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I. IntroductionIntroductionIntroductionIntroduction    
 

Cardiovascular diseases are the major causes of mortality and morbidity in 

the western society. Diabetes and sepsis are the main pathologies I have been 

focused in during my PhD training. They are two different cardiovascular diseases 

and in particular could be classified respectively into chronic and acute vascular 

pathologies. 

Diabetes is a metabolic syndrome, characterized by persistent hyperglycaemia, 

increase of blood glucose which is not metabolized by the cell as a decrease or 

inefficiency of the insulin. Insulin is a pancreatic hormone responsible of the 

transfer and therefore catabolism of glucose from the blood into the cell. The 

diabetes can be classified in type I or mellitus, insulin-dependent, or type II, non-

insulin-dependent. In the first case, pancreatic β-cells are not able to produce insulin 

as an autoimmune defect can occur to destroy the pancreas; in the second case, the 

insulin is normally produced but it is not recognised by the target cells, so that this 

pathology is considered as an insulin resistance. One of the major concerns related 

to the diabetes is the development of micro- and macrovascular complications, 

which contribute greatly to the morbidity and mortality associated to the disease. 

Microvascular complications are related to diabetic retinopathy, nephropathy and 

neuropathy, whilst macrovascular complications are related to hypertension and 

atherosclerosis, which are the most life threatening aspects of this cardiovascular 

disease. 

Sepsis instead, is a serious medical condition resulting from the immune response to 

a severe infection. The immunological response that induces to sepsis is a systemic 

inflammatory response causing a widespread activation of inflammation and 

coagulation pathways. This may progress to dysfunction of the circulatory system 
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and, even under optimal treatment, may result in multiple organ dysfunction 

syndrome and eventually death. 

Sepsis and diabetes could be described as acute and chronic cardiovascular 

diseases. We could consider sepsis as an acute cardiovascular disease as it has a 

rapid onset on the cardiovascular system, whereas diabetes could be ascribed to a 

chronic pathology as its cardiovascular dysfunction are long-lasting and are 

secondary to the metabolic syndrome. Beyond the effective causes, both 

pathologies have a common underlying matrix which is the reflection of the main 

cause onto the cardiovascular system: diabetic patients are subjected to high blood 

pressure, due to a high sensitivity to vasoconstrictors; whereas septic patients are 

subjected to low blood pressure, due to the low reactivity to vasoconstrictors and 

high susceptibility to endogenous vasodilators.  

Furthermore, they could be classified as inflamed status. Sepsis is directly caused 

by an infection that can immediately induce an inflammatory process consequently 

recruiting inflammatory cells, whilst the inflammatory pathway during diabetes is 

secondarily activated by the ‘shear stress’ provoked by the hypertension, which 

induces endothelial and vascular smooth muscle impairment. The progressive 

inflammatory damage can then macroscopically reflect on the cardiovascular 

system. In the case of sepsis, the immediate vasodilatation and low blood organ 

perfusion is provoked by the high out-put of cytokines, chemokines and inducible 

enzymes, like iNOS or COX-2, after the infection challenge; whereas, in the case of 

diabetes, the indirect oxidative stress, caused by the high blood pressure and the 

consequent ‘shear stress’, can activate in the same way the overproduction of 

cytokines and chemokines, altering the already injured cellular physiological 

balance. 
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In the first part of my PhD I have been focused on the effect of the inflammatory 

status on several cell types, in particular studying the effect of bacteria challenge in 

terms of cytokines, chemokines and nitric oxide production, trying to explain the 

typical redundant inflammatory pattern during sepsis. Secondly, I analyzed the 

effect of LPS administration on the cardiovascular system reporting either in vivo or 

ex vivo evidence for the low vascular reactivity to vasoactive agents. I focused the 

attention on a possible coadjuvant for sepsis therapy combating the well-known 

vasodilatation, low blood pressure and endothelium impairment. In the end, I 

evaluated the vascular effect of a new gastransmitter, hydrogen sulphide, on vessels 

like aorta and mesenteric bed, representing capacitance and resistance vessels, 

respectively, in a rat model of type I diabetes. 
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1.1 Introduction: sepsis 

In 1879-1880, Louis Pasteur showed for the first time that the invasion of a 

pathogen in a human organism can induce a severe systemic inflammation. 

Sepsis is clinically defined as the presence of an infection, accompanied by a 

systemic inflammatory response.  

The symptoms of the systemic response are:  

1) temperature greater than 38°C or less than 36°C;  

2) pulse rate greater than 90 beats/min;  

3) respiratory rate greater than 20 breaths/min;  

4) white blood cell count greater than 12000/mm
3
 or less than 4000/mm

3
 (1). 

There are several definitions for describing the different severe stages of the sepsis; 

endotoxemia is the result from both local or systemic Gram-negative bacteria 

infections and from translocation of the whole bacteria or endotoxin from the gut 

into the circulation (2); it can convert to severe or septic shock and induce 

hypotension, multiple organ dysfunction, like acute lung injury, coagulation 

abnormalities, thrombocytopenia, altered mental status, renal, liver or cardiac 

failure. Normally, the immune and neuroendocrine systems tightly control the local 

inflammatory process to eradicate invading pathogens. When this local control 

mechanism fails, systemic inflammation occurs, converting the infection to sepsis, 

severe sepsis, or septic shock.  

Sepsis can be induced by Gram negative, Gram positive bacteria or by 

polymicrobial infections. The most common bacteria are Escherichia coli, 

Staphylococcus aureus and Streptococcus pneumoniae (Table 1).  
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                                                             Estimated Frequency  

Gram positive bacteria                                        30-50% 

  Meticillin-susceptible S.aureus                           14-24% 

  Meticillin-resistant S.aureus                                 5-11% 

  Streptococcus pneumoniae                                   9-12% 

  Enterococcus                                                        3-13% 

  Anaerobes                                                              1-2% 

 

Gram negative bacteria 
  E.coli                                                                    9-27% 

  Pseudomonas aeruginosa                                    8-15% 

  Klebsiella pneumonite                                           2-7% 

  Haemophilus influenzae                                        3-7% 

   

Fungus 

  Candida albicans                                                  1-3% 

  Yeast                                                                       1% 

 

Parasites                                                                1-3% 

 

Viruses                                                                  2-4% 

 

 

Table 1: Main pathogens responsible of septic shock induction. 
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1.1.1 Sepsis: effect on the lung 

The most common infectious sources of severe sepsis are the lungs, abdomen, and 

urinary tract. In this study we have been focused on the effect of Gram positive and 

Gram negative bacteria effect on the lung and in particular on human lung epithelial 

cells. It is well established the effect of Gram negative bacteria, like E.coli, on the 

induction of sepsis, but there is an increasing evidence of Gram positive bacteria 

implication in the physiological airway function (1). 

Clearance of bacterial
 
pathogens from the lung is largely dependent upon effective

 

innate immune responses. Macrophages are important innate immune
 
cells and play 

a critical role in host defence against bacterial
 
pathogens in the lung. Alveolar 

macrophages are capable
 

of ingesting and eradicating bacteria that reach the 

terminal
 
airspaces. When the number of bacteria overwhelms the macrophage’s

 

bactericidal capabilities, the ability to mount an effective
 
antimicrobial response 

requires the cytokine-mediated recruitment
 

of neutrophils. Neutrophils are 

important for early control of acute bacterial
 
infections and thus are considered 

pivotal to protective innate
 
immunity. Neutrophils are a type of leucocytes that are 

attracted to the site of infection to phagocyte the pathogen. They adhere to bacteria 

by an Fc receptor that recognizes the constant chain of the immunoglobulins that 

have opsonized or covered the bacteria. Consequently, they prevent spread of 

micro-organisms by phagocytosis
 

and release of toxic agents such as pro-

inflammatory cytokines,
 
proteases, and reactive oxygen species.  

 

1.1.2 Innate immune system 

Innate immunity initiates immediate defence mechanisms on the basis of non-clonal 

recognition of microbial components. Identification of microbes by these 
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mechanisms involves host receptors, termed pattern recognition receptors or PRRs 

that recognize conserved molecular motifs on a wide range of different microbes. 

These motifs have been termed ‘pathogen associated molecular patterns’ or PAMPs 

and include such structural molecules as flagellin, peptidoglycan, 

lipopolysaccharide (LPS) and double-stranded RNA (3). Toll-like receptors (TLRs) 

and nucleotide binding oligomerization domain (NOD) proteins are two classes of 

PRRs involved in innate immune detection. TLRs are a family of membrane bound 

receptors, whereas NOD molecules reside within the cytoplasm and detect 

microbial motifs that gain entry into the host cell. 

 

1.1.2.1 Toll like receptors 

In 1991, a homologue receptor of proinflammatory interleukin-1 (IL-1) was found. 

This was a receptor in Drosophila melanogaster termed Toll. The cytosolic portion 

of Toll was shown to be highly similar to the cytosolic portion of IL-1 receptor, 

although extracellularly they were quite different. This domain was subsequently 

named the Toll/IL-1 receptor (TIR) domain.  

The discovery of TLRs has opened up a whole new range of therapeutic 

possibilities, largely for infectious diseases and sepsis, but also for inflammatory 

diseases and vaccine development (3).  

TLRs are expressed at the surface of several immune cells and other cell types in 

areas of the body that are normally sterile. Thirteen members of the TLRs family 

have been identified in mammals and only 9 are functional (4). TLR1, TLR2, 

TLR4, TLR5 and TLR6 are all localized to the plasma membrane whereas TLR3, 

TLR7, TLR8 and TLR9 are preferentially expressed in intracellular compartments 

such as endosomes (4). TLR3, TLR7, TLR8 and TLR9 all recognize nucleic acid 
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structures from bacteria and virus, whereas TLR1, TLR2, TLR4, TLR5 and TLR6 

generally recognize cell wall components.  

Four adapters are known to mediate TLRs signalling and share significant amino-

acid sequence similarity within their TIR domains (4), including myeloid 

differentiation factor 88 (MyD88), TIR-domain containing adapter protein 

(TIRAP), also called MyD88 adapter-like (Mal), TIR domain-containing adapter 

inducing interferon beta (TRIF), also called TIR-domain containing adapter 

molecule 1 (TICAM-1) and TIR containing protein (TIRP), also referred to as 

TRIF-related adapter molecule (TRAM) or TICAM-2.  

Several evidences in literature indicate that TLRs pathways consist of a MyD88-

dependent pathway that is in common to all TLRs, and a MyD88-independent 

pathway that is peculiar to the TLR3 and TLR4 signalling pathways (5). 

After stimulation, MyD88 recruits several isoforms of IL-1R-associated kinase 

(IRAK) like IRAK4, particularly important for the responses to IL-1 and ligands 

that stimulate various TLRs. Activated IRAK then associates with tumour-necrosis 

factor (TNF) receptor-associated factor-6 (TRAF-6) leading to the activation of c-

jun N-terminal protein kinase (JNK) and nuclear factor (NF)-kappaB-dependent 

pathways, which in turn regulates the expression of several genes involved in the 

inflammatory response, such as cytokine secretion as IL-6 and TNF-α. 

The ‘MyD88-independent’ pathway exists downstream of LPS/TLR4 and double 

stranded RNA/TLR3 (4). Although MyD88 knockout mice are impaired in LPS-

induced NFκB activation and the production of several cytokines, the production of 

interferon-β and likely other genes that are regulated by IFN regulatory factor-3 

(IRF-3), a transcription factor necessary for the expression of IFN- β and RANTES 
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genes, are perfectly normal in these mice (6), confirming a different and MyD88-

independent signalling pathway. 

TIRAP or Mal was the second adapter protein to be identified in TLRs signalling 

pathway. It is specific for TLR2 and TLR4 and acts in conjunction with MyD88. 

TIRAP/Mal appears to homodimerize and to associate constitutively with TLR4 but 

not with TLR9, which uses the only MyD88 for its downstream signalling 

transduction (7). TLR2 can form heterodimers with TLR1 or TLR6; thus, 

TIRAP/Mal might bind to TLR1 and TLR6 to facilitate the association.  

The third adapter protein is TRIF or TICAM-1 and it is responsible for the 

induction of MyD88-independent pathway (5). TRIF-deficient mice are defective in 

TLR3 and TLR4 production of IFN-β (5). Moreover, mice deficient in both MyD88 

and TRIF show loss of all LPS-induced responses indicating that only MyD88- and 

TRIF-dependent signalling originate from TLR4 (5). Furthermore, TLR3 is unique 

in not requiring MyD88 to mediate downstream signalling pathways (5). 

Finally, a fourth adapter protein TRAM or TICAM-2 appears to play a role, along 

with TRIF, as a co-adapter in the MyD88-independent component of the TLR4 

signalling pathway (5). It is TLR4 specific. 

In response to LPS stimulation, the two TLR4 molecules are brought into 

juxtaposition, permitting homodimerization of TICAM-2 through their loop 

cysteine residues. MyD88 interacts directly with TIRAP/Mal (4) and promotes the 

phosphorilation of IRAK4, a downstream serine/threonine kinase, which is able to 

connect with IRAK1. This complex engages with TNF-receptor-associated factor-6 

(TRAF6) and thereby the activation of IKK through a TAK1-TAB1-TAB2 kinase 

complex. Once activated, TAK1 phosphorilates the activation loop of IKK β, 

thereby activating the IKK complex and the pleiotropic transcription factor, NF-κB. 
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TAK also phosphorilates MKK6 and 7, which in turn activate the p38 and the JNK 

kinase pathways, respectively (8). NF-κB activation results in the production of pro-

inflammatory cytokines, dendritic cell maturation and the up-regulation of co-

stimulatory molecules (9).  

TLR2 recognizes a vast array of microbial components including lipoproteins from 

various pathogens, PGN from Gram positive bacteria, glycophosphatidilinositol 

(GPI) anchors from malaria and forms from LPS that are distinct from those 

recognized by TLR4 (10). The ability to recognize such a wide range of compounds 

has been attributed to the ability of TLR2 to heterodimerize with TLR1 and 6. The 

association with TLR1 permits the recognition of triacyl lipopeptides whereas 

TLR2/6 recognizes diacyl lipopeptides. TLR2 utilizes TIRAP/Mal and MyD88 to 

transmit signals to NF- κB. The phosphorilation of TLR2 on specific tyrosine 

residues facilitates the recruitment of phosphatidil inositol-3-kinase (PI3K) which 

activates, in turn, Rac-1, a small G-protein, that binds NF- κB into the nucleus (11). 

(Fig 1) 
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Fig. 1 TLRs signalling pathway 
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1.1.2.2 Nods proteins 

Mammals have two closely related NOD family members — NOD1 and NOD2 — 

both of which contain one or two caspase-activating and recruiting domains 

(CARD), respectively, a central NACHT domain and C-terminal leucine-rich 

repeats (LRRs) (12). Nod1 and Nod2 proteins are involved in the intracellular 

sensing system of bacteria.  

Nod1 also called CARD4 (caspase-activating and recruiting domain-4), is 

ubiquitously expressed in adult tissues and mainly ‘senses’ products from Gram 

negative bacteria, selectively recognize γ-D-glutamyl-meso-diaminopimelic acid 

(ie-DAP), another cell-wall derivative from Gram-negative bacteria (13). 

Nod2 is characterized by the CARD15 domain and recognizes the muramyl 

dipeptide (MDP), a minimal cell wall component from Gram-positive and -negative 

bacteria (14). It would seem similarly advantageous to also have a mechanism to 

identify intracellular pathogens that sneak by the early-warning systems and reside, 

proliferate and transit through cells.  

The binding of the PGN-derived products to Nods proteins induces a 

conformational change of these proteins which leads to the interaction CARD-

CARD, involving the activation of the kinase RICK. RICK is a CARD-containing 

serine/threonine kinase that physically associates with CARD of Nods and induces 

the phosphorilation of IKKγ, inducing NF-kB translocation to the nucleus (Fig 2). 

 

 

 

 

 



 18 

 

 

 

 

Fig. 2 Signaling pathway of Nod1 and Nod2. 
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1.1.3 Aim of the study 

The septic state,
 
in addition to eliciting a significant inflammatory response,

 

paradoxically renders the host immunocompromised, thereby resulting
 
in increased 

susceptibility to secondary infections. Thus, we wanted to investigate the effect of 

the co-administration of Gram positive and Gram negative bacteria on the release of 

CXCL-8, principal neutrophil chemoattractant, on human lung epithelial cells.  

 

1.2 Materials and Methods 

1.2.1 Culture and preparation of bacteria.  

Clinical blood culture isolated of S.aureus H380 and E.Coli 0111.B4 were stored 

frozen in 15% glycerol. To culture, they were first streaked onto agar plates from 

which single colonies were inoculated into RPMI-1640 with 10% fetal bovine 

serum (FBS) and glutamine. Cultures were incubated at 37
0
 C overnight and then 

centrifuged at 800g to pellet the bacteria. Bacteria were washed twice, and re-

suspended, in sterile saline. Aliquots of the bacterial suspension were serially 

diluted and plated onto agar in order to quantify the cell density. The bacterial 

suspensions were then heat treated for 45 min at 70°C to kill all bacteria; sterility 

was confirmed by plating of the resultant suspension. Suspensions were adjusted to 

10
10

-10
12

 colony forming units per ml (CFU/ml) and stored frozen at -20ºC in saline 

containing 15% glycerol. 

1.2.2 Cell Culture.  

Human lung adenocarcinoma cell line (A549) was cultured in Dulbecco’s
 
modified 

eagles medium (DMEM) containing 10% FBS, L-glutamine (2mM), penicillin 

(100U/mL), streptomycin (100µg/ml) and MEM non-essential amino acids (1% 

v/v) in an atmosphere of 5% CO2 at 37°C. Prior to experimentation cells were 

seeded into 96-well plates at a concentration of 10
5
 cells per well and allowed to 
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rest for 24 h before stimulation with whole bacteria or selective TLR and Nod 

ligands for 24 h. Supernatants were used for measurement of CXCL-8 levels. The 

effect of all the reagents on A549 metabolism was assessed, by measuring the 

mitochondrial-dependent reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) (Sigma, Poole, UK) to formazan. This was 

performed following all treatments.  

1.2.3 Measurement of Chemokine Production.  

CXCL-8 release in cell free supernatant were determined by Enzyme-Linked 

Immunosorbent Assay (ELISA) using commercially available matched antibody 

pairs following a protocol furnished by the manufacturers (R & D systems, Oxford, 

UK). CXCL-8 concentrations were measured at 450 nm with a reference filter at 

550 nm and results expressed as pg/ml. 

1.2.4 Assessment of barrier integrity.  

Cell culture inserts (PET membrane, 3.0micron pore-size; BD Falcon
TM

, NJ, USA) 

were used to determine whether bacteria treatments affected the barrier integrity 

(Fig. 3). 0.2 ml of medium was added on the upper compartment whilst 0.7 ml into 

the lower compartment, underneath the membrane where the cells were seeded 

(2x10
5
 cells/well). These volumes were suggested by the company in order to avoid 

the pressure impairment between the lower and upper compartment. Horseradish 

peroxidase (HRP, 1U/ml; Sigma, UK) was added 30 minute after the treatment. 

Aliquots of 50µl were collected from the lower compartment after 1 hour HRP 

addition. HRP activity was measured following Sigma pyrogallol enzymatic assay 

of peroxidase, which used the following reaction: 

 

H2O2+Pyrogallol (donor) .  
Peroxidase (HRP)

     2H2O+Purpurogallin (oxidized donor). 
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After 5 minutes the addition of pyrogallol, the amount of purpurogallin was read at 

the spectrophotometer at 405nm and related to the amount of HRP present in the 

solution, able to catalyze the above described reaction. The values are expressed in 

HRP U/ml as related to a standard curve of HRP 0.007-0.5 U/ml, and extrapolated 

using a linear regression analysis from GraphPad Prism 4.0 program. 

