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Artificial insemination is a routinely performed method in canine breeding 
programme and semen evaluation results crucial for the successful 
achievement of a pregnancy. Insemination can be performed by using fresh, 
chilled or frozen semen. However, semen storage should be performed with 
the presence of antioxidants, which helps in preventing damaging processes 
to spermatozoa. Recent studies have been conducted to investigate the 
feasibility of different antioxidants in several species, to improve semen 
viability during storage. The aim of this study was to evaluate the effect of 
two antioxidants, Maca and Crocin, in the supplementation of semen 
extender on quality-related canine semen parameters during cooling and 
freezing. For the first experiment ejaculates from nine dogs were cooled in 
the absence (control group) or the presence of 10, 20 and 50 μL/mL of an 
aqueous extract of Maca. Sperm were evaluated for sperm viability, motility, 
DNA fragmentation and lipid peroxidation after 3 h, 24 h, 4 days and 7 days 
of storage for chilled semen and immediately after thawing, after 1h and 2 h 
at 37°C.  For the chilled semen, the addition of 10 μL/mL of Maca preserved 
sperm DNA and plasma membrane integrity at 3 h and increased sperm 
curvilinear velocity after 24 h. Treatment with 20 and 50 μL/mL of Maca 
increased the percentage of hyperactivated sperm after 3 h. Moreover, 
semen treated with 20 μL/mL of Maca decreased lipid peroxidation at 24 h. 
A significant reduction of sperm DNA and plasma membrane integrity as 
well as of kinetics parameters between 3 and 24 h of refrigerated storage 
with the higher concentration tested was observed. The second experiment 
aimed to evaluate the effect of Maca on frozen-thawed sperm quality in 
canine semen. Ejaculates from ten dogs were frozen in the absence (control 
group) or the presence of 10, 20 and 50 μL/mL of an aqueous extract of 
Maca and were evaluated immediately after thawing and after 1h and 2 h at 
37 C° for sperm viability, motility, DNA fragmentation and lipid 
peroxidation. Canine sperm cells frozen with an extender supplemented with 
Maca exhibited higher total motility, especially the subpopulation of sperm 
with medium velocity 1 hour after thawing than control semen. Canine 
frozen semen with the supplementation of Maca is responsible for a surge 
in hyperactivation and WOB of sperm cells after one hour at 37°C. 
Movements of hyperactivation are considered part of the capacitation 
process and it is an event crucial for acrosome reaction and fertilization. 
What emerges from this study is the protective role of Maca against lipid 
membrane peroxidation of canine spermatozoa, which is a primary marker 
of oxidative stress. In conclusion, supplementation of the frozen extender 
with 10 μl/mL of aqueous extract of Maca improves the cold shock 
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resistance of spermatozoa, protecting sperm against lipid peroxidation 
during the frozen-thawed process, and activates canine sperm motility and 
hyperactivation after thawing, improving the fertility.  The third experiment 
was aimed to evaluate the effect of Crocin supplementation extender at three 
different concentrations (C0,5, C1 e C2) on quality-related canine semen 
parameters after cooling. Ejaculates from ten dogs were evaluated for sperm 
viability, sperm motility, membrane integrity and lipid peroxidation after 3 
h, 24 h, 4 days and 7 days of storage at 4 C°. The most interesting findings 
of the present study regard the improvement of semen quality obtained with 
0.5 mM crocin. Indeed, the addition of 0.5 mM crocin in the extender 
significantly increased the proportion of spermatozoa with intact 
membranes at both 4 and 7 days compared to the control group and despite 
similar values of total motility and progressive motility most of the sperm 
kinetic parameters improved in C0.5 group compared to the control after 4 
days of storage. In conclusion, we demonstrated that the enrichment of the 
extender with the crocin improves to a certain improved canine semen 
quality, particularly after 4 days of storage at 4 °C. 
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1.1 Evolution and current status of AI in Europe  
Artificial insemination (AI) consists of collecting semen from a male 
breeding animal, which is then introduced into the female reproductive tract, 
after appropriate dilution, so that fertilisation can occur in the absence of 
natural mating. Astonishing progress has been made since the first 
successful artificial insemination with fresh semen, resulting in the birth of 
3 pups, reported by Spallanzani in Italy in 1780 (Heape W. et al 1987). AI 
can result in several advantages, such as the international exchange of semen 
without the transport stress to the animals, improvement of genetics, and 
also prevention of sexually transmitted diseases spread, like Brucella canis 
and Herpes virus (Linde Forsberg, 2005; Farstad, 2010). AI can be 
performed with fresh, fresh chilled or frozen-thawed semen, using different 
techniques, which will be mentioned later. The use of chilled semen is an 
excellent way to accomplish international breeding, without costs and stress 
related to dog transport. The success of AI depends on the proper selection 
of male and female dogs, proper preparation of semen, semen quality, 
accurate ovulation timing, the correct insemination timing and technique, 
and good communication between the veterinarian and the client. Indeed, 
AI with cooled-stored semen is a common practice in dog breeding 
programmes. AI may be performed, according to breeder request, in a 
variety of situations such as, when a successful natural mating cannot be 
achieved (including slip matings), or for conformational inability to mate, 
or when fresh chilled or frozen semen should be used. The dog’s ejaculate 
consists of three distinct fractions: pre-sperm, sperm rich and post-sperm. 
The first fraction is usually produced before intromission during foreplay 
and is probably used to flush urine and debris from the urethra. The second 
fraction is ejaculated after intromission and deposited in the cranial vagina. 
The third (prostatic) fraction is produced during the copulatory ‘tie’ and it is 
likely that this flushes the second fraction forwards into the uterus through 
the open cervix. Although the deposition occurs inside the vagina, 
spermatozoa are rapidly transported inside the uterine body. Furthermore, 
the third fraction has an important effect on regulating sperm fertility 
capacity and should be used as a seminal extender in AI, whenever possible 
and in the absence of prostatic disorders (England and others 2012). 
Successful natural mating requires the full intromission of the penis into the 
vagina. The dog achieves intromission by vigorous thrusting of the 
hindquarters. Once intromission occurs, and the rate of thrusting increases, 
the bulbus glandis fully erects, while constrictor vestibuli muscles of the 
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female contract behind it, thus forming a unique canine event, the 
“copulatory tie” or “lock”. After the sperm-rich fraction is ejaculated, the 
dog dismounts but keeping the lock and faces away from the bitch. The third 
fraction of semen is ejaculated during this stage. Second-stage coitus may 
last from 5-45 minutes. It is believed that the purpose of second-stage coitus 
is to promote uterine rather than vaginal insemination. Turning around 
prevents the penis from swelling down, thus maintaining high vaginal 
pressure. The dog constantly ejaculates up to 30 ml of seminal fluid, which 
is delivered through the cervix into the uterus. The main disadvantage of 
chilled semen is the limited lifespan of spermatozoa, as the extended sample 
should be used within approximately 4.9 days after collection (England and 
Ponzio, 1996). If the storage period exceeds this time, it would be suitable 
to freeze the semen samples. Although good fertility rates are obtained in 
dogs with chilled semen, improvement in extended semen could reduce the 
required insemination dose of the chilled transported sperm, which should 
be between 150 and 200 × 106 spermatozoa/insemination (Linde-Forsberg, 
1991). High-quality chilled semen may allow multiple inseminations by 
using a single ejaculate, resulting in an increase in the number of puppies 
per litter than the equivalent obtained after natural mating. Although semen 
quality progressively decreases when stored at 4 °C, the quality of cooled 
semen up to 2 days after collection is undoubtedly better than that of frozen-
thawed spermatozoa (England and Ponzio, 1996). A new potential strategy 
for cryopreservation of canine sperm concerns the possibility to freeze 
already chilled semen, which may save dog owner’s time and money, in case 
semen is collected close to home, refrigerated, and then sent to a semen bank 
for freezing and long-term storage (Hermansson and Linde-Forsberg, 2006). 
However, in any of these cases, semen quality improvement may be 
achieved by enriching the extender with antioxidants. 
The anatomy of the bitch makes the deposition of semen in the uterus during 
artificial insemination a major challenge. The vagina is long and 
considerably narrowed cranially by the dorsal median mucosal fold. In 
addition, the cervix is angled craniodorsally, so that when it is examined 
from the vagina the dorsal surface of the caudal cervix is revealed and, 
commonly, the cervical os is not visible, even when open. As a result of this 
anatomical structure, veterinarians conceived several techniques for AI, 
depending on the type of semen used and timing availability: deep vaginal 
insemination and intrauterine insemination, either via non-surgical 
transcervical insemination or surgical insemination, by laparotomy or 
laparoscopy (Payan- Carreira, 2011).  
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Deep vaginal insemination is one of the most commonly used methods for 
insemination, mainly with fresh semen. It is performed with a plastic 
catheter or a commercially available catheter in a flexible latex tube which 
presents an inflatable balloon at the tip, whose goal is to prevent semen 
backflow when inflated (Linde Forsberg, 2005; Farstadt, 2010). Before AI, 
the perineal and peri-vulvar areas should be cleaned. Once the bitch is placed 
in a standing position, the insemination catheter is carefully introduced into 
the vagina, initially steeply upward until the pelvic brim is passed, and then 
gently pushed forward at a horizontal angle (Farstad, 2010). Care must be 
taken not to catheterize the urethra. Therefore, a gloved finger can be 
inserted into the vagina and secure the catheter while it is moved cranially 
through the cranial portion of the vagina, bounded by the dorsal medial 
folds. Once the catheter is in the paracervical area close to the cervical os, 
the semen may be slowly deposited (Payan-Carreira, 2011). During AI, the 
bitch should be held with hindquarters up and head down at an angle of 45-
60°, to ensure that the semen will not be expelled with the backflow. It is 
also recommended for bitch to stay in this position for 5-20 minutes after AI 
(Payan-Carreira, 2011). Pinto et al. (1998) have found that shortening the 
time of hindquarter elevation has little impact on pregnancy rate and litter 
size. Greater success in pregnancy is achieved when vaginal massage is 
performed with the finger guiding the urethral opening, inducing vaginal 
contractions and mimicking natural breeding conditions. 
Various devices can be used to perform vaginal insemination in bitches: an 
AI pipette for dogs and a rigid plastic pipette with no cuff. The passage at 
the level of the cervical os is allowed by the rigidity and small diameter of 
the catheter. As there is no cuff, no vaginal stretching or prevention of semen 
backflow is possible.  
Osiris catheter, a rigid catheter with an inflatable cuff at the distal opening, 
usually measures 25 cm in length and 5 mm in diameter. Once the catheter 
is properly positioned, the cuff is blown up with an external valve, inducing 
vaginal distention and preventing semen backflow around the catheter. The 
sperm is deposited through the lumen and the syringe should be left in place, 
again to avoid semen reflux. This type of catheter is good for small and 
medium-sized dog breeds, whereas it could result in a too short and a too 
small cuff for larger breeds (Mason, 2018). 
Foley catheters are flexible, having an inflatable cuff near the distal opening. 
They are commercially available in different sizes and may be adapted to 
different dog sizes. The sperm is introduced into the vagina by using the 
same method described for the Osiris catheter, but its flexibility makes it 
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difficult to place the distal opening of the catheter close to the cervix 
(Mason, 2018). 
The Mavic catheter is a plastic catheter with a stylet in the middle. It has an 
inflatable cuff at the distal opening, and the stylet, through which semen is 
inseminated, is characterized by a one-way valve, which prevents the semen 
backflow. The same goal is determined by the presence of an inflatable cuff, 
which allows vaginal stimulation. These catheters are available in 3 different 
sizes to suit all sizes of bitches (Mason, 2018). 
Transcervical insemination is the most widely used technique for AI when 
using chilled and frozen-thawed semen. Two different techniques are 
described: the endoscopic-assisted transcervical and the Norwegian method. 
In both procedures, insemination can be performed more than once, 
resulting in increased offspring per litter (Mason, 2018). 
Endoscopic-assisted transcervical insemination EIU, also known as 
transcervical insemination (TCI). Cystoscope was firstly used, whereas, 
nowadays, most operators use the ureterorenoscope, for its higher length and 
thinness compared to the cystoscope, and its wider suitability to all sizes of 
bitches. This procedure is performed with the bitch in a standing position 
but restrained on the table. In addition to the ureterorenoscope, an additional 
light source and a camera, which projects the image onto a monitor are 
needed. The endoscope is inserted into the vagina, and the air is introduced 
inside. The endoscope is slowly moved cranially past the dorsal median 
folds to the cervix. The cervical os is commonly located dorso-cranially to 
the cervical tubercle. Once the catheter is in the cervix, the stylet is removed, 
and the catheter is introduced into the uterine body. Then, the semen is 
slowly and carefully injected through the catheter, taking care that no 
leakage occurs outside the cervix. At the end of the procedure, the vulva is 
massaged to stimulate uterine contractions (Makloski, 2012). This method 
ensures an optimal place for semen deposition and results in very good 
pregnancy rates. It is simple to learn but each step of the process must be 
closely monitored (Mason, 2018). 
The Norwegian (or Scandinavian) method, using a Norwegian catheter, 
different from those previously described is also used for 
transcervical/intrauterine insemination. It consists of an outer nylon sheet, 
with an inner metal stylet, and a blunted and rounded distal tip. This 
procedure can be used in bitches of any size, and no anesthesia is required. 
The bitch is restrained on the table in a standing position. The operator 
palpates and feels the cervix with abdominal palpation, and with the other 
hand inserts the catheter into the vagina. While holding the cervix, the stylet 



Artificial insemination in canine species 
 

 20 

is introduced through the cervical os, reaching the uterine body. Once the 
catheter is in place, the semen is injected through the stylet into the uterine 
lumen. This procedure is quick, simple, and inexpensive, and can be 
performed for fresh, chilled or frozen semen, but most published reports 
suggest its use when managing frozen semen (Makloski, 2012; Mason, 
2018). The disadvantage may be the steep learning curve, and difficulties 
occurring for larger-sized or obese dogs (Mason, 2018). 
Surgical insemination may include conventional, laparotomic intrauterine 
insemination or laparoscopic insemination (Makloski, 2012). These 
procedures have some welfare issues, as they are considered illegal in some 
countries (Norway, Sweden) (Mason, 2018). On the other hand, success 
rates of both methods can reach 100 %, including bitches with known 
reproductive issues as long, as the female’s ovulation timing is properly 
detected (Brittain Et Al., 1995, Silva Et Al., 1995). 
Conventional laparotomy AI, commonly also known as surgical AI or 
surgical uterine implant (SUI), is performed under general anesthesia by a 
classic laparotomic surgical approach. The bitch is positioned in dorsal 
recumbency, and a 25 mm midline incision is performed caudally to the 
umbilicus, toward the caudal direction. The uterus is exteriorized and 
inspected. A 22-gauge IV catheter can be used for insemination. After 
placement of the catheter, the uterus is occluded above the cervix, and the 
syringe with the semen is attached to a catheter, followed by a slow injection 
into the uterus. After insemination, the uterus is massaged to stimulate 
uterine motility, which may be usually reduced due to anesthesia. The 
catheter is then removed, and the abdomen is finally closed (Mason, 2018). 
Laparoscopic insemination is not commonly used in clinical practice, due to 
the high costs, required knowledge and experience, and lack of advantages 
of this procedure over SUI (Mason, 2018). Semen is introduced into the 
uterine horn through an 18–22- gauge catheter under the visualization of a 
laparoscope, connected to an electronic light source and camera, inserted 
into the abdominal cavity. The uterine horns are visualized and elevated near 
the abdominal wall so that the catheter may be inserted. The procedure also 
requires general anesthesia. Compared to SUI, laparoscopic insemination is 
less traumatic and invasive for the bitch and allows for a faster recovery. It 
also provides better protection against the surgical risk of infection, as the 
abdominal cavity is not opened (Silva et al., 1995). 
Intratubal insemination involves the deposition of semen into the oviduct. It 
is as invasive as other laparotomies for surgical insemination, allowing the 
use of reduced quantity of spermatozoa to be inseminated but results in 
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lower pregnancy rates compared to surgical or transcervical insemination 
(Tsutsui et al., 2003).  
However, besides the great opportunities offered by AI in dogs, its use 
results limited in many cases. Probably the most common reason, especially 
for the amateur breeder, is the requirement of well-designed planning, the 
presence or not of a reproductive specialist veterinarian, and the increased 
cost and inconvenience associated with it. The bitch is a mono-oestrus 
breeder with a long inter-oestrus interval of approximately seven months, 
therefore failure to achieve pregnancy creates a real challenge to plan a 
breeding programme. Other limitations concerning the use of Ai include the 
variable day on which ovulation occurs during oestrus, so it is not 
appropriate to perform a ‘blind’ insemination on a specific day of the 
oestrous cycle. A detailed examination of the bitch is required to determine 
the optimal day for insemination, and this day varies individually, also 
within the same breed. Despite there are still several methods for the 
accurate determination of the ovulation timing, regular examination of the 
bitch is required, and this can result in substantial expense. Furthermore, in 
the bitch, it is technically difficult to place semen into the uterus and both 
the development of significant skills by the veterinarian and the use of 
specialist equipment are crucial. Finally, although fresh semen appears to 
have a long survival time within the bitch’s reproductive tract, semen that 
has been preserved either by cooling (chilled-rewarmed semen) or by freeze-
thawing has a significantly shortened life span in the female reproductive 
tract, which can significantly impact fertility (England et al. 2014). 
 
1.2 Semen Collection Techniques from Male dogs 
The indications for collecting semen from a male dog include artificial 
insemination, cryopreservation or diagnostic purposes. The specific method 
for collecting semen from a male dog depends on what the semen is to be 
used for. Only the first (pre-sperm) and second (sperm-rich) fractions of the 
ejaculate are needed for semen used for artificial insemination or 
cryopreservation. However, all three fractions should be evaluated when 
males are presented for breeding soundness examinations or overt evidence 
of reproductive disease. Semen collection performance is crucial for 
obtaining good quality semen. Tesi and colleagues found that semen volume 
and sperm concentration, for instance, may be influenced by semen 
collection performance. In case fresh semen should be used for AI, an 
incorrect procedure could affect semen samples, by having a higher volume, 
but with a consequently lower concentration. The author did not ascribe this 
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difference to the dogs, whereas to the operator procedure in the division of 
the three ejaculated fractions (Tesi et al. 2018). 
The presence of an oestrous bitch especially for inexperienced dogs 
facilitates semen collection. However, the lack of an available estrous bitch 
should not automatically preclude an attempt to collect a semen sample from 
a dog. Semen should be collected on a non-slip surface and in a quiet area. 
It is imperative that any distractions or procedures that would induce anxiety 
to be eliminated or minimized. Fear and pain will prohibit a dog from 
attaining a complete erection and ejaculating. For excessively timid males, 
allowing the male to ‘‘play’’ with the teaser or the owner or the collector 
prior to the collection may improve the quality of the ejaculate (Kutzler et 
al. 2005). 
Canine semen collection can be performed with three different methods: a) 
digital manipulations (with the finger), b) by using a conical rubber plastic 
and hand massage c) by using an electro-ejaculator (Baran, 2015) d) 
Urethral catheterization after pharmacological induction (Kuczmarski et al. 
2020). 
 
