confusion matrixes (Fig. 5.3). The dispersion of the values from the main diagonal 

provides accurate insights about the error made by the models. Even though the 

dispersion from the correctly predicted class (diagonal cells) is slightly appreciable 

for 30 minutes lead-times model, it considerably increases for the higher lead-times 

models. Also, Heuvelink et al. (2020) found that the rainfall forecasting skill 

decreased with increasing lead time, often associated with underestimating the 

nowcast rainfall. This was probably related to the fact that the nowcasting schemes do 

not explicitly consider the possible growth of rain cells. In the proposed models, the 

observed tendency to underestimate is mainly due to one reason. First, the output 

variables were discretized into intervals, which have a different number of examples. 

Almost 60% of the time steps (Table 4.1) fall in the first three classes (1,2,3). 

Consequently, the models have more low classes examples and are willing to predict 

them rather than higher classes. To have equally size intervals, boundary intervals 

might have been set differently. However, this would have given too wide intervals 
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and would have been useless for nowcasting purposes. Thus, confusion matrixes 

highlighted that the model is influenced by the discretization of the rainfall into 

classes. 

 

 

Fig.  5.3 Confusion matrix for each lead time between observations and predicted classes. The 

colours begin with white, range through shades of green, and then through shades of bright 

green. Brighter green means a higher percentage of actual predicted. 
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The result of the proposed model could be compared with that obtained by Shehu 

(2021), who investigated how to extend the predictability limit of rainfall at a fine 

scale (5 minutes and 1 km2) by improving the radar rainfall field fed into the nowcast 

models. Regarding a lead time of up to 3 hours, Shehu (2021) illustrated that the 

temporal RMSE between the nowcast time series and actual input field varies up to 

0.5 mm/5min (6 mm/h). On the other hand, the RMSE obtained with our model ranges 

between 3.64 and 5.53 mm/10 minutes, i.e., 21.84 and 33.18 mm/h (Fig. 5.1). 

According to the results, Shehu’s model provided better results than ours—an 

explanation for why the RMSE of our models were higher lies in how they were 

calculated. Indeed, the RMSE considered the mean of the rainfall classes. Therefore, 

even though a hit is registered (in terms of categorical criteria), the observed 

intensities can still deviate from the rainfall class mean. However, even though this 

comparison may not be entirely reliable since the spatial resolution of our model is 

coarser than Shehu's (2021), our model is competitive for several reasons. First, we 

employed rain gauge data –the reference devices for hydrological application - thus, 

the nowcasts were not affected by the conversion error from radar measurement, 

which allowed our model to obtain reliable prediction in real-time without further 

processing of the data. 

Furthermore, weather radar real-time adjustment is tough at the beginning of rainfall 

events, with no prior rain gauge data recordings. In contrast, Shehu (2021) used radar 

data, which offered almost full spatial coverage but inevitably displayed a discrepancy 

with the gauge that will propagate and increase with the lead time. As a result, Shehu 

(2021) identified a predictability limit of the model, which was up to 3 hours of lead 

time.  

Moreover, not only our models provided a nowcast but also the corresponding 

probability of occurrence. This is probably the model's main strength since it allows 

an estimation of the uncertainty of the nowcast – which is crucial for early warning 

purposes. Another advantage could be attributed to the easy-replicability and cost-

effective times to run. Indeed, once the models are trained, the nowcasts are provided 

in real-time, i.e., the computational time is of the order of the millisecond. Our models 
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seem promising, but further correction must be performed to account for the lack of 

spatial representation. Since the models make a punctual prediction, if a storm occurs 

between the rain gauges, they can miss the peak rainfall intensity and automatically 

lead to an underestimation of the forecast. Indeed, depending on the specific velocity 

or advection, when a storm is captured at some stations, the others will capture it with 

a time shift. However, since our models do not consider the time shift, the 

performance criteria penalized the results. If criteria with a specific threshold were 

implemented (and time-independent), the performance would have differed. 

Nevertheless, according to the overall result, it is evident that there is consistent 

physical behaviour, which is not obvious when dealing with machine learning 

techniques (Liu et al., 2022). As already stated, one of the main drawbacks of artificial 

intelligence algorithms is their tendency to produce results that cannot be rationally 

explained. As a result, users are unwilling to use them. In addition, it can be said that 

the training strategy was successful. Not only the model allows the evaluation of 

rainfall information but also the estimation of the transition from non-rain to rain 

conditions and prediction of short rainfall patterns, which are not easy to evaluate in 

advance. These features allow good quality in rainfall nowcasting, ensuring a practical 

warning issue. 
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5.2 -  Event-based comparison 

To highlight the ability of the model to predict different types of events, the 

performances of the proposed nowcasting models are shown and compared for two of 

them that differ in terms of (1) duration, (2) average total rain depth among the 

stations, (3) maximum total rain depth, (4) maximum 10 min rain depth, and (5) 

average 10 min rain depth (Table 5.2). 

 

Table 5.2 Analysed rain events' main properties. 