 

 

Fig. 3 Cell culture inserts used for the assessment of the barrier integrity 

 

1.2.5 Reverse Polymerase Transcriptase and Real-Time Chain Reaction.  

The cells were seeded at 1x10
6
/well in a 6-well plate and serum deprived for 24 

hours. Total RNA was isolated from the cells after stimulation using RNeasy 

minikit (Qiagen Ltd, UK). cDNA was generated by reverse transcription using 

random primers (Promega) at a concentration of 125 µg/ml. The cDNA was used as 

a template in the subsequent polymerase chain reaction (PCR) analyses. Transcript 

levels were determined by real time PCR (Rotor Gene 6; Corbett Research, Sydney, 

Australia) using the Taqman Universal PCR Master Mix Reagent Kit (Applied 

Biosystem, UK) and commercially available primers for CXCL8 (Hs00174103_m1; 

Applied Biosciences, CA, USA). PCR conditions were as follows: step 1, 10 min at 

95oC; step 2, 15s at 95 ºC; step 3, 60s at 60 ºC and repeated for 40 cycles. Data 

from the reaction were collected and analysed (Corbett Research, Sydney, 

Australia) and relative quantifications of gene expression were calculated using 

standard curves and normalized to GAPDH. 
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1.2.6 Statistical Analysis.  

Prism 4.0c (GraphPad, inc) was used for all statistical analyses All data shown is 

mean ± SEM. Statistical analysis was preformed using a One-Way ANOVA or one-

sample T-test. Values of P less than or equal to 0.05 were considered to be 

significant. 
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1.3 Results 

1.3.1 Effect of the whole bacteria on the human lung epithelial cells.  

We treated A549 cells with Staphylococcus aureus, Gram positive bacteria, and 

Escherichia Coli, Gram negative bacteria, from the concentration 10
5
 to 10

8
 

CFU/ml. As expected, either S.aureus or E.coli released CXCL-8 in a 

concentration-dependent manner (Fig 3A and B) but S.aureus promoted a markedly 

reduced release of the chemokine compared to the Gram negative bacteria at 24 

hours. Though, the level of the chemokine tended to increase at 48 and 72 hours. 

Similarly to the protein level, mRNA for CXCL-8 was lower expressed after 

stimulation with S.aureus despite E.coli (Fig 3C) at 3 hours. Interestingly, the co-

administration of both bacteria at the highest concentration (10
8
CFU/ml) induced a 

more than additive effect on CXCL-8 detection either in terms of protein or mRNA 

(Fig 3C and D). 

1.3.2 Effect of the bacteria on the lung epithelial barrier integrity.  

As the type II epithelial cells also function as a barrier in the lung, we tried to 

investigate whether the co-administration of the bacteria could affect the 

physiological epithelial barrier integrity. We measured HRP levels in the 

supernatant recovered from the lower department of the cell culture insert after 1 

hour the enzyme addition. The amount (HRP U/ml) detected was a measure of 

enzyme crossed through the layer of cells lying on the membrane of the insert. 

Surprisingly, we detected a higher amount of enzyme after S.aureus despite E.coli 

treatment (Fig 4A), whilst the co-administration of both bacteria did not increase 

HRP levels. In order to understand whether the barrier disruption could be ascribed 

to the CXCL-8 production, we treated the cells with increasing concentration of 

CXCL-8 (3-30-300 ng/ml, R&D System, CA, USA) (Fig 4B) and its relative 
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antibody (Ab) (4µg/ml, R&D System, CA, USA). The higher doses (30-300ng/ml) 

of the chemokine did not increase HRP amount in the supernatant as well as for 

E.coli and E.coli+S.aureus treatment. Furthermore, the administration of the 

antibody reverted in a significant manner HRP amount detected after either CXCL-

8 (3ng/ml) or S.aureus treatment (Fig. 4C). Besides, E.coli reduced the amount of 

HRP detected in the lower compartment of the insert (Fig. 4D) in a significant 

manner (P<0.0001). 
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Fig.3. Effect of bacteria on CXCL-8 production from A549. The cells were treated 

with S.aureus A) and E.coli B) in a cumulative concentration manner at 24, 48 and 

72 hours. C) Co-administration of both bacteria revealed a more than the theoretical 

additive effect on CXCL-8 production, confirmed by the D) RT-PCR. The 

theoretical effect is the addition of the effect of the bacteria alone.  
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Fig. 4 A) Effect of the bacteria and their combination on the barrier integrity B) The 

administration of CXCL-8 did not show a concentration-dependent disruption of the 

barrier integrity. C) The Ab for CXCL-8 significantly reverted the effect of CXCL-

8 (*P<0.05) and S.aureus on the barrier integrity (**P<0.001). D) E.coli reduced 

CXCL-8 effect in a significant manner (P<0.0001). One way Anova multiple 

comparison Bonferroni’s post test. 
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1.3.3 Effect of TLR2 and Nod2 ligands on the human lung epithelial cells.  

In order to mimic all the Gram positive cell wall components known to activate 

TLRs and Nods protein (4), we used Pam3CSK4 (100ng/ml) as a TLR2/1 ligand, 

FSL-1 (100ng/ml) as a TLR2/6 ligand and MDPLys18 (1µM) as a Nod2 ligand. 

The co-administration of all the above mentioned ligands plus E.coli revealed an 

additive effect on CXCL-8 production (Fig 5E). Noticeably, the administration of 

Pam3CSK4 and MDPLys18 with the bacteria revealed a significant (P<0.0005, 

P<0.001, respectively) reduced actual effect despite what expected (Fig 5B and C) 

(Table I), whilst FSL-1+E.coli and FSL-1+Pam3CSK4+E.coli induced an additive 

release of CXCL-8 (Fig 5A and D). Besides, FSL-1+Pam3CSK4 alone confirmed 

the addition (Fig 5B, C and D) (Table I) and furthermore, FSL-

1+Pam3CSK4+MDP revealed a significant induction (P<0.01) on CXCL-8 release 

compared to the theoretical additive effect. So, even though TLR2/1 and Nod2 co-

activity tended to contrast the chemokine release, the concomitant activation of 

TLR2/6 plus the PRRs from the whole Gram negative bacteria cell wall component 

tended to counteract the inhibitory effect.  

1.3.4 Effect of TLR4 and Nod1-2 ligands on the human lung epithelial cells.  

In the same way, we tried to mimic the Gram negative cell wall components by 

using LPS (1µg/ml), which activates TLR4, and FK565 (1µM) as Nod1 ligand and 

MDPLys18. We used both Nod ligands, MDPLys18 and FK565, as it is well known 

that the PGN from the Gram negative bacteria can activate both proteins (4). 

Interestingly, MDPLys18+S.aureus or FK565+S.aureus induced an additive effect 

on CXCL-8 release, but singularly co-administered with LPS without the bacteria 

did not have the same effect (Fig 6A, B, D and E) (Table II). The co-administration 

of LPS+MDPLys18 and the further addition of FK565 without the bacteria revealed 
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a marked reduction of CXCL-8 release (P<0.005 and P<0.0001, respectively), 

compared to the theoretical additive effect of these chemicals alone (Table II). 

Another interesting result was the amount of CXCL-8 detectable after the 

stimulation with LPS+S.aureus (Table II). The latter treatment revealed a 

synergistic effect similar to the effect observed by the co-administration of the 

whole both bacteria. By contrast, the combination of all the above mentioned 

ligands with S.aureus induced a reduced amount of CXCL-8 than expected 

(P<0.01) (Fig. 6F). 
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Fig. 5 Effect of PAMPs+E.coli on CXCL-8 release. A) FSL-1 gave an additive effect on CXCL-8 

release; B) Pam and C) MDP combined with E.coli released less than an additive amount of CXCL-

8; D) FSL-1+Pam+E.coli showed an additive release of CXCL-8; E)The addition of the above 

PAMPs together revealed an additive release of CXCL-8. The non continuous lines correspond to 

the predicted additive effect, and the continuous line corresponds to the effect except the basal. 
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Fig. 6 Effect of PAMPs+S.aureus on CXCL-8 release. A) FK565 as well as B) MDPLys revealed 

and additive effect on CXCL-8 production; C) LPS+S.aureus induced a synergistic effect but 

combined with D) FK565 or E) MDP released less than an additive amount of CXCL-8; F) the 

combination of the above PAMPs reduced significantly CXCL-8 production. The non continuous 

lines correspond to the predicted additive effect, and the continuous line corresponds to the effect 

except the basal. 
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Table I. Effect of possible PAMPs combination on CXCL-8 release (pg/ml) after 

E.coli administration. ***P<0.0005, **P<0.01, *P<0.05 vs actual effect (One 

sample T test).  

  Single effect Treatment Actual effect
Theoretical 
effect 

          

E.coli                 
108   3388.4±266.9 E.coli+Pam3CSK4 2598.9±197.2 4257.3***

Pam3CSK4 
100ng/ml   886.9±221.9 E.coli+FSL-1 5061.7±875.7 4282.3

FSL-1         
100ng/ml   893.9±164 E.coli+MDP 3214.6±254.8 4948** 

MDP                  
1µM 1559.03±469.6 E.coli+Pam+FSL-1 5388.3±907 5169.2

   
E.coli+Pam+FSL-
1+MDP 9608±1801.6 6728.8

   
MDP+Pam3CSK4+FSL
1 5907.5±953 3339.8* 

   FSL-1+Pam3CSK4 2603±690.6 1780.8

 

 

Table II. Effect of possible PAMPs combination on CXCL-8 release (pg/ml) after 

S.aureus administration. ****P<0.0001, ***P<0.005, **P<0.01, *P<0.05 vs actual 

effect (One sample T test). 

  Single effect Treatment Actual effect
Theoretical 
effect 

          

S.aureus         
108   203.82±133.4 S.aureus+LPS 4788.1±392.5 2577.9*** 

LPS              
1µg/ml   2374.15±381 S.aureus+FK565 626.5±159.2 593.2

FK565               
1µM   389.4±67.3 S.aureus+MDP 1803±469 1762.8

MDP                  
1µM 1559.03±469.6 S.aureus+LPS+FK565 2415.7±74.3 2967.3* 

   S.aureus+LPS+FK565+MDP 2782.8±479.7 4526.25** 

   S.aureus+LPS+MDP 3424.4±682 4136.9

   LPS+FK565 2362.4±213.1 2763.55

   LPS+FK565+MDP 1241.1±36.5 4322.6****

   LPS+MDP 1698.4±413.3 3933.2*** 
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1.4 Discussion 

Neutrophils are the first immune cells that arrive at the site of infection. 

They are recruited by the production of CXCL-8, which facilitates the insertion in 

the infected tissue. Our study is the first report focused on the production of CXCL-

8 after whole Gram positive and negative bacteria challenge on human lung 

epithelial cells. 

S.aureus stimulation did not induce a relevant increase of chemokine production 

compared to the effect of E.coli at 24hours, even though the amount of CXCL-8 

was highly detectable at 48 and 72 hours in a concentration-dependent manner. 

Interestingly, the co-administration of whole both bacteria induced a synergistic 

effect at 24 hours in terms of protein and mRNA quantity. The involvement of 

E.coli in sepsis is well-established, but there is an increasing evidence for S.aureus 

implication (1). Beyond the organ where sepsis originates, the lung is usually the 

first to fail, in part due to the rapid accumulation of neutrophils in the narrow lumen 

of lung capillaries. Therefore, we analysed the effect of the combination of both 

bacteria on the lung epithelium integrity. Surprisingly, the co-administration of both 

bacteria did not disrupt the epithelial barrier, despite S.aureus alone which was able 

to increase the amount of peroxidase detectable in the lower department of the 

inserts used. This effect was related to CXCL-8 as demonstrated by the use of 

CXCL-8 antibody, which reverted the effect of S.aureus on the barrier damage, and 

further confirmed by the co-addition of E.coli with CXCL-8, obviously for an 

extreme amount of CXCL-8 produced. Blease et al. (15) demonstrated a bell shaped 

release of CXCL-8 after S.aureus LTA plus LPS stimulation on human airway 

microvascular endothelial cells. The results indicated that the percent of the 

adhesion of neutrophils was less than predicted for an additive effect. Besides, in a 



 33 

mouse model of S.aureus-induced arthritis, in which either wild type and CAM 

deficient mice were compared, the leucocyte-mediated damage was reduced in 

CAM KO mice, even though the mortality was greater in these mice than the 

control, according to the fewer leucocytes counted in the injured tissue (15). This 

suggests that a high recruitment of leucocytes could be essential for protection 

against systemic disease but it may exacerbate local manifestations. In the same 

way, our results showed a less damage from the co-administration of both bacteria 

on the barrier integrity than S.aureus alone. So, the Gram positive bacteria did not 

induce a great amount of chemokine but a greater leakage of HRP, confirming the 

extreme damage that S.aureus could induce in a condition of septic shock.  

We also tried to investigate the PRRs involved in the synergy between 

S.aureus and E.coli on CXCL-8 release. Therefore, we used single or combined 

PAMPs added to the whole Gram positive or Gram negative bacteria, respectively. 

Interestingly, the addition of ligands that mimicked for S.aureus cell wall 

components plus E.coli revealed an additive response on CXCL-8 whilst the 

addition of all E.coli cell wall components with S.aureus revealed a remarked 

reduction. By contrast, S.aureus+LPS induced a synergistic release of CXCL-8 but 

the addition of MDPLys18 induced an opposite effect, further reduced with FK565 

administration. So, Nods activation may be responsible of the reduced CXCL-8 

production after Gram positive stimulation despite Gram negative bacteria. A recent 

study assessed the effect of LPS on Nod1 and Nod2 expression in murine 

macrophages (16). The stimulation with LPS increased the expression of these 

proteins via TLR4 activation as the antibody for TLR4 reduced Nods expression. 

According to this study, Nod1 and Nod2 expression may be induced either by NF-

kB activation directly, or by the production in a later phase of TNFα, which can act 
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in an autocrine manner. Furthermore, Watanabe et al. (17) demonstrated that Nod2 

can inhibit TLR2-dependent NF-kB activation following MDP and Pam3CSK4 

stimulation in an in vivo mouse model. These latter studies could explain our results 

as the activation of TLR4 by E.coli could induce Nods expression, leading to an 

increased release of CXCL-8; on the other side, the activation of TLR2 could be 

responsible of the reduced effect on CXCL-8 via Nods expression inhibition after 

S.aureus treatment. Our experiments revealed that the administration of E.coli with 

the TLR2/1 and TLR2/6 and Nod2 synthetic ligands induced an additive effect, 

whereas in the second part of this study we showed that the addition of Nods 

ligands reduced the effect of LPS on S.aureus.  

In contrast to our results, other studies on dendritic cells (18) and human 

monocytes THP-1 [16] suggested that Nod1 and Nod2 could synergize with TLRs 

agonist in CXCL-8 production. These last observations may be related to the 

immune nature of the cells considered.  

In conclusion, we could speculate that either TLR antagonist or Nods agonist could 

be used for the future septic shock therapy, in order to reduce the destructive effect 

of excessive CXCL-8 released, inducing to a protective mechanism for the lung 

epithelial cells which would be otherwise overwhelmed by neutrophils and their 

antibacterial products. 
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Chapter 2 

 

Differential effect of Gram positive and Gram 

negative bacteria on macrophages and vascular 

smooth muscle cells: role of TLRs 
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2.1 Introduction 

Septic shock is a medical condition that promotes a massive vascular 

hypotension with a consequent circulation failure that impairs blood and oxygen 

providing to the tissues. In clinical practice, the key symptom is a severe fall in 

blood pressure, which is often associated with the dysfunction or failure of several 

important organs, like lung, kidney, liver and brain. The most common cause of 

shock is the infection of blood with bacteria resulting in systemic infection and 

ultimately septic shock.  

Current therapeutic approaches for septic shock are the use of antimicrobial 

chemotherapy, glucocorticoids, volume replacement, inotropic and vasopressor 

support, oxygen therapy; even though a high estimated mortality is still ranging 

from 50% and 80% (1). 

Several studies revealed that the key biological mediator for profound hypotension 

and hyporesponsiveness to vasoconstrictors in the septic shock was nitric oxide 

(NO) (1).  

2.1.1 Nitric oxide 

NO is a gas with pleiotropic functions in a wide variety of physiological systems. In 

the cardiovascular system, NO exerts vasodilatory, antiadhesive and 

antiproliferative effects. 

NO is generated from L-arginine by a family of enzymes called nitric oxide 

synthase (NOS). The oxidation of one of the guanidino nitrogen atoms of this 

semiessential aminoacid by NOS is associated with the oxidation of NADPH and 

the reduction of molecular oxygen. Thus, NOS contains an oxygenase domain, 

which has the catalytic site, and a reductase domain. The oxygenase domain 

appears to contain binding sites for tetrahydropterin (BH4), heme and L-arginine. 
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The synthesis of NO from L-arginine and molecular oxygen involves the following: 

the generation of N
G
- hydroxy-L-arginine and water (first step), and subsequently 

the oxidation of N
G
- hydroxy-L-arginine in the presence of molecular oxygen to 

form NO, L-citrulline and water (second step). 

NO is generated by many mammalians cells by three isoforms of NOS, NOS I, 

NOS III and NOS II. NOS III, also called eNOS, is expressed in endothelial cells, 

whilst NOS I, also called nNOS, is present at the level of neuronal cells (2). NOS I 

and NOS III are constitutively expressed and both enzymes require calcium for 

their activation. NOS II, also called iNOS, is an inducible isoform, functionally 

independent of intracellular changes of calcium, and activated through the nuclear 

factor NF-kB, which in turn is activated during an inflamed status. In contrast to the 

constitutive isoforms, iNOS is synthesized de novo during inflammation and 

produces large amounts of NO over prolonged periods of time (3). 

The production of NO by the endothelial cells through eNOS, leads to the 

transmigration of this gas through the cell membrane of vascular smooth muscle. 

NO binds the soluble guanilate cyclase (sGC), leading to the synthesis of the cyclic 

guanosine-monophosphate (cGMP), which then activates the cGMP dependent 

protein kinase that phosphorilates the light chain of the myosin, inducing the 

vasodilation (Fig.1) (4). 
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Fig.1 A stimulus, like acethylcoline, can react on its own receptor on the 

endothelial cell and transducer for the NO-dependent pathway (1). NO diffuses 

through the smooth muscle cell and activate the sGC (2) with a consequent release 

of cGMP (3), which in turn, in concomitance with intracellular calcium, activates 

the PKG kinase (4). PKG phosphorilates the light chain of the myosin (5), inducing 

vasodilation (6). 
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2.1.2 Role of NO in the septic shock 

Several studies have supported that the endogenous large amount of NO was 

responsible of the systemic hypotension, organ failure and vascular 

hyporesponsiveness to vasoconstrictors, typical of the septic shock. This is 

evidenced by the increased levels of nitrite (NO
2-

) and nitrate (NO
3-

, stable 

metabolite of NO) measured in the plasma of septic patients, inflammation-induced 

iNOS expression and by the ability of selective iNOS inhibitors to restore blood 

pressure in experimental models of sepsis and reverse hypotension in human 

endotoxaemia (5). 

iNOS is effectively absent under physiological conditions but it is expressed in 

many cell types in response to pro-inflammatory cytokines and lipopolysaccharide 

(LPS). In fact, NO can be produced by both stromal cells, like endothelial, vascular 

smooth muscle and epithelial cells, and by immunocompetent cell, like 

macrophages. The local generation of large amount of NO by activated 

macrophages serves as host defence, capable of killing the bacteria through the 

‘suicide mechanism’, which implicates either a cytostatic or cytotoxic effect (6). 

Indeed, large amount of NO cause autoinhibition of the mitochondrial respiration 

by inhibiting several key enzymes in the mitochondrial respiratory chain, like 

NADH-ubiquinone reductase or succinate-ubiquitinone oxidoreductase, and the 

Krebs’ cycle, through the formation of radical species (7). Besides, NO, like other 

radicals and oxidants, causes damage at the double strand of DNA that triggers an 

energy-consuming repair cycle by activating the nuclear enzyme 

poly(ADP)ribosyltransferase (PARP). Activation of PARP results in the rapid 

depletion of intracellular NAD+, its substrate, slowing the rate of glycolysis, 

electron transfer and ATP formation, which ultimately leads to cells death (8). 
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These effects can be ambiguous. They can be traduced onto the guest or onto the 

host organism; on one side, the immune system is activated to combat the invasion 

of the pathogen, but on the other side the same host organism can be injured, as 

exemplified by the cardiovascular system dysfunction during the sepsis (9). 

The induction of iNOS by the endotoxin, like LPS, the most used bacterial 

component for the experimental model of sepsis in vivo and in vitro, is secondary to 

the release of the proinflammatory cytokines like IL-1, TNFα and interferon IFN-γ, 

which alone or in concert, with the platelet-activating factor (PAF) activate cells to 

express iNOS protein and activity (10). 