1.2.1 Physiology of erection and ejaculation 
Erection is achieved by an increase in the haemostatic pressure of the penile 
erectile tissues. The process is mediated by a reflex that is coordinated 
predominantly at the spinal level (Andersson 2003), but it starts and is 
modulated centrally (Andersson & Wagner 1995). Erection is prompted via 
the parasympathetic system originating from the sacral plexus. Nitric oxide, 
produced by the action of parasympathetic–neural nitric oxide synthetase 
(nNOS) on L-arginine (Andersson & Wagner 1995), increases the 
concentrations of cyclic guanosine monophosphate (GMP) in smooth 
muscle cells, resulting in a reduced responsiveness to calcium and thus 
relaxation (Andersson 2003, de Tejada et al. 2004). Contraction of the 
ischiocavernosus muscles at the penile roots increases blood flow in the 
penile vasculature and occludes the veins that draining the corpora 
cavernosa penis (CCP). In the dog the levator ani, the coccygeus, and the 
internal obturator muscles also participate in venous occlusion (Ninomiya et 
al. 1989). However, venous occlusion is not complete as some drainage 
continues through smaller channels, when the dorsal vein of the penis is 
occluded. The increase in blood flow in the penile arteries and CCP and the 
interruption of the venous outflow determine the engorgement of the 
cavernous spaces in the blind-ending CCP, causing stiffening and 
lengthening of the penis. The ejaculatory reflex is stimulated by sensory 
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nerves within the glans penis, which transmit to the spinal cord via the dorsal 
nerve of the penis, a branch of the pudendal nerve (Johnson & Halata 1991). 
Ejaculation cosists of two components: (1) emission and accessory gland 
secretion, controlled by the autonomic nervous system; and (2) propulsion, 
controlled by somatic nerves. Uretral propulsion of semen is determined by 
rhythmic contractions of the bulbospongiosus muscle, located above the 
corpus spongiosum penis (CSP) in the bulb of the penis, and urethral smooth 
muscles (Giuliano & Clement 2005). This is accompanied by proximal 
closure of the bladder neck and intermittent relaxation of the external 
urethral sphincter and urogenital diaphragm. Contraction of the 
bulbospongiosus muscle results in increased haemostatic pressure in the 
CSP. Therefore, each contraction of the bulbospongiosus muscle causes a 
transient wave of increased pressure in the CSP, which propagates from the 
bulb to the glans, where it relieved by the dorsal venous drainage of the 
blood. As the CCP is swollen, the increased pressure in the CSP causes a 
wave of urethral occlusion. For this reason, assisted by the contraction of 
the muscle surrounding the extrapelvic urethra, allows the sperm to pass 
through the urethra. The dog is the only species among the domestic animals 
in having a penile bone (os penis), surrounding dorsally the urethra. During 
copulation the dog’s penis is gripped by the levator vestibuli of the bitch’s 
vagina, whereupon engorgement of the bulbus glandis occurs. Ejaculation 
occurs over a prolonged period of time, with the brief pre-sperm fraction 
phase and an 80-seconds sperm-rich fractions, followed by a very protracted 
deposition of prostatic fluid during the copulatory tie. The prostate is the 
only accessory sex gland present in the dog. The absence of the bulbouretral 
gland is the main reason why canine semen results particularly liquid, so 
that viscosity and liquefaction time are not evaluated (Parkinson, 2019). 
 
1.2.2 Collection of Semen with Digital Manipulation 

A conical rubber plastic (contact funnel) that provides the connection 
between the artificial vagina and the graduated collection glass may be used. 
The practitioner should stand to the right of the male, holding the conical 
semen collection device with the left hand. The operator stimulates the 
erection by sliding his right hand back and forth on the prepuce. The bulbus 
glandis should begin to swell being the first sign of erection, as the 
cavernous penile body fills with blood. The prepuce is then withdrawn to 
expose the bulbus glandis before the erection is fully achieved, with the 
conical spermatic collector passing over the penis. If a full erection occurs 
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before the bulbus glandis protrudes from the prepuce, the animal could feel 
pain and the erection then quickly disappears. The thumb and forefinger of 
the hand holding the collection funnel should begin to apply light and 
rhythmic pressure to the back of the bulbus glandis. After the pelvic thrusts 
have reached their peak (after about 15-30 seconds), the penis should be 
turned caudally with the rubber funnel. The first and second fractions of 
ejaculate are obtained in the first 1-2 minutes. The second sperm-rich 
fraction of semen has a milky appearance and an average volume of 0.5-5 
ml (Ucar, 2000; Baran, 2015). About 1-3 minutes after ejaculation, the 
prostate fraction is ejaculated, presenting as a clear fluid (3rd fraction). This 
part is the last one and may have a total volume of 5-40 ml, obtained within 
5-45 minutes. With the present method, the detection of the first drops of 
sperm-rich fraction could result more difficult, and often parts of the 
ejaculate could mix unintentionally. Moreover, smegma preputi contained 
in the prepuce during semen collection may contaminate semen samples 
with this method. The most convenient way to collect semen is by finger 
movement, using a glass funnel and a measuring cup (Fig.1.2.1). Most dogs 
are trained for semen collection by digital manipulation. Semen can be 
collected while the animal is standing on the ground. During semen 
collection, contact of the rubber glove with the collected ejaculate may 
affect motility, therefore it should be avoided. During semi-erection, the 
prepuce sheath is retracted. It is usually recommended that samples 
containing blood or pus should be discarded, and either another sample 
taken later, or another stud dog should be used. There are several published 
studies conducted on the use of sperm separation media (usually single-layer 
centrifugation), that show favourable results in separating erythrocytes from 
sperm and improving the motility, morphology, and viability of fresh, frozen 
or chilled semen (Phillips TC. et al. 2012). The semen collection goblet is 
kept away, to avoid haemorrhage and trauma. In case the male is reluctant 
to semen collection, ejaculation can be stimulated by holding the collection 
cup and placing it against the urethral opening (orificium urethrale) of the 
glans penis. After the pelvic thrusts are completed, the penis is rotated 
backwards between the dog's hind legs. At this time, rhythmic pressure 
should be applied to the posterior portion of the bulbus glandis between the 
thumb and index finger. After completion of sperm collection, the penis 
should be lubricated and washed with an antibiotic solution and inserted into 
the prepuce (Baran, 2015). 
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Fig1.2.1 Manual collection of semen from the dog. (A) The penis is grasped behind the 
bulbus glandis, simulating the lock of the levator vestibuli of the bitch. (B) The different 
fractions of semen are collected into separate collecting vessels to minimize the dilution of 
the sperm-rich fraction with accessory gland fluids. (Mcgowan M., Evaluation of the 
Fertility of Breeding Males; Veterinary Reproduction and Obstetrics, 10th ed. Noakes DE, 
Parkinson TJ, England GCW eds; Publ. 2018) 
 
 
1.2.3 Semen Collection with Conical Rubber Plastic and Hand Massage 
 
A collection goblet is placed on the conical rubber plastic end and vaseline 
or similar lubricants are placed within the plastic. The operator stands on the 
male's right side, holding the conical rubber plastic in his right hand. By 
gently massaging the ensheated penis, it is inserted into the conical rubber 
plastic after the erection is achieved. After the thrusting movements of the 
pelvis, the rubber is held in the palm of the hand and the penis is rotated 
backwards by applying pressure to the posterior part of the bulbus glandis. 



Artificial insemination in canine species 
 

 26 

However, this method precludes to separate the sperm fractions (Baran, 
2015). 
 
1.2.4 Collection of Semen with Electrical Stimulations (Electro-Ejaculator) 
 
It is possible to obtain sperm from dogs by inducing an electro-ejaculation 
(EE) with an electro-ejaculator. However, this method should be performed 
under general anaesthesia and just when absolutely necessary (e.g. 
aggressiveness of the stud dog). 
For the collection a rectal probe, an electrostimulator and general 
anaesthesia are required. Once the bipolar rectal probe is inserted into the 
rectum, the ejaculation centre is stimulated at regular intervals with an 
electric current of 140-180 mA and a voltage of 10-20 volts and therefore 
seminal fluid is extracted. In the electro-ejaculation method, the volume of 
semen extracted is greater than in natural mating because of the over-
stimulation of the prostate. However, it does not represent the first choice, 
because urine may mix with the ejaculate obtained. It could be a good 
option, for collecting semen from very valuable stud dogs cannot be 
performed with other methods (Baran, 2015). Christensen and collegues 
found that, semen samples collected manually from dogs, without extender 
addition, consistently maintained significantly higher motility after 4 h 
compared to samples collected by electroejaculation samples. Moreover, 
exposure of sperm to more prostate fluid following EE seemed the more 
probable cause of impaired motility, as during EE, the prostate gland is 
directly stimulated (Ohl et al. 1994), which may result in release of more 
prostatic fluid than during a natural ejaculation. That could affect semen 
samples parameters, by decreasing sperm concentration and viability 
(Christensen et al. 2011).  
 
1.2.5 Collection of Semen by urethral catheterization after pharmacological 

induction 
 
The a-adrenergic agents are known to influence erection and ejaculation, 
and ejaculatory reflex is a primarily a-adrenergically mediated event. This 
method is widely used for semen collection in several species (Mcdonnel & 
Love, 1991; Zambelli et al. 2008; Silinski et al. 2002). Kuczmarski and 
collegues demonstrated that the urethral catheterization after 
pharmacological induction using dexmedetomidine-ketamine association 
can be performed for canine semen collection, enabling new perspectives 
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for reproductive biotechnology application in domestic dogs and 
endangered wild canids. After a routine clinical examination, dogs should 
be catheterized before the anesthetic procedure for urinary bladder 
emptying. Twenty minutes after induction with dexmedetomidine and 
ketamine, semen could be collected with the aid of a round and fenestrated 
urethral catheter. After 1 min, the catheter should be removed from the 
urethra. Approximately 13 cm (12.7 cm) of length of the urethral catheter 
has been recorded for dogs weighing from 5 to 10 kg and established as a 
standard to be used in all animals during the experiments. Blood semen 
contamination was not observed in the present study. However, urine 
contamination was noticed in 44% of the samples. Urethral catheterization 
after pharmacological induction for semen collection in dogs showed lower 
volume (0.092 ± 0.03 mL) but higher sperm concentration (1186.67 ± 
304.67 x 106 sperm/ mL) (Kuczmarski et al. 2020). 
 
1.3 Cryobiology of Sperm 
 
Sperm cryopreservation has become an indispensable tool in reproductive 
biology. It has become the best performing technique for long-term 
conservation, delivery, and dissemination of valuable animal genetic 
resources worldwide (Akhtar et al. 2022). In addition, cryopreservation of 
spermatozoa for artificial insemination can prevent sexually transmitted 
diseases, such as brucellosis and herpes virus infections. Artificial 
insemination performed with cryopreserved spermatozoa provides several 
potential advantages, including avoidance of transport-related stress, 
breeding problems such as copulation failure due to behavioral issues 
(including female aggressiveness and male indifference), and the quarantine 
placed on live animals (Suzuki et al. 2022). 
Cryopreservation preserves semen fertility virtually indefinitely, though a 
large proportion of individual spermatozoa do not survive the significant 
stresses of freezing and thawing. Actually, cells are exposed to several 
damaging processes during freezing process, which subsequently impairs 
cells or tissue function. In particular, cryopreservation can damage the DNA 
of the spermatozoa and/or the acrosomal cap, resulting in reduced 
fertilization ability or embryonic development. Therefore, post-thaw 
motility, membrane integrity (via HOST) and acrosomal staining techniques 
should be always assessed to determine sperm quality (Lopate, 2022, 
Manual of Andrology). Several factors can influence semen 
cryopreservation: the fertility and age of the bitch and stud dog, semen 
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quality before and after freezing, the accuracy of ovulation timing, the site 
of semen deposition and semen handling techniques during collection, 
processing, freezing, and thawing (Lechner et al. 2022). Cooling survival 
and storage can be improved by adding extender solutions to semen. 
Actually, extenders cannot just be considered as protecting substances for 
semen preservation but also as cryoprotectants. The presence of glycerol 
protects spermatozoa from the harmful effect of ice crystal formation 
(Hermansson et al. 2021). More specifically, the use of extenders improves 
pH stabilization and energy reservation and helps protecting the sperm 
membrane from injury caused by shaking and temperature variations during 
transport. Higher pregnancy rates are achieved when inseminations are 
performed with extended semen compared to raw chilled semen (Suzuki et 
al. 2022). The potential fertility of chilled canine semen is maintained by the 
following three factors: 

• Reduced sperm metabolism at very low temperatures; 
• Protection from cold shock provided by the use of extenders; 
• The relatively high resistance of canine sperm cells to cold shock. 

Semen extenders should have specific general features such as adequate 
osmotic pressure, nutrient medium, absorption of metabolic residues and 
protection from cold temperatures. Cooling the semen to +5°C requires 
special care, as a sudden drop in temperatures below 17°C can determine 
irreversible changes, especially in the acrosome (Ucar et al.2000).   
 
1.3.1 Processing of semen for cooled storage 
 
Semen can be stored in liquid form if the metabolic activity of the 
spermatozoa is reduced by cooling. The process of cooling from body 
temperature to 5°C can result in significant damage to the cells unless they 
are protected from the effects of ‘cold shock’. Semen processing steps, such 
as the addition of extenders, centrifugation, dilution, cooling and storage, 
contribute to a decrease in motility and fertilizing ability (Aurich, 2005). 
Semen processing techniques should be adapted to reduce these losses as 
much as possible. The development of cold shock can be induced by rapid 
cooling rates, even though it cannot be entirely prevented if slow cooling is 
performed. Cold shock causes damage to cell membranes, leading leakage 
of intracellular potassium, enzymes, lipids, cholesterol, lipoprotein, and 
adenosine triphosphate (ATP). Lowering the temperature determine a 
transaction of membrane phospholipids from a liquid to a gel status, which 
can lead to phase separation as this occurs at different temperatures for 
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different structural lipids (Drobnis et al. 1993; Maldjan et al. 2005; 
Mahiddine et al. 2021). As a result, the membrane proteins become 
irreversibly clustered, leading to a loss of function. These changes are also 
associated with an influx of intracellular calcium, that triggers protein 
phosphorylation and subsequent sperm capacitation-like changes, also 
known as cryocapacitation (Singh et al. 2012; Kumar et al. 2012). However, 
membranes of canine spermatozoa are less sensitive to cold shock than those 
of other species, due to a relatively high cholesterol:phospholipid ratio 
(Amann et al. 1987) and increased polyunsaturated fatty acids (PUFA) 
content in the membrane. Indeed, it has been reported that DNA integrity is 
not affected by freezing during thawing (Urbano et al.2013), unlike other 
species, such as horses (Yeste et al.2015). The most effective way of 
protecting spermatozoa against the harmful effects of cooling is by the 
addition of extenders, such as egg yolk or milk to the diluent.  
 
1.3.2 Extenders  
 
Specific membrane changes that occur during cooling, storage and 
cryopreservation of the semen could be the reason why different extenders 
are needed. Experimental results reported high individual variability in 
terms of fertility when using different extenders, or, in some cases 
differences in the concentration of individual components of the extenders 
(Akhtar et al 2022). Semen extender should: provide nutrients as a source of 
energy for the spermatozoa and buffer(s) to prevent harmful shifts in pH 
determined by the metabolic product such as lactic acid; maintain adequate 
osmotic pressure and electrolyte balance for the spermatozoa; inhibit 
bacterial growth; protect against harmful effects of storage, refrigeration, 
freezing and thawing; increase volume of raw semen so that multiple 
inseminations with suitable numbers of spermatozoa can be performed 
(Mahiddine et al. 2021). Whole or semi-skimmed milk, coconut milk and 
chicken egg yolk are often used as extenders for sperm preservation. 
Extenders are prepared to contain a desired percentage of egg yolk, usually 
from chicken, although yolk from other species may also be used. 
Membranes-free egg yolk should be chosen since spermatozoa bind or 
adhere to membranes. Therefore, an albumin-free and membrane-free yolk 
should be collected. This can be accomplished using commercially obtained 
hand-held devices used for baking, or by using a simple laboratory 
procedure (Lopate, 2022). 
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Egg yolk (EY) proved to be able in providing an excellent protection for 
sperm against cold shock. The cryoprotective properties of EY are due to 
the presence of low-density lipoproteins (LDL) (Foulkes, 1977; Moussa, 
Martinet, Trimeche, Tainturier, & Anton, 2002; Pace & Graham, 1974; 
Quinn et al., 1980). Besides EY is a widely and routinely used 
cryoprotectant for canine semen extenders composition, there are some 
concerns and risks associated with its use including the risk of bacterial 
contamination and the potential risk of causing diseases (Hermansson et al. 
2021). Moreover, the presence of granules impairs sperm respiration (due to 
high density lipo-proteins; Amirat et al, 2004) and in vitro analysis of their 
motility properties. Actually, EY granules may negatively influence 
objective evaluation performed with Computer Assisted Semen Analysis 
(CASA) as they may be counted as dead spermatozoa. However, several 
studies have been carried out to isolate the cryoprotective element of chicken 
egg yolk in order to obtain a specific extender, without hygienic risks and 
the reported disadvantages, but keeping its beneficial properties on semen 
(Bousseau et al., 1998; De Leeuw, Leeuw, Daas, Colenbrander, & Verkley, 
1993).  
Recently, it has been proposed to replace egg yolk with low-density 
lipoproteins (LDL), molecules responsible for the cryoprotective effect of 
egg yolk, and to study their effects on sperm survival during freezing and 
thawing in dogs. The study conducted by Bencharif et al. showed that a 6% 
LDL concentration in a Tris-citric acid-fructose medium provided good 
motility after thawing compared to an egg yolk medium in canine semen 
(49.9% vs. 47.9% vs. 27.7% for 6% LDL-based media, Equex and 
conventional egg yolk medium) (Bencharif et al., 2008). Skimmed milk, 
whole milk, and coconut milk have also been used successfully, although 
egg yolk is by far the most commonly used additive (Vishwanath & Shannon 
2000). Whole milk contains a protein, lactenin, which is spermicidal, so milk 
for use as a semen diluent must be heat-treated (e.g., in the skimming 
process) to inactivate this toxic factor. Chemically defined extenders 
containing phosphocaseinate have now been developed (Batellier et al. 
1998) and are tending to replace skimmed milk extenders. Antibiotics are 
added to most semen diluents as a prophylactic measure against the 
transmission of pathological bacteria and to reduce the load of non-
pathogical organisms that contaminate the semen. The main antibiotic 
activity is normally given at a temperature above 15 °C, and thus it should 
be present during the semen cooling process from collection to storage 
(McCue et al., 2014).  
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1.3.3 Seminal plasma removal/reduction  
 
The exact role carried out by seminal plasma during the cooling of canine 
semen remains controversial. Seminal plasma may be a source of ROS, due 
to the presence of defected and/or dead spermatozoa, which has been 
demonstrated to affect semen viability (Morrell et al., 2009). However, 
Araujo and colleagues demonstrated that the presence or lack of seminal 
plasma during cooling the semen of dogs does not influence sperm quality 
at 5°C. Moreover, the components of the semen extender may contribute to 
maintaining good sperm quality and low reactive oxygen species production 
during the long period of the dog's semen cooling, even after semen 
centrifugation (Araujo et al. 2022). Nevertheless, the present study was 
conducted just on eight dogs, therefore, further studies are needed on higher 
number of specimens, to determine how and how much can seminal plasma 
influence sperm quality during cryopreservation process.  
In order to remove prostatic fluid, Rijsselaere demonstrated that the loss of 
sperm cells is acceptable by centrifuging canine semen for 5 min at 720 g 
(Rijsselaere et al. 2012). Higher centrifugation forces may damage 
spermatozoa and subsequently reduce sperm quality and motility (Dorado et 
al.2013). If too many spermatozoa remain in the supernatant, centrifugation 
can be repeated. Pena and colleagues reported using diluted sperm 1:1 in a 
tris-glucose extender before separating the seminal plasma by centrifugation 
(Pena et al. 2006). Sperm were then resuspended in another Tris-glucose-
yolk diluent, with two-step glycerolization. However, with the "cushion" 
technique, a higher sperm centrifugation speed can be used (Bliss et al., 
2012). A high specific gravity solution should be layered under the diluted 
sperm, to avoid sperm packing at the bottom of the centrifugation tubes. The 
use of cushion technique allows the semen to be centrifuged at 1000 g for 
20 min, being not affected in terms of sperm motility (Knop et al., 2005). 
The major disadvantage of standard centrifugation is the loss of 
approximately 25% of the spermatozoa, when the supernatant is removed. 
In addition to the padded centrifugation technique, many new methods of 
semen processing have been recently proposed. The best options for semen 
centrifugation are sperm separation by density gradient or a simplified 
single-layer centrifugation method. The latter showed favorable results in 
separating erythrocytes from sperm (Philpps et al. 2012) and in improving 
motility, morphology, and viability (Dorado et al.2013).  
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1.3.4 Cooling rates  
 