Event No. 311 357 

Start [CET] 01 Oct 2018 04:00 19 Dec 2019 04:00 

End [CET] 01 Oct 2018 23:00 20 Dec 2019 04:20 

Duration [h] 19.16 24.33 

Average total rain depth [mm] 26.16 46.65 

Maximum total rain depth [mm] 59.60 122.00 

Max 10 minutes rain depth [mm] 16.40 9.00 

Average 10 min rain depth [mm] 1.84 0.82 

 

The characteristics of the rain depth registered during event n. 311 were similar to 

convective cells, characterized by high intensities and short durations. Even though 

the event lasted almost 19 hours, the measurements were intermittent and lasted 

around one hour (Fig. 5.4). On the other hand, event n. 357 was related to the 

mechanism that generates stratiform rainfall, characterized by more significant areas 

of influence, higher durations, and lower rainfall intensities compared to the 

convective precipitation (Fig. 5.4). 
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Fig.  5.4 Rain depth registered during the event on the 1st of October 2018 (top) and 19th of 

December 2019 (bottom). The red lines are referred to the stations with the highest rain depth 

peak in 10 minutes: station n. 3 and n. 5, respectively. The different shades of grey are referred 

to the other station's measurements. 
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5.2.1 -  Convective event - event on 1 October 2018 

The event on 1st October 2018 occurred with two earlier rain bursts, followed by 

almost 7 hours of continuous rain period, discontinuously measured by the stations 

over the study area (Fig. 5.4). An average of 26.16 mm fell in 19 h, with the highest 

total depth value of 59.60 mm registered by station number 6. While station number 

3 detected the highest peak at 12:50 CET (Central European Time) of 16.40 mm (Fig. 

5.4 – red line). The peak value lasted less than 1 hour and was exceptionally high - 

the maximum annual value registered by the station. To emphasize the ability of the 

models to detect local peaks, results are presented in terms of the mean values of the 

rain depth between observed and predicted rain classes (Fig. 5.5).  

 

 

Fig.  5.5 Event based comparison between observed values and models predictions over 5 lead 

times for station n. 3. 
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Among the five models, 30 minutes lead-time one performed the most remarkable 

result. It achieved an RMSE of 1.92 mm and an RSE of 2.79 %. In contrast, the 6-

hour lead time model nowcasts deviated from the observed data, resulting in an RMSE 

of 11.50 mm and an RSE of 16.71 %. Similarly, POD decreased from 100% to 13%, 

CSI from 96 % to 9 %, and FAR increased from 4% to 75%. 

 

Table 5.3 Comparison of the performance criteria of the different models over five lead times 

for station n. 3. RSE, POD, FAR, and CSI are dimensionless and range between 0 and 1. 

Lead-time [h] 0.5 1 2 3 6 

RMSE [mm] 1.92 7.69 9.96 5.69 11.50 

RSE [-] 0.03 0.11 0.14 0.08 0.17 

POD [-] 1.00 0.73 0.36 0.32 0.13 

FAR [-] 0.04 0.50 0.78 0.70 0.75 

CSI [-] 0.96 0.42 0.16 0.18 0.09 

 

The decline of the performance criteria within the five models was partly due to the 

short evolution of the rainfall registered by station 3. Indeed, the peak value occurred 

quickly after a no–rain burst– typical of convective cells (Capozzi et al., 2018). As a 

result, the 6-hours models had not enough stored information about the last time step; 

thus, the cumulative rain depths registered by station 3 were zero. 

Even though the proposed models failed to nowcast the actual values at the correct 

time for higher lead times, they provided notable nowcasts for a lead time of up to 1 

hour, which is valuable for dispatching decision-making. POD, CSI, and FAR suggest 

that the models could support Early Warning Systems to increase preparedness until 

more data becomes available. We believe these results were possible thanks to the 

joint use of cumulative rain depth from nearby stations. Even though station 3 started 

recording a no-zero value of rain depths only around 12:00 CET, the models already 

provided nowcasts because the rain event had already started over the study area – 

according to rainfall event selection (Section 3.3).  
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This performance is also consistent with the result obtained by Ghaemi et al. (2021), 

who evaluated the nowcasting product of 2 km resolution gridded data from 2007 to 

2018. They observed that during four extreme convective short-duration events, there 

was a time shift in peak intensity detection, as happened in our models (Fig. 5.4). It is 

worth highlighting that, without further information from the nearby stations, the 

nowcast of the such isolated peak would have been trivial. Introducing cumulative 

rain depths from nearby stations as inputs to the model allowed to capture of 

spatiotemporal features. In this way, the models learned the rainfall process without 

storing antecedent time steps but according to the spatial characteristics.  

5.2.2 -  Stratiform event - event on 19 December 2019 

All stations over the study area homogenously registered the event on 19th December 

2019: an average of 50.57 mm fell in 22 h, with the highest values detected during the 

ten central hours (From 11:00 to 21:00) (Fig. 5.3). Results are shown for 

meteorological station number 5 that registered the highest cumulative rain depth 

value of 122.00 mm, almost gradually increasing during the event (Fig. 5.3). To 

highlight the ability of the model to predict the increasing rain depth during the event, 

results are presented in terms of cumulative rain depth between observed and 

predicted rain classes.  



 

57 

 

Fig.  5.6 Event-based comparison between observed values and model predictions over five 

lead times for station n. 5. 

 

All the models recognised the increasing rainfall pattern registered by station n. 5. 

