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Introduction

Electric power systems are among the most complex outcomes of engineering, be-

ing the result of the interconnection of a huge number of different devices. Safe

and reliable operation of such systems is mainly the result of real-time action of

several control devices, which ensures proper operation of the whole system both

in steady-state and after an equilibrium condition is perturbed by sudden con-

tingencies. Guaranteeing proper operation of electric power systems is therefore

the problem of maintaining system’s stability.

Although many power systems were firstly devised several years ago, they are

still continuously growing in complexity and extension.

Many analysis and control tools share with electric power systems the same

long history of research and practical application. Despite this long tradition,

the continuous evolution in technologies has strongly affected power systems. In

recent years the progress in semiconductor technologies have led to the commer-

cial availability of devices capable of very high power handling, leading to the

concept of Flexible Alternating Current Transmission Systems (FACTS). Based

on power electronics converters FACTS devices are capable of rapid regulation

of various network quantities, therefore being serious candidates for future power

system control.

As in all control problems, a deep understanding of power system operation

and a sound mathematical description of its behaviour are both required in de-

riving control laws for stability enhancement.

The present thesis addresses the problems of deriving control laws for FACTS

devices which can enhance power system stability, making use of a mathemat-

ical description of the transmission network which takes into account usually

neglected fast transients. Once these control laws are derived the problem of

3
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their tracking by an actual converter is addressed, by proposing a novel topology

for power electronic converters useful for FACTS applications.

The thesis is structured as follows:

Description of dynamic phenomena in power system and main definitions

related to system’s stability are presented in Chapter 1;

Classical modelling for power system stability analysis is the subject of Chap-

ter 2 in which models of main power system components are described;

Chapter 3 gives a brief introduction to FACTS devices structure and opera-

tion, as well as to their capabilities in providing wider stability margins;

Chapter 4 introduces the network modelling which will be used in subsequent

derivations, and illustrates some results which highlight the relevance of an ac-

curate modelling of usually neglected fast network transients;

Main results of Lyapunov’s stability theory are briefly introduced in Chapter

5 along with the concept of Control Lyapunov Function and its usage in deriving

stabilising control laws;

A novel topology for FACTS devices is proposed in Chapter 6 which is proven

to be easily employable in designing FACTS devices for reactive power compen-

sation, as well as active power exchange, if a suitable storage device is available.



Chapter 1

Stability of Electric Power

Systems: definitions and dynamic

phenomena

Summary

Safe operation of electric power system is largely related to its stability which

depends of the ability in making all generators supplying the network rotate syn-

chronously despite faults and other contingencies. Stability of general dynamical

systems and more specific definitions for power systems are introduced in the

chapter. Dynamical phenomena in power systems along with main causes of in-

stability and their underlying phenomena are briefly described.

1.1 Power system stability

Electric power systems are constituted by the interconnection of a huge num-

ber of different components. They can therefore be considered among the most

complex systems to be planned and safely operated. This complexity arises as

a consequence of the large amount of devices contemporaneously in operation,

each one with its own internal dynamics, that however interact with each other,

giving rise to a complex collective behaviour. The wide geographic extension of

electric power systems that can span entire countries and even continents, adds

5
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AND DYNAMIC PHENOMENA

even greater complexity to issues connected to their analysis and control.

During their operation power systems undergo a large number of disturbances,

some of them occurring continually, such as modifications in load demands, while

others are less common but nonetheless can potentially be very dangerous, such

as faults and structural changes like tripping of circuit breaker. From a prac-

tical viewpoint such disturbances are usually classified as either small or large,

respectively, depending on the effects they have on system behaviour. Just like

any other dynamical system, the most basic requirement related to power system

secure operation is therefore its stability.

Although several mathematical definitions have been proposed for generic

dynamical systems, and most of them can be usefully applied to power systems

too, the need for more practical definitions have led joint IEEE/CIGRE Task

Forces to propose commonly agreed definitions [1, 2]. Quoting from [2]:

”Power system stability is the ability of an electric power system,

for a given initial operating condition, to regain a state of operating

equilibrium after being subjected to a physical disturbance, with most

system variables bounded so that practically the entire system remains

intact.”

Under very general assumptions the dynamics of power systems can be de-

scribed by a switched set of coupled algebraic and ordinary differential equations∗

of the form [6]:

ẋ = fi(x,y, t) (1.1)

0 = gi(x,y, t) i ∈ {e1 . . . ek} (1.2)

The index i spans over a discrete set of possible events that make the system

change its intrinsic dynamics, at specified time instants. State variables x are not

allowed to change instantaneously following an event, while algebraic variables

y, which are defined by (1.2) as implicit function of the state variables x, can

undergo discontinuities. Systems of this kind fall into the wide category of hybrid

systems, i.e. systems in which continuous dynamics coexists with discrete events.

A more detailed description of such hybrid systems along with a more formal

∗Some attempts have recently been made to describe propagation of disturbances in power

systems as wave propagation phenomena hence described by partial differential equations [3, 4,

5].
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mathematical framework suitable for their application to the description of power

systems is presented in [7, 8, 9]. Examples of discrete events that can trigger

a structural change in system’s dynamics are faults, tripping or reclosure of a

transmission line, load shedding and under load tap changer action.

Due to the explicit dependence on time of right-hand sides of eqs. (1.1-1.2)

the system is said to be non-autonomous.

In the foregoing discussion it is assumed that the hypotheses of the implicit

function theorem are satisfied. In particular the Jacobian of g with respect to y

is supposed to verify:

det
(

∂g(x,y)
∂y

)
6= 0 (1.3)

which guarantees that there exist a function h(x) such that the algebraic vari-

ables can be expressed as y = h(x), therefore the differential-algebraic equations

(DAE) (1.1)-(1.2) can be replaced by:

ẋ = f(x,h(x)) (1.4)

A typical power system stability study considers the system to be in a pre-

disturbance steady state, mathematically described by [10]:

x = x∗prefault (1.5)

0 = fprefault(x,y, t) (1.6)

0 = gprefault(x,y, t) ∀t < tfault (1.7)

where x∗prefault is the pre-fault equilibrium point, and tfault is the time instant

when fault happens. During the fault, most often a short circuit at some network

location, system’s dynamics are described by:

ẋ = ffault(x,y, t) (1.8)

0 = gfault(x,y, t) ∀tfault ≤ t < tfault + tcl (1.9)

where tcl is the fault clearing time. Studying system’s stability is thus the question

of whether post-fault state variables reach a new acceptable equilibrium point or

not. The post-fault equilibrium point x∗postfault can either be the same as pre-

fault equilibrium or differ from it. Analogously, post-fault dynamics can either

be the same as pre-fault dynamics, in which case fpostfault(x) = fprefault(x) or

differ from it, i.e. fpostfault(x) 6= fprefault(x), depending on the event of structural

changes following the intervention of protective equipment, like line tripping or
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AND DYNAMIC PHENOMENA

load shedding. The aforementioned definition from [2] does not explicitly mention

equilibrium points in order to allow for the possibility that satisfactory operation

can also be attained while some state variables remain on a limit cycle, thus never

reaching a true equilibrium point, but still remaining limited within an acceptable

region. This possibility is however not commonly encountered in actual power

system operation, since small parameter variations can either transform stable

limit cycles into unstable ones or into stable equilibrium points.

1.2 Mathematical definitions

For a given dynamical system described by the set of first order ordinary differ-

ential equations ẋ = f(x), the following definition holds:

Equilibrium point: If:

x(t0) = x∗ ⇒ x(t) = x∗ ∀t ≥ t0 (1.10)

than the state x∗ is said to be an equilibrium point

which means that the system is in an equilibrium state if once x(t) is equal

to x∗ it remains x(t) = x∗ for all subsequent time. From this condition it follows

that:

x∗is an equilibrium point ⇔ f(x∗) = 0 (1.11)

The definitions of stability for an equilibrium point of the generic system

ẋ = f(x) can be formalised using the classical definition by Lyapunov [11, 12, 13]:

Stability: The equilibrium point x = 0 is said to be stable if:

∀ε > 0, ∀t0 > 0, ∃δ(t0, ε) :

‖x0‖ < δ(t0, ε) ⇒ ‖x(t)‖ < ε ∀t ≥ t0 (1.12)

Roughly stated, the definition implies that trajectories initiating sufficiently

close to the equilibrium point will eventually remain in its neighbourhood. If

δ(t0, ε) can be chose independent of t0 uniform stability holds according to the

following definition:
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Uniform stability: The equilibrium point x = 0 is said to be uniformly stable

if:

∀ε > 0, ∀t0 > 0, ∃δ(ε) :

‖x0‖ < δ(ε) ⇒ ‖x(t)‖ < ε ∀t ≥ t0 (1.13)

Instability: The equilibrium point x = 0 is said to be unstable if it is not stable

The following definition of asymptotic stability entails the convergence of

system’s trajectories towards the equilibrium point:

Asymptotic Stability: The equilibrium point x = 0 is said to be asymptoti-

cally stable if, in addition to being stable:

∀t0 > 0, ∃δ(t0) :

‖x0‖ < δ(t0) ⇒ lim
t→∞ ‖x(t)‖ = 0 (1.14)

Therefore in the case of asymptotic stability, systems trajectories initiating

sufficiently close to the equilibrium point will eventually converge to it.

All definitions have been given with respect to the equilibrium point x = 0.

Equilibria others than the origin can be analogously analysed after a suitable

coordinate transformation which translates the origin into the equilibrium point

of interest [11].

1.3 Stability criteria

Stability analysis of nonlinear systems is largely based on the use of the two sta-

bility criteria firstly introduced by A. M. Lyapunov in the late 19th century [14].

The first of them relates the local stability of the equilibrium point of a nonlinear

system to the much more easily tractable stability of its linear approximation.

The second method of Lyapunov, also known as the Lyapunov’s direct method,

is based on the use of an energy function. Since it will be used in subsequent

analysis in the present thesis its statement is deferred to a later chapter.
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1.3.1 Lyapunov’s linearization method

It is well known that for the linear system:

ẋ = Ax, A ∈ Rn×n

x(0) = x0

(1.15)

the time evolution of state variables, in case A has distinct eigenvalues is given

by:

x(t) =
n∑

i=1

φiψix0eλit (1.16)

where:

• λi is the (possibly complex) i-th eigenvalue of the state matrix A

• φi is the right eigenvector of the state matrix A corresponding to the i-th

eigenvalue λi

• ψi is the left eigenvector of the state matrix A corresponding to the i-th

eigenvalue λi

From eq. (1.16) it is easily derived that the origin is:

stable if none of the eigenvalues has positive real parts;

asymptotically stable if all eigenvalues have negative real parts;

unstable if at least one eigenvalue has positive real part;

The Lyapunov’s first method is a straightforward extension of this criterion to

general nonlinear systems, based on the fact that, assuming f(x) continuously

differentiable:

∆ẋ =
(

∂f
∂x

)

x=x∗
∆x + fh.o.t.(∆x), ∆x = x− x∗ (1.17)

where fh.o.t. denotes higher order terms. The system:

∆ẋ = J∆x, J =
(

∂f
∂x

)

x=x∗
(1.18)

is called the linearization of the original nonlinear system. The relationship

between the actual nonlinear system and its linearization is summarised in the

following:
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Theorem Lyapunov’s linearization method

• If all eigenvalues of J have negative real parts than the equilibrium point

x∗ of the actual nonlinear system is asymptotically stable

• If at least one eigenvalue of J has positive real part than the equilibrium

point x∗ of the actual nonlinear system is unstable

• If there exists at least one eigenvalue of J with zero real part, than, from

first order analysis, nothing can be said on stability of the equilibrium point

x∗ of the actual nonlinear system

Differently from the linear case, nonlinear systems with eigenvalues on the imag-

inary jω axis can either be stable, even asymptotically, or unstable. In this case

analysis of higher order terms, which affect the so called center manifold, is nec-

essary to draw conclusions about the stability of the equilibrium point [12, 13].

The following examples are presented in order to illustrate some of the con-

cepts introduced so far. The system analysed will be later recognised as the

most basic power system, given by the interconnection of a single machine to a

constant voltage network.

Example 1.1

Let consider the system of first order switched differential equations given by:





ẋ1 = 376.99x2

ẋ2 = 1
7

[
0.9− 1.351 sin x1

] t < tf





ẋ1 = 376.99x2

ẋ2 = 1
7

[
0.9

] tf ≤ t ≤ tcl





ẋ1 = 376.99x2

ẋ2 = 1
7

[
0.9− 1.1024 sinx1

] t > tcl

(1.19)

whose equilibrium points are given by:

xs =

{
x∗1 = arcsin(0.9/1.3510) + 2kπ, k ∈ Z
x∗2 = 0

t < tf

xs =

{
x∗1 = arcsin(0.9/1.1024) + 2kπ, k ∈ Z
x∗2 = 0

t > tcl

(1.20)
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Figure 1.1: Phase plane portrait of the system in example 1

and:

xu =

{
x∗1 = π − arcsin(0.9/1.351) + 2kπ, k ∈ Z
x∗2 = 0

t < tf

xu =

{
x∗1 = π − arcsin(0.9/1.1024) + 2kπ, k ∈ Z
x∗2 = 0

t > tcl

(1.21)

For t ∈ [tf , tcl] no equilibria exist. In order to study whether the system will

maintain an acceptable operation in postfault condition, i.e. for t > tcl, the

stability of postfault equilibria should be analysed. Evaluating the Jacobian

matrix in the equilibrium points given in (1.20) yields:

Js =

[
0 376.99

−0.0909 0

]
(1.22)

while J evaluated in (1.21) yields:

Ju =

[
0 376.99

0.0909 0

]
(1.23)
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The eigenvalues of Js are obtained as:

λ1,2−s = ±5.8539j, if x = xs

λ1,2−u = ±5.8539, if x = xu

(1.24)

It can be concluded that the equilibrium point xu is unstable since the cor-

responding Jacobian has one negative and on positive eigenvalue. Unstable equi-

libria of this kind are called saddle. On the other hand, the eigenvalues of Js

are purely imaginary, therefore nothing can be concluded on the nature of the

corresponding equilibria from linearized analysis. From the phase portrait in Fig.

1.1 it can be deduced that the postfault equilibrium xs is stable, although not

asymptotically. Arrows show the direction of the vector field f(x), while the blue

line shows a trajectory of the system’s state passing near the boundary of the

stability region of the postfault equilibrium. This stability (or attraction) re-

gion, which is the set of initial conditions where stable trajectories depart from,

is practically encircled by the blue line, which provides a good estimate of its

boundary.

The lack of damping in the system in Ex. 1, which is due do the absence of

dissipation in the underlying physical phenomenon, causes that all trajectories

initiating sufficiently close to the equilibrium point will remain in its vicinity,

continually swinging around it. The effect of damping to the system of Ex. 1 is

illustrated in the following:

Example 1.2

Let consider the system whose postafault dynamics are given by:

ẋ1 = 376.99x2

ẋ2 = 1
7

[
0.9− 1.1024 sinx1 − 10x2

] (1.25)

The addition of a damping term in the Eq. (1.25) makes the equilibrium point

asymptotically stable. The Jacobian matrix and its eigenvalues are indeed given

by:

J =

[
0 376.99

−0.0909 1.4286

]
⇒ λ1,2 = −0.7143± 5.8102j (1.26)

thus all eigenvalues are in the left complex half plane. As it is evident from

the phase portrait in Fig. 1.2, although the boundary of the stability region in

the direction of the faulted trajectory is not greatly altered by the addition of

damping, the trajectory in red now settles down to the stable equilibrium, in a

practically finite time.
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Figure 1.2: Phase plane portrait of the system in example 2

1.4 Dynamical phenomena in power systems

Due to the large amount of different devices contemporaneously acting in electric

power systems, they are affected by several complex dynamical phenomena. In

order to better understand the causes of each phenomenon and make the system

working properly, it is of great importance to analyse the range of dynamics which

have a role in system’s behaviour. A classification of dynamical phenomena could

therefore result very useful for analysis purposes. The need for classification

arises from the necessity to divide such a complex problem as system stability

into sub-problems, utilising simplifying assumptions with the aim of rendering

each sub-problem more amenable to mathematical and/or numerical analysis.

Simplifications, on the other hand, should be carefully made in order to maintain a

sufficient degree of approximation in system’s response [2, 15]. Figure 1.3 depicts

a schematic drawing which illustrates a commonly used time-scale decomposition

of dynamical phenomena in power systems [16, 17]. A first rough classification

can be made separating slow from fast phenomena, since very fast transients such



1.5. ROTOR ANGLE STABILITY 15

10
-6

10
0

10
-4

10
1

10
2

10
3

10
-2

10
-1

10
-3

10
-5

time [s]

Lightning transients

Switching transients

Torsional/Resonance transients

Generator electromechanical transients

Transient stability

Long term
frequency/voltage stability

Figure 1.3: A schematic drawing illustrating time-scale of dynamical phenomena

in power systems

as those due to lightning or switching of circuit breakers die out very quickly, i.e.

in the order of 10−4s compared to slow phenomena such as load restoration or

secondary/tertiary regulation involved in voltage or frequency stability evaluation

which require study periods spanning several minutes or even hours.

A word of caution is necessary, because although classifications may result

very useful, many phenomena are so intertwined that in some situations it is

difficult to attribute the cause of a particular failure to a single phenomenon.

The main causes of instability and their underlying phenomena are briefly

summarised in the following sections.

1.5 Rotor angle stability

Dynamic phenomena related to rotor angle stability, which is the main subject

of the present thesis, are typically confined in a time frame ranging from tenth of

seconds to few tens of seconds. Torsional transients in generators turbine shafts,

which are associated with time constants in the subsynchronous range, i.e. tens of

millisecond, could also give rise to instability phenomena which should be taken

into account in several practical situations.

A properly working power system is operated in such a way as to constantly
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maintain a balance between the power produced in generators and that absorbed

by the loads. In current power systems electric power is being produced, almost

totally, in conventional power plants where either a thermal or an hydraulic source

of energy is transformed into electric energy by means of synchronous generators.

Although this situation might change in future due to the constant increase in

the amount of distributed generation which is based on the use of alternative

energy sources, i.e. wind, sun, fuel cells and so on, which are coupled to the

transmission network through power electronics based converters [18, 19, 20], the

synchronous generator will remain the main tool for energy conversion for a long

time to come.