In several studies it has been demonstrated the involvement of Toll-like receptors 

(TLRs) implicated in the pathology of septic shock (11). TLRs are able to recognise 

pathogens and in particular pathogen-associated molecular patterns (PAMPs), 

which are ligands for pattern recognition receptors (PRRs). Gram negative bacteria 

activate TLR4 whilst Gram positive bacteria are recognised by TLR2 (12). The 

activation of TLRs has been considered really important in the first host immune 

defence line. 

 

 

 

2.1.3 Aim of the study 

The aim of this study was to investigate the involvement of macrophages in NO 

production after bacteria challenge. We wanted to evaluate a comparison between 

two different cell types like macrophages, representing the immunocompetent cells, 

and vascular smooth muscle cells, representing stromal cells. In particular, we 

focalised on the involvement of TLRs. 
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2.2 Materials and methods 

2.2.1 Culture and preparation of bacteria.  

Bacteria were prepared in the same way as described in the paragraph 1.2.1. 

2.2.2 Cell culture.  

Cultured cells murine macrophages (J774.2) or rat aortic vascular smooth muscle 

cells (RASMs) were cultured in Dulbecco’s modified eagles medium (DMEM) 

containing 10% FBS, penicillin (100U/mL), streptomycin (100µg/ml), and MEM 

non-essential amino acids (1% v/v) in an atmosphere of 5% CO2 at 37°C. The 

medium was refreshed every 48 hours or as required. The cells were plated in a 96-

well plate at 70-80% of confluence and left for 24 hours before measuring the 

amount of nitrite into the supernatant. 

2.2.3 Bone marrow derived macrophages 

Primary macrophages were cultured from the bone marrow of the legs from wild 

type C57BL/6, TLR4 knock out mice. TLR4
-/-

 mice were kindly provided by S. 

Akira (Osaka University, Osaka). All strains were backcrossed for five generations 

into the C57BL/6 strain. Wild type C57BL/6 mice were used as controls. All 

experiments were performed using male mice, aged 10-14 weeks.  

The legs were removed from sacrificed mice and cleaned of muscle and connective 

tissue. The bones were cut at both ends and bone marrow was flushed out using a 1 

ml syringe and 19 gauge needles. Bone marrow derived cells were placed into 

RPMI 1640 medium containing 1mM sodium pyruvate, L-Glutamine and phenol 

red, supplemented with penicillin 100U/ml, streptomycin (100µg/ml), L-Glutamine 

2mM, 10% foetal calf serum, 5% horse serum and 2-Mercaptoethanol. 

The suspension of bone marrow was spun with an excess of medium at 200g for 

5minutes. The resulting pellet was resuspended in fresh complete medium 

supplemented with M-CSF (Sigma, UK) and separated into 4 Petri dishes for 3 
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days. At day 4, the media was removed and replaced and left incubated for further 2 

days at 37ºC, 5%CO2 and 95% air. At day 7, the cells were used.  

2.2.4 Measurement of NO.  

Nitric oxide was measured by the formation of nitrite in culture medium using the 

Griess reaction. We used the Griess reagent 1, composed of 10g of sulphanilamide 

(Sigma, UK) added to 950 ml of distilled water, and the Griess reagent 2, composed 

of 5g of napthylethyl-endiamine dihydrochloride (Sigma, UK) added to 1L of 

distilled water. The two reagents, previously let equilibrate for 15 minutes, were 

added to 100 µl of samples and standard curve (Sodium Nitrite-Sigma-0-0.5mM). 

Sulphanilamide reacted with the nitrite and the ethylendiamine in the solution, 

giving a final product characterized by an azo-group, able to give a purple color. 

The reading wavelength was at 550nm.  

2.2.5 Measurement of NOSII expression  

NOSII expression in primary rat aortic smooth muscle cells was measured by 

Western Blotting. In brief, cells were plated into 6-well culture plates and treated 

with S.aureus or E.coli for 48 h. The medium was removed and the cells were 

washed twice with ice cold PBS. Cells were lysed using HEPES (10mM) containing 

MgCl2 (3mM), KCl (40mM), Glycerol (5%), Nonidet P-40 (0.3%), PMSF (1mM). 

Protein concentration in whole cell preparations was measured using the Bradford 

assay. Samples were separated by gel electrophoresis on 8% SDS-polyacrylamide 

gels; after transfer onto nitrocellulose membranes NOSII was detected using 

specific polyclonal rabbit antibody (1:1000; SC-650; Santa Cruz Biotechnology, 

CA, USA) and the signal amplified with a goat anti-rabbit IgG-horseradish 

peroxidase (1:1000, DakoCytomation, Cambridge, UK). Blots were visualised on to 

film using ECL reagents (Amersham Biotechnology, Oxford, UK). After the blots 

were stripped using Restore Western Blot Stripping Buffer (Pierce, IL, USA), the 
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blots were probed with α-tubulin (1:2000; Abcam, Cambridge, UK) that was used 

to confirm equal protein loading between lanes. 

2.2.6 Reverse Polymerase Transcriptase and Real-Time Chain Reaction.  

Total RNA was isolated from murine aortae or J774 cells using the RNeasy Mini 

Kit
 
(QIAGEN, Crawley, UK), after stimulation for 3 hours. cDNA was generated 

by reverse transcription
 
using random hexamers. The cDNA (5µg/reaction) was 

used as
 
a template in the subsequent polymerase chain reaction (PCR)

 
analyses. 

Transcript levels were determined by real-time PCR
 
(Rotor Gene 3000; Corbett 

Research, Sydney, Australia) using
 
the Sybr Green PCR Master Mix Reagent Kit 

(Promega, Madison,
 
WI). The sequences of PCR primers were:  

TLR2: sense, 5'-GCCACCATTTCCACGGACT;  

antisense, 5'-GGCTTCCTCTTGGCCTGG;  

TLR4: sense, 5'-AGAAATTCCTGCAGTGGGTCA;  

antisense, 5’ TCTCTACAGCTGTTGCTTGCACATGTCA;  

TLR 1: sense, 5’-TTGGCAACATGTCCCAACTA;  

antisense, 5’-ATGAGCAATCAGCTGCACAC;  

TLR 6, sense, 5’-CAAAGGAGGCGCTATACTCG;  

antisense, 5’-GCACACCATGTGGATGAAAG;  

GAPDH: 
 
sense, 5'-TCCACGACATACTCAGCAC;  

antisense, 5'-AACGACCCCTTCATTGAC.
  

Primers were used at a concentration of 1 µM for real
 
time. Cycling conditions for 

real-time PCR (a total of 60 cycles
 
used) were as follows: step 1, 15 min at 95°C; 

step 2, 25s at 65°C (TLR2) or 60°C (TLR4, TLR1, TLR6) or 55°C (GAPDH), 25s 

at 72°C; step 3, 5min at 72°C, step 4, 5s at 65°C to 95°C. Data from the reaction
 

were collected and analyzed by the complementary computer software
 
(Corbett 
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Research). Relative quantifications of gene expression
 

were calculated using 

standard curves and were normalized to
 
GAPDH. 

2.2.7 Measurement of Cytokine Production.  

TNFα release in cell free supernatant were determined by Enzyme-Linked 

Immunosorbent Assay (ELISA) using commercially available matched antibody 

pairs following a protocol furnished by the manufacturers (R & D systems, Oxford, 

UK). TNFα concentrations were measured at 450 nm with a reference filter at 550 

nm and results expressed as pg/ml. 

2.2.8 Statistical analysis.  

Prism 4.0c (GraphPad, inc) was used for all statistical analyses. All values are 

expressed as mean ± SEM. Two Way Anova or t test were performed to statistically 

analyse the data. Values of p less than or equal to 0.05 were considered to be 

significant. 
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2.3 Results 

2.3.1 Production of NO in macrophages 

Under basal culture conditions, J774.2 macrophages released low or undectable 

levels of NO. We stimulated the cells with increasing concentration of E.coli (10
7
-

3x10
8
CFU/ml), Gram negative bacteria, sensed by TLR4, and S.aureus (10

7
-

3x10
8
CFU/ml), Gram positive bacteria sensed by TLR2 principally (12). As 

expected, E.coli induced NO release from cultured murine macrophages in a 

concentration dependent manner (Fig.2). However, when cells were stimulated with 

S.aureus, the amount of NO detected was significantly lower to the one produced 

by E.coli (P<0.001, Fig.2).  

To evaluate whether the Gram positive bacteria effect was only related to NO, we 

measured the amount of TNFα released after S.aureus administration on the J774.2 

macrophages. Surprisingly, S.aureus was able to induce TNFα production in a 

concentration dependent manner as well as E.coli (Fig.3). Besides, there was no 

difference between the two bacteria treatment in this cytokine production.  

The implication of TLRs on NO production is already assessed, so we analysed the 

expression of mRNA for TLR4, TLR2, TLR1 and TLR6 on macrophages. Under 

basal conditions, murine macrophages expressed relatively low levels of TLR2 and 

TLR4 compared to TLR1 and TLR6 (Fig.4). TLR4 was not increased after E.coli 

stimulation, even though the basal level was very high, assessing the role of these 

receptors on immune competent cells (Fig.5). In contrast, TLR2 and especially 

TLR6 were significantly increased after S.aureus (10
8
CFU/ml) stimulation (P< 

0.05, P<0.001, respectively) (Fig.6A, B).  

As the NO was detectable only after E.coli treatment, we used bone marrow TLR4-

/- derived macrophages in order to evaluate the role of TLR4. TLR4
-/- 

derived 
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macrophages were not responsive to E.coli (10
-7

-2x10
-8

) or LPS (0.001-1µg/ml) in 

terms of NO release compared to the wild type mice derived macrophages (Fig. 7A, 

B). TLR4 was responsible of NO production after E.coli and LPS stimulation. 
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Fig. 2 E.coli (10
7
-3x10

8
 CFU/ml) induced a significant (P<0.001) increase in NO 

production despite S.aureus at 24 hours on J77.2 
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Fig. 3 There was no difference in the production of TNFα on murine macrophages 

after S.aureus or E.coli stimulation. 

 



 49 

 

 

 

TLR2 TLR1 TLR6 TLR4
0.0

0.5

1.0

1.5

2.0

T
L
R

s
/G

A
P
D

H
 R

a
ti
o

 

 

 

 

Fig.4 Expression of TLRs on murine macrophages under basal culture conditions. 
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Fig. 5 TLR4 mRNA was not modified after E.coli and S.aureus stimulation on 

macrophages. 
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Fig. 6 A) TLR2 mRNA was significantly increased after S.aureus stimulation 

(P<0.05); B) TLR6 mRNA was increased significantly after S.aureus stimulation 

(P<0.001); C) there was no difference in TLR6 mRNA in the control and treated 

macrophages. 
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Fig. 7 Bone marrow TLR4
-/- 

derived macrophages were less responsive to E.coli A) 

or LPS B) in terms of NO production. 
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2.3.2 Production of NO in vascular smooth muscle cells 

iNOS is overexpressed in endothelial and vascular smooth muscle cells during an 

inflamed status like septic shock (5). We treated cultured vascular smooth muscle 

cells with S.aureus (10
5
-10

8
CFU/ml) and E.coli (10

5
-10

8
CFU/ml) for 24 hours.  

In contrast to the macrophages, the Gram negative and Gram positive bacteria were 

able to induce NO release in a concentration dependent manner (Fig. 8A, B) on 

vascular smooth muscle cells. Furthermore, the analysis of western blotting 

revealed, as expected, the increase in NOSII protein expression (Fig.9) either after 

S.aureus (10
8
CFU/ml) or after E.coli (10

8
CFU/ml) stimulation. 

Then, we analysed the amount of mRNA for TLRs in the murine aorta, cut in pieces 

of 5mm long and incubated with bacteria at 3 hours.  

TLR1 and TLR6, responsible of S.aureus recognition, were significantly higher 

expressed than TLR2 and TLR4 (Fig.10) in the control aorta. TLR2 and TLR4 were 

relatively increased (P<0.0001, P=0.09, respectively) after the stimulation with 

S.aureus (10
8
CFU/ml) and E.coli (10

8
CFU/ml), respectively (Fig.11 A, B). In the 

same way, TLR1 and TLR6 mRNA were both increased after the bacteria treatment 

(Fig. C, D) 

 

2.3.3 Comparison: macrophages versus vascular smooth muscle cells 

S.aureus, did not induce the release of NO from macrophages, whilst E.coli or LPS 

did increase the production of NO through TLR4. 

On the other side, vascular smooth muscle cells were sensitive to S.aureus as well 

as E.coli treatment, leading to NO release and iNOS protein expression.  



 53 

 

 

 

 

 

0 105 106 107 108
0

5

10

15

20

25

S.aureus (CFU's)

N
it

ri
te

 [
µ

M
]

Ctl 10
5

10
6

10
7

10
80

5

10

15

20

25

30

35

E.coli [CFU's]

N
it

ri
te

 [
µ

M
]

0 105 106 107 108
0

5

10

15

20

25

S.aureus (CFU's)

N
it

ri
te

 [
µ

M
]

Ctl 10
5

10
6

10
7

10
80

5

10

15

20

25

30

35

E.coli [CFU's]

N
it

ri
te

 [
µ

M
]

 

 

 

Fig.8 Rat aortic vascular smooth muscle cells released NO after A) E.coli and B) 

S.aureus stimulation. 
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Fig.9 Either S.aureus (+ve) or E.coli (-ve) were able to induce iNOS expression on 

vascular smooth muscle cells at 24 hours. 
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Fig. 10 Expression of TLRs in the murine aorta. 
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Fig. 11 A) TLR2 was highly expressed after S.aureus stimulation; B) TLR4 was not 

increased significantly after E.coli stimulation; C) TLR6 and D) TLR1 were 

significantly (P<0.05, P<0.05, respectively) increased after S.aureus treatment on 

the murine aorta. 
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2.4 Discussion 

The expression of iNOS and
 

subsequent "high-output" NO production 

underlies
 
the systemic hypotension, inadequate tissue perfusion and organ

 
failure 

associated with septic shock. 

Macrophages are a major component of the mononuclear phagocyte system that 

consists of closely related cells of bone marrow origin, including blood monocytes, 

and tissue macrophages. From the blood, monocytes migrate into various tissues 

and transform into macrophages. In inflammation, macrophages have three major 

functions: antigen presentation, phagocytosis, and immunomodulation through 

production of various cytokines and growth factors. Therefore, macrophages play a 

critical role in the initiation, maintenance, and resolution of inflammation.  

The infection of bacteria into the organism and the subsequent bacteria blood 

circulation can lead to macrophages activation and in the meanwhile the activation 

of stromal cells, like vascular smooth muscle cells, that have been recognised as 

able to ‘sense’ pathogens (13). 

In this study we evaluated firstly the capability of either macrophages or vascular 

smooth muscle cells to produce NO in response to bacterial challenge, and secondly 

the difference between the two systems. 

Macrophages were able to produce NO after E.coli treatment but not after S.aureus 

challenge. The lack of NO production after the Gram positive treatment was not due 

to a less responsiveness to that bacterium. In fact, macrophages produced the same 

amount of TNFα after S.aureus and E.coli administration.  

TNFα and iNOS are key genes in innate immunity, which are thought to be 

regulated by separate arms of the MyD88-TRIF adapter protein pathway (14). As 

demonstrated by the bone marrow derived TLR4
-/-

 macrophages, TLR4 was 
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implicated in the production of NO after E.coli and LPS challenge. In a recent 

study, it was showed that TNF release following TLR stimulation was achieved by 

NF-kB activation, whereas induction of iNOS was affected by NF-kB-induced IFN-

β stimulation of IRF-3 (14). So, it was thought that while TNFα is induced 

following the activation of MyD88, iNOS requires TRIF activation. TRIF is a 

molecular adaptor protein which is not related to TLR2 activation. As S.aureus is 

sensed by TLR2, it could be possible that the lack of NO production at 24 hours 

was due to the lack of TRIF pathway activation on macrophages. Besides, it was 

shown that TNFα was able to act in an autocrine manner, leading to the induction of 

NO production (15). It is likely a later phase of TLR2-induced NO production. 

Accordingly, Clark et al (15) demonstrated that the stimulation at 48 and 72 hours 

of macrophages with S.aureus or PAMPs representative of the Gram positive 

bacteria can increase the amount of NO released. Besides, as TLR4 is coupled to 

either MyD88- or TRIF-dependent pathway (16), it could be reasonable that after 

E.coli administration, the NO production is first induced by TRIF involvement and 

later on by MyD88 after TNFα production (Fig 12). 

Furthermore, the comparison between TLR2 and TLR4 gene expression highlighted 

that TLR2 was in a very low amount compared to TLR4 and that TLR2 mRNA 

increased after stimulation with the bacteria, in contrast to TLR4 mRNA expression 

which was not increased after the challenge, may be because of the already high 

level. These observations were in keeping with others (17) and let us to hypothesize 

that the activity of TLR4 is more prominent in macrophages, explaining the 

immediate reaction after E.coli challenge at 24 hours in these cells. Though, TLR2 

expression was increased by S.aureus administration, further explanation for the 

involvement of MyD88 in TNFα release. Furthermore, these results are also in 
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keeping with studies which demonstrated a synergy between TLR2 and TLR4 

agonists. 

 Vascular smooth muscle cells were able to produce NO either after E.coli or 

after S.aureus stimulation, result further confirmed by western blotting analysis for 

iNOS expression. TLR2 and TLR4 mRNA were increased after the respective 

bacteria treatment, leading to a concomitant response to the bacteria in the 

cardiovascular system. These data further confirms the role of NO in the vascular 

hyporesponsiveness to vasoconstrictors in ex vivo and in vivo vascular models of 

septic shock.  

The principal aim of this study was to compare macrophages versus vascular 

smooth muscle cells in response to bacteria or PAMPs in terms of NO release. 

A prominent difference in NO release between the two types of cells was observed 

after S.aureus challenge. Interestingly, the morbidity and mortality of septic 

patients has been found to be significantly higher in the presence of Gram positive 

bacteria, even though these organisms are conventionally considered to be weak 

pathogens. As demonstrated in this study, a possible explanation to this clinical 

event could be the non-immediate macrophages activation following the pathogen 

circulation. So, the pathogen, recognised by the vascular cells, can promote NO 

production, which in turn explicates a double effect. The immunocompetent cells 

release NO in order to kill the infectious agent, whereas the high output of NO from 

vascular cells induces vasodilatation which is deleterious in sepsis. The excessive 

production of NO by the vascular cells could still represent a sort of immuno-

defence as they constitutively express TLRs, even though it becomes detrimental 

for the vascular reactivity and in particular for the blood pressure.  
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Fig. 12 Effect of Gram positive and Gram negative bacteria on iNOS induction. 
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3.1 Introduction 

Sepsis is a complex pathophysiological state and is still associated with a high 

degree of mortality. Gram negative and, increasingly, Gram positive bacteria are 

important causative agents (1). Infection results initially in the stimulation of the 

innate, non specific, immune response mediated mainly via circulating and tissue 

inflammatory cells such as monocytes/macrophages and neutrophils. These cells 

normally exist in a non-activated state but are rapidly activated in response to 

bacteria, their products or inflammatory mediators such as cytokines and reactive 

oxygen species (ROS) (2). 

As most infections occur primarily in the tissue and not in the blood stream, 

extravasation of leukocytes is essential to recruit inflammatory cells and invading 

pathogens into contact. This requires both a chemotactic gradient and coordinated 

up-regulation of endothelial and inflammatory cell adhesion molecule expression. 

Leukocytes have a short life span at the inflammation site. Neutrophils rapidly 

undergo apoptosis to be cleared by inflammatory macrophages, which themselves 

emigrate from the inflamed site during the ‘resolution phase’. Thus, a successful 

inflammatory event requires not only appropriate activation of cells and mediators 

with subsequent phagocytosis and removal of the exciting stimulus, but also a 

consequent elimination of the inflammatory cells and debris to allow tissues to 

reform a normal architecture and function (2).  

Cytokines are presumably present to modulate cellular response and metabolism on 

a local or paracrine level. With few exceptions, like pre-pro-IL-1, cytokines have to 

be synthesized de novo in response to a specific external stimulus and do not exist 

in a dormant state inside the cell (2). However, once the cytokines are synthesized 

and secreted, they rapidly gain access to the blood stream. Septic patients displayed 
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high blood levels of TNF-α and IL-6, pro-inflammatory cytokines (3). Importantly, 

both pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and anti-

inflammatory cytokines such as IL-10 and the soluble TNF-α receptor I and II 

coexist in the blood of patients with established sepsis (3).  