However, for higher lead-times models, the nowcasts were more significant than the 

observed values, resulting in an overestimation. Once again, as the lead time 

increased, the performance of the models decreased. For example, the 30-minute lead 

time model showed an RMSE of 0.35 mm, which increased to 4.50 mm for the 6 hours 

lead time one (Table 5.4), while RSE increased from 3 to 36 %. Also, meteorological 

indicators trends are consistent with previous results: POD, FAR, and CSI changed 

from 98, 3, and 95 to 69, 29, and 53, respectively. 
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Table 5.4 Comparison of the performance criteria of the different models over five lead 

times for station n. 4. RSE, POD, FAR, and CSI are dimensionless and range between 0 and 

1. 

Lead-time [h] 0.5 1 2 3 6 

RMSE [mm/10min] 0.35 1.46 2.55 2.95 4.50 

RSE [-] 0.03 0.12 0.20 0.23 0.36 

POD [-] 0.98 0.95 0.90 0.85 0.69 

FAR [-] 0.03 0.13 0.20 0.22 0.29 

CSI [-] 0.95 0.84 0.74 0.68 0.53 

 

Comparing the evaluation metric of the two events, we found that the model predicted 

the 2nd better than the 1st. We believe these results were possible thanks to gradual, 

light rain evolution. Furthermore, the stratiform events displayed a higher correlation 

than the simple convective ones and had many more timesteps to choose from in the 

training phase. As a result, the models favour the stratiform ones. Moreover, the 

results are compatible with (Imhoff et al., 2020), who showed that longer rain events 

durations, consisting of larger, more persistent systems, have higher predictability 

than the shortest durations, which generally consist of short‐lifetime high‐intensity 

convective precipitation events. Finally, they demonstrated that the average Mean 

Absolute Error (MAE) of the nowcasting model for stratiform rainfall becomes three 

times lower than those achieved during more convective rainfall with higher 

intensities.  

Ayzel et al. (2020) proposed a neural network for radar-based precipitation 

nowcasting to predict continuous precipitation intensities at a lead time of five 

minutes. They found that the models had a limited ability to predict high rainfall 

intensities, probably due to a remarkable level of spatial smoothing in their 

predictions. Moreover, that smoothing becomes increasingly apparent at longer lead 

times. As suggested by their results, the nowcast performance is quite sensitive to the 

type of the event, and thus the results shown here do not contradict the fact that 

stratiform-type events may perform better than the convective type. 
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To conclude the comparison between the analysed events, the models provided better 

precipitation nowcasts when the event extension is homogeneous but failed to catch 

local precipitation events sufficiently in advance successfully. Thus, as expected, the 

potential lead time is short for convective rain events, where the rain evolves rapidly 

(Dolciné et al., 1998). 
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Chapter 6 -    Transferability of the 

model to other contexts 

 

 

 

 

 

This chapter investigates the extendibility of the model to other regions that differ 

from southern Italy. The Flanders Region of Belgium, with its typical lowland 

catchments, is considered. The chapter is structured as the thesis. First, section 6.1 

describes the Belgian study area and the available rain data used to implement the 

model. One rain-gauge station is considered: Melsele station, near the city of Antwerp. 

In section 6.2, the parameters of the models are described, as well as the training 

strategy. Section 6.3 shows the results of the models and compares them to two 

different benchmarks: Eulerian Persistence (EP) and pySTEPS. To assess the training 

strategy and evaluate the generalization abilities of the models, section 6.3.1 shows 

the training, validation, and testing set results. Each model is evaluated using POD, 

FAR, Pearson coefficient, and MAE and compared to the EP result. Finally, section 

6.3.2 analyses a single rainfall event and compares it to the results of pySTEPS. 
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6.1 -  Study area and dataset 

The considered study area is the Flanders Region of Belgium (Fig. 6.1). It has an area 

of 13'624 km2 and comprises sixty meteorological stations administrated by the Royal 

Meteorological Institute of Belgium (RMI)2.  

 

 

Fig.  6.1 The location of the study area (Flanders) within Belgian borders (dark grey line). 

Rain gauge stations are illustrated with blue dots. 

 

This region has a temperate maritime climate with cool summers and moderate 

winters, high humidity during the year, and low sunshine duration in winter 

(Hosseinzadehtalaei et al., 2021). The precipitation is mainly of a) stratiform type in 

winter - caused by the Westerlies Air Masses (from the Atlantic) and characterized by 

 

2 https://www.meteo.be/en/weather/forecasts/precipitation  
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extended rainfall with low intensities; b) convective type in summer - caused by the 

radiation instabilities which occur at local scales and for a short duration of time. 

Owing to the flat topography of Flanders, precipitations at the stations follow a similar 

and homogeneous pattern.  

Three hundred sixty rainfall events were selected from the 5‐min rain-gauges time 

series for 2017–2021 (Fig. 6.2). Rain-gauge data is accessible online via the website: 

www.waterinfo.be3. The Minimum Inter-arrival Time index (MIT) selected the 

rainfall events. In particular, a MIT of 3 hours was chosen for the warm season (April, 

May, June, July, August, and September) and 2 hours for the cold one (October, 

November, December, January, February, and March).  

 

 

Fig.  6.2 Number of events selected each year according to Minimum Inter Event Time (MIT) 

criteria.  