The “cold shock” phenomenon can be induced at a specific temperature 
range between 18°C to 5°C during the cooling processes of extended semen 
(Watson et al. 2000). Cryopreservation of canine spermatozoa requires high 
adaptability of the cell to changing osmolarity and temperature. As in other 
species, the fluidity of the membrane changes significantly during the 
freeze-thawing procedure, which coincides with a rearrangement of 
membrane phospholipids. The membrane fluidity is dependent on the 
cholesterol content and the amount of disulfide bonds, the acyl chain length 
saturation and the temperature of the surrounding milieu (Schäfer-Somi et 
al. 2022). When the temperature decreases, the membrane lipids change 
toward the crystalline phase with lateral segregation, lipid peroxidation, loss 
of lipids and formation of reactive oxygen species (Liu et al. 2021). This 
finally leads to membrane destabilization and may cause membrane damage, 
especially when the cooling rates during freezing are too high or too low 
(De Leeuw et al. 1990; Ricker et al. 2006). Although canine spermatozoa 
are considered relatively resistant to cooling at 5°C (Baptista et.al 2012), 
slow cooling rates prior to freezing are generally used for this species. Cold 
shock damage in canine semen is caused by cooling rates greater than -
0.3°C/min and is due to lipid phase transitions that cause lateral lipid 
rearrangement and may even involve loss of lipid fractions from the plasma 
membrane (Rodenas et al.2014). The rearrangement of membrane 
components predisposes the cells to membrane lipid peroxidation as a result 
of the formation of ROS, which may compromise membrane integrity 
(Ricker et al., 2006). One of the most used cryopreservation protocols for 
canine spermatozoa is the Uppsala method, which consists of two dilutions 
before freezing separated by a long cool-down step from room temperature 
23°C to 5°C, over 1 to 2 h (Schäfer-Somi S, et al. 2006; Hermansson et al. 
2006; Peña et al. 2012). These equilibration periods correspond to estimated 
mean cooling rates of approximately 0.15–0.3 C/min. Although slow 
cooling rates are considered optimal, few studies have been performed to 
evaluate the effects of a rapid cooling rate and of reducing the cool-down 
time in the Uppsala protocol. Rodenas and colleagues provided the first 
evidence that dog spermatozoa are able to survive rapid cooling rates (2.25 
C/min) before freezing with the Uppsala method. While in the traditional 
Uppsala protocol, semen reaches 5°C in approximately 90 min, this rapid 
cooling protocol would support a considerable reduction in the time required 
for the process of freezing dog spermatozoa, as it allows an interval of 
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approximately 8 min between 23 and 5°C (Rodenas et al. 2014). The use of 
programmable freezers has the potential to significantly improve post-thaw 
recovery rates. Therefore, it is difficult to generalize about optimal cooling 
rates, as the best ones are determined by the concentration of glycerol and 
other components of the diluent. Some methods used in equine breeding, 
such as the Equitainer system, for chilling and transporting semen, can also 
be successfully employed in dogs (Pinto et al. 1999) (Fig.1.3.4). 
 

 
 
Fig.1.3.4 Traditional shipping vessel and case for transportation of frozen semen. In this 
example, the shipper is described as ‘dry’ because the liquid nitrogen is absorbed into an 
absorbent pad surrounding the semen; in this way there is no free liquid, and the container 
is described as non-hazardou (England et al. 2014) 
 
1.3.5 Storage temperature  
 
A temperature range between 4°C and 6°C has been defined as the optimal 
storage temperature for maintaining sperm motility and fertility (Bencharif 
et al 2022). Cold inhibits microbial growth and reduces sperm metabolism, 
extending their life span (Yoshida, 2000). Appropriate packaging should be 
used to maintain a constant temperature during sperm transport (Bradecamp, 
2014).  Refrigerated semen can be packaged in plastic bags, heat-sealed 
plastic bags, all-plastic syringes (without rubber plungers), or plastic 
containers such as conical centrifuge tubes. Then, these packages should be 
placed in a commercial shipping container. Several methods for refrigerated 
semen transport have been evaluated. Currently, canine chilled semen 
samples can be shipped in different containers, including thermo flasks, 
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styrofoam boxes or even in containers designed for stallion sperm, such as 
Equitainer (Lopes et al. 2009). Among these options, the Neopor canine 
transport box provided by Minitübe is one of the most used in dogs due to 
the reduced cost and easy handling (Rijsselaere et al. 2011). There are 
several reusable and disposable containers for shipping refrigerated semen. 
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2.1 Reactive oxygen species in canine spermatozoa 
 
Mitochondria are not only energy producers but are also the source of 
reactive oxygen species (ROS) necessary for normal sperm function in all 
mammals (Fig.2.1). Unfortunately, when exceeding they can cause sperm 
damage. Oxidative stress is characterized by an imbalance between the 
levels of ROS and antioxidants (Vieira et al., 2018). Oxidative stress in 
canine spermatozoa can lead to deleterious effects on sperm structure and 
function, including lipid peroxidation, DNA damage, and sperm apoptosis 
(Kothari, Thompson, Agarwal, & Plessis, 2010). Vieira et al. (2018) found 
in their studies on dog sperm that the most harmful and toxic ROS were 
hydrogen peroxide (H2O2) and the hydroxide ion (OH -). Hydrogen 
peroxide could penetrate cell membranes unhindered and can inhibit the 
enzymatic activity and functions of various cells. Spermatozoa are 
particularly susceptible to oxidative stress due to the lack of antioxidants 
caused by the reduced cytoplasm and the high levels of polyunsaturated fatty 
acids in the plasma membrane (Luvoni & Morselli, 2017). In contrast, mild 
oxidative stress is considered a normal physiological response and is 
necessary for several sperm functions, including sperm maturation, 
capacitation and hyperactivation, acrosome reaction and sperm-oocyte 
fusion (Kothari et al., 2010). For example, ROS promotes capacitation 
through redox regulation of tyrosine phosphorylation (Aitken, Jones, & 
Robertson, 2012). It has been established that the ROS presence in the male 
genital tract and semen is not a negative phenomenon. In fact, low 
concentrations of ROS are essential for the physiological function of 
spermatozoa, i.e., for the activation of their fertilizing ability. Both 
spermatogenesis and steroidogenesis of Leydig cells have been found to be 
sensitive to excessive concentration of ROS in the testis. Consequently, 
ROS is involved in the production of immature and defective sperm (Hales 
et al., 2005). High concentrations of ROS lead to the previously mentioned 
situation of oxidative stress (OS), a condition associated with an increased 
rate of cellular damage (Sikka et al., 1995). All sperm cell biomolecules, 
including membrane lipids and proteins and DNA, can be the target of 
oxidative stress-induced sublethal cell damage (Aitken et al., 2010). 
Therefore, attention has focused on the role of ROS in sperm and the 
relationship between OS and male infertility (Aitken and Baker, 2004). To 
avoid excessive concentration of ROS, the testis has an enzymatic and a 
non-enzymatic antioxidant system (Aitken and Roman, 2008). In addition, 
human and canine seminal plasma have also been found to be endowed with 
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antioxidants that can protect sperm from the time of ejaculation to the 
oviduct (Viera et al.2018). Oxidative stress in the testis, epididymis, and 
ejaculate is caused by either an inefficient antioxidant barrier or excessive 
production of ROS by immature and damaged spermatozoa (Roca et al., 
2013). The balance between the production and degradation of ROS should 
be maintained during sperm processing and storage to preserve sperm 
motility and fertilizing ability. During refrigeration or cryopreservation of 
sperm, the production of ROS increases dramatically and exceeds the 
antioxidant capacity of seminal plasma, leading to oxidative stress 
(reviewed in Ball, 2008). 
 
 

 

 
                                                            
                                                               

Fig.2.1 Sperm mitochondria can propagate oxidative stress in the male germline inducing 
protein, lipid and DNA damage, resulting in a loss of sperm function.Z. Gibb, et al. Animal 
Reproduction Science 220 (2020) 106456 
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2.1.1 Source of ROS in canine semen  
 
The sources of ROS in semen are epithelial cells, leukocytes, and especially 
spermatozoa (Makker et al., 2009; Mathur and D'Cruz, 2011). The ROS 
production is markedly different among spermatozoa. This is probably 
related to different activities of enzymes such as the cytosolic enzyme 
glucose-6-phosphate dehydrogenase (Esfandiari et al. 2003, Aziz et al. 
2004). This enzyme is involved in the formation of nicotinamide adenine 
dinucleotide phosphate (NADPH). NADPH appears to be the major source 
of ROS in sperm. A sperm-specific NADPH oxidase system (NOX5) and a 
NADP-dependent oxidoreductase (diaphorase) are located in the plasma 
membrane of the sperm head and at the mitochondrial level, respectively 
(Gavella and Lipovac, 1992). The number of mitochondria in spermatozoa 
is high to provide the energy required for their motility. Morphologically 
abnormal spermatozoa contain defective mitochondria that produce 
increased ROS. ROS may affect the membranes of other mitochondria, 
causing a further increase in ROS production (Evenson et al., 1982). 
Production of ROS has been found to vary from cell to cell in subsets of 
spermatozoa at different stages of maturation (Gil-Guzman, 2001). 
Immature germ cells produce higher amounts of ROS than mature germ 
cells. Spermatocytes, round and elongated spermatids produce low amounts 
of ROS (Gil-Guzman, 2001). Several authors suggest that leukocytes, 
particularly neutrophilic granulocytes and macrophages, are an important 
source of ROS in the male reproductive tract and ejaculated semen because 
leukocytes possess a membrane-bound NADPH oxidase similar to that of 
spermatozoa (Agarwal et al., 2004). However, other studies do not confirm 
a high correlation between leukocyte concentration and levels of ROS 
(Fedder et al. 1996). 
 
2.2 Physiological role of ROS in spermatozoa  
 
Low concentrations of ROS are a prerequisite for spermatozoa to obtain 
their full fertilizing capacity. ROS are involved in keeping a good motility, 
capacitation, hyperactivation, acrosome response, and fertilization 
(DeLamirande et al., 1998). It has been suggested that ROS may influence 
the physiological changes associated with sperm capacitation (de Lamirande 
et al., 1998). ROS promotes capacitation through redox regulation of 
tyrosine phosphorylation in several species, including males (Leclerc et al. 
1997; Aitken et al., 1998) and dog (Viera et al., 2018). ROS may also be 
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involved in other mechanisms of sperm capacitation, i.e., stimulation of 
cyclic adenosine monophosphate production and activation of protein kinase 
A, activation of extracellular signal-regulated kinase-like proteins and 
upregulation of tyrosine phosphorylation in the sperm tail, or in the 
induction of sterol oxidation (reviewed by Aitken, 2017). Superoxide anion 
and small amounts of hydrogen peroxide have been shown to be involved in 
signal transduction and tyrosine phosphorylation of sperm membrane 
proteins, thereby stimulating capacitation and acrosome response (Griveau 
et al., 1994). Superoxide anions and hydrogen peroxide also cause tyrosine 
phosphorylation, which in turn promotes sperm membrane binding to ZP-3 
protein in the zona pellucida (Aitken et al., 2010). 
ROS provoke lipid peroxidation in the plasma membrane, which is usually 
associated with reduced sperm function and viability (Griveau et al., 1994). 
However, a low level of lipid peroxidation is necessary to facilitate the 
adhesion process of spermatozoa to homologous and heterologous zonae 
pellucidae (Aitken et al., 1989). In contrast, nitric oxide has no effect on 
zona pellucida binding but is essential for activating the ability of sperm to 
fuse with oocytes (Zini et al., 1995; Francavilla et al., 2000). 
 
2.2.1 Effect of oxidative stress on spermatozoa  
 
Spermatozoa are highly susceptible to oxidative stress and especially lipid 
peroxidation due to their high content of polyunsaturated fatty acids in the 
plasma membrane. Fatty acids are essential for the male germ cell to 
maintain sperm functions, and spermatozoa are unable to resynthesize their 
membrane components (Henkel, 2005). ROS may also indirectly generate 
oxidative stress by reducing sperm enzymatic defenses. On the other hand, 
oxidative mechanisms play a key role in the physiological control of 
mammalian sperm functions (Kodama et al., 2013). Small amounts of ROS 
are necessary for sperm to become fertilizable (Saleh and Agarwal, 2002). 
ROS is normally involved in sperm kinetic function (Griveau and Le 
Lannou, 1997) and in capacitation and hyperactivation processes (Agarwal 
et al., 2006) by stimulating intracellular cAMP production and tyrosine 
phosphorylation. Hydrogen peroxide appears to be the most dangerous ROS 
for semen because it is membrane permeable and can damage DNA, 
whereas another extrinsic ROS can mainly cause lipid peroxidation (Henkel 
et al., 2005). The deleterious effects of oxidative stress depend on the 
amount of ROS and duration of ROS exposure (de Lamirande and Gagnon, 
1995; Agarwal and Prabakaran, 2005). Extracellular factors such as 
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temperature, oxygen tension, and environmental composition influence the 
extent of OS (Aitken and Fisher, 1994). The extent of OS in the seminal 
plasma depends on composition, such as the concentration of ions, proteins, 
and especially ROS scavengers (Agarwal and Saleh, 2002). Reduction in 
sperm motility is a sensitive indicator of oxidative stress. Motility is the first 
parameter to be affected by excessive amounts of ROS (Baumber et al., 
2000). The exact mechanism underlying the relationship between OS and 
the reduction in motility is not clear. It has been hypothesized that 
extracellular hydrogen peroxide enters spermatozoa and inhibits the activity 
of several enzymes, such as glucose-6-phosphate dehydrogenase. G6PD 
regulates intracellular glucose concentration and consequently the 
availability of NADPH (Aitken et al., 1997). Decreased availability of 
NADPH and accumulation of oxidized and reduced glutathione impair 
sperm antioxidant defenses and peroxidation of membrane phospholipids. 
Lipid peroxidation is associated with a loss of motility due to the release of 
enzymes and ATP, followed by a decline in sperm metabolic activity 
(Storey, 1997). Any impairment of the ATP production process may have a 
negative effect on motility. Such ATP depletion decreases the available 
energy supplied by mitochondria, resulting in decreased axonemal protein 
phosphorylation and sperm immobilization (deLamirande and Gagnon, 
1992). ROS also has a direct effect on mitochondria by destroying the inner 
and outer mitochondrial membranes and inducing the release of apoptosis-
inducing factors (AIF). The AIFs released are the cytocrome C protein and 
proteases, i.e., caspases 3 and 9, which interact directly with DNA and lead 
to DNA fragmentation and apoptosis (Candé et al., 2002; Paasch et al., 
2004). In addition, ROS plays a physiological role in the fusogenic function 
of sperm, allowing them to bind to the zona pellucida, undergo the acrosome 
reaction, cross the zona pellucida, and fuse with the oocyte membrane 
(Griveau and Le Lannou, 1997). When ROS is present in low 
concentrations, they act as mediators of normal sperm functions, whereas 
when produced in excess, they are highly toxic to the cell. The sperm has 
three protective enzyme systems against ROS damage, including superoxide 
dismutase (SOD), catalase, and the glutathione peroxidase/reductase system 
(Griveau et al., 1995). ROS effects on semen are summarized in Fig. 2.2.1. 
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Figure 2.2.1 Impact of oxidative stress on male reproductive performance in domestic 
and wild animals. (Pintus et al.2021) 
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3.1 Role of antoxidants on semen 
 
Mammals have evolved antioxidant defense systems playing a role in 
preventing the formation of ROS, inactivating oxidants, and limiting the 
harmful effects of oxidants by allowing repair of oxidative damage 
(Cheeseman and Slater, 1993). The male reproductive tract has enzymatic 
and nonenzymatic antioxidant strategies, to mitigate the effects of oxidative 
stress on spermatogenesis and steroidogenesis and to protect spermatozoa 
from excessive oxidative stress (reviewed in Vernet et al., 2004). After 
ejaculation, in the female genital tract, or during storage/dispatch, sperm rely 
on antioxidants, metal ions, and proteins derived from seminal plasma and 
sperm extender for protection (Wai-Sum et al., 2006). Understanding the 
mechanisms that protect spermatozoa from oxidative stress (OS) by 
affecting intrinsic antioxidant mechanisms may provide an ideal strategy for 
better preservation of sperm function. Human studies suggest improved 
antioxidant defense by exogenous enhancement against OS with two 
different approaches: antioxidant dietary supplementation to improve 
antioxidant status in tissues, seminal plasma, and spermatozoa or addition 
of antioxidants to seminal supplements to increase antioxidant status of 
seminal plasma (Agarwal et al., 2004). Substances with the antioxidative 
properties, which are a part of dog semen composition, are localized mainly 
in a small cytoplasmic area in the sperm midpiece and in the prostatic fluid 
(Luberda, 2001). According to the study conducted by Strzeżek (2009), the 
antioxidative system of dog semen is mostly represented by superoxide 
dismutase, and to a lesser extent by glutathione peroxide and phospholipid 
hydroperoxide glutathione peroxidase. Catalase, on the other hand, the 
enzyme responsible for the degradation of hydrogen peroxide, was not 
found in dog seminal plasma (Hatamoto et al., 2006; Strzeżek et al. 2009) 
observed the deficient activity of catalase in dog sperm. This is in contrast 
with the studies by Kawakami et al. (2007), who demonstrated catalase 
activity in dog ejaculates and showed that the addition of catalase and 
superoxide dismutase in the dilution extender of canine semen improved 
sperm quality. Michael et al. (2007) studied the protective activity of certain 
antioxidative factors in canine semen, demonstrating that the best protective 
properties were found in catalase, taurine and N-acetylcysteine (NAC) in the 
first, second and third place, respectively. Brito et al. (2018) did not find any 
differences on sperm oxidative stress between young and senile dogs. 
Antioxidants are represented by two groups of compounds: enzymatic 
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antioxidants, which include superoxide dismutase, catalase and glutathione 
peroxidase, and non-enzymatic antioxidants, for example vitamin E, vitamin 
A, vitamin C and uric acid (Del Prete et al., 2018). 
 
 

 
 
Figure 3.1 Antioxidant scavenging pathways of free radicals by superoxide dismutase 
(SOD), catalase (CAT) and glutathione peroxidase (GPX); Glutathione reductase catalyzes 
the reduction of oxidized glutathione (GSSG) to regenerate glutathione (GSH; modified by 
Aitken and Roman, 2008).  
 
