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Introduction

The issue of macromodelling has received a great attention in these last years, mainly

due to increasing speed and decreasing size of electronic circuits, which makes crit-

ical the accurate modelling of passive structures and interconnects. On the other

hand, also power systems do require accurate macromodels to implement transient

simulations.

The derivation of a reduced order model may be either needed to implement fast

time domain simulations or the unique possibility to include a certain component in

a circuital simulator, when it can be only characterized by measurements. First case

includes transmission line simulation, and macromodelling of structures characterized

through full-wave electromagnetic simulations. Instead a typical example of the sec-

ond possibility is the transformer modelling.

From a general point of view, when describing operators of a physical model can

be written as rational function, this particular structure may be exploited to handle

them in a more efficient manner. A typical example is the possibility to introduce the

recursive convolutions instead of “slow” convolutions, which leads to a more efficient

implementation of a time domain scheme. On the other hand, there are complex real

systems which cannot be satisfactorily characterized by physical models with known

few parameters, so requiring a characterization through measurements. In such cases,

the derivation of a reduced order model makes possible the analytic description of

the system, which corresponds to the extraction of a lumped circuit equivalent.

The key-point of the macromodelling approach is the identification of a lumped

equivalent. In the frequency domain, this corresponds to a rational approximation of

tabulated transfer functions. Several algorithms for this purpose have been studied

in the last fifty years, and successfully applied in several branches of electrical engi-

neering. The problem is even more general than the scope of the present work, which

is limited to the model order reduction of electromagnetic distributed structures with

the purpose of performing time domain analyses.

Despite to its apparent simplicity, the mathematics of the algorithms for rational

approximation of frequency responses has not been yet deeply understood from a

theoretical point of view. Iterative algorithms are given without a theoretical under-
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standing of their convergence properties and initialization. On the other hand, best

approaches are very recent.

Second fundamental issue is the imposition of physical requirements for the macro-

model. Whereas the stability of a macromodel can be easily controlled, requiring

passivity is often much more delicate. When rational functions are used to approx-

imate transfer functions of passive structures, they also should represent a passive

circuit. This is not immediately related to the accuracy of the approximation per-

formed: even good approximations of passive systems may exhibit a non-passive

behaviour. Furthermore, passivity constraints are impractical to be included in the

identification stage, therefore they are usually enforced in a subsequent stage. On

this point, there exists several approaches which gives quite good results, but lit-

erature shows a lack of a deep comparison among them. Algorithms for passivity

enforcement have been mainly developed referring to specific applicative contexts,

and their effectiveness mainly validated on the same kind of datasets.

This work is divided in four chapter.

Chapter 1 starts with a unified and synthetic description of the problem of identi-

fication of a rational approximation for a multi-input multi-output electromagnetic

system. Therefore, a new algorithm for the identification of a magnitude frequency

response with a minimum phase shift function is given. This is an useful tool either

when measurements include only magnitude responses or when it is convenient to

ignore the information provided by the phase angle. Moreover, a new robust approach

to identify accurate macromodels with state space realization without pole repetitions

is shown. Examples of application to interconnects modelling are included.

Chapter 2 reviews the black-box identification (i.e. the identification ignoring any

information provided by a known physical model) and passivity enforcement algo-

rithms. Then, the application of known algorithms to macromodelling of a twisted

cable previously characterized through a full-wave simulation, is presented.

Chapter 3 describes the simulation of transmission lines and related issues of macro-

modelling. Approaches coming from both interconnects and power lines are com-

pared.

Regarding the interconnects modelling, a new definition of the regular part of a

describing operator of the line is given. This is combined with the identification

technique given in chapter 1, leading to an improved approach with respect to those

available in literature.

Therefore, the magnitude fitting algorithm introduced in chapter 1 is successfully ex-

ploited to give a new procedure of identification including time delays of the line. Its

effectiveness is validated on overhead transmission line datasets, and its limitations

pointed out.

Chapter 4 includes the validation of described approaches through time domain analy-

ses exploiting reduced order models. Furthermore, the black-box modelling approach

is successfully applied to an important class of “high speed” interconnects.



Chapter 1

The identification of reduced

order models

1.1 Introduction

There are quite a number of electrical and electronic systems, in different technologi-

cal contexts, where typically a distributed passive electromagnetic structure interacts

with lumped elements (possibly non linear). Normally their “system level” analysis

and design is based on circuit simulation. There is therefore the need of determining

reduced models for the distributed structures that can be efficiently and easily inte-

grated in circuital simulators, after direct measurements or full wave simulations are

available. Some examples quite recently explored can be found in the high frequency

modelling of electrical power systems, as well as in the modelling of “high speed”

interconnects in electronics.

The technological pressure toward high speed devices requires that the reduced mod-

els should be accurate in extremely large frequency intervals. Moreover, those distrib-

uted structures are intrinsically passive, and this property has to be preserved in the

process of finding the reduced models in order to get guaranteed stable simulations.

All those requirements make the identification of broadband passive macromodels

not a trivial problem, and this reflects into the effort of some recent literature.

Considering the general case of multi-input-multi-output structures, the frequency

domain lumped equivalent macromodels can be derived through the identification of

a proper rational approximation of the transfer matrix. This identification can be

pursued with a “black box” approach, which reveals to be easy and efficient in many

cases. Better results, in terms of either low order or high accuracy, can be often ob-

tained with a “grey box” approach, where structural properties provided by a known

physical model are exploited to define regular describing operators to be identified.

Recent literature has shown with clear evidence that, among many proposed schemes,

5



6 CHAPTER 1. THE IDENTIFICATION OF REDUCED ORDER MODELS

an iterative algorithm named Vector Fitting (VF) is by far the most robust and ef-

ficient presently available. Its performances are adequate to most practical cases of

black-box and gray-box modelling. It is a linear algorithm which identifies a transfer

function through an iterative process of poles relocation. This involves two steps:

the identification of poles and the identification of residues. Each of them is solved

by formulating a linear least square problem.

Since the basic idea of poles relocation has shown to be very effective, there is a

great interest in literature around the VF algorithm, in the perspective of adding new

features and/or further improvements.

In this chapter, after giving a unifying description of the most known identification

ideas, some original results concerning the identification through the VF algorithm

will be given. They are namely:

• a new formulation able to identify a tabulated magnitude frequency response

through a minimum phase shift rational function;

• a non-linear identification process eliminating pole repetitions appearing in the

state space realization previously identified by means of the VF algorithm.

1.2 Rational approximation of frequency domain responses

The identification of frequency domain responses of distributed systems with rational

approximations is a quite old problem, which has been originally addressed in the

area of automatic control (Levy 1959 [1], Sanathanan and Koerner 1963 [2]). That

primary effort has been further developed in the area of filters synthesis and optimal

design, (e.g. Shaw 1995 [3]).

Nowadays the problem of describing electromagnetic distributed structures through

reduced order models is even more widespread, and in addition with heavy require-

ments in terms of bandwidth in most application contexts. For this reason, recent

literature has given some effort to the subject, and satisfactory solutions are now

available. As already mentioned the VF algorithm [4], has distinguished for its good

properties and is now considered as the reference standard in the field.

The identification of a rational transfer function starting from a tabulated frequency

response leads to a straightforward derivation of an equivalent circuit. This is a very

interesting possibility, for instance in the filters synthesis. Furthermore, the derivation

of time domain models is straightforward too.

Let us briefly recall such an implementation scheme of the time domain model. When

a system is described through its transfer function F (s), the relation between the

input U(s) and the output X(s) is:

X(s) = H(s) · U(s), (1.1)
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which corresponds in the time domain to:

x(t) = h(t) ∗ u(t) =

t∫
o

f(t− τ)u(τ)dτ. (1.2)

The practical implementation of (1.2) needs to discretize the convolution integral.

For simplicity we assume a constant time step ∆t and set x(n ·∆t) = xn. Such a

discretization also highlights the possibility of a recursive evaluation of the convolution

integral (1.2):

xn =

(n−1)∆t∫
o

h(t− τ)u(τ)dτ +

n∆t∫
(n−1)∆t

h(t− τ)u(τ)dτ =

= xn−1 +

n∆t∫
(n−1)∆t

h(t− τ)u(τ)dτ. (1.3)

When H(s) is a rational function, the recursive formula (1.3) can be further devel-

oped, giving:

xn = αun + βun−1 + γxn−1 (1.4)

where coefficients α, β and γ can be evaluated with different methods, so giving

different formulas (e.g. Gustavsen et al 1999 [5]).

For the general case of multi-input multi-output system (MIMO), the identification

problem could be cast in the following form: let us consider to know (both from full

wave simulations or direct measurement) a series of Ns samples {Hk = H (sk)}k=1....Ns

of the m ×m complex matrix frequency response H(s). The matrix function H(s)
can be then approximated by means of the expansion:

H̃ (s) =

M∑
i=1

Rifi(s)

N∑
j=1

ajgj(s)
, (1.5)

where H̃ (s) and {Ri} are m×m matrices, {ai} are scalar values and {fi}, {gj} are

generic basis functions, N is the expansion order, and the numerator degree M has

to satisfy M ≤ N + 1.

Once some basis function has been chosen, the identification of {ai} and {Ri} is a

classical least square problem that can be set as the minimization of the cost function:

χ({Ri}, {aj}) =
Ns∑
k=1

∥∥∥∥∥∥∥∥∥H(sk)−

M∑
i=1

Rifi(sk)

N∑
j=1

ajgj(sk)

∥∥∥∥∥∥∥∥∥
2

F

, (1.6)
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where with the notation ‖.‖2
F we indicate the Frobenius norm∗.

Since a rational approximation directly corresponds to a lumped system (which
is the ultimate goal for reduced models), the most immediate choice for the basis
function is:

fi = si−1 gj = sj−1 (1.7)

1.2.1 Rational approximation through nonlinear identification

Expression (1.6) is non-linear dependent from {aj} parameters, therefore that
minimization problem can be immediately addressed using a non-linear least
square algorithm, for instance Levenberg-Marquardt or Gauss-Newton (e.g. Fletcher
[6]).
The identification of a transfer function:

H̃(s) =
N∑

i=1

Ri

s− pi
+ D (1.8)

is carried out by minimizing the cost function:

χNLLS({Ri}, D, {pi}) =
m∑

p=1

m∑
q=1

Ns∑
k=1

γpqk

∥∥∥Hpq(sk)− H̃pq(sk)
∥∥∥2

, (1.9)

which generalizes the (1.6), allowing the most general weighting of the matrix
H(s) under identification.
Note that smooth functions, such as the operators describing long interconnects
(see chapter 3) can be easily identified with a nonlinear approach constraining
the poles to be real. This does not degrade the accuracy whereas adds robustness
to the identification process, also simplifying the subsequent implementation of
the time domain simulation.
The main drawback of such an approach is that the NLLS can stop in local
minima of (1.9), so limiting the accuracy of the identification.
However, the advantages of a nonlinear identification can be usefully exploited,
when a good starting guess is previously obtained by using a linear method.

1.2.2 Rational approximation through linear identification

The identification problem (1.9) can be linearized recasting it as the minimization
of the “weighted” function:

_
χ({Ri}, {aj}) =

Ns∑
k=1

∥∥∥∥∥∥Hk

N∑
j=1

ajgj(sk)−
M∑
i=1

Rifi(sk)

∥∥∥∥∥∥
2

F

. (1.10)

∗The Frobenius norm, sometimes also called the Euclidean norm, is a matrix norm of an

m × n matrix A defined as: ‖A‖F =

s
mP

i=1

nP
j=1

|aij |2. It is also equal to the square root of the

matrix trace of AAH , where AH is the conjugate transpose of A: ‖A‖F =
p

Tr (AAH).
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Algorithms based on the idea of minimizing (1.10) assuming the basis function
(1.7), are, for example, the Model Based Parameter Estimation (MBPE) (Brit-
tingham et al. 1980 [7]) or the Rational Function Approximation (RFA) (Gao et
al 2005 [8]).
The minimization of (1.10) gives rise to large errors if the identified poles of H(s)

gives wide variations to the factor
N∑

j=1
ajgj(sk) throughout the considered set of

frequency samples. An iterative method which removes this biasing from (1.10)
can be established as follows. After a first iteration where expression (1.10) is
minimized, a new cost function is considered as:

^
χ({Ri}(n+1), {aj}(n+1)) =

Ns∑
k=1

∥∥∥∥∥∥∥∥∥
Hk

N∑
j=1

a
(n+1)
j gj(sk)−

M∑
i=1

R
(n+1)
i fi(sk)

N∑
j=1

a
(n)
j gj(sk)

∥∥∥∥∥∥∥∥∥
2

F

,

(1.11)
which is expected to approach (1.6) as the number of iteration n increases. The
advantage of introducing the cost function (1.11) is that it is still linear as (1.10)
and, at the same time, it is similar to (1.6), since the factor originally eliminated
in (1.10) has been restored, although evaluated at the previous iteration. This
method is known as Sanathanan-Koerner (SK) algorithm [2].
It is crucial to observe that the assumption (1.7) gives severe limitations to the
contemporary increase of the order of the approximation and the bandwidth
of the system under identification, since high powers of s lead to numerically
ill conditioned matrices in the solution of (1.10) and ((1.11)). In other words,
position (1.7) is possible as long as the systems under identification are well
approximated with low order expressions and/or they need to be described only
in limited frequency ranges.
The Vector Fitting (VF) algorithm [4], originally developed independently from
the SK scheme, has been recently recognized as a specific reformulation of it
(Hendrickx and Dhaene 2006 [9]). It is, in fact, a particularization of the scheme
(1.11) with the use of the simple fraction as basis functions:

fi =
1

s− pi
i = 1, . . . , N − 2; fN−1 = 1; fN = s;

gi =
1

s− pi
i = 1, . . . ,M − 1; gM = 1.