The activation of various immune competent cells and non-immune competent 

cells, like epithelial or endothelial cells, and their consequent production of pro- and 

anti-inflammatory mediators, leads to the ROS release and other radical species 

with consequent oxidative stress. Several studies confirm severe oxidative stress in 

patients with systemic inflammatory response syndrome, like septic shock, as 

demonstrated by reduced values of plasma total radical-trapping antioxidant 

parameter and its components, such as uric acid, protein SH groups, unconjugated 

bilirubin, vitamin C, vitamin E and plasma unidentified antioxidants (4).  

 

3.1.1 Role of Free Oxygen Radicals in the physiological control of cell function 

The free oxygen radicals, also named ROS, are several and are classified as 

chemical species which can react with proteic, lipid and nucleotidic cell 

components either under physiological or pathological conditions (5).  

ROS are superoxide anion O2
-.
, hydrogen peroxide H2O2, hydroxyl radical 

.
OH. 

Other reactive radical species, like peroxynitrite ONOO
-
, frequent into the cell 

environment, are the reactive nitrogen species (RNS), which are formed by the 

reaction between nitric oxide (NO) and ROS. 

The triplet-state molecular oxygen 
3
O2, formed in an enzymatic way, such as via 

NAD(P)H oxidases or in a non-enzymatic way, is transformed into superoxide 

anion O2
-.
. The enzyme superoxide dismutase (SOD) can convert the O2

-.
 into H2O2, 

that can further, enzymacally or not, be transformed into the hydroxyl radical 
.
OH. 
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Most of the cellular regulatory effects are not directly mediated by the superoxide 

but rather by its reactive oxygen species (ROS). 

Free radicals and their derivatives exist in living tissues at low concentrations that 

are contained by the balance between the rates of radical production and their 

corresponding rates of clearance. The relative high intracellular concentrations of 

glutathione and other antioxidative compounds provide a strong basal scavenging 

capacity (5). Redox regulation can be defined as the modulation of protein activity 

by oxidation and reduction and has been recognized as one of the most important 

physiological mechanisms for controlling cellular activities. Under physiological 

conditions, an augmentation of ROS is a sensor of proteolytic degradation, oxygen 

homeostasis, and calcium changing concentrations, transcription factors activation, 

cell cycle regulation and so on. Thus, most of the redox-responsive regulatory 

mechanisms in mammalian cells serve to protect the cells against oxidative stress 

and to re-establish redox homeostasis (6). 

 

3.1.2 Role of ROS in sepsis 

Sepsis can activate various cells, such as macrophages, neutrophils, endothelial and 

epithelial cells, resulting in the release of a number of mediators, including 

cytokines, chemokines, leukotriens and proteases. This sequence of events leads to 

immune cells activation with the release of ROS. These inflammatory mediators are 

important to combat the pathogen but at the same time an overproduction of ROS 

leads to the oxidative stress, typical of pathologies like sepsis. 

There are several evidences in the literature to confirm the progressing oxidative 

stress during sepsis, as registered by the increased level of the glutathione system 

activity and xanthine oxidase activity (7).  



 65 

A further complication is the interaction between ROS and NO, highly produced in 

septic shock, leading to the production of RNS (5). RNS include NO, peroxynitrite 

ONOO
-
, nitrogen dioxide radical (NO2

.
) and other oxides of nitrogen and products 

arising when NO reacts with O2
-.
, RO

.
 and RO2

.
. Under physiological conditions, 

NO reacts rapidly with ferrous iron, binding to enzymes like soluble guanilate 

cyclase and cytochrome c of the respiratory chain, implicating a critical alteration of 

cellular components during an inflamed status. Furthermore, NO stimulates H2O2 

and O2
-.
 production by the mitochondria, possibly by inhibiting the cytochrome c 

oxidase, thus increasing leakage of electrons from the respiratory chain (2). H2O2, 

in turn, participates in the up-regulation of iNOS expression via NF-kB activation 

(8). NO can also bind to the haem of the enzyme catalase, inhibiting H2O2 

breakdown.  

The interaction of ROS and RNS with biological targets can therefore lead to lipid 

peroxidation, DNA damage, apoptosis and then to tissue injury (5). 

 

3.1.3 Role of TLRs in the septic shock 

Toll-like receptors are achieved as functional system of the innate immunity, 

capable of recognising pathogen-associated molecular patterns (PAMPs). The 

innate immune response has evolved as the immediate host defence system in 

response to foreign structures and it also serves to prime the adaptive immune 

response (9).  

Several studies have identified the involvement of TLRs in the pathology of sepsis 

either in vitro or in vivo animal models. Escherichia coli and its outer membrane 

endotoxin lipopolysaccharide (LPS) are sensed by TLR4 either in macrophages or 

monocytes in an in vitro or in vivo model (10). In the same way, Staphilococcus 
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aureus or its membrane endotoxin LTA can be recognised by TLR2 (9), which 

heterodimerizes with TLR1 and TLR6. TLR2/1 complex is involved into the typical 

vascular hyporeactivity of sepsis, observed in aortic mice rings previously cultured 

with the Gram positive bacteria or specific TLR2 ligands (11).  

Furthermore, the administration of TLR ligands on cell lines, like murine or human 

macrophages or vascular cells, revealed an increased production of cytokines like 

IL-1 and TNFα, and chemokines like CXCL-8. 

 

 

3.1.4 Aim of the study 

Under septic conditions monocytes are recruited from the blood into the injured 

tissues. The aim of this study was to evaluate the role of human monocytic THP-1 

cells on the production of CXCL-8 after bacteria challenge and oxidative stress. We 

particularly focused on the activity of hydrogen peroxide (H2O2), typical ROS 

produced during the septic shock, on the production of CXCL-8. We then tried to 

examine the role and implication of TLRs on the oxidative stress induced by 

bacteria challenge on human monocytes THP-1. 
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3.2 Materials and methods 

3.2.1 Culture and preparation of bacteria.  

Bacteria were prepared in the same way as described in the paragraph 1.2.1. 

3.2.2 Cell culture.  

THP-1 human monocytes were obtained from the European Collection of Cell 

Cultures (ECACC) and cultured in RPMI 1640 containing 10mM GlutaMAX and 

supplemented with 10% FCS, Penicillin/streptomycin 100U/ml, L-glutamine 2mM. 

THP-1 cells were plated out onto either 6 or 96 well plates at 1 x 10
6
 per ml in 

RPMI 1640 (0% FCS content), and left to equilibrate for 24 h before stimulation.  

HEK 293 (human embryonic kidney cells) were obtained from Invivogen and 

cultured in Dulbecco’s modified eagles medium (DMEM) supplemented with 10% 

FBS, Normocin 50mg/ml, Blestocidin 10mg/ml and non-essential aminoacids (1% 

v/v). HEK 293 TLR2, HEK TLR2/1 and HEK 293TLR2/6 were transfected with 

the respective TLRs and compared to HEK Null as control. The cells were plated 

onto 96-well plates at 1 x 10
6
 per ml and let equilibrate 24 h before stimulation. The 

effect of all the reagents on THP-1 metabolism was assessed, by measuring the 

mitochondrial-dependent reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) (Sigma, Poole, UK) to formazan. This was 

performed following all treatments.  

3.2.3 Measurement of cytokine production.  

CXCL-8 release in cell free supernatant were determined by Enzyme-Linked 

Immunosorbent Assay (ELISA) using commercially available matched antibody 

pairs following a protocol furnished by the manufacturers (R & D systems, Oxford, 
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UK). CXCL-8 concentrations were measured at 450 nm with a reference filter at 

550 nm and results expressed as pg/ml. 

3.2.4 Western blotting  

The THP-1 cells were collected in the presence of protease and phosphatase 

inhibitors. Nuclear extracts kit (Activ Motif, UK) was used for the preparative 

purification of nuclear proteins. In order to separate cytoplasmic proteins from 

nuclear extract, hypotonic buffer was added to the cells followed by detergent 

causing leakage of cytoplasmic proteins into the supernatant. The cytoplasmic 

fraction was collected after centrifugation. The nuclear proteins were lysed by a 

lysis buffer containing a cocktail of protease inhibitors. The nuclear protein fraction 

was collected after centrifugation and analysed with Bradford assay for measuring 

the amount of proteins. Samples (30µg of proteins) were separated by gel 

electrophoresis on 10% SDS-polyacrylamide gels; after transfer onto nitrocellulose 

membranes Nuclear factor-Erythroid 2-related factor (Nrf-2) was detected using 

polyclonal rabbit antibody (1:1000; H-300; Santa Cruz Biotechnology, CA, USA) 

and the signal amplified with a goat anti-rabbit IgG-horseradish peroxidase (1:2000, 

DakoCytomation, Cambridge, UK). Blots were visualised onto film using ECL 

reagents (Amersham Biotechnology, Oxford, UK). The blots were then probed with 

Lamin A (1:1000; Santa Cruz, UK) that was used to confirm equal protein loading 

between lanes. 

3.2.5 Reverse Polymerase Transcriptase and Real-Time Chain Reaction.  

Total RNA was isolated from THP-1 cells (1.5x106 cells/ml in a 6-well plate) using 

the RNeasy Mini Kit
 
(QIAGEN, Crawley, UK), after stimulation for 3 hours. cDNA 

was generated by reverse transcription
 

using random hexamers. The cDNA 

(2µg/reaction) was used as
 
a template in the subsequent polymerase chain reaction 
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(PCR)
 
analyses. Transcript levels were determined by real-time PCR

 
(Rotor Gene 

3000; Corbett Research, Sydney, Australia) using
 
the Sybr Green PCR Master Mix 

Reagent Kit (Promega, Madison,
 
WI). The sequences of PCR primers were:  

TLR2: sense, 5'-CCTCCAATCAGGCTTCTCTG;  

antisense, 5'-CTCCCCTTGCAGATACCAT;  

TLR4: sense, 5'-TGGACAGTTTCCCACATTGA;  

antisense, 5’ AAGCATTCCCACCTTTGTTG;  

TLR 1: sense, 5’-TTGGCTGTGACTGTTGACCTC;  

antisense, 5’-TGGCACACCATCCTGAGATA;  

TLR 6, sense, 5’-TTGGCTGTGACTGTGACCTC;  

antisense, 5’-TGGCACACCATCCTGAGATA;  

GAPDH: 
 
sense, 5'-CAGCCTCAAGATCATCAGCA;  

antisense, 5'-TGTGGTCATGAGTCCTTCCA.
  

Primers were used at a concentration of 1 µM for real
 
time. Cycling conditions for 

real-time PCR (a total of 60 cycles
 
used) were as follows: step 1, 15 min at 95°C; 

step 2, 25s at 60°C, 25s at 72°C; step 3, 5min at 72°C; step 4, 5s at 65°C to 95°C. 

Data from the reaction
 
were collected and analyzed by the complementary computer 

software
 
(Corbett Research). Relative quantifications of gene expression

 
were 

calculated using standard curves and were normalized to
 
GAPDH. 

3.2.6 Statistical analysis 

Prism 4.0c (GraphPad, inc) was used for all statistical analyses. All values are 

expressed as mean ± SEM. Student’s t test was performed to statistically analyse 

the data. Values of p less than or equal to 0.05 were considered to be significant. 
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3.3 Results 

3.3.1 Effect of bacteria on THP-1 cells 

THP-1 cells were treated with E.coli and S.aureus, Gram negative and positive 

bacteria, respectively, at the concentration of 10
7
 and 10

8
 CFU/ml. Under basal 

culture conditions, the monocytes released a low or undetectable amount of CXCL-

8. The treatment with E.coli induced a concentration-dependent release of 

chemochine (550±104.8; 15305±610.2 pg/ml) (Fig.2A), whereas S.aureus induced 

a detectable amount of CXCL-8 at the highest concentration considered (10
8
 

CFU/ml; 9545.42±1540 pg/ml) (Fig.2B).  

ROS are derived from hydrogen peroxide (H2O2) and are especially formed during 

an inflamed status like sepsis. Therefore, we treated THP-1 with increasing 

concentrations of H2O2 (0.01-10mM). The H2O2 10mM was a very high 

concentration so that low cell vitality was detected. Thus, we used 0.1mM 

concentration which did not modify cell viability. 

The addition of H2O2 0.1mM did not release any detectable CXCL-8. Interestingly, 

the addition of E.coli to H2O2 significantly potentiated CXCL-8 release at 10
7
 

(P=0.05) and 10
8
 CFU/ml (P<0.0005) (Fig.2A). In the same way, the co-

administration of S.aureus with H2O2 revealed a significant increase of CXCL-8 at 

the highest concentration 10
8
 CFU/ml (P<0.05), revealing a more than additive 

effect (Fig.2B). 
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Fig. 2 A) E.coli+H2O2 increased significantly (10
7
CFU/ml P=0.05; 10

8
CFU/ml 

P<0.0005) the amount of CXCL-8 detected; B) S.aureus+ H2O2, in the same way, 

increased the detectable CXCL-8 (P<0.05) versus the basal (medium alone) on 

THP-1 cells. 
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3.3.2 Effect of PAMPs plus hydrogen peroxide on THP-1 cells 

Lypopolisaccharide (LPS) is recognised by TLR4 and able to induce an 

inflammatory signalling pathway (9). We stimulated THP-1 cells with LPS 0.01 and 

0.1 µg/ml for 24 hours. The amount of CXCL-8 registered was 1392.6±193.21 

pg/ml at 0.01µg/ml and 5366.3±143.2 pg/ml at 0.1µg/ml. The co-addition of H2O2 

with LPS significantly synergised the release of CXCL-8 at both concentrations 

tested (P<0.0005; P<0.001, respectively) (Fig.3A). 

Pam3CSK4 and FSL-1 are specific TLR2/1 and TLR2/6 ligands. We administered 

these ligands in order to mimic the effect of S.aureus on TLR2 receptor and, 

especially on the heterodimers TLR2/1 and TLR2/6 as the bacteria can be ‘sensed’ 

by both complexes (9).  

Pam3CSK4 (0.01-0.1µg/ml) and FSL-1 (0.1 and 1µg/ml) induced the release of 

CXCL-8, but, interestingly, the addition of H2O2 (0.1mM) potentiated the amount 

of chemokine detected either after Pam3CSK4 (P<0.0005 at 0.1µg/ml) or FSL-1 

treatment (P<0.001 at 0.01µg/ml; P<0.05 at 0.1µg/ml) (Fig. 3B, C). 
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Fig.3 A) LPS+H2O2 significantly increased CXCL-8 detected at 0.01µg/ml 

(P<0.0005) and 0.1µg/ml (P<0.001); B) Pam3CSK4+H2O2 increased significantly 

CXCL-8 at 0.1µg/ml (P<0.0005), whilst C) FSL-1+H2O2 increased CXCL-8 in a 

significant manner at 0.1µg/ml (P<0.001) and at 1µg/ml (P<0.05). 
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3.3.3 Expression of TLRs on THP-1 cells  

THP-1 cells are human monocytes cells, interested in the innate immunity. The 

expression of TLRs is constitutive as it is shown in the Fig. 4. TLR1 is highly 

expressed on THP-1 cells compared to the other TLRs.  

We treated the cells with H2O2 to analyse which TLR mRNA was highly expressed. 

The stimulation with H2O2 revealed a significant increase in TLR4 (P<0.05), TLR2 

(P<0.005) and TLR1 (P<0.05) mRNA, but not in TLR6 mRNA (Fig. 5A, B, C, D).  

The co-administration of H2O2 to LPS (0.1µg/ml) revealed an increase in TLR4 

mRNA (Fig. 6A), compared to the effect of the single compounds alone, even 

though it was not a significant additive effect. Meanwhile, the administration of 

H2O2 with FSL-1 (0.1µg/ml) revealed an additive effect on TLR2 but not TLR6 

mRNA increase (Fig. 6B, D). In contrast, Pam3CSK4 (0.1µg/ml) plus H2O2 

synergistically increased both TLR2 and TLR1 mRNA (Fig. 6C). 

 

3.3.4 Effect of hydrogen peroxide and PAMPs on HEK 293 transfected cells 

TLR2 heterodimerizes with TLR1 or TLR6. To further determine the role of TLR2 

in the induction of CXCL-8, we cultured HEK 293 Null (non transfected), HEK 

TLR2, HEK TLR2/1 and HEK TLR2/6, transfected with the respective TLR. This 

kind of cells does not express any TLRs. 

We stimulated the cells with H2O2 and interleukin-1β (IL-1, 1ng/ml). The H2O2 did 

not induce any significant increase of CXCL-8 compared to the basal conditions in 

all types of the HEK cells, as previously observed on THP-1 cell line. In contrast, 

HEK TLR2/1 cells showed a synergistic effect on CXCL-8 release after the H2O2 

and IL-1 treatment (Fig. 7A, B, C and D).  
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Fig. 4 Expression of mRNA for TLRs on THP-1 cells 
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Fig. 5 H2O2 (0.1mM) increased significantly the amount of mRNA for A) TLR4 

(P<0.05), B) TLR2 (P<0.005) and C) TLR1 (P<0.05), but not for D) TLR6. 
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Fig. 6 The co-administration with PAMPs and H2O2 (0.1mM) increased mRNA for 

A) TLR4 and B) TLR2 in an additive manner after LPS (0.1µg/ml) and FSL-1 

(0.1µg/ml) plus H2O2; whereas C) TLR1 mRNA was increased in a synergistic 

manner after Pam3CSK4 (0.1µg/ml) and H2O2 addition. D) TLR6 mRNA was not 

modified after FSL-1 and H2O2. 
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Fig. 7 HEK 293 A) Null and transfected with B) TLR2, C) TLR2/1 and D) TLR2/6 

did not increase the amount of CXCL-8 after H2O2 treatment, but the addition of IL-

1 increased the amount of CXCL-8 detected from HEK TLR2/1 in a synergistic 

manner. 

 

 

 



 79 

3.3.5 Effect of PAMPs plus H2O2 on Nrf-2 expression. 

Nuclear factor-Erythroid 2-related factor (Nrf-2) is an enzyme belonging to the 

family of the detoxifying enzymes, that are activated during the second phase after 

the insult from the oxidative stress. Under basal conditions, Nrf-2 is located in the 

cytoplasm, but in an oxidative stress status it translocates to the nucleus to induce 

the antioxidant response element (ARE).  

Nrf-2 was low detected into the nucleus extraction proteins after H2O2 (0.1mM) 

treatment. N-acetylcysteine (1mM), a well known antioxidant, increased 

significantly (P<0.05) the amount of Nrf-2 compared to the control, especially it 

increased significantly the amount of Nrf-2 expressed into the nucleus after H2O2 

treatment (P<0.0001) (Fig.8A). Interestingly, either LPS (0.1µg/ml) or Pam3CSK4 

(0.1µg/ml) (P<0.05, P<0.005, respectively), but not FSL-1 (0.1µg/ml) significantly 

increased Nrf-2 into the nucleus compared to the control (Fig. 8B). Hence, the co-

administration of H2O2 with LPS, FSL-1 and Pam3CSK4 increased the amount of 

Nrf-2 protein compared to the respective ligands alone (P<0.001; P<0.01; P<0.05, 

respectively) (Fig. 8B). 
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Fig. 8 A) N-acetylcysteine (NAC, 1mM) alone increased the expression of Nrf-2 into the 

nucleus (*P<0.05 vs control), as well as in combination with H2O2 (P<0.0001 vs NAC); B) 

LPS (0.1µg/ml) and Pam3CSK4 (0.1µg/ml) increased significantly Nrf-2 expression 

protein into the nucleus (*P<0.05, ~~P<0.005 vs control, respectively). LPS (**P<0.001 vs 

LPS), FSL-1 (
#
P<0.01 vs FSL-1) and Pam3CSK4 (

~
P<0.05 vs Pam) plus H2O2 augmented 

Nrf-2 expression in a significant manner. 
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3.4 Discussion 

Monocytes are cells that possess migratory, chemotactic, pinocytic and 

phagocytic activities, as well as receptors for IgG Fc-domains (Fc R) and iC3b 

complement (12). Under migration into tissues, they undergo further differentiation 

(at least one day) to become multifunctional tissue macrophages. Monocytes are 

generally, therefore, considered to be immature macrophages. However, it can be 

argued that monocytes represent the circulating macrophage population and should 

be considered fully functional for their location, changing phenotype in response to 

factors encountered in specific tissue after migration.  