3.1.1 Enzymatic antioxidants  
 
Oxidative stress in the testis triggers a response characterized by NFκB 
(nuclear factor kappa-light-chain-enhancer of activated B cells) mediated 
induction of mRNA species for superoxide dismutase (SOD) and 
glutathione peroxidase (GPx) activities (Kaur et al., 2006). The enzyme 
superoxide dismutase (SOD) in the cytoplasm (Cu, Zn- SOD) and 
mitochondria (Mn- SOD) is responsible for association with two common 
ROS molecules, including the superoxide anion (O2-) and hydrogen 
peroxide (Amidi et al. 2016). However, there are controversial results 
regarding the beneficial effects of SOD. While the addition of SOD to 
extenders resulted in higher sperm motility during cooling and freeze 
preservation (Forouzanfar et al.2013), Silva et al. found no increase in sperm 
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kinematic parameters after addition of SOD to the ram sperm extender (Silva 
et al. 2011). Nevertheless, acrosome integrity and mitochondrial activity 
were improved in the presence of SOD (Silva et al.2011). Roca et al. 
reported that catalase improved the fertilization potential of boar sperm after 
thawing when catalase was used alone or in combination with SOD (Roca 
et al. 2005). In addition, Fernandez-Santos et al. demonstrated that catalase 
inhibits DNA damage during oxidative stress in cryopreservation 
(Fernandez-Santos et al. 2009). There are also numerous studies describing 
the beneficial effects of glutathione on semen cryopreservation in a variety 
of animal species. In fresh semen, glutathione did not affect the quality of 
ram semen (Silva et Al. 2009). In another study, Silva et al. demonstrated 
that glutathione (2 mM and 5 mM) preserved the integrity of ram sperm 
acrosomes (Silva et al. 2009). Moreover, 5 mM oxidized glutathione 
increased the movement and velocity properties of spermatozoa after 
freezing and thawing (Uysal et al.2007), and similar results were found at 
lower concentrations in turkey spermatozoa (Izanloo et al. 2022).Similar 
results were obtained with the multifunctional antioxidant melatonin, where 
positive effects on sperm cryopreservation were found in pig (Pezo et al. 
2021), ram (Pool et al.2021) , goat (Tanhaei et al.2022), dog (Divar et.al 
2022), fish (Felix et al.2021), bovine (Su et al.2021), and human (Minucci 
et al.2022). 
 
3.1.2 Non-enzymatic antioxidants 
 
Alpha-tocopherol (vitamin E) is one of the most important compounds with 
antioxidant properties, commonly found in the plasma membrane and 
seminal plasma. This lipophilic antioxidant protects the fatty acid content of 
membranes from peroxidation (Aikten et al. 2012) and has a dose-dependent 
effect (Hull et al.2000). The water-soluble Trolox analogue of vitamin E 
improved several quality indicators of boar semen during cold storage 
(Cerolini et al.2000). In addition, it increased fertilisation ability and 
decreased the amount of hydrogen peroxide in bull semen when added to 
the extender (Dalvit et al.1998). The beneficial effects of vitamin E on 
reproductive ability were also demonstrated in chickens (Khan et al.2012), 
rabbits (Yousef et al.2010) rams (Masoudi et al.2016), cattle (Majid et 
al.2015) and dog (Kirchhoff et al. 2017) when it was added to the diet. 
Ascorbic acid (vitamin C) is another water-soluble vitamin associated with 
reproduction; however, its exact mechanism is still unclear (Sonmez et 
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al.2005). Vitamin C may have a significant impact on DNA protection 
during cryopreservation (Fraga et al.1991) Azawi and Hussein reported an 
improvement in motility and viability of ram spermatozoa supplemented 
with 0.9 mg/mL vitamin C during room temperature preservation (Azawi et 
al.2013). In a conflicting report, vitamin C decreased the motility of ram 
spermatozoa when the extenders were supplemented with 50 mM or 100 
mM compared to the control group (Sanchez-Partida et al.1997) Vitamin C 
could be a pro-oxidant compound in the presence of iron ions in the extender 
(Amidi et al.2016), as it converts Fe3+ to Fe2+, leading to a reaction with 
oxygen or hydrogen peroxide, which then triggers lipid peroxidation 
(Rietjens et al.2002). 
 
3.1.3 Metal chelators or metal binding proteins  
 
Transitional metal ions are involved in the generations of highly reactive 
oxygen species (Ochsendorf, 1999). Metal chelators and metal-binding 
proteins (e.g. albumin, metallothionein) reduce the formation of new ROS, 
by inactivation of transitional ions. In the seminal plasma, metal chelators 
such as transferrin, lactoferrin, and ceruloplasmin protect sperm integrity by 
controlling lipid peroxidation of plasma membrane (Sanocka and Kurpisz, 
2004). The addition of other metal chelators to semen extender such as 
ethylene diamine tetraacetic acid, 1,10-phenanthrolin, DL-penicillamine 
and neocuproine have been shown to reduce sperm DNA damage and 
increase sperm motility (Henkel and Schill, 2003; Wroblewski et al., 2003; 
Agarwal et al., 2005).  
 
3.1.4 Other non-enzymatic antioxidants  
 
Amino acids are present in the seminal plasma and are categorised as non-
enzymatic scavengers with antioxidant properties. Different types of amino 
acids such as hypotaurine, glutamine, cysteine, taurine, histidine, proline, 
and glycine were found to reduce DNA fragmentation and improve various 
post-thaw parameters of ram sperm (Sanchez-Partida et al.1997). Sangeeta 
et al. found that the addition of 25 mM l-proline and 20 mM l-glutamine in 
a Tris-based medium reduced lipid peroxidation and improved the integrity 
of sperm acrosomes (Sangeeta et al.2015). Fattah et al. found that the 
addition of 1 mM and 2 mM l-carnitine to cryopreservation media improved 
sperm mitochondrial function and resulted in higher progressive motility 
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after thawing (Fattah et al 2017). However, the combination of these amino 
acids may have a negative effect on semen quality, as Zhandi and Sharafi 
found that the combination of cysteine and glutathione in a soybean lecithin-
based extender increased apoptosis in their analysis of ram sperm after 
thawing (Zhandi et al.2015). Another amino acid commonly used in the 
different types of extenders is bovine serum albumin (BSA), which can 
protect sperm membrane integrity, especially during heat stress (Lewis et al. 
1997). In some experiments, 10% or 15% BSA was used as a substitute for 
egg yolk in ram sperm diluents, and these showed an equivalent 
cryoprotective effect compared to egg yolk (Fukui et al.2007). Finally, in a 
study by Coyan et al, the addition of 1, 2, and 4 mM ergothioneine decreased 
the percentage of DNA fragmentation in ram sperm after thawing (Coyan et 
al.2012). Ergothioneine is a low molecular mass thiol found in some tissues. 
It scavenges oxygen hydroxyl radicals and peroxyl radicals and acts as a 
regulator of iron metabolism. Ergothioneine has been shown to protect 
spermatozoa from oxidative stress and to improve motility of ram (Coyan et 
al.2012) and dog (Usuga et al.2021) spermatozoa after thawing. High 
concentrations of carnitine have been found in human semen produced by 
the seminal vesicle and epididymis (Lewin et al., 1976). Carnitine plays an 
important role in sperm maturation and development (Lenzi et al., 2003; 
2004). Dietary supplementation with carnitine promotes membrane stability 
and protects sperm from ROS damage and apoptosis (reviewed in Lombardo 
et al., 2011). 
Since the deleterious effect of oxidative stress on sperm is considered to be 
the main cause of subfertility in men (Tremellen, 2008), antioxidant 
strategies have been proposed to reduce oxidative stress and thereby 
improve male fertility (Agarwal et al., 2004; Agarwal and Sekhon, 2010; 
Lombardo et al., 2011; Elmussareh et al., 2015). Although a general positive 
effect of antioxidants on semen quality has been demonstrated, few studies 
reported improvement in pregnancy rates (reviewed in Ross et al., 2010; 
Showell et al., 2011). The goal of antioxidant supplementation is to improve 
antioxidant defense mechanisms in the male genital tract and in seminal 
fluid and sperm after ejaculation. Antioxidant strategies may include 
antioxidant dietary supplementation (in vivo studies) as well as the addition 
of antioxidants to semen diluents used to produce fresh, chilled, and frozen 
semen (in vitro studies) (Lombardo et al., 2011). 
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3.2. Antioxidant strategy 
 
Antioxidants can be administered by using several strategies such as: 
addition to diet supplementation and addition to fresh, chilled or frozen 
semen. 
 
3.2.1 Dietary supplementation of antioxidants  
 
Nutritional deficiencies can have a significant impact on sperm quality; low 
intake of antioxidants in nutrients such as selenium (Se) and vitamin E can 
cause poor sperm quality or even loss of fertility (Ahsan et al., 2014; Boitani 
& Puglisi, 2008; Zubair, 2017). Dietary supplementation with antioxidants 
has been attempted to improve male fertility and to try to influence freezing 
success. An improvement in semen quality after dietary supplementation of 
antioxidants in humans, rats, pigs, turkey, sheep, fish and dog has been 
detected (Audet et al., 2004; Eskenazi et al., 2005; Sönmez et al., 2005; 
2007; Akmal et al., 2006; Eid et al., 2006; Yue et al., 2010) The success of 
antioxidant supplementation is due to an enhancement of antioxidant 
protective mechanisms in the epithelial mucosa and secretions of the male 
reproductive tract. This results in less ROS-induced damage to sperm in 
testes, epididymis and in ejaculated and processed semen. Dietary 
supplementation with PUFA in combination with vitamin C or E as 
antioxidants in the diet has been shown to improve sperm quality in e.g. 
rabbits (Castellini et al., 2004), broilers (Surai, 2000), roosters (Cerolini et 
al., 2005), boars (Liu et al., 2015), Japanese quails (Al-Daraji et al., 2010), 
rams (Alizadeh and Shaabani, 2014; Jafaroghli et al., 2014), goats 
(Dolatpanah et al., 2008), and bulls (Kaka et al., 2015). Dietary 
supplementation with supplements containing antioxidants is now routinely 
used in male infertility because it is widely available.  
Oral administration of vitamin E to male dogs prevented some of the 
negative stress effects of oral administration of dexamethasone on sperm 
quality (Hatamoto et al. 2006). Dietary supplementation with a number of 
antioxidants was found to have no effect on fertility in stallions (Deichsel et 
al. 2008). As for dietary supplementation with antioxidants to improve 
sperm quality and fertility in males, astaxanthin is an antioxidant without 
vitamin A activity. Astaxanthin belongs to the carotenoid family and has 10 
times higher antioxidant activity than B-carotene (Naguib et al. 2000). 
Recent scientific evidence suggests that astaxanthin is a potent antioxidant 
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and that its potent antioxidant activity on the surface and inside the 
phospholipid membrane is responsible for its highly potent antiperoxidative 
activity (Goto et al. 2001). Dietary supplementation with astaxanthin has 
been shown to improve semen quality in subfertile males (Comhaire et al. 
2005). Most herbs, fruits, and vegetables have been shown to have 
antioxidant properties and can affect sperm production and function 
(reviewed in Ko EY and Sabanegh, 2014). Several nutraceuticals have also 
been tested in animal reproduction (review in Arruda et al., 2010). For 
example, the use of the Andean plant Lepidium meyenii (maca) has been 
tested in various animal species, such as humans, rodents, and cattle. 
Lepidium meyenii (Maca) grows between 3,800 and 4,500 m altitude. 
Clinical studies have shown that administration of maca increases sperm 
count and motility and improves sexual function in humans (Gonzales et al., 
2001; 2002). Several studies conducted in rats have shown the positive 
effect of Maca administration on spermatogenesis, improving sperm count 
and motility (Gonzales et al., 2003; 2004; 2006; 2013; Chung et al., 2005; 
Gasco et al., 2007; Yucra et al., 2008). Dietary supplementation with maca 
meal improved sperm count and motility and decreased the percentage of 
DNA fragmentation index in bulls (Clément et al., 2010). This plant has 
beneficial effects on the reproductive tract, sperm quantity and quality in 
mammals (Clément et al., 2012; and by Gonzales, 2011). 
 
3.2.2 Antioxidant addition in semen extender  
 
The presence and availability of antioxidants is important to prevent damage 
to cell membranes. Although semen dilution prior to freezing removes most 
of the seminal fluid prior to dilution, residual components of the seminal 
fluid are still present, although possibly in less than optimal amounts. EY 
the seminal fluid commonly found in semen diluents contains several 
antioxidants, including phosvitin, vitamins E and C, which protect sperm 
from oxidative damage. More and more publications point to the need to 
protect sperm from oxidative damage during processing and freezing. The 
addition of antioxidants to media for seed handling and storage aims to 
compensate for the decrease in antioxidant defense capacity of semen in 
vitro that occurs during semen processing and chilled or frozen semen 
storage. Whether the addition of antioxidants to seed extenders has a 
positive or negative effect depends on the dosage, the type of antioxidant, 
the combination of antioxidants, and the context in which the antioxidant is 
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used. Several antioxidants have been previously tested in in vitro studies 
using human, bovine, porcine, rabbit, and equine semen (Alvarez and 
Storey, 1983; Beconi et al., 1993; Kessopoulou et al., 1995; Baker et al., 
1996; Aurich et al., 1997; Donnelly et al., 1999; Ball et al., 2001a, 2001b; 
Bilodeau et al., 2001; Peña et al., 2003), with controversial efficacy and 
benefits. For example, vitamin E has a detrimental effect on fresh human 
semen (Donnelly et al., 1999) and liquid ram semen (Upreti et al., 1997) and 
little or no effect on chilled horse semen (Aurich et al., 1997; Ball et al., 
2001b) and on frozen, thawed human semen (Askari et al., 1994). In 
contrast, the addition of vitamin E or B16 to chilled or frozen dog semen 
improves semen parameters and inhibits the production of ROS (Michael et 
al., 2007; 2009). In boars, the addition of vitamin E to semen has a positive 
effect on sperm motility, mitochondrial membrane potential, and membrane 
integrity after cryopreservation, but the effect depends on the proportion of 
ejaculate (Peña et al., 2003; 2004). The addition of diluents containing 
enzymatic antioxidants has been tested individually to counteract oxidative 
stress during chilling and freezing of semen. In previous studies, the addition 
of CAT to semen diluents was shown to improve semen functions after 
thawing in deer (Fernández-Santos et al., 2007), dogs (Michael et al., 2007), 
boars (Roca et al., 2005), and bulls (Asadpour et al., 2012). In addition, CAT 
provides a protective effect against DNA damage in horse spermatozoa 
(Baumber et al., 2003a). SOD Addition to sperm extenders leads to 
controversial effects. A protective effect of SOD on sperm has been reported 
in males and mouflons (Kobayashi et al., 1991; Berlinguer et al., 2003), but 
a damaging effect has been found in horse sperm during cryopreservation 
(Baumber et al., 2005).The effects of the enrichment of extender with 
various antioxidants (vitamin C, vitamin E, vitamin B16, N-acetyl-L-
cysteine, taurine, and catalase) were studied on the quality of chilled and 
thawed dog semen (Michael et al. 2007).Of the antioxidants tested, vitamin 
E and B16 were found to be more effective in improving the quality of 
chilled semen by reducing the levels of ROS (Michael et al. 2009), while 
catalase had the most pronounced effect in improving the quality of dog 
semen after thawing (Michael et al. 2007). 
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4.1 Introduction  
 
The practice of artificial insemination with cooled-stored semen is widely 
utilized in dog breeding. The shipment of semen reduces the movement of 
animals and increases genetic variation, expanding the number of males 
available for breeding. The main issue with the use of chilled semen is that 
during storage at 4 ◦C, spermatozoa undergo changes that could affect their 
fertilizing ability (Silvestre et al.2021). This detrimental effect is related to 
oxidative stress due to an excess of reactive oxygen species (ROS) and a 
decrease in antioxidants (Silvestre et al.2021, Henkel et al.2005). Oxidative 
stress significantly damages sperm functions such as motility, fluidity of the 
sperm plasma membrane and the integrity of DNA due to lipid peroxidation 
induced by ROS (Verstengen et al.2005, Kasimanickam et al. 2012). 
Therefore, a feasible new strategy to improve the long-term preservation of 
semen is the use of antioxidants that keep only a small amount of ROS 
necessary to maintain normal sperm function (Silvestre et al.2021; Maneesh 
et al.2006; Ciani et al.2021). The antioxidant supplementation has been 
proposed to reduce the impact of oxidative stress during the canine sperm 
storage process and slow or prevent semen deterioration (Beccaglia et 
al.2009; Del Prete et al.2018).  
In the last years, there has been a growing interest in natural antioxidants 
found in plants, and among the most popular supplements, Maca (Lepidium 
meyenii Walpers) has attracted global attention. Maca is an Andean edible 
root that grows exclusively between 3500 and 4500 m above sea level. Maca 
is classified into three ecotypes according to the color of the hypocotyls (red, 
yellow and black) that show different concentrations of metabolites and 
different biological activities (Gonzales et al.2012). Yellow Maca contains 
several bioactive secondary metabolites, such as glucosinolates and specific 
alkaloids, called Macamides, that are responsible for its antioxidant effect 
(Tafuri et al.2019; Tafuri et al.2021). Several studies reported the 
effectiveness of the oral supplementation of Maca in improving fresh semen 
quality and quantity in humans, mice, bovines and stallions (Tafuri et 
al.2019; Clément et al. 2012; Del Prete et al.2018). Moreover, semen of 
animals fed with Maca supplementation diets showed an improved cooling 
and freezing ability (Del Prete et al.2019; D’Anza et al.2021). It has been 
recently demonstrated that Maca extract improves in vitro fertilization rates 
in mice by inducing an acrosome reaction and increasing sperm motility 
(Aoki et al.2019). To the best of our knowledge, the supplementation of the 
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semen extender for cooling or freezing with Maca has not yet been 
investigated.  
Therefore, the aim of this study was to test for the first time the effect of 
different concentrations of aqueous extract of Maca on canine quality-
related semen parameters (viability, motility, DNA fragmentation and 
oxidative stress) during storage at 4 ◦C for 7 days.  
 
4.2. Materials and Methods  
 
4.2.1. Animals  
 
The semen samples included in this study were collected from dogs of the 
FOOF breeder center through their routine practice in the framework of 
breeding programs. The research involved nine dogs, 8 small breed (2 
French bulldogs, 2 Jack Russel, 1 Pug, 1 Shih Tzu, 1 Poodle and 1 Cavalier 
King Charles Spaniel) and 1 large breed (Golden Retriever), with ages 
ranging from 1.5 to 8 years (median age was 6). Dogs received a standard 
commercial dog food twice daily and water ad libitum. All dogs received 
routine deworming treatments and vaccinations and shared the same 
environment for at least 6 months before the study.  
The experiment was conducted in accordance with the code of ethics (D.lgs. 
26—04/03/2014), and it was approved by the Ethics Committee of the 
Department of Veterinary Medicine and Animal Productions at the 
University of Naples Federico II, Italy (prot. no. PG/2021/0057934 of 
07/06/2021).  
 
4.2.2. Semen Collection and Processing  
 
Semen collection was performed with an artificial vagina. Raw semen was 
evaluated for volume, color and concentration using a Burker’s counting 
chamber. Each ejaculate was split into 4 aliquots that were diluted to reach 
a final concentration of 100 × 10s sperm/mL respectively in egg-yolk TRIS-
citrate glucose (EYT-G: Tris 2.4 g, Citric Acid 1.4 g, Glucose 0.8 g, 
Penicillin G Sodium Salt 0.06 g, Streptomycin 0.1 g, 20 mL of egg yolk and 
distilled water to 100 mL), i.e., the control (CTRL group) and in YET-G 
supplemented with 10, 20, 50 μL/mL of maca extract (M10, M20 and M50 
groups). All aliquots were placed in a syringe without air, transported to the 
laboratory at 4 ◦C within 3 h and then stored in the fridge at 4 ◦C for 7 days. 
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Control and treated semen samples were evaluated for sperm viability, 
sperm motility, DNA fragmentation and lipid peroxidation after 3 h, 24 h, 4 
days and 7 days (4 d and 7 d) of storage.  
 
