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Int

Introduction

Quantum mechanics behaves completely different from the classical world we are
used to experience everyday. That is why macroscopic quantum effects are damnly
fascinating at our eyes. Quantum gases at really low temperatures can behave con-
temporarly as a wave and a particle: this is the De Broglie hypothesis at the basis of
the discovery of quantum mechanics [1]. At the same low temperatures and also low
densities, bosons occupy macroscopically the same state, creating a Bose-Einstein
condensate (BEC) [2–4], a state of matter behaving as a unique "body", whose be-
havior is described by a single wave-function [5–7]. These systems have provided
an outstanding platform for conducting fundamental research [8–10], both from an
experimental point of view, thanks to the high level of control and customization,
and in theoretical terms due to the diluite and weakly interacting nature of these
atomic systems, which enables accurate description. BECs are already interesting
by themselves, but they also exhibit exotic properties such as superfluidity [11] and
supersolidity [12]. Superfluidity consists in the ability of a fluid to flow without any
friction and when stirred, it forms vortices that continue to rotate indefinitely [13].
This phenomenon combined with the properties of a solid, like the crystal periodi-
cal structure, gives rise to the supersolidity. This seems so counterintuitive that for
many years was only theoretically predicted [14, 15], but now it has been observed
in a dipolar BEC [16–18]. Not only it has been observed, but in this thesis we are
going to study its phase coherence through the observation of the Josephson effect
in it [19].
The Josephson effect is one of the most striking examples of macroscopic coherence
in quantum systems [20]. This phenomenon has been observed in a wide range of
experimental platforms using superconductors or superfluids connected through a
tunneling junction [21–23]. In superconductors, a Josephson junction (JJ) can be
created by a thin insulating barrier, a short section of non-superconducting metal,
or a physical constriction that weakens superconductivity at the point of contact
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Int
[20, 21]. In liquid He, an effective JJ is obtained by an array of narrow channels
in porous media whose dimensions are of the order of the superfluid healing length
[24–26]. In the realm of quantum gases, both bosonic and fermionic, stable JJs can
be created using repulsive optical potentials, such as a double well, with the central
peak serving as the insulator in the superconducting JJ [27–29]. JJs have a wide
range of applications in devices such as qubits for quantum computing [30, 31],
SQUIDs for measuring magnetic fields [32] and voltage measurement [33].

In this thesis we are going to study Josephson currents in both superfluid and
supersolid systems. In Chapter 1 we are going to describe the quantum states of
matter known as superfluidity and supersolidity. We will start from the broader
field of ultracold quantum gases following the history of quantum mechanics, thus
trying to give an idea of how these phenomena were discovered and introducing
also the theoretical instruments needed to derive the equations that describe their
behaviours. Superfluids and their properties are described and then, with the intro-
duction of dipolar interaction, also the history of supersolid dipolar quantum gas
is developed.

Knowing the matter we are dealing with, we must know the phenomenon, so
in Chapter 2 we describe the Josephson effect. We will start from its discovery
in superconducting systems, following Feynman mathematical description, then
extending it to superfluids and BECs. Exploring the various phenomena linked to
this effect, such as the self-trapping, we will develope the theoretical modelling of
it, needed for subsequent chapters.

In Chapter 3, we predict the occurrence of the Josephson effect in the absence of
an external weak link within a supersolid realized with a dipolar quantum gas. It has
been observed experimentally that a quantum gas already in the superfluid phase
can become supersolid changing the strength of the short-range contact interaction
with respect to the long-range dipolar one. This quench of the interaction induces
a density modulation in the system adding the solid behaviour to it and creating
zones of low density between clusters of atoms that act as self-induced weak links
between adjacent reservoirs, offering support for Josephson currents. We develop a
theoretical model predicting the presence of the sinusoidal Josephson current and
macroscopic quantum self-trapping, analogue to the BEC case. We observe both
regimes with numerical simulations and compare it with the theoretical model,
discovering a novel type of Josephson junction.
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Chapter 4 stems from the collaboration with the experimental group at CNR

(Consiglio Nazionale delle Ricerche) in Pisa led by G. Modugno. We propose and
demonstrate an innovative method to measure the superfluid fraction of a supersolid
based on the Josephson effect [19]. We perform this study comparing experimental
data with numerical simulations and theoretical model. The experiment is carried
out on a cold-atom dipolar supersolid, for which we discover a relatively large sub-
unity superfluid fraction, which was not assesed yet.

The last Chapter 5 stems from a different collaboration with the experimen-
tal group based at LENS (European Laboratory for Non-Linear Spectroscopy) in
Florence, led by G. Roati. We study an atomtronic Josephson junction necklace
consisting in a superfluid constrained in a ring geometry with a series of Josephson
barriers [34]. Currents applied to the system by phase imprinting are found to be
stabilized by the increase of the number of barriers, which is the opposite trend
with respect to the superfluid fraction of the system. We predict theoretically and
observe experimentally and numerically this increased stability.
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1

What’s the Matter: Ultracold
Quantum Gases

In this chapter, we explore the fundamental concepts underlying the study of ultra-
cold dipolar gases and their intriguing quantum behavior. Beginning from the very
basics, we explore what distinguishes a gas that exhibits quantum characteristics.
We then proceed to investigate the phenomenon of Bose-Einstein condensation,
which is a hallmark of degenerate quantum states of matter. In doing so, we exam-
ine the short-range interactions present in Bose-Einstein Condensate (BEC). Our
journey continues with an exploration of superfluidity, an essential prerequisite for
the formation of supersolids. Finally, we unravel the fascinating world of dipole-
dipole interactions, which give rise to distinctive features leading to the formation
of supersolids.

1.1 Quantum Gases: A Dual Nature

Quantum mechanics emerged in a period of clarity in physics and revolutioned the
notion of world that we had before. At the end of the nineteenth century, matter
and radiation were treated as separated entities governed by completely distinci
laws. The behaviour of material bodies was described by Newton’s laws of classi-
cal mechanics. On the other hand, the theory of electromagnetism explained that
radiation follows Maxwell equations. This division was undermined by the study
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of the blackbody radiation which leds Planck to formulate the hypothesis of the
energy quantization in 1900. After 5 years, Einstein generalized this idea using the
discretization of energy to explain the photoelectric effect. This means that New-
ton was right saying that light is made of particles, now called photons. However
Young, with his double-slit experiment, observed interference demonstrating that
light behaves as a wave. The only solution to explain both behaviours of light is
wave-particle duality. Speaking of matter, wave-particle duality for particles with
non-zero mass was first postulated by Louis De Broglie in 1925 [1] and experimen-
tally proved by Thomson in 1927 [35]. De Broglie introduced the idea that every
particle of mass m and momentum p has associated a wave whose wavelength, now
called the De Broglie wavelength, is given by:

λ = h

p
= h

mv
(1.1)

where h is the Planck constant.
In the context of an ideal gas composed of N atoms at a temperature T , we need

to define the De Broglie thermal wavelength defined as:

λDB = h√
2πmkBT

, (1.2)

where kB is the Boltzmann constant. This parameter characterizes the extension
of wave packets and reflects the position uncertainty associated with a thermal
particle having energy kBT [36]

h

λDB
∼ prms ∼

√
2mkBT (1.3)

where prms is the root main square momentum. We can determine when a gas
exhibits classical or quantum behavior by examining the phase space density, which
is defined as the number of particles per unit space and momentum volume:

ρ ≡ np−3
rms ∼ nλ3

DB ∼ λ3
DB

d3 (1.4)

where n ∼ d−3 is the real space density and d is the mean inter-particle distance.
If ρ ≪ 1, meaning that wave packets are highly localized compared to the inter-
particle distance, particles behave classically. Conversely, when ρ ∼ 1, implying
overlapping wave packets and indistinguishable particles, the gas displays quantum
behavior. To observe quantum effects in a gas, it is necessary to increase the phase
space density ρ either by increasing the real space density n or by decreasing the
temperature T to enhance λDB.
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1.2 Bose-Einstein Condensation

In 1924, the Indian physicist Bose proposed a novel derivation of Planck’s law for
black body radiation [2]. He viewed thermal radiation as a gas of indistinguishable
particles (photons), thus changing the number of microscopic states correspond-
ing to a macroscopic state. Bose sent his paper to Einstein that found his work
intriguing and assisted in its publication. Moreover, Einstein made a publication
predicting the emergence of a novel state of matter: a Bose-Einstein condensate
(BEC) [3, 4]. Bose-Einstein condensation is a pure quantum phenomenon con-
sisting in the macroscopic occupation of a single-particle state by an ensemble of
identical bosons in thermal equilibrium at finite temperature. The key to under-
standing BEC is the Bose-Einstein distribution, which describes the occupation of
energy states by particles. Einstein counted the microscopic states of an ideal gas
of identical atoms considering them indistinguishable, as Bose did with the light
quanta. The only difference was that Bose fixed only the total energy, while with
atoms Einstein fixed also the total atom number which introduces an additional
Lagrange multiplier, the chemical potential µ. The mean number of bosons in a
state of energy ϵi found by Einstein is [6–9]

Ni = 1
exp(β(ϵi − µ)) − 1 (1.5)

where β = 1/kBT , with kB the Boltzmann constant and T the temperature of the
gas. For a gas of N bosons, this distribution can be expressed as

N =
∑
i

giNi =
∑
i

gi
z

eβϵi − z
, (1.6)

where gi is the degeneracy associated to the energy ϵi, and z ≡ exp(βµ) is the
fugacity, which must be less than eβϵi to avoid negative occupation numbers. For
a non-degenerate ground state (g0 = 1,ϵ0 = 0), the upper limit for the fugacity is
zmax = eβϵ0 = 1 and the total atom number is:

N = z

1 − z
+
∑
i /=0

gi
z

eβϵi − z
≡ N0 +Nexc (1.7)

where N0 and Nexc are the number of atoms in the ground state and the excited
states. Note that the number of atoms in the ground state N0 can increase indef-
initely as z approaches 1, while the number in excited states Nexc approaches an
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upper limit given by ∑i /=0
gi

eβϵi −1 . This means that, when T and V are fixed and the
total number of atoms is increased over Nmax, the thermal cloud (Nexc) saturates
to Nmax and all the extra atoms occupy the ground state, forming the BEC.

The experimental realization of a BEC is done by decreasing T below a critical
temperature TC while the number of atoms N and the volume V are fixed. The
value of TC can be obtained by equating the saturation value Nmax with the total
N . For a 3D box, it gives [6–9]:

n ≡ N

V
= ζ(3/2)

[
mkBTC

2πℏ2

]3/2

(1.8)

where ζ is the Riemann zeta function and ζ(3/2) ≃ 2.6124. Using the definition of
De Broglie thermal wavelength Eq. (1.2), this equation can be rewritten as:

nλ3
DB(TC) ≡ ρ = ζ(3/2) (1.9)

recovering the condition ρ ∼ 1 for which we have found the quantum behaviour of
a gas.

For a gas of 87Rb atoms at room temperature and pressure (P = 105Pa, T =
300K), the de Broglie wavelength λDB ∼ 0.01nm, and the density ρ ∼ 10−8 [8]. To
achieve Bose-Einstein condensation (BEC), it is necessary to increase the phase-
space density ρ by eight orders of magnitude. This can be accomplished by reducing
the temperature, not by increasing the particle density n. In fact, the critical tem-
perature, as described by Eq. (1.8), is so low that under standard pressure, all
known interacting systems, with the exception of helium, undergo a phase tran-
sition to the solid phase well before reaching quantum degeneracy. To avoid this
transition, it is imperative to work with dilute gases. A typical BEC density is
approximately n ∼ 1014cm−3, which is significantly lower than, for example, the
density of air at approximately n ∼ 1019cm−3. In 1995, a research team led by Eric
Cornell and Carl Weiman at the National Institute of Standards and Technology
in Boulder successfully produced the first atomic BEC using 87Rb atoms [37]. The
group achieved this by cooling the gas to a few hundred nanokelvin through laser
cooling techniques and then magnetically trapping it. In the same year, Ketterle
and his team at MIT also achieved BEC with 23Na atoms, having ten times as many
atoms and 100 times higher density [38]. In 2001, Eric Cornell, Carl Wieman, and
Wolfgang Ketterle were honored with the Nobel Prize in Physics for their ground-
breaking work in creating and studying BECs [36, 39]. The realization of this new
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state of matter marked the beginning of an interdisciplinary field of research that
explores the fundamental properties of quantum fluids, such as superfluidity and
superconductivity, and the potential of coherent matter waves in atom optics [6, 7]
Since then, BECs have found diverse applications in the realm of scientific and
technological domains, ranging from precision measurements to the development of
atom lasers and quantum simulators [10, 40]. Researchers have also expanded their
explorations into the domain of ultracold molecules and mixtures, thereby open-
ing up new avenues for quantum chemistry and quantum information processing
[41, 42]. BECs continue to be a captivating and pivotal area of research within the
field of atomic and molecular physics.

1.3 Weakly interacting bosons

The interaction of N neutral bosons is described by a potential that is strongly
repulsive at small distances because of the overlap of the electronic clouds of each
atom, while it is weakly attractive at large distances due to Van der Waals inter-
actions [9]. In a BEC, we can get under the assumption of dilute gas because the
inter-particle distance is higher than the range of atoms interaction r0:

d ∼ n−1/3 ∼ 200 nm ≫ r0 ∼ Å. (1.10)

In this ultra-cold regime, scattering theory explains that only the lowest order of
the scattering amplitude can be considered in the so-called Born approximation.
Only s-wave scattering between atoms take place and can be fully characterized by
the scattering length as. It is therefore admitted to replace the exact interaction
potential V with a simpler pseudo-potential Vpseudo, written such that its first-order
Born scattering amplitude reproduces the complete one. This pseudo-potential is
short-range and isotropic and it can be shown to have the following expression [43]:

Vpseudo(r) = gδ(r), g = 4πℏ2as
2m (1.11)

where m is the atomic mass and δ(r) is the Dirac delta function. The most in-
teresting aspect of this contact interaction is that it can be experimentally tuned
and even suppressed using an external magnetic field, like the magnetic Feshbach
resonances [44–47] or optical ones [44, 48–50].
This interaction gives rise to a scaling length in a BEC. Consider a BEC in a box
with hard walls. At the wall, the wavefunction must go to zero but far from the
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wall it has a bulk value given by the competition between kinetic and interaction
energies. Calling ξ the distance over which the BEC makes this variation, we have
ℏ2/2mξ2 = gn, that is [7]

ξ = (8πnas)−1/2 (1.12)

where n is the density. This length is the so-called healing length, because it de-
scribes the distance over which the wave function tends to its bulk value when
subjected to a localized perturbation. For this reason, it gives also the size of the
vortices that can form in the system. It needs to be smaller than any other length
in the system.

1.4 Superfluidity

Figure 1.1: a) The phase diagram of superfluid 4He, from [11]. b) The divergence
of the specific heat of superfluid 4He, from [51].

Superfluidity is a remarkable manifestation of quantum mechanics at a macro-
scopic level, characterized by the ability of a fluid to flow without friction through
narrow channels. This phenomenon occurs in 4He, an isotope that remains liquid
even at the absolute zero temperature, as long as the pressure is kept below 25atm.
At low temperatures, the kinetic energy of the atoms becomes insufficient to confine
them within lattice sites, leading to the formation of a solid in all other elements.
The qualitative reason why Helium remains liquid consists in its weak internal in-
teractions because it is a noble gas and the small atomic mass, indeed is the noble
gas with the smaller one. These two factors lead to a large zero-point motion of the
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atoms, which therefore does not solidify.
The phase diagram of helium is illustrated in Figure 1.1. There are two phase tran-
sitions in helium, with the liquid gas transition occurring below the temperature of
4.2K, and another transition at a lower temperature of around 2.17K. The specific
heat of helium exhibits a discontinuity at this transition point, which is referred to
as the λ point. The two phases of liquid helium are called "helium I" and "helium
II". The superfluid properties of helium below the λ point were experimentally es-
tablished by P. Kapitsa in 1938 [52], and independently by J.F. Allen and A.D.
Misener in the same year [53]. Kapitsa also coined the term "superfluidity" and
received the Nobel Prize in Physics for this discovery in 1978 [54]. 1.

1.4.1 Landau’s criterion for superfluidity

In 1941, Landau proposed an explanation for the superfluid behaviour of liquid
helium by treating the quantum states of the liquid as a gas of phonons with a
linear dispersion relation [55]

ϵk = ℏkc (1.13)

where c is the sound velocity in the medium and k is the momentum of the phonon.
The main idea is that the motion of a body through helium at low temperatures
excites collective quanta as phonons, similar to the vibrations of a crystal. The
energy transferred from the body to the helium is not transferred to the individual
atoms, but to the phonons. This phenomenon occurs under conditions where the
energy transfer is favourable.
Consider a fluid at rest and a body moving through it with momentum p. The
difference in kinetic energy of this body before and after exciting a phonon of
momentum k is

∆Ek = p2

2m − (p − ℏk)2

2m = p · ℏk
m

− ℏ2k2

2m (1.14)

where m is the mass of the moving body. In the reference frame moving with the
phonon, the excitation energy is

∆E ′
k = ∆Ek + ℏ2k2

2m = p · ℏk
2m . (1.15)

1Interestingly, Kapitsa won the Nobel Prize together with Penzias and Wilson who received it
for the completely unrelated discovery of the cosmic microwave background radiation
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This energy needs to be higher than the linear phonon spectrum in order to be
energetically favourable

∆E ′
k = p · ℏk

2m ≥ ϵk = ℏck

vk ≥ |v · k| ≥ ck

v ≥ c ≡ ϵk
ℏk
.

(1.16)

This relation means that a body moving in a superfluid helium can excite a phonon
only if it travels at a speed higher than a critical value that is the sound velocity
of the fluid.
The group of W. Ketterle at MIT conducted an experiment stirring a blue-detuned
laser within a BEC at varying speeds (as in Fig. 3.15a), and observed this critical
velocity threshold for the initiation of dissipative flow within the condensate [56].
The whole curve of the helium dispersion relation can be experimentally measured
by cold neutron scattering [57, 58] and has the following trend (see Figure 1.2 from
[51]):

ϵk =

ℏck, k ≪ k0

∆ + ℏ2(k−k0)2

2σ , k ∼ k0

c = (239 ± 5)m/s
∆
kB

= (8.65 ± 0.4)K

k0 = (1.92 ± 0.01)Å−1

σ = (0.16 ± 0.01)mHe

(1.17)

where kB is the Boltzmann constant, mHe is the mass of an helium atom and k0 is
the position of the minimum where there are rotons, quasi particles which behave
as particles with mass σ and require a minimal energy ∆ for their creations. Unlike
phonons, rotons are excitations with an energy gap ∆.

In the same way as phonons, at energies around the rotonic minimum k0, a body
moving in the superfluid loses energy by emitting one roton:

ℏvk0 ≥ ℏv · k0 ≥ ϵk0 = ∆

v ≥ vc ≡ ∆
ℏk0

.
(1.18)

Roton effects are negligible at low temperatures due to the Boltzmann factor
e−∆/(kBT ), but in an intermediate interval of temperature they change the critical
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Figure 1.2: The dispersion relation of superfluid 4He, from [51]. For small k, there
is a linear trend that represents phonons, while the portion near k0 corresponds to
rotons.

velocity. In fact, considering a purely phonon spectrum the critical velocity of He
is c = 239m/s, while when rotons are included it drops to vc = 58m/s.

1.4.2 Quantized circulation and vortices

The other remarkable property of a superfluid is its quantized circulation. Consider
a classical fluid with a non-zero viscosity in a rotating bucket. The velocity field is

v(r) = ωr (1.19)

where r is the radial coordinate and ω is the rotating frequency of the bucket. The
integration of this velocity field along a closed path γ is∮

γ
v · r = ωr 2πr|r=a = 2πωa2 /= 0 (1.20)

where we have considered the path along a circle of radius a centered in the middle
of the bucket, see Figure 1.3a.

A superfluid, on the other hand, is described by a macroscopic wave function [6]

ψ(r) =
√
n(r)eiϕ(r) (1.21)

where n(r) ≡ |ψ(r)|2 is the density distribution and ϕ(r) is the macroscopic phase
of the superfluid. The field velocity assumes the form

v = ℏ
m

∇ϕ (1.22)
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γ

v(r)

γ

v(r)
a) b)

Figure 1.3: Top view of velocity fields v in a rotating bucket as a function of the
radial coordinate r in case of a) normal fluid and b) superfluid. Dashed line is the
path γ along which the circulation integral is performed.

where m is the atomic mass. This expression can be demonstrated from an hydro-
dynamic point of view writing the probability density current

J = ℏ
2mi(ψ

∗∇ψ − ψ∇ψ∗) (1.23)

Substituting Eq. (1.21) in it, we obtain

J = n
ℏ
m

∇ϕ. (1.24)

Expressing this current as a function of the velocity J = nv, we have immediately
the velocity field given in Eq. (1.22). Intuitively, we can explain it considering a
plane wave with phase ϕ = kr. The associated velocity is v = ℏ

m
∇ϕ = ℏk

m
, that is

the propagation velocity of the plane wave.
Considering the same rotating bucket, as for the classical fluid, for a superfluid the
integration of this velocity field along the same closed path γ is∮

γ
v · r = ℏ

m

∮
γ

∇ϕ · dr = ℏ
m

∫
S

(∇ ∧ ∇ϕ) · n̂dS = 0 (1.25)

where we have used the Stoke theorem. The last integral is performed over the
surface S enclosed by γ and with normal versor n̂. The use of the Stoke theorem
needs a continuos function, thus when there is a singularity in the phase, we have∮

γ
v · r = ℏ

m

∮
γ

∇ϕ · dr = ℏ
m

(ϕf − ϕi) = h

m
l , l ∈ N. (1.26)
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The total phase difference (ϕf − ϕi) needs to be an integer multiple of 2π because
the phase must return to its same value after closing the path, otherwise the wave-
function is not single-valued. The phase singularity internal to our path γ can exist
only if the density is zero. This implies the presence of a vortex with a quantized
circulation2 lh/m. Quantization of circulation was first proposed in the context of
superfluid Helium by Onsager [59]. Feynman independently proposed quantization
of circulation and investigated its consequences for flow experiments [60].

In order to conclude the story of the circulation, we should notice that, consid-
ering for example one quanta (s = 1), we have an expression for the circulation
along the same path of the classical case γ

h

m
=
∮
γ

v · dr = v2πa . (1.27)

The velocity can therefore be expressed as

v(r) = ℏ
mr

(1.28)

which has an inverse proportionality dependency on the radius r, opposite to the
classical case, see Figure 1.3b.

2The magnitude of the quantum of circulation is approximately 4 ∗ 10−7(mp/m)m2/s, where
mp is the proton mass.
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1.5 Theoretical Framework: Quantum Field
operators

1.5.1 Introduction to Quantum field operators

The wavefunction of N identical particles, denoted as ψ(r1, r2, ..., rN), is defined
such that its square modulus gives the probability of finding the N particles in
the positions {r1, r2, ..., rN}. However, when N is large, treating this wavefunction
within the standard quantum mechanics becomes arduous. It is more useful to make
use of the compact and efficient formalism of the quantum field theory (QFT). In
fact, QFT associates the system with a field operator ψ̂(r) that depends on a single
set of three spatial coordinates instead of the standard 3N :

ψ(r1, r2, ..., rN) → ψ̂(r) (1.29)

The field operator can be written as a sum of single-particle wave functions [61]:

ψ̂(r) =
∑
k

ψk(r)âk (1.30)

where âk are the corresponding annihilation operators in the occupation number
state, or Fock state. The bosonic creation â†

k and annihilation âk operators satisfy
the commutation relations:

[
âk, â

†
k′

]
= δkk′

[
âk, âk′

]
= 0

[
â†
k, â

†
k′

]
= 0 (1.31)

Let us define the total number operator N̂ , which is expressed as a sum of the
number operators for each mode, given by:

N̂ =
∑
k

n̂k =
∑
k

â†
kâk (1.32)

Using the commutation relations for the annihilation and creation operators, we
can prove the standard relations that describe the behavior of the creation and
annihilation operators in terms of the number operator. Specifically, we have:

âk |n1 . . . nk . . .⟩ = √
nk |n1 . . . nk − 1 . . .⟩

â†
k |n1 . . . nk . . .⟩ =

√
nk + 1 |n1 . . . nk + 1 . . .⟩ (1.33)
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where nk is the occupation number of the k-th state and the vector |n1 . . . nk . . .⟩
represents a system with n1 particles in the first state, nk in the k-th and so on.
The integers nk form the spectrum of the number operator.

The commutation rules Eq. (1.31) for the field operators ψ̂ and ψ̂† are directly
inherited from the definition Eq. (1.30):[

ψ̂(r), ψ̂†(r′)
]
= δ(r − r′)

[
ψ̂(r), ψ̂(r′)

]
= 0

[
ψ̂†(r), ψ̂†(r′)

]
= 0 (1.34)

where ψ̂†(r) is the conjugate transpose of the field operator. These boson field
operators can be interpreted as creators and annihilators of particles at the position
r. In fact, in QFT, particles are "excitations" over the ground state, the vacuum.
Again, let us introduce the total number operator:

N̂ =
∫
drψ̂†(r)ψ̂(r). (1.35)

Using the rules Eq. (1.34), similarly to before, we have:

ψ̂ |ψN⟩ =
√
N |ψN⟩ ψ̂† |ψN⟩ =

√
N + 1 |ψN⟩ (1.36)

where |ψN⟩ is an eigenvector of the number operator.

1.5.2 Many-body Hamiltonian and the Heisenberg
equation

In many cases of interest, the hamiltonian contains one-body and two-body opera-
tors. An operator Û is called a one-body operator if its action on a state |α1 . . . αN⟩
of N particles is the sum of the action of Û on each particle:

Û |α1 . . . αN⟩ =
N∑
i=1

Ûi |α1 . . . αN⟩ (1.37)

that in a general basis can be rewritten as [62]:

Û =
∑
αβ

⟨α| Û |β⟩ â†
αâβ. (1.38)

For example, this is the case of the kinetic energy term and the external trapping
potential. On the other hand, an operator V̂ is called a two-body operator if its
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action on a state |α1 . . . αN⟩ of N particles is the sum of the action of Û on all
distinct pairs of particles:

V̂ |α1 . . . αN⟩ = 1
2

N∑
1⩽j /=k⩽N

V̂i |α1 . . . αN⟩ (1.39)

where the factor 1/2 is needed to avoid double counting. In a general basis it can
be rewritten as [62]:

V̂ = 1
2
∑
αβγδ

⟨αβ| V̂ |γδ⟩ â†
αâ

†
βâδâγ. (1.40)

This kind of term takes into account the interaction between particles. With these
ingredients, we can write the general many-body hamiltonian:

Ĥ =
∑
αβ

⟨α| Û |β⟩ â†
αâβ + 1

2
∑
αβγδ

⟨αβ| V̂ |γδ⟩ â†
αâ

†
βâδâγ (1.41)

and reformulate using boson field operators:

Ĥ =
∫
drψ̂†(r)U(r)ψ̂(r) + 1

2

∫
dr1

∫
dr2ψ̂

†(r1)ψ̂†(r2)V (r1, r2)ψ̂(r2)ψ̂(r1). (1.42)

To prove it, just replace the definition Eq. (1.30) into the new expression Eq. (1.42)
of the hamiltonian and obtain the old one Eq. (1.41). This is called the hamiltonian
in second quantization. In fact, in the first quantization the energy became an
operator, while, this time, fields become operators and energy becomes a function
again. The time evolution of the field operator ψ̂ is governed by the Heisenberg
equation:

iℏ
∂

∂t
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
(1.43)

Using the Hamiltonian Eq. (1.42) and the commutaion rules Eq. (1.34), we obtain
the time evolution of the field operator ψ̂:

iℏ
∂

∂t
ψ̂(r, t) =

[
U(r) +

∫
dr′ψ̂†(r′)V (r, r′)ψ̂(r′)

]
ψ̂(r) (1.44)

where we have used the symmetry of the two-body operator V̂ under exchange of
two indistinguishable particles, that is under exchange of r with r’. This is the
Heisenberg equation describing a system of N interacting bosons.
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1.6 Mean-field description: the Gross-Pitaevskii
equation

At very low temperatures T ≪ TC , the full quantum description of the Heisenberg
equation can be simplified by means of a semiclassical (mean-field) approach in
terms of the quantum expectation of the field operator ϕ ≡ ⟨ψ̂⟩:

ψ̂ = ϕ+ δψ̂ (1.45)

where δψ̂ are the quantum fluctuations whose expectation value is vanishing by
construction, ⟨δψ̂⟩ = 0. At equilibrium, the expectation value ϕ = ⟨ψ̂⟩ is a complex
number and its square modulus is the occupation number of the ground state that
becomes nonzero for T < TC . It therefore plays the role of the order parameter as-
sociated to the phase transition for Bose-Einstein condensation. From a dynamical
point of view, this order parameter can be interpreted as the macroscopic wave-
function of the condensate, that describes the collective behavior of the bosonic
sample. The fluctuation term δψ̂ is instead associated to the particles that are not
condensed, the so-called quantum depletion. At very low temperatures, the latter
gives a really not significant contribution, and can be therefore neglected. This cor-
respond to the so-called mean-field approximation. Using this approximation, the
Heisenberg equation Eq. (1.44) becomes:

iℏ
∂

∂t
ϕ(r, t) =

[
U(r) +

∫
dr′V (r, r′)|ϕ(r′, t)|2

]
ϕ(r, t) (1.46)

with the normalization condition to the total number of atoms N :∫
drϕ∗(r)ϕ(r) = N. (1.47)

Consider a gas of N neutral atoms spatially trapped by an external potential. When
the interaction is contact type, Eq. (1.46) becomes the famous time dependent
Gross-Pitaevskii equation (GPE), from the name of Gross [63] and Pitaevskii [64]
who first derived it:

iℏ
∂

∂t
ϕ(r, t) =

[
− ℏ2

2m∇2 + Vt(r) + g|ϕ(r, t)|2
]
ϕ(r, t) (1.48)

The GPE is one of the most important theoretical tools to describe and study the
mean-field behaviour of BECs. It has been applied with success to describe a large
variety of experiments exploring dynamical and static properties of BEC in the
dilute limit [5, 7, 9].

18



1

1 – What’s the Matter: Ultracold Quantum Gases

1.6.1 Mean-field energy spectrum

Back to the general many-body hamiltonian Eq. (1.41), instead of studying the
dynamics, we can study the energy spectrum of the ground states. To do this, let
us start by putting ourselves in the base of the impulses. The field operator changes
with the rule Eq. (1.30):

ψ̂(r) = 1√
V

∑
k

e−ik·râk (1.49)

because the single particle wave-functions in the momentum space are plane waves.
In this representation, the âk operators assume the meaning of annihilation oper-
ators of a particle with momentum k. Considering a 3D homogeneous system, i.e.
the system of N bosons described by the hamiltonian Eq. (1.42) but without the
external trap, the Eq. (1.42) in momentum space becomes:

Ĥ0 ≡
∫
drψ̂†(r)T (r)ψ̂(r) =

= 1
V

∫
dr
∑
k

eik·râ†
k

[
− ℏ2

2m∇2∑
k′
e−ik′·râk′

]
=

=
∑
k,k′

1
V

∫
drei(k−k′)·r︸ ︷︷ ︸
δk,k′

â†
kâk′

ℏ2k′2

2m =

=
∑
k

ℏ2k2

2m â†
kâk ≡

∑
k

E0
k â

†
kâk

(1.50)

Ĥ1 ≡ 1
2

∫
dr
∫
dr′ψ̂†(r)ψ̂†(r′)V (|r − r′|)ψ̂(r′)ψ̂(r) =

= 1
2V 2

∫
dr
∫
dr′ ∑

i,j,t,s

eiki·râ†
ki
eikj·r′

â†
kj
V (|r − r′|)e−ikt·r′

âkte
−iks·râks =

= 1
2V 2

∑
i,j,t,s

â†
ki
â†
kj
âkt âks

∫
dr
∫
dr′ei(ki−ks)·rei(kj−kt)·r′

V (|r − r′|) =

= 1
2V

∑
i,j,t,s

â†
ki
â†
kj
âkt âks

∫
dR

1
V

∫
dR′ei(ki+kj−ks−kt)·R′

︸ ︷︷ ︸
δki+kj,kt+ks

ei(ki+kt−kj−ks)· R
2 V (R) =

= 1
2V

∑
j,t,s

â†
kt+ks−kj

â†
kj
âkt âks

∫
dR ei(kt−kj)·R V (R) =

= 1
2V

∑
m,t,s

â†
km+ks

â†
kt−km

Ṽ (km)âkt âks

(1.51)
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where we have used the integral definition of the Dirac delta function and in Ĥ1 we
have made the two substitutions R = r − r′, R′ = r+r′

2 and km = kt − kj. Notice
that the Dirac delta function represents the momenta’s conservation and km has
the meaning of the exchanged momentum between the two particles involved in the
two-particles interaction V (R). In addition, km can only assume values contained
in the Fourier transform of the interaction Ṽ (k).