(1.12)

The terms fN−1, fN can be conveniently modified according the asymptotic be-
havior (i.e. s →∞) of the function under identification. We set fN−1 = fN = 0
when it vanishes, and fN−1 = 1, fN = 0 when it approaches a constant value.
Actually, the base function gM = 1 was not used in the original version of the
algorithm, described by Gustavsen and Semlyen in [4]. Gustavsen (2006) [10],
has shown that this additional degree of freedom in the solution of the linear least
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square problem, improves the convergence properties.
Note that this choice of the basis function removes to a large extent the ill con-
ditioning of the problem for wide frequency intervals.
Actual implementation of VF [4] will be discussed in section (1.4). The relaxed
formulation [10] will be exploited in a modified formulation of VF suitable for the
identification of magnitude frequency responses, described in the section (1.5.2).
Now, let us just observe that by substituting the basis functions (1.12) into equa-
tion (1.11), we get as denominator:

σ(n) =
M−1∑
j=1

a
(n)
j

s− pj
+ a

(n)
M = a

(n)
M

M−1∏
i=1

(
s− z

(n)
i

)
M−1∏
j=1

(s− pj)
. (1.13)

Due to the structure of equation (1.11), poles of the transfer function under norm
in (1.11) are the zeroes of (1.13). In this way the iterative process uses a new set
of poles {zi} at each iteration, so improving the approximation. This scheme is
known as “pole-relocation”.
Authors in [4] gives some practical hints for choosing the starting poles {pi}, in
order to obtain a good convergence of the iterative process.
A further improvement of numerical conditioning of VF can be achieved using an
orthonormal set of basis functions as shown by Deschrijver and Dhaene (2005)
[11] [12] [13] [14].

1.3 The Rational Function Approximation algorithm

In this section we show how the identification of a rational approximation in the
form:

f (s) =
r0 + r1s + r2s

2 + . . . + rNsN

a0 + a1s + a2s2 + . . . + aNsN
=

N(s)
D(s)

, (1.14)

may be pursued by solving two overdetermined linear systems. This method is
known as Rational Function Approximation (RFA) (Elzinga et al 2000 [15] [16],
Gao et al 2005 [8]).
The identification is performed in the frequency domain, so we set s = jω. In
order to obtain purely real coefficients {ri} and {ai}, only the real part of the
frequency response is used in the approximation. In fact, the real part of a system
response f(s) is an even function and its poles are those of both functions f(s)
and f(−s). Since the system is known to be stable, those poles belonging to f(s)
lie in the left half of the complex plane.
The real part of the original function is fitted with the real rational polynomial
function of the squared variable:

Re{f(jω)} =
r̃0 + r̃1ω

2 + . . . + r̃Nω2N

ã0 + ã1ω2 + . . . + ãNω2N
. (1.15)
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A linear least square problem gives the the denominator of (1.14). The real part
of the frequency response at the sampling points is equated to (1.15). The A

matrix of the LS problem Ax ≈ b is:

A =

 1 ω2
0 · · · ω2N

0 −ω2
0Re(f(jω0)) −ω4

0Re(f(jω0)) · · · −ω2N
0 Re(f(jω0))

1 ω2
1 · · · ω2N

1 −ω2
1Re(f(jω1)) −ω4

1Re(f(jω1)) · · · −ω2N
1 Re(f(jω1))

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 ω2
k · · · ω2N

k −ω2
kRe(f(jωk)) −ω4

kRe(f(jωk)) · · · −ω2N
k Re(f(jωk))

 (1.16)

whereas the trasposed solution vector xT is:

xT =
(

r̃0 r̃1 r̃2 · · · r̃N ã1 ã2 · · · ãN

)
, (1.17)

and b vector is:

b =


Re{f(jω0)}
Re{f(jω1)}

...
Re{f(jωk)}

 . (1.18)

Once the coefficients are obtained by solving (1.16), the roots of the even function
will be obtained from:

1 + ã1ω
2 + ã2ω

4 + . . . + ãNω2N = 0. (1.19)

By taking only the stable poles in the left half plane, and rejecting pure imaginary
poles, the partial fraction expansion of the transfer function can be formed as:

f(jω) = k0 +
N ′∑
i=1

ki

jω − pi
(1.20)

where N ′ ≤ N and N−N ′ are the numbers of rejected pure imaginary poles. The
system transfer function will be obtained by solving the residues from (1.20). This
is done in the same manner of Vector Fitting algorithm, and will be explained in
the next section (residue identification).
Note that (1.16) becomes seriously ill conditioned or even singular for a wide
frequency ranges and high order approximation since the entries of the matrix
are powers of ω (e.g. Beyene et al 1998 [17]). To alleviate the problem orthog-
onal polynomials may be used in the approximation since ordinary power series
{ω0, ω1, ω2, ω3, · · · } have a very large dynamic range (e.g. Beyene 2001 [18]).
Despite this possibility, recent literature quite clearly shows that algorithms like
RFA have been almost abandoned, whereas VF is more and more used in many
different applications.



12 CHAPTER 1. THE IDENTIFICATION OF REDUCED ORDER MODELS

1.4 The Vector Fitting algorithm

The VF algorithm performs the rational approximation of a tabulated frequency
response in the form:

f(s) ≈
N∑

m=1

cm

s− am
+ d + sh, (1.21)

where the coefficients am, cm, d and h are the unknowns of the problem. The
function f(s) is approximated in the least square sense.
The algorithm operates in two stages: poles identification and residue identifica-
tion. Both stages require the solution of a linear least square problem.

Poles identification

In order to solve the poles identification problem, the algorithm requires the spec-
ification of a starting pole set {am}, which is then iteratively improved.
A unknown scaling function σ(s) is introduced. Starting poles are used to ap-
proximate both the functions σ(s)f(s), and σ(s). In this way, we get the couple
of equation: (

σ(s)f(s)
σ(s)

)
=


N∑

m=1

cm
s−am

+ d + sh

N∑
m=1

ecm
s−am

+ 1

 (1.22)

By multiplying f(s) by the rational approximation of σ(s), we get the equation:(
N∑

m=1

cm
s−am

+ d + sh

)
=
(

N∑
m=1

ecm
s−am

+ 1
)

f(s), (1.23)

which can be also written as:(
N∑

m=1

cm
s−am

+ d + sh

)
−
(

N∑
m=1

ecm
s−am

f(s)
)

= f(s). (1.24)

Such equation may be written at those several frequencies sk, where we have
samples of the given function f(s) so obtaining:

Akx = bk, (1.25)

where
Ak =

(
1

sk−a1
... 1

sk−aN
1 sk

−f(sk)
sk−a1

... −f(sk)
sk−aN

,
)

(1.26)

x =
(

c1 ... cN d h c̃1 ... c̃N

)T
, bk = f(sk). (1.27)

In this way, we get an overdetermined linear system:

Ax = b, (1.28)
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which can be solved in the least square sense.
Now, let us writing the couple of functions f(s) and σ(s)f(s) as ratio of two
polynomials:

σ(s)f(s) = h

N+1∏
m=1

(s− zm)

N∏
m=1

(s− am)
, σ(s) =

N∏
m=1

(s− z̃m)

N∏
m=1

(s− am)
, (1.29)

it results f(s):

f(s) =
σ(s)f(s)

σ(s)
= h

N+1∏
m=1

(s− zm)

N∏
m=1

(s− z̃m)
. (1.30)

Last equation indicates that poles of f(s) are the zeroes of σ(s). Original starting
poles am disappear, since they are the same for both functions σ(s) e σ(s)f(s).
New poles of f(s) become the zeroes of σ(s). They can be determined by calcu-
lating the eigenvalues of the matrix:

H = A− bc̃T , (1.31)

where A is a diagonal matrix holding the previous pole set (at first iteration, they
are am), whereas b is a column vector of 1 and c̃T is a row vector holding the
residues of σ(s).

Residues identification

This stage takes the poles as previously determined in the poles identification
stage, and find out the residues of :

f(s) ≈
(

N∑
m=1

cm
s−am

+ d + sh

)
. (1.32)

Also this problem involves the solution of an overdetermined linear system in the
least square sense:

Ax = b (1.33)

where vector x holds the unknown coefficients cm, d and h, whereas the matrix
A is made of row:

Ak =
(

1
sk−a1

... 1
sk−aN

1 sk

)
. (1.34)

The vector fitting algorithm has been shown on a scalar function, but it may be
easily formulated on a matrix of frequency responses. This possibility gives the
name of the algorithm.
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The accuracy of the end result and/or the possibility of a fast convergence are
related to the choice of the initial pole set.
A real pole set (either linearly or logarithmically spaced) may be successfully used
when approximating smooth frequency responses. A response with resonance
peaks usually requires complex conjugate pairs of poles. Details on this are given
in [4].

1.5 The fitting of a magnitude frequency response

In this section we will address the problem of the rational approximation of a
magnitude frequency response, so meaning that the phase angle of the given
response is not exploited in the fitting process. This situation arises either when
only magnitude responses are available from measurements (e.g. Zhang et al 2002
[19]) or when the whole modeling process is specifically designed to ignore the
information provided by phase angle. A meaningful example of this will be given
in chapter 3, and is related to the identification of the propagation function of a
transmission line.

1.5.1 Asymptotic fitting of a magnitude frequency response

Bode (1945) introduced the asymptotic fitting of magnitude functions [20]. Ba-
sically, it allocates poles and zeroes by tracking the original function as function
of frequency. A new pole/zero is allocated whenever the asymptote of the fitting
function deviates from the original function by more than a predefined tolerance.
That way, the fitting function freely adapts itself to the shape of the original
function. This implies that the order of the approximation is not established
“a-priori” but results from the required accuracy specified as input for the fitting
routine. The procedure was designed assuming real poles and zeroes located in
the left half-plane. Thus, the rational function belongs to the class of minimum
phase shift functions.
This approach was used applied to transmission line modelling by J. Marti (1982)
[21].

1.5.2 Magnitude fitting via Symmetric Vector Fitting

We have already seen that VF requires knowledge about the both magnitude
and phase of the function to be identified. On the other hand, since it is a very
accurate and robust algorithm, a magnitude fitting procedure exploiting its pole
relocation scheme would be desirable. Such formulation have been developed by
De Tommasi and Gustavsen (2006) and is presented in [22]. In the following we
describe it in detail.
A rational minimum phase shift function g(s), with N poles and N zeroes, all
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located in the left hand side of the complex plane, has a magnitude square |g(s)|2

with 2N poles and 2N zeroes, which are the N poles and N zeroes of g(s) and
their symmetrical counterparts in the right half plane. Note that |g(s)|2 has zero
phase angle, being a real function.

|f |2 ∼= k

N∏
m=1

[(s− zm) (s + zm)]

N∏
m=1

[(s− pm) (s + pm)]
; ffit =

√
k

N∏
m=1

(s− zm)

N∏
m=1

(s− pm)
(1.35)

This suggests that, once a magnitude square response |f(s)|2 has been fitted
(1.35), discarding zeros and poles having positive real part gives a minimum
phase shift function ffit(s) whose magnitude fits the magnitude of f(s) in the
least squares (LS) sense. In (1.35), we assume both Re{zm} < 0 and Re{pm} < 0.
The standard VF algorithm is suitable for fitting the magnitude square response
provided that it gives a rational expansion with symmetrical poles and residues,
which implies zero phase angle.

|f |2 ∼=
N∑

m=1

rm

(
1

s− pm
− 1

s + pm

)
+ d (1.36)

Thus, the desired rational approximation is on the form (1.36).
In practice, one cannot obtain poles and residues that are perfectly symmet-
rical with respect to the imaginary axis, since this has not been analytically
enforced. Therefore, more robustness and accuracy can be achieved by enforcing
the required symmetry with a proper choice of basis functions for the pole iden-
tification step of the VF algorithm itself. We refer to such a reformulation of the
VF algorithm as Symmetric Vector Fitting (SVF ). It is worth underlining that
this approach is able to improve also the identification of a response from its real
part.
Let us consider the pole identification problem referred to magnitude square func-
tions:

(|f |2 σ2)fit − |f |2 σ2
fit ≈ 0, (1.37)

where

(|f |2 σ2)fit(s) =
N∑

m=1

cm

(
1

s− qm
− 1

s + qm

)
+ d, (1.38)

σ2
fit(s) =

N∑
m=1

cm

(
1

s− qm
− 1

s + qm

)
+ d, (1.39)

and {qm} are the starting poles.
Now, let us write the (1.37) in the form Ax ≈ b, which is needed for the solution
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of the LS problem. Let us denote the sums of simple fractions in the concise
form:

gk,m =
1

sk − qm
− 1

sk + qm
, (1.40)

when qm is a real pole, and

gk,m =
1

sk − qm
− 1

sk + qm
+

1
sk − q∗m

− 1
sk + q∗m

(1.41)

gk,m+1 =
j

sk − qm
− j

sk + qm
− j

sk − q∗m
+

j

sk + q∗m
(1.42)

when {qm, qm+1} is a complex conjugate pair. It has to be remarked that (1.40)
and (1.41,1.42) are real quantities.
The kth row of A is given by

Ak = [ Ak,1 Ak,2 ], (1.43)

where
Ak,1 = [ gk,1 ... gk,N 1], (1.44)

Ak,2 = −|f(sk)|2 · [ gk,1 . . . gk,N 1 ]. (1.45)

The solution vector x, in the case of real poles is

x =
(

c1 . . . cN d c̄1 . . . c̄N d̄
)T

. (1.46)

The right side b is

b =
(

0 ... 0
)T

. (1.47)

For complex conjugate pairs, the (1.41,1.42) enforce that correspondent residues
will come out in complex conjugate pairs too. Being cm = c′ + jc′′ and cm+1 =
c′ − jc′′, the correspondent elements into x will be c′ and c′′.
Note that we must avoid the trivial null solution of LS problem Ax ≈ 0. In order
to do this, the additional row:

Ns∑
k=1

(
N∑

m=1

gk,mc̄m + d

)
= Ns, (1.48)

is added to (1.37) [10], giving the non-zero vector

b =
(

0 . . . 0 Ns

)T
. (1.49)

The solution of the LS problem must give a positive d term, since the identified
magnitude square function cannot assume negative values. This may be obtained
by solving a constrained LS problem. However, we verified that even avoiding
such a constrained formulation, a positive d can be easily obtained by selecting
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a different order of approximation.
After the LS problem has been solved, the zeroes of σ2

fit(s) must be calculated,
writing the (1.39) on the form

σ2
fit(s) =

N∑
m=1

(
2cmqm

s2 − q2
m

)
+ d = d

N∏
m=1

(s2 − z2
m)

N∏
m=1

(s2 − q2
m)

. (1.50)

The quantities {z̄2
m} are computed as explained in the section (1.4); their square

roots are the needed zeros {z̄m} to be assigned as new poles {pm} in (1.36).
Since a single imaginary pole cannot appear in ffit(s) (1.35), if any negative {z̄2

m}
occur during the VF iterations, their sign have to be changed before extracting
the square root.