4.2.3. Maca Source and Preparation of Aqueous Extract of Maca  
 
The yellow ecotype of Maca used in this study was acquired from the district 
of Junín, Andean highlands of Peru (4100 m above sea levels), with a 
taxonomic identification by Professor Carotenuto D. at the Universidad 
Nacional Mayor de San Marcos, Lima, Peru. Roots were treated according 
to the traditional open-field method of drying: exposition of the hypocotyls 
for two months at extreme temperature cycles, under intense light 
conditions, and atmospheric pressure typical of the high-altitude 
environment (>3500 m). After drying, hypocotyls were selected, washed 
and milled to flour with a particle size of 0.8 mm.  
Aqueous extract of Maca was prepared in accordance with the method 
described by Fei (Fei et al. 2020). Fifty grams of Maca powder were mixed 
with 1000 mL of water and auto- matically stirred in a water bath at 70 ◦C 
for 3 h. After that, the solution was centrifugated at 4000 RPM for 10 min, 
and then, the extraction within a water bath at 70 ◦C for 2 h was repeated. 
The final solution was placed in small vials and stored in a refrigerator at 4 
◦C for further use. The final aqueous extract of Maca should have 
concentrations of 750 mg/mL.  
A chemical analysis of the powder and the aqueous extract of Maca were 
performed through liquid Chromatography with tandem mass spectrometry 
(LC-MS-MS) at the Interuniversity Consortium Biostructures and 
Biosystems National Institute (INBB). Con- centrations of different 
metabolites specific to Maca, such as Macaenes (polyunsaturated fatty 
acids), Macamides (a series of nonpolar and long-chain fatty acid N-
benzylamides) and Macalines or Lepilidines were reported in Table 4.3.  
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Tab. 4.3. Concentrations of Maca metabolites in Maca powder and Aqueous extract of 
Maca. 
  

Chemical structures of Maca 
metabolites Maca powder (µg/L) Aqueous extract of 

Maca (µg/L) 
5-oxo-6E,8E-octadecadienoic 

acid (Macaen) 69,53 17,89 

N-(3-hydroxy-benzyl)-2Z-
fivecarbon acrylamide 614,29 157,99 

N-benzyl-5-oxo-6E,8E-
octadecadienamide (MI 7) 46,08 61,81 

N-benzyloctadecanamide 
(MI 16) 53,96 28,89 

1,3-dibenzyl-2, pentyl-4, 
5-trimethylimidazilium 

(Lepilidine A) 
59,03 13,31 

(1R,3S)-1-methyltetrahydro-
beta-5,6-hydridecarboline-3- 

carboxylic acid (MTACA) 
47,17 3,63 

1-dibenzyl-2-propane-4,5-
dimethylimidazilium 19,52 1,25 

 
 
4.2.4. Membrane Integrity (Hypo-Osmotic Swelling Test)  
 
The hyposmotic swelling (HOS) test was carried out at each time point for 
the as- sessment of the functional integrity of the sperm plasma membrane 
in control and treated groups. Twenty microliters of semen were incubated 
at 37 ◦C for 45 min with 80 μL of pre-warmed HOS solution (0.73 g sodium 
citrate and 1.35 g fructose in 100 mL of distilled water, 150 mOsm). After 
incubation time, a volume of 10 μL was placed on a glass slide and covered 
with a cover slip. Evaluations were conducted under phase-contrast 
microscopy (40×; Eclipse E200, Nikon, Tokyo, Japan) by operators unaware 
of the experimental design. The cells were classified as positive (damaged 
membrane) or negative (intact membrane) according to the presence or 
absence of coiled tails, respectively. A total of 200 spermatozoa were 
counted.  
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4.2.5. Motility Assessment  
 
Sperm motility parameters (total and progressive motility, sperm 
subpopulations and semen kinetic parameters) were assessed by Sperm 
Class Analyzer (SCA) system (Microptic SL, Veterinary Edition, 
Barcelona, Spain) installed on a camera-equipped light microscope system 
(Eclipse E200, Nikon, Tokyo, Japan). The following parameters were 
considered for the assessment: total motility (%), progressive motility (%), 
the percentage of sperm subpopulations (rapid and medium progressive), 
average path velocity (VAP; μm/s), straight-line velocity (VSL; μm/s), 
curvilinear velocity (VCL; μm/s), straightness (STR; %) and linearity (LIN; 
%).  
SCA system settings for dog semen classified as spermatozoa all the 
particles sized between 10 and 80 μm2 and as progressively motile 
spermatozoa with 75% STR. The minimum velocity (VCL) values 
considered for slow-medium and rapid spermatozoa subpopulations were 50 
and 100 μm/s; spermatozoa with VCL below 10 μm/s were considered static 
and spermatozoa with VCL > 150 μm/s and ALH >3.5 μm as hyperactive. 
Sixty frames per second with minimum contrast of 35 were acquired.  
For the evaluation, an aliquot of control or treated (M10, M20 and M50) 
semen at each time point (3 h, 24 h, 4 d and 7 d) was diluted 1:3 with TRIS-
glucose-citrate in order to reach a concentration of 30 × 106 sperm/mL as 
required by SCA system and incubated at 37 ◦C for 10 min before 
evaluation. Then, 5 μL were spotted onto a pre-warmed glass microscope 
slide, covered with a glass coverslip (22 mm × 22 mm). At least 500 sperm 
cells in five randomly selected fields were evaluated.  
 
4.2.6. DNA Fragmentation  
 
Sperm DNA fragmentation was examined in each sample by using the 
terminal de- oxynucleotidyl transferase dUTP nick end labeling (TUNEL) 
assay or in-situ Cell Death Detection Kit (Sigma-Aldrich, St. Louis, MO, 
USA), as previously described by Longobardi et al. (2022). Briefly, 40 μL 
of cooled semen was fixed with 250 μL of 4% (w/v) paraformalde- hyde in 
phosphate-buffered saline (PBS; pH 7.4) for 45 min at room temperature. 
After incubation, sperm cells were washed twice (300 g × 15 min) with PBS 
with Polyvinylpyrroli- done (PVP;1 mg/mL). After supernatant aspiration, 
the pellet was diluted at 1:10 with PBS. A drop of semen (approximately 20 
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μL) was smeared on an object glass, dried, and permeabilized with 0.1% 
Triton X-100 in 0.1% sodium citrate for 10 min. Then, slides were washed 
twice with PBS, air-dried, and incubated with a TUNEL reaction mixture 
for 1 h at 37 ◦C in a humidified atmosphere in the dark. The negative control 
was made by adding all components of the label solution (except for the 
terminal deoxynucleotidyl transferase enzyme), and the positive control was 
made by incubating the samples with DNAse recombinant to induct DNA 
separation for 10 min before incubation with the Tunel reagent. After one h 
of incubation, slides were stained with PBS -PVP labeled with 1 mg/mL 
Hoechst 33342, for 30 min, at room temperature and then rinsed with PBS. 
The results were examined using a fluorescent microscope (Eclipse E-600; 
Nikon, Tokyo, Japan) under ultraviolet light; the excitation wavelength was 
460 nm for the blue fluorescence and 520 nm for the green fluorescence.  
TUNEL assay evaluates the presence of free 3′-hydroxyl ends, which are 
identified by terminal deoxynucleotidyl transferase (TdT) enzyme and 
catalyze the addition of fluo- rescently labeled deoxyuracil triphosphate 
breaks in DNA strands. Spermatozoa in blue (Hoechst+) in a bright green 
fluorescence (Tunel+) showed damaged (fragmented) DNA, while 
spermatozoa in a dull green fluorescence showed normal DNA.  
 
4.2.7. Lipid Peroxidation  
 
Sperm lipid peroxidation of control and treated samples at each time point 
was determined by assaying the Malondialdheyde (MDA) concentration by 
means of the thio- barbituric acid (TBA) test (Esterbauer et al.1990). In 
order to precipitate proteins, 100 μL of each sample was treated with 0.5 mL 
of cold 30% (w/v) trichloroacetic acid and centrifugate. One millimeter of 
supernatant was reacted with 1.3 mL of 0.5% (w/v) TBA at 85 ◦C for 40 
min. In the TBA test reaction, each molecule of MDA reacts with two 
molecules of TBA with the production of a pink pigment having maximal 
absorbance at 532–535 nm. After cooling, the fluores- cence was read at 
wavelengths of 536 nm for excitation and 557 nm for emission using a SPEX 
Fluoromax spectrophotofluorimeter (GloMax®-Multi Detection System, 
Promega, Madison, WI, USA). Concentrations of MDA calculated using a 
calibration curve ranged between 0.5–2 pmoles/mL and were expressed as 
nmol/L of proteins.  
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4.2.8. Statistical Analysis  
 
Data were first recorded using a computerized spreadsheet (Microsoft® 
Excel® 2021, Redmond, WA, USA) and then imported into Statistical 
Package for Social Sciences (SPSS IBM® Statistics version 27.0, IBM 
Corporation, Armonk, NY, USA) for statistical analysis. The Kolmogorov–
Smirnov test was utilized for normality analysis of the parameters. All data 
were expressed in median and interquartile ranges (IQR) for the violation of 
normality. Non-parametric tests were used for evaluation. The effect of 
storage time on sperm analysis data was evaluated in each group (control, 
M10, M20 and M50) using a Friedman test, and in case of significance, post 
hoc analysis with Wilcoxon’s signed-rank test was conducted to compare 
individual storage times; differences between groups at each time point were 
also evaluated with Wilcoxon’s signed-rank test. Differences were 
considered statistically significant when p ≤ 0.05.  
 
4.3. Results  
 
4.3.1. Fresh Semen  
 
All ejaculates collected were white and milky in consistency. The median 
(IQR) of the volume of the sperm-rich fraction was 2.5 (1.5–5.0) mL with a 
sperm concentration of 230 (174–396) × 106 sperm/mL.  
 
4.3.2. Membrane Integrity (HOS)  
 
Regarding storage time, a decrease (p ≤ 0.05) of membrane integrity was 
only observed at 7 days in the M50 group. No differences in membrane 
integrity were found between the treated groups and the control at 3 h, 4 d 
and 7 d. In M50-treated group, a decrease (76.5 (76–85)%; p ≤ 0.05) was 
recorded compared to M10 (80.5 (80–88)%) and M20-treated groups (80 
(77–84.5)%) at 3 h. Likewise, at 24 h a reduced sperm integrity was found 
in M50 (76.5 (72–83.7)%; p ≤ 0.05) compared to CTRL group (83 (77–
84.5)%) and M20-treated group (77 (75.6–86.2)%).  
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4.3.3. Motility  
 
Figure 4.3 represents the results of total and progressive motility during 
storage time and the differences between time points inside each group and 
among groups at each time point. Semen motility gradually reduced during 
preservation at 4 ◦C in the control, as well as in the Maca-treated groups, as 
shown in Figure 1. After 4 days of cooling, total motility was significantly 
lower in the M10-treated group than in the CTRL group and in the M50- 
than in the M20-treated group (p ≤ 0.05). Moreover, at the same time point, 
progressive motility was lower in the M50-treated group compared with the 
CTRL group (p ≤ 0.05).  
Analysis of sperm subpopulations is reported in Table 4.3.1. After 24 h, 
semen stored at 4 ◦C with the addition of 10 μL/mL of Maca had an increase 
in rapid sperm cells, although not significant. The percentage of rapid sperm 
cells remained constant until 4 days of storage at 4 ◦C in the CTRL group; 
meanwhile, at 4 days, there was a decrease in treated groups (p ≤ 0.05). In 
all groups, the proportion of rapid sperm cells declined at 7 days (p ≤ 0.05). 
On the other hand, rapid progressive sperm were lower in the M50-treated 
group than in all the other CTRL and treated groups at 4 days of sperm 
storage (p ≤ 0.05). The percentage of medium progressive spermatozoa 
decreased after 4 d in all groups.  
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Figure 4.3 Total (A) and progressive motility (B) of dog semen (n=9) diluted with only egg-
yolk tris-citrate glucose (YET-G; CTRL) or with EYT-G with the addition of three different 
concentrations (10, 20 and 50 μL/mL) of aqueous extract of Maca (M10, M20 and M50) 
stored at refrigeration temperature (4°C) and evaluated at 3h, 24h, 4 and 7 days (4d and 
7d) of storage. Asterisk above the bar indicates statistical difference between groups at P 
≤ 0.05. The letters a, b and c indicate statistically significant difference at P≤ 0.05 between 
time points within each group.  
 
Sperm hyperactivation during cooling preservation was different in all 
groups, as illustrated in Table 4.3.1. Treatment with 20 and 50 μL/mL of 
Maca increased the percentage of hyperactivate sperm compared to CTRL 
after 3 h of storage (p ≤ 0.05). On the contrary, after 4 days of storage at 4 
°C, the percentage of hyperactivated sperm decreased in the M50-treated 
group compared to the CTRL group (p ≤ 0.05). As shown in Table 4.3.2, the 
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temporal decrease of kinetic parameters showed a similar trend in the 
different groups, except for VCL. This parameter increased after 24h of 
storage (P≤ 0.05), only in M10 treated group. For kinetic parameters, after 
3h at 4°C the CTRL group had higher VSL, VAP, LIN and STR than the 
M50 treated group (P≤ 0.05) and higher STR than the M20 treated group 
(P≤ 0.05). Moreover, after 24h of cooling, semen treated with 50 μL/mL of 
Maca (M50 group) had reduced (P≤ 0.05) VCL than semen diluted with the 
lowest concentration of Maca (M10 group). 
 
Table 4.3.1. Sperm subpopulations (% of rapid, medium and hyperativated spermatozoa) 
of canine (n=9) semen of control (CTRL) and semen extender Maca treatment groups (M10, 
M20, M50) during storage at 4°C for 7 days. All values are expressed as median and 
interquartile range (IQR).  
 

 Storage time 
Rapid progressive 

(%) 3h 24h 4d 7d 

CTRL 14.4 (4.5-20.7) a 17.8 (8.1-29.7) a 6.5 (1.9-16) a,x 0 (0-1.3) b 
M10 10.6 (7.4-17.6) a 24.2(6.6-29.1) a 2.1 (1-4) b,xy 0 (0-0) c 
M20 12.2 (5.6-21.8) a 11.2 (5.3-20.2) a 5 (1.5-11) b,x 0 (0-1.5) c 
M50 13.3 (9.4-20.8) a 12.6 (6-20.1) a 1.8 (0.5-2.4) b,y 0 (0-0) c 

Medium 
progressive (%)     

CTRL 14.3(13.4-21.7) a,xy 12.3 (7.3-23.2) a 2.4 (1.7-13.8) b 0(0-1.5) c 
M10 13.4 (6-20.7) a,xy 12 (6.2-21.5) a 2.1 (1-7.5) b 0 (0-0.1) c 
M20 12 (11.9-21.1) a,x 15.2 (8.1-21) a 10.5 (0.9-15.5) b 0 (0-0.5) c 
M50 14.5 (9-20.1) a,y 13 (7.7-22.4) a 2.5 (0.3-12.9) b 0 (0-0) c 

Hyperactive 
sperm (%)     

CTRL 1.6 (0.9-3.7) a,x 1.3 (0.9-4.6) a 1.1 (0.6-4.4) a,x 0 (0-0.14) b 
M10 3.5 (2.2-8.1) a,xy 2.88 (1.8-4.1) a 0.5 (0-1.2) b,xy 0 (0-0) c 
M20 3.1 (1.4-5.9) a,y 2.2 (0.7-3.8) a 0.25 (0-1.6) b,xy 0 (0-0.2) b 
M50 2.1 (1.1-6.7) a,y 1.7 (1.2-4) a 0 (0-0.8) b,y 0 (0-0) b 

The letters a, b and c indicate statistically significant difference at P≤ 0.05 between time points within 
each row (group; letters x and y represent statistical differences among groups within each column 
(time point). 
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Table 4.3.2. Trends of semen kinetic parameters of canine (n=9) semen of control (CTRL) 
and semen extender Maca treatment groups (M10, M20, M50) during storage at 4°C for 7 
days. All values are expressed as median and interquartile range (IQR).  
 

 Storage time 
VCL 3h 24h 4d 7d 
CTRL 85.4 (82.2-86.3) a 86.1 (84.6-86.6) a,xy 86.7 (74.8-88.2) a 0 (0-76.8) b 
M10 85.7 (81.3-87.8) a 87.8 (86.1.-89.4) b,x 82.4 (78.2-84) a 0 (0-33.8) c 
M20 84.2 (82.2-87.7) a 86.2 (82-87.6) a,xy 84.7 (40.5-85.8) a 0 (0-41) b 
M50 85 (81.7-87.1) a 83.8 (80.2-86.2) a,y 78.9 (38.3-84.1) a 0 (0-0) b 
VSL     
CTRL 61 (56.3-66.4) a,x 55.4 (48.5-62.2) a 44.7 (35.7-50.3) b 0(0-27.5) c 
M10 60.6 (50-64.5) a,xy 56 (49.7-63.6) a 40.1 (34.2-46) b 0 (0-19.3) c 
M20 59 (55.4-61.7) a,xy 57.3 (46.6-61.8) a 42.9 (19.5-51.5) b 0 (0-21.7) c 
M50 57.9 (50.8-64.4) a,y 49.9 (44.5-59.7) a 43.2 (16.3- 51.3) b 0 (0-0) c 
VAP     
CTRL 66.4 (61.8-70.7) a,x 61.2 (55.2-67.1) a 51.5 (42.8-57) b 0(0-34.4) c 
M10 66.5 (56.2-69.6) a,xy 62.3 (57.2-68.7) a 47.6 (42-52.9) b 0 (0-22.6) c 
M20 65 (63-66.6) a,xy 63.4 (53.4-68.1) a 50.5 (23.6-57.6) b 0 (0-24) c 
M50 64.1 (57.2-69.5) a,y 58.8 (51.7-64.8) a 50.6 (19.8-57.9) b 0 (0-0) c 
LIN     

CTRL 71.6 (66.2-79.1) a,x 67.4 (56.9-72.1) a 51.6 (40.3-62.4) b 0 (0-35.4) c 
M10 73 (59.8-75.5) a,xy 65.4 (55.5-72.2) a 48.9 (41.5-54.1) b 0 (0-25) c 
M20 70.1 (65.3-73.6) a,xy 66.3 (57.3-72.5) a 50.9 (2.9-60.1) b 0 (0-24.2) c 
M50 66.7 (61.2-73.8) a,y 60.2 (55-71.9) a 50.3 (20.9- 63.6) b 0 (0-0) c 
STR     
CTRL 91.4 (90.4-93.1) a,x 90 (87.5-92) b 86.3 (82.5-87.8) c 0 (0-80.4) d 
M10 90.9 (88-92.3) a,xy 89.7 (85.6-92.1) a 83.9 (80.6-86.5) b 0 (0-41.9) c 
M20 90.6 (87.5-92.4) a,y 89.9 (88.8 -92.8) a 84.9 (40.5-88.2) b 0 (0-41.8) c 
M50 89.7 (87.4- 92.2) a,y 86.3 (85-91.4) b 85.2 (41-92.2) b 0 (0-0) c 

The letters a, b and c indicate statistically significant difference at P≤ 0.05 between time points within 
each row (group); letters x and y represent statistical differences among groups within each column 
(time point). 

4.3.4 DNA fragmentation 
 
Results of DNA fragmentation are reported as median (IQR) and range 
(min–max) in Figure 4.3.4a. For all groups, storage time has an effect on 
DNA fragmentation (p ≤ 0.05), especially after 7 days of cooling. 
Differences in DNA fragmentation between groups were found at 3 h and at 
7 days of refrigeration. After 3 h of cooling, sperm DNA fragmentation was 
lower in the M10-treated group than in CTRL (p ≤ 0.05) and M50 groups 
(p ≤ 0.05). After 7 days of refrigeration of sperm, DNA fragmentation 
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increased (p ≤ 0.05) in M50-treated group compared to the other two treated 
groups (M10 and M20). 
 