In this study we have been focused on the activity of monocytes to produce 

CXCL-8, the most potent chemoattractant for neutrophils. The administration of 

Gram negative, E.coli, or Gram positive bacteria, S.aureus, induced a 

concentration-dependent production of CXCL-8 but the addition of H2O2 revealed a 

synergistic effect. The administration of bacteria with H2O2 had the aim to mimic 

an oxidative stress condition (state), produced during septic shock. It is well-known 

that the amount of H2O2 produced in the organism is around 100µM under septic 

conditions and that it can interfere with the inflammatory response (5). 

THP-1 cells were therefore stimulated with specific TLRs ligands and H2O2. It was 

confirmed the further involvement of TLRs in the pathogen-induced oxidative 

stress. LPS, TLR4 ‘sensed’, plus H2O2 increased synergistically the amount of 

CXCL-8 produced as well as FSL-1, TLR2/6 ligand, and Pam3CSK4, TLR2/1 

ligand. This data revealed that TLR4 and TLR2 are implicated in the exacerbation 

of the septic shock under oxidative stress conditions. 
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In order to further evaluate the above data, we analysed the effect of H2O2 on the 

expression of TLRs. TLR4, TLR2 and TLR1 mRNA were significantly increased 

after the administration of H2O2 alone, even though there was no detectable 

production of CXCL-8 after H2O2 cells stimulation. Accordingly, the addition of the 

PAMPs with H2O2 augmented the mRNA for TLR4, TLR2 and TLR1. 

TLR4 was therefore responsible of the synergism previously observed after E.coli 

or LPS plus H2O2 treatment. According to our study, Powers et al (13) 

demonstrated that TLR4 was increasingly expressed on the surface of alveolar 

macrophages derived from a model of rat haemorrhagic shock. This effect was 

inhibited by the addition of the antioxidant N-acetylcysteine on RAW264.7 treated 

with H2O2 in vitro. 

TLR2 is a receptor which heteredimerizes with TLR1 and TLR6. The complex 

TLR2/1 was responsible of the synergism observed after S.aureus and Pam3CSK4 

plus H2O2 challenge, as further confirmed by the HEK transfected cells and real 

time PCR. Others demonstrated that TLR2 participated in the response of oxidative 

stress in cardiac myocytes via NF-kB and AP-1 activation, effect eliminated by the 

addition of TLR2 antibody (14). 

In the second part of this study we evaluated the expression of Nrf-2 into the 

nucleus. Nrf-2 is a nuclear transcription factor which participates in the second 

phase of detoxification after induced oxidative stress. Under physiological 

conditions, nuclear levels of Nrf-2 are low, but they increase after oxidative stimuli, 

resulting in an enhanced transcriptional activation of its targets, which in turn 

confers protection against various environmental stresses (15). Nrf-2 activates the 

antioxidant response element (ARE), which induces the production of anti-oxidant 
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enzymes like glutathione, heme-oxygenase-1, which activity is to maintain the 

redox balance into the cell. This is the first study to evaluate that Nrf-2 was 

significantly expressed into the nucleus after LPS and Pam3CSK4 treatment. It was 

interesting to notice that Nrf-2 was even more expressed after LPS, FSL-1 and 

Pam3CSK4 plus H2O2 stimulation. Based on the anti-oxidant nature of Nrf-2, we 

could speculate that TLRs activation, in particular TLR4 and TLR2/1, had a double 

effect on monocytic cells. On one hand it promoted the recruitment of other anti-

inflammatory cells, neutrophils by producing CXCL-8 via TLR4 and TLR2/1; on 

the other side they might activate a sort of down-regulation inducing a detoxifying 

phase inside the cells, resulting in a very balanced pattern. Interesting would be to 

discover at what point of the TLRs signalling pathway, Nrf-2 may interfere.  

The role of Nrf-2 has been demonstrated crucial in a murine model of septic shock. 

Nrf-2 deficient mice were more susceptible to die after mild and lethal dose of LPS 

(16). Besides, Nrf2
-/-

 mice expressed a greater amount of pro-inflammatory 

mediators, like IL-1 and IL-6 and TNFα, under septic conditions. In the same study 

it was demonstrated that Nrf-2 suppressed inflammation by inhibiting NF-kB 

activation through maintenance of redox status or maybe through the inhibition of 

IKK complex, responsible of NF-kB inactivity. NF-kB is a nuclear transcription 

factor induced after TLR4 and TLR2 activation. TLR4 signalling pathway, in 

contrast to TLR2, can be explicated via TRIF-dependent pathway, which is 

MyD88-independent pathway. It was demonstrated that Nrf-2 could also modify the 

activity of IRF-3-mediated gene transcription (15). IRF-3 is a downstream effector 

of TRIF-dependent pathway. The level at which Nrf-2 could act was also thought to 

be at the level of TRAF-associated NF-kB activator binding kinase 1 (TBK1). 
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Further studies are required to elucidate the probable mechanism of Nrf-2 and its 

cross-talk with the TLRs.  

In conclusion, the activation of an Nrf-2 pathway could be useful to counterbalance 

the deleterious effect of TLRs on the synergistic production of CXCL-8. It could 

represent a sort of negative feedback for the extreme oxidative stress during the 

septic shock and, therefore, it may represent a future target for elaborating new 

therapies for sepsis. 
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4.1 Introduction 

4.1.1 Sepsis 

Sepsis is a devastating clinical condition that reverse its effect especially at the 

level of the cardiovascular system. It is the resultant of both local or systemic 

Gram-negative or positive bacteria infections and from translocation of the whole 

bacteria or endotoxin from the gut into the circulation (1, 2); it can convert to severe 

or septic shock and induce hypotension, multiple organ dysfunction, like acute lung 

injury, coagulation abnormalities, thrombocytopenia, altered mental status, renal, 

liver or cardiac failure.  

The recognition of the endotoxins by the innate immune system leads to the 

activation and interaction of a number of effective cascades such as the 

complement, coagulation, bradykinin/kinin and hematopoietic systems, that can 

interact with each other and facilitate the release of a myriad of mediators in the 

acute phase response. These released mediators include eicosanoids, cytokines, 

chemokines, adhesion molecules, reactive free radicals, platelet-activating factor 

(PAF) and nitric oxide (NO).  

Lypopolisaccharide (LPS) is the most common and experimentally studied cause of 

sepsis. Once in the circulation, LPS may bind to plasma components of the blood, 

such as high-density lipoproteins or LPS binding protein (LBP). The LBP-LPS 

complex interacts with CD14, a high affinity receptor for LPS expressed on 

monocytes/macrophages. The interaction with macrophafagic or blood soluble 

CD14 can stimulate endothelial cells, inducing the synthesis of adhesion-molecules 

which are then exposed to the membrane for recruiting leucocytes in the focus of 

the inflammation (2). The signal transduction, downstream LPS recognition, 

induces the activation of nuclear factor-kappa B (NF-kB). In physiological 
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conditions, NF-kB is normally associated and inhibited by the proteins Ikkα, β and 

γ, which form the inhibitory complex, IkB. An invasive stimulus, like LPS, induces 

tyrosine-kinase receptors activity which activates the IKK kinase, that phosphorilate 

IkBα, inducing this complex to dissociate. IkB is then recognized by the ubiquitin 

and degraded by the proteosome, whilst NF-kB migrates to the nucleus promoting 

the transcription of several genes, which express pro- and anti-inflammatory 

cytokines, inducible cyclo-oxygenase (COX-2), and inducible nitric oxide (iNOS) 

(Fig.1). This signalling pathway can be activated either by immunocompetent cells, 

like macrophages, or by stromal cells, like endothelial and epithelial cells. 

Cytokines and chemokines are responsible of the recruitment and maturation of 

immune cells, leading to the activation of either the innate immune system or the 

adaptive immune system. Pro-inflammatory mediators, such as tumor necrosis 

factor α (TNF α), interleukin-1  (IL-1 ), interferons (IFNs) and others, act either 

in an autocrine manner, auto-activating the immune cells which synthesized them, 

or in a paracrine-manner, inducing other cells to produce other enzymes implicated 

in the progression of the inflammation process. 

However, the circulating cytokines are merely the ‘tip of the iceberg’. Pro-

inflammatory cytokines induce synthesis of phospholipase A2, COX-2, 5-

lipoxygenase and acetyltransferase, which contribute to synthesis of eicosainoids, 

prostaglandins and leucotriens, and platelet-activating factor. These factors, acting 

through specific G-protein-coupled receptors promote inflammation, altering 

vasomotor tone and increasing blood flow and vascular permeability. 

Furthermore, a variety of stimuli including cytokines, microbial components, 

immune complexes, and mechanical stress induce mRNA transcription and protein 

synthesis of iNOS. NO influences many aspects of the inflammatory cascade 
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ranging from its own production by immunocompetent cells to the recruitment of 

leukocytes. It can be synthesized by 3 NOS isoforms: NOS I, neuronal, and NOSIII, 

endothelial, which are constitutively expressed, and NOS II, inducible isoform 

transcripted via NFkB, previously activated by the inflammatory cytokines-induced 

signal transduction. 

NOS converts L-arginine to L-cytrulline plus NO, which is a gas, that from the 

endothelial cells enters vascular smooth muscle cells, activating the soluble 

guanylate cyclase (sGC), which produces cyclic guanosin-monophosphate (cGMP), 

second messenger that promotes the activation of the cGMP-dependent protein 

kinase (PKG). In turn, PKG phosphorilates the light chain of the myosin in the 

smooth muscle cells, leading to the vasodilation. Physiologically, NO, the major 

vascular dilator produced by NOSIII, and vasoconstrictor mediators are strictly 

balanced, consequently modulating the vascular tone; but, an overproduction of NO 

in pathological conditions, like in sepsis, can damage the vascular endothelium and 

induce a massive vasodilation, hypotension and impaired tissue functionality with 

consequent multiple organ failure. 

Further destructive NO-mediated effect is the consequent reaction with the reactive 

oxygen species (ROS). Physiologic generation of ROS, as described before, has 

been implicated in a variety
 
of biological responses from transcriptional activation 

to
 
cell proliferation. The overproduction of NO leads to the interaction with O2

−
 

and H2O2, further generating reactive and toxic species like ONOO
-
, extremely 

unstable and toxic for the cells. ROS have detrimental effects on endothelial 

function, vascular smooth muscle cell proliferation, and leukocyte adhesion. 

Oxidation of DNA and proteins may take place, along with membrane damage, 

because of lipid peroxidation, leading to alterations in membrane permeability, 
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modification of protein structure and functional changes (4). Oxidative 

mitochondrial membrane damage can also occur, resulting in membrane 

depolarization and the uncoupling of oxidative phosphorylation, with altered 

cellular respiration (5). This can ultimately lead to mitochondrial damage, with 

release of cytochrome c, activation of caspases and apoptosis (programmed cell 

death).  

In terms of clinical conditions, all these biological effects are translated in massive 

vasodilation followed consequently by hypotension and multiple organ failure and 

death. 
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Fig.1 Effects of septic shock .
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4.1.2 Erythropoietin 

Erythropoietin (EPO) is a glycoprotein of 30.4 kDa, recently included in the 

great family of the cytokines. It is mainly produced by the hepatocytes during the 

fetal stage and after birth by peritubular fibroblast-like cell located in the cortex of 

the kidneys. EPO is the hematopoietic factor responsible of the production of red 

blood cells; in particular it promotes the proerythroblast survival and maturation. It 

is induced by tissue and blood hypoxia via the hypoxia-inducible factor (HIF), a 

transcription factor which exists as HIF-1α and HIF-1β. HIF-1α is located in the 

cytoplasm whilst HIF-1β is constantly present into the nucleus. Under hypoxic 

conditions, HIF-1α is enabled to enter the nucleus and heterodimerize with HIF-1β, 

active form for binding the hypoxia responsive elements (HRE) sequence, inducing 

the transcription of many genes like the EPO gene (6). Conversely, HIF-1 activation 

can be suppressed by haem ligands like carbon monoxide, nitric oxide and reactive 

oxygen intermediates (7). It has been reported that EPO mRNA expression stands 

an all-or-nothing fashion rather than a graded process in the renal cells (8).  

Furthermore, there are other mechanisms that can regulate EPO gene transcription. 

In inflammatory diseases, GATA-2 and NFκ-B, nuclear transcription factors, are 

induced by the pro-inflammatory IL-1 and TNF-α, consequently contributing to the 

suppression of the EPO gene expression (Fig.2). 

The mature EPO receptor (EPOR) is a glycoprotein, member of the cytokine class I 

receptor superfamily. The binding of the ligand to the receptor induces a 

conformational change and the activation of two molecules of Janus kinase 2 

(JAK2), which are in contact with the cytoplasmic region of the receptor and, under 

the phosphorylated form, they induce the homodimerization of STAT5 (signal 

transducer and activator of transcription 5). Furthermore, the phosphorylation of the 
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residue of tyrosine of the EPO receptor induces the activation of either PI-3K/Akt 

or MAPK, kinase which is in turn activated by the phosphorylation of the domain 

SHC and consequent activation of Ras (9-10) (Fig. 3). The signalling cascade 

results in survival, proliferation and differentiation of erythrocitic progenitors. The 

EPO/EPOR complex is internalized and degraded. In addition, the action of EPO is 

terminated by hemopoietic cell phosphatase (HCP) which catalyzes the 

dephoshorylation of JAK2. 

Recently, it has been demonstrated that recombinant human EPO (rhEPO) can exert 

its effects not only on the red blood cells, but also on cardiovascular and neuronal 

tissues (11-12). It seems that the growth factor explicates either cytoprotective or 

antiapoptotic effects (13-14).  

Studies in literature revealed that EPORs are widely expressed in embryonic and 

adult tissues, including the central nervous system, gut, kidney, muscle (eg, smooth, 

skeletal, and heart), uterus, retina, pancreas, gonads, lung and cardiovascular 

system, including endothelial cells, smooth muscle cells and cardiomyocytes (15) 

Although the presence of EPORs on endothelium and vascular smooth muscle, the 

hormone had no direct vasoconstrictor effect on rabbit aorta and human renal artery, 

but it enhanced norepinephrine-induced contraction by increasing the synthesis of 

constrictor prostanoids and endothelin-1 (16). The probable source of these 

vasoconstrictor autacoids is the endothelium, since its removal attenuated the 

increase in contraction mediated by EPO. Furthermore, the EPO treatment caused 

an increase in PGF2α and TXB2 and a decrease in PGI2 as well as an increase in the 

release of endothelin-1 in human umbilical vein endothelium cells. The incubation 

of bovine pulmonary arterial endothelial cells with rhEPO at 4 hours induced a rise 

of intracellular calcium concentrations accompanied by an increase in endothelin-1 
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and in prepro-endothelin-1 mRNA (17). On vascular smooth muscle cells EPO 

augmented either the mRNA or the functional expression of angiotensin receptor, 

affecting the vasomotor tone and the remodelling of vascular wall by enhancing cell 

proliferation (18). Furthermore, EPO also seemed to modulate cellular function by 

inhibiting apoptosis and inducing proliferation and differentiation (19). The 

observed in vitro cytoprotection seemed to be the basis of the protective effect of 

EPO showed in in vivo studies. Indeed, it was shown that EPO enhanced the 

survival of rats subjected to hypovolaemic hemorrhagic shock (20), to splanchnic 

artery occlusion and reperfusion (21) or myocardial ischemia and reperfusion (22).  

 

 

 

4.1.3 Aim of the study 

The aim of this study was to investigate whether rhEPO explicated a 

protective effect in the LPS induced-septic shock in the rat, by modulating the 

vascular dysfunction and explicating a cytoprotective effect. In particular we 

monitored the blood pressure values and ex vivo vascular and endothelial functions 

in aortic rings from LPS and LPS plus EPO treated rats. 
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4.2 Material and methods 

Male Charles River rats (200-250g) were used for our in vivo and ex vivo 

experiments. Animals were housed under controlled conditions of light (12 hours 

light-dark cycle), humidity and temperature (21-24ºC) and had food and water ad 

libitum. A period of 7 days was allowed for acclimatization of rats before any 

experimental manipulation was undertaken. 

Septic shock was induced by the injection of lipopolysaccharides from Escherichia 

coli (LPS, 8x10
6
 U/kg, i.v.; Sigma Aldrich). 

Rats were randomly divided in four experimental groups: control (CTR), which 

received the vehicle (saline), control rhEPO (rhEPO Sham), which received the 

hormone only, LPS, endotoxemic animals and rhEPO plus LPS (rhEPO+LPS) 

which were treated with the hormone and LPS. 

4.2.1 In vivo experiments 

Human recombinant Erythropoietin (rhEPO, 300U/kg, i.v.; EPREX epoetinum alfa 

6000 IU/0.6ml, Ortho Biotech) or vehicle (saline, NaCl 0.9%, i.v.) were 

administered 30 minutes before and 1 and 3 hours after LPS injection or saline. 

Treatments were performed in urethane (1g/kg, i.p.) anesthetized animals. After 

anaesthesia, trachea and right carotid artery were cannulated to facilitate the 

respiration and monitor mean arterial blood pressure (MAP), respectively. The 

carotid artery was connected to a pressure transducer (Bentley 800 Trantec, Basile, 

Comerio, Italy), by which MAP was continuously recorded using the Power 

Lab/800 System (AD/Instruments, Comerio, Italy). The left jugular vein was 

cannulated for the administration of drugs. Upon the completion of the surgical 

procedure, cardiovascular parameters were allowed to stabilize for 30 minutes, after 

which the above mentioned drugs were injected. MAP was monitored for all the 
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time of the treatment. At 4 hours after LPS injection, a dose–response effect by 

phenylephrine (PE 3, 10, and 30 µg/kg i.v.) was performed. The recover time 

between each injection was 15 min. 

Arterial blood pressure is reported as mean arterial pressure (MAP) in mmHg. 

4.2.2 Evaluation of red blood cells and haemoglobin  

Peripheral blood was recovered from the four groups of animals from the rat tail. 

We evaluated the amount of red blood cells and haemoglobin by the Cell Dyne 

system. 40 µl of blood were aspirated by the machine and further diluted with an 

eluent solvent. Then, a small amount of diluted blood was aspirated by the machine 

and analysed in terms of red blood cells (RBC, k/µl)) and haemoglobin (Hgb, g/dl). 

4.2.3 Ex vivo experiments 

In another set of experiments rats treated with the same protocol were anesthetized 

by isoflurane (Abbott) for the ex vivo experiments. After 4 hours from LPS 

injection, animals were sacrificed by first exposure to isofluorane and then cervical 

dislocation. Thoracic aorta was taken out, cleaned and mounted in a 2.5 ml organ 

bath. After an equilibration period of 60 min and standardization of the tissue, the 

presence of the endothelium was evaluated by administering a dose-curve of 

acethylcoline (Ach 10nM-3µM) on PE pre-contracted aortic rings. In order to 

estimate the basal nitric oxide (NO) release, we administered NG-nitro-L-arginine 

methyl ester (100µM, L-NAME), irreversible nitric oxide synthase (NOS) inhibitor, 

on PE-induced contracted aortic rings. 

To evaluate the vascular reactivity, we administered different vasoconstrictors like 

PE (1nM-3µM; Sigma Aldrich), angiotensin II (AGII, 0.1µM; Sigma Aldrich), 

endothelin (hET-1, 30nM; Tocris) and U-46619 (0.3µM; Sigma Aldrich), analogue 

stable of tromboxane. 



 99 

4.2.4 Western blotting 

For this set of experiments animals were treated and then sacrificed at 4 hours from 

LPS injection and thoracic aorta was taken out. Tissues were used immediately or 

stored at -80ºC.  

The aortas were firstly mechanically disrupted by liquid nitrogen in the mortal and 

pestle, and then homogenated in a lysis buffer containing: HEPES 20 mM, MgCl2 

1.5 mM, NaCl 0.4 mM, EDTA 1 mM, EGTA 1 mM, dithiothreitol 1 mM, phenyl 

methyl sulphonyl fluoride 0.5 mM, trypsin inhibitor 15 µg/ml, pepstatin 3 µg/ml, 

leupeptin 2 µg/ml, benzidamin 40 µM, nonidet P-40 1% and glycerol 20%.  