1.5.3 Discussion

The algorithm described in section (1.5.2) presents two recognized drawbacks.
First one concerns the analytic form of the rational function (1.36). In fact, it is
not positive definite as a magnitude square function should be. Experience shows
that it may take negative values when functions vanishing for s →∞ are fitted.
Such negative values can be removed by increasing the fitting accuracy around
those frequencies where negative values are taken, either by increasing the fitting
order or by increasing the local weighting for the LS problem. We prefer the
second option in order to avoid an unnecessary high order. This approach will
be used in chapter 3, for the fitting of propagation functions.
Second drawback concerns the possibility of some negative {z̄2

m} appearing during
the iterations. By changing their sign before calculating {z̄m}, a perturbation is
introduced. For this reason, the convergence may fail when fitting very noisy
responses.

1.5.4 Test cases

In this section some test cases will be analyzed, in order to show the validity of
the proposed magnitude fitting algorithm.

A power distribution system

First test case refers to a calculated terminal admittance matrix Y (s) of the power
distribution system shown in fig. (1.1). It has two 3-phase buses as terminals
(A, B). The 6× 6 admittance matrix Y with respect to these terminals has been
evaluated in the frequency interval [10 Hz,100 kHz].
Such example is included in the package vfit2, and is described in its user guide
(ex4.m). Here we pursue the identification of the matrix Y element by element.
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Figure (1.2) shows the identification of the magnitude for the component Y12,
whereas fig. (1.3) shows the minimum phase angle of the identified function
compared to the reference, which is not a minimum phase shift. The number of
poles is N = 36.

Figure 1.1: Magnitude Fitting, test case 1 : A power distribution system

A rectifier transformer

Second test case refers to a measured admittance matrix Y (s) of a 3-winding
rectifier transformer (Gustavsen 2003 [23]). The admittance matrix was mea-
sured in the frequency domain using a network analyzer and a dedicated mea-
surement setup. Subsequent its approximation with rational functions gives an
EMTP-type compatible model suitable for transient studies. In [23], the ratio-
nal approximation was used for the calculation of internal voltages in a winding.
Here, differently from [23], we assume that only the magnitude is available from
measurements.
Figure (1.4) shows the identification of the magnitude for the component Y11,
whereas fig. (1.5) shows the minimum phase angle of the identified function
compared to the reference. The number of poles is N = 60. Note that:

• the identification process can only guarantee that the magnitude of the
minimum phase shift rational function fits the magnitude of the reference
function in the limited band [f1, f2] where the reference function is assigned;

• there does not exist a unique minimum phase angle associated to a magni-
tude function given on a limited frequency band [f1, f2], since the shape of
the magnitude function in the whole frequency band [0, inf[ does influence
on the phase angle in the band [f1, f2]. This will be explained in detail in
chapter3.
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These issues explains the partial disagreement among the two phase angles seen
in fig. (1.5), which are both minimum phase shift.

Figure 1.2: Magnitude Fitting, test case 1: Identification of magnitude of Y12

(N=36)

Figure 1.3: Magnitude Fitting, test case 1: Identified minimum phase angle for
Y12 (N=36) compared to the original
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Figure 1.4: Magnitude Fitting, test case 2: Identification of magnitude of Y11

(N=60)

Figure 1.5: Magnitude Fitting, test case 2: Identified minimum phase angle for
Y11 (N=60)

1.6 Pole repetitions and compact realizations

In this section we consider an identification strategy based on both VF algorithm
and a non-linear least square, leading to very accurate approximation and to the
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most general state space realization of the transfer function.
State space realizations of transfer functions may be either directly accepted from
the time domain simulation environment or converted into a equivalent-circuit
network (e.g. Neumayer et al 2002 [24]).
Let us start by considering a minimal state space realization {A,B, C, D} of a
given transfer function; through a similarity transformation we can obtain the
realization having:

A = diag (p̄1, · · · , p̄N∗) . (1.51)

The following relation holds:

C (sI −A)−1 B + D =
N∗∑
i=1

Ki

s− p̄i
+ D. (1.52)

It results Ki = cib
T
i , where ci is the ith column of C, and bT

i is the ith row of B.
Note that rank (Ki) = 1, being Ki the product of a column by a row.
On the other hand, the most general form of a rational approximation of a m×m

transfer matrix H(s) is:

H̃(s) =
N∑

i=1

Ri

s− pi
+ D (1.53)

where rank(Ri) = m, ∀i.
By performing the following singular value decompositions:

Ri = Ui · Si · V T
i (1.54)

where Ui and Vi are unitary matrices, and Si is a diagonal matrix containing the
singular values {σi} in descending order:

Si = diag(σ1, . . . , σm), (1.55)

each residue Ri can be separated in the sum of matrices {Rij}j=1...m having
rank(Rij) = 1. Each of Rij is obtained by including in the decomposition only a
singular value at one time, and replacing the others with zero:

Sij ≡ diag(0, . . . , σj , . . . , 0), (1.56)

Rij ≡ UiSijV
T
i , (1.57)

Ri = Ui ·

 m∑
j=1

Sij

 · V T
i =

m∑
j=1

Ui · Sij · V T
i =

m∑
j=1

Rij (1.58)

Now, we can rewrite the function H̃(s) in the following form:

H̃(s) =
N∑

i=1

m∑
j=1

Rij

s− pi
+ D =

N∗=mN∑
n=1

Ki

s− ai
+ D, (1.59)
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which shows that the effective equivalent circuit order of (1.53) (order of a min-
imal state space realization) is N∗ = mN and that each pole pi will appear in
the A matrix (1.51) with m repetitions. Since normally N∗ is fixed as degree of
complexity of the equivalent dynamic network, the case of rank(Ri) = r > 1 have
to be avoided in the identification process, because it corresponds to constrain
r elements on the diagonal of (1.51) to be equal, so limiting the accuracy of the
identification at a fixed order.
Unfortunately, the constraint rank (Ri) = 1 ∀i cannot be explicitly enforced as
long as the identification process is based on linear procedures, such as the MBPE
algorithm [24], the Subspace System Identification algorithm (e.g. Grivet-Talocia
et al 2002 [25]), or the VF algorithm [4] [26]. In fact, in the general case the use
of any of these methods provides residues {Ri} having full rank.
In order to get a state space realization having the general form (no pole rep-
etitions in A matrix and B full), a post-processing technique based on a SVD
and a NLLS algorithm has been proposed (Gustavsen 2004 [27]). This procedure
eliminates the pole repetitions in the matrix A through the rank reduction of
residue matrices {Ri}. By performing the singular value decomposition (1.54),
it can be verified that, in many practical cases, first singular values in (1.55 are
much larger than the rest, thus permitting the smallest to be set equal to zero.
A tolerance ε is fixed in order to decide which is the smallest singular value σr

to be retained:
σr

σ1
< ε (1.60)

This is related to the needed accuracy of the final approximation: if it is not met
by using a certain tolerance ε, it is necessary to reduce the value of ε. When
only the first r singular values are retained, the rank of the corresponding ma-
trix Ri becomes r, so reducing the number of repetitions of the pole Pi in the
matrix A from m to r. This is called “compacting”. It is also evident that
this approximation of the residue matrices produces an error in the compacted
state space realization. The error can be reduced by subjecting the compacted
state space realization to an error minimization procedure, which is based on a
nonlinear least square algorithm (either Gauss-Newton or Levenberg-Marquardt).
The main drawback of the described approach is the lack of an analytical relation
between the parameter ε of (1.60) and the target accuracy of the rational approx-
imation. This implies that if ε needs to be adjusted, the procedure of compacting
and nonlinear optimization needs to run again. For this reason, we proposed a
new procedure overcoming these limitations. It still uses the VF algorithm to
obtain a very good initial guess to be used by NLLS for finding a more accurate
state space realization of the same order with no pole repetitions. The goal of
eliminating pole repetitions in the matrix A is achieved avoiding the compacting
procedure (discarding of singular values).
The procedure operates as follow: the vector fitting algorithm is launched using
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N poles; then, so determined rational approximation is used as starting guess for
the non-linear identification. The order of the state space realization N∗ does
not change after applying the non-linear procedure.
The pole-residue form with rank-1 residues enables the immediate derivation of an
equivalent-circuit network (e.g. Mangold and Russer 1999 [28]). This approach
represents the straightforward generalization of a general synthesis procedure for
any constant m-port admittance (Cauer 1932 [29]). Evidently, such a synthesis
can be also performed before that pole repetitions have been eliminated through
the application of the NLLS algorithm, but this would give a less accurate result.
In the following, we show the cost function to be minimized when identifying
a symmetric matrix 2 × 2 of smooth responses (only real poles are used in the
identification), assuming unitary weighting (i.e. γpqk = 1,∀p, q, k in eq. (1.9):

χ2×2({r1i}, {r2i}, {pi}, D) =
Ns∑
k=1

∥∥∥∥∥∥∥∥∥∥
H(sk)−

N∑
i=1

(
r1i r1ir2i

r1ir2i r1ir
2
2i

)
sk − pi

−D

∥∥∥∥∥∥∥∥∥∥

2

F

.

(1.61)

1.6.1 Computational cost of the time domain simulations

Let us move to some considerations on the computational cost of the time domain
simulations.
Such a cost is evaluated as the number of elementary numerical operations (ad-
dition, multiplication) for each time step and depends on the implementation of
the time domain model.
Gustavsen in [27] compared the computational efficiency of the compacted state
space realization with the original one (having pole repetitions), referring to the
implementation supported by the EMTP simulator, which handles the state space
realizations. He found that the compacted realization is more efficient of a factor
m/2. However, it has to be remarked that the whole procedure for the elimination
of pole repetitions (compacting + NLLS) leads to a less accurate approximation
than the original (the order is lower). Instead, our procedure does not reduce
the order of the state space realization (it does not include any compacting), but
improves the accuracy at the same order through the NLLS identification.
A different time domain scheme was considered by de Magistris and De Tommasi
(2005) in [30]. It leads to a slightly different evaluation of the computational
cost. They assumed that the recursive convolution is performed by exploiting
the tranfer function, so avoiding the derivation of a state space realization. Since
residues Ri are m × m matrices having rank{Ri} = 1, for each pole pi only
m convolution between inputs and corresponding elements of a single row of Ri

must be calculated; the contributions given by the others m − 1 rows is simply
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computed by performing m−1 multiplications. This indicates that the additional
burden in time domain simulation added by the refinement process concerns only
m−1 multiplications per matrix residue, since the total number of recursive con-
volution to be performed does not increase. In order to compare the efficiency
of the pure VF approach and the combined procedure, we assume as a measure
of computational cost the number of multiplications to be performed per time
step. By exploiting a routine which performs the recursive convolution with a
single pole as in [31], the cost is three multiplication per time step. The pure VF
approach gives the computational cost:

CV F (N) = 3 ·m2 ·N, (1.62)

where N is the number of poles. Instead, our combined procedure gives:

CV F+NLLS(N) = (4 ·m2 −m) ·N, (1.63)

According to this time-domain implementation, the VF+NLLS gives a higher
cost than pure VF. However, in several cases it may be still more advantageous
a VF+NLLS identification than a pure VF identification with N ′ > N .
In addition, here we give a practical consideration on time domain implementa-
tion based on the state space realizations. In such a case, the B matrix becomes
full after the application of the NLLS, whereas that one originally provided by VF
algorithm is sparse [26]. In principle, this would increase the computational cost
of the numerical integration, since when the matrix is known to be sparse, some
calculations can be avoided [27]. But if we perform integration through highly
efficient built-in functions of the simulation environment, they cannot take into
account the sparsity of some matrices of the state space realization, being written
for the general case. This means that the simulation will not cost more after hav-
ing run the NLLS algorithm. On the other hand, if the accuracy were improved
just using the VF algorithm alone with an increased number of poles N ′ > N ,
the corresponding time domain simulation would cost more, since the size of A

matrix would have been increased.