Let us come back to a physical system and consider a dilute gas, so that there
is only the two-body contact interaction Eq. (1.11). Decreasing the temperature
T , BEC occurs increasing macroscopically the atoms number in ground state N0.
Calling N the total atoms number, the ground state can be approximated as (N0 ∼
N):

|ϕ0(N)⟩ ∼ |N, 0, . . . 0⟩ (1.52)

and therefore also creation and annihilation operators of the ground state do not
change a lot the macroscopic number N :

â0 |ϕ0(N)⟩ =
√
N0 |N − 1, 0, . . . 0⟩ ∼

√
N |N, 0, . . . 0⟩

â†
0 |ϕ0(N)⟩ =

√
N + 1 |N + 1, 0, . . . 0⟩ ∼

√
N |N, 0, . . . 0⟩

(1.53)

Hence the idea of the Bogoliubov perscription to replace operators with c-numbers:

â0 ∼ â†
0 ∼

√
N0 (1.54)

and also to consider excited states’ operators as a perturbation with respect to the
ground ones:

âk, â
†
k ≪ â0, â

†
0 (1.55)

The hamiltonian in the momentum space Eq. (1.50) - Eq. (1.51) can be rewrit-
ten considering the fact that terms like N

3/2
0 ∼ â0â0â0 cannot exist due to the

momentum conservation:

Ĥ ≡
∑
k /=0

E0
k â

†
kâk + g

2V

[
N2

0 + 2N0
∑
k /=0

(â†
kâk + â†

−kâ−k) +N0
∑
k /=0

(â†
kâ

†
−k + âkâ−k)

]
(1.56)

where we have used the pseudo potential expression Eq. (1.11) for the contact
interaction, whose Fourier transform is g:

Ṽ (k) =
∫
drV (r)e−ik·r =

∫
dr g δ(r)e−ik·r = g (1.57)
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Since the number of condensed atoms N0 is not known, it is better to express it in
terms of the total number of atoms:

N0 = N −
∑
k /=0

â†
kâk = N − 1

2
∑
k /=0

(â†
kâk + â†

−kâ−k) (1.58)

so that Eq. (1.56) becomes:

Ĥ ∼=
1

2V

[
gN2 +

∑
k /=0

(gN + E0
k)(â

†
kâk + â†

−kâ−k) + gN
∑
k /=0

(â†
kâ

†
−k + âkâ−k)

]
(1.59)

This is a quadratic form that can be diagonalized by the linear Bogoliubov trans-
formation [65]: âk = ukα̂k − vkα̂

†
−k

â†
−k = ukα̂

†
−k − vkα̂k

(1.60)

whith uk, vk ∈ R. This transformation introduces a new set of operators α̂k, α̂†
k

to which we impose the same boson commutator of the original particle operators
âk, â

†
k: [

α̂k, α̂
†
k

]
= u2

k − v2
k = 1 (1.61)

that is satisfied, for instance, by imposing:

uk = cosh θk vk = sinh θk (1.62)

The next step is substituting these new operators Eq. (1.60) with the condition
Eq. (1.62) into Eq. (1.59) and cancelling the non-diagonal terms in the new opera-
tors. The latter requires the coefficients to take the form:

v2
k = 1

2

(
E0
k + ng

Ek
− 1

)
(1.63)

where E0
k is the kinetic factor defined in Eq. (1.50), so that the new diagonalized

hamiltonian is:
Ĥ = E0 +

∑
k /=0

Ekα̂
†
kα̂k (1.64)

where:
E0 = 1

2gnN + 1
2
∑
k /=0

[
Ek
V

− gn− ϵ0
k

]
(1.65)

is the ground state energy at lowest approximation order 1
2gnN , i.e. the only term

left in the case k = 0, plus a first order correction due to terms with k /= 0.
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The other term of the hamiltonian is diagonal and contains the famous Bogoliubov
dispersion law for the elementary excitations of the system:

Ek =
√
E0
k

2 + 2ngE0
k =

√√√√(ℏ2k2

2m

)2

+2ngℏ
2k2

2m = ℏk
√
ℏ2k2

2m + n

m
g (1.66)

The ground state of the system Eq. (1.65) is no more the state Eq. (1.52) with
all the atoms in the single-particle ground state with k = 0. The presence of the
interaction, even if weak, makes the ground having some particles with nonzero
momenta even at zero temperature. This phenomenon is called quantum depletion
of the condensate. Specifically, the new ground state is the vacuum state of the
quasi particles annihilated by αk:

α̂k |ϕG⟩ = 0 (1.67)

so that the number of particles N ′ with k /= 0 is:

N ′ = ⟨ϕG|
∑
k /=0

â†
kâk |ϕG⟩ =

= ⟨ϕG|
∑
k /=0

(ukα̂†
k − vkα̂−k)(ukα̂k − vkα̂

†
−k) |ϕG⟩ =

=
∑
k /=0

v2
k ≡

∑
k /=0

⟨nk⟩

(1.68)

Substituting the sum with an integral and after some calculations, the density of
these particles n′ ≡ N ′

V
with respect to the ones condensed n is (see Appendix A):

n′

n
= 8

3
√
π

(na3)1/2 (1.69)

where a is the scattering length. Since we did all the math in the diluite gas limit in
order to have only two-body interaction and also to have a quantum behaviour of
the gas, this density is very low. To be precise, the diluite gas condition becomes:

na3 ≪ 1 (1.70)

in order to have a small quantum depletion and therefore a big fraction of condensed
atoms. For example, using typical values:

n′

n
∝ (na3)1/2 ∼= (1014cm−3(100a0)3)1/2 ∼= 10−2 (1.71)

that, as we expected, is significantly less than 1.
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1.6.2 Beyond Mean-field corrections

The energy of the ground state can be evaluated in a similar way to Eq. (1.68):

E0 = 1
2gnN −

∑
k /=0

v2
kEk (1.72)

Notice that, in the limit of large momenta v2
k remain finite, while Ek increases as

k2: ∑
k /=0

v2
kEk ∼

∑
k

k2 (1.73)

so that the second term in Eq. (1.72) diverges. This divergence comes from the
use of a delta potential. Such a shape allows the Fourier transform to assume
all the possible momenta values, so atoms can exchange all the momenta. One
method to eliminate the divergence is to use the delta potential with a truncation
in momentum space k ≪ kc. The correct energy with this cut-off was derived in
1957 by Lee, Huang and Yang [66, 67]:

E0 = 1
2gnN

[
1 + 128

15
√
π

(na3)1/2
]

(1.74)

This energy is composed of two terms, one due to the mean field and the other
one due to quantum fluctuations. These have respectively the trends a and a5/2

with the scattering length. By varying the latter using the Feshbach resonance, it
is possible to search for the condition when the Lee-Huang-Yang (LHY) term is
able to counterbalance the mean-field one. Remembering that we are in the diluite
assumption that is essential in order to use the Bogoliubov prescription, quantum
fluctuations are only a small correction to the mean-field energy. Despite this, its
presence can be very important and even determine the difference between stability
and instability of a BEC, as we will see in the formation of a dipolar supersolid. In
order to arrive there, let us introduce the dipolar interaction.

1.7 Dipolar interaction

Until now, we have described a dilute gas as an ensemble of atoms interacting via
elastic (point-like) collisions. However, there are also atoms with an intrinsic per-
manent dipole moment that makes them interact through dipole-dipole interaction
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Figure 1.4: Properties of dipolar interaction. a) Two dipoles pointing in ê1 and
ê2 directions, whose distance is defined by the vector r̄. On the bottom they are
aligned by an external magnetic field B̄, whose angle with r̄ is θ. b) Anisotropy of
DDI. Depending on the angle θ, DDI can be repulsive, attractive and even be zero
at the so-called magic angle.

(DDI). The general expression of DDI for two atoms with dipole moments oriented
respectively along ê1 and ê2 is:

Vdd(r) = Cdd
4π

(ê1 · ê2)r2 − 3(ê1 · r)(ê2 · r)
r5 (1.75)

where r is the vector connecting the two dipoles, while Cdd is a constant that
depends on which kind of dipoles we are considering:

CM
dd = µ0µ

2 magnetic dipoles (1.76a)

CE
dd = d2

ϵ0
electric dipoles (1.76b)

In the case of a quantum gas with an external field that aligns all dipoles in the
same direction, Eq. (1.75) becomes:

Vdd(r) = Cdd
4π

1 − 3 cos2 β

r3 (1.77)

where β is the angle between the dipoles direction and the r vector (see Figure 1.4a).
The Eq. (1.77) is a long range interaction in the 3-dimensional case and is also
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Atom Momentum(M/E) add

Alkali µB 0.7a0
52Cr 6µB 16a0
168Er 7µB 65a0
162Dy 10µB 130a0
KRb 1D 2000a0
BaF 6D 104a0

Table 1.1: Table of the highest dipole moments both magnetic (in Bohr magneton
units) and electric (in DeBaye ∼ ea0).

anisotropic. In fact, as shown in Figure 1.4b, DDI can be repulsive when βm < β <

π/2, attractive when 0 < β < βm and eventually cancel out at the so-called "magic
angle" βm = arccos(1/

√
3).

In order to study properties of dipolar gases, we need DDI to be stronger than
contact one. The parameter that quantify the order of magnitude of the dipolar
energy is Cdd:

CM
dd = µ2µ0 ≃ µ2

Bµ0 = e2ℏ2

4m2µ0

CE
dd = d2

ϵ0
≃ e2a2

0
ϵ0

= e2

ϵ0

ℏ4

m2e4


CM
dd

CE
dd

≃ µ0ϵ0e
4

4ℏ2 ≃ α2 ∼ 10−4 (1.78)

where µ0, µ and µB are the vacuum permeability, the magnetic moment of the par-
ticle and the Bohr magneton, while ϵ0, d and a0 are the vacuum permittivity, the
electric dipole and the Bohr radius. In order to compare DDI with contact inter-
action, it is convenient to define a dipolar length (add) analogous to the scattering
one (aS):

Cdd = 3 gdd = 3 4πℏ2add
m

(1.79)

Since a typical magnitude of contact scattering length is as ∼ 100a0, we can see
from Table 1.1 that, in agreement with Eq. (1.78), all the electrical dipole cases
are good to study DDI, while for magnetic dipoles the only good one is Dy. The
main problem choosing electrical dipoles is that molecules cannot be experimen-
tally cooled until the right degenerate regime. One possible solution could be using
Rydberg atoms, but they have such a short lifetime that they cannot move inside
the gas, and so they cannot collide. The most convenient solution in order to have
important dipolar effects is thus to use Dy atoms.

25



1

1 – What’s the Matter: Ultracold Quantum Gases

1.7.1 Formation of Dipolar Droplets

The main condition for having the stabilization mechanism behind the formation
of quantum droplets is the simultaneous presence of a slightly negative mean field
and positive quantum fluctuations. This can happen only with more than one in-
teraction in the system, because they need to quasi compensate at mean-field level.
The first possibility is to have two different atomic species, giving rise to three dif-
ferent contact interactions (two intraspecies and one interspecies) [42, 68]. Another
possibility is the use of a dipolar gas, that has both contact interaction (repulsive)
and long range dipole-dipole interaction (partially attractive). In order to derive
the LHY correction to the energy, we must start from the hamiltonian with one-
body and two-body operators written in the momenta base Eq. (1.50)-Eq. (1.51).
In order to derive the Bogoliubov spectrum in subsection 1.6.1 we considered the
case of contact interaction, so that Ṽ (k) = g. In the general case, we have:

E = ℏk
√
ℏ2k2

2m + n

m
Ṽ (k) (1.80)

so that in the dipolar case, it has the expression:

E = ℏk

√√√√ℏ2k2

2m + n

m

(
g + Cdd

3 (3 cos2 α− 1)
)

(1.81)

where we have used the Fourier transform of the dipolar interaction (see Ap-
pendix F). The quantity Cdd is the dipolar constant defined in Eq. (1.79) that
contains the dipolar scattering length add, an analogous of the scattering length as
which gives a measure of the intensity of the contact interaction. We can define the
variable quantifying the ratio between the contact and dipolar interaction

ϵdd = add
as

(1.82)

With this definition, and the spectrum Eq. (1.81) we can search for the ϵdd values
for which the dipolar BEC is unstable. In fact, the argument of the square root can
be negative and makes the energy imaginary, giving rise to an instability. In the
phonons limit (k → 0), the kinetic contribution to the energy disappears and only
the contact one remains. The BEC is always stable in the case of a modulation in
the direction of the dipoles (α = 0), because the argument of the square root is
always positive. On the other side, considering a modulation in the perpendicular
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Figure 1.5: Left figure shows the case α = π/2 where the perturbation is perpendic-
ular to the dipoles alignment. In this case dipoles align themselves one above the
other and the attraction is too high that they collapse. Right figure represents the
α = 0 case, so that dipoles are in the same direction of the perturbation. Therefore,
they align side by side suppressing the high attractive interaction and making the
system stable. Figure from [69].

direction (α = π/2), there is the most unstable situation

n

m

(
g + Cdd

3 (3 cos2 α− 1)
)

= n

m

(
g − Cdd

3

)
< 0

n

m

4πℏ2

m
(as − add) < 0

ϵdd > 1

(1.83)

The physical interpretation of this condition is shown in Figure 1.5, from [69]. At
first sight, this might seem counterintuitive: as dipoles side by side repel each other,
one could conclude (wrongly) that the most unstable phonons correspond to those
for which k is parallel to the dipoles. This behaviour can be intuitively understood
looking at the Figure 1.5. A phonon with k perpendicular to the direction of dipoles
α = π/2 creates planes of higher density (light gray), in which the dipoles are in
the plane, corresponding to an instability. For k parallel to the direction of dipoles
(α = 0) the dipoles point out of the planes of high density; such a perturbation is
thus stable.

The above consideration shows that the behavior of a spatially homogeneous
Bose gas with a strong dipole-dipole interaction is similar to that of a Bose gas
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with an attractive short-range interaction characterized by a negative scattering
length as < 0. In the latter case, however, the collapse of the gas can be prevented
by confining the gas in a trap, provided the number of particles N in the gas is
smaller than some critical value N < Nc (see [42]). This is due to the finite energy
difference between the ground and the first excited states in a confined gas. For
a small number of particles, this creates an effective energy barrier preventing the
collapse and, therefore, results in a metastable condensate. The same arguments are
also applicable to a dipolar BEC in a trap with one very important difference: the
sign and the value of the dipole-dipole interaction energy in a trapped dipolar BEC
depend on the trapping geometry, and therefore, the stability diagram contains
the trap anisotropy as a crucial parameter. As we will see in the next section, the
geometry of the trap will be crucial for the roton instability, the main ingredient
for supersolid.

Another interpretation of equation Eq. (1.83) is that the dipolar interaction, that
is attractive, wins over the contact repulsive one (add > as). The system should seem
to collapse at mean-field level, but we have not considered the LHY term yet. The
Bogoliubov approximation allows us also to find the ground state energy

E0 = 1
2nNṼ (k = 0) + 1

2
∑
k /=0

[
Ek − nṼ (k) − ℏ2k2

2m

]
(1.84)

that is the correction present in Eq. (1.65), but in the more general case, so that
there is the Fourier transform of the potential Ṽ (k) instead of g. In the case of
dipole-dipole and contact interaction, Eq. (1.84) can be evaluated following Lima
and Pelster [70, 71]. Sobstituting the sum with an integral, Eq. (1.84) diverges in
the limit of big k. This divergence can be regularized by calculating the scattering
amplitude at low momenta up to second order in the scattering potential Ṽ (k)
according to [61]

4πℏ2a(k = 0)
m

= Ṽ (k = 0) − m

ℏ2

∫ dk
(2π)3

Ṽ (−k)Ṽ (k)
k2 (1.85)

where the scattering length a is related to the total effective interaction poten-
tial and therefore can be anisotropic such as the dipole-dipole interaction. In fact,
the low-energy limit of the scattering amplitude for the dipole-dipole interaction,
which can be obtained from multichannel scattering calculations, is not restricted
to vanishing relative angular momentum (s-wave only), but contains all partial
waves [72, 73]. This is consistent with an anisotropic scattering length, as defined

28



1

1 – What’s the Matter: Ultracold Quantum Gases

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

3.0
Q5 (x)

Figure 1.6: FunctionQ5(x) representing the DDI contribution to the LHY correction
of the ground state energy. In the case x = 0, that is without dipolar interaction
(ϵdd = 0), it assumes the value 1, so that we recover the result Eq. (1.72). The more
the dipolar interaction is strong, the more the Q5(x) function becomes important
in the correction Eq. (1.87).

in Eq. (1.85). The ground state energy with the substitution Eq. (1.85) takes the
form:

E0 = 1
2nNg

[
1 + ϵdd(3 cos2 α− 1)

]
+1

2

∫ dk
(2π)3

[
E(k) −nṼ (k) − ℏ2k2

2m + mn2

ℏ2k2 Ṽ (k)2
]

(1.86)
where we have used the invariance of Ṽ (k) with respect to the replacement k → −k.
The last integral is the ground state correction due to quantum fluctuation that
does not diverge anymore [71]

∆E = V
1
2gn

2 128
15

√
π

(na3
s)1/2Q5(ϵdd) (1.87)

This is similar to the expression Eq. (1.72) in the contact interaction case, except for
the Q5(x) function that represents the DDI contribution. This auxiliary function,
for 0 < x < 1, is the special case l = 3 of:

Ql(x) = (1 − x)l/2
2Fl

(
− l

2 ,
1
2; 3

2; 3x
x− 1

)
(1.88)

where 2Fl(α, β; γ; z) is the hypergeometric function [74]. Moreover, this function
becomes imaginary when ϵdd > 1, so it is consistent with the previous analysis
of the stability of a dipolar BEC (see Eq. (1.83)). It also takes the value of one
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when ϵdd is zero (see Figure 1.6), so it returns the LHY term in the case of only
contact interaction Eq. (1.72). Finally, Eq. (1.87) is always positive and can counter
a slightly negative mean-field, creating stable droplets.

The group of Pfau et al. has observed these dipolar quantum droplets using
a dipolar Bose gas of 164Dy in [75, 76]. This element has one of the strongest
magnetic dipole moments in the periodic table with µ = 9.3µB and a dipolar length
add ∼ 131a0, where µB is the Bohr magneton and a0 is the Bohr radius. In [75], they
prepared the BEC in two crossed laser beams along x and y, while dipoles were
aligned along z thanks to an external magnetic field, so in the case α = π/2. There
was also a gradient in the magnetic field so as to counteract exactly the gravity
that would drop the gas. When the lasers were turned off the gas remained in the
form of a self-bound levitating cloud. In particular, the sample was prepared with
an initial atom number higher than the critical one, so 3-body losses could decrease
it until the right critical value. In conclusion, the cloud remained self-bound thanks
to the interplay between the slightly stronger attractive long-range interaction and
the repulsive contact one.

1.7.2 Roton instability in dipolar gases

In the previous section we have analyzed the instability of a dipolar gas in the
limit of low momenta k → 0, but we do not know yet what happens for higher
momenta. To do that, let us recall the case of liquid helium in which we have seen
that the excitation spectrum presents a minimum between the linear trend for low
k and the parabolic-like for high k (see Figure 1.2). This particular trend of the
dispersion relation, that is the relation ϵ(k) between energy and momentum k, is the
responsible one for the superfluid behaviour of liquid helium. The latter was firstly
explained by Landau in 1941 introducing the concept of quasi-particles, elementary
excitations of momentum k and energy given by the dispersion relation. The most
famous are phonons, the ones corresponding to low k and linear trend, while rotons
correspond to a minimum at higher k and have an energy gap.

In 4He the roton formation mechanism is the competition between attractive van
der Waals forces and repulsive Coulomb force. The momentum krot corresponding
to the roton minimum, is then of the order of d ∼< n >−1/3 and it scales as the
inverse of the interatomic distance. This means that the presence of this minimum
tends to create a local order in the system. As a consequence, we do not expect to
find it in the field of ultracold atoms, in particular in a BEC. In fact, BECs forms
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themselves in a very diluite regime with weak interparticle interactions, like the
contact one, that has a range of action shorter than the mean interparticle distance
and they have the usual Bogoliubov spectrum with only phonons. A way to achieve
this particular trend of ϵ(k) in a BEC, consits in using dipolar atoms. Thanks to
the anisotropy and long-range character of DDI, there is a competition between the
partially attractive dipolar interaction and the repulsive contact interaction, giving
rise to the desired roton minimum, even in a weak interacting regime [77].

There are also other systems where is expected the formation of a roton mini-
mum, but it is imposed by external manipulations. Such systems are for example
BECs with spin-orbit coupling, BECs in shaken optical lattices and BECs irra-
diated by off resonant laser light [78]. In the latter case, the position krot of the
minimum is directly proportional to the inverse of the laser wavelength. On the
contrary, dipolar BECs have rotons thanks only to internal interactions, so it is a
self-induced behaviour. The peculiarity of this dipolar roton minimum consists in
depending on the geometry of the trap, as emphasized both theoretically [77] and
experimentally [79].

The roton instability has been discovered in 2003 by Santos et al. [77] in an
infinite pancake trap with dipoles oriented along the z-direction perpendicular to
the trap plane. They solved the Bogoliubov-De Gennes equations considering the
so-called Thomas-Fermi profile along z, i.e. a parabolic shape. In the pancake trap,
that is a cylindrical trap more confined along the axis of symmetry than radially
(Figure 1.7d), the roton-maxon spectrum allows a visual physical interpretation. For
in-plane momenta q much smaller than the inverse size lz of the condensate in the
confined direction, excitations have two-dimensional (2D) character. Hence, as the
dipoles are perpendicular to the plane of the trap, they mainly repel each other and
the in-plane excitations are phonons. For q ≫ 1/lz, particles do not "see" the end of
the trap and excitations acquire 3D character, so that the interparticle repulsion is
reduced. The result is a decrease in the excitation energy under an increase of q. The
energy reaches a minimum and then starts to grow as the excitations continuously
enter the single-particle regime. There is a critical density above which the minimum
reaches the zero energy value and the excitations around the minimum become
unstable, i.e. the condensate collapses [77].

Similarly, the group of Ferlaino et al. [79] studied the presence of the roton
minimum in the case of a cigar-like geometry with trap elongation along only one
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Figure 1.7: a) A cigar shaped trap with dipoles oriented in one of the two perpendic-
ular directions and c) the corresponding roton population in momentum space, that
consists in two points. b) The rotonization of the energy spectrum. d) A pancake
shaped trap with dipoles oriented in the perpendicular direction and the corre-
sponding roton population in momentum space, that is a ring. Figure taken from
[79].

direction (y) perpendicular to the magnetization axis z (Figure 1.7a). The argu-
ment that visualize the formation of the roton minimum is very similar to the
pancake trap. The main ingredients are the anisotropic character of the DDI (Fig-
ure 1.7b) together with the tighter confinement along z (Figure 1.7b). Consider the
elementary excitations of momentum ky that correspond in real space to a density
modulation along y of wavelength 2π/ky. For low momenta, the atoms stay mainly
side by side repelling each other and creating the phononic branch of the spectrum.
On the other side, when ky > 1/lz the atoms can align one above the other in a head-
to-tail configuration, so that DDI becomes negative. For even higher momenta the
single-particle regime wins thanks to kinetic energy. In conclusion, a strong DDI
creates a minimum at ky = krot set by the geometrical scaling krot ∼ 1/lz. This
scaling has been experimentally observed [79].
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?
Figure 1.8: Can a solid be superfluid? [15]

In the work [79], they study also this rotonization of the spectrum from a the-
oretical point of view. In particular, they make an analytical model solving the
Bogoliubov-De Gennes equations using an approximated density. This is homoge-
neous along the direction of weaker confinement but has a parabolic shape in the
other two perpendicular directions. In this way, the spectrum acquires the gapped
form similar to the helium case (see Figure 1.2):

ϵ(ky)2 ≃ ∆2 + 2ℏ2k2
rot

m

ℏ2

2m(ky − krot)2 (1.89)

where ∆ is the height of the gap, while krot is the position of the roton minimum,
as said before. The specific expressions of the parameters can be found in [79].
In the next section we are going to see how this rotonic minimum is the key for the
formation of the dipolar supersolid.

1.8 The long quest for supersolid

1.8.1 Superfluid solid 4He

The most intuitive picture of a solid is a system that resists blows and twists while
maintaining its shape, unlike fluids. On the other hand, a superfluid is roughly a
fluid where you can have a mass flow without friction. Consequently, the idea of
having a solid with the characteristics of a superfluid is striking and counterin-
tuitive. Despit this, and even if Penrose and Onsager demonstrated that an ideal
crystal cannot support BEC [80], a teorethical prediction of such a state of mat-
ter was done in the 1960s by A. F. Andreev and L. M. Lifshitz [14]. Their idea
was the following: considering a quantum crystal in free space, even in the zero-
temperature limit, most of the atoms would be localized at the nodes of a periodic
lattice but some of the nodes would be vacant. These vacancies could tunnel very
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quickly from site to site and be delocalized, which would lower the vacancy en-
ergy so much that even the ground state of the crystal would contain a nonzero
density of these so-called zero-point vacancies. As a consequence, the crystal would
be incommensurate, meaning that the atoms number would be different from the
sites number of the crystal lattice. The most promising candidate was solid 4He,
having the largest amplitude of zero-point motion of atoms in the ground state
and also having bosonic vacancies. Such motion was presumed to create a stable
(repulsive) gas of zero-point vacancies undergoing Bose-Einstein condensation at
low temperature. Thus, the perfect crystal would simultaneously be a solid and a
superfluid, which in literature is called “supersolid”3, as firstly suggested by Mat-
suda and Tsuneto [81] and Mullin [82]. A lot of effort was made in that direction by
Thouless [83], Chester [84] and by Leggett [15], who even entitled his article with
the provocative and also evocative question: "Can a solid be superfluid?". In this
pioneering work, he suggested that such a supersolid in a rotating bucket would
show a reduced rotational moment of inertia due to the finite fraction of superfluid
atoms that would not participate to the classical rotation.

All these works led to a deeper understanding of supersolids. However, all these
authors concentrated on crystals where the occupation number of a lattice site
never exceeds 1. In these systems the estimation for the ratio between the superfluid
density and the normal density was rather pessimistic (∼ 10−4 [15]).

From an experimental point of view, the story began in 2004, when Kim and
Chan at the Pennsylvania State University reported measurements of reduced ro-
tational moment of inertia of a rotating bucket of solid-4He as supporting evidences
for supersolidity [85, 86]. The team followed the idea of Legget to use a torsional
oscillator, a hollow disk that hangs down on a rod and oscillates by rotating clock-
wise and then counterclockwise at a frequency around 1 kHz, which depended on
the oscillating mass. Below a temperature of order 100 mK they observed that the
resonance frequency increased as if some of the mass inside the box had decoupled
from the moving walls, and from this they proposed that solid helium was perhaps a
supersolid. Then in 2007, Day and Beamish at the University of Alberta in Canada

3The name "supersolid", however, looks a bit confusing. The standard meaning of the word
“super” accentuates the given property, but does not contradict it. For instance, “superradiance”
means superstrong radiance. “Superconductivity” implies superstrong conductivity. “Superfluid-
ity” signifies superstrong fluidity. Then “supersolidity” should assume superrigid solidity. However,
vice versa, one talks about a solid with some superfluid properties.
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published a paper that posed a tough challenge to Kim and Chan and others in the
field [87]. Suppose that the solid helium was not perfectly stiff but had some “give”
(elasticity) that led to a resistance to twisting. If the solid helium were to stiffen
up when cooled, the oscillation period would decrease, regardless of the amount
of moving mass. Many other theoretical and experimental results finally convinced
Kim and Chan to redo the experiments. They redesigned the torsional oscillator,
taking every precaution to eliminate space for elastic helium. This time, the changes
in oscillation previously attributed to a supersolid state were completely absent [88].
It therefore seemed that helium could only exist as a superfluid or crystalline solid,
but not simultaneously.

1.8.2 Search for supersolidity in BEC

Meanwhile, theorists turned their efforts in the search for supersolidity in a new
system: a BEC of an atomic gas. The approach was absolutely different from all
the previous attempts: the goal was no longer to create a superfluid in a solid,
but to generate a density modulation (like the one in a crystal) in a superfluid.
At a glance, a density modulation should not be possible in a BEC because its
atoms are so dilute and have only short-range (contact) interactions. But a couple
of papers from 2003 proposed a way to engineer the necessary atom interaction in
the form of a long-range dipolar coupling [77, 78]. This interaction would induce
a roton-maxon minimum in the energy, similar to that of helium. In particular,
O’Dell et al. [78] found this minimum in elongated cigar-shaped condensates with
laser-induced dipole-dipole interatomic interactions, while Santos et al. [77] studied
a BEC of atoms with permanent dipole moments in an infinite pancake trap.

From an experimental point of view, in 2010 in the group of Esslinger at ETH
Zurich, a lattice-supersolid was realized by shining a laser onto a BEC placed in-
side the optical mode of a cavity [89]. The superfluid atomic gas could scatter light
from that laser into the resonator and self-organize in the resulting optical lattice
potential that modulates the superfluid density. Nonetheless the cavity boundary
conditions force the solid position to take only a discrete set of values, i.e. it cannot
form continuously in space. In 2017, other groups achieved the necessary atom in-
teractions by coupling the BECs to light fields, either exploiting spin-orbit coupling
[90] or cavity-mediated long-range interactions [91] between the atoms.

All these experiments, however, depends on external perturbations, rather than
intrinsic properties of the system. It was not until 2019 that there was the first
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observation of an intrinsically supersolid system.

1.8.3 Observation of a dipolar Supersolid

The first experimental observation of a dipolar supersolid was made in 2019 by the
group of Modugno et al. [16] in Pisa and confirmed shortly after [17, 18]. In the
experiment in Pisa, the authors start from a BEC of N = 3500 atoms of 162Dy. This
is an isotope of Dysprosium with an high dipolar scattering length add = 130a0,
where a0 is the Bohr radius. The harmonic trap where the BEC is formed, is
made by two crossed laser beams and has frequencies ω = 2π (18.5, 53, 81) Hz. An
external magnetic field polarizes all the atoms along the z direction. The stronger
confinement along the z direction (the same of the polarization) is chosen in order to
induce the roton instability discussed above. This is, however, counterbalanced by
the quantum fluctuations. The weaker confinement is along x, which is therefore the
direction where the array of droplets is formed. This geometry of the trap creates
a one dimensional modulation of the density, so a supersolid along x.

In particular, the initial BEC is formed with a contact scattering length as =
157a0. The tuning of it is made by slowly varying the intensity of the magnetic
field, thanks to the presence of a magnetic Feshbach resonance. Then, the detected
observable is the momentum distribution n(kx, ky), which they obtain after a free
expansion 62ms long. In Figure 1.9, on the top, are represented the momentum
distributions for three different final scattering length. The top row is in the case
as = 108a0, which corresponds to ϵdd ≃ 1.2 and the result is a pure dipolar BEC.
The middle row represents the case with as = 94a0, so ϵdd ≃ 1.38. It presents side
peaks, which correspond to a density modulation in real space and is the signature
of a supersolid phase. From these images, the position of the peaks is ∼ 1.2µm−1,
which is similar to the roton momentum krot = 1.53µm−1 for an unconfined system
in the xy plane. To be noticed that the peaks remain for several tens of milliseconds
before going back to a BEC regime. This is caused by the three-body losses. Finally,
the bottom row is the incoherent droplets regime with as = 88a0, thus ϵdd ≃ 1.47.
This incoherence is confirmed by the irregular formation of the stripes and by the
great difference between the various repetitions of the free expansion.

The phase coherence of the stripe regime has been studied in the same work
[16] both theoretically and experimentally. In the experiment, the authors extract
the phase from the fitting procedure of n(kx, ky) and find that the interference
phase variance remains constant over an interval of ∆t ∼ 20ms. The theoretical
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Figure 1.9: Experimental images from [16], which show the momentum distribution
of the system after a free expansion. Going from left to right, there are many
snapshots at increasing times. In the top row the system is in the BEC regime
with as = 108a0 (ϵdd ≃ 1.2), the middle row presents the stripe modulation which
highlights the supersolid regime at as = 94a0 (ϵdd ≃ 1.38) and in the bottom row
there is the independent droplets regime with as = 88a0 (ϵdd ≃ 1.47).

study has been done by the group at the University of Hannover, which performed a
dynamical simulation of the system using a GPE extended with a LHY correction to
the mean-field energy and considering also three-body losses and finite temperature
effects. Some snapshots are presented in Figure 1.10. The top row shows the case
as = 94a0 where there is a superficial modulation on a BEC background which
keeps the phase coherence during the dynamic. On the contrary, in the bottom row
is shown the incoherent case at as = 88a0, which loses the phase coherence during
the dynamic, as expected.

This result has been studied and confirmed also by two other groups in Stuttgart
[17] and Innsbruck [18]. The first group used the same trap and atoms of [16],
but they made also an in-situ imaging, even if the resolution was not enough to
clearly distinguish the peaks of the modulation. The second one, instead, used
another kind of atoms, the 166Er and a more elongated harmonic trap with ω =
2π(300, 16, 222)Hz.

Supersolidity exists in dipolar BECs.
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Figure 1.10: Numerical simulations from [16]: snapshots at different times of the
system dynamic. Both density cuts n(x,0,0) and integrated densities

∫
dz n(x, y, z)

are shown. The colors represents the phase of the wave function. On the top row,
there is the case of the supersolid regime at as = 94a0 and we can see the phase
coherence during the dynamic. On the bottom row, there is the case as = 88a0,
which is the incoherent regime as we can see from the many different phases in the
wave function.

1.8.4 Characterization of a dipolar supersolid

Many experiments have attempted to obtain further information on the character-
ization of the supersolid through the study of the excitation spectrum. Supersolid-
ity has both the phase coherence at the origin of the superfluid phenomena and
the lattice modulation of a solid. The first one breaks the phase invariance while
the second one breaks the translational one [12]. These two spontaneous break-
ing symmetries are associated to two gapless excitations. The group in Innsbruck
has showed that in a trapped dipolar supersolid two distinct excitation branches
appear, respectively associated with crystal and superfluid excitations [92]. The
group in Stuttgart has observed directly the low-energy Goldstone mode associated
with the spontaneous symmetry breaking of the phase invariance [93], revealing the
phase rigidity of the system. The group in Pisa has shown both theoretically and
experimentally [94] that in the supersolid regime the axial breathing mode, i.e. the
lowest compressional mode, bifurcates. The higher frequency mode is associated to
the lattice deformation, which increase due to the dipolar repulsion between clouds
[94]. On the contrary, the lower frequency mode is related to the superfluid com-
ponent which is reduced increasing ϵdd until it vanishes in the indipendent droplets
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regime [94]. A measure of the superfluid fraction in a dipolar supersolid has been
performed through the reduced moment of inertia [95], like the original experiment
of Kim and Chan [85, 86]. The experiment revealed a large superfluid fraction [95],
but were not precise enough to assess its sub-unity value [96, 97].

In Chapter 3 we are going to study the phase rigidity of a dipolar supersolid
through the presence of a self-induced Josephson effect in it. Furthermore, in Chap-
ter 4, we are going to use the Josephson effect in order to propose a completely
new method to measure the superfluid fraction. In this way, we are able to fully
demonstrate the sub-unity superfluid fraction of the dipolar supersolid [19].
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What’s the phenomenon:
Josephson effect

2.1 Introduction to Josephson Effect

The Josephson effect is a fundamental phenomenon in quantum physics discovered
by Brian D. Josephson in 1962 [20]. It describes the macroscopic quantum coher-
ence in a weak link connecting two superconductors, that is now called a Josephson
junction (JJ) [21, 22]. At its core, the Josephson effect reveals an astonishing char-
acteristic: the presence of a supercurrent in a JJ even in the absence of an applied
voltage. This behavior challenges classical intuition by demonstrating that, at the
quantum level, electrical currents can flow without the need for an electric field.
This effect underscores the ability of many-particle quantum systems to exhibit
macroscopic quantum coherence.

The central mathematical framework for understanding the Josephson effect,
which will be discussed in further detail in the following section, provides a quan-
titative description of the relationship between the supercurrent and the phase dif-
ference across the junction. This mathematical description forms the basis for our
understanding of the Josephson effect and its manifestations in various quantum
systems.