 

3 In association with other Flemish water managers, the Flemish Environment Agency has 

launched a widget-based web portal www.waterinfo.be, combining all real-time measurements 

and flood forecasts generated by the forecasting systems for the navigable and unnavigable 

rivers in Flanders. The data are presented as animated, forecasted flood maps and graphs of 

water levels, discharges and displayed on an interactive map of Flanders. In addition to floods, 

the website provides information on 3 other themes: tides, precipitation, and drought. 
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Fig.  6.3 Box plot of a) rain event duration; b) total rain depth; c) mean rain depth; d) max rain 

depth observed each month by all rain gauge stations during the selected events.  
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6.2 -  Model parameters in Belgium 

The ML model employs cumulative rainfall depths as inputs to predict rainfall 

intervals and the corresponding probability of occurrence in Melsele station after DT 

lead time. For six lead times (5, 10, 30, 60, 120, and 180 minutes), a model was 

independently developed and trained from the others for a total of 6 models.  

The input data for the Melsele station model are the cumulative rainfall depths from 

recording stations (Table 6.1), which are in an area of 50 km radius from the Melsele 

station (Fig. 6.2).  

 

 

Fig.  6.4 Location of Melsele station (red dot) and recording stations used as input for Melsele 

models (black dots) in a radius of 50km from Melsele (solid red line).  
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Table 6.1 Parameters of the meteorological stations over the study area. 

ID Sensor ID Station Name Longitude  

[UTM] 

Latitude  

[UTM] 

1 210409042 Herentals_P 4.845694 51.162243 

2 210397042 Bonheiden_P 4.510400 51.032543 

3 210392042 Liedekerke_P 4.094898 50.886632 

4 210381042 Boekhoute_P 3.686456 51.266411 

5 210399042 Rotselaar_P 4.702251 50.946299 

6 210412042 Loenhout_P 4.705126 51.387974 

7 210400042 Heverlee_P 4.666340 50.877581 

8 210394042 Denderbelle_P 4.092621 51.005996 

9 210383042 Ertvelde_P 3.761918 51.165276 

10 210382042 Stekene_P 4.036754 51.197620 

11 210401042 Nossegem_P 4.499203 50.882903 

12 210395042 St-Pieters-Leeuw_P 4.297130 50.809367 

13 210385042 Massemen_P 3.878704 50.977371 

14 210386042 Wilrijk_P 4.376359 51.146589 

15 210410042 Vosselaar_P 4.910008 51.295069 

16 207608042 Vinderhoute_P 3.656799 51.087051 

17 14148010 Bornem OTT_P 4.239464 51.107571 

18 13770010 Zele OTT_P 4.047454 51.045712 

19 13781010 Boortmeerbeek OTT_P 4.578555 50.990965 

 

The cumulative rain depths are discretized into intervals; thus, the difference between 

two values within the same interval is neglected after the discretisation. Table 6.2 is 

the contingency table for the discretized precipitation intervals, hereafter referred to 

as rain classes or classes. The discretization is different from the one in section 3.3. 

However, each class has a similar number of examples (Fig. 6.5), with a percentage 

never lower than 4 %. Therefore, in contrast to the previous discretization, 16 classes 

with different widths but similar numerosity were identified.  
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Table 6.2 Contingency table for the discretized intervals of precipitation scenario 1. 

Class ID  

(x) 

Interval  

[mm] 

Interval width 

[mm] 

Percentage 

[%] 

Cumulative 

percentage 

[%] 

1 0.1-0.5 0.40 0.090 0.090 

2 0.5-1 0.50 0.087 0.176 

3 1-1.5 0.50 0.071 0.247 

4 1.5-2 0.50 0.064 0.312 

5 2-2.5 0.50 0.057 0.368 

6 2.5-3 0.50 0.053 0.421 

7 3-3.5 0.50 0.046 0.467 

8 3.5-4.5 1.00 0.081 0.548 

9 4.5-5.5 1.00 0.070 0.618 

10 5.5-6.5 1.00 0.058 0.675 

11 6.5-7.5 1.00 0.048 0.723 

12 7.5-9.5 2.00 0.069 0.792 

13 9.5-12 2.50 0.058 0.850 

14 12-15.5 3.50 0.052 0.902 

15 15.5-20 4.50 0.041 0.943 

16 20-120 100.00 0.057 1.000 

 

 

 

Fig.  6.5 Histogram of examples within each rain class [%] and cumulative percentage.    
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6.3 -  Results and Discussion 

To assess the training strategy and evaluate the generalization abilities of the models, 

section 6.3.1 shows the training, validation, and testing set results. Each model is 

evaluated using POD, FAR, Pearson coefficient, and MAE and compared to the EP 

result. Finally, section 6.3.2 analyses a single rainfall event and compares it to the 

results of pySTEPS. 

6.3.1 -  Nowcasts performance and skill evaluation 

For training, validation, and testing sets, Fig. 6.6 shows performance indicators for 

the six models as a function of lead time. As expected, the training set achieved the 

best results, while the performance of validation and testing sets was slightly lower. 

These trends indicate that the training strategy was successful; thus, the models 

achieved a competitive generalization ability. Indeed, the results of the validation and 

testing sets did not overly underperform the training set, but they followed a similar 

trend. All the indicators deteriorated with the lead time: POD and Pearson coefficient 

decreased, while FAR and MAE increased. This also means that the physical 

behaviour was fulfilled.  