1.6.2 Test cases

As application of the described procedure we consider the identification of two
frequency responses analyzed in [30]. They represents the regular parts of a char-
acteristic admittance/impedance of an RLGC transmission line, whose definitions
will be given in chapter 3.
In order to study the accuracy, we introduce the rms-error:

σ(i, j) =

√√√√ N∑
k=1

∣∣∣Hij(jωk)− H̃ij(jωk)
∣∣∣ (1.64)
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where H(s) is the given transfer matrix and H̃(s) the identified one.
Figure (4.19) shows the identification of a Ycr component with the proposed
procedure, whereas fig. (1.7) the identification of a Zcr of a different dataset. In
both cases, unitary weights have been used, i.e. γpqk = 1,∀p, q, k in eq. (1.9).
The two example show that a sensible fitting accuracy improvement is achievable
by running the NLLS procedure after the VF algorithm.
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Figure 1.6: Identification with VF compared to VF+NLLS : Ycr22 component of
a four conductor transmission line

Table 1.1: Identification with VF compared to VF+NLLS : rms errors on com-
ponents of Ycr

rms error VF VF + NLLS
σ11 7.60e-6 6.47e-6
σ12 3.13e-6 2.32e-6
σ13 1.46e-5 6.21e-6
σ22 1.78e-5 1.46e-6
σ23 3.13e-6 2.32e-6
σ33 7.60e-6 6.47e-6
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Figure 1.7: Identification with VF compared to VF+NLLS : Zcr12 component of
a three conductor transmission line

Table 1.2: Identification with VF compared to VF+NLLS: rms errors on compo-
nents of Zcr

rms error VF VF + NLLS
σ11 5.80e-1 5.72e-1
σ12 2.92e-1 2.91e-2
σ22 5.80e-1 5.71e-1





Chapter 2

Black box modelling

2.1 Introduction

There are a large number of reduced order models of electric/electronic systems
which needs to be identified without specific assumptions on the physics of the
electromagnetic structure. This is usually referred as ”black box” approach.
Black box frequency domain identification has been applied with success to a
variety of electric/electronic systems. In particular in the area of power systems,
high voltage transformers (Gustavsen 2004 [32] [33]) are quite often efficiently
modeled by lumped circuit equivalents by means of frequency domain identifica-
tion in view of simulating the whole network under lightning conditions, which
need high frequency models. On the other hand such approach is also present in
the reduced modeling of high-speed interconnects like vias and high speed inter-
connects operating in non-TEM conditions (Chiariello et al 2005 [34]).
In all cases measured/simulated multi-port descriptions, in the form of transfer
matrices as function of frequency, are supposed to be known in the range of inter-
est, which often spans from 0 to 10-50 MHz for the power systems and from 0 to
10-20 GHz for electronic interconnects. Scattering representation S is surely the
most general since it is never singular. Nevertheless in many cases more familiar
Y or Z representations are successfully used.
Note that structures we consider are passive multiports, i.e. they cannot gener-
ate energy. The interconnection of passive multiports is guaranteed to be stable,
whereas stable but nonpassive systems may become unstable depending on the
termination networks. This means that identified reduced order models have to
be not only accurate but also passive as the structures they represent.
In this chapter it is assumed that a wide band black box identification of these
systems is approached by means of the VF algorithm. In addition, the issue of
passivity enforcement on the identified reduced order models is presented. The

29
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most known algorithms for passivity enforcement are rewieved to analyze and
compare their features.
Then, a test case of practical importance is fully developed using the VF algo-
rithm and the Hamiltonian perturbation passivity enforcement algorithm.

2.2 Passivity enforcement

Literature has widely shown that issue of passivity enforcement is of primary
importance (Gustavsen and Semlyen 2001 [35] [36] [37], Grivet-Talocia 2004 [38],
Gao et al 2005 [8]). In fact the identified transfer function of Y , Z or S parame-
ter, may not satisfy the passivity property even when original data do. In such a
case, when the identified model is connected to an external network, time domain
simulated waveforms may become unstable, exhibiting exponentially growing os-
cillations. Therefore passivity must be checked and eventually enforced properly.
From a mathematical point of view, passivity property of a multiport circuit is
equivalent to the conditions that its transfer matrix H(s) is Positive Real (PR), in
case of impedance, admittance or hybrid representation, or Bounded Real (BR),
in case of scattering representation (e.g. Anderson and Vongpanitlerd 1973 [39]).
When only strictly stable systems with no poles on the imaginary axis are con-
sidered, the positive real property becomes:

λi(jω) ≥ 0 ∀ω, ∀i, (2.1)

where λi is the ith eigenvalue of the real part of the considered transfer matrix
H(s). Condition (2.1) can be directly applied for testing passivity, but requires
a frequency sweep, since in principle it has to be checked at any frequency. Most
approaches for passivity enforcement are of perturbative kind, involving a post
processing step on the identified transfer matrix H(s). They can be given either
on the pole-residue form or on a minimal state space realization.
In order to simplify the optimization problem, usually poles are retained as fixed
in the passivity enforcement process.

2.2.1 Passivity enforcement by quadratic programming

Gustavsen and Semlyen (2001) introduced a method for passivity enforcement
based on the perturbation of pole-residue identified transfer functions through a
quadratic programming optimization algorithm.
It assumes that an accurate rational approximation of either admittance matrix
Y (s) or impedance Z(s) has been calculated:

Yfit(s) =
∑

k

Ck

s− ak
+ D + sE. (2.2)
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In such case, it is possible to force any negative eigenvalue of Gfit = Re{Yfit(s)}
to become positive by making only a slight correction to all or some of the para-
meters {Ck}, {ak}, D and E. This allows the linearization of the relation between
eig[Re{Y (jω)}] and the parameters to be corrected.
First, parameters are placed in a single vector x and the columns of Yfit are
stacked in a vector yfit. Then (2.2) is linearized so giving an incremental relation
such as:

∆yfit = M∆x, (2.3)

where details of the calculation of M are given in the appendix of [35]. A linear
relation also results between gfit = Re{yfit} and ∆x being:

∆gfit = Re(M)∆x = P∆x, (2.4)

where vector gfit stacks columns of Gfit. After this, it is necessary to linearize
the relation between the eigenvalues λ of Gfit = Re{Yfit} and the elements of
gfit as well:

∆λ = Q∆gfit. (2.5)

Combining the (2.4) and (2.5) we get:

∆λ = QP∆x = R∆x. (2.6)

The algorithm finds the minimum of the cost function:

χ = ‖y(s)− yfit(x, s)‖ =
∥∥y(s)−

(
y0

fit(x, s)−M∆x
)∥∥ (2.7)

requiring that eigenvalues λ of Gfit are positive. The optimization problem to
be solved is the minimization of:

χ =
1
2
∆xT AT A∆x−AT b∆x, (2.8)

subject to
−R∆x ≤ λ. (2.9)

The method requires a frequency sweep in order to detect violation bands, and
enforces the passivity only at a finite set of frequencies. Its effectiveness has been
widely shown on power transformer admittances and power transmission line PI-
equivalents. A major drawback of such approach is that it can give wrong results
when the sampling is not enough accurate.

2.2.2 Passivity enforcement by Hamiltonian matrix perturbation

A different method which detects violations on the whole frequency axis avoiding
a frequency sweep was introduced by Grivet-Talocia (2004).
It detects passivity violations by checking the presence of imaginary eigenvalues
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of the Hamiltonian matrix of the minimal state space realization of the identified
transfer matrix:

N0 =

(
A−B

(
D + DT

)−1
C −B

(
D + DT

)−1
BT

CT
(
D + DT

)−1
C −AT + CT

(
D + DT

)−1
BT

)
. (2.10)

If this matrix presents any imaginary eigenvalue, the model is not passive; at the
corresponding frequencies at least one of the eigenvalues of Re {H (jω)} changes
in sign.
Furthermore, analyzing imaginary eigenvalues of N0 and their eigenvectors, the
set of frequency interval {(ωi, ωi+1)} where violations occur, can be determined.
Then, an iterative scheme giving first order perturbations to the elements of C

matrix, is used for correcting the model. In particular, the location of Hamil-
tonian imaginary eigenvalues are related to the elements of C matrix through
a first order expansion. This suggests an iterative scheme to apply first order
perturbations for correcting the model. The algorithm operates as follows:

1. compute the set Λ of imaginary eigenvalues of Hamiltonian matrix N0

2. while Λ 6= {�}

3. determine the violation bandwidhts {ωi−1, ωi}

4. extimate maximum singular value γmax in each violation bandwidht

5. perturb the imaginary eigenvalues and compute correction matrix ∆

6. C = C + ∆

7. compute the set Λ of imaginary eigenvalues of Hamiltonian matrix N0

8. end while

The described method detects violation on the whole frequency axis and does not
need a frequency sweep. Its effectiveness has been demonstrated on interconnects
and electronic packaging data sets [38].

2.2.3 Passivity enforcement by convex optimization

A more general approach is introduced by Coelho et al. (2004) [40], being no
longer a perturbative one. In such formulation PR constraints are given in the
form of linear matrix inequalities (LMIs) on a minimal state space realization
(A,B, C, D). If, and only if, there exists a K = KT such that the following LMIs
are satisfied: [

−AT K −KA −KB + CT

−BT K + C D + DT

]
≥ 0, K ≥ 0 (2.11)
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the transfer function H(s) = C(sI−A)−1B +D is PR. The term E proportional
to s, can be included in the transfer function (H(s) = C(sI −A)−1B + D + sE);
it must satisfy E = ET and E ≥ 0.
Note that positive real constraints are convex in both C, D and E [6]. This
suggests an algorithm that exploits the knowledge of the poles of a previously
determined model (not necessarily positive real), whereas C, D and E matrices
are calculated solving a convex optimization problem. In this way, the passivity
constraint is directly taken into account in a new identification process which fits
in the least square sense the given data set.

2.2.4 Discussion

Although a complete comparison among the approaches involving different kinds
of data sets is still not available, some general comments on each of the consid-
ered algorithm can be given.
Approach introduced by Gustavsen and Semlyen (2001) gives an optimal flexibil-
ity to implement several strategies to perform the needed corrections, since the
location and the number of samples for solving the constraint problem can be
adapted to the specific case. It is limited only to admittance-impedance repre-
sentations.
Approach introduced by Grivet-Talocia (2004) is suitable for any representation
for the transfer function (including scattering), and exactly enforces passivity at
any frequency.
Approach introduced by Coelho et al (2004) is by far the more general and robust,
but is quite difficult to implement and with high computational cost. Therefore
it seems to be practically limited to low order models.

2.3 A test case: modelling of unshielded twisted cables

In this section we show the black box modeling approach of unshielded twisted
pairs (UTPs ). They nowadays finds a great concern in high speed computer net-
working systems, because of their capability to reduce the EMI effects induced
by external fields, and the crosstalk produced by parallel wires.
UTPs susceptibility and crosstalk have been extensively examined in the past
adopting analytical and numerical techniques (Paul and McKnight 1979, Cham-
berlin et al 1995 [41], Schutt-Aine 2001 [42], Caniggia et al 2004 [43]), mainly
using a transmission line (TL) modelling of UTPs. However, at high frequencies
the TL model is not expected to be valid any longer, due to radiation, disper-
sion, etc. Full-wave numerical methods are in principle suitable to model all the
phenomena occurring in UTPs. However, they require significant computational
burden, hence making very hard the simulation of entire UTPs interconnects
running for several meters. To overcome this problem, Caniggia et al (2006) [44]
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proposed to use a threedimensional full wave surface integral formulation (Mi-
ano and Villone 2005 [45]) to predict the terminal behavior of only a limited
length of the UTPs line. Then, a circuit extraction technique is applied to derive
an equivalent circuit model suitable for the analysis by any commercial circuit
simulator. Cascading several such equivalent circuits a representation of UTPs
interconnections of any length can be obtained.
A computer code (named SURFCODE) based on the mentioned integral formu-
lation [45] has been used to derive the admittance matrix of two twist pitches
(around 3 cm) of an UTP, see fig. (2.1).
We here derive a more general lumped representation, i.e. a state space real-
ization, on which the passivity is also enforced. Differently from [44], after the
identification of the reduced order model with VF algorithm, the presence of some
passivity violations is checked. Then, they are corrected through the procedure
based on Hamiltonian perturbation [38] as implemented in the IdEM (Identifica-
tion of Electrical Macromodels) computer code, available at:
http://www.emc.polito.it/software/IdEM/doc/idem_readme.htm.
Figures (2.2) and (2.3) shows the identification of the term Y11 = Y22, whereas
fig. (2.4) and (2.5) the term Y12 = Y21. Both couple of figures refers to the final
result, after the passivity enforcement process. Figures (2.6) and (2.7) shows how
the passivity enforcement process is able to correct violations.

Figure 2.1: Twisted cable : reference geometry.
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Figure 2.2: Twisted cable : identification of the magnitude of Y11.

Figure 2.3: Twisted cable : identification of the phase angle of Y11.
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Figure 2.4: Twisted cable : identification of the magnitude of Y12.

Figure 2.5: Twisted cable : identification of the phase angle of Y12.



2.3. A TEST CASE: MODELLING OF UNSHIELDED TWISTED CABLES 37

Figure 2.6: Twisted cable : passivity enforcement on the first eigenvalue.

Figure 2.7: Twisted cable : passivity enforcement on the first eigenvalue.





Chapter 3

Transmission line modelling

3.1 Introduction

Due to the rapid increase of the signal frequency and decrease of the electronic
component sizes within high speed electronic circuits, high-density interconnects
often behaves as multiconductor transmission lines.
Therefore, accurate and efficient simulation techniques are needed not only for
power systems analyses, but also for design and verification of the modern elec-
tronic circuits. In such a case, transmission line effects (delay times, crosstalk
voltages, voltage overshoots on terminal devices, etc.) must not affect correct
operation of these systems.
It is known in literature that the generalized Method of Characteristic (MoC)
provides the most suitable model to perform transient analysis of transmission
lines. Several techniques for the computation of the line responses exist (e.g. see
the comprehensive reviews of Djordjevic et al. (1987) [46] and Paul (1994,1996)
[47] [48]). The foremost methods are modal analysis in the time domain, modal
analysis in the frequency domain, and convolution techniques that use line im-
pulse responses.
A significant problem in the analysis of multiconductor lines is the inclusion of
the terminal networks. For lossless lines with frequency-independent parameters,
i.e. ideal lines, the study of the entire system (lines and terminations) can be
performed in the time domain by using the modal analysis. In all other cases the
analysis of the line must be necessarily performed in the frequency domain or,
equivalently, in the Laplace domain. If the terminal networks are linear the entire
analysis can be performed in the frequency domain and the inverse Fourier trans-
form is used to obtain the solution in the time domain. However, this approach
is not suitable for handling fast-varying signals and when the terminal networks
are nonlinear (Maffucci and Miano 1999 [49]). In the general case, terminal net-

39
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works requires a time domain analysis, whereas the line has to be modelled in
the frequency domain due to the losses and/or the dispersive phenomena. Both
requirements can be satisfyed by using the convolution technique. Furthermore,
fast convolution algorithms can be used in the simulation of lines ended with lin-
ear networks and involving fast-varying signals as well (e.g. Lin and Kuh (1992)
[50], Gordon et al (1992) [51]).
Effective time-domain simulations for multiconductor lines are achieved through
convolution of the line terminal voltages with the describing time-domain input
and transfer impulse responses of the line. These line responses are computed,
respectively, from the Laplace-domain admittance matrix and the propagation
matrix. The common problem to overcome is given by the high computational
cost of time convolutions, which leads to the need to derive reduced order models.
In the frequency domain, where it is natural to take into account the frequency-
dependence of the line p.u.l. parameters, the model obtained from MoC is de-
scribed by operators characterized by a rather complicated behavior. These op-
erators, in particular, show a singular behavior at infinity due to the presence of
irregular terms, mainly arising from the delays associated to propagation. The
delay extraction allows, from one hand, to describe analytically the highly irreg-
ular and unbounded terms contained in the line impulse responses, which can be
modeled through damped delayed sources and resistive multiports. On the other
hand, it allows to define regular remainders which can be easily identified by
means of low-order lumped circuit approximation, so lowering the computational
cost of the convolutions. The most commonly adopted approaches to extract
these delays are based on an asymptotic evaluation of the behavior of the fre-
quency domain operators describing the model.
This chapter analyzes the following issues:

• the analytical evaluation of the delays as well as the corresponding damping
factors. This comes from a procedure based on the theory of the pertur-
bation of the spectrum of symmetric operators (Miano and Maffucci 2001
[52]). The exploitation of such analytical information leads to a new defini-
tion of the remainders under identification, as compared to other approaches
available in literature (e.g. Elfadel et al 2002 [53], Grivet Talocia et al 2004
[54]).