The ability of all synchronous machines, interconnected through the transmis-

sion network, to maintain a synchronous operation is referred to as rotor angle

stability. Steady state operation is therefore characterised, for each synchronous

generator, by a state of equilibrium between the mechanical torque applied by the

prime mover through the turbine shaft and the electric torque due to the load-

ing of the generator. If an unbalance arises as a consequence of a disturbance,

the state of equilibrium is perturbed and some generators rotors may accelerate

while others may decelerate. The behaviour of the system after the perturbation

largely depends upon the amplitude of the disturbance. Actual systems must op-

erate in an equilibrium in which they should be able to withstand at least small

disturbances. This is possible due to the nature of power-angle relationship for

a synchronous generator, which states that the electric power and hence electric

torque increases sinusoidally as the angle with respect to the rest of the system

increases. Due to the nonlinear nature of the power-angle relationship, a large

perturbation and hence a large displacement of a machine angle against the rest of

the system, will eventually result in a decrease in the electrical power injected into

the network which will lead to a further unbalance between mechanical torque

and electrical torque and thus produce an increase in angular separation.

A classical classification of rotor angle related stability analysis is roughly

based on the magnitude of the disturbance. It is customary in power system

analysis to separate the study of transient stability which is mainly related to

large disturbances, from that of small signal stability.
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1.5.1 Small signal stability

In most practical situations the disturbances, such as load changes, are sufficiently

small such that the system can be linearized around the operating point. The

stability of the system and the control actions to improve stability are therefore

studied by means of the tools of linear analysis such as eigenvalues, eigenvectors

and their associated oscillatory modes. Small disturbances in practical power

systems usually result in oscillations of rotor angles of some generators against

others. Instability arises if oscillation magnitude constantly increases in time

up to the separation of the system. Instability due to small disturbances could

also result in non oscillatory increase of separation of rotor angles of synchronous

generators. However, in large actual power systems this kind of unstable sepa-

ration is not commonly encountered due to the large amount of controllers and

protections employed, in particular the widespread introduction of fast acting

automatic voltage regulators almost eliminated the problem [15, 2].

The main problem commonly analysed in the framework of small signal sta-

bility is that related to the so called interarea oscillations which are oscillations of

rotor angles of generators belonging to one area against rotor angles of generators

in other areas. The problem is often that of insufficient damping of these oscil-

lations, which are a result of the increasingly stressed conditions in which power

systems are operated. Interarea oscillations usually appear as poorly damped pe-

riodic oscillations with frequency in the range 0.1÷2Hz. They are usually present

is systems with heavy power transfer over weak transmission links. Since they

are related to intrinsic oscillation mode of the system cannot be eliminated, but

controllers can be tuned to increase their damping and/or shift their frequency.

Several utilities worldwide experienced cases of interarea oscillations [21, 22]. A

great amount of research has been devoted to the study of interarea oscillations in

the Weaster system coordinating council in USA [23], in the North-South Brazil-

ian interconnection [24], in the Scandinavian NORDEL system and in the UCTE

interconnected European system [25].

Linear analysis is the method best suited to the study of small signal stability.

Linearization of the differential/algebraic system of equations representing the

power system:

ẋ = f(x,y) (1.27)

0 = g(x,y) (1.28)
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results in the following:

[
∆ẋ

0

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
·
[

∆x

∆y

]
(1.29)

Assuming that ∂g/∂x is nonsingular, ∆y can be eliminated from (1.29) yielding:

∆ẋ =

[
∂f
∂x

− ∂f
∂y

(
∂g
∂y

)−1 ∂g
∂x

]
∆x (1.30)

The matrix:

J =

[
∂f
∂x

− ∂f
∂y

(
∂g
∂y

)−1 ∂g
∂x

]
(1.31)

is the so called reduced Jacobian whose eigenvalues are used for small signal

stability analysis of the system.

1.5.2 Transient stability

Among the large disturbances which could affect the transient stability of the

system, short circuits and possibly subsequent tripping of the faulted transmis-

sion line are the most common. Instability which may arises from these severe

disturbances is often characterised by a constantly increasing angular separation

without any periodicity. This kind of behaviour is often referred to as first swing

instability.

As it is the case in small signal stability non oscillatory unstable behaviour

was largely eliminated by the widespread use of fast acting regulators. Most

common instability behaviour is therefore in the form of large oscillations with

increasing amplitude among generators of different areas.

In actual power system the classification based on the nature of the distur-

bance could result quite artificial. Some real occurrences of system instability,

although caused by large disturbances, i.e. generator tripping, manifested as

small signal stability problem, i.e. oscillations of growing amplitude. Detailed

analytical and numerical analysis reported in [26] showed that the blackout of

August 10, 1996 in Western American power system was caused by a Hopf bifur-

cation due to the eigenvalue associated to the 0.25Hz mode passing from left half

plane to right half plane as tie line loading increased after generators tripping.

A global bifurcation due to the collapse of a stable limit cycle with an unstable

one resulted in the eventual collapse.
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While the study of small signal stability is usually tackled by means of the

analysis of the linerization around an equilibrium point of interest, the study

of transient stability mainly relies on nonlinear numerical simulations of some

fault scenarios. In order to avoid the use of numerical simulations an enormous

amount of research has been devoted to methods based on energetic principles,

like the Lyapunov direct method [27, 28] which allow to determine an estimate

of the attraction region Xs in the form: x ∈ Xs ⇔ V (x) < Vcritical, where V is

a Lyapunov function.

1.6 Voltage stability

While small signal and transient instability phenomena are mostly related to

synchronous generators and their control, voltage stability is mostly related to

network and loads. Voltage stability can be defined as the ability of a power

system to maintain voltage magnitude at all buses within acceptable limits after

the system has experienced a disturbance. The loss of equilibrium between load

demand and load supply is the main cause of voltage instability, which results

in unacceptable low voltages across the network [29, 30]. Voltage instability

phenomena often appear as a sudden decrease of voltage therefore called voltage

collapse.

Many loads supplied by a power system are controlled in such a way as to

have some sort of restorative behaviour. Large industrial motors drives, ther-

mostatically controlled heating loads, tap-changing transformers are examples of

loads that respond to disturbances trying to restore their power consumption.

This restorative action has the effect to further increase the stress on an already

stressed system. In particular reactive power demand could increase beyond the

available capability, leading to the intervention of limiting protections such as

overexcitation limiters in synchronous generators [29].

Most power system blackouts were caused by voltage instability resulting in

voltage collapse. It has been demonstrated that the blackout experienced by

Western American power system on July 2, 1996 was caused by loss of steady

state equilibrium subsequent to a saddle-node bifurcation eventually leading to

voltage collapse [26].
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1.7 Sunsynchronous oscillations

As described in previous sections, oscillations of synchronous generator rotor with

respect to network reference is usually in the range of 0.2÷2Hz. This is, however,

a result of the simplifying assumptions used in generator’s rotor representation,

which is considered to be constituted by a single rigid mass. The rotor of an

actual generating unit is a very complex mechanical system obtained by the

interconnection of several shaft sections. This structure has therefore several

torsional modes of vibration, with each section oscillating against the others

[15]. Such oscillations can appear at both subsynchronous and supersynchronous

frequencies, ranging from few tens to few hundreds of Hz.

Potentially dangerous undamped subsynchronous oscillations appear as a re-

sult of the interaction of torsional modes with synchronous generators’ controllers

or series capacitor compensated transmission lines. In the latter case, adverse in-

teractions result in the so-called subsynchronous resonance (SSR) phenomena

[31].



Chapter 2

Power system modelling

Summary

Stability of electric power system depends upon an equilibrium between power

produced by generators and power drawn by loads. Stability analysis therefore

requires suitable models of each component of the system. In the chapter models

commonly used for the description of synchronous generators are introduced. The

most common controllers associated with synchronous generators with the aim of

increasing system’s stability are also described. Models of loads and power balance

equations at transmission network level are introduced.

2.1 Synchronous generator

Almost all synchronous generators in operation are of three phase construction.

A simplified schematic diagram of a three phase synchronous machine is reported

in Fig. 2.1. Voltages are induced in the three stator windings, displaced by 120

degrees each others, by the rotating magnetic field produced by the field winding

which is on the rotor [32]. Direct current, produced by an excitation system,

flows through the field winding. Rotor revolves at synchronous speed given, in

revolutions per minute, by:

nrpm =
120f

pf
(2.1)

where f is the synchronous AC frequency, and pf is the number of field poles.

Figure 2.1 shows a two pole machine. An higher number of poles could be required

21
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Figure 2.1: Schematic diagram of a three-phase synchronous machine

in machines operated at low speed, such as those connected to hydraulic turbines.

2.1.1 Mechanical equations

Steady state operation is characterised by a balance between the applied me-

chanical torque and the produced electromagnetic torque. In this condition the

rotor is stationary with respect to a reference frame rotating at the synchronous

angular speed ω0. Any unbalance which results in a deviation from the equilib-

rium, causes also a variation of the angle δ that the rotor axis forms with the

synchronously moving reference. The dynamics of rotor angle δ and velocity ω is

described by the so called swing equations:

d∆ω

dt
=

1
2H

[Tm − Te −D∆ω] (2.2)

dδ

dt
= ω0∆ω (2.3)

where ∆ω = ω − ω0 is the deviation, in rad/s of rotor angular velocity from

synchronous velocity ω0 = 2πf0, H is the p.u. inertia constant, Tm and Te are
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the p.u. mechanical and electromagnetic torque, respectively, D is the damping

coefficient.

2.1.2 Electrical equations

Although machine’s equations can be derived in a three phase reference frame,

a great simplification is attained if electrical quantities are referred to a rotating

reference moving at synchronous speed. The dq0 transformation, also known as

Blondel-Park transformation, is used to decompose stator quantities into two ro-

tating components: the direct axis component which is aligned with the rotor and

the field winding axis, and the quadrature axis component which is orthogonal

to the field axis. Several models with different levels of detail are available for

the description of electrical equations [33]. These models differs in the number of

differential equations and hence of the state variables necessary to describe the

electrical subsystem. In all subsequent equations quantities are expressed in per

unit, except for the time which is given in seconds.

Eight order model

This model uses eight differential equations, six of them to describe the electri-

cal variables and the two swing equations (2.2)-(2.3) to describe the mechanical

motion [34].

Stator equations Two of the six differential equations are used to describe the d

and q axis components of the stator fluxes as follows:

ψ̇d = ed + ψqω + rid (2.4)

ψ̇q = eq − ψdω + rid (2.5)

where:

ψd: direct axis component of stator flux

ψq: quadrature axis component of stator flux

ed: direct axis component of stator voltage

eq: quadrature axis component of stator voltage

id: direct axis component of stator current
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iq: quadrature axis component of stator current

ed: direct axis component of stator voltage

r: stator resistance

Rotor equations Four differential equations are required to describe rotor elec-

trical dynamics in the four windings assumed to be lying on the rotor. One of

them is the field winding necessary to produce the magnetic field that induces

voltages in the stator. The other three are used to represent damping due to

eddy current flowing in short-circuited damper windings and in the rotor body.

This damping is modelled assuming one damper winding in the d axis, and two

in the q axis. The resulting equations are as follows:

Ė′
q =

1
T ′d0

[
Efd − E′

q − E′
q

(x′d − x′′d)(xd − x′d)
(x′d − xl)2

+ψkd
(x′d − x′′d)(xd − x′d)

(x′d − xl)2
− id

(x′′d − xl)(xd − x′d)
(x′d − xl)2

]
(2.6)

Ė′
d =

1
T ′q0

[
−E′

d + E′
d

(x′q − x′′q )(xq − x′q)
(x′q − xl)2

−ψkq

(x′q − x′′q )(xq − x′q)
(x′q − xl)2

+ iq
(x′′q − xl)(xq − x′q)

(x′q − xl)2

]
(2.7)

ψ̇kd =
1

T ′′d0

[
− ψkd + E′

q − (x′d − xl)id
]

(2.8)

ψ̇kq =
1

T ′′q0

[
− ψkq − E′

d − (x′q − xl)iq
]

(2.9)

where:

E′
d: direct axis transient voltage

E′
q: quadrature axis transient voltage

ψkd: direct axis damper flux linkage

ψkq: quadrature axis damper flux linkage

Efd: Exciter voltage

xd, x
′
d, x

′′
d: synchronous, transient and subtransient direct axis reactances
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xq, x
′
q, x

′′
q : synchronous, transient and subtransient quadrature axis reac-

tances

xl: leakage reactance

T ′d0, T
′′
d0: transient and subtransient direct axis time constants (in seconds)

T ′q0, T
′′
q0: transient and subtransient quadrature axis time constants (in sec-

onds)

The following algebraic equations:

ψd = E′
q

x′′d − xl

x′d − xl
+ ψkd

x′d − x′′d
x′d − xl

− x′′did (2.10)

ψq = −E′
d

x′′q − xl

x′q − xl
+ ψkq

x′q − x′′q
x′q − xl

− x′′q iq (2.11)

which relate internal voltages and fluxes with output stator currents, along with

the following relationship for the electromagnetic torque:

Te = ψdiq − ψqid (2.12)

complete the model.

Sixth order model

Sixth order model is basically the same as eight order model except that stator

transients are considered so fast as to be negligible as far as transient stability and

its associated slow rotor oscillations, are concerned. Furthermore rotor velocity is

assumed to be constant in stator equations. A discussion of these approximations

is reported in [15].

Stator differential equations (2.4) collapse into the following algebraic equa-

tions:

0 = ed + ψq + rid (2.13)

0 = eq − ψd + rid (2.14)

Rotor equations (2.6)-(2.9) remain the same, as well as the algebraic constraints

(2.10)-(2.11) and (2.12).
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Third order model

The third order model is frequently employed in stability and control analysis

thanks to its simplicity. Damping effects due to damper winding and rotor body

eddy currents are neglected. In order to account for damping the coefficient D in

the mechanical equation (2.2), which is usually zero in higher order models, has

to be appropriately tuned. Only one equation is used to model the rotor:

Ė′
q =

1
T ′d0

[
Efd − E′

q + (xd − x′d)id

]
(2.15)

Algebraic equations for output voltages are:

vd = −xqiq − rid (2.16)

vq = E′
q + x′did − riq (2.17)

while electromagnetic torque is given by:

Te = vdid + vqiq = E′
qiq + (x′d − xq)idiq − r(i2d + i2q) (2.18)

Second order model

Most simplified analysis are carried out by means of the so called classical model.

It only takes the two mechanical states δ, ω and their equations (2.2)-(2.3) into

account. A constant voltage E′ behind the transient reactance x′d is considered

as the output of the generator.

2.1.3 Generator-network interface equations

Each generator of an interconnected power system has an its own dq reference

frame, synchronously rotating with its own rotor. In order to study the behaviour

of a multimachine system, it is necessary to interface all machines with a common

reference, i.e. the network one, denoted as DQ, which rotates at the synchronous

frequency. This is done by means of the orthogonal transformation illustrated in

Fig. 2.2 and given by:

[
D
Q

]
=

[
cos δi − sin δi

sin δi cos δi

]
·
[

d

q

]
(2.19)

[
d

q

]
=

[
cos δi sin δi

− sin δi cos δi

]
·
[
D
Q

]
(2.20)
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Figure 2.2: Transformation for interfacing machine reference with network refer-

ence

2.1.4 Torsional dynamics

Mechanical equations (2.2)-(2.3) describe the motion of a single rotating mass

subject to an accelerating or decelerating torque. In case more masses are to be

considered in order to take sunsynchronous oscillations into account, two equa-

tions for each additional mass have to be added. In the case of a four masses

shaft the following system of equations describe the mechanical dynamics:

Gen :





∆ω̇G = 1
2HG

[
KLP−G(δLP − δG)−KG−Ex(δG − δEx)

−DG∆ωG − Te

]

δ̇G = ω0∆ωG

(2.21)

Exc :





∆ω̇Ex = 1
2HExc

[
KG−Ex(δG − δEx)−DEx∆ωEx

]

δ̇Ex = ω0∆ωEx

(2.22)

LP :





∆ω̇LP = 1
2HLP

[
KHP−LP (δHP − δLP )−KLP−G(δLP − δG)

−DLP ∆ωLP + TLP

]

δ̇LP = ω0∆ωLP

(2.23)

HP :





∆ω̇HP = 1
2HHP

[
−KHP−LP (δHP − δLP )−DHP ∆ωHP + THP

]

δ̇HP = ω0∆ωHP

(2.24)

where:
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∆ωG, ∆ωEx, ∆ωLP ,∆ωHP are the deviation from synchronous velocity of

the generator, exciter, low pressure and high pressure turbine sections, re-

spectively;

δG, δEx, δLP , δHP are the angular positions, with respect to a synchronously

rotating reference of the generator, exciter, low pressure and high pressure

turbine sections, respectively;

HG,HEx,HLP ,HHP are the inertia constants of turbine shaft sections;

DG, DEx, DLP , DHP are the damping coefficients of turbine shaft sections;

KLP−G,KG−Ex,KHP−LP are the stiffness of the shaft between the respec-

tive masses;

TLP , THP are the mechanical torques developed by the Low pressure and

High pressure turbine sections, respectively.

2.2 Generator’s controllers

Steady state operation of the synchronous generator is guaranteed by the action

provided by several control devices. The main feedback controllers are the tur-

bine governor which determines the mechanical torque input to the machine, the

Automatic Voltage Regulator (AVR) whose aim is to control the output voltage

and the Power System Stabilizer (PSS) which provides a damping action to rotor

oscillations.

2.2.1 Turbine governor

In most simplified analyses of power system dynamics, especially for short term

studies, the mechanical torque input to the synchronous generator is assumed to

be constant. In case of detailed analysis the dynamical model of the turbine and

the role of the governor in adjusting the mechanical input to the generator are

to be considered. IEEE working groups prepared detailed models of both steam

and hydroelectric turbines [35, 36].

A common used simplified model from [37] is reported in Fig. 2.3, which,

according to [35], could accommodate most of the types of turbine models. Co-

efficients K2,K3,K4 determine the contributes of the various turbine sections to

the developed mechanical torque. Each turbine section is modelled as first order
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-
+

-

Figure 2.3: Turbine and governor

system. The governor comprises an integral control in order to guarantee zero

speed deviation in steady state.

2.2.2 Automatic Voltage Regulator

Automatic voltage regulators control generator’s output voltage magnitude by

acting on the field excitation voltage Efd. Although several excitation systems

have been proposed in the past, the most widely used nowadays are based on

static thyristor converters with high gain amplifiers. A schematic of this kind of

commonly used exciter is reported in Fig. 2.4 [38, 39].