Even though the indicators declined with the lead time, they all outperformed the 

benchmark model EP. In contrast to the trends of the model, the trend of EP with lead 

times is unstable. Even though for a lead time of 5 minutes, the indicators for EP 

achieved better results, as soon as the lead time increased, the indicators sharply 

deteriorated. The main reason for this poor performance is probably due to the chaotic 

and rapid evolution of the rainfall. Indeed, EP is sensitive to the previous observation; 

thus, when the rainfall quickly evolves and changes, the values are weakly correlated, 

and the EP is no longer valuable.   
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Fig.  6.6 POD, FAR, Pearson coefficient, and MAE values for Melsele station. The dashed 

line indicates the models' lower (or higher) value for training, validation, and testing sets.  
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Fig. 6.7, 6.8, 6.9, 6.10, 6.11, and 6.124 compare the actual and predicted rainfall depth 

values for 5, 10, 30, 120, and 180 minutes ahead of lead time, respectively. In 

particular, 2017, 2018, and 2019 were used for the training set, 2020 for validation, 

and 2021 for testing. These figures indicate that the shape and the tendency of rainfall 

time series could be successfully predicted using the proposed model. However, once 

again, it is evident that the performance of the models decreased with increasing lead 

time.  

 

 

4 Between each figure, one page is left blank in order to allow the reader to compare different 

models.  
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Fig.  6.7 Comparison of actual observed rainfall values (real) and the predicted ones with 5 

minutes lead time for the training set (years 2017,2018, and 2019), validation set (2020) and 

testing set (2021). 
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Fig.  6.8 Comparison of actual observed rainfall values (real) and the predicted ones with 10 

minutes lead time for the training set (years 2017,2018 and 2019), validation set (2020) and 

testing set (2021). 
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Fig.  6.9 Comparison of actual observed rainfall values (real) and the predicted ones with 30 

minutes lead time for the training set (years 2017,2018 and 2019), validation set (2020) and 

testing set (2021). 
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Fig.  6.10 Comparison of actual observed rainfall values (real) and the predicted ones with 60 

minutes lead time for the training set (2017,2018 and 2019), validation set (2020) and testing 

set (2021). 
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Fig.  6.11 Comparison of actual observed rainfall values (real) and the predicted ones with 120 

minutes lead time for the training set (2017,2018, and 2019), validation set (2020) and testing 

set (2021). 
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Fig.  6.12 Comparison of actual observed rainfall values (real) and the predicted ones with 180 

minutes lead time for the training set (2017,2018 and 2019), validation set (2020) and testing 

set (2021). 
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6.3.2 -  Event-based results 

To highlight some typical differences between the proposed model and the output of 

pySTEPS, we analyze one event from the testing set (Tab. 6.3). First, the event is 

characterized: duration, peak time, and the number of involved stations are described. 

Next, since our proposed models use rainfall data from rain-gauge stations and 

pySTEPS uses radar data, the measurements from these two types of instruments are 

compared. Then, the parameters used to implement pySTEPS are described. Finally, 

a comparison between of two models is provided.  

 

Table 6.3 Main characteristics of event 309 from the testing set.  

Event No. 309 

Start [CET] 04 July 2021 08:30 

End [CET] 04 July 2021 13:30 

Duration [h] 5 

Max 10 minutes rain depth [mm/h] 140 

 

It is worth mentioning that the comparison is more qualitative than quantitative. 

Indeed, the models are based on opposing approaches and use different input data with 

different spatial and temporal resolutions. Therefore, more than defining the best 

model, this comparison would highlight their suitability in different contexts.  

The characteristics of the selected event are similar to convective cells, characterized 

by high intensities and short durations (Table 6.3). Even though the event officially 

lasted 4 hours, the higher rainfall bursts occurred in 2 hours: from 10:30 to 12:30. All 

the stations over the study area registered high rainfall peaks, with the highest value 

of 140 mm/h (Fig. 6.13). On the other hand, Melsele station registered a lower peak, 

almost 80 mm/h.  
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Fig.  6.13 Rain depths registered during the event on the 4th of July 2021 from rain-gauge 

stations over the study area.  

 

To appreciate the differences between rain-gauge measurements from Melsele station 

and weather radar ones, Fig. 6.14 shows both. In particular, the radar registrations of 

the 9 pixels around Melsele stations are considered. Rainfall measurements from radar 

sharply deviated from rain-gauge ones: radar rain depths are almost twice the actual 

values. As expected, for convective events, the rainfall is usually overestimated 

(Asghari et al., 2021). Indeed, the performance of the interpolation methods depends 
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on the available station density; a higher station density yields better results than a 

lower station density. However, the high density needed is not usually provided 

(Berne et al., 2004). Therefore, when comparing the prediction of pySTEPS, it is 

crucial to consider the already existing deviation of the radar measurements from the 

rain-gauge ones. 

 

 

Fig.  6.14 Rain depths registered during the event on the 4th of July 2021 from Melsele station 

(rain gauge) and from weather radar (9 cells/pixels around Melsele stations).  
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To emphasize the ability of the models to detect local peaks, results are presented in 

terms of the mean values of the rain depths between observed and predicted rain 

classes Fig. 6.15, Fig. 6.16, Fig. 6.17, Fig. 6.18, Fig. 6.19, Fig. 6.20 show the 

predictions of the 5, 10, 30, 60 and 120 lead-times model, respectively. In addition, to 

enhance the interpretability of the output, those graphs also show the original rain-

gauges measurements (RG).  