The Josephson effect holds great significance and has far-reaching implications
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beyond the realm of superconductors. Its relevance extends to diverse quantum
systems such as superfluids [98] and BECs [27, 28]. The effect’s pivotal role in linking
macroscopic quantum coherence with observable phenomena has led to numerous
practical applications in quantum technologies [22], including the development of
ultra-sensitive detectors for electromagnetic radiation [32] and the creation of highly
precise voltage standards 1 [33], which are of utmost importance in metrology and
quantum computing [99, 100].

2.2 Josephson effect in superconductors

Superconductors are materials that exhibit zero electrical resistance and the ex-
pulsion of magnetic fields when cooled below a critical temperature. Being a quan-
tum condensate, a superconductor is globally described by a single wave function
ψ(r) =

√
n(r) exp (iθ(r)), where n(r) is the probability amplitude to find an electron

pair (Cooper pair) in the position r and θ(r) is the global phase of the supercon-
ductor. A JJ is a system consisting of two superconducting metals separated by a
barrier, usually a layer of insulating material. If the barrier is small enough, the
wave function can penetrate it, allowing Cooper pairs to tunnell the barrier to the
other superconductor. This tunnelling creates a constant Josephson density current
across the junction even in the absence of an external electric or magnetic field (DC
Josephson effect). The presence of an applied voltage across the JJ induces an oscil-
lating current (AC Josephson effect) and moreover an rf oscillating voltage induces
a dc current through the JJ. A superconducting loop with two JJs in either arm
is very sensitive (10−14T ) to the magnetic flux enclosed (SQUID, superconducting
quantum interference device).

2.2.1 Josephson Equations

Let us consider two superconductors at the two sides of the insulating barrier
(figura). They are described by the two wavefunctions:

ψR(r) =
√
nR(r) exp (iθR(r)) ψL(r) =

√
nL(r) exp (iθL(r)) (2.1)

1The NIST (National Institute of Standards and Technology) standard for one volt is achieved
by using an array of 32.768 Josephson junctions in series [33].
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ψL ψR

Figure 2.1: Schematic rapresentation of a JJ. Two superconductors described by
two wavefunctions on the left (L) and right (R) of a weak link that suppresses their
amplitudes, but leaving a small tail allowing tunnelling between them.

where we have used the subscripts L and R for the right and left side of the junction
respectively (see Figure 2.1). The time evolution of an isolated superconductor is
described by the Schrödinger equation

iℏ
∂ψ(r, t)
∂t

= Eψ(r, t) (2.2)

where E is the ground state energy and we have set the reduced Planck constant
ℏ = 1. If the coupling between the two sides of the JJ is weak (weak link regime),
the equations for the two wavefunctions remain almost unaltered with the addition
of one coupling (or tunnelling) coefficient K [23, 101]

iℏ
∂ψR(r, t)

∂t
= ERψR(r, t) +KψL(r, t)

iℏ
∂ψL(r, t)

∂t
= ELψL(r, t) +KψR(r, t)

(2.3)

where we put the subscripts R and L also to the energies E. Writing the wavefunc-
tion explicitly with amplitude and phase, we obtain two equations

iℏ
(
ṅR
2 + inRθ̇R

)
= ERnR +K

√
nLnRe

i(∆θ)

iℏ
(
ṅL
2 + inLθ̇L

)
= ELnL +K

√
nLnRe

−i(∆θ)
(2.4)

where we have used the dot to indicate the derivative with respect to time and we
have defined ∆θ ≡ θL−θR. Equating real and imaginary parts of the Eqs.Eq. (2.4),

42



2

2 – What’s the phenomenon: Josephson effect

we obtain four equations describing the time evolution of the two probability am-
plitudes nL and nR and the two phases of the two superconductors θL and θR:

ℏṅR = 2K√
nLnR sin(∆θ)

ℏṅL = −2K√
nLnR sin(∆θ)

ℏθ̇R = −ER −K

√
nL
nR

cos(∆θ)

ℏθ̇L = −EL −K

√
nR
nL

cos(∆θ)

(2.5)

One of the initial observations that can be made is the equality between ṅR and
−ṅL. Let us consider two identical superconductors with equal densities nL = nR ≡
n0, then we have ṅL = ṅR = 0, and it seems like there is no current flow in the JJ.
However, this reasoning does not take into account the phase of the system and is
based solely on a classical dynamics perspective. Following all four Eq. (2.5), we
can observe the presence of a Josephson density current given by ṅR (or -ṅL)

J = J0 sin(∆θ) (2.6)

where J0 ≡ 2Kn0/ℏ is the maximum current achievable in the JJ. This current-
phase relation is the typical mark of the Josephson effect. In the absence of a
voltage across the JJ, the ground state energies are equal (EL = ER) and ℏ∆̇θ =
ER − EL = 0. The mere presence of a constant phase difference between the two
superconductors induces a sinusoidal Josephson current inside the junction. This is
the DC Josephosn effect.
Let us now apply a constant voltage V across the junction. The energy difference
that a Cooper pair feels is ER − EL = qV , where q = −2e and e is the electric
charge. In the hypothesis nL ∼= nR, there is still a Josephson current of the form of
Eq. (2.6), but with a phase difference varying in time

∆̇θ = 2eV
ℏ

(2.7)

that is the second Josephson equation [20] where ∆θ0 is the phase difference at
time t = 0. Substituting this expression inside the current Eq. (2.6), we obtain

J = J0 sin
(

∆θ0 − 2eV
ℏ
t
)

= J0 sin(∆θ0 + ωJt) (2.8)

The presence of the constant voltage V across the junction implies a Josephson cur-
rent oscillating at the Josephson frequency ωJ = 2eV/ℏ. This is the AC Josephson
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effect.
The application of a voltage with a constant term plus a high frequency one

V = V0 + v cos(ωt) (2.9)

gives rise to a Josephson current of the form

J = J0 sin
(

∆θ0 − 2e
ℏ
V0t+ 2e

ℏ
v

ω
sin(ωt)

)
(2.10)

For small amplitudes of the oscillating term v ≪ V0, the current is

J = J0

[
sin

(
∆θ0 − 2e

ℏ
V0t

)
+ 2e

ℏ
v

ω
sin(ωt) cos

(
∆θ0 − 2e

ℏ
V0t

)]
(2.11)

Averaging over times much larger than the inverse of the frequencies ωJ and ω, the
first term vanishes, but the second term is nonzero for the frequencies

ω = s
2e
ℏ
V0 (2.12)

where s is an integer number. This effect is a kind of "phase-locking" of the Joseph-
son current to an external signal and gives rise to the so-called Shapiro steps [102],
a characteristic structure in the current-voltage relation when

V0 = ℏω
2ne (2.13)

Effect Second Josephson
equation ∆̇θ

Josephson current J

DC Josephson effect 0 J0 sin(∆θ0)
AC Josephson effect 2eV

ℏ J0 sin(∆θ0 − 2eV
ℏ t)

SQUID 2e
ℏ (V0 + v cos(ωt))

J0 sin
(

∆θ0 − 2eV
ℏ
t

)
+

+J0
2e
ℏ
v sin(ωt) cos

(
∆θ0 − 2eV

ℏ
t
)

2.2.2 Josephson applications: SQUIDs

Another interesting phenomena happens when two JJs are put in parallel along a
superconducting ring and driven by an external common current Jtot. This is the
scheme of a Superconducting QUantum Interference Device, the so-called SQUID,
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1 2

Ja

Jb

Γ

Figure 2.2: Representation of a Superconducting QUantum Interference Device
(SQUID)

see Figure 2.2. Its mechanism is based both on Josephson effect and flux quantiza-
tion. As we have seen for superfluid systems in section 1.4, also superconductors are
described by a macroscopic single-valuedness wavefunction, which is at the basis of
flux quantization. In this case, the supercurrent density is given by

J = ℏ
m

(
∇θ − 2e

ℏ
A
)
n (2.14)

where A is the vector potential. Inside the ring, the supercurrent is zero and we
have

ℏ∇θ = 2eA (2.15)

Integrating both sides of Eq. (2.15) along a closed path Γ around the ring, we have

θf − θi =
∮

Γ
∇θ · dl = 2e

ℏ

∮
Γ

A · dl = 2e
ℏ
ϕ (2.16)

where ϕ is the magnetic flux enclosed by the path Γ and ϕi,f are the initial and
final phases. The single-valuedness of the wavefunction imposes that θf − θi equals
an integer number of 2π. As a consequence, the flux adjusts itself in order to be

ϕ = ℏ
2e(θf − θi) = s

πℏ
e

s ∈ N (2.17)

that is the flux quantization of a superconductor.
Let us now consider two JJs in parallel in the ring. The phase difference θ2 −θ1 can
be calculated along the upper part and the lower part of the ring

(θ2 − θ1)a = ∆θa + 2e
ℏ

∫
upper

A · dl

(θ2 − θ1)b = ∆θb + 2e
ℏ

∫
lower

A · dl

(2.18)
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where ∆θa,b are the phase differences across the two JJs. The phase differences
along the two paths must be equal, so that the phase differences across the JJs
differs exactly by the phase given by the vector potential ∆θa − ∆θb = 2e

ℏ
∫

Γ A · dl.
We can write the single ∆θa,b as

∆θa = ∆θ0 + e

ℏ
ϕ ∆θb = ∆θ0 − e

ℏ
ϕ (2.19)

These two phases give rise to two Josephson currents whose sum is the total current
in the ring

Jtotal = Ja + Jb = J0

[
sin

(
∆θ0 + e

ℏ
ϕ
)

+ sin
(

∆θ0 − e

ℏ
ϕ
)]

= 2J0 sin (∆θ0) cos
(
e

ℏ
ϕ
) (2.20)

We can observe that, whatever the value of ∆θ0, the maximum value of the current
Jmax is given by

Jmax = 2J0

∣∣∣∣∣cos eϕ
ℏ

∣∣∣∣∣ (2.21)

at the points given by
ϕ = s

πℏ
e

(2.22)

where s is an integer. These flux values are the same found in Eq. (2.17) for the
flux quantization.

2.3 Josephson effect in Superfluid Helium

As discussed in Chapter 1, the helium, specifically 4He, displays quantum mechan-
ical behavior at low temperatures. In particular, it undergoes a phase transition
with the superfluid state in which it displays peculiar characteristic such as flowing
without friction and phase coherence. A superfluid system can be described at a
quantum level by a single collective wavefunction, as for superconductors. There-
fore, if we consider two reservoirs of superfluids divided by a weak link, they are
again described by two wavefunctions as in Eq. (2.1) and the mathematical con-
struction is the one derived in the previous section for superconductors, following
the famous lectures of Feynman [23]. Specifically, we derive the same Josephson
equations

ṅR = −ṅL = 2K√
nLnR sin(∆θ)

˙θR,L = −ER,L −K

√
nL,R
nR,L

cos(∆θ)
(2.23)
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where we put ℏ = 1. The main difference consists in the source of energy difference
that induces the dynamics of the phase difference. Considering as before nL ∼= nR,
we obtain ∆̇θ = EL − ER that is not given by the voltage across the JJ, but by
the chemical potential difference ∆µ between the two superfluid reservoirs. The
Josephson current in a superflulid JJ is then

J = J0 sin(∆θ) (2.24)
∆̇θ = −∆µ (2.25)

The current-phase relation Eq. (2.24) displays the sinusoidal relation between the
Josephson current and the phase difference. The phase evolution equation Eq. (2.25)
has been demonstrated by Anderson to be a more general behavior of superfluids
[24, 25] and explains the system behaviour with applying a chemical potential
difference to it [26]. The absence of ∆µ implies a constant Josephson current, like
a DC Josephson effect, while its presence induces the sinusoidal Josephson current

J = J0 sin (∆µt) (2.26)

A chemical potential difference could be produced by a pressure difference ∆P
between the two reservoirs of the JJ

∆µ = ∆Pm
n

(2.27)

This gives rise to the counterintuitive effect that, pushing the superfluid through
the weak link by applying a pressure difference, this does not results in a linear
current as one could imagine in a classical way, but results instead in a sinusoidal
oscillation of the fluid at the Josephson frequency ωJ = ∆µ. Typical values of this
frequency are in the sound regime, opposite from the superconductors Josephson
effect where the frequency is in the microwave regime.
First experiments on superfluid weak link phenomena were performed with 3He
because of nanofrabication issues [22]. The weak link, indeed, needs to be smaller
than the healing length of the superfluid that is higher, for example, for 4He.

2.4 Bosonic Josephson Junction

BECs are ultracold quantum gases of bosonic particles that display phase coherence
and are described by a single wavefunction [6]. Thanks to this characteristic and
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ψL

ψR

x

VDW

EL

ER

0

Figure 2.3: Schmatic representation of a BJJ. A BEC in a double well potential
VDW is divided in two spatially localized wavefunctions ψL,R in the two wells. Here
is represented the nonsymmetric case where there is an energy difference between
the two wells given by the offset EL,R.

to the high precision reachable with the confining potential [8], they became a new
well controllable environment to study Josephson effect [22, 29].

A bosonic Josephson junction (BJJ) can be implemented using spatial or internal
degrees of freedom of bosons [22]. In the first case, the weak link can be created by
a doble well potential which spatially separates the single-component BEC into the
two wells and allows tunnelling of bosons between them [29]. In the case of internal
degrees of freedom, the BEC is spatially in the same position, but it is composed
by two hyperfine states and the tunnelling is realized through a weak driving field
[103]. We are going to focus on the external BJJ and derive Josephson equations
in this system.

Following the derivation of Josephson equations for a superconducting JJ that
we have done in subsection 2.2.1, we have to write the dynamical evolution of the
wavefunctions ψL,R describing the BECs localized in the right (R) and left (L) well
of the double well potential (see Figure 2.3). This system can be described by a
two-state model [27]

i
∂ψL
∂t

= (EL +NLUL)ψL −KψR

i
∂ψR
∂t

= (ER +NRUR)ψR −KψL

(2.28)
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where UL,R are the on-site interaction parameters, NL,R = |ψL,R|2 are the popu-
lations of the two BECs and K is the coupling matrix element2 [23, 27]. These
parameters can be expressed in terms of overlap of the local wavefunctions with a
two-mode ansatz.

The system is described by the condensate wave function ψ(r, t) which is solution
of the GPE (see Eq. (1.48))

i
∂ψ(r, t)
∂t

=
(

− ∇2

2m + VDW + g|ψ(r, t)|2
)
ψ(r, t) (2.29)

where VDW is the double-well potential and g is the contact interaction parameter.
We write ψ as a linear combination of the wave functions localized in the two wells

ψ(r, t) = ψL(t)ϕL(r) + ψR(t)ϕR(r) (2.30)

where we have separated the spatial and temporal evolution. This ansatz needs
some hypothesis. The GPE has a nonlinear term, thus it is not obvious that the
condensate wavefunction can be written as a linear superposition of the two states.
The suppression of the wavefunction amplitude in the weak link needs to be high
enough to almost cancel the interaction in the link and preserve this ansatz. More-
over, we neglect the dynamics of the spatial parts which are localized in the wells
and the small change in density due to the Josephson current. This can be esti-
mated to give a negligible correction to the chemical potential difference between
the wells [104, 105].
The temporal parts of the wavefunctions can be written, as for superconductors,
with phase and amplitude

ψL,R(t) =
√
NL,R(t) exp(iθL,R(t)) (2.31)

where NL,R are the populations in the two wells with the constriction that the total
atom number N = N1 +N2 is conserved. The system Eq. (2.28) assumes the form

i

(
ṄL

2 + iNLθ̇L

)
= (EL +NLUL)NL −K

√
NLNRe

i(θR−θL)

i

(
ṄR

2 + iNRθ̇R

)
= (ER +NRUR)NR −K

√
NLNRe

−i(θR−θL)
(2.32)

2We have used the sign minus in order to have a positive coupling K.
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so that the imaginary parts give the populations evolution

ṄL = −K
√
NLNR sin(θR − θL)

ṄR = K
√
NLNR sin(θR − θL)

θ̇L = EL +NLUL −K

√
NR

NL

cos(θR − θL)

θ̇R = ER +NRUR −K

√
NL

NR

cos(θR − θL)

(2.33)

Defining the population and phase imbalances

Z ≡ NL −NR

N
∆θ ≡ θR − θL , (2.34)

we obtain the standard Josephson equations for a BJJ [27]

Ż = −
√

1 − Z2 sin ∆θ

∆̇θ = ∆E + ΛZ + Z√
1 − Z2

cos ∆θ
(2.35)

where we have rescaled the time by 2K and we have defined the dimensionless
parameters

∆E ≡ EL − ER
2K + N(UL − UR)

4K

Λ ≡ N(UL + UR)
4K

(2.36)

The first one is the energy difference given both by the trap energies EL,R and the
on-site interaction parameters NL,RUL,R, while the second one is the total interac-
tion energy given by the sum of the contributions from the two wells.
We can distinguish many regimes resembling the ones found for the superconduct-
ing JJ. First of all, in the limit of vanishing interaction Λ → 0 and symmetric trap
∆E = 0, Eq. (2.35) becomes

Z̈ = −Z (2.37)

thus implying Rabi-like oscillations in the population of each trap with a frequency

ω = 2K (2.38)

This is the analogue of the DC Josephson effect where, in absence of an external
applied voltage (here an energy difference between the wells) there is a current in
the JJ (here a flow in the BJJ).
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Keeping the interactions in the symmetric trap (UL = UR ≡ U) and linearizing
Eq. (2.35) for small values of Z and ∆θ, we have

Ż ∼= −∆θ
∆̇θ ∼= (1 + Λ)Z

(2.39)

where Λ = NU/(2K). The result is a sinusoidal current I ≡ ŻN/2 with frequency

ωJ =
√

1 + Λ (2.40)

whos dimensional expression is

ωJ =
√

4K2 + 2NUK (2.41)

A different approximation can be done linearizing only in Z

Ż = − sin ∆θ
∆̇θ = ∆E + (Λ + cos ∆θ)Z

(2.42)

In the limit of a big energy difference ∆E ≫ (Λ + cos ∆θ), that is the opposite of
what we have done so far, we obtain a linear increase in time of the phase difference
and an oscillating Josephson current

∆θ(t) = ∆θ(0) + ∆E t
Ż = − sin (∆θ(0) + ∆E t)

(2.43)

This is the analogue of the AC Josephson effect.
A further observation can be made considering an oscillation in the laser that
creates the barrier of the double well, thus

∆E(t) = ∆E(1 + δ sin(ω0 t)) (2.44)

where δ and ω0 are the amplitude and frequency of this oscillation. This results in
a Josephson current

< I(t) >= δ < sin(ω0 t) sin(∆E t) > (2.45)

where the mean is performed over time and gives non-zero values. This current
has a resonance at ω0 = ∆E, which is the analogue of the Shapiro steps for a
superconducting JJ.
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2.4.1 Macroscopic Quantum Self-Trapping

An intriguing phenomenon observed in BJJs is the so-called Macroscopic Quantum
Self-Trapping (MQST), whose presence is solely due to the non-linear interaction. In
an analogy with the classical pendulum [27], with Z as the angular momentum and
∆θ as the angle of inclination, the oscillating regime we found in the previous section
is the counterpart of small-amplitude oscillations. A high value of Z causes the
pendulum not to oscillate around the equilibrium position, but to rotate completely.
In a BJJ, this regime corresponds to a self-locking of the population in one well.
Let us find the critical value Zc of initial population imbalance that demarks the
transition from the oscillating regime to the MQST.
Considering Z and ∆θ as canonically conjugate variables, it applies

Ż = − ∂H

∂∆θ ∆̇θ = ∂H

∂Z
(2.46)

where the Hamiltonian H is

H = ∆E Z + Λ
2 Z

2 −
√

1 − Z2 cos ∆θ (2.47)

or, in the symmetric case

H = Λ
2 Z

2 −
√

1 − Z2 cos ∆θ (2.48)

In Figure 2.4 is plotted the Hamiltonian Eq. (2.48) with L = 10 as an example.
For small values of Z and ∆θ the energy levels assume low values and follow paths
closed symmetrically around zero. Increasing the energy (from blue to yellow area)
leads to open trajectories periodic in the angle ∆θ. The separatrix line is given by

Hc ≡ max
∆θ

H(Z = 0,∆θ) = max
∆θ

(− cos ∆θ) = 1 (2.49)

Considering an initial condition with a non-zero population imbalance but no phase
difference, the critical value of Z can be found imposing an initial energy higher
than Hc

H(Z,∆θ = 0) = Λ
2Z

2 −
√

1 − Z2 > Hc = 1 (2.50)

so that
Z > Zc ≡ 2

Λ
√

Λ − 1 (2.51)

The self-trapping of the population in one of the two wells occurs due to the
nonlinear interatomic interaction and demonstrates the coherence of a macroscopic
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Figure 2.4: Phase space of the hamiltonian Eq. (2.48) with Λ = 10. For small values
of Z and ∆θ black countour lines of H are closed symmetrically around zero, while
increasing the energy with different initial conditions, leads to open trajectories
periodic in the angle ∆θ. Values of H increase from the blue area to the yellow one.
The red line is the separatrix characterised by the value Hc = 1.

number of atoms. The MQST is impossible to observe in superconducting JJs, due
to the external circuit which suppresses charge imbalances.

In the next chapter we are going to demonstrate that this effect can take place
also in supersolid dipolar quantum gases, where the JJ is uniquely self-induced.
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Josephson effect in a supersolid
dipolar quantum gas

3.1 Self-Induced Josephson junction

In Chapter 1 we have learnt that the dipolar supersolid is a superfluid state of
matter with an intrinsic density modulation, like the crystal structure of a solid,
but with more than one atom per site [16–18, 106]. Each site, in fact, consists
of hundreds of atoms that we are going to call clusters. Atoms can flow between
clusters while keeping the periodic structure intact [19]. In Chapter 2 we have learnt
that a Josephson junction (JJ) is made of two superconductors [20], superfluids
[24, 25] or BECs connected through a weak link [27–29, 104]. The key ingredient
for a JJ is the suppression of the order parameter, usually induced by the presence of
an externally imposed barrier that creates a weak link allowing tunnelling between
the two reservoirs.

The main idea of this chapter and the works on which it is based consists in con-
sidering the minima in the self-induced density modulation of the dipolar supersolid
as the weak link of the JJ [19]. So far the Josephson effect in supersolids has not
been studied beyond the phenomenological modelling of the relaxation towards the
ground state in a cold-atom system [107]. There is no theoretical or experimental
evidence for local Josephson oscillations. The problem is complicated by the fact
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that, in supersolids, the weak links are self-induced by internal interactions rather
than by an external potential, so they can change during the dynamics. Therefore it
is not clear if phenomena such as Josephson oscillations can exist at all in a super-
solid. The complete absence of an external potential in addition to the harmonic
trap differs it from previous works [108] and makes it a completely self-induced
Josephson junction (SIJJ).

We will begin by developing a theoretical model that will allow us to write the
analogue of the Josephson equations for our dipolar supersolid. We will then be
able to identify a sinusoidal Josephson current regime, which we will call small
oscillations, and another self-trapping regime, identical to that observed in BJJs.
We will also find the same results by directly integrating the eGPE on a numerical
level and comparing the value of the parameters in a specific case. This model and
the numerical simulations were also compared in another regime directly with the
experimental data [19] of the group with which we (Luca Pezzè, Augusto Smerzi
and Beatrice Donelli) have a direct collaboration with and from which this work
originated (Giulio Biagioni, Nicolò Antolini, Marco Fattori, Andrea Fioretti, Carlo
Gabbanini, Massimo Inguscio, Luca Tanzi and Giovanni Modugno). In particular,
this collaboration generated the work of Chapter 4 [19] and whose discussions built
the basis for the birth of this chapter.

3.2 Theoretical model

3.2.1 Introduction to the theoretical model

The theoretical model follows Feynman’s derivation of the Josephson equations [23]
and the standard derivation of the two-mode model for a bosonic JJ [27]. Feynman
derived his model for two superconductors described by two isolated wavefunctions
ψ1,2 with ground state energies E1,2 and a coupling K between them. When the
coupling is zero, their dynamics are described by the two Schrödinger equations
i∂ψ1/∂t = E1ψ1 and i∂ψ2/∂t = E2ψ2. Adding the coupling between them, would
lead to the two coupled equations [23]

i
∂ψ1

∂t
= E1ψ1 +Kψ2

i
∂ψ2

∂t
= E2ψ2 +Kψ1

(3.1)
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where we put the reduced Planck constant ℏ = 1. From these equations it is possible
to derive the Josephson equations for the population and phase imbalance between
the two superconductors (see subsection 2.2.1).

Considering a BJJ with two wavefunctions ψ1,2 describing the two BECs, we
need to include also the nonlinear contact interaction. The system, indeed, is no
more described by a Schrödinger equation, but by a GPE. The nonlinear term gives
a contribution to the energy of the system which is quadratic in the populations
(∝ N2

1,2 ≡ |ψ1,2|4) [27]

i
∂ψ1

∂t
= (E1 +N1U1)ψ1 +Kψ2

i
∂ψ2

∂t
= (E2 +N2U2)ψ2 +Kψ1

(3.2)

where U1,2 are the on-site interaction parameters and N1,2 are the populations of
the two BECs. From Eq. (3.2) we can derive Josephson equations for fractional
population imbalance z and phase imbalance ∆θ, as we have seen in Chapter 2.

As we have seen in Chapter 1, the dipolar supersolid is decribed by a eGPE with
the dipolar interaction, which is still a mean-field contribution and the first order
quantum fluctuation correction, the LHY. Doing a two-mode ansatz, as for the BJJ,
in this system is not trivial that is going to lead to two coupled equations of the form
of Eq. (3.2). For example, the dipolar interaction is likely going to be included in
the U parameter because it depends on the same power of the wavefunction square
modulus, while the LHY depends of an higher power. We are going to demonstrate
that also in the dipolar supersolid we can apply a two-mode model and derive the
Josephson equations, as in the BJJ.

3.2.2 Two-mode model for a dipolar supersolid Josephson
junction

The supersolid system is described by the extended Gros-Pitaevskii equation (eGPE)

i
∂ψ(r, t)
∂t

=
[
− ∇2

2m + Vt(r) + g|ψ(r, t)|2

+
∫
dr′Vdd(r − r′)|ψ(r′, t)|2 + γ(ϵdd)|ψ(r, t)|3

]
ψ(r, t).

(3.3)

This equation has been extensively used in theoretical studies of a dipolar-gas
supersolid [70, 71, 106, 109? , 110], finding excellent agreement with experimen-
tal results [16–19, 95, 111]. In Eq. (3.3), Vt(r) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) is
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an harmonic trapping potential, g = 4πℏ2as

m
is the contact interaction parame-

ter and Vdd(r) = Cdd

4π
1−3 cos2 θ

r3 is the dipolar interaction. In addition to the stan-
dard Gross-Pitaevskii equation, Eq. (3.3) includes the LHY term calculated within
the local density approximation for a dipolar system [70, 71] and has the form
γ(ϵdd) = 32

3
√
π
ga3/2

s F (ϵdd) where F (ϵdd) = 1
2
∫ π

0 dθ sin θ[1 + ϵdd(3 cos2 θ − 1)5/2] and
ϵdd = add/as.

Consider a small supersolid of only two clusters of atoms, thus we can make the
two-mode ansatz for the total wavefunction, decoupling the spatial and temporal
dependance

ψ(r, t) = ψ1(t)ϕ1(r) + ψ2(t)ϕ2(r) (3.4)
where the subscripts 1,2 are referred to the two clusters. This ansatz consider lo-
calized spatial wavefunction ϕ1,2(r) and the absence of the external barrier creating
the weak link makes it not obvious that this ansatz is going to recreate accurate
results. In the limit of weak link, the two spatial wavefunctions have almost zero
overlap, thus we impose the condition

⟨ϕi|ϕj⟩ = δij ∀i = 1, 2 ϕ1,2 ∈ R (3.5)

For the temporal parts, we are going to write them in the form

ψ1,2(t) =
√
N1,2e

iθ1,2 (3.6)

where N1,2 are the populations in the two wells, while θ1,2 are the relative phases.
This also assures that the total wavefunction is normalized to the total atom number
N ∫

dr |ψ(r, t)|2 = |ψ1|2 + |ψ2|2 = N1 +N2 = N , (3.7)
which is a constant of the dynamics. We then replace the ansatz Eq. (3.4) in
Eq. (3.3) and we project on ϕ1 and on ϕ2 in order to obtain two equations for
the evolution of ψ1 and ψ2 (see Appendix B).
We shall now define the variables whose temporal evolution we want to investigate,
namely the population and phase imbalance between the two clusters of atoms

Z ≡ N1 −N2

N
, ∆θ ≡ θ2 − θ1 . (3.8)

such that
|ψ1|2 = N1 = N

2 (1 + z)

|ψ2|2 = N2 = N

2 (1 − z)

(ψ∗
1ψ2 + ψ1ψ

∗
2) = 2

√
N1N2 cosϕ = N

√
1 − z2 cosϕ

(3.9)
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It is now possible to write the system describing their evolution (see Appendix B)Ż = −
√

1 − Z2 sinϕ
ϕ̇ = A+BZ + Z√

1−Z2 cosϕ+ C(1 + Z)3/2 +D(1 − Z)3/2
(3.10)

where we have rescaled the time as t → 2K12t and we have defined the adimensional
coefficients

A = K22 −K11

2K12
+
N
(
U1 − U2 +D1 −D2

)
4K12

B =
N
(
U1 + U2 +D1 +D2

)
4K12

C = N3/2L1

25/2K12

D = −N3/2L2

25/2K12

(3.11)

as a function of the parameters

Kij ≡ −
∫
dr ϕi(r)

(
− ∇2

2m + Vt(r)
)
ϕj(r)

Ui ≡ g
∫
dr |ϕα(r)|4

Di ≡
∫
dr |ϕα(r)|2

∫
dr′ Vdd(|r − r′|)|ϕγ(r′)|2

Li ≡ γ
∫
drϕi(r)5 .

(3.12)

The variables z and ∆θ are canonically conjugate with ż = − ∂H
∂∆θ and ∆̇θ = ∂H

∂z
,

where the Hamiltonian is (see Appendix B)

H = AZ +B
Z2

2 −
√

1 − Z2 cosϕ+ 2
5C(1 + Z)5/2 + 2

5D(1 − Z)5/2 (3.13)

3.2.3 Symmetric Josephson junction

A common case useful to simplify the coefficients Eq. (3.11) is the symmetric BJJ.
This means that the spatial wavefunctions in the two wells are identical, even if
centered in different positions. We can define

U1 = U2 ≡ U

D1 = D2 ≡ D

L1 = L2 ≡ L

(3.14)
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so that

A = 0 B =
N
(
U +D

)
2K12

C = N3/2L

25/2K12
D = −C . (3.15)

The dynamical system Eq. (3.10) now depends only on the two parameters B and
C and we can calculate the limit of small z, obtainingŻ = −

√
1 − Z2 sinϕ

ϕ̇ = Λ′Z + Z√
1−Z2 cosϕ

(3.16)

where Λ = B+3C. This is exactly the same system derived with a two-mode model
in a BJJ [27, 104]. Also the Hamiltonian assumes the same form

H = ΛZ
2

2 −
√

1 − Z2 cosϕ (3.17)

In conclusion, the system Eq. (3.16) and its associated Hamiltonian are identical
to the ones of a BJJ. The LHY adds its contribution to the mean-field one without
changing the form of the system. As a consequence, the LHY does not induces any
different phenomena from the BJJ at a Josephson dynamics level. Let us generalize
the two-mode model to a 2M -mode model in the next section.

3.2.4 2M-mode model

As already seen, the supersolid is characterized by a density modulation and we are
taking the minima as weak links of JJs. It thus appears as a linear array of many
weakly connected clusters. We can generalize the two-mode model associating to
each cluster of atoms a localized wavefunction ψj =

√
Nj exp (iθj) with popula-

tion Nj and phase θj. The population-phase dynamics following a quench of these
variables is described by a 2M-mode model

i
∂ψ1

∂t
= (E1 + U1N1)ψ1 −K12ψ2

...

i
∂ψj
∂t

= (Ej + UjNj)ψj −Kj,j−1ψj−1 −Kj,j+1ψj+1

...

i
∂ψ2M

∂t
= (E2M + U2MN2M)ψ2M −K2M,2M−1ψ2M−1

(3.18)
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EM-1
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Figure 3.1: Sketch of a supersolid as a linear array of 2M clusters. For a pictorial
representation, the density is vertically displaced to follow the harmonic trap along
the x direction. The jth cluster has its on-site interaction parameter Uj and the
couplings with adjacent clusters Kj−1,j and Kj,j+1 and an energy offset Ej.

where Uj is the on-site interaction of the jth cluster and Kj,j−1 is the coupling
coefficient between clusters j and j−1 [23, 27]. The terms Ej account for the energy
offset of the jth cluster due to the external trapping [27], see Figure 3.1. Due to the
strong interactions characterizing the gas and the lack of external energy potentials
confining the clusters, it is not a priori obvious that it is possible to identify regimes
of parameters where the model Eq. (3.18) leads to accurate results. In the following,
we identify analytically interesting dynamical regimes predicted by Eq. (3.18) and
compare them directly with numerical integration of the complete eGPE. As it will
be discussed below, the set of Eq. (3.18) shows different dynamical regimes among
which we identify both josephson-like oscillations and MQST. These are analogous
to those predicted [27] and experimentally observed in bosonic Josephson junctions
[28, 29, 112]. We emphasise that in the present study, no external barrier was
imposed.
We consider a symmetric clusters array with Ej>M = E2M−(j−1) and Uj>M =
U2M−(j−1). We study the dynamics of the population imbalance

Z ≡ NM+1 −NM

NM+1 +NM

(3.19)
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and phase difference

∆θ ≡ θM+1 − θM (3.20)

between the central clusters, labelled as M and M + 1. Under the condition

ṄM+1 − ṄM = α

(
M−1∑
j=1

Ṅj −
2M∑

k=M+2
Ṅk

)
, (3.21)

where α is a constant, Eq. (3.18) reduce to (see Appendix C)

Ż = 2K α

α− 1
√

1 − z2 sin(∆θ)

∆̇θ = −U(NM+1 +NM)z
, (3.22)

where K ≡ KM,M+1 and U ≡ UM . These equations have the form of the standard
bosonic Josephson equations [27] with two important differences. (i) The lateral
clusters (1 to M − 1 and M + 2 to 2M) enter the dynamics renormalizing the
coupling coefficient K. (ii) Differently from previous studies [27–29], there is no
externally-imposed weak link: the JJ is here self-induced thanks to the supersolid
intrinsic density modulation.