Figure 2.4: Thyristor exciter

A low pass filter is usually added to the voltage measurement. The gain

KA is usually high for obtaining a rapid response, while the time constant of the

exciter is very small and often neglected. In some cases a too rapid response could
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negatively affect generator’s stability. In these cases a Transient Gain Reduction

(TGR), with a lead/lag compensator, is introduced.

2.2.3 Power System Stabilizer

Power System Stabilizers (PSS) were introduced to provide additional damping

to generator’s rotor oscillations and therefore to reduce problems connected to

local and interarea oscillations [40, 41]. A common structure for PSS is reported

in Fig. 2.5. The input is the speed deviation, however other signals, such as the

frequency or the output power deviation, are also used. The first stage is usually

an high-pass filter often called wash-out filter, which provides zero output in

steady state conditions. One or more, most commonly two, lead/lag filters are

employed to provide sufficient phase compensation between ∆ω and the output

torque [22]. The PSS output provides an additional input signal to the AVR.

Alternative PSS structures have been proposed recently, such as the multiband

PSS [42].

Figure 2.5: PSS

2.3 Transmission network and loads

The role of transmission network is to deliver power produced in generators’

stations to loads.

The transmission network is made up by the interconnection of a number

of transmission lines which can be as long as several hundreds of kilometers.

The most detailed mathematical description of a line is in the form of partial

differential equation, which takes propagation wave phenomena into account.

Since power system stability usually involves slow oscillations and study time

intervals of several second, this level of detail is often unnecessary. A detailed

discussion of the subject is deferred to the following chapter. In commonly used

models all transients associated with transmission lines are neglected and the

network is assumed constantly in steady-state, therefore the following algebraic
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equations are used to relate injected node currents and node voltages [43]:

I = ẎbusV (2.25)

where:

I is the vector of injected node currents

V = [V1ejθ1 , . . . , Vnejθn ]> is the vector of node voltages

Ẏbus is the bus admittance matrix whose generic entry is Ẏi,k
bus = Gi,k+jBi,k

2.3.1 Load flow equations

From eq. (2.25) active and reactive power injection at the i− th busbar are easily

derived as:

Pi =
n∑

i=1

ViVk

[
Gi,k cos(θi − θk) + Bi,k sin(θi − θk)

]
(2.26)

Qi =
n∑

i=1

ViVk

[
Gi,k sin(θi − θk)−Bi,k cos(θi − θk)

]
(2.27)

Load flow equations constitute the power balance relationships at each trans-

mission network bus. Active and reactive power injections given by (2.26)-(2.27)

must be equal to the opposite of the active and reactive power absorbed by loads:

Pi + PL,i = 0 (2.28)

Qi + QL,i = 0 (2.29)

2.3.2 Load modelling

Active and reactive powers absorbed by loads can either be considered as fixed

constants or function of local bus quantities such as voltage magnitude and fre-

quency. Load modelling in power system stability study is a widely debated topic

and no definitive model exists [44, 45]. In some studies it could be sufficient to

use constant power load models, while in other cases, in particular when loads are

the driving force of instability as it is the case for voltage collapse, detailed load

modelling is required. A commonly used model is the so called ZIP model which
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is a weighted sum of constant impedance (Z), constant current (I) and constant

power (P) loads:

PL,i = Pi,0

[
pi,0 + pi,1

( Vi

Vi,0

)
+ pi,2

( Vi

Vi,0

)2
]

(2.30)

QL,i = Qi,0

[
qi,0 + qi,1

( Vi

Vi,0

)
+ qi,2

( Vi

Vi,0

)2
]

(2.31)

where Pi,0, Qi,0 are the i − th load nominal active and reactive power, respec-

tively, Vi,0 is the nominal voltage at busbar i and pi,0, pi,1, pi,2, qi,0, qi,1, qi,2 are

appropriate coefficients.

Induction motors account for a large percentage of industrial loads. In many

cases their models are necessary to properly describe system’s dynamics [15].

Other types of dynamic load models have also been proposed to capture load

dynamics useful to describe voltage instability related phenomena[46]. One sim-

ple load model that will be also used in numerical simulations reported in later

chapter is given by [47, 48]:

Ġi =
1

τPi

[
Pi,0 −Gi(Vi/Vi,0)2

]
(2.32)

Ḃi =
1

τQi

[
−Qi,0 −Bi(Vi/Vi,0)2

]
(2.33)

Example 2.1

Consider the Single Machine Infinite Bus (SMIB) system of fig. 2.6 constituted

by a machine connected through a transmission line to a constant voltage bus.

The generator is modelled using the classical model, i.e. a constant voltage

behind the transient reactance, with mechanical dynamics given by eqs. (2.2)-

(2.3). A fault is applied at node 1, cleared after tcl seconds by opening line

2.

The electrical torque Te is given by:

Te = <(E′ejδ · I∗) (2.34)

where:

I =
1

j(x′d + xt)

(
E′ejδ − V 1

)
(2.35)



2.3. TRANSMISSION NETWORK AND LOADS 33

Figure 2.6: SMIB

V 1 = 1
Yprefault

(
1

j(x′d+xt)
E′ejδ + 1

jx1
Eb + 1

jx2
Eb

)
t < tfault

V 1 = 0 tfault ≤ t < tfault + tcl

V 1 = 1
Ypostfault

(
1

j(x′d+xt)
E′ejδ + 1

jx1
Eb

)
t ≥ tfault + tcl

(2.36)

and:

Ẏprefault =
1

j(x′d + xt)
+

1
jx1

+
1

jx2
+

1
jxp

Ẏpostfault =
1

j(x′d + xt)
+

1
jx1

+
1

jxp

With the following parameters, adapted from [15]:

x1 = 0.5, x2 = 0.93, xt = 0.15, x′d = 0.3, E′ = 1.1626, Eb = 0.90081,H =

3.5, Tm = 0.9, D = 5

equations (2.2)-(2.3) result in the equations 1.19 of Ex.1.1.





Chapter 3

Flexible AC Transmission Systems

Summary

Flexible Alternating Current Transmission Systems are attracting a great amount

of research interest thanks to their ability to exploit power electronic based con-

verters for rapid and effective regulation of power flows in transmission networks.

In the chapter, after a brief review of basic concepts related to power flow con-

trol, parallel and series compensation are introduced. Two devices belonging to

the FACTS family, namely the STATCOM and the SSSC, are described, as well

as their ability to provide real-time control of nodal voltage magnitude and line

impedance. The enhancement of power system stability achieved through reactive

power control is demonstrated by means of power-angle curves and stability region

enlargement.

3.1 FACTS role in modern power systems

Electric power systems are undergoing continuous changes and restructuring due

to a constant increase in power demand, thus operating in scenarios which can sig-

nificantly differ from those envisaged years ago, when their main infrastructures

were initially planned and designed. Higher power demands lead to increased

power flows which in turn result in decreased stability margins. Furthermore,

stressed power systems are more prone to lightly damped interarea oscillations

which could more easily grow unstable.
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The advent of deregulated markets has further increased the importance of

some critical problems related to the vulnerability of the interconnected power

systems [49]. These problems require more and more effective measures directed

to enhance transient and oscillatory stability as far as possible. In deregulated

environment the threat of losing stability could be one of the consequences of the

heavily loaded transmission lines, due to the power transactions between produc-

ers and buyers, aiming at their economic satisfaction. Dispatcher has to realise

the balance between load and generation in every elementary time interval, get-

ting respectively their bids and requests compatibly with power system reliability

and security.

Although the increased power demand could be satisfied by building new gen-

eration and transmission facilities, this solution is seldom viable due to economic

and environmental concerns which usually constitute obstacles that cannot be

overcome. Electric power utilities are therefore rarely willing to build new gener-

ation facilities and transmission lines, instead they would prefer solutions towards

a full utilisation of the capabilities of existing equipment.

Flexible Alternating Current Transmission System (FACTS) is the most promis-

ing technology that provide a viable solution to these requirements. Based on the

use of power electronics, FACTS devices, complemented with modern telecom-

munication and control technologies, allow power system operators to optimally

control the network, both in steady state operation and following disturbances.

FACTS devices can be defined as alternating current transmission systems

based on active static converters capable of generating and absorbing a control-

lable amount of reactive power in order to modify and regulate network quantities

such as the voltage at the point of common coupling or current and power flow

over a transmission line. Coupling a static converter with a power source or a

storage device allows also exchange of active power.

Benefits provided by FACTS devices are twofold: they are capable of increas-

ing power transfer over transmission lines and can make these power transfers

fully controllable [50, 51, 52]. Coupled with their extremely fast action, granted

by the use of power semiconductor devices and rapidly responding controllers,

real time control for the stability enhancement of the system as well as damping

of local and interarea oscillations, become viable possibilities [15, 22].

The last decade has witnessed a wide interest in design and application of

FACTS devices, both from academic and industrial research. Several enhance-
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ment in semiconductor technologies and manufacturing have made power elec-

tronic devices capable of handling high power levels (GTO, IGBT, IGCT) com-

mercially available [53].

Many devices have been proposed in the past within the FACTS family, some

of them based on thyristor switched reactors like the Thyristor Controlled Series

Compensator (TCSC) and the StaticVar [54], while others, like the Static Com-

pensator (STATCOM) [55], the Static Synchronous Series Compensator (SSSC)

[56], the Unified Power Flow Controller (UPFC) [57] and the Superconducting

Magnetic Energy Storage systems (SMES) [58], employ power electronic convert-

ers. This latter choice guarantees the best flexibility in control and rapidity of

response.

3.2 Active and reactive power flow control through shunt

and series compensators

Active and reactive power flow on a transmission line depend on the magnitude

and phase of sending and receiving ends voltages, an on the line impedance. For

the simple model in Fig. 3.1 which represents a simplified equivalent model of a

generator at the sending end connected through a transmission line to an infinite

bus at the receiving end, active and reactive power at the sending end can be

derived as follows:

Ṡs = Ps + jQs = V sI
∗ (3.1)

where:

Ps =
VsVr

X
sin δ = Pmax sin δ (3.2)

Qs =
V 2

s − VsVr cos δ

X
(3.3)

while at the receiving end:

Pr =
VsVr

X
sin δ = Pmax sin δ (3.4)

Qr =
VsVr cos δ − V 2

r

X
(3.5)

Active power, due to lossless transmission line, is equal at both ends and its

power-angle relationship is plotted in Fig. 3.2.

Steady state operating point is obtained in Fig 3.2 by the intersection of the

power-angle curve with the red line representing mechanical power input at the
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Figure 3.1: A simple two buses power system representing a generator connected

to a stiff bus through a lossless transmission line
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Figure 3.2: Power-angle relationship for the SMIB system in Fig. 3.1

sending end. Depending on the sign of dPe/dδ the equilibrium point is classified as

stable or unstable. Indeed, it is easily verified that if dPe/dδ < 0 the Jacobian of

the second order system without damping has one positive eigenvalue∗, whereas

dPe/dδ > 0 results in a stable oscillatory mode, with Jacobian matrix having

∗ For the classical second order SMIB system:

δ̇ = ω

ω̇ =
1

M
[Pm − Pe]

the Jacobian matrix is:

J =

[
0 1

− 1
M

∂Pe
∂δ

0

]
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purely imaginary eigenvalues. For angles below π/2 rad. the equilibrium point is

stable, while it is unstable for angles above π/2. In order to provide a sufficient

margin for stable operation the power angle over transmission lines is usually

kept below 45 deg. From eq. (3.2) it can be recognized that active power flow

depends mainly on the power angle, and its sign influences the direction of power

flow. On the other hand, reactive power flow mainly depends on the values of

voltage magnitudes, and its direction is from the higher voltage bus to the lower

voltage bus. Higher values of the angle δ and of the transmitted power result in

an higher reactive power demand at the sending end, that could further threaten

system’s security.

From the above discussion, it can be concluded that steady-state active and

reactive power flows over a transmission line, depend on line’s reactance and on

the relative magnitudes and phases of voltages at both line’s ends. FACTS con-

trollers are aimed at controlling power transmission over the network performing

a regulation of one or more of these parameters. The role of FACTS in power

systems is not limited to steady-state regulation. Indeed, their intrinsic capabil-

ities in rapidly adjusting their output in response to system’s transients, make

them the technology of choice for real-time power systems control.

Several devices belonging to the FACTS family have been proposed in the

technical literature. Among them STATCOM and SSSC will be analysed in the

following, as examples of shunt connected and series connected devices, respec-

tively. The STATCOM can be employed to regulate the voltage magnitude at the

point of common coupling, therefore providing reactive power support and regu-

lating power flows in the network, whereas the SSSC achieves power flow control

by modifying the equivalent series reactance of the line to which it is connected.

3.3 Static compensator (STATCOM)

The STATic COMpensator can be defined as a synchronous static generator

which operates as a shuntly-connected reactive power static compensator. Its

output current can be fully controlled in both the capacitive and inductive range,

independently of AC network voltage. It is basically constituted by a Voltage

whose characteristic equation is:

λ2 +
1

M

∂Pe

∂δ
= 0 (3.6)
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Figure 3.3: Basic structure and equivalent circuit of a STATCOM

Source Inverter (VSI), a coupling transformer with leakage reactance xl shuntly

connected with the network, and a DC capacitor. A schematic diagram of a

STATCOM, its network interface and equivalent circuit is reported in Fig. 3.3.

A STACOM draws, at the point of common coupling, a practically sinusoidal

current, whose amplitude is fully controllable, and kept almost in quadrature with

respect to network voltage. It therefore acts as a controllable shunt capacitive

or inductive reactance, thus allowing regulation of network voltage which is its

main function. A supplementary feedback controller can be added in order to

enhance damping of system’s oscillations. Reactive power is exchanged through

the leakage reactance of the coupling transformer. STATCOM operation, as

summarised in Fig. 3.4, depends on the relative values of inverter output voltage

V i and network voltage V ac. When inverter voltage magnitude is lower than

network voltage, the STATCOM acts as an inductor drawing reactive power from

the network. On the other hand, when inverter voltage is higher that network

voltage the STATCOM operates as a capacitor injecting capacitive reactive power

into the network. Although not apparent from the above discussion, proper

operation of the STATCOM requires also the inverter to draw an amount of active

power necessary to compensate for VSI and transformer’s losses, as to maintain

the required voltage across DC capacitor. It is therefore required that inverter

voltage V i lag network voltage V i of a small angle. It should be highlighted that
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several inverter controller proposed for FACTS applications are able to control

only the phase of output voltage and not its magnitude which is proportional to

DC voltage. In these cases, output voltage regulation is achieved by angle control

which determines active power exchange with the network to charge or discharge

the DC capacitor [59, 60].
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Figure 3.4: Operating modes, waveforms and phasor diagram illustrating STAT-

COM operation

Reactive power exchange achieved by the STATCOM is independent of net-

work voltage, differently from compensation achieved with fixed capacitor’s banks

or switched capacitor based compensator such as the SaticVAR [54], thus reactive

power support can also be provided at low voltages, when it is most required.

As detailed in a later chapter, if DC voltage is supported by an external

energy source or storage device, STATCOM can also exchange active power.

This possibility can further enhance FACTS capabilities to improve power system

stability [61, 62].
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Figure 3.5: Midpoint compensation of a transmission line

It has been demonstrated in eqs. (3.2)-(3.4) that the active power flow over

an uncompensated transmission line, as represented in Fig. 3.5 with Iq = 0, is

given by:

P =
V 2

X
sin δ (3.7)

assuming equal magnitude voltages at both line ends. The power-angle relation-

ship in eq. (3.7) is represented by the blue line in Fig. 3.6. If compensation is

such that the voltage magnitude at midpoint location∗ is V , then the power flow

is increased to:

P = 2
V 2

X
sin

δ

2
(3.8)

which is plotted in red line in Fig. 3.6. Transmissible power can be doubled

with perfect compensation. Practical constraints on the maximum magnitude

of STATCOM current limit the transmissible power, whose dependence on the

angle is given by:

P =
V 2

X
sin δ +

V Iq,max

2
sin

δ

2
(3.9)

Several power-angle curves for Iq ranging from 0.2p.u. to 2p.u. are reported in

Fig. 3.6 in light blue.

3.4 Static synchronous series compensator (SSSC)

Series reactive power compensation is obtained by controlling the equivalent

impedance of a transmission line, as to regulate the power flow through the

∗Midpoint siting is often considered as the best option for FACTS devices [63].
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Figure 3.6: Power-angle relationship for midpoint compensated line

line. Series connection of capacitors banks was the first method of series com-

pensation. However, the impossibility to control in real time the level of com-

pensation and the risk of initiating potentially dangerous resonances constitute

serious drawbacks to this solution. As for shunt compensation, the utilisation

of fully controllable devices based on power electronics converters, provides the

most flexible solution for series compensation.

The SSSC can be defined as a static synchronous generator which acts as a

series compensator whose output voltage is fully controllable, independent of line

current and kept in quadrature with it, with the aim of increasing or decreasing

the voltage drop across the line, therefore controlling the power flow.

The basic structure of an SSSC and its connection with the network is reported

in Fig. 3.7.

SSSC operation is illustrated by the equivalent circuit of a lossless transmis-

sion line of Fig. 3.8 where the compensator injects a voltage V q. The corre-

sponding phasor diagram is reported in Fig. 3.9. Series injected voltage V q is in

quadrature with respect to line current, and can either provide capacitive com-
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Figure 3.7: Basic structure of an SSSC
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Figure 3.8: A series compensated transmission line

pensation if V q leads I by π/2rad. or inductive compensation if V q lags I by

π/2rad. A relatively small active power exchange is required to compensate for

coupling transformer and switching losses, and maintain the required DC voltage.

From the phasor diagram of Fig. 3.9, it can be concluded that the SSSC

increases the voltage drop across line inductance and hence power flow, if it

emulates capacitive compensation. Differently from series compensation achieved

by means of either fixed or switched reactors, the SSSC can inject a voltage that

is independent of line current, whose amplitude can be fully controlled. Indeed,

the SSSC can be controlled in two different operation modes: constant reactance

mode and constant quadrature voltage mode. If SSSC is in constant reactance

mode of operation, active power transfer over the transmission line of Fig. 3.7 is

P =
VsVr

xl(1− s)
sin δ (3.10)

where s = xc/xl is the degree of series compensation. If SSSC is operated in

constant quadrature voltage mode, assuming Vs = Vr = V active power transfer
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Figure 3.9: Phasor diagram of the series compensated transmission line in Fig.

3.8

is:

P =
V 2

xl
sin δ +

V

xl
Vq cos

δ

2
(3.11)

Power-angle relationships (3.10)-(3.11) are reported for different values of com-

pensation in Fig. 3.10 for both constant reactance and constant quadrature

voltage mode of operation.