4.3.5. Lipid Peroxidation  
 
As displayed in Figure 4.3.4b, MDA concentrations increased in all treated 
groups after 7 d (p ≤ 0.05), However, after 24 h of cooling, lipid peroxidation 
was lower in all Maca- treated groups (M10, M20 and M50) with respect to 
CTRL, although the difference was only significant between M20-treated 
group and CTRL group (p ≤ 0.05).  
 

 
 
Figure 4.3.4. Percentage of DNA fragmentation (A) and lipid peroxidation (B) of dog 
semen (n=9) diluted with only egg-yolk tris-citrate glucose (EYT-G; CTRL) or with EYT-G 
with the addition of three different concentrations (10, 20 and 50 μL/mL) of aqueous extract 
of Maca (M10, M20 and M50) stored at refrigeration temperature (4°C) and evaluated at 
3h, 24h, 4 and 7 days (4d and 7d) of storage. Asterisk above the bar indicates statistical 
difference between groups at P ≤ 0.05. The letters a, b and c indicate statistically significant 
difference at P≤ 0.05 between time points within each group. 
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4.4 Discussion  
 
This study shows for the first time the in vitro effects of Maca on canine 
spermatozoa preserved for 7 days at 4 ◦C. Cytoprotective effects of Maca 
have been demonstrated to be associated with its antioxidant activity by 
increasing the enzyme activity of superoxide dismutase and by direct free 
radical scavenging (Sandoval et al.2002; Vecera et al. 2007). As expected, 
during refrigeration in both control and Maca-treated groups, there was a 
progressive and significant reduction in semen quality. One of the factors 
that cause this impairment is the imbalance between oxidants and 
antioxidants (Dutta et al.2019). The protective action of the addition of 
antioxidants in canine semen extender for chilling has been already tested, 
suggesting that Lycopene or Vitamin E and B16 are able to preserve semen 
quality of chilled dog spermatozoa (Sheikholesami et al.2020; Michael et 
al.2009). Antioxidants counteract oxidative stress, improving membrane 
integrity and motility and preventing lipid peroxidation and DNA 
fragmentation of spermatozoa (Greco et al.2005).The results of this study 
indicate that Maca had a protective effect on canine chilled semen until 24 
h of storage. Particularly, the semen extender treatment with 10 μL/mL 
preserved DNA and plasma membrane integrity of spermatozoa at 3 h of 
storage and after 24 h of storage, significantly increased VCL of 
spermatozoa and improved the percentage of rapidly progressive and 
hyperactivated sperm cells, albeit not in a significant manner. A previous 
study that investigated the in vitro effect of Maca on human spermatozoa 
reported an increase in total motility but not in VCL or in other kinetic 
parameters (Aoki et al.2019). The color of Maca hypocotyls or the use of 
different methods of cultivation, processing, and extraction (methanol, 
chloroform, DMSO and water) of Maca can change concentrations of Maca 
bioactive metabolites (Tafuri et al.2019; Gonzales et al.2006). The content 
of secondary metabolites (Macamides, Macaenes and Lepilidines) improves 
the cold shock resistance of spermatozoa (Clément et al.2012) For this 
reason, we decided to investigate the quantities of some constituents of the 
aqueous extract of Maca used in this study and to test the supplementation 
of the semen extender with three different concentrations.  
Spermatozoa are highly prone to peroxidative damage due to the higher 
polyunsaturated fatty acid contents. MDA concentration is indicative of 
lipid peroxidation as a marker of oxidative stress, and it is an accepted 
diagnostic tool for humane infertility workup (Tavilani et al.2005; Collodel 
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et al.2015). Previous studies reported the high susceptibility of canine 
epididymal sperm to the deleterious effect of hydrogen peroxide, MDA and 
hydroxyl radical (Da Rosa Filho et al.2021). The MDA can exert a damaging 
effect by combining with other molecules such as proteins, DNA and RNA 
and provoking a reduction in sperm viability, motility, and DNA integrity 
(Das et al2009; Benedetti et al.2012). This study observed that an increase 
in the main by product of lipid peroxidation after 7 days of cooling 
determined a meaningful reduction of total and progressive motility and all 
kinetic parameters. Instead, DNA fragmentation and membrane integrity 
were not correlated with high MDA concentrations. Moreover, the semen 
with the semen extender addition of Maca had lower levels of MDA at 3 and 
24 h of cooling storage, the only statistical difference compared at 24 h 
between control and semen extender with the addition of 20 μL/mL. From 
these results, we can only speculate that the addition of Maca had a 
protective role against oxidation, preventing the formation of lipid 
peroxidation. More cases and further studies on the effect of Maca during 
canine semen freezing are needed to clarify whether Maca could prevent the 
cold shock of spermatozoa.  
In this study, contrasting and opposite effects at different Maca 
concentrations demon- strated dose-related effects of Maca. High 
concentrations of Maca affected sperm parameters by increasing DNA 
fragmentation and damaged membranes and also reducing some kinetic 
parameters (VCL, VSL, VAP, STR and LIN) between 3 and 24 h of storage 
at refrigerating temperatures. It was reported that Macamides and Macaenes 
have cytotoxicity It was reported that Macamides and Macaenes have 
cytotoxicity against different cancer cell lines by inducing apoptosis 
(Gonzales et al. 2006; Kuang et al. 2004; Fu et al. 2021). Cells undergoing 
apoptosis usually show several cellular changes, including DNA 
fragmentation and membrane disruption. Probably the toxicity of Maca on 
spermatozoa is expressed not only with increased apoptosis but also by 
reducing sperm velocities.  
The addition of all concentrations of Maca to semen extender increased the 
hyperactivation of sperm cells at 3 h, but significance was apparent only in 
the semen with the addition of 20 and 50 μL/mL of Maca. A previous study 
reported that the interaction of human and mouse sperm with Maca tends to 
increase the amplitude of lateral head displacement, which is strictly 
correlated with hyperactivation (Aoki et al.2019; Chan et al.1990). Alkaloid 
components of Maca could be responsible for the hyperactivation of the 
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spermatozoa, as already described after the addition of caffeine alkaloids to 
the semen (Tesarik et al. 1992; Funahashi et al.2001). It has been described 
that the alkaloids contained in caffeine that are similar to those of Maca 
provoke sperm hyperactivation by increasing intracellular cyclic adenosine 
monophosphate (cAMP) or by promoting activation of calcium ion-
permeable cation channels in the plasma membrane of sperm (Tesarik et 
al.1992; Ho et al.2001). Further analysis should be conducted to clarify the 
responsibilities and the mechanism underlying this effect of Maca. When 
hyperactivated, spermatozoa are able to swim through viscoelastic 
substances and successfully penetrate the zona pellucida; indeed, it is 
associated with increased sperm fertilizing capacity (Suarez et al.2008; 
Suarez et al.2008). For these reasons the hyperactivation is required when 
sperm enter the uterus and not during storage because this event determines 
an overall energy consumption reducing sperm lifespan.  
 
4.5. Conclusions  
 
The main findings emerging from the results of this study are that the 
addition of 10 or 20 μL/mL of aqueous extract of Maca to the chilled 
extender had positive effects until 24 h of storage, while the highest 
concentration of Maca tested in this study (50 μL/mL) had an immediately 
deleterious effect on quality-related semen parameters. Maca cannot 
sufficiently protect canine semen for extending refrigeration storage time; 
however, low concentrations of Maca could be proposed before 
insemination in fresh, cooled or freeze- thawed semen to increase 
hyperactivation of sperm cells and to preserve DNA integrity of 
spermatozoa until fertilization.  
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Chapter 5 

        Effect of aqueous extract of crocin addition to an extender 
for chilled canine semen  
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5.1 Introduction 
 
In the last decades there has been an increasing interest in artificial 
insemination (AI) in dogs, both to overcome mating inability and to improve 
breeding programs. With regard to the latter, the shipment of chilled or 
frozen semen allows the movement of semen from genetically superior dogs 
across countries, avoiding the risks of animal transportation and improving 
genetic variability. Both processing and shipping procedures are easier and 
cheaper with chilled compared to frozen semen whose transport requires 
expensive equipment (Verstegen, et al. 2005). Moreover, vaginal 
insemination with chilled semen results in higher pregnancy rates and larger 
litter sizes compared to frozen semen, that requires intrauterine deposition 
(Linde-Forsberg et al. 2001; Pinto et al.1999; Rota et al.1995.) 
A major limiting factor of chilled semen is the limited lifespan of 
spermatozoa after prolonged storage, as quality deteriorates at increasing 
times, imposing the use of chilled semen within 4.9 days (England et al. 
1996). It follows the importance to develop strategies to extend the lifespan 
of sperm during storage at 4°C.  
It is known that the reduced sperm longevity is due to oxidative stress, 
resulting from increased production of reactive oxygen species (ROS) and 
reduced antioxidants (Aitken et al. 2017; Silvestre et al. 2021; Henkel et 
al.2005). Oxidative stress (OS) affects sperm motility, membrane fluidity 
and DNA integrity, due to ROS-induced lipid peroxidation (Verstegen et 
al.2005). Therefore, enrichment of the semen extender with antioxidants has 
been proposed to prevent OS during prolonged storage at 4 °C. 
The spice saffron (Crocus sativum) has anti-inflammatory, anti-
proliferative, and anti-apoptotic properties (Hashemzaei et al. 2020), mainly 
due to its known antioxidant function (Assimopoulou et al. 2005). Crocin, 
one of the carotenoids responsible for the antioxidant capacity of saffron, is 
known to protect cells from oxidative damages by scavenging ROS 
(Rahaiee, et al. 2015). It has been reported that crocin protects spermatozoa 
from oxidative stress and consequent DNA damages in the deer, ram and 
goat (Domínguez-Rebolledo et al. 2010; Mata-Campuzano, et al. 2015; 
Longobardi et al.2020). Furthermore, sperm incubation with crocin 
improved motility, viability, membrane integrity, as well as blastocyst yields 
in cattle (Sapanidou et al. 2015). 
To the best of our knowledge, the effects of crocin on dog semen have not 
yet been investigated. We hypothesized that the enrichment of semen 
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extender with crocin would improve dog sperm quality during storage at 4 
°C, through its antioxidant action Therefore, the aim of this study was to 
evaluate the effects of different concentrations of crocin on sperm 
qualitative parameters, such as motility, viability and membrane integrity, 
as well as on sperm lipid peroxidation, during prolonged storage at 4°C.  
  
5.2 Materials and Methods 
 
5.2.1 Animals 
 
The experiment was conducted in accordance with the code of ethics (D.lgs. 
26—04/03/2014), and it was approved by the Ethics Committee of the 
Department of Veterinary Medicine and Animal Productions at the 
University of Naples Federico II, Italy (prot. no. PG/2021/0057934 of 
07/06/2021). 
Semen samples were collected from 10 dogs of the FOOF breeder center 
through their routine practice in the framework of breeding programs. The 
study included small breed (3 French bulldogs, 2 Jack Russel, 1 Pug, 1 Shih 
Tzu, 1 Poodle and 1 Cavalier King Charles Spaniel) and 1 large breed 
(Golden Retriever), with ages ranging from 1.5 to 8 years (median age was 
6). Dogs received a standard commercial dog food twice daily and water ad 
libitum. All dogs received routine deworming treatments and vaccinations 
and shared the same environment for at least 6 months before the study. 
 
5.2.2 Semen Collection and Processing 
 
Semen collection was performed with an artificial vagina. Raw semen was 
evaluated for volume, color and concentration using a Burker’s counting 
chamber. Each ejaculate was split into 4 aliquots that were diluted to reach 
a final concentration of 100 × 10s sperm/mL respectively in egg-yolk TRIS-
citrate glucose (EYT-G: Tris 2.4 g, Citric Acid 1.4 g, Glucose 0.8 g, 
Penicillin G Sodium Salt 0.06 g, Streptomycin 0.1 g, 20 mL of egg yolk and 
distilled water to 100 mL), i.e., the control group and in YET-G 
supplemented with 0.5, 1, 2 mM crocin (C0.5, C1 and C2 groups). All 
aliquots were placed in a syringe without air, transported to the laboratory 
at 4 °C within 3 h and then stored in the fridge at 4 °C for 7 days. Control 
and treated semen samples were evaluated for sperm viability, membrane 
integrity, sperm motility, and lipid peroxidation after 3 h, 24 h, 4 days and 
7 days (4 d and 7 d) of storage. 
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5.2.3 Membrane Integrity (Hypo-Osmotic Swelling Test) 
 
The hyposmotic swelling (HOS) test was carried out at each time point for 
the assessment of the functional integrity of the sperm plasma membrane in 
control and treated groups. Twenty microliters of semen were incubated at 
37 °C for 45 min with 80 μL of pre-warmed HOS solution (0.73 g sodium 
citrate and 1.35 g fructose in 100 mL of distilled water, 150 mOsm). After 
incubation time, a volume of 10 μL was placed on a glass slide and covered 
with a cover slip. Evaluations were conducted under phase-contrast 
microscopy (40×; Eclipse E200, Nikon, Tokyo, Japan) by operators unaware 
of the experimental design. The cells were classified as positive (damaged 
membrane) or negative (intact membrane) according to the presence or 
absence of coiled tails, respectively. A total of 200 spermatozoa were 
counted. 
 
5.2.4 Motility Assessment 
 
Sperm motility parameters (total and progressive motility, sperm 
subpopulations and semen kinetic parameters) were assessed by Sperm 
Class Analyzer (SCA) system (Microptic SL, Veterinary Edition, 
Barcelona, Spain) installed on a camera-equipped light microscope system 
(Eclipse E200, Nikon, Tokyo, Japan). The following parameters were 
considered for the assessment: total motility (%), progressive motility (%), 
the percentage of sperm subpopulations (rapid and medium progressive), 
average path velocity (VAP; μm/s), straight-line velocity (VSL; μm/s), 
curvilinear velocity (VCL; μm/s), straightness (STR; %) and linearity (LIN; 
%). 
SCA system settings for dog semen classified as spermatozoa all the 
particles sized between 10 and 80 μm2 and as progressively motile 
spermatozoa with 75% STR. The minimum velocity (VCL) values 
considered for slow-medium and rapid spermatozoa subpopulations were 50 
and 100 μm/s; spermatozoa with VCL below 10 μm/s were considered static 
and spermatozoa with VCL > 150 μm/s and ALH >3.5 μm as hyperactive. 
Sixty frames per second with minimum contrast of 35 were acquired. 
For the evaluation, an aliquot of control or treated (C0.5, C1 and C2) semen 
at each time point (3 h, 24 h, 4 d and 7 d) was diluted 1:3 with TRIS-glucose-
citrate in order to reach a concentration of 30 × 106 

 sperm/mL as required by SCA system and incubated at 37 °C for 10 min 
before evaluation. Then, 5 µL were spotted onto a pre-warmed glass 
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microscope slide, covered with a glass coverslip (22 mm × 22 mm). At least 
500 sperm cells in five randomly selected fields were evaluated. 
 
5.2.5 Lipid Peroxidation 
 
Sperm lipid peroxidation of control and treated samples at each time point 
was determined by assaying the Malondialdheyde (MDA) concentration by 
means of the thiobarbituric acid (TBA) test . In order to precipitate proteins, 
100 μL of each sample was treated with 0.5 mL of cold 30% (w/v) 
trichloroacetic acid and centrifugate. One millimeter of supernatant was 
reacted with 1.3 mL of 0.5% (w/v) TBA at 85 °C for 40 min. In the TBA 
test reaction, each molecule of MDA reacts with two molecules of TBA with 
the production of a pink pigment having maximal absorbance at 532–535 
nm. After cooling, the fluorescence was read at wavelengths of 536 nm for 
excitation and 557 nm for emission using a SPEX Fluoromax 
spectrophotofluorimeter (GloMax®-Multi Detection System, Promega, 
Madison, WI, USA). Concentrations of MDA calculated using a calibration 
curve ranged between 0.5–2 pmoles/mL and were expressed as nmol/L of 
proteins. 
 
5.2.6 Statistical Analysis  
  
Data were first recorded using a computerized spreadsheet (Microsoft® 

Excel® 2021, Redmond, WA, USA) and then imported into Statistical 
Package for Social Sciences (SPSS IBM® Statistics version 27.0, IBM 
Corporation, Armonk, NY, USA) for statistical analysis. The Kolmogorov–
Smirnov test was utilized for normality analysis of the parameters. All data 
were expressed in median and interquartile ranges (IQR) for the violation of 
normality. Non-parametric tests were used for evaluation. The effect of 
storage time on sperm analysis data was evaluated in each group (control, 
C0.5, C1 and C2) using a Friedman test, and in case of significance, post 
hoc analysis with Wilcoxon’s signed-rank test was conducted to compare 
individual storage times; differences between groups at each time point were 
also evaluated with Wilcoxon’s signed-rank test. Differences were 
considered statistically significant when p ≤ 0.05.  
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5.3 Results 
 
5.3.1 Fresh semen  
 
All ejaculates collected were white and milky in consistency. The of the 
volume of sperm-rich fraction was 2.5 (1.5-5.0) (median (IQR)) ml with a 
sperm concentration of 230 (174- 396) × 106 sperm/ml.  
 
5.3.2Membrane integrity (HOS) 
 
The results of sperm membrane integrity during storage time, with the 
differences among time points within each group and the differences among 
groups within time point are shown in Figure 5.3A. A decrease (P≤ 0.05) of 
membrane integrity was observed at 7 days in all groups. Moreover, in the 
semen treated with 2 mM crocin (C2) a significant decrease (P<0.05) was 
recorded already at 4 days of storage at 4°C Furthermore, a higher (P<0.05) 
proportion sperm with intact membrane was recorded in C0.5 and C1 groups 
compared to the control group also after 7 days of storage. 
 
5.3.3 Motility  
 
Results of total and progressive motility during storage time, as well as the 
differences among time points within group and among groups within time 
point are reported in Figure 5.3B and 5.3C. No differences were observed in 
total and progressive motility among groups at any time point (Figure 5.3 B 
and C). During preservation at 4 °C, total and progressive sperm motility 
decreased (P≤0.05) only at 7 days in the control group and in 0.5 and 1 mM 
crocin groups. Instead, the treatment with 2 mM crocin determined a 
reduction of total and progressive motility already at 4 days of storage. 
Moreover, in C1 group progressive motility increased after 24 hours of 
storage at 4°C to return to original values at 4 d and then decrease at the 
latest time.  
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Figure 5.3 Membrane integrity (A), total (B) and progressive motility (C) of dog semen 
(n=10) diluted with only egg-yolk tris-citrate glucose (EYT-G; control) or with EYT-G 
99supplemented with  three different concentrations (0.5, 1, 2 mM) of crocin (C0.5, C1 and 
C2) after storage  at refrigeration temperature (4°C) for 3h, 24h, 4 and 7 days (4d and 7d). 
Asterisks indicate significant difference at P≤0.05 among groups within each time point. a,b, 

c Different letters indicate significant differences among time points within each group 
(P<0.05) 
 
 
 



Effect of Aqueous Extract of Crocin Addition to an Extender for Chilled 
Canine Semen 

 

 100 

5.3.4 Kinetic parameters  
 
The temporal decrease of kinetic parameters and the pattern observed within 
time points and groups are showed in Table 5.3.  
The percentage of hyperactivated spermatozoa was similar among groups at 
all time points (Table 5.3). This parameter decreased at 7 d of storage in all 
groups even if the difference was not statistically different in the control 
group.  
With regard to treatment, no differences in VCL were detected between the 
control and treated groups. However, in C0.5 group VCL was higher 
(P≤0.05) than in C1 group at 3h  and 4 days of semen storage (P≤0.05). In 
all groups VCL dropped (P<0.05) only after 7 days of storage. The semen 
treated with 0.5 mM crocin (C0.5) exhibited higher (P<0.05) VSL and VAP 
than the control group (P≤0.05) at 4 d of storage at 4°C. Extending storage 
to 7 d resulted in a decrease of VAP in all groups; however, all treated groups 
had lower (P<0.05) values than the control.  
No differences in LIN and STR were observed among groups at 3 h, 24 h 
and 4 d of storage. Instead, at the latest time in the control group LIN was 
higher (P<0.05) compared to most groups and STR was higher (P<0.05) 
than in C2 group. However, in relation to storage time, both parameters 
decreased (P<0.05) in the control group at 4 h compared to earlier times, 
whereas this decrease (P<0.05) was only detected in the C0.5 group at 7 d. 
Likewise, Finally, BCF was higher (P<0.05) in C0.5 group compared to the 
control at 4 d of cooling storage, with intermediate values in the other treated 
groups. The temporal pattern of BCF was also similar to that of LIN and 
STR, with high values preserved up to 4 d and 7 d, respectively in the C0.5 
and the control groups. 
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Table 5.3. Trends of hyperactivated spermatozoa (%) and semen kinetic parameters of 
canine (n=10) semen of control (CTRL) and Crocina groups (C0.5, C1 and C2) during 
storage at 4°C for 7 days. 