In order to study Josephson dynamics, we need to start the system in an out-of-
equilibrium condition, specifically an antisymmetric initial quench of populations
and phases. This can be achieved by adding an external sinusoidal potential with
half-period equal to the distance between clusters, thereby creating population
imbalances with opposite signs in subsequent clusters. Using this kind of quench
and in the regime of small oscillations, we can write the ansatzs for populations
and phases

Nj(t) = N0
j + (−1)j+1∆j sin(ωJt)

∆θj+1,j(t) = (−1)jδθ cos(ωJt)
(3.23)

where N0
j represents the equilibrium population, ωJ the Josephson frequency and

∆θj+1,j ≡ θj+1−θj. The parameters ∆j and δθ are the amplitudes of the oscillations.
We have supposed a Josephson-like dynamics where both Nj and ∆θ oscillates with
the same frequency ωJ and a relative temporal shift of π/2. The signs come from
the antisymmetric quench we have chosen. Subsituting the ansatzs Eq. (3.23) in
the model Eq. (3.18), we obtain some conditions on the interacting and tunnelling
parameters involved in the system, in particular on the ratio between interacting
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parameters of neighbour clusters (see Appendix D)

U1

U2
= 1 + K23

K12

√√√√N0
3

N0
1

Uj
Uj+1

=
1 + Kj+1,j+2

Kj,j−1

√
N0

j+2
N0

j

1 + Kj,j−1
Kj,j+1

√
N0

j−1
N0

j+1

, ∀j.
(3.24)

This conditions provide an explicit expression for α to be found (see Appendix D)

α =
(
M−1∑
j=1

(−1)j−M+1UM
Uj

)−1

. (3.25)

Upon the validity of Eq. (3.24), we can characterize the small oscillations regime,
finding the Josephson frequency (see Appendix D)

ωJ =
√

2K α

α− 1U(NM+1 +NM). (3.26)

This expression is analogue to the standard BJJ, but with the presence of the
α coefficient which renormalizes the tunnelling coefficient K. It is interesting to
notice that Eq. (3.22) predicts also the MQST regime, exclusive to BJJ (see sub-
section 2.4.1). This regime is characterized by the oscillation of Z around a non-zero
value and a running phase over the interval [0,2π]. The transition from the small
oscillations regime to the MQST one is marked by a critical value Zc of the initial
population imabalance, i.e. the value of Z at t = 0. The system enter the MQST
regime when Z(t = 0) exceeds the value (see Appendix C)

Zc =

√√√√ 8K α
α−1

U(NM +NM+1)
. (3.27)

To be noticed that once again the expression is analogue to the one for the BJJ,
but with α coefficient renormalizing the coupling K in the same way as for the
Josephson frequency Eq. (3.26).
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3.3 Numerical methods

We have numerically integrated the eGPE Eq. (3.3) with a 4th order Runge-Kutta
method (see Appendix E). Ground states are evaluated using an imaginary time
propagation implemented by a dynamical time step adjustment technique, that we
are going to discuss in the next subsections. On the other side, dynamics are nu-
merically integrated by evolving the eGPE in real time, thus without the adjustable
time step. The application of these numerical methods requires the discretization
of the eGPE that is quite standard (see Appendix E), but the dipolar term needs
a small trick that we are going to see below.

3.3.1 Imaginary time propagation

Imaginary time propagation (ITP) is a widely used numerical method [113–116] to
find the ground state of a quantum system described by a Schrödinger-like time-
dependent equation such as:

iℏ
∂ψ(x, t)
∂t

= Hψ(x, t) (3.28)

The hamiltonian is an hermitian operator, so that its eigenvalues E0 ≤ E1 ≤ E2 . . .

are real and non negative, and the corresponding eigenfunctions ϕi(x) can be chosen
to form a real orthonormal basis on its domain. ITP is based on the Wick rotation
[117], a mathematical method that consists in substituting a real variable with an
imaginary one, i.e. in a rotation of π/2 in the complex plane. In our case, it consists
in the substitution t → iτ , transforming the Schrödinger equation Eq. (3.28) into
a diffusion type one:

−ℏ
∂ψ(x, τ)
∂τ

= Hψ(x, τ) (3.29)

whose formal solution is:
ψ(x, τ) = e− H

ℏ τψ(x, 0) (3.30)

Expanding the initial wavefunction ψ(x, 0) ≡ ψ0(x) in the complete basis of eigen-
functions:

ψ0(x) =
∑
i

ciϕi(x) (3.31)

the imaginary time evolution Eq. (3.30) becomes:

ψ(x, τ) = e− H
ℏ τ
∑
i

ciϕi(x) =
∑
i

cie
− Ei

ℏ τϕi(x) (3.32)
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Evidently, when propagated forward in imaginary time, each eigenfunction decays
exponentially, with the rate of decay proportional to its energy. Indeed, all the
states other than the ground state will die off exponentially quickly even compared
to how quickly the ground state is vanishing:

ψ(x, τ)
ψ(x,0) ∝ e−τ(Ei−E0) (3.33)

Therefore, for a sufficiently long time integration, the only asintotically appreciable
contribution to ψ(x, τ) is given by the lowest eigenvalue, namely the ground state
E0:

ψ(x, τ) → c0e
− E0

ℏ τϕ0(x) τ → +∞ (3.34)

Ultimately, selecting a random initial wave function at τ = 0 and allowing it to
evolve in imaginary time will lead to convergence with the true ground state wave
function. The greater the similarity between the initial function and the ground
state, the more rapidly convergence will be achieved.

3.3.2 Dynamic time step adjustment method

We have integrated the Eq. (3.3) with a standard 4th order Runge Kutta method
(see Appendix E), but implemented by an adaptive stepsize algorithm. We have
used the technique proposed by Lehtovaara et al. [114]. It basically consists in
using two different time steps for the integration. At first glance, it could seem like
a waste of time to double the calculation, but we will see that it is not. In fact, the
algorithm makes the code choosing the best time step and adjusts it dynamically.

Considering the integration of the Schrödinger equation in imaginary time, every
iteration we take a longer time step dtL = ∆τ and a shorter one dtS = χ∆τ , where
the factor χ is changing every step. Starting from the first iteration, we have:dtL = ∆τ

dtS = 1
2∆τ

(3.35)

giving two different solutions ψL and ψS with which we calculate the two energies:EL = ⟨ψL| Ĥ |ψL⟩

ES = ⟨ψS| Ĥ |ψS⟩
(3.36)

where we have assumed that the wave functions are normalized to 1. Since we are
searching for the ground state with the ITP method, the energy must decrease
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Figure 3.2: Dynamic time step adjustment algorithm: every iteration the code in-
tegrates using a longer time step ∆τL and a shorter one ∆τS. The chosen time step
is the one that gives the smaller energy. Figure adapted from Lehtovaara et al.[114]

exponentially to the right value. Therefore, we choose the time step size that gives
the smaller energy as the new dtL. This is the transcription in the code written
using Matlab:

1 i f En_totL ( ip ) < En_totS ( ip )
2 En_tot ( ip ) = En_totL ( ip ) ;
3 ch i = sqrt ( ch i ) ;
4 dtS = ch i ∗dtL ;
5 Phi0 = PhiL ;
6 else
7 En_tot ( ip ) = En_totS ( ip ) ;
8 dtL = dtS ;
9 ch i = ch i ^2;

10 dtS = ch i ∗dtL ;
11 Phi0 = PhiS ;
12 end
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If dtL gives the smaller energy, the next step dtL remains the same, but χ = √
χ,

so that the dtS is kept smaller than dtL but bigger than before: dtS = dtL√
2 > dtL

2 .
This because the trend is to prefer having a longer dt. On the other side, if dtS
gives the smaller energy, dtS becomes the new dtL and χ = χ2, so that the new
dtS is dtL

4 . This time, instead, is because the trend is to prefer a smaller dt. The
code makes this choice every iteration, but in general this allowed it only to keep
the same dt or decreasing it, never increasing it. So, the initial time step need to
be chosen as large as possible, so as not to make it unstable. In particular, we can
use the condition stability for a 3D diffusion-type equation:

dt ≤ dx2 + dy2 + dz2

2D (3.37)

where D is the diffusion coefficient that in our case is D = ℏ2

2m , so that we have:

dt ≤ (dx2 + dy2 + dz2)m
ℏ

∼ 6.54 · 10−4 (3.38)

where we have used values coming from our grid (see Appendix E). Since this, we
have used an initial time step:

dt = 10−3 2π
ωx
s ∼ 5.41 · 10−5s (3.39)

defined with respect to the trap period Tx = 2π
ωx

in the direction where the supersolid
modulation is detected.

Where is the gain? To achieve the same accuracy of this method using only one
fixed time step, we should use the last time step used in the adaptive method, that
is the smallest one. This would cause the use of a large number of iterations. On the
other side, the adaptive method usese a bigger initial time step, going decreasing
it when the algorithm has roughly found the desired minimum. Only at that point,
it decreases the size of the time step until the desired precision.

3.3.3 Dipolar term

The dipolar interaction is long-range and contains an integral

Φdd(r, t) =
∫
dr′Vdd(|r − r′|)|ϕ(r′, t)|2 (3.40)

so it is computationally expensive to evaluate it over the full space grid. A smart
way to compute it consists in noticing that it is a convolution and evaluate it in the
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Fourier space. In fact, the convolution theorem states that the Fourier transform of
a convolution of two functions is the product of the Fourier transforms of the two
functions [118]

F [f ∗ g] = F [f ] · F [g] (3.41)

where the convolution is defined as

f ∗ g =
∫
drf(r)g(r − r′) (3.42)

The Eq. (3.40) can therefore be rewritten as:

Φdd(r, t) = F−1
[
F [Vdd](k) · F [n](k)

]
(3.43)

where F−1 is the inverse Fourier transform and we have called n the density
|ϕ(r, t)|2. The Fourier transform of the dipolar interaction can be derived analiti-
cally (see Appendix F), thus in the code we need to Fourier transform the density
n. After this, we multiply the two terms and calculate the inverse Fourier transform
of this product.

3.3.4 Convergence criterion

We have all the necessary ingredients to evolve iteratively the 4th order Runge-
Kutta method with the dynamic time step adjustment technique. However, these
iterations necessitate a convergence criterion that indicates when the code should
stop. To establish this criterion, we use the total energy. We have already included
the energy calculation in the dynamic time step adjustment technique as

En
tot = En

kin + En
h.o. + En

contact + En
dd + En

LHY (3.44)

where
En
kin = ⟨ϕn| K̂ |ϕn⟩ =

∫
dr

ℏ2

2m |∇n(r)|2

En
h.o. = ⟨ϕn| V̂h.o. |ϕn⟩ =

∫
dr

1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)n(r)

En
contact = ⟨ϕn| V̂contact |ϕn⟩ = 1

2g
∫
drn(r)

En
dd = ⟨ϕn| V̂dd |ϕn⟩ = 1

2

∫
dr
∫
dr′Vdd(|r − r′|)n(r′)n(r)

En
LHY = ⟨ϕn| V̂LHY |ϕn⟩ = 2

5γ(ϵdd)
∫
drn(r)5/2

(3.45)
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and n(r) = |ϕ(r)|2 is the density calculated at the nth step. Every iteration, this
energy is compared to the one calculated at the step before

check ≡ |En
tot − En−1

tot |
En−1
tot

. (3.46)

Iterations keep going until this check variable reaches a satisfactory level of accuracy
without requiring an excessive amount of computational time.

3.4 Numerical results

We compare the predictions of Eq. (3.18) and Eq. (3.22) with the numerical inte-
gration of the eGPE Eq. (3.3) describing our dipolar supersolid.

The choice of system parameters was dictated by our desire to study a single
JJ, so a two-mode system. We actually found an experimentally relevant regime
with a ground state with two clusters. This can be realized with an harmonic trap
with frequencies ωx,y,z = (20,50,50)Hz and N = 2 ∗ 104 atoms, but in this case the
Josephson dynamics is unstable. The initial population imbalance that we impose
in order to starts the dynamics, couples many modes of many different kind and
with a lot of frequencies in the dynamics. The next reasonable choice was therefore
to look for a four-clusters system and it is the one we are going to analyze below.
We can conclude that it seems like the presence of the lateral clusters is needed
because it stabilizes the Josephson dynamics, which in this case clearly emerges as a
single frequency mode in the system. This observation is in line with the hypothesis
Eq. (3.21) we had to assume in order to be able to write the Josephson equations
3.22 from the general 2M-mode model Eq. (3.18). Indeed, the hypothesis is a kind of
balance (even if there is the prefactor α) between the Josephson current of central
clusters and the one of all the other lateral clusters.

3.4.1 System description

We integrate Eq. (3.3) considering N = 35000 atoms of 162Dy in an harmonic
trap with frequencies ωx,y,z = 2π (18.5, 53, 81) Hz [16]. The polarization direction
is ẑ, which is the direction of stronger confinement, in order to induce the roton
instability [79] described in subsection 1.7.2, while the density modulation is formed
along x̂, the direction with weakest confinement.
The supersolid density modulation is one-dimensional, but the trap tends to be
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Figure 3.3: Density integrated profile n(x) of supersolid at ϵdd = 1.4 from eGPE.
The indices of the four clusters goes from left to right. Clusters 2 − 3 have an
interacting parameter U and clusters 1−4 have U ′. The coupling coefficients are K
for the central one between 2 and 3 and the others between 1 and 2 and between 3
and 4 are K ′. Lateral clusters are smaller due to the energy offset E0 given by the
harmonic trapping.

bi-dimensional, causing a discontinuous phase transition from the superfluid BEC
regime to the indipendent droplets (or droplets crystal) [111, 119].

Density modulation are found for ϵdd ≳ 1.4 and the specific combination of num-
ber of atoms and trap frequencies gives rise to a 4-clusters supersolid. In Figure 3.3
is plotted the one dimensional integrated density n(x) ≡

∫∫
dy dz n(x, yz), that is

the three-dimensional density n(x, y, z) integrated along the directions transverse
to the one where the density modulation develops (x). We can notice the smaller
size of the lateral clusters due to the presence of an energy offset E0 given by the
harmonic trapping potential.

3.4.2 Four mode model

This system requires a theoretical 4-mode model (M = 2) to compare the dynamics
predicted by the eGPE Eq. (3.3) and the theoretical model Eq. (3.18). Let us start
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writing the evolution of populations and phase differences in the case M = 2

Ṅ1 = −2K ′
√
N1N2 sin ∆θ21

Ṅ2 = 2K ′
√
N1N2 sin ∆θ21 − 2K

√
N2N3 sin ∆θ32

Ṅ3 = 2K
√
N2N3 sin ∆θ32 − 2K ′

√
N3N4 sin ∆θ43

Ṅ4 = 2K ′
√
N3N4 sin ∆θ43

˙∆θ21 = E0 + U ′N1 − UN2

˙∆θ32 = U(N2 −N3)
˙∆θ43 = −E0 − U ′N4 + UN3

(3.47)

where we have defined the parameters as in Figure 3.3, so that the prime symbol
refers to the lateral clusters. The parameter E0 refers to the energy offset of the
lateral clusters with respect to the central ones. Phase differences are defined as
∆θij ≡ θj − θi where i, j = 1,2,3,4 are the indices of the clusters, as in Figure 3.3.
The condition Eq. (3.21) is

Ṅ3 − Ṅ2 = α
(
Ṅ1 − Ṅ4

)
(3.48)

so that we can derive the Josephson equations for the central clusters (2 − 3).
Writing down the evolution of the population imbalance

Ṅ3 − Ṅ2 = 4K
√
N2N3 sin ∆θ32 − 2K ′

√
N3N4 sin ∆θ43 − 2K ′

√
N1N2 sin ∆θ21

= 4K
√
N2N3 sin ∆θ32 − Ṅ4 + Ṅ1

= 4K
√
N2N3 sin ∆θ32 + Ṅ3 − Ṅ2

α
(3.49)

so that
Ṅ3 − Ṅ2 = 4K α

α− 1
√
N2N3 sin ∆θ32

˙∆θ32 = −U(N3 −N2)
(3.50)

where the second equation is exactly from Eq. (3.47). The fractional population
imbalance and phase difference are defined as

Z ≡ N3 −N2

N23
∆θ ≡ θ2 − θ3 (3.51)
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where the denominator is the sum of the central equilibrium populations N23 ≡
N2(0) +N3(0). The system of equations for Z and ∆θ is

Ż = 2K α

α− 1
√

1 − Z2 sin ∆θ

∆̇θ = −UN23Z
(3.52)

that is the system Eq. (3.22) with M = 2.

3.4.3 Josephson dynamics and MQST

In order to excite Josephson dynamics, we start the system in a non-symmetric
equilibrium condition achieved by finding the ground states with the addiction of an
external sinusoidal potential with half-period equal to the distance between clusters,
thereby creating population imbalances with opposite signs in subsequent clusters
(see Figure 3.6). This potential can be provided experimentally by an optical lattice.
We then numerically evolve the system in real time, examining the populations and
phases of each cluster, defined as

Nj(t) =
∫
clusterj

dx n(x, t) θj =
∫
clusterj

dx θ(x, t) (3.53)

where the integrated 1d densities and phases are n(x, t) =
∫
dy dz |ψ(r, t)|2 and

θ(x, t) =
∫
dy dz ϕ(r,t) |ψ(r,t)|2∫

dy dz |ψ(r,t)|2 . The integrals on the transverse directions y − z are
performed over the whole box, while on the x-direction is performed over the cluster
jth, specifically on the interval between the two minima in the density modulation
outlining the limits of the cluster. We have weighted the 1d phase profile with the
density to suppress noise at the boundaries, where the density goes to zero.

In Figure 3.4 and Figure 3.5 we plot the dynamics of the Josephson variables,
Z (blue lines) and ∆θ (red lines) for ϵdd = 1.43 in the supersolid regime but with
different values of the initial population imbalance Z0 ≡ Z(t = 0). In Figure 3.4
we plot an example of the small oscillations regime, with Z0 = −0.02. Density
and phase oscillate harmonically in time around the equilibrium position Z = 0
and ∆θ = 0 with the same frequency, but a relative shift of π/2, as in the stan-
dard Josephson dynamics. The insets show three density profiles at three different
instants of time showing the symmetric exchange of population between the two
central clusters. These oscillations are well reproduced by the theoretical model,
plotted here as dashed lines. In Figure 3.5 is plotted the dynamics for Z0 = −0.18
and Z oscillates around a nonzero value, while ∆θ runs over the interval [0,2π].
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Figure 3.4: Evolution in time of the population imbalance Z (blue lines and left
axis) and phase difference ∆θ (red lines and right axis) in the small oscillations
regime. Solid lines are the numerical integration of the eGPE, while dashed lines
are the integration of the model Eq. (3.52). Both variables oscillate around zero
with the same frequency and a relative shift of π/2. On the bottom, there are
three density profiles at three different times t = (5,22,38)ms corresponding to the
limiting behaviour of the oscillation, showing the symmetric exchange of population
between the two central clusters. The coloured stars indicate the instant of time
where the snapshots were taken.

This effect, called MQST, is inherited from the bosonic JJs and is a self locking of
the population on one side due to the nonlinear interaction. The three density pro-
files in the insets show the nonsymmetric exchange of population between clusters.
The population of the bigger cluster starts to move among the smaller one, but the
phase difference stops this balancing, sending them back. In a classical pendulum
analogy [27], with Z as the angular momentum and ∆θ as the tilt angle, an high
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Figure 3.5: Evolution in time of the population imbalance Z (blue lines and left
axis) and phase difference ∆θ (red lines and right axis) in the MQST regime. Solid
blue line and dotted red line are the numerical integration of the eGPE, while
dashed lines are the integration of the model Eq. (3.52). Z oscillates around a
nonzero value, while ∆θ runs over the whole interval [0,2π]. On the bottom, there
are three density profiles at three different times t = (8,27,49)ms corresponding to
the limiting behaviour of the oscillation, showing the non-symmetric exchange of
population between the two central clusters. The coloured stars indicate the instant
of time where the snapshots were taken.

Z causes the pendulum to not oscillate around the equilibrium position, like the
small oscillation regime, but to fully rotate.
Dashed lines in Figure 3.4 and Figure 3.5 are the direct integration of Eq. (3.18)
with the interaction and coupling parameters values extracted using the data from
the eGPE and by fitting the model to the data with a procedure that we are going
to explain.

First of all, we derive the value of α from the equality between currents Eq. (3.48).
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Figure 3.6: Excitation of a Josephson dynamics. Blue area is the equilibrium density
profile of the supersolid, while the black dashed line is the density profile with
a population imbalance. This is created by imposing a sinusoidal potential, here
represented with a red dashed line. Amplitude of the potential is in arbitrary units.

In Figure 3.7 are plotted the left (orange dots) and right (green dots) hand sides of
Eq. (3.48) with α = 2. We find that this value of α gives a good agreement between
left and right hand side of the hypothesis both in the regime of small oscillations
(top panel) and MQST (bottom panel).
At this point, we derive the central coupling K and interacting U coefficients,
through the fitting of the linearized Eq. (3.52), using α = 2

Ż = 4K∆θ
∆̇θ = −UN23Z

(3.54)

These equations are valid for Z ≪ 1 and ∆θ ≪ 1. In Figure 3.8, an example of
the current-phase relation at the interaction ϵdd = 1.41 for different Z0 is shown.
On the left, a small Z0 results in a linear relation as in Eq. (3.54) and on the
right, for higher Z0, is the characteristic Josephson sinusoidal current-phase relation
Eq. (3.52). Green dots are numerical results from the eGPE, while orange line is
the fitting curve.

The parameters K ′ and U ′ are derived from fitting the equations for Ṅ1 and
θ̇4 − θ̇1 (see Eq. (3.47))

Ṅ4 ∼= 2K ′
√
N3N4∆θ43

θ̇4 − θ̇1 = ∆θ21 + ∆θ32 + ∆θ43 = U ′(N1 −N4)
(3.55)
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Figure 3.7: Verification of Eq. (3.48) in the regime of small oscillations (top panel)
at ϵdd = 1.41 and MQST (bottom panel) at ϵdd = 1.46. Green and orange dots are
respectively the right and left hand side of Eq. (3.48) with α = 2, thus Ṅ3 − Ṅ2
and 2(Ṅ1 − Ṅ4).
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Figure 3.8: Current-phase relation Ż − ∆θ at fixed interaction ϵdd = 1.41 and
different initial population imbalance Z0. Left panel has a smaller Z0 and a linear
fitting, thus for higher Z0 the curve becomes sinusoidal. Green dots are numerical
integration of the eGPE and orange line is the fitting curve.

We found K ∼= 0.015 (0.007 ÷ 0.03), UN23 ∼= 10 (7 ÷ 13), where Ntot = N1 +N2 +
N3 + N4, all in units of ℏωx. Lateral parameters with respect to the central ones

75



3

3 – Josephson effect in a supersolid dipolar quantum gas

1.4 1.42 1.44 1.46
0

0.5

1

1.5

a)

0 0.1 0.2 0.3 0.4
0

1

2

3

4

b)

Figure 3.9: Josephson frequencies. Numerical results from eGPE for the evolution
of Z (blue asterisks) and ∆θ (red asterisks). The black dashed line is the theoretical
frequency given by Eq. (3.26). a) Frequencies at fixed Z0 ∼= 0.01 as a function of
the interaction. b) Frequencies for ϵdd = 1.43 as a function of the initial population
imbalance Z0. Dotted line is a guide to the eye. The increase of the frequency
happens entering the MQST regime, as in a BJJ.

assume the values U ′/U ∼= 2.2 (1.7 ÷ 2.7) and K ′/K ∼= 1.1 (0.6 ÷ 1.6).
These values allow us to check if the value of α found with the Eq. (3.48) (see
Figure 3.7) agrees with Eq. (3.25) in our four-mode model

α = U ′

U
. (3.56)

The agreement is good and thus the hypothesis Eq. (3.48) is verified.
We further extend the comparison of numerical results with the model through

the analysis of the frequencies. In Figure 3.9a are shown the Josephson frequencies
in the small oscillations regime Z0 ∼= 0.01 as a function of the interaction ϵdd. They
are obtained from the fit of the Josephson oscillations in the eGPE Eq. (3.3) (blue
and red asterisks for Z and ∆θ) and agree well with the theoretical expression in
Eq. (3.26) (black dashed line). The decrease of this frequency distinguishes it from
a different mode, for example a dipole mode along x that would have remained at
ω/ωx = 1. In Figure 3.9b is shown the trend of the frequencies for ϵdd = 1.43 as a
function of the initial population imbalance Z0. Blue and red asterisks correspond
to numerical frequencies from eGPE of Z and ∆θ respectively, while the black
dotted line is a guide to the eye. Numerical frequencies initially stay constant, but
than decrease and re-increase rapidly as we enter the MQST regime, similar to a
standard BJJ [27, 28].
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Figure 3.10: Phase diagram showing the transition from the small oscillations regime
z < zc (blue region) to MQST z > zc (orange region) as a function of the interaction
strength ϵdd and z0. Each triangle corresponds to the numerical result of the eGPE:
blue downward triangles correspond to balanced population-phase oscillations ana-
logue to those of Figure 3.4, red upward triangles correspond to self-trapped oscil-
lations with running phase analogue to those of Figure 3.5 and correspnding to the
MQST regime. Violet triangles correspond to an intermediate regime with mixed
oscillations and self-trapping or unclassifiable dynamics. The black dashed line in-
dicates the theoretical critical value of Zc, demarcating the boundary between these
two distinct regimes.

In Figure 3.10 we summarise our findings regarding the analysis of the small
oscillations to MQST transitions. We compare the eGPE dynamics results with
the theoretical model for different values of the interaction ϵdd and initial quench
of the population imbalance Z0. Every triangle corresponds to a eGPE dynamics,
downward-pointing blue for small oscillations regime and upward-pointing red for
the MQST. Purple triangles correspond to a transient regime where, for example,
the clusters start in the MQST regime but after a finite amount of time both Z and
∆θ start oscillating, as in the small oscillations regime. The precise classification
of these intermediate dynamics were not the purpose of this work. For values of
the interaction ϵdd > 1.46, the dynamics stops to show the single Josephson mode
due to the loss of coherence between the clusters, thus marking the transition from
supersolid regime to indipendent droplets crystal. The black dashed line corresponds
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to the theoretical critical value

Zc =
√

16K
UN23

(3.57)

as a function of ϵdd. This line splits the phase diagram in two areas: light blue for
the small oscillations regime, while orange for the MQST. Overall, eGPE shows a
dynamics in the MQST regime for values of ϵdd and Z0 according to the theoretical
predictions (red triangles are in the orange area).

3.5 Discussion

The parameters of the system, such as the number of atoms N and the frequencies of
the harmonic trapping potential, play a crucial role in determining the behaviour
and properties of the system. To observe the phenomenon of supersolidity, it is
necessary to induce rotonic instability through confinement along the direction
of dipole polarisation ẑ, as well as weaker confinement along the direction x̂ in
which density modulation will develop. Therefore, it is possible to use different
harmonic frequencies ωx, leading to the formation of supersolid with a different
number of clusters, which implies a different value of M in the theoretical model.
The simpler case of M = 1, or a 2-mode model, could not be reproduced even
though a ground state with tighter confinement was observed, resulting in only two
clusters. However, when dynamics is introduced, these two clusters tend to shift
and decrease, resulting in the formation of smaller clusters at the boundaries of the
trap that oscillate, appear and disappear. Many modes are thus excited, making it
impossible to isolate the single Josephson dynamics. We switched to the scenario
of M = 2, which corresponds to a 4-mode model, and this stable configuration was
successfully reproduced through our numerical simulations. The presence of the
lateral clusters seems essential to excite the single Josephson mode in the system.
Moreover, exciting the 4 clusters system with a single gaussian potential under one
of the two central clusters instead of the sinusoidal potential under all clusters,
starts a dynamics with many modes coupled. The dynamics of the central clusters
seems to be stabilized through the dynamics of the lateral clusters, that is the
essence of the hypothesis Eq. (3.21) at the basis of our theoretical model. With the
decrease of ωx, thus the increase of the number of clusters, the system is still stable
and is possible to observe Josephson dynamics ([19]).
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This chapter demonstrates that the dynamics of the system, initially prepared
with a small population imbalance between supersolid clusters, exhibits a sinusoidal
oscillation of the population imbalance across the density dip. This oscillation fre-
quency decreases as the system crosses the supersolid phase towards the indipen-
dent droplets regime. Furthermore, by increasing the initial population imbalance
between clusters, the system enters the non-linear regime of MQST, characterized
by non-symmetric population oscillations and running phase difference, analogue
to standard BJJs.

It is noteworthy that these characteristic features of the Josephson effect are ob-
served in the absence of an external weak link, as the weak links in supersolids are
self-induced by internal interactions. The Josephson frequencies obtained from the
numerical data were compared with the theoretical predictions, yielding good agree-
ment. Overall, we provided evidence for the existence of both Josephson oscillations
and MQST in supersolid dipolar quantum gases, contributing to our understanding
of the phase rigidity of these systems. This novel kind of JJ, which is self-induced,
can open the path toward the exploration of fundamental physics of this new state
of matter.
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Sub-unity superfluid fraction of a
supersolid from self-induced
Josephson effect

The following chapter stems from a fruitful collaboration between the experimental
group led by G. Modugno at CNR in Pisa and the theoretical group QSTAR (Quan-
tum Science and Technology in ARcetri) in which I spent my PhD. This resulted in
an article of a great impact sent for publication and now under review in the jour-
nal Nature [19] and from which this chapter is inspired. The authors of this article
which I had the pleasure to work with are Giulio Biagioni, Nicolò Antolini, Luca
Pezzè, Augusto Smerzi, Marco Fattori, Andrea Fioretti, Carlo Gabbanini, Massimo
Inguscio, Luca Tanzi and Giovanni Modugno.

This chapter starts with a broader perspective on supersolidity, looking for a
universal measure capable of detecting and quantifying the supersolid state of a
system. This measure is known as the superfluid fraction, which has been exten-
sively investigated by Leggett [15, 120]. In this chapter, we will propose an alter-
native expression related to the coupling energy of a JJ. Experimental observation
of the Josephson effect not only confirms its presence in a novel, self-induced JJ
(see Chapter 3), but also measures the superfluid fraction and demonstrates its
sub-unity value, thereby revealing the supersolid nature of the system.
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4.1 Quantifying supersolidity

Supersolids are a fundamental phase of matter originated by the spontaneous break-
ing of the gauge symmetry as in superfluids and superconductors, and of the trans-
lational symmetry as in crystals [14, 15, 121, 122]. This gives rise to a macro-
scopic wavefunction with spatially-periodic modulation, and to mixed superfluid
and crystalline properties. Supersolids were originally predicted in the context of
solid helium [14, 15, 121, 122]. Today, quantum phases with spontaneous modu-
lation of the wavefunction are under study in a variety of bosonic and fermionic
systems such as: the second layer of 4He on graphite [123, 124]; ultracold quantum
gases in optical cavities [125], with spin-orbit coupling [126], or with strong dipolar
interactions [16–18, 127]; the pair density wave phase of 3He under confinement
[128, 129]; pair density wave phases in various types of superconductors [130–132].
Related phases have been proposed to exist in the crust of neutron stars [133] and
for excitons in semiconductor heterostructures [134]. All these systems might be
connected to supersolidity, which however so far has emerged clearly only in some
cold-atom systems with the evidence of the double spontaneous breaking and of the
mixed superfluid-crystalline character [93, 94, 125]. The experiments carried out so
far on the other types of systems have proved the coexistence of superfluidity/su-
perconductivity and crystal-like structure [123, 124, 128–132], but no quantitative
connection of the observations to the concept of supersolidity has been made. One
of the difficulties in comparing different types of systems with spatial modulation
of the wavefunction is the seeming lack of a universal property quantifying the de-
viations from the dynamical behavior of ordinary superfluids or superconductors.

Here we note that a property with such characteristics already exists, the so-
called superfluid fraction of supersolids, well known in the field of superfluids but not
in the one of superconductors. The superfluid fraction, introduced by A. J. Leggett
in 1970 [15], quantifies the effect of the spatial modulation on the superfluid stiff-
ness, which is in itself a defining property of superfluids and superconductors. The
superfluid stiffness indeed measures the finite energy cost of twisting the phase of
the macroscopic wavefunction and accounts for all fundamental phenomena of su-
perfluidity, such as phase coherence, quantized vortices and supercurrents [13]. As
shown in Figure 4.1, while in a homogeneous superfluid/superconductor the phase
varies linearly in space, in a modulated system most of the phase variation can be
accommodated in the minima of the density, reducing the energy cost. Since the
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superfluid velocity is the gradient of the phase, this implies that peaks and valleys
should move differently, giving rise to complex dynamics with mixed classical (crys-
talline) and quantum (superfluid) character. For example, fundamental superfluid
phenomena like vortices and supercurrents are predicted to be profoundly affected
by the presence of the spatial modulation, losing the canonical quantization of
their angular momentum [15, 135–137]. The superfluid fraction, which ranges from
unity for standard superfluids to zero for standard crystals, enters directly in all
these phenomena and is therefore the proper quantity to assess the deviations from
standard superfluids and superconductors. Note that the superfluid fraction of su-
persolids is not related to thermal effects, in contrast to the superfluid fraction due
to the thermal depletion of superfluids and superconductors [138].

The standard methods to measure the superfluid stiffness are based on the mea-
surement of global properties such as the moment of inertia for rotating superfluids
[123, 124], or the penetration depth of the magnetic field for superconductors [139].
In dipolar supersolids, previous attempts using rotational techniques revealed a
large superfluid fraction [95], but were not precise enough to assess its sub-unity
value [96, 97]. In the other systems there is evidence that the superfluid stiffness
is low [123, 124, 139], but no quantitative measurement of a sub-unity superfluid
fraction is available.

In this work we make a paradigm shift, demonstrating that it is possible to mea-
sure ,the superfluid fraction not only from global dynamics but also from a funda-
mental phenomenon taking place in individual cells of a supersolid: the Josephson
effect [20]. Here we demonstrate that a supersolid can in fact sustain coherent
phase-density oscillations, behaving as an array of Josephson junctions. We also
show that the Josephson coupling energy that one can deduce from the Josephson
oscillations provides a direct measurement of the local superfluid fraction. We use
this novel approach to measure with high precision the superfluid fraction of the
dipolar supersolid appearing in a quantum gas of magnetic atoms. We find a whole
range of sub-unity values of the superfluid fraction, depending on the depth of the
density modulation in accordance with Leggett’s predictions.
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Figure 4.1: Sketch of the superfluid fraction from the application of a phase twist
in a bosonic system at zero temperature. a) In a homogeneous superfluid a phase
twist with amplitude ∆ϕ results in a constant gradient of the phase, i.e. a con-
stant velocity, while in a supersolid (b,c) the kinetic energy can be minimised by
accumulating most of the phase variation in the low-density regions. The grey and
green areas represent the number density and the kinetic energy density respec-
tively, while the phase profile is plotted in red. The superfluid fraction is the ratio
of the area under the green curve to that of the homogeneous case. (b) Leggett’s
approach, which for an annular system would correspond to a stationary rotation,
leads to a monotonous increase of the phase. (c) Our method, based on an alter-
nating oscillation of the phase, leads to Josephson oscillations. Both kinetic energy
and superfluid fraction are the same for b) and c).