A comprehensive analysis of the different modes of operation of the SSSC and

their influence on power system stability is reported in [64].

3.5 Shunt and series reactive compensation and stability

region

The potentiality of FACTS devices in enlarging the stability region can be easily

argued from the already reported power angle relationships, by keeping in mind

the well known equal area criterion [15].

An alternative way for investigating the increasing of the critical clearing time

obtained by use of FACTS devices is their incidence on the stable manifold of

the controlling unstable equilibrium point, which is contained in the boundary

of the asymptotic stability region of post-fault stable equilibrium. Recently an

interesting characterisation of this manifold has been proposed based upon a

quadratic approximation∗ [66, 65, 67].

∗The quadratic approximation of the boundary of the stability region of the stable equilib-

rium point xe for the system ẋ = f(x) is obtained in [65] as:

Ws(xe) = [x− xe]
> · η +

1

2
[x− xe]

> ·Q [x− xe] (3.12)

Where µ is the unique unstable eigenvalue, η is the corresponding left eigenvector of the Jacobian
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Figure 3.10: Power-angle relationship for series compensated transmission line,

with constant reactance and constant quadrature voltage mode of operation

The simple SMIB power system in Fig. 3.11 is adapted from [15], adding

a series compensator in one of the two parallel transmission lines and a shunt

connected compensator at the intermediate bus.

Figures 3.12-3.12 show the phase portrait of the SMIB power system where

the synchronous generator is represented by the classical second order model,

matrix J and Q is the solution of the following Lyapunov matrix equation:

C ·Q + Q ·C> = H (3.13)

where:

H =
∑

j

ηjHj

Hj =
∂2fj

∂xi∂xk

C = µI/2− J>

J> · η = µη
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Figure 3.11: Single Machine power system coupled to an infinite bus, with series

and parallel connected compensators.

Figure 3.12: Stability region and quadratic approximation of its boundary as

effected by shunt compensation

for the shunt and series compensation, respectively. Trajectories on the verge of

instability, as well as the quadratic approximation of the stability boundary for

several values of the compensation clearly show the enlargement of the stability

region as a result of the action of reactive compensation achieved by FACTS

devices.
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Figure 3.13: Stability region and quadratic approximation of its boundary as

effected by capacitive series compensation

3.6 FACTS devices with active power compensation ca-

pabilities

Although many benefits in terms of increased power flow possibility and conse-

quently of higher stability margins are achieved through reactive power compen-

sation, it has been recognised that much better performances can be obtained

if FACTS devices are complemented with active power compensation capabili-

ties. Active power compensation capabilities in FACTS devices can be exploited

to achieve a better damping of power system oscillations. Indeed, interarea os-

cillations appear as poorly damped, low frequency oscillations of active power

exchange between different areas, therefore active power modulation is poten-

tially much more effective in increasing damping than reactive power modulation

only [61].

One of the most viable opportunity for high power storage is the use of su-

perconducting coils, in which energy is stored in a large lossless inductor. This

solution results in the so called Superconducting Magnetic Energy Storage system

(SMES).
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Beside stability improvement applications of SMES devices, other applications

were proposed in the past, such as load levelling and spinning reserve however,

costs associated with huge energy storage requirements, discouraged utilities from

practical realisation.

The use of a proportional-integral controller for oscillation damping applied

to a SMES with a power-flow error control signal is demonstrated in [61, 62],

while robust control is used in [68, 69].

3.7 Conclusion

In the present chapter, operating principles and main benefits achievable with

the use of power electronic converters-based compensating devices have been in-

troduced. Series and shunt connected FACTS devices have been reviewed. Their

capability to provide reactive power support has been shown to increase power

flow and stability margins. It has been highlighted that FACTS devices can be

augmented with supplementary controllers which can provide additional benefits

such as increased damping of power system oscillations. One such controller,

based on the use of Lyapunov theory will be proposed in chapter 5, after appro-

priate modelling and mathematical properties are reviewed.

It has also been underlined that, beside reactive power support, both STAT-

COM and SSSC can be capable of active power exchange when a storage device

is connected to them.

A novel topology for power conditioning system for series and parallel com-

pensators will be proposed in chapter 6. The same configuration will also be used

for SMES-based FACTS devices.





Chapter 4

Phasor dynamics influence on

electric power system

performances

Summary

Dynamic behavior analysis of electric power system has always played a vital

role in operation and planning of power systems. This analysis relies on com-

puter simulation which are usually based on simplifying assumptions which aim

at rendering system modelling more amenable to numerical solution. However,

it is well known that uncertainties and unmodelled dynamics could in some cases

lead to unexpected results. A simplified dynamic model of transmission network

is employed to evaluate the influence of network transients on dynamic behavior

of power systems. Although simplified, this model can easily capture usually ne-

glected dynamics. Applications of this modelling is proposed with respect to two

test systems, highlighting the effects of usually unmodelled dynamics.

4.1 Introduction

Actual power system result from the interconnections of a large number of devices,

comprising synchronous machines, transformers, lines, loads etc. each of them

with its own dynamics, which can evolve over very different time scales.
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Traditionally, power systems are modelled as a coupled set of differential and

algebraic equations (DAE). This modelling is motivated by the assumption that

the electrical system is operating in sinusoidal steady-state, network transients

being much faster than electromechanical ones, due to generator dynamics. An-

gular rotor oscillations are indeed usually in the range 0.1 ÷ 3Hz while network

transients are expected to be orders of magnitude faster, thus decaying very

rapidly [15]. As far as transient stability is concerned, fast network dynamics

are traditionally neglected, thus simplifying modelling and alleviating the com-

putational burden of simulating large electrical power systems which consist of

hundreds of generators and thousands of lines and loads.

Fast network transient are then considered as instantaneous and their asso-

ciated differential equations collapse into algebraic ones. The result is a set of

DAE in the form [70]:

ẋ = f(x,y)

0 = g(x,y)
(4.1)

where algebraic variables y (voltage magnitude and phase) are functions of dy-

namic states x (mechanical and electrical generators state variables). The ex-

tremely fast and ideally instantaneous network dynamics make all electric vari-

ables perfectly sinusoidal signals at synchronous frequency (60 or 50 Hz), thus

being easily described by quasi-stationary phasors, whose magnitude and phase

variations are much slower than the synchronous frequency. This quasi-stationary

assumption is questioned when fast phenomena happen in power systems, such as

subsynchronous resonance [71], voltage instability or the control action of FACTS

regulating devices [72]. Fast time-varying phasors and their dynamics have been

proposed to overcome such modelling limitations [73]-[74]. Even though the most

accurate model of the transmission network is in the form of algebraic equations

with time-delays [75]-[76], time-varying phasors provide a simple but effective

environment for the study of fast network transients. Time-varying phasors have

also been used as a tool to examinate the interactions of load and transmission

network transients in [47], in deriving a simple simulation environment with di-

dactic purposes in [77] and to provide a simple method for testing robustness

of controllers against network’s unmodelled dynamics [71]. An alternative, yet

similar derivation is reported in [78] employing the definition of complex envelope

and the Hilbert transform.
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As power systems become more and more loaded and operated near their

stability margins, accuracy in modelling increases its importance, for planning

and control decisions. Although unmodelled dynamics are unlikely to contribute

in great modifications in system’s response, their inclusion into simulations will

result in a more accurate assessment of the overall dynamic behaviour. It is

known, for example, that an accurate prediction of damping is a prerequisite for

optimal tuning of generators’ controllers and FACTS devices [79].

In the chapter, after some useful definitions and properties are presented,

numerical simulations of a simple SMIB test system and a multimachine one, are

presented in order to highlight the incidence of network modelling on the dynamic

behaviour of electric power systems.

4.2 Time-varying phasors and their dynamics

Dynamic phasors are a tool to analytically describe time varying almost periodic

signals, such as those arising from the use of power electronic converters. They

were firstly introduced to model dc-dc converters in [80], and then applied to the

description of AC machines [81] [82], asymmetrical faults in power systems [83],

subsynchronous phenomena [84], and FACTS devices such as the Unified Power

Flow Controller (UPFC) [85], and the Thyristor Controlled Series Compensator

[86]. Model based estimation of dynamic phasor is the subject of [87]. A power

systems computer simulator based on dynamic phasor modelling is proposed in

[88] [89], along with a discussion of computational efficiency of various approaches.

The definition of dynamic phasors is derived by recognizing that, according

to Fourier theory, any square integrable function x(τ) could be expanded as:

x(τ) =
∞∑

k=−∞
Xk(t)ejkω0τ , ∀τ ∈ (t− T, t] (4.2)

where ω0 = 2π
T . The complex Fourier coefficients Xk(t), which will be referred to

as dynamic phasors, are given by:

Xk(t) =
1
T

∫ t

t−T
x(τ)e−jkω0τdτ =: 〈x〉k(t) (4.3)

The definition could be straightforwardly extended to three phase systems [83]

[87]. By taking the derivative of (4.3) with respect to time and using integration
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by parts, it results:

dXk

dt
=

1
T

[
x(τ)e−jkω0τ

]t

t−T
=

∫ t

t−T

dx(τ)
dτ

e−jkω0τdτ − jkω0

∫ t

t−T
x(τ)e−jkω0τdτ

(4.4)

which yields the key property of the derivative of dynamic phasors:

dXk

dt
(t) =

〈dx

dτ

〉
k
(t)− jkω0Xk(t) (4.5)

Differently from power converters, in most cases of practical interests in power

system analysis, only very few dynamic phasors are needed for a precise descrip-

tion of transient phenomena, since almost all state variables are (possibly time-

varying) sinusoids. In the following, it will be considered the case in which only

the first coefficient of (4.2) is sufficient for a precise description. In this context

the definition of time-varying phasor is introduced as follows, as a straightfor-

ward extension of the well known classical phasor definition. Let e(t) be a generic

sinusoidal signal with time varying amplitude and phase:

e(t) = E(t) cos(ωt + δ(t)) (4.6)

Its associated phasor is the complex quantity:

E(t) = P[e(t)] = E(t)ejδ(t) (4.7)

obtained by applying the phasor operator P to the signal e(t). The operator P

is linear, thus linear relationships valid in time domain, such as Kirchhoff laws,

also apply to phasor domain. Active and reactive powers are defined as usual:

P + jQ = <e{P[e(t)]P∗[i(t)]}+ j=m{P[e(t)]P∗[i(t)]} (4.8)

where e(t), i(t) are the voltage across a branch an the current flowing trough

it, respectively. Under the assumption that ek(t) and ik(t) are bandpass signals,

it is proven in [73] that istantaneous power balance equations is valid also for

time-varying phasors, that is:
n∑

k=1

ek(t)ik(t) = 0 ⇐⇒
n∑

k=1

Ek(t)Ik(t)∗ = 0 (4.9)

This property is fundamental for using time-varying phasor in power system sim-

ulations since some network relationship are given in the form of power balance.

Consider now a current i(t) = I(t) cos(ωt+δ(t)) flowing through an inductance

L. The voltage across the inductor is then:
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vL(t) = L
diL(t)

dt
= Lİ(t) cos

(
ωt + δ(t)

)
− L(ω + δ̇(t))I(t) sin

(
ωt + δ(t)

)

= Lİ(t) cos
(
ωt + δ(t)

)
+ Lδ̇(t)I(t) cos

(
ωt + δ(t) + π/2

)

+ LωI(t) cos
(
ωt + δ(t) + π/2

)

(4.10)

Its associated phasor is then:

VL(t) = P(vL(t)) = Lİ(t)ejδ(t) + Ljδ̇(t)I(t)ejδ(t) + jωLI(t)ejδ(t)

= L
d

dt

[
I(t)ejδ(t)

]
+ jωLI(t)ejδ(t)

(4.11)

thus, its evolution in time is described by the following differential equation:

V L(t) = L
d

dt
IL(t) + jωLIL(t) (4.12)

Analogously, the current flowing through a capacitance C with an applied sinu-

soidal voltage, is:

iC(t) = C
dvC(t)

dt
= CV̇C(t) cos

(
ωt + δ(t)

)
+ CVC(t)δ̇(t) cos

(
ωt + δ(t) + π/2

)

+ ωCVC(t) cos
(
ωt + δ(t) + π/2

) (4.13)

Its associated phasor is then described by:

IC(t) = C
d

dt
V C(t) + jωCV C(t) (4.14)

Both (4.12) and (4.14) can also be derived by direct application of property

(4.5) to inductance and capacitance constitutive relationships with k = 1:

vL(t) = L
di(t)
dt

→ dI1

dt
(t) =

〈 1
L

vL

〉
1
(t)− jωI1(t) (4.15)

iC(t) = C
dv(t)
dt

→ dV1

dt
(t) =

〈 1
C

iC

〉
1
(t)− jωV1(t) (4.16)

Time-varying phasor are complex-valued function, thus being the sum of two

orthogonal components, denoted in the following as real and imaginary part:

E(t) = ERE(t) + jEIM (t).

Let consider now the 2-port Π circuit with lumped RLC in Fig. (4.1), which

can be considered as an approximate equivalent of a transmission line. The

validity of this approximation is discussed in [76].
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Ci Cj

Lij R ij

iCj

Figure 4.1: Π circuit

Time evolution of voltage and current phasors described by eqs. (4.12) and

(4.14), are rewritten here in p.u. and in state-space form, separating their real

and imaginary parts:

1
ω

[
İijRE

İijIM

]
=

[
−rij/lij 1

−1 −rij/lij

]
·
[

IijRE

IijIM

]
+

[
1/lij 0

0 1/lij

]
·
[

ViRE − VjRE

ViIM − VjIM

]

(4.17)

1
ω

[
V̇iRE

V̇iIM

]
=

[
0 1

−1 0

]
·
[

ViRE

ViIM

]
+

[
1/ci 0

0 1/ci

]
·
[

ICiRE

ICiIM

]
(4.18)

where all values are expressed in per unit. Neglecting transients results in the

traditional stationary model, which is readily derived from (4.17) and (4.18) by

substituting their left-hand side with zeros, resulting in the following algebraic

relationships:

[
iijRE

iijIM

]
=

1
r2 + l2

[
r l

−l r

]
·
[

viRE − vjRE

viIM − vjIM

]
(4.19)

[
viRE

viIM

]
=

1
c

[
0 1

−1 0

]
·
[

iCiRE

iCiIM

]
(4.20)

Systems with different time-scale dynamics are known as singularly perturbed

systems [11]-[29]. They are usually written in the form:

ẋ = f(x,y, ε)

εẏ = g(x,y, ε)
(4.21)

where ε is a small parameter. The coefficient 1/ω in (4.17)-(4.18) plays the role

of ε in (4.21). Setting ε = 0 results in the DAE formulation:
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ẋs = f(xs,ys)

0 = g(xs,ys)
(4.22)

where xs and ys are the approximation of x and y, respectively. ys is often

referred to as the slow manifold. Under some regularity and stability assumptions,

Tikhonov theorem establishes that the error x − xs is in the order of ε, i.e. it

vanishes as a linear function of ε as ε → 0.

DAE modeling of power system implies that network variables (voltages and

currents) evolve along the slow manifold as a function of the slow variables (ma-

chines rotor angles). The separation of states into slow and fast subsystems

could in principle be effected employing the knowledge of the physical meaning

of system’s dynamics. However, when several variables evolve on different time-

scales, the interaction could not be negligible and time-scale separation could be

questionable. Following [90] a linear system:

[
ẋ

εẏ

]
=

[
A B

C D

][
x

y

]
(4.23)

has a two-time-scale dynamics if it can be put in the form ∗

[
ẋ

η

]
=

[
F1 B

0 F2

][
x

η

]
(4.24)

where the greatest eigenvalue of F1 is less then the minimum eigenvalue of F2 ,

i.e.:

ρslow = maxi|λi(F1)| < minj |λj(F2)| = ρfast (4.25)

A measure of time-scale separation should therefore be related to the ratio ρfast/ρslow.

Analogous considerations hold for nonlinear systems, employing Jacobian matrix

in (4.23).

∗The transformation from (4.23) to (4.24) can be obtained by the linear mapping

η = y + Lx

with F1,F2 such that:

F1 = A−BL

F2 = D + BL

and L solution of the non-symmetric Riccati equation 0 = DL− LA + LBL−C[91]
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Figure 4.2: Three-phase abc to rectangular transformation

4.3 Three-phase to rectangular reference transformation

The two rectangular components of the time-varying phasors of network quanti-

ties identified as Re and Im can in principle be derived and practically extracted

from a set of balanced three-phase signals by means of the classical abc/dq trans-

formation which is easily derived from Fig. 4.2. The transformation comprises

two steps, the first of which entails projecting the balanced three-phase signals

onto the so-called α− β fixed rectangular reference system:



α

β

0


 =




1 cos −2π
3 cos 2π

3

0 sin −2π
3 sin 2π

3

1/3 1/3 1/3


 ·




a

b

c


 (4.26)

Due to the balanced nature of the original three-phase system, the 0 compo-

nent is always zero, therefore the three signals a(t), b(t), c(t) can be retrieved from

the two signals α(t), β(t). The fixed rectangular reference frame can than be pro-

jected onto a synchronously rotating reference frame usually called dq reference

as follows:

[
d

q

]
=

[
cosωt sinωt

− sinωt cosωt

]
·
[

α

β

]
(4.27)

Re and Im components of voltages and currents can then be identified with

dq components of the corresponding three-phase quantities.

Transformation from three-phase to rotating rectangular reference also allows

to simulate detailed three-phase models of components such as loads or converters
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Component s model
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abc/Re-Im
Transformation
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Re-Im
Framework

Input

Output

‘

Figure 4.3: Framework for Re-Im/abc coupled simulations: the component is

modelled in three-phase abc framework

in transient stability simulations which employ a phasor modelling of the remain-

ing part of the power system, as reported in previous sections. Figure 4.3 shows

a framework for coupled three-phase reference/rectangular reference simulations

which will be used in a later chapter to simulate the detailed internal behaviour of

an inverter for FACTS applications, embedded in a transient stability simulation.

The opposite situation, i.e. embedding models of components in rectangular

reference into three-phase simulations, is equally possible, as depicted in Fig. 4.4.

The nature of the input and the output quantities into and from the compo-

nent, as depicted in Figs. 4.3,4.4 depends on the connection of the component.

For a series connected component the input is the current that enters one of its

terminal and the output is the injected voltage. The opposite applies to shunt

connected components, where the input is the voltage at the point of common

coupling and the output is the current it injects into the network.