• the identification process of the describing functions after the extraction of
the available analytical information. A procedure consisting of a cascade
of Vector Fitting [4] [26] and a further non-linear minimization, already
introduced in section (1.6) is successfully applied. This allows giving general
properties to the macromodel realization, also improving the accuracy. In
particular, it leads to state space realizations having a diagonal matrix A

with no repeated poles.
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• the possibility of improving the accuracy of the propagation operator iden-
tification through the identification of optimal time delays.

The decomposition of the describing functions and the identification procedures
are tested on standard examples of RLGC multiconductor transmission lines.
Improvements in the identification of reduced-order lumped equivalents will be
highlighted, both in the characteristic admittance matrix and propagation oper-
ator matrix.
The identification of optimal delays to be extracted from propagation operator
have been tested on power transmission lines. Also in this case, results show the
effectiveness of the proposed approach.

3.2 The Method of Characteristics

Let us consider a line of length d consisting of m signal conductors and a reference
one. The frequency-domain distributions of currents I(z, s) and voltages V (z, s)
along the line are solution of the telegrapher’s equations:

− dV

dz
= Z(s)I, −dI

dz
= Y (s)V. (3.1)

With a suitable definition of the per-unit-length (p.u.l.) impedance Z(s) and
admittance Y (s) matrices, these equations describe the most general case of lossy
multiconductor lines with frequency dependent parameters. Having defined the
terminal variables as Vk, Ik, k = 1, 2 at the near and far end, respectively, the
following equivalent multiport representation may be derived (e.g. [52]):

I1(s) = Yc(s)V1(s) + J1(s),
I2(s) = Yc(s)V2(s) + J2(s),

(3.2)

J1(s) = H(s)[−2I2(s) + J2(s)],
J2(s) = H(s)[−2I1(s) + J1(s)].

(3.3)

Eqs. (3.2) are the network equations at the two line ends, while eqs. (3.3) describe
the control laws of two controlled current sources. The characteristic admittance
matrix Yc(s) and the propagation operator matrix H(s) are given by:

Yc(s) =
(√

Z (s)−1 Y (s)−1

)
Y (s), (3.4)

H(s) = e−
√

Y (s)Z(s)l. (3.5)

The time-domain model is obtained by reverse transforming (3.2) and (3.3), hence
it involves the time convolution product between the voltage and current wave-
forms and the inverse transforms of (3.4) and (3.5), i.e. the line impulse responses:
yc(t) = L−1 {Yc(s)}, h(t) = L−1 {H(s)}. This model is extremely accurate since
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it fits naturally the propagation: for instance, when port 2 is matched J1 = 0 and
the model exactly provides the characteristic admittance as the input admittance
at port 1. Nevertheless it also presents a couple of weak points:
(i) the difficult evaluation of the impulse responses;
(ii) the high computational cost of the time convolutions.
For these reasons, the literature has proposed semi-analytical approaches which
evaluate in an accurate manner such functions; at the same time, efficient re-
duced order models have been proposed to lower the computational cost. The
crucial point to overcome both the problems is the extraction of the delayed
terms involved in the propagation operator H(s). Regarding to this issue, it
is of remarkable importance the possibility for the propagation operator to be
diagonalized as follows:

H(s) = U(s)diag
(
e−ds

√
λ1(s), ..., e−ds

√
λn(s)

)
U−1(s) (3.6)

Where λi(s) and the columns ui(s) of matrix U(s) are, respectively, the eigen-
values and the eigenvectors of the matrix:

Λ(s) =
Y (s)

s

Z(s)
s

(3.7)

3.3 Identification of the describing operators

3.3.1 The characteristic admittance matrix Yc

The identification of the characteristic admittance matrix Yc(s) is a problem
quite similar to the identification of any matrix of smooth frequency responses
describing delayless distributed multiports.
In addition, valuable information on its structure can be exploited to simplify
the identification process. In such a case, the characteristic admittance may be
decomposed in a principal part and a remainder:

Yc (s) = Ycp (s) + Ycr (s) (3.8)

where Ycp (s) is the leading part as s → ∞, while Ycr (s) is a low-pass function
for s →∞. The extraction of the principal part of Yc(s) is straightforward, since
it corresponds to the characteristic admittance of an ideal lossless line described
by p.u.l. inductance and capacitance matrices given by L∞ = lim

s→∞
(Z(s)/s) and

C∞ = lim
s→∞

(Y (s)/s). After this decomposition only Ycr (s) needs to be identified

with a rational (low-pass) function.
The identification of the matrix Yc (or Ycr, when the asymptotic behaviour of the
p.u.l. inductance and capacitance is known) can be accurately achieved by using
a common pole set:

Y (ij)
c (s) =

∑
m

c
(ij)
m

s− pm
+ d(ij). (3.9)
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Gustavsen et al (1999) [55] provided the following intuitive explanation of this.
The Yc matrix might be diagonalized as follow:

Yc(jω) = T (jω)λ(jω)T−1(jω), (3.10)

where λ(jω) is the diagonal matrix holding the modes of Yc:

λ(jω) =

 λ1(jω) . . . 0
...

. . . 0
0 . . . λn(jω)

 (3.11)

Let be Tk is the k-th column of T , and T−1
k is the k-th row of T−1, (3.10) may

be rewritten as:

Yc =
n∑

k=1

TkλkT
−1
k =

n∑
k=1

(TkT
−1
k )λk. (3.12)

The frequency variations of TkT
−1
k are the same of those of λk(jω). This indicates

that the degrees of freedom provided by the residues is sufficient to approximate
the whole matrix Yc, by using only the poles of each λk(jω). Note that the modal
decomposition of Yc is not actually needed by the identification process.

For large matrices, an estimation of the pole set is given by the poles of
n∑

k=1

λk.

Since the sum of the eigenvalues of a matrix equals its trace:

n∑
k=1

λk =
n∑

k=1

Y (kk)
c , (3.13)

even in this case, it is not necessary to evaluate the matrix λ(jω).

3.3.2 The propagation operator H(s)

Due to its structural properties the identification of the propagation operator is
the real challenge in modeling transmission lines. The structure of the operator
H(s) is more complicated as compared to Yc(s) mainly due to the presence of
the propagation delays. If it were directly subjected to a rational approximation,
expansions of high order would be required.
For this reason, also for H(s), we look for extracting a part which may be an-
alytically computed, leading to the definition of a regular remainder identifiable
with a low order expansion.

Long interconnects modelling

For many cases of practical interest, which include interconnects with frequency-
independent parameters (RLGC lines) and a large class of lines with frequency-
dependent parameters (such as the lines with dispersive dielectrics), the following
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expansion for s →∞ of eigenvalues and eigenvectors holds [52]:

λi(s) = λ
(0)
i +

λ
(1)
i

s
+ ...., ui(s) = u

(0)
i +

u
(1)
i

s
+ ... (3.14)

where the zero-order terms λ0
i and u0

i are, respectively, the eigenvalues and eigen-
vectors of the high-frequency limit of matrix (3.7):

Λ0 = C∞L∞ (3.15)

where L∞ = lim
s→∞

(Z(s)/s) and C∞ = lim
s→∞

(Y (s)/s). Now, let us neglect the fact

that the time delay Ti associated to the ith TEM mode propagating along the
line is actually frequency dependent, and give the following definition:

Ti = d

√
λ

(0)
i . (3.16)

We can introduce the matrix U0 as the u0
i eigenvectors matrix, and define diagonal

matrices D and M containing respectively, the delay factors and the damping
factors associated to such delays as:

D = diag[exp(−sTi)], (3.17)

M = diag[exp(−µiTi)]. (3.18)

Then, in all cases for which (3.14) holds, we can write:

U−1
0 H(s)U0 = D [M + Q (s)] (3.19)

where the Q(s) matrix accounts for the dispersion phenomena, which would van-
ish in the so called distortionless “Heaviside” condition. Note that for the ideal
lossless case Q(s) = 0 and M = I (identity matrix). It is worth noting that the
damping coefficients µi could be evaluated from the knowledge of the first order
term λ1

i in the expansion of λi(s) [52]:

µi =
λ

(1)
i

2λ
(0)
i

; (3.20)

this approach represents the generalization to multiconductor case of the well-
known expression of the damping coefficient for a two-conductor RLGC line
µ = 1/2 (R/L + G/C) .

Expression (3.19) is well suited to the system identification since all the informa-
tion related to propagation delays is explicitly accounted in matrix D . Moreover,
the analytical evaluation of damping factors in matrix M leaves only matrix Q(s)
to be determined.
Finally, it is important to stress that a similar procedure may be adopted also for
another class of dispersive lines, as for example the lines with pronounced skin
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effect. In such a case the starting point is the expansion in Laurent series in the
neighborhood of s →∞ by powers of 1/

√
s [52].

The definition of a regular remainder to be identified with a low order expansion,
may be achieved by two different approaches. Such remainder is then identified
by using a common pole set, like Yc(s) in eq. (3.9).
First approach is here called “Subtracting approach”. It has been presented, for
instance, by Miano and Maffucci in [52], and removes directly a principal part
from the overall operator:

H (s) = Hp (s) + Hr (s) (3.21)

with Hp(s) given by:

Hp(s) = U0MDU−1
0 = U0diag[−(µi + s)Ti]U−1

0 , (3.22)

so defining a regular remainder Hr(s) vanishing as 1/s for s →∞, which has to
be identified. With this approach the implementation is straightforward: Hp(s)
may be realized by a network of pure delay elements and constant gains; Hr(s)
by the reduced system as obtained by identification. It is important to note
that Hr(s) contains the contributions of m different modes, each of which is
associated with its own delay time Ti. In particular, since its corresponding
time-domain transform hr(t) has to be zero for 0 ≤ t ≤ Tmin, where Tmin is the
time delay associated to the fastest mode, it is extremely convenient to pursue
the identification of:

H̃r(s) = esTmin [H(s)−Hp(s)], (3.23)

rather than of Hr(s) as defined in (3.21).
A different way to define the remainder is based on delays factorization. We refer
to it as “Factorizing Approach”. From (3.19), in fact, it is possible to define the
following expression (Grivet-Talocia et al 2004 [54]):

M + Q(s) = D−1U−1
0 H(s)U0 (3.24)

Note that Q(s) is a regular remainder. Once M + Q(s) has been identified, the
propagation operator H(s) is easily obtained by the following manipulation:

H (s) = U0D [M + Q (s)]U−1
0 (3.25)

From (3.24) it is evident how the implementation of H(s) requires the reassem-
bling of the contribution of the m modes each one with its own delay. Anyway,
since it is possible to compute matrix M analytically, a new definition may be
introduced for the remainder to be identified (de Magistris et al 2005 [56]):

Hr(s) = M−1D−1U−1
0 H(s)U0 − I (3.26)

Such a definition can improve the whole identification process by exploiting the
analytical knowledge of the damping matrix M , whereas definitions (3.23) or
(3.24) leave this information in the reminder to be identified.
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Power lines modelling

In the modelling of some power lines, the usage of a constant transformation
matrix U0 to diagonalize the propagation function H(s) may give inaccurate
results, due to a quite pronounced frequency dependent behaviour. An efficient
procedure, which enables to take into account even strongly frequency dependent
transformation matrix and widely different modal time delays, was introduced by
Gustavsen et al (1999) in [55] and is called “Universal Line Model”. It involves
two steps: the modal domain fitting of propagation matrix H(s) and the phase
domain fitting of H(s). Modal domain fitting means that H(s) is diagonalized
(3.6) and its modal components are identified with a rational approximation plus
a single time delay. Phase domain fitting means the identification of whole matrix
H(s) by taking the poles of all modes (as previously found in the modal domain
fitting) and their time delays as known quantities.
Now, we describe the modal domain fitting of H(s). Similarly to (3.12), we have:

H =
n∑

m=1

(UmU−1
m )e−γml =

n∑
m=1

(UmU−1
m )e−χmle−jωτm (3.27)

Note that we have extracted a constant delay, τm, for each mode. Factors e−χml

are still frequency dependent. Each mode e−γml may be written in the form:

hm(ω) = e−γml = e
−
�
αm(ω)+j ω

vm(ω)

�
l
, (3.28)

where αm is the attenuation, vm is the velocity and l is the line length. Lossless
time delays τm (which correspond to (3.16)) may be written as:

τm =
l

vm(ω →∞)
. (3.29)

After that modes have been found and a time delay is extracted from each mode,
we find their poles {pkm} (for instance, through the Vector Fitting algorithm):

hmejωτm = eχml =
∑

k

ckm

jω − pkm
. (3.30)

Now, the phase domain fitting has to be performed. It involves the identification
of residues of the following expansion:

Hij(jω) ≈
n∑

m=1

(
N∑

k=1

(cmk)ij

jω − pmk

)
e−jωτm . (3.31)

Writing the (3.31) for several frequencies, an overdetermined linear matrix equa-
tion of the form

AX = B, (3.32)
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is found. The unknown residues ({(cmk)ij}) are in X. Each row in A and B cor-
responds to a frequency point, and each column in X and B corresponds to an
element of H. Equation (3.32) is solved as a least squares problem. It should be
noted that all poles {pmk} are present in all elements Hij of the fitted H matrix.
This enables a columnwise realization for H, leading to computational savings in
the implementation of the time domain model.
Note that, if the eigenvalues of H were calculated using a constant, real trans-
formation matrix evaluated at a high frequency (e.g. 1 MHz), the resulting
eigenvalues would be different from the accurate ones. The identification gives
different poles as well. However, in some cases, these displacements of the poles
are known to be slight and can be compensated in the calculation of the residues.
In such cases, it is advantageous to use a constant transformation matrix, since
this avoids the problem of artificial mode switchovers, so eliminating the need
for a “tracking routine” (Wedepohl et al 1996 [57]) or special diagonalization
routines (Marti 1988 [58], Wedepohl et al 1996 [57]).
In the actual implementation of ULM, modes with nearly equal delays are lumped
together in order to obtain a more compact model [55].