4.2 Superfluid fraction

Leggett’s approach to the superfluid fraction considers an annular supersolid in
the rotating frame and maps it to a linear system with an overall phase twist, as
sketched in Figure 4.1b. The superfluid fraction is defined on a unit cell as [15, 140]

fs = Ekin
Ehom
kin

. (4.1)
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The numerator is the kinetic energy acquired by the supersolid with number density
n(x) when applying a phase twist over a lattice cell of length d

Ekin = ℏ2

2m

∫
cell

dxn(x)|∇ϕ(x)|2 (4.2)

and thus accounts for density and phase modulations. The denominator

Ehom
kin = 1

2Nmv
2
s (4.3)

is the kinetic energy of a homogeneous superfluid of N atoms and velocity vs =
ℏ∆ϕ/(md) associated with a constant phase gradient across the cell. Using a vari-
ational approach [15, 120], Leggett found an upper (fus ) and a lower (f ls) bound for
the superfluid fraction Eq. (4.1) [120]

fus ≡
∫∫ dz dy

1
d2

∫
cell

dx
n(x,y,z)

≤ fs ≤
(

1
d2

∫
cell

dx∫∫
dy dz n(x, y, z)

)−1

≡ f ls (4.4)

where x is the direction where the supersolid modulation extends and the 1D density
n̄(x) ≡

∫∫
dy dz n(x, y, z)/

∫∫
dy dz

∫
cell dxn(x, y, z) is normalized over the cell. This

normalization in the upper bound restricts fs to be lower than unity if the density
is spatially modulated.

We propose an alternative expression for the superfluid fraction, considering
Josephson phase twists with alternating sign between neighbouring lattice sites of
a supersolid, as sketched in Figure 4.1. This corresponds to a different type of
motion of the supersolid, with no global flow but with alternate Josephson phase-
density oscillations between sites. Also in this case we can consider a single cell,
since the kinetic energy is proportional to |∇ϕ|2, so it does not depend on the sign
of the phase twist. In the limit of small excitations (∆ϕ → 0), the kinetic energy of
a Josephson junction is given by Ekin = NK∆ϕ2, where K is the coupling energy
across the barrier [27]. From Eq. (4.1) we thus find

fs = K

ℏ2/(2md2) (4.5)

showing a direct relation between the superfluid fraction and the coupling energy
of the junction. We note that an expression similar to the upper bound in Eq. (4.4)
was derived by Leggett for the coupling energy of a single Josephson junction [105],
however without discussing the connection to the superfluid fraction.
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4.3 Observation and modelling of josephson
oscillations in a dipolar supersolid

We now demonstrate the existence of coherent Josephson-like oscillations in a dipo-
lar supersolid [16]. This system is particularly appealing to study fundamental
aspects of supersolidity: the supersolid lattice is macroscopic, with many atoms
per site and large superfluid effects; the available control of the quantum phase
transition allows to directly compare supersolids and superfluids; interactions are
weak, allowing accurate theoretical modelling. The experimental system that we
have numerically simulated is composed of N = 3 ∗ 104 bosonic dysprosium atoms,
held in an harmonic trap elongated along the x direction, with trap frequencies
ωx,y,z = 2π(18,97,102)Hz. By tuning the relative strength ϵdd of dipolar and contact
interactions, we can cross the quantum phase transition from a standard BEC to
the supersolid regime. This can be performed experimentally by tuning the contact
scattering length as by means of a magnetic Feshbach resonance (see Chapter 3).
The supersolid density modulation is one dimensional, leading to a continuous
phase transition [111]. Differently from Chapter 3, our supersolid is made of two
main central clusters and four smaller lateral ones, thus six clusters (M = 3) with
a lattice period d ∼= 4µm, as shown in Figure 4.2a. We can vary the density mod-
ulation depth by varying the interaction strength in the range ϵdd = 1.38 − 1.45.
The further increase of ϵdd leads to the formation of an incoherent crystal of sep-
arate clusters, the so-called droplet crystal, a regime that can only be observed
numerically, but cannot be studied experimentally due to its short lifetime [16].

We experimentally and numerically observe that the application for a short time
of an optical lattice with twice the spacing of the supersolid (sketched in Figure 4.2a)
imprints the proper alternating phase difference between adjacent clusters to excite
Josephson oscillations between them. After a variable evolution time without the
lattice, we measure both the evolving phase difference ∆θ between neighbouring
clusters and the population imbalance Z between the left and right halves of the
supersolid. ∆θ is measured experimentally from the interference fringes developing
after a free expansion (snapshots in Figure 4.2b, top row), while Z is measured by
in-situ phase-contrast imaging (Figure 4.2b, bottom row). As shown in Figure 4.2,
there is a single-frequency oscillations of Z and ∆θ, with the characteristic π/2
phase shift of the standard Josephson dynamics [20, 27, 29, 141–143]. The ob-
servation time is limited to about 100ms by the finite lifetime of the supersolid,
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Figure 4.2: Josephson oscillations in a supersolid. (a) Sketch of the experimental
system. The black line is the supersolid density profile at equilibrium. The green
dashed line is the optical lattice potential used for the phase imprinting. (b) Ex-
amples of experimental single shots and corresponding integrated 1D profiles. Top
row: interference fringes after a free expansion. Red curves are fit functions used to
extract the phase difference ∆θ. Bottom row: in-situ images. Shaded areas indicate
the populations of the left and right halves of the supersolid used to extract the
population imbalance Z. (c) Oscillations of Z as a function of time at ϵdd = 1.428.
Dots are experimental points. The solid line is the numerical simulation for the
same parameters. The dotted line is a sinusoidal fit to the experimental data. (d)
Same for ∆θ.
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Figure 4.3: Integrated profile of supersolid at ϵdd = 1.43 from eGPE. The indices of
the six clusters goes from left to right. Clusters 3−4 have an interacting parameter
U , clusters 2 − 5 have U ′ and clusters 1 − 6 have U ′′. The coupling coefficients are
K for the central one between 2 and 3, K ′ for the ones between 2 − 3 and 4 − 5 and
K ′′ for the ones between 1 − 2 and 5 − 6. Lateral clusters are smaller and smaller
due to the energy offsets given by the harmonic trapping.

due to unavoidable particle losses [16]. The experimental observations agree very
well with numerical simulations based on the time-dependent eGPE, also shown in
Figure 4.2c-d (see section 3.3).

The observation of a single frequency in both experiment and numerical sim-
ulations indicates not only that it is possible to excite Josephson-like oscillations
in a supersolid, but also that they are a normal mode of the system (see Chap-
ter 3). To model our observations, we develop a six-mode model, thus M = 3 in
the theoretical model of subsection 3.2.4.

In Figure 4.3 is shown an integrated density profile of the six-clusters supersolid
with the relative interaction parameters Uj, with j = 1, ...,6 labelling the clusters,
five coupling parameters between adjacent clusters Kj,j+1, and energy offsets E0

and E1, for the opposite side clusters 1 and 6, and 2 and 5, due to the harmonic
trap. We indicate as K = K34 and U = U3 = U4 the coupling and interaction
energy, respectively, in two central clusters. The symmetry of the system further
allows us to equalise the two side coupling K ′ = K23 = K45 and K ′′ = K12 = K56,
the two side interactions U ′ = U2 = U5 and U ′′ = U1 = U6 (see Figure 4.3). We
thus have a system of six equations for the time evolution of the populations Nj
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and five phase differences ∆θij = θi − θj

Ṅ1 = −2K ′2
√
N1N2 sin ∆θ21

Ṅ2 = 2K ′′
√
N1N2 sin ∆θ21 − 2K ′

√
N2N3 sin ∆θ32

Ṅ3 = 2K ′
√
N2N3 sin ∆θ32 − 2K

√
N3N4 sin ∆θ43

Ṅ4 = 2K
√
N3N4 sin ∆θ43 − 2K ′

√
N4N5 sin ∆θ54

Ṅ5 = 2K ′
√
N4N5 sin ∆θ54 − 2K ′′

√
N5N6 sin ∆θ65

Ṅ6 = 2K ′′
√
N5N6 sin ∆θ65 (4.6)

˙∆θ21 = E1 + U ′′N1 − U ′N2

˙∆θ32 = E0 + U ′N2 − UN3

˙∆θ43 = U(N3 −N4)
˙∆θ54 = −E0 + UN4 − U ′N5

˙∆θ65 = −E1 + U ′N5 − U ′′N6

where we considered the case (N4 + N3)U/(2K) >> 1 so that we can neglect the
coupling terms in the evolution of the phases. Following the procedure of Chap-
ter 3, we find a Josephson dynamics between central clusters under the hypothesis
Eq. (3.21) with M = 3

Ṅ4 − Ṅ4 = α(Ṅ1 + Ṅ2 − Ṅ5 − Ṅ6) (4.7)

so that Eq. (4.6) becomes

Ṅ4 − Ṅ3 = 4K α

α− 1
√
N3N4 sin(∆θ43)

˙∆θ43 = −U(N4 −N3)
(4.8)

These equations hold in the parameter regime given by

U ′′

U ′ = 1 + K ′

K ′′

√√√√N0
3

N0
1

U ′

U
=

1 + K
K′

√
N0

3
N0

2

1 + K′′

K′

√
N0

1
N0

3

(4.9)

where α assumes the form
α =

(
U

U ′ − U

U ′′

)−1
(4.10)
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The parameters U and K of the central clusters are extracted from Eq. (4.8).
The other parameters U ′, U ′′, K ′ and K ′′ are extracted from fits using Eq. (4.6).
Overall, we obtain that the interactions parameters are U/U ′ ∼ 1, U/U ′′ ∼ 1/2
within fluctuations of about 10% for different values of ϵdd. On the other hand, the
coupling ratio K/K ′ ∼ 0.6 is constant, while K/K ′′ ∼ 0.7 on the BEC side and
decreases with ϵdd, as do the initial external populations N1(0) = N6(0). We thus
find that Eq. (4.10) is fulfilled and α = 2.

Defining ∆N ≡ N2 −N3 and using α = 2, the system Eq. (4.8) becomes

˙∆N = 4KN34 sin(∆θ)
∆̇θ = −U∆N

(4.11)

where N34 ≡ N3 +N4 and ∆θ ≡ ∆θ43.
Eq. (4.11) are equivalent to those of a simple pendulum with angle ∆θ and

angular momentum ∆N , and in the small-angle limit feature sinusoidal oscillations
with a single frequency

ωJ =
√

4KUN34 (4.12)

We emphasise that the current-phase relation Eq. (4.11) as well as ω2
J differ by a

factor 2 with respect to the Josephson equations of two weakly coupled BECs, due
to the contribution of the lateral clusters. Notice also that Eq. (4.11) depend only
on the coupling energy K and the interaction energy U of the two central clusters,
in contrast to the expectation that the inhomogeneity of the trapped system may
introduce other energies in the equations of motion. We checked by Gross-Pitaevskii
simulations that the experimental configuration satisfies the conditions Eq. (4.9) to
have a Josephson-like normal mode.

In the experiment it was not possible to resolve the populations of the individual
clusters, but we studyied the population difference between the left and right halves
of the system, Z = (N1 +N2 +N3 −N4 −N5 −N6)/N . There is a proportionality
relation between the two observables, ∆N = 2NZ, which allows us to rewrite
Eq. (4.11) in terms of the experimental observables.

An important difference between a cell of the supersolid and a standard Joseph-
son junction is the fact that in the supersolid the position of the weak link is not
fixed by an external barrier but it is self-induced, so it can move. This leads to
the appearance of a low-energy Goldstone mode associated with the spontaneous
translational symmetry breaking. In a harmonic potential, it consists of a slow os-
cillation of the position of the weak link, together with the density maxima, and
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Figure 4.4: Josephson oscillation frequencies as a function of the interaction pa-
rameter ϵdd. Red dots are the experimental frequencies for ∆θ. Filled and open
blue dots are the frequencies for Z measured by in situ imaging with and without
optical separation, respectively [19]. The red point at ϵdd = 1.444 is slightly shifted
horizontally for clarity. Black points are the results of numerical simulations and
dashed line is a guide for the eye. The insets show the modulated ground state
density profiles obtained from numerical simulations for different values of ϵdd. The
vertical dotted line marks the critical point of the superfluid-supersolid quantum
phase transition.

an associated oscillation of both Z and ∆θ [27]. Due to its low frequency (few Hz),
the Goldstone mode is spontaneously excited by thermal fluctuations, resulting in
shot-to-shot fluctuations of the experimental observables. The same low frequency,
however, allows to separate Josephson and Goldstone dynamics in both experiment
and theory. We measure the Josephson frequency ωJ from a sinusoidal fit of the
phase and population dynamics in Figure 4.2c-d. We repeat the measurement by
varying the interaction parameter ϵdd, corresponding to different depths of the su-
persolid density modulation. Figure 4.4 shows the fitted frequencies as a function of
ϵdd comparing experimental data with numerical simulations. We observe a decrease
of the frequency for increasing ϵdd. This is justified by the fact that the superfluid
current across the junction decreases because a larger and larger portion of the
wavefunction remains localised inside the clusters, see insets in Figure 4.4. This
reduces the coupling energy K while only weakly affecting the interaction energy.
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From the Josephson frequency Eq. (4.12) we can derive the coupling energy

K = ω2
J

4UN34
(4.13)

using the experimental measured frequency and the numerical value of denominator.
We verified that this relation holds not only in the small-amplitude regime of the
simulations, but also for the larger amplitudes of the experiment.

From the measured K, we derive in turn the superfluid fraction using Eq. (4.5).
The results are shown in Figure 4.5 and feature a progressive reduction of the
superfluid fraction below unity for increasing depths of the supersolid modulation.
The experimental data are in good agreement with the numerical simulations (green
dots). According to Eq. (4.11), the coupling energy is obtained from the linear
dependence of dZ/dt on sin(∆θ) (current-phase relation) both with numerical and
experimental data, see Figure 4.5b-c.

What we measure here is the superfluid fraction of the central cell of our in-
homogeneous supersolid, for a one-dimensional phase twist. Such a local quantity
would coincide with the global superfluid fraction of a hypothetical homogeneous
supersolid, composed of cells identical to our central one. This includes the annular
geometry originally studied by Leggett, where however our supersolid with macro-
scopic clusters would also show transverse effects, not included in Leggett’s theory
for the moment of inertia [15]. Studying the Josephson effect allows us to avoid
such transverse effects.

In Figure 4.5a we also compare our results with Leggett’s prediction of Eq. (4.4),
relating the superfluid fraction to the density modulation of the supersolid. From
the numerical density profiles, we calculate both the upper bound fus and the corre-
sponding lower bound [120] f ls, which delimit the grey area in Figure 4.5a. The two
bounds would coincide if the density distribution were separable in the transverse
coordinates y and z. Since our supersolid lattice is one dimensional, the two bounds
are close to each other. The superfluid fraction calculated from the simulated dy-
namics lies between the two bounds in the whole supersolid region we investigated,
demonstrating the applicability of Leggett’s result to our system.

In conclusion, the overall agreement between experiment, simulations and the-
ory on our dipolar supersolid proves the long-sought sub-unity superfluid fraction
of supersolids and its relation to the spatial modulation of the superfluid density.
The demonstration of self-sustained Josephson oscillations in a supersolid not only
establishes an analogy between supersolids and Josephson junction arrays, but also
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Figure 4.5: Superfluid fraction of the supersolid from Josephson oscillations. (a)
Superfluid fraction as a function of ϵdd. Black dots are experimental results derived
from the Josephson frequencies. Green dots are results from numerical simulations.
Pink points are derived from the experimental phase-current relation, as in (c).
The open pink point at ϵdd = 1.444 is the dataset without the optical separation
technique (Methods). The grey band spans from the upper to the lower bound
of Eq. (4.4). (b-c) Current-phase relation at ϵdd = 1.444. The points show the re-
sults of numerical simulations (b) and experimental measurements (c), respectively.
From the linear regressions (green and pink lines) we extract the coupling energy
K according to Eq. (4.13). The shaded regions are the confidence bands for one
standard deviation.

provides a novel proof of the extraordinary nature of supersolids compared to or-
dinary superfluids and crystals. These oscillations indeed cannot exist neither in
crystals, where particles are bound to lattice sites, nor in ordinary superfluids,
which do not have a lattice structure.
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4.4 Discussion

Our findings open new research directions. The observed reduction of the superfluid
fraction with increasing modulation depths may explain the low superfluid stiffness
measured in other systems, such as 4He on graphite [123, 124] or superconductors
hosting pair-density-wave phases [130–132]. An important question related to the
pair density waves in fermionic systems is how Leggett’s bounds on the superfluid
fraction may be extended to systems where the superfluid density and particle
density do not coincide. Note that Eq. (4.4) is also applicable to standard superfluids
with an externally-imposed spatial modulation, as demonstrated for BECs in optical
lattices via measurements of the effective mass [141] or of the sound velocity [144,
145]. In the supersolid, however, the dynamics linked to the reduced superfluid
fraction is not constrained by an external potential, and so totally new phenomena
might be observed. The large value of fs we measured for the dipolar supersolid,
which remains larger than 10% also for deep density modulations, indicates that
partially quantized supercurrents [15, 136] and vortices [135] should appear at a
macroscopic level.

Due to the generality of the Josephson effect, our Josephson-oscillation tech-
nique might be applied to characterise the local superfluid dynamics of the other
supersolid-like phases under study in superfluid and superconducting systems. The
Eq. (4.5) is applicable in general, considering that the detection of Josephson oscil-
lations implies measurement of both the coupling energy and the spatial period of
the superfluid density modulation. For example, a promising type of system may be
the pair-density wave phase in superconductors, where the modulation has already
been resolved.

Additionally, the self-induced Josephson junctions we have identified in super-
solids might have extraordinary properties due to the mobility of the weak links.
Indeed, although the Goldstone mode of the weak links is not relevant for the
Josephson dynamics due to its very low energy, for the same reason it may affect
the fluctuation properties of the junction [146], potentially leading to new ther-
mometry methods [147], and especially to novel entanglement properties [148].
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Stabilizing persistent currents in
an atomtronic Josephson junction
necklace

This chapter stems from a different fruitful collaboration with the experimental
group of G. Roati at LENS (European Laboratory for Non-Linear Spectroscopy)
in Florence. This resulted in an article sent for publication in the journal Nature
Communication [34] and now under review and from which this chapter is freely
inspired. The authors of this article with which I had the pleasure to work are
Luca Pezzè, Klejdja Xhani and the experimental group composed by Cyprien Daix,
Nicola Grani, Francesco Scazza, Diego Hernandez-Rajkov, Woo Jin Kwon, Giulia
Del Pace and Giacomo Roati.

In this chapter we want to study arrays of Josephson junctions, that are at the
forefront of research on quantum circuitry for quantum computing, simulation and
metrology. They provide a testing bed for exploring a variety of fundamental physi-
cal effects where macroscopic phase coherence, nonlinearities and dissipative mech-
anisms compete. Here we realize finite-circulation states in an atomtronic Josephson
junction necklace, consisting of a tunable array of tunneling links in a ring-shaped
superfluid. We study the stability diagram of the atomic flow by tuning both the
circulation and the number of junctions. We predict theoretically and demonstrate
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experimentally that the atomic circuit withstands higher circulations (correspond-
ing to higher critical currents) by increasing the number of Josephson links. The
increased stability contrasts with the trend of the superfluid fraction – quantified
by Leggett’s criterion – which instead decreases with the number of junctions and
the corresponding density depletion. Our results demonstrate atomic superfluids
in mesoscopic structured ring potentials as excellent candidates for atomtronics
applications, with prospects towards the observation of non-trivial macroscopic su-
perpositions of current states.

5.1 Josephson junction necklace

Josephson junction arrays are pivotal and versatile elements that hold promise to
turn quantum mechanics into emerging computing, sensing and simulation tech-
nologies [149–153]. By harnessing the dissipationless non-linearity of single Joseph-
son junctions, combined with strong collective effects, they show intriguing synchro-
nization [154–157] and interference [141, 158, 159] phenomena. Furthermore, they
serve as experimental tools to investigate the phase coherence and order parameters
in high-Tc superconductors [160, 161].

An array of junctions in a multiply-connected geometry forms a Josephson junc-
tion necklace (JJN). In this configuration, the Josephson effect is used to control the
current of persistent states, implementing robust dynamical regimes characterized
by the competition between tunneling and interaction energies [21]. JJNs with one
or two junctions realize common quantum interference devices (SQUIDs) [162, 163],
which find applications in rotation sensing with superfluid gyroscopes [164, 165] and
magnetic field sensing with superconducting rings [162, 166]. Furthermore, JJNs
are key elements of atomtronic circuits [167–170]. Ultracold atoms in toroidal traps
with a single junction or a weak link have been explored for the experimental re-
alization of ultra-stable circulation states [171–174], including the study of various
superfluid decay phenomena [175–177], current-phase relations [178] and hystere-
sis [179]. These experiments have stimulated several theoretical studies that have
mainly focused on the analysis of different instability phenomena in ring superfluids
with various types of defects and potentials [180–187]. In addition, double-junction
atomtronic SQUIDs have enabled the observation of different regimes of Joseph-
son dynamics [188], resistive flow [189] and quantum interference of currents [190].
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Interestingly, as conjectured by Feynman [191], further intriguing quantum coher-
ence effects can arise – due to the stiffness of the superfluid phase – in ring systems
hosting arrays of multiple junctions. However, despite advancements both in manu-
facturing mesoscopic nanostructured multi-linkcircuits [192–196] and in engineering
atomic trapping potentials [169, 197–199], the realization of tunable JJNs with arbi-
trary number of junctions remains technologically and experimentally challenging,
and so far elusive in both superconducting and superfluid platforms.

In this work, we investigate supercurrent states in an atomtronic JJN. We ana-
lytically predict the stabilization of persistent currents against decay by increasing
the number of junctions, n. We support this surprising prediction by numerical sim-
ulations and we demonstrate it experimentally in a bosonic superfluid ring with n

up to 16. Such an effect is a direct consequence of the single-valuedness of the order
parameter, reflecting the macroscopic phase coherence of the superfluid state. In-
creasing the number of Josephson links leads to a decrease of the superfluid speed
across each junction and to the corresponding increase of the global maximum
(critical) current in the ring. Furthermore, the density depletion associated to an
increasing n determines a decrease of the superfluid fraction according to Leggett’s
formulation [15, 120] that, however, does not result in a decrease of the critical cur-
rent. The full control of our atomtronic circuit opens exciting prospects toward the
realization of non-trivial quantum superpositions of persistent currents [200–204].

5.2 Critical current in a multi-junction
Josephson necklace

A steady superfluid state can be described by a collective wavefunction ψ(r) =√
ρ(r)eiϕ(r), with ρ(r) and ϕ(r) being the density and the phase of the superfluid,

respectively [13]. The latter is related to the superfluid speed by υ(r) = ℏ
m

∇ϕ(r),
where m is the atomic mass and ℏ the reduced Planck constant. To ensure a single-
valued wavefunction, the integral of ∇ϕ(r) calculated around any arbitrary closed
path Γ must be a multiple of 2π,

m

ℏ

∮
Γ
dr · υ(r) = 2πw, (5.1)

where the integer (winding) number w is a topological invariant. In a multiply-
connected geometry (e.g. in a toroidal superfluid), Eq. (5.1) defines a series of
quantized persistent-current states labeled by w [205, 206]. Although the ground
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state is w = 0, metastable finite-circulation states (w /= 0) can be generated, as
first demonstrated with liquid helium [207, 208] and more recently with ultracold
atomic gases [171, 172, 174, 209–211].

Let us consider, for the sake of illustration, a one-dimensional (1D) JJN of radius
R with n equivalent junctions modelled as narrow Gaussian potential barriers,
rotating with angular velocity Ω (see Appendix G). In the rotating frame, the
current of stationary states is given by

J = ρ(θ)(υ(θ)/R − Ω), (5.2)

where θ is the azimuthal angle along the ring. Each junction induces a dip in the
particle density ρ(θ), shown as the blue line in Figure 5.1(a) and (b) as calcu-
lated from the stationary state of the one-dimensional Gross-Pitaevskii equation
(Appendix G). We emphasize that the barrier height is larger than the chem-
ical potential and the barriers width is of the order of the superfluid healing
length (seeAppendix G), with the density not vanishing inside the barrier. Due to

1 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

2
4
6

0

1

y/R

x/Rx/R

2
4
6

0

1

y/R

υ/υ0 υ/υ0
ρ/ρ0 ρ/ρ0

υ/υ
0

n

υmax/υ0
υbulk /υ0

(a) (b)

(c)

Figure 5.1: Superfluid speed in a JJN. Panels (a) and (b) show the particle density
ρ (blue line) and the superfluid speed υ (orange line) in a 1D ring, divided by the
density (ρ0) and speed (υ0) in the homogeneous ring, respectively. The two panels
correspond to a one-dimensional JJN with n = 1 (a) and n = 6 (b) junctions,
respectively. (c) Maximum, υmax (solid orange line), and bulk, υbulk (dotted black
line), superfluid speed as a function of the number of junctions. Results in all panels
are obtained from the stationary state of the one-dimensional GPE with w = 1 and
Ω = 0.
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Figure 5.2: Superfluid phase and critical current in a JJN. (a) Phase gain across each
junction as a function of n, Eq. (5.6), where f(w̃, n) and ρbulk are obtained with GPE
calculations. Symbols are obtained for w̃ = 1.44 (downward triangles), w̃ = 2.15
(squares) and w̃ = 3 (upward triangles), which correspond to the maximum value of
w̃ for n = 1, 3 and 5, respectively, for which a stable solution can be found. For larger
values of w̃, for the given n, the system is unstable due to the nucleation of solitons.
Lines are guides to the eye. In particular, the solid black line connects maxima of
δϕ obtained for different w, separating the stable (blue) from the unstable (orange)
region. The inset shows the superfluid phase ϕ as a function of the angle θ along the
ring, for n = 1 (dotted green line) and n = 6 (solid blue line). (b) Critical current as
a function of the number n of junctions. The analytic formula Eq. (5.7) (large black
dots) superpose to the numerical calculation of the maximum current. Small white
dots show the current J̃ calculated for Ω = 0 and different values of w, ranging
from w = 1 (lower) to w = 8 (upper). Solid and dotted lines are guides to the
eye. The orange region corresponds to values of the current above J̃c and are thus
inaccessible in the system. Inset: phase across each junction as a function of the
current (symbols) for n = 1 (green squares) and n = 6 (blue circles). The solid lines
are the current-phase relations δϕ = arcsin(J̃/J̃c) − 2πℓJ̃ , with J̃c and ℓ extracted
from fitting.

the conservation of mass-flow (see Eq. (5.2)) a density dip implies a local increase
of the superfluid speed υ(θ) (orange lines in Figure 5.1(a) and (b)). Comparing the
panels (a) and (b) of Figure 5.1, obtained for the same value of the circulation w

and for different number of junctions, n = 1 and n = 6, respectively, we observe
that the maximum superfluid speed, υmax, drops by increasing n. This is a conse-
quence of the topological invariance expressed by Eq. (5.1). This is seen by writing
υ(θ) = υbulk + υn−peaks(θ), where υbulk is the bulk speed, given by the minimum ve-
locity along the ring, and υn−peaks(θ) describes the n peaks of the superfluid speed.
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Replacing this expression for υ(θ) into Eq. (5.1), we find

υbulk + 1
2π

∫ 2π

0
dθ υn−peaks(θ) = ℏw

mR
. (5.3)

The bulk contribution in Eq. (5.3) is expected to change only slightly when adding
sufficiently-narrow junctions to the JJN (see the dotted black line in Figure 5.1(c)).
On the contrary, the second term in Eq. (5.3) is proportional to nυmax. Therefore,
for a given w, υmax must decrease roughly as 1/n in order to keep the integral in
Eq. (5.3) constant. The decrease of υmax is confirmed by the results of GPE simula-
tions reported in Figure 5.1(c) (solid orange line). The reduction of the superfluid
velocity at each barrier implies a decrease of the phase gain δϕ across each junction,
upon increasing n. For a more quantitative study, we use Eq. (5.3) and notice that
υbulk = JR/ρbulk + ΩR, where ρbulk is the bulk density, given by the maximum
density along the ring, and nδϕ = (mR/ℏ)

∫
dθ υn−peaks(θ). We find the relation

2πJ̃
ρbulk

+ nδϕ = 2πw̃, (5.4)

where J̃ = J/JR, JR = ℏ/(mR2) is the current quantum in the homogeneous (no
junctions) case and w̃ = w− Ω/JR is an effective circulation in the rotating frame.
Varying Ω allows to address non-integer w̃ and thus continuous values of the current.
Furthermore, by inserting Eq. (5.2) into Eq. (5.1), we obtain

J̃ = w̃f(w̃, n)
2π , (5.5)

where f(w̃, n) = (2π)2
[ ∫

dθ/ρ(θ)
]−1

. We note that f(w̃, n) ≤ fs, where fs ∈ [0, 1]
is Leggett’s superfluid fraction [15, 19, 105, 120, 212, 213]. The latter expresses the
phase rigidity of the system, quantified by the kinetic-energy response to a phase
twist of the superfluid order parameter. Since f(w̃, n) = fs for w = 0 and in the
limit Ω → 0 [34], Eq. (5.5) connects the superfluid fraction to the current in the
ring. It is possible to see that fs decreases with n as far as the junctions do not
overlap substantially [34], therefore, according to Eq. (5.5) the current decreases as
well.

On the other hand, by combining Eqs. (5.4) and (5.5), the phase across each
junction reads

δϕ = 2πw̃
n

(
1 − f(w̃, n)

ρbulk

)
. (5.6)
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In Figure 5.2(a), we plot δϕ as a function of n, Eq. (5.6), where the quantities
f(w̃, n) and ρbulk are obtained from the stationary states of the 1D GPE. Sym-
bols refer to different values of w̃. We clearly see that δϕ decreases with n. This
implies that the condition δϕ ≈ π/2 [11, 21] – that determines the maximum (or
critical) current J̃c in the JJN – for increasing n is met for higher values of w̃. We
find an explicit expression for J̃c, by considering the usual current-phase relation
δϕ = sin−1(J̃/J̃c) − 2πℓJ̃ [21, 175], with ℓ an adimensional kinetic inductance. The
condition J̃ = J̃c provides a critical phase δϕc = π/2 − 2πℓJ̃c. Replacing this value
into Eq. (5.6) and using Eq. (5.5), we find

J̃c = nfc/4
2π(1 − fc/ρc) + nfcℓ

, (5.7)

where fc and ρc are the values of f(w̃, n) and ρbulk obtained when J̃ = J̃c. Ne-
glecting the small inductance (nℓ ≪ 2π), we find that the critical current is mainly
determined by the competition between n and fc(n). In Figure 5.2(b) we plot the
critical current obtained from the GPE solution as a function of n. Numerical val-
ues agree with Eq. (5.7) (black dots, with the solid line being a guide to the eye),
where ℓ is extracted from a fit of the numerical current-phase relation, e.g. shown
in the inset for n = 1 (green squares) and n = 6 (blue circles). Furthermore, small
white dots in Figure 5.2(b) show the current of metastable states in the case Ω = 0,
where J̃ assumes only quantized values, see Eq. (5.5) with w̃ = w. Figure. 5.2(b)
clearly shows that J̃c increases with the number of junctions. When J̃ > J̃c, the
current enters the unstable regime (red regions in Figure 5.2(a)-(b)), characterized
by the simultaneous emission of n solitons from the barriers (see Refs. [185, 186]
for a study of the case n = 1).

Although the above discussion is restricted to a 1D geometry, the predicted ef-
fects are expected to hold also in higher dimensions, due to the general validity
of Eq. (5.1). To confirm this expectation, we have performed 3D time-dependent
Gross-Pitaevskii simulations Appendix G. We prepare the ground state in an an-
nular trap, impose a circulation w0, and observe the dynamics of the system in the
presence of n junctions. Consistently with the results of Figure 5.2, we observe a de-
crease with n of both the superfluid speed and the time-averaged phase gain across
each junction. The results of numerical simulations are schematically summarized
as in Figure 5.3(a). If the number of junctions is below a critical value nc that
depends on w0, then vortices are emitted symmetrically from each barrier, causing
phase slippage and a decay of both the current and the winding number in time.
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Figure 5.3: Sketch of the experiment and observables. (a) After preparing an initial
persistent current state with circulation w0, the n junctions are ramped up (see
text). The 3D density plots are isosurfaces obtained from 3D GPE numerical sim-
ulations of the experimental set-up. If n is below a critical value nc depending on
w0, the initial current is dissipated via the nucleation of vortices (here n = 2 and
vortices are highlighted by orange cycling arrows in the upper right plot). Con-
versely, if n ≥ nc (here n = 4), the system remains stable with w = w0 (lower right
plot). (b) Examples of single-shot experimental in-situ images and interferograms
obtained for w0 = 2 and for the same number of junctions n as in (a): n = 2
(unstable configuration), at t = 0 (i), t = 1 ms (ii) and t = 7 ms (iii); and n = 4
(stable configuration) for t = 0 ms (iv), t = 1 ms (v) and t = 20 ms (vi). In the case
(iii), the circulation has decayed (w(t) < w0) and the vortex emission is identified
by the single spiral arm and the presence of a localized region of low density, i.e. a
vortex.

This vortex emission is the 3D analogue of the observed simultaneous nucleation
of n solitons in 1D simulations in the unstable regime. If n is increased above nc,
then the emission of vortices is suppressed and the circulation remains constant in
time. A higher stable circulation corresponds to a larger critical current.