4.4 Comparison of transmission line modellings

By means of the framework introduced in the previous section and reported in

Fig. 4.4, both the dynamic modelling in Eqs. (4.17)-(4.18) and the algebraic

model in Eqs. (4.19)-(4.20) for transmission lines in rectangular reference frame

are compared with a detailed three-phase model in order to check their accu-

racy. A simple system with a three-phase generator, a 300 km transmission line
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‘

Figure 4.4: Framework for Re-Im/abc coupled simulations: the component is

modelled in rectangular Re-Im framework

and a linear RL load is considered ∗. In the detailed three-phase simulation the

transmission line is modelled according to the Bergeron’s travelling wave model

which simulate a distributed parameter line (DPL) [92, 93, 94]. In sinusoidal

steady-state no noticeable difference is obtained among the three different mod-

els of the transmission line. In order to check the accuracy of each model in

transient situations a modulation has been applied first to the magnitude and

then to the phase of the generator. Figure 4.5 shows the results of the simulation

of the system when a 10 Hz modulation of 0.5 p.u. is applied to generator’s volt-

age magnitude. Phase a load current is depicted for the three different models.

Dynamic model (4.17)-(4.18) gives very accurate results shown in Fig. 4.5(a),(c),

while algebraic model (4.19)-(4.20) gives a difference with the most accurate DPL

model nearly four times bigger as demonstrated by Fig. 4.5(b),(d). Analogous

conclusions can be obtained when a 10 Hz modulation of 45 degrees is applied to

generator’s voltage angle, as reported in Fig. 4.6. While dynamic model always

provides very accurate results compared with the most detailed DPL model, al-

gebraic model gives a difference that grows even bigger when longer transmission

lines are considered and/or higher frequency variations of voltages or currents are

applied.

∗rline=0.0127 Ω/Km, lline = 0.934 · 10−3 H/Km, cline = 12.7 · 10−9 F/Km
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Figure 4.5: Transmission line models comparison: 0.5p.u., 10 Hz modulation of

generator’s voltage magnitude. (a): phase a load current iDPL with Bergeron’s

model (blue) and Dynamic model iDynamic (red) 4.17-4.18 of the transmission

line; (b):phase a load current with Bergeron’s model iDPL (blue) and Algebraic

model iAlgebraic (red) 4.19-4.20 of the transmission line; (c): iDPL− iDynamic; (d):

iDPL − iAlgebraic

4.5 Numerical results

In the present section the slow and fast transients for a simplified SMIB power

system are identified, then a comprehensive analysis is carried out with respect

to a 4-machine 11-bus test system, with detailed models of machines internal

dynamics.

4.5.1 SMIB test system

Let consider the SMIB system in Fig. (4.7). The classical second order swing

equations are:
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Figure 4.6: Transmission line models comparison: 45 degrees, 10 Hz modulation

of generator’s voltage phase. (a): phase a load current iDPL with Bergeron’s

model (blue) and Dynamic model iDynamic (red) 4.17-4.18 of the transmission

line; (b):phase a load current with Bergeron’s model iDPL (blue) and Algebraic

model iAlgebraic (red) 4.19-4.20 of the transmission line; (c): iDPL− iDynamic; (d):

iDPL − iAlgebraic

rlt V 0E δ l

Figure 4.7: SMIB power system

δ̇ = ∆ω

∆ω̇ = 1
M [Pm − Pe −D∆ω]

(4.28)

where all parameters and variables are defined as usual. The electrical power is

given by:

Pe = <e{E · I∗} = EIRE cos δ + EIIM sin δ (4.29)
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Figure 4.8: Projection on δ − IRE − IIM axes of the phase portrait of SMIB

system

The two current component are given by:

1
ω

[
İRE

İIM

]
=

[
−r/l 1

−1 −r/l

]
·
[

IRE

IIM

]
+

[
1/l 0

0 1/l

]
·
[

E cos δ − V

E sin δ

]
(4.30)

The slow manifold can be obtained by setting the LHS of (4.30) to zero, and

solving for the currents as functions of the slow variable δ:

[
IRE

IIM

]
=

1
r2 + l2

[
r l

−l r

]
·
[

E cos δ − V

E sin δ

]
(4.31)

Figs. (4.8-4.11) report results of simulation of a sample SMIB test system whose

parameters are reported in Appendix. It is clearly visible from figs. (4.8-4.11)

how fast variables evolve in a neighborhood of the slow manifold once the fast

transients decay. Applying the procedure (4.23-4.25) to the linearised version of

(4.28-4.30) about the equilibrium point results in ρfast = 377.7, ρslow = 6.77.

Dynamics of currents are therefore about 55 times faster than angle dynamics.

Their transients can thus be neglected without significant loss of accuracy in the

evaluation of angle behaviour.
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4.5.2 4-machine test system

Simulations for the four-machine two-area test system in Fig. (A.1) are reported.

For each generator the two-axis subtransient model is used, according to the

equations (2.6)-(2.9)

Each generator is equipped with a high gain thyristor exciter, a power system

stabilizer and a governor-turbine system, whose block diagrams are reported in

2. Parameters used in simulations are given in Appendix A. Each transformer

and transmission line is modelled with the Π-equivalent circuit as detailed in the

previous sections. Loads are modelled with constant impedance for the reactive

component of power and constant current for the active component. Load models

are known to have a significant impact on power system stability evaluation [95].

Several load models have been proposed in the past, ranging from static (e.g.

the so called ZIP model) to dynamic [79][46]. Other load modelling have also

been considered and although different results have been obtained with respect

to transient responses, similar conclusions are drawn regarding the differences in

system’s behaviour when fast network dynamics are modelled or not. Loads are

slightly different from those given in [15] in order to simulate a more stressed
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system, characterised by a lower damping in the interarea mode: in particular

load 7 is lowered by 3% while load 9 is increased by 3%. In Figs. (4.12)-(4.15)

results of simulations are reported. Oscillations are triggered by a three-phase

fault at bus 8 cleared after 0.12s. Rotor angle and velocities of machines, as well

as power flow on tie lines 7−8 and voltage at node 8 are shown, both for the case

where line dynamics are modelled according (4.17)-(4.18), referred to as dynamic

model, and for the case where line dynamics are neglected according to (4.19)-

(4.20), this latter case being referred to as algebraic model. Differently damped

oscillations are clearly identifiable in transient response. Linearization of state

equations about the stable equilibrium point has been performed. Eigenvalues are

shown in Fig. (4.16), again comparing the dynamic model with the algebraic one.

The inclusion of faster network dynamics, not only adds faster oscillatory modes,

but also contributes to a slight variation of slower electromechanical ones. Local

and interarea modes, identified with selective modal analysis and participation

factors [96], are reported in Tab. (4.1). In stressed systems with lightly damped

oscillations this differences could result in non negligible variations in nonlinear

simulations results. In well damped systems smaller differences have been found.

When all machines and their controls are modelled, time-scale separation could

not be strong. In the present case it results ρslow = 97.67, ρfast = 377.67, meaning

that internal generators’ control dynamics are not much slower than network’s

ones. Differences are also found in critical clearing time tcr evaluation, resulting

in tcr = 0.124s for the dynamic model, and tcr = 0.135s for the algebraic model.

The final model results in a system of 110 differential equations. This system

is clearly stiff. Efficient algorithms are available for solving this kind of problem

such as those which combine implicit forward and backward differentiation that

are also available in MATLAB [97].

4.6 Subsynchronous oscillations phenomena

This section aims at showing the necessity to include a more detailed description

of network’s dynamics in order to evaluate how they could negatively interact

with torsional modes of generation units. Figure 4.17 depicts the second IEEE

benchmark model for subsynchronous resonance [31]. The dynamics of the me-

chanical subsystem is described by the interaction of four rotating masses as

described in a previous chapter and illustrated in Fig. (4.18).
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Figure 4.16: (a): Eigenvalues of the linearised system about the stable equilibrium

point. (b): A zoomed area of the eigenvalues with modulus less than 10

Mode Algebraic model Dynamic model

area 1 (G1-G2) −1.901± 8.335j −1.861± 8.268j

area 2 (G3-G4) −2.372± 9.030j −2.321± 8.946j

interarea −0.215± 3.569j −0.199± 3.560j

Table 4.1: Local and interarea modes

The capacitive compensation of line 1 in the original 2nd benchmark model is

substituted by a FACTS series compensator, namely an SSSC, which is usually

thought as being immune to resonance phenomena [56]. A simple PI controller

shown in Fig. 4.19 is used to regulate power flow over line 1, by modulating SSSC

equivalent capacitive reactance xeq−SSSC .

It has been recently demonstrated that, subsynchronous oscillations can take

place in systems with FACTS devices, despite the physical absence of series ca-

pacitors, as parameters of controllers are varied [98]. It has also been shown

that constant power control of thyristor-controlled series capacitor can result in

undamped subsynchronous oscillations [99]. Several occurrences of unstable sub-
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Figure 4.19: Equivalent SSSC reactance PI power flow controller

syncronous oscillations determined by poorly designed HVDC controllers were

also reported in literature [15]. One widely cited case was the destabilisation of

the first torsional mode of a generating station near the Square Butte HVDC

link in North Dakota, due to the interaction between the torsional mode and the

HVDC supplementary damping controller.

For the system in Fig. 4.17 a modal analysis has ben carried out, using both

the algebraic modeling of the transmission lines (4.19)-(4.20), and the differen-

tial one (4.17)-(4.18). Figure 4.20 and 4.21 show the eigenvalues and some of

their associated modes for the algebraic and the differential model, respectively,

with Ki = 0.05 and Kp = Ki/30. Network’s dynamics produce eigenvalues ab-

sent in the algebraic model of Fig. 4.20 which could adversely interact with
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torsional dynamics. The eigenvalue locus for the algebraic model as controller

gain is increased from Ki = 0.05 to Ki = 20, with Kp = Ki/30, is reported in

Fig. 4.22. A better damping of electromechanical oscillation is to be expected

as a result of controller’s gain increase and therefore of its velocity in regulation.

However, due to unmodelled network’s dynamics, eigenvalues associated with

torsional modes do not vary as controller’s parameters change. Using differential

models of transmission lines allows to catch torsional mode instability as con-

troller’s gain increase. Indeed, fig. 4.23 and the zoomed region in fig. 4.24 show

how the first torsional mode crosses the imaginary axis going into the positive-

real half-plane, as Ki > 5. Results of time domain simulations are reported in

fig. 4.25, which shows active power flow on line 1 for different values of Ki, and

fig. 4.26 which shows the mechanical torque between HP −LP and LP −GEN

masses at the onset of subsynchronous instability. Oscillations are initiated by a

three-phase fault at busbar 2, self-cleared after 0.07s. As it is to be expected from

linearized analysis, the higher the gain of the controller and hence of its velocity,

the higher the damping of electromechanical oscillations. However, controller’s

gain greater than approximately 5 determines a destabilizing interaction between

line dynamics and the first torsional mode, which does not occur with algebraic

modelling.

4.7 Conclusion

In the chapter, after relevant definitions and properties of time-varying phasors

are summarised, the application of these concepts to power system’s dynamic

simulations is presented, firstly with respect to a simple SMIB system, then to

a multimachine one, and finally to a benchmark model for subsynchronous os-

cillations study. Results of nonlinear simulations as well as linearised analysis

are presented, showing the influence of network’s dynamics in transient stabil-

ity assessment. Efficient algorithms are available for solving the resulting stiff

differential equations, thus providing tools for simulation without excessive com-

putational burden.

The proposed network modelling will be used in the next chapter to introduce

a novel extended Lyapunov function and derive, by means of the concept of

control Lyapunov function, stabilising control laws for FACTS devices.
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Chapter 5

Lyapunov’s theory for stability

and control

Summary

In the chapter the direct method of Lyapunov is introduced. It relates stabil-

ity of a dynamical system with the value of a scalar function, which, roughly

speaking, measures some energetic content of the system. A Lyapunov function

commonly employed for power system analysis is reviewed. The presence of trans-

fer conductances in load flow equations poses a limit on the possibility to derive

true Lyapunov functions for power systems. Extended invariance principle have

been proposed to circumvent this problem. A new Extended Lyapunov function

which takes the network modelling presented in previous chapter into account, is

proposed. Lyapunov function are also used to derive control actions to provide

wider stability margins. A control law for series and shunt compensators based

upon the proposed Extended Lyapunov function is given. An adaptive equilibrium

point estimation technique, needed for practical application of the proposed control

strategy, is also presented.

5.1 Lyapunov’s direct method

The idea of relating stability of a dynamical system to the associated energy is

an old one, dating back to the early work of Torricelli, Laplace and Lagrange.

77
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A. M. Lyapunov proposed the first mathematical formalisation of this approach

[14].

The Lyapunov’s theorem is stated in the following, with respect to the equi-

librium point x = 0 for the nonlinear system ẋ = f(x). A straightforward change

of coordinates is necessary if the actual equilibrium point of the system under

investigation is different from the origin. The following definitions are given be-

forehand.

Locally positive semi-definite function: A scalar function V(x) is said to be

locally positive semi-definite in a domain D ⊆ Rn containing the origin x = 0, if:

V(0) = 0 (5.1)

V(x) ≥ 0 ∀x ∈ D (5.2)

If D = Rn than V(x) is said to be globally positive semi-definite.

Locally positive definite function: A scalar function V(x) is said to be locally

positive definite in a domain D ⊆ Rn containing the origin x = 0, if:

V(0) = 0 (5.3)

V(x) > 0 ∀x ∈ D (5.4)

If D = Rn than V(x) is said to be globally positive definite.

Locally negative (semi-)definite function: A scalar function V(x) is said to

be locally negative (semi-)definite in a domain D ⊆ Rn containing the origin

x = 0, if −V(x) is locally locally positive (semi-)definite.

For a given dynamical system ẋ = f(x) the following theorem is the basis for

stability analysis via energy functions [13, 12].

Lyapunov theorem for local stability If there exists a scalar function V(x)

with continuous first partial derivatives such that:

• V(x) is locally positive definite in D

• V̇(x) =
∂V
∂x

· f(x)∗ is locally negative semi-definite in D

the equilibrium point x = 0 is stable. If:

∗Lf :=
∂V
∂x

· f(x) is known as the Lie derivative of V(x) along f(x).
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• V̇(x) is locally negative definite in D

then the equilibrium point is asymptotically stable.

A global version of the stability theorem can equally be given.

Lyapunov function A scalar function V(x) is said to be a Lyapunov function

if it verifies the hypotheses of the Lyapunov theorem, i.e. it is locally positive

definite and has a locally negative semi-definite time derivative.

Although there does not exist a general and simple procedure for determining a

Lyapunov function for a given system, converse theorems of Lyapunov guarantee

the existence of a local Lyapunov function for a system with a stable equilibrium

point [11].

LaSalle’s invariance principle

In Lyapunov stability theorem the hypothesis of V(x) being locally positive def-

inite is not always necessary to conclude stability of the equilibrium point. Fur-

ther, even if V̇(x) is only locally negative semi-definite, in some cases, one can

still conclude that the equilibrium point is indeed asymptotically stable. These

extensions to stability theorems are guaranteed by LaSalle’s invariance principle

which is stated next, after the following definition:

Invariant set A set M ⊂ Rn is said to be an invariant set for the dynamical

system ẋ = f(x), if, given the initial condition x(t0) = x0:

x(t) ∈M ∀x0 ∈M, ∀t > t0 (5.5)

LaSalle’s invariance principle Let V(x) : Rn → R be a continuously differen-

tiable function. Let l be a constant such that

Ωl = {x ∈ Rn : V(x) < l} (5.6)

is bounded, and

V̇(x) ≤ 0 ∀x ∈ Ωl (5.7)

Then ∀x0 ∈ Ωl, x approaches the largest invariant set ∗ M⊆ S as t →∞, where

S ⊂ Ωl is defined by:

S = {x ∈ Ωl : V̇(x) = 0} (5.8)

∗A set M is said to be invariant if x0 ∈ M ⇒ Φ(x0, t) ∈ M,∀t > t0, where Φ(x0, t) is the

solution to the differential equations ẋ = f(x) with initial conditions x0(t0)



80 CHAPTER 5. LYAPUNOV’S THEORY

In practical cases S is often constituted only by equilibrium points. In such sit-

uations LaSalle’s invariance principle allows to demonstrate asymptotic stability

of an equilibrium point while V̇(x) being only negative semi-definite [13].

5.2 Direct methods for power system stability analysis

Power system stability analysis via Lyapunov methods has been the subject of

extensive research for several decades. Excellent reviews [100, 70] as well as some

books [27, 28] have been published on the subject. The use of direct methods

for stability analysis has several advantages over stability assessment based on

numerical simulations. Although integration of differential equations provides

time domain response of each state variable with any desired level of detail in

system modelling, only one contingency can be analysed at a time. Therefore,

time domain simulations of a huge number of contingencies could be avoided with

the use of direct methods which also provide a measure of the degree of system

stability and its proximity to instability, that could be used to derive preventive

control actions. On the other hand, direct methods relies on simplified modelling

and do not provide time domain response of all state variables.

Direct stability analysis of electric power systems is based on the comparison

of the value of an energy function at the post-fault initial point, with a critical

value. An energy function has a decreasing value along any system trajectory and

cannot be bounded along system trajectories unless the trajectories are bounded

too, as formalised in the following definition [70, 101]:

Energy function The function V(x) : Rn → R is said to be an energy function

if the following conditions hold:

• V̇(x(t)) ≤ 0 along any system trajectories x(t)

• along any trajectory x(t), except for equilibrium points, the set {t ∈ R :

V̇(x(t)) = 0} has measure zero in R

• V(x(t)) bounded ⇒ x(t) bounded

Energy functions provide a tool for describing the boundary of stability region

of dynamical systems. It can be proven that, if the system admits an energy
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function, this boundary consist of the union of stable manifolds ∗ of the unstable

equilibrium points on the stability boundary [102].

Once an energy function for post-fault system is available, a critical value

Vcr has to be defined. If this critical value is exceeded with post-fault initial

conditions, i.e. V(xpostfault) > Vcr, the trajectory is considered to be unstable †.

One of the challenge in the practical usage of direct methods lies in the choice

of Vcr. An earlier method known as the closest unstable equilibrium point method

defines Vcr as the minimum value that the energy function V assumes among all

equilibrium points on the stability boundary‡ [103]. More recently the bound-

ary of stability region based controlling unstable equilibrium point (BCU method)

has been proposed first for network reduced models [104] and then extended to

structure preserving models [105]. This method uses as Vcr the value of V at the

unstable equilibrium whose stable manifold is hit first by the fault-on unstable

trajectory.