3.4 On the evaluation of time delays

For some particular applications (like power transmission lines) lossless time de-
lays (3.16), may be difficult to evaluate according an expansion like (3.14). In
such a case, they may be evaluated directly from the magnitude of the propaga-
tion function (Gustavsen and Semlyen 1998 [59]).
Since the function hm(ω) may be also decomposed as follows:

hm(ω) = hϕm(ω)e−jωτm , (3.33)

where hϕm is a minimum phase shift function, from (3.28) it results:

− ω

vm(ω)
l = ∠hϕm(ω)− ωτm. (3.34)

The (3.34) enables the evaluation of the time delay τm once ∠hmϕ(ω) is known:

τm = τa
m + ∆τ =

l

vm(ω)
+

ϕ(ω)
ω

. (3.35)

The phase angle ϕ(ω) = ∠hϕm(ω) may be calculated from the magnitude function
|h|, by using the Bode phase-integral theorem:

ϕ(ω) =
π

2
d(ln |h(ω1)|)

d(lnω1)

∣∣∣∣
ω1=ω

+ ∆(ω), (3.36)

where

∆(ω) =
1
π

+∞∫
−∞

(∣∣∣∣d(ln |h|)
du

∣∣∣∣− ∣∣∣∣d(ln |h|)
du

∣∣∣∣
u=0

)
ln
(

coth
|u|
2

)
du, (3.37)
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and
u = ln

ω1

ω
. (3.38)

Note that the theorem gives an analytical expression of the phase angle ϕ(ω) of
a minimum phase shift function as a function of logarithm of its magnitude |h|.
The integral of (3.4) spans over the entire frequency axis, requiring always the
magnitude function |h(ω1)| at any ω1, in order to evaluate exactly the phase an-
gle at a single frequency point ω. In the practical implementation, the integral
is evaluated numerically on a limited frequency interval. For this application,
a quite accurate approximation is usually achieved when it is taken over a fre-
quency range that spans at least two decades below and above ω.
If the minimum phase angle ϕ(ω) is accurately evaluated, the time delay (3.35) is
independent from the frequency point ω chosen. In practice, evaluating the inte-
gral of (3.4) on a limited frequency range around ω, the obtained approximation
is dependent from ω.
Note that integrand in (3.4) is singular for u = 0, and the integration has to be
intended in the sense of Cauchy principal value (Poularikas 1996 [60]):

+∞∫
−∞

= lim
ε→0+

 −ε∫
−∞

+

+∞∫
ε

 (3.39)

The factor ln(coth(|u|/2)) peaks when u = 0 (i.e. ω1 = ω), the phase angle at a
given ω mostly depends by the magnitude slope around ω [60].
The numerical implementation of (3.36), (3.4) substitutes the limit ε → 0 by a
given value of the sampling interval and the limit to infinite by a given value of the
upper/lower frequency. We perform the numerical integration of () by using an
uniform sampling of the integral, i.e. ω1j = j∆ω, where j ∈ {−N, . . . ,−1, 1, . . . , N}
and ∆ is assumed as a constant, which corresponds to uj = j∆. This gives a
proper approximation of the integrand of (3.4) in the sense (3.39), since the origin
u = 0 is positioned exactly at the center of the sampling interval. Such a goal
is simply achieved generating the vector w containing the angolar frequencies by
means of the Matlab command logspace.
The following shows a Matlab code for calculating the phase angle of a minimum-
phase shift function by (3.36),(3.4). It is assumed that absH contains the mag-
nitude function, given at Ns frequency samples. The code calculates the phase
angle at the jth frequency sample.

phase1=(pi/2)*log((absH(j+1)/absH(j-1)))/(log(w(j+1)/w(j-1)));

phase2=0;

term2=log((absH(j+1)/absH(j-1))) /(log(w(j+1)/w(j-1)));

for k=2:Ns-1

term1=log(absH(k+1)/absH(k-1)) /(log(w(k+1)/w(k-1)));

if k~=j
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phase2=phase2+

abs(term1)-abs(term2))*log(coth(abs(log(w(k)/w(j)))/2))*

log(w(k+1)/w(k));

end

end

phase2=phase2/pi;

phi(j)=(phase1-phase2); %Phase angle [rad]

3.5 Identification of optimal time delays

We have already seen that the identification of H(s) is somewhat challenging
since a low order approximation is achievable only with the accurate evaluation
and extraction of the modal time delays (3.23), (3.24), (3.25).
In the case of power transmission lines, a very accurate identification approach
(ULM [55]) requires the modal domain fitting of H(s), i.e. the identification of
its modal components with a rational approximation plus a single time delay.
These time delay may be evaluated through the formula (3.35), which is based
on the possibility of reconstructing a minimum phase angle by means of the Bode
phase-integral theorem (3.36). However, it has been shown that the rms-error of
the rational approximation of each modal component has a minimum for a time
delays greater than the lossless (e.g. Gustavsen 2004 [61]).
In this section we describe an approach which improves the approximation of the
whole H(s) matrix by means of the identification of optimal time delays.
To motivate this approach, we consider as example of identification, the propa-
gation function of a single overhead line. In such a case the propagation operator
h(s) is a scalar function, so the diagonalization (modal decomposition) in (3.24)
does not apply.
After the delay extraction, the delayless propagation operator p(s) can be iden-
tified by means of the VF algorithm:

p(s) = h(s)esτ ∼=

(
N∑

m=1

rm

s− am

)
(3.40)

We will show that the extraction of a time delay different from (3.16) can give a
more accurate final approximation. In this case the function to be subject to a
rational approximation is no longer a minimum phase shift function.
A practical example is given in fig. (3.5), where the propagation function h(s) of

a 50 km long overhead line has been subjected to a rational approximation (eight
poles) over the frequency interval [1 Hz, 10 MHz]. The figure shows the compari-
son between the extraction of the lossless time delay τ0 and a time delay τ1 > τ0.
Stability has been enforced by the use in the fitting process of only negative real
part poles. It is seen that compensation with the time delay τ1 > τ0, gives a less
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Figure 3.1: Identification of a propagation function, after extraction of lossless
time delay τ0 and τ1 > τ0

negative phase angle for that range of frequencies where the magnitude of the
original function is not negligible yet. This enables a more accurate approxima-
tion without increasing the order: the rms-error of the approximation performed
extracting τ1 is 2.55× 10−4, whereas it is 7.76× 10−4 when τ0 is extracted.
In fig.(3.5), a time delay τ2, with τ1 > τ2 > τ0, has been extracted. It is shown

that the eight-poles function cannot capture perfectly the phase angle, giving an
approximation less accurate than that one shown in fig. (3.5). In this case the
rms-error is 5.75×10−4. The sixteen-poles approximation is very accurate, giving
the rms-error 4.39 × 10−6. Moreover, when time delay τ1 > τ2 is extracted, the
sixteen-poles approximation loses accuracy, giving a rms-error comparable to the
eight-poles approximation: 9.81× 10−5.
Similar considerations, which hold also for each modal component of a matrix
propagation function H(s), suggest that time delay which gives least rms-error is
greater than lossless one, and depends from the order of the approximation. The
lower is the order, greater is the time delay which minimizes the rms-error.
It is therefore desirable to use an optimization procedure which computes the
delay that minimizes the rms-error for a given order of approximation.
A very accurate procedure for including modal time delays in the optimization
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Figure 3.2: Identification of a propagation function after extraction of a time
delay τ2, with τ1 > τ2 > τ0

process was introduced by Gustavsen (2004) [61] by combining Vector Fitting
(VF) with Brent optimization method. The basic idea is to search for the time
delay which gives the smallest possible rms-error of (3.40). Its practical imple-
mentation requires writing a routine which calculates the rational approximation
and its rms-error for a given time delay. An external optimization loop is then
used to minimize such an objective function.
De Tommasi and Gustavsen (2006) [22] found an alternative approach based on
the fitting of the magnitude of the modal responses with minimum phase shift
functions, followed by a final optimization of the time delay. This avoids the need
for repeatedly fitting the response with rational functions, thereby giving some
scope for speed improvement. On the other hand, this approach may give less
accurate results than the previous one.
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3.6 Minimum phase shift fitting and optimal time delay

identification

This section shows the approach developed by De Tommasi and Gustavsen (2006),
based on the fitting of the magnitude of the modal responses with minimum phase
shift functions, followed by the identification of the time delay.
We have already seen that after the operator H(s) has been diagonalized, terms
{hm

i (s)} of the diagonal matrix Hm(s) needs to be fitted with a rational function
plus a time delay. One of the existing EMTP line models (Marti 1982) is based
on magnitude fitting of the propagation function using a minimum phase shift
function plus a single delay that is subject to final optimization. The fitting pro-
cedure given by Marti (1982) in [21] is based on asymptotic fitting which results
in high orders and thereby slower time domain simulations.
De Tommasi and Gustavsen (2006) developed a modified version of VF to achieve
a low order fitting. Standard VF requires knowledge about the both magnitude
and phase of the function to be fitted, whereas this new formulation of the algo-
rithm (described in chapter 1), fits the magnitude of a frequency responses giving
a minimum phase shift function.
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Figure 3.3: Overhead line : identification of the magnitude square of a modal
component h(s) of H(s)

First step of the magnitude fitting is the fitting of the magnitude square func-
tion and the correction of the rational function to remove its negative values.
Fig. (3.3) shows the identification of the magnitude square of the ground mode
of a 50 km three phase overhead line. The function has been fitted with N = 8
poles without any weighting for the LS solution. It is seen that a negative under-
shoot results with minimum value −2.66× 10−4. Such undershoot will result in
the rational approximation having at least one conjugate couple of purely imag-
inary zeros. These zeros are located where the approximation crosses the zero
line (in this example they are at 1.57 × 105 Hz). Also shown in fig. (3.3) is the
result achieved by placing a weight of 104 for the samples between 1.49×105 and
9.40× 105 Hz. This is seen to remove the existence of negative values.
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Figure 3.4: Overhead line : identification of the magnitude of a modal component
h(s) of H(s)

From the magnitude square fitting (which has no imaginary zeros) is recovered
the minimum phase shift approximation of h(s) , see fig. (3.4).
Note that the deviation ∆(f) shown in fig. (3.4) is the distance between the two
magnitude functions:

∆(f) = ||h(j2πf)| − |hfit(j2πf)|| , (3.41)

where h is the original function and hfit the eight poles approximation.
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Figure 3.5: Overhead line : identification of the magnitude of a modal component
h(s) of H(s)

After that the magnitude of h(s) has been fitted with a minimum phase shift
function, a single time delay has to be associated. Fig. (3.5) shows that the
minimum rms-error occurs for a time delay greater than τ0 = 50× 103/3× 108 =
166.67µs (lossless time delay). In agreement with [61], we find that the optimal
time delay τopt becomes smaller as the order N of the approximation increases.
The rms-error of the approximation obtained by associating a delay τ 6= τopt to
the minimum phase shift approximation of |h(s)| is significantly greater than the
rms-error of (3.40). However, working with several overhead line having different
length, we verified that the minimum rms-error reached through the identifica-
tion of τopt is lower than the rms-error of (3.40) with τ = τ0 (lossless time delay
extraction). This justifies the usage of the proposed procedure with such kind of
dataset.
The delay which minimizes the rms-error is quickly evaluated by means of MAT-
LAB function fminbnd [62]. This avoids usage of manual frequency sweeping.
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Figure 3.6: Overhead line : phase angle comparison

Fig. (3.6) compares the phase angles of the minimum phase shift rational
functions with the phase angle that results when multiplying the original prop-
agation function h(s) with a factor e−sτ , when τ has been optimized. Clearly a
very good match is achieved. Since both the magnitude and phase angle have
now been fitted to a high accuracy, one can conclude that the modes hm

i can be
fitted accurately using a minimum phase shift function plus an optimized time
delay, which was also the basic idea in [21].
Now, let us observe that if the magnitude square approximation approximation
gives some conjugate couples of imaginary zeros, they can be replaced with real
pairs, by multiplying by j. This remove the undesired negative undershoot,
but the rms-error can increase substantially around those frequencies. Instead a
proper weighting strategy avoids, or at least greatly reduces negative undershoots,
so improving the final magnitude approximation. However, since complete elim-
ination of negative undershoots cannot be guaranteed for any case by weighting,
the presence of imaginary zeros must be always checked and removed prior to
recover the final model.
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Figure 3.7: Overhead line : weighting criterion

We found the following weighting criterion which improved the approximation
of several overhead line datasets. First, we have to determine the frequency band
to be weighted. The magnitude square function is fitted with unitary weights
and it is checked if the approximation takes negative values. If this happens, the
following procedure is undertaken. From the frequency response is identified the
point of minimum (fmin, Fmin), see fig. (3.7). Also is identified the frequencies
fdown, where the approximation takes the first negative value, and fup, where the
magnitude is 10% of ‖Fmin‖. Then, the function is refitted when weighting the
Nx samples between fdown and fup with the quantity:

w = α
Ns

Nx

1
|Fmin|

, (3.42)

where α is a user-defined parameter (usually ranging from 2 up to 10), and Ns

is the total number of frequency samples.
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Figure 3.8: Overhead line : identification comparison, 6th order both weighted
and unweighted

Fig. (3.8) shows a comparison between two sixth order approximations. The
first one is obtained from an unweighted magnitude square approximation which
gives the couple of imaginary zeros ±j9.10× 105 (taking a negative minimum of
4.44× 10−4 at 215 kHz). These imaginary zeros are replaced by the real couple
±9.10 × 105, before recovering the final approximation of the magnitude. The
second one comes from a weighted magnitude square fitting, assuming α = 3
in (3.42). In this case the magnitude square rational approximation gives two
very close couple of imaginary zeros: ±j2.48 × 106, ±j2.55 × 106, resulting in
a negative minimum of −5.68 × 10−10 at 398 kHz. By changing the imaginary
zeros into their real counterparts before recovering the magnitude fitting, the
introduced perturbation is much smaller than in the first case. It is seen that the
final result is more accurate around those frequencies where the imaginary zeros
were located. It is also seen that the weighting increases the rms error at low
frequencies, resulting in a more uniform rms error level.
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3.6.1 Discussion

In this section we compare different delay optimization processes, as they are
carried out in conjunction with different fitting approaches. Figure (3.9) refers
to the ground mode of a 10 km long single cable system. It shows the rms-error
as function of time delay, when time delay is associated to previously identified
minimum phase shift functions.
In particular:

• “Bode Fitting + NLLS” uses the asymptotic fitting of magnitude function
as described in (1.5.1) to obtain poles and zeros which are further refined
using a non linear least square procedure. We implemented a zeros opti-
mization scheme based on the Gauss-Newton algorithm. It takes as initial
values the poles and zeros determined by asymptotic fitting and optimizes
simultaneously the whole set of zeros to minimize the rms error. Poles are
taken as fixed in this process. We also found that similar results in accuracy
can be achieved taking the zeros as fixed and optimizing the poles.