5.3 Experimental system and persistent current
states

We investigate experimentally the predicted increase of current stability in JJNs
by realizing a Bose-Einstein condensate (BEC) of 6Li molecules in an annular trap
equipped with a variable number (n ≤ 16) of static planar junctions. Both the ring-
shaped trap and the array of junctions are produced by the same digital micromirror
device (DMD) illuminated with blue-detuned light to provide a repulsive optical
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Figure 5.4: Stability phase diagram of an atomtronic JJN. (a) Mean circulation
as a function of time, for w0 = 2 and different number of barriers, n (symbols),
with averages and error bars obtained from ∼ 15 repeated measurements for each
point. The dashed lines are exponential fits,

〈
w(t)

〉
= wf + ∆w exp (−Γt). (b)

Effective decay rate Γ̃ ∝ ∆w Γ (colormap), extracted from the exponential fits
as in panel (a) as a function of w0 and n. Γ̃ quantifies the stability of an initial
finite-circulation state w0. The dashed white line is the critical circulation wc(n)
and the corresponding current (right axis) as a function of n, obtained from 3D
GPE simulations. (c) Upper (dashed red line) and lower (dashed blue line) bounds
to the superfluid fraction fs, Eq. (5.8), as a function of the number of junctions.
Bounds are obtained from the ground state density of the numerical GPE. The solid
lines are the bounds evaluated by including the finite resolution of the experimental
imaging system. Circles are the upper bound evaluated using experimental in-situ
images and averaged over 10 realizations.

potential. Using the high resolution of the DMD projection setup, we create a
dark ring-shaped region in the x-y plane delimited by hard walls whose height is
much larger than the chemical potential of the superfluid (given by µ/h ≃ 850 Hz
in the clean ring), with Rin ≃ 11.7 ± 0.2 µm and Rrout ≃ 20.6 ± 0.2 µm being
the inner and outer radius of the annulus. The potential is completed by a tight
harmonic confinement along the vertical z direction, of trapping frequency ωz =
2π×(383±2) Hz. The junctions can be modelled as Gaussian peaks of initial height
V0 ≃ (1.3 ± 0.2)µ and 1/e2-width σ = (1.2 ± 0.2) ξ, with ξ ≈ 0.68 µm being the
healing length. We initially trap ≃ 6.8 × 103 condensed atom pairs inside the ring
with a shot-to-shot stability around 5%. Due to the finite lifetime of our molecular
BEC, the pair number decreases over the course of the current decay by at most
20%, causing a decrease of the chemical potential of the superfluid. Consequently
the value of V0/µ increases by up to ∼ 15% depending on the holding time.
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We initialize the superfluid ring in a quantized circulation state with winding
number w0 ∈ {1,2,3,4}. Following the procedure described in Ref. [174], different
values of w0 are obtained on-demand by shining a DMD-made azimuthal light inten-
sity gradient onto the ring over a duration tI ≪ ℏ/µ, i.e. shorter than the character-
istic density response time, ℏ/µ. In this way, we imprint a phase Φ(θ) = U0(θ)×tI/ℏ
to the condensate wavefunction without modifying the atomic density [211], where
U0(θ) is the spin-independent potential exerted by the light field on the atomic
states that varies linearly with θ [174]. After the imprinting, we wait 300 ms to
let the cloud reach equilibrium, allowing the possible density excitations following
the imprinting procedure to damp out [187]. We then progressively ramp up the n
Gaussian junctions over approximately 1 ms (corresponding to ≈ 6 ℏ/µ).

5.4 Stability phase diagram

To measure the winding w in the ring, we exploit an interferometric probe [174,
178, 214]: we equip the atomic superfluid with a central disk acting as a phase
reference (see panels (i) and (iv) in Figure 5.3(b)) and measure the relative phase
between the disk and the ring from the interference pattern arising after a short
time-of-flight. The number of spiral arms in the interferogram provides access to the
value of the circulation (winding number) at time t, w(t). The different panels of
Figure 5.3(b) display typical examples of experimental images. In panels (i) and (iv)
we show the in-situ atomic density profile at t = 0. The atomic density (averaged
over 10 experimental images) is characterized by a homogeneous bulk both in the
azimuthal and radial directions. The n = 2 (i) and n = 4 (iv) junctions are clearly
visible and are associated to local dips in the density, similarly as in Figure 5.1
and Figure 5.3(a). In panels (ii) and (iii) we show examples of spiral interference
patterns emerging for an unstable dynamics, namely w(t) decreasing in time below
w0 (here, w0 = 2 and n = 2): in (ii) t = 1 ms and w(t) = 2, while in (iii) t = 7 ms
and w(t) = 1. In particular, panel (iii) shows the presence of a vortex identified as a
localized low-density defect and marked by the orange arrow. The vortex emission
signals the decrease of w by one quantum. In panels (v) and (vi) we show instead the
interferograms for stable dynamics, namely w(t) = w0 (here, w0 = 2 and n = 4). A
non-circular, polygonal interference pattern is visible both at short ((v), t = 1 ms)
and at long ((vi), t = 20 ms) times due to the sharp phase gain at the junctions.

By averaging the winding number over ∼ 15 experimental realizations under
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the same conditions, we extract the evolution of the mean circulation
〈
w(t)

〉
for

various n. We study the dynamics up to 250 ms, which is sufficient to observe
steady current states at long-times while still limiting particle losses. The measured〈
w(t)

〉
is shown in Figure 5.4(a) for w0 = 2. We fit each curve with an exponential

decay given by
〈
w(t)

〉
= wf + ∆w exp (−Γt). The fitting parameters wf , ∆w and

Γ allow us to characterize the mean supercurrent. As
〈
w(t)

〉
is obtained from

statistical averaging, the figure shows that the number of realizations w(t) that
remain stable in time increases with the number of junctions. In particular, the
number of stable realizations increases substantially when changing the number of
junctions from n = 2 (red diamonds) to n = 4 (yellow squares). For n = 10 (blue
circles), all realizations are stable: this demonstrates the experimental capability to
create stable finite-circulation states in a JJN.

Figure 5.4(b) summarizes the results obtained for different w0 and n, in the
form of a stability phase diagram. In particular, we plot the quantity Γ̃ = ∆w Γ/
maxn(∆w Γ), where each horizontal line of the phase diagram is normalized to its
maximum value for fixed w0. This quantity combines information on the difference
between the initial and the final winding numbers, ∆w, namely how much the
currents decay, and on the timescale over which this decay takes place, Γ. Values of
Γ̃ ≈ 1 (red regions) are obtained when most of the realizations w(t) rapidly decay
towards values of the circulation lower than the initial w0. On the contrary, small
values of Γ̃ ≈ 0 (blue regions) are obtained when most of the realizations are stable
over time, namely w(t) = w0. The phase diagram clearly shows that, on average, the
system supports a higher number of stable realizations when increasing the number
of junctions. By the choice of normalization, Γ̃ shows a sharp transition from Γ̃ ≈ 1
to Γ̃ ≈ 0 when increasing n. The dashed white line in Figure 5.3(b) denotes the
critical winding number wc(n) and the corresponding current (right axes) as a
function of n, as computed numerically from 3D GPE simulations. The numerical
critical curve wc(n) is obtained for V0/µ = 1.8 and match the experimental phase
diagram well. The need for a larger V0/µ in numerical simulations with respect
to the one estimated in the experiment, is consistent with the finite lifetime of
the sample (which implies that V0/µ increases during the dynamics) and the finite
resolution of the DMD potential, which makes the barriers not perfectly identical.
Anyway, we note that the only effect of a change of V0/µ on the critical line wc(n)
is to provide a linear shift, meaning that the particular choice of V0/µ does not
affect its trend, which well reproduce the experimental findings.
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Given that J̃c(n) ∼ n fc(n) from Eq. (5.7), a significant decrease of the super-
fluid fraction fs ≥ fc would overshadow the stabilization mechanism arising from
increasing n. For this reason, in Figure 5.4(c), we study the dependence of fs on
n and indeed find a mildly decreasing trend, which is insufficient to disrupt the
enhanced stability of currents for large n. According to a variational calculation by
Leggett [15, 120], the superfluid fraction fs can be bounded experimentally from
the in-situ density profile [19, 212, 213]:∫∫ dz dr r

1
d2

∫
cell

dθ
ρ(r,θ,z)

≤ fs ≤
(

1
d2

∫
cell

dθ∫∫
dz dr rρ(r, θ, z)

)−1

, (5.8)

where the density ρ(r, θ, z) is calculated from the ground state of the 3D GPE.
The bounds in Eq. (5.8) are computed by restricting the azimuthal angle θ over a
unit cell of size d = 2π/n and using the normalization

∫∫
dz dr r

∫
cell dθ ρ(r, θ, z) =

1 [15, 105, 120]. In Figure 5.4 we plot the upper (dashed red line) and lower (dashed
blue line) bounds in Eq. (5.8). They are very close to each other as our system is
approximately separable in the transverse spatial directions [212] and coincide in
1D, where fs = limw=0, Ω→0 f(w̃, n) [34]. Increasing n enhances the size of the
density dip relative to the unit cell length and thus decreases both the lower and
upper limits in Eq. (5.8), see Figure 5.4(c). Experimentally, for each value of n,
we compute Leggett’s upper bound on 10 different images of the experimental
density. We compute the integral on the right-hand side of Eq. (5.8) by summing
over all pixels inside an annular region with inner and outer radii rcut1 > Rin

and rcut2 < Rout respectively. We have numerically verified that the values of the
bounds do not depend on the exact size of this region. The corresponding mean
values and standard deviations are shown as circles in Figure 5.4(a). The deviations
from fs = 1 in the clean torus (n = 0) are mainly due to noise in the experimental
images, as well as the finite pixel size of our imaging sensor. Experimental results
are well reproduced when taking into account the finite resolution of the imaging
system (solid blue and red lines) and clearly show a decrease of fs with n.

5.5 Superfluid fraction and the f (w̃, n) function

The superfluid fraction for neutral atoms in a ring trap rotating at an angular
velocity Ω can be defined as [15, 120]

fs = 1 − lim
Ω−→0

L

IclΩ
(5.9)
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Figure 5.5: Function f(w̃, n) calculated for stationary states of the 1D GPE. Panel
(a) plots f(w̃, n) as a function of n for two interesting cases: fc(n) = f(w̃ =
w̃c, n) (dots dots) and limw=0,Ω→0 f(w̃, n) = fs (circles), corresponding to Leggett’s
superfluid fraction, Eq. (5.10). Panel (b) shows f(w̃, n) as a function of w̃ and for
n = 6 (dots). In both panels, lines are guides to the eye.

where L is the expectation value of the angular momentum and Icl is the classical
moment of inertia. In 1D, we have

fs = 1
1
d2

∫
cell

dθ
ρ(θ)

, (5.10)

where ρ(θ) is normalized to one over the unit cell of azimuthal size d. Equation (5.10)
is derived by noticing that the two bounds in Eq. (5.8) coincide in 1D. In our case,
restricting to the unit cell as in Ref. [15, 120] is not necessary and Eq. (5.10)
is unchanged if we write fs = 1

(2π)2 (
∫ dθ
ρ(θ))

−1 with ρ(θ) normalized to one over
the full circle, even in the presence of n junctions. In particular, we have fs =
limw=0, Ω→0 f(w̃, n), where f(w̃, n) is related to the current according to Eq. (5.5).
In Figure 5.5(a) we plot fs (circles) and fc (corresponding to f(w̃ = w̃c, n), dots) as
a function of n. Both functions decrease with n until the barriers start to overlap.
In Figure 5.5(b) we plot f(w̃, n) as a function of w̃ for n = 6.

To compare numerical and experimental data in Figure 5.4(c), we have taken
into account the finite spatial resolution of the imaging system, characterized by a
Point Spread Function (PSF) of full-witdh-half-maximum FWHM = 0.83µm [215].
To estimate the theoretical curves of Figure 5.4(c), we first integrate the 3D nu-
merical densities along the z direction, Then, we account for the finite experimental
resolution by convolving the integrated numerical densities with a two-dimensional
Gaussian with a FWHM matching the experimental PSF. This procedure leads

106



5

5 – Stabilizing persistent currents in an atomtronic Josephson junction necklace

to a decrease in the resolution of the density modulation, which causes the esti-
mated superfluid fraction to increase and yields results in good agreement with
experimentally extracted values (see Figure 5.4(c)).

5.6 Discussion

Our work showcases the first experimental observation of ring supercurrents in pe-
riodic arrays of Josephson junctions. Such stable currents can be experimentally
observed only for a sufficiently large number of links, as predicted by our theory
modeling. In particular, our work shows that the maximum current flowing across
the atomtronic circuit is due to a cooperative mechanism involving all the junc-
tions rather than only to the properties of the single Josephson link. We expect
the mechanism demonstrated in this manuscript to apply to any superfluids and
superconductors as it soleley depends on the single valuedness of the wavefunction
in a multiply-connected topology.

Therefore, a natural extension of our work will be to investigate whether the
same effect stabilizes supercurrents in other annular systems, such as atomic Fermi
superfluids [173, 174] and supersolids [216]. In the former case, the condensate
fraction differs from unity even at T = 0 [215] and additional dissipative effects, such
as Cooper pair-breaking [217, 218] may compete with the stabilization mechanism.
In the latter, intrinsic density modulations realize an array of self-induced Josephson
junctions – as recently demonstrated in Ref. [19] for an elongated atomic system –
which can be controlled by tuning the confinement parameters.

Finally, the exquisite controllability offered by our platform opens the way to-
ward realizing exotic quantum superposition of superflow states [200–204] with
possible implications in both atomtronic and quantum technologies.
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Conclusions

Starting with the beginnings of quantum mechanics in the first chapter, we finally
arrived at the present day. We have studied Josephson currents in superfluid and
supersolid systems, providing insight into the existence of new phenomena and
proposing platforms for new types of quantum technologies.

The description of a supersolid as a self-induced Josephson junction has been
theoretically modelled by a generalization of the standard two-mode model of the
bosonic Josephson junctions. Despite the absence of an external weak link, which
makes the possibility of sustaining josephson oscillations non-trivial, we were able
to find a specific regime where we theoretically predict and numerically observe
the presence of a single sinusoidal mode, decoupling it from the others. Moreover,
we numerically observed the transition to the so-called macroscopic quantum self-
trapping regime, characteristic of bosonic Josephson junctions, comparing it with
theoretical model, yelding a good agreement. Numerical results and theoretical
prediction are compared with exprimental data of the group whos collaboration
led to the born of [19]. In this work, the demonstration of Josephson oscillations
in a supersolid dipolar quantum gas is performed experimentally, numerically and
theoretically. Moreover, we provide a relation between the coupling energy measured
by the Josephson effect and the superfluid fraction of the system, as originally
defined by Leggett. This relation has allowed us to measure without any doubts
the sub-unity value of the superfluid fraction of this supersolid system, through
the measure of the Josephson effect. It also provides a novel procedure applicable
in other superfluid and superconducting systems showing supersolid-like properties
that are now under study. However, the self-induced nature of the supersolid dipolar
Josephson junction makes it a promising and rich platfrom to characterize this novel
state of matter and provide novel quantum technologies.

The atomtronic Josephson junctions necklace studied in [34] consists instead of
a ring-shaped superfluid with a periodic array of Josephson weak links. Ultracold
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atoms in toroidal traps with a single or two Josephson junctions have been exten-
sively studied, but the realization of tunable Josephson junctions necklaces with
arbitrary number of junctions remains technologically and experimentally chal-
lenging, and so far elusive in both superconducting and superfluid platforms. We
demonstrate that the critical current supported by a single Josephson junction, be-
fore dissipation via vortex nucleation occurs, is enhanced by increasing the number
of Josephson junctions along the ring superfluid. Increasing the number of Joseph-
son junctions leads also to a decrease of the supefluid fraction, contrasting with
the observed stabilization of the persistent currents. We theoretically predict this
stabilization using the single-valuedness of the superfluid wave function, explaining
it as a cooperative mechanism involving all the Josephson junctions and not only a
single one. We compare numerical simulations with experimental data of the group
whos collaboration contributed to the born of this work.

The natural continuation of these works is the study of the supersolid in a ring ge-
ometry. This resembles the original definition of the superfluid fraction by Leggett,
but even more it allows to study the presence of partially quantized supercurrents
and vortices, thanks to the significant value of the superfluid fraction measured.
The atomtronic Josephson junctions necklace study would suggests the idea of a
better stabilization of supercurrents in a supersolid. The array of Josephson junc-
tions, indeed, creates a periodic modulation in the density resembling the one of
the supersolid, which, in contrast, is self-induced. Our theoretical 2M-mode model
Eq. (3.18) is easily customisable on a ring geometry, simply by removing the energy
offsets due to the harmonic trap and imposing a coupling between the first and last
cluster. From a numerical point of view, it is needed to impose the periodic bound-
ary conditions along the direction where the density modulation develops. These
works unlock a promising research path full of possibility.

The potential applications of Josephson junctions in quantum computing, preci-
sion metrology, and the development of future quantum devices are extensive and
exciting. The intersection of Josephson physics and supersolidity presents an excit-
ing frontier that promises rich scientific discoveries and technological innovations.
Atomic superfluids in mesoscopic structured ring potentials are excellent candidates
for atomtronics applications, with prospects towards the observation of non-trivial
macroscopic superpositions of current states.

This thesis has been an account of my personal journey during my PhD, de-
tailing the various interactions I had with researchers both in my group and in
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other groups. Just as we study the dynamics and interactions of atoms, which are
essential to the phenomena and effects we observe, humans also rely on social in-
teractions and relationships to navigate the world. No individual exists in isolation;
we are all interconnected and interdependent. It is the complex and dynamic flow
of interacting atoms that leads to extraordinary phenomena, as this thesis has had
the audacity to illustrate.
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Quantum depletion of a BEC

We stated in the main text that, using the Bogoliubov prescription Eq. (1.54)-
Eq. (1.55), the quantum depletion of a BEC, that is the number of particles in the
ground state with k /= 0, can be calculated as:

N ′ =
∑
k /=0

⟨nk⟩ (A.1)

The sum can be substituted with an integral:

N ′ =
∫
dn⟨nk⟩ = V

(2π)3

∫
dk⟨nk⟩ =

= V

(2π)3

∫
dkv2

k = V

(2π)3

∫
dk

1
2

(
E0
k + ng

Ek
− 1

) (A.2)

Now, we can write explicitly the energies E0
k and Ek and define ng ≡ ℏ2k2

0
2m :

N ′ = V

(2π)3

∫
dk

1
2

 ℏ2k2

2m + ℏ2k2
0

2m√(
ℏ2k2

2m

)2
+2ng ℏ2k2

2m

− 1
=

= V

2(2π)3

∫
4πk2dk

 k2 + k2
0√

k4 + 2k2k2
0

− 1


(A.3)

where we have integrated over the angles in spherical coordinates because the in-
tegrand depends only on the modululs of k. With the substitution x = k/k0, so
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dx = dk/k0, we have:

N ′ = V k3
0

4π2

∫ +∞

0
dxx

 x2 + 1√
x2 + 2

− 1
 (A.4)

The next substitution is x2 + 2 = 2 cosh2 α, so that xdx = 2 coshα sinhαdα and
then:

N ′ = V k3
0

4π2

∫ +∞

0
dα2 coshα sinhα

(
2 cosh2 α− 1√

2 coshα
−
√

2 cosh2 α− 2
)

=

= V k3
0

4π2

∫ +∞

0
dα

[√
2 sinhα(2 cosh2 α− 1) − 2

√
2 coshα sinh2 α

)
=

= V k3
0

2
√

2π2

[∫
d(coshα)(2 cosh2 α− 1) − 2

∫
d(sinhα) sinh2 α

]
=

= V k3
0

2
√

2π2

[
2
3 cosh3 α− coshα− 2

3 sinh3 α

]∣∣∣∣+∞

α=0

(A.5)

At this point we need the expression of the hyperbolic functions in term of expo-
nentials:

cosh y = ey + e−y

2
cosh3 y = 1

8(e3y + 3ey + 4 + 3e−y + e−3y)

sinh3 y = 1
8(e3y − 3ey + 4 + 3e−y − e−3y)

(A.6)

Therefore:

N ′ = V k3
0

2
√

2π2

[
1
6(3ey + e−3y) − ey + e−y

2

]∣∣∣∣+∞

α=0
=

= V k3
0

4
√

2π2

[
e−3y

3 − e−y
]∣∣∣∣+∞

α=0
=

= V k3
0

4
√

2π2

(
1 − 1

3

)

= V k3
0

4π2

√
2

3

(A.7)

Putting together the definitions of g:

ℏ2k2
0

2m = ng = n
4πℏ2a

m

k2
0 = 8πan

(A.8)
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we finally obtain the density of the quantum depletion:

n′ ≡ N ′

V
= 1

4π2

√
2

3 (8πan)3/2 = 8
3
√
π

(na)3/2 (A.9)

If we divide it by the total atom number density, we have:

n′

n
= 8

3
√
π

(na3)1/2 (A.10)

that is exactly the equation Eq. (1.69).
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B

Derivation of the two mode model
for a dSJJ and beyond

In this appendix we are going to derive the two-mode model for the dSJJ retain-
ing also higher order terms in the approximation of zero overlap between spatial
wavefunctions. We will derive the results presented in subsection 3.2.2 and than
the procedure used by Ananikian et al.[219].
The procedure that we are going to employ consists in substituting the two-mode
ansatz

ψ(r, t) = ψ1(t)ϕ1(r) + ψ2(t)ϕ2(r) (B.1)

inside the eGPE Eq. (3.3) describing the dipolar supersolid

i
∂ψ(r, t)
∂t

=
[

− ∇2

2m + Vt(r) + g|ψ(r, t)|2 +
∫
dr′Vdd(r − r′)|ψ(r′, t)|2

+ γ(ϵdd)|ψ(r, t)|3
]
ψ(r, t)

(B.2)
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This substitution and than its projection onto ϕ1 gives

i
∂ψ1

∂t
=
∫
dr ϕ1

(
− ∇2

2m + Vt(r)
)

(ψ1ϕ1 + ψ2ϕ2)+

+g
∫
dr ϕ1

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ1ϕ2

)
(ψ1ϕ1 + ψ2ϕ2)+

+
∫
drϕ1(ψ1ϕ1 + ψ2ϕ2)

∫
dr′ Vdd(|r − r′|)

(
|ψ1|2ϕ′2

1 + |ψ2|2ϕ′2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ′

1ϕ
′
2

)
+

+γ(ϵdd)
∫
dr ϕ1

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ1ϕ2

)3/2
(ψ1ϕ1 + ψ2ϕ2)

(B.3)
Isolating the temporal terms, we have

i
∂ψ1

∂t
= −ψ1K11 − ψ2K12 + |ψ1|2ψ1U1111 + |ψ1|2ψ2U1112 + |ψ2|2ψ1U1221 + |ψ2|2ψ2U1222+

+(ψ∗
1ψ2 + ψ1ψ

∗
2)ψ1U1121 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ψ2U1122 + |ψ1|2ψ1D1111 + |ψ1|2ψ2D1211+

+|ψ2|2ψ1D1122 + |ψ2|2ψ2D1222 + (ψ∗
1ψ2 + ψ1ψ

∗
2)ψ1D1112 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ψ2D1212 + LHY

(B.4)
where we didn’t write the LHY term and we have defined

Kij ≡ −
∫
dr ϕi(r)

(
− ∇2

2m + Vt(r)
)
ϕj(r)

Uαβγδ ≡ g
∫
dr ϕα(r)ϕβ(r)ϕγ(r)ϕδ(r)

Dαβγδ ≡
∫
dr ϕα(r)ϕβ(r)

∫
dr′ Vdd(|r − r′|)ϕ′

γ(r)ϕ′
δ(r) .

(B.5)

Note some properties of these coefficients. The tunnelling Kij is symmetric under
exchange of indices

Kij ≡ −
∫
dr ϕi(r)

(
− ∇2

2m + Vt(r)
)
ϕj(r) =

= 1
2m

∫
dr ϕi(r)

(
∇2ϕj(r)

)
−
∫
dr Vt(r)ϕi(r)ϕj(r) =

= − 1
2m

∫
dr
(
∇ϕi(r)

)
·
(
∇ϕj(r)

)
−
∫
dr Vt(r)ϕj(r)ϕi(r) =

= 1
2m

∫
dr ϕj(r)

(
∇2ϕi(r)

)
−
∫
dr Vt(r)ϕj(r)ϕi(r) ≡ Kji

(B.6)

where we have utilized the integration by parts technique to shift the nabla operator
within the first integral, discarding the boundary term where the spatial wavefunc-
tions vanish. The contact interaction coefficient U is symmetrical with respect to
any rearrangement of its indices, as it is the integral of a product of wavefunctions.
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Conversely, the dipolar interaction coefficient Dαβγδ retains its form when swapping
the first two indices with each other or the third and fourth with each other, as it
involves two distinct integrals.

To deal with the LHY term, we recall that we are in the limit of zero overlap
approximation, thus

γ
∫
dr ϕ1

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ1ϕ2

)3/2
(ψ1ϕ1 + ψ2ϕ2) ∼=

∼= γ(ϵdd)
∫
dr ϕ1

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2

)3/2
(ψ1ϕ1 + ψ2ϕ2) =

= γψ1

∫
dr ϕ1

(
|ψ1|2ϕ2

1ϕ
2/3
1 +������

|ψ2|2ϕ2
2ϕ

2/3
1

)3/2
+ γψ2

∫
dr ϕ1

(
������
|ψ1|2ϕ2

1ϕ
2/3
2 + |ψ2|2ϕ2

2ϕ
2/3
2

)3/2 ∼=

∼= γ|ψ1|3ψ1

∫
dr ϕ5

1 + γ|ψ2|3ψ2
��

����∫
dr ϕ1ϕ

4
2

∼= γ|ψ1|3ψ1

∫
dr ϕ5

1

(B.7)
Defining

Li ≡ γ
∫
dr ϕ5

i (r) , (B.8)

the LHY term assumes the simple form1

|ψ1|3ψ1L1 . (B.9)

By analogy with Eq. (B.3), we substitute the two-mode ansatz Eq. (3.4) within
Eq. (3.3), but this time we project onto ϕ2

i
∂ψ2

∂t
=
∫
dr ϕ2

(
− ∇2

2m + Vt(r)
)

(ψ1ϕ1 + ψ2ϕ2)+

+g
∫
dr ϕ2

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ1ϕ2

)
(ψ1ϕ1 + ψ2ϕ2)+

+
∫
drϕ2(ψ1ϕ1 + ψ2ϕ2)

∫
dr′ Vdd(|r − r′|)

(
|ψ1|2ϕ′2

1 + |ψ2|2ϕ′2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ′

1ϕ
′
2

)
+

+γ(ϵdd)
∫
dr ϕ2

(
|ψ1|2ϕ2

1 + |ψ2|2ϕ2
2 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ϕ1ϕ2

)3/2
(ψ1ϕ1 + ψ2ϕ2)

(B.10)
Using the definitions Eq. (B.5) and Eq. (B.8), an equation similar to Eq. (B.4) is

1One might wonder why in the LHY term we are sending away integrals with overlaps, while
in all others we are not. Actually we could do that, but I would like to wait as long as possible so
that I can then generalise the calculus.

116



B

B – Derivation of the two mode model for a dSJJ and beyond

obtained

i
∂ψ2

∂t
= −ψ1K21 − ψ2K22 + |ψ1|2ψ1U2111 + |ψ1|2ψ2U2112 + |ψ2|2ψ1U2221 + |ψ2|2ψ2U2222+

+(ψ∗
1ψ2 + ψ1ψ

∗
2)ψ1U2121 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ψ2U2122 + |ψ1|2ψ1D2111 + |ψ1|2ψ2D2211+

+|ψ2|2ψ1D2122 + |ψ2|2ψ2D2222 + (ψ∗
1ψ2 + ψ1ψ

∗
2)ψ1D2112 + (ψ∗

1ψ2 + ψ1ψ
∗
2)ψ2D2212+

+|ψ2|3ψ2L2
(B.11)

where we treated the LHY as before.
Let us define the quantities we want to study the dynamics of, that is the population
and phase imbalances between the two wells

Z ≡ N1 −N2

N
, ∆θ ≡ θ2 − θ1 . (B.12)

Remembering Eq. (3.6), it is valid

|ψ1|2 = N1 = N

2 (1 + Z)

|ψ2|2 = N2 = N

2 (1 − Z)

(ψ∗
1ψ2 + ψ1ψ

∗
2) = 2

√
N1N2 cos ∆θ = N

√
1 − Z2 cos ∆θ

(B.13)

The goal now is to rewrite both Eq. (B.4) and Eq. (B.11) as a function only of z
and ∆θ. Let us start gathering the terms containing ψ1 and ψ2

i
∂ψ1

∂t
= ψ1

[
−K11 + N

2 (1 + Z)U1111 + N

2 (1 − Z)U1122 +N
√

1 − Z2 cos ∆θU1112+

+N2 (1 + Z)D1111 + N

2 (1 − Z)D1122 +N
√

1 − Z2 cos ∆θD1112 + N
√
N

2
√

2
(1 + Z)3/2L1

]
+

+ψ2

[
−K12 + N

2 (1 + Z)U1112 + N

2 (1 − Z)U1222 +N
√

1 − Z2 cos ∆θU1122+

+N2 (1 + Z)D1211 + N

2 (1 − Z)D1222 +N
√

1 − Z2 cos ∆θD1212

]
≡ C1ψ1 + C2ψ2

(B.14)
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i
∂ψ2

∂t
= ψ1

[
−K21 + N

2 (1 + Z)U2111 + N

2 (1 − Z)U1222 +N
√

1 − Z2 cos ∆θU1212+

+N2 (1 + Z)D2111 + N

2 (1 − Z)D2122 +N
√

1 − Z2 cos ∆θD2112

]
+

+ψ2

[
−K22 + N

2 (1 + Z)U2112 + N

2 (1 − Z)U2222 +N
√

1 − Z2 cos ∆θU2122+

+N2 (1 + Z)D2211 + N

2 (1 − Z)D2222 +N
√

1 − Z2 cos ∆θD2212 + N
√
N

2
√

2
(1 − Z)3/2L2

]
≡ C2ψ1 + C3ψ2

(B.15)
where we have called C1, C2, C3 the coefficients inside the square brakets and we
have noticed that two of them are equal (C2). Calculating the derivatives of ψ1,2

∂ψj
∂t

= Ṅj

2
√
Nj

eiθj + i
√
Nj θ̇je

iθj ∀j = 1,2 (B.16)

we can rewrite Eq. (B.14) and Eq. (B.15) asi
Ṅ1

2
√
N1
eiθ1 −

√
N1θ̇1e

iθ1 =
√
N1e

iθ1C1 +
√
N2e

iθ2C2

i Ṅ2
2
√
N2
eiθ2 −

√
N2θ̇2e

iθ2 =
√
N1e

iθ1C2 +
√
N2e

iθ2C3
(B.17)

Simplifying the exponentials and multiplying by the square root of the particles
number, we have i

Ṅ1
2 −N1θ̇1 = N1C1 +

√
N1N2e

i∆θC2

i Ṅ2
2 −N2θ̇2 =

√
N1N2e

−i∆θC2 +N2C3
(B.18)

In order to obtain an equation for Ż, let us subtract the imaginary parts of the two
equations (first minus second)

Ṅ1 − Ṅ2

2 = 2C2

√
N1N2 sin ∆θ

Ż = 2C2
√

1 − Z2 sin ∆θ
(B.19)

Let us calculate the explicit form of the coefficient, isolating the dependences from
Z and ∆θ

C2 = −K12 + N

2 (U1112 + U1222 +D1211 +D1222) + Z(U1112 − U1222 +D1211 −D1222)+

+N
√

1 − Z2 cos ∆θ(U1212 +D1212)
(B.20)
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This means that, in the zero overlap limit, the lowest order is

Ż = −2K12
√

1 − Z2 sin ∆θ (B.21)

Going back to the system Eq. (B.18), this time we look for the phase evolution, so
we isolate the terms containing θ̇. In order to do that, we divide the first equations
by N1 and the second one by N2. After, we subtract their real parts (first minus
second one)

∆̇θ = C1 + C2

√
N2

N1
cos ∆θ − C2

√
N1

N2
cos ∆θ − C3 =

= C1 − C3 + C2

(√
1 − Z

1 + Z
−
√

1 + Z

1 − Z

)
cos ∆θ =

= C1 − C3 − 2C2
Z√

1 − Z2
cos ∆θ

(B.22)

The xeplicit form of C1 − C3 is

C1 − C3 = −K11 +K22 + N

2
(
U1111 −BU2222 +D1111 −D2222 −D2211 +D1122

)
+

+ZN2
(
U1111 + U2222 − 2U1122 +D1111 +D2222 −D2211 −D1122

)
+

+N
√

1 − Z2 cos ∆θ
(
U1112 − U1222 +D1112 −D2212

)
+ (B.23)(

N

2

)3/2(
(1 + Z)3/2L1 − (1 − Z)3/2L2

)
(B.24)

which, still in the zero-overlap limit, becomes

C1 − C3 ∼= K22 −K11 + N

2
(
U1111 − U2222 +D1111 −D2222

)
+

+ZN2
(
U1111 + U2222 +D1111 +D2222

)
+
(
N

2

)3/2(
(1 + Z)3/2L1 − (1 − Z)3/2L2

)
≡

≡ A+BZ + C(1 + Z)3/2 +D(1 − Z)3/2

(B.25)
where we have defined A, B, C and D in order to highlight the Z dependency. In
this way, the equation for ∆̇θ is

∆̇θ = A+BZ + 2K12
Z√

1 − Z2
cos ∆θ + C(1 + Z)3/2 +D(1 − Z)3/2 (B.26)

Rescaling the time variable as for the BJJ

t → 2K12t , (B.27)
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we obtain a two equations system for Z and ∆θŻ = −
√

1 − Z2 sin ∆θ
∆̇θ = A′ +B′Z + Z√

1−Z2 cos ∆θ + C ′(1 + Z)3/2 +D′(1 − Z)3/2
(B.28)

with adimensional coefficients

A′ = A

2K12
= K22 −K11

2K12
+
N
(
U1111 − U2222 +D1111 −D2222

)
4K12

B′ = B

2K12
=
N
(
U1111 + U2222 +D1111 +D2222

)
4K12

C ′ = C

2K12
= N3/2L1

25/2K12

D′ = D

2K12
= −N3/2L2

25/2K12
.

(B.29)

The variables Z and ∆θ are canonically conjugate with Ż = − ∂H
∂∆θ and ∆̇θ = ∂H

∂z
,

where the Hamiltonian is

H = A′Z +B′Z
2

2 −
√

1 − Z2 cos ∆θ + 2
5C

′(1 + Z)5/2 + 2
5D

′(1 − Z)5/2 (B.30)

which is the Hamiltonian found in subsection 3.2.2.