5.2.1 SMIB system

For the classical SMIB system, whose equations, with the origin translated at the

stable equilibrium point (δ̃, ∆ω̃) = (δs, 0), are:

δ̇ = ∆ω (5.11)

∆̇ω =
1
M

[
Pm − Pmax sin(δ + δs)

]
(5.12)

the following local Lyapunov function exists:

V(δ,∆ω) =
1
2
M∆ω2 − Pm(δ + δs)− Pmax cos(δ + δs) + c (5.13)

where c is a suitable constant such that V(0, 0) = 0. The function is plotted in

Fig. 5.1, which shows that it is locally positive definite and locally convex, thus

the first hypothesis (5.6) of LaSalle’s invariance principle is verified.

∗ The stable and unstable manifolds, Ws(x̃0) and Wu(x̃0), respectively, of the equilibrium

point x̃0 are defined as follows:

Ws(x̃0) := {x0 ∈ Rn : Φ(x0, t) → x̃0 as t →∞} (5.9)

Wu(x̃0) := {x0 ∈ Rn : Φ(x0, t) → x̃0 as t → −∞} (5.10)

where Φ(x0, t) is the solution of the differential equation ẋ = f(x) with initial condition x0
†Due to the conservative nature of direct methods, a trajectory can be classified as unstable

while the actual trajectory is indeed stable.
‡All equilibrium points on the boundary of the stability region are unstable.
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Figure 5.1: Lyapunov function for SMIB power system

The time derivative of the Lyapunov function (5.13) is given by:

V̇ =
∂V
∂δ

∂δ

∂t
+

∂V
∂∆ω

∂∆ω

∂t
= −D∆ω2 ≤ 0 (5.14)

thus being negative semi-definite.

5.2.2 Lyapunov function for structure preserving models

Earlier efforts to derive a Lyapunov function for multimachine power system

models made use of the reduced network modelling in which the network structure

is lost by elimination of algebraic equations [27]. Lyapunov function for structure

preserving power system models were first introduced by Tsolas, Arapostathis

and Varaiya in a widely cited paper [106], and then proposed to include higher

order generators models [28], dynamic load models [107], HVDC links [108] and

FACTS devices [109]. For multimachine power systems, using the third order

model for synchronous generator, as detailed in chapter 1, the following energy

function has been proposed [110]:

V(ω, δ, E′
q, V, θ) = V1 +

8∑

k=1

V2k + c0 (5.15)
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which is the sum of the following terms, the first of which represents the ki-

netic energy of the generators, while the others account for the potential energy

associated with the generators and the network:

V1 =
1
2

M∑

k=1

Mkω
2
k

V21 = −
M∑

k=1

Pmkδk

V22 = −
M+N∑

k=M+1

PLkθk

V23 = −
M+N∑

k=M+1

∫
QLk

Vk
dVk :

V24 =
M+N∑

k=M+1

1
2x′dk−M

[
E′2

qk−M + V 2
k − 2E′

qk−MVk cos(δk−M − θk)
]

V25 = −1
2

M+N∑

k=M+1

M+N∑

j=M+1

BkjVkVj cos(θk − θj)

V26 =
2M∑

k=M+1

x′dk−M − xqk−M

4x′dk−Mxqk−M

[
V 2

k − V 2
k cos

(
2(δk−M − θk)

)]

V27 = −
M∑

k=1

EfdkE
′
qk

xdk − x′dk

V28 =
M∑

k=1

E′2
qk

2(xdk − x′dk)

(5.16)

As it can be easily demonstrated, the time derivative of the Lyapunov function

(5.15), neglecting the transmission system transfer conductances, evaluated along

the trajectories of the system is given by:

V̇(x) = −
M∑

k=1

Dkω
2
k −

M∑

k=1

T ′d0k

xdk − x′dk

(
Ė′

qk

)2+

N∑

k=1

(PLk + Pk)︸ ︷︷ ︸
=0

θ̇k +
N∑

k=1

(QLk + Qk)︸ ︷︷ ︸
=0

V̇k

Vk
≤ 0

(5.17)

Since xd > x′d the time derivative is negative semi-definite.



84 CHAPTER 5. LYAPUNOV’S THEORY

5.3 Transfer conductances and the extended invariance

principle

Almost all classical energy functions for power systems stability analysis make

use of a power network model consisting of nodes and buses connected by loss-

less transmission lines. The node admittance matrix representing the network is

therefore given by Ẏ = [Yh,k] = j[Bh,k], whit all transfer conductances Gh,k being

neglected. All attempts to utilise a more detailed modelling including transfer

conductances to derive an analytical energy function have been in vain [111].

The presence of transfer conductances in the model gives rise to path-dependant

integrals into the energy function itself, therefore preventing its analytical calcu-

lation. Due to these path-dependent integrals these functions fail to satisfy the

requirements of an energy function [112]. Furthermore, Narasimhamurthi demon-

strated that there does not exist any smooth transformation that transform an

energy function for the lossless case into an energy function for the system with

losses [111].

Many power system controllers for stability improvement are also designed

neglecting losses. The design of a stabilising excitation controller for multima-

chine power systems explicitly accounting for transfer conductances is the subject

of [113].

5.3.1 Extended invariance principle

An extension to the classical LaSalle’s invariance principle has been proposed to

circumvent the difficulty in finding a Lyapunov function for a generic system.

Indeed, its application does not require V̇ be negative semi-definite. Instead, V̇
is allowed to be positive along system’s trajectories in some regions of the state

space. The extended invariance principle was first applied to derive an estimate

of the attractor of single and coupled Lorenz systems [114], and then utilised in

power system analysis for dealing with systems whose transfer conductances are

not negligible [115].

The extended invariance principle Let the scalar function V(x) : Rn → R
be continuous with its first derivatives. Let

ΩL = {x ∈ Rn : V(x) < L} (5.18)
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be a bounded set where L is an appropriate constant value. Define the set:

C = {x ∈ ΩL : V̇(x) > 0} (5.19)

Assuming that:

sup
x∈C

V(x) = l < L (5.20)

then every solution of ẋ = f(x) starting in ΩL converges as t →∞ to the largest

invariant set contained in:

E = {x ∈ ΩL : V̇(x) = 0} ∪ Ωl (5.21)

where:

Ωl = {x ∈ Rn : V(x) < l} (5.22)

A pictorial illustration of the level sets involved in the statement of the ex-

tended invariance principle in the case of a one-dimensional system is given in

Fig. 5.2.

Figure 5.2: A one-dimensional graphical illustration of the level sets involved in

the statement of the extended invariance principle.

Differently from the LaSalle’s invariance principle the time derivative of V is

no longer needed to be negative semi-definite since in the bounded region C it
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can even be positive definite. However, this less stringent requirement results in

the impossibility of demonstrating asymptotic stability of the equilibrium point.

Instead, since the set Ωl is in general nonempty, one can only determine an

estimate of the region in which trajectories are bounded.

The possibility of using functions whose time derivative are not negative def-

inite was exploited in [115] to derive an energy function for power systems with

non-negligible transfer conductances.

In the following, exploiting the dynamic phasor modelling of the transmission

network introduced in an earlier chapter, an extended Lyapunov function will be

given [116]. After the relevant definitions, this extended Lyapunov function will

be used to derive stabilising controls for series and shunt compensators.

5.4 A new extended Lyapunov function

An extended Lyapunov function is proposed. Although higher order models may

be employed as well, the third order model for synchronous generators is used

in the following derivation, due to its simplicity. The model is repeated here for

ease of reference:

δ̇i = ωi (5.23)

ω̇i =
1

Mi
[Pm,i − Pe,i −Diωi] (5.24)

Ė′
q,i =

1
T ′d0,i

[
Efd,i − E′

q,i + (xd,i − x′d,i)Id,i

]
(5.25)

Pe,i = Vd,iId,i + Vq,iIq,i (5.26)

Vd,i = −xq,iIq,i (5.27)

Vq,i = E′
q,i + x′d,iId,i (5.28)

[
Id,i

Iq,i

]
=

[
− sin δi cos δi

cos δi sin δi

]
·
[

Igen,iRE

Igen,iIM

]
(5.29)

[
Vgen,iRE

Vgen,iIM

]
=

[
− sin δi cos δi

cos δi sin δi

]
·
[

Vd,i

Vq,i

]
(5.30)

Each transmission line and RL load is described by eqs. (4.17)-(4.18) as detailed

in chapter 3.

The proposed extended Lyapunov function is given by the summation of the
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following terms:

V1 =
1
2

m∑

i=1

Miω
2
i (5.31)

V2 = −
m∑

i=1

∫
(Pm,i − Pe,i)dδ

= −
m∑

i=1

[
Pm,iδi − E′

q,i(Igen,iRE sin δi − Igen,iIM cos δi)
]

+
m∑

i=1

(x′d,i − xq,i)
[
−1

4
(I2

gen,iIM
− I2

gen,iRE
) cos 2δi

+
1
2
Igen,iREIgen,iIM sin 2δi

]
(5.32)

V3 = −
m∑

i=1

Efd,iE
′
q,i

xd,i − x′d,i

+
m∑

i=1

(E′
q,i)

2

2(xd,i − x′d,i)
(5.33)

V4 =
m∑

i=1

[I2
gen,iRE

+ I2
gen,iIM

] (5.34)

Vl =
∑

i,j∈N ,i6=j

1
2

lij
ω0

[
(IijRE − I∗ijRE

)2 + (IijIM − I∗ijIM
)2

]
(5.35)

Vc =
∑

i∈N

1
2

ci

ω0

[
(ViRE − V ∗

iRE
)2 + (ViIM − V ∗

iIM
)2

]
(5.36)

Terms (5.31)-(5.33) are derived similarly to the analogous terms in the classical

Lyapunov function (5.16). The remaining terms are quadratic functions of volt-

ages and currents in the network, which provide a measure of the stored energy.

Starred variables denote the corresponding stable equilibrium point value. Time

derivative of the proposed function is obtained by adding the following terms:

V̇δ,ω,E′q = −
m∑

i=1

[
Diω

2
i +

T ′d0,i

xd,i − x′d,i

(Ė′
q,i)

2

]
≤ 0 (5.37)

V̇IgenRE
,IgenIM

=
m∑

i=1

[
− Vgen,iRE İgen,iIM + Vgen,iIM İgen,iRE

+(1 + xq,i)(Igen,iRE İgen,iRE + Igen,iIM İgen,iIM )
]

(5.38)

V̇IRE ,IIM
=

∑

i 6=j

lij
ω0

[
(IijRE − I∗ijRE

)İijRE + (IijIM − I∗ijIM
)İijIM

]
(5.39)

V̇VRE ,VIM
=

∑

i∈N

ci

ω0

[
(ViRE − V ∗

iRE
)V̇iRE + (ViIM − V ∗

iIM
)V̇iIM

]
(5.40)

The term (5.37) is negative semi-definite and is the same as the first term in

(5.17). The other terms (5.38)-(5.40) are related to the variation of stored energy
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in network’s elements. They might be responsible for generating regions in the

state-space where V̇ is positive definite.

In general cases, it is not easy to verify the validity of the hypotheses of

the extended invariance principle. In particular, it should be proven that the

set ΩL = {x ∈ Rn : V(x) < L} is bounded, and that according to (5.20), the

supremum of V over the region in which V̇ is allowed to be positive, is less than L.

It is worth noting that these conditions are verified if the function V is convex.

In practical cases, the conditions for the extended invariance principle to hold

can be numerically checked via constrained optimisation, which was employed in

the following one-machine case.

5.4.1 SMIB system

A single synchronous generator coupled to an infinite bus provides a simple test

case. Figure 5.3 shows two cross sections of the proposed extended Lyapunov

function for this SMIB test case.
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Figure 5.3: Two cross sections of the proposed extended Lyapunov function of

the SMIB test case

It can be easily demonstrated, both graphically and using numerical optimisa-

tion, that ΩL is bounded in all directions except for increasing δ. The presence of

quadratic terms in all variables makes all level set closed surfaces in the hypothe-

sis that δ is bounded too. This situation is similar to what happens with classical
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Lyapunov functions for power system analysis, such as the function reported in

eq. (5.13). Indeed, the presence of the term −Pmδ, which is also present in the

proposed function, makes the level sets unbounded in the direction of increasing

δ, as it can be also graphically deduced in the plot reported in Fig. 5.1. Since

the energy function (5.13) for the second order SMIB system (5.11)-(5.12) is not

bounded below, application of the classical LaSalle’s invariance principle is pos-

sible only if it is known a priori that a trajectory is bounded. In this case the

LaSalle’s theorem prove that the trajectory asymptotically converge to an equi-

librium point, since invariant sets are constituted only by equilibrium points [13].

Differently to this widely known classical result, the application of the extended

invariance principle with the proposed modelling, instead of proving asymptotic

stability, yields an estimate of the region Ωl in which trajectories remain bounded.

The extended invariance principle will be applied to demonstrate that a proper

selection of control action can reduce the amplitude of this region.

5.5 Lyapunov functions and control systems

Although stability analysis of dynamical systems was the first application of

Lyapunov’s theory, several applications to controlled systems have appeared in

literature. Most of them are based on the use of control actions that results in

negative definite additional terms to the time derivative of a suitable Lyapunov

function [117, 118, 119].

Several applications have also been proposed in the past to power system

stability enhancement. In particular stabilising controls appeared in technical

literature applied to excitation control [120, 121, 122], controllable series devices

[110, 123], UPFC [124], SMES with either network reduced model [125] or struc-

ture preserving model [126] and, in general, FACTS devices [127, 128, 129]. The

definition of Control Lyapunov function and its use to derive control laws are

given next.

5.5.1 Control Lyapunov function

Let consider the nonlinear system with control input u whose state-space equa-

tions are given by:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm (5.41)



90 CHAPTER 5. LYAPUNOV’S THEORY

Systems of this kind are commonly referred to as affine in the control, since the

state space derivative depends linearly on the control input u. Let 0 be the

equilibrium point of the uncontrolled part of the system (5.41):

ẋun = f(0) = 0 (5.42)

If the equilibrium point 0 is stable, the control input u can be chosen to achieve

asymptotical stability, or to add additional damping to an already stable system.

Control Lyapunov function Let V(x) be a smooth, positive definite and radi-

ally unbounded∗ function. V(x) is said to be a Control Lyapunov function (CLF)

for (5.41) if and only if ∀x 6= 0 the following implication holds:

LgV(x) :=
∂V
∂x

g(x) = 0 ⇒ LfV(x) =
(∂V

∂x

)>
· f(x) < 0 (5.43)

This definition means that a CLF is any Lyapunov function whose time derivative

can be made negative definite by means of an appropriate control input u [117],

[119]-[130]. Let V(x) be a Lyapunov function for the uncontrolled system:

ẋ = f(x) (5.44)

The time derivative of V along the trajectories of the controlled system (5.41) is:

V̇(x) = ∇V · ẋ = ∇V ·
(
f(x) + g(x)u

)

=
∂V
∂x

f(x) +
(∂V

∂x
g(x)

)>
u

= LfV + (LgV)>u

(5.45)

Since V is a Lyapunov function for the uncontrolled system, the following in-

equality holds:

LfV ≤ 0 (5.46)

The control law:

u = −k(LgV) (5.47)

kwown as injection damping, Jurdjevic-Quinn or simply LgV control, adds the

negative semidefinite term:

− k||LgV||2 (5.48)

∗A scalar function V(x) is said to be radially unbounded if V(x) →∞ as ‖x‖ → ∞
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to the time derivative of V, thus increasing the damping to system trajectories

and providing asymptotic stability to the system.

A general optimal stabilizing law, obtained from a CLF, was derived by Sontag

[119] as:

uS =




−k

(
c0 + a(x)+

√
a2(x)+(b>(x)b(x))2

b>(x)b(x)

)
b(x) , b(x) 6= 0

0 , b(x) = 0
(5.49)

where:

a(x) = LfV
b(x) =

(
LgV

)> (5.50)

Both Jurdjević-Quinn and Sontag’s, as well as all universal formulas depending

upon CLFs can be considered as particular cases of a general parametrization, as

described in [131].

5.5.2 Extended control Lyapunov function

Control laws derived from a control Lyapunov function, such as injection damping

control, can provide asymptotic stability to stable systems, as it can easily be

demonstrated via direct application of the LaSalle’s invariance principle. In case

an extended Lyapunov function is available, the presence of a control which adds

a negative definite term to V̇ has the effect of reducing the region C defined in eq.

(5.19) in which V̇ takes positive values to a region C′ ⊆ C. This, in turn, results

in a shrinking of the state-space region in which trajectories are bounded i.e.:

Ωl′ ⊆ Ωl (5.51)

where prime denotes the presence of control. The effect of a injection damp-

ing control such as LgV control can be graphically deduced from the pictorial

representation in Fig. 5.4.

Extended CLF for series compensator control

The presence of a series connected compensator in a transmission line capable

of independent control of active and reactive power, modifies line’s equations as
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Figure 5.4: A one-dimensional graphical illustration of the effect of a control

input which adds a negative definite term to the time derivative of the Lyapunov

function, on the level sets involved in the statement of the extended invariance

principle.

follows:

1
ω

[
İijRE

İijIM

]
=


 − rij

lij
1

1 − rij

lij


 ·

[
IijRE

IijIM

]
+




1
lij

0

0 1
lij


 ·

[
ViRE − VjRE

ViIM − VjIM

]

+




1
lij

0

0 1
lij


 ·

[
uRE

uIM

]
(5.52)

The derivative of V modifies as follows:

V̇IijRE
,IijIM

=
[
(IijRE − I∗ijRE

), (IijIM − I∗ijIM
)
]
·
{[

−rij 1

1 −rij

]
·
[

IijRE

IijIM

]

+

[
ViRE − VjRE

ViIM − VjIM

]}
+

[
(IijRE − I∗ijRE

), (IijIM − I∗ijIM
)
]
·
[

uRE

uIM

]

(5.53)

The following choice of control input:
[

uRE

uIM

]
= − K

I2
ijRE

+ I2
ijIM

[
IijRE − I∗ijRE

IijIM − I∗ijIM

]
(5.54)
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adds a negative definite term to V̇ as follows:

V̇ ′ = V̇ −K

[
(IijRE − I∗ijRE

)2 + (IijIM − I∗ijIM
)2

I2
ijRE

+ I2
ijIM

]

︸ ︷︷ ︸
≤0

(5.55)

A saturation should be imposed in applications to limit the value of the control

law (5.54) to the maximum attainable value given by practical constraints.