All the models with a lead time of up to 60 minutes correctly predicted the peak value 

at 11:45. The model with 120 minutes lead time predicted it with a time-shift of 5 

minutes, while the model with 180 minutes lead time wholly underperformed. As 

expected, short lead times models performed the most remarkable result. Therefore, 

according to the proposed models, the peak value could have been predicted up to 1 

hour before.  
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Fig.  6.15 Result of the 5 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values and predicted values for Melsele station. 

 

Fig.  6.16 Result of the 10 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values and predicted values for Melsele station. 
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Fig.  6.17 Result of the 30 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values, and predicted values for Melsele station. 

 

Fig.  6.18 Result of the 60 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values and predicted values for Melsele station. 
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Fig.  6.19 Result of the 120 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values and predicted values for Melsele station. 

 

Fig.  6.20 Result of the 180 minutes lead-time model. Comparison between rain gauge 

measurements (RG), real discretized values and predicted values for Melsele station.  
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To contrast, the ensemble nowcasts produced by pySTEPS were run using the default 

configuration listed in Table 6.4. According to the registrations at time t0, t0-5 min, 

and t0 – 10 min, the model produces the nowcasts at time t0 + 5 min up to t0 + 3 hours. 

The nowcasts are 20-member ensembles produced in real-time at a spatial resolution 

of 0.9 km2 and a temporal resolution of 5 min. These ensembles of 20 nowcasts give 

insight into the forecasted rainfall's uncertainty.  

 

Table 6.4 Default pySTEPS configuration used in the experiments.  

Parameter Value 

optical flow Lucas-Kande 

extrapolation semi-Lagrangian 

cascade levels 8 

order of the ar(r) model 2 

precip. intensity perturbation non- parametric 

value for dry pixels -15 dBR 

ensemble size 24 

probability matching Yes 

seed number 24 

 

The results from the 20 ensembles of pySTEPS are illustrated as well in Fig. 21, Fig. 

22, Fig. 23, Fig. 24, Fig. 25, Fig. 26, and Fig. 27. As previously stated, the event 

starts at time 8:30, thus according to registration at 8:40, 8:35 and 8:30, the model 

provided the nowcasts at time 8:45 up to 11:45.  
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Fig.  6.21 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 08:455.   

 

Fig.  6.22 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values, 

and Rain Gauge (RF) with initial time at 9:506.   

 

5 Initial time at 08:45 means that the registration used to obtain the nowcasts are those at time 

8:40, 8:35, 8:30.  
6 Initial time at 09:50 means that the registration used to obtain the nowcasts are those at time 

9:45, 9:40, 9:35. 
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Fig.  6.23 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 10:507.   

 

Fig.  6.24 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 11:158.   

 

7 Initial time at 10:50 means that the registration used to obtain the nowcasts are those at time 

10:45, 10:40, 10:35. 
8 Initial time at 11:15 means that the registration used to obtain the nowcasts are those at time 

11:10, 11:05, 11:00. 
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Fig.  6.25 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 11:359.   

 

Fig.  6.26 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 11:4010.   

 

9 Initial time at 11:35 means that the registration used to obtain the nowcasts are those at time 

11:30, 11:25, 11:20. 
10 Initial time at 11:40 means that the registration used to obtain the nowcasts are those at time 

11:35, 11:30, 11:25. 
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Fig.  6.27 Comparison between 20 ensembles (ens.) from pySTEPS, observed RADAR values 

and Rain Gauge (RF) with initial time at 11:4511.  

 

As previously stated, comparing pySTEPS outputs with the ones of our models is not 

entirely fair. Indeed, the nowcasting skills of these two models depend on the user’s 

focus. Furthermore, the models are based on opposite approaches and use different 

input data with different spatial resolutions. PySTEPS model uses radar data, which 

have a higher spatial resolution but lower accuracy than rain-gauge ones. Indeed, 

regarding the analysed event, radar measurements showed a bias compared to rain-

gauge ones. Thus, pySTEPS with radar measurements should be preferred when the 

achievement concerns quality nowcasts over an area. Alternatively, the user should 

check the discrepancy between radar and rain gauge measurements beforehand. 

However, it is broadly known that radars struggle to register convective events and 

the rainfall is usually overestimated (Asghari et al., 2021). Also, the ensembles of 

pySTEPS turned out to be reliable up to 15 min ahead. Indeed, for higher lead times, 

they showed chaotic behaviour.  

 

11 Initial time at 11:45 means that the registration used to obtain the nowcasts are those at time 

11:40, 11:35, 11:30. 
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On the other hand, the proposed approach preferred accuracy at the cost of a lower 

spatial resolution. It used rain gauge data but is also suitable for radar data. Thus, a 

more fair valuable evaluation would consider pySTEPS with rain-gauge data or the 

proposed approach with radar one.  

At this research stage, the comparison with pySTEPS showed a clear advantage in 

using the proposed approach when the target requires accurate data. For most of the 

lead time, the proposed model outperformed both benchmarks – pySTEPS and EP. 
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Chapter 7 -  Synthesis and 

Conclusions 

 

 

 

 

 

This chapter provides a synthesis of the research work (section 7.1), in which the main 

findings are summarised and discussed, together with the implications for future 

research (section 7.2). The application of the models to different contexts is discussed 

and compared: the Italian and the Belgian applications are described, and a 

comparison of them is provided. 