Implemented two-mode model (I2M)

Following Ananikian’s approach, another way of dealing with the two-mode model
is to use the symmetries of the wave functions. If before, in fact, we wrote the total
wave function as the sum of two wave functions located in the two wells, we now
take a further step and write

ϕ1,2 = ϕ+ ± ϕ−√
2

(B.31)

where ϕ+,− are respectively the ground state, which is symmetrical in space, and
the first excited state, which, on the other hand, is antisymmetrical. Their sum
or difference results in the ϕ1,2 located in the two wells. The procedure then is
as follows: first we substitute the ansatz Eq. (3.4), then we do the substitution
Eq. (B.31), so that we have the spatial part with ϕ+,−, but the coefficients ψ1,2

which we can write as a function of Z and ∆θ. At this point, we project onto ϕ+

and ϕ− in order to use the symmetries of the wave functions to cancel integrals.
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The difference with the previous standard two-mode method, consists in cancelling
terms exactly, the only approximation clearly remains in the ansatz. Finally, having
obtained two equations from the two projections exactly as in the previous case,
we calculate the difference between real and imaginary terms, obtaining a system
of two equations for Z and ∆θ. Before going on to write it down explicitly, let us
make some further considerations about the coefficients under the symmetric trap
hypothesis. Indeed, in this model, we no longer only have the coefficients Eq. (B.29),
but we are also going to have

−K12 ≡ K

U1122 ≡ U1

U1112 = U2221 ≡ U2

D1212 ≡ D1

D1122 ≡ D2

D1211 = D1222 = D2212 = D1112 ≡ D3

(B.32)

where we have used Vdd(r − r′) = Vdd(r′ − r). The system assumes the formŻ = A
√

1 − Z2 sinϕ+D(1 − Z2) sin 2ϕ
ϕ̇ = BZ + e Z√

1−Z2 cosϕ+ fZ cos 2ϕ+ C
(
(1 + Z)3/2 − (1 − Z)3/2

)
A = 2

(
K +N(U2 +D3)

)
B = N(U +D −D1 −D2 − 2U1)
C = (N/2)3/2L

D = N(U1 +D1)
e = −A
f = −D

(B.33)

where we put ourselves directly into the symmetrical trap case. However, the term
multiplying C, which is the contribution of LHY, could not be developed using the
symmetries of the wave functions. This is because it contains a cube modulus, so it
can be written as the square modulus raised to 3/2 and the presence of the square
root breaks any spatial symmetry. We have therefore calculated that term as in the
previous case, i.e. remaining with ψ1,2 and using the zero overlap approximation.
Rescaling time by −A

t → −At , (B.34)
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we have

Ż = −
√

1 − Z2 sinϕ+D′(1 − Z2) sin 2ϕ
ϕ̇ = B′Z + Z√

1−Z2 cosϕ−D′Z cos 2ϕ+ C ′
(
(1 + Z)3/2 − (1 − Z)3/2

) (B.35)

where we used the prime index to indicate the coefficient divided by −A

B′ = N(U +D −D1 −D2 − 2U1)
−2
(
K +N(U2 +D3)

)
C ′ = (N/2)3/2L

−2
(
K +N(U2 +D3)

)
D′ = N(U1 +D1)

−2
(
K +N(U2 +D3)

)
(B.36)

Let us comment on what these coefficients mean. First of all, D is the new co-
efficient, the one that quantifies the effects at the next order with respect to the
standard two-mode model, in fact it multiplies both terms oscillating at twice the
frequency. This also fits with the fact that it contains the terms U1 and D1 which
are the contact and dipolar interactions with two ϕ1 and two ϕ2. The coefficient B,
on the other hand, is the analogue of the coefficient of the same name that we had
before, i.e. it contains the mean field due to the self-interaction of the individual
ϕ, but this time it is corrected, to be precise subtracted by the interaction between
the two ϕ (the factor two comes from the fact that I have both the interaction of
ϕ1 on ϕ2 and vice versa). Finally, C is identical to the previous case, i.e. it is the
contribution of LHY. The proof of the correctness of these coefficients is obtained
by setting the terms Eq. (B.32) equal to zero.

Considering Z and ∆θ as canonically conjugate variables, the related Hamilto-
nian is

H = B′Z
2

2 −
√

1 − Z2 cosϕ+D′

2 (1−Z2) cos 2ϕ+2
5C

′
(
(1+Z)5/2+(1−Z)5/2

)
(B.37)

which is equal to the Hamiltonian of the standard two-mode model Eq. (B.30),
with the addition of the term oscillating at twice the frequency.
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At this point we can calculate the frequency of small oscillations

Z̈ = Z√
1 − Z2

Ż sinϕ−
√

1 − Z2 cosϕϕ̇− 2ZD′Ż sin 2ϕ+ 2D′(1 − Z2) cos 2ϕϕ̇ =

=
(

Z√
1 − Z2

sinϕ− 2ZD′ sin 2ϕ
)(

−
√

1 − Z2 sinϕ+D′(1 − Z2) sin 2ϕ
)
+

+
(

−
√

1 − Z2 cosϕ+ 2D′(1 − Z2) cos 2ϕ
)(
B′Z + Z√

1 − Z2
cosϕ

−D′Z cos 2ϕ+ C ′
(
(1 + Z)3/2 − (1 − Z)3/2

))
=

= −Z sin2 ϕ+ 3DZ
√

1 − Z2 sinϕ sin 2ϕ− 2D2Z(1 − Z2) sin2 2ϕ
−BZ

√
1 − Z2 cosϕ − Z cos2 ϕ+ 3DZ

√
1 − Z2 cosϕ cos 2ϕ

+ 2BDZ(1 − Z2) cos 2ϕ− 2D2Z(1 − Z2) cos2 2ϕ+
+ C

(
(1 + Z)3/2 − (1 − Z)3/2

)(
−

√
1 − Z2 cosϕ+ 2D′(1 − Z2) cos 2ϕ

)
=

= −Z + (3D −B)Z
√

1 − Z2 cosϕ− 2D2Z(1 − Z2) + 2BDZ(1 − Z2) cos 2ϕ+
+ C

(
(1 + Z)3/2 − (1 − Z)3/2

)(
−

√
1 − Z2 cosϕ+ 2D′(1 − Z2) cos 2ϕ

)
(B.38)

where we eliminated the superscript for simplicity and in the last step we used
cosϕ cos 2ϕ+ sinϕ sin 2ϕ = cosϕ. Let us approximate Z ∼= 0 and ∆θ ∼= 0, so that

Z̈ ∼= −Z + (3D −B)Z − 2D2Z + 2BDZ + C3Z(−1 + 2D) =
= −Z

(
1 +B + 3C − 3D − 2BD − 6CD + 2D2

) (B.39)

The adimensional expression for the small oscillations frequency is therefore

ωI2M =
√

1 + Λ −D(3 + 2B − 6C + 2D) (B.40)

where Λ = B+3C as before. Putting D = 0, thus cancelling the higher order terms,
we recover the Josephson frequency of the standard two-mode model Eq. (2.40).
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C

2M-mode model: derivation of the
Josephson equations

We have seen in subsection 3.2.4 that a supersolid can be modelled as a linear array
of clusters, each of them with a localized wavefunction ψj =

√
Nj exp (iθj) with

population Nj and phase θj. The population-phase dynamics following a quench of
these variables is described by the 2M-mode model written in Eq. (3.18)

i
∂ψ1

∂t
= (E1 + U1N1)ψ1 −K12ψ2

i
∂ψ2

∂t
= (E2 + U2N2)ψ2 −K12ψ1 −K23ψ3

...

i
∂ψj
∂t

= (Ej + UjNj)ψj −Kj,j−1ψj−1 −Kj,j+1ψj+1

...

i
∂ψ2M

∂t
= (E2M + U2MN2M)ψ2M −K2M,2M−1ψ2M−1

(C.1)

where Uj is the on-site interaction of the jth cluster and Kj,j−1 is the coupling
coefficient between clusters j and j − 1 [23, 27]. The terms Ej account for the
energy offset of the jth cluster due to the external trapping [27], see Figure 3.1.
Substituting the expression for the wavefunction inside the system Eq. (C.1) and
dividing real and imaginary parts, we obtain 4M equations, 2M for the populations
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and 2M for the phases. Let us start from the populations

Ṅ1 = −2K12

√
N1N2 sin(∆θ12)

Ṅ2 = 2K12

√
N1N2 sin(∆θ12) − 2K23

√
N2N3 sin(∆θ23)

...

Ṅj = 2Kj,j−1

√
NjNj−1 sin(∆θj,j−1) − 2Kj,j+1

√
NjNj+1 sin(∆θj+1,j)

...
˙N2M = 2K2M,2M−1

√
N2MN2M−1 sin(∆θ2M,2M−1)

(C.2)

where we have defined ∆θi,j ≡ θj − θi. We can focus on the two central clusters M
and M + 1 by writing the dynamics of thier populations and by summing all the
other populations on their left (from 1 to M − 1) and on their right (from M + 1
to 2M)
M−1∑
j=1

Ṅj = −2KM,M−1

√
NMNM−1 sin(∆θM,M−1)

ṄM = 2KM,M−1

√
NMNM−1 sin(∆θM,M−1) − 2KM+1,M

√
NMNM+1 sin(∆θM+1,M)

˙NM+1 = 2KM,M+1

√
NMNM+1 sin(∆θM+1,M) − 2KM+2,M+1

√
NM+1NM+2 sin(∆θM+2,M+1)

2M∑
j=M+1

Ṅj = 2KM+2,M+1

√
NM+2NM+1 sin(∆θM+2,M+1)

(C.3)
The population current between central clusters assume the form

˙NM+1 − ṄM = 4KM+1,M

√
NMNM+1 sin(∆θM+1,M)

− 2KM+2,M+1

√
NM+2NM+1 sin(∆θM+2,M+1)

− 2KM,M−1

√
NMNM−1 sin(∆θM,M−1)

= 4KM+1,M

√
NMNM+1 sin(∆θM+1,M) +

M−1∑
j=1

Ṅj +
2M∑

j=M+1
Ṅj

(C.4)

In order to isolate a single harmonic oscillation of the population and phase differ-
ences, we need to use the hypothesis Eq. (3.25)

α =
(
M−1∑
j=1

(−1)j−M+1UM
Uj

)−1

. (C.5)

Using this equality between currents, we rewrite Eq. (C.3) as
˙NM+1 − ṄM = 4KM+1,M

α

α− 1
√
NMNM+1 sin(∆θM+1,M) (C.6)
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Defining the variable
z ≡ NM+1 −NM

NM+1 +NM

(C.7)

we finally derive the first Josephson equation

ż = 2K α

α− 1
√

1 − z2 sin(∆θ) (C.8)

where we have defined, as in subsection 3.2.4, K ≡ KM+1,M and ∆θ ≡ θM+1,M . To
be noticed, that in order to derive this equation, we need the sum NM +NM+1 to be
constant in time. It could seem counterintuitive thinking that the central clusters
are not isolated, but it makes sense because we are asking the two clusters to have
a Josephson oscillation between them, thus a symmetric exchange of atoms.
With regard to phases, the 2M equations assume the form

θ̇1 = −(E1 + U1N1)
θ̇2 = −(E2 + U2N2)

...
θ̇j = −(Ej + UjNj)
...

(C.9)

Being in a symmetric system, we recall that we have the conditions

Ej>M = E2M−(j−1) Uj>M = U2M−(j−1) (C.10)

Thus, the central phase difference ∆θ ≡ θM+1 − θM evolves as

∆̇θ = −U(NM+1 −NM) (C.11)

where we have defined, as in subsection 3.2.4, U ≡ UM . As a function of z, we have

∆̇θ = −U(NM+1 +NM)z (C.12)

that is exactly the Eq. (3.22).

126



D

D

Ansatz: derivation of Josephson
frequency and critical imbalance

In this appendix we are going to start deriving Eq. (3.24) and Eq. (3.25). Let us
recall the oscillations ansatz

Nj(t) = N0
j + (−1)j+1∆j sin(ωJt)

∆θj+1,j(t) = (−1)jδϕ cos(ωJt)
(D.1)

and their derivatives

Ṅj(t) = (−1)j+1∆jωJ cos(ωJt)
˙∆θj+1,j(t) = (−1)j+1δϕωJ sin(ωJt)

(D.2)

We need to insert these expressions inside the evolution equations Eq. (C.2) and
Eq. (C.9). Let us start from the phases Eq. (C.9)

˙∆θj+1,j(t) = (−1)j+1δϕωJ sin(ωJt) = −(Ej+1 − Ej) − (Uj+1Nj+1 − UjNj) (D.3)

The energy offsets Ej can be found in the equilibrium condition

θ̇j(t) = 0 = −Ej − UjN
0
j

Ej = UjN
0
j

(D.4)
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where N0
j is the equilibrium population. Thus we can write

(−1)j+1δϕωJ sin(ωJt) = −(Uj+1N
0
j+1 − UjN

0
j ) − [Uj+1(N0

j+1 + (−1)j+2∆j sin(ωJt))
−Uj(N0

j + (−1)j+1∆j sin(ωJt))]
δϕ ωJ = Uj∆j + Uj+1∆j+1

(D.5)
In the special case j = M , we have equal interactions and equal amplitudes of the
population oscillations

δϕ ωJ = UM∆M + UM+1∆M+1 = 2UM∆M = 2UM+1∆M+1

UM∆M = UM+1∆M+1
(D.6)

In the subsequent case j = M + 1, we have

δϕ ωJ = UM+1∆M+1 + UM+2∆M+2 = 2UM+1∆M+1

UM+2∆M+2 = UM+1∆M+1
(D.7)

so that we can ricursively say

Uj∆j = Uj+1∆j+1 ∀j (D.8)

and
δϕ ωJ

2 = Uj∆j ∀j (D.9)

Let us pass to the population evlution Eq. (C.2) in the limit of small phase and
population imbalances

Ṅj(t) = (−1)j+1∆jωJ cos(ωJt) =

= 2Kj,j−1

√
N0
jN

0
j−1(∆θj,j−1) − 2Kj,j+1

√
N0
jN

0
j+1(∆θj+1,j) =

= 2Kj,j−1

√
N0
jN

0
j−1(−1)j−1δϕ cos(ωJt) − 2Kj,j+1

√
N0
jN

0
j+1(−1)jδϕ cos(ωJt)

(D.10)
so that

−∆jωJ =
(
2Kj,j−1

√
N0
jN

0
j−1 + 2Kj,j+1

√
N0
jN

0
j+1

)
δϕ (D.11)

Using Eq. (D.9) to cancel ∆j and δϕ from the equality, we obtain an expression for
the Josephson frequency

ω2
J = 4Kj,j−1Uj

√
N0
jN

0
j−1 + 4Kj,j+1Uj

√
N0
jN

0
j+1 (D.12)
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Starting from Ṅ1 instead of Ṅj and following the same procedure, we obtain another
expression for the Josephson frequency

ω2
j = 4K12U1

√
N1N2 (D.13)

Equating the two expressions for the frequencies Eq. (D.13) and Eq. (D.12) in the
case j = 2, we obtain the first condition on the parameters

U1

U2
= 1 + K23

K12

√√√√N0
3

N0
1

(D.14)

In order to derive the second condition, we equalise ωJ obtained starting by Ṅj and
the one starting from ˙Nj+1

4Kj,j−1Uj
√
N0
jN

0
j−1 + 4Kj,j+1Uj

√
N0
jN

0
j+1 =

= 4Kj+1,jUj+1

√
N0
j+1N

0
j + 4Kj+1,j+2Uj+1

√
N0
j+1N

0
j+2

Uj
Uj+1

=
4Kj,j−1

√
N0
jN

0
j−1 + 4Kj,j+1

√
N0
jN

0
j+1

4Kj+1,j
√
N0
j+1N

0
j + 4Kj+1,j+2

(D.15)

so that with few math we obtain the second condition in Eq. (3.24)

Uj
Uj+1

=
1 + Kj+1,j+2

Kj,j−1

√
N0

j+2
N0

j

1 + Kj,j−1
Kj,j+1

√
N0

j−1
N0

j+1

, ∀j. (D.16)

Having these conditions on the parameters, we can also derive an expression of
the α coefficient that appears in our hypothesis Eq. (3.21). Let us start imposing
the conservation of the total atom number in the system Ntot = ∑2M

j=1 Nj, so that

M−1∑
j=1

Ṅj + ṄM + ˙NM+1 +
2M∑

j=M+2
Ṅj = 0 (D.17)

We can rewrite Eq. (3.21) as

ṄM+1 − ṄM = α

2
M−1∑
j=1

Ṅj + ṄM + ˙NM+1

 (D.18)

ṄM+1(1 − α) − ṄM(1 + α) = 2α
M−1∑
j=1

Ṅj (D.19)
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By substituting Eq. (D.1) inside Eq. (D.19), we have

(−1)M+2∆M+1ωJ cos(ωJt)(1 − α) − (−1)M+1∆MωJ cos(ωJt)(1 + α) =

2α
M−1∑
j=1

(−1)j+1∆jωJ cos(ωJt)
(D.20)

that recalling ∆M = ∆M+1 becomes

α =
M−1∑

j=1
(−1)j−M+1 ∆j

∆M

−1

(D.21)

At this point, we can use Eq. (D.8) to remove the ∆s. In order to do that, we can
look for a recursively equality. We know that

Uj
Uj+1

= ∆j+1

∆j

(D.22)

that for j = M − 1 is
UM−1

UM
= ∆M

∆M−1
(D.23)

Multiplying on both sides by the equality Eq. (D.22) for j = M − 2, we have

UM−2

����UM−1

����UM−1

UM
= ∆M

����∆M−1

����∆M−1

∆M−2
(D.24)

and we can reiterate this multiplication diminuishing the index until 1, so that

Uj
UM

= ∆M

∆j

∀j ≤ M (D.25)

Finally, we can use this relation to write α as a function only of the parameters of
the system, as Eq. (3.25)

α =
M−1∑

j=1
(−1)j−M+1UM

Uj

−1

(D.26)

Starting from the Josephson system Eq. (3.22), we can now derive both Josephson
frequency ωJ and the critical population imbalance zc marking the transition to the
MQST as a function of the parameters of the system. To derive ωJ , we perform the
second derivative of z

z̈ ∼= 2K α

α− 1∆̇θ = 2K α

α− 1U(NM +NM+1)z (D.27)
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and we have immediately the expression

ωJ =
√

2K α

α− 1U(NM +NM+1) (D.28)

A procedure to derive zc is the one resembling the search for the separatrix in the
pendulum phase space. Considering z and ∆θ as conjugate variables

ż = − ∂H

∂∆θ ∆̇θ = ∂H

∂z
(D.29)

we have the hamiltonian

H = U(NM +NM+1)
z2

2 − 2K α

α− 1
√

1 − z2 cos(∆θ) (D.30)

This is the hamiltonian of a simple pendulum. The energy of the separatrix can be
found by maximizing over ∆θ on the axis z = 0

H0 ≡ max
∆θ

(H(z = 0),∆θ) = max
∆θ

(
2K α

α− 1 cos(∆θ)
)

= 2K α

α− 1 (D.31)

We need to calculate H > H0, but on the axis ∆θ = 0 in order to find out zc

H(z,∆θ = 0) = U(NM +NM+1)
z2

2 − 2K α

α− 1
√

1 − z2 = H0 = 2K α

α− 1 (D.32)

Doing some math in the limit of weak coupling, thus neglecting terms of order K2,
we obtain

z2 >
8Kα/(α− 1)
U(NM +NM+1)

≡ z2
c (D.33)

so that the critical imbalance zc is exactly the one in Eq. (3.27).
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Numerical methods for dipolar
supersolid

Runge-Kutta integration methods

The differential equation Eq. (3.29) is an ordinary differential equation (ODE) in
time of the type:

dy

dt
= f(y, t) y(t0) = y0 (E.1)

where y is the unknown function of t, whose evolution is described by the function
f that depends both on t and y itself, while y0 is the initial condition. Actually,
since we will then use the ITP method, the initial condition is not important, in
fact in principle we could choose it at random.
We have solved the Eq. (E.1) using the 4th order Runge-Kutta method. In general,
the Runge-Kutta methods, developed around 1900 by the German mathematicians
Carl Runge [220] and Wilhelm Kutta [221], are numerical iterative methods to
solve ODEs. They essentially propagate a solution over an interval by combining
the information from several Euler-style steps (each involving one evaluation of the
right-hand f ’s), and then use the information obtained to match a Taylor series
expansion up to some higher order. To understand it better, let us start from the
Euler method:

yn+1 = yn + hf(tn, yn) (E.2)
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E – Numerical methods for dipolar supersolid

where h is the time step and n is the index that run over time. This method advances
the solution from yn to yn+1 asymmetrically because it uses derivative information
only at the beginning of the interval h. This method is the easiest, but it is not
that accurate and is also unstable.

One way to improve it might be to do a half step test and calculate the derivative
there to better understand the true derivative of the total step. This is the second-
order Runge-Kutta (RK2) method:


k1 = hf(tn, yn)
k2 = hf

(
tn + 1

2h, yn + 1
2k1)

yn+1 = yn + (k1 + k2)/2 +O(h3)

(E.3)

Proof The first step to demonstrate the explicit expression of RK2 is writing
down the Taylor series expansion of y in the neighborhood of tn correct to the h2

term:

y(tn+1) = y(tn) + h
dy

dt

∣∣∣∣
tn

+ h2

2
d2y

dt2

∣∣∣∣
tn

+O(h3) (E.4)

The first derivative of y is simply given by f , but the second one written only in

Figure E.1: Fourth-order Runge-Kutta method. In each step the derivative is eval-
uated four times: once at the initial point, twice at trial midpoints, and once at
a trial endpoint. From these derivatives the final function value (shown as a filled
dot) is calculated.
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terms of f is given by:

d2y

dt2

∣∣∣∣
tn

= d

dt
f(yn, tn) = ∂f

∂t
+ ∂f

∂y

dy

dt
= ∂f

∂t
+ ∂f

∂y
f (E.5)

Substituting these derivatives in E.4, y has the expansion:

y(tn+1) = y(tn) + hf(yn, tn) + h2

2

[
∂f

∂t
+ ∂f

∂y
f

]∣∣∣∣
tn

+O(h3) (E.6)

On the other side, y can also be written as the result of two derivatives with generic
steps and generic weights:

k1 = hf(tn, yn)
k2 = hf

(
tn + αh, yn + βk1)

yn+1 = yn + ak1 + bk2 +O(h3)

(E.7)

It is notable that the case with k2 = 0 and a = 1 returns exactly the Euler method.
The next step consists in writing down yn+1 with the explicit Taylor serie expansion
of k2:

yn+1 = yn + ahf(tn, yn) + bh

[
f(yn, tn) + αh

∂f

∂t

∣∣∣∣
tn

+ βhf(yn, tn)∂f
∂y

∣∣∣∣
tn

]
+O(h3) =

= yn + h(a+ b)f(tn, yn) + h2

2

[
2αb∂f

∂t

∣∣∣∣
tn

+ 2βbf(yn, tn)∂f
∂y

∣∣∣∣
tn

]
+O(h3)

(E.8)
The comparison between (E.6) and (E.8) establishes the conditions for the coeffi-
cients: 

a+ b = 1
2αb = 1
2βb = 1

=⇒


a = 1 − b

α = β = 1
2b

(E.9)

In agreement with the fact that there are three equations and four coefficients,
there is an arbitrariness, i.e. there are infinitely many possible choices of α, β, a, b
which satisfy the above conditions. The choice with which we get the classical RK2
method is:

α = β = 1
a = b = 1/2

(E.10)

that lead exactly to (E.7).
Q.E .D.
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The simmetrization of the step has allowed us to gain an order of accuracy.
Calculating the right hand side f with higher order coefficients, accuracy increases
but the Runge-Kutta method becomes more and more complicated. The most used
one is the fourth-order Runge-Kutta method:

k1 = hf(tn, yn)
k2 = hf

(
tn + 1

2h, yn + 1
2k1)

k3 = hf
(
tn + 1

2h, yn + 1
2k2)

k4 = hf
(
tn + h, yn + k3)

yn+1 = yn + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4 +O(h5)

(E.11)

This is the best compromise between precision and complexity, therefore time
needed to run it.

As showed in Figure E.1, this method calculates the derivative twice at the
midpoint of the interval and once at the endpoint. In fact, k1 is the standard
Euler’s method increment, k2 is the midpoint increment using k1 for y, k3 is still
the increment at the midpoint but using k2 for y and k4 is the total increment at
the endpoint. The final calculation of y is a weighted mean of these four steps, so
that the midpoints increments have a greater weight.

Discretization

The application of these numerical methods requires the discretization of the right-
hand side function f in Eq. (E.1), that in our case is the action of the hamiltonian
over the wave function ψ. The first step is defining a space grid:

x = −Lx : dx : Lx
y = −Ly : dy : Ly
z = −Lz : dz : Lz;

(E.12)

i.e. a vector x starting from −Lx and ending at Lx with a step equal to dx, and
the same for y and z. The steps are defined using the number of them Ni in the
corresponding direction:

dxi = 2Li
Ni − 1 i = x, y, z (E.13)
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with Nx = 128, Ny = Nz = 64. Notice that we have chosen numbers of points that
are powers of two because it will be useful for the use of the Fast Fourier Transform
(FFT), as we will need. Another necessary thing to do for FFT is to define another
grid in momentum space

ki = −Ni

2 dki : dki : Ni

2 dki (E.14)

with the momentum steps defined with respect to the real space grid length

dki = π

2Li
(E.15)

so that the ki vectors are the same length of the corresponding xi vectors. Now, we
can discretize the hamiltonian.
The first term is the kinetic one, so, unless a numerical pre-factor, it essentially is
the 3D laplacian:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (E.16)

that can be written on the discrete grid using finite differences at different orders.
We have used the finite difference 5-point formula:
∂2f

∂x2 = −f(x− 2dx) + 16f(x− dx) − 30f(x) + 16f(x+ dx) − f(x+ 2dx)
12dx2 (E.17)

in all three directions.
The external harmonic potential is easy because it explicitly contains the space
vectors xi:

V (x, y, z) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (E.18)

with the mass m ∼= 161.9268u of the 162Dy, where u is the atomic mass u =
1.67 · 10−27Kg and the frequencies are the ones used by [16]:

ω = 2π(18.5, 53, 81) Hz (E.19)

From these frequencies derive the natural length scales:

aih.o. =
√

ℏ
mωi

(E.20)

which are the widths of the Gaussian solutions of the quantum harmonic oscillator.
Fixed the external potential, we also have a good reasonable choice for the starting
wave function:

ϕ(r, 0) =
(
m

πℏ

)3/4

(ωxωyωz)1/4e
− 1

4

(
x2
a2

x
+ y2

a2
y

+ z2
a2

z

)
(E.21)
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i.e. the harmonic oscillator solutions.
The LHY term contains the integral F (ϵdd) that cannot be evaluated analitically,
so we numerically integrated it in the code.
The dipolar term is described in subsection 3.3.3.
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Fourier transform of dipolar
interaction

Consider the dipole-dipole interaction Eq. (1.77):

Vdd(r) = Cdd
4π

1 − 3 cos2 β

r3 (F.1)

where β is the angle between the r vector connecting the two dipoles and the
direction d̂ where they point. Its Fourier transform is defined as:

Ṽdd(k) =
∫
drVdd(r)e−ik·r (F.2)

Let us choose spherical coordinates and the direction of k along the z-axis this time,
as shown in Figure F.1.

In particular, we can choose the dipole vector to be in the y − z plan:

d = d (sinα ŷ + cosα ẑ) (F.3)

and then the r vector must point in a generic direction:

r = r (sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ) (F.4)

The Eq. (F.2) in these special coordinates becomes:

Ṽdd(k) =
∫ 2π

0
dϕ
∫ π

0
dθ sin θ

∫ +∞

b
dr r2Cdd

4π
1 − 3 cos2 β

r3 e−ikr cos θ (F.5)
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F – Fourier transform of dipolar interaction

Figure F.1: Representation of the coordinate system used in the analytical calcu-
lation of the Fourier transform of the dipolar interaction. The z-axes is oriented
along the k vector, the y-axes is so that the dipoles orientation is in the y− z plan,
while the vector r that unites two dipoles is in a generic direction. The coordinates
are spherical and the angles are all indicated in the figure.

where we have introduced b, a cut-off in r to avoid divergences. The last step in
this calculation will be the limit b → 0 to restore the right solution.

The cosine function of beta can be reformulated in terms of ϕ and θ integration
angles:

cos β = d · r
|d||r|

= sinα sinϕ sin θ + cosα cos θ (F.6)

so that the integral in ϕ can be evaluated:

∫ 2π

0
dϕ(1 − 3 cos2 β) =

∫ 2π

0
dϕ(1 − 3(sinα sinϕ sin θ + cosα cos θ)2) =

=
∫ 2π

0
dϕ(1 − 3 sin2 α sin2 ϕ sin2 θ − 3 cos2 α cos2 θ − 6 sinα cosα sin θ cos θ sinϕ) =

= 2π − 3π sin2 α sin2 θ − 6π cos2 α cos2 α

(F.7)

139



F

F – Fourier transform of dipolar interaction

Then, the integral in θ in Eq. (F.5) involves also the exponential factor:∫ π

0
dθ sin θ (2π − 3π sin2 α sin2 θ − 6π cos2 α cos2 α) e−ikr cos θ (F.8)

that, with the substitutions x = cos θ and u = kr, becomes:∫ 1

−1
dx (2π − 3π sin2 α(1 − x2) − 6π cos2 αx2) e−iux =

= π
∫ 1

−1
dx (2 − 3(1 − x2) + 3 cos2 α(1 − x2) − 6 cos2 αx2) e−iux =

= π
∫ 1

−1
dx (−1 + 3x2 + 3 cos2 α(1 − 3x2)) e−iux =

= π(3 cos2 α− 1)
∫ 1

−1
dx(1 − 3x2) e−iux =

= π(3 cos2 α− 1)
[
2 sin u

u
− 3 2((u2 − 2) sin u+ 2u cosu)

u3

]
=

= −4π(3 cos2 α− 1)
[

sin u
u

+ 3 cosu
u2 − 3 sin u

u3

]

(F.9)

The only integral left is the one in u = kr, but the three addendums in the expres-
sion Eq. (F.9), taken individually, diverge. Writing the whole Fourier transform at
this point:

Ṽdd(k) = Cdd(1 − 3 cos2 α)
∫ +∞

kb
du

[
sin u
u2 + 3 cosu

u3 − 3 sin u
u4

]
(F.10)

we can notice that, using integration by parts, some terms eliminates. In fact, the
trick to eliminate these divergences consists in evaluating them together, because
they balance each other out. So, let us start writing the first addendum in the
integral Eq. (F.10): ∫ +∞

kb

sin u
u2 = −cosu

u2

∣∣∣∣∣
+∞

kb

− 2
∫ +∞

kb

cosu
u3 (F.11)

The first term evaluated in +∞ goes to zero, but in the other extreme remains.
The second one can add to the second term of Eq. (F.10), giving:∫ +∞

kb

cosu
u3 = sin u

u3

∣∣∣∣∣
+∞

kb

+ 3
∫ +∞

kb

sin u
u4 (F.12)

As before, the first term evaluated in +∞ goes to zero, but in kb remains. The
second term exactly cancel out the last term in Eq. (F.10). Finally, we have:

Ṽdd(k) = Cdd(1 − 3 cos2 α)
[

cos(kb)
(kb)2 − sin(kb)

(kb)3

]
(F.13)
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The last thing left to do is the limit:

lim
b→0

cos(kb)
(kb)2 − sin(kb)

(kb)3 =

= lim
b→0

1
(kb)3

(
(kb)

(
�1 − (kb)2

2

)
−
(
�

��(kb) − (kb)3

6

))
= −1

3

(F.14)

that, as expected, assumes a finite value.
The Fourier transform of the dipolar interaction is at last:

Ṽdd(k) = Cdd
3 (3 cos2 α− 1) (F.15)
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Numerical methods of the JJN

We discuss here numerical methods used to obtain the results discussed in the main
text.

1D GPE. The 1D simulations shown in Figure 5.1 and 5.2 refer to static solutions
of the GPE equation:

µ̃f(θ) =
(

− 1
2
∂2

∂θ2 − 1
2
J̃2

ρ(θ)2 + Ṽ (θ) + g̃ρ(θ)
)
f(θ), (G.1)

where f(θ) =
√
ρ(θ), J̃ = 2π(w − Ω̃)/

∫ 2π
0 dθ/ρ(θ) and Ω̃ = Ω/JR. Here energies

are rescaled in units of ℏ2/(mR2), µ̃ is the rescaled chemical potential, g̃ is the
interaction strength, Ṽ (θ) = Ṽ0

∑n
j=1 exp[−2(θ − θj)2/σ2] is the sum of Gaussian

barriers centered at θj = 2πj/n, and θ is the azimuthal angle along the ring. The free
parameters g̃, σ and Ṽ0 are chosen in order to match the experimental conditions:
σ/ξ = 1.2, Ṽ0/µ̃0 = 1.4 and ξ/R = 0.056 (with R = 12 µm being approximately
the inner radius of the experimental system), where µ0 is the chemical potential
obtained in the homogeneous case (without barriers) and for w = Ω = 0. For a
given number of barriers, the solution of Eq. (G.1) is obtained by imaginary time
evolution.

2D GPE We have performed 2D numerical simulations, assuming a Gaussian
distribution of the BEC along the z-direction, perpendicular to the x − y plane
where the current is generated, and integrating along the z-direction. This was
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made possible solely by the presence of a harmonic trapping potential in the z-
direction. We have integrated the following equation

iℏ
∂ψ(x, y, t)

∂t
=
(

− ℏ2

2M∇2
x,y + V (x, y) + g2D|ψ(r, t)|2

)
ψ(x, y, t) (G.2)

where ∇2
x,y = ∂2/∂x2+∂2/∂y2 and g2D = 2

√
2πasN/σz, with σz being the harmonic

length σz =
√
ℏ/(mωx) and the other parameters explained below in the 3D section.

We have found the ground states by solving the Eq. (G.2) using an imaginary
propagation technique with barriers. We then performed a phase imprinting with
a finite winding w0 and allowed the system to evolve in real time. The results are
in agreement with the 3D numerical simulations which could be directly compared
with the experimental data. These simulations enabled us to explore various regimes
in a shorter time and perform 3D simulations in targeted regimes.

3D GPE. In order to better capture the experimental procedure and the dynam-
ics of the system, in 3D we solve numerically the time-dependent GPE for static
barriers,

iℏ
∂ψ(r, t)
∂t

=
(

− ℏ2

2M∇2 + V (r) + g|ψ(r, t)|2
)
ψ(r, t), (G.3)

with ψ(r, t) being the condensate order parameter, M the molecule mass, g =
4πℏ2a/M the interaction strength, a = 1010 a0 the s-wave scattering length and a0

the Bohr radius. The external trapping potential is V (r) = Vharm(r) + Vring(r) +
Vbarr(r). Here, Vharm(r) = M(ω2

⊥r
2 + ω2

zz
2)/2 is an harmonic confinement with

{ω⊥, ωz} = 2π × {2.5 , 396} Hz. The hard-wall potential creating the ring confine-
ment in the x-y plane is given by

Vring(r) = Vr

[
tanh

(
r −Rout

d

)
+ 1

]
+ Vr

[
tanh

(
Rin − r

d

)
+ 1

]
. (G.4)

with Rin = 10.09µm and Rout = 21.82µm being the inner and outer radius, respec-
tively. The parameter d = 1.1µm characterizes the stiffness of the hard walls, fixed
such that the numerical density profiles match the in-situ experimental ones. We
take Vr larger than the chemical potential µ such that the density goes to zero at
the boundary. The n barriers are modelled as identical Gaussian peaks of trapping
potential

Vbarr = V0

n/2∑
i=1

exp
[
−2(x cos(i2π/n) + y sin(i2π/n))2/σ2

]
. (G.5)
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with constant width σ = 0.8µm. We first find the system ground state by solving
the GPE by imaginary time evolution and in the presence of n barriers. We then
instantaneously imprint a current of winding w0 by multiplying the ground state
wavefunction by the phase factor exp(−i2πw0θ), where θ is the azimuthal angle.
We finally study the system dynamics by solving the time-dependent GPE. For
a particle number N = 6.8 × 103 (corresponding to the experimental condensate
number), we obtain µ = 1.09 kHz leading to a value of the healing length ξ =
0.59µm. Equation G.3 is solved numerically by the Fourier split-step method on a
Cartesian grid of {Nx, Ny, Nz} = {256, 256, 80} points dividing a grid size of length
−34.846µm ≤ r ≤ 34.846µm and −11.0µm ≤ z ≤ 11.0µm in the radial plane and
axial direction, respectively. The time step is set to ∆t = 1 × 10−5 ω−1

⊥ .
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[64] L. P. Pitaevskĭı. Vortex lines in an imperfect Bose gas. Soviet. Phys. JETP
13 (2), 451 (1961). (page 18).