Extended CLF for shunt compensator control

Analogously to the series compensator, the presence of a compensator shunt

connected to a bus i, capable of independent control of active and reactive power,

modifies bus voltage equations as follows:

1
ω

[
V̇iRE

V̇iIM

]
=

[
0 1

−1 0

]
·
[

ViRE

ViIM

]
+

[
1
ci

0

0 1
ci

]
·
[

IciRE

IciIM

]

+

[
1
ci

0

0 1
ci

]
·
[

uRE

uIM

]
(5.56)

The derivative of V modifies as follows:

V̇ViRE
,ViIM

=
[
(ViRE − V ∗

iRE
), (ViIM − V ∗

iIM
)
]
·
{[

0 1

−1 0

]
·
[

ViRE

ViIM

]

+

[
IciRE

IciIM

]}
+

[
(ViRE − V ∗

iRE
), (ViIM − V ∗

iIM
)
]
·
[

uRE

uIM

]

(5.57)

The following choice of control input:
[

uRE

uIM

]
= − K

V 2
iRE

+ V 2
iIM

[
ViRE − V ∗

iRE

ViIM − V ∗
iIM

]
(5.58)

adds a negative definite term to V̇ as follows:

V̇ ′ = V̇ −K

[
(ViRE − V ∗

iRE
)2 + (ViIM − V ∗

iIM
)2

V 2
iRE

+ V 2
iIM

]

︸ ︷︷ ︸
≤0

(5.59)

Again a limit should be imposed, according to practical constraints, to the

control law in eq. (5.58).
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5.5.3 Numerical applications: SMIB system with series compensator

The proposed control law for series compensator is applied to the SMIB system

already presented in previous chapters. A 0.15 s fault is applied to produce a

deviation from steady-state conditions.

Figs. 5.5-5.6 represent the value of the proposed Lyapunov function V and its

time derivative V̇, respectively, while Figs. 5.7 and 5.8 show E′
q,∆ω, δ and Ire, Iim

sections of the phase-plane, respectively. The improvement in dynamic behaviour

is clear from Figs. 5.7-5.8. Critical clearing time is increased of 66%. The

value of l defined by 5.20 has been evaluated by means of numerical constrained

optimisation. It has been verified that l = 4.15 for the uncontrolled system, while

l′ = 2.74 for the controlled system.
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Figure 5.5: V with and without control

5.5.4 Numerical applications: 2nd benchmark system for subsyn-

chronous resonance

The proposed control law has also been applied to the 2nd benchmark model

for subsynchronous resonance already reported in the previous chapter. Active

power flow over line 1 obtained with the proposed control law is reported in Fig.
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5.9, compared with the result of the application of the PI control with k = 5.

The proposed control law, thanks also to active power exchange, is able to damp

mechanical oscillations without causing instability in torsional oscillations as PI

controller does.

5.6 Adaptive equilibrium point estimation

Control laws derived from Lyapunov theory are aimed at stabilising system steer-

ing it towards an equilibrium point. The knowledge of this equilibrium point is

indeed necessary in the proposed control laws for series and shunt compensators

given in eqs. (5.54) and (5.58), respectively. It is worth noting that both control

laws do not change the equilibrium point itself, since both control actions vanish

as trajectory approaches to the equilibrium point.

In actual control system, steady state equilibrium is seldom available in real

time operation. This is also the case in power system control, since post fault

equilibrium is not known in advance as it usually depends on protective equip-

ment action following a fault. A common practice is to add wash-out filters,
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Figure 5.9: Active power flow over line 1. Comparison between PI controller and

the Lyapunov based controller

which thanks to a high pass filtering make the controllers respond only to a devi-

ation from steady state, as it is the case with widely used PSS [15]. The problem

of designing stabilising controllers with unknown operating point has been recog-

nised and been dealt with in a few papers such as [120, 132, 133] which propose

adaptation schemes that provide estimates of the unknown equilibrium point. In

particular, it is demonstrated in [120], with a synchronous generator example,

that LgV controllers supplemented with an adaptive tracking of the unknown

equilibrium point, not only retain their stabilising properties but also increase

the amplitude of the attraction region, with respect to the static ÃLgV control

which assumes the equilibrium point to be known.

The controlled system with the proposed controller can be written as:

ẋ = f(x) + g(x) · u(x,x∗) (5.60)

where x∗ is the stable equilibrium point. As already said u(x∗,x∗) = 0.

Adopting the adaptive scheme from [120] the controlled system becomes:

ẋ = f(x) + g(x) · u(x, θ) (5.61)

θ̇ = A · (x− θ) (5.62)
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where θ is the adaptive estimation of the unknown equilibrium point x∗. Matrix

A has to be positive definite. The system augmented with adaptive equilibrium

point tracking (5.61)-(5.62) preserves the original equilibria. Indeed, it is easily

proven that:

x∗is an eq. point of the open loop system
(
i.e.f(x∗) = 0

)

m[
x∗>, x∗>

]>
eq. point of (5.61)− (5.62)

(5.63)

The adaptive version of the proposed series compensator control law is ob-

tained modifying eq. (5.54) as follows:

[
uRE

uIM

]
= − K

I2
ijRE

+ I2
ijIM

[
IijRE − θRE

IijIM − θIM

]
(5.64)

where: [
θ̇RE

θ̇IM

]
=

[
a11 0

0 a22

]
·
[

IijRE − θRE

IijIM − θIM

]
(5.65)

Analogously, for the shunt compensator case, eq. (5.58) augmented with

adaptive equilibrium point estimation becomes:
[

uRE

uIM

]
= − K

V 2
iRE

+ V 2
iIM

[
ViRE − θRE

ViIM − θIM

]
(5.66)

where: [
θ̇RE

θ̇IM

]
=

[
a11 0

0 a22

]
·
[

ViRE − θRE

ViIM − θIM

]
(5.67)

5.6.1 Numerical applications: interarea oscillations damping in mul-

timachine power system

The possibility to exploit the proposed control law to damp interarea oscillations

has been tested with respect to the two-area test system whose data are reported

in Appendix A. A modification in PSS parameter has been made, adding a TGR

in order to decrease interarea oscillations damping. The system has been simu-

lated with both series and shunt compensator.

Shunt compensator

A compensator shunt connected to bus 8 is first considered. Oscillations are ini-

tiated by a three-phase fault at bus 9 self-cleared after 0.1 s, followed by a 1 p.u.
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active power load shedding at bus 9, in order to simulate post-fault conditions

different from pre-fault and test the equilibrium point tracking technique pre-

sented in the previous section. Results of numerical simulations are reported in

Figs. 5.10-5.12. Figure 5.10 shows rotor angles of machines 1 to 3 with respect

to machine 4, with the supplementary Lyapunov-based control given in eqs. 5.66

compared with the case of fixed reactive compensation alone. Oscillations are

clearly damped, as it is also evident from Fig. 5.11 which shows the active power

flow from area 1 to area 2, i.e. flowing from bus 8 to 9. Real and imaginary part

of bus 8 voltage and adaptive estimate of respective equilibrium points, obtained

with eqs. 5.67 with a11 = a22 = 1 are reported in Fig. 5.12 in blue and red lines,

respectively.

Series compensator

Analogous simulations are reported with respect to a series compensator, which

is connected between buses 8A and 8B obtained by splitting bus 8 into two.

The same fault sequence as in the previous case has been applied. Again good

damping performances are obtained with respect to both rotor angle oscillations

as reported in Fig. 5.13 and active power flow in Fig. 5.14. Real and imaginary

part of line 8A − 8B current and adaptive estimate of respective equilibrium

points, obtained with eqs. 5.65 with a11 = a22 = 1 are reported in Fig. 5.15 in

blue and red lines, respectively.

The series injected voltages will be used as reference values to be tracked by

the converter presented in the next chapter.

5.7 Conclusion

After a brief introduction to the classical stability analysis via Lyapunov func-

tions, the extended invariance principle is presented. It allows to derive control

laws which shrink the region in which trajectories are bounded also for system

whose Lyapunov function has time derivative not negative definite. An adaptive

procedure is necessary in real-time implementation for estimating the equilibrium

point to be stabilised.

The next chapter will describe a novel topology for FACTS devices which will

be used to track the reference values obtained using the proposed Lyapunov-based

methodology.
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Figure 5.10: Rotor angles of machines 1÷ 3 with respect to machine 4, with and

without the proposed supplementary control law for the shunt compensator
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estimate of respective equilibrium point (red line)
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Figure 5.13: Rotor angles of machines 1÷ 3 with respect to machine 4, with and

without the proposed supplementary control law for the series compensator
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Figure 5.14: Active power flow from area 1 to area 2 with and without the

proposed supplementary control law for the series compensator
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Chapter 6

Two-leg three-phase inverter

control for STATCOM and SSSC

applications

Summary

Several converter topologies for FACTS applications have been proposed in the

recent literature, even if those based upon voltage source inverters (VSI) seem to

be more attractive due to their intrinsic capability to rapidly respond to network

changes such as perturbations subsequent to a fault and their property of being

immune to resonance problem. In the chapter a new topology for inverter based

FACTS devices is proposed. This configuration, employing two-leg three-phase

inverters is employed for both series and parallel connected reactive power com-

pensators. The converter utilises a modular topology for allowing a satisfaction

of electronic components rating. A control strategy based on variable structure

control technique with sliding mode is employed to track appropriate reference

quantities.

Using a DC-DC chopper for coupling the DC side of the proposed inverter

with a storage device like a superconducting coil, results in a topology useful for

SMES-based FACTS devices which can be easily employed for practical tracking

of stabilising reference control signals obtained in the previous chapter.

Design and control, as well as good tracking performances are verified through

103
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numerical simulations.

6.1 Introduction

Several power converter topologies have been proposed for the implementation

of FACTS devices, such as those based on voltage-source converters [134] and

current-source converters [135]. Among voltage-source converters line-frequency

switching has been preferred to pulse-width modulation (PWM) due to the past

unavailability of high switching frequency power devices with high power handling

capabilities. In order to achieve lower harmonic distortion multi-pulse converter

are employed, such as the 24 and 48 pulses converters [136, 60, 137]. Mag-

netic interfaces constituted by complex zig-zag phase shifting transformers are

required for interfacing multi-pulse inverters with transmission network in order

to counteract low order harmonics. With the use of multilevel converters [138]

the necessity of complex coupling transformers could be avoided, at the expense

of a greater complexity in control. Comprehensive circuit-level comparisons along

with advantages and drawbacks of several common arrangements for high-power

converters are presented in [134] and [139].

Several improvements in power semiconductor devices have been reported

recently. Insulated gate-commutated thyristors (IGCT) [140, 141] have been

proposed and are already commercially available for high power operations with

switching frequency in the kHz range. Emitter turn-off thyristor (ETO) promises

to be a viable technology for very high power and high frequency PWM operation

[142, 143, 144]. These progresses are making PWM operation a competitive and

effective alternative to line-frequency commutated control structure which are

currently employed [145].

Power converters can be regarded as Variable Structure Systems due to their

switching operation. Sliding mode control for this type of system has gained

widespread attention in the relevant literature due to its simplicity and intrinsic

robustness against disturbances [146, 147]. Sliding mode control is thus an ef-

fective alternative to classical PWM techniques, provided that sufficiently high

switching frequency devices are available. A viable solution to the problem of

high frequency switching of high current levels is the employment of a number of

parallel connected converters, controlled in such a way as to guarantee a balanced

current sharing among them. In the paper, a converter based on the parallel con-
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nection of basic building blocks constituted by two-leg three-phase converter,

for both parallel and series compensation, is described. This arrangement can

provide an alternative topology for STATCOM and SSSC devices. While the

STATCOM based on the proposed converter is employed for stabilizing voltage

at the point of common coupling with the network, the SSSC is employed for

both capacitive and inductive compensation of a transmission line. Both prob-

lems can be rearranged into the problem of tracking a reference reactive power.

This problem is thereafter translated into the task of tracking a reference voltage

which is effectively achieved with a sliding mode controller, which also tackle the

problem of balanced current sharing among the parallel connected converters.

The paper is structured as follows: converter configuration and its applica-

tion for STATCOM operation is presented in Section II, along with mathematical

derivations of both references quantities and control action. Series connection for

SSSC operation is described in section III. In Section IV results of numerical sim-

ulations are reported, showing good tracking performances along with simplicity

in design and control. The Conclusion is presented in section V.

6.2 Converter Topology, STATCOM Operation and Con-

trol

The topology of the proposed converter is illustrated in Fig. 6.1, as well as its

shunt connection with the transmission network through a ∆-Y transformer∗.

The converter is constituted by the parallel connection of n two-leg three-phase

inverters. LC filters are connected between each inverter output and the coupling

transformer, in order to contribute to the smoothing of output voltages. The

basic building block has been proposed as a component minimized topology for

variable-speed induction motor drives [149, 150] and as a coupled rectifier/inverter

system [151]. A three-level NPC variant has also been proposed for active filtering

application [152].

Assuming a balanced three-phase operation, the converter output voltage V̄ab

is given by:

V̄ab = V̄a′ − jxtĪa′ (6.1)

where V̄a′ is the transmission network phase a p.u. voltage at the point of com-

mon coupling, Īa′ is the STATCOM phase a p.u. current and xt the coupling
∗Y-Y connection is equally possible and has been analysed in [148]
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transformer leakage reactance. Leakage resistance has been neglected for the sake

of simplicity. Voltages V̄ca and V̄bc can be derived analogously, and are equal to

V̄ab phase shifted by 2/3π and 4/3π rad. respectively, as illustrated by the phasor

diagram in Fig. 6.2.

Figure 6.2: Phasor diagram illustrating STATCOM operation in capacitive com-

pensation mode

For the STATCOM to operate as a capacitive compensator the currents Ia′,b′,c′

drawn from the network should lead bus voltages V̄a′,b′,c′ by π/2 rad, while the

currents should lag π/2 rad behind the voltages when inductive compensation

is required. Assuming as a reference the phase of V̄a′ the STATCOM reference

phase current is then:

Īref
a = Iref

a ej(π/2−α) (6.2)

A phase displacement by an angle α is necessary for the STATCOM to draw

sufficient active power as to compensate for losses in semiconductor devices and

coupling transformer, thus maintaining DC voltage at a specified level. The

magnitude of reference current, as well as angle α can be derived by the reference

values of active and reactive power as:

Iref
a = Iref =

√
P 2

ref + Q2
ref

Va′,b′,c′
(6.3)
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α =
π

2
− tan−1 Qref

Pref
(6.4)

Active and reactive power reference can either be fixed or dynamically ad-

justed as to regulate some network quantities. The most common STATCOM

operation is voltage regulation at the point of common coupling. With this aim

in mind, two simple PI regulators, as reported in Fig. 6.3, are adopted in the

paper. The difference between network voltage magnitude and a reference is

passed through a PI controller which determines the amount of reactive power

compensation required. A regulation droop is usually present in practical ar-

rangements and can be easily added. Another PI regulator maintains DC voltage

at a specified level, by determining the amount of active power necessary for

converter losses compensation. More complex control schemes, which could fur-

ther enhance system dynamic behaviour, are equally possible but, since the main

focus is on the tracking capabilities of the proposed converter and control, only

the simplest are presented.

Kiac

s
Kpac

Vac

Vac-ref

-

+

Qref
+

Kidc

s
Kpdc

Vdc

Vdc-ref

-

+

Pref
+

Figure 6.3: Ac and Dc control systems

Reference values for magnitude and phase of converter output voltage are

then:

|V̄ ref
ab | =

√
(Va′ + xtIref

a cosα)2 + (xtIref
a sinα)2 (6.5)

∠V̄ ref
ab = ∠V̄a′ − tan−1 xtI

ref
a sinα

Va′ + xlIref
a cosα

(6.6)

V̄ca and V̄bc can be derived by phase shifting V̄ab by 2/3π and 4/3π rad, re-

spectively. In practical application a Phase-Locked Loop (PLL) is necessary to

synchronise with network voltage.

Time domain converter equations are presented in the following.

6.2.1 Converter equations

Voltages on ac filter capacitances are:
dvab

dt
=

1
CfA

ifA

dvcb

dt
=

1
CfC

ifC

(6.7)
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where:

ifA =
n∑

k=1

ifA,k + ia − ic

ifC =
n∑

k=1

ifC,k + ic − ib

(6.8)

Current in filter inductances are given by:

difA,k

dt
=

1
LfA,k

(uA,k − vab)

difC,k

dt
=

1
LfC,k

(uC,k − vcb) k ∈ {1, . . . , n}
(6.9)

The control inputs uA,k, uC,k to LC filters are given by:

uA,k = s1,kvdc,1 − s4,kvdc,2

uC,k = s2,kvdc,1 − s3,kvdc,2

(6.10)

where:

si,k =

{
1 if the i-th switch is on

0 if the i-th switch is off
i ∈ {1, . . . , 4} (6.11)

Currents in the primary of the coupling transformer are:

dia
dt =

1
Lt

(−Rtia − vab + va′)

dib
dt

=
1
Lt

(−Rtib + vcb + vb′)

dic
dt

=
1
Lt

(−Rtic + vab − vcb + vc′)

(6.12)

Equations (6.7)-(6.12) can be easily rearranged in the state-space form as:

ẋ = Ax + Bu + Dd

y = Cx
(6.13)

where the state variables x, the controllable and uncontrollable inputs u,d, re-

spectively, are given by:

x = [vab, vcb, ifA,n, . . . , ifA,1, ifC,n, . . . , ifC,1, ia, ib, ic]>

u = [uA,n, . . . , uA,1, uC,n, . . . , uC,1]>

d = [va′ , vb′ , vc′ ]>
(6.14)

and the output y is:

y = [vab, vcb]> (6.15)
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6.2.2 Variable Structure Control

Due to the switching action of power devices, power converters naturally belong

to the class of variable structure systems, whose structure changes according to

some control law. Variable structure control (VSC) is a feedback control action

widely employed for this kind of systems. VSC have been proposed for a variety

of mechanical and electrical systems, also including power converters [153], power

systems [154] and electrical drives [155]. The design of a VSC for a given system

entails the choice of a switching control law with the aim of forcing system’s

state trajectory towards a properly designed sliding surface in the state space,

described by Σ(x, t) = 0. Once the sliding surface is reached, the VS controller

must preserve the motion of system’s trajectory on it, giving rise to the so-called

sliding mode. Control objectives should be taken into account for an appropriate

design of the sliding surface. In the present case, the goals of the controller can

be itemized as:

1. Regulation of output voltages vab, vcb

2. Balanced current sharing among parallel connected inverters

Keeping these aims in mind, the following sliding surface is proposed, utilizing

the circular chain control strategy from [156]:

Σ(x, t) = [σA,1, . . . , σA,n, σC,1, . . . σC,n]> = 0 (6.16)

where:
σA,h =

(
vab − vref

ab

)
+ α

(
dvab
dt − dvref

ab
dt

)
+

β (ifA,h − ifA,k)

σC,h =
(
vcb − vref

cb

)
+ α

(
dvcb
dt − dvref

cb
dt

)
+

β (ifC,h − ifC,k)

with :

k = n, if h = 1

k = h− 1, if h = 2, . . . , n

(6.17)

The first two terms on the rhs of (6.17) account for output voltage regulation,

while the third for balanced current sharing among parallel connected converters.