7.1 -  Synthesis 

This research aimed to investigate rainfall nowcasting performance by exploiting 

machine learning techniques. First, existing nowcasting models were explored; thus, 

each approach's weaknesses and strengths were identified. Next, the differences 

between Model Driven Models (MDMs) and Data-Driven Models (DDMs) and 

between deterministic and probabilistic approaches were specified. Then, the pros and 

cons of the data type that could be employed were pointed out; thus, the differences 

between weather radar measurements and rain gauge ones were examined.  

This initial phase allowed identifying the ideal approach to enhance nowcasting 

techniques. Therefore, according to the outlined requirements, a machine learning 
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model for probabilistic rainfall nowcasting for short lead times - from a few minutes 

up to 6 hours - was proposed. A machine learning approach was adopted because they 

do not require any previous physical assumption. Indeed, short-term prediction is 

challenging because meteorological variables are strongly interconnected and rapidly 

change during an event. Thus, machine learning models were preferred since they 

could identify relevant features in the data and provide reliable and quick forecasts. 

The model used cumulative rainfall depths from rain-gauge stations as input. Rain 

gauge data were used since they are considered reference devices for measuring the 

amount of precipitation at ground level (Duan et al., 2021; Moraux et al., 2019; Shehu 

and Haberlandt, 2021). Thus, the preferred feature was accuracy instead of the higher 

spatial resolution that a weather radar could have given. The idea of using cumulative 

rain depth from nearby stations was due to the feed-forward neural network's lack of 

temporal memory. This allowed us to store antecedent time steps and to use only the 

current rain field as input, resulting in a rapid and easy-replicable method.  

Moreover, since precipitation nowcasts issued by ML systems are often uncertain, the 

proposed models also gave a probabilistic interpretation of the prediction. In 

particular, the probabilistic nowcast was achieved by employing the Softmax function 

in the machine learning model, widely used to solve nonlinear multiple classification 

problems. Therefore, the model supplied the most likely forecast with the associate 

probability. 

To investigate the extendibility of the model, the procedure was applied to two 

different contexts: in Campania Region (Southern Italy) and Flanders Region 

(Belgium).  

Application in Italy 

In Italy, 95 feed-forward neural networks were independently trained and tested on 

359 rainfall events over the study area – one of the eight warning zones of the 

Campania Region in Southern Italy. The model employed cumulative rainfall depths 

of the recording stations, classified into 20 classes, as an input for the feed-forward 
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neural network, which nowcast probable rain intervals after 30, 60, 120, 180, and 360 

minutes.  

The dataset was split into two parts to provide a proper training strategy, avoiding 

overfitting while preserving generalization abilities: years 2009 to 2016 were used to 

train the models, while 2017 to 2019 to test. The performance of each model was 

evaluated and compared using different metrics, both continuous (RMSE and RSE) 

and categorical (POD, CSI, and FAR). In addition, the Eulerian Persistence (EP) was 

considered a benchmark model.  

Generally, the models with a lead time of up to 2 hours produced consistent nowcasts 

and learned the complex relationship describing space-time rainfall evolution. As 

expected, predictive accuracy gradually decreased as the lead time increased, 

according to physically based models. Notwithstanding the decreasing trend, the 

performance indicators were all close to their optimal range, confirming the goodness-

of-fit of the models. The RMSE mean values increased from 1.67 mm to 6.15 mm, 

while RSE ranged between 1.58 and 18.64 % from 30-minutes to 6-hours lead time 

models, respectively. Model accuracy analysis revealed similar trends: POD and CSI 

decreased from 0.5 h to 6 h lead-time model, while FAR increased. The 30-minutes 

lead times models achieved the highest CSI (90.94%) and POD (91.64%), and lowest 

FAR (0.82%), giving better performance. The proposed models outperformed the 

benchmark EP for all the lead times and performance criteria.  

Results showed that it was possible to make a nowcast better than the EP by 

considering the cumulative rainfall depth from adjacent stations. Thus, using temporal 

and spatial information for precipitation nowcasting allowed an extension of the lead 

time up to which a reliable forecast may be issued, providing a quick prediction based 

solely on actual values.  

To the authors’ knowledge, this study is the first to present a comparative analysis of 

the performance of rainfall nowcasting models based on rain gauge information and 

modern machine learning algorithms in predicting probable rainfall intervals with 10-

minutes update frequency.  
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Moreover, the model's ability to predict different events was investigated. The 

performances of the proposed nowcasting models were compared for two events of 

the testing set whose characteristics were similar to convective events - characterized 

by high intensities and short durations - and stratiform ones - characterized by more 

significant areas of influences, higher durations, and lower rainfall intensities -, 

respectively.  

According to the results, the models provided better nowcasts when the event 

extension was homogeneous but failed to catch local precipitation events sufficiently 

in advance successfully. Thus, as expected, the potential lead time is short for 

convective rain events, where the rain evolves rapidly. Even though the models 

detected the increasing rainfall pattern registered, for higher lead-times models, the 

nowcasts were more significant than the observed values, resulting in an 

overestimation. To contrast, the stratiform event was better predicted than the 

convective one. We believe these results were possible thanks to gradual, light rain 

evolution, consisting of larger, more persistent systems.  

Application in Belgium 

The model was also applied in the Flanders Region of Belgium. From 2017–2021, 

360 rainfall events were selected to test the approach. The model used cumulative 

rainfall depths as inputs to predict rainfall intervals and the corresponding probability 

of occurrence in one station after DT lead time. Six models were independently trained 

for six lead times (5, 10, 30, 60, 120, and 180 minutes). The input data for the 

considered station model were the cumulative rainfall depths from recording stations 

within a 50 km radius. The training strategy was the same as the one described in Italy. 