• “Phase reconstruction + VF” uses Bode phase integral theorem (3.36) to
reconstruct a minimum phase shift function which is then multiplied by the
time delay before fitting with the Vector Fitting algorithm. Note that the
formula (3.36) is repeatedly used at each frequency where samples of the
original function are assigned.

Figure 3.9: Delay optimization performed in conjunction with different fitting
approaches
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• “Magnitude square fitting” uses the minimum phase shift fitting approach
given by De Tommasi and Gustavsen (2006), described in section (3.6). It
requires the fitting of the magnitude square function through a modified
version of the Vector Fitting algorithm.

• “Combined fitting” uses the procedure given by Gustavsen (2004) in [61]
which identifies a new rational approximation for each time delay extracted.

Fig. (3.9) shows the general case where the combined fitting gives the most ac-
curate approximation. We also found several cases where this approach does not
give a significant improvement of accuracy with respect to that based on the
magnitude square fitting.
It is seen that the old procedure given by Marti (1982) in [21] and based on the
row Bode-fitting approach gives the least accurate approximation. We found that
this is a quite general result.
Note that although phase reconstruction and magnitude square fitting give the
same accuracy, time delays which minimize respective approximations are differ-
ent. This means that starting minimum phase shift functions have different phase
angles. In fact, a minimum phase angle is uniquely defined only when the mag-
nitude of the function is assigned at any frequency, whereas the approximated
functions are evaluated on a limited frequency band.



Chapter 4

Applications and case studies

4.1 Introduction

In this chapter we consider some applications of the described identification al-
gorithms, which will be developed more deeply than the examples included in
previous chapters.
First of all, we will show the effectiveness of such reduced order models and
their accuracy through some time domain simulations arising from different and
concrete electrical engineering problems. Then, we will address the black-box
modelling of a large class of long interconnects operating in non-TEM condi-
tions.
In detail, case studies considered are:

• The evaluation of crosstalk voltage in interconnects modelled as multicon-
ductor transmission line. This issue is related with the signal integrity
analysis in the electronic packaging.

• The analysis of the induced sheath voltage in a cable system for power
transmission. This is needed in the analysis of the behaviour of the dielectric
insulation under overvoltage conditions.

• The identification of passive reduced order models of interconnects oper-
ating in non-TEM conditions. In such case, bands of passivity violations
due to some known inconsistencies of the full-wave model describing the
interconnects, are successfully corrected after the identification stage.

61
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Table 4.1: Interconnect 1 : p.u.l. parameters

R =

 41.6667 0 0
0 41.6667 0
0 0 41.6667

 Ω
m

L = 10−5

 0.2417 0.0694 0.0639
0.0694 0.2361 0.0694
0.0639 0.0694 0.2417

 H
m

G = 10−3

 0.5859 0 0
0 0.5859 0
0 0 0.5859

 S
m

C = 10−10

 0.2099 −0.1235 −0.0401
−0.1235 0.2623 −0.1235
−0.0401 −0.1235 0.2099

 F
m

4.2 Crosstalk voltage evaluation in long interconnects

In the modern electronic packaging, several interconnects are routed in parallel
over electrically significant distances. The prediction of their electrical perfor-
mances requires accurate and numerically efficient estimates of signal crosstalk
voltages. Although there exists some crosstalk formulas, they are only applicable
to two conductor lines and only when the dielectric medium is homogeneous.
Both near-end and far-end crosstalk voltages need to be estimated for the gen-
eral case of multiconductor coupled transmission lines. The effects of velocity
dispersion on crosstalk voltages, which are functions of signal rise times, have to
be included in the analysis.
We consider three test cases. First two refer to transmission lines characterized
by frequency-independent p.u.l. parameters, whereas the third refers to a line
with frequency-dependent parameters.
Both regular parts of propagation function and characteristic admittance have
been identified with a common pole set by means of the matrix fitter package
mtrxfit.m, available at http://www.energy.sintef.no/Produkt/VECTFIT/.

4.2.1 Case study 1

The first case analyzed is the four-conductor TL characterized by the frequency-
independent p.u.l. parameters of table (4.1). The line length is 1 m.
This case shows an appreciable difference in the values of the delay times as-
sociated with the TEM modes, which are given in table (4.2), along with the
computed damping coefficients.
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Table 4.2: Interconnect 1 : delay times and damping coefficients

Mode 1 Mode 2 Mode 3
τi 3.67 ns 6.67 ns 8.15 ns
µi 8.75 · 107s−1 2.35 · 107s−1 1.99 · 107s−1

Frequency domain identification

Both regular parts of H(s) (3.23) and (3.26) have been identified. Then, the
propagation function has been approximated exploiting the identified regular
parts. This is shown in figg. (4.1), (4.2), (4.3), (4.4), (4.5), where the regular
part obtained with the factorizing approach is indicated as [F] in the legend,
whereas that one obtained with the subtracting approach is indicated as [S].
For the subtracting approach (definition (3.23)), both pure VF and VF+NLLS
have been used. A good accuracy has been obtained with only 2 poles.
In order to study the accuracy, we define the error as the average value of the

following rms percent relative errors:

ε(i, j) = 100

√√√√ Ns∑
k=1

|Hij(fk)− H̃ij(fk)|2/
Ns∑
k=1

|Hij(fk)|2 (4.1)

where fk are the Ns frequencies where the functions are computed. For the
subtracting approach this error is 0.72% with a pure VF identification, and is

Figure 4.1: Interconnect 1 : identification of |H11|
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lower (0.45%) for VF+NLLS. For the factorizing approach (3.26), the error is
15.52%, mainly located at low frequencies, as shown in fig. (4.1).

Figure 4.2: Interconnect 1 : identification of |H12|

Figure 4.3: Interconnect 1 : identification of |H13|
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Figure 4.4: Interconnect 1 : identification of |H22|

Figure 4.5: Interconnect 1 : identification of |H23|

The particular shape of H components shown in figg. (4.1), (4.2), (4.3), (4.4),
(4.5), due to the sensible difference in the delays, makes the numerical inversion
of the overall propagation operator a very hard task. Obviously this problem is
overcome when the method of characteristic is used.
Note that the cascade VF+NLLS may be used also for the factorizing approach
(3.26). However, in this case the accuracy remain unvaried. This is due to
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the different structural properties of the matrix to be identified, which in the
factorizing case shows off-diagonal terms whose amplitude is order of magnitude
smaller than the diagonal one.
As for the operator Ycr, a 2 poles VF and VF+NLLS have been used. The
corresponding errors, defined as above, are respectively 1.58% for VF and 0.69%
for VF+NLLS.

Time domain analysis

As for the time domain analysis, we consider the line to be ended to linear loads.
At the left end we assume the line 1 to be fed by a unit square voltage pulse of
width 10−8s, in series with a 100Ω resistor, whereas both lines 2 and 3 are simply
ended with two 100Ω resistors. The three line at the far-end are all terminations
on 1 kΩ resistors.
Figure (4.6) shows the time-domain waveforms of a far-end crosstalk voltage: the
approximated results obtained by means of the decomposition (3.23) and (3.26)
are compared to the reference one, which is obtained through the convolution
with the exact functions Yc(s) and H(s). The errors, defined consistently to
(4.1), are 0.69% for (3.23) and 0.74% for (3.26).

Figure 4.6: Interconnect 1 : far end crosstalk voltage v23 for case 1

4.2.2 Case study 2

The second case-study refers to a three-conductors TL (Mao and Kuh 1997 [63])
of 70 cm length, once again described by frequency-independent p.u.l. parameters
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Table 4.3: Interconnect 2 : p.u.l. parameters

R =

(
52 3.5
3.5 66

)
Ω
m L = 10−9

(
224.0 57.62
57.62 306.5

)
H
m

G = 10−6

(
0.98 0
0 0.98

)
S
m C = 10−12

(
245.9 −61.38
−61.38 206.5

)
F
m

Table 4.4: Interconnect 2 : delay times and damping coefficients

Mode 1 Mode 2
τi 0.498 ns 0.545 ns
µi 1.08 · 108s−1 1.24 · 108s−1

(4.3). The computed delay times Ti and damping coefficients µi are reported in
(4.4): here the TEM modes propagate with quite the same velocity.

Frequency domain identification

Once again, the identification has been performed according to the definition
given in (3.8), (3.23) and (3.26), with 4 poles for Ycr and 6 poles for Hr, both
further refined with the NLLS step.
As for Ycr, a sensible fitting accuracy improvement is achieved with the cascade
VF+NLLS. A typical gain in accuracy is shown in fig. (4.7) for the (1,2) entry.
Similar accuracies are obtained for the other components. By using the average
value of (4.1), we get for a 4-poles VF approach an error of 1.28% which reduces
to 0.29% for a 4-poles VF+NLLS. As for the operator Hr, an accuracy of 4.25%
is achieved with a 6-poles VF, which remains substantially the same (4.83%) for
a 6-poles VF+NLLS.

Time domain analysis

A time domain analysis has been performed by considering the line connected at
the near end to the same source and resistive loads as for Case 1, with respect
to lines 1 and 2. Two different load conditions at the far-end are considered:
first the line is terminated on its ideal characteristic impedance ZL = Y −1

c , then
the mismatched load ZL=diag(1,1) kΩ is considered. Figure (4.8) shows the
near-end crosstalk voltage computed via a pure VF identification (4 poles for Ycr

and 6 poles for Hr), and by using the cascade VF+NLLS with the same number
of poles. The errors in this waveform are 5.26% for VF and 2.76% for VF+NLLS.
For the far-end crosstalk voltage we get the same order of accuracy, whereas for



68 CHAPTER 4. APPLICATIONS AND CASE STUDIES

Figure 4.7: Interconnect 2 : identification of the magnitude of Ycr12

Figure 4.8: Interconnect 2 : near end crosstalk voltage of the active line, matched
condition

the active line voltages we have a better accuracy, which is practically the same
for the two identification procedures: 0.72% for VF and 0.82% for VF+NLLS.
When the mismatched load is considered, there is a slight decrease of the accuracy.
Figure (4.9) shows the far-end voltage of the active line: the errors are 2.34% for
VF and 2.48% for VF+NLLS.
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Figure 4.9: Interconnect 2 : far end crosstalk voltage of the active line, mis-
matched condition

4.2.3 Case study 3

The third case-study refers to a lossy coupled line with frequency-dependent
parameters, given at certain frequency points. The data are reported in Ruehli
et al (2002) [64] and here in tables (4.5) and (4.6), where the line is referred to
as “Line 6”. Here the line length is assumed to be 5 cm. The computed delay
times Ti and damping coefficients µi are reported in (4.7): here the TEM modes
propagate with quite the same velocity.

Frequency domain identification

For this case a 6 poles VF identification has been used to evaluate Ycr, with a
further NLLS step. Figure (4.10) shows the magnitude of the entry Ycr11. The
errors are 0.82% for VF and 0.65% for VF+NLLS. A 10 poles VF approximation
has been used for identification of Hr, both with VF and VF+NLLS procedures.
The errors on H are of the order of 10% for both procedures, which may be
sensibly reduced by increasing the number of poles. Note that in this case only
the factorizing approach (3.26) can be used: this is because with this kind of data
eq. (3.20) only provides an approximation of the damping coefficients.