The lysis buffer was left to react for 20 minutes on ice and then the protein 

concentration was estimated by the Bradford assay. Bradford reagent (Santa Cruz 

Biotechnologies) was diluted 1:4 with deionised water. A standard curve ranging 

from 0.05-0.5mg/ml bovine serum albumin (BSA, Sigma Aldrich) in phosphate 

buffered saline (PBS, 10mM) was prepared. Samples were diluted in PBS in order 

to fall within the range of the standard curve. 10µl of sample or standard was placed 

into a 96-well plate followed by 200µl of diluted Bradford reagent. The plate was 

read on a plate reader at λ=550 nm. All samples were then heated up to 95ºC for 5 

min with a 2x gel loading buffer (50mM Tris, 10% w/v SDS, 10% v/v glycerol, 

10% v/v 2-mercaptoethanol, 2mg/ml bromophenol blue) in a ratio 1:1, and 

centrifuged at 10000g for 10 min. Equal amounts of protein (30µg/ml) were run on 

a sodium dodecyl sulphate-polyacrylamide (SDS) gel electrophoresis gel (8% 

polyacrylamide) at 100 volts (V) for 15 min, to allow the samples to run through the 

stacking gel and concentrate into bands, and then at 150 V for 1 hour until the blue 

dye reached the bottom of the gel. It was also run a rainbow marker (Cell 

Signalling) as marker for the molecular weight. Then, the proteins were transferred 
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from the gel to a nitrocellulose membrane by using Transfer system for 1 hour at 

100 V. Membranes were blocked for 40 min in PBS and 5% (w/v) non-fat milk and 

subsequently probed overnight at 4 °C with mouse monoclonal anti-iNOS (1:2500; 

Santa Cruz Biotechnologies) or mouse monoclonal anti-ICAM-1 (1:600; Santa Cruz 

Biotechnologies), mouse monoclonal anti-PARP (1:400; Santa Cruz 

Biotechnologies), anti-Bcl-2 (1:750; Santa Cruz Biotechnologies) and anti-Bcl-xl 

(1:750; Santa Cruz Biotechnologies) and monoclonal anti-mouse β-actin (1:2000; 

Sigma Aldrich). The unbound primary antibody was removed by 3 washing with 

PBS containing Tween 20 0.1%. Blots were then incubated with horseradish 

peroxidase conjugated goat anti-mouse immunoglobulin G (IgG; 1:2000) for 1 h at 

room temperature. Immunoreactive bands were visualized using 

electrochemiluminescence assay detection system (ECL, Amersham 

Biotechnologies) and exposed to Kodak X-Omat film. The protein bands of the 

target proteins were quantified by scanning densitometry using ImageJ program. 

4.2.5 Statistical Analysis 

The results are expressed as mean±s.e.m. and analysed using the two way ANOVA, 

followed by the Bonferroni post test, or the unpaired Student’s t test. We considered 

significant P values less than 0.05. 



 101 

4.3 Results 

4.3.1 Effect of rhEPO on RBC and HgB 

EPO is a growth factor, well-known to induce RBC maturation. We evaluated the 

amount of erythrocytes and haemoglobin (HgB) in the blood of rhEPO-treated rats. 

There was no difference in RBC and HgB amount after the treatment with rhEPO 

either in the EPO Sham or in the LPS+EPO animals (Fig. 4). 
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Fig.4 rhEPO did not modify RBC and HgB amount in our experimental condition. 
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4.3.2 Effect of rhEPO on rat blood pressure 

LPS is the membrane lipopolysaccharide of Escherichia Coli, Gram negative 

bacteria, well-known to induce septic shock either in experimental models or in 

humans (13). We monitored the blood pressure for all the time of the experiment 

and evaluated the MAP values every 30 minutes since rhEPO or saline 

administration at the time -30. As expected, the injection of LPS induced a massive 

hypotension (P<0.0005) compared to the control rats. LPS was administered at the 

time point 0 and it induced a first immediate reduction followed by a more 

profound and constant decrease in the MAP. The immediate decrease in MAP was 

caused by the high viscosity of LPS solution, whilst the followed more profound 

hypotension was the real LPS systemic effect, observed by the low MAP values 

(79.5±4.2) versus the control (90.2±4.9). The administration of rhEPO recovered 

MAP values in a very significant manner (P<0.0001) compared to the endotoxemic 

rats (Fig. 5A). The effect of rhEPO alone did not affect the blood pressure.  

After 4 hours LPS injection, we evaluated the vascular responsiveness by 

administering a dose-response curve of PE, adrenergic α1-agonist, in the jugular 

vein. As expected, the endotoxemic rats were significantly hyporesponsive to this 

vasoconstrictor compared to the control rat at the concentration of 3µg/ml 

(P<0.005) and 10µg/ml (P<0.0005). rhEPO reverted significantly the hyporeactivity 

of the LPS group of animals to the control values (3µg/ml P<0.0001; 10µg/ml and 

30µg/ml P<0.001) (Fig.5B). rhEPO Sham rats reactivity to PE was comparable to 

the control values. 



 103 

 

-30 0 30 60 90 120 150 180 210 240

75

85

95

105

115

125

***

***P<0.0001 vs LPS; °°°P<0.0005 vs LPS, LPS+EPO

°°°

LPS

LPS+EPO

EPO sham

CTR

A

time (min)

M
A

P
 (
m

m
H

g
)

3 10 30

0

40

80 LPS

LPS +EPO

EPO sham

CTR

PE (µg/kg)

*P<0.05 vsLPS; #P=0.01vs LPS;
**P<0.005 vsLPS; ***P<0.005 vs LPS

*

#

***

**

B

D
e
lt
a
 (
m

m
H

g
)

 

 

 

Fig.5 A) rhEPO significantly reverted the low values of MAP in septic rats 

(P<0.0001); B) rhEPO modified significantly the hyporesponsiveness to PE at 

3µg/ml (P<0.005) and 10 µg/ml (P<0.0005) of septic animals. 
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4.3.3 The effect of rhEPO on the endothelial dysfunction in the rat aortic rings 

The endothelium is exposed to the circulatory system, so it is more vulnerable to be 

damaged during the septic shock, by different mediators, like cytokines and ROS. 

We evaluated the aortic endothelial damage by administering Ach and L-NAME on 

a stable tone of PE. The concentration-response curve of Ach revealed the 

endothelial functionality whilst L-NAME administration showed the basal value of 

NO in the aorta after the different treatments. As expected, the endotoxemic aortic 

rings relaxed remarkably (P<0.0001) less than the control to Ach and, furthermore, 

revealed a greater amount (P<0.01) of NO than the control rings after L-NAME 

administration. Interestingly, rhEPO completely restored the endothelium 

functionality of rhEPO+LPS aortic rings to the control values (Fig.6A). The amount 

of the basal NO was reduced in a significant manner (P<0.05) in the LPS-treated 

aortic rings after rhEPO injection, almost similar to the control rings (Fig.6B), 

suggesting a probable lower iNOS activity. 

 

Fig. 6 A) rhEPO completely restored the endothelial impairment of septic aortic 

rings and B) decreased in a significant manner the high amount of NO. 



 105 

4.3.4 Effect of rhEPO on aortic responsiveness to constrictor agents 

Vascular hyporesponsiveness to vasoconstrictor agent is typical in the septic shock, 

due to the large amount of NO which damages the vascular smooth muscle cells. 

Recently, Akimoto et al. (22) demonstrated that rhEPO was able to increase 

calcium mobilization in rat vascular smooth muscle cells, leading to a synergistic 

effect on AGII, noradrenaline and ET-1 induced constriction. In order to evaluate 

the effect of rhEPO on the typical septic shock-induced vascular hyporeactivity, we 

administered several constrictor agents like PE, AG II, U46619 and hET1 on the 

aorta. Septic aortic rings were hyporesponsive to the concentration-response curve 

of PE compared to the control (P<0.0001) (Fig.7A). rhEPO treatment increased in a 

very significant manner (P<0.0001) the PE vascular reactivity of the septic aortic 

rings, comparable to the control rings. EPO Sham aortic rings were extremely 

reactive to the PE.  

The same effect was observed with AGII administration. Endotoxemic aortic rings 

contracted less than the control rings (P<0.005) (Fig.7B). rhEPO treatment 

increased significantly (P<0.05) the responsiveness to AG II in the septic aorta, 

whilst EPO sham aortic rings contracted in the same way as the control rings. 

Then, we administered hET1 (30nM) and as expected, endotoxemic aortic rings 

were hyporesponsive to ET1, compared to the control or EPO Sham (P<0.005). In 

contrast, LPS+EPO aortic rings showed a significant (P<0.05) increased 

contractility to hET1 than the respective endotoxemic aortic rings (Fig.8A). 

Furthermore, rhEPO treatment was able to revert (P<0.05) the hyporesponsiveness 

of endotoxemic rats to U46619, leading to a contractility similar to the control or 

EPO Sham values (Fig.8B).  
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Fig.7 rhEPO increased the dose-concenration response to the A) PE and B) 

increased the reactivity to AG II (0.1µM) of septic aortic rings. 

 

 

Fig.8 rhEPO increased the reactivity to A) h-ET-1 30nM and B) U46619 0.3µM of 

the septic aortic rings. 
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4.3.5 Effect of rhEPO on the aorta protein expressions 

In order to understand the mechanism by which rhEPO was able to revert the 

endothelial damage we investigated on the iNOS expression. As it is shown in the 

figure 9A, iNOS, inducible isoform of NOS, was very highly expressed in the 

endotoxemic aorta compared to the control (P<0.005). rhEPO decreased 

significantly (P<0.005) iNOS expression in septic aorta at similar values as the 

control. 

ICAM-1 is an adhesion molecule that facilitates the diapedesis of leucocytes 

through the endothelium. Its expression was highly expressed in endotoxemic aorta 

compared to the control. rhEPO treatment diminished in a significant manner 

(P<0.05) ICAM-1 expression (Fig 9B). Either the control or the EPO Sham aortic 

rings did not show great amount of this protein. 

Poly(ADP-ribose)polymerase 1 (PARP-1) is an abundant nuclear chromatin-

associated protein and its activation in severe sepsis has emerged as one of the 

central mechanisms of systemic inflammation, endothelial dysfunction, peripheral 

vascular failure, and reduction of cardiac contractility (23). rhEPO treatment 

decreased in a remarkable manner the expression of this enzyme (P<0.05) in the 

endotoxemic aorta, leading to the same values expressed in the control and EPO 

Sham aorta (Fig 9C). 

Recently, it was shown that EPO can explicate cytoprotective effects but also 

antiapoptotic effects. We evaluated Bcl-2 and Bcl-xl expression as antiapoptotic 

markers. LPS aorta showed a very low amount of both Bcl-2 and Bcl-xl compared 

to the control (P<0.01). rhEPO increased the amount of these antiapoptotic proteins 

(P<0.01 and P<0.001) (Fig 10 A and B).  
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Fig. 9 rhEPO decreased A) iNOS, B) ICAM-1 and C) PARP expression in a 

significant manner in the septic aortic rings 
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Fig. 10 rhEPO decreases the aortic levels of A) Bcl-2 and B) Bcl-xl in the septic 

rats 
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4.4 Discussion 

Human recombinant erythropoietin is currently used in the standard therapy 

for correction of renal and non-renal anaemia. rhEPO can correct the anaemia 

derived from the renal failure but can also be administered in case of anaemia 

associated with cancer chemotherapy, autoimmune diseases, bone marrow 

transplantation and myelodysplastic syndromes (13). However, besides its 

hematopoietic effects it has recently been suggested that rhEPO has a beneficial 

role in the cardiovascular system, preventing damages from heart ischemia-

reperfusion (22), haemorrhagic shock (20) and splanchnic artery occlusion shock 

(21). Our study revealed a beneficial effect of rhEPO in the LPS-induced septic 

shock in the rat. In our experimental conditions, the administration of rhEPO 

reverted either in vivo vascular hyporesponsiveness or in vitro vascular 

hyporeactivity to vasoconstrictor agents. The in vivo experiments showed the 

beneficial effect of rhEPO in reverting the fall in MAP registered in septic rats. 

Consistent to our results, Squadrito et al (21) demonstrated that the hormone was 

able to increase the MAP and restore the survival rate of rats injured by a model of 

splanchnic artery occlusion. In addition, our results revealed that rhEPO was also 

able to revert the typical septic hyporesponsiveness to the PE when injected via the 

jugular vein. Analogous result was observed ex vivo, remarking the capability of the 

cytokine to revert the hyporeactivity to the vasoconstrictor reagents PE, AG II, 

U46619 and hET-1. In LPS+EPO group we observed a vascular responsiveness 

similar to the control group suggesting the EPO capability of reverting the typical 

LPS-induced hyporeactivity. 
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One of the side effect of rhEPO used for the chronic anemia therapy is the increased 

blood pressure. We administered the hormone in an acute manner and it did not 

affect the physiological responsiveness to vasoconstrictor reagents as shown by 

EPO Sham group of animals either in the in vivo or in the in vitro experiments. 

Furthermore, in order to evaluate whether rhEPO could alter the basal and 

physiological vascular tone, we administered the hormone 20 minutes before PE on 

the aortic rat rings and noticed that it did not modify the vascular response to the 

vasoconstrictor. 

Several could be the mechanisms to explain rhEPO capability to restablish 

the vascular reactivity in the septic shock, like the increased influx of calcium or the 

increased gene transcription. Recently, it has been shown that rhEPO stimulates a 

dose-dependent increase in the intracellular
 
free calcium ([Ca

2+
]i) through a voltage-

independent
 

ion channel (23). It modulates Ca
2+

 influx through the transient 

receptor potential
 
(TRP) protein family member TRPC2 (24). TRCP can activate 

different
 
isoforms of phospholipase C (PLC) (24), resulting in inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol
 
(DAG) formation. Some TRPC are Ca

2+
 store 

release operated and can be activated by IP3. A common characteristic of many 

TRPC channels is that they are
 
activated through pathways involving PLC. As EPO 

also
 
activates PLC 1 and PLC 2 (25, 26), the activation of TRPC2

 
through a PLC-

dependent pathway could be required for stimulation of Ca
2+ 

influx, resulting in the 

increased vascular reactivity observed in the in vivo and ex vivo experiments. 

Another possible mechanism could be the modulation of the DNA synthesis. 

Studies in literature and our data demonstrated that rhEPO can increase the 

response to AG II. Vascular smooth muscle cells cultured with rhEPO (6-8 
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units/ml) showed elevations (40-120%) in messenger RNAs of the renin-

angiotensin system (renin, angiotensinogen, angiotensin receptor types 1 and 2) and 

increased levels of several messenger RNAs known to respond to angiotensin II 

(transforming growth factor-beta, insulin-like growth factor-II, epidermal growth 

factor, c-fos and platelet-derived growth factor) (27). The peptide Angiotensin II 

(Ang II) participates in the control of the systemic arterial pressure increasing 

smooth muscle tone and acting on the smooth muscle cell DNA synthesis. As 

described by Villanova et al., one of the target of AG II could be the induced 

expression of alpha(1)-adrenoceptor, especially the alpha(1D) subtype (28), 

hypothesis that could either explain the augmented reactivity to the AG II and PE of 

EPO+LPS rats or the increased reactivity to the PE in the EPO Sham group of 

animal.  

Furthermore, Bode-Boger et al (16) demonstrated that rhEPO was able to induce the 

release of vasoconstrictor agents, like endothelin and tromboxane B2, from 

incubated HUVEC and rabbit artery. Consistently to this study, we observed that 

rhEPO was also able to increase the aortic responsiveness to hET-1 and U46619. 

This increased vascular reactivity could be due to either an augmented gene 

transcription for the two above constrictors, or to a synergistic effect of rhEPO in 

inducing an increased Ca+2 influx, which is well-known to participate to the 

vascular contraction pathway. 

Another aspect of the rhEPO cardiovascular protection in our model of 

septic shock was the prevention of the endothelial dysfunction. As reported in 

Figure 6, septic rat aortic rings were characterized by a profound endothelial 

damage showed by the hyposponsiveness to the dose-curve of Ach and high amount 
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of NO levels. rhEPO reverted the endothelial damage and decreased the amount of 

basal NO by reducing the effect of L-NAME on the stable tone of PE in the 

endotoxemic rings. To further demonstrate the beneficial effect of rhEPO on the 

impaired endothelium, we considered two biological markers, iNOS and ICAM-1 

protein expression. iNOS activation induces an overproduction of NO leading either 

to a massive vasodilation or to an intense ROS formation. Meanwhile, ICAM-1 

expression promotes capillary permeability inducing to the diapedesis of many 

inflammatory cells, like the leucocytes, to the injured tissue. rhEPO decreased in a 

very significant manner the amount of iNOS and ICAM-1 expressed in the 

endotoxemic aortae. In the same way, Squadrito et al (21) demonstrated that rhEPO 

reduced plasma nitrite/nitrate, serum TNFα and iNOS activity in both aorta and 

peritoneal macrophages of rats after splanchnic artery occlusion shock.  

Further interesting result was to evaluate the antiapoptotic effect of rhEPO 

in the septic shock. Indeed, rhEPO decreased the activity of PARP whilst increased 

the amounts of Bcl-2 and Bcl-xl in the aorta.  

Poly(ADP-ribose) metabolism plays a role in a wide range of biological structures 

and processes, including DNA repair and maintenance of genomic stability, 

coordinating or participating in repair or apoptosis. This enzyme is activated as a 

consequence of the DNA damage, typical of the septic shock as many ROS are 

produced and can interfere with the DNA structure. Its activation induces to repair 

the DNA structure or to the apoptosis if the damage is not repairable. The reduction 

in PARP expression in EPO+LPS rats indicated that rhEPO induced a reduction in 

the LPS-induced cellular damage. 
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In addition, rhEPO increased the aortic levels of Bcl-2 and Bcl-xl, which are 

antiapoptotic proteins. The activation of these 2 proteins is a consequence of a strict 

balance between pro- and anti-apoptotic proteins and are usually complexed with 

BAX, a pro-apoptotic protein associated to the mitochondrial membrane. The 

dissociation from this inhibitory complex induces Bcl-2 and Bcl-xl to inhibit the 

initiated apoptotic process. It is already known that EPO can prevent the apoptosis 

of erythroid precursor cells via its own receptor (29). A recent study highlighted its 

antiapoptotic effect on vascular smooth muscle cells (VSMC) stimulated with IL-

1β, known to be able to induce large amount of NO which in turn can stimulate the 

apoptotic process (30). Akimoto et al. demonstrated that rhEPO can activate PI3-

kinase and induce Akt phosphorylation, namely Akt activation, through PI3-kinase-

dependent pathway in VSMCs. PI3K/Akt pathway leads to the upregulation of Bcl-

xl protein family and inhibition of apoptosis in Baf-3, hematopoietic cells (31), and 

furthermore, can induce the translocation of NF-kB into the nucleus, preventing the 

apoptosis in the injured hippocampal neurons (32). NF-kB is reported to be dually 

activated by JAK2 and Akt (33), increasing the production of the antiapoptotic Bcl-

xl family and preserving the integrity of the DNA (34). 

In conclusion our study revealed the beneficial and protective effect of 

rhEPO in the septic shock. Its protective effect is explained through several 

pathways downstream EPOR activation. Summarizing, the massive hyporeactivity 

to vasoconstrictor agents could be counterbalanced by either the activation of 

voltage-sensitive Ca+2 channels or by the induced gene transcription for vascular 

reagents, consequently the augmented mRNA for AGII. In addition, the 

cytoprotective effects through Bcl-xl protein family activation or PARP and iNOS 
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inhibition could point the attention on the use of rhEPO as a potential coadjuvant in 

the therapy of the septic shock (Fig. 11).  
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Fig.11 Mechanism by which rhEPO exerts beneficial vascular effect in an animal 

model of septic shock 
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   Chapter 5 

 

 

 

 

Effect of hydrogen sulphide and L-Cysteine 

on aorta and mesentery bed from 

streptozotocin-induced diabetic rats 



 120 

5.1 Introduction 

 
Diabetes mellitus is one of the most severe metabolic syndromes in our 

society, as it is associated with increased cardiovascular risk factors. The clinical 

complications can be broadly divided into microvascular disease, such as diabetic 

retinopathy and diabetic nephropathy, and macrovascular disease, such as 

accelerated atherosclerosis and hypertension, which are the main cause for 

morbidity and premature mortality among diabetic patients. 

Diabetic vascular disease is accompanied by decreased formation of vasodilators, 

such as nitric oxide (NO) and prostacyclin, and increased formation of 

vasoconstrictors, such as eicosanoids and endothelin, which exacerbate the 

progression of vascular complications. 

The exposure of endothelial cells to high glucose and lipids levels, typical of the 

diabetes, leads to the increased formation of reactive oxygen species which interfere 

with the synthesis, diffusion and action of NO on target cells. NO is the primary 

vasodilator mediator that regulates smooth muscle tone and an impaired function 

can induce to high peripheral vessel resistance and consequent high blood pressure. 