The derivative term is added recognizing that the relative degree (i.e. the order

of the derivative of the output y required for the input u to appear explicitly
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[146]) is two [157]. Once the sliding surface is hit at t = t0, the sliding mode

occurs if and only if:

Σ̇(x, t) =
∂Σ
∂x

· ẋ +
∂Σ
∂t

= 0, ∀t > t0 (6.18)

The equivalent control ueq given by:

ueq = −
(

∂Σ
∂x

·B
)−1

·
[
∂Σ
∂x

· (Ax + Dd) +
∂Σ
∂t

]
(6.19)

assuming det
[
(∂Σ/∂x) ·B] 6= 0, describes an equivalent smooth feedback control

that forces state trajectory of system (6.13) to stay on Σ(x, t) = 0. Direct

application of Proposition 1 in [158] to the present case demonstrates that a

sliding mode exists if and only if ∀x ∈ {x : Σ = 0} each component uk,eq of the

equivalent control ueq satisfies:

− vdc,2 < uk,eq < vdc,1 (6.20)

This condition is fulfilled provided that voltages on dc capacitors are sufficiently

high.

A reaching condition, sufficient for the trajectory of system’s state to reach

the sliding surface is: (
dΣ
dt

)>
· Σ < 0 (6.21)

Condition (6.21) guarantees that the time derivative of the quadratic function:

V = 1/2Σ> · Σ (6.22)

is negative definite, thus (6.22) qualifies as a Lyapunov function, demonstrating

asymptotic stability of the state Σ = 0. In single input control problem actual

control is derived as to fulfill condition (6.21). Since system (6.13) is a multi-

input system, 2n actual controls would appear in a coupled manner in (6.22) thus

making impossible to derive appropriate control actions. A linear time-invariant

transformation:

Σ̂ = Ω · Σ (6.23)

with Ω a nonsingular matrix, is chosen in order to transform the coupled multi-

input control problem into 2n decoupled single input problems [147]. Motion on

the sliding surface is not altered by transformation (6.23) since the equivalent
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control can be easily derived to be the same as (6.19). Furthermore, since Ω is

nonsingular, Σ = 0 ⇔ Σ̂ = 0. The candidate Lyapunov function is now:

V̂ = 1/2Σ̂> · Σ̂ (6.24)

whose time derivative is:

dV̂
dt

= Σ̂> · Ω ·
[
∂Σ
∂x

· (Ax + Bu + Dd) +
∂Σ
∂t

]
(6.25)

If Ω is chosen such that:

Ω · ∂Σ
∂x

·B = I ⇐⇒ Ω =
(

∂Σ
∂x

·B
)−1

(6.26)

where I is the identity matrix, then the time derivative of the function V̂ is:

dV̂
dt

= Σ̂> · Ω ·
[
∂Σ
∂x

· (Ax + Dd) +
∂Σ
∂t

]
+ Σ̂> · u (6.27)

Expression for Ω in the present case is given in Appendix B.

A negative definite term is added to (6.27) if the control inputs are chosen as:

uA,i, uC,i =

{
u+ = vdc,1 if σ̂i < 0

u− = −vdc,2 if σ̂i > 0
(6.28)

Again, if dc voltages are sufficiently high, the reaching condition is satisfied,

allowing sliding surface to be reached in finite time. Direct application of (6.28)

would require an infinite switching frequency. In practical realisation an hysteresis

band HB is considered in order to provide a finite and sufficiently low switching

frequency.

6.3 Converter Topology, SSSC Operation and Control

The series connected converter is reported in Fig. 6.4. Apart from network

connection, the converter and the filtering interface are the same as those al-

ready described for the STATCOM, thus their functions and equations will no

be repeated here. The role of a series compensator is to provide a capacitive

compensation for long transmission lines. As for STATCOM, besides the main

objective, supplementary controls could be added to provide additional capa-

bilities such as current, power flow control and damping of power oscillations.

Although capacitive compensation is the most common operation of the SSSC,

inductive compensation could be required in some circumstances, as well.
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Phasor diagram reported in Fig. 6.5 illustrates the principle of capacitive

compensation of SSSC, which injects three-phase voltages π/2 rad lagging line

currents. Again, an angle α 6= 0 is required for active power to flow into the

converter in order to compensate for losses.

Figure 6.5: Phasor diagram illustrating SSSC operation in capacitive compensa-

tion mode

The following relationships, assuming balanced three-phase capacitive opera-

tion, are easily derived:

V̄ab = V̄1 − jxtĪa, Īa = Ī1 (6.29)

Injected series voltage is:

V̄1 = −jxcomp|Ī1|ej(∠Ī1+α) (6.30)

where xcomp is the desired compensator equivalent reactance. Magnitude and

phase of converter output reference voltage are:

|V̄ ref
ab | = |Ī1| ·

√
(xcomp cosα + xt)

2 + (xcomp sinα)2 (6.31)

∠V̄ ref
ab = ∠Ī1 − tan−1 xt + xcomp cosα

xcomp sinα
(6.32)

Again, V̄ca and V̄bc can be derived by phase shifting V̄ab by 2/3π and 4/3π rad,

respectively.
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6.4 Numerical Simulations

Numerical simulations for both compensators are reported in the following.

6.4.1 STATCOM

The test system reported in Fig. 6.6, adapted from [60], is employed for STAT-

COM simulation. It consists of a three-phase 230kV ideal generator which feeds a

load area through a transmission line and a step-down transformer. Three loads

are switched sequentially, in order to provide different operating conditions. The

proposed STATCOM is shunt connected to bus B2 through a coupling trans-

former. Network data are reported in Fig. 6.6 while converter and controller

data are given in Appendix C. The converter utilized in numerical simulations is

constituted by three parallel connected inverters.

L1 L2 L3

Eg

Rg

Xg

B1
B2

B3

230 kV
10000 MVA
X /R

60 Hz
g g=8

Y D

230 kV/33 kV
300 MVA

x =0.16 p.u.

r =0.04 p.u.
t

t

P=1.0 p.u.
Q =0.8 p.u.L

R =0.05 p.u.

L =0.2 p.u.
line

line

P=0.7 p.u.
Q =0.5 p.u.L

P=0.6 p.u.
Q =0.4 p.u.C

10 kV/230 kV
100 MVA

x =0.1 p.u.

r =0.004 p.u.
t

t

S =100 MVAbase

Figure 6.6: 230kV test system for STATCOM simulation

Load L1 is connected from the beginning of simulation. At t = 0.5s a second

inductive load L2 is connected, while load L3 which has a capacitive component is

switched on at t = 0.75s. At t = 1s loads L1 and L2 are both disconnected, leaving

only the capacitive load, resulting in inductive operation of the STATCOM, as

shown in Fig. 6.7 where both measured reactive power absorbed by the converter

and its reference are shown.

The magnitude of voltage at the regulated bus B2 and the magnitude of the

current absorbed by the STATCOM are plotted in Fig. 6.8. Dc capacitor voltages

and the angle α are shown in Fig. 6.9.

Phase a voltage and current at STATCOM output at the passage from ca-

pacitive (voltage lagging) to inductive (voltage leading) mode of operation are

reported in Fig. 6.10.
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Figure 6.8: Magnitude of voltage (top) and current (bottom) at STATCOM

output

RMS values of phase a output current of the three converters are reported in

Fig. 6.11. Despite different values for filter inductances, the current sharing is

good. A higher number of parallel connected inverters could be easily added to
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Figure 6.10: Phase a STATCOM voltage and current

lower the current through each of them.

Voltage across filter capacitance vab and its reference vref
ab are reported in Fig.

6.12. Good tracking performances are obtained, resulting in low distortion of

output voltage, as demonstrated by a THD value well below 0.1% as shown in

Fig. 6.13. Sliding mode control results in a variable switching frequency. By
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Figure 6.11: Current RMS in filter inductances

means of a running window the number of commutations in a period has been

evaluated and its maximum has been found to result in a maximum switching

frequency as low as 1250Hz.
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Figure 6.12: vab (top) and vref
ab (bottom)
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Figure 6.13: Total Harmonic Distortion of bus B2 voltage

6.4.2 SSSC

The test system used in SSSC simulations is reported in Fig. 6.14 [60]. Different

operating conditions are tested by switching on and off three loads and corre-

spondingly changing the reference SSSC reactance. Load L1 is connected from

the beginning of the simulation while inductive load L2 and capacitive load L3

are switched on t = 0.25s and t = 0.5s, respectively. At t = 0.75 loads L1 and L2

are both switched off while compensator goes into inductive compensation.

L1 L2 L3

Rg

Xg

B1
B3 B4B2

Y D

230 kV/33 kV
300 MVA

x =0.16 p.u.

r =0.04 p.u.
t

t

48 kV/6.6 kV
100 MVA
x =0.1 p.u.

r
t

t=0.002 p.u.

P=0.5 p.u.
Q =0.15 p.u.L

P=0.25 p.u.
QC=0.30 p.u.

P=0.25 p.u.
QL=0.15 p.u.

R =0.1 p.u.

L =0.3 p.u.
line

line

Eg

230 kV
10000 MVA
X /R

60 Hz
g g=8

S =100 MVAbase

Figure 6.14: 230kV test system for SSSC simulation

Figure 6.15 shows equivalent reference reactance and the active and reactive

power absorbed by the compensator. Magnitude of injected voltage and cur-
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rent through SSSC are reported in Fig. 6.16, while Fig. 6.17 shows dc voltages

and angle α. Phase 1 voltage and current of the SSSC, following the removal of

inductive loads, thus determining the passage from capacitive to inductive com-

pensation, is reported in Fig. 6.18. RMS values of phase 1 output current of

the three converters are reported in Fig. 6.19. As for STATCOM good track-

ing performances are obtained with respect to output voltages with a switching

frequency lower than 1250Hz, which result in a THD level well below 0.1%.
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6.5 Converter control for active power exchange

A suitable controlled FACTS device can exchange active power if some sort of

energy source or storage system is available. Several devices capable of storing

electromagnetic, mechanical or chemical energy, ranging from ultra and hyper-

capacitors, batteries and flywheel were proposed in literature for power applica-

tions [62]. However, Superconducting Magnetic Energy Storage (SMES) devices

appear as the most viable and cost effective solution for high power applications.

A SMES system contains an inductor (the SMES coil) whose superconduct-

ing properties are maintained at very low temperatures by a cryogenic system.

Energy in a SMES coil whose inductance is LSMES, is given by:

E =
1
2
LSMESI

2
SMES (6.33)

This energy is stored in the magnetic field produced by the current ISMES flowing,

with zero resistance, in the coil.

Although the costs of the superconducting coil and its associated refrigeration

system are still very high, the main cost of a complete SMES system is due to the

power electronic interface with AC network. The cost of the DC-AC converter is

avoided if the SMES coil is connected to an already existing FACTS device, thus

making this solution attractive also from an economical viewpoint [62].

DC current flows in the SMES coil, which is either charged or discharged

depending upon the sign of the applied voltage. If zero voltage is applied to the

coil the SMES is in stand-by mode, maintaining constant DC current.

The proposed power conditioning system for SMES-based FACTS devices is

given in Fig. 6.20. A DC-DC chopper allows the exchange of power between the

inverter and the superconducting coil. It maintains the proper voltage across the

coil terminals, applying the capacitor voltage during the charging mode and re-

versing this voltage during the discharging mode. It also provides a free-wheeling

path to the coil current when no power exchange is needed. The basic chopper

topology is presented in Fig. 6.21, while the equivalent circuits during charging

and discharging modes are given in Figs. 6.22, 6.23, respectively [159, 160].

The evolution of coil current is governed by the following differential equation:

LSMES
diSMES

dt
= uchvC Charging

LSMES
diSMES

dt
= −udisvC Discharging

(6.34)
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Figure 6.22: SMES DC-DC chopper in charging mode

where vC = vCa − vCb, uch and udis are boolean variables governing the state of

the two switches in the chopper, udis stands for the complementary of udis.

The switching signals during both charging and discharging modes are sum-
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Figure 6.23: SMES DC-DC chopper in discharging mode

marized in Tables 6.1 and 6.2, respectively.

schop1 schop2 uch VSMES

0 1 0 0

1 1 1 VC

Table 6.1: Chopper switching signals during charging mode

schop1 schop2 udis VSMES

0 0 0 −VC

0 1 1 0

Table 6.2: Chopper switching signals during discharging mode

The following simple sliding surface is proposed for chopper control during

transients when active power exchange is required:

Schopper = schopper(vDC,ref − vDC) (6.35)

where vDC = vDC,1 + vDC,2, therefore acting to restore the reference DC voltage.

If Schopper > 0 then vDC < vDC,ref and the chopper enters into discharging mode,

with coils discharging to recover DC voltgage. If Schopper < 0 then vDC > vDC,ref

and the chopper enters into charging mode drawing current from DC side to

charge SMES coil and decrease DC voltage.

Results of numerical simulations are reported in Figs. 6.24-6.27 with respect

to the series connected compensator used for oscillation damping in the previous
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chapter. Results for shunt connected compensator are analogous and are not

reported for the sake of brevity.

Figures 6.24 and 6.25 reports real and imaginary parts of injected series volt-

ages, respectively, as well as their reference values as obtained in the previous

chapter. The fault happens at 0.1 s, and the first 10 seconds of simulation are

shown. Figure 6.26 shows SMES coil current and the applied voltage, while

Fig. 6.27 shows DC capacitor voltages. Again good tracking performances are

obtained.

The chosen value for LSMES is 5 H, resulting in a stored energy, at the rated

current value of 6000 A lower than 100 MJ . A 100 MJ SMES demonstration

is being built at Florida State University [161] for research and educational pur-

poses.
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6.6 Conclusion

In the chapter a converter constituted by the parallel operation of basic building

blocks is utilised for both series and parallel reactive power compensation, thus

proposing an alternative topology for FACTS devices. Each building block is

the most basic two-leg three-phase inverter constituted by four switches and a

split capacitor. The compensation problem is translated into the task of track-

ing reference three-phase voltages at converter output. Recognizing the variable

structure nature of the converter, the tracking problem is tackled by means of

a sliding controller, which also provide a solution to the problem of a balanced

current sharing among the two-leg parallel connected inverters. Numerical sim-

ulations are reported both for a STATCOM and a SSSC based on the proposed

converter, showing simplicity both in control and converter topology, as well as

effective tracking performance of the sliding controller.
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Appendix A

Test systems’ data

Figure A.1: Two-area test system

Parameters of the SMIB system (4.28)-(4.30) are:

ω = 2πf = 2π60,M =
3.5
60π

,D = 0.01, Pm = 0.9[p.u.]

E = 1.123[p.u.], V = 0.995[p.u.], l = 0.95[p.u.], r = 0.065[p.u.]

Parameters of synchronous generators, thyristor exciter and PSS of the four-

machine test system in Fig. A.1 are the same as [15]. Loads are:

P7 = 9.384[p.u.] P9 = 18.211[p.u.]

Q7 = 0.971[p.u.] Q9 = 1.033[p.u.]

Turbine and governor model is reported in Fig. (2.3), data are [37]:

TG1 = 0, TG2 = 0.1, TG3 = 0.25, TG4 = 0.42, TG5 = 4.25, TG6 = 0.72

K1 = 15,K2 = 0.25,K3 = 0.25,K4 = 0.5

Rmax = 1.1, Rmin = −0.5, Pmax = 1, Pmin = 0
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Appendix B

Derivation of expression for

matrix Ω in eq. (6.27)

Matrix Ω in (6.23) is given by (6.26):

Ω =
(

∂Σ
∂x

·B
)−1

(B.1)

where:
∂Σ
∂x

·B = [Γ1,Γ2] (B.2)

and:

Γ1 =
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Γ2 =


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154 APPENDIX B. DERIVATION OF EXPRESSION FOR MATRIX Ω IN EQ. (??)

It results:

∂σA,j

∂ifA,k
=





α
CfA

if k 6= j, k 6= j − 1
α

CfA
+ β if k = j

α
CfA

− β if k = j − 1
∂σA,j

∂ifC,k
= 0

(B.5)

and analogously:

∂σC,j

∂ifC,k
=



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α
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if k 6= j, k 6= j − 1
α

CfC
+ β if k = j

α
CfC
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(B.6)



Appendix C

FACTS circuits and controllers

data

STATCOM data

STATCOM converter data used in simulations of Chapter 6 are given in Tab.

C.1, while STATCOM controllers data are reported in Tab. C.2 and C.3.

Table C.1: STATCOM circuit data

C1,C2 20 mF LfA,1, LfC,1 5.0 mH

CfA 2.55 mF LfA,2, LfC,2 4.5 mH

CfC 2.55 mF LfA,3, LfC,3 4.0 mH

Table C.2: STATCOM PI controller’s data

Ki,ac 500 Ki,dc 25

Ki,dc 5 Ki,dc 0.25

Table C.3: STATCOM sliding mode controller’s data

α 2.0 · 10−4 HB 5

β 0.3
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156 APPENDIX C. FACTS CIRCUITS AND CONTROLLERS DATA

SSSC data

SSSC converter data are given in Tab. C.4, while SSSC controllers data are

reported in Tab. C.5 and C.6.

Table C.4: SSSC circuit data

C1,C2 10 mF LfA,1, LfC,1 10 mH

CfA 1 mF LfA,2, LfC,2 11 mH

CfC 1 mF LfA,3, LfC,3 12 mH

Table C.5: SSSC PI controller’s data

Ki,dc 50 Ki,dc 0.05

Table C.6: SSSC sliding mode controller’s data

α 2.0 · 10−3 HB 1.5

β 1
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