The performance of the six models was assessed for training, validation, and testing 

sets. As expected, the training set achieved the best results, while the performance of 

validation and testing sets was slightly lower. These trends indicate that the training 

strategy was successful; thus, the models achieved a competitive generalization 

ability. Indeed, the results of the validation and testing sets did not overly 

underperform the training set, but they followed a similar trend. All the indicators 
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deteriorated with the lead time: POD and Pearson coefficient decreased, while FAR 

and MAE increased. This also confirmed that the physical behaviour was fulfilled.  

Even though the indicators declined with the lead time, they all outperformed the 

benchmark model EP. In contrast to the trends of the model, the trend of EP with lead 

times was unstable. Even though for a lead time of 5 minutes, the indicators for EP 

achieved better results, as soon as the lead time increased, the indicators sharply 

deteriorated. The main reason for this poor performance was probably due to the 

chaotic and rapid evolution of the rainfall. Indeed, EP was sensitive to the previous 

observation; thus, when the rainfall quickly evolved and changed, the values were 

weakly correlated, and the EP was no longer valuable.  

The performance of the models was also compared with the results of another 

benchmark: Pysteps. The comparison was more qualitative than quantitative. Indeed, 

the models were based on opposing approaches and used different input data with 

different spatial and temporal resolutions. Therefore, more than defining the best 

model, the comparison highlighted their suitability in different contexts. For example, 

the PySTEPS model used radar data with a higher spatial resolution but lower 

accuracy than rain-gauge ones. Indeed, regarding the analysed event, radar 

measurements showed a bias compared to rain-gauge ones. Thus, it allowed deriving 

that pySTEPS with radar measurements should be preferred when the achievement 

concerns quality nowcasts over an area. Also, the ensembles of pySTEPS turned out 

to be reliable up to 15 min ahead since they showed chaotic behaviour for higher lead 

times. On the other hand, the proposed approach preferred accuracy at the cost of a 

lower spatial resolution. Furthermore, it used rain gauge data but was also suitable for 

radar data. Thus, a more fair valuable evaluation would have considered pySTEPS 

with rain-gauge data or the proposed approach with radar one.  

The comparison with pySTEPS showed a clear advantage in using the proposed 

approach when the target requires accurate data. Furthermore, for most of the lead 

time, the proposed model outperformed both benchmarks – pySTEPS and EP. 
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Comparison between the Italian and Belgian applications 

The application in Italy and Belgium assessed the extendibility of the procedure to 

different contexts. Indeed, the considered Regions had different climatic and 

orographic characteristics. For example, the study area in Italy had a complex 

highlands system and two main volcanic structures, which enhanced convection 

systems development, especially in summer. Furthermore, the study area was near the 

Mediterranean Sea; thus, the prevailing climate was the Mediterranean, characterized 

by long dry summer periods and rainy winters with mild temperatures. On the other 

hand, the Belgian Region had a temperate maritime climate with cool summers and, 

moderate winters, high humidity during the year. Owing to the flat topography, 

precipitations followed a similar and homogeneous pattern.  

Results were promising in both cases. First, the physical behaviour was achieved for 

both applications: the performance of the models deteriorated with increasing lead 

times; thus, the nowcasts were physically based. Then, all the models outperformed 

the benchmarks, especially for higher lead times, which was an important goal, 

especially for operational early warning purposes. Then, the procedure was tested for 

convective rainfall events, characterised by rapid and chaotic evolution. They 

provided notable nowcasts for a lead time of up to 1 hour, which is valuable for 

dispatching decision-making. POD, CSI, and FAR suggested that the models could 

support Early Warning Systems to increase preparedness until more data becomes 

available. We believe these results were possible thanks to the joint use of cumulative 

rain depth from nearby stations 

7.2 -  Outlooks or Implications for Future Research 

From an operational perspective, the proposed methodology presents some 

advantages that enable it to be upgraded into an early warning system for hydrological 

applications. Firstly, it employed punctual rainfall information and did not use areal 

data, which inevitably provides averaged results. Consequently, it accounts for local 
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characteristics detected by rain gauges, such as convective cells – which feature high 

intensity and short durations. Moreover, the model has 10-minutes temporal 

resolution comparable to convective cell life. Then, the model provided a probabilistic 

nowcasting of precipitation that allows the assessment of different scenarios. Indeed, 

the predictions are not specific values, but rain intervals, with associated probabilities 

of occurrence. Finally, the high update frequency (10-minutes) is a fair trade-off 

between the optimal (5-minutes) and the sufficient (15–minutes). Consequently, the 

predicted precipitation fields are available to the forecasters in real time to quickly 

assess the current weather situation.  

For future work, a study will be conducted on how the station's location influences 

the model performances. One idea is to group the results according to the relative 

distance between the stations or according to the area of influences of each station – 

which could be the Thiessen Polygon area. Moreover, the results would also be 

grouped according to the type of the event (convective, stratiform, or mixed), as well 

as the duration of the event. This would be an interesting comparison, which may help 

future research to identify specific patterns that need to be incorporated into future 

models. 

In conclusion, findings suggest that the model is suitable for a real-time early warning 

system, especially for catchments with small areas and short response times. 
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Data Availability  

Rainfall data will be available on request. 
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