 Storage time 

Hyper (%) 3h 24h 4d 7d 

CTRL 2.9 (0-8) a 2.5 (0-8.2) a 0.3 (0-4.1) a 0 (0-1.1) a 

C0.5 1.6 (0.2-11.4) a 1.9 (0.6-4.1) a 0.5 (0-4.3) a 0 (0-0) b 

C1 2.5 (0.2-7.8) a 3.5 (0-7.3) a 0.9 (0-3.4) ab 0 (0-0) b 

C2 2.2 (0.7-7.8) a 2.6 (1.2-9.8) a 0 (0-2.7) a 0 (0-0.4) b 

VCL     

CTRL 73 (56.4-91.4)a,xy 77.7 (55.4-128.6)a,xyz 34.2 (19.3-91.2) ab,xy 24.1 (17.3-73.2)b 

C0.5 84.2 (54.3-104.3)a,x 70.5 (49.5-107.1) a,x 65.5 (27.1-91.6) a,x 19.8 (16.2-30.3)b 

C1 64.2 (40.7-95.2) a,y 83 (63.3-122.7) b,y 48.1 (26.9-71.8) a,y 19.8 (17.4-42.2)c 

C2 68.7 (37.7-118.6) a,xy 81.6 (48.3-116.8) b,xz 44.4 (19.4-73.7) a,xy 17.5 (10.3-21.6)c 

VSL     

CTRL 37.1 (26.4-49) a 39.3 (34-73.8) a,xy 13.7 (2.3-40.5)b,x 6.4 (3.2-24.3) b,x 

C0.5 38 (20.2-57.5) a 39.2 (24.8-57.3) a,xy 26.8 (7.3-52.8) a,y 2.2 (1.3-7.4) b,y 

C1 27.4 (21.5-43-1) a 39.9 (29.3-57.6) b,x 20.7 (8.4-29.3) a,xy 3.3 (1.5-13.6) c,xy 

C2 34 (14.8-46) ab 35.5 (24.7-46.2) a,y 19.7 (3.4-29.7) b,xy 1.7 (0.7-4.8) c,y 

VAP     

CTRL 49.2 (42.2-63.2) a 50.9 (40-92.7) a,xy 19.8 (5.7-52) b,x 11.2 (6.9-41.2) b,x 

C0.5 53.2 (40.4-74.4) a 48 (32-75.7) a,x 36.6 (12.5-61.4) a,y 6.2 (5.1-14.2) b,y 

C1 44.3 (28.2-61.2) a 56.7 (43-84.5) b,y 31.7 (13.8-41.8) a,xy 6.8 (3.4-23.7) c,y 

C2 44.8 (24-81.2) a 53 (33.2-75.9) a,x 28.4 (6.7-44.9) b,xy 6.3 (3.4-10.3) c,y 

LIN     

CTRL 47.6 (40-54.7) a 46.7 (41.4-55.4) a 29.8 (14.9-41.5) b 26.4 (17.3-33.2) b,x 
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C0.5 47 (40-48.7) a 41.8 (35.3-52.2) a 35.8 (27.4-44.8) a 14.2 (8.3 -24) b,y 

C1 42.2 (40.1-52.5) a 46.3 (40.5-51.7) a 33 (31.1-40.5) b 17.3 (10-24.9) c,xy 

C2 39.8 (35.1-45.1) a 41.5 (35.7-46.4) a 26.4 (17.3-33.2) a 9.9 (4.5-22.2) b,y 

STR     

CTRL 66.4 (60-74) a 70.1 (65.2-73.1) a 53.8 (44.2-70.9) b 48.6 (42.3-62.5) b,x 

C0.5 66.9 (61.2-71.2) a 64.1 (55.5-72.1) a 62.2 (49.8 -71.4) a 48.6 (36.4-54.5)b,xy 

C1 65.4 (61-69.4) a 68 (60-71) a 60.2 (53.2-68.5) ab 59.3 (44.3-57.1) b,x 

C2 63.4 (55.2-69.4) a 65.9 (57.7-71.3) a 60 (46.4-68.2) a 33.4 (11.8-50.7)b,y 

BCF     

CTRL 8.8 (5.5-13.4) a,x 10.8 (6.4-13.7) a 3.8 (0.7-10.6) b,x 2 (1-8.2) b,x 

C0.5 9.1 (4.9-12.9) a,xy 7.5 (5.6-13.2) a 6.9 (2.2-11.2) a,y 0.9 (0.6-2.5) b,xy 

C1 6.8 (4.2-12) a,y 9.9 (6.8-14) b 5.5 (2.6-10.4) a,xy 0.9 (0.4-5) c,xy 

C2 7.8 (4-14.2) a,xy 7.5 (4.7-13.6) a 6 (0.8-11) b,xy 0.8 (0.4-1.5) c,y 

 

5.3.5 Lipid peroxidation 
 
As shown in Figure 5.3.5, no differences in lipid peroxidation, indicated by 
the MDA concentrations, were detected among groups at any time points. A 
slight similar decrease was recorded at 24 h compared to 3 h in the control 
and the C0.5 groups, with intermediate values at 4 and 7 d. Unexpectedly, 
no increase in lipid peroxidation was observed at prolonged storage times. 
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Figure 5.3.5. Lipid peroxidation Membrane integrity (A), total (B) and progressive motility 
(C) of dog semen (n=10) diluted with only egg-yolk tris-citrate glucose (EYT-G; control) 
or with EYT-G 103supplemented with  three different concentrations (0.5, 1, 2 mM) of 
crocin (C0.5, C1 and C2) after storage  at refrigeration temperature (4°C) for 3h, 24h, 4 
and 7 days (4d and 7d). Asterisks indicate significant difference at P≤0.05 among groups 
within each time point. a,b Different letters indicate significant differences among time 
points within each group (P<0.05). 
 
5.4 Discussion 
 
The hypothesis of this study was that supplementation of the extender with 
crocin, an active constituent of saffron with antioxidant properties, would 
improve the quality of canine semen stored at 4°C. The rationale behind this 
work originates from the evidence of oxidative stress occurring after 
prolonged refrigeration and of beneficial effects of crocin on sperm quality 
parameters reported in other species. To the best of our knowledge, this is 
the first study to assess the effects of crocin on chilled canine semen. The 
results of the study demonstrated that the enrichment of the extender with 
0.5 mM crocin improves sperm membrane integrity and sperm kinetics after 
4 days storage at 4°C, without affecting though lipid peroxidation. 
In order to evaluate the effects of crocin on sperm quality a dose-response 
trial was carried out, using concentrations (0, 0.5, 1 and 2 mM) previously 
tested in bovine, goat and buffalo species (Sapanidou et al. 2022; 
Longobardi et al. 2020 and 2021) showing that the most effective 
concentration for canine chilled semen was the lowest tested (0.5 mM), 
while the highest (2 mM) exerted in part a deleterious effect. The effects of 



Effect of Aqueous Extract of Crocin Addition to an Extender for Chilled 
Canine Semen 

 

 104 

the treatment were assessed at different times, such as 3 h, 24 h, 4 days and 
7 days. Regardless of the treatment, a deterioration of semen quality was 
recorded after 7 days of storage, time at which sperm membrane integrity, 
total and progressive motility, as well as kinetic parameters, were 
significantly reduced. When the extender was supplemented with the highest 
concentration of crocin (2 mM) a decrease of membrane integrity, total 
motility, and progressive motility was observed earlier, i.e., at 4 days 
storage, indicating a potential toxic effect. However, in any case the decline 
in semen quality was unexpectedly not associated to increased lipid 
peroxidation. The worsening of semen quality at prolonged storage time at 
4°C is in agreement with a previous study suggesting that chilled canine 
semen should be used for AI within 4.9 days (England, et al. 1996). It has 
been previously shown that over extended storage at 4° C spermatozoa 
switch from aerobic to anaerobic metabolism, due to oxygen consumption, 
and that the activation of glycolysis results in lactate production and hence 
reduced pH of the medium, leading in turn to decreased metabolism, ATP 
production and motility. (Mann et al.1964)  
The most interesting findings of the present study regard the improvement 
of semen quality obtained with 0.5 mM crocin. Indeed, the addition of 0.5 
mM crocin in the extender significantly increased the proportion of 
spermatozoa with intact membrane at both 4 and 7 days compared to the 
control group. Moreover, despite similar values of total motility and 
progressive motility, after 4 days of storage most of the sperm kinetic 
parameters improved in C0.5 group, compared to the control. In fact, 
average path velocity (VAP), straight-line velocity (VSL) and beat cross 
frequency (BCF) were significantly higher when semen was stored for 4 
days in the presence of 0.5 mM crocin compared to the control. The 
curvilinear velocity (VCL) was also higher although the difference was not 
significant. Furthermore, in the C0.5 group straightness (STR) and linearity 
(LIN) were preserved up to 4 days, whereas a decrease was observed at this 
storage time compared to earlier times in the control group. It is known that 
motility is one of the most important indicators of the potential fertilizing 
ability of spermatozoa (Vijayaraghavanet al. 2003) and sperm kinetics has 
been associated to fertility in various species (Marshburn et al 1992; 
Broekhuijse et al. 2012)  
A correlation between oxidative stress and semen quality parameters was 
demonstrated in dogs (Del Prete et al.2018). It is known that sperm quality 
deteriorates at increasing storage times due to the occurrence of oxidative 
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stress, resulting from an unbalance between ROS production and antioxidant 
systems (Silvestre et al. 2021). For this reason, the focus of researchers has 
been recently addressed to strategies based on the utilization of antioxidants 
to counteract the chilling-related oxidative stress. An improved semen 
quality of chilled canine semen has been previously obtained by 
supplementing extender with antioxidants such as Lycopene or Vitamin E 
and B16, Maca extracts, antioxidant enzymes (Sheikholeslami et al.2020; 
Michael et al. 2009; Del Prete et al.2022) 
The beneficial effect of crocin here reported is likely related to its 
antioxidant properties. However, the improved semen quality was not 
associated to decreased lipid peroxidation, which was unexpectedly not 
affected by either treatment or storage time. A slight decrease of lipid 
peroxidation was only recorded in the control group and C0.5 groups at 24 
h, returning to initial values at 4 and 7 days. This contrasts with our previous 
experiment with maca extracts, in which after 7 days storage chilled semen 
showed an increase of lipid peroxidation (Del Prete et al. 2022). 
There are several reports on the beneficial effects of crocin on semen quality 
in different domestic species, in most of which, though, crocin was added to 
the semen extender before freezing rather than chilling and hence, results 
cannot be compared. In the goat supplementation of 1 mM crocin in the 
extender decreased oxidative stress, improving sperm motility and the DNA 
integrity of frozen-thawed sperm (Longobardi et al. 2020). In cattle crocin 
improved sperm viability, motility and kinetic parameters (VCL, VSL, 
VAP, ALH) after thawing but a reduction of lipid peroxidation was only 
observed after 2 h post-thawing incubation (Sapanidou et al. 2022). In 
another study the incubation of frozen-thawed semen with crocin improved 
sperm membrane integrity and decreased DNA fragmentation and ROS 
levels (Longobardi et al. 2021).  
We may speculate that the protective effects of crocin on canine chilled 
semen are due to its antioxidant functions, as it is known that crocin is a 
ROS scavenger (Singla et al. 2011; Sapanidou et al. 2005). Oxidative stress 
is indeed known to affect the fluidity, integrity, and flexibility of the sperm 
plasma membrane, interfering with fertilizing capacity (Said et al.2005). 
However, in this study we measured MDA concentration to assess lipid 
peroxidation, a reliable marker of oxidative stress and predictor of fertility 
in other species (Tavilani, et al. 2005; Tavilani et al. 2008; Collodel, et al. 
2015) while ROS levels were not evaluated. Lipid peroxidation was not 
affected by either treatment or storage time; however, the MDA levels in 



Effect of Aqueous Extract of Crocin Addition to an Extender for Chilled 
Canine Semen 

 

 106 

spermatozoa were relatively low in all groups and hence, due to the 
limitation of the assay and the high variability, small differences among 
groups could not be detected. In any case, based on our results, we cannot 
conclude that the improvement of membrane integrity and sperm kinetics 
observed in C0.5 group after 4 days storage is due to reduced oxidative 
stress. Therefore, the beneficial effects may be related to other functions of 
crocin, such as the capability to increase intracellular detoxifying enzymes 
and to modulate membrane fluidity, leading to changes in its permeability 
to oxygen and other molecules (Assimopoulou et al. 2005). 
 
5.5 Conclusion 
 
In conclusion, we demonstrated that the enrichment of extender with the 
crocin improves to a certain extend canine semen quality, particularly after 
4 days of storage at 4 °C. At this time point crocin increased the percentage 
of sperm with intact membrane and most of the kinetic parameters measured 
by CASA. It is worth pointing out that the beneficial effect was lost at 7 
days, at which time deterioration of semen quality occurred in all groups, 
regardless of the treatment. Therefore, the treatment improved semen 
quality parameters after 4 days storage but was not effective at further 
extending lifespan of spermatozoa under chilling conditions. Further studies 
are undoubtedly required to validate these results, by assessing other 
fertility-associated parameters including fertilizing ability, and to elucidate 
the mechanism of action of the compound, by evaluating ROS levels and 
DNA fragmentation. Finally, in future perspective it would be interesting to 
assess the effect of crocin on quality of frozen semen. 
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6.1 Introduction 
 
Cryopreservation of canine semen has become an increasingly popular 
technology (Peña et al., 2006). The use of frozen semen for artificial 
insemination allows to choose the best timing for insemination and the 
semen coming from anywhere in the world. Long-distance transportation of 
frozen semen reduced the movement of animals and its costs and preserve 
the genetic diversity of species (Watson and Holt, 2001; Comizzoli et al., 
2009).   
The outcome of artificial insemination with frozen semen is dictated by the 
quality of semen after thawing. The cold shock resistance of semen is 
different between individuals and ejaculates, and it can be further influenced 
by the contents of semen extender and the cryopreservation protocols (Szaz 
et al., 2000). During freezing process, the excess formation of reactive 
oxygen species (ROS) leads to a condition of oxidative stress. The large 
amount of polyunsaturated fatty acids and the low content of protective 
enzymes in sperm cytoplasm make sperm much more sensitive to the 
oxidative stress (Sharma and Agarwal, 1996; Neagu et al., 2011) . The major 
consequence of cryopreservation is an extensive oxidative damage to all 
cellular components, including proteins, lipids and DNA (Kim et al., 2010).  
This causes a decreased semen quality, such as viability, motility, DNA 
integrity, provoking acrosome damage, cell apoptosis, interfering with the 
fertilization capability (Sharma and Agarwal, 1996; Kim et al., 2010; Neagu 
et al., 2011).  
In order to reduce reactive oxygen species generation due to osmotic stress 
during the cryopreservation procedure, different attempts have been made 
to protect spermatozoa during the freeze-thaw process by extender 
supplementation of antioxidants (Mahiddine and Kim, 2021).  
Lepidium meyenii (Maca) is an Andean plant of the Brassicaceae family 
native of Peru. Maca composition depends on the ecotypes (hypocotyl 
colors) and the condition of cultivation (altitude, temperature),  drying and 
extraction procedures (Korkmaz, 2018).Typical Maca elements include 
glucosinolates, alkaloids (macaines), alkamides (macamides) fatty acids, 
phenols (flavonoids, tannins), and several microelements (Korkmaz, 2018; 
Tafuri et al., 2019).  
In this study for the first time the effect of the addition of aqueous extract of 
Maca on the sperm post-thaw quality of dog spermatozoa was examined. 
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6.2 Material and Methods 
 
6.2.1 Animals  
 
In this study were involved 10 dogs of different breeds (Rottweiler, English 
Setter, Shih Tzu, English Pointer, Miniature poodle) ranging between 2 and 
8 (median of 5.5) years of age. All animals were housed in the FOOF breeder 
center and fed with standard commercial dog food twice daily and water ad 
libitum. The dogs were routinely vaccinated and dewormed according to 
national recommendations. All procedures were carried out in compliance 
with the code of ethics (D.lgs. 26 - 04/03/2014), and there were approved by 
the Ethics Committee of the Department of Veterinary Medicine and Animal 
Productions at the University of Naples Federico II, Italy (prot. no. 
PG/2021/0057934 of 07/06/2021). A written inform consent was signed by 
the legal representative of the breeding center. 
 
6.2.2 Semen collection and processing  
 
One ejaculate was collected by artificial vagina from each of 10 dogs as part 
of a routine reproductive examination of dogs. Immediately after, sperm rich 
fractions were examined for volume (mL) by aspiration into a 5-mL pipette, 
and motility by Sperm Class Analyzer (SCA) system (Microptic SL, 
Veterinary Edition, Barcelona, Spain). Where sperm concentration was too 
high, a 30 μl aliquot was first diluted 1:1 v/v in TRIS-citrate glucose buffer 
(TCG: Tris 2.4 g, Citric Acid 1.4 g, Glucose 0.8 g, Penicillin G Sodium Salt 
0.06 g, Streptomycin 0.1 g and distilled water to 100 ml)  at 37 °C.  
Raw semen was centrifuged on a cushion (Glucose 59.95 g, Sodium citrate 
tribasic dihydrate 3.7 g, Disodium EDTA 3.7 g, Sodium bicarbonate 1.2 g, 
in 1 L of deionized water) at 600 x g for 10 minutes to partial eliminate the 
seminal plasma. After removal of supernatant, sperm concentration was 
measured using a Bürker counting chamber. A two-step freezing protocol 
was used to reach a final concentration of 200 x 106 sperm/mL. Semen was 
first diluted at room temperature (RT: 20-25°C) with TCG with 20% egg 
yolk and 6% glycerol to reach a concentration of 400 x 106 sperm/mL, 
placed in a RT water container and cooled over 30 minutes to 4°C in the 
fridge.  Samples were then diluted 1:1 (v/v) with TCG with 20% egg yolk, 
7% glycerol and 1% Equex STM without (Ctrl) or with the addition of 10 
µl/mL of aqueous extract of Maca (Maca) and equilibrated for additiona1 5 
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minutes at 4°C. The preparation and the composition of the aqueous extract 
of Maca was the same as in our previous study (Del Prete et al., 2022). The 
choice of concentration was based on the results of previous experiments 
with the aqueous extract of Maca (Del Prete et al., 2022). Diluted semen was 
loaded into 0.5 mL straws, suspended 7 cm over liquid nitrogen vapor for 
10 min, then plunged into and stored in liquid nitrogen. After at least 4 
weeks two straws per sample were thawed in a 37°C water bath for 30 and 
emptied 1:3 in TCG to reach a concentration of 30 x 106 spz/ml.  
Sperm levels of malondialdehyde (MDA), an indicator of lipid peroxidation, 
were evaluated before (fresh semen; pre) and immediately post-thaw (post-
thaw). In order to verify the effect of Maca on post-thaw sperm longevity 
for up to 2 h of incubation of 37°C, thermal-resistance test was conducted, 
evaluating samples at 1 (T1) and 2 h (T2) of incubation for motility, sperm 
membrane integrity and mitochondrial membrane potential.  
 