In diabetic endothelial cells, oxidants can originate from mitochondria, NADPH 

oxidase or endothelial nitric oxide synthase (eNOS). These oxidants inhibit the 

endothelial function impairing the synthesis of NO by eNOS uncoupling, which can 

generate superoxide anion (O2
.-
) in addition to NO. The reaction between NO and 

O2
.-
 is the real ‘key player’ as it is very rapid and, not only impairs the diffusion of 

NO to target cells but also forms the reactive product peroxynitrite (ONOO
-
), which 

reacts with proteins, lipids and DNA, reducing cell vitality. Furthermore, ONOO
-
 

inactivates prostacyclin synthase leading to the accumulation of inflammatory and 

prothrombotic eicosainoids, a further risk for increased blood pressure.  
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Recently, great attention has been focused on the activity of hydrogen sulphide 

(H2S), always considered like a toxic gas with a typical ‘gas rotten eggs’ smell. It 

has a potential physiological and pathophysiological significance in the 

cardiovascular system.  

H2S is endogenously generated via both enzymatic and non enzymatic pathways 

(1). The enzymatic production is catalyzed from L-cysteine by cystathionine β-

synthase (CBS) or cystathionine γ-lyase (CSE) (2). These two enzymes are tissue 

specific (1) and in particular, CSE is expressed more in the cardiovascular system 

(3). 

Zhao et al. (3) demonstrated that H2S induces vasodilation in the pre-contracted 

aorta and mesenteric arterioles in vitro in a rat model. The vasorelaxant effect could 

be ascribed to the membrane hyperpolarization consequence of the activation of the 

potassium ATP-dependent channels (KATP) on the smooth muscle cells (3). KATP 

channels can play an important role for the modulation of the vascular tone. In 

addition, the coadministration of apamin and charibdotoxin, calcium-dependent 

potassium channels inhibitors (KCa), reduced the vasorelaxant effect of H2S on 

intact endothelium rat mesenteric artery (6), suggesting a double target for H2S: 

KATP on the smooth muscle and KCa on the endothelium. KCa are activated by the 

endothelial hyperpolarizing factor (EDHF), but the relationship between H2S and 

EDHF is not clear yet.  

Another controversy is the interaction between NO and H2S. Recent studies 

revealed that sodium hydrogen sulphide (NaHS), an H2S donor, can enhance NO 

donors’ activity on the rat aortic rings (7), even though it is well known that thiol 

groups can interact with nitric oxide and lead to the formation of nitrosothiols (8), 

which enable the biological activity of NO.  
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In a rat model of hypertension, induced by the administration of L-NAME, CSE 

expression and activity were reduced, presuming that NO may negatively regulate 

the endogenous levels of H2S (4). Many hypotheses have been postulated but the 

NO and H2S ‘cross talk’ needs to be further investigated.  

 

 

 

 

 

 

5.1.2 Aim of the study 

 The aim of this study was, firstly, to understand the role of the endothelium 

and the implication of nitric oxide in the H2S-induced vasorelaxation. Secondly, we 

tried to evaluate any difference in the activity of NaHS and L-cysteine, its 

endogenous precursor, on the aorta and mesenteric bed of diabetic rats compared to 

control rats.  
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5.2 Materials and methods 

 
Male Wistar rats (Charles River) were used for in vivo and ex vivo experiments. 

Animals were housed in plastic cages and maintained in a light, humidity and 

temperature controlled environment. Food and water were allowed ad libitum. A 

period of seven days was allowed for rats acclimatization before any type of 

manipulation was undertaken. Animals (200-220g) were randomly divided in two 

groups, control (CTR) and streptozotocin-induced diabetic rats (STZ). 

Streptozotocin (STZ, 60mg/kg; Sigma Aldrich) or the vehicle (50mM sodium 

citrate buffer, pH=4.5) was administered intravenously, after animals’ exposure to 

isofluorane (Abbott).  

Animals were sacrificed after three weeks STZ injection, time in which diabetes 

was experimentally considered established. Diabetes induction was evaluated 

through an Accu-Chek monitoring system (Roche Diagnostics, USA) for the 

glycaemia measurement. 

Animals were anesthetised using isoflurane and sacrificed by cervical dislocation 

and exanguinated.  

We utilized thoracic aorta and mesenteric bed for ex vivo experiments.  

5.2.1 Aorta experiments 

Thoracic aorta was excised and cleaned of adherent connective tissue. It was cut 

into rings of ~3 mm length and mounted in organ bath, previously oxygenated and 

kept constantly under 37ºC. 

Aortic rings were placed in a 2.5 ml organ bath containing Krebs’ solution 

composed of (in mM) NaCl, 115.3; KCl, 4.9; CaCl2, 1.46, MgSO4, 1.2; KH2PO4, 

1.2; NaHCO3, 25.0; and glucose 11.1; warmed at 37 °C, oxygenated (95% O2 and 

5% CO2), and connected to an isometric force transducer (model 7002, Ugo Basile, 
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Comerio) under a resting tension of 0.5 g. Changes in tension were recorded 

continuously by a polygraph (GraphTec Linearcorder). After about 60 min 

equilibration period, tissue was contracted with phenylephrine (PE, 1µM), an 

adrenergic α1-agonist, and the presence of a functional endothelium was verified by 

evaluating the relaxation to a dose-response curve of acetylcholine (Ach, 0.01-

3µM). At the same time, aorta was endothelium denuded by using a wire, which 

filled perfectly the aorta diameter. The absence of the endothelium was evaluated 

by Ach (3µM) administration on a PE-induced stable tone. 

NaHS and L-cysteine (L-Cys) were injected in a dose-curve response (10µM-

10mM) on a PE-induced stable tone either in the presence or absence of 

endothelium. NG-nitro-L-arginine methyl ester (100µM, L-NAME), irreversible 

nitric oxide synthase (NOS) inhibitor, was administered on the basal tone for 20 

minutes before PE administration. 

5.2.2 Mesenteric Bed Experiments 

The animals were sacrificed as previously described and the abdominal skin was cut 

along the linea alba. After the exposure of the entire gut, the mesenteric vein and 

artery were isolated and cleaned of adherent tissues. The artery and the vein were 

cannulated using an 18 gauge cannula. The artery cannula was directly connected to 

a pump able to flutter a solution of heparin 10 U/ml at 5 ml/min, in order to clean 

and avoid thrombi. The mesenteric bed was then connected to a pressure transducer 

in order to evaluate changing in perfusion pressure after different drugs 

administration. The mesentery was perfused at 2 ml/min speed by a Krebs’ solution, 

continuously oxygenated and medicated by indomethacin (INDO, 10µM), a 

cycloxigenase inhibitor, to reduce the high production of released prostaglandins 

that affect the vascular tone. After about 20 minutes of equilibration period, 
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methoxamine (MTX, 10µM), an adrenergic α1-agonist, was added to the Krebs’ 

solution. The endothelium integrity was evaluated by a bolus of Ach (10-100 pmol). 

NaHS or L-Cys (10µM-10mM) was infused at a 50µl/min and for 10 and 30 

minutes, respectively. These time points were chosen from preliminary 

experiments, further described in literature (1). In the same way as the aortic rings, 

L-NAME (100µM) was administered by perfusion on a stable tone of MTX. 

5.2.3 Chemical compounds 

NaHS (Sigma Aldrich) is a salt capable to release HS
-
 and H2S in solution, as 

described by the reaction: 

NaHS + H2O           H2S+NaOH 

L-Cys the metabolic substrate for Cystathionine β-synthase (CBS) and 

Cystathionine γ-lyase (CSE) was obtained from Sigma Aldrich. The final 

endogenous product of its catabolism is H2S, which explicates its effect in a site 

specific way. All salts used for Krebs’ solution were from Carlo Erba (Italy). 

U46619 and hET-1 were performed by Tocris (Italy), whereas Ach and PE were 

from Sigma Aldrich. 

5.2.4 Statistical Analysis 

The results are expressed as mean±s.e.m. and analysed using the two way ANOVA, 

followed by the Bonferroni post test, or the unpaired Student’s t test. We considered 

significant P values less than 0.05. 
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5.3 Results: 

5.3.1 Aorta-NaHS 

NaHS explicated a concentration-dependent relaxation on prior pre-contracted 

aortic rings. The vasodilation was significantly higher in the aortic rings of diabetic 

rats (STZ group) (P<0.0001, Fig 1A) compared to the control (CTR group).  

To investigate the possible involvement of nitric oxide (NO) on H2S-mediated 

relaxation, we administered L-NAME, a NOS inhibitor, on the basal tone for 20 

minutes before contracting the aortic rings. NaHS vasodilation was not altered by 

the NOS inhibition in the CTR and STZ group (Fig.1B, C) but the comparison 

between the two above groups still revealed a significant relaxation in the diabetic 

group at the higher concentration (10mM; Fig 1D).  

Cheng and collaborators demonstrated that in the absence of a functional 

endothelium, H2S induced a reduced relaxation in the mesenteric bed (6) of non-

treated rats. In the same way, we tried to test whether the endothelium could affect 

NaHS dilation.  

Interestingly, the relaxation was not altered by the removal of the endothelium 

either in the CTR or in the STZ group (Fig. 2A, B), but the comparison between the 

two groups without endothelium, still revealed a significant (P<0.05, Fig 2C) 

relaxation in diabetic than control aortic rings.  

Interestingly, we also observed a double activity on a stable tone of PE, an effect 

which has never been reported before. NaHS was able to induce a contractile effect 

followed by vasodilation. This effect was observed especially at lower 

concentrations (10-100µM) and in both groups of animals (Fig 3A).  



 127 

The removal of the endothelium tended to reduce (Fig. 3B, C) the above described 

effect in a significant manner in the CTR and in the STZ group (P<0.005, P<0.05, 

respectively).  

To test whether this effect was an intrinsic capability of the sodium sulfide, we 

administered a dose-response curve on the basal tone of the aortic rings. No activity 

was observed either in the CTR group or in the STZ aortic rings. 

The next step was to evaluate the possible involvement of NOS on the contractile 

effect. L-NAME treatment did not modify the contractile NaHS effect in the control 

group whilst it reduced (P<0.05) the contraction in the diabetic rats at 100µM (Fig. 

4A, B).  



 128 

 

 

 

 

Fig.1 The NaHS-mediated relaxation was more potent in the diabetic rats than the 

control (A) (***P<0.0001). L-NAME did not modify the relaxation either in the 

CTR (B) or in the STZ group (C), in fact there was still a more potent (*P<0.05 vs 

+L-NAME CTR) relaxation in the diabetic group. 
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Fig. 2 The relaxation was not altered by the removal of the endothelium either in 

the CTR (A) or in the STZ group (B). The comparison between the two groups still 

revealed a significant (*P<0.05 vs CTR) activity on the diabetic aortic rings (C). 
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Fig. 3 Either the CTR or the STZ animals revealed a contractile effect on a stable 

tone of PE (A). The removal of the endothelium reduced NaHS-induced 

contractility in a significant manner (**P<0.005 vs CTR+endothelium) in the 

control group (B)and in the diabetic group (P<0.05) (C) 
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Fig. 4 L-NAME administration did not modify the contractile effect in the CTR (A) 

but slightly reduced it in the STZ group (*P<0.05) (B). The comparison between 

two groups plus L-NAME did not show any difference (C). 
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5.3.2 Aorta-L-Cysteine 

In the same manner as NaHS, L-Cys induced a concentration-dependent relaxation 

in the aortic rings of the diabetic and control group. Its effect is more noticeable at 

higher concentrations (1-10mM) than NaHS.  

There was no significant difference in the relaxation between the treated and non-

treated group of animals (Fig.5A).  

The addition of L-NAME on the basal tone for 20 minutes before PE did not affect 

L-Cys vasodilation either in the CTR or STZ rats (Fig. 5B, C). 

To evaluate the effect of the endothelium on L-Cys vasodilation we used 

endothelium deprived aortic rings. The removal of the endothelium did not affect 

the relaxation in the CTR group (Fig. 6A), whilst it increased significantly the 

relaxation in the diabetic animals (P<0.001, Fig. 6B). Comparing the CTR and STZ 

endothelium-denuded aortic rings, L-Cys was still not able to induce a relaxation in 

the diabetic rings comparable to the control (1mM, P<0.001, Fig 6C).  

As well as for NaHS, the contractile effect was observed after L-Cys administration 

too, on pre-contracted aortic rings of both groups (Fig.7A). Interestingly, following 

L-NAME administration, the contractile effect was increased significantly (P<0.05) 

at the concentration of 10µM in the control aortic rings (Fig.7B), whilst it was 

reduced significantly in the diabetic rings (P<0.05, Fig.7C). 

The absence of a functional endothelium remarkably abolished the contractility in 

both the CTR and the STZ group (Fig. 8A, B). 
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Fig. 5 There was no significant difference between the two groups of animals (A). 

L-NAME did not modify L-Cys-induced relaxation in the non-treated (B) and 

treated animals (C). 
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Fig. 6 The removal of the endothelium did not affect L-Cys-induced relaxation in 

the CTR (A) whilst it increased significantly the vasodilation in the STZ group 

(**P<0.001 vs STZ-endothelium) (B). The comparison with the CTR revealed a 

major effect on the STZ especially at 1mM concentration (**P<0.001 vs STZ) (C) 
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Fig. 7 There was no difference between CTR and STZ on the L-Cys-induced 

contraction (A), but the administration of L-NAME increased (*P<0.05 vs CTR) the 

contractility at 10µM in the CTR (B), and reduced (*P<0.05 vs STZ) it at 100µM in 

the STZ (C). 
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Fig. 8 The removal of the endothelium completely abolished L-Cys-induced 

contractility either in the CTR (A) or in the STZ (B). 
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5.3.3 Mesenteric bed-NaHS 

Intravenous bolus of H2S decreases blood pressure in a rat model in vivo (6). In our 

experimental conditions, ex vivo, NaHS was able to induce vasodilation of the 

mesenteric artery bed, decreasing the perfusion pressure. The treatment with NaHS 

did not reveal any substantial difference between CTR and STZ groups (Fig. 9A).  

The involvement of NO on the induced vasodilation was evaluated by perfusing the 

mesenteric bed with L-NAME. 

Interestingly, L-NAME perfusion increased NaHS-mediated vasodilation either in 

the diabetic group or in the control group (Fig. 9B, C). This effect was more potent 

at lower concentrations (0.1-1 mM) in the diabetic animals and at higher 

concentrations (1-10mM) in the control animals. Comparing the same data, NaHS 

induced a higher relaxation (P<0.05, Fig. 9D) in the diabetic mesentery than the 

control, under L-NAME perfusion. 

As observed for the aorta, these compounds at lower concentrations (10-100µM), 

were able to induce an increase of the perfusion pressure on the MTX-induced 

stable tone followed by a vasodilation in the mesenteric bed (Fig. 10A).  

L-NAME perfusion caused a lower contraction on the MTX-pre-contracted control 

mesentery bed (P<0.05, Fig. 10B) induced by NaHS but there was no significant 

effect noted on the diabetic mesentery (Fig. 10C). 

Comparing the effect of L-NAME on the reduced NaHS contraction, there was no 

difference in the contractive force between diabetic and control mesentery, with the 

exception of 10µM (P<0.05, Fig. 10D) that was statistically reduced in STZ group.  
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Fig. 9 There was no difference between CTR and STZ (A) in the relaxation in the 

mesentery but the administration of L-NAME increased the relaxation either in the 

CTR (B) (*P<0.05 vs CTR) or in the STZ (C) (*P<0.05 vs STZ). The comparison 

between the two groups (D) revealed a significant (*P<0.05) difference at 1mM in 

the STZ, under L-NAME treatment (D) 
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Fig. 10 NaHS-induced contraction on MTX did not reveal any difference between 

CTR and STZ (A) L-NAME reduced this effect at 100µM in the CTR (B) but not in 

the STZ (C). In the panel D, it is represented the comparison between +L-NAME 

CTR versus +L-NAME STZ; the effect was significantly lower at 10µM 

(*P<0.05)in STZ group. 

 

 

 

 



 140 

5.3.4 Mesenteric bed-L-Cysteine 

In the same way as the aorta, L-Cys induced a concentration-dependent relaxation, 

especially observed at the highest concentration in both groups of animals (Fig. 

11A). The L-Cys effect on the perfusion pressure was significantly (P<0.05) higher 

in the diabetic mesentery at the concentration of 10mM compared to the control 

rats. 

Nevertheless, it has to be noted that L-Cys explicated a more pronounced relaxation 

than NaHS especially at the higher concentration (10mM). 

L-NAME treatment did not modify the relaxation in the diabetic mesentery (Fig. 

11B) whilst it induced a more significant (P<0.005) dilation in the control (Fig. 

11C) at 10mM. Comparing the same data, L-Cys-induced vasodilation was reduced 

significantly (P<0.05, Fig. 11D) in the diabetic versus control mesentery at the 

highest concentration, but not at the lower doses. 

An increase in perfusion pressure effect, observed at lower concentrations, was 

observed also in mesenteric bed in both groups of animals (Fig. 12A), with an 

increased tendency for the diabetic to contract, even though the effect was not 

significant compared to the control group. Furthermore, L-NAME perfusion 

increased significantly (P<0.005) the contractile effect of L-Cys (100µM) in the 

control group (Fig. 12B) but not in the diabetic (Fig. 12C).  

Comparing the same data, NOS inhibition enhanced the increase in perfusion 

pressure in the control in a significant manner (100µM; P<0.05), rather than in 

diabetic group (Fig. 12D).  
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Fig. 11 L-Cys induced a significant (*P<0.05 vs CTR) increase in the relaxation in 

the STZ at the highest concentration (A). L-NAME treatment did not modify the 

relaxation in the STZ (B), whilst it increased the vasodilation (*P<0.05 vs CTR) at 

the dose 10mM in the CTR (C). The comparison between the two groups, under L-

NAME treatment, revealed a significant (*P<0.05 vs CTR) CTR compared to the 

STZ (D). 
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Fig. 12 L-Cys induced a contraction on a stable of MTX in the mesentery either in 

the CTR or in STZ (A). The administration of L-NAME increased (**P<0.005 vs 

CTR) the perfusion pressure in the CTR (B) but not in the STZ (C). The 

comparison between the two groups, under L-NAME treatment, still revealed a 

major effect in CTR group (**P<0.005 vs +L-NAME CTR). 
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5.4 Discussion 

Nitric oxide has been highly studied over the last decades, but the discover of 

the ‘third gastransimtter’ opens new prospective for pathologic conditions like 

diabetes, where high blood pressure and the vascular consequences are the most 

deleterious side effects. Like NO and CO, H2S can affect the biological structures 

and functions of the human body at molecular, cellular and tissue levels. 

In the present study, as already demonstrated in literature, we show that both NaHS 

and L-Cys are potential vasodilators in the aorta and mesentery of non treated rats. 

The vasodilation resulted endothelium independent in the control aortic rings for 

both compounds. 

In our experimental conditions, there was no interference between NO and H2S, as 

previously described by Hosoki and collaborators (8), in the aorta. In contrast, in 

the mesenteric artery, L-NAME augmented the relaxation either after NaHS or L-

Cys infusion.  

The aorta is a model of capacitance vessel whilst the mesenteric bed represents a 

model of resistance vessels. The isolated and perfused rat mesenteric bed is an 

experimental model by which a drug can be proved to be effective on the regulation 

of peripheral resistance to blood flow and thus to blood pressure. We utilized this 

model to measure and better identify vascular reactivity of hydrogen sulphide in a 

peripheral resistance vascular district. 

We can therefore, speculate that NO interferes in a negative way on the H2S-

induced relaxation in the mesenteric bed, possibly leading to the formation of 

nitrothiols, which oppose the biological gas effect.  
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The second aim of our study was to evaluate any difference between the 

physiological and the diabetic pathological status, and again try to understand the 

role of the endothelium and NO on H2S pathway. 

NaHS induced a more prominent relaxation in the diabetic aorta than the control, 

but the same effect was not observed with L-Cys treatment.  