[65] N. N. Bogoljubov. On a new method in the theory of superconductivity. Il
Nuovo Cimento 7, 794 (1958). (page 21).

[66] T. D. Lee and C. N. Yang. Many-Body Problem in Quantum Mechanics and
Quantum Statistical Mechanics. Phys. Rev. 105, 1119 (1957). (page 23).

[67] T. D. Lee, K. Huang and C. N. Yang. Eigenvalues and Eigenfunctions of
a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys.
Rev. 106, 1135 (1957). (page 23).

[68] C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Mod-
ugno, F. Minardi and C. Fort. Observation of quantum droplets in a heteronu-
clear bosonic mixture. Phys. Rev. Res. 1, 033155 (2019). (page 26).

[69] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau. The physics
of dipolar bosonic quantum gases. Reports on Progress in Physics 72, 126401
(2009). (page 27).

[70] A. R. P. Lima and A. Pelster. Quantum fluctuations in dipolar Bose gases.
Phys. Rev. A 84, 041604 (2011). (pages 28, 56, and 57).

[71] A. R. P. Lima and A. Pelster. Beyond mean-field low-lying excitations of
dipolar Bose gases. Phys. Rev. A 86, 063609 (2012). (pages 28, 29, 56,
and 57).

[72] S. Ronen, D. C. E. Bortolotti, D. Blume and J. L. Bohn. Dipolar Bose-
Einstein condensates with dipole-dependent scattering length. Phys. Rev. A
74, 033611 (2006). (page 28).

[73] B. Deb and L. You. Low-energy atomic collision with dipole interactions.
Phys. Rev. A 64, 022717 (2001). (page 28).

151



BIBLIOGRAPHY

[74] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.
Academic Press, New York (2007). (page 29).

[75] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut and T. Pfau. Self-
bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016).
(page 30).

[76] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel and T. Pfau. Observation
of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 116,
215301 (2016). (page 30).

[77] L. Santos, G. V. Shlyapnikov and M. Lewenstein. Roton-Maxon Spectrum and
Stability of Trapped Dipolar Bose-Einstein Condensates. Phys. Rev. Lett. 90,
250403 (2003). (pages 31 and 35).

[78] D. H. J. O’Dell, S. Giovanazzi and G. Kurizki. Rotons in Gaseous Bose-
Einstein Condensates Irradiated by a Laser. Phys. Rev. Lett. 90, 110402
(2003). (pages 31 and 35).

[79] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni, S. Baier, J. H.
Becher, M. J. Mark, F. Wächtler, L. Santos and F. Ferlaino. Observation
of roton mode population in a dipolar quantum gas. Nature Physics 14, 442
(2018). (pages 31, 32, 33, and 68).

[80] O. Penrose and L. Onsager. Bose-Einstein Condensation and Liquid Helium.
Phys. Rev. 104 (3), 576 (1956). (page 33).

[81] H. Matsuda and T. Tsuneto. Off-Diagonal Long-Range Order in Solids.
Progress of Theoretical Physics Supplement 46, 411 (1970). (page 34).

[82] W. J. Mullin. Cell Model of a Bose-Condensed Solid. Phys. Rev. Lett. 26,
611 (1971). (page 34).

[83] D. Thouless. The flow of a dense superfluid. Annals of Physics 52, 403 (1969).
(page 34).

[84] G. V. Chester. Speculations on Bose-Einstein Condensation and Quantum
Crystals. Phys. Rev. A 2 (1), 256 (1970). (page 34).

[85] E. Kim and M. H. W. Chan. Probable observation of a supersolid helium
phase. Nature 427, 225– (2004). (pages 34 and 39).

152



BIBLIOGRAPHY

[86] E. Kim and M. H. W. Chan. Observation of Superflow in Solid Helium.
Science 305, 1941 (2004). (pages 34 and 39).

[87] J. Day and J. Beamish. Low-temperature shear modulus changes in solid 4He
and connection to supersolidity. Nature 450, 853– (2007). (page 35).

[88] D. Y. Kim and M. H. W. Chan. Absence of Supersolidity in Solid Helium in
Porous Vycor Glass. Phys. Rev. Lett. 109, 155301 (2012). (page 35).

[89] K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger. Dicke quantum
phase transition with a superfluid gas in an optical cavity. Nature 464, 1301
(2010). (page 35).

[90] J. R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O. Jami-
son and W. Ketterle. A stripe phase with supersolid properties in spin–orbit-
coupled Bose–Einstein condensates. Nature 543, 91 (2017). (page 35).

[91] J. Léonard, A. Morales, P. Zupancic, T. Esslinger and T. Donner. Supersolid
formation in a quantum gas breaking a continuous translational symmetry.
Nature 543, 87 (2017). (page 35).

[92] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark,
L. Chomaz and F. Ferlaino. Excitation Spectrum of a Trapped Dipolar Super-
solid and Its Experimental Evidence. Phys. Rev. Lett. 123, 050402 (2019).
(page 38).

[93] M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel, H. P. Büchler,
T. Langen and T. Pfau. The low-energy Goldstone mode in a trapped dipolar
supersolid. Nature 574, 386 (2019). (pages 38 and 81).

[94] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini,
G. Modugno, A. Recati and S. Stringari. Supersolid symmetry breaking from
compressional oscillations in a dipolar quantum gas. Nature 574, 382 (2019).
(pages 38, 39, and 81).

[95] L. Tanzi, J. G. Maloberti, G. Biagioni, A. Fioretti, C. Gabbanini and G. Mod-
ugno. Evidence of superfluidity in a dipolar supersolid from nonclassical ro-
tational inertia. Science 371, 1162–1165 (2021). ISSN 1095-9203. (pages 39,
56, and 82).

153



BIBLIOGRAPHY

[96] M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J. Mark, L. Santos,
R. N. Bisset and F. Ferlaino. Can angular oscillations probe superfluidity in
dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022). (pages 39 and 82).

[97] S. M. Roccuzzo, A. Recati and S. Stringari. Moment of inertia and dynamical
rotational response of a supersolid dipolar gas. Phys. Rev. Lett. 105, 023316
(2022). (pages 39 and 82).

[98] S. V. Pereverzev, A. Loshak, S. Backhaus, J. C. Davis and R. E. Packard.
Quantum oscillations between two weakly coupled reservoirs of superfluid 3He.
Nature 388, 449 (1997). (page 41).

[99] F. M. Araujo-Moreira. Josephson Junction, the Quantum Engine: from
S.QU.I.D. Sensors to Qubits for Quantum Computers. RDMS 18 (2023).
ISSN 25768840. (page 41).

[100] F. M Araujo Moreira. Quantum Technologies and the Engineering of Joseph-
son JunctionBased Sensors: Disruptive Innovation as a Strategic Differential
for National Security and Defense. Current Trends in Eng Sc 4, 1 (2023).
(page 41).

[101] C. Kittel. Introduction to solid state physics. Wiley, Hoboken, NJ, 8th ed
edition (2005). (page 42).

[102] S. Shapiro. Josephson Currents in Superconducting Tunneling: The Effect of
Microwaves and Other Observations. Phys. Rev. Lett. 11, 80 (1963). (page
44).

[103] T. Zibold, E. Nicklas, C. Gross and M. K. Oberthaler. Classical Bifurcation
at the Transition from Rabi to Josephson Dynamics. Phys. Rev. Lett. 105,
204101 (2010). (page 48).

[104] S. Raghavan, A. Smerzi, S. Fantoni and S. R. Shenoy. Coherent oscillations
between two weakly coupled Bose-Einstein condensates: Josephson effects, π
oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620
(1999). (pages 49, 54, and 59).

[105] I. Zapata, F. Sols and A. J. Leggett. Josephson effect between trapped Bose-
Einstein condensates. Phys. Rev. A 57, R28 (1998). (pages 49, 84, 99,
and 105).

154



BIBLIOGRAPHY

[106] S. M. Roccuzzo and F. Ancilotto. Supersolid behavior of a dipolar Bose-
Einstein condensate confined in a tube. Physical Review A 99 (2019). (pages
54 and 56).

[107] P. Ilzhöfer, M. Sohmen, G. Durastante, C. Politi, A. Trautmann, G. Mor-
purgo, T. Giamarchi, L. Chomaz, M. J. Mark and F. Ferlaino. Phase coher-
ence in out-of-equilibrium supersolid states of ultracold dipolar atoms (2019).
(page 54).

[108] M. Abad, M. Guilleumas, R. Mayol, M. Pi and D. M. Jezek. A dipolar self-
induced bosonic Josephson junction. EPL (Europhysics Letters) 94, 10004
(2011). (page 55).

[109] D. S. Petrov. Quantum Mechanical Stabilization of a Collapsing Bose-Bose
Mixture. Phys. Rev. Lett. 115, 155302 (2015). (page 56).

[110] S. Roccuzzo, A. Gallemí, A. Recati and S. Stringari. Rotating a Supersolid
Dipolar Gas. Physical Review Letters 124 (2020). (page 56).

[111] G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A. Fioretti, C. Gabban-
ini, L. Tanzi and G. Modugno. Dimensional Crossover in the Superfluid-
Supersolid Quantum Phase Transition. Physical Review X 12 (2022). (pages
56, 69, and 85).

[112] S. Levy, E. Lahoud, I. Shomroni and J. Steinhauer. The a.c. and d.c. Joseph-
son effects in a Bose–Einstein condensate. Nature 449, 579 (2007). (page
60).

[113] S. A. Chin and E. Krotscheck. Fourth-order algorithms for solving the imag-
inary - time Gross-Pitaevskii equation in a rotating anisotropic trap. Phys.
Rev. E 72, 036705 (2005). (page 63).

[114] L. Lehtovaara, J. Toivanen and J. Eloranta. Solution of time-independent
Schrödinger equation by the imaginary time propagation method. Journal of
Computational Physics 221, 148 (2007). (pages 64 and 65).

[115] P. Luukko and E. Räsänen. Imaginary time propagation code for large-scale
two-dimensional eigenvalue problems in magnetic fields. Computer Physics
Communications 184, 769 (2013).

155



BIBLIOGRAPHY

[116] P. Bader, S. Blanes and F. Casas. Solving the Schrödinger eigenvalue prob-
lem by the imaginary time propagation technique using splitting methods with
complex coefficients. The Journal of Chemical Physics 139, 124117 (2013).
(page 63).

[117] G. C. Wick. Properties of Bethe-Salpeter Wave Functions. Phys. Rev. 96,
1124 (1954). (page 63).

[118] Convolution theorem. (page 67).

[119] A. Alaña, N. Antolini, G. Biagioni, I. L. Egusquiza and M. Modugno. Cross-
ing the superfluid-supersolid transition of an elongated dipolar condensate.
Physical Review A 106 (2022). (page 69).

[120] A. J. Leggett. On the superfluid fraction of an arbitrary many-body system at
T = 0. J. Stat. Phys 93, 927 (1998). (pages 80, 84, 91, 96, 99, 105, and 106).

[121] E. P. Gross. Unified theory of interacting bosons. Phys. Rev. 106, 161 (1957).
(page 81).

[122] G. V. Chester. Speculations on Bose–Einstein condensation and quantum
crystals. Phys. Rev. A 2, 256 (1970). (page 81).

[123] J. Nyéki, A. Phillis, A. Ho, D. Lee, P. Coleman, J. Parpia, B. Cowan and
J. Saunders. Intertwined superfluid and density wave order in two-dimensional
4He. Nat. Phys. 13, 455 (2017). (pages 81, 82, and 93).

[124] J. Choi, A. A. Zadorozhko, J. Choi and E. Kim. Spatially modulated superfluid
state in two-dimensional 4He films. Phys. Rev. Lett. 127, 1 (2021). (pages
81, 82, and 93).

[125] J. Léonard, A. Morales, P. Zupancic, T. Esslinger and T. Donner. Supersolid
formation in a quantum gas breaking a continuous translational symmetry.
Nature 543, 87 (2017). (page 81).

[126] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O.
Jamison and W. Ketterle. A stripe phase with supersolid properties in spin–
orbit-coupled Bose–Einstein condensates. Nature 543, 91 (2017). (page 81).

156



BIBLIOGRAPHY

[127] M. A. Norcia, C. Politi, L. Klaus, M. Sohmen, M. J. Mark, R. N. Bisset,
L. Santos and F. Ferlaino. Two-dimensional supersolidity in a dipolar quan-
tum gas. Nature 596, 357 (2021). (page 81).

[128] L. V. Levitin, B. Yager, L. Sumner, B. Cowan, A. J. Casey, J. Saunders,
N. Zhelev, R. G. Bennett and J. M. Parpia. Evidence for a spatially modulated
superfluid phase of 3He under confinement. Phys. Rev. Lett. 122, 085301
(2019). (page 81).

[129] A. J. Shook, V. Vadakkumbatt, P. S. Yapa, C. Doolin, R. Boyack, P. H. Kim,
G. G. Popowich, F. Souris, H. Christani, J. Maciejko and J. P. Davis. Sta-
bilized pair density wave via nanoscale confinement of superfluid 3He. Phys.
Rev. Lett. 124, 015301 (2020). (page 81).

[130] M. H. Hamidian, S. D. Edkins, S. H. Joo, A. Kostin, H. Eisaki, S. Uchida,
M. J. Lawler, E.-A. Kim, A. P. Mackenzie, K. Fujita, J. Lee and J. C. S. Davis.
Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532,
343 (2016). (pages 81 and 93).

[131] Y. Liu, T. Wei, G. He, Y. Zhang, Z. Wang and J. Wang. Pair density wave
state in a monolayer high-Tc iron-based superconductor. Nature 618, 934
(2023).

[132] D. F. Agterberg, J. C. S. Davis, S. D. Edkins, E. Fradkin, D. J. V. Harlingen,
S. A. Kivelson, P. A. Lee, L. Radzihovsky, J. M. Tranquada and Y. Wang. The
physics of pair density waves: cuprate superconductors and beyond. Annual
Review of Condensed Matter Physics 11, 231 (2020). (pages 81 and 93).

[133] C. J. Pethick, N. Chamel and S. Reddy. Superfluid dynamics in neutron star
crusts. Progress of Theoretical Physics Supplement 186, 9 (2010). (page 81).

[134] S. Conti, A. Perali, A. R. Hamilton, M. V. Milošević, F. M. Peeters and
D. Neilson. Chester supersolid of spatially indirect excitons in double-layer
semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023). (page
81).

[135] A. Gallemì, S. M. Roccuzzo, S. Stringari and A. Recati. Quantized vortices in
dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322
(2020). (pages 82 and 93).

157



BIBLIOGRAPHY

[136] M. N. Tengstrand, D. Boholm, R. Sachdeva, J. Bengtsson and S. M. Reimann.
Persistent currents in toroidal dipolar supersolids. Phys. Rev. A 103, 013313
(2021). (page 93).

[137] G. Biagioni. Evidence of superfluidity in a dipolar supersolid. Il Nuovo Ci-
mento 44 C, 121 (2021). (page 82).

[138] L. Landau. Theory of the superfluidity of helium II. Phys. Rev. 60, 356
(1941). (page 82).

[139] I. Božović, X. He, J. Wu and A. T. Bollinger. Dependence of the critical
temperature in overdoped copper oxides on superfluid density. Nature 536,
309 (2016). (page 82).

[140] M. E. Fisher, M. N. Barber and D. Jasnow. Helicity modulus, superfluidity,
and scaling in isotropic systems. Phys. Rev. A 8, 1111 (1973). (page 83).

[141] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni,
A. Smerzi and M. Inguscio. Josephson junction arrays with Bose-Einstein
condensates. Science 293, 843 (2001). (pages 85, 93, and 95).

[142] S. Levy, E. Lahoud, I. Shomroni and J. Steinhauer. The a.c. and d.c Josephson
effects in a Bose–Einstein condensate,. Nature 449, 579 (2007).

[143] G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman,
A. Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio and G. Roati. Joseph-
son effect in fermionic superfluids across the BEC-BCS crossover. Science
350, 6267 (2015). (page 85).

[144] J. Tao, M. Zhao and I. B. Spielman. Observation of anisotropic superfluid
density in an artificial crystal. (page 93).

[145] G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier, S. Nascimbene,
J. Dalibard, J. Beugnon, S. M. Roccuzzo and S. Stringari. Superfluid fraction
in an interacting spatially modulated Bose-Einstein condensate. Phys. Rev.
Lett. 130, 3 (2023). (page 93).

[146] T. Berrada, S. van Frank, R. B"ucker, T. Schumm, J.-F. Schaff and
J. Schmiedmayer. Integrated Mach-Zehnder interferometer for Bose-Einstein
condensates. Nat Comm 4, 2077 (2013). (page 93).

158



BIBLIOGRAPHY

[147] R. Gati, B. Hemmerling, J. Fo¨lling, M. Albiez and M. K. Oberthaler. Noise
thermometry with two weakly coupled Bose-Einstein condensates. Phys. Rev.
Lett. 96, 4 (2006). (page 93).

[148] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied and P. Treutlein. Quantum
metrology with nonclassical states of atomic ensembles. Rev Mod Phys 90,
035005 (2018). (page 93).

[149] Q. You and F. Nori. Superconducting Circuits and Quantum Information.
Physics Today 58, 42 (2005). (page 95).

[150] J. Clarke and F. K. Wilhelm. Superconducting quantum bits. Nature 453,
1031 (2008).

[151] H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum in-
formation: An outlook. Science 339, 1169 (2013).

[152] M. Kjaergaard, M. E. Schwartz, J. B. üller, P. Krantz, J. I.-J. Wang, S. Gus-
tavsson and W. D. Oliver. Superconducting qubits: Current state of play.
Annual Review of Condensed Matter Physics 11, 369 (2020).

[153] S. Rasmussen, K. Christensen, S. Pedersen, L. Kristensen, T. Bækkegaard,
N. Loft and N. Zinner. Superconducting circuit companion — an introduction
with worked examples. PRX Quantum 2, 040204 (2021). (page 95).

[154] K. Jain, K. K. Likharev, J. E. Lukens and J. E. Sauvageau. Mutual phase-
locking in Josephson junction arrays. Physics Reports 109, 309 (1984). (page
95).

[155] K. Wiesenfeld, P. Colet and S. H. Strogatz. Frequency locking in Josephson
arrays: Connection with the kuramoto model. Phys. Rev. E 57, 1563 (1998).

[156] V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Y. Mironov, M. R. Baklanov
and C. Strunk. Superinsulator and quantum synchronization. Nature 452,
613 (2008).

[157] S. Y. Grebenchuk, R. Cattaneo and V. M. Krasnov. Nonlocal long-range
synchronization of planar Josephson-junction arrays. Phys. Rev. Appl 17,
064032 (2022). (page 95).

159



BIBLIOGRAPHY

[158] B. P. Anderson and M. A. Kasevich. Macroscopic quantum interference from
atomic tunnel arrays. Science 282, 1686 (1998). (page 95).

[159] L. B. Ioffe, M. V. Feigel’man, A. Ioselevich, D. Ivanov, M. Troyer and G. Blat-
ter. Topologically protected quantum bits using Josephson junction arrays.
Nature 415, 503 (2002). (page 95).

[160] H. Hilgenkamp and J. Mannhart. Grain boundaries in high-Tc superconduc-
tors. Rev. Mod. Phys 74, 485 (2002). (page 95).

[161] F. Tafuri and J. R. Kirtley. Weak links in high critical temperature supercon-
ductors. Rep. Prog. Phys 68, 2573 (2005). (page 95).

[162] J. Clarke and A. I. Braginski. The SQUID Handbook. John Wiley & Sons,
London (2004). (page 95).

[163] R. L. Fagaly. Superconducting quantum interference device instruments and
applications. Rev. Sci. Instrum 77, 101101 (2006). (page 95).

[164] K. Schwab, N. Bruckner and R. E. Packard. Detection of the earth’s rotation
using superfluid phase coherence. Nature 386, 585 (1997). (page 95).

[165] Y. Sato and R. E. Packard. Superfluid helium quantum interference devices:
physics and applications. Rep. Prog. Phys 75, 016401 (2011). (page 95).

[166] R. C. Jaklevic, J. Lambe, A. H. Silver and J. E. Mercereau. Quantum inter-
ference effects in Josephson tunneling. Phys. Rev. Lett 12, 159 (1964). (page
95).

[167] L. Amico, A. Osterloh and F. Cataliotti. Quantum many particle systems in
ring-shaped optical lattices. Phys. Rev. Lett 95, 063201 (2005). (page 95).

[168] B. T. Seaman, M. Krämer, D. Z. Anderson and M. J. Holland. Atomtronics:
Ultracold-atom analogs of electronic devices. Phys. Rev. A 75, 023615 (2007).

[169] L. Amico. et al., “Roadmap on atomtronics: State of the art and perspective”.
AVS Quantum Science 3, 039201 (2021). (page 96).

[170] L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek, A. Minguzzi
and W. von Klitzing. Atomtronic circuits: From many-body physics to quan-
tum technologies. Rev. Mod. Phys 94, 041001 (2022). (page 95).

160



BIBLIOGRAPHY

[171] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips and G. K. Campbell. Superflow in a toroidal
Bose-Einstein condensate: An atom circuit with a tunable weak link. Phys.
Rev. Lett 106, 130401 (2011). (pages 95 and 97).

[172] S. Moulder, S. Beattie, R. P. Smith, N. Tammuz and Z. Hadzibabic. Quantized
supercurrent decay in an annular Bose-Einstein condensate. Phys. Rev. A 86,
013629 (2012). (page 97).

[173] Y. Cai, D. G. Allman, P. Sabharwal and K. C. Wright. Persistent currents
in rings of ultracold fermionic atoms. Phys. Rev. Lett 128, 150401 (2022).
(page 107).

[174] G. D. Pace, K. Xhani, A. M. Falconi, M. Fedrizzi, N. Grani, D. H. Rajkov,
M. Inguscio, F. Scazza, W. Kwon and G. Roati. Imprinting persistent currents
in tunable fermionic rings. Phys. Rev. X 12, 041037 (2022). (pages 95, 97,
103, and 107).

[175] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips and G. K. Campbell.
Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys.
Rev. Lett 110, 025302 (2013). (pages 95 and 100).

[176] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips and G. K. Campbell.
Threshold for creating excitations in a stirred superfluid ring. Phys. Rev. A
88, 063633 (2013).

[177] J. Polo, R. Dubessy, P. Pedri, H. Perrin and A. Minguzzi. Oscillations and
decay of superfluid currents in a one-dimensional Bose gas on a ring. Phys.
Rev. Lett 123, 195301 (2019). (page 95).

[178] S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb and G. K. Campbell. In-
terferometric measurement of the current-phase relationship of a superfluid
weak link. Phys. Rev. X 4, 031052 (2014). (pages 95 and 103).

[179] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb,
W. D. Phillips, M. Edwards and G. K. Campbell. Hysteresis in a quantized
superfluid ‘atomtronic’ circuit. Nature 506, 200 (2014). (page 95).

161



BIBLIOGRAPHY

[180] G. Watanabe, F. Dalfovo, F. Piazza, L. P. Pitaevskii and S. Stringari. Critical
velocity of superfluid flow through single-barrier and periodic potentials. Phys.
Rev. A 80, 053602 (2009). (page 95).

[181] F. Piazza, L. A. Collins and A. Smerzi. Vortex-induced phase-slip dissipation
in a toroidal Bose-Einstein condensate flowing through a barrier. Phys. Rev.
A 80, 021601 (2009).

[182] F. Piazza, L. A. Collins and A. Smerzi. Current-phase relation of a Bose-
Einstein condensate flowing through a weak link. Phys. Rev. A 81, 033613
(2010).

[183] R. Dubessy, T. Liennard, P. Pedri and H. Perrin. Critical rotation of an an-
nular superfluid Bose-Einstein condensate. Phys. Rev. A 86, 011602 (2012).

[184] Z. Mehdi, A. S. Bradley, J. J. Hope and S. S. Szigeti. Superflow decay in a
toroidal Bose gas: The effect of quantum and thermal fluctuations. SciPost
Phys 11, 080 (2021).

[185] A. M. noz Mateo, A. Gallemí, M. Guilleumas and R. Mayol. Persistent cur-
rents supported by solitary waves in toroidal Bose-Einstein condensates. Phys.
Rev. A 91, 063625 (2015). (page 100).

[186] A. Pérez-Obiol and T. Cheon. Bose-Einstein condensate confined in a one-
dimensional ring stirred with a rotating delta link. Phys. Rev. E 101, 022212
(2020). (page 100).

[187] K. Xhani, G. D. Pace, F. Scazza and G. Roati. Decay of persistent currents
in annular atomic superfluids. Atoms 11, 109 (2023). (pages 95 and 103).

[188] C. Ryu, P. W. Blackburn, A. A. Blinova and M. G. Boshier. Experimental
realization of Josephson junctions for an atom squid. Phys. Rev. Lett 111,
205301 (2013). (page 95).

[189] F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C. J. Lobb
and G. K. Campbell. Resistive flow in a weakly interacting Bose-Einstein
condensate. Phys. Rev. Lett 113, 045305 (2014). (page 95).

[190] C. Ryu, E. C. Samson and M. G. Boshier. Quantum interference of currents
in an atomtronic squid. Nat. Comm 11, 3338 (2020). (page 95).

162



BIBLIOGRAPHY

[191] R. Feynman, R. B. Leighton and M. Sands. The Feynman Lectures on Physics,
Volume III. Addison–Wesley, London Ch. 21. Available online at (2005). (page
96).

[192] A. Y. Meltzer, A. Uri and E. Zeldov. Multi-terminal multi-junction dc SQUID
for nanoscale magnetometry. Supercond. Sci. Technol 29, 114001 (2016).
(page 96).

[193] A. Uri, A. Y. Meltzer, Y. Anahory, L. Embon, E. O. Lachman, D. Halbertal,
N. Hr, Y. Myasoedov, M. E. Huber, A. F. Young and E. Zeldov. Electrically
tunable multiterminal SQUID-on-tip. Nano Lett 16, 6910 (2016).

[194] S. Wolter, J. Linek, T. Weimann, D. Koelle, R. Kleiner and O. Kieler.
Static and dynamic transport properties of multi-terminal, multi-junction mi-
croSQUIDs realized with nb/HfTi/nb Josephson junctions. Supercond. Sci.
Technol 35, 085006 (2022).

[195] A. Zagoskin. Quantum engineering of superconducting structures: Principles,
promise and problems. Low Temp. Phys 43, 751 (2017).

[196] V. K. Kornev, N. V. Kolotinskiy, A. V. Sharafiev, I. I. Soloviev and O. A.
Mukhanov. From single SQUID to superconducting quantum arrays. Low
Temp. Phys 43, 829 (2017). (page 96).

[197] G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-
Dunlop and T. W. Neely. Direct imaging of a digital-micromirror device for
configurable microscopic optical potentials. Optica 3, 1136 (2016). (page 96).

[198] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Is-
lam and M. Greiner. Ultra-precise holographic beam shaping for microscopic
quantum control. Opt. Express 24, 13881 (2016).

[199] N. Navon, R. P. Smith and Z. Hadzibabic. Quantum gases in optical boxes.
Nature Physics 17, 1334 (2021). (page 96).

[200] A. Nunnenkamp, A. M. Rey and K. Burnett. Generation of macroscopic
superposition states in ring superlattices. Phys. Rev. A 77, 023622 (2008).
(pages 96 and 107).

163



BIBLIOGRAPHY

[201] D. Solenov and D. Mozyrsky. Metastable states and macroscopic quantum
tunneling in a cold-atom Josephson ring. Phys. Rev. Lett 104, 150405 (2010).

[202] C. Schenke, A. Minguzzi and F. W. J. Hekking. Nonadiabatic creation of
macroscopic superpositions with strongly correlated one-dimensional bosons
in a ring trap. Phys. Rev. A 84, 053636 (2011).

[203] D. W. Hallwood and J. Brand. Engineering mesoscopic superpositions of
superfluid flow. Phys. Rev. A 84, 043620 (2011).

[204] L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke and L. C.
Kwek. Superfluid qubit systems with ring shaped optical lattices. Sci. Rep 4,
4298 (2014). (pages 96 and 107).

[205] A. L. Fetter. Low-lying superfluid states in a rotating annulus. Phys. Rev
153, 285 (1967). (page 96).

[206] F. Bloch. Superfluidity in a ring. Phys. Rev. A 7, 2187 (1973). (page 96).

[207] J. D. Reppy and D. Depatie. Persistent Currents in Superfluid Helium. Phys.
Rev. Lett 12, 187 (1964). (page 97).

[208] J. D. Reppy. Superfluid helium in porous media. J. Low. Temp. Phys 87, 205
(1992). (page 97).

[209] C. Ryu, M. F. Andersen, P. Cladè, V. Natarajan, K. Helmerson and W. D.
Phillips. Observation of persistent flow of a Bose-Einstein condensate in a
toroidal trap. Phys. Rev. Lett 99, 260401 (2007). (page 97).

[210] S. Beattie, S. Moulder, R. J. Fletcher and Z. Hadzibabic. Persistent currents
in spinor condensates. Phys. Rev. Lett 110, 025301 (2013).

[211] A. Kumar, R. Dubessy, T. Badr, C. D. Rossi, M. de Goër de Herve,
L. Longchambon and H. Perrin. Producing superfluid circulation states using
phase imprinting. Phys. Rev. A 97, 043615 (2018). (pages 97 and 103).

[212] G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier, S. Nascimbene,
J. Dalibard, J. Beugnon, S. M. Roccuzzo and S. Stringari. Superfluid fraction
in an interacting spatially modulated Bose-Einstein condensate. Phys. Rev.
Lett 130, 226003 (2023). (pages 99 and 105).

164



BIBLIOGRAPHY

[213] J. Tao, M. Zhao and I. B. Spielman. Observation of anisotropic superfluid
density in an artificial crystal. Phys. Rev. Lett 131, 163401 (2023). (pages
99 and 105).

[214] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg,
S. Nascimbène, J. Dalibard and J. Beugnon. Quench-induced supercurrents
in an annular Bose gas. Phys. Rev. Lett 113, 135302 (2014). (page 103).

[215] W. J. Kwon, G. D. Pace, R. Panza, M. Inguscio, W. Zwerger, M. Zaccanti,
F. Scazza and G. Roati. Strongly correlated superfluid order parameters from
dc Josephson supercurrents. Science 369, 84 (2020). (pages 106 and 107).

[216] M. N. Tengstrand, D. Boholm, R. Sachdeva, J. Bengtsson and S. M. Reimann.
Persistent currents in toroidal dipolar supersolids. Phys. Rev. A 103, 013313
(2021). (page 107).

[217] G. Wlazłowski, K. Xhani, M. Tylutki, N. P. Proukakis and P. Magierski.
Dissipation mechanisms in fermionic Josephson junction. Phys. Rev. Lett
130, 023003 (2023). (page 107).

[218] L. Pisani, V. Piselli and G. C. Strinati. Critical current throughout the bcs-
bec crossover with the inclusion of pairing fluctuations. (page 107).

[219] D. Ananikian and T. Bergeman. Gross-Pitaevskii equation for Bose particles
in a double-well potential: Two-mode models and beyond. Phys. Rev. A 73,
013604 (2006). (page 114).

[220] C. Runge. Ueber die numerische Auflösung von Differentialgleichungen. Math-
ematische Annalen 46, 167 (1895). (page 132).

[221] W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgle-
ichungen. Zeit. Math. Phys. 46, 435 (1901). (page 132).

165


	Introduction
	What’s the Matter: Ultracold Quantum Gases
	Quantum Gases: A Dual Nature
	Bose-Einstein Condensation
	Weakly interacting bosons
	Superfluidity
	Landau's criterion for superfluidity
	Quantized circulation and vortices

	Theoretical Framework: Quantum Field operators
	Introduction to Quantum field operators
	Many-body Hamiltonian and the Heisenberg equation

	Mean-field description: the Gross-Pitaevskii equation
	Mean-field energy spectrum
	Beyond Mean-field corrections

	Dipolar interaction
	Formation of Dipolar Droplets
	Roton instability in dipolar gases

	The long quest for supersolid
	Superfluid solid 4He
	Search for supersolidity in BEC
	Observation of a dipolar Supersolid
	Characterization of a dipolar supersolid


	What's the phenomenon: Josephson effect 
	Introduction to Josephson Effect
	Josephson effect in superconductors
	Josephson Equations
	Josephson applications: SQUIDs

	Josephson effect in Superfluid Helium
	Bosonic Josephson Junction
	Macroscopic Quantum Self-Trapping


	Josephson effect in a supersolid dipolar quantum gas
	Self-Induced Josephson junction 
	Theoretical model
	Introduction to the theoretical model
	Two-mode model for a dipolar supersolid Josephson junction
	Symmetric Josephson junction
	2M-mode model

	Numerical methods
	Imaginary time propagation
	Dynamic time step adjustment method
	Dipolar term
	Convergence criterion

	Numerical results
	System description
	Four mode model
	Josephson dynamics and MQST

	Discussion

	Sub-unity superfluid fraction of a supersolid from self-induced Josephson effect
	Quantifying supersolidity
	Superfluid fraction
	Observation and modelling of josephson oscillations in a dipolar supersolid
	Discussion

	Stabilizing persistent currents in an atomtronic Josephson junction necklace
	Josephson junction necklace 
	Critical current in a multi-junction Josephson necklace
	Experimental system and persistent current states 
	Stability phase diagram 
	Superfluid fraction and the f(,n) function 
	Discussion

	Conclusions
	Quantum depletion of a BEC
	Derivation of the two mode model for a dSJJ and beyond
	2M-mode model: derivation of the Josephson equations
	Ansatz: derivation of Josephson frequency and critical imbalance
	Numerical methods for dipolar supersolid
	Fourier transform of dipolar interaction
	Numerical methods of the JJN 
	References