Time domain analysis

The time-domain simulations are performed by assuming the two near end termi-
nals to be respectively connected with a unitary voltage step in series with a 100
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Table 4.5: Interconnect 3 : p.u.l. parameters (R and L)

Frequency R11 R12 R22 L11 L12 L22

0.0000E+00 1.1903E-4 1.9747E-6 1.1903E-4 5.7964E-3 1.6327-3 5.7964E-3
1.0000E-04 1.1922E-4 2.1100E-6 1.1922E-4 5.7373E-3 1.5939E-3 5.7373E-3
2.1500E-04 1.1978E-4 2.5357E-6 1.1978E-4 5.5629E-3 1.4669E-3 5.5629E-3
4.6400E-04 1.2133E-4 3.6863E-6 1.2133E-4 5.1299E-3 1.1224E-3 5.1299E-3
1.0000E-03 1.2370E-4 5.0714E-6 1.2370E-4 4.5856E-3 7.1098E-4 4.5856E-3
2.1500E-03 1.2609E-4 5.7029E-6 1.2609E-4 4.2299E-3 5.1188E-4 4.2299E-3
4.6400E-03 1.2847E-4 5.6902E-6 1.2847E-4 4.0633E-3 4.6542E-4 4.0633E-3
1.0000E-02 1.3310E-4 5.8278E-6 1.3310E-4 3.9975E-3 4.6151E-4 3.9975E-3
2.1500E-02 1.4722E-4 6.7940E-6 1.4722E-4 3.9385E-3 4.5665E-4 3.9385E-3
4.6400E-02 1.8349E-4 9.8021E-6 1.8349E-4 3.8339E-3 4.4825E-4 3.8339E-3
1.0000E-01 2.4997E-4 1.4318E-5 2.4997E-4 3.7130E-3 4.3855E-4 3.7130E-3
2.1500E-01 3.6067E-4 2.0543E-5 3.6067E-4 3.6095E-3 4.3152E-4 3.6095E-3
4.6400E-01 5.1958E-4 3.0331E-5 5.1958E-4 3.5293E-3 4.2701E-4 3.5293E-3
1.0000E+00 7.5879E-4 4.4306E-5 7.5879E-4 3.4744E-3 4.2353E-4 3.4744E-3
2.1500E+00 1.1014E-3 6.6335E-5 1.1014E-3 3.4372E-3 4.2128E-4 3.4372E-3
4.6400E+00 1.6241E-3 9.7411E-5 1.6241E-3 3.4120E-3 4.1977E-4 3.4120E-3
1.0000E+01 2.4029E-3 1.4139E-4 2.4029E-3 3.3936E-3 4.1869E-4 3.3936E-3
2.1500E+01 3.4585E-3 1.9669E-4 3.4585E-3 3.3818E-3 4.1808E-4 3.3818E-3
4.6400E+01 5.1625E-3 3.0437E-4 5.1625E-3 3.3735E-3 4.1757E-4 3.3735E-3
1.0000E+02 7.6153E-3 4.4942E-4 7.6153E-3 3.3678E-3 4.1717E-4 3.3678E-3

Ω, and with a 100 Ω resistor. The far end is terminated on the ideal characteristic
impedance ZL = Y −1

c . Figures (4.11) and (4.12) show, respectively, the voltages
computed at the far ends of the active and the victim lines. The errors in these
waveforms are 0.42% for VF and 0.67% for VF+NLLS for the active line voltage.
For the victim line we have a 0.14% error for VF and a 0.43% for VF+NLLS.
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Table 4.6: Interconnect 3 : p.u.l. parameters (G and C)

Frequency G11 G12 G22 C11 C12 C22

1.0000E-04 2.511793E-8 -3.387800E-9 2.711593E-8 1.362606 -1.702408E-1 1.362606
2.1500E-04 1.253419E-7 -1.565992E-8 1.253419E-7 1.362606 -1.702408E-1 1.362606
4.6400E-04 5.837550E-7 -7.293297E-8 5.837550E-7 1.362605 -1.702406E-1 1.362605
1.0000E-03 2.710696E-6 -3.386680E-7 2.710696E-6 1.362599 -1.702399E-1 1.362599
2.1500E-03 1.251506E-5 -1.563602E-6 1.251506E-5 1.362571 -1.702364E-1 1.362571
4.6400E-03 5.796317E-5 -7.241782E-6 5.796317E-5 1.362445 -1.702206E-1 1.362445
1.0000E-02 2.624262E-4 -3.278691E-5 2.624262E-4 1.361877 -1.701497E-1 1.361877
2.1500E-02 1.088212E-3 -1.359586E-4 1.088212E-3 1.359620 -1.698677E-1 1.359620
4.6400E-02 3.502414E-3 -4.375834E-4 3.502414E-3 1.353488 -1.691016E-1 1.353488
1.0000E-01 7.815921E-3 -9.765026E-4 7.815921E-3 1.345955 -1.681605E-1 1.345955
2.1500E-01 1.699811E-2 -2.123703E-3 1.699811E-2 1.340388 -1.674650E-1 1.340388
4.6400E-01 3.987868E-2 -4.982348E-3 3.987868E-2 1.333386 -1.665901E-1 1.333386
1.0000E+00 7.860268E-2 -9.820432E-3 7.860268E-2 1.326305 -1.657054E-1 1.326305
2.1500E+00 1.648290E-1 -2.059334E-2 1.648290E-1 1.321384 -1.650906E-1 1.321384
4.6400E+00 3.921098E-1 -4.898928E-2 3.921098E-1 1.314875 -1.642774E-1 1.314875
1.0000E+01 7.985241E-1 -9.976572E-2 7.985241E-1 1.307774 -1.633902E-1 1.307774
2.1500E+01 1.699677 -2.123536E-1 1.699677 1.302361 -1.627139E-1 1.302361
4.6400E+01 3.844613 -4.803368E-1 3.844613 1.294859 -1.617767E-1 1.294859
1.0000E+02 6.187092 -7.730007 6.187092 1.287259 -1.608271E-1 1.287259

Table 4.7: Interconnect 3 : delay times and damping coefficients

Mode 1 Mode 2
τi 0.498 ns 0.545 ns
µi 1.08 · 108s−1 1.24 · 108s−1
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Figure 4.10: Interconnect 3 : identification of the magnitude of Ycr11

Figure 4.11: Interconnect 3 : voltage at far end of the active line

4.3 Analysis of electromagnetic transients in transmission

cables

In this section we consider the application of the previously described identifi-
cation methodologies to transmission cables. As test case, a 10 km long single
underground cable is considered.
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Figure 4.12: Interconnect 3 : voltage at far end of the victim line

Figure (4.13) shows the fitting of the coaxial mode using previously described
approaches. It is seen that both combined procedure and phase reconstruction
gives a more accurate result than the asymptotic fitting based procedure. Figure

Figure 4.13: Underground cable : identification of the coaxial mode (N=16)

(4.14) shows the fitting of the ground mode. Also in this case, both combined
procedure and phase reconstruction gives a higher accuracy than the asymptotic
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fitting based procedure. The figure also shows that the combined procedure gives
the best result in terms of accuracy for this case.
After that each modal component of H(s) have been identified, the phase do-
main fitting of H(s) has to be performed. We use the approach provided by
the ULM. Since phase domain fitting uses only poles and time delays of the
identified modes, the accuracy achieved on modes is only partially related to the
accuracy achievable on the phase domain fitting. In this case, we found that both
phase reconstruction and combined procedure give similar results when perform-
ing the phase domain fitting, although the ground mode (fig. 4.14) was best
fitted through the combined procedure.

Figure 4.14: Underground cable : identification of the ground mode (N=16)

Figure 4.15: Underground cable : open circuit step response

Identified reduced order models have been tested in a typical time domain
simulation: the evaluation of an open circuit step responses, fig. (4.15).
Figures (4.16) and (4.17) show the exact induced sheath voltage (calculated by
the Fourier Method given by Gustavsen et al 1995 [65]), together with deviations
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from such solution when each modal component of H(s) and the characteristic
admittance matrix Yc(s) are identified with N poles. In particular, fig. (4.16)

Figure 4.16: Underground cable : induced sheath voltage (N=12)

shows that the Bode fitting approach gives a completely wrong result with N =
12, since its deviation is greater than the exact solution. Deviations from exact
solution of phase reconstruction approach and combined procedure with N = 12
are very similar and satisfactory. Instead, fig. (4.17) shows that the Bode fitting
approximation gives a satisfactory result with N = 12, but still less accurate
than other procedures in the interval [0, 1.5ns]. Deviations from exact solution
of phase reconstruction approach and combined procedure are still very similar.
Figure (4.18) shows the core voltage at far end. It is seen that all the procedures
give a satisfactory result with only N = 8 poles, although the Bode fitting is still
less accurate than others.
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Figure 4.17: Underground cable : induced sheath voltage (N=16)

Figure 4.18: Underground cable : core voltage at far end (N=8)

4.4 Modelling of interconnects in non-TEM conditions

Accurate modelling of electrical interconnects is required in the design of the
modern electronic systems to address several signal integrity issues.
In this section, we consider the issue of macromodeling for a large class of elec-
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trically long interconnects, made of two perfectly conducting parallel wires em-
bedded in a homogeneous dielectric, operating in non-TEM conditions.
In many practical VLSI applications, the bandwidth of signals carried by the elec-
trical interconnects extends to frequency ranges where the quasi-TEM hypothesis
of propagation does no longer hold. In such cases, the transmission line model
is inadequate to catch those high-frequency effects, like radiation and dispersion,
which actually affect the system performance.
Electrically long interconnects operating in non-TEM conditions have to be char-
acterized in the frequency domain through a transfer matrix (i.e. impedance, ad-
mittance or scattering parameters). This requires a full-wave analysis, which may
be performed by means of different approaches. In [45], Miano and Villone (2005)
exploited a general surface integral formulation of Maxwell equations to derive a
numerical solution of the problem. The approach has been implemented in a com-
puter code named SURFCODE. Nevertheless, being the considered interconnects
long and uniform, a one-dimensional model is still accurate. This allows a more
efficient description based on a suitable extended transmission line model. Such
a kind of model, named “Enhanced Transmission Line” (ETL) model, has been
proposed in [66] by Maffucci et al (2004). It can describe correctly the behaviour
of the structure also in the frequency ranges where the smallest characteristic
wavelength approaches the conductor separation. Basic concepts concerning the
full-wave electromagnetic formulation, needed to both mentioned approaches will
be briefly recalled in the next section.
Starting from the simulated port responses, the identification of a reduced order
model is pursued through some least square algorithm, for instance the VF algo-
rithm. The second fundamental issue addressed is the passivity enforcement on
the identified reduced model.

4.4.1 Challenges in macromodeling of long interconnects

Electrically long interconnects described through the transmission line model, can
be efficiently modelled in the time-domain by the popular Method of Character-
istics (MoC), which describes the line by means of the characteristic admittance
and the propagation function. Qualitative information on such a model allows
the analytical extraction of the irregular terms of these functions (such as the
delays involved in the propagation function). In this way, the rational approx-
imation of the remainders of both describing operators is almost trivial, being
them smooth functions [52].
When the physics of the propagation does not enable the use of the MoC, macro-
models have to be derived from a characterization given as transfer function
matrix, typically made of non-smooth frequency responses. Furthermore, prop-
agation delays are not extracted and handled analytically, therefore mutual re-
sponses are non-minimum phase shift functions. This demands to use high orders
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Figure 4.19: Non-TEM interconnect : (a) schematic representation of the geom-
etry; (b) tranverse cross section

for achieving good approximations.
Second issue concerns the possibility that the identified macromodel violates the
passivity constraint in some frequency bands. Since the electromagnetic model
adopted is known as inconsistent in some frequencies band, passivity violations
arise in the original data (Maffucci et al 2005 [67]). These violations will also
affect the macromodel.
In order to show where the mentioned problem originates, we need to introduce
some aspects of the electromagnetic model.
Let us consider an interconnect of length 2l, made of two perfectly conducting

parallel wires with arbitrary cross-sections, embedded in a homogeneous dielec-
tric, see figure (4.4.1).
The electromagnetic field can be represented, in the frequency domain, through
the potentials A and ϕ:

E = −jωA−∇ϕ, B = ∇×A. (4.2)

The expressions relating these potentials to current and charge distributions are
not uniquely defined until a gauge condition has been fixed. When the Lorentz
gauge condition:

∇ ·A(P ) + j
ω

c2
ϕ(P ) = 0 (4.3)

is assumed valid, such expressions become decoupled.
The surface charge distribution σ = σ(r) and surface current distribution Js =
Js(r) are determined by imposing the charge conservation law and the constitu-
tive equations for perfect conductors (the tangential component of E vanishes on
the conductor surfaces

∑
1,
∑

2).
Since the goal is the characterization of the interconnect as a multiport circuit,
the contributions given to the potentials A and ϕ by the currents and charges
lying on the physical devices that will be connected to the structure, cannot be
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taken into account. As a result of this approximation, potentials will not exactly
verify the Lorenz gauge condition (4.3). This has been recognized as cause of
passivity violation bands for the impedance matrix Z [67].

4.4.2 Passivity enforcement

The analysis developed in [67], identified bands where the real part of the self
impedance Zself takes negative values. Here, we do not exploit such kind of
physics-based analysis, preferring to enforce the passivity constraint directly on
the whole identified transfer matrix. In fact, even setting Re{Zself} = 0 at those
frequencies where Re{Zself} < 0, data do not become consistent, since this is a
weaker condition than PR condition (2.1).
Best results for the passivity enforcement have been found by applying the
method of Hamiltonian perturbation [38].

4.4.3 Test cases

We consider a case-study given by Chiariello et al (2005) in [34]. It refers to
two square conductors with a= 1 mm, b = 1 mm, hc = 10 mm, and a length
of 2l = 100 mm. Impedances matrices Z(s) of such interconnects have been
obtained through a computer code based on the ETL model. Before starting the
identification of the reduced model, the sign of eigenvalues of ReZ have been
checked, finding slight violations distributed over large frequency bands. These
violations also results in the reduced model identified through the VF algorithm.
Therefore, a proper correction to the original fitting is needed. We apply the
method recalled in section (2.2.2), which has been implemented in the public
domain computer code IdEM.
Figures (4.21) and (4.22) show the identification of the rational approximations
of Z11 and Z12. It can be seen that accuracy is substantially unchanged after
correcting the passivity violations. Figures (4.23) and (4.24) show the correction
given to the eigenvalues of Re{Z}.

Figure 4.20: Non-TEM interconnect : Reference geometry for the considered case
studies.
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Table 4.8: Non-TEM interconnect : bands (f1,f2) of passivity violations of the
identified macromodel (N=14)

f1 f2 min. eig. of Re(Z)
6.816e9 5.729e9 -114.26
5.716e9 4.334e9 -14.28
4.262e9 2.893e9 -8.44
2.837e9 1.447e9 -4.22
1.415e9 6.015e8 -1.22
2.398e9 1.947e6 -0.006

Figure 4.21: Non-TEM interconnect: identification of the magnitude of Z11

(N=14)
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Figure 4.22: Non-TEM interconnect: identification of the magnitude of Z12

(N=14)

Figure 4.23: Non-TEM interconnect: passivity enforcement on the first eigenvalue
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Figure 4.24: Non-TEM interconnect: passivity enforcement on the second eigen-
value
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