It has been demonstrated that KATP channels are the final target for H2S activity (3) 

on the vascular smooth muscle cells. Under euglycemic conditions, KATP channels 

are maintained in
 
an open state, resulting in a hyperpolarizing membrane potential 

(9). When
 
glucose is elevated, ATP levels increase and displace bound

 
ADP on 

KATP channels, resulting in channel closure. Closure of KATP channels depolarizes 

the membrane, allowing voltage-dependent Ca
2+

 channels to open (10) inducing to 

the typical increased blood pressure in the diabetes. Our findings in the diabetic 

aortic rings could suggest a major effect of the hydrogen sulphide on the KATP 

channels in the aorta, as they could be more susceptible to the opening in order to 

counterbalance the increased vascular hyperactivity, depolarization, typical of a 

diabetic status (11).  

In contrast, the administration of L-Cys, a precursor metabolic product for hydrogen 

sulphide, induced a higher relaxation in the control rings than the diabetic rings. 

CSE, the enzyme that catalyzes the aminoacid metabolism in the vascular tissues, 

could be less active in the diabetic status, as described by Zhong (3), who supported 

a reduced enzyme reactivity in vivo, due to the high levels of NO, typical of 

endothelial damage in hypertension and diabetes.  

Furthermore, the treatment with L-NAME did not reveal any difference in the 

NaHS or L-Cys-induced vasodilation in the aorta of both groups of animals. So, we 

could speculate that CSE is less active in the diabetic rats probably because of a 
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‘cross talk’ with endothelium derived factors, like endothelin, which could 

counterbalance the enzyme activity, and not NO, as confirmed either by the 

ineffectiveness of L-NAME on the relaxation or by the removal of the endothelium, 

which increased the relaxation in diabetic aortic rings after L-Cys, but not NaHS.  

In the mesenteric bed, there was still no difference between the relaxation induced 

by NaHS in the CTR and STZ animals, but the addition of L-NAME increased the 

vasodilation in both groups.  

In our experimental conditions, L-NAME treatment revealed the effect of EDHF, as 

indomethacin was added to the perfused Krebs’ solution. EDHF, as already 

demonstrated by using another experimental diabetic induced method (12), and 

confirmed by our experiments, was less produced in the diabetic animals, 

consequence of an impaired endothelium. 

EDHF hyperpolarizes the vascular smooth muscle through the activation of KCa+2 

channels; so, the increased relaxation, which was more visible in the diabetic at 

lower concentration of NaHS, could be explained by an induction of EDHF 

production by H2S or by a synergy activity in the two compounds.  

The same effect was not registered with L-Cys infusion to the mesenteric artery, 

confirming the critical role of the enzyme CSE in the diabetic status. 

An innovative effect, ever registered, was the contractile capacity of these 

compounds on a stable phenilephrine tone. This effect was endothelium dependent 

either for L-Cys or for NaHS in the aortic rings, confirmed by the addition of L-

NAME and the removal of the endothelium, which respectively decreased or 

completely abolished the contraction. 

Gluais et al (11) demonstrated that in the aorta of SHR and WKY, the endothelium-

dependent contractions elicited by A23187 and Ach involved the release of 
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thromboxane A2 and prostacyclin with a most likely concomitant contribution of 

PGH2. So, we could speculate that both NaHS and L-Cys could induce pro-

contractile factors activity in the aorta and mesenteric bed. The implicated 

contractile factors could be either tromboxane A2 or endothelin, both endothelium 

derived. The involvement of endothelin seems to be more suitable in the case of the 

mesentery, as the prostaglandins synthesis was inhibited by the addition of 

indomethacin in the perfused solution.  

In conclusion, further understanding of the underlying mechanism for H2S could 

open future prospective for clinical trials in conditions like diabetes and 

hypertension. These pathologies are characterized by endothelial damage and high 

blood pressure, so the use of a probable H2S donor could prove to be efficient, as it 

can either directly interact with the smooth muscle cell or can be produced at the 

level of the vascular smooth muscle (1). Nevertheless, more studies are required to 

elucidate its clinical contribution, especially for explaining the endothelium 

implication in the contractile activity.  
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II. DiscussionDiscussionDiscussionDiscussion    

Sepsis and diabetes are two different cardiovascular diseases. Sepsis is an 

infective pathology whilst diabetes is a metabolic syndrome . The common 

underlying matrix is the effect on the cardiovascular system. Sepsis can be caused 

by the infection of a bacteria, which invades organs like the lung, and then dissolve 

to the circulation promoting a systemic inflammatory process, leading to a massive 

hypotension; whereas, diabetes is promoted by the absence or the inefficency of 

insulin, occurring hypertension and atherosclerosis as secondary effects, which are 

the main responsible of diabetes-induced mortality in the patient. Thus, on one 

hand, sepsis promotes a severe vasodilatation with low blood perfusion and 

consequently organ injury and on the other hand, diabetes promotes profound 

vasoconstriction, inducing hypertension. 

The systemic inflammatory pattern, observed in sepsis, is directly activated by the 

presence of a pathogen agent that invades the organism. The recognition of the 

pathogen by the innate immune system leads to the activation and interaction of a 

number of effective cascades such as the complement, TLRs pathway, coagulation, 

bradykinin/kinin and hematopoietic systems, that can interact with each other and 

facilitate the release of a myriad of mediators in the acute phase response, such as 

eicosanoids, cytokines, chemokines, adhesion molecules, reactive free radicals, 

platelet-activating factor (PAF), and nitric oxide (NO). The macroscopical 

reflection of these pro-inflammatory patterns is the vascular dilation according to 

the elevated amount of NO, prostacyclin produced and increased activity of 

potassium ATP-dependent channels. 
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The most common infectious sources of severe sepsis are the lungs, abdomen, and 

urinary tract. In the Chapter 1, we studied the effect of Gram positive bacteria, like 

S.aureus, or Gram negative bacteria, like E.coli, on human pulmonary epithelial 

cell line. The stimulation of human airway epithelial A549 cells with bacteria 

induced the production of a chemokine CXCL-8, responsible of the recruitment of 

neutrophils. The costimulation with both type of bacteria, example of co-infection 

typical of sepsis, potentiated the amount of CXCL-8 detected. CXCL-8 

overproduction was due to the activation of TLRs, innate immune receptors, which 

via NF-kB or AP-1, nuclear transcription factors, may mediate the induced 

synthesis for pro- and anti-inflammatory cytokines, and in particular of chemokines. 

The arrival of neutrophils in the site of the infection, one of the first step for the 

host immune defence, promotes the production of many anti-bacterial products, 

such as defensins and NO, to combat and promote the clearance of the pathogen. As 

the lung is enriched of vessels, the pathogen, that escapes the host defence, can 

migrate to the systemic circulation and evoke a more severe systemic inflammatory 

pattern. 

Once in circulation, the pathogen can be recognised by immuno-competent 

circulating cells, like blood macrophages or monocytes, or even by tissue 

macrophages. The recognition of the infectious agent or of some of its structural 

components induces the production of many inflammatory mediators, like TNFα, 

IL-1β and IL-6. First of all, cytokines like TNFα, IL-1β and IL-6 can either act in an 

autocrine manner, activating the same cell by which they are produced, or in a 

paracrine manner, activating other immuno-competent cells. Other mediators 

produced in this pathological state can be IL-4, IL-2, IL-12 and so on, capable of 

inducing the differentiation and the proliferation of T and B lymphocytes, activating 
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the adaptive immune system. This is the link between the innate and the adaptive 

immune system. 

Among the paracrine actions of macrophagic cytokines there is the activation of the 

stromal cells, like endothelial or vascular smooth muscle cells. These cells are able 

to ‘sense’ the pathogen and promote the synthesis of inflammatory mediators, in 

particular NO, by the inducible NOS isoform (iNOS). As observed in the Chapter 2, 

iNOS was induced by both Gram positive and Gram negative bacteria. The 

overproduction of NO has a double and ambiguous action. Macrophages-derived 

NO is essential for the host defence, capable of killing the bacteria through the 

‘suicide mechanism’, which implicates either a cytostatic or cytotoxic effect (8). 

Indeed, large amount of NO cause autoinhibition of the mitochondrial respiration 

by inhibiting several key enzymes in the mitochondrial respiratory chain, like 

NADH-ubiquinone reductase or succinate-ubiquitinone oxidoreductase, and the 

Krebs’ cycle, through the formation of radical species (1), which interfere with the 

biological vitality of the pathogen, leading to its clearance. Our experimental 

conditions revealed a higher production of NO by J774.2 macrophages stimulated 

with E.coli rather than S.aureus, which released significant lower amount of NO at 

24 hours. This may be a possible explanation for a more threatening clinical septic 

condition after Gram positive bacteria challenge.  

The ambiguous face of NO is that its effects can be traduced even on the host 

organism. NO is also produced by the vascular smooth muscle cells and endothelial 

cells, leading firstly to a profound vasodilatation, typical deleterious aspect of the 

septic shock, and secondly to the damage of cellular structures. Our results revealed 

a similar production of NO by vascular smooth muscle cells stimulated with E.coli 

and S.aureus. The vascular E.coli-induced NO production is well documented, but 
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the activity of S.aureus on vascular cells but not on macrophages may be the 

answer to the highest severity of Gram positive-induced sepsis, may be due to a 

high vascular response to the bacteria and a lower or later immuno-competent 

reaction. 

Besides NO, other radicals (ROS) and oxidants can be produced by the recruited 

inflammatory cells. Consequently, ROS could interact with NO and form RNS that 

could cause damage at the double strand of DNA, peroxidation of lipids and 

nitration of proteins, especially at the level of tyrosine. The modification in the 

structural cellular physiology, in the same way as in the diabetes, can trigger the 

activation of the nuclear enzyme PARP-1. Activation of PARP-1 results in the rapid 

depletion of intracellular NAD+, its substrate, slowing the rate of glycolysis, 

electron transfer and ATP formation, which ultimately leads to cell death. 

Interestingly, exogenous cell stimulation by ROS, like H2O2, as studied in the 

Chapter 3, activated monocytes or other immuno-competent cells to produce 

chemokines, like CXCL-8, and cytokines. The same pattern may reproduce in the 

host organism, so that ROS can induce the recruitment of other leucocytes and 

antigen presenting cells (macrophages or dendritic cells), further exacerbating the 

redundant situation in the inflamed site, already challenged by the bacteria invasion. 

The activation of TLR4 by E.coli or respective PAMPs, and of the heterodimer 

TLR2/1 by S.aureus and TLR2 ligands were responsible of the increased CXCL-8 

release. Interestingly, the activation of TLRs did not only keep the inflammatory 

pattern active, but also induced the induction of an endogenous cytoprotective 

protein, Nrf-2. Nrf-2 is a nuclear transcription factor that can counteract the activity 

of the oxidative stress. Its translocation through the nucleus was endogenously 

followed the stimulation of THP-1 cells with N-acetylcysteine, a well-known anti-
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oxidant agent. Surprisingly, the activation of TLR4 and, in particular, the 

heterocomplex TLR2/1 by specific ligands alone, still promoted the translocation of 

Nrf-2 to the nucleus, implicating the role of TLRs in this protective pathway. 

Furthermore, the co-stimulation with TLRs specific ligands plus H2O2 promoted a 

significant increase in Nrf-2 amount in the nuclear protein extract, especially after 

LPS and Pam3CSK4 coadministered with the ROS. It is known that TLRs 

signalling pathways achieve the activation of many nuclear transcription factors like 

NF-kB or AP-1, which in turn promote the mRNA transcription for pro-

inflammatory cytokines and chemokines. So, as described in literature, the 

activation of TLRs is a sort of host defence and therefore requires the activation of 

destructive mediators for the pathogens. Hence, our results confirmed that, besides 

the invasive patterns adopted by the organism for struggling the invasion of 

pathogens with the deleterious consequences on the host, there are some pathways, 

like the Nrf-2, that may oppose via TLRs to the destruction of physiological 

mechanisms, in order to re-establish the entire immuno-competent or vascular 

system.  

These results were related to a condition of oxidative stress followed the invasion of 

bacteria like S.aureus and E.coli, responsible of inducing the septic shock. In the 

case of diabetes, it was also demonstrated that oxidative stress is a serious and 

secondary mechanism consequence of the high blood pressure and then of the shear 

stress. Recently, Rossi et al. (2) revealed that the levels of stress sensitive enzyme 

heme oxygenase-1 (HO-1) were impaired, index of a prolonged inflammation in the 

diabetes. HO-1 is the inducible isoform of the first and rate-controlling enzyme of 

heme degradation. HO-1 is up-regulated by oxidative stress stimuli and has potent 

cytoprotective and anti-inflammatory functions via decreasing tissue levels of the 
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pro-oxidant heme along with production of bilirubin and the signalling gas carbon 

monoxide (3). It was also demonstrated that HO-1 could be induced by NO or 

PGJ2, increasingly produced during the diabetes, via Nrf-2 nuclear translocation in 

the RAW264.7 murine macrophages (4). 

Therefore, the inflammatory process, which is at the basis of both pathologies 

considered in this thesis, could be opposed by the therapeutic induction of 

endogenous cytoprotective mechanisms, like Nrf-2 or the effector HO-1, in order to 

at least, combat the oxidative stress. 

A further aspect considered in my PhD training, was the effect on the vessel wall by 

the sepsis and diabetes. As described above, the massive vasodilatation in the sepsis 

is due to the inappropriate activation of vasodilator mechanisms. The 

overexpression of iNOS either by macrophages or by vascular smooth muscle cells 

and endothelial cells leads to an overproduction of NO. It can promote 

vasodilatation by the activation of the soluble guanilate cyclase with a consequent 

formation of cGMP that activates a cGMP-dependent protein kinase (PKG), the 

responsible kinase of the myosin light chain phosphorilation in the vascular smooth 

muscle cell.  

Furthermore, NO can also activate the potassium ATP-dependent channels (KATP), 

via a cGMP-dependent mechanism (5), and calcium-dependent potassium channels 

(KCa+2), via a direct nitrosylation of the channel and activation of protein kinase G 

(PKG) (6, 7), leading to a profound vascular relaxation. 

Chapter 4 describes the study of a possible coadjuvant for sepsis therapy, human 

recombinant erythropoietin (rhEPO). rhEPO treatment increased either the low 

blood pressure typical of septic rats in vivo or the vascular hyporeactivity to 

vasoactive agents like phenilephrine, endothelin, tromboxane and angiotensin II in 
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vitro. The endothelium impairment was diminished, confirmed either by the 

increased acetylcholine-induced relaxation on a stable tone of phenilephrine, or by 

the reduction of iNOS and ICAM-1 protein expression in the aorta. rhEPO also 

revealed antiapoptotic activity by increasing the amount of Bcl-2 and Bcl-xl, 

antiapoptotic proteins, and decreasing the value of PARP-1, enzyme able to induce 

to the DNA repair or to the cell death (apoptosis). Therefore, rhEPO may have all 

the characteristics to be considered as a possible candidate for the sepsis multi-

therapy. 

High blood pressure is often associated to diabetes. Diabetes type I and type 

II is characterized by the deficiency or the inefficiency, respectively, of insulin, the 

principal hormone that in physiological conditions promotes the influx and 

metabolic use of glucose into the cells. The reduction in the effective levels and/or 

action of circulating insulin induces a concomitant elevation of the counter-

regulatory hormones, such as catecholamines, glucagons and growth hormone (8). 

The raised cathecolamines, in particular, renders the vascular smooth muscle cell 

more susceptible to the vasoconstriction, promoting the release of calcium from the 

intracellular stores to the cytoplasm. Augmented intracytoplasmic calcium 

concentration increases the kinases activity and therefore the phosphorilation of 

myosin, leading to the vasoconstriction and in the end to hypertension. So, as the 

blood pressure is a resultant of the cardiac output and the peripheral vascular 

resistance, the increase in the vasoconstriction and consequently in the vascular 

resistance leads to high blood pressure. High blood flow, and so the creation of 

hydrostatic forces within the blood vessel, creates a dragging frictional force, 

simply called ‘shear stress’. The shear stress appears to be a particular important 

haemodynamic force, as it stimulates the release of vasoactive substances, 
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worsening the above described vascular situation, and changing gene expression, 

cell metabolism, and cell morphology (9). The blood is directly in contact with the 

endothelium within the vessel, so the endothelial cells play a critical role for the 

changing in the haemodynamic forces. Several investigators have demonstrated that 

endothelial cells may actually be sensitive to the magnitude of the shear gradient 

(10, 11). The endothelium impairment promotes the release of adhesion molecules, 

like ICAM-1 or VCAM-1, of prothrombotic factors, growth factors and vasoactive 

substances. 

The first important pattern to be involved in this process is the endothelial 

constitutive nitric oxide synthase (ecNOS). This enzyme promotes the rapid 

increase in nitric oxide (NO), which can either evoke anti-platelets aggregation or 

oppose to the synthesis of growth factors, that could increase the vessel wall 

thickness. The production of NO, the major vasodilator, could represent an opposite 

pathway to the vasoconstrictor agents, but the shear stress increases the amount of 

radical oxygen species (ROS) produced by the endothelium. ROS react with NO 

producing radical nitrogen species (RNS), that can oxidise the tetrahydropterin 

(BH4), fundamental cofactor for the eNOS activity (12). The resultant of these 

processes is the production of superoxide anion (O2
-.
) and peroxynitrite (ONOO

-
) 

(13), which lead to the deleterious oxidative stress.  

The oxidative stress induces the modification of the physiological cellular structure 

of lipids, proteins and in particular of the DNA. The DNA structure alteration is 

quickly recognised by some ‘sentinel’ enzymes, like poly(ADP-ribose) polymerase-

1 (PARP-1), which is implicated in the DNA repair and maintenance of genomic 

integrity (7). A relevant importance has the regulation by PARP-1 of the production 
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of inflammatory mediators via NF-kB, AP-1, Oct-1 activation. Among the mRNA 

protein transcripted, there are adhesion molecules and cytokines and chemokines, 

which initiate an inflammatory process. Thus, a metabolic syndrome like diabetes 

can turn into an inflamed status characterized by high vascular reactivity to 

vasoconstrictor agents. 

Recently, a third biological gas was discovered, hydrogen sulphide (H2S). It is 

produced by the conversion of L-cysteine by cystathionine β-synthase (CBS) or 

cystathionine γ-lyase (CSE). Actually, it has been shown that the final target of H2S 

are the KATP.channels The opening of KATP channels allows an efflux of potassium, 

thus hyperpolarizing the plasma membrane and preventing the entry of calcium into 

the cell, leading to the vasodilatation. KATP channels are physiologically activated 

by decreases in the cellular ATP concentration and by increases in the cellular 

concentrations of hydrogen ions and lactate (14), a mechanism that links cellular 

metabolism with vascular tone and blood flow. Reduced ATP and increased protons 

and lactate is a typical metabolic situation in sepsis (15). The reduced afflux of 

glucose to the cells and the consequent reduction of ATP are also typical of 

diabetes, but, in contrast to sepsis, KATP are less sensitive as the predominant effect 

of catecholamines on the vascular cells, evoking a major vessel constriction.  

In our experimental conditions, the administration of exogenous H2S, in the form of 

sodium hydrogen sulphide (NaHS), revealed an increased vasodilatation on rat 

diabetic aortic rings and mesenteric vascular bed, compared to the control. In 

contrast, the administration of the metabolic precursor, L-cysteine, did not reveal 

the same results as NaHS, may be due to the lower activity of the enzyme 

responsible of its catalysis in the diabetic disease. The discover of a new 

endogenous gas could be a useful tool for future therapies for the diabetes, which 
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deleterious macrovascular complication is hypertension. The actual therapy for the 

diabetes is the replacement of insulin, but a future possibility could be the use of 

exogenous hydrogen sulphide donors which could diminish the secondary 

deleterious effect of hypertension in diabetic patients. Though, the application of 

hydrogen sulphide donors in the diabetic pathology could have many side effects as 

it was shown that NaHS can either induce proliferation or apoptosis in human 

vascular smooth muscle cells (16). So, H2S may behave in the same ambiguous NO 

manner.  

Instead, the actual sepsis therapy comprehends vasoconstrictors, who are not really 

successful, and glucocorticoids for their anti-inflammatory characteristics. A more 

promising possibility could be the activation of pathways like PARP-1 and Nrf-2, 

which could microscopically defend the physiological status of vascular and 

epithelial as well as endothelial cells, and rhEPO as coadjuvant to the already 

adopted therapy. Furthermore, TLRs modulators may be other efficient coadjuvants 

in the sepsis therapy as their activation achieves the possibility of defending the 

host from the pathogen invasion, counterbalancing the recruitment of pro and anti-

inflammatory cells as well as anti-oxidant cytoplasmic molecules. 
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