6.2.3 Motility and kinetic parameters 
 
Motility was assessed using Sperm Class Analyzer (SCA) system 
(Microptic SL, Veterinary Edition, Barcelona, Spain) installed on a camera-
equipped light microscope system (Eclipse E200, Nikon, Japan). The 
parameters included were: total motility (%), progressive motility (%), the 
percentage of sperm subpopulations (rapid, medium and slow), average path 
velocity (VAP; μm/s), straight-line velocity (VSL; μm/s), curvilinear 
velocity (VCL; μm/s), straightness (STR; %) and linearity (LIN; %), 
amplitude of lateral head (ALH; μm), wobble  (WOB= VAP/VCL; %),  beat 
cross frequency (BCF ; beats/s). The same SCA preset for dog semen was 
used for all examinations. All particles sized between 10 and 80 μm2 were 
considered sperm and classified as progressive motile in case of  STR > 75 
%. The SCA cut-off values for spermatozoa subpopulations were based on 
curvilinear velocity (VCL) = rapid > 100 > medium >  50> slow; 
spermatozoa with VCL > 150 μm/s and ALH >3,5 μm were considered as 
hyperactive and spermatozoa with VCL below 10 μm/s were considered as 
static.  For the evaluation, five µl of control or Maca-treated semen at each 
time point (Fresh semen, Post-thaw, T1, T2)  were placed in a Leja analysis 
chamber (Leja, Nieuw-Vannep, Netherlands) pre-warmed at 37 °C. At least 
500 sperm cells in five randomly selected fields were evaluated.  
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6.2.4 Membrane integrity and mitochondrial activity  
 
Triple fluorescent labelling with propidium iodide (PI; Invitrogen™, 
Eugene, Oregon, USA), SYBR green-14, and 5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimi- dazolylcarbocyanine iodide (JC-1; Molecular Probes, 
Eugene, OR, USA) was performed to detect changes in mitochondrial 
transmembrane potential and membrane integrity (Figure 6.2.3).  
SYBR green-14 stains live sperm green and PI enters cells with 
compromised membrane integrity, staining them red (dead spermatozoa). 
JC-1 is a green-fluorescent monomer at low membrane potential and forms 
aggregates in mitochondria with high membrane potential, emitting a bright 
red- orange fluorescence. Therefore, three sperm populations were 
identified with the SYBR-14/PI/JC-1 stain: dead sperm (PI+), viable sperm 
with high mitochondrial membrane potential (HMMP; SYBR-14+/PI-/JC-
1+) and viable sperm with low mitochondrial membrane potential (LMMP; 
SYBR-14+/PI-/JC-1-). For the evaluation, thirty µL of each sample were 
incubated with 3 µl of SYBR green solution (5 µl SYBR a10x + 15 µl PBS), 
2 µl of  PI solution (10 mg/ml) and 2 µl JC-1 solution (1 mg/ml) at 37 °C in 
the dark for 15 min. At least two hundred cells per sample were evaluated 
using confocal microscopy (DM6 B, Leica Microsystems CMS, GmbH). 

 
 
Figure 6.2.3. Example of canine sperm cells stained by SYBR-14/PI/JC-1: dead sperm 
(PI+; head arrow), viable sperm with high mitochondrial membrane potential (HMMP; 
SYBR-14+/PI-/JC-1+; big arrow) and viable sperm with low mitochondrial membrane 
potential (LMMP; SYBR-14+/PI-/JC-1-; small arrows). 
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6.2.5 Lipid peroxidation 
 
Sperm concentration of malondialdehyde (MDA) was measured using the 
thiobarbituric acid (TBA) procedure as previously described (Esterbauer et 
al., 1990). In brief, 100 μL of each sample was mixed with 0.5 mL of cold 
30% (w/v) trichloroacetic acid in order to precipitate proteins. One 
millimeter of supernatant was incubated with 1.3 mL of 0.5% (w/v) TBA at 
85 ◦C for 40 min. In this test, one molecule of MDA reacts with two 
molecules of TBA yielding a pink chromogen having maximal absorbance 
at 532–535 nm. After cooling, the fluorescence was read immediately using 
a SPEX Fluoromax spectrophotofluorimeter (GloMax®-Multi Detection 
System, Promega Madison, WI, USA; excitation wavelengths, 536 nm; 
emission wavelengths, 557 nm). Concentrations of MDA were calculated 
using a calibration curve ranged between 0.5–2 pmoles/mL. The results 
expressed as nmol/L of proteins. 
 
6.2.6 Statistical analysis  
 
Data were analyzed with Statistical Package for Social Sciences (SPSS 
IBM® Statistics version 27.0, IBM Corporation, Armonk, NY, USA). 
Because of non-normal distribution (Shapiro-Wilk test) results were 
expressed as median and interquartile range (IQR) and non-parametric test 
were used. The statistical comparisons between the groups at each time point 
(Fresh semen, Post-thaw, T1, T2) were performed with Wilcoxon. The 
effect of storage time in each group (Ctrl or Maca) on semen parameters was 
evaluated using a Friedman test, and in case of significance, post hoc 
analysis with Wilcoxon’s signed-rank test was used to compare individual 
storage times. Values were considered statistically significant when p ≤ 
0.05. 
 
6.3 Results  
 
6.3.1 Fresh semen 
 
Fresh semen was of normal appearance, milky -white in color. The volume 
ranged between 0.4 and 12 mL (median of 2.4 mL), with a median 
concentration of 312.5 x 10 6 sperm/ml (IQR: 269,5- 462 sperm/mL). Fresh 
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sperm presented a viability (SYBR-14+/PI-) of 84 (79.3-85) % and HMMP 
(SYBR-14+/PI-/JC-1+) of 38.5 (36-44.8)% (Fig. 6.2.3).   
 
6.3.2 Motility and kinetic parameters 
 
Sperm motility and kinetic parameter assessment evaluated by SCA of fresh 
semen (pre) and of control and Maca-treated semen after frozen- thawed 
(post-thaw, T1 and T2) are shown in Table 6.3A and 6.3B. As expected, a 
significant reduction (p≤ 0.05) in total and progressive motility in both 
control and treated semen was observed after thawing (pre vs post; post vs 
T1; Table 6.3A). The percentage of hyperactivated spermatozoa remained 
constant during the four time points analyzed in control, while in the semen 
treated with Maca increased significantly at T1 (p≤ 0.05). As shown in Table 
1, the temporal decreases of motile-sperm subpopulations showed a similar 
trend in both groups. Although this effect of cryopreservation on motility 
parameters, total motility and the percentage of sperm with medium velocity 
in Maca-treated semen were higher than control after 1 hour of incubation 
at 37°C (Table 6.3A). At the same time point, WOB was found remarkably 
high in Maca-treated group than control (Table 6.3B). There were no other 
differences between groups in semen kinetic parameters between the two 
groups (Table 6.3.2).  
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Table 6.3A Total and progressive motility and the percentages of hyperactivated, rapid, 
medium and slow-moving spermatozoa assessed using Sperm Class Analyzer (SCA) in 
Control and Maca-treated (10 μL/mL of aqueous extract of Maca) dog semen (n = 10) 
before freezing (Pre), immediately after thawing and after 1 (T1) and 2 h (T2) of incubation 
at 37°C. All values are expressed as median and interquartile range (IQR); asterisk 
indicates statistical difference between groups  at p≤ 0.05; the letters indicate statistically 
differences at at p≤ 0.05 between time points within each group.  
 

 Total motility (%) Progressive motility (%) Hyperactive (%) 
 Control Maca Control Maca Control Maca 

Pre 86.4 (79.8-93)a - 25.8 (20-39.7) 

a 
- 2.8 (0.5-4.1) 

a 
- 

Post 31.2 (25.6-60.1)b 40.4 (28.5-58) 

b 
7.4 (1.5-14.9) a 9.3 (0.6-23) a 0.5 (0-2.9) a 1.8 (0-6.7) a 

T1 23.8 (15.9-36.3) 

c 
33.1 (18-
40.1)*, c 

4.7 (0-7.9) b 5.5 (0.4-12.1) a 1.9 (0-11.1) a 6.8 (1.7-16.9) b 

T2 25.6 (12.7-32.8) 

c 
26.8 (10.5-42) c 0.5 (0-7.1)b 3.6 (0.4-9.6) a 4.3 (0-12.3) a 10 (0.7-17.9) b 

 Rapid (%) Medium (%)  Slow (%) 
 Control Maca  Control Maca Control  Maca 

Pre 16.4 (4.6-32) a - 26.2 (23.2-
29.8)a 

- 35.8 (32.1-
45.4)a  

- 

Post 5.7 (0-16.1) a 8.5 (1.7-20.7) a 2.1 (1.6-6.5) b 4.1 (2.6-6.9) b 25.5(19.4-
32.2) a 

26.9 (21.3-29.1)a 

T1 4.7 (0-10.6) a 4.5 (1.4-16.1) a 1.4 (0.4- 2.8) b 2.3 (0.7-4)*, b 17.7 (12.2-
22.1) b 

19.2 (13-25.5) b 

T2 1.1(0-10) a 4.6 (0.4-15.8) a 0.9 (0-2.1) b 2.1 (0.2-3.7) b 19.5 (11.9-
22.3) b 

21 (9.8-23.8) b 
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Table 6.3B Sperm velocities in control and Maca-treated (10 μL/mL of aqueous extract of 
Maca) canine semen (n=10) at different time points, before freezing (Pre), immediately 
after thawing (Post) and after 1 (T1) and 2 h (T2) of incubation at 37°C. All values are 
expressed as median and interquartile range (IQR). Significant differences between groups 
are indicated by an asterisk with p ≤ 0.05; within each group (column), means with different 
letters (a–c) differed between time points (p ≤ 0.05).  
 

 
VCL: curvilinear velocity; VSL: straight-line velocity; VAP: average path velocity; LIN: linearity; 
STR: straightness; ALH: amplitude of lateral head; WOB: wobble  (VAP/VCL); BCF: beat cross 
frequency. 
 
6.3.3 Membrane integrity and mitochondrial activity  
 
Figure 6.3.2 shows the modifications of the percentage of viable sperm with 
HMMP (A) or LMMP (B) at different time points in both groups (control 
and Maca). As shown in Figure 6.3.2A, the percentage of viable sperm with 
HMMP decreased significantly at thawing, and at T2 in both groups 
(P<0.05). The portion of viable sperm with LMMP remain constant between 
pre and post-thaw in both groups, while a decreasing was evident between 
post-thaw and T1 only for control group and between T1 and T2 for Maca 
group (Figure 6.3.2 B). No differences were found between 
groups regarding those parameters. 

 VCL (μm/s) VSL(μm/s) VAP(μm/s)  
 Control Maca  Control Maca  Control Maca  

Pre 70.8 (57.5-82.9) a - 40.1 (33.4-46.6)a - 50.5 (45.8-60.9)a - 

Post 51.4 (28.7-71.8) a 59.9 (39.7-81.5) a  26.9 (15.8-33.7)a 34.7 (15.4-44.4) a 34.2(20.1-40.9)b 40.1 (24-52.7) b 

T1 49.9 (25.2-77.6) a 57.7(37.1-80) a 21.1 (5.9-31)ab 23.2 (8.8-38.1) a 28 (10.5-42.1)b 31.7 (15.7-50.3) b 
T2 33.5 (24-79.7) a 52.8 (25.9-88.9) a 9.3 (4.3-34.1) b 21.2 (7.1-29.3) a 15.3 (8.9-46.1)b 29.5 (11.7-48.6) b 

 LIN (%) STR(%) WOB(%) 
 Control Maca  Control Maca  Control Maca  

Pre 51.5 (49.9-53.6) a - 70.1 (66.9-73.7) a - 70.7 (66.5-72.4)a - 

Post 37.2 (33.1-46.2) b 46 (23.1-51.7) a 64.1 (57-67) a 70.2 (52.5-71.9) a 55.2 (50.3-63.2) b 62.9 (41.8-66.9) b 

T1 27.2 (17.7-32.4) c 30.8 (16.8-34.4) a 57.1 (48.1-59.8) a 59 (38.5-62.9) a 43.4 (36.9-51.4) c 48.4 (44.6 -53.1)*b 

T2 24.8 (9.9-33.3) c 23.1 (15.1-34.4) a 55 (35.8-61.6) a 53.9 (47.8-64.3) a 46 (31.4-51.1) c 43.5 (31.3-51.5) b 

 ALH (μm) BCF (beat/s) 
 Control Maca  Control Maca  

Pre 1.7 (1.3-1.9) a - 11.4 (9.1-12.7) a - 

Post 1.3 (0.9-1.7) a 1.5 (1.1-1.8) a 6.1 (4.6-8.9) a 7.9 (4.6-11.5) a 
T1 1.4 (0.9-1.9) a 1.4 (1.2-2) a 5 (2-7.6) a 5.8 (3-8.7) a 

T2 1.1 (0.9-2) a 1.4 (0.9-2.3) a 3.4 (0.9-7.6) a 5.2 (2-7.7) a 
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Figure 6.3.2 The percentage of viable sperm with high mitochondrial potential 
(HMMP: SYBR-14+/PI-/JC-1+) (A) and with low mitochondrial membrane 
potential (LMMP; SYBR-14+/PI-/JC-1-) (B) in Control and Maca-treated (10 
μL/mL of aqueous extract of Maca) dog semen (n = 10)  at different time points, 
before freezing (Pre), immediately after thawing (Post) and after 1 (T1) and 2 h 
(T2) of incubation at 37°C. For each box, the central line represents the median, 
the edges of the boxes represent the IQR (25th and 75th percentiles), the whiskers 
represent the extreme points; the letters (a-c) indicate statistically differences at 
p≤ 0.05 between time points and groups.  
 
6.3.4 Lipid peroxidation  
As shown in Figure 6.3.3, lipid peroxidation did not differ between pre-
freezing and post-thawing semen in both groups, however the MDA 
concentration was lower in Maca-treated semen than in control (P<0.05).  
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Figure 6.3.3 The percentage of lipid peroxidation before freezing (Pre) and immediately 
after thawing (Post-thaw) in Control and Maca-treated (10 μL/mL of aqueous extract of 
Maca) dog semen (n = 10). For each box, the central line represents the median, the edges 
of the boxes represent the IQR (25th and 75th percentiles), the whiskers represent the 
extreme points; the letters (a-c) indicate statistically differences at p≤ 0.05 between time 
points and groups. 
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6.4 Discussion 
 
This study explored for the first time the effect of Maca addition on 
cryopreservation of canine semen, evaluating the qualitative semen 
parameters immediately after thawing and after 1 and 2 hours at 37°C.  
Sperm motility is the most commonly used indicator of semen quality before 
and after freezing-thawing process (Martìnez, 2004). Motility is expression 
of structural and functional competence of spermatozoa, and it is necessary 
to reach and colonize the oviduct (Scott, 2000; Yanagimachi, 1994). 
Although fertilization have been obtained also with semen motility of 20 or 
30 %, it has been proposed that a minimum of 40-50% of post-thaw sperm 
motility is required for fertility in dogs (Concannon and Battista, 1989; 
Linde-Forsberg and Forsberg, 1989). In this study, both control and treated 
semen had a total motility, immediately after thawing, ranged between 
approximately 26 and 60%. Canine sperm cells frozen with an extender 
supplemented with Maca exhibited higher total motility, especially the 
subpopulation of sperm with medium velocity 1 hours after thawing than 
control semen. Moreover, the percentage of cells with LMMP decrease 
slower in Maca-treated samples during thermal-stress time. The in vitro 
beneficial effect of Maca on motility is already reported in dog, human and 
canine spermatozoa (Aoki et al., 2019; Del Prete et al., 2022).  
Canine frozen semen with the supplementation of Maca is responsible for a 
surge in hyperactivation and WOB of sperm cells after one hour at 37°C. 
Movements of hyperactivation are considered part of the capacitation 
process and it is an event crucial for acrosome reaction and fertilization (De 
Lamirande et al., 1997). In the literature, there is a suggestion that that 
hyperactivated bovine sperms with high WOB are able to efficiently 
progress in a fluid similar to the actual cervical and oviductal mucus to arrive 
to the oocyte more quickly (Hyakutake et al., 2018). The improving of sperm 
movement and hyperactivation are required when spermatozoa are placed in 
the uterus during natural or artificial insemination. The use of an extender 
with Maca for canine semen cryopreservation, that dramatically increase the 
percentage of hyperactivated spermatozoa could be useful to improve 
fertilization rates. The association of Maca with sperm hyperactivation was 
already reported 3 hours after the addition of the same aqueous extract of 
Maca in cooled semen (Del Prete et al., 2022). Our previous study discussed 
as a possible justification for this association the presence of alkaloids in 
Maca (Del Prete et al., 2022). Indeed, alkaloids are responsible for the 



Effect of aqueous extract of Maca addition to an extender for frozen canine 
semen 

 

 122 

increasing of cyclic adenosine monophosphate and intracellular calcium, 
that is an important factor in the regulation of sperm movement (Tash and 
Means, 1983; Funahashi, et al., 2001; Wang et al., 2009).  
What emerges from this study is a protective role of Maca against lipid 
membrane peroxidation of canine spermatozoa, that is a primary marker of 
oxidative stress. Lipid peroxidation is considered as sub lethal cryodamage 
that could cause DNA fragmentation, increasing phosphatidylserine 
translocation index and intracellular hydrogen peroxide levels (Lucio et al.,  
Kim et al., 2010).  Membrane composition of dog spermatozoa with high 
polyunsaturated fatty acids increases the sensitivity to lipid peroxidation and 
reduce the resistance to cooling (Drobnis et al., 1993; Bencharif et al., 2008).  
Lipid peroxidation is caused by an increased production of ROS during the 
cryopreservative procedure (Lucio et al., 2016). Our results confirm what 
was already suspected in a previous study on the beneficial effect of Maca 
on plasma membrane (Del Prete et al., 2022).  This effect could be explained 
by the antioxidant activity of phenolic compounds and specific alkamides 
contained in Maca (Korkmaz , 2018; Tafuri et al., 2019). The yellow 
ecotypes (hypocotyl colors) of Maca used in this study have been reported 
to have highest phenols than most of the others (Korkmaz, 2018). Phenols 
can act as effective inhibitor of peroxidation, by chelating redox-active 
metal ions and inhibiting free-radical mediated events (Rice-Evans, 2001). 
Maca-specific alkamides called ‘Macamides’ scavenge free radicals and 
thus protect sperm cells from oxidative damage (Tafuri et al., 2019).  
 
6.5 Conclusions 
 
In conclusion, supplementation of the frozen extender with 10 μl/mL of 
aqueous extract of Maca improves the cold shock resistance of spermatozoa, 
protecting sperm against lipid peroxidation during frozen-thawed process, 
and activates canine sperm motility and hyperactivation after thawing, 
improving the fertility